
Security Smarts for the Self-Guided IT Professional

Secure web applications from today’s most devious hackers.        

Web Application Security: A Beginner’s Guide helps you stock your   

security toolkit, prevent common hacks, and defend quickly  

against malicious attacks. 

This practical resource includes chapters     

on authentication, authorization, and 

session management, along with browser, 

database, and file security—all supported 

by true stories from industry. You’ll also 

get best practices for vulnerability detection 

and secure development, as well as a 

chapter that covers essential security 

fundamentals. This book’s templates, 

checklists, and examples are designed to 

help you get started right away. 

Bryan Sullivan is a senior security researcher at Adobe Systems, 

where he focuses on web and cloud security issues. He was 

previously a security program manager on the Microsoft Security 

Development Lifecycle team and a development manager at 

HP, where he helped to design HP’s vulnerability scanning tools, 

WebInspect and DevInspect.  

Vincent Liu, CISSP, is a managing partner at Stach & Liu. He 

previously led the Attack & Penetration and Reverse Engineering 

teams for Honeywell’s Global Security group and was an analyst 

at the National Security Agency. Vincent is a coauthor of Hacking 

Exposed Web Applications, Third Edition and Hacking Exposed Wireless, 

Second Edition. 

TM

$40.00 USD

Networking/Security

Cover Design: Jeff Weeks

Sullivan
Liu

TM

Web Application Security: A Beginner’s Guide 

features: 

* Lingo—Common security terms defined so that you’re  

 in the know on the job  

* IMHO—Frank and relevant opinions based on the  

 authors’ years of industry experience 

* 
Budget Note—Tips for getting security technologies  

 and processes into your organization’s budget 

* 
In Actual Practice—Exceptions to the rules of security  

 explained in real-world contexts 

* 
Your Plan—Customizable checklists you can use on   

 the job now 

* 
Into Action—Tips on how, why, and when to apply   

 new skills and techniques at work

             
  @MHComputing

“Get to know the hackers—or plan on getting hacked. Sullivan and Liu have created a savvy, 

essentials-based approach to web app security packed with immediately applicable tools for 

any information security practitioner sharpening his or her tools or just starting out.”

—Ryan McGeehan, Security Manager, Facebook, Inc.



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu /   
Blind Folio: 1

Primer

Pa
rt I

01-ch01.indd   1 10/7/11   10:05:47 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 /  
Blind Folio: 2

3

01-ch01.indd   2 10/7/11   10:05:48 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 /  
Blind Folio: 2

Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

3

Welcome to the 

Wide World of Web 

Application Security

Ch
a

Pter 1

01-ch01.indd   3 10/7/11   10:05:48 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 4 Web Application Security: A Beginner’s Guide

We’ll Cover

Misplaced priorities and the need for a new focus●●

Network security versus application security: The parable of the wizard ●●

and the magic fruit trees

Thinking like a defender●●

The OWASP Top Ten List●●

Secure features, not just security features●●

The information technology industry has a big problem—a 60-billion-dollar problem,  
in fact.
Sixty billion dollars is what the global IT industry spends on security in one year. 

That’s more than the gross domestic product of two-thirds of the countries in the world. 
And it doesn’t seem as if we’re getting a lot for our money, either. Every week, there’s 
a new report of some data breach where thousands of credit card numbers were stolen 
or millions of e-mail addresses were sold to spammers. Every week, there’s some new 
security update for us to install on all of our work and home computers. If we’re spending 
so much money on security, why are we still getting hacked? The answer is simple: we’re 
spending money, but we’re spending it on the wrong things.

Misplaced Priorities and the  
Need for a New Focus

A recent survey of security executives from Fortune 1000 companies (http://www 
.fishnetsecurity.com/News-Release/Firewalls-Top-Purchase-Priority-In-2010-Survey-Says-) 
showed that the number one IT security spending priority was network firewalls. Given 
that, you’d guess that the number one way these companies are getting attacked is through 
open ports on their networks, wouldn’t you? In fact, if you did, you’d be dead wrong. The 
number one way Fortune 1000 companies and other organizations of all sizes get attacked 
is through their web applications.

How often do web applications get attacked? Security industry analysts suggest that as 
much as 70 percent of attacks come through web applications. And that 70 percent figure 
doesn’t just represent a large number of small nuisance attacks like the site defacements 

01-ch01.indd   4 10/7/11   10:05:48 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1 Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 Chapter 1 Welcome to the Wide World of Web Application Security 5

that were so common in the early days of the Web. Vulnerabilities in web applications 
have been responsible for some of the most damaging, high-profile breaches in recent 
news. Just a small sample of attacks in the first half of 2011 alone includes:

The SQL injection attacks on the Sony Music web sites in May 2011 by the LulzSec ●●

organization. While unconfirmed by Sony, it’s also believed that SQL injection 
vulnerabilities were responsible for the attacks against the Sony PlayStation Network 
and Qriocity that leaked the private data of 77 million users and led Sony to shut 
down the services for over a month. The overall cost of this breach to Sony has been 
estimated to exceed 171 million dollars (US).

A cross-site scripting vulnerability in the Android Market discovered in March 2011 ●●

that allowed attackers to remotely install apps onto users’ Android devices without their 
knowledge or consent.

The attack on information security firm HBGary Federal in February 2011 by the ●●

hacker group Anonymous. Another simple SQL injection vulnerability in the www 
.hbgaryfederal.com website, combined with a poorly implemented use of cryptographic 
hash functions, enabled Anonymous to extract the company officers’ usernames and 
passwords, which then enabled them to read the officers’ confidential internal e-mails. 
The CEO of HBGary Federal resigned from the company shortly thereafter, citing a 
need to “take care of his family and rebuild his reputation.”

None of these attacks were stopped by the sites’ firewalls! But IT budgets still focus 
primarily on firewall defenses. This is puzzling, since network firewalls are completely 
useless to prevent almost any web application attack. You can’t use firewalls to close off 
ports from which your web applications are being served, because then nobody could 
come to your web site. Organizations spend billions of dollars a year on advertising to get 
people to come to their sites; they’re certainly not going to close them up with firewalls. 
Figure 1-1 shows a diagram of an attacker evading a server’s firewall defenses by simply 
entering through the web site port 80.

We as an industry definitely have some misplaced priorities when it comes to 
security spending, but the magnitude of the imbalance is simply staggering. In another 
recent survey of IT professionals (http://www.barracudanetworks.com/ns/downloads/
White_Papers/Barracuda_Web_App_Firewall_WP_Cenzic_Exec_Summary.pdf), almost 
90 percent of companies reported that they spend less money on web application security 
than they spend on coffee: less than $1 per day per employee. We’re willing to spend 
billions of dollars a year to protect our networks, but when it comes to the targets that are 
really getting hit the hardest, we skimp and cut corners. To repeat an often-used analogy, 

01-ch01.indd   5 10/7/11   10:05:48 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 6 Web Application Security: A Beginner’s Guide

this is like installing burglar alarms and steel bars on all of the windows in your home, but 
leaving the front door wide open.

Since the same survey showed that almost 70 percent of organizations rely on network 
firewalls for their web application defense—which is essentially the same as having no 
defense at all—it’s hard to see this as anything besides an issue of being appropriately 
educated on web application security. People know their web applications are important, 
but they don’t know how to secure them.

That’s where this book comes in.

Network Security versus Application Security: 
The Parable of the Wizard and the Magic  
Fruit Trees

In order to understand the difference between network security issues and application 
security issues a little better, consider this parable of the wizard and the magic fruit trees.

Once upon a time there lived a kindly old wizard who loved fruit. He used his magic 
spells to create a magnificent orchard full of all different kinds of fruit trees. He created 
apple trees, banana trees, and plum trees. He conjured up entirely new kinds of fruit trees 
that never existed in nature, fields of vineyards that grew cherries the size of cantaloupes, 
and shrubs that grew oranges with purple skin and tasted like watermelons.

As we said, this wizard was a kindly wizard, and he didn’t mind sharing his magical 
fruit with all the people of the village. He let them all come and go as they pleased through 

www.website.cxx

Firewall

Attacker

Open SSH shell, port 22

Open SQL connection, port 118

Open web connection, port 80

Figure 1-1  A server firewall preventing users (and attackers) from accessing most server 
ports but leaving port 80 open for web site traffic

01-ch01.indd   6 10/7/11   10:05:49 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1 Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 Chapter 1 Welcome to the Wide World of Web Application Security 7

his groves, picking as much fruit as they wanted—after all, the trees were magic and grew 
new fruit the second the old fruit was picked. Life was good and everyone was happy, until 
one day the wizard caught a lovesick young farm boy carving his sweetheart’s initials into 
one of the lemonpear trees. He scolded the boy, sent him away, and turned the boy’s ears 
into big floppy donkey ears as a punishment (just for a few hours, of course).

The wizard thought that was that and started to get back to his scrolls, but then he 
saw another villager trying to dig up a tree so he could take it back to his house and 
plant it there. He rushed over to stop this thief but an even more horrific sight caught his 
eye first. Two apprentices of the evil wizard who lived across the valley had come with 
torches and were trying to burn down the whole orchard to exact revenge for their master’s 
embarrassing defeat at wizard chess earlier that month.

Now the wizard had had enough! He threw everyone out, and cast a spell that opened 
up a moat of boiling lava to surround the orchard. Now no one could get in to vandalize 
his beloved fruit trees, or to steal them, or try to burn them down. The trees were safe—
but the wizard felt unhappy that now he wasn’t able to share his fruit with everyone. And 
the villagers did tend to spend a lot of gold pieces buying potions from him while they 
were there picking his fruit. To solve this problem, he came up with an ingenious new 
solution.

The wizard invited his friend the giant to come live in the orchard. Now whenever 
someone wanted a piece of fruit, he would just shout what he wanted to the giant. The 
giant would go pick the fruit for them, jump over the lava moat, and then hand them the 
fruit. This was a better deal for both the wizard and the villagers. The wizard knew that 
all the miscreants would be kept away from the trees, and the villagers didn’t even have to 
climb trees any more: the fruit came right to them.

Again, life was good and everyone was happy, until one day one very clever young 
man walked up to the edge of the lava where the giant was standing. Instead of asking the 
giant to bring him back a basket of persimmons or a fresh raisinmelon, he asked the giant 
to go up into the tower and fetch him the wizard’s scrolls. The giant thought this request 
was a little strange, but the wizard had just told him to get the people whatever they asked 
for. So he went to the tower and brought back the magic scrolls for the young man, who 
then ran off with all of the wizard’s precious secrets.

Real-World Parallels
If you were hoping for a happy end to this story, there isn’t one—not yet, at least. First, 
let’s take a look at the parallels between this story and the real-world security issues that 
organizations like yours face every day.

01-ch01.indd   7 10/7/11   10:05:50 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 8 Web Application Security: A Beginner’s Guide

You (the wizard) have data (fruit) that you’d like to share with some people. But you 
know that if you just let everyone have free access to your server farm (orchard), there’ll 
be disastrous results. People will deface your servers (vandalize the trees), they’ll install 
botnets or other malware to take the servers over for themselves (steal the trees), and 
they’ll try to deny service to the servers so no one can use them (burn the trees down).

In response to these threats, you erect a firewall (lava moat) to keep everyone out. This 
is good because it keeps the attackers out, but unfortunately it keeps all your legitimate 
users out too, as you can see in Figure 1-2. So, you write a web application (a giant) that 
can pass through the firewall. The web application needs a lot of privileges on the server 
(the way a giant is very powerful and strong) so it can access the system’s database and 
the file system. However, while the web application is very powerful, it’s not necessarily 
very smart, and this is where web application vulnerabilities come in.

By exploiting logic flaws in the web application, an attacker can essentially “trick” the 
web application into performing attacks on his behalf (getting the giant to do his bidding). 
He may not be able to just connect into the servers directly to vandalize them or steal 

User

Data

Firewall

User

User

Attacker

Figure 1-2  A firewall (lava moat) keeps attackers out, but keeps legitimate users out as well.

01-ch01.indd   8 10/7/11   10:05:50 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1 Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 Chapter 1 Welcome to the Wide World of Web Application Security 9

from them any more, but if he can get a highly privileged application to do it for him, then 
that’s just as good. He may even be able to read the application source code (the wizard’s 
scrolls) out of the file system.

The moral of the story is that it’s necessary to use network-level defenses like firewalls 
to keep attackers out, but network-level defenses alone are not sufficient. You also need to 
weed out all the logic flaws in your web applications so that they can’t be subverted.

Thinking like a Defender
The goal of this book is to help you prevent the logic flaws that lead to web application 
vulnerabilities, and we’ll do this in two ways. First, we’ll examine the code and 
configuration problems underlying specific web application vulnerabilities like cross-site 
scripting and SQL injection. It’s crucial to be properly educated in defense techniques for 
these vulnerabilities, because you will need to put them to the test.

Note
A lot of people think that they’re safe from attack because their company is too small to 
be noticed by attackers. Hackers only go after the big guys like Google and Microsoft, 
right? Think again: According to statistics from the IBM X-Force security research team, 
products from the top ten software vendors accounted for only 20 percent of reported 
vulnerabilities in 2010 (as seen in Table 1-1), and this number is down from 23 percent 
in 2009. Attackers are increasingly targeting the “long tail” of smaller organizations’ 
web applications, so never think that you’re too small to slip under their radar.

Table 1-1  2010 First-Half Vulnerability Disclosure Rates per Vendor (IBM X-Force 2010  
Mid-Year Trend and Risk Report)

Rank Vendor Disclosure Frequency
 1. Apple  4.0%

 2. Microsoft  3.4%

 3. Adobe  2.4%

 4. Cisco  1.9%

 5. Oracle  1.7%

 6. Google  1.6%

 7. IBM  1.5%

 8. Mozilla  1.4%

 9. Linux  1.4%

10. Sun  1.1%

N/A All others 79.6%

01-ch01.indd   9 10/7/11   10:05:50 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 10 Web Application Security: A Beginner’s Guide

However,  as with firewalls, knowing how to defend against specific web application 
attacks is necessary but not sufficient by itself. Beyond just looking at specific attacks, we 
also want to educate you on larger, more general security principles.

This is important because attack methods change all the time. Attackers refine their 
methods, finding new ways to break into systems that were previously thought to be 
secure. Every year, some security researcher will present a paper at the BlackHat or 
DefCon security conference that negates a built-in browser or operating system defense 
that developers had come to rely on.

You need to be prepared not just for the attacks that are going to come today, but for the 
new attacks that are going to come tomorrow. You can do this not by thinking like an attacker 
(which you’re not), but by learning to think like a defender (which you now are). This is  
why it’s so important to learn the general security principles behind the specific defenses.  

In Actual Practice
The way that a lot of security experts want you to solve this problem is for you to 
“think like an attacker.” In their opinion, if you just think the way the attackers do, 
you’ll be able to anticipate their moves and block them. What ridiculous advice! 
You’re not an attacker—at least, I certainly hope you’re not. If you want any degree of 
confidence in your results at all, it’s just not possible for you to snap your fingers and 
start thinking like someone with years of experience in a completely different field of 
expertise.

To show what an unrealistic expectation this is, when I give presentations to groups 
of security professionals, I’ll sometimes challenge them to think like a dentist. I’ll tell 
them that my tooth hurts and ask what they plan to do for me. They’ll take an X-ray, 
they say. “Fine,” I reply, “what are you going to look for in the image?” They don’t 
know. “Have you ever operated an X-ray machine before?” They haven’t. “Are you 
sure you’re not going to give me a lethal dose of radiation?” They’re not. This could be 
a problem!

When you try to think like an attacker, it’s likely that you’ll not only be lulled 
into a false sense of security—thinking you’ve protected yourself when you really 
haven’t—but there’s also a good chance that you’ll make matters even worse than they 
were before. Maybe we’ll all be better off letting developers be developers, and letting 
security researchers be security researchers.

01-ch01.indd   10 10/7/11   10:05:50 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1 Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 Chapter 1 Welcome to the Wide World of Web Application Security 11

It’s good to know how to appropriately encode HTML output to prevent cross-site scripting 
attacks, but it’s even better to know that mixing code and data can lead the application 
to interpret user input as command instructions. Knowing this—and developing your 
applications with an eye to avoiding this—can help you prevent not just cross-site scripting, 
but SQL injection, buffer overflows, request header forgery, and many others. And there’s 
a good chance it’ll help you prevent whatever new attacks get dropped at DefCon next 
year. The methods may change from year to year, but the underlying principles will always 
remain the same.

The OWASP Top Ten List
We’ll spend most of the rest of this book talking about web security vulnerabilities and 
principles, but just to whet your appetite for what’s to come, let’s start by getting familiar 
with the OWASP Top Ten List.

One of the most-respected authorities in the field of web application security is the 
organization OWASP, short for the Open Web Application Security Project. As its name 
implies, OWASP is an open-source project with the goal of improving web application 
security. (You can see a screenshot of the OWASP web site, www.owasp.org, in Figure 1-3.) 

Figure 1-3  The OWASP web site www.owasp.org

01-ch01.indd   11 10/7/11   10:05:50 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 12 Web Application Security: A Beginner’s Guide

OWASP is basically a loose coalition of individual contributors and sponsor companies 
who come together to contribute resources to the project. These resources include 
guidance documents to explain how to write more secure code, scanning tools to help you 
find vulnerabilities in your applications, and secure coding libraries you can use to prevent 
vulnerabilities from getting into your applications in the first place. But the best-known 
OWASP resource by far is its Top Ten List.

The OWASP Top Ten List of the Most Critical Web Application Security Risks 
is compiled from both objective and subjective data. OWASP sponsor organizations 
contribute objective data on the prevalence of different types of web application 
vulnerabilities: how many database attacks they’ve seen, how many browser attacks, and 
so on. OWASP-selected industry experts also contribute more subjective rankings of the 
severity or potential damage of these vulnerabilities.

As we mentioned earlier, web security risks change over time as new vulnerabilities 
are discovered (or invented). And it’s not all doom and gloom; new defenses are developed 
every year too. New versions of application frameworks, web servers, operating systems, 
and web browsers all often add defensive technology to prevent vulnerabilities or limit the 
impact of a successful attack.

Tip
Built-in browser defenses can be a great help, but don’t rely on them. It’s very unusual 
to be in a situation where you can guarantee that all your users are using the exact 
same browser. Certainly this won’t ever be the case if you have any public-facing 
web applications. And even if you’re only developing web sites for use inside an 
organizational intranet where you can mandate a specific browser, it’s likely that 
some users might configure their settings differently, inadvertently disabling the 
browser defenses. The bottom line here is that you should treat browser defenses as an 
unexpected bonus and not take them for granted. You are the one who needs to take 
responsibility for protecting your users. Don’t count on them to do it for you.

Since web application vulnerability risks change, becoming comparatively more or 
less critical over time, the OWASP Top Ten List is periodically updated to reflect these 
changes. The first version of the list was created in 2004, then updated in 2007 and again 
in 2010 (its most recent version as of this writing). The list is ranked from most risk to 
least risk, so the #1 issue (injection) is considered to be a bigger problem than the #2 issue 
(cross-site scripting), which is a bigger problem than broken authentication and session 
management, and so on.

As of 2010, the current version of the OWASP Top Ten List is as described in the 
following sections.

01-ch01.indd   12 10/7/11   10:05:50 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1 Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 Chapter 1 Welcome to the Wide World of Web Application Security 13

#1. Injection
One of an attacker’s primary goals is to find a way to run his own code on your web 
server. If he can do this, he may be able to read valuable confidential data stored in your 
databases or conscript it into a remote-controllable botnet of “zombie” machines. To 
accomplish this through a network-level attack, he might have to find a way to sneak 
an executable binary file through your firewall and run it. But with an application-level 
attack, he can accomplish his goal through much more subtle means.

A typical web application will pass user input to several other server-side applications 
for processing. For example, a search engine application will take the search text entered 
by the user, create a database query term from that text, and send that query to the database. 
However, unless you take special precautions to prevent it, an attacker may be able to input 
code that the application will then execute. In the example of the search engine, the attacker 
may enter database commands as his search text. The application then builds a query term 
from this text that includes the attacker’s commands, and sends it to the database where it’s 
executed. You can see a diagram of this attack in action in Figure 1-4.

This particular attack is called SQL injection and is the most widespread form of injection 
attack, but there are many others. We see injection vulnerabilities in XML parsing code 
(XPath/XQuery injection), LDAP lookups (LDAP injection), and in an especially dangerous 
case where user input is passed directly as a command-line parameter to an operating system 
shell (command injection).

#2. Cross-Site Scripting (XSS)
Cross-site scripting vulnerabilities are actually a specific type of injection vulnerability 
in which the attacker injects his own script code (such as JavaScript) or HTML into 
a vulnerable web page. At first glance, this may not seem like an incredibly critical 
vulnerability, but attackers have used cross-site scripting holes to steal victims’ login 
passwords, set up phishing sites, and even to create self-replicating worms that spread 
throughout the target web site.

Database

Search for
‘foo’: DROP TABLE Catalog--

SELECT * FROM Catalog WHERE
ID = ‘foo’; DROP TABLE Catalog--

www.website.cxxAttacker

Figure 1-4  An injection attack against an application’s SQL database

01-ch01.indd   13 10/7/11   10:05:51 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 14 Web Application Security: A Beginner’s Guide

Cross-site scripting is dangerous not just because it can have such high-impact effects, 
but also because it’s the most pervasive web application vulnerability. You’re potentially 
creating cross-site scripting vulnerabilities whenever you accept input from a user and 
then display that input back to them—and this happens all the time. Think about blogs that 
let users write their own comments and replies to posts. Or collaborative wikis, which let 
the users themselves create the site content. Or even something as seemingly innocent as 
a search feature: if you display the user’s search term back to them (for example, “Your 
search for ‘pandas’ found 2498 results”), you could be opening the door to cross-site 
scripting attacks.

#3. Broken Authentication and Session Management
Authentication and authorization are usually considered to be network-level defenses, 
but web applications add some unique new possibilities for attackers. When you use 
a web application, your browser communicates with the application web server by 
sending and receiving messages using the Hypertext Transfer Protocol (HTTP). HTTP 
is a stateless protocol, which means that the server does not “remember” who you are 
between requests. It treats every message you send to it as being completely independent 
and disconnected from every other message you send to it. But web applications almost 
always need to associate incoming messages with a particular user. Since the underlying 
HTTP protocol doesn’t keep state, web applications are forced to implement their own 
state keeping methods.

Usually, the way they do this is to generate a unique token (a session identifier) 
for each user, associate that user’s state data with the token value, and then send the 
token back to the user. Then, whenever the user makes a subsequent request to the web 
application, he includes his session identifier token along with the request. When the 
application gets this request, it sees that the request includes an identifier token and pulls 
the corresponding state data for that token into memory.

There’s nothing inherently insecure with this design, but problems do come about 
because of insecure ways of implementing this design. For example, instead of using 
cryptographically strong random numbers for session identifiers, an application might be 
programmed to use incrementing integers. If you and I started sessions right after each 
other, my token value would be 1337 and yours would be 1338. It would be trivial for an 
attacker to alter his identifier token to different valid values and just walk through the list 
of everyone’s sessions.

Another example of a poor state management implementation is when the application 
returns the session token as part of the page URL, like www.site.cxx/page?sessionid=12345. 
It’s easy for a user to accidentally reveal this token. If a user copies and pastes the page URL 

01-ch01.indd   14 10/7/11   10:05:51 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1 Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 Chapter 1 Welcome to the Wide World of Web Application Security 15

from her browser and posts it on a blog, not only is she posting a link to the page she was 
looking at but she’s also posting her personal token, and now anyone who follows the link 
can impersonate her session.

#4. Insecure Direct Object References
There’s usually no good reason for a web application to reveal any internal resource names 
such as data file names. When an attacker sees a web application displaying internal 
references in its URL, like the “datafile” parameter in the URL http://www.myapp.cxx/
page?datafile=12345.txt, he’ll certainly take the opportunity to change that parameter and 
see what other internal data he can get access to. He might set up an automated crawler to 
find all the datafiles in the system, from “1.txt” through “99999999.txt”. Or he might get 
even sneakier and try to break out of the application’s data directory entirely, by entering a 
datafile parameter like “../../../passwords.txt”.

Note
Throughout this book, you’ll see us use example URLs with a top-level domain of “.cxx”, 
like “http://www.myapp.cxx”. We do this because—as of this writing—there is no such 
real top-level domain “.cxx”, so there’s no chance that the example site actually exists. 
We don’t want to accidentally name a real web site when we’re talking about security 
vulnerabilities!

#5. Cross-Site Request Forgery
Cross-site request forgery (CSRF) attacks are another type of attack that takes advantage 
of the disconnected, stateless nature of HTTP. A web browser will automatically send 
any cookies it’s holding for a web site back to that web site every time it makes a request 
there. This includes any active session identification or authentication token cookies it has 
for that site too.

By sending you a specially crafted e-mail message or by luring you to a malicious web 
site, it’s very easy for an attacker to trick your browser into sending requests to any site 
on the Internet. The site receives the request, sees that the request includes your current 
session token, and assumes that you really did mean to send it.

The worst part about cross-site request forgery is that every site on the Internet that 
relies on cookies to identify its users—and there are millions of these sites—is vulnerable 
to this attack by default. You’ll need to use additional measures beyond just session 
identification cookies to properly validate that incoming requests are legitimate and not 
forgeries.

01-ch01.indd   15 10/7/11   10:05:51 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 16 Web Application Security: A Beginner’s Guide

#6. Security Misconfiguration
You can code your application with every security best practice there is, crossing every “t” 
and dotting every “i”, but you can still end up with vulnerabilities if that application isn’t 
properly configured. You’ll often see these kinds of configuration vulnerabilities when 
development settings are accidentally carried over into production environments.

Web applications in particular are designed to be easy to deploy. Sometimes deployment 
is as simple as copying the files from the developer’s machine to the production server. 
However, developers usually set their configuration settings to give them as much debugging 
information as possible, to make it easier for them to fix bugs. If a developer accidentally 
deploys his configuration settings files onto the server, then that whole treasure trove of 
internal data may now be visible to potential attackers. This may not be a vulnerability 
in and of itself, but it can make it much easier for the attacker to exploit any other 
vulnerabilities he may find on the system.

#7. Insecure Cryptographic Storage
Sensitive data like passwords should never be stored unencrypted in plaintext on the 
server. In fact, it’s rarely necessary for passwords to be stored at all. Whenever you can, 
it’s better to store a one-way cryptographic hash of a user’s password rather than the 
password itself.

For example, instead of storing my password “CarrotCake143”, a web application 
could just store the Secure Hash Algorithm (SHA-1) digest value of “CarrotCake143”, 
which is a 40-character-long string of hexadecimal characters starting with “2d9b0”. 
When I go to log in to this web application and give it my username and password, it 
computes a new SHA-1 hash from the password that I give it. If the new hash matches the 
old hash, it figures that I knew the correct password and it lets me in. If the hashes don’t 
match, then I didn’t know the password, and it doesn’t let me in.

The benefit of this approach is that hash functions only work in one direction: it’s easy 
to compute the hash of a string, but it’s impossible to recompute the original string from 
the hash. Even if an attacker somehow manages to obtain the list of password hashes, 
he’ll still have to take a brute-force approach to testing for an original value that matches 
my “2d9b0…” SHA-1 hash. On the other hand, if the application stores my password 
in plaintext and an attacker manages to get ahold of it in that unprotected form, then 
he’s already won—and this is just one example of one misuse of one particular form of 
cryptography.

01-ch01.indd   16 10/7/11   10:05:51 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1 Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 Chapter 1 Welcome to the Wide World of Web Application Security 17

Tip
For an even better way to secure password hashes, you should add a random value (or 
“salt”) to the plaintext password before computing its hash value. This approach has 
multiple benefits. First, in case the hash value is ever leaked, it makes an attacker’s job 
of reverse-engineering the original password text from a pre-computed lookup table (or 
“rainbow table”) much more difficult. (In Figure 1-5, you can see a screenshot of a web 
site offering rainbow tables for download, which can be used to crack Windows XP 
user accounts.) 
  And second, without salt values, whenever two users have the same password, they’ll 
have the same password hash as well. Cracking just one user’s password from a leak 
of the hash list could end up revealing account information for potentially hundreds or 
thousands of other users as well.

#8. Failure to Restrict URL Access
One way that web applications sometimes keep unauthorized users out of certain pages 
on the site is to selectively hide or display the links to those pages. For example, if you’re 
the administrator for www.site.cxx, when you log in to the web site’s home page, you 
might see a link for “Administration” that takes you to admin.site.cxx. But if I log in to 
www.site.cxx, I won’t see that link since I’m not an authorized administrator there.

Figure 1-5  A web site offering Windows XP password rainbow tables for download

01-ch01.indd   17 10/7/11   10:05:51 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 18 Web Application Security: A Beginner’s Guide

This design is fine as long as there’s some other kind of authorization mechanism 
in place to prevent me from accessing the administration site. If the only thing keeping 
me out is the fact that I’m not supposed to know the site is there, that’s not sufficient 
protection. If someone on the inside accidentally reveals the secret site, or if I just happen 
to guess it, then I’ll be able to just get straight in.

#9. Insufficient Transport Layer Protection
Using Hypertext Transfer Protocol Secure (HTTPS) for your web site gives you many 
security benefits that regular vanilla HTTP does not. HTTPS uses either the Secure 
Sockets Layer (SSL) protocol or, better yet, the Transport Layer Security (TLS) 
protocol, which provides cryptographic defenses against eavesdropping attackers or 
“men-in-the-middle.” SSL/TLS encrypts messages sent between the client and the web 
server, preventing eavesdroppers from reading the contents of those messages. But just 
preventing someone from reading your private messages isn’t enough—you also need to 
make sure that nobody changes or tampers with the message data as well—so SSL/TLS 
also uses message authentication codes (MACs) to ensure that the messages haven’t been 
modified in transit.

Finally, you need to know that the server you’re sending a message to is actually the 
server you want. Otherwise, an attacker could still intercept your messages, claim to be 
that server, and get you to send “secure” messages straight to him. SSL/TLS can prevent 
this scenario as well, by supporting authentication of the server (and optionally the client) 
through the use of verified, trusted digital certificates.

Without these protections, secure communications across the Internet would basically 
be impossible. You’d never send your credit card number to a web site, since you’d never 
know who else might be listening in on the conversation.

Unfortunately, because HTTPS is slower than standard HTTP (and therefore more 
expensive since you need more servers to serve the same number of users), many web 
applications don’t use HTTPS as thoroughly as they should. A classic example of this is 
when a web site only uses HTTPS to protect its login page. Now, protecting the login page 
is critical: Otherwise, an attacker could intercept the user’s unencrypted password. But it’s 
not enough just to protect that one message.

Assuming the user logs in successfully, the web site will return an authentication 
token to the user, usually in the form of a cookie. (Remember, HTTP is stateless.) If all of 
the subsequent pages that the user visits after he’s authenticated are not also served over 
HTTPS, an attacker could read the authentication token out of the message and then start 
using it for himself, impersonating the legitimate user.

01-ch01.indd   18 10/7/11   10:05:51 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1 Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 Chapter 1 Welcome to the Wide World of Web Application Security 19

Note
While getting transport layer security right is a critical part of your application’s 
security, it should be evident by now that it’s not the only part of your application’s 
security. As with firewalls, far too many people tend to put far too much trust in the 
little HTTPS lock icon in their browser. Take SQL injection, for example: if your site is 
vulnerable to a SQL injection attack, all that you’ll get from using HTTPS is to create a 
secure channel that an attacker can use to exploit you.

#10. Unvalidated Redirects and Forwards
With web applications, it’s often the most simple and seemingly innocent functions of the 
application that lead to surprisingly damaging vulnerabilities. This is certainly the case 
with OWASP #10, Unvalidated Redirects and Forwards (usually just referred to as open 
redirect vulnerabilities).

Let’s say that you open your browser and browse to the page www.site.cxx/
myaccount. This page is only accessible to authenticated users, so the application first 
redirects you to a login page, www.site.cxx/login. But once you’ve logged in, the site 
wants to send you to the myaccount page that you originally tried to go to. So when it 
redirects you to the login page, it keeps that original page you asked for as a parameter in 
the URL, like www.site.cxx/login?page=myaccount. After you successfully pass the login 
challenge, the application reads the parameter from the URL and redirects you there.

Again, it sounds very simple and innocent. But suppose an attacker were to send you a 
link to www.site.cxx/login?page=www.evilsite.cxx? You might follow the link and log in 
without noticing where the page was redirecting you to. And if the site www.evilsite.cxx 
was set up as a phishing site to impersonate the real www.site.cxx, you might keep using 
evilsite without realizing that you’re now getting phished.

Wrapping Up the OWASP Top Ten
You shouldn’t worry if you’re unfamiliar with some of the vulnerabilities in the Top Ten 
list or even all of them. We’ll cover all of these vulnerabilities and others in detail over the 
course of this book, starting with the very basic principles of the attack: Which targets is 
the attacker trying to compromise? What does he want to accomplish? What am I doing 
that allows him to do this? And most importantly: What can I do to stop him?

And again, remember that each of these vulnerabilities is just a symptom of a larger, 
more general security issue. Our real goal is to educate you on these larger principles. We 
don’t just want to “give you a fish” and tell you about the OWASP Top Ten, we want to 
“teach you to fish” so that if OWASP expands their list next year to be a Top 20 or Top 
100, you’ll already have your applications covered.

01-ch01.indd   19 10/7/11   10:05:51 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 20 Web Application Security: A Beginner’s Guide

Secure Features, Not Just Security Features
Just as the IT professionals we talked about at the beginning of the chapter had some 
misconceptions about network security defenses versus application security defenses, 
developers also often have some mistaken beliefs concerning security. Next time you pass 
a developer in the hallway, stop him and ask him what he knows about security. He’ll 
probably answer with some information about firewalls, antivirus, or SSL. If he’s a Neal 
Stephenson fan, maybe he’ll corner you and start ranting on the inherent superiority of the 
Blowfish cryptography algorithm over the Advanced Encryption Standard algorithm.  
(If this happens to you, we apologize for getting you in this situation.)

And there’s nothing wrong with any of this—firewalls, antivirus, SSL, and cryptography 
are all important security features. But there’s a lot more to creating secure web applications 
than just knowing about security features. It’s actually much more important to know how 
to apply security to the routine development tasks that programmers tackle every day, like 
parsing strings or querying databases. In short, it’s more important to know how to write 
secure features than it is to know how to write security features.

Look back at the OWASP Top Ten one more time. It’s telling that for the majority 
of these vulnerabilities, the way that you solve the problem is usually found in a secure 
coding technique rather than in the application of a security feature. This is especially true 
when you look at the earlier, more critical vulnerabilities on the list. Of the top six, only 
one (#3, Broken Authentication and Session Management) can be attributed to misuse of 
a security feature. The rest are all caused by improperly coding the “normal,” everyday 
features that make up the majority of the work that applications perform.

IMHO
It’s disappointing to me that so many people think of security as just being security 
features. If you go to your local bookstore and randomly pick a book from the 
computing section, that book will probably have one short chapter on security, and 
99 percent of that chapter will cover authentication and authorization methods. 
I’ve even seen entire books titled something like “Web Security” that only covered 
authentication and authorization.

We’re certainly showing our bias here regarding the value of secure features versus 
security features. But don’t take that to mean that security features are unimportant. If 
you don’t implement appropriate authentication and authorization checks, or if you use 
easily crackable homegrown cryptography, your users’ data will be stolen and they won’t 
be happy about it. They won’t care whether it was a cross-site scripting vulnerability or 
improper use of SSL that led to their credit card being hijacked. They probably won’t even 

01-ch01.indd   20 10/7/11   10:05:51 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1 Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1

 Chapter 1 Welcome to the Wide World of Web Application Security 21

understand the difference. All they’ll know is that they were hacked, and you’re the one 
responsible. So cover all your bases, both secure features and security features.

Final Thoughts
We’ll meet up with our friend the wizard again at the end of the book to see what he’s learned 
to make his magic fruit orchard a safer place. Of course, we know that the wizard is wise 
enough not to test out his new spells on anyone’s trees except his own. This goes for you too. 
Virtually all of the attack techniques we’ll be describing are illegal for you to test against any 
web site, unless you own that site yourself or have explicit permission from the owner.

We’ve Covered

Misplaced priorities and the need for a new focus
Seventy percent of attacks come in through a site’s web applications.●●

Spending money on network firewalls isn’t going to help this problem.●●

Network security versus application security:  
The parable of the wizard and the magic fruit trees

Web applications are like giants: they’re very powerful, but not very smart.●●

Thinking like a defender
Application-level attacks are caused by logic flaws in your application.●●

You need to find and fix these flaws to be secure.●●

You’re not going to do this by pretending to “think like an attacker.”●●

But you can do this by learning security principles and starting to think like a defender.●●

The OWASP Top Ten List
The Open Web Application Security Project (OWASP) organization periodically ●●

publishes a list of the current top ten most critical web application vulnerabilities.

This list is very widely referenced, and you should become familiar with the ●●

vulnerabilities and the underlying causes.

Secure features, not just security features
It’s important to know how to write everyday application functionality in a secure ●●

manner, not just how to use special security features like cryptography and SSL.

01-ch01.indd   21 10/7/11   10:05:51 AM



Secure Beginner’s Guide / Web Application Security, A Beginner’s Guide / Sullivan and Liu / 616-8 / Chapter 1 
Blind Folio: 22

01-ch01.indd   22 10/7/11   10:05:51 AM


