

IN ACTION

Ryan Bigg
Yehuda Katz
Steve Klabnik
Rebecca Skinner

SAMPLE CHAPTER

M A N N I N G

Rails 4 in Action

by Ryan Bigg

Yehuda Katz

Steve Klabnik

and Rebecca Skinner

Chapter 1

Copyright 2015 Manning Publications

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

brief contents

■ Ruby on Rails, the framework 1

■ Testing saves your bacon 25

■ Developing a real Rails application 39

■ Oh, CRUD! 84

■ Nested resources 124

■ Authentication 148

■ Basic access control 170

■ Fine-grained access control 215

■ File uploading 283

■ Tracking state 325

■ Tagging 382

■ Sending email 420

■ Deployment 448

■ Designing an API 468

■ Rack-based applications 496

v

Ruby on Rails,
 the framework

This chapter covers
■ Introducing Ruby on Rails
■ Benefits of Rails
■ Developing an example Rails application

Welcome aboard! It’s great to have you with us on this journey through the world of
Ruby on Rails. Ruby on Rails is known as a powerful web framework that helps
developers rapidly build modern web applications. In particular, it provides lots of
niceties to help you in your quest to develop a full-featured, real-world application,
and be happy doing it. Great developers are happy developers.

 If you’re wondering who uses Rails, there are plenty of companies that do: Twit­
ter, Hulu, and Urban Dictionary, just to name a few. This chapter will teach you
how to build a very small and simple application, right after we go through a brief
description of what Ruby on Rails actually is. Within the first couple of chapters,
you’ll have the solid foundations for an application, and you’ll build on those
throughout the rest of the book.

1

2 CHAPTER 1 Ruby on Rails, the framework

1.1 Ruby on Rails overview
Ruby on Rails is a framework built on the Ruby language—hence the name Ruby on
Rails. The Ruby language was created back in 1993 by 松本行弘 (Yukihiro “Matz” Mat­
sumoto) of Japan and was released to the general public in 1995. Since then, it has
earned both a reputation and an enthusiastic following for its clean design, elegant
syntax, and wide selection of tools available in the standard library and via a package
management system called RubyGems. It also has a worldwide community and many
active contributors continuously improving the language and the ecosystem around it.
We’re not going to go into great depth about the Ruby language in this book though,
because we’d rather talk about Ruby on Rails.

RUBY LANGUAGE For a full treatment of the Ruby language, we highly recom­
mend The Well-Grounded Rubyist by David A. Black (Manning, 2014).

The foundation for Ruby on Rails was created during 2004 when David Heinemeier
Hansson was developing an application called Basecamp. For his next project, the
foundational code used for Basecamp was abstracted out into what we know today as
Ruby on Rails, released under the MIT License (http://en.wikipedia.org/wiki/
MIT_License).

 Since then, Ruby on Rails has quickly progressed to become one of the leading
web development frameworks. This is in no small part due to the large community
surrounding it, contributing everything from documentation to bug fixes to new fea­
tures for the framework.

 This book is written for version 4.2 of the framework, which is the latest version of
Rails. If you’ve used Rails 3.2, you’ll find that much feels the same, but Rails has
learned some new tricks as well.

RAILS VERSION DIFFERENCES The upgrade guides and release notes provide a
great overview of the new features, bug fixes, and other changes in each
major and minor version of Rails. They can be found under “Release Notes”
on the RailsGuides page: http://guides.rubyonrails.org/.

1.1.1 Benefits

Ruby on Rails allows for the rapid development of applications by using a concept
known as convention over configuration. A new Ruby on Rails application is created by run­
ning the application generator, which creates a standard directory structure and the files
that act as a base for every Ruby on Rails application. These files and directories provide
categorization for pieces of your code, such as the app/models directory for containing
files that interact with the database and the app/assets directory for assets such as
stylesheets, JavaScript files, and images. Because all of this is already there, you won’t be
spending your time configuring the way your application is laid out. It’s done for you.

 How rapidly can you develop a Ruby on Rails application? Take the annual Rails
Rumble event. This event brings together small teams of one to four developers
around the world to develop Ruby on Rails1 applications in a 48-hour period. Using

http://en.wikipedia.org/wiki/MIT_License
http://guides.rubyonrails.org/

3 Ruby on Rails overview

Rails, these teams deliver amazing web applications in just two days.2 Another great
example of rapid development of a Rails application is the 20-minute blog screencast
recorded by Yehuda Katz (http://vimeo.com/10732081). This screencast takes you
from having nothing at all to having a basic blogging and commenting system.

 Once learned, Ruby on Rails affords you a level of productivity unheard of in other
web frameworks, because every Ruby on Rails application starts out the same way. The
similarity between the applications is so close that the paradigm shift between differ­
ent Rails applications isn’t tremendous. If and when you jump between Rails applica­
tions, you don’t have to relearn how it all connects—it’s mostly the same. The Rails
ecosystem may seem daunting at first, but Rails conventions allow even the new to
seem familiar very quickly, smoothing the learning curve substantially.

1.1.2 Ruby gems

The core features of Rails are split up into many different libraries, such as Active
Record, Active Support, Action Mailer, and Action Pack. These are called Ruby gems, or gems
for short. These gems provide a wide range of methods and classes that help you
develop your applications. They eliminate the need for you to perform boring, repeti­
tive tasks—such as coding how your application hooks into your database—and let
you get right down to writing valuable code for your business.

GEM VERSIONS The libraries that make up Rails share the same version num­
ber as Rails, which means that when you’re using Rails 4.2, you’re using the 4.2
version of the sub-gems. This is helpful to know when you upgrade Rails,
because the version number of the installed gems should be the same as the
version number of Rails.

Ever wished for a built-in way of writing automated tests for your web application?
Ruby on Rails has you covered with MiniTest, which is part of Ruby’s standard library.
It’s incredibly easy to write automated test code for your application, as you’ll see
throughout this book. Testing your code saves your bacon in the long term, and that’s
a fantastic thing. We’ll touch on MiniTest in the next chapter before moving on to
RSpec, which is the testing framework preferred over MiniTest by the majority of the
community, and is a little easier on the eyes, too.

 In addition to testing frameworks, the Ruby community has produced many
high-quality gems for use in your day-to-day development with Ruby on Rails.
Some of these libraries add functionality to Ruby on Rails; others provide ways to
turn alternative markup languages such as Markdown (see the redcarpet gem
at https://rubygems.org/gems/redcarpet) and Textile (see the RedCloth gem at
https://rubygems.org/gems/RedCloth) into HTML. Usually, if you can think of it,
there’s a gem out there that will help you do it.

1	 And now other Ruby-based web frameworks, such as Sinatra.
2	 To see an example of what’s come out of previous Rails Rumbles, take a look at the alumni archive: http://

railsrumble.com/entries/winners.

http://railsrumble.com/entries/winners
http://railsrumble.com/entries/winners
http://vimeo.com/10732081
https://rubygems.org/gems/redcarpet
https://rubygems.org/gems/RedCloth

4 CHAPTER 1 Ruby on Rails, the framework

 Noticing a common pattern yet? Probably. As you can see, Ruby on Rails (and the
great community surrounding it) provides code that performs the trivial application
tasks for you, from setting up the foundations of your application to handling the
delivery of email. The time you save with all of these libraries is immense! And
because the code is open source, you don’t have to go to a specific vendor to get sup­
port. Anyone who knows Ruby will help you if you’re stuck. Just ask.

1.1.3 Common terms

You’ll hear a few common Ruby on Rails terms quite often. This section explains what
they mean and how they relate to a Rails application.

MVC

The model-view-controller (MVC) paradigm isn’t unique to Ruby on Rails, but it provides
much of the core foundation for a Ruby on Rails application. This paradigm is
designed to keep the logically different parts of the application separate while provid­
ing a way for data to flow between them.

 In applications that don’t use MVC, the directory structure and how the different
parts connect to each other are commonly left up to the original developer. Generally,
this is a bad idea because different people have different opinions about where things
should go. In Rails, a specific directory structure encourages developers to conform to
the same layout, putting all the major parts of the application inside an app directory.

 This app directory has three main subdirectories: models, controllers, and views:

■	 Models contain the domain logic of your application. This logic dictates how the
records in your database are retrieved, validated, or manipulated. In Rails appli­
cations, models define the code that interacts with the database’s tables to
retrieve and set information in them. Domain logic also includes things such as
validations or particular actions to be performed on the data.

■	 Controllers interact with the models to gather information to send to the view.
They’re the layer between the user and the database. They call methods on the
model classes, which can return single objects representing rows in the data­
base or collections (arrays) of these objects. Controllers then make these
objects available to the view through instance variables. Controllers are also
used for permission checking, such as ensuring that only users who have special
permission to perform certain actions can perform those actions, and users
without that permission can’t.

■	 Views display the information gathered by the controller, by referencing the
instance variables set there, in a developer-friendly manner. In Ruby on Rails,
this display is done by default with a templating language known as Embedded
Ruby (ERB). ERB allows you to embed Ruby into any kind of file you wish. This
template is then preprocessed on the server side into the output that’s shown to
the user.

5 Ruby on Rails overview

The assets, helpers, and mailers directories aren’t part of the MVC paradigm, but
they’re also important parts of Rails:

■	 The assets directory is for the static assets of the application, such as JavaScript
files, images, and Cascading Style Sheets (CSS), for making the application look
pretty. We’ll look more closely at this in chapters 3 and 4.

■	 The helpers directory is a place to put Ruby code (specifically, modules) that pro­
vide helper methods for just the views. These helper methods can help with
complex formatting that would otherwise be messy in the view or is used in
more than one place.

■	 Finally, the mailers directory is a home for the classes of your application that
deal with sending email. In previous versions of Rails, these classes were
grouped with models, but they have since been given their own home. We’ll
look at them in chapter 12.

REST

MVC in Rails is aided by Representational State Transfer (REST; see http://
en.wikipedia.org/wiki/Representational_state_transfer for more information). REST
is the convention for routing in Rails. When something adheres to this convention,
it’s said to be RESTful. Routing in Rails refers to how requests are routed within the
application—how URLs map to the controller actions that should process them.
You’ll benefit greatly by adhering to these conventions, because Rails provides a lot
of functionality around RESTful routing, such as determining where a form can
submit data.

1.1.4 Rails in the wild

One of the best-known sites that runs Ruby on Rails is GitHub. GitHub is a hosting ser­
vice for Git repositories. The site was launched in February 2008 and is now the lead­
ing Git web-hosting site. GitHub’s massive growth was in part due to the Ruby on Rails
community quickly adopting it as their de facto repository hosting site. Now GitHub is
home to over a million repositories for just about every programming language on the
planet. It’s not exclusive to programming languages, either; if it can go in a Git repos­
itory, it can go on GitHub. As a matter of fact, this book and its source code are kept
on GitHub!

 You don’t have to build huge applications with Rails, either. There’s a Rails applica­
tion that was built for the specific purpose of allowing people to review the previous
edition of this book, and it was just over 2,000 lines of code. This application allowed
reviewers during the writing of the book to view the book’s chapters and leave notes
on each element, leading to a better book overall.

 Now that you know what other people have accomplished with Ruby on Rails, it’s
time to dive into creating your own application.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

6 CHAPTER 1 Ruby on Rails, the framework

1.2 Developing your first application
We covered the theory behind Rails and showed how quickly and easily you can
develop an application. Now it’s your turn to get an application going. This will be a
simple application that can be used to track items that have been purchased: it will
track the name and the price for each item.

 First you’ll learn how to install Rails and use the scaffold generator that comes with it.

1.2.1 Installing Rails

To get started, you must have these three things installed:

■ Ruby
■ RubyGems
■ Rails

If you’re on a UNIX-based system (Linux or Mac), we recommend that you use ruby-
install (http://github.com/postmodern/ruby-install) to install Ruby and RubyGems.
For Windows, we recommend the RubyInstaller application (http://rubyinstaller.org).
There’s a complete installation guide for Ruby and Rails on Mac OS X, Linux, and Win­
dows in appendix A.

 Before proceeding, let’s check that you have everything. Type these commands,
and check out the responses:

$ ruby -v

ruby 2.2.1p85 (2015-02-26 revision 49769) [x86_64-linux]

$ gem -v

2.4.6

$ rails -v

Rails 4.2.0

If you see something that looks close to this, you’re good to go! You might see
[x86_64-darwin14] instead of [x86_64-linux], or a slightly different patch (p num­
ber), but that’s okay. These particular values are the ones we’re using right now and
we’ve tested everything in the book against them; as long as you have Ruby 2.1 or later,
Rails 4.2 or later, and RubyGems 2.2 or later, everything should be fine.

 If you don’t get these answers, or you get some sort of error message, please be
sure to complete this setup before you try to move on; you can’t just ignore errors with
this process. Certain gems (and Rails itself) only support particular versions of Ruby,
so if you don’t get this right, things won’t work.

1.2.2 Generating an application

Now that Rails is installed, to generate an application, you run the rails command
and pass it the new argument and the name of the application you want to generate:
things_i_bought. When you run this command, it creates a new directory called
things_i_bought, which is where all your application’s code will go.

http://github.com/postmodern/ruby-install
http://rubyinstaller.org

7 Developing your first application

Don’t use reserved words for application naming
You can call your application almost anything you wish, but it can’t be given a name
that’s a reserved word in Ruby or Rails. For example, you wouldn’t call your applica­
tion rails, because the application class would be called Rails, and that would clash
with the Rails constant within the framework. Names like test are also forbidden.

When you use an invalid application name, you’ll see an error like one of these:

$ rails new rails

Invalid application name rails, constant Rails is already in use.

Please choose another application name.

$ rails new test

Invalid application name test. Please give a name which does not match

one of the reserved rails words.

The application you’ll generate will be able to record purchases you’ve made. You can
generate it using this command:

$ rails new things_i_bought

The output from this command may seem a bit overwhelming at first, but rest assured,
it’s for your own good. All the directories and files generated provide the building
blocks for your application, and you’ll get to know each of them as we progress. For
now, you’ll learn by doing, which is the best way. Let’s get rolling.

1.2.3 Starting the application

To get the server running, you must first change into the newly created application’s
directory and then start the application server:

$ cd things_i_bought

$ rails server

The rails server command (or rails s, for short) starts a web server on your local
address on port 3000 using a Ruby standard library web server known as WEBrick. It will
say “starting in development on http://localhost:3000”, which indicates that the server
will be available on port 3000 on the loopback network interface of this machine. To
connect to this server, go to http://localhost:3000 in your favorite browser. You’ll see
the Welcome Aboard page, which is famous in Rails (see figure 1.1).

 On the right side of the Welcome Aboard page are four links to more documenta­
tion for Rails and Ruby. The first link takes you to the official Rails Guides page, which
will give you great guidance that complements the information in this book. The sec­
ond link takes you to the Rails API, where you can look up the documentation for
classes and methods in Ruby. The final two links take you to documentation about
Ruby itself.

http://localhost:3000
http://localhost:3000

8 CHAPTER 1 Ruby on Rails, the framework

Figure 1.1 Welcome aboard!

If you click the About Your Application’s Environment link, you’ll find your Ruby,
RubyGems, Ruby on Rails, and Rack versions and other environmental data. One of
the things to note here is that the output for Environment is “development.” Rails
provides three environments for running your application: development, test, and pro­
duction. How your application functions can depend on the environment in which it’s
running. For example, in the development environment, classes aren’t cached, so if
you make a change to a class when running an application in development mode, you
don’t need to restart the server. The same change in the production environment
would require a restart.

1.2.4 Scaffolding

To get started with this Rails application, you can generate a scaffold. Scaffolds in Rails
provide a lot of basic functionality and are generally used as temporary structures for
getting started, rather than for full-scale development. Generate a scaffold by running
this command:

$ rails generate scaffold purchase name:string cost:decimal

When you used the rails command earlier, it generated an entire Rails application. You
can use this command within an application to generate a specific part of the application

9 Developing your first application

by passing the generate argument to the rails command, followed by what it is you want
to generate. You can also use rails g as a shortcut for rails generate.

 The scaffold command generates a model, a controller, views, and tests based on
the name passed after scaffold in this command. These are the three important
parts needed for your purchase tracking. The model provides a way to interact with a
database; the controller interacts with the model to retrieve and format its informa­
tion and defines different actions to be performed on this data; and the views are ren­
dered by the controller and display the information collected within them.

 Everything after the name for the scaffold defines the fields for the database table
and the attributes for the objects of this scaffold. Here you tell Rails that the table for
your purchase scaffold will contain name and cost fields, which are a string and a dec­
imal, respectively.3 To create this table, the scaffold generator generates what’s known
as a migration. Let’s look at what migrations are.

1.2.5 Migrations

Migrations are used in Rails as a form of version control for the database, providing a
way to implement incremental changes to the database schema. They’re usually cre­
ated along with a model or by running the migration generator. Each migration is
timestamped right down to the second, which provides you (and anybody else devel­
oping the application with you) an accurate timeline of your database. When two
developers are working on separate features of an application and both generate a
new migration, this timestamp will stop them from clashing.

 Let’s open the only file in db/migrate now and see what it does. Its contents are
shown in the following listing.

Listing 1.1 db/migrate/[date]_create_purchases.rb

class CreatePurchases < ActiveRecord::Migration

def change

create_table :purchases do |t|

t.string :name

t.decimal :cost

t.timestamps null: false

end

end

end

Migrations are Ruby classes that inherit from ActiveRecord::Migration. Inside the
class, one method is defined: the change method.

 Inside the change method, you use database-agnostic commands to create a table.
When this migration is run forward, it will create a table called purchases with a name

Alternatively, you can store the amount in cents as an integer and then do the conversion back to a full dollar
amount. For this example, we’re using decimal because it’s easier to not have to define the conversion. It’s
worth noting that you shouldn’t use a float to store monetary amounts, because it can lead to incorrect round­
ing errors.

3

10 CHAPTER 1 Ruby on Rails, the framework

column that’s a string, a cost column that’s a decimal, and two timestamp fields.
These timestamp fields are called created_at and updated_at, and are automatically
set to the current time when a record is created or updated, respectively. This feature
is built into Active Record. If there are fields present with these names (or created_on
and updated_on), they’ll be automatically updated when necessary.

 When the migration is reverted, Rails will know how to undo it because it’s a simple
table creation. The opposite of creating a table is to drop that table from the database.
If the migration was more complex than this, you’d need to split it into two methods—
one called up and one called down—that would tell Rails what to do in both cases. Rails
is usually smart enough to figure out what you want to do, but sometimes it’s not clear
and you’ll need to be explicit. You’ll see examples of this in later chapters.

RUNNING THE MIGRATION

To run the migration, type this command into the console:

$ bundle exec rake db:migrate

Because this is your first time running migrations in your Rails application, and
because you’re using a SQLite3 database, Rails first creates the database in a new file at
db/development.sqlite3 and then creates the purchases table inside that. When you
run bundle exec rake db:migrate, it doesn’t just run the change method from the lat­
est migration, but runs any migration that hasn’t yet been run, allowing you to run
multiple migrations sequentially.

 Your application is, by default, already set up to talk to this new database, so you
don’t need to change anything. If you ever wanted to roll back this migration, you’d
use bundle exec rake db:rollback, which rolls back the latest migration by running
the down method of the migration (or reverses the steps taken in the change method,
if possible).

ROLLING BACK MULTIPLE MIGRATIONS If you want to roll back more than one
migration, use the bundle exec rake db:rollback STEP=3 command, which
rolls back the three most recent migrations.

Rails keeps track of the last migration that was run by storing it using this line in the
db/schema.rb file:

ActiveRecord::Schema.define(version: [timestamp]) do

This version should match the prefix of the migration you just created, where [time­
stamp] in this example is an actual timestamp formatted like YYYYmmddHHMMSS. Rails
uses this value to know what migration it’s up to. The remaining content of this file
shows the combined state of all the migrations to this point. This file can be used to
restore the last known state of your database if you run the bundle exec rake
db:schema:load command.

 You now have a database set up with a purchases table in it. Let’s look at how you
can add rows to it through your application.

http:db/schema.rb

11 Developing your first application

1.2.6 Viewing and creating purchases

Ensure that your Rails server is still running, or start a
new one by running rails sor rails server again. Start
your browser now, and go to http://localhost:3000/
purchases. You’ll see the scaffolded screen for pur- Figure 1.2 Purchases

chases, as shown in figure 1.2.
 No purchases are listed yet, so you can add a new

purchase by clicking New Purchase.

 In figure 1.3, you’ll see two inputs for the fields you

generated.

 This page is the result of rendering the new action

in the PurchasesController controller. What you see

on the page comes from the view located at app/views/

purchases/new.html.erb, and it looks like the following

listing.
 Figure 1.3 A new purchase

Listing 1.2 app/views/purchases/new.html.erb

<h1>New Purchase</h1>

<%= render 'form' %>

<%= link_to 'Back', purchases_path %>

This is an ERB file, which allows you to mix HTML and Ruby code to generate dynamic
pages. The <%= beginning of an ERB tag indicates that the result of the code inside the
tag will be output to the page. If you want the code to be evaluated but not output,
you use the <% tag, like this:

<% some_variable = "foo" %>

If you were to use <%= some_variable = "foo" %> here, the some_variable variable
would be set and the value output to the screen. When you use <%, the Ruby code is
evaluated but not output.

 The render method, when passed a string, as in this example, renders a partial. A
partial is a separate template file that you can include in other templates to repeat
similar code. We’ll take a closer look at these in chapter 4.

 The link_to method generates a link with the text of the first argument ("Back")
and with an href attribute specified by the second argument (purchases_path),
which is a routing helper that turns into the string /purchases. How this works will be
explained a little later when we look at how Rails handles routing.

THE FIRST HALF OF THE FORM PARTIAL

The form partial is at app/views/purchases/_form.html.erb, and the first half of it
looks like the following listing.

http://localhost:3000

12 CHAPTER 1 Ruby on Rails, the framework

Listing 1.3 The first half of app/views/purchases/_form.html.erb

<%= form_for(@purchase) do |f| %>

<% if @purchase.errors.any? %>

<div id="error_explanation">

<h2><%= pluralize(@purchase.errors.count, "error") %> prohibited

 ➥ this purchase from being saved:</h2>

<% @purchase.errors.full_messages.each do |message| %>

<%= message %>

<% end %>

</div>

<% end %>

...

This half is responsible for defining the form by using the form_for helper. The
form_for method is passed one argument—an instance variable called @purchase—
and with @purchase it generates a form. This variable comes from the new action of
PurchasesController, which is shown next.

Listing 1.4 The new action of PurchasesController

def new

@purchase = Purchase.new

end

The first line in this action sets up a new @purchase variable by calling the new method
on the Purchase model. This initializes a new instance of the Purchase class, but
doesn’t create a new record in the database. The @purchase variable is then automati­
cally passed through to the view by Rails.

 So far, all this functionality is provided by Rails. You’ve coded nothing yourself.
With the scaffold generator, you get an awful lot for free.

 Going back to the app/views/purchases/_form.html.erb partial, the block for the
form_for is defined between its do and the <% end %> at the end of the file. Inside this
block, you check the @purchase object for any errors by using the @purchase
.errors.any? method. These errors will come from the model if the object doesn’t
pass the validation requirements set in the model. If any errors exist, they’re rendered
by the content inside this if statement. Validation is a concept covered shortly.

THE SECOND HALF OF THE FORM PARTIAL

The second half of this partial looks like the following listing.

Listing 1.5 The second half of app/views/purchases/_form.html.erb

...

<div class="field">

<%= f.label :name %>

<%= f.text_field :name %>

</div>

mailto:pluralize(@purchase.errors.count

13 Developing your first application

<div class="field">

<%= f.label :cost %>

<%= f.text_field :cost %>

</div>

<div class="actions">

<%= f.submit %>

</div>

<% end %>

Here, the f object from the form_for block is used to define labels and fields for your
form. At the end of this partial, the submit method pro­
vides a dynamic Submit button.

 Let’s fill in this form now and click the Submit but­
ton. You should see something similar to figure 1.4. This
is the result of your posting: a successful creation of a
Purchase. Let’s see how it got there.

The Submit button posts the data from the form to
Figure 1.4 Your first purchasethe create action, which looks like this.

Listing 1.6 The create action of PurchasesController

def create

@purchase = Purchase.new(purchase_params)

respond_to do |format|

if @purchase.save

format.html { redirect_to @purchase, notice: 'Purchase was successfully

created.' }

format.json { render :show, status: :created, location: @purchase }

else

format.html { render :new }

format.json { render json: @purchase.errors, status:

 ➥ :unprocessable_entity }

end

end

end

Here, you use the same Purchase.new method you first saw in the new action. But this
time you pass it an argument of purchase_params, which is actually another method.
That method calls params (short for parameters), which is a method that returns the
parameters sent from your form in a Hash-like object. We’ll talk more about why you
need this little dance later (in chapter 3); this is a feature called strong parameters.
When you pass this params hash into new, Rails sets the attributes (the Rails word for
fields) to the values from the form.

 Inside respond_to is an if statement that calls @purchase.save. This method vali­
dates the record; and if it’s valid, the method saves the record to the database and
returns true.

14 CHAPTER 1 Ruby on Rails, the framework

 If the return value is true, the action responds by redirecting to the new @pur­
chase object using the redirect_to method, which takes either a path or an object
that it turns into a path (as seen in listing 1.6). The redirect_to method inspects the
@purchase object and determines that the path required is purchase_path because
it’s an instance of the Purchase model. This path takes you to the show action for this
controller. The :notice option passed to redirect_to sets up a flash message, which is
a message that can be displayed on the next request. This is the green text at the top
of figure 1.4.

 You’ve seen what happens when the purchase is valid, but what happens when it’s
invalid? Well, it uses the render method to show the new template again. We should
note here that this doesn’t call the new action again, it only renders the template.

REDIRECTING VS. RENDERING To call the new action again, you’d call
redirect_to new_purchase_path, but that wouldn’t persist the state of the
@purchase object to this new request without some seriously bad hackery. By
re-rendering the template, you can display information about the object if the
object is invalid.

You can make the creation of the @purchase object fail by adding a validation. Let’s do
that now.

1.2.7 Validations

You can add validations to your model to ensure that the data conforms to certain
rules, or that data for a certain field must be present, or that a number you enter must
be greater than a certain other number. You’ll write your first code for this application
and implement both of these things now.

 Open your Purchase model, and change the entire file to what’s shown in the fol­
lowing listing.

Listing 1.7 app/models/purchase.rb

class Purchase < ActiveRecord::Base

validates :name, presence: true

validates :cost, numericality: { greater_than: 0 }

end

You use the validates method to define a validation that does what it says on the box:
validates that the field is present. The other validation option, :numericality, vali­
dates that the cost attribute is a number and then, with the :greater_than option,
validates that it’s greater than 0.

 Let’s test these validations by going back to http://localhost:3000/purchases,
clicking New Purchase, and clicking Create Purchase. You should see the errors shown
in figure 1.5.

http://localhost:3000/purchases

15 Developing your first application

Figure 1.5 Cost must be greater than 0

Great! Here you’re told that name can’t be blank and that the value you entered for cost
isn’t a number. Let’s see what happens if you enter foo for the Name field and -100 for
the Cost field, and click Create Purchase. You should get a different error for the Cost
field now, as shown in figure 1.6.

 Good to see! Both of your validations are working. When you change Cost to 100
and click Create Purchase, the value should be considered valid by the validations and
take you to the show action. Let’s look at what this particular action does now.

Figure 1.6 A single purchase

16 CHAPTER 1 Ruby on Rails, the framework

SHOWING OFF

The show action displays the content, as shown in fig­
ure 1.7.

 The number at the end of the URL, when we’re view­
ing the show action of a project, is the unique numerical
ID for this purchase. But what does it mean? Let’s look
at the view for this show action. Figure 1.7 A single purchase

Listing 1.8 app/views/purchases/show.html.erb

<p id="notice"><%= notice %></p>

<p>

Name:

<%= @purchase.name %>

</p>

<p>

Cost:

<%= @purchase.cost %>

</p>

<%= link_to 'Edit', edit_purchase_path(@purchase) %> |

<%= link_to 'Back', purchases_path %>

On the first line is the notice method, which displays the notice set on the
redirect_to from the create action. After that, field values are displayed in p tags by
calling them as methods on your @purchase object. This object is defined in the show
action of PurchasesController, as shown in the following listing.

Listing 1.9 The show action of PurchasesController

def show

end

Or is it? It turns out that it’s not actually defined here. A before_action is defined.

Listing 1.10 The set_purchase before_action in PurchasesController

class PurchasesController < ApplicationController

before_action :set_purchase, only: [:show, :edit, :update, :destroy]

...

Use callbacks to share common setup or constraints between actions.

def set_purchase

@purchase = Purchase.find(params[:id])

end

...

end

17 Developing your first application

This code will be executed before every action given: hence the name before_action.
The find method of the Purchase class is used to find the record with the ID of
params[:id] and instantiate a new Purchase object from it, with params[:id] being
the number on the end of the URL.

 Going back to the view (listing 1.8, app/views/purchases/show.html.erb), at the
end of this file is link_to, which generates a link using the first argument as the text
value, and the second argument as the href for that URL. The second argument for
link_to is a method: edit_purchase_path. This method is provided by a method call
in config/routes.rb, which we’ll look at next.

1.2.8 Routing

The config/routes.rb file of every Rails application is where the application routes are
defined in succinct Ruby syntax. The methods used in this file define the pathways
from requests to controllers. If you look in your config/routes.rb file, ignoring the
commented-out lines for now, you’ll see what’s shown in the following listing.

Listing 1.11 config/routes.rb

Rails.application.routes.draw do

resources :purchases

end

Inside the block for the draw method is the resources method. Collections of similar
objects in Rails are referred to as resources. This method defines the routes and routing
helpers (such as the edit_purchase_path method) to your purchases resources.
Look at table 1.1 for a list of the helpers and their corresponding routes. You can see
similar output in your terminal if you run the rake routes command inside your
things_i_bought directory.

Table 1.1 Routing helpers and their routes

Helper Route

purchases_path

new_purchase_path

edit_purchase_path

purchase_path

/purchases

/purchases/new

/purchases/:id/edit

/purchases/:id

In this table, :id can be substituted for the ID of a record. Each routing helper has an
alternative version that will give you the full URL to the resource. Use the _url extension
rather than _path, and you’ll get a fully qualified URL such as http://localhost:3000/
purchases for purchases_url.

 Two of the routes in this table will act differently depending on how they’re
requested.

http://localhost:3000
http:config/routes.rb
http:config/routes.rb
http:config/routes.rb

18 CHAPTER 1 Ruby on Rails, the framework

 The first route, /purchases, takes you to the index action of PurchasesController
if you do a GET request. GET requests are the standard type of requests for web brows­
ers, and this is the first request you did to this application. If you send a POST request
to this route, it will go to the create action of the controller. This is the case when you
submit the form from the new view.

 The second route that will act differently is /purchases/:id. If you do a GET request
to this route, it will take you to the show action. If you do a PATCH request, it will take
you to the update action. Or you can do a DELETE request, which will take you to the
destroy action.

 Let’s go to http://localhost:3000/purchases/new now and look at the source of
the page. The beginning tag for your form should look like this.

Listing 1.12 HTML source of app/views/purchases/new.html.erb

<form accept-charset="UTF-8" action="/purchases"

class="new_purchase" id="new_purchase" method="post">

The two attributes to note here are action and method. The action attribute dictates
the URL to where this form goes, and method tells the form what kind of HTTP request
to make.

 How was this tag rendered in the first place? Well, as you saw before, the app/
views/purchases/new.html.erb template uses the form partial from app/views/pur­
chases/_form.html.erb, which contains this as the first line:

<%= form_for(@purchase) do |f| %>

This one simple line generates that form tag. When we look at the edit action shortly,
you’ll see that the output of this tag is different, and you’ll learn why.

 The other route that responds differently is /purchases/:id, which acts in one of
three ways. You already saw the first way: it’s the show action to which you’re redi­
rected (via a GET request) after you create a purchase. The second of the three ways is
when you update a record, which we’ll look at now.

1.2.9 Updating

Let’s change the cost of the foo purchase now. Perhaps it only cost 10. To change it,
go back to http://localhost:3000/purchases and
click the “Edit” link next to the foo record. You
should see a page that looks similar to the new
page, as shown in figure 1.8.

 This page looks similar because it reuses
the app/views/purchases/_form.html.erb par­
tial that was also used in the template for the
new action. Such is the power of partials in
Rails: you can use the same code for two differ­
ent requests to your application. Figure 1.8 Editing a purchase

http://localhost:3000/purchases
http://localhost:3000/purchases/new

19 Developing your first application

 The template for this action is shown in the following listing.

Listing 1.13 app/views/purchases/edit.html.erb

<h1>Editing Purchase</h1>

<%= render 'form' %>

<%= link_to 'Show', @purchase %> |

<%= link_to 'Back', purchases_path %>

For this action, you’re working with a preexisting object rather than a new object,
which you used in the new action. This preexisting object is found by the edit action
in PurchasesController, as shown here.

Listing 1.14 The edit action of PurchasesController

def edit

end

Oops: it’s not here! The code to find the @purchase object is identical to what you saw
earlier in the show action: it’s set in before_action, which runs before the show, edit,
update, and destroy actions.

 Back in the view for a moment, at the bottom of it you can see two uses of link_to.
The first creates a “Show” link, linking to the @purchase object, which is set up in the
edit action of your controller. Clicking this link would take you to
purchase_path(@purchase) or /purchases/:id. Rails will figure out where the link
needs to go according to the class of the object given. Using this syntax, it will attempt
to call the purchase_path method because the object has a class of Purchase, and it
will pass the object along to that call, generating the URL.

NOTE This syntax is exceptionally handy if you have an object and aren’t sure
of its type but still want to generate a link for it. For example, if you had a dif­
ferent kind of object called Order, and it was used instead, it would use
order_path rather than purchase_path.

The second use of link_to in this view generates a “Back” link, which uses the routing
helper purchases_path. It can’t use an object here because it doesn’t make sense to.
Calling purchases_path is the easy way to go back to the index action.

 Let’s try filling in this form—for example, by
changing the cost from 100 to 10 and clicking
Update Purchase. You’ll now see the show page but
with a different message, as shown in figure 1.9.

 Clicking Update Purchase brought you back to
the show page. How did that happen? Click the
Back button on your browser, and view the source
of this page, specifically the form tag and the tags Figure 1.9 Viewing an updated pur­
directly underneath, shown in the following listing. chase

20 CHAPTER 1 Ruby on Rails, the framework

Listing 1.15 Rendered HTML for app/views/purchases/edit.html.erb

...

<form accept-charset="UTF-8" action="/purchases/2" class="edit_purchase"

id="edit_purchase_2" method="post">

<input name="utf8" type="hidden" value="✓" />

<input name="_method" type="hidden" value="patch" />

...

The action of this form points at /purchases/2, which is the route to the show action
in PurchasesController. You should also note two other things. The method attribute
of this form is a post, but there’s also the input tag underneath.

 The input tag passes through the _method parameter with the value set to patch.
Rails catches this parameter and turns the request from a POST into a PATCH. This is
the second (of three) ways /purchases/:id responds according to the method. By
making a PATCH request to this route, you’re taken to the update action in Purchases-
Controller. Let’s look at this next.

Listing 1.16 The update action of PurchasesController

def update

respond_to do |format|

if @purchase.update(purchase_params)

format.html { redirect_to @purchase, notice: 'Purchase was successfully

updated.' }

format.json { render :show, status: :ok, location: @purchase }

else

format.html { render :edit }

format.json { render json: @purchase.errors, status:

 ➥ :unprocessable_entity }

end

end

end

Just as in the show and edit actions, the @purchase object is first fetched by the call to
before_action :set_purchase. The parameters from the form are sent through in
the same fashion as they were in the create action, coming through as
purchase_params. Rather than instantiating a new object by using the new class
method, you use update on the existing @purchase object. This does what it says:
updates the attributes. What it doesn’t say, though, is that it validates the attributes
and, if the attributes are valid, saves the record and returns true. If they aren’t valid, it
returns false.

THE PATCH METHOD The PATCH HTTP method is implemented by Rails by
affixing a _method parameter on the form with the value of PATCH, because
the HTML specification doesn’t allow the PATCH method for form elements. It
only allows GET and POST, as stated here: http://www.w3.org/TR/html401/
interact/forms.html#adef-method.

http://www.w3.org/TR/html401/interact/forms.html#adef-method
http://www.w3.org/TR/html401/interact/forms.html#adef-method

21 Developing your first application

Figure 1.10 Update fails!

When update returns true, you’re redirected back to the show action for this particu­
lar purchase by using redirect_to. If the update call returns false, you’re shown the
edit action’s template again, just as back in the create action where you were shown
the new template again. This works in the same fashion and displays errors if you enter
something wrong.

 Let’s try editing a purchase, setting Name to blank, and then clicking Update Pur­
chase. It should error exactly like the create method did, as shown in figure 1.10.

 As you can see in this example, the validations you defined in your Purchase
model take effect automatically for both the creation and updating of records.

 What would happen if, rather than updating a purchase, you wanted to delete it?
That’s built into the scaffold, too.

1.2.10 Deleting

In Rails, delete is given a much more forceful name: destroy. This is another sensible
name, because to destroy a record is to “put an
end to the existence of.”4 Once this record’s
gone, it’s gone, baby, gone.

 You can destroy a record by going to
http://localhost:3000/purchases and clicking
the “Destroy” link shown in figure 1.11 and
then clicking OK in the confirmation box that
pops up. Figure 1.11 Destroy!

As defined by the Mac OS X Dictionary application. 4

http://localhost:3000/purchases

22 CHAPTER 1 Ruby on Rails, the framework

 When that record’s destroyed, you’re taken
back to the Listing Purchases page. You’ll see
that the record no longer exists. You should now
have only one record, as shown in figure 1.12.

 How does all this work? Let’s look at the
index template in the following listing to under­
stand, specifically the part that’s used to list the
purchases. Figure 1.12 Last record standing

Listing 1.17 app/views/purchases/index.html.erb

<% @purchases.each do |purchase| %>

<tr>

<td><%= purchase.name %></td>

<td><%= purchase.cost %></td>

<td><%= link_to 'Show', purchase %></td>

<td><%= link_to 'Edit', edit_purchase_path(purchase) %></td>

<td><%= link_to 'Destroy', purchase, method: :delete, data:

{ confirm: 'Are you sure?' } %></td>

</tr>

<% end %>

In this template, @purchases is a collection of all the objects from the Purchase
model, and each is used to iterate over each, setting purchase as the variable used in
this block.

 The methods name and cost are the same methods used in app/views/purchases/
show.html.erb to display the values for the fields. After these, you see the three uses of
link_to.

 The first link_to passes in the purchase object, which links to the show action of
PurchasesController by using a route such as /purchases/:id, where :id is the ID for
this purchase object.

 The second link_to links to the edit action using edit_purchase_path and
passes the purchase object as the argument to this method. This routing helper deter­
mines that the path is /purchases/:id/edit.

 The third link_to links seemingly to the purchase object exactly like the first, but
it doesn’t go there. The :method option on the end of this route specifies the method
:delete, which is the third and final way the /purchases/:id route can be used. If you
specify :delete as the method of this link_to, Rails interprets this request as a
DELETE request and takes you to the destroy action in the PurchasesController. This
action is shown in the following listing.

Listing 1.18 The destroy action of PurchasesController

def destroy

@purchase.destroy

respond_to do |format|

Summary 23

format.html { redirect_to purchases_url, notice: 'Purchase was

 ➥ successfully destroyed.' }

format.json { head :no_content }

end

end

This action destroys the record loaded by before_action :set_purchase by calling
destroy on it, which permanently deletes the record. Then it uses redirect_to to
take you to purchases_url, which is the route helper defined to take you to http://
localhost:3000/purchases. Note that this action uses the purchases_url method
rather than purchases_path, which generates a full URL back to the purchases listing.

 That wraps up our application run-through!

1.3 Summary
In this chapter, you learned what Rails is and how to get an application started with it:
the absolute bare, bare, bare essentials of a Rails application. But look how fast you got
going! It took only a few simple commands and an entire two lines of your own code
to create the bones of a Rails application. From this basic skeleton, you can keep add­
ing bits and pieces to develop your application, and all the while you get things for
free from Rails. You don’t have to code the logic of what happens when Rails receives
a request or specify what query to execute on your database to insert a record—Rails
does it for you.

 You also saw that some big-name players—such as Twitter and GitHub—use Ruby
on Rails. This clearly answers the question “Is Rails ready?” Yes, it very much is. A wide
range of companies have built successful websites on the Rails framework, and many
more will do so in the future. Rails also has been around for a decade, and shows no
signs of slowing down any time soon.

 Still wondering if Ruby on Rails is right for you? Ask around. You’ll hear a lot of
people singing its praises. The Ruby on Rails community is passionate not only about
Rails but also about community building. Events, conferences, user group meetings,
and even camps are held around the world for Rails. Attend these, and discuss Ruby
on Rails with the people who know about it. If you can’t attend these events, you can
explore the IRC channel on Freenode #rubyonrails and the mailing list rubyonrails-talk
on Google Groups, not to mention Stack Overflow and a multitude of other areas on
the internet where you can find experienced people and discuss what they think of
Rails. Don’t let this book be your only source of knowledge. There’s a whole world out
there, and no book could cover it all!

 The best way to answer the question “What is Rails?” is to experience it for yourself.
This book and your own exploration can eventually make you a Ruby on Rails expert.

 When you added validations to your application earlier, you manually tested that
they were working. This may seem like a good idea for now, but when the application
grows beyond a couple of pages, it becomes cumbersome to manually test it. Wouldn’t
it be nice to have some automated way of testing your applications? Something to
ensure that all the individual parts always work? Something to provide the peace of

24 CHAPTER 1 Ruby on Rails, the framework

mind that you crave when you develop anything? You want to be sure that your appli­
cation is continuously working with the least effort possible, right?

 Well, Ruby on Rails does that too. Several testing frameworks are available for Ruby
and Ruby on Rails, and in chapter 2 we’ll look at the two major ones: MiniTest and
RSpec.

WEB DEVELOPMENT/RUBY

Rails 4 IN ACTION
Bigg ● Katz ● Klabnik ● Skinner

R
ails is a full-stack, open source web framework powered
by Ruby. Now in version 4, Rails is mature and powerful,
and to use it effectively you need more than a few Google

searches. You’ll find no substitute for the guru’s-eye-view of
design, testing, deployment, and other real-world concerns
that this book provides.

Rails 4 in Action is a hands-on guide to the subject. In this
fully revised new edition, you’ll master Rails 4 by developing
a ticket-tracking application that includes RESTful routing,
authentication and authorization, file uploads, email, and
more. Learn to design your own APIs and successfully deploy
a production-quality application. You’ll see test-driven
development and behavior-driven development in action
throughout the book, just like in a top Rails shop.

What’s Inside
● Creating your own APIs
● Using RSpec and Capybara
● Emphasis on test-fi rst development
● Fully updated for Rails 4

For readers of this book, a background in Ruby is helpful but
not required. No Rails experience is assumed.

Ryan Bigg, Yehuda Katz, Steve Klabnik, and Rebecca Skinner
are contributors to Rails and active members of the Rails
community.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/rails-4-in-action

SEE INSERT

“There’s no better source

for Rails 4. This book blows

away the competition.”
 —Damien White, Visoft, Inc.

“A gentle yet thorough

—William Wheeler

 guide to Rails 4.”
ProData Computer Services

“Very clear, with excellent

examples. A must-read

for everyone in the

Rails world.”
 —Michele Bursi, Nokia

“Well-written, intuitive,

and easy to understand.”
 —Lee Allen

SecuritySession.com

M A N N I N G $49.99 / Can $57.99 [INCLUDING eBOOK]

http:SecuritySession.com

