

IN ACTION

Ryan Bigg
Yehuda Katz
Steve Klabnik
Rebecca Skinner

SAMPLE CHAPTER

M A N N I N G

Rails 4 in Action

by Ryan Bigg

Yehuda Katz

Steve Klabnik

and Rebecca Skinner

Chapter 3

Copyright 2015 Manning Publications

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

brief contents

■ Ruby on Rails, the framework 1

■ Testing saves your bacon 25

■ Developing a real Rails application 39

■ Oh, CRUD! 84

■ Nested resources 124

■ Authentication 148

■ Basic access control 170

■ Fine-grained access control 215

■ File uploading 283

■ Tracking state 325

■ Tagging 382

■ Sending email 420

■ Deployment 448

■ Designing an API 468

■ Rack-based applications 496

v

 a real Rails application
Developing

This chapter covers
■ Using a Git client and GitHub for Version control
■ Setting up and configuring a Rails application
■ Writing our first application feature
■ Creating a Project model
■ Creating an interface for saving new projects

This chapter will get you started on building a Ruby on Rails application from
scratch using the techniques covered in the previous chapter, plus a couple of new
ones. With the techniques you learned in chapter 2, you can write features describ­
ing the behavior of the specific actions in your application and then implement the
code you need to get the features passing.

 For the remainder of the book, this application will be the main focus. We’ll
guide you through it in an agile-like fashion. Agile focuses largely on iterative devel­
opment: developing one feature at a time from start to finish, and then refining the
feature until it’s viewed as complete before moving on to the next one.

39

40 CHAPTER 3 Developing a real Rails application

AGILE You can find more information about agile on Wikipedia: http://
en.wikipedia.org/wiki/Agile_software_development.

For this example application, your imaginary client, who has limitless time and budget
(unlike clients in the real world), wants you to develop a ticket-tracking application to
track the company’s numerous projects. You’ll develop this application using the
methodologies outlined in chapter 2: you’ll work iteratively, delivering small working
pieces of the software to the client and then gathering the client’s feedback to
improve the application as necessary. If no improvement is needed, you can move on
to the next prioritized chunk of work.

 The first couple of features you’ll develop for this application will lay down the foun­
dation for the application, enabling people to create projects and tickets. Later, in chap­
ters 6 through 8, you’ll implement authentication and authorization so that people can
sign in to the application and only have access to certain projects. Other chapters cover
things like adding comments to tickets, notifying users by email, and file uploading.

BDD and RSpec (the testing framework you saw in the previous chapter) are used
all the way through the development process. They provide the client with a stable
application, and when (not if) a bug crops up, you have a nice test base you can use to
determine what’s broken. Then you can fix the bug so it doesn’t happen again, a pro­
cess called regression testing (mentioned in chapter 2).

 As you work with your client to build the features of the application using this BDD
technique, the client may ask why all this prework is necessary. This can be a tricky
question to answer. Explain that writing the tests before the code and then imple­
menting the code to make the tests pass creates a safety net to ensure that the code is
always working. (Note that tests will make your code more maintainable, but they
won’t make your code bug-proof.)

 The tests also give you a clearer picture of what your client really wants. Having it all
written down in code gives you a solid reference of point if clients say they suggested
something different. Story-driven development is BDD with an emphasis on things a user
can do with the system.

 By using story-driven development, you know what clients want, clients know you
know what they want, you have something you can run automated tests with to ensure
that all the pieces are working, and, finally, if something does break, you have the test
suite in place to catch it. It’s a win-win-win situation.

 Some of the concepts covered in this chapter were explained in chapter 1. But
rather than using scaffolding, as you did previously, you’ll write this application from
the ground up using the BDD process and other generators provided by Rails. The
scaffold generator is great for prototyping, but it’s less than ideal for delivering sim­
ple, well-tested code that works precisely the way you want it to work. The code pro­
vided by the scaffold generator often may differ from the code you want. In this case,
you can turn to Rails for lightweight alternatives to the scaffold code options, and
you’ll likely end up with cleaner, better code.

 First, you need to set up your application!

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development

First steps 41

3.1 First steps
Chapter 1 explained how to quickly start a Rails application. This chapter explains a
couple of additional processes that improve the flow of your application development.
One process uses BDD to create the features of the application; the other process uses
version control. Both will make your life easier.

3.1.1 The application story

Your client may have a good idea of the application they want you to develop. How
can you transform the idea that’s in your client’s brain into beautifully formed code?
First, you sit down with your client and talk through the parts of the application. In
the programming business, we call these parts user stories, and you’ll use RSpec and
Capybara to develop them.

WHAT IS CAPYBARA? Capybara is a testing tool that allows you to simulate the
steps of a user of your application. You can tell it to visit pages, fill in fields,
click buttons (and links), and assert that pages have certain content. And
there’s a lot more that it can do, which you’ll see throughout this book. It’s
used quite extensively throughout.

Start with the most basic story, and ask your client how they want it to behave. Then
sketch out a basic flow of how the feature would work by building an acceptance test
using RSpec and Capybara. If this feature was a login form, the test for it would look
something like this:

RSpec.feature "Users can log in to the site" do

scenario "as a user with a valid account" do

visit "/login"

fill_in "Email", with: "user@ticketee.com"

fill_in "Password", with: "password"

click_button "Login"

expect(page).to have_content("You have been successfully logged in.")

end

end

The form of this test is simple enough that even people who don’t understand Ruby
should be able to understand the flow of it. With the function and form laid out, you
have a pretty good idea of what the client wants.

3.1.2 Laying the foundations

To start building the application you’ll develop throughout this book, run the good
old rails command, preferably outside the directory of the previous application.
Call this app Ticketee, the Australian slang for a person who validates tickets on trains
in an attempt to catch fare evaders. It also has to do with this project being a ticket-
tracking application, and a Rails application, at that.1 To generate this application,
run this command:

$ rails new ticketee

Hey, at least we thought it was funny! 1

http:expect(page).to
mailto:user@ticketee.com

42 CHAPTER 3 Developing a real Rails application

Help!
If you want to see what else you can do with this new command (hint: there’s a lot!),
you can use the --help option:

$ rails new --help

The --help option shows you the options you can pass to the new command to mod­
ify the output of your application.

Presto! It’s done. From this bare-bones application, you’ll build an application that
does the following:

■ Tracks tickets (of course) and groups them into projects
■ Provides a way to restrict users to certain projects
■ Allows users to upload files to tickets
■ Lets users tag tickets so they’re easy to find
■ Provides an API on which users can base development of their own applications

You can’t do all this with a command as simple as rails new [application_name], but
you can do it step by step and test it along the way so you develop a stable and worth­
while application.

 Throughout the development of the application, we advise you to use a version-
control system. The next section covers that topic using Git. You’re welcome to use a
different version-control system, but this book uses Git exclusively.

3.2 Version control
It’s wise during development to use version-control software to provide checkpoints in
your code. When the code is working, you can make a commit; and if anything goes
wrong later in development, you can revert back to that known-working commit.
Additionally, you can create branches for experimental features and work on those
independent of the main codebase, without damaging working code.

 This book doesn’t go into detail on how to use a version-control system, but it does
recommend using Git. Git is a distributed version-control system that’s easy to use and
extremely powerful. If you wish to learn about Git, we recommend reading Pro Git, a
free online book by Scott Chacon and Ben Straub (Apress, 2014, http://git-scm.com/
book/en/v2).

 Git is used by most developers in the Rails community and by tools such as Bun­
dler, discussed shortly. Learning Git along with Rails is advantageous when you come
across a gem or plug-in that you have to install using Git. Because most of the Rails
community uses Git, you can find a lot of information about how to use it with Rails
(even in this book!), should you ever get stuck.

 If you don’t have Git already installed, GitHub’s help site offers installation guides
for Mac, Linux, and Windows at https://help.github.com/articles/set-up-git.

http://git-scm.com/book/en/v2
http://git-scm.com/book/en/v2
https://help.github.com/articles/set-up-git

43 Version control

 The precompiled installer should work well for Macs, and the package-distributed
versions (via apt, yum, emerge, and so on) work well for Linux machines. For Win­
dows, the GitHub for Windows program does just fine.

3.2.1 Getting started with GitHub

For an online place to put your Git repository, we recommend GitHub (http://
github.com), which offers free accounts. If you set up an account now, you can upload
your code to GitHub as you progress, ensuring that you won’t lose it if anything hap­
pens to your computer.

BITBUCKET Bitbucket (http://bitbucket.org) is a popular alternative to
GitHub, and it also allows you to have free private repositories.

To get started with GitHub, you first need to

generate a secure shell (SSH) key, which is

used to authenticate you with GitHub when

you do a git push to GitHub’s servers.2 After

you sign up at GitHub, click the Settings link

(see figure 3.1) in the menu at the top, select

SSH Keys, and then click Add SSH Key (see fig­
ure 3.2). You can then copy your public key’s

content (usually found at ~/.ssh/id_rsa.pub)

into the key field.

 Now that you’re set up with GitHub, click New Repository on the dashboard (see
figure 3.3) to begin creating a new repository. Enter the Project Name as Ticketee,
and click Create Repository to create the repository on GitHub.

 Now you’re on your project’s page. It has some basic instructions on how to set up
your code in your new repository, but first you need to configure Git on your own

Figure 3.1 Visiting account settings

Figure 3.2 Adding an SSH key

You can find a guide for this process at https://help.github.com/articles/generating-ssh-keys. 2

http://github.com
http://github.com
http://bitbucket.org
https://help.github.com/articles/generating-ssh-keys

44 CHAPTER 3 Developing a real Rails application

Figure 3.3 Creating a new repository

machine. Git needs to know a bit about you for identification purposes—so you can
properly be credited (or blamed) for any code that you write.

3.2.2 Configuring your Git client

Run the commands from listing 3.1 in your terminal or command prompt to tell Git
about yourself, replacing Your Name with your real name and you@example.com with
your email address. The email address you provide should be the same as the one you
used to sign up to GitHub, so that when you push your code to GitHub, it will also be
linked to your account.

Listing 3.1 Configuring your identity in Git

$ git config --global user.name "Your Name"

$ git config --global user.email you@example.com

You already have a ticketee directory, created when you generated your Rails app, and
you’re probably already in it. If not, you should be. To make this directory a Git repos­
itory, run this easy command:

$ git init

Your ticketee directory now contains a .git directory, which is your Git repository. It’s
all kept in one neat little package.

 To add all the files for your application to this repository’s staging area, run this
command:

$ git add .

The staging area for the repository is the location where all the changes for the next
commit are kept. A commit can be considered a checkpoint for your code. If you
make a change, you must stage that change before you can create a commit for it.

 To create a commit with a message, run the following command:

$ git commit -m "Generate the Rails 4 application"

This command generates quite a bit of output, but the most important lines are the
first two:

[master (root-commit) d825bbc] Generate the Rails 4 application

57 files changed, 984 insertions(+)

mailto:you@example.com
mailto:you@example.com

45 Version control

d825bbc is the short commit ID, a unique identifier for the commit, so it changes with
each commit you make. (The number of files and insertions may also be different.) In
Git, commits are tracked against branches, and the default branch for a Git repository
is the master branch, which you just committed to.

 The second line lists the number of files changed, insertions (new lines added),
and deletions. If you modify a line, it’s counted as both an insertion and a deletion,
because, according to Git, you’ve removed the line and replaced it with the modified
version.

 To view a list of commits for the current branch, type git log. You should see out­
put similar to the following listing.

Listing 3.2 Viewing the commit log

commit d825bbc23854cc256d5829a06516ceb19d148131

Author: Your Name <you@example.com>

Date: [date stamp]

Generate the Rails 4 application

The hash after the word commit is the long commit ID; it’s the longer version of the pre­
vious short commit ID. A commit can be referenced by either the long or the short
commit ID in Git, providing no two commits begin with the same short ID.3 With that
commit in your repository, you have something to push to GitHub, which you can do
by running the following commands, making sure you substitute your GitHub user-
name for [your username]:

$ git remote add origin git@github.com:[your username]/ticketee.git

$ git push origin master -u

The first command tells Git that you have a remote server called origin for this reposi­
tory. To access it, you use the git@github.com:[your username]/ticketee.git path,
which connects via SSH to the repository you created on GitHub. The second com­
mand pushes the named branch to that remote server, and the -u option tells Git to
always pull from this remote server for this branch unless told differently.

 The output from this command is similar to the following.

Listing 3.3 git push output

Counting objects: 73, done.

Compressing objects: 100% (58/58), done.

Writing objects: 100% (73/73), 86.50 KiB, done.

Total 73 (delta 2), reused 0 (delta 0)

To git@github.com:rubysherpas/r4ia_examples.git

* [new branch] master -> master

Branch master set up to track remote branch master from origin.

The chances of this happening are 1 in 268,435,456. 3

mailto:you@example.com

46 CHAPTER 3 Developing a real Rails application

The second-to-last line in this output indicates that your push to GitHub succeeded,
because it shows that a new branch called master was created on GitHub.

 As we go through the book, we’ll also git push just like you. You can compare
your code to ours by checking out our repository on GitHub: https://github.com/
rubysherpas/r4ia_examples.

 To roll back the code to a given point in time, check out git log:

commit d1e9b6f398748d3ca8583727c1f86496465ba298

Author: Rebecca Skinner <[email redacted]>

Date: Sat Apr 4 00:00:33 2015 +0800

Protect state_id from users who do not have permission

to change it

commit ceb67d45cfcddbb8439da7b126802e6a48b1b9ea

Author: Rebecca Skinner <[email redacted]>

Date: Fri Apr 3 23:27:20 2015 +0800

Only admins and managers can change states of a ticket

commit ef5ec0f15e7add662852d6634de50648373f6116

Author: Rebecca Skinner <[email redacted]>

Date: Fri Apr 3 23:01:48 2015 +0800

Auto-assign the default state to newly-created tickets

Each of these lines represents a commit, and the commits will line up with when we
tell you to commit in the book. You can also check out the commit list on GitHub, if
you find that easier: https://github.com/rubysherpas/r4ia_examples/commits.

 Once you’ve found the commit with the right message, make note of the long com­
mit ID associated with it. Use this value with git checkout to roll the code back in
time:

$ git checkout 23729a

You only need to know enough of the hash for it to be unique: six characters is usually
enough. When you’re done poking around, go forward in time to the most recent
commit with git checkout again:

$ git checkout master

This is a tiny, tiny taste of the power of Git. Time travel at will! You just have to learn
the commands.

 Next, you must set up your application to use RSpec.

3.3 Application configuration
Even though Rails passionately promotes the convention over configuration line, some
parts of the application will need configuration. It’s impossible to avoid all configura­
tion. The main parts are gem dependency configuration, database settings, and styl­
ing. Let’s look at these parts now.

https://github.com/rubysherpas/r4ia_examples
https://github.com/rubysherpas/r4ia_examples
https://github.com/rubysherpas/r4ia_examples/commits

47 Application configuration

3.3.1 The Gemfile and generators

The Gemfile is used for tracking which gems are used in your application. Gem is the
Ruby word for a library of code, all packaged up to be included into your app—Rails is
a gem, and it in turn depends on many other gems.

 Bundler is a gem, and Bundler is also responsible for everything to do with the
Gemfile. It’s Bundler’s job to ensure that all the gems listed inside the Gemfile are
installed when your application is initialized. The following listing shows how it looks
inside.

Listing 3.4 Default Gemfile in a new Rails app

source 'https://rubygems.org'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'

gem 'rails', '4.2.1'

Use sqlite3 as the database for Active Record

gem 'sqlite3'

Use SCSS for stylesheets

gem 'sass-rails', '~> 5.0'

Use Uglifier as compressor for JavaScript assets

gem 'uglifier', '>= 1.3.0'

Use CoffeeScript for .coffee assets and views

gem 'coffee-rails', '~> 4.1.0'

See https://github.com/sstephenson/execjs#readme for more supported...

gem 'therubyracer', platforms: :ruby

Use jquery as the JavaScript library

gem 'jquery-rails'

Turbolinks makes following links in your web application faster...

gem 'turbolinks'

Build JSON APIs with ease. Read more: https://github.com/rails/jbu...

gem 'jbuilder', '~> 2.0'

bundle exec rake doc:rails generates the API under doc/api.

gem 'sdoc', '~> 0.4.0', group: :doc

Use ActiveModel has_secure_password

gem 'bcrypt', '~> 3.1.7'

Use Unicorn as the app server

gem 'unicorn'

Use Capistrano for deployment

gem 'capistrano-rails', group: :development

group :development, :test do

Call 'byebug' anywhere in the code to stop execution and get a...

gem 'byebug'

Access an IRB console on exception pages or by using <%= console...

gem 'web-console', '~> 2.0'

Spring speeds up development by keeping your application running in the

https://github.com/rails/jbu
https://github.com/sstephenson/execjs#readme
http:https://rubygems.org

48 CHAPTER 3 Developing a real Rails application

background. Read more: https://github.com/rails/spring

gem 'spring'

end

In this file, Rails sets a source to be https://rubygems.org (the canonical repository
for Ruby gems). All gems you specify for your application are gathered from the
source. Next, it tells Bundler it requires version 4.2.1 of the rails gem. Bundler
inspects the dependencies of the requested gem, as well as all gem dependencies of
those dependencies (and so on), and then does what it needs to do to make them all
available to your application.

 This file also requires the sqlite3 gem, which is used for interacting with SQLite3
databases, the default when working with Rails. If you were to use another database
system, you’d need to take out this line and replace it with the relevant gem, such as
mysql2 for MySQL or pg for PostgreSQL.

 Groups in the Gemfile are used to define gems that should be loaded in specific
scenarios. When using Bundler with Rails, you can specify a gem group for each Rails
environment, and by doing so, you specify which gems should be required by that envi­
ronment. A default Rails application has three standard environments: development,
test, and production.

Rails application environments
The development environment is used for your local application, such as when you’re
playing with it in the browser on your local machine. In development mode, page and
class caching are turned off, so requests may take a little longer than they do in pro­
duction mode. (Don’t worry—this is only the case for larger applications.) Things like
more detailed error messages are also turned on, for easier debugging.

The test environment is used when you run the automated test suite for the applica­
tion. This environment is kept separate from the development environment so your
tests start with a clean database to ensure predictability, and so you can include ex­
tra gems specifically to aid in testing.

The production environment is used when you finally deploy your application out into
the world for others to use. This mode is designed for speed, and any changes you
make to your application’s classes aren’t effective until the server is restarted.

This automatic requiring of gems in the Rails environment groups is done by the fol­
lowing line in config/application.rb:

Bundler.require(*Rails.groups)

The Rails.groups line provides two groups for Bundler to require: default and
development. The latter will change depending on the environment that you’re run­
ning. This code will tell Bundler to load only the gems in the default group (which is

https://rubygems.org
http:config/application.rb
https://github.com/rails/spring

49 Application configuration

all gems not in any specific group), as well as any gems in a group that has the same
name as the environment.

GETTING STARTED WITH BDD

Chapter 2 focused on behavior-driven development (BDD), and, as was more than
hinted at, you’ll use it to develop this application. To get started, you need to alter the
Gemfile to ensure that you have the correct gem for RSpec for your application.

 To add the rspec-rails gem, add this line to the bottom of the :development,
:test group in your Gemfile:

gem "rspec-rails", "~> 3.2.1"

This group in your Gemfile lists all the gems that will be loaded in the development
and test environments of your application. These gems won’t be available in a produc­
tion environment. You add rspec-rails to this group because you’re going to need a
generator from it to be available in development. Additionally, when you run a gener­
ator for a controller or model, it’ll use RSpec, rather than the default Test::Unit, to
generate the tests for that class.

 You’ve specified a version number with ~> 3.2.1,4 which tells RubyGems you
want rspec-rails 3.2.1 or higher, but less than rspec-rails 3.3. This means when RSpec
releases 3.2.2 and you go to install your gems, RubyGems will install the latest ver­
sion it can find, rather than only 3.2.1.

 Next, you’ll need to add Capybara to the Gemfile, in a new group specifically for
the test environment. You don’t put Capybara in the same group as the rspec-rails gem
because it doesn’t offer any generators that you need, so you only need this gem
loaded in the test environment.

group :test do

gem "capybara", "~> 2.4"

end

Capybara is a browser simulator in Ruby that’s used for integration testing, which you’ll
be doing shortly. This kind of testing ensures that when a link is clicked in your appli­
cation, it goes to the correct page; or that when you fill in a form and click Submit, an
onscreen message tells you that the form’s operation was successful.

 Capybara also supports real browser testing. If you tell RSpec that your test is a
JavaScript test, it will open a new Firefox window and run the test there—you’ll be able
to see your tests as they occur, and your application will behave exactly the same as it
does when you view it yourself. You’ll use this extensively when we start writing
JavaScript in chapter 9.

 To install these gems on your system, run bundle update at the root of your appli­
cation. This command tells Bundler to ignore your Gemfile.lock file and use your
Gemfile to install all the gems specified in it. Bundler then updates Gemfile.lock with
the list of gems that were installed, as well as their versions. The next time bundle is

The ~> operator is called the approximate version constraint. 4

50 CHAPTER 3 Developing a real Rails application

run, the gems will be read from the Gemfile.lock file, rather than the Gemfile. You
should commit this file to your repository so that when other people work on your
project and run bundle install, they’ll get exactly the same versions that you have.

 With the necessary gems for the application installed, you can run the
rspec:install generator, a generator provided by RSpec to set your Rails application
up for testing:

$ rails g rspec:install

REMINDER Remember, rails g is a shortcut for running rails generate!

You can also remove the automatically generated test application in the root folder
of your application—you won’t be using it.

 With this generated code in place, you should make a commit so you have another
base to roll back to if anything goes wrong:

$ git add .

$ git commit -m "Set up gem dependencies and run RSpec generator"

$ git push

3.3.2 Database configuration

By default, Rails uses a database system called SQLite3, which stores each environ­
ment’s database in separate files in the db directory. SQLite3 is the default database
system because it’s the easiest to set up. Out of the box, Rails also supports the MySQL
and PostgreSQL databases, and gems are available that can provide functionality for
connecting to other database systems such as Oracle.

 If you want to change which database your application connects to, you can open
config/database.yml (whose development configuration is shown in the following list­
ing) and alter the settings to the new database system.

Listing 3.5 config/database.yml, SQLite3 example

development:

adapter: sqlite3

database: db/development.sqlite3

pool: 5

timeout: 5000

For example, if you want to use PostgreSQL, change the settings to match those in the
following listing. It’s common convention, but not mandatory, to call the environ­
ment’s database [app_name]_[environment].

Listing 3.6 config/database.yml, PostgreSQL example

development:

adapter: postgresql

database: ticketee_development

username: root

password: t0ps3cr3t

51 Beginning your first feature

You’re welcome to change the database if you wish. Rails will go about its business. But
it’s good practice to develop and deploy on the same database system to avoid strange
behavior between two different systems. Systems such as PostgreSQL perform faster
than SQLite, so switching to it may increase your application’s performance. Be mind­
ful, however, that switching database systems doesn’t automatically move your existing
data over for you.

 It’s generally wise to use different names for the different database environments:
if you use the same database in development and test modes, the database would be
emptied of all data when the tests were run, eliminating anything you might have set
up in development mode. You should never work on the live production database
directly unless you’re absolutely sure of what you’re doing, and even then extreme
care should be taken.

 Finally, if you’re using MySQL, it’s wise to set the encoding to utf-8 for the data­
base, using the following setup in the config/database.yml file.

Listing 3.7 config/database.yml, MySQL example

development:

adapter: mysql2

database: ticketee_development

username: root

password: t0ps3cr3t

encoding: utf8

This way, the database is set up automatically to work with UTF-8, eliminating any
potential encoding issues that may be encountered otherwise.

 That’s database configuration in a nutshell. For this book and for the Ticketee
application, we’ll use the default of SQLite3, but it’s good to know about the alterna­
tives and how to configure them.

3.4 Beginning your first feature
You now have version control for your application, and you’re hosting it on GitHub.
It’s time to write your first Capybara-based test, which isn’t nearly as daunting as it
sounds. We’ll explore things such as models and RESTful routing while you do it. It’ll
be simple, promise!

 The CRUD (create, read, update, delete) acronym is something you’ll see all the
time in the Rails world. It represents the creation, reading, updating, and deleting of
something, but it doesn’t say what that something is.

 In the Rails world, CRUD is usually referred to when talking about resources. Resources
are the representation of the information throughout your application—the things that
your application is designed to manage. The following section goes through the
beginnings of generating a CRUD interface for a project resource by applying the BDD
practices you learned in chapter 2 to the application you just bootstrapped. What comes
next is a sampler of how to apply these practices when developing a Rails application.

52 CHAPTER 3 Developing a real Rails application

Throughout the remainder of the book, you’ll continue to apply these practices to
ensure that you have a stable and maintainable application.

 Let’s get into it!

3.4.1 Creating projects

The first story for your application is the creation (the C in

CRUD). You’ll create a resource representing projects in your

application by first writing a test for the process by which a user

will create projects, then creating a controller and model, and

then creating a route. Then you’ll add a validation to ensure that

no project can be created without a name. When you’re done

with this feature, you’ll have a form that looks like figure 3.4.

 First, create a new directory at spec/features—all of the

specs covering your features will go there. Then, in a file called

spec/features/creating_projects_spec.rb, you’ll put the test

that will make sure this feature works correctly when it’s fully

implemented. The test code is shown in the following listing.

Figure 3.4 Form
to create projects

Listing 3.8 spec/features/creating_projects_spec.rb

require "rails_helper"

RSpec.feature "Users can create new projects" do

scenario "with valid attributes" do

visit "/"

click_link "New Project"

fill_in "Name", with: "Sublime Text 3"

fill_in "Description", with: "A text editor for everyone"

click_button "Create Project"

expect(page).to have_content "Project has been created."

end

end

To run this test, run bundle exec rspec from inside your ticketee folder. This com­
mand will run all of your specs and display the first failure of your application’s first
test:

1) Users can create new projects with valid attributes

Failure/Error: visit "/"

ActionController::RoutingError:

No route matches [GET] "/"

THE SCHEMA.RB FILE Before the test failure, you’ll also get a warning that
your schema.rb file doesn’t exist yet. This schema.rb file represents Rails’
knowledge about the application’s database. You haven’t created a database
yet, so it’s safe to ignore this warning for now. It will get resolved when you
create your first database table shortly.

http:schema.rb
http:schema.rb
http:SCHEMA.RB
http:expect(page).to
http:spec/features/creating_projects_spec.rb

53 Beginning your first feature

It falls on the application’s router to figure out where the request should go. Typically,
the request would be routed to an action in a controller, but at the moment there are
no routes at all for the application. With no routes, the Rails router can’t find the
route for "/" and so gives you the error shown.

 You have to tell Rails what to do with a request for "/". You can do this easily in
config/routes.rb. At the moment, this file has the following content (comments
removed).

Listing 3.9 config/routes.rb

Rails.application.routes.draw do

end

The comments are good for a read if you’re interested in the other routing syntax, but
they’re not necessary at the moment. (We’ve removed them from the code displayed
here, but you can keep them if you like.) To define a root route, you use the root
method like this in the block for the draw method:

Rails.application.routes.draw do

root "projects#index"

end

This defines a route for requests to "/" (the root route) to point at the index action of
the ProjectsController. This controller doesn’t exist yet, and so the test should prob­
ably complain about that if you got the route right. Run bundle exec rspec to find out:

1) Users can create new projects with valid attributes

Failure/Error: visit "/"

ActionController::RoutingError:

uninitialized constant ProjectsController

This error is happening because the route is pointing at a controller that doesn’t exist.
When the request is made, the router attempts to load the controller, and because it
can’t find it, you’ll get this error.

 To define this ProjectsController constant, you must generate a controller. The
controller is the first port of call for your routes (as you can see now!), and it’s respon­
sible for querying the model for information in an action and then doing something
with that information (such as rendering a template). (Lots of new terms are explained
later. Patience, grasshopper.) To generate the controller, run this command:

$ rails g controller projects

You may be wondering why we use a pluralized name for the controller. Well, the con­
troller is going to be dealing with a plural number of projects during its lifetime, so it
makes sense to name it like this. The models are singular because their names refer to
their types. Another way to put it: you’re a human, not a humans. But a controller that
dealt with multiple humans would be called HumansController.

 The controller generator produces output similar to that produced when you ran
rails new earlier, but this time it creates files just for the controller you’ve asked Rails

http:config/routes.rb

54	 CHAPTER 3 Developing a real Rails application

to generate. The most important of these is the controller itself, which is housed in app/
controllers/projects_controller.rb and defines the ProjectsController constant that
your test needs. This controller is where all the actions will live, just like app/controllers/
purchases_controller.rb back in chapter 1. Here’s what this command outputs:

create app/controllers/projects_controller.rb

invoke erb

create app/views/projects

invoke rspec

create spec/controllers/projects_controller_spec.rb

invoke helper

create app/helpers/projects_helper.rb

invoke rspec

create spec/helpers/projects_helper_spec.rb

invoke assets

invoke coffee

create app/assets/javascripts/projects.coffee

invoke scss

create app/assets/stylesheets/projects.scss

A few notes about the output:

■	 app/views/projects contains the views relating to your actions (more on this
shortly).

■	 invoke helper shows that the helper generator was called here, generating a
file at app/helpers/projects_helper.rb. This file defines a ProjectsHelper
module. Helpers generally contain custom methods to be used in your view to
help with the rendering of content, and they come as blank slates when they’re
first created.

■	 invoke erb signifies that the Embedded Ruby (ERB) generator was invoked.
Actions to be generated for this controller have corresponding ERB views
located in app/views/projects. For instance, the index action’s default view is
located at app/views/projects/index.html.erb.

■	 invoke rspec shows that the RSpec generator was also invoked during the gen­
eration. This means RSpec has generated a new file at spec/controllers/
projects_controller_spec.rb, which you can use to test your controller—but not
right now.5

■	 Finally, the assets for the controller are generated. Two files are generated here:
app/assets/javascripts/projects.coffee and app/assets/stylesheets/projects.scss.
The first file should contain any JavaScript related to the controller, written as
CoffeeScript (http://coffeescript.org). The second file should contain any CSS
related to the controller, written using SCSS (http://sass-lang.com). In the
development environment, these files are automatically parsed into JavaScript
and CSS, respectively.

By generating RSpec tests rather than Test::Unit tests, a longstanding issue in Rails has been fixed. In previous
versions of Rails, even if you specified the RSpec gem, all the default generators still generated Test::Unit tests.
With Rails, the testing framework you use is just one of a large number of configurable things in your application.

5

http://coffeescript.org
http://sass-lang.com
http:projects_controller_spec.rb
http:app/helpers/projects_helper.rb
http:spec/helpers/projects_helper_spec.rb
http:app/helpers/projects_helper.rb
http:spec/controllers/projects_controller_spec.rb
http:app/controllers/projects_controller.rb
http:purchases_controller.rb
http:controllers/projects_controller.rb

Beginning your first feature 55

You’ve just run the generator to generate a new ProjectsController class and all its
goodies. This should fix the “uninitialized constant” error message. If you run bundle
exec rspec again, it declares that the index action is missing:

1) Users can create new projects with valid attributes

Failure/Error: visit "/"

AbstractController::ActionNotFound:

The action 'index' could not be found for ProjectsController

3.4.2 Defining a controller action

To define the index action in your controller, you must define a method in the
ProjectsController class, just as you did when you generated your first application.

Listing 3.10 app/controllers/projects_controller.rb

class ProjectsController < ApplicationController

def index

end

end

If you run bundle exec rspec again, this time Rails complains of a missing projects/
index template:

1) Users can create new projects with valid attributes

Failure/Error: visit "/"

ActionView::MissingTemplate:

Missing template projects/index, application/index with

{

:locale => [:en],

:formats => [:html],

:variants => [],

:handlers => [:erb, :builder, :raw, :ruby, :coffee, :jbuilder]

}.

Searched in:

* ".../ticketee/app/views"

We’ve reformatted the error message to make it a little easier on the untrained eye. It
doesn’t look very helpful, but if you know how to put the pieces together, you can
determine that it’s trying to look for a template called projects/index or application/
index, but it’s not finding it. These templates are primarily kept at app/views, so it’s
fair to guess that it’s expecting something like app/views/projects/index.

 The extension of the file will be composed of two parts: the format followed by the
handler. The error output lists :html as an available format, which is good, because we
want to render an HTML page. But what’s a handler?

 A handler is a preprocessor for the template, or a templating language. There are a
number of handlers built in (as the error output lists), and many more can be added
by using extra gems, but the default for Rails views is :erb. Putting it all together, the
view that your index action will render belongs in app/views/projects/
index.html.erb.

56 CHAPTER 3 Developing a real Rails application

Rails view variants
We haven’t discussed the variants option in the output at all. View variants are a
relatively new feature within Rails, and they allow you to provide different views based
on certain criteria, such as what device a user is accessing the site through.

The Rails 4.1 release notes have the best information about variants, so if you’re in­
terested in what they can do, check them out here: http://guides.rubyonrails.org/
4_1_release_notes.html#action-pack-variants.

You could also create a file at app/views/application/index.html.erb to provide the
view for the index action from the ProjectsController. This would work because
ProjectsController inherits from ApplicationController. If you had another con­
troller inherit from ProjectsController, you could put an action’s template at app/
views/application, app/views/projects, or app/views/that_controller, and Rails would
still pick up on it. This allows different controllers to share views in a simple fashion.
Creating a view at app/views/application/index.html.erb would make this view avail­
able for all controllers that inherit from ApplicationController, but that’s not what
we want to do in this case.

 To generate this view, create the app/views/projects/index.html.erb file and leave
it blank for now. You can run just the single spec for creating projects with bundle
exec rspec:

1) Users can create new projects with valid attributes

Failure/Error: click_link "New Project"

Capybara::ElementNotFound:

Unable to find link "New Project"

You’ve defined a homepage for your application by defining a root route, generating
a controller, putting an action in it, and creating a view for that action. Now Capybara
is successfully navigating to it and rendering it. That’s the first step in the first test
passing for your first application, and it’s a great first step!

 The second line in your spec is now failing, and it’s up to you to fix it. You need a link
on the root page of your application that reads “New Project.” That link should go in
the view of the controller that’s serving the root route request: app/views/projects/
index.html.erb. Open app/views/projects/index.html.erb and put the link in by using
the link_to method:

<%= link_to "New Project", new_project_path %>

This single line re-introduces two old concepts and a new one: ERB output tags, the
link_to method (both of which you saw in chapter 1), and the mysterious
new_project_path method.

 As a refresher, in ERB, when you use <%= (known as an ERB output tag), you’re tell­
ing ERB that whatever the output of this Ruby is, put it on the page. If you only want to

http://guides.rubyonrails.org/4_1_release_notes.html#action-pack-variants

57 Beginning your first feature

evaluate (and not output) Ruby, you use an ERB evaluation tag <%, which doesn’t out­
put content to the page but only evaluates it. Both of these tags end in %>.

 The link_to method in Rails generates an <a> tag with the text of the first argu­
ment and the href of the second argument. This method can also be used in block
format if you have a lot of text you want to link to:

<%= link_to new_project_path do %>

bunch

of

text

<% end %>

Where new_project_path comes from deserves its own section. It’s the very next one.

3.4.3 RESTful routing

The new_project_path method is as yet undefined. If you ran the test again, it would
complain of an “undefined local variable or method, ‘new_project_path’.” You can
define this method by defining a route to what’s known as a resource in Rails. Resources
are collections of objects that all belong in a common location, such as projects, users,
or tickets.

 You can add the projects resource in config/routes.rb by using the resources
method, putting it directly under the root method in this file.

Listing 3.11 resources :projects line in config/routes.rb

Rails.application.routes.draw do

root "projects#index"

resources :projects

end

This is called a resource route, and it defines the routes to the seven RESTful actions in
your projects controller. When something is said to be RESTful, it means it conforms
to Rails’ interpretation of the Representational State Transfer (REST) architectural
style. (See Wikipedia for more information on REST: http://en.wikipedia.org/wiki/
Representational_state_transfer.)

 Rails can’t get you all the way there, but it can help. With Rails, this means the
related controller has seven potential actions:

■ index ■ edit

■ show ■ update

■ new ■ destroy

■ create

These seven actions match up with just four request paths:

■ /projects ■ /projects/:id

■ /projects/new ■ /projects/:id/edit

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http:config/routes.rb

58 CHAPTER 3 Developing a real Rails application

How can four be equal to seven? It can’t! Not in this world, anyway. Rails will deter­
mine what action to route to on the basis of the HTTP method of the requests to these
paths. Table 3.1 lists the routes, HTTP methods, and corresponding actions to make it
clearer.

Table 3.1 RESTful routing match-up

HTTP method Route Action

GET /projects index

POST /projects create

GET /projects/new new

GET /projects/:id show

PATCH/PUT /projects/:id update

DELETE /projects/:id destroy

GET /projects/:id/edit edit

The routes listed in the table are provided when you use resources :projects. This is
yet another great example of how Rails takes care of the configuration so you can take
care of the coding.

 To review the routes you’ve defined, you can run the bundle exec rake routes
command and get output similar to that in table 3.1:

Prefix Verb URI Pattern Controller#Action

root GET / projects#index

projects GET /projects(.:format) projects#index

POST /projects(.:format) projects#create

new_project GET /projects/new(.:format) projects#new

edit_project GET /projects/:id/edit(.:format) projects#edit

project GET /projects/:id(.:format) projects#show

PATCH /projects/:id(.:format) projects#update

PUT /projects/:id(.:format) projects#update

DELETE /projects/:id(.:format) projects#destroy

The words in the leftmost column of this output are the beginnings of the method
names you can use in your controllers or views to access them. If you want just the
path to a route, such as /projects, then use projects_path. If you want the full URL,
such as http://yoursite.com/projects, use projects_url. It’s best to use these helpers
rather than hardcoding the URLs; doing so makes your application consistent across
the board.

For example, to generate the route to a single project, you’d use either
project_path or project_url:

project_path(@project)

http://yoursite.com/projects

59 Beginning your first feature

This method takes one argument, shown in the URI pattern with the :id notation, and
generates the path according to this object. The four paths mentioned earlier match
up to the helpers in table 3.2.

Table 3.2 RESTful routing match-up for GET routes

URL Helper

GET /projects

GET /projects/new

GET /projects/:id

GET /projects/:id/edit

projects_path

new_project_path

project_path

edit_project_path

Running bundle exec rspec now produces a complaint about a missing new action:

1) Users can create new projects with valid attributes

Failure/Error: click_link "New Project"

AbstractController::ActionNotFound:

The action 'new' could not be found for ProjectsController

As shown in the following listing, you define the new action in your controller by
defining a new method directly underneath the index method.

Listing 3.12 app/controllers/projects_controller.rb

class ProjectsController < ApplicationController

def index

end

def new

end

end

Running bundle exec rspec now results in a complaint about a missing new template,
just as it did with the index action:

1) Users can create new projects with valid attributes

Failure/Error: click_link "New Project"

ActionView::MissingTemplate:

Missing template projects/new, application/new with

{

:locale => [:en],

:formats => [:html],

:variants => [],

:handlers => [:erb, :builder, :raw, :ruby, :coffee, :jbuilder]

}.

Searched in:

* ".../ticketee/app/views"

60 CHAPTER 3 Developing a real Rails application

You can create the file at app/views/projects/new.html.erb to make this test go one
step further, although this is a temporary solution. You’ll come back to this file later to
add content to it.

When you run the spec again, the line that should be failing is the one regarding
filling in the Name field. Find out if this is the case by running bundle exec rspec:

1) Users can create new projects with valid attributes

Failure/Error: fill_in "Name", with: "Sublime Text 3"

Capybara::ElementNotFound:

Unable to find field "Name"

Now Capybara is complaining about a missing Name field on the page it’s currently
on: the new page. You must add this field so that Capybara can fill it in. Before you do
that, however, fill out the new action in the ProjectsController as follows:

def new

@project = Project.new

end

When you fill out the view with the fields you need to create a new project, you’ll need
something to base the fields on—an instance of the class you want to create. This
Project constant will be a class located at app/models/project.rb, thereby making it a
model.

OF MODELS AND MIGRATIONS

A model is used to retrieve information from the database. Because models by default
inherit from Active Record, you don’t have to set up anything extra. Run the following
command to generate your first model:

$ rails g model project name description

This syntax is similar to the controller generator’s syntax, except that you specify that
you want a model, not a controller.

 When the generator runs, it generates not only the model file but also a migration
containing the code to create the table (containing the specified fields) for the
model. You can specify as many fields as you like after the model’s name. They default
to string type, so you don’t need to specify them. If you wanted to be explicit, you
could use a colon followed by the field type, like this:

$ rails g model project name:string description:string

A model provides a place for any business logic that your application performs—one
common bit of logic is the way your application interacts with a database. A model is
also the place where you define validations (seen later in this chapter), associations (dis­
cussed in chapter 5), and scopes (easy-to-use filters for database calls, discussed in chap­
ter 7), among other things. To perform any interaction with data in your database,
you go through a model.6

Although it’s possible to perform database operations without a model in Rails, 99% of the time you’ll want
to use a model.

6

http:app/models/project.rb

61 Beginning your first feature

 Migrations are effectively version control for the database. They’re defined as Ruby
classes, which allows them to apply to multiple database schemas without having to be
altered. All migrations have a change method in them when they’re first defined. For
example, the code shown in the following listing comes from the migration that was
just generated.

Listing 3.13 db/migrate/[date]_create_projects.rb

class CreateProjects < ActiveRecord::Migration

def change

create_table :projects do |t|

t.string :name

t.string :description

t.timestamps null: false

end

end

end

When you run the migration forward (using bundle exec rake db:migrate), it creates
the table in the database. When you roll the migration back (with bundle exec rake
db:rollback), it deletes (or drops) the table from the database.

If you need to do something different on the up and down parts, you can use those
methods instead.

Listing 3.14 Explicitly using up and down methods to define a migration

class CreateProjects < ActiveRecord::Migration

def up

create_table :projects do |t|

t.string :name

t.string :description

t.timestamps null: false

end

end

def down

drop_table :projects

end

end

Here, the up method would be called if you ran the migration forward, and the down
method would be run if you ran it backward.

 This syntax is especially helpful if the migration does something that has a reverse
function that isn’t clear, such as removing a column:7

Rails actually does know how to reverse the removal of a column if you provide an extra field type argument
to remove_column; for example, remove_column :projects, :name, :string. We’ll leave this here for
demonstration purposes, though.

7

62 CHAPTER 3 Developing a real Rails application

class CreateProjects < ActiveRecord::Migration

def up

remove_column :projects, :name

end

def down

add_column :projects, :name, :string

end

end

In this case, Active Record wouldn’t know what type of field to re-add this column as,
so you must tell it what to do in the case of this migration being rolled back.

 In the projects migration, the first line of the changemethod tells Active Record that
you want to create a table called projects. You call this method in the block format,
which returns an object that defines the table. To add fields to this table, you call meth­
ods on the block’s object (called t in this example and in all model migrations), the
name of which usually reflects the type of column it is; the first argument is the name
of that field. The timestamps method is special: it creates two fields, created_at and
updated_at, which are by default set to the current time in coordinated universal time
(UTC)8 by Rails when a record is created and updated, respectively.

 A migration doesn’t automatically run when you create it—you must run it yourself
using this command:

$ bundle exec rake db:migrate

This command migrates the database up to the latest migration, which for now is your
only migration. If you create a whole slew of migrations at once, then invoking bundle
exec rake db:migrate will migrate them in the order in which they were created. This
is the purpose of the timestamp in the migration filename—to keep the migrations in
chronological order.

The end of rake db:test:prepare
In older versions of Rails (before 4.1), whenever you ran a migration in the develop­
ment environment with rake db:migrate, you also had to manually keep your test
database in sync with rake db:test:prepare. This led to much confusion. Your
tests could raise errors about missing database fields, but they were there—you’d
run migrations to create them but not run rake db:test:prepare to sync those
changes to the test database.

Now the two databases are kept in sync automatically, with this line in your spec/
rails_helper.rb file:

ActiveRecord::Migration.maintain_test_schema!

No more need to call rake db:test:prepare!

Yes, coordinated universal time has an initialism of UTC. This is what happens when you name things by com­
mittee (http://en.wikipedia.org/wiki/Coordinated_Universal_Time#Etymology).

8

http://en.wikipedia.org/wiki/Coordinated_Universal_Time#Etymology
http:rails_helper.rb

63 Beginning your first feature

With this model created and its related migration run, your test won’t get any further,
but you can start building out the form to create a new project.

FORM BUILDING

To add the fields for creating a new project to the new action’s view, you can put them
in a form, but not just any form: a form_for.

Listing 3.15 app/views/projects/new.html.erb

<h1>New Project</h1>

<%= form_for(@project) do |f| %>

<p>

<%= f.label :name %>

<%= f.text_field :name %>

</p>

<p>

<%= f.label :description %>

<%= f.text_field :description %>

</p>

<%= f.submit %>

<% end %>

So many new things!
 Starting at the top, the form_for method is Rails’ way of building forms for Active

Record objects. You pass it the @project object you defined in your controller as the
first argument, and with this, the helper does much more than simply place a form tag
on the page. form_for inspects the @project object and creates a form builder specif­
ically for that object. The two main things it inspects are whether it’s a new record and
what the class name is.

 What action attribute the form has (the URL the form submits its data to)
depends on whether or not the object is a new record. A record is classified as new
when it hasn’t been saved to the database. This check is performed internally to Rails
using the persisted? method, which returns true if the record is stored in the data­
base and false if it’s not.

The class of the object also plays a pivotal role in where the form is sent—Rails
inspects this class and, from it, determines what the route should be. Because @project
is new and is an object of class Project, Rails determines that the submit URL is /proj­
ects and the method for the form is POST. Therefore, a request is sent to the create
action in ProjectsController.

 After that part of form_for is complete, you use the block syntax to receive an f
variable, which is a FormBuilder object. You can use this object to define your form’s
fields. The first element you define is a label. label tags directly relate to the input
fields on the page and serve two purposes. First, they give users a larger area to click,
rather than just the field, radio button, or check box. Second, you can reference the
label’s text in the test, and Capybara will know what field to fill in.

64 CHAPTER 3 Developing a real Rails application

Alternative label naming
By default, the label’s text value will be the “humanized” value of the field name; for
example, :name becomes “Name.” If you want to customize the text, you can pass
the label method a second argument:

<%= f.label :name, "Your name" %>

After the label, you add the text_field, which renders an <input> tag corresponding
to the label and the field. The output tag looks like this:

<input type="text" name="project[name]" id="project_name" />

Then you use the submit method to provide users with a Submit button for your form.
Because you call this method on the f object, Rails checks whether the record is new
and sets the text to read “Create Project” if the record is new or “Update Project” if it
isn’t. You’ll see this in use a little later when you build the edit action. For now, we’ll
focus on the new action!

 Run bundle exec rspec spec/features/creating_projects_spec.rb once more,
and you can see that your spec is one step closer to finishing—the field fill-in steps
have passed:

1) Users can create new projects with valid attributes

Failure/Error: click_button "Create Project"

AbstractController::ActionNotFound:

The action 'create' could not be found for ProjectsController

Capybara finds the label containing the Name text you ask for in your scenario, and fills
out the corresponding field with the value you specify. Capybara has a number of ways
to locate a field, such as by the name of the corresponding label, the id attribute of
the field, or the name attribute. The last two look like these:

fill_in "project_name", with: "Sublime Text 3"

or

fill_in "project[name]", with: "Sublime Text 3"

SHOULD YOU USE THE ID OR THE LABEL? Some argue that using the field’s ID or
name is a better approach, because these attributes don’t change as often as
labels may. But your tests should aim to be as human-readable as possible—
when you write them, you don’t want to be thinking of field IDs; you’re
describing the behavior at a higher level than that. To keep things simple,
you should continue using the label name.

Capybara does the same thing for the Description field and then clicks the button you
told it to click. The spec is now complaining about a missing action called create.
Let’s fix that.

http:spec/features/creating_projects_spec.rb

65 Beginning your first feature

CREATING THE CREATE ACTION

To define this action, you define the create method underneath the new method in
the ProjectsController.

Listing 3.16 The create action of ProjectsController

def create

@project = Project.new(project_params)

if @project.save

flash[:notice] = "Project has been created."

redirect_to @project

else

nothing, yet

end

end

The Project.new method takes one argument, which is a list of attributes that will be
assigned to this new Project object. For now, we’ll just call that list project_params.

 After you build your new @project instance, you call @project.save to save it to
the projects table in your database. Before that happens, though, Rails will run all
the data validations on the model, ensuring that it’s valid. At the moment, you have no
validations on the model, so it will save just fine.

 The flash method in your create action is a way of passing messages to the next
request, and it takes the form of a hash. These messages are stored in the session and
are cleared at the completion of the next request. Here you set the :notice key of the
flash hash to be “Project has been created” to inform the user what has happened.
This message is displayed later, as is required by the final step in your feature.

 The redirect_to method can take several different arguments—an object, or the
name of a route. If an object is given, Rails inspects it to determine what route it should
go to; in this case, it goes to project_path(@project) because the object has now been
saved to the database. This method generates a path in the form of /projects/:id, where
:id is the record’s id attribute assigned by your database system. The redirect_to
method tells the browser to begin making a new request to that path and sends back an
empty response body; the HTTP status code will be a “302 Redirect,” and the URL to
redirect to will match the URL of the currently nonexistent show action.

 If you run bundle exec rspec now, you’ll get an error about an undefined local
variable or method "project_params":

1) Users can create new projects with valid attributes

Failure/Error: click_button "Create Project"

NameError:

undefined local variable or method `project_params' for

#<ProjectsController:0x007fe704e31848>

Where does the data you want to make a new project from, come from? It comes from
the params provided to the controller, available to all Rails controller actions.

66 CHAPTER 3 Developing a real Rails application

Combining redirect_to and flash
You can combine flash and redirect_to by passing the flash as an option to the
redirect_to. If you want to pass a success message, use the notice flash key;
otherwise use the alert key.

To use either of these two keys, you can use this syntax:

redirect_to @project, notice: "Project has been created."

or

redirect_to @project, alert: "Project has not been created."

If you don’t wish to use either notice or alert, you must specify flash as a hash:

redirect_to @project, flash: { success: "Project has been created."}

The params method returns the parameters passed to the action, such as those from
the form or query parameters from a URL, as a HashWithIndifferentAccess object.
This is different from a normal Hash object, because you can reference a String key
by using a matching Symbol, and vice versa.

In this case, the params hash looks like this:

{

"utf8" => "?",

"authenticity_token" => "WRHnKqU...",

"project" => {

"name" => "Sublime Text 3",

"description" => "A text editor for everyone"

},

"commit" => "Create Project",

"controller" => "projects",

"action" => "create"

}

You can easily see what parameters your controller is receiving by looking at the server
logs in your terminal console. If you run your rails server, visit http://local­
host:3000/projects/new, and submit the data that your test is trying to submit, you’ll
see the following in the terminal:

Started POST "/projects" for 127.0.0.1 at [timestamp]

Processing by ProjectsController#create as HTML

Parameters: {"utf8"=>"?", "authenticity_token"=>"WRHnKqU...",

"project"=>{"name"=>"Sublime Text 3", "description"=>"A text editor

for everyone"}, "commit"=>"Create Project"}

The parameters are all listed right there.
 All the hashes nested inside the params hash are also HashWithIndifferentAccess

hashes. If you want to get the name key from the project hash here, you can use either
{ :name => "Sublime Text 3" }[:name], as in a normal Hash object, or { :name =>
"Sublime Text 3" }['name']; you may use either the String or the Symbol version—it
doesn’t matter.

http://local

67 Beginning your first feature

The utf8 and authenticity_token params
There are two special parameters in the params hash: utf8 and authenticity
_token.

The utf8 parameter is a hack for older browsers (read: old versions of Internet Ex­
plorer) to force them into UTF-8 compatibility. You can safely ignore this one.

The authenticity_token parameter is used by Rails to validate that the request
is authentic. Rails generates this in the <meta> tag on the page (using <%=
csrf_meta_tags %> in app/views/layouts/application.html.erb) and also stores it
in the user’s session. Upon the submission of the form, it compares the value in
the form with the one in the session, and if they match the request is deemed au­
thentic. Using authenticity_token mitigates cross-site request forgery (CSRF) at­
tacks and so is a recommended best practice.

The first key in the params hash, commit, comes from the submit button of the form,
which has the value "Create Project". This is accessible as params[:commit]. The
second key, action, is one of two parameters always available; the other is controller.
These represent exactly what their names imply: the controller and action of the
request, accessible as params[:controller] and params[:action], respectively. The
final key, project, is, as mentioned before, a HashWithIndifferentAccess. It con­
tains the fields from your form and is accessible via params[:project]. To access the
name key in the params[:project] object, use params[:project][:name], which calls
the [] method on params to get the value of the :project key and then, on the result­
ing hash, calls [] again, this time with the :name key to get the name of the project
passed in.

params[:project] has all the data you need to pass to Project.new, but you can’t
just pass it directly in. If you try to substitute project_params with params[:project]
in your controller, and then run bundle exec rspec again, you’ll get the following
error:

Failure/Error: click_button "Create Project"

ActiveModel::ForbiddenAttributesError:

ActiveModel::ForbiddenAttributesError

STRONG PARAMETERS

Oooh, forbidden attributes. Sounds scary. But this is important: it’s one form of secu­
rity help that Rails gives you via a feature called strong parameters, new as of Rails 4.

 You don’t want to accept just any submitted parameters; you want to accept the
ones that you want and expect, and no more. That way, someone can’t mess around
with your application by doing things like tampering with the form and adding new
fields before submitting it.

68 CHAPTER 3 Developing a real Rails application

Strong parameters vs. attr_accessible
Before Rails 4.0, Rails supported a feature called attr_accessible for protecting
your models from unexpected attributes. You may see this used in older Rails proj­
ects—it involves listing out every field in the model that should be mass-assignable
via user-submitted data.

The attr_accessible approach caused problems because different controllers
might want to make available different sets of parameters for the same model, de­
pending on the context. For instance, an admin area of the site may want to permit
different fields than the user-facing area of the site—admins might have more fields,
such as the ability to set the owner of a project.

The advantage of strong parameters is that the permitted parameters are now list­
ed on a controller level, rather than at the model level. This allows for a higher de­
gree of flexibility.

Change the ProjectsController code to add a new definition for the
project_params method:

def create

@project = Project.new(project_params)

if @project.save

flash[:notice] = "Project has been created."

redirect_to @project

else

nothing, yet

end

end

private

def project_params

params.require(:project).permit(:name, :description)

end

You now call the require method on your params, and you require that the :project
key exists. You also allow it to have :name and :description entries—any other fields
submitted will be discarded. Finally, you wrap up that logic into a method so you can
use it in other actions, and you make it private so you don’t expose it as some kind of
weird action! You’ll use this method in one other action in this controller later on—
the update action.

 With that done, run bundle exec rspec again, and you’ll get a new error:

1) Users can create new projects with valid attributes

Failure/Error: click_button "Create Project"

AbstractController::ActionNotFound:

The action 'show' could not be found for ProjectsController

69 Beginning your first feature

The test has made it through the create action, followed the redirect you issued, and
now it’s stuck on the next request—the page you redirected to, the show action.

 The show action is responsible for displaying a single record’s information. Retriev­
ing a record to display is done by default using the record’s ID. You know the URL for
this page will be something like /projects/1, but how do you get the 1 from that URL?
Well, when you use resource routing, as you’ve done already, the 1 part of this URL is
available as params[:id], just as params[:controller] and params[:action] are also
automatically made available by Rails. You can then use this params[:id] parameter
in your show action to find a specific Project object. In this case, the show action
should be showing the newly created project.

 Put the code from the following listing into app/controllers/projects_controller
.rb to set up the show action. Make sure it comes above the private declaration, or
you won’t be able to use it as an action!

Listing 3.17 The show action of ProjectsController

def show

@project = Project.find(params[:id])

end

You pass the params[:id] object to Project.find. This gives you a single Project
object that relates to a record in the database, which has its id field set to whatever
params[:id] is. If Active Record can’t find a record matching that ID, it raises an
ActiveRecord::RecordNotFound exception.

 When you rerun bundle exec rspec spec/features/creating_projects _spec.rb,
you’ll get an error telling you that the show action’s template is missing:

1) Users can create new projects with valid attributes

Failure/Error: click_button "Create Project"

ActionView::MissingTemplate:

Missing template projects/show, application/show with

{

:locale => [:en],

:formats => [:html],

:variants => [],

:handlers => [:erb, :builder, :raw, :ruby, :coffee, :jbuilder]

}.

Searched in:

* ".../ticketee/app/views"

You can create the file app/views/projects/show.html.erb, with the following content
for now, to display the project’s name and description:

<h1><%= @project.name %></h1>

<p><%= @project.description %></p>

It’s a pretty plain page for a project, but it’ll serve our purpose.

70 CHAPTER 3 Developing a real Rails application

 When you run the test again with bundle exec rspec spec/features/creating
_projects_spec.rb, you’ll see this message:

1) Users can create new projects with valid attributes

Failure/Error: expect(page).to have_content "Project has been

created."

expected to find text "Project has been created." in "Sublime

Text 3 A text editor for everyone"

./spec/features/creating_projects_spec.rb:13:in ...

This error message shows that the “Project has been created” text isn’t being displayed
on the page. You must put it somewhere, but where?

THE APPLICATION LAYOUT

The best location for this text is in the application layout, located at app/views/
layouts/application.html.erb. This file provides the layout for all templates in your
application, so it’s a great spot to output a flash message—no matter what controller
you set it in, it will be rendered on the page.

 The application layout is quite the interesting file.

Listing 3.18 app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Ticketee</title>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track' => true %>

<%= javascript_include_tag 'application',

'data-turbolinks-track' => true %>

<%= csrf_meta_tags %>

</head>

<body>

<%= yield %>

</body>

</html>

The first line sets up the doctype to be HTML for the layout, and three new methods
are used: stylesheet_link_tag, javascript_include_tag, and csrf_meta_tags.

stylesheet_link_tag is for including CSS stylesheets from the app/assets/
stylesheets directory. Using this tag results in the following output, where [digest]
represents an MD5 hash of the contents of the file:

<link rel="stylesheet" href="/assets/projects-[digest].css?body=1"

media="all" data-turbolinks-track="true" />

<link rel="stylesheet" href="/assets/application-[digest].css?body=1"

media="all" data-turbolinks-track="true" />

The /assets path is served by a gem called Sprockets. In this case, the tag specifies the
/assets/application-[digest].css path, and any route prefixed with /assets is served by

http:expect(page).to
http:projects_spec.rb

71 Beginning your first feature

Sprockets. Sprockets provides a feature commonly referred to as the asset pipeline.
When files are requested through the asset pipeline, they’re preprocessed and then
served out to the browser.

ASSET PIPELINE GUIDE If you want to know about the ins and outs of the asset
pipeline, read the official Ruby on Rails guide: http://guides.rubyonrails.org/
asset_pipeline.html. It covers far more functionality than we’ll touch on in this
entire book!

There’s also a second tag for the projects-[digest].css file. In development mode, Rails
generates tags for all of your stylesheets and JavaScript separately, for ease of debug­
ging. If you were to run the application in production mode, you’d get something very
different:

<link data-turbolinks-track="true" href="/assets/application-[digest].css"

media="all" rel="stylesheet" />

This single stylesheet is all of your stylesheets, concatenated together and minified.
That way, your users will load up all of your styles on their first visit, and the styles will
be cached for the rest of their stay, increasing overall performance.

 When the /assets/application-[digest].css asset is requested, Sprockets looks for a
file named application.css in the asset paths for your application. The three asset
paths it searches by default are app/assets, lib/assets, and vendor/assets, in that order.
Some gems add extra paths to this list, so you’re able to use assets from within those
gems as well.

 If the file has any additional extensions on it, such as a file called applica­
tion.css.scss, Sprockets will look up a preprocessor for the .scss extension and run the
file through that before serving it as CSS. You can chain together any number of
extensions, and Sprockets will parse the file for each one, working right to left.

 The application.css file that’s searched for in this example lives at app/assets/
application.css.scss. This has an additional .scss extension on it, so it’ll be prepro­
cessed by the Sass preprocessor before being served as CSS by the
stylesheet_link_tag call in the application layout.

Using Sass or SCSS
For your CSS files, you can use the Sass or SCSS language to produce more powerful
stylesheets. Your application depends on the sass-rails gem, which itself depends
on sass, the gem for these stylesheets. We won’t go into detail here because the
Sass site covers most of that ground: http://sass-lang.com/.

Rails automatically generates stylesheets for each controller that uses Sass, as in­
dicated by the .scss extensions.

http://guides.rubyonrails.org/asset_pipeline.html
http://guides.rubyonrails.org/asset_pipeline.html
http://sass-lang.com/

72 CHAPTER 3 Developing a real Rails application

The javascript_include_tag is for including JavaScript files from the JavaScript
directories of the asset pipeline. When the application string is specified here, Rails
loads the app/assets/javascripts/application.js file, which looks like this:

//= require jquery

//= require jquery_ujs

//= require turbolinks

//= require_tree .

This file includes some Sprockets-specific code that includes the jquery.js and
jquery_ujs.js files, located in the jquery-rails gem. (The jquery-rails gem is listed in
your Gemfile as a dependency of your application.) It also includes the JavaScript file
for Turbolinks, which is a feature we’ll discuss later. It compiles these three files, plus
all the files in the app/assets/javascripts directory, with the //= require_tree . into
one superfile called application.js.

 In development mode, these JavaScript files all get included into your page sepa­
rately, just like stylesheets, for ease of debugging. In the output of your page, you’ll
have the following:

<script src="/assets/jquery-[digest].js?body=1"

data-turbolinks-track="true"></script>

<script src="/assets/jquery_ujs-[digest].js?body=1"

data-turbolinks-track="true"></script>

<script src="/assets/turbolinks-[digest].js?body=1"

data-turbolinks-track="true"></script>

<script src="/assets/projects-[digest].js?body=1"

data-turbolinks-track="true"></script>

<script src="/assets/application-[digest].js?body=1"

data-turbolinks-track="true"></script>

These files are also served through the Sprockets gem. As with your stylesheets, you
can use an alternative syntax called CoffeeScript (http://coffeescript.org), which pro­
vides a simpler JavaScript syntax that compiles into proper JavaScript. Just as with the
Sass stylesheets, Rails generates CoffeeScript files in app/assets/javascripts with the
extension .coffee, indicating to Sprockets that they’re to be parsed by a CoffeeScript
interpreter before serving. You’ll use CoffeeScript a little later, in chapter 9.

 (If this is all going a bit over your head for now, don’t worry. We’ll come back to it
later when we need to modify assets and add a design to the application.)

csrf_meta_tags is for protecting your forms from CSRF (http://en.wikipedia.org/
wiki/CSRF) attacks. These types of attacks were mentioned a short while ago when we
looked at the parameters for the create action. The csrf_meta_tags helper creates
two meta tags, one called csrf-param and the other csrf-token. This unique token
works by setting a specific key on forms that is then sent back to the server. The server
checks this key, and if the key is valid, the form is deemed valid. If the key is invalid, an
ActionController::InvalidAuthenticityToken exception occurs and the user’s ses­
sion is reset as a precaution.

 Later in app/views/layouts/application.html.erb is this single line:

<%= yield %>

http://coffeescript.org
http://en.wikipedia.org/wiki/CSRF
http:http://en.wikipedia.org
http:application.js
http:jquery_ujs.js
http:jquery.js
http:app/assets/javascripts/application.js

73 Beginning your first feature

This line indicates to the layout where the current action’s template is to be rendered.
Create a new line just before <%= yield %>, and place the following code there:

<% flash.each do |key, message| %>

<div><%= message %></div>

<% end %>

This code renders all the flash messages that are defined, regardless of their name
and the controller they come from. These lines will display the flash[:notice] that
you set up in the create action of the ProjectsController.

Run bundle exec rspec again, and you’ll see that the test is now fully passing:

3 examples, 0 failures, 2 pending

Why do you have two pending tests? If you examine the output more closely, you’ll see
this:

.**

Pending: (Failures listed here are expected and do not affect your

suite's status)

1) ProjectsHelper add some examples to (or delete)

.../ticketee/spec/helpers/projects_helper_spec.rb

Not yet implemented

./spec/helpers/projects_helper_spec.rb:14

2) Project add some examples to (or delete)

.../ticketee/spec/models/project_spec.rb

Not yet implemented

./spec/models/project_spec.rb:4

Finished in 0.07268 seconds (files took 1.26 seconds to load)

3 examples, 0 failures, 2 pending

The key part is “or delete.” Let’s delete those two files, because you’re not using them
yet:

$ rm spec/models/project_spec.rb

$ rm spec/helpers/projects_helper_spec.rb

Afterward, run bundle exec rspec one more time:

.

Finished in 0.07521 seconds (files took 1.25 seconds to load)

1 example, 0 failures

Yippee! You’ve just written your first BDD test for this application! That’s all there is to it.
 If this process feels slow, that’s how it’s supposed to feel when you’re new to any­

thing. Remember when you were learning to drive a car? You didn’t drive like Michael
Schumacher as soon as you got behind the wheel. You learned by doing it slowly and
methodically. As you progressed, you were able to do it more quickly, as you can all
things with practice.

http:spec/helpers/projects_helper_spec.rb
http:spec/models/project_spec.rb

74 CHAPTER 3 Developing a real Rails application

3.4.4 Committing changes

Now you’re at a point where all your specs are running (just the one, for now). Points
like this are great times to make a commit:

$ git add .

$ git commit -m "'Create a new project' feature complete."

Committing with older Git versions
If you’re using a version of Git older than 2.0, running git add . when you want to
stage the deletion of files will raise an error. You’ll see something like the following:

warning: You ran 'git add' with neither '-A (--all)' or '--ignore-removal',

whose behaviour will change in Git 2.0 with respect to paths you removed.

Paths like '[filename]' that are

removed from your working tree are ignored with this version of Git.

If this happens, you can add the -A option to git add, which will stage all file chang­
es, including file deletions:

$ git add -A .

You should commit often, because commits provide checkpoints you can revert back
to if anything goes wrong. If you’re going down a path where things aren’t working,
and you want to get back to the last commit, you can revert all your changes by using

$ git checkout .

USE GIT CHECKOUT . CAREFULLY! This command doesn’t prompt you to ask
whether you’re sure you want to take this action. You should be incredibly
sure that you want to destroy your changes. If you’re not sure and want to
keep your changes while reverting back to the previous revision, it’s best to
use the git stash command. This command stashes your unstaged changes
to allow you to work on a clean directory and lets you restore the changes
using git stash pop.

With the changes committed to your local repository, you can push them off to the
GitHub servers. If for some reason the code on your local machine goes missing, you
have GitHub as a backup.

 Run this command to push the code up to GitHub’s servers:

$ git push

Commit early. Commit often.

3.4.5 Setting a page title

Before you completely finish working with this story, there’s one more thing to point
out: the templates (such as show.html.erb) are rendered before the layout. You can use
this to your benefit by setting an instance variable such as @title in the show action’s

75 Beginning your first feature

template; then you can reference it in your application’s layout to show a title for your
page at the top of the tab or window.

 To test that the page title is correctly implemented, add a little bit extra to your sce­
nario for it. At the bottom of the test in spec/features/creating_projects_spec.rb, add
the four lines shown in the following listing.

Listing 3.19 spec/features/creating_projects_spec.rb

project = Project.find_by(name: "Sublime Text 3")

expect(page.current_url).to eq project_url(project)

title = "Sublime Text 3 - Projects - Ticketee"

expect(page).to have_title title

The first line here uses the find_by method to find a project by its name. This finds
the project that has just been created by the code directly above it. The second line
ensures that you’re on what should be the show action in the ProjectsController.
The third and fourth lines find the title element on the page by using Capybara’s
find method and check using have_title that this element contains the page title of
“Sublime Text 3 - Projects - Ticketee.”

If you run bundle exec rspec spec/features/creating_projects_spec.rb now,
you’ll see this error:

1) Users can create new projects with valid attributes

Failure/Error: expect(page).to have_title title

expected "Ticketee" to include "Sublime Text 3 - Projects -

Ticketee"

This error is happening because the title element doesn’t contain all the right parts,
but this is fixable! Write this code into the top of app/views/projects/show.html.erb:

<% @title = "Sublime Text 3 - Projects - Ticketee" %>

This sets up a @title instance variable in the template. Because the template is ren­
dered before the layout, you’re able to then use this variable in the layout.

 But if a page doesn’t have a @title variable set, there should be a default title of
“Ticketee.” To set this up, enter the following code in app/views/layouts/applica­
tion.html.erb where the title tag currently is:

<title><%= @title || "Ticketee" %></title>

In Ruby, instance variables that aren’t set return nil as their value. If you try to access
an instance variable that returns a nil value, you can use || to return a different
value, as in this example.

 With this in place, the test should pass when you run bundle exec rspec:

1 example, 0 failures

Now that this test passes, you can change your code and have a solid base to ensure
that whatever you change works as you expect. To demonstrate this point, let’s change
the code in show to use a helper instead of setting a variable.

http:expect(page).to
http:spec/features/creating_projects_spec.rb
http:expect(page).to
http:expect(page.current_url).to
http:spec/features/creating_projects_spec.rb

76 CHAPTER 3 Developing a real Rails application

 Helpers are methods you can define in the files in app/helpers, and they’re made
available in your views. Helpers are for extracting the logic from the views; views should
just be about displaying information. Every controller that comes from the controller
generator has a corresponding helper, and another helper module exists for the entire
application: the ApplicationHelper module, which lives at app/helpers/
application_helper.rb.

 Open app/helpers/application_helper.rb and insert the code from the following
listing.

Listing 3.20 app/helpers/application_helper.rb

module ApplicationHelper

def title(*parts)

unless parts.empty?

content_for :title do

(parts << "Ticketee").join(" - ")

end

end

end

end

When you specify an argument in a method beginning with the splat operator (*), any
arguments passed from this point will be available in the method as an array. Here
that array can be referenced as parts. Inside the method, you check to see if parts is
empty? by using a keyword that’s the opposite of if: unless. If no arguments are
passed to the title method, parts will be empty and empty? will return true.

 If parts are specified for the title method, then you use the content_for method
to define a named block of content, giving it the name title. Inside this content
block, you join the parts together using a hyphen (-), meaning that this helper will
output something like "Sublime Text 3 - Projects - Ticketee".

 This helper method will build up a text string that you can use as the title of any
page, including the default value of "Ticketee", and all you need to do is call it from
the view with the right arguments—an array of the parts that will make up the title of
the page. Neat.

 Now you can replace the title line in app/views/projects/show.html.erb with this:

<% title(@project.name, "Projects") %>

Let’s replace the title tag line in app/views/layouts/application.html.erb with this
code:

<title>

<% if content_for?(:title) %>

<%= yield(:title) %>

<% else %>

Ticketee

<% end %>

</title>

mailto:title(@project.name
http:app/helpers/application_helper.rb
http:application_helper.rb

77 Beginning your first feature

This code uses a new method called content_for?, which checks that the specified
content block is defined. It’s defined only if content_for(:title) is called some­
where, such as in the template. If it is, you use yield and pass it the name of the con­
tent block, which causes the content for that block to be rendered. If it isn’t, then you
output the word Ticketee, and that becomes the title.

 When you run this test again with bundle exec rspec, it will still pass:

1 example, 0 failures

That’s a lot neater, isn’t it? Create a commit for that functionality and push your
changes:

$ git add .

$ git commit -m "Add title functionality for project show page"

$ git push

Next up, we’ll look at how you can stop users from entering invalid data into your
forms.

3.4.6 Validations

The next problem to solve is preventing users from leaving a required field blank. A
project with no name isn’t useful to anybody. Thankfully, Active Record provides vali­
dations for this purpose. Validations are run just before an object is saved to the data­
base, and if the validations fail, the object isn’t saved. Ideally, in this situation, you
want to tell the user what went wrong so they can fix it and attempt to create the proj­
ect again.

 With this in mind, you can add another test to ensure that this happens. Add it to
spec/features/creating_projects_spec.rb using the code from the following listing.

Listing 3.21 spec/features/creating_projects_spec.rb

scenario "when providing invalid attributes" do

visit "/"

click_link "New Project"

click_button "Create Project"

expect(page).to have_content "Project has not been created."

expect(page).to have_content "Name can't be blank"

end

The first two lines are identical to the ones you placed in the other scenario. You
should eliminate this duplication by making your code DRY (Don’t Repeat Yourself!).
This is another term you’ll hear a lot in the Ruby world.9 It’s easy to extract common
code from where it’s being duplicated and move it into a method or module that you

Some people like to use “DRY” like an adjective, and also refer to code that isn’t DRY as WET (which doesn’t
actually stand for anything). We think those people are a bit weird.

9

http:expect(page).to
http:expect(page).to
http:spec/features/creating_projects_spec.rb

78 CHAPTER 3 Developing a real Rails application

can use instead of the duplication. One line of code is 100 times better than 100 lines
of duplicated code.

To DRY up your code, define a before block before the first scenario. For RSpec,
before blocks are run before every test in the file. Change spec/features/
creating_projects_spec.rb to look like this.

Listing 3.22 spec/features/creating_projects_spec.rb

require "rails_helper"

RSpec.feature "Users can create new projects" do

before do

visit "/"

click_link "New Project"

end

scenario "with valid attributes" do

fill_in "Name", with: "Sublime Text 3"

fill_in "Description", with: "A text editor for everyone"

click_button "Create Project"

expect(page).to have_content "Project has been created."

project = Project.find_by(name: "Sublime Text 3")

expect(page.current_url).to eq project_url(project)

title = "Sublime Text 3 - Projects - Ticketee"

expect(page).to have_title title

end

scenario "when providing invalid attributes" do

click_button "Create Project"

expect(page).to have_content "Project has not been created."

expect(page).to have_content "Name can't be blank"

end

end

There! That looks a lot better!
Now when you run bundle exec rspec, it will fail because it can’t see the error mes­

sage that it’s expecting to see on the page:

1) Users can create new projects when providing invalid attributes

Failure/Error: expect(page).to have_content "Project has not been

created."

expected to find text "Project has not been created." in "Project

has been created."

ADDING VALIDATIONS

To get this test to do what you want it to do, you’ll need to add a validation. Valida­
tions are defined on the model and are run before the data is saved to the database.

http:expect(page).to
http:expect(page).to
http:expect(page).to
http:expect(page).to
http:expect(page.current_url).to
http:expect(page).to
http:creating_projects_spec.rb

79 Beginning your first feature

 To define a validation to ensure that the name attribute is provided when a project is
created, open the app/models/project.rb file and make it look like the following listing.

Listing 3.23 app/models/project.rb

class Project < ActiveRecord::Base

validates :name, presence: true

end

The validates method’s usage is the same as how you used it in chapter 1. It tells the
model that you want to validate the name field, and that you want to validate its pres­
ence. There are other kinds of validations as well; for example, the :uniqueness key,
when passed true as the value, validates the uniqueness of this field as well, ensuring
that only one record in the table has that specific value.

UNIQUENESS VALIDATION There are potential gotchas with the Active Record
uniqueness validation that may allow duplicate data to be saved to the data­
base. We’re intentionally ignoring them for now, but we’ll cover them, and
how to resolve the issues they raise, in section 6.1.

With the presence validation in place, you can experiment with the validation by
using the Rails console, which allows you to have all the classes and the environment
from your application loaded in a sandbox environment. You can launch the console
with this command,

$ rails console

or with its shorter alternative:

$ rails c

If you’re familiar with Ruby, you may realize that this is effectively IRB with some Rails
sugar on top. If you’re new to both, IRB stands for Interactive Ruby, and it provides an
environment for you to experiment with Ruby without having to create new files. The
console prompt looks like this:10

Loading development environment (Rails 4.2.1)

irb(main):001:0>

At this prompt, you can enter any valid Ruby, and it’ll be evaluated.
 For now, the purpose of opening this console is to test the newly appointed valida­

tion. To do this, try to create a new project record by calling the create method. The
create method is similar to the new method, but it attempts to create an object and
then a database record for it rather than just the object. You use it identically to the
new method:

irb(main):001:0> Project.create

=> #<Project id: nil, name: nil, description: nil, created_at: nil,

updated_at: nil>

10 Alternatively, you may see something similar to ruby-2.2.1:001 >, which is fine.

http:app/models/project.rb

80	 CHAPTER 3 Developing a real Rails application

Here you get a new Project object with the name and description attributes set to
nil, as you should expect, because you didn’t specify it. The id attribute is nil too,
which indicates that this object isn’t persisted (saved) in the database.

 If you comment out or remove the validation from the Project class and type
reload! in your console, the changes you just made to the model are reloaded.
When the validation is removed, you have a slightly different outcome when you call
Project.create:

irb(main):001:0> Project.create

=> #<Project id: 1, name: nil, description: nil,

created_at: [timestamp], updated_at: [timestamp]>

Here, the name field is still expectedly nil, but the other three attributes have values.
Why? When you call create on the Project model, Rails builds a new Project object
with any attributes you pass it and checks to see if that object is valid.11 If it is, Rails sets
the created_at and updated_at attributes to the current time and then saves the
object to the database. After it’s saved, the id is returned from the database and set on
your object. This object is valid, according to Rails, because you removed the valida­
tion, so Rails goes through the entire process of saving.

 The create method has a bigger, meaner brother called create! (pronounced cre­
ate BANG!). Re-add or uncomment the validation from the model, and type reload! in
the console, and you’ll see what this mean variant does with this line:

irb(main):001:0> Project.create!

ActiveRecord::RecordInvalid: Validation failed: Name can't be blank

The create! method, instead of nonchalantly handing back a Project object regard­
less of any validations, raises an ActiveRecord::RecordInvalid exception if any of
the validations fail; it shows the exception followed by a large stack trace, which you
can safely ignore for now. You’re notified which validation failed.

 To stop it from failing, you must pass in a name attribute, and create! will happily
return a saved Project object:

irb(main):002:0> Project.create!(name: "Sublime Text 3")

=> #<Project id: 2, name: "Sublime Text 3", description: nil,

created_at: [timestamp], updated_at: [timestamp]>

That’s how to use create! to test your validations in the console.
 You’ve created some bad data in your database during this experimentation, so

you should clean that up before you continue:

irb(main):003:0> Project.delete_all

=> 2

Back in your ProjectsController, you use the method shown in the following listing
instead.

11	 The first argument for this method is the attributes. If no argument is passed, then all attributes default to
their default values.

http:valid.11

81 Beginning your first feature

Listing 3.24 Part of the create action of ProjectsController

def create

@project = Project.new(project_params)

if @project.save

...

The save method doesn’t raise an exception if validations fail, as create! does;
instead it returns false. If the validations pass, save returns true.

 You can use this to your advantage to show the user an error message when save
returns false by using it in an if statement. Make the create action in the Projects-
Controller look like the following listing.

Listing 3.25 The new create action from ProjectsController

def create

@project = Project.new(project_params)

if @project.save

flash[:notice] = "Project has been created."

redirect_to @project

else

flash.now[:alert] = "Project has not been created."

render "new"

end

end

flash vs. flash.now
The controller action in listing 3.25 uses two different methods to access the array
of flash messages for your page—flash and flash.now. What’s the difference?

flash is the standard way of setting flash messages, and it will store the message
to display on the very next page load. You do this immediately before issuing redirects—
in this case you redirect immediately to the show page in the ProjectsController,
and that page is the next page load, meaning that the flash message displays on the
show view.

flash.now is an alternative way of setting flash messages, and it will store the mes­
sage to display on the current page load. In this case, you don’t redirect anywhere,
you simply render a view out from the same action, so you need to use flash.now
to make sure the user sees the error message when you render the new view.

There’s also a third method—flash.keep—but this is used very rarely. If you want
to keep an existing flash message around for another request, you can call
flash.keep in your controller, and the flash message will hang around for a little
while longer.

If you were to use flash instead of flash.now in this case, the user would see the
message twice—once on the current page and once on the next page.

82 CHAPTER 3 Developing a real Rails application

If the @project object has a name attribute—meaning it’s valid—save returns true
and executes everything between if and else. If it isn’t valid, then everything
between else and the following end is executed. In the else, you specify a different
key for the flash message because you’ll want to style alert messages differently from
notices later in the application’s lifecycle. When good things happen, the messages for
them will be colored with a green background; when bad things happen, red.

 When you run bundle exec rspec spec/features/creating_projects_spec.rb
now, the line in the spec that checks for the “Project has not been created” message
doesn’t fail, so it goes to the next line, which checks for the “Name can’t be blank”
message. You haven’t done anything to make this message appear on the page yet,
which is why the test is failing again:

1) Users can create new projects when providing invalid attributes

Failure/Error: expect(page).to have_content "Name can't be blank"

expected to find text "Name can't be blank" in "Project has not

been created. New Project Name Description"

The validation errors for the project aren’t being displayed on this page, which is caus­
ing the test to fail. To display validation errors in the view, you need to code some­
thing up yourself.

 When an object fails validation, Rails will populate the errors of the object with
any validation errors. You can test this back in your Rails console:

irb(main):001:0> project = Project.create

=> #<Project id: nil, name: nil, description: nil, created_at: nil,

updated_at: nil>

rb(main):002:0> project.errors

=> #<ActiveModel::Errors:0x007fd5938197f8 @base=#<Project id: nil,

name: nil, description: nil, created_at: nil, updated_at: nil>,

@messages={:name=>["can't be blank"]}>

ActiveModel::Errors provides some nice helper methods for working with validation
errors that you can use in your views to display the errors to the user. In the app/
views/projects/new.html.erb file, directly under the form_for line, on a new line,
insert the following into app/views/projects/new.html.erb to display the error mes­
sages in the form:

<% if @project.errors.any? %>

<div id="error_explanation">

<h2><%= pluralize(@project.errors.count, "error") %>

prohibited this project from being saved:</h2>

<% @project.errors.full_messages.each do |msg| %>

<%= msg %>

<% end %>

</div>

<% end %>

mailto:pluralize(@project.errors.count
http:expect(page).to
http:spec/features/creating_projects_spec.rb

Summary 83

Error messages for the object represented by your form, the @project object, will now
be displayed by each.

When you run bundle exec rspec, you’ll now get this output:

2 examples, 0 failures

Commit and push, and then you’re done with this story!

$ git add .

$ git commit -m "Add validation to ensure names are specified when

creating projects"

$ git push

3.5 Summary
We first covered how to version-control an application, which is a critical part of the
application development cycle. Without proper version control, you’re liable to lose
valuable work or be unable to roll back to a known working stage. We used Git and
GitHub as examples, but you may use an alternative, such as SVN or Mercurial, if you
prefer. This book covers only Git, because covering everything would result in a multi­
volume series, which is difficult to transport.

 Next we covered the basic setup of a Rails application, which started with the rails
new command that initializes an application. Then we segued into setting up the Gem-
file to require certain gems for certain environments, such as RSpec in the test envi­
ronment. You learned about the beautiful Bundler gem in the process, and then you
ran the installers for these gems so your application was fully configured to use them.
For instance, after running rails g rspec:install, your application was set up to use
RSpec and so will generate RSpec specs rather than the default Test::Unit tests for your
models and controllers.

 Finally, you wrote the first story for your application, which involved generating a
controller and a model as well as getting an introduction to RESTful routing and vali­
dations. With this feature of your application covered by RSpec, you can be notified if
it’s broken by running bundle exec rspec. This command runs all the tests of the
application and lets you know if everything is working or if anything is broken. If
something is broken, the spec will fail, and then it’s up to you to fix it. Without this
automated testing, you’d have to do it all manually, and that isn’t any fun.

 Now that you’ve got a first feature under your belt, let’s get into writing the next one!

WEB DEVELOPMENT/RUBY

Rails 4 IN ACTION
Bigg ● Katz ● Klabnik ● Skinner

R
ails is a full-stack, open source web framework powered
by Ruby. Now in version 4, Rails is mature and powerful,
and to use it effectively you need more than a few Google

searches. You’ll find no substitute for the guru’s-eye-view of
design, testing, deployment, and other real-world concerns
that this book provides.

Rails 4 in Action is a hands-on guide to the subject. In this
fully revised new edition, you’ll master Rails 4 by developing
a ticket-tracking application that includes RESTful routing,
authentication and authorization, file uploads, email, and
more. Learn to design your own APIs and successfully deploy
a production-quality application. You’ll see test-driven
development and behavior-driven development in action
throughout the book, just like in a top Rails shop.

What’s Inside
● Creating your own APIs
● Using RSpec and Capybara
● Emphasis on test-fi rst development
● Fully updated for Rails 4

For readers of this book, a background in Ruby is helpful but
not required. No Rails experience is assumed.

Ryan Bigg, Yehuda Katz, Steve Klabnik, and Rebecca Skinner
are contributors to Rails and active members of the Rails
community.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/rails-4-in-action

SEE INSERT

“There’s no better source

for Rails 4. This book blows

away the competition.”
 —Damien White, Visoft, Inc.

“A gentle yet thorough

—William Wheeler

 guide to Rails 4.”
ProData Computer Services

“Very clear, with excellent

examples. A must-read

for everyone in the

Rails world.”
 —Michele Bursi, Nokia

“Well-written, intuitive,

and easy to understand.”
 —Lee Allen

SecuritySession.com

M A N N I N G $49.99 / Can $57.99 [INCLUDING eBOOK]

http:SecuritySession.com

