
Learn Ruby on Rails
A tutorial by Daniel Kehoe · 1.c16 (prerelease) · 18 November 2013

learn-rails.com

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents
1. About the Book ... 3
2. Introduction ... 4
3. Concepts.. 9
4. Get Help When You Need It................. 15
5. Plan Your Product.................................... 19
6. Manage Your Project 26
7. Accounts You May Need 28
8. Get Started.. 31
9. Create the Application............................ 39
10. The Parking Structure 47
11. Time Travel with Git 51
12. Gems .. 61
13. Configure .. 71
14. Static Pages and Routing........................ 76
15. Request and Response 79
16. Dynamic Home Page 88
17. Troubleshoot.. 98
18. Just Enough Ruby 110
19. Layout and Views 132
20. Front-End Framework 155
21. Add Pages... 176
22. Contact Form ... 181
23. Spreadsheet Connection....................... 201
24. Send Mail .. 207
25. Mailing List .. 214
26. Deploy ... 223
27. Analytics ... 235
28. Rails Challenges...................................... 242

29. Credits and Comments......................... 247

2

Chapter 1
About the Book
I hope you will agree that this is the “best book for Rails beginners.”

Over 900 people have downloaded an advance edition of this book. I’ve incorporated many
of their suggestions for improvements.

Over 600 people have contributed to the Kickstarter campaign to launch the book with
pledges ranging from $9 to $350. Launching the book would not be possible without support
from Kickstarter contributors.

The Kickstarter campaign ends on Saturday, November 30th, at 5pm US Pacific Time.The Kickstarter campaign ends on Saturday, November 30th, at 5pm US Pacific Time.

If you agree that the book is valuable, I hope you will contribute to the Kickstarter campaign.
Click here:

• Make a pledge to the Kickstarter campaignMake a pledge to the Kickstarter campaign

In addition to contributing to the Kickstarter campaign, please help get the word out:

• Write a blog post about the book
• post the link on Twitter
• post the link on Facebook
• post the link on Google+

Mentioning the book online is important.

Here’s the link to the book:

• http://learn-rails.com/learn-ruby-on-rails.htmlhttp://learn-rails.com/learn-ruby-on-rails.html

Thank you for your support.

3

http://www.kickstarter.com/projects/909377477/learn-ruby-on-rails
http://learn-rails.com/learn-ruby-on-rails.html

Chapter 2
Introduction
Welcome. This tutorial is a first step on your path to learn Ruby on Rails.

You’ll learn key concepts so you’ll have a solid foundation for continued study. You’ll build
a working web application so you’ll gain hands-on experience. Along the way, you’ll
practice the techniques used by professional Rails developers and you’ll understand why
Rails has become a popular choice for web development.

4

Is It for You?
You don’t need to be a programmer to succeed with this tutorial. You’ll get comfortable with
the Ruby programming language and the Unix command line interface as you build a Rails
application.

This tutorial is ideal if you are:

• a student
• a startup founder
• making a career change

Does this sound like you? Readers who work in social media or graphic design say this
tutorial is a good way to get introduced to programming. Others who previously built
simple websites using HTML, or used applications such as WordPress, found they could
easily progress to building websites with Rails. Programmers with experience in languages
such as PHP or Java found this tutorial to be a good way to get started with the Rails
framework.

On the other hand, if you’ve never encountered HTML, it is best to start elsewhere with an
“Introduction to Web Design” course or online tutorial.

Warnings
This is two books in one. At the core is a hands-on tutorial that will lead you through the
code needed to build a real-world web application. I thoroughly explain the code you’ll need
to write a Rails application. Before you start coding, I explain the culture and practices of the
Rails community. If you’re in a hurry to start coding, jump right now to Chapter 7, “Get
Started.” But I urge you to read the preliminary chapters first. They’ll give you the context
you need to become a skilled Rails developer. Many readers have told me the concepts at the
beginning of the book provide a grounding they haven’t found in any other tutorial.

The tutorial is designed to unfold in steps, one section leading to another. You can use the
book as a reference, skipping around without reading from beginning to end, but you’ll
actually waste time as you try to pick up the pieces you missed.

The chapters are densely packed with links to background reading. If you click every link,
you’ll be a well-informed student, but you may never finish the book! It’s up to you to
master your curiosity. Follow the links only when you want to dive deeper.

There is rich satisfaction in building something and making it run. But programming can be
frustrating and Rails isn’t easy for beginners. Before you get to the reward, you’ll encounter
setbacks. If at times you’re ready to quit, jump to the chapter titled “Rails Challenges”at the

5

end of the book. It describes many of the problems learners encounter. I’ve written it to
address your concerns when learning Rails becomes difficult and frustrating.

It’s best to work through the book from start to end, allowing enough time to read the
introductory chapters and then building the application. That means you should allow time
to read the book before you start a new job or join a developer bootcamp. Really!

What To Expect
You can read the book and complete the tutorial in one long weekend, though it will take
concentration and stamina. If you work through the book over a longer timespan, try to
work in uninterrupted blocks of two hours or more for reading and coding, as it takes time
to focus and concentrate.

When you’ve completed this tutorial, you will be ready for more advanced self-study,
including other tutorials from the RailsApps project, textbook introductions to Rails, or
workshops and developer bootcamps that provide intensive training in Ruby on Rails. Other
curriculums often skip the basics. With this tutorial you’ll have a solid grounding in key
concepts; you won’t feel overwhelmed or frustrated as you continue your studies.

This tutorial is good preparation for:

• advanced tutorials from the RailsApps Project
• textbooks such as Michael Hartl’s Ruby on Rails Tutorial
• introductory workshops from RailsBridge or Rails Girls
• intensive training with immersive code camps

We are blessed with many textbooks, workshops, and classroom programs that teach Ruby
on Rails. I believe this book is unique in covering the basics while introducing the tools and
techniques of professional Rails development.

The RailsApps Project

This book is the foundation for a series of tutorials that accompany example applications
from the RailsApps project.

Tutorials from @rails_apps take you on a guided path starting with absolute basics (this
tutorial). You’ll progress to intermediate-level tutorials and soon be using the RailsApps in-
depth guides for professional Rails developers.

It is important to feel satisfaction and accomplishment as you learn. That’s why each tutorial
introduces Rails in stages. With each tutorial you will build a real-world Rails application.
The finished product confirms your accomplishment; you’ll feel genuine satisfaction as you

6

https://tutorials.railsapps.org/
http://ruby.railstutorial.org/ruby-on-rails-tutorial-book
http://workshops.railsbridge.org/
http://railsgirls.com/
http://bootcamper.io/
http://railsapps.github.io/
http://twitter.com/rails_apps

deploy your Rails application. Hands-on learning with real Rails applications is the key to
absorbing and retaining knowledge.

The applications you’ll build in the tutorials are not classroom exercises. The primary
purpose of the RailsApps project is to provide starter applications for Rails developers.
You’ll build real applications that you can customize and adapt for your startup, at your job,
or for clients.

Hundreds of developers use the RailsApps example applications, report problems as they
arise, and propose solutions. Rails changes frequently; each application is known to work
and serves as your personal “reference implementation” so you can stay up to date.
Maintenance and development of the RailsApps applications is supported by subscriptions
to the RailsApps tutorials.

The Application
We’ll build a basic web application that can be used by a typical small business. The website
will include a home page, “about” page, contact form, and option to sign up for a mailing
list. You’ll also learn how to collect data from a form and save it to a spreadsheet on Google
Drive.

You’ll find the complete learn-rails application on GitHub. It is a working application that is
maintained by a team of experienced developers so you can always check the “reference
implementation” if you have problems.

A Note to Reviewers and Teachers
This book approaches the subject differently than most introductions to Rails. It introduces
concepts of product planning, project management, and website analytics to place
development within a larger context of product development and marketing. In introducing
Rails, rather than show the student how to use scaffolding, it introduces the model-view-
controller design pattern by creating the components manually. The tutorial recommends
test-driven development, but doesn’t show it, simply because I’ve found TDD can’t be
adequately covered in a basic introduction. Lastly, though every other Rails tutorial shows
how to use a database, this book doesn’t, because I want the book to be a short introduction
and I believe the basic principles of a web application stand out more clearly without adding
a database to the application. Though this tutorial is not a typical Rails introduction, I hope
you’ll agree that it does a good job in preparing Rails beginners for continued study, whether
it is developer bootcamp or more advanced books.

Using the Book in the Classroom

If you’ve organized a workshop, course, or code camp, and would like to assign the book as
required reading, contact me at daniel@danielkehoe.com to arrange access to the book for

7

https://tutorials.railsapps.org
http://github.com/RailsApps/learn-rails/
mailto:daniel@danielkehoe.com

your students. The book is available at no charge to students enrolled in free workshops or
classes, thanks to generous gifts from prominent members of the Rails community.

8

Chapter 3
Concepts
This chapter provides the background, or “big picture,” you will need to understand Rails.

This chapter is excerpted from an in-depth article What is Ruby on Rails? For a deeper
understanding of Rails, including background on the guiding principles of Rails, and reasons
for its popularity, read the article for a complete introduction.

Here are the key concepts you’ll need to know before you try to use Rails.

How the Web Works
We start with absolute basics, as promised.

When you “visit a website on the Internet” you use a web browser such as Safari, Chrome,
Firefox, or Internet Explorer.

Web browsers are applications (software programs) that work by reading files.

Compare a word processing program with a web browser. Both word processing programs and
web browsers read files. Microsoft Word reads files that are stored on your computer to
display documents. A web browser retrieves files from remote computers called servers to
display web pages. Knowing that everything comes from files will help you build a web
application.

A web browser uses four kinds of files to display web pages:

• HTML – structure (layout) and content (text)
• CSS – stylesheets to set visual appearance
• JavaScript – programming to alter the page
• Images

At a minimum, a web page requires an HTML file. If a web browser receives just an HTML
file, it will display text, with default styles applied by the browser.

If the page is always the same, every time it is displayed by the web browser, we say it is
static. Webmasters don’t need software such as Rails to deliver static documents; they just
create files for delivery by an ordinary web server program.

9

http://railsapps.github.io/what-is-ruby-rails.html

Static websites are ideal for particle physics papers (which was the original use of the World
Wide Web). But most sites on the web, especially those that allow a user to sign in, post
comments, or order products and services, generate web pages dynamically.

Dynamic websites often combine web pages with information from a database. A database
stores information such as a user’s name, comments, Facebook likes, advertisements, or any
other repetitive, structured data. A database query can provide a selection of data that
customizes a webpage for a particular user or changes the web page so it varies with each
visit.

Dynamic websites use a programming language such as Ruby to assemble HTML, CSS, and
JavaScript files on the fly from component files or a database. A software program written in
Ruby and organized using the Rails development framework is a Rails web application. A web
server program that runs Rails applications to generate dynamic web pages is an application
server (but usually we just call it a web server).

Software such as Rails can access a database, combining the results of a database query with
static content to be delivered to a web browser as HTML, CSS, and JavaScript files. Keep in
mind that the web browser only receives ordinary HTML, CSS, and JavaScript files; the files
themselves are assembled dynamically by the Rails application running on the server.

Even if you are not going to use a database, there are other good reasons to generate a
website using a programming language. For example, if you are creating several web pages,
it often makes sense to assemble an HTML file from smaller components. For example, you
might make a small file that will be included on every page to make a footer (Rails calls these
“partials”). Just as importantly, if you are using Rails, you can add features to your website
with code that has been developed and tested by other people so you don’t have to build
everything yourself.

The widespread practice of sharing code with other developers for free, and collaborating
with strangers to build applications or tools, is known as open source software development.
Rails is at the heart of a vibrant open source development community, which means you
leverage the work of tens of thousands of skilled developers when you build a Rails
application. When Ruby code is packaged up for others to share, the package is called a gem.
The name is apt because shared code is valuable.

Ruby is a programming language; Rails is a development framework. That means Rails is a
set of structures and conventions for building a web application using the Ruby language. Rails
is also a library or collection of gems that developers use as the core of any Rails web
application. By using Rails, you get well-tested code that implements many of the most-
needed features of a dynamic website.

With Rails, you will be using shared standard practices that make it easier to collaborate
with others and maintain your application. As an example, consider the code that is used to
access a database. Using Ruby without the Rails framework, or using another language such
as PHP, you could mix the complex programming code that accesses the database with the
code that generates HTML. With the insight of years of developers’ collective experience in
maintaining and debugging such code, Rails provides a library of code that segregates

10

http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Open-source_software

database access from the code that displays pages, enforcing separation of concerns, and
making more modular, maintainable programs.

In a nutshell, that’s how the web works, and why Rails is useful.

For a history of Rails, and an explanation of why it is popular, see the article What is Ruby
on Rails?

JavaScript and Ruby
JavaScript and Ruby are both general-purpose programming languages.

Ruby is the programming language you’ll use when creating web applications that run on
your local computer or a remote server using the Rails web application development
framework.

JavaScript is the programming language that controls every web browser. The companies
that build web browsers (Google, Apple, Microsoft, Mozilla, and others) agreed to use
JavaScript as the standard browser programming language. You might imagine an
alternative universe in which Ruby was the browser programming language; then you
would only have to learn one language for front-end and back-end programming. That’s not
the real world; plus it would be boring, as learning more than one language makes us
smarter and better programmers.

Though most of the code in Rails applications is written in Ruby, developers add JavaScript
to Rails applications to implement features such as browser-based visual effects and user
interaction.

There is another universe where JavaScript is used on servers to run web applications.
System administrators can install the Node.js code library to enable servers to run JavaScript.
Server-side JavaScript web application frameworks are available, such as Express and
Meteor, but none are as popular as Ruby on Rails.

What is Rails?
So far, I’ve defined Rails in two ways: as structures and conventions for building a web
application, and as a library or collection of code.

To really understand Rails, and succeed in building Rails applications, we need to consider
Rails from six other perspectives. Like six blind men encountering an elephant, it can be
difficult to understand Rails unless you look at it from multiple points of view.

Here are six different ways of looking at Rails, summarized from the article What is Ruby on
Rails?

11

http://en.wikipedia.org/wiki/Separation_of_concerns
http://railsapps.github.io/what-is-ruby-rails.html
http://railsapps.github.io/what-is-ruby-rails.html
http://en.wikipedia.org/wiki/Nodejs
http://expressjs.com/
http://www.meteor.com/
http://railsapps.github.io/what-is-ruby-rails.html
http://railsapps.github.io/what-is-ruby-rails.html

From the perspective of the web browserperspective of the web browser, Rails is simply a program that generates HTML,
CSS, and JavaScript files. These files are generated dynamically. You can’t see the files on the
server side but you can view these files by using the web developer tools that are built in to
every browser. Later you’ll examine these files when you learn to troubleshoot a Rails
application.

From the perspective of a programmerperspective of a programmer, Rails is a set of files organized with a specific
structure. The structure is the same for every Rails application; this commonality is what
makes it easy to collaborate with other Rails developers. We use text editors to edit these files
to make a web application.

From the perspective of a software architectperspective of a software architect, Rails is a structure of abstractions that enable
programmers to collaborate and organize their code. Thinking in abstractions means we
group things in categories and analyze relationships. Conceptual categories and
relationships can be made “real” in code. Software programs are built of “concepts made
real” that are the moving parts of a software machine. To a software architect, classes are the
basic parts of a software machine. A class can represent something in the physical world as a
collection of various attributes or properties (for example, a User with a name, password,
and email address). Or a class can describe another abstraction, such as a Number, with
attributes such as quantity, and behavior, such as “can be added and subtracted.” You’ll get
a better grasp of classes in the chapter, “Just Enough Ruby.”

To a software architect, Rails is a pre-defined set of classes that are organized into a higher
level of abstraction known as an API, or application programming interface. The Rails API is
organized to conform to certain widely known software design patterns. You’ll become
familiar with these abstractions as you build a Rails application. Later in the tutorial, we’ll
learn about the model–view–controller design pattern. As a beginner, you will see the MVC
design pattern reflected in the file structure of a Rails application.

We can look at Rails from the perspective of a gem hunterperspective of a gem hunter. Rails is popular because
developers have written and shared many software libraries (RubyGems, or “gems”) that
provide useful features for building websites. We can think of a Rails application as a
collection of gems that provide basic functionality, plus custom code that adds unique
features for a particular website. Some gems are required by every Rails application. For
example, database adaptors enable Rails to connect to databases. Other gems are used to
make development easier, for example, gems for testing that help programmers find bugs.
Still other gems add functionality to the website, such as gems for logging in users or
processing credit cards. Knowing what gems to use, and why, is an important aspect of
learning Rails. This tutorial will show you how to build a web application using some of the
most commonly used gems.

We can also look at Rails from the perspective of a time travelerperspective of a time traveler in order to understand the
importance of software version control. Specifically, we use the Git revision control system to
record a series of snapshots of your project’s filesystem. Git makes it easy to back up and
recover files; more importantly, Git lets you make exploratory changes, trying out code you
may decide to discard, without disturbing work you’ve done earlier. You can use Git with
GitHub, a popular “social coding” website, for remote backup of your projects and
community collaboration. Git can keep multiple versions (“branches”) of your local code in

12

http://api.rubyonrails.org/
http://en.wikipedia.org/wiki/Software_pattern
http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
http://en.wikipedia.org/wiki/Git_(software)
https://github.com/

sync with a remote GitHub repository, making it possible to collaborate with others on open
source or proprietary projects. Strictly speaking, Git and GitHub are not part of Rails (they
are tools that can be used on any development project). And there are several other version
control systems that are used in open source development. But a professional Rails
developer uses Git and GitHub constantly on any real-world Rails project. Rails and the
gems that go into a complex web application would not exist without Git and GitHub.

Finally, we can consider a Rails application from the perspective of a testerperspective of a tester. Software testing
is part of Rails culture; Rails is the first web development platform to make testing an
integrated part of development. Before Rails, automated testing was rarely part of web
development. A web application would be tested by users and (maybe) a QA team. If
automated tests were used, the tests were often written after the web application was largely
complete. Rails introduced the discipline of Test-Driven Development (TDD) to the wider
web development community. With TDD, tests are written before any implementation
coding. It may seem odd to write tests first, but for a skilled TDD practitioner, it brings
coherence to the programming process. First, the developer will give thought to what needs
to be accomplished and think through alternatives and edge cases. Second, the developer
will have complete test coverage for the project. With good test coverage, it is easier to
refactor, rearranging code to be more elegant or efficient. Running a test suite after
refactoring provides assurance that nothing inadvertently broke after the changes.

TDD is seen as a necessary skill of an experienced Rails developer. Because this is a tutorial
for beginners, it will not introduce you to techniques of Test-Driven Development. As you
work through more advanced tutorials, you’ll be introduced to Test-Driven Development.

Stacks
To understand Rails from the perspective of a professional Rails developer, you’ll need to
grasp the idea of a technology stack and recognize that Rails can have more than one stack.

A technology stack is a set of technologies or software libraries that are used to develop an
application or deliver web pages. “Stack” is a term that is used loosely and descriptively.
There is no organization that sets the rules about what goes into a stack. As a technologist,
your choice of stack reflects your experience, values, and personal preference, just like
religion or favorite beverage.

For example, Mark Zuckerberg developed Facebook in 2004 using the LAMP application
stack:

• Linux (operating system)
• Apache (web server)
• MySQL (database)
• PHP (programming language)

For this tutorial, your application stack will be:

13

http://en.wikipedia.org/wiki/LAMP_(software_bundle)

• Mac OS X, Linux, or Windows
• WEBrick (web server)
• SQLite (database)
• Ruby on Rails (language and framework)

Sometimes when we talk about a stack, we only care about part of a larger stack. For
example, a Rails stack includes the gems we choose to add features to a website or make
development easier. When we select the gems we’ll use for a Rails application, we’re
choosing a stack.

Sometimes the choice of components is driven by the requirements of an application. At
other times, the stack is a matter of personal preference. Just as craftsmen and aficionados
debate the merits of favorite tools and techniques in any profession, Rails developers avidly
dispute what’s the best Rails stack for development.

The company 37signals, where the creator of Rails works, uses this Rails stack:

• ERB for view templates
• MySQL for databases
• MiniTest for testing

It is not important (at this point) to know what the acronyms mean (we’ll learn later).

Another stack is more popular among Rails developers:

• Haml for view templates
• PostgreSQL for databases
• Rspec for testing

We’ll learn later what the terms mean. For now, just recognize that parts of the Rails
framework can be swapped out, just like making substitutions when you order from a menu
at a restaurant.

You can learn much about Rails by following the experts’ debates about the merits of a
favorite stack. The debates are a source of much innovation and improvement for the Rails
framework. In the end, the power of the crowd prevails; usually the best components in the
Rails stack are the most popular.

The proliferation of choices for the Rails stack can make learning difficult, particularly
because the components used by many leading Rails developers are not the components
used in many beginner tutorials. In this tutorial, we stick to solid ground where there is no
debate. In more advanced tutorials, we’ll explore stack choices and choose components that
are most often used by professional developers.

14

http://37signals.com/

Chapter 4
Get Help When You Need It
I’m often asked, “Where’s the Rails manual?” There isn’t one. No single document tells you
how to use Rails. Instead, there’s a wealth of documentation that describes various aspects of
Rails. You won’t need any other documentation to complete this tutorial but I’d like to
suggest some resources that will be helpful as you go deeper in your study of Rails.

Getting Help
First of all, what to do when you get stuck?

“Google it,” of course. But here’s a trick to keep in mind.

Google has options under “Search tools” to show only recent results from the past year. Use
it to filter out stale advice that pertains only to older versions of Rails.

Stack Overflow is as important as Google for finding answers to programming problems.
Stack Overflow answers are often included in Google search results, but you can go directly
to Stack Overflow to search for answers to your questions. Like Google, answers from Stack
Overflow are helpful if you check carefully to make sure the answers are recent. Also be sure
to compare answers to similar questions; the most popular answer is not always the correct
answer to your particular problem.

Rails Hotline is a free telephone hotline for Rails questions staffed by volunteers. You’ll need
to carefully think about and describe your problem but sometimes there’s no better help than
a live expert.

References
In addition to the resources listed here, the RailsApps project offers a list of top resources for
Ruby and Rails, including books and blogs.

If you feel overwhelmed by all the links, remember that you can use this book to build the
tutorial application without any additional resources. Right now, it’s important to know
additional help is available when you need it.

Here are suggestions for the most important additional references.

15

http://stackoverflow.com/questions/tagged/ruby-on-rails
http://www.railshotline.com/
http://railsapps.github.io/ruby-and-rails.html
http://railsapps.github.io/ruby-and-rails.html

RailsGuides

The Rails Guides are Rails’s official documentation, written for intermediate-level
developers who already have experience writing web applications. The Rails Guides are an
excellent reference if you want to check the correct syntax for Rails code. You’ll be able to use
the Rails Guides after completing this tutorial.

Cheatsheets

Tobias Pfeiffer has created a useful Rails Beginner Cheat Sheet that provides a good
overview of Rails syntax and commands.

API Documentation

The API documentation for Ruby and Rails shows every class and method. These are
extremely technical documents (the only thing more technical is reading the source code
itself). The documents offer very little help for beginners, as each class and method is
considered in isolation, but there are times when checking the API documentation is the only
way to know for certain how something works.

• Rails Documentation – official API docs
• Rails Searchable API Doc – alternative interface for the API docs
• apidock.com/rails – Rails API docs with usage notes
• apidock.com/ruby – Ruby API docs with usage notes

Staying Up-to-Date
Rails changes frequently and its community is very active. Changes to Rails, expert blog
articles, and new gems can impact your projects, even if you don’t work full-time as a Rails
developer. Consequently, I urge you to stay up-to-date with news from the community.

The best source of news is Peter Cooper’s Ruby Weekly email newsletter. It arrives each
Thursday and it is free. For more frequent news, check Peter Cooper’s RubyFlow site which
lists new blog posts from Rails developers each day.

If you like podcasts, check out Ruby Rogues and Envy Labs’s Ruby5.

Meetups, Hack Nights, and Workshops
I’d like to urge you to find ways you can work with others who are learning Rails. Peer
support is really important when you face a challenge and want to overcome obstacles.

16

http://guides.rubyonrails.org/
http://pragtob.github.io/rails-beginner-cheatsheet/index.html
http://api.rubyonrails.org/
http://railsapi.com/
http://apidock.com/rails
http://apidock.com/ruby
http://rubyweekly.com/
http://www.rubyflow.com/
http://rubyrogues.com/
http://ruby5.envylabs.com/

Most large urban areas have meetups or user group meetings for Rails developers. Try
Meetup.com or google “ruby rails (my city)”. The community of Rails developers is friendly
and eager to help beginners. If you are near a Rails meetup, it is really worthwhile to connect
to other developers for help and support. You may find a group that meets weekly for
beginners who study together.

Local user groups often sponsor hack nights or hackathons which can be evening or
weekend collaborative coding sessions. You don’t have to be an expert. Beginners are
welcome. You can bring your own project which can be as simple as completing a tutorial.
You will likely find a study partner at your level or a mentor to help you learn.

If you are a woman learning Rails, look for one of the free workshops from RailsBridge or
Rails Girls. These are not exclusively for women; everyone considered a “minority” in the
tech professions is encouraged to participate; and men are included when invited by a
woman colleague or friend.

Pair Programming
Learning to code is challenging, especially if you do it alone. Make it social and you’ll learn
faster and have more fun.

There’s a popular trend in the workplace for programmers to work side-by-side on the same
code, sharing a keyboard and screen. It’s effective, both to increase productivity and to share
knowledge, and many coders love it. When programmers are not in the same office, they
share a screen remotely and communicate with video chat.

Look for opportunities to pair program. It’s the best way to learn to code, even if your
pairing partner is only another beginner. Learn more about pair programming on the site
pairprogramwith.me and find a pairing partner at rubypair.com or letspair.net.

Remote pair programming requires tools for screen sharing and video chat. Pairing sessions
often use:

• Google+ Hangouts
• Screenhero
• Floobits
• Cloud9 IDE
• Nitrous.io

More tools are emerging as remote pair programming becomes popular.

17

http://www.meetup.com/
http://en.wikipedia.org/wiki/Hackathon
http://workshops.railsbridge.org/
http://railsgirls.com/
http://www.pairprogramwith.me/
http://rubypair.com/
http://www.letspair.net/
http://www.google.com/+/learnmore/hangouts/
http://screenhero.com/
https://floobits.com/
https://c9.io/
https://www.nitrous.io/

Pairing With a Mentor
By far, the best way to learn is to have a mentor at your side as you undertake a project. That
is an opportunity that is seldom available, unless you’ve been hired as a junior developer.

With the emergence of remote pairing, there are new possibilities for finding mentors to help
you learn. The AirPair site connects developers for real-time help using video chat and
screen sharing applications. Airpair is a matchmaking service and marketplace. Experts set
their own rate and the site matches you according to your budget. Expect to pay market rates
for consulting ranging from USD $40 per hour to $150 per hour or more. This is expensive
for a student, obviously, but if you are learning on the job or building an application for your
own business, connecting with an Airpair mentor might be a godsend.

18

http://www.airpair.com/

Chapter 5
Plan Your Product
Tutorials from other authors focus only on coding. But Rails developers do more than code.
Software development is a process that begins with planning and ends with analysis and
review. Coding, testing, and deployment is at the core but you’ll need to learn about the
entire process to succeed professionally. That’s why we look at product planning and project
management.

For this beginning tutorial, we’ll introduce concepts about product planning and project
management that you will encounter as a Rails developer. If you are interested in diving
deeper, see the article Rails and Product Planning.

Product Owner
On your project, who is the product owner?

The product owner is the advocate for the customer, making sure that the team creates value
for the users.

If you are a solo operator, you are the one who will decide what features and functionality
will be included in your application. But if you’re part of a team, either in a startup, as a
consultant, or in a corporate setting, it may not be clear who has responsibility for looking at
the application from the point of view of the application user. Someone must decide which
features and functionality are essential and which must be left out. We call this managing
scope and combating feature creep.

It’s important to assign a product owner. Without a product owner in charge, tasks remain
vague and developers have difficulty making progress.

In large organizations, a product owner may be a product manager or a project manager. A
product owner usually is not a management executive (though there will likely be an
executive sponsor). Everyone on the team — including management, developers, and
stakeholders — should agree to designate a product owner and give that person authority to
define features and requirements.

User Stories
A product owner’s principal tool for product planning is the user story.

19

http://railsapps.github.io/rails-project-management.html
http://en.wikipedia.org/wiki/Product_management
http://en.wikipedia.org/wiki/Project_manager
http://en.wikipedia.org/wiki/Executive_sponsor

In the past, when software engineering primarily served government or large corporations,
product planning started with requirements gathering defined as use cases, and culminated in a
requirements specification. User stories are a faster, more flexible approach to product planning
that originated with an approach called Agile software development.

User stories are a way to discuss and describe the requirements for a software application.
The process of writing user stories helps a product owner identify all the features that are
needed for an application. Breaking down the application’s functionality into discrete user
stories helps organize the work and track progress toward completion.

User stories are often expressed in the following format:

As a <role>
I want <goal>
In order to <benefit>

Here is an example:

Join Mailing List
As a visitor to the website
I want to join a mailing list
In order to receive news and announcements

A typical application has dozens of user stories, from basic sign-in requirements to the
particular functionality that makes the application unique.

You don’t need special software to write user stories. Just use index cards or a Word
document. In the next chapter, we’ll see how you can enter user stories as tasks in a to-do
list.

Here’s a screenshot from Lowdown, a web application that developers use for organizing
user stories.

Just like Rails provides a structure for building a web application, user stories provide a
structure for organizing your product plan.

20

http://en.wikipedia.org/wiki/Requirements_gathering
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/User_story
http://lowdownapp.com/

Wireframes and Mockups
Often, before writing user stories, a product owner will make rough sketches of various web
pages. Sketching is a phase where you try out ideas to clarify your vision for the application.
Sketching can lead to a wireframe or a mockup. These terms are often used interchangeably
but there are differences in meaning.

A wireframe is a drawing showing all functional elements of a web page. It should not depict
a proposed graphic design for a website, rather it should be a diagram of a web page,
without color or graphics.

A mockup adds graphic design to a wireframe; including branding devices, color, and
placeholder content. A mockup gives an impression of the website’s “personality” as well as
proposed functionality.

One of the most popular tools for creating wireframes is Balsamiq Mockups (despite the
name, it produces wireframes, not mockups). There are dozens of others listed in the article
Rails and Product Planning.

As a product owner, writing user stories or sketching wireframes will help you refine
product requirements. Some people like a visual approach with wireframes; others prefer
words and narrative. Either approach will work; both are good.

Graphic Design
Very few people have skills as both a visual designer and a programmer. The tools are
different; graphic designers typically use Adobe Photoshop, though web-savvy designers
often create designs directly in HTML and CSS, while developers write code.

If you’re lucky, you will work with a skilled graphic designer as you build your web
application. If you are very lucky, you may work with someone who is a user experience (UX)
designer or interaction designer (IxD). Interaction design is a demanding, sophisticated
discipline that requires the mindset of an anthropologist and the eye of a visual artist to find
not just the most pleasing, but the most effective visual design for an application user
interface. You can find interaction designers discussing their concerns on the IxDA website,
including the differences between interaction design and UX design.

If you’re working with a graphic designer you might collaborate on a moodboard or a design
brief to define the look and feel of your application. If the designer works in Photoshop,
you’ll face the challenge of converting design layouts from Photoshop to HTML and CSS.
There are service firms that do this for a fee but obviously it’s easier to work with a designer
who can implement a layout directly in HTML and CSS.

Rails can be particularly challenging when it comes to integrating graphic design with code.
Rails uses a hybrid of HTML markup mixed with Ruby programming code in its view files

21

http://en.wikipedia.org/wiki/Website_wireframe
http://balsamiq.com/products/mockups/
http://railsapps.github.io/rails-product-planning.html
http://www.ixda.org/discussion
http://www.ixda.org/node/19039

(depending on the stack you’ve selected, the view files can use ERB, Haml, or other syntaxes
for mixing HTML and Ruby). Few designers are comfortable with Ruby code mixed with
HTML so you may end up doing integration yourself.

If you don’t have a skilled graphic designer available to help, you can use Twitter Bootstrap
or other front-end frameworks such as Zurb Foundation to quickly add an attractive design
to your application.

You can use DivShot, a drag-and-drop interface builder that uses Twitter Bootstrap for
layout and exports HTML and CSS code ready to integrate with your Rails application.
DivShot was built by an experienced Rails developer; Bootstrap Designer, Bootply, and
Jetstrap are similar tools.

Software Development Process
Product planning is the initial phase of a larger software development process. You can
approach this casually, and start coding with curiosity and ambition, finding your own best
way to the end product, by trial and error. Most hobbyist and student developers need no
other approach.

When money or reputation is at stake, casual approaches to software development are risky.
Compared to other forms of engineering, software development is peculiarly prone to
failure. As recently as 2003, IBM stated, “Most software projects fail. In fact, the Standish
group reports that over 80% of projects are unsuccessful either because they are over budget,
late, missing function, or a combination. Moreover, 30% of software projects are so poorly
executed that they are canceled before completion.”

Professional software developers, being intelligent and reflexive, and driven by a desire to
become more efficient, or wanting to avoid the wrath of bosses and clients, frequently look
for ways to reduce risk and improve the software development process. In recent years
they’ve succeeded in improving the success rate of software engineering, largely due to the
adoption of software development methodologies that improve the business process of producing
software.

If you’re a hobbyist or casual programmer, you don’t need to learn about software
development methodologies.

If you are going to be held accountable for the success or failure of a project, you should
learn more about software development methodologies.

If you’re going to be interviewing for a job as a programmer, it pays to recognize some of the
names of software development methodologies and ask whether your employer has adopted
a particular approach, especially if you’d like to work for a company that prides itself on
being well-organized and supportive of staff development. Hiring managers may say,
“we’ve synthesized several methodologies,” which may mean they don’t have a good
answer for the question, or it may mean they are prepared to thoughtfully discuss the merits

22

http://twitter.github.io/bootstrap/
http://foundation.zurb.com/
http://www.divshot.com/
http://bootstrapdesigner.com/
http://bootply.com/
https://jetstrap.com/
http://www.ibm.com/developerworks/websphere/library/techarticles/0306_perks/perks2.html
http://en.wikipedia.org/wiki/Business_process

of various approaches to software development. Managers who can discuss software
development methodologies are more likely to be concerned about the welfare of their team.

Here are some software development methodologies you may hear about, with some notable
characteristics:

• waterfall process – an old and disparaged approach
• Agile software development – an iterative and incremental approach
• Scrum – known for “sprints” and daily standup meetings
• Extreme Programming – pair programming and test-driven development

As you mature as a software developer, take time to think about the process of building
software and learn more about software development methodologies.

Behavior-Driven Development
There is one prominent software development methodology that is important for product
planning. It is called Behavior-Driven Development (BDD), or sometimes, Behavior-Driven
Design.

BDD takes user stories and turns them into detailed scenarios that are accompanied by tests.

Here’s a screenshot from the Lowdown web application that shows how a user story can be
extended from a “feature” to include detailed “scenarios.”

23

http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Extreme_programming
http://lowdownapp.com/

Rails developers turn these scenarios into tests and use a software tool named Cucumber to
run automated test suites.

With automated tests, a product owner can determine if developers have succeeded in
implementing the required features. This process is called acceptance testing. Automated tests
also make it easy for developers to determine if the application still works as they add
features, fix bugs, or reorganize code. This process is called regression testing.

On a small project like our tutorial application, you won’t use BDD or Cucumber. It’s easy
enough to manually test the features before you deploy it.

For an introductory book, BDD is an advanced topic. But on a project where money and
reputation is at stake, BDD can be very important. Every time an application is deployed,
there’s a chance that something could be broken. Software development is plagued with “fix
one thing, accidentally break another” as code is refactored or improved. Manual testing
can’t be expected to reveal every bug. That’s why automated testing, providing coverage of

24

http://cukes.info/

every significant user-facing feature, is the only way to know if you’ve deployed without
known bugs.

25

Chapter 6
Manage Your Project
How do you know you’re making progress? Are you taking care of everything that needs to
be done? These questions are at the center of project management. Whether you are working
alone or as part of a team, you need to define your tasks and track progress toward your
goal.

The previous chapter on product planning showed how user stories can be used to break
down an application into discrete features. User stories can be the basis for a list of tasks.

To-Do List
You can track your tasks with a simple to-do list. Some entrepreneurs like the discipline of
the GTD system (Getting Things Done) for personal productivity and time management. Our
article on Rails and Project Management offers a list of popular to-do list applications, either
for personal task management or team-oriented task management.

Kanban
Kanban is a method of managing projects that has been adapted from lean manufacturing for
use in software development. In Japanese, “Kan” means visual, and “ban” means card or
board.

Imagine putting a big whiteboard on your wall and creating columns for a series of to-do
lists. The columns, called swimlanes, are labelled: Backlog, Ready, Coding, Testing, Done.
Each swimlane contains index cards that describe a user story or other task. To plan your
work and track progress, you’ll move the index cards across the board from column to
column. To stay focused and avoid becoming overwhelmed, you’ll only pick the most
important user stories or tasks from the backlog column and you’ll limit the number of items
in each column to what can be realistically accomplished in the time available. That’s the
essence of kanban as it is used for software development.

See the article on Rails and Project Management for a list of kanban web applications. Trello
is particularly popular for task management.

26

http://en.wikipedia.org/wiki/Getting_Things_Done
http://railsapps.github.io/rails-project-management.html
http://en.wikipedia.org/wiki/Kanban_(development)
http://en.wikipedia.org/wiki/Lean_manufacturing
http://en.wikipedia.org/wiki/Swim_lane
http://railsapps.github.io/rails-project-management.html
https://trello.com/

Agile Methodologies
For a solo project or a small team, you’ll do fine with a simple to-do list or (even better) a
kanban web application for managing your software development process.

If you’ve got enough people to need to hire a project manager, you should look at project
management software that supports teams using Agile software development
methodologies. Pivotal Tracker is the best known tool but there are many other agile tools.

Learn more about Agile if you’re going to hire developers for a startup or if you are going to
work for an established company. In most successful companies, Agile processes have
replaced the much-maligned waterfall process that was once the norm for software
development.

Our article on Rails and Project Management goes into more detail.

27

http://en.wikipedia.org/wiki/Agile_software_development
http://www.pivotaltracker.com/
http://agilescout.com/best-agile-scrum-tools/
http://en.wikipedia.org/wiki/Waterfall_model
http://railsapps.github.io/rails-project-management.html

Chapter 7
Accounts You May Need
This tutorial will show you how to save your work using GitHub. You can sign up for a
GitHub account for free.

We’ll also send email from the application, and save data to Google Drive, which will require
a Gmail account. A Gmail account is free.

We’ll create a form that allows website visitors to “opt-in” to a mailing list. You’ll need a
MailChimp account, which is free.

Finally, we’ll deploy the tutorial application to Heroku which provides Rails application
hosting. It costs nothing to set up a Heroku account and deploy as many applications as you
want.

GitHub
Rails developers use GitHub for collaboration and remote backup of projects.

For this tutorial, I suggest you get a free personal GitHub account if you don’t already have
one. As a developer, your GitHub account establishes your reputation in the open source
community. If you’re seeking a job as a developer, employers will look at your GitHub
account. When you work with other developers, they may check to see what you’ve worked
on recently. Don’t be reluctant to set up a GitHub account, even if you’re a beginner. It
shows you are serious about learning Rails.

You’ll be asked to provide a username. This can be a nickname or short version of your real
name (for example, your Twitter username).

You’ll be asked to provide an email address. It’s very important that you use the same email
address for your GitHub account that you use to configure Git locally (there will be more
about configuring Git later). If you create a Heroku account to deploy and host your Rails
applications, you should use the same email address.

After you create your GitHub account, log in and look for the button “Edit Your Profile.”
Take a few minutes to add some public information to your account. It is really important to
provide your real name and a public email address. Displaying your real name on your
GitHub account makes it easy for people to associate you with your work when they meet
you in real life, for example at a meetup, a hackathon, or a conference. Providing a public
email address makes it possible for other developers to reach you if you ask questions or
submit issues. If you can, provide a website address (even just your Twitter or Facebook

28

https://github.com/
https://accounts.google.com/SignUp?service=mail
http://mailchimp.com/
https://www.heroku.com/
https://github.com/
https://github.com/signup/free

page). In general, you won’t be exposed to stalkers or spammers (except some recruiters) if
you are open about yourself on GitHub.

Later I’ll show you how to set up and use Git and GitHub.

Gmail
The tutorial shows how the application can connect to a Gmail account to send email. We use
Gmail as our example because many people already have a Gmail account. We will use your
Gmail username and password to save data to Google Drive. You can get a free Gmail
account if you don’t already have one.

Some Google accounts require 2-step verification, which sends a unique code to your mobile
phone each time you log in from an unfamiliar device. If your Google account requires two-
factor authentication, you have three choices:

• set up an application-specific password
• turn off 2-step verification
• create a new Gmail account for use with this tutorial

Other services, such as Mandrill, can be used to send email from the application. Or you can
connect directly to an SMTP mail server to send email. The tutorial won’t show the details
but I’ll provide links for more information if you don’t want to use Gmail.

MailChimp
This tutorial shows how website visitors can sign up to receive a newsletter provided by a
MailChimp mailing list. MailChimp allows you to send up to 12,000 emails/month to a list
of 2000 or fewer subscribers for free. There is no cost to set up an account.

After you have set up a MailChimp account, create a new mailing list where you can collect
email addresses of visitors who have asked to subscribe to a newsletter. The MailChimp
“Lists” page has a button for “Create List.” The list name and other details are up to you.

If you get frustrated with the complex and confusing MailChimp interface, try to remember
that the friendly MailChimp monkey is laughing with you, not at you.

Heroku
We’ll use Heroku to host the tutorial application so anyone can reach it.

29

https://accounts.google.com/SignUp?service=mail
https://support.google.com/mail/answer/1173270?hl=en
http://mandrill.com/
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://mailchimp.com/
https://www.heroku.com/

To deploy an app to Heroku, you must have a Heroku account. Visit
https://id.heroku.com/signup/devcenter to set up an account.

Be sure to use the same email address you used to register for GitHub. It’s very important
that you use the same email address for GitHub and Heroku accounts.

30

https://id.heroku.com/signup/devcenter

Chapter 8
Get Started
Before You Start
If you follow this tutorial closely, you’ll have a working application that closely matches the
example app in the learn-rails GitHub repository. If your application doesn’t work after
following the tutorial, compare the code to the example app in the GitHub repository, which
is known to work.

If you find problems or wish to suggest improvements, it’s best to create a GitHub issue. Feel
free to email me directly at daniel@danielkehoe.com, but opening a GitHub issue will get
you help from the larger community.

Your Computer

Mac OS X, Linux, or Windows

You can develop web applications with Rails on computers running Mac OS X, Linux, or
Microsoft Windows operating systems. Most Rails developers use Mac OS X or Linux
because the underlying Unix operating system has long been the basis for open source
programming.

Installing Rails on Windows is frustrating and painful. Readers and workshop students often
tell me that they’ve given up on learning Rails because installation of Ruby on Windows is
difficult and introduces bugs or creates configuration issues. Even when you succeed in
getting Rails to run on Windows, you will encounter gems you cannot install. For these
reasons, I urge you to use Nitrous.io, a browser-based development environment, on your
Windows laptop.

Hosted Computing

Nitrous.io provides a hosted development environment. That means you set up an account
and then access a remote computer from your web browser. The Nitrous.io service is free for
ordinary use. There is no cost to set up an account. You’ll only be charged if you add extra
memory or computing power (which you don’t need for ordinary Rails development).

The Nitrous.io service gives you everything you need for Rails development, including a
Unix shell with Ruby pre-installed, plus a browser-based file manager and text editor. Any

31

http://github.com/RailsApps/learn-rails/
http://github.com/RailsApps/learn-rails/issues
mailto:daniel@danielkehoe.com
https://www.nitrous.io/
https://www.nitrous.io/

device that runs a web browser will give you access to Nitrous.io, including a tablet or
smartphone, though you need a broadband connection, a sizeable screen, and a keyboard to
be productive. If you are using Windows, or have difficulty installing Ruby on your
computer, try using Nitrous.io.

Text Editor
You’ll need a text editor for writing code and editing files. I recommend Sublime Text 2 for
Mac OS X, Windows, or Linux.

Word processing programs, such as Microsoft Word, will not work because they introduce
hidden formatting codes into text files.

Programmers’ text editors, such as Sublime Text, provide syntax highlighting, making
software code more readable and programmers more productive. Simple text editors such as
TextEdit for Mac OS X, or WordPad for Microsoft Windows, provide no syntax highlighting
and should be avoided.

If you don’t have a text editor, install Sublime Text now. You can find tutorials for Sublime
Text on YouTube. It is not practical to explain how to set up and use a text editor in this short
book, so use the instructions you’ll find elsewhere.

You Don’t Need an IDE

Programmers who come to Rails from other platforms, such as Java or C++, often ask for
recommendations for an IDE, or an integrated development environment. These are software
applications that combine a text editor with built-in tools such as a debugger. Some Rails
developers use JetBrains RubyMine, Aptana Studio, or Komodo but most Rails developers
use only a text editor and terminal application. You don’t need an IDE unless you’re in the
habit of using one. For a beginner, they are cumbersome and add little additional value.

Terminal
You’ll need an application called a console or terminal emulator to run programs from your
computer’s command line. We call the command line the shell because it is the outer layer of
the operating system’s internal mechanisms (which we call the kernel).

On Mac OS X, you can use the Terminal application. Experienced developers often upgrade
to the more powerful iTerm2 application.

The Command Line Crash Course explains how to launch a terminal application.

Look for the Terminal in the following places:

32

http://en.wikipedia.org/wiki/Text_editor
http://www.sublimetext.com/
http://en.wikipedia.org/wiki/Integrated_development_environment
http://www.jetbrains.com/ruby/
http://www.aptana.org/products/studio3
http://www.activestate.com/komodo-ide
http://en.wikipedia.org/wiki/Terminal.app
http://www.iterm2.com/#/section/home
http://cli.learncodethehardway.org/book/
http://cli.learncodethehardway.org/book/ex1.html

• Mac OS X: Applications > Utilities > Terminal
• Linux: Applications > Accessories > Terminal
• Windows: Taskbar Start Button > Command Prompt

If you haven’t used the computer’s command line interface (CLI) before, spend some time
with The Command Line Crash Course to become comfortable with Unix shell commands.

Launch your terminal application now.

Try out the terminal application by entering a shell command.

$ whoami

Don’t type the $ character. The $ character is a cue that you should enter a shell command.
This is a longtime convention that indicates you should enter a command in the terminal
application or console.

The Unix shell command whoami returns your username.

Don’t type the $ prompt.

You might see:

command not found: $

which indicates you typed the $ character by mistake.

If you are new to programming, using a text editor and the shell will seem primitive
compared to the complexity and sophistication of Microsoft Word or Photoshop. Software
developers edit files with simple text editors and run programs in the shell. That’s all we do.
We have to remember the commands we need (or consult a cheatsheet) because there are no
graphical menus or toolbars. Yet with nothing more than a text editor and the command line
interface, programmers have created everything that you use on your computer.

Getting Fancy With the Prompt

If you watch experienced developers at work, you may see their consoles are colorful, with
lots of information shown in the prompt. You’ll see Git status, current directory, and RVM
gemset or Ruby version. Many developers replace the standard Bash shell with the Z shell
and Oh-my-zsh. You don’t have to install the Z shell to get a fancy prompt; the Bash-it utility
is easy to install and gives you much of the functionality. A fancy prompt is helpful but
requires some Unix skills to install. Don’t worry about getting fancy now; you can try it
down the road.

33

http://cli.learncodethehardway.org/book/
http://en.wikipedia.org/wiki/Bash_(Unix_shell)
http://en.wikipedia.org/wiki/Z_shell
https://github.com/robbyrussell/oh-my-zsh
https://github.com/revans/bash-it

Installing Ruby
Your first challenge in learning Rails is installing Ruby on your computer.

Frankly, this can be the most difficult step in learning Rails because no tutorial can sort out
the specific configuration of your computer. Get over this hump and everything else
becomes easy.

The focus of this book is learning Rails, not installing Ruby, so to keep the book short and
readable, I’m going to give you links to articles that will help you install Ruby.

Mac OS X

See this article for installation instructions:

Install Ruby on Rails – Mac OS XInstall Ruby on Rails – Mac OS X

Ubuntu Linux

See this article for installation instructions:

Install Ruby on Rails – UbuntuInstall Ruby on Rails – Ubuntu

Hosted Computing

Nitrous.io is a browser-based development environment. Nitrous.io is free for small projects.
If you have a fast broadband connection to the Internet, this is your best choice for
developing Rails on Windows. And it is a good option if you have any trouble installing
Ruby on Mac or Linux because the Nitrous.io hosted environment provides everything you
need, including a Unix shell with Ruby and RVM pre-installed, plus a browser-based file
manager and text editor. Using a hosted development environment is unconventional but
leading developers do so and it may be the wave of the future.

See this article for installation instructions:

Install Ruby on Rails – Nitrous.ioInstall Ruby on Rails – Nitrous.io

Windows

Here are your choices for Windows:

• Use the Nitrous.io hosted development environment
• Install the Railsbridge Virtual Machine or rails-dev-box

34

http://railsapps.github.io/installrubyonrails-mac.html
http://railsapps.github.io/installrubyonrails-ubuntu.html
https://www.nitrous.io/
http://railsapps.github.io/rubyonrails-nitrous-io.html
http://railsapps.github.io/rubyonrails-nitrous-io.html
https://github.com/railsbridge-boston/railsbridge-virtual-machine
https://github.com/rails/rails-dev-box

• Use RailsInstaller for Windows as documented in Installing Rails on Windows

Nitrous.io is ideal if you have a fast Internet connection. If not, download the Railsbridge
Virtual Machine or rails-dev-box to create a virtual Linux computer with Ruby 2.0 and Rails
4.0 using Vagrant. The last option, RailsInstaller, is not recommended because it does not
provide an up-to-date version of Ruby or Rails. Also, RVM does not run on Windows. If you
use RailsInstaller, you can still follow the tutorial; just skip the instructions that refer to RVM
(though it is better to use Nitrous.io or a Vagrant virtual machine).

Understanding Version Numbers
Rails follows a convention named semantic versioning:

• The first number denotes a major version (Rails 4)
• The second number denotes a minor release (Rails 4.0)
• The third number denotes a patch level (Rails 4.0.1)

A major release includes new features, including changes which break backward
compatibility. That means switching from Rails 3.2 to Rails 4.0 will require a significant
rewrite of a Rails 3.2 application.

A minor release introduces new features but doesn’t require a rewrite of the application.

A patch release fixes bugs but doesn’t introduce significant features.

Ruby 2.0 and Rails 4.0
Check that appropriate versions of Ruby and Rails are installed in your development
environment. You’ll need:

• The Ruby language (version 2.0.0 or newer)
• The Rails gem (version 4.0 or newer)

Open your terminal application and enter:

$ ruby -v

You might see:

ruby ruby-2.0.0-p247 (...)

35

http://railsinstaller.org/
http://installfest.railsbridge.org/installfest/windows
http://www.vagrantup.com/

You’ve got Ruby version 2.0.0, patch level “p247” (Ruby versions add an extra patch level to
semantic versioning). Newer minor releases or patch levels are good and this tutorial will
remain compatible.

Try:

$ rails -v

You might see:

Rails 4.0.1

Versions such as 4.0.0.beta1 or 4.0.0.rc2 are beta versions or “release candidates.”

If you find you’ve installed Rails 4.0.2 or newer (a patch release), that’s good. It means minor
bugs have been fixed since this was written. If you find you have Rails 4.1.0 or newer (a
minor release), check for a newer version of this tutorial. Minor features may have changed.

You can check for the current version of Rails here.

If you are running older versions of Ruby or Rails on your computer, you must install newer
versions to avoid unexpected problems.

RVM
I promised that this book would introduce you to the practices of professional Rails
developers. One of the most important utilities you’ll need in setting up a real-world Rails
development environment is RVM, the Ruby Version Manager.

RVM lets you switch between different versions of Ruby. Right now, that might not seem
important, but as soon as a new version of Ruby is released, you’ll need to upgrade, and it is
best to be ready by installing the current version of Ruby with RVM, so you can easily add a
new version of Ruby later, and still switch back to older versions as needed.

RVM also helps you manage your collections of gems, by letting you create multiple gemsets.
Each gemset is the collection of gems you need for a specific project. Rails changes
frequently; with RVM, you can install a specific version of Rails in a project gemset, along
with all the gems you need for the project. When a new version of Rails is released, you can
create a new gemset with the new Rails version when you start a new project. Your old
project will still have the version of Rails it needs in its own gemset.

If you’ve followed the instructions in the article Installing Rails and installed RVM, you’ll be
ready to handle multiple versions of Ruby, and multiple versions of Rails. That’s as it should

36

http://rubygems.org/gems/rails
https://rvm.io/
http://railsapps.github.io/installing-rails.html

be. Most professional Rails developers have more than one version of Ruby or Rails, and
RVM makes it easy to switch.

RVM will show you a list of available Ruby versions:

$ rvm list

You can see a list of available gemsets associated with the current Ruby version:

$ rvm gemset list

You will see an arrow that shows which gemset is active.

You will see a global gemset as well as any others you have created, such as a gemset for
Rails4.0.1 .

Here’s how to switch between gemsets:

$ rvm gemset use global

And switch back to another:

$ rvm gemset use default

After you’ve worked on a few Rails applications, you’ll see several project-specific gemsets if
you are using RVM in the way most developers do.

RVM is not the only utility you can use to manage multiple Ruby versions. Some developers
like Chruby, rbenv, or others. Don’t be worried if you hear debates about RVM versus
Chruby or rbenv; developers love to compare the merits of their tools. RVM is popular, well-
supported, and an excellent utility to help a developer install Ruby and manage gemsets;
that’s why we use it.

Project-Specific Gemset
For our learn-rails application, we’ll create a project-specific gemset using RVM. We’ll give
the gemset the same name as our application.

By creating a gemset for our tutorial application, we’ll isolate the current version of Rails and
the gems we need for this project. Whether you use RVM or another Ruby version manager,
this will introduce you to the idea of “sandboxing” (isolating) your development
environment so you can avoid conflicts among projects.

37

https://github.com/postmodern/chruby
https://github.com/sstephenson/rbenv
https://github.com/wayneeseguin/rvm/blob/master/help/alt.md

After we create the project-specific gemset, we’ll install the Rails gem into the gemset. Enter
these commands:

$ rvm use ruby-2.0.0@learn-rails --create
$ gem install rails

The newest Rails version will be installed.

It’s absolutely necessary to create a gemset and install Rails so we can move on to creating
the application in the next chapter. If you have trouble at this point, refer to the article
Installing Rails or the RVM website. Linux users may need to check instructions for
Integrating RVM.

Let’s make sure Rails is ready to run. Open a terminal and type:

$ rails -v

You should see the message “Rails 4.0.1” (or something similar).

38

http://railsapps.github.io/installing-rails.html
https://rvm.io/
https://rvm.io/integration/gnome-terminal

Chapter 9
Create the Application
In previous chapters you’ve gained a conceptual background. In this chapter you’ll begin
building a Rails application.

You need to get the code from this tutorial into your computer. You could just read and
imagine, but really, building a working application is the only way to learn.

The most obvious way is to copy and paste from this tutorial into your text editor, assuming
you are reading this on your computer (not a tablet or printed pages). It’s a bit tedious and
error-prone but you’ll have a good opportunity to examine the code closely.

Some students like to type in the code, character by character. If you have patience, it’s a
worthwhile approach because you’ll become more familiar with the code than by copying
and pasting.

Don’t feel shy about copying code; it’s how you will learn. Working programmers spend a
lot of time copying code from others. At first, you will copy a lot of code. As you gain
proficiency, you will copy code and adapt it, more extensively as you gain confidence and
skill. Only when you’ve been working fulltime as a coder for months or years will you find
yourself writing code from scratch; even then, when you encounter new problems, you will
still look for code examples to copy and adapt.

A Note About the PDF Version

This book is available in several formats, including online and PDF versions. If you are
reading the PDF version on Mac OS X using the Preview application, you may find that line
breaks are lost when you copy the code examples. Copying without line breaks will cause
code errors. If you use Adobe Acrobat you’ll be able to copy the line breaks (though
indenting is lost).

If you have access to the online edition of the book you’ll be able to copy and paste the code
without any problem.

Starter Applications
Rails provides a framework; that is, a software library that provides utilities, conventions, and
organizing principles to allow us to build complex web applications. Without a framework,
we’d have to code everything from scratch. Rails gives us the basics we need for many
websites.

39

http://get.adobe.com/reader/
https://tutorials.railsapps.org/learn-ruby-on-rails

Still, the framework doesn’t give us all the features we need for many common types of
websites. For example, we might want users to register for an account and log in to access
the website (“user management and authentication”). We might want to restrict portions of
our website to just administrators (“authorization”). We also might want to add gems that
enhance Rails to aid development (gems for testing, for example) or improve the look and
feel of our application (Twitter Bootstrap). Developers often mix and match components to
make a customized Rails stack.

Developers often use a starter application instead of assembling an application from scratch.
You might call this a “template” but we use that term to refer to the view files that combine
HTML with Ruby code to generate web pages. Most experienced developers have one or
more starter applications that save time when beginning a new project. The RailsApps
project was launched to provide open source starter applications so developers could
collaborate on their starter applications and avoid duplicated effort. After you gain some
skill with this tutorial, you might use the RailsApps starter apps to instantly generate a Rails
application with features like authentication, authorization, and an attractive design.

For now, we’ll begin with the Rails default starter application.

Your Workspace
Take a moment to think about where on your computer you’ll do your work and store your
files. You may have a documents/documents/ folder. You could make a similar folder named projects/projects/
or code/code/ or workspace/workspace/ for your programming projects. Use the Unix mkdir command to
create a folder or create it with your file browser.

In this tutorial, the terms “folders” and “directories” mean the same thing.

Use the Unix cd command to change directories.

When you enter the Unix command cd ~ , you’ll move to your home (or “user”) directory.
The squiggly ~ tilde character is a Unix shortcut that indicates your home folder.

The Unix pwd command shows the “present working directory,” where you are.

If you haven’t done so already, make a folder to contain your programming projects:

$ cd ~
$ pwd
/Users/danielkehoe
$ mkdir workspace
$ cd workspace

If you are using Nitrous.io, you already have a workspace/workspace/ folder.

Let’s explore the rails new command and get started building the tutorial application.

40

http://railsapps.github.io/
http://railsapps.github.io/

Use Your RVM Gemset
We already created a project-specific gemset using RVM. Make sure it’s ready to use:

$ rvm use ruby-2.0.0@learn-rails
$ rvm gemset list

You should see an arrow pointing to the learn-rails gemset. If not, go back to the previous
“Get Started” chapter.

“Rails New” Help
It’s important to know that help messages are available for Rails commands.

Rails provides the rails new command to create a basic Rails application.

Let’s see the help for the rails new command. Type:

$ rails new --help

You’ll see a help message that shows a list of command options and an explanation of what
the “rails new” command will do. The help message may seem a bit cryptic but it is worth
reading to see what options are available. We won’t use any of the options; what’s important
to us is that the “rails new” command creates a directory (project folder) and generates
subfolders and files within it.

Use “Rails New” to Build the Application
To create the Rails default starter application, type:

$ rails new learn-rails

This will create a new Rails application named “learn-rails.”

In the future, you can give your application a different name. For this tutorial, it is VERY
IMPORTANT that you use the name “learn-rails.” You’ll be copying code that assumes the
name is “learn-rails”; it will save you trouble to use this name.

The rails new command will create nine folders and 53 files.

It will install 44 gems into your gemset.

41

After you create the application, switch to its folder to continue work directly in the
application:

$ cd learn-rails

This is your project directory. It is also called the application root directory.

Type the ls command to show the folders and files in a directory. Soon we’ll learn more
about each of these folders and files.

Make a Sticky Gemset
RVM gives us a convenient technique to make sure we are always using the correct gemset
when we enter the project directory. It will create hidden files to designate the correct Ruby
version and project-specific gemset. Enter this command to create the hidden files:

$ rvm use ruby-2.0.0@learn-rails --ruby-version

If you see “ERROR: Gemset ‘learn-rails’ does not exist”, perhaps you overlooked an earlier
step in the Project-Specific Gemset section (in the previous chapter) where we created the
learn-rails gemset. No matter, you can create it now:

$ rvm use ruby-2.0.0@learn-rails --create --ruby-version
$ gem install rails

The --ruby-version argument creates two files, .ruby-version.ruby-version and .ruby-gemset.ruby-gemset, that set RVM
every time we cd to the project directory. Without these two hidden files, you’d need to
remember to enter rvm use ruby-2.0.0@learn-rails every time you start work on your project
after closing the console.

You can confirm you’ve created the two hidden files:

42

$ ls -1pa
./
../
.gitignore
.ruby-gemset
.ruby-version
Gemfile
Gemfile.lock
README.rdoc
Rakefile
app/
bin/
config/
config.ru
db/
lib/
log/
public/
tmp/
vendor/

The “a” flag in the Unix ls -1pa command displays hidden files. Each hidden file is listed
with a dot (period or full stop) at the beginning of the filename. You’ll notice .ruby-gemset
and .ruby-version .

You’ll also see two “special files” which are not files at all:

• ./ – an alias that represents the current directory
• ../ – an alias that represents the parent directory

That’s a brief diversion into Unix; let’s try running our new Rails application.

Test the Application
You’ve created a simple default web application. It’s ready to run.

Launching the Web Server

You can launch the application by entering the command:

$ rails server

Alternatively, to save typing, you can abbreviate the rails server command:

43

$ rails s

You’ll see:

=> Booting WEBrick
=> Rails 4.0.1 application starting in development on http://0.0.0.0:3000
=> Run `rails server -h` for more startup options
=> Ctrl-C to shutdown server
[...] INFO WEBrick 1.3.1
[...] INFO ruby 2.0.0 (2013-02-24) [x86_64-darwin12.2.0]
[...] INFO WEBrick::HTTPServer#start: pid=38534 port=3000

The rails server command launches the default WEBrick web server that is provided with
Ruby.

Errors for Linux Users

If you enter the command rails server and get an error message:

... Could not find a JavaScript runtime ...

You need to install Node.js. For help, see Install Ruby on Rails – Ubuntu.

Viewing in the Web Browser

To see your application in action, open a web browser window and navigate to
http://localhost:3000/. You’ll see the Rails default information page.

Watching Log Messages

Notice that messages scroll in the console window when your browser requests the Rails
default web page.

Open the file log/development.loglog/development.log and you’ll see the same messages. When a browser sends
requests to the WEBrick web server, diagnostic messages are written to the console and to
the log/development.loglog/development.log file. These diagnostic messages are an important tool for
troubleshooting when you are developing.

You can keep more than one terminal window open. For convenience, you may want to keep
a terminal window open for running the web server and watching diagnostic messages. In
the Terminal or iTerm2 applications, Command-t opens additional console sessions in new
“tabs.”

44

http://en.wikipedia.org/wiki/WEBrick
http://railsapps.github.io/installrubyonrails-ubuntu.html
http://localhost:3000

Stopping the Web Server

You can stop the server with Control-c to return to the command prompt.

Most of the time you’ll keep the web server running as you add or edit files in your project.
Changes will automatically appear when you refresh the browser or request a new page.
There is a tricky exception, however. If you make changes to the Gemfile, or changes to
configuration files, the web server must be shut down and relaunched for changes to be
activated.

As a rule of thumb, files that produce web pages can be changed without a restart. This
includes any file in the app/app/ folder which creates web pages, as well as the config/routes.rbconfig/routes.rb
file. Changes to files that create the environment for the web application, such as gems or
configuration files, and are loaded at web server launch, won’t be seen until the web server is
restarted.

Getting Organized for Efficiency
Before we learn about the Rails directory structure, take a minute to organize your screen
real estate. During development, you’ll jump between the console in a terminal application,
your text editor, and a web browser window. As a Rails developer, you’ll do this constantly,
so think about how you can do this efficiently. Multiple screens make it easy, but even on a
laptop you can get organized for efficiency.

Here’s some ideas. Open a window in the terminal application, place it on the left side of
your screen, and stretch it to the maximum vertical height of your screen. Open multiple tabs
in your terminal application. Keep one tabbed window open for entering shell commands

45

(like cd or ls) and another terminal window open for running the rails server command
and viewing the log output.

Place your text editor window next to the terminal window and stretch it to full vertical
height. If you are using Sublime Text, you can open two editor panels side-by-side. Some
developers find it helpful to leave the file browser panel open to navigate the project
directory; others hide the file browser panel to save space.

If you have enough screen space, leave your web browser open and place it next to your text
editor. If your screen space is limited, you may have to overlap the web browser with the
text editor, but position your web browser window so you can bring it to the front with a
single click. You’ll need multiple tabs open in your web browser. Unless you like constant
distraction, close Gmail, Facebook, Twitter, and Hacker News. Open tabs for
http://localhost:3000/, this tutorial, and additional references or documentation.

On the Mac, there are window management utilities that reposition windows with just a
click or keyboard command; I use Moom but you can find others if you search for “mac
window management utilities.”

This is just a guide; I’m sure you can improve upon these suggestions.

46

http://localhost:3000/
http://manytricks.com/moom/

Chapter 10
The Parking Structure
We’ve created the default Rails starter application.

The rails new command has created a project directory for us.

It is a parking structure for our code. Unlike an ordinary parking structure, where you park
anywhere you like, this garage has assigned parking. You have to park your code in the right
place. This is Rails, where convention brings order to the development process.

As you develop a web application, you’ll do all your work in the project directory. It is
important to know your way around and understand the purpose of each folder and file.

If you’ve built simple websites with HTML and CSS, or built websites with unstructured
platforms such as Perl or PHP, you’ll be surprised at the complexity of the Rails project
directory. Rails is a software machine with many moving parts; the project directory
provides a structure to manage the complexity. The logic and order of the project directory
structure is familiar to every Rails developer, and consistent for every Rails application,
which makes it easy to collaborate, maintain an application, and create open source projects.

Project Directory
Use the Unix ls command to list the contents of the project directory. For a one-column list
that shows each subdirectory (marked with a slash), we’ll add the -1p option to the
command.

$ ls -1p

You’ll see:

47

Gemfile
Gemfile.lock
README.rdoc
Rakefile
app/
bin/
config/
config.ru
db/
lib/
log/
public/
tmp/
vendor/

Now is a good time to open a file browser window and look at the contents of the project
directory. On the Mac, there’s a command you can use to open the graphical file browser
from the console. If you’re in the project directory, type open . . The period (or “dot”) is a
Unix symbol that means “the directory I’m in.”

$ open .

You’ll learn more about each file and folder as you proceed through the tutorial. To get you
started, here are two tables. The first describes the files and folders that are important for
every beginner. The second table describes the files and folders that you can ignore.

Important Folders and Files
These folders and files are important to beginners.

GemfileGemfile Lists all the gems used by the application.

Gemfile.lockGemfile.lock Lists gem versions and dependencies.

README.rdoc.rdoc A page for documentation.

app/app/ Application folders and files.

config/config/ Configuration folders and files.

db/db/ Database folders and files.

public/public/ Files for web pages that do not contain Ruby code, such as error pages.

48

Not-So-Important Folders and Files

These folders and files are important to Rails but not important to beginners.

Rakefile Directives for the Rake utility program.

bin/ Folder for binary (executable) programs.

config.ru Configuration file for Rack (a software library for web servers).

lib/ Folder for miscellaneous Ruby code.

log/ Folder for application server logfiles.

tmp/ Temporary files created when your application is running.

vendor/ Folder for Ruby software libraries that are not gems.

The App Directory
Take time to drill down into the app/app/ folder in the project directory. This is easiest using the
file browser. You can also use your text editor. Or you can do it with Unix commands:

$ cd app
$ ls -1p
assets/
controllers/
helpers/
mailers/
models/
views/
$ cd ..

We enter the app folder, list the contents, and then use the cd .. command (change
directory dot dot) to return to the project directory.

Most of the work of developing a Rails application happens in the app/app/ folder.

Earlier we described Rails as “a set of files organized with a specific structure.” We said the
structure is the same for every Rails application. The app/app/ directory is a good example. The
six folders in the app/app/ directory are the same in every Rails application. This makes it easy to
collaborate with other Rails developers, providing consistency and predictability.

• assetsassets
• controllerscontrollers
• helpershelpers

49

• mailersmailers
• modelsmodels
• viewsviews

You may recall our earlier description of Rails from the perspective of a software architect. In
this folder, you’ll see evidence of the model–view–controller design pattern. Three folders
named models/models/, views/views/, and controllers/controllers/ enforce the software architect’s “separation of
concerns” and impart structure to our code. As you build the application, we’ll explain the
role of the MVC components in greater detail.

Two folders, mailers/mailers/ and helpers/helpers/, play supporting roles.

The mailers folder is for code that sends email messages.

The helpers folder is for Rails view helpers, snippets of reusable code that generate HTML.
Later, when we learn more about views, we’ll say view helpers are like “macros” that expand
a short command into a longer string of HTML tags and content.

As a Rails developer, you’ll spend most of your time navigating this heirarchy of folders as
you create and edit files. And because Rails provides a consistent structure, you’ll quickly
find your way on any unfamiliar project.

50

http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller

Chapter 11
Time Travel with Git
Now that we’ve looked at our Rails project directory from the viewpoint of a programmer
and software architect, let’s consider the viewpoint of the time traveler.

This chapter will introduce you to software source control, also called version control or revision
control. The terms all have the same meaning; at first sight, the concept seems rather dull, like
sorting your socks. But it makes professional software development possible and, at the core,
it is essentially a form of time travel.

To understand time travel, we need to understand state. It’s a term you’ll encounter often in
software development. We know about states of matter. Water can be ice, liquid, or steam.
Imagine a machine with a button that, each time it is pressed, changes water from one state
to another. We call this a state machine. Almost every software program is a state machine.
When a program receives an input, it transitions from one state to another. Like flipping a
light switch, there’s no in-between. Light or dark. Ice, liquid, or steam. Or, in a web
application: logged in, logged out.

When we write software code, there’s a lot of in-between. We look things up, we think, we
type errors and we make corrections. As humans, we spend a lot of time in a flow of
undetermined state. We can save our work at any time, but we may be saving typos or
unfinished code that doesn’t work. Every so often, we get to a point where a task is finished;
we’ve fixed all our errors and our code runs. We want to preserve the state of our work.
That’s when we need a version control system.

A version control system does more than a software application’s “Save” command. Like a
“Save” command, it preserves the current state of our files. It also allows us to add a short
note that describes the work we’ve done. More importantly, it archives a snapshot of the
current state in a repository where it can be retrieved if needed.

Here’s where the time travel comes in. We can go back and recover the state of our work at
any point where we committed a snapshot to the repository. In software development, travel
to the past is essential because we often make mistakes or false starts and have to return to a
point where we know things were working correctly.

What about time travel to the future? Often we need to try out code we may decide to
discard, without disturbing work we’ve done earlier. Version control systems allow us to
explore alternative futures by creating a branch for our work. If we like what we’ve done in
our branch, we can merge it into the main trunk of our software project.

Unlike time travel in the movies, we can’t travel back to any arbitrary point in the flow of
time. We can only travel to past or future states we’ve marked as significant by checking our
work into the repository.

51

Git
The dominant version control system among Rails developers is Git, created by the
developer of the Linux operating system.

Unlike earlier version control systems, Git is ideal for wide-scale distributed open source
software development. Combined with GitHub, the “social coding” website, Git makes it
easy to share and merge code. When you work with others on a project, your Git commit
messages (the notes that accompany your snapshot) offer a narrative about the progress of the
project. Well-written commit messages describe your work to co-workers or open source
collaborators.

GitHub’s support for forking (making your own copy of a repository) makes it possible to
take someone else’s project and modify it without impacting the original. That means you
can customize an open source project for your own needs. You can also fix bugs or add a
feature to an open source project and submit a pull request for the project maintainer to add
your work to the original. Fixing bugs (large or small) and adding features to open source
projects are how you build your reputation in the Rails community. Your GitHub account,
which shows all your commits, both to public projects and your own projects, is more
important than your resumé when a potential employer considers hiring you because it
shows the real work you have done.

Collaboration is easy when you use a branch in Git. If you and a coworker are working on the
same codebase, you can each make a branch before adding to the code or making changes.
Git supports several kinds of merges, so you can integrate your branch with the trunk when
your task is complete. If your changes collide with your coworker’s changes, Git identifies
the conflict so you can resolve the collision before completing the merge.

All the power of Git comes at a price. Git is difficult for a beginner to learn, largely because
many of its procedures have no real-world analog. Have you noticed how time travel movies
require mental gymnastics, especially when you try to make sense of alternative futures and
intersecting timelines? Git is a lot like that, mostly because we use it to do things we don’t
ordinarily do in the real world.

In this tutorial, you won’t encounter Git’s advanced procedures, like resolving merges or
reverting to earlier versions. We’ll stick to the basics of archiving our work (and in one case,
discarding work that we’ve done for practice). You can build the tutorial project without
using Git. But I urge you to use Git and a GitHub account for this project, for two reasons.
First, with your tutorial application on GitHub, you’ll show potential employers or
collaborators that you’ve successfully built a useful, functioning Rails application. More
importantly, you must get to know Git if you plan to do any serious coding, either as a
professional or a hobbyist.

Before I show you Git commands, I want to mention that some people use graphical client
applications to manage Git. Mac OS X has GitHub for Mac, Git Tower, and other Mac Git
clients. Graphical applications for Git are useful for colleagues who don’t use a Terminal
application, such as graphic designers or writers. There’s no need for you to install these

52

http://en.wikipedia.org/wiki/Git_(software)
https://github.com/
http://mac.github.com/
http://www.git-tower.com/
http://list.ly/list/FO-mac-git-clients
http://list.ly/list/FO-mac-git-clients

applications. Every developer I’ve met uses Git from the command line. It will take effort to
master Git; the commands are not intuitive. But it is absolutely necessary to become familiar
with Git basics.

Before you do any work on the tutorial application, I’ll show you the basics of setting up and
using Git.

Is Git Installed?
As a first step, make sure Git is installed on your computer:

$ which git
/usr/local/bin/git
$ git version
git version ...

If Git is not found, install Git. See the article Rails with Git and GitHub for installation
instructions.

Is Git Configured?
Make sure Git knows who you are. Every time you update your Git repository with the
git commit command, Git will identify you as the author of the changes.

$ git config --get user.name
$ git config --get user.email

You should see your name and email address. If not, configure Git:

$ git config --global user.name "Real Name"
$ git config --global user.email "me@example.com"

Use your real name so people will associate you with your work when they meet you in real
life. There’s no reason to use a clever name unless you have something to hide.

Use the same email address for Git, your GitHub account, and Heroku to avoid headaches.

Create a Repository
Now we’ll add a Git repository to our project. It’s a basic step you’ll repeat every time you
create a new Rails project.

53

http://railsapps.github.io/rails-git.html

Extending the time traveler analogy, initializing a Git repository is equivalent to setting up
the time machine.

The git init command sets up a Git repository (a “repo”) in the project directory. We add
the Unix symbol that indicates Git should be initialized in the current directory (git init dot):

$ git init .
Initialized empty Git repository in ...

It creates a hidden folder named .git/.git/ in the project directory. You can peek at the contents:

$ ls -1p .git
HEAD
config
description
hooks/
info/
objects/
refs/

All Git commands operate on the hidden files. The hidden files record the changing state of
your project files each time you run the git commit command. There is no reason to ever edit
files inside the hidden .git/.git/ folder (doing so could break your time machine).

GitIgnore
The hidden .git/.git/ folder contains the Git repository with all the snapshots of your changing
project. The snapshots are highly compressed, only containing records of changes, so the
repository takes up very little file space relative to the project as a whole.

Not every file should be included in a Git snapshot. Here are some types of files that should
be ignored:

• log files created by the web server
• database files
• configuration files that include passwords or API keys

Git gives us an easy way to ignore files. A hidden file in the project directory named
.gitignore.gitignore can specify a list of files that are never seen by Git. The rails new command
creates a .gitignore.gitignore file with defaults that include log files and database files. Later, when we
add configuration files that include secrets, we’ll update the .gitignore.gitignore file.

Take a look at the contents of the .gitignore.gitignore file. We use the Unix cat command to display
the contents of the file:

54

$ cat .gitignore
See http://help.github.com/ignore-files/ for more about ignoring files.
#
If you find yourself ignoring temporary files generated by your text editor
or operating system, you probably want to add a global ignore instead:
git config --global core.excludesfile '~/.gitignore_global'

Ignore bundler config.
/.bundle

Ignore the default SQLite database.
/db/*.sqlite3
/db/*.sqlite3-journal

Ignore all logfiles and tempfiles.
/log/*.log
/tmp

For a .gitignore.gitignore file that ignores more, see an example .gitignore file from the RailsApps
project.

Git Workflow
Your workflow with Git will move through four distinct phases as you add or edit files.

Untracked Files

The first phase is a “dirty” state of untracked and changed files, before any snapshot. The
git status command lists all folders or files that are not checked into the repository.

55

https://github.com/RailsApps/rails-composer/blob/master/files/gitignore.txt

$ git status
On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
.gitignore
Gemfile
Gemfile.lock
README.rdoc
Rakefile
app/
bin/
config.ru
config/
db/
lib/
log/
public/
vendor/
nothing added to commit but untracked files present (use "git add" to track)

Here the git status command tells us that we have many untracked files. We have created
new files and they are saved on the computer’s hard disk but nothing has been recorded in
the Git repository.

Staging

Recording files in the Git repository takes two steps: staging and committing. There will be
times when you change many files at once. For example, you may fix a bug, add a new
graphic, and change a form. You might think you’d like to have Git automatically record all
the changes as you save each file. But the story of your project would be confusing and
overly detailed. Git requires you to mark one or more files (“staging”) before recording the
changes (“committing”). This gives you fine-grained control over the recorded history of
your project.

You can mark individual files to be staged:

$ git add Gemfile

Adding individual files allows you to selectively record the history of your project. For
example, you might stage and commit a series of bug fixes before you stage and commit new
features. Applying the time traveler analogy, it will be easier to travel back to look at bug
fixes if they are not mixed in with new features.

56

More often, you’ll mark all the files to be staged. Do so now:

$ git add -A

Running git status will show you a long list of files that are staged and ready to commit.

There are three forms of the git add command:

• git add foo.txt adds a file named foo.txtfoo.txt
• git add . adds all new files and changed files, except deleted files
• git add -A adds everything, including deletions

If it seems nonsensical that the command git add -A “adds deletions,” don’t worry. Like
time travel, Git will stretch your understanding of what makes sense.

Most often, you can simply use the git add -A form of the command.

Committing

Staging gives you an opportunity to organize your changes in groups before you commit. If
you’ve only worked on one feature, you’ll likely stage and commit everything at once.

When you “make a commit”, you include a message that describes the work you’ve done.
For a time traveler, the “commit message” is important; you are leaving a trail to help you
find your way into the past. Google will show you dozens of blog posts about “writing better
commit messages” but common sense can be your guide. Writing “fix registration form to
catch blank email addresses” will be more helpful than merely writing “fix bugs.” And if you
wonder why commit messages are commonly written in the imperative not past tense (“fix”
not “fixed”), it’s a time traveler convention.

Now commit your project to the repository:

$ git commit -m "Initial commit"

The -m flag lets you add a message for the commit.

The pristine state of your new Rails application is now recorded in the repo.

Running git status will tell you “nothing to commit (working directory clean).”

Git Log

You can use the git log command to see your project history:

57

$ git log

If you get “stuck” in git log , type q to return to the command prompt.

I like to use the git log command with an option for a compact listing:

$ git log --oneline

The listing is easier to review when it is displayed in a compact format.

Pushing to GitHub

We’ve seen three phases of the Git workflow: untracked, staged, and committed.

A fourth stage is important when you work with others: pushing to GitHub. It’s also
important when you access your project from more than one computer or you want an
offsite backup of your work.

The repositories hosted on your GitHub account establish your reputation as a Rails
developer for employers and developers you may work with. Even if your first project is
copied from a tutorial, it shows you are serious about learning Rails and studying
conscientiously.

Did you create a GitHub account? Now would be a good time to add your repo to GitHub.

Go to GitHub and create a new empty repository for your project. Name the repository
“learn-rails” and give it a description. If the repository is public, hosting on GitHub is free.
Don’t be reluctant to go public with an unfinished or half-baked project; everyone expects
projects on GitHub to be works in progress.

Add GitHub as a remote repository for your project and push your local project to GitHub.
Before you copy and paste the command, notice that you need to insert your own GitHub
account name:

$ git remote add origin https://github.com/YOUR_GITHUB_ACCOUNT/learn-rails.git
$ git push -u origin master

The -u option sets up Git so you can use git push in the future without explicitly specifying
GitHub as the destination.

Now you can view your project repository on GitHub at:

• https://github.com/YOUR_GITHUB_ACCOUNT/learn-rails

58

https://github.com/repositories/new
https://github.com/YOUR_GITHUB_ACCOUNT/learn-rails

Take a look. It’s an exact copy of the project on your local computer.

If you haven’t used GitHub before, take some time to explore. GitHub is absolutely essential
to all open source Rails development.

You may notice that the README.rdoc.rdoc file is automatically incorporated into the home page
of the project repository on GitHub. For our next step, we’ll update the README file,
commit it to the local repo, and push it up to GitHub.

The README
Changing the README file is a good way to practice with Git. It’s also a good habit to edit
the README file whenever you create a new project. It’s easy to neglect the README for
little projects that you’ve just started. But replacing a default README file shows you are a
disciplined, conscientious developer who will be a good collaborator.

The new README file can be brief. Just state your intentions and acknowledge any code
you’ve borrowed. For this project you could say, “Excited to learn Rails with help from the
RailsApps project!”

In your text editor, open the file README.rdoc.rdoc and replace the contents:

Learning Rails
==

Learning Rails with a tutorial from the RailsApps project.

GitHub lets you add formatting using your choice of markup syntax, depending on the file
extension you add to the filename:

• README.rdoc uses the rdoc syntax
• README.md uses the GitHub Flavored Markdown syntax
• README.textile uses the Textile syntax

We’ll use Markdown syntax by adding the == characters after the first line of text to force a
headline.

There’s no requirement that you use Markdown syntax in your README file. Markdown is
a popular way to add formatting to improve readability. For us, changing the file to
Markdown creates a practical exercise in using Git.

We’ll use the git mv command to rename the file to README.md.md and save it.

$ git mv README.rdoc README.md

59

http://rdoc.rubyforge.org/RDoc.html
https://help.github.com/articles/github-flavored-markdown
http://redcloth.org/hobix.com/textile/

Use git status to see what has changed:

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: README.rdoc -> README.md
#

You could also use the Unix mv command to rename the file. If you do so, git status will
show the README.rdoc.rdoc file has been deleted and a new, untracked README.md.md file has
been created.

Here’s our typical workflow. We’ll stage, commit, and push the change to GitHub:

$ git add -A
$ git commit -m "update README"
$ git push origin master

Take a look at your GitHub repository (refresh the web page). Very cool! The README file
has been updated.

The git log command will display your project history:

$ git log --oneline

You can read more about Git and Rails if you need more information about working with Git
and GitHub for code source control.

Now that you’re comfortable with Git, we can begin customizing our new Rails application.

60

http://railsapps.github.io/rails-git.html

Chapter 12
Gems
The art of selecting gems is at the heart of Rails development. I explained earlier that gems
are packages of code, “software libraries,” that have been developed and tested by other
developers. Some gems add functionality or features to a website. Other gems play a
supporting role, making development easier or implementing basic infrastructure. Gems are
open source. They are available at no charge and can be freely copied and modified.

It is a mark of honor to release a gem for public use, and a developer’s reputation can be
established when a gem becomes popular and widely used. Gems are often created when a
developer has used the same code as a component in more than one web application. He or
she will take time to release the code as a gem. That’s how the Rails ecosystem was built,
gem by gem since 2004.

There is no evaluation or review process in publishing gems. Gems are hosted on a public
server, rubygems.org. Gems are mostly text files (like any other Ruby code), organized in a
particular format with some descriptive information (in a gemspecgemspec file), and compressed and
archived as a single file. A single command, gem push , uploads a gem to the rubygems.org
server for anyone to use.

Over 50,000 gems have been released since rubygems.org was established. Some of these
gems are used by one or two developers on their own projects. Many others have been
neglected and abandoned due to lack of interest. Only a few thousand gems are popular and
widely used. As a Rails developer, you must master the art of finding and evaluating gems
so you can base your applications on the tried-and-true work of others.

There is no single authoritative source of recommendations for gems. The Ruby Toolbox
website categorizes and ranks many gems by popularity, and it is a good place to begin
hunting for useful gems. Other than that, it is useful to study example applications and
search for blog posts to find which gems are most often recommended. When you find an
interesting gem, search Stack Overflow or Google to see what people are saying. Look at the
gem’s GitHub repository and check:

• How many issues are open? How many are closed?
• How recent are the commits of patches or updates?
• Is there a CHANGELOG file?
• Is the gem well-documented?
• How many “stars” (people watching) or “forks” (people hacking)?

Popular gems are likely to have many reported issues, some of which are trivial problems or
feature requests. Gems that are actively maintained will have many closed issues and,

61

https://rubygems.org/
http://ruby-toolbox.com/
http://stackoverflow.com/questions/tagged/ruby-on-rails

ideally, only a few open issues. When you find a gem that has many open issues and no
recently closed issues, you’ve probably found a gem that has been abandoned. Also look at
the commit log, which you’ll find on the GitHub project page in a tab at the top of the page.
Regular and recent activity in the commit log indicates the gem is actively maintained.

Rails Gems
Rails itself is a gem that, in turn, requires a collection of other gems. This becomes clear if
you look at the summary page for Rails on the rubygems.org site. On that page, you’ll see
photos of the Rails core team. More importantly, you’ll see a list of gems that are required to
use Rails:

• actionmailer – framework for email delivery and testing
• actionpack – framework for routing and responding to web requests
• activerecord – framework for connections to databases
• activeresource – framework for manipulating data
• activesupport – utility classes and Ruby library extensions
• bundler – utility to manage gems
• railties – console commands and generators

These are the “runtime dependencies” for Rails. Each of these gems has its own
dependencies as well. When you install Rails, a total of 44 gems are automatically installed in
your development environment.

Gems for a Rails Default Application
In addition to the Rails gem and its dependencies, a handful of other gems are included in
every rails new default starter application:

• sqlite3 – adapter for the SQLite database
• sass-rails – enables use of the SCSS syntax for stylesheets
• uglifier – JavaScript compressor
• coffee-rails – enables use of the CoffeeScript syntax for JavaScript
• jquery-rails – adds the jQuery JavaScript library
• turbolinks – faster loading of webpages
• jbuilder – utility for encoding JSON data

62

https://rubygems.org/gems/rails
https://github.com/rails/rails/tree/master/actionmailer
https://github.com/rails/rails/tree/master/actionpack
https://github.com/rails/rails/tree/master/activerecord
https://github.com/rails/activeresource
https://github.com/rails/rails/tree/master/activesupport
http://gembundler.com/
https://github.com/rails/rails/tree/master/railties
https://github.com/luislavena/sqlite3-ruby
https://github.com/rails/sass-rails
https://github.com/lautis/uglifier
https://github.com/rails/coffee-rails
https://github.com/rails/jquery-rails
http://jquery.com/
https://github.com/rails/turbolinks
https://github.com/rails/jbuilder

You may not need a SQLite database, SCSS for stylesheets, jQuery or the others, but many
developers use these tools so they are included in the default starter application.

Where Do Gems Live?
When you run a Rails application, gems are loaded into the computer’s working memory
immediately before your own custom code is loaded. Gems are handled by the Ruby
interpreter no differently than your own code. It’s all Ruby code, whether you or someone
else wrote it.

When you are building an application in Rails, you don’t need to think about where gems
are stored in your file system. If you’re a curious person, though, you might wonder where
the gems live.

Run the gem which command and you’ll see:

$ gem which bundler
/Users/me/.rvm/gems/ruby-2.0.0-p0@global/gems/bundler-1.3.5/lib/bundler.rb
$ gem which rails
/Users/me/.rvm/gems/ruby-2.0.0-p0@learn-rails/gems/railties-4.0.1/lib/rails.rb

Gems are files saved to the computer’s disk storage. If you use RVM, they are saved to a
hidden .rvm.rvm folder in your user directory. A globalglobal subfolder contains the Bundler gem. If
you’ve followed the instructions in the “Get Started” chapter to install Rails, the project-
specific learn-railslearn-rails subfolder contains the Rails gem. If you use Chruby or Rbenv instead of
RVM, your gems will be stored in a different location.

You’ll never move or delete gems directly. Instead you’ll manage gems using the Bundler
utility. The key to Bundler is the Gemfile.

Gemfile
Every Rails application has a Gemfile. Earlier, I described Rails from the viewpoint of the
“gem hunter,” the developer who wants to assemble an application from the best open
source components he or she can find. To the gem hunter, the Gemfile is the most important
file in the application. It lists each gem that the developer wants to use.

The Gemfile provides the information needed by the Bundler utility to manage gems.

Bundler’s bundle install command reads the Gemfile, then downloads and saves each listed
gem to the hidden gem folder. Bundler checks to see if the gem is already installed and only
downloads gems that are needed. Bundler checks for the newest gem version and records
the version number in the Gemfile.lockGemfile.lock file. Bundler also downloads any gem dependencies
and records the dependencies in the Gemfile.lockGemfile.lock file. Between the Gemfile, with its list of

63

http://gembundler.com/
http://gembundler.com/

gems that will be used by the application, and the Gemfile.lockGemfile.lock file, with its list of
dependencies and version numbers, you have a complete specification of every gem
required to run the application. More importantly, when other developers install your
application, Bundler will automatically install all the gems (including dependencies and
correct versions) needed to run the application. When you deploy the application to
production for others to use, automated deployment scripts (such as those used by Heroku)
install all the required gems.

Bundler provides a bundle update command when we want to replace any gems with newer
versions. If you run bundle update , any new gem versions will be downloaded and installed
and the Gemfile.lockGemfile.lock file will be updated. Be aware that updating gems can break your
application, so only update gems when you have time to test and resolve any issues. You can
run bundle outdated to see which gems are available in newer versions.

If you want to prevent your fellow developers (or yourself) from accidentally updating
gems, you can specify a gem version number for any gem in the Gemfile. The Gemfile gives
fine-grained control over rules for updating:

• gem 'rails', '4.0.0' is “absolute”: only version 4.0.0 will be used
• gem 'rails', '>= 4.0.0' is “optimistic”: any version newer than 4.0.0 will be used
• gem 'rails', '~> 4.0.0' is “pessimistic”

“Pessimistic” versioning needs some explanation. ~> 4.0.0 means use
any version greater than 4.0.0 and less than 4.1 (any patch version can be used). ~> 4.0
means use any version greater than 4.0 and less than 5.0 (any minor version can be used).

In general, during development we only lock down any gem versions in the Gemfile if we
know newer versions introduce problems. The exception is the Rails gem itself. We always
specify the version of Rails we are using for development.

Let’s take a look at the Gemfile created by the rails new command.

Gemfile for a Rails Default Application
Open the GemfileGemfile with your text editor:

64

source 'https://rubygems.org'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'
gem 'rails', '4.0.1'

Use sqlite3 as the database for Active Record
gem 'sqlite3'

Use SCSS for stylesheets
gem 'sass-rails', '~> 4.0.0'

Use Uglifier as compressor for JavaScript assets
gem 'uglifier', '>= 1.3.0'

Use CoffeeScript for .js.coffee assets and views
gem 'coffee-rails', '~> 4.0.0'

See https://github.com/sstephenson/execjs#readme for more supported runtimes
gem 'therubyracer', platforms: :ruby

Use jquery as the JavaScript library
gem 'jquery-rails'

Turbolinks makes following links in your web application faster. Read more:
https://github.com/rails/turbolinks
gem 'turbolinks'

Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder
gem 'jbuilder', '~> 1.2'

group :doc do
bundle exec rake doc:rails generates the API under doc/api.
gem 'sdoc', require: false

end

Use ActiveModel has_secure_password
gem 'bcrypt-ruby', '~> 3.1.2'

Use unicorn as the app server
gem 'unicorn'

Use Capistrano for deployment
gem 'capistrano', group: :development

Use debugger
gem 'debugger', group: [:development, :test]

The file you see will be very similar. Some version numbers may be different if a newer Rails
version was released since this was written.

65

The first line, source 'https://rubygems.org' , directs Bundler to use the rubygems.org server as
a source for any gems.

Notice that the second uncommented line directs Bundler to use Rails and specifies the
version number. It’s important to specify which version of Rails we are using. Rails changes
frequently and newer versions may not work as we expect.

It’s also wise to specify the Ruby version we’re using. This is needed for automated
deployment scripts such as those used by Heroku. We can add that to the Gemfile:

ruby '2.0.0'

In the Gemfile you’ll see the gems for a Rails default application, such as sqlite3, which we
described earlier. Other gems are commented out (the lines begin with the # character).
These are suggestions and we can ignore them or remove them.

We won’t use a database for our application but we’ll keep the gem 'sqlite3' entry.
Configuring Rails for no database is complicated; it is easier to keep the sqlite3 gem and not
use it.

The gem 'sdoc' line is useful only when using rake doc:rails command to generate API
documentation so we can remove it.

If you are developing your application on a computer using the Linux operating system, you
may need to uncomment and use the statement gem 'therubyracer', platforms: :ruby . Linux
doesn’t have a built-in JavaScript interpreter so you must install Node.js in your
environment or else add the therubyracer gem to each project Gemfile. For help, see Install
Ruby on Rails – Ubuntu.

If you remove the extra clutter in the GemfileGemfile it will look like this:

source 'https://rubygems.org'
ruby '2.0.0'
gem 'rails', '4.0.1'

Rails defaults
gem 'sqlite3'
gem 'sass-rails', '~> 4.0.0'
gem 'uglifier', '>= 1.3.0'
gem 'coffee-rails', '~> 4.0.0'
gem 'jquery-rails'
gem 'turbolinks'
gem 'jbuilder', '~> 1.2'

66

https://rubygems.org/
http://railsapps.github.io/installrubyonrails-ubuntu.html
http://railsapps.github.io/installrubyonrails-ubuntu.html

Adding Gems
I’ve identified several gems that will be useful for our tutorial application.

I learned of these gems from a variety of different sources:

• Ruby Toolbox
• RailsCasts
• RubyFlow
• various blog posts
• example code and starter apps on GitHub
• recommendations from colleagues

We’re adding these gems at the beginning of our development process since we already
know which gems we’ll need. On a real project, you’ll often discover useful gems and add
them to the Gemfile during the ongoing process of development.

Here are gems we’ll add to the Gemfile:

• activerecord-tableless – helps to use Rails without a database
• figaro – configuration framework
• gibbon – access to the MailChimp API
• google_drive – use Google Drive spreadsheets for data storage
• high_voltage – for static pages like “about”
• simple_form – forms made easy

We’ll add these gems for the Zurb Foundation front-end framework:

• compass-rails – support for Zurb Foundation
• zurb-foundation – front-end framework

We’ll also add utilities that make development easier:

• better_errors – helps when things go wrong
• quiet_assets – suppresses distracting messages in the log
• rails_layout – generates files for an application layout

Open your GemfileGemfile and replace the contents with the following:

67

http://ruby-toolbox.com/
http://railscasts.com/
http://www.rubyflow.com/
https://github.com/softace/activerecord-tableless
https://github.com/laserlemon/figaro
https://github.com/amro/gibbon
https://github.com/gimite/google-drive-ruby
https://github.com/thoughtbot/high_voltage
http://simple-form.plataformatec.com.br/
https://github.com/Compass/compass-rails
https://github.com/zurb/foundation
https://github.com/charliesome/better_errors
https://github.com/evrone/quiet_assets
https://github.com/RailsApps/rails_layout

source 'https://rubygems.org'
ruby '2.0.0'
gem 'rails', '4.0.1'

Rails defaults
gem 'sqlite3'
gem 'sass-rails', '~> 4.0.0'
gem 'uglifier', '>= 1.3.0'
gem 'coffee-rails', '~> 4.0.0'
gem 'jquery-rails'
gem 'turbolinks'
gem 'jbuilder', '~> 1.2'

learn-rails
gem 'activerecord-tableless'
gem 'compass-rails', '~> 2.0.alpha.0'
gem 'figaro'
gem 'gibbon'
gem 'google_drive'
gem 'high_voltage'
gem 'simple_form'
gem 'zurb-foundation'
group :development do
gem 'better_errors'
gem 'quiet_assets'
gem 'rails_layout'

end

Notice that we’ve placed the better_errors and quiet_assets gems inside a “group.”
Specifying a group for development or testing ensures a gem is not loaded in production,
reducing the application’s memory footprint. Rails let you specify groups for development,
test, or production.

Each time you edit the Gemfile, run bundle install and restart your web server.

Adjust the Rails Version
The version of Rails specified in your Gemfile should match the version that is installed in
your gemset.

What version of Rails is installed in your current gemset? Check with:

$ rails -v

If you’ve got Rails 4.0.1, there’s no need to make additional changes to the Gemfile.

68

If you’ve got Rails 4.0.2 or a newer version, update the Gemfile. Change this line as needed:

gem 'rails', '4.0.1'

If you have Rails 4.1.0 or newer installed, a new minor version of Rails was released
subsequent to this book’s last update. Check to see if a new version of the book is available.
It is possible that changes to Rails will require an updated tutorial. If a new version of the
book is not available, you can create a new gemset and install Rails 4.0.1.

Install the Gems
You’ve edited the Gemfile. Install the required gems on your computer:

$ bundle install

The bundle install command will download the gems from the rubygems.org server and
save them to a hidden directory that is managed by the RVM gemset you’ve specified.

We’ll see all the gems and their dependencies:

Fetching gem metadata from https://rubygems.org/........
Fetching gem metadata from https://rubygems.org/..
Resolving dependencies...
Using rake (10.0.4)
Using i18n (0.6.4)
Installing minitest (4.7.4)
.
.
.
(many more gems not shown... you get the idea)
.
.
.
Your bundle is complete!
Use `bundle show [gemname]` to see where a bundled gem is installed.

You can use your text editor to view the contents of Gemfile.lockGemfile.lock and you will see a detailed
listing of every gem and each dependency, with version numbers. There’s no reason to edit a
Gemfile.lockGemfile.lock file; if it is ever in error, delete it and run bundle install to recreate it.

Run gem list to see all the gems that are loaded into the development environment:

$ gem list

69

https://rubygems.org/

The list of gems loaded in the environment is the same as the list specified in the
Gemfile.lockGemfile.lock file. Here’s how it works. RVM makes a place for the gems to be stored (the
RVM gemset); the GemfileGemfile lists the gems you want to use; bundle install reads the Gemfile
and installs the gems into the RVM gemset; the Gemfile.lockGemfile.lock file records dependencies and
version numbers; and gem list shows you the gems that are in the gemset and available for
use.

Git
Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "add gems"
$ git push origin master

After your first use of git push origin master , you can use the shortcut git push .

If you get a message:

fatal: Not a git repository (or any of the parent directories): .git

It indicates you are in a folder that has not been initialized with Git. You are probably not in
your project directory. Use the Unix command pwd to see where you are.

If you get a message:

fatal: 'origin' does not appear to be a git repository
fatal: The remote end hung up unexpectedly

It shows that you can’t connect to GitHub to push the changes. To investigate, enter:

$ git remote show origin

It is not absolutely necessary to use GitHub for this tutorial. We’re only using it so you’ll be
familiar with the workflow of professional development.

We’re ready to configure the application.

70

Chapter 13
Configure
Rails is known for its “convention over configuration” guiding principle. As applied, the
principle reduces the need for many configuration files. It’s not possible to eliminate all
configuration files, however. Many applications require configuration of settings such as
email account credentials or API keys for external services.

In our tutorial application, we’ll need to save an account name and password for a Gmail
account so we can send email from the application and save data to a Google Drive
spreadsheet.

We’ll also need to store an API key to access MailChimp, which we’ll use to add visitors’
email addresses to a mailing list.

Remote Git repositories such as GitHub are a place to store and share code. But you
shouldn’t save email account credentials or private API keys to a shared Git repository
where others can see them. Operating systems (Linux, Mac OS X, Windows) provide
mechanisms to set local environment variables, as does Heroku and other deployment
platforms. Environment variables can be accessed from Rails applications and provide an
ideal place to set configuration settings that must remain private. With a bit of Unix skill,
most developers can set environment variables using the Unix shell. For applications from
the RailsApps project, we take a hybrid approach and use the figaro gem that lets us set
environment variables from the Unix shell or from a simple configuration file.

For our tutorial, we’ll show how to set up configuration settings using the figaro gem. You
can read the article Rails Environment Variables if you’d like learn about the figaro gem or
explore other approaches.

Configuration File
The tutorial application uses the figaro gem to set environment variables. We’ve already
installed the figaro gem in the Gemfile and run bundle install .

The figaro gem uses a generator to set up the necessary files. Run:

$ rails generate figaro:install

Rails provides the rails generate command to be used by gems that need to modify Rails
files or install configuration files.

71

http://en.wikipedia.org/wiki/Environment_variable
https://github.com/laserlemon/figaro
https://github.com/laserlemon/figaro
http://railsapps.github.io/rails-environment-variables.html
https://github.com/laserlemon/figaro

Using the rails generate command, the figaro gem generates a config/application.ymlconfig/application.yml file
and lists it in your .gitignore.gitignore file. The .gitignore.gitignore file prevents the config/application.ymlconfig/application.yml file
from being saved in the Git repository so your credentials are kept private.

The figaro generator will create a file with some example entries:

Add application configuration variables here, as shown below.
#
PUSHER_APP_ID: "2954"
PUSHER_KEY: 7381a978f7dd7f9a1117
PUSHER_SECRET: abdc3b896a0ffb85d373
STRIPE_API_KEY: EdAvEPVEC3LuaTg5Q3z6WbDVqZlcBQ8Z
STRIPE_PUBLIC_KEY: pk_BRgD57O8fHja9HxduJUszhef6jCyS

These are examples; we don’t need them.

Use your text editor to replace the file config/application.ymlconfig/application.yml with this:

Add account credentials and API keys here.
See http://railsapps.github.io/rails-environment-variables.html
This file should be listed in .gitignore to keep your settings secret!
Each entry sets a local environment variable and overrides ENV variables in the Unix
shell.
GMAIL_USERNAME: Your_Username
GMAIL_PASSWORD: Your_Password
MAILCHIMP_API_KEY: Your_MailChimp_API_Key
MAILCHIMP_LIST_ID: Your_List_ID
DOMAIN_NAME: example.com
OWNER_EMAIL: me@example.com

Next, set credentials for your Gmail and MailChimp accounts.

Replace the placeholders in the config/application.ymlconfig/application.yml file with real credentials.

Make sure there is a space after each colon and before the value for each entry.

Here’s an important note: If any value contains non-alphanumeric characters (punctuation
marks), you must enclose the value in quotation marks. If you don’t, you’ll get an error when
starting the web server.

All configuration values in the config/application.ymlconfig/application.yml file are available anywhere in the
application as environment variables. We’ll use the environment variables to configure the
tutorial application to send email.

72

Gmail

For the Gmail username and password, enter the credentials you use to log in to Gmail when
you check your inbox.

If you don’t have a Gmail account, you can sign up for an account with Mandrill instead and
follow instructions in the article Send Email with Rails.

MailChimp

When visitors sign up to receive a newsletter, we’ll add them to a MailChimp list. Add an
environment variable for the MailChimp API key: MAILCHIMP_API_KEY . Log in to MailChimp to
get your API key. Click your name at the top of the navigation menu, then click “Account
Settings.” Click “Extras,” then “API keys.” You have to generate an API key; MailChimp
doesn’t create one automatically.

You’ll need to create a MailChimp mailing list in preparation for our “Mailing List” chapter.
Have you already created a MailChimp mailing list? If not, the MailChimp “Lists” page has
a button for “Create List.” The list name and other details are up to you.

We’ll need the MAILCHIMP_LIST_ID for the mailing list you’ve created. To find the list ID, on the
MailChimp “Lists” page, click the “down arrow” for a menu and click “Settings.” At the
bottom of the “List Settings” page, you’ll find the unique ID for the mailing list.

Domain Name

If you already have a custom domain name you’ll use when you deploy the application, you
can replace example.com now. If not, leave example.com in place for now. Later, if you follow
the tutorial to deploy the application to Heroku, you’ll replace example.com with the unique
name you’ve given your application on Heroku. You’ll have to wait until you deploy to
know the name you’ll use on Heroku.

We’ll use the domain name variable when we configure email for delivery in production.

Owner Email

You’ll send email messages to this address when a visitor submits a contact request form.
Replace me@example.com with an email address where you receive mail.

73

http://mandrill.com/
http://railsapps.github.io/rails-send-email.html
https://admin.mailchimp.com/

Configure Email
Email messages are visible in the console and the log file when you test the application. If
you don’t want to actually send email, you can skip this step. But it’s more fun when your
application can actually send email.

You can learn more in the article Send Email with Rails.

Connect to an Email Server

Web servers don’t send email. Our Rails application has to connect to an email server (also
known as a mail transfer agent or “mail relay”). In the early days of the Internet, an
experienced system adminstrator could set up an SMTP server to distribute email. Now,
because of efforts to reduce spam, it is necessary to use an established email service to ensure
deliverability. For convenience during development, you can use your own Gmail account.
In production, for high volume transactional email and improved deliverability, it’s best to
use a service such as Mandrill or Mailgun. See the article Send Email with Rails.

We need to configure Rails so the application can connect with an email server. For our
tutorial application, we’ll connect to Gmail to send email.

In the file config/environments/development.rbconfig/environments/development.rb, near the end of the file, find the statement:

config.assets.debug = true

Immediately following, add this:

config.action_mailer.smtp_settings = {
address: "smtp.gmail.com",
port: 587,
domain: ENV["DOMAIN_NAME"],
authentication: "plain",
enable_starttls_auto: true,
user_name: ENV["GMAIL_USERNAME"],
password: ENV["GMAIL_PASSWORD"]

}

It’s important to add these changes in the body of the configuration file, before the end
keyword. The order isn’t important but don’t add the configuration statements after the end
keyword.

Notice that we are using the ENV["GMAIL_USERNAME"] and ENV["GMAIL_PASSWORD"] environment
variables that we set in the config/application.ymlconfig/application.yml file. We could “hard code” a username
and password here but that would expose confidential data if your GitHub repository is

74

http://railsapps.github.io/rails-send-email.html
http://en.wikipedia.org/wiki/Email_server
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://mandrill.com/
http://mailgun.net/pricing
http://railsapps.github.io/rails-send-email.html

public. Using environment variables from the config/application.ymlconfig/application.yml file keeps your secrets
safe.

Perform Deliveries in Development

If you want to send real messages when you test the application in development mode,
modify the file config/environments/development.rbconfig/environments/development.rb.

After the code you just added, add the statement:

Send email in development mode.
config.action_mailer.perform_deliveries = true

This changes the configuration to send email when you’re working on the application.

Make sure any code you’ve added to the config/environments/development.rbconfig/environments/development.rb file is placed
before the final end keyword. If you add code after the final end keyword, your application
will fail with errors when you start the web server.

Later, after we add a contact form to the tutorial application, the application will be ready to
send email messages.

Git
Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "add configuration"
$ git push

We’re ready to create a home page for the application.

75

Chapter 14
Static Pages and Routing
A Rails application can deliver static web pages just like an ordinary web server. The pages
are delivered fast and no Ruby code is required. We’ll look at simple static pages and learn
about Rails routing before we explore the complexities of dynamic web pages in Rails.

Add a Home Page
Make sure you are in your project directory.

Start the application server:

$ rails server

Open a web browser window and navigate to http://localhost:3000/. You’ll see the Rails
default information page.

Use your text editor to create and save a file public/index.htmlpublic/index.html:

<h1><h1>Hello World</h1></h1>

Refresh the browser window and you’ll see the “Hello World” message.

The Rails application server looks for any pages in the publicpublic folder by default.

If no filename is specified in the URL, the server will attempt to respond with a file named
index.htmlindex.html. This is a convention that dates to 1993; if no filename was specified, one of the
first web servers ever built (the NCSA httpd server) would return a list of all files in the
directory, unless a file named index.htmlindex.html was present. Since then, index.htmlindex.html has been the
default filename for a home page.

Routing Error
What happens when no file matches the requested web address?

Enter the URL http://localhost:3000/about.html in your browser.

You’ll see an error page that shows a routing error.

76

http://localhost:3000
http://localhost:3000/about.html

Add an About Page
Use your text editor to create and save a file public/about.htmlpublic/about.html:

<h1><h1>About</h1></h1>

Visit the URL http://localhost:3000/about.html in your browser. You’ll see the new “About”
page.

By the way, you’ve just done test-driven development (TDD).

Introducing TDD

With test-driven development, a developer tests behavior before implementing a feature,
expecting to see an error condition. Then the developer implements the feature and sees a
successful result to the test. That’s exactly what you’ve done, in the simplest way.

Beginners tend to think TDD is scary and complicated. Now that you’ve experienced a
simple form of TDD, maybe it won’t be intimidating. Real TDD means writing tests in Ruby
before implementing features, but the principle is the same.

Introducing Routes
The guiding principle of “convention over configuration” governs Rails routing. If the web
browser requests a page named “index.html”, Rails will deliver the page from the publicpublic
folder by default. No configuration is required. But what if you want to override the default
behavior? Rails provides a configuration file to control web request routing.

Remove the public/index.htmlpublic/index.html file:

$ rm public/index.html

Now let’s set the “About” page as the home page.

Open the file config/routes.rbconfig/routes.rb. Remove all the comments and replace the file with this:

LearnRails::Application.routes.draw do
root to: redirect('/about.html')

end

77

http://localhost:3000/about.html

Notice the name of the application LearnRails is included in the file. When you created the
application, I suggested you use the name learn-rails . If you gave the project a different
name, you’ll have to modify the config/routes.rbconfig/routes.rb file accordingly.

This snippet of Rails routing code takes any request to the application root
(http://localhost:3000/) and redirects it to the about.htmlabout.html file (which is expected to be found
in the publicpublic folder).

There is no need to restart your application server to see the new behavior. If you need to
start the server:

$ rails server

Visit the page http://localhost:3000/. You’ll see the “About” page.

You’ve just seen an example of Rails magic. Some developers complain that the “convention
over configuration” principle is black magic. It’s not obvious why pages are delivered from
the publicpublic folder; it just happens. If you don’t know the convention, you could be left
scratching your head and looking for the code that maps http://localhost:3000/ to the
public/index.htmlpublic/index.html file. The code is buried deep in the Rails framework. However, if you
know the convention and the technique for overriding it, you have both convenience and
power at your disposal.

Using the “About” Page
We’ve created an “About” page so we can learn about routing.

For the next chapter, we’ll use the static “About” page to investigate how a web application
works.

Later in the tutorial we’ll create a new “About” page using a different approach.

78

http://localhost:3000/
http://localhost:3000
http://localhost:3000/

Chapter 15
Request and Response
You’ve configured the tutorial application, created static pages, and seen the magic of Rails
routing.

In this chapter, we’ll investigate the web request-response cycle and look at the model-view-
controller design pattern so you’ll be prepared to build a dynamic home page.

Investigating the Request Response Cycle
Remember, at its core, the World Wide Web is nothing more than web browsers that request
files from web servers.

Web browsers make requests. A web server responds to a request by sending an HTML file.
Depending on the headers in the HTML file, the web browser may make additional requests
and get additional CSS, JavaScript, and image files.

The beauty and simplicity of the World Wide Web architecture, as conceived by Tim
Berners-Lee in 1990, is that there is nothing but a request from a web browser and a response
from a web server. Some web pages now include streaming video, or music, requiring an
open “pipe” between the web server and the web browser, but even so, an initial request-
response cycle delivers the page that sets up the stream.

We can reduce the mystery of how the web works to its simplest components when we
investigate the request-response cycle. We’ll see that everything that happens in a web
application takes place within the flow of the request-response cycle.

Let’s look at the request-response cycle.

Inside the Browser

We can see the actual request, and the actual response, by using the diagnostic tools built
into the web browser.

79

Start the application server if it is not already running:

$ rails server

Developers use various web browsers during development. I’ll provide instructions for
Chrome. Some developers prefer Mozilla Firefox and Apple Safari but Google Chrome is the
most popular. Even if you prefer one of the others, try this in Chrome, so you can follow
along with the text.

Start our investigation by putting Chrome into “Incognito Mode” with Command-Shift-N
(on a Mac). On Linux, use Ctrl-Shift-N to get in incognito mode with Chrome. Alternatively,
you can clear the browser cache. This clears any files that were previously cached by the
browser.

The Developer Tools View is your primary diagnostic tool for front-end (browser-based)
development, including CSS and JavaScript.

In Chrome on Mac OS X, press Command-Option-I to open the Developer Tools View in a
section of the browser window. Alternatively, you can find the menu item under View/
Developer/Developer Tools.

In Chrome on Windows or Linux platforms, press Shift-Ctrl-I or select Menu/Tools/
Developer Tools.

Select the Network tab in the Developer Tools View.

Initiate the request-response cycle by visiting the “About” page at http://localhost:3000/
about.html.

In the Developer Tools View, you’ll see files received by the browser from the web server.
There is only one: “about.html”. This is the file that the browser evaluates to display a web
page.

80

http://localhost:3000/about.html
http://localhost:3000/about.html

Click the “about.html” file icon. Then click the tab “Headers.” The diagnostic window shows
the entire request sent to the server and the entire response received by the browser.

81

The request is composed of:

• request URL (http://localhost:3000/about.html)
• request method (GET)
• request headers (including cookies and User Agent identifer)

The response is composed of

• status code (200 OK or 304 Not Modified)
• response headers (including date/time and server identifier)
• HTML

You can see the HTML sent to the browser by clicking the Preview or Response tabs in the
diagnostic view.

Now try requesting the home page by entering the URL http://localhost:3000/.

82

http://localhost:3000/

You’ll see the server returns two files. The first, “localhost”, contains a redirect code “301
Moved Permanently” that tells the browser to request the “about.html” file. The second file
is the “about.html” file. You may see the status code “200 OK” the first time the file is
requested. On subsequent requests, you’ll see the “304 Not Modified” code, indicating that
the file hasn’t changed and the browser should use the file that has been previously cached.

Here’s the point of the exercise: The browser’s diagnostic view shows all the data exchanged
between the browser and server. You’re looking at everything that passes through the
plumbing.

Inside the Server

The browser’s diagnostic view doesn’t show you what happens on the server. For that, go to
the server logs or the console window.

Started GET "/" for 127.0.0.1 at ...

Notice how the diagnostic messages in the console window match the headers in the
browser diagnostic view. The browser’s “Request Method:GET” matches the server’s
“Started GET.” The browser’s “Request URL:http://localhost:3000/” matches the server’s
“‘/’ for 127.0.0.1” (localhost is at IP address 127.0.0.1).

Notice there are no console log messages for pages delivered from the publicpublic folder.

Soon we’ll see much more in the console window, after we’ve built a dynamic web page that
is assembled by the application server.

Document Object Model
What happens after the browser receives a response from the server?

The response is not complete until all files are received (or the browser reaches a time-out
limit). Modern browsers retrieve files asynchronously; the order and location of the files in
the initial HTML file doesn’t matter because the browser will try to load all the files before
displaying the page. When all the files are present and processed, the browser fires a “DOM
ready” event.

The Document Object Model (DOM) is an API for HTML documents. It provides a structural
representation of the document, enabling you to modify its content and visual presentation
by using a scripting language such as JavaScript.

“DOM ready” is the starting gun for any interactive features of the web page, such as drop-
down menus or graphics carousels.

83

Later in the tutorial, we’ll see how a JavaScript library such as jQuery can be used to do
things like hiding or revealing HTML elements on a page by manipulating the DOM.

Model View Controller
Now that we’ve investigated the request-response cycle, let’s dig deeper to understand what
happens inside the Rails application server in response to a browser request.

Here is a diagram that shows what happens in the server during the request-response cycle.

You learned earlier that, from the perspective of a software architect, Rails is organized to
conform to the model–view–controller software design pattern. This enforces “separation of
concerns” to keep code manageable and organized. The MVC design pattern is optimal for
web applications and is a central organizing principle for Rails.

The MVC design pattern originated in the design of desktop applications. “Model” classes
manipulated data; “view” classes created the user interface; and a “controller” class
responded to user interaction.

Some computer scientists feel the architecture of web applications doesn’t quite match the
original MVC design pattern of desktop applications. We can see the reason for the quibble
in the next diagram. The diagram shows the MVC architecture as part of the Rails software
stack.

At the base of the stack is the web browser. A request flows upward through the layers and
encounters the router which dispatches the request to an appropriate controller.

In a Rails application, there is a single routing file, config/routes.rbconfig/routes.rb, and multiple controllers,
models, and views.

84

http://en.wikipedia.org/wiki/Jquery
http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller

Considering the importance of the router, perhaps we should call our Rails architecture the
RCMV, or Routing-Controller-Model-View, pattern. Despite the quibble about
nomenclature, the architecture is well understood and used by all Rails developers.

Here’s the step-by-step walk-through of what happens.

When the web browser makes a request, a router component will check the config/routes.rbconfig/routes.rb
file and determine which controller should handle the request, based on the web address and
HTTP protocol. The controller will obtain any needed data from a model. After obtaining
data, the controller will render a response combining data from the model with a view
component that provides markup and layout. The response is an HTML file that the
controller assembles for the browser to display.

The model, view, and controller are files you create containing Ruby code. Each file has a
certain structure and syntax based on foundation model, view, and controller classes defined
in the Rails framework. The model, view, and controller classes you create will inherit
behavior from parent classes that are part of the framework, so you will have less code to
write yourself.

In most Rails applications, a modelmodel obtains data from a database, though some models
obtain data from a remote connection to another server. For example, a User model might
retrieve a user name and email address from a local database. A User model could also

85

obtain a user’s recent tweets from Twitter or a user’s hometown from Facebook. The
controller can obtain data from more than one model if necessary.

A controllercontroller can have more than one action. For example, a User controller might have
actions to display a list of users, or add or delete a user from a list. The config/routes.rbconfig/routes.rb file
matches a web request to a controller action. In the software architects’ terminology, each
action is a method of the controller class. We use the terms action and method interchangeably
when we talk about a Rails controller; to be precise, controller actions are implemented as
methods.

In practice, Rails developers try to limit controllers to seven standard actions: index , show ,
new , create , edit , update and destroy actions. A controller that offers these actions is said to
be “RESTful” (a term that refers to representational state transfer, another software design
abstraction). It’s not important to understand the abstract principles of RESTful design;
recognizing the term and knowing that Rails controllers have seven standard actions is
sufficient for beginners.

A viewview file combines Ruby code with HTML markup. Typically there will be a view file
associated with each controller action that displays a page. An index view might show a list
of users. A “show” view might provide details of a user’s profile. View files look much like
ordinary HTML files but typically contain data in the form of Ruby variables. Often you’ll
see Ruby statements such as blocks that iterate through lists to create tables. Following the
“separation of concerns” principle, it is considered good practice to limit Ruby code in view
files to only displaying data; anything else belongs in a model.

Not every controller action has its own view file. In many controllers, on completion, the
destroy action will redirect to the index view, and create will redirect to either show or new .

This conceptual overview will be easier to grasp when you actually see the code for a model,
view, and controller. We’ll create model, view, and controller files in the next chapter.

Remove the About Page
We’ve been using the static “About” page to investigate the request-response cycle.

We’re done, so delete the file public/about.htmlpublic/about.html:

$ rm public/about.html

Make sure you’ve removed the public/index.htmlpublic/index.html file as suggested earlier:

$ rm public/index.html

86

http://en.wikipedia.org/wiki/Representational_state_transfer

Earlier, we set up the config/routes.rbconfig/routes.rb file. You can leave it in place. We’ll change it in the
next chapter.

Now we’ll look at ways to implement the home page using the full power of Rails.

87

Chapter 16
Dynamic Home Page
Earlier, we saw how Rails can deliver simple static web pages.

Here we’ll build a dynamic home page, illustrating basic concepts you’ll need to understand
Rails.

We’ll use the model-view-controller design pattern as we build our new home page.

User Story
We’ll plan our work with a user story:

Birthday Countdown
As a visitor to the website
I want to see the owner's name
I want to see the owner's birthdate
I want to see how many days until the owner's next birthday
In order to send birthday greetings

This silly home page will help us explore Rails and learn about the Ruby language.

Our goal is to build a practical web application that you can really use. Later we’ll replace
this silly home page with a useful web page that encourages visitors to sign up for a mailing
list.

The Name Game
Much of the art of programming lies in choosing suitable names for our creations.

We’ll need a model as a source for data about the site owner. Choosing the most obvious
name, we’ll call it the Owner model:

• Owner – the file will be app/models/owner.rbapp/models/owner.rb

What about a name for the controller that will render our home page? How about “Home
controller” or “Welcome controller?” Those names are acceptable. But if we consider our
user story, the name “Visitors controller” is best. A visitor is the actor, so “Visitors
controller” is appropriate:

88

• VisitorsController – the file will be app/controllers/visitors_controller.rbapp/controllers/visitors_controller.rb

Later we’ll see this is a good choice because we’ll create a Visitor model to handle data about
the website visitor. In Rails, there is often a model with the same name as a controller
(though a controller can use data from multiple models).

Naming Conventions
Rails is picky about class names and filenames. That’s because of the “convention over
configuration” principle. By requiring certain naming patterns, Rails avoids complex
configuration files.

Before we look at class and filename conventions, here’s a note about typographic
terminology:

• a string is a sequence of characters
• you’re looking at an example of lowercase strings separated by spaces (words!)
• titlecase means there is an Initial Capital Letter in a string
• CamelCase contains a capital letter in the middle of a string
• snake_case combines words with an underscore character instead of a space

When you write code, you’ll follow rules for class names:

• class Visitor < ActiveRecord::Base – the model class name is capitalized and singular
• class VisitorsController < ApplicationController – for a controller, combine a pluralized

model name with “Controller” in CamelCase

Here are the rules for filenames. They are always lowercase, with words separated by
underscores (snake_case):

• the model filename matches the model class name, but lowercase, for example app/app/
models/visitor.rbmodels/visitor.rb

• the controller filename matches the controller class name, but snake_case, for
example app/controllers/visitors_controller.rbapp/controllers/visitors_controller.rb

• the views folder matches the model class name, but plural and lowercase, for
example app/views/visitorsapp/views/visitors

At first the rules may seem arbitrary, but with experience they will make sense. The rule
about no capital letters or spaces in filenames has its origins in computer antiquity.

If you stray from these naming conventions, you’ll encounter unexpected problems and
frustration.

89

http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/CamelCase

Routing
We’ll create the route before we implement the model and controller.

Open the file config/routes.rbconfig/routes.rb. Replace the contents with this:

LearnRails::Application.routes.draw do
root to: 'visitors#new'

end

Any request to the application root (http://localhost:3000/) will be directed to the
VisitorsController new action.

Notice that the name of the application is contained in the config/routes.rbconfig/routes.rb file. Earlier, I
recommended using “learn-rails” as the name of the application so you will not need to
change the code here.

Don’t be overly concerned about understanding the exact syntax of the code. It will be
become familiar soon and you can look up the details in the reference documentation,
RailsGuides: Routing from the Outside In.

In general, when you change a configuration file you must restart your application server.
However, the config/routes.rbconfig/routes.rb file is an exception. You don’t need to restart the server after
changing routes.

If you need to start the server:

$ rails server

Visit the page http://localhost:3000/. You’ll see an error message because we haven’t
implemented the controller. The error message, “uninitialized constant VisitorsController,”
means Rails is looking for a VisitorsController and can’t find it.

Model
Most Rails models obtain data from a database. When you use a database, you can use the
rails generate model command to create a model that inherits from the ActiveRecord class
and knows how to connect to a database.

Our tutorial application doesn’t need a database. Instead of inheriting from ActiveRecord,
we create a Ruby class with methods that return the owner’s name, birthdate, and days
remaining until his birthday. This simple class provides an easy introduction to Ruby code.

Create a file app/models/owner.rbapp/models/owner.rb:

90

http://localhost:3000/
http://guides.rubyonrails.org/routing.html
http://localhost:3000

class Owner

def name
name = 'Foobar Kadigan'

end

def birthdate
birthdate = Date.new(1990, 12, 22)

end

def countdown
today = Date.today
birthday = Date.new(today.year, birthdate.month, birthdate.day)
if birthday > today
countdown = (birthday - today).to_i

else
countdown = (birthday.next_year - today).to_i

end
end

end

This is your first close look at Ruby code. The oddest thing you’ll see is the owner’s name,
“Foobar Kadigan.” Everything else will make sense with a bit of explanation.

Keep in mind that we are using a text file to create an abstraction that we can manipulate in
the computer’s memory. Software architects call these abstractions objects. In Ruby,
everything we create and manipulate is an object. To distinguish one object from another, we
define it as a class, give it a class name, and add behavior in the form of methods.

The first line class Owner defines the class and assigns a name. At the very end of the file, the
end keyword completes the class definition.

We define three methods, starting with def (for “method definition”) and ending with end .

• def name … end

• def birthdate … end

• def countdown … end

Each method contains simple Ruby code that assigns data to a variable. Later, we’ll retrieve
the data for use in our view file by instantiating the class and calling a method. Don’t be
discouraged by the software architects’ terminology; the concepts are simple and we’ll soon
see everything in action.

Ruby makes it easy for a method to return data when called; the value assigned by the last
statement will be delivered when the method is called.

91

Looking more closely at the Ruby code inside the method definitions, you’ll see Ruby uses
the = (equals) sign to assign values to a variable. The variable is named on the left side of the
equals sign; a value is assigned on the right side. We call the equals sign an assignment
operator.

We can assign any value to a variable, including a string (a series of characters that can be a
word or name) such as “Foobar Kadigan.” Ruby recognizes a string when characters are
enclosed in single or double quotes. Not surprisingly, a number also can be assigned to a
variable, either a whole number (an integer) or a decimal fraction (a float).

More interestingly, any Ruby object can be assigned to a variable. That helps us “move
around” any object very easily, giving us access to the object’s class methods anywhere we
use the variable. We can create our own objects, as we have by creating the Owner class. Or
we can use the library of objects that are supplied with Ruby. Ruby’s prefabricated objects
are defined by the Ruby API (application programming interface); essentially the API is a
catalog of prebuilt classes that are building blocks for any application. The Rails API gives us
additional classes that are useful for web applications. Learning the syntax of Ruby code gets
you started with Ruby programming; knowing the API classes leads to mastery of Ruby.

The Date class is provided by the Ruby API. It is described in the Ruby API reference
documentation. The Date class has a Date.new method which instantiates (creates) a new date
when supplied with year, month, and day parameters. You can see this syntax when we
assign Date.new(1990, 9, 22) to the birthdate variable.

Our countdown method contains the most complex code in the class.

First, we set a variable today with today’s date. The Date.today method creates an object that
represents the current date. When the Date.today method is called, Ruby gets the current date
from the computer’s system clock.

Next we create a birthday variable and assign a new date that combines today’s year with
the month and day of the birthdate . This gives us the date of Foobar Kadigan’s birthday this
year.

The Date class can perform complex calendar arithmetic. The variables birthdate and today
are instances of the Date class. We can use a greater-than operator to determine if Foobar
Kadigan’s birthday is in the future or the past.

The if ... else ... end structure is a conditional statement. If the birthday is in the future, we
subtract today from birthday to calculate the number of days remaining until the owner’s
birthday, which we assign to the countdown variable.

If the birthday has already passed, we apply a next_year method to the birthday to get next
year’s birthday. Then we subtract today from birthday.next_year to calculate the number of
days remaining until the owner’s birthday, which we assign to the countdown variable.

The result might be fractional so we use the utility method to_i to convert the result to a
whole number (integer) before assigning it to the countdown variable.

92

http://apidock.com/ruby/Date
http://apidock.com/ruby/Date

This shows you the power of programming in Ruby. Notice that I needed 16 paragraphs and
over 600 words to explain 15 short lines of code. We used only seven Ruby abstractions but
they represent thousands of lines of code in the Ruby language implementation. With
knowledge of Ruby syntax and the Ruby API, a few short lines of code in a text file gives us
amazing ability.

In an upcoming chapter, we’ll look more closely at the syntax and keywords of the Ruby
language. But without knowing more than this, we can build a simple web application.

Let’s see how we can put this functionality to use on a web page.

View
The Owner model provides the data we want to see on the Home page.

We’ll create the markup and layout in a View file and add variables that present the data.

View files go in folders in the app/views/app/views/ directory. In a typical application, one controller
can render multiple views, so we make a folder to match each controller. You can make a
new folder using your file browser or text editor. Or use the Unix mkdir command:

$ mkdir app/views/visitors

Create a file app/views/visitors/new.html.erbapp/views/visitors/new.html.erb:

<h3>Home</h3>
<p>Welcome to the home of <%= @owner.name %>.</p>
<p>I was born on <%= @owner.birthdate %>.</p>
<p>Only <%= @owner.countdown %> days until my birthday!</p>

We’ve created a visitors/visitors/ folder within the app/views/app/views/ directory. We have only a single new
view but if we had more views associated with the Visitors controller, they’d go in the app/app/
views/visitors/views/visitors/ folder.

We name our View file new.html.erbnew.html.erb, adding the .erb.erb file extension so that Rails will use the
ERB templating engine to interpret the markup.

There are several syntaxes that can be used for a view file. In this tutorial, we’ll use the ERB
syntax that is most commonly used by beginners. Some experienced developers prefer to
add gems that provide the Haml or Slim templating engines. As you might guess, a View
that uses the Haml templating syntax would be named new.html.hamlnew.html.haml.

Our HTML markup is minimal, using only the <h3> and <p> tags. The only ERB markup we
add are the <%= ... %> delimiters. This markup allows us to insert Ruby code which will be

93

http://railsapps.github.io/rails-haml.html
http://slim-lang.com/

replaced by the result of evaluating the code. In other words, <%= @owner.name %> will appear
on the page as Foobar Kadigan.

You may have noticed that we refer to the Owner model with the variable @owner . It will be
clear when we create the Visitors controller why we use this syntax (a variable name that
begins with the @ character is called an instance variable).

Obviously, if all we wanted to do was include the owner’s name on the page, it would be
easier to simply write the text. The Rails implementation becomes useful if the name is
retrieved from a database or created programmatically.

We can better see the usefulness of the Owner model when we look at the use of
<%= @owner.countdown %> . There is no way to display a calculation using only static HTML, so
Rails gives us a way to display the birthday countdown calculation.

If you’re a programmer, you might wonder why we only output the variable on the page.
Since we can use ERB to embed any Ruby code, we could perform the calculation right on
the page by embedding
<%= (Date.new(today.year, @owner.birthdate.month, @owner.birthdate.day) - Date.today).to_i %> . If
you’ve used JavaScript or PHP, you may have performed calculations like this, right on the
page. Rails would allow us to do so, but the practice violates the “separation of concerns”
principle that encourages us to perform complex calculations in a model and only display
data in the view.

Before we can display the home page, we need to create the Visitors controller.

Controller
The Visitors controller is the glue that binds the Owner model with the
VisitorsController#new view.

Note: When we refer to a controller action, we use the notation “VisitorsController#new,”
joining the controller class name with the action (method) that renders a page. In this
context, the “#” character is only a documentation convention.

Note: VisitorsController will be the class name and visitors_controller.rbvisitors_controller.rb will be the
filename. The class name is written in camelCase (with a hump in the middle, like a camel)
so we can combine two words without a space. Unix commands get messy when filenames
include spaces so we create a filename that combines two words with an underscore.

Create a file app/controllers/visitors_controller.rbapp/controllers/visitors_controller.rb:

94

http://en.wikipedia.org/wiki/CamelCase

class VisitorsController < ApplicationController

def new
@owner = Owner.new

end

end

We define the class and name it class VisitorsController , inheriting behavior from the
ApplicationController class which is defined in the Rails API.

We only need to define the new method. We create an instance variable named @owner and
assign an instance of the Owner model. Any instance variables (variables named with the @
character) will be available in the corresponding view file.

If we don’t instantiate the Owner model, we’ll get an error when the controller new action
attempts to render the view because we use the @owner instance in the view file.

Keep in mind the purpose of the controller. Each controller action (method) responds to a
request by obtaining a model (if data is needed) and rendering a view.

You’ve already created a view file in the app/views/visitorsapp/views/visitors folder. The new action of the
VisitorsController renders the template app/views/visitors/new.html.erbapp/views/visitors/new.html.erb.

The new method is deceptively simple. Hidden behavior inherited from the
ApplicationController does all the work of rendering the view. We can make the hidden
code explicit if we wish to. It would look something like this:

class VisitorsController < ApplicationController

def new

@owner = Owner.new
render 'visitors/new'

end

end

This is an example of Rails magic. Some developers complain this is black magic because the
“convention over configuration” principle leads to obscurity. Rails often offers default
behavior that looks like magic because the underlying implementation is hidden in the
depths of the Rails code library. This can be frustrating when, as a beginner, you want to
understand what’s going on.

Revealing the hidden code, we see that invoking the new method calls a render method
supplied by the ApplicationController parent class. The render method searches in the app/app/
views/visitorsviews/visitors directory for a view file named newnew (the file extension .html.erb.html.erb is assumed

95

by default). The code underlying the render method is complex. Fortunately, all we need to
do is define the method and instantiate the Owner model. Rails takes care of the rest.

As a beginner, simply accept the magic and don’t confound yourself trying to find how it
works. As you gain experience, you can dive into the Rails source code to unravel the magic.

Scaffolding
This tutorial aims to give you a solid foundation in basic concepts. The
model–view–controller pattern is one of the most important. I’ve found the best way to
understand model–view–controller architecture is to create and examine the model, view,
and controller files.

As you continue your study of Rails, you’ll find other tutorials that use the scaffolding
shortcut. For example, Rails Guides: Getting Started with Rails includes a section “Getting
Up and Running Quickly with Scaffolding” which shows how to use the
rails generate scaffold command to create model, view, and controller files in a single
operation. Students often use scaffolding to create simple Rails applications.

In practice, I’ve observed that working Rails developers seldom use scaffolding. There’s
nothing wrong with it; it just seems that scaffolding doesn’t offer much that can’t be done as
quickly by hand.

Test the Application
We’ve created a model, view, and controller. Now let’s run the application.

Enter the command:

$ rails server

Open a web browser window and navigate to http://localhost:3000/. You’ll see our new
home page.

96

http://guides.rubyonrails.org/getting_started.html
http://localhost:3000

It’s a very simple web page but it uses Ruby to calculate the countdown to the birthday. And
the underlying code conforms to the conventions and stucture of Rails.

Git
At this point, you might have the Rails server running in your console window. We’re going
to run a git command in the console now.

You might think you have to enter Control-c to shut down the server and get the command
prompt. But that’s not necessary. You can open more than one console window. Your
terminal application lets you open multiple tabs so you can easily switch between windows
without using a lot of screen real estate. If you haven’t tried it, now is a good time. It is
convenient to have a console window open for the server and another for various Unix
commands.

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "dynamic home page"
$ git push

Now let’s take a look at troubleshooting.

97

Chapter 17
Troubleshoot
In the last chapter, we built a dynamic home page and learned about the
model–view–controller architecture of Rails. There was a lot to learn, but the code was
simple, and I hope it worked the first time you tried it.

Before we do any more work on our tutorial application, we need to learn about
troubleshooting and debugging. As a software developer, you’ll spend a lot of time with
code that doesn’t work. You’ll need tools and techniques to diagnose problems.

Git
In this chapter we’ll make changes to the application just for troubleshooting.

Before you get started, make sure the work you’ve done is committed to your git repository.
Use the git status command to check:

$ git status

You should see:

On branch master
nothing to commit (working directory clean)

If git status reports any uncommitted changes, go back to the last step in the previous
chapter and commit your work to the git repository before continuing. At the end of this
chapter, we’re going to throw away the work we’ve done in this chapter. We don’t want to
accidentally throw away work from the previous chapter so make sure it is committed to the
repository.

Interactive Ruby Shell
There will be times when you want to try a snippet of Ruby code just to see if it works. Your
tool will be IRB, the Interactive Ruby Shell.

IRB is a Ruby interpreter that runs from the command line. It executes any Ruby code and
provides an immediate response, allowing you to experiment in real-time.

98

Let’s try it.

$ irb
2.0.0p0 :001 >

The command irb launches the program and displays a prompt that show your Ruby
version, a line number, and an arrow. If you enter a valid Ruby expression, the interpreter
will display the result of evaluating the expression.

Try simple arithmetic:

2.0.0p0 :001 > n = 2
=> 2

2.0.0p0 :002 > n + 2
=> 4

Wow! You are using your computer for simple math. Maybe you can delete the calculator
app from your phone.

IRB will evaluate any Ruby expression and helps you quickly determine if syntax and logic
is correct.

IRB for Blocks of Code

At first glance, it appears IRB works on just one line of code.

Actually, IRB can handle multiple lines of code. Try it:

2.0.0p0 :001 > n = 10
=> 10

2.0.0p0 :002 > if n < 10
2.0.0p0 :003?> puts "small"
2.0.0p0 :004?> else
2.0.0p0 :005 > puts "big"
2.0.0p0 :006?> end
big
=> nil

2.0.0p0 :007 >

Here we set n = 10 and then enter a conditional statement line-by-line. After we enter the
final end , IRB interprets the code and outputs the result.

You’ll often enter more than one line of code in IRB. If you find yourself frustrated because
you’ve entered typos and had to enter the same code repeatedly, you can use IRB to load
code you’ve saved in a file:

99

2.0.0p0 :001 > load './mytest.rb'

Quitting IRB

It can be very frustrating to find you are stuck inside IRB. Unlike most shell commands, you
can’t quit with Control-c. Enter Control-d or type exit to quit IRB:

$ irb
2.0.0p0 :001 > exit

Learn More About IRB

Here’s an entertaining way to learn about IRB:

• Why’s (Poignant) Guide to Ruby

Here’s a more conventional way to learn about IRB:

• The Pragmatic Programmer’s Guide

Beyond IRB

If you ask experienced Rails developers for help with IRB, they’ll often recommend you
switch to Pry. Pry is a powerful alternative to the standard IRB shell for Ruby. As you gain
experience, you might take a look at Pry to see what the enthusiasm is all about. But for now,
as a beginner trying out a few lines of Ruby code, there’s no need to learn Pry.

Rails Console
IRB only evaluates expressions that are defined in the Ruby API. IRB doesn’t know Rails.

It’d be great to have a tool like IRB that evaluates any expression defined in the Rails API.
The tool exists; it’s called the Rails console. It is particularly useful because it loads your
entire Rails application. Your application will be running as if the application was waiting to
respond to a web request. Then you can expose behavior of any pieces of the web
application.

$ rails console
Loading development environment (Rails 4.0.1)
2.0.0p0 :001 >

100

http://mislav.uniqpath.com/poignant-guide/book/expansion-pak-1.html
http://ruby-doc.org/docs/ProgrammingRuby/html/irb.html
http://pryrepl.org/

The Rails console behaves like IRB but loads your Rails development environment. The
prompt shows it is ready to evaluate an expression.

Let’s use the Rails console to examine our Owner model:

2.0.0p0 :001 > myboss = Owner.new
=> #<Owner:0x007fe885163aa8>

We’ve created a variable named myboss and created a new instance of the Owner class. The
Rails console responds by displaying the unique identifier it uses to track the object. The
identifier is not particularly useful, except to show that something was created.

If you’re unsure about the difference between an instance and a class, we’ve just seen that we
can make one or more instances of an object by calling the Owner.new method. When we
specify the Owner class, the class definition is loaded into the computer’s working memory
(our development environment) from the class definition file on disk. Then we can use the
Owner.new method to make one or more instances of the Owner class. Each instance is a unique
object with its own data attributes but the same behavior as other objects instantiated from
its class.

Let’s assign the name of our boss to a variable called name :

2.0.0p0 :002 > name = myboss.name
=> "Foobar Kadigan"

Our variable myboss is an instance of an Owner class so it responds to the method Owner.name
by returning the owner’s name.

We want to show respect to our boss so we’ll perform some string manipulation:

2.0.0p0 :003 > name = 'Mr. ' + name
=> "Mr. Foobar Kadigan"

We’re done for now. When we quit the Rails console or shut down the computer the Owner
class definition remains stored on disk but the instances disappear. The bits that were
organized to create the variable name will evaporate into the ether.

Actually, the bits are still there, in the form of logic states in the computer’s chips, but they
have no meaning until another program uses them.

Enter Control-d or type exit to quit the Rails console.

The Rails console is a useful utility. It is like a handy calculator for your code. Use it when
you need to experiment or try out short code snippets.

101

Rails Logger
As you know, a Rails application sends output to the browser that makes a web request. On
every request, it also sends diagnostic output to the server log file. Depending on whether the
application is running in the development environment or in production, the log file is here:

• log/development.loglog/development.log
• log/production.loglog/production.log

In development, everything written to the log file appears in the console window after you
run the rails server command. Scrolling the console window is a good way to see
diagnostics for every request.

Here’s what you see when you visit the application home page:

Started GET "/" for 127.0.0.1 at ...
Processing by VisitorsController#new as HTML

Rendered visitors/new.html.erb within layouts/application (48.8ms)
Completed 200 OK in 233ms (Views: 211.5ms | ActiveRecord: 0.0ms)

Here’s the best part. You can add your own messages to the log output by using the Rails
logger. Let’s try it out.

Modify the file app/controllers/visitors_controller.rbapp/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

def new
Rails.logger.debug 'DEBUG: entering new method'
@owner = Owner.new
Rails.logger.debug 'DEBUG: Owner name is ' + @owner.name

end

end

Visit the home page again and you’ll see this in the console output:

Started GET "/" for 127.0.0.1 at ...
Processing by VisitorsController#new as HTML
DEBUG: entering new method
DEBUG: Owner name is Foobar Kadigan

Rendered visitors/new.html.erb within layouts/application (0.2ms)
Completed 200 OK in 8ms (Views: 4.6ms | ActiveRecord: 0.0ms)

102

If you really needed to do so, you could add a logger statement at every step in the
application. You could see how the application behaves, step by step. And you could “print”
the value of every variable at every step. You’ll never need diagnostics at this level of detail
in Rails, but the logger is extremely useful when you are trying to understand unexpected
behavior.

Let’s add logger statements to the Owner model. Modify the file app/models/owner.rbapp/models/owner.rb:

class Owner

def name
name = 'Foobar Kadigan'

end

def birthdate
birthdate = Date.new(1990, 12, 22)

end

def countdown
Rails.logger.debug 'DEBUG: entering Owner countdown method'
today = Date.today
birthday = Date.new(today.year, birthdate.month, birthdate.day)
if birthday > today
countdown = (birthday - today).to_i

else
countdown = (birthday.next_year - today).to_i

end
end

end

We added the Rails.logger.debug statement to the Owner.countdown method.

Visit the home page and here’s what you’ll see in the console output:

Started GET "/" for 127.0.0.1 at ...
Processing by VisitorsController#new as HTML
DEBUG: entering new method
DEBUG: Owner name is Foobar Kadigan
DEBUG: entering Owner countdown method

Rendered visitors/new.html.erb within layouts/application (0.3ms)
Completed 200 OK in 7ms (Views: 4.2ms | ActiveRecord: 0.0ms)

You’ll often need to “get inside” the model or controller to see what’s happening. The Rails
logger is the best tool for the job.

Here are some tricks for the Rails logger.

103

In a controller, you can use the method logger on its own. In a model, you have to write
Rails.logger (both class and method).

You can use any of the methods logger.debug , logger.info , logger.warn , logger.error , or
logger.fatal to write log messages. By default, you’ll see any of these messages in the
development log. Log messages written with the logger.debug method will not be recorded in
a production log file.

If you want your log messages to stand out, you can add formating code for color:

Rails.logger.debug "\033[1;34;40m[DEBUG]\033[0m " + 'will appear in bold blue'

For more about the Rails logger, see the RailsGuide: Debugging Rails Applications.

Revisiting the Request-Response Cycle
Earlier, when we investigated the request-response cycle, we looked in the server log to see
the response to the web browser request.

Now, with debug statements in the controller and model, we’ll see messages showing the
server’s traverse of the model-view-controller architecture.

Started GET "/" for 127.0.0.1 at ...
Processing by VisitorsController#new as HTML
DEBUG: entering new method
DEBUG: Owner name is Foobar Kadigan
DEBUG: entering Owner countdown method

Rendered visitors/new.html.erb within layouts/application (0.3ms)
Completed 200 OK in 5ms (Views: 4.2ms | ActiveRecord: 0.0ms)

Notice how the diagnostic messages in the console window match the headers in the
browser diagnostic view. The browser’s “Request Method:GET” matches the server’s
“Started GET.” The browser’s “Request URL:http://localhost:3000/” matches the server’s
“‘/’ for 127.0.0.1” (localhost is at IP address 127.0.0.1). The browser’s “Status Code: 200”
matches the server’s “Completed 200 OK” (you might have to clear the browser’s cache if the
browser is showing “304 Not Modified”).

We can see evidence of the model-view-controller architecture. “Processing by
VisitorsController#new” shows the program flow entering the controller. Our debug
statements show we enter the new method and reveal the value of the Owner name. The next
debug statement reveals the flow has passed to the Owner model. A diagnostic message
shows the controller has rendered the visitors/new.html.erbvisitors/new.html.erb view file. Finally, the
“Completed 200 OK” message indicates the response has been sent to the browser.

104

http://guides.rubyonrails.org/debugging_rails_applications.html

As we learned, the model-view-controller architecture is an abstract design pattern. We’ve
seen it reflected in the file structure of the Rails application directory. Now we can see it as
activity in the server log.

The Stack Trace
The Rails logger is extremely useful if you want to insert messages to show program flow or
display variables. But there will be times when program flow halts and the console displays
a stack trace.

Let’s deliberately create an error condition and see an error page and stack trace.

Modify the file app/controllers/visitors_controller.rbapp/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

def new
Rails.logger.debug 'DEBUG: entering new method'
@owner = Owner.new
Rails.logger.debug 'DEBUG: Owner name is ' + @owner.name
DISASTER

end

end

Visit the home page and you’ll see an error page:

105

You’ll see this error page because we’ve installed the better_errors gem. Without the
better_errors gem, you’d see the default Rails error page which is quite similar.

In the console log, the stack trace will show everything that happens before Rails encounters
the error:

Started GET "/" for 127.0.0.1 at ...
Processing by VisitorsController#new as HTML
DEBUG: entering new method
DEBUG: Owner name is Foobar Kadigan
Completed 500 Internal Server Error in 10ms

NameError - uninitialized constant VisitorsController::DISASTER:
app/controllers/visitors_controller.rb:7:in `new'
.
.
.

To save space, I’m only showing the top line of the stack trace. I’ve eliminated about sixty
lines from the stack trace.

106

https://github.com/charliesome/better_errors

Don’t feel bad if your reaction to a stack trace is an immediate, “TMI!” Indeed, it is usually
Too Much Information. There are times when it pays to carefully read through the stack
trace line by line, but most often, only the top line of the stack trace is important.

In this case, both the error page and the top line of the stack trace show the application failed
(“barfed”) when it encountered an “uninitialized constant” at line 7 of the app/controllers/app/controllers/
visitors_controller.rbvisitors_controller.rb file in the index method. It’s easy to find line 7 in the file and see that
is exactly where we added a string that Rails doesn’t understand.

The point of this exercise is to encourage you to read the top line of the stack trace and use it
to diagnose the problem. I’m always surprised how many developers ignore the stack trace,
probably because it looks intimidating.

Raising an Exception
As you just saw, you can purposefully break your application by adding characters that Rails
doesn’t understand. However, there is a better way to force your program to halt, called
raising an exception.

Let’s try it. Modify the file app/controllers/visitors_controller.rbapp/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

def new
Rails.logger.debug 'DEBUG: entering new method'
@owner = Owner.new
Rails.logger.debug 'DEBUG: Owner name is ' + @owner.name
raise 'Deliberate Failure'

end

end

You can throw an error by using the raise keyword from the Ruby API. You can provide
any error message you’d like in quotes following raise .

Here’s the console log after you try to visit the home page:

107

Started GET "/" for 127.0.0.1 at ...
Processing by VisitorsController#new as HTML
DEBUG: entering new method
DEBUG: Owner name is Foobar Kadigan
Completed 500 Internal Server Error in 22ms

RuntimeError - Deliberate Failure:
app/controllers/visitors_controller.rb:7:in `new'
.
.
.

Before we continue, let’s remove the deliberate failure. Modify the file app/controllers/app/controllers/
visitors_controller.rbvisitors_controller.rb:

class VisitorsController < ApplicationController

def new
Rails.logger.debug 'DEBUG: entering new method'
@owner = Owner.new
Rails.logger.debug 'DEBUG: Owner name is ' + @owner.name

end

end

Rails and the Ruby API provide a rich library of classes and methods to raise and handle
exceptions. For example, you might want to display an error if a user enters a birthdate that
is not in the past. Rails includes various exception handlers to display errors in production so
users will see a helpful web page explaining the error.

Git
There’s no need to save any of the changes we made for troubleshooting.

You could go to each file and carefully remove the debugging code you added. But there’s
an easier way.

Check which files have changed:

108

$ git status
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: app/controllers/visitors_controller.rb
modified: app/models/owner.rb
#
no changes added to commit (use "git add" and/or "git commit -a")

Use Git to revert your project to the most recent commit:

$ git reset --hard HEAD

The Git command git reset --hard HEAD discards any changes you’ve made since the most
recent commit. Check the status to make sure:

$ git status
On branch master
nothing to commit (working directory clean)

We’ve cleaned up after our troubleshooting exercise.

109

Chapter 18
Just Enough Ruby
Experienced Rails developers debate whether beginners should study Ruby before learning
Rails.

By all means, if you love the precision and order of programming languages, dive into the
study of Ruby from the beginning. But most people don’t delay starting Rails while learning
Ruby; realistically, you’ll retain more knowledge of Ruby if you learn it as you build things
in Rails. That is the approach we’ve taken in this book. You’ve already built a simple Rails
application and used Ruby as you did so.

Reading Knowledge of Ruby
What you need, more than anything, when you start working with Rails, is reading
knowledge of Ruby.

With a reading knowledge of Ruby you’ll avoid feeling overwhelmed or lost when you
encounter code examples or work through a tutorial. Later, as you tackle complex projects
and write original code, you’ll need to know enough of the Ruby language to implement the
features you need. But as a student, you’ll be following tutorials that give you all the Ruby
you need. Your job is to recognize the language keywords and use the correct syntax when
you type Ruby code in your text editor.

To that end, this chapter will review the Ruby keywords and syntax you’ve already learned.
And you’ll extend your knowledge so you’ll be prepared for the Ruby you’ll encounter in
upcoming chapters.

Ruby Example
To improve your reading knowledge of Ruby, we’ll work with an example file that contains
a variety of Ruby expressions.

We won’t use this file in our tutorial application, so you’ll delete it at the end of this chapter.
But we’ll approach it as real Ruby code, so make a file and copy the code using your text
editor.

First we have to consider where the file should go. It will not be a model, view, controller, or
any other standard component of Rails. Rails has a place for miscellaneous files that don’t fit
in the Rails API. We’ll create the file in the lib/lib/ folder. That’s the folder you’ll use for any
supporting Ruby code that doesn’t fit elsewhere in the Rails framework.

110

Create a file lib/example.rblib/example.rb:

class Example < Object

This is a comment.

attr_accessor :honorific
attr_accessor :name
attr_accessor :date

def to_s
@name

end

def initialize(name,date)
@name = name
@date = date.nil? ? Date.today : date

end

def titled_name
@honorific ||= 'Esteemed'
titled_name = "#{@honorific} #{@name}"

end

def december_birthdays
born_in_december = []
famous_birthdays.each do |name, date|
if date.month == 12
born_in_december << name

end
end
born_in_december

end

private

def famous_birthdays
birthdays = {
'Ludwig van Beethoven' => Date.new(1770,12,16),
'Dave Brubeck' => Date.new(1920,12,6),
'Buddy Holly' => Date.new(1936,9,7),
'Keith Richards' => Date.new(1943,12,18)

}
end

end

In some ways, this Ruby code is like a poem from Lewis Carroll:

111

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

"Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!"

The poem corresponds to the rules of English syntax but is nonsense.

The code follows the rules of Ruby syntax, and unlike the poem, uses meaningful words. But
it is unclear how the author intends anyone to use the code.

We know that Foobar Kadigan was born in December. Perhaps the code could be used to
display a list of famous people who were also born in December.

If you’re beginning a career as a Rails developer, this won’t be the last time you look at code
and wonder what the author was intending.

In this case, I just want to give you some code that illustrates typical Ruby syntax and
structure.

Ruby Keywords
When reading Ruby code, the first challenge is determining which words are Ruby
keywords and which were made up by the developer. Code is only strings of characters. But
some strings have special meaning for everyone and all others are arbitrary words that only
have meaning to an individual developer.

As you gain experience, you’ll recognize Ruby keywords because you’ve seen them before.

You’ll also recognize a developer’s made-up words because of their position relative to other
words and symbols. Some made-up words will be obvious because they are just too
idiosyncratic to be part of the Ruby language. For example, you’ll rightly guess that myapp or
fluffycat are not part of the Ruby language.

If you’re reading a Lewis Carroll poem, you could look up words in a dictionary to see if you
find them.

There is only one way to be sure which words are part of the Ruby language: Check the
Ruby API.

As an exercise, pick one of the words from the example code that you think might be a Ruby
keyword and search the API to find it.

112

If you want to be a diligent student, you can check every keyword in the example code to
find out whether it is in the Ruby API. It is more practical to learn to recognize Ruby
keywords, which we’ll do next.

API Documentation

The Ruby API documentation lists every keyword in the language:

• Ruby API – the official Ruby API
• apidock.com/ruby – Ruby API docs with usage notes

Object-Oriented Terminology
Software architects use a common vocabulary to talk about programming languages:

• classclass
• instanceinstance or objectobject
• methodmethod
• attributeattribute or propertyproperty
• inheritanceinheritance
• class hierarchyclass hierarchy

There are three ways to learn what these words mean. You can memorize the definitions.
You can write code and intuitively grasp the meanings. Or you can gain an understanding
by applying metaphors.

Houses

For example, some programming textbooks attempt to explain a class like this: A blueprint
for a house design is like a class definition. All the houses built from that blueprint are objects
of that class. A given house is an instance.

Vehicles

Or: The concept of “vehicle” is like a class. Vehicles can have attributes, like color or number
of doors. They have behavior, or methods, like buttons that turn on lights or honk a horn. The
concepts of “truck” or “car” are also classes, inheriting common characteristics from the
concept “vehicle.” The blue car in your driveway with four doors is an instance of the class
“car.”

113

http://ruby-doc.org/
http://apidock.com/ruby

Cookies

I like the cookie metaphor the best.

A class definition is like a cookie cutter.

Bits in the computer memory are like cookie dough.

The cookie cutter makes as many individual cookies as you want. Each cookie is an instance
of the cookie class, with the same shape and size as the others. Cookies are objects.

You can decorate each cookie with sprinkles, which are attributes that are unique to each
instance. Some cookies get red sprinkles, some get green, but the shape remains the same.

Running a program is like baking. The cookies change state from raw to cooked.

Sticking a toothpick in a cookie is like calling a method. The method returns a result that tells
you about the state: Is it done?

Limitations of Metaphors

Metaphors are imperfect.

If baking was like running a program, all the cookies would disappear as soon as the oven
was turned off.

When a software program contains a “car” model, it doesn’t fully model cars in the physical
world. It represents an abstraction of characteristics a programmer deems significant.

Most classes in software APIs don’t model anything in the real world. They typically
represent an abstraction, like an Array or a Hash, which inherits characteristics from another
abstraction, for example, a Collection.

Given the limitations of metaphors, maybe it is easier to simply say that software allows us
to create abstractions that are “made real” and then manipulated and transformed.
Terminology such as class and instance describe the abstractions and the relationships among
them.

Definitions

Here are definitions for some of the terms we encounter when we consider Rails from the
perspective of a software architect:

abstractionabstraction
a concept that has a relationship to other concepts

114

classclass
an abstraction that encapsulates data and behavior

class definitionclass definition
written code that describes a class

instanceinstance or objectobject
a unique version of a class that exists only while a program is running

inheritanceinheritance
a way to make a class by borrowing from another class

class hierarchyclass hierarchy
classes that are related by inheritance

methodmethod
a way to get a result from an object

attributeattribute or propertyproperty
data that can be set or retrieved from the object

variablevariable
a name that can be assigned a value or object

expressionexpression or statementstatement
any combination of variables, classes, and methods that returns a result

Some of these terms are abstractions that are “made real” in the Ruby API (such as class and
method); others are just terms that describe code, much like we use terms such as “adjective”
or “noun” to talk about the grammar of the English spoken language.

Ruby Files
When we write code, we save it in files. Rails provides a directory structure with “assigned
parking” so that Ruby files are automatically loaded when you start the web server. Our
miscellaneous example file goes in the lib/lib/ folder.

By convention, Ruby files end with the file extension .rb.rb.

Using IRB

In the “Troubleshooting” chapter, you used IRB (the Interactive Ruby Shell) to try out Ruby
code. You can use IRB to try out the example code in the console.

115

$ irb
2.0.0p0 :001 > load 'lib/example.rb'
=> true

2.0.0p0 :002 > require 'date'
=> true

2.0.0p0 :003 > ex = Example.new('Daniel',nil)
=> #<Example:... @name="Daniel", @date=#<Date: 2013-09-03 ((...)>>

2.0.0p0 :004 > list = ex.december_birthdays
=> ["Ludwig van Beethoven", "Dave Brubeck", "Keith Richards"]

Entering the load directive and the filename brings the code into IRB.

The require 'date' statement loads the Ruby date library.

The statement ex = Example.new('Daniel',nil) creates an object from the Example class.

The ex.december_birthdays method returns an array of of names.

Remember you can use Control-d to exit from IRB.

Now, for practice, we’ll read the Ruby code.

Classes
You don’t have to create classes to program in Ruby. If you only write simple programs, you
won’t need classes. Classes are used to organize your code and make your software more
modular. For the software architect, classes make it possible to create a structure for complex
software programs. To use Rails, you’ll use the classes and methods that are defined in the
Rails API.

There is one class at the apex of the Ruby class hierarchy: BasicObject . BasicObject is a very
simple class, with almost no methods of its own. The Object class inherits from BasicObject .
All classes in the Ruby and Rails APIs inherit behavior from Object . Object provides basic
methods such as nil? and to_s (“to string”) for every class that inherits from Object .

We create a class Example and inherit from Object with the < “inherits from” operator:

class Example < Object
.
.
.
end

The end statement indicates all the preceding code is part of the Example class.

116

http://www.ruby-doc.org/core-2.0.0/BasicObject.html
http://www.ruby-doc.org/core-2.0.0/BasicObject.html
http://ruby-doc.org/core-2.0.0/Object.html
http://ruby-doc.org/core-2.0.0/Object.html

In Ruby, all classes inherit from the Object class, so we don’t need to explicitly subclass from
Object as we do here. The example just shows it for teaching purposes.

Here is the Example class without the explicit subclassing from Object :

class Example
.
.
.
end

Much of the art of programming is knowing what classes are available in the API and
deciding when to subclass to inherit useful methods.

Whitespace and Line Endings
Whitespace characters such as spaces and tabs are generally ignored in Ruby code, except
when they are included in strings. There are several special cases where whitespace is
significant in Ruby expressions but you are not likely to encounter these cases as a beginning
Rails developer.

Some programming languages (Java and the C family) require a semicolon as a terminator
character at the end of statements. Ruby does not require a semicolon to terminate a
statement. Instead, if the Ruby code on a line is a complete expression, the line ending
signifies the end of the statement. If the line ends with a + or other operator, or a backslash
character, the statement is split into multiple lines.

Comments
Ruby ignores everything that is marked as a comment. Use comments for notes to yourself
or other programmers.

This is a comment.

You can also turn code into comments if you don’t want the code to run. This is a common
trick when you want to “turn off” some part of your code but you don’t want to delete it just
yet, because you are trying out alternatives.

Attributes
In Ruby, attributes are also called properties.

117

Classes can have attributes, which we can “set” and “get.” That is, we can establish a value
for an attribute and retrieve the value by specifying the attribute name.

Attributes are a convenient way to push data to an object and pull it out later.

Here we use the attr_accessor directive to specify that we want to enable access to honorific ,
name and date attributes.

attr_accessor :honorific
attr_accessor :name
attr_accessor :date

If we use attr_accessor to establish attributes, we can use the attribute names as methods.
For example, we could write:

ex = Example.new('Daniel',nil)
my_name = ex.name

In Ruby, attributes or properties are just a specialized form of methods.

Methods
Classes give organization and structure to a program. Methods get the work done.

Any class can have methods. Methods are a series of expressions that return a result (a
value). We say methods describe the class behavior.

A method definition begins with the keyword def and (predictably) ends with end .

def to_s
@name

end

Here we are overriding the to_s (“to string”) method from the parent Object class.

Ordinarily, the to_s method returns the object’s class name and an object id. Here we will
return the string assigned to the variable @name .

Most times you won’t override the to_s (“to string”) method. This example shows how you
can override any method inherited from a parent class.

118

Dot Operator
The “dot” is the method operator. This tiny punctuation symbol is a powerful operator in
Ruby.

It allows us to call a method to get a result.

Sometimes we say we send a message to the object when we invoke a method, implying the
object will send a result.

Some classes, such as Date , provide class methods which can be called directly on the class
without instantiating it first. For example, if you were to run this in the Rails console:

Date.today
=> Tue, 15 Oct 2013

More often, methods are called on variables which are instances of a class. For example:

birthdate = Date.new(1990, 12, 22)
=> Sat, 22 Dec 1990
birthmonth = birthdate.month
=> 12

We can apply method chaining to objects. For example, String has methods reverse and
upcase (among many others). We could write:

nonsense = 'foobar'
=> "foobar"
reversed = nonsense.reverse
=> "raboof"
capitalized = reversed.upcase
=> "RABOOF"

It is easier to use method chaining and write:

'foobar'.reverse.upcase
=> "RABOOF"

Classes create a structure for our software programs and methods do all the work.

119

Question and Exclamation Methods
You’ll see question marks and exclamation points (sometimes called the “bang” character)
used in method names. These characters are simply a naming convention for Ruby methods.

The question mark indicates the method will return a boolean value (true or false).

The bang character indicates the method is “dangerous.” In some cases it means the method
will change the object rather just return a result. In Rails an exclamation point often means
the method will throw an exception on failure rather than failing silently.

Method Parameters
Methods are useful when they operate on data.

If we want to send data to a method, we define the method and indicate it will accept
parameters. Parameters are placeholders for data values. The values that are passed to a
method are arguments. “Parameters” are empty placeholders and “arguments” are the actual
values. In practice, “parameters” and “arguments” are terms that are used interchangeably
and not many developers will notice if you mix up the terms.

Here we define a method initialize that takes name and date arguments.

def initialize(name,date)

Ruby is clever with method parameters. You can define a method and specify default values
for parameters. You can also pass extra arguments to a method if you define a method that
allows optional parameters. This makes methods very flexible.

We separate our parameters with commas. For readability, we enclose our list of parameters
in parentheses. In Ruby, parentheses are always optional but they often improve readability.

Initialize Method
Objects are created from classes before they are used. As I suggested earlier, class definitions
are cookie cutters; the Ruby interpreter uses them to cut cookies. When we call the new
method, we press the cookie cutter into the dough and get a new object. All the cookies will
have the same shape but they can be decorated differently, by sprinkling attributes of
different values.

The initialize method is one of the ways we sprinkle attributes on our cookie.

120

def initialize(name,date)

When we want to use an Example object and assign it to a variable, we will instantiate it with
Example.new(name,date) . The new method calls the initialize method automatically. If we
don’t define an initialize method, the new method still works, inherited from Object , so we
can always instantiate any class.

Variable
In Ruby, everything is an object. We can assign any object to a variable. The variable works
like an alias. We can use a variable anywhere inside a method as if it were the assigned
object. The variable can be assigned a string, a numeric value, or an instance of any class (all
are objects).

name

You can assign a new value to a variable anywhere in your method. You can assign a
different kind of object if you want. You can take away someone’s name and give them a
number. We can create a variable player , assign it the string 'Jackie Robinson' , replace the
value with an integer 42 , or even a date such as Date.new(1947,4,15) .

Symbol
Obviously, we see many symbols when we read Ruby code, such as punctuation marks and
alphanumeric characters. But symbol has a specific meaning in Ruby. It is like a variable, but
it can only be assigned a value once. After the initial assignment, it is immutable; it cannot be
changed.

You will recognize a symbol by the colon that is always the first character.

:name

Symbols are efficient and fast because the Ruby interpreter doesn’t have to work to check
their current values.

You’ll often see symbols used in Rails where you might expect a variable.

121

Instance Variable
An ordinary variable only retains its assigned value within its most immediate
surroundings. If you assign a variable inside a method, the variable only can be used inside
the method.

Often you want a variable to be useful throughout a class, in any method. You can declare an
instance variable by using an @ (at) sign as the first character of the variable name.

The instance variable can be used by any method after the class is instantiated.

@name = name

In a Rails controller, you’ll often see a model assigned to an instance variable. Earlier we saw
@owner = Owner.new when we instantiated an Owner model. We use an instance variable when
we want a model to be available to the view template.

Rails beginners learn the simple rule that you have to use the @ (at) sign if you want a
variable to be available in the view. Intermediate Rails developers learn that the variable
with the @ (at) sign is called an instance variable and is only available within the scope of the
instance (practically speaking, to other methods in the class definition). That leads to a
question: Why is an instance variable available inside a view?

There is a good reason. A Rails view is NOT a separate class. It is a template and, under the
hood, it is part of the current controller object. From the viewpoint of a programmer, a Rails
controller and a view are separate files, segregated in separate folders. From the viewpoint of
a software architect, the controller is a single object that evaluates the template code, so an
instance variable can be used in the view file.

This example shows us that the programmer and the software architect have different
perspectives on a Rails application. Understanding Rails requires an integration of multiple
points of view.

Double Bar Equals Operator
I’ve suggested that the best way to get help is to use Google or Stack Overflow to look for
answers. But that’s difficult when you don’t know what symbols are called. Try googling
“||=” and you’ll get no results. Instead, try googling “bar bar equals ruby” or “double pipe
equals ruby” and you’ll find many explanations of the “or equals” operator. This is an
example of mysterious shorthand code you’ll often find in Rails.

“||=” is used for conditional assignment. In this case, we only assign a value to the variable
if no value has been previously assigned.

122

@honorific ||= 'Esteemed'

It is equivalent to this conditional expression:

if not x
x = y

end

Conditional assignment is often used to assign a “default value” when no other value has
been assigned.

Conditional
Conditional logic is fundamental to programming. Our code is always a path with many
branches.

When the Ruby interpreter encounters an if keyword, it expects to find an expression
which evaluates as true or false (a boolean).

If the expression is true, the statements following the condition are executed.

If the expression is false, any statements are ignored, unless there is an else , in which case
an alternative is executed.

if date.month == 12
.
.
.

end

Sometimes you’ll see unless instead of if , which is a convenient way of saying “execute the
following if the condition is false.”

In Ruby, the conditional expression can be a simple comparison, as illustrated above with the
== (double equals) operator. Or if can be followed by a variable that has been assigned a
boolean value. Or you can call a method that returns a boolean result.

Ternary Operator
A basic conditional structure might look like this:

123

if date.nil?
@date = Date.today

else
@date = date

end

We test if date is undefined (nil). If nil, we assign today’s date to the instance variable @date .
If date is already assigned a value, we assign it to the instance variable @date . This is useful
in the initialize(name,date) method in our example code because we want to set today’s date
as the default value for the instance variable @date if the parameter date is nil.

Ruby developers like to keep their code tight and compact. So you’ll see a condensed version
of this conditional structure often, particularly when a default value must be assigned.

This compact conditional syntax is named the ternary operator because it has three
components. Here is the syntax:

condition ? value_if_true : value_if_false

Here is the ternary operator we use in our example code:

@date = date.nil? ? Date.today : date

This is another example of Ruby syntax that you must learn to recognize by sight because it
is difficult to interpret if you have never seen it before.

For more Ruby code that has been condensed into obscurity, see an article on Ruby Golf.
Ruby golf is the sport of writing code that uses as few characters as possible.

Interpolation
Rubyists love to find special uses for orthography such as hashmarks and curly braces. It
seems Rubyists feel sorry for punctuation marks that don’t get much use in the English
language and like to give them new jobs.

We already know that we can assign a string to a variable:

name = 'Foobar Kadigan'

We can also perform “string addition” to concatenate strings. Here we add an honorific, a
space, and a name:

124

http://www.sitepoint.com/ruby-golf/

@honorific = 'Mr.'
@name = 'Foobar Kadigan'
titled_name = @honorific + ' ' + @name
=> "Mr. Foobar Kadigan"

Single quote marks indicate a string. In the example above, we enclose a space character
within quote marks so we add a space to our string.

You can eliminate the ungainly mix of plus signs, single quote marks, and space characters
in the example above.

Use double quote marks and you can perform interpolation, which gives a new job to the
hashmark and curly brace characters:

@honorific = 'Mr.'
@name = 'Foobar Kadigan'
titled_name = "#{@honorific} #{@name}"
=> "Mr. Foobar Kadigan"

The hashmark indicates any expression within the curly braces is to be evaluated and
returned as a string. This only works when you surround the expression with double quote
marks.

Interpolation is cryptic when you first encounter the syntax, but it streamlines string
concatenation.

Access Control
Any method you define will return a result.

Sometimes you want to create a method that only can be used by other methods in the same
class definition. This is common when you need a simple utility method that is used by
several other methods.

Use the keyword private to indicate the method should not be accessed by a call to the object
from outside the instance. Any methods that follow the keyword private are only used by
other methods in the same object.

private

You often see private methods in Rails. Ruby provides a protected keyword as well, but it is
seldom seen in Rails applications. Protected methods can be invoked only by objects of the
defining class and its subclasses.

125

Hash
Our example code includes a private method named famous_birthdays that returns a
collection of names and birthdays of famous musicians.

Computers have always been calculation machines; they are just as important in managing
collections.

One important type of collection is named a Hash. A Hash is a data structure that associates
a key to some value. You retrieve the value based upon its key. This construct is called a
dictionary, an associative array, or a map in other languages. You use the key to “look up” a
value, as you would look up a definition for a word in a dictionary.

You’ll recognize a Hash when you see curly braces (again, Rubyists give a job to under-
utilized punctuation marks).

birthdays = {
'Ludwig van Beethoven' => Date.new(1770,12,16),
'Dave Brubeck' => Date.new(1920,12,6),
'Buddy Holly' => Date.new(1936,9,7),
'Keith Richards' => Date.new(1943,12,18)

}

Rubyists also like to create novel uses for mathematical symbols. The combination of an =
(equals) sign and > (greater than) sign is called a hashrocket. The => (hashrocket) operator
associates a key and value pair in a Hash.

Ruby 1.9 introduced a new way to associate key and value pairs in a Hash:

birthdays = {
beethoven: Date.new(1770,12,16),
brubeck: Date.new(1920,12,6),
holly: Date.new(1936,9,7),
richards: Date.new(1943,12,18)

}

Here, instead of using a string as the key, we are using Ruby symbols, which enable faster
processing. The : (colon) character associates the key and value.

Ordinarily, a symbol is defined with a leading colon character. In a Hash, a trailing colon
makes a string into a symbol.

If you want to transform a string containing spaces into a symbol in a Hash, you can do it,
though the syntax is awkward:

126

birthdays = {
:'Ludwig van Beethoven' => Date.new(1770,12,16)

}

Whether with colons or hashrockets, you’ll often see Hashes used in Rails.

Array
An Array is a list. Arrays can hold objects of any data type. In fact, arrays can contain a mix
of different objects. For example, an array can contain a string and another array (this is an
example of a nested array).

An array can be instantiated with square brackets:

born_in_december = []

We can populate the array with values when we create it:

my_list = ['apples', 'oranges']

If we don’t want to use quote marks and commas to separate strings in a list, we can use the
%w syntax:

my_list = %w(apples oranges)

We can add new elements to an array with a push method:

my_list = Array.new
=> []
my_list.push 'apples'
=> ["apples"]
my_list.push 'oranges'
=> ["apples", "oranges"]

In our example code, we use the << shovel operator to add items to the array:

born_in_december << name

A Ruby array has close to a hundred available methods, including operations such as size
and sort . See the Ruby API for a full list.

127

http://www.ruby-doc.org/core-2.0.0/Array.html

Iterator
Of all the methods available for a Ruby collection such as Hash or Array, the iterator may be
the most useful.

You’ll recognize an iterator when you see the each method applied to a Hash or Array:

famous_birthdays.each

The each keyword is always followed by a block of code. Each item in an Array, or key-
value pair in a Hash, is passed to the block of code to be processed.

Block
You can recognize a block in Ruby when you see a do ... end structure. A block is a common
way to process each item when an iterator such as each is applied to a Hash or Array.

In our example, we iterate over the famous_birthdays hash:

famous_birthdays.each do |name, date|
.
.
.

end

Within the two pipes (or bars), we assign the key and value to two variables.

The block is like an unnamed method. The two variables are available only within the block.
As each key-value pair is presented by the iterator, the variables are assigned, and the
statements in the block are executed.

In our example code, we evaluate each date in the famous_birthdays hash to determine if the
musician was born in December. When we find a December birthday, we add the name of
the musician to the born_in_december array:

famous_birthdays.each do |name, date|
if date.month == 12
born_in_december << name

end
end

Computer scientists consider a block to be a programming language construct called a
closure. Ruby has other closures, including the proc (short for procedure) and the lambda.

128

Though blocks are common you’ll seldom see procs or lambdas in ordinary Rails code. They
are more common in the Rails source code where advanced programming techniques are
used more frequently.

The key point to know about a block (or a proc or a lambda) is that it works like a method.
Though you don’t see a method definition, you can use a block to evaluate a sequence of
statements and obtain a result.

Rails and More Keywords
We’ve looked at only a few of the keywords and constructs you will see in Ruby code. The
exercise has improved your Ruby literacy, so you’ll have an easier time reading Ruby code.

Nothing in the exercise is Rails. The example code only uses keywords from the Ruby API.

Rails has its own API, with hundreds of classes and methods. The Rails API uses the syntax
and keywords of the Ruby language to construct new classes and create new keywords that
are specific to Rails and useful for building web applications.

We say Ruby is a general-purpose language because it can be used for anything. Rails is a
domain-specific language (DSL) because it is used only by people building web applications (in
this sense, “domain” means area or field of activity). Ruby is a great language to use for
building a DSL, which is why it was used for Rails. Unlike some other programming
languages, Ruby easily can be extended or tweaked. For example, developers can redefine
classes, add extra methods to existing classes, and use the special method_missing method to
handle method calls that aren’t previously defined. Software architects call this
metaprogramming which simply means clever programming that twists and reworks the
programming language.

When you add a gem to a Rails project, you’ll add additional keywords. Some of the most
powerful gems add their own DSLs to your project. For example, the Cucumber gem
provides a DSL for turning user stories into automated tests.

Adding Rails, additional gems, and DSLs provides powerful functionality at the cost of
complexity. But it all conforms to the syntax of the Ruby language. As you learn to recognize
Ruby keywords and language structures, you’ll be able to pick apart the complexity and
make sense of any code.

More Ruby
To develop your proficiency as a Rails developer, I hope you will make an effort to learn
Ruby as you learn Rails. Don’t be lazy; when you encounter a bit of Ruby you don’t
understand, make an effort to find out what is going on. Spend time with a Ruby textbook or
interactive course when you work on Rails projects.

129

Online

• TryRuby.org – free browser-based interactive tutorial from Code School
• Codecademy Ruby Track – free browser-based interactive tutorials from

Codecademy
• Ruby Monk – free browser-based interactive tutorial from C42 Engineering
• Ruby Koans – free browser-based interactive exercises from Jim Weirich and Joe

O’Brien
• Ruby in 100 Minutes – free tutorial from JumpstartLab
• Code Like This – free tutorials by Alex Chaffee
• RailsBridge Ruby

Books

• Learn To Program – free ebook by Chris Pine
• Learn To Program – expanded $18.50 ebook by Chris Pine
• Learn Code the Hard Way – free from Zed Shaw and Rob Sobers
• Beginning Ruby – by Peter Cooper
• Programming Ruby – by Dave Thomas, Andy Hunt, and Chad Fowler
• Eloquent Ruby – by Russ Olsen

Newsletters

• Practicing Ruby – $8/month for access to over 90 helpful articles on Ruby

Screencasts

• RubyTapas – $9/month for access to over 100 screencasts on Ruby

Git
There’s no need to save the file lib/example.rblib/example.rb file we created to learn Ruby.

You can simply delete the file:

$ rm lib/example.rb

130

http://www.tryruby.org
http://www.codecademy.com/tracks/ruby
http://rubymonk.com/
http://rubykoans.com/
http://tutorials.jumpstartlab.com/projects/ruby_in_100_minutes.html
http://codelikethis.com/lessons
http://curriculum.railsbridge.org/ruby/ruby
http://pine.fm/LearnToProgram/
http://pragprog.com/book/ltp2/learn-to-program
http://ruby.learncodethehardway.org/
http://beginningruby.org/
http://pragprog.com/book/ruby4/programming-ruby-1-9-2-0
http://www.amazon.com/Eloquent-Ruby-Addison-Wesley-Professional-Series/dp/0321584104/
https://practicingruby.com/
http://www.rubytapas.com/

Or use Git to revert your project to the most recent commit:

$ git reset --hard HEAD

The Git command git reset --hard HEAD discards any changes you’ve made since the most
recent commit. Check the status to make sure:

$ git status
On branch master
nothing to commit (working directory clean)

We’ve cleaned up after our Ruby exercise.

From here on, we’re done with silly code examples. No more fooling around. With the next
chapter, we start building a real-world Rails website.

131

Chapter 19
Layout and Views
In previous chapters we created a dynamic home page and learned techniques for
troubleshooting.

In this chapter we’ll look closely at view files, particularly the application layout, so we can
organize the design of our web pages. We’ll also learn how to add a CSS stylesheet to
improve the graphic design of our web pages.

This chapter covers a lot of ground, so take a break before jumping in, or pace yourself to
absorb it all.

Template Languages
HTML is intended for markup, which means applying formatting to a text file. For a web
application, ordinary HTML is not sufficient; we need to mix in Ruby code. We’ll use a
templating language that gives us a syntax for mixing HTML tags and Ruby code. The Ruby
code will be processed by a templating engine built into Rails. The output will be pure HTML
sent to the browser.

The most popular templating language available for Rails is ERB, Embedded Ruby, which is
the Rails default.

In the “Concepts” chapter, you learned that components of Rails can be mixed for different
“stacks.” Some developers substitute Haml or Slim for ERB. We’ll use ERB in this book
because it is the most popular.

Introducing the Application Layout
We’ve already created the view file for our home page.

The file app/views/visitors/new.html.erbapp/views/visitors/new.html.erb looks like this:

<h3>Home</h3>
<p>Welcome to the home of <%= @owner.name %>.</p>
<p>I was born on <%= @owner.birthdate %>.</p>
<p>Only <%= @owner.countdown %> days until my birthday!</p>

The first line in the file contains an HTML heading tag, <h3> , with headline text, “Home.”

132

http://haml.info/
http://slim-lang.com/

When you used the browser diagnostic view to see the HTML file received by the server, you
saw this:

<!DOCTYPE html>
<html><html>
<head><head>
<title><title>LearnRails</title></title>
<link<link data-turbolinks-track="true" href="/assets/application.css?body=1" media="all"
rel="stylesheet" />/>
<script<script data-turbolinks-track="true" src="/assets/jquery.js?body=1"></script>></script>
<script<script data-turbolinks-track="true" src="/assets/jquery_ujs.js?body=1"></script>></script>
<script<script data-turbolinks-track="true" src="/assets/turbolinks.js?body=1"></script>></script>
<script<script data-turbolinks-track="true" src="/assets/application.js?body=1"></script>></script>
<meta<meta content="authenticity_token" name="csrf-param" />/>
<meta<meta content="NRPrgfuj5GAyylNpNxQaMHDypcOsu6dmh5DT1yET6hQ=" name="csrf-token" />/>
</head></head>
<body><body>

<h3><h3>Home</h3></h3>
<p><p>Welcome to the home of Foobar Kadigan.</p></p>
<p><p>I was born on 1990-09-22.</p></p>
<p><p>Only 126 days until my birthday!</p></p>

</body></body>
</html></html>

If you’ve built websites before, you’ll recognize the HTML file conforms to the HTML5
specification, with a DOCTYPE , <head> and <body> tags, and miscellaneous tags in the HEAD
section, including a title and various CSS and JavaScript assets.

If you look closely, you’ll see some HTML attributes you might not recognize, for example
the data-turbolinks-track attribute. That is added by Rails to support turbolinks, for faster
loading of webpages.

For the most part, everything is ordinary HTML. But only part of it originates from the view
file we’ve created for our home page.

Where did all the extra HTML come from?
The final HTML file is more than twice the size of the view file.

The additional tags come from the default application layout file.

Rails has combined the Visitors#New view with the default application layout file.

Let’s examine the application layout file.

133

https://github.com/rails/turbolinks

Open the file app/views/layouts/application.html.erbapp/views/layouts/application.html.erb:

<!DOCTYPE html>
<html>
<head>

<title>LearnRails</title>
<%= stylesheet_link_tag "application", media: "all", "data-turbolinks-track" => true %>
<%= javascript_include_tag "application", "data-turbolinks-track" => true %>
<%= csrf_meta_tags %>

</head>
<body>

<%= yield %>

</body>
</html>

Static pages delivered from the publicpublic folder do not use the default application layout. But
every page generated by the model-view-controller architecture in the app/app/ folder
incorporates the default application layout, unless you specify otherwise.

The default application layout is where you put HTML that you want to include on every
page of your website.

Remember when we looked at the hidden code in the controller that renders a view? The
controller uses the render method to combine the view file with the application layout.

Here’s the controller, again, with the hidden render method revealed:

class VisitorsController < ApplicationController

def new
@owner = Owner.new
render 'visitors/new'

end

end

The render method combines the app/views/visitors/new.html.erbapp/views/visitors/new.html.erb view file with the app/app/
views/layouts/application.html.erbviews/layouts/application.html.erb application layout.

Alternatively, you could tell the controller to render the view without any application layout:

render 'visitors/new', :layout => false

Or you could specify an alternative layout file, for example app/views/layouts/app/views/layouts/
special.html.erbspecial.html.erb:

134

render 'visitors/new', :layout => 'special'

An alternative layout can be useful for special categories of pages, such as administrative
pages or landing pages.

We won’t use alternative layouts in this tutorial application, but it’s good to know they are
an option. The reference RailsGuides: Layouts and Rendering in Rails explains more about
using alternative layouts.

Yield
How does the render method insert the view file in the application layout?

Notice that the default application layout contains the Ruby keyword yield .

.

.

.
<%= yield %>
.
.
.

The yield keyword is replaced with a view file that is specific to the controller and action, in
this case, the app/views/visitors/new.html.erbapp/views/visitors/new.html.erb view file.

The content from the view is inserted where you place the yield keyword.

Yield Variations
We won’t do it, but you could also use the yield keyword to insert a sidebar or a footer.

Rails provides ways to insert content into a layout file at different places. The content_for
method is helpful when your layout contains distinct regions such as sidebars and footers
that should contain their own blocks of content.

For example, you could create an application layout that includes a sidebar. This is just an
example, so don’t add it to the application you are building:

135

http://guides.rubyonrails.org/layouts_and_rendering.html

<!DOCTYPE html>
<html>
<head>

<title>LearnRails</title>
<%= stylesheet_link_tag "application", media: "all", "data-turbolinks-track" => true %>
<%= javascript_include_tag "application", "data-turbolinks-track" => true %>
<%= csrf_meta_tags %>

</head>
<body>

<div class="main">
<%= yield %>

</div>
<div class="sidebar">

<%= yield :sidebar %>
</div>

</body>
</html>

This view file provides both the main content and a sidebar:

<% content_for :sidebar do %>
<h3>Contact Info</h3>
<p>Email: me@example.com</p>

<% end %>
<h3>Main</h3>
<p>Welcome!</p>

This section gets inserted at the <%= yield :sidebar %> location:

<% content_for :sidebar do %>
<h3>Contact Info</h3>
<p>Email: me@example.com</p>

<% end %>
.
.
.

The rest of the file gets inserted at the main <%= yield %> location.

Again, don’t add this to your application. I’m just offering it as an example of multiple yield
statements.

The reference RailsGuides: Layouts and Rendering in Rails explains more about using yield
and content_for .

136

http://guides.rubyonrails.org/layouts_and_rendering.html

ERB Delimiters
Earlier, we saw ERB <%= ... %> delimiters allow us to insert Ruby expressions which are
replaced by the result of evaluating the code. Here is an example that displays the number
“4”:

<%= 2 + 2 %>

Look closely and you’ll see this ERB delimiter is slightly different:

<% 3.times do %>
list item

<% end %>

An ERB delimiter that does not contain the = (equals) sign will execute Ruby code but will
not display the result. It is commonly used to add Ruby blocks to HTML code, so you’ll often
see do and end statements within ERB <% ... %> delimiters. The example above will create
three list items, like this:

list item
list item
list item

A third version of the ERB delimiter syntax is rarely seen:

<%# this is a comment %>

It is only used for adding comments. The expression within the ERB <%# ... %> delimiters
will not execute and will not appear when the page is output as HTML.

Introducing View Helpers
We can use ERB delimiters to create Rails view helpers.

We’ve seen how ERB delimiters can enclose Ruby code.

In the application layout file, the <%= ... %> delimiters don’t include anything that looks like
Ruby code. For example, we see <%= csrf_meta_tags %> which seems to be neither HTML nor
anything from the Ruby API. In fact, this expression is Ruby code, but it is from the Rails API
and only found in Rails applications.

137

Ruby is an ideal choice for a web application development platform such as Rails because it
can easily be used to create a domain-specific language (or DSL). Much of Rails is a domain-
specific language. The Smalltalk programming language was famous for its mantra “Code
should read like a conversation.” Ruby, which borrows much from Smalltalk, makes it easy
to add new words to the conversation. We can add new keywords that produce complex
behaviour, creating entire new APIs such as Rails. Ruby makes it easy for the Rails core team
to add keywords such as csrf_meta_tags that are additions to the Ruby language.

In this case, Ruby’s ability to produce a domain-specific language gives us Rails view helpers.

Think of Rails view helpers as “macros to generate HTML.” You may have used macros to
automate a series of commands in World of Warcraft or other games. If you’re an office
worker, you may have used macros in Microsoft Word or Excel. A Rails view helper is a
keyword that expands into a longer string of HTML tags and content.

In this case, the csrf_meta_tags view helper expands into two lines of HTML:

<meta<meta content="authenticity_token" name="csrf-param" />/>
<meta<meta content="NRPrgfuj5GAyylNpNxQaMHDypcOsu6dmh5DT1yET6hQ=" name="csrf-token" />/>

Why do we need this cryptic code? It turns out that almost any website that accepts user
input via a form is vulnerable to a security bug (an exploit) named a cross-site request
forgery. To prevent rampant CSRF exploits, the Rails core team includes the csrf_meta_tags
view helper in the default application layout. Rails provides a number of similar features
that make websites more secure.

A Rails view file becomes much less mysterious when you realize that many of the keywords
you see are view helpers. Strange new keywords may be part of the Rails API. Or they may
be provided by gems you’ve added (gem developers often use the Ruby DSL capability to
create new keywords). Think of it this way: Ruby gives developers the power to create an
unlimited number of new “HTML tags.” These tags are not really HTML because they are
not part of the HTML specification. But they serve as shortcuts to produce complex snippets
of HTML and content.

Now that we’ve learned about view helpers, we can start building our default application
layout.

The Rails Layout Gem
Every Rails application needs a well-designed application layout. The Rails default starter
application, which we get when we run rails new , provides a barebones application layout.
It is purposefully simple so developers can add the code they need to accommodate any
front-end framework (we’ll look closely at front-end frameworks in the next chapter).

138

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery

In this chapter we’ll start with a simple application layout file, adding a little CSS for simple
styling. In the next chapter, we’ll upgrade the application layout file to use the Zurb
Foundation front-end framework.

To make it easy, we’ll use the rails_layout gem to generate files for an application layout. In
this chapter, we’ll use the rails_layout gem to create our basic layout and CSS files. In the
next chapter, we’ll use the rails_layout gem to create layout files for Zurb Foundation.

In your GemfileGemfile, you’ve already added:

gem 'rails_layout'

and previously run $ bundle install .

You previously used the rails generate command to set up configuration files with the
Figaro gem. Any gem that needs default files can use the rails generate command to run a
simple script that creates files.

The rails_layout gem uses the rails generate command to set up files we need. Run:

$ rails generate layout simple --force

The --force argument will force the gem to replace the existing app/views/layouts/app/views/layouts/
application.html.erbapplication.html.erb file.

The gem will add five files to your project:

• app/views/layouts/application.html.erbapp/views/layouts/application.html.erb
• app/views/layouts/_messages.html.erbapp/views/layouts/_messages.html.erb
• app/views/layouts/_navigation.html.erbapp/views/layouts/_navigation.html.erb
• app/views/layouts/_navigation_links.html.erbapp/views/layouts/_navigation_links.html.erb
• app/assets/stylesheets/simple.cssapp/assets/stylesheets/simple.css

Examining these files closely will reveal a great deal about the power of Rails. We’ll dedicate
the rest of this chapter to exploring the contents of these four files.

Basic Boilerplate
Open the file app/views/layouts/application.html.erbapp/views/layouts/application.html.erb:

139

https://github.com/RailsApps/rails_layout

<!DOCTYPE html>
<html>

<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title><%= content_for?(:title) ? yield(:title) : "Learn Rails" %></title>
<meta name="description" content="<%= content_for?(:description) ?

yield(:description) : "Learn Rails" %>">
<%= stylesheet_link_tag "application", media: "all", "data-turbolinks-track" => true

%>
<%= javascript_include_tag "application", "data-turbolinks-track" => true %>
<%= csrf_meta_tags %>

</head>
<body>

<header>
<%= render 'layouts/navigation' %>

</header>
<main role="main">

<%= render 'layouts/messages' %>
<%= yield %>

</main>
</body>

</html>

Some of this code is already familiar.

You’ll recognize the standard HTML DOCTYPE , <head> , and <body> tags.

We’ve already discussed the yield keyword.

We’ve seen the <%= ... %> delimiters surrounding the csrf_meta_tags view helper:

• csrf_meta_tags – generates <meta> tags that prevent cross-site request forgery

The rest of the file may be unfamiliar. We’ll examine it line by line.

Adding Boilerplate
Webmasters who build static websites are accustomed to setting up web pages with
“boilerplate,” or basic templates for a standard web page. The well-known HTML5
Boilerplate project has been recommending “best practice” tweaks to web pages since 2010.
Very few of the HTML5 Boilerplate recommendations are relevant for Rails developers, as
Rails already provides almost everything required. We’ll discuss one important boilerplate
item and a few “nice to have” extras.

If you want to learn more, the article HTML5 Boilerplate for Rails Developers looks at the
recommendations.

140

https://en.wikipedia.org/wiki/Cross-site_request_forgery
http://html5boilerplate.com/
http://html5boilerplate.com/
http://railsapps.github.io/rails-html5-boilerplate.html

Viewport

The viewport metatag improves the presentation of web pages on mobile devices. Setting a
viewport tells the browser how content should fit on the device’s screen. The tag is required
for either Twitter Bootstrap or Zurb Foundation.

The viewport metatag looks like this:

<meta name="viewport" content="width=device-width, initial-scale=1.0">

Apple’s developer documentation on Configuring the Viewport provides details.

Title and Description

If you want to maximize traffic to your website, you should make your web pages search-
engine friendly. That means adding title and description metatags. Google uses contents of the
title tag to display titles in search results. And it will sometimes use the content of a
description metatag in search results snippets. See Google’s explanation of how it uses Site
Title and Description. Good titles and descriptions improve clickthrough from Google
searches.

Title and description looks like this:

<title><%= content_for?(:title) ? yield(:title) : "Learn Rails" %></title>
<meta name="description" content="<%= content_for?(:description) ? yield(:description) :
"Learn Rails" %>">

The rails_layout gem has created a default title and description based on our project name.

Later in the tutorial, we’ll see how to use a content_for statement to set a title and description
for each individual page.

The code is complex if you haven’t seen advanced Ruby before. It uses the Ruby ternary
operator which maximizes compactness at the price of introducing obscurity. You’ll recall
from the “Just Enough Ruby” chapter that it is a fancy conditional statement that says, “if
content_for?(:title) is present in the view file, use yield(:title) to include it, otherwise just
display ‘Learn Rails’.”

Asset Pipeline
You may have noticed these Rails helper methods:

• stylesheet_link_tag

141

http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=35624
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=35624
http://ruby.about.com/od/beginningruby/a/The-Ternary-Or-Conditional-Operator.htm
http://ruby.about.com/od/beginningruby/a/The-Ternary-Or-Conditional-Operator.htm

• javascript_include_tag

These are tags that add CSS and JavaScript to the web page using the Rails asset pipeline.

The Rails asset pipeline utility is one of the most powerful features of the platform. It offers
convenience to the developer and helps organize an application; more importantly, it
improves the speed and responsiveness of any complex website. If you’re going to do any
front-end development with CSS or JavaScript in Rails, you must understand the Rails asset
pipeline. Here’s how it works.

Assets Without Rails

When building non-Rails websites, webmasters add JavaScript to a page using the <script>
tag. For every JavaScript file, they add an additional <script> tag, so a page HEAD section
looks like this:

<!DOCTYPE html>
<html><html>
<head><head>
<title><title>Page that uses multiple JavaScript files</title></title>
<script<script src="jquery.js" type="text/javascript"></script>></script>
<script<script src="jquery.plugin.js" type="text/javascript"></script>></script>
<script<script src="custom.js" type="text/javascript"></script>></script>

</head></head>

The same is true for CSS files in non-Rails websites. You add a <link> tag for each stylesheet
file. With multiple stylesheets, the HEAD section of your application layout might look like
this:

<!DOCTYPE html>
<html><html>
<head><head>
<title><title>Page that uses multiple CSS files</title></title>
<link<link href="core.css" rel="stylesheet" type="text/css" />/>
<link<link href="site.css" rel="stylesheet" type="text/css" />/>
<link<link href="custom.css" rel="stylesheet" type="text/css" />/>

</head></head>

If you want to handle CSS and JavaScript without Rails, you can place your files in the
publicpublic folder. If you do so, every time you add a JavaScript or CSS file, you must modify the
application layout file. Instead, use the asset pipeline and simplify this.

Assets With Rails

The asset pipeline consists of two folders:

142

• app/assets/javascripts/app/assets/javascripts/
• app/assets/stylesheets/app/assets/stylesheets/

Any JavaScript and CSS file you add to these folders is automatically added to every page.

In development, when the web browser makes a page request, the files in the asset pipeline
folders are combined together and concatenated as single large files, one for JavaScript and
one for CSS.

If you examine the application layout file, you’ll see the tags that perform this service:

<%= stylesheet_link_tag "application", media: "all", "data-turbolinks-track" => true %>
<%= javascript_include_tag "application", "data-turbolinks-track" => true %>

The HTML delivered to the browser looks like this:

<link<link href="/assets/application.css" media="all" rel="stylesheet" type="text/css" />/>
<script<script src="/assets/application.js" type="text/javascript"></script>></script>

Using the asset pipeline, there is no need to modify the application layout file each time you
create a new JavaScript or CSS file. Create as many files as you need to organize your
JavaScript or CSS code and you’ll automatically get one single file delivered to the browser.

There’s a big performance advantage with the asset pipeline. Requesting files from the server
is a time-consuming operation for a web browser, so every extra file request slows down the
browser. The Rails asset pipeline eliminates the performance penalty of multiple <script> or
<link> tags. The Rails asset pipeline also compresses JavaScript and CSS files for faster page
loads.

The asset pipeline is an example of a Rails convention that helps developers build complex
websites. It is not needed for a simple website that uses a few JavaScript or CSS files. But it is
beneficial on bigger projects.

Now that you understand the purpose of the Rails asset pipeline, let’s look at more of the
code in the default application layout file.

Navigation Links
Every website needs navigation links.

You can add navigation links directly to your application layout but many Rails developers
prefer to create a partial template –-a "partial"–-to better organize the default application
layout.

143

http://guides.rubyonrails.org/layouts_and_rendering.html#using-partials

Introducing Partials

A partial is similar to any view file, except the filename begins with an underscore character.
Place the file in any view folder and you can use the render keyword to insert the partial.

We’re not going to add a footer to our tutorial application, but here is how we could do it.
We’d use the render keyword with a file named app/views/layouts/_footer.html.erbapp/views/layouts/_footer.html.erb:

<%= render 'layouts/footer' %>

Notice that you specify the folder within the app/views/app/views/ directory with a truncated version
of the filename. The render method doesn’t want the _ underscore character or the
.html.erb file extension. That can be confusing; it makes sense when you remember that
Rails likes “convention over configuration” and economizes on extra characters when
possible.

We’re not going to add a footer to our application, but we will add navigation links by using
a partial. First, let’s learn about link helpers.

Introducing Link Helpers

There’s no rule against using raw HTML in our view files, so we could create a partial for
navigation links that uses the HTML <a> anchor tag like this:

<ul class="nav">
Home
About
Contact

Rails gives us another option, however. We can use the Rails link_to view helper instead of
the HTML <a> anchor tag. The Rails link_to helper eliminates the crufty <> angle brackets
and the unnecessary href="" . More importantly, it adds a layer of abstraction, using the
routing configuration file to form links. This is advantageous if we make changes to the
location of the link destinations. Earlier, when we created a static “About” page, we first set
the config/routes.rbconfig/routes.rb file with a route to the “About” page: root to: redirect('/about.html') .
Later we removed the static “About” page and set the config/routes.rbconfig/routes.rb file with a route to
the dynamic home page: root to: 'visitors#new' . If we used the raw HTML <a> anchor tag,
we’d have to change the raw HTML everywhere we had a link to the home page. Using the
Rails link_to helper, we name a route and make any changes once, in the config/routes.rbconfig/routes.rb
file.

When you use the Rails link_to helper, you’ll avoid the problem of link maintenance that
webmasters face on static websites. Some webmasters like to use absolute URLs, specifying a
host name in the link, for example http://www.example.com/about.html . Absolute URLs are a

144

headache when moving the site, for example from staging.example.com to www.example.com . The
problem is avoided by using relative URLs, such as /about.html , about.html , or even
../about.html . But relative URLs are fragile, and moving files or directories often results in
overlooked and broken links. Instead, with the Rails link_to helper, you always get the
destination location specified in the config/routes.rbconfig/routes.rb file.

Navigation Partial

Examine the app/views/layouts/application.html.erbapp/views/layouts/application.html.erb and you’ll see the use of the
navigation partial.

We include the navigation partial in our application layout with the expression:

.

.

.
<%= render 'layouts/navigation' %>
.
.
.

Open the file app/views/layouts/_navigation.html.erbapp/views/layouts/_navigation.html.erb:

<ul class="nav">
<%= link_to 'Home', root_path %>
<%= render 'layouts/navigation_links' %>

You’ll see the link_to helper.

Here the link_to helper takes two parameters. The first parameter is the string displayed as
the anchor text ('Home'). The second parameter is the route. In this case, the route root_path
has been set in the config/routes.rbconfig/routes.rb file.

The navigation partial includes another partial, which we’ll call the navigation links partial:

.

.

.
<%= render 'layouts/navigation_links' %>

.

.

.

145

This demonstrates that one partial can include another partial, so that partials can be
“nested.”

Navigation Links Partial

In our simple application, there’s no obvious reason to nest another partial. But we’ll see in
the next chapter that it is convenient, because we can isolate the complex markup required
by Zurb Foundation from the simple list of links we need for navigation.

Open the file app/views/layouts/_navigation_links.html.erbapp/views/layouts/_navigation_links.html.erb:

<%# add navigation links to this file %>

As we add pages to our application, we’ll add links to this file.

For now, we have nothing to add.

Flash Messages
Rails provides a standard convention to display alerts (including error messages) and other
notices (including success messages), called a flash message. The name comes from the term
“flash memory” and should not be confused with the “Adobe Flash” web development
platform that was once popular for animated websites. The flash message is documented in
the RailsGuides: Action Controller Overview.

Here’s a flash message you might see after logging in to an application:

It is called a “flash message” because it appears on a page temporarily. When the page is
reloaded or another page is visited, the message disappears.

Typically, you will see only one flash message on a page. But there is no limit to the number
of flash messages that can appear on a page.

Creating Flash Messages

Flash messages are created in a controller. For example, we can add messages to the home
page by modifying the file app/controllers/visitors_controller.rbapp/controllers/visitors_controller.rb like this:

146

http://guides.rubyonrails.org/action_controller_overview.html#the-flash

class VisitorsController < ApplicationController

def new
@owner = Owner.new
flash[:notice] = 'Welcome!'
flash[:alert] = 'My birthday is soon.'

end

end

If you test the application after adding the messages to the VisitorsController, you’ll see two
flash messages appear on the page.

Rails provides the flash object so that messages can be created in the controller and
displayed on the rendered web page.

In this example, we create a flash message by associating the object flash[:notice] with the
string 'Welcome!' . We can assign other messages, such as flash[:alert] or even
flash[:warning] . In practice, Rails uses only :notice and :alert as flash message keys so it is
wise to stick with just these.

Flash and Flash Now

You can control the persistence of the flash message by choosing from two variants of the
flash directive.

Use flash.now in the controller when you immediately render a page, for example with a
render :new directive. With flash.now , the message will vanish after the user clicks any links.

Use the simple variant, flash , in the controller when you redirect to another page, for
example with a redirect_to root_path directive. If you use flash.now before a redirect, the user
will not see the flash message because flash.now does not persist through redirects or links. If
you use the simple flash directive before a render directive, the message will appear on the
rendered page and reappear on a subsequent page after the user clicks a link.

In our example above, we really need to use the flash.now variant because the controller
provides a hidden render method. Update the file app/controllers/visitors_controller.rbapp/controllers/visitors_controller.rb:

147

class VisitorsController < ApplicationController

def new
@owner = Owner.new
flash.now[:notice] = 'Welcome!'
flash.now[:alert] = 'My birthday is soon.'

end

end

Using flash.now will make sure the message only appears on the rendered page and will not
persist after a user follows a link to a new page.

If you ever see a “sticky” flash message that won’t go away, you need to use flash.now
instead of flash .

Explaining the Ruby Code

If you’re new to programming in Ruby, it may be helpful to learn how the flash object
works.

The flash object is a Ruby hash.

You’ll recall from the “Just Enough Ruby” chapter that a hash is a data structure that
associates a key to some value. You retrieve the value based upon its key. This construct is
called a dictionary in other languages, which is appropriate because you use the key to “look
up” a value, as you would look up a definition for a word in a dictionary.

Hash is a type of collection. Presumably, the Rails core contributors who implemented the
code chose to use a collection so that a page could be given multiple flash messages. Because
we have a collection with (possibly) multiple messages, we need to retrieve each message
one at a time.

We learned earlier that all collections support an iterator method named each . Iterators
return all the elements of a collection, one after the other. The iterator returns each key-value
pair, item by item, to a block. In Ruby, a block is delimited by do and end or { } braces. You
can add any code to a block to process each item from the collection.

Here is simple Ruby code to iterate through a flash object, outputting each flash message in
an HTML div tag and applying a CSS class for styling:

flash.each do |key, value|
puts '<div class="' + key + '">' + value + '</div>'

end

148

In this simple example, we use each to iterate through the flash hash, retrieving a key and
value that are passed to a block to be output as a string. We’ve chosen the variable names
key and value but the names are arbitrary. In the next example, we’ll use name and msg as
variables for the key-value pair. The output string will appear as HTML like this:

<div class="notice">Welcome!</div>
<div class="alert">My birthday is soon.</div>

Let’s continue examining our layout files.

The Flash Messages Partial

Flash messages are a very useful feature for a dynamic website.

Code to display flash messages can go directly in your application layout file or you can use
a partial.

Examine the file app/views/layouts/_messages.html.erbapp/views/layouts/_messages.html.erb:

<% flash.each do |name, msg| %>
<% if msg.is_a?(String) %>

<%= content_tag :div, msg, :class => "flash_#{name}" %>
<% end %>

<% end %>

It improves on our simple Ruby example in several ways. First, the expression
if msg.is_a?(String) serves as a test to make sure we only display messages that are strings.
Second, we use the Rails content_tag view helper to create the HTML div . The content_tag
helper eliminates the messy soup of angle brackets and quote marks we used to create the
HTML output in the example above. Finally, we apply a CSS class and combine the word
“flash” with “notice” or “alert” to make the CSS class.

We include the flash messages partial in our application layout with the expression:

.

.

.
<%= render 'layouts/messages' %>
.
.
.

149

HTML5 Elements
To complete our examination of the application layout file, we’ll look at a few structural
elements. These elements are not unique to a Rails application and will be familiar to anyone
who has done front-end development.

Notice the tags that are structural elements in the HTML5 specification:

• <header>

• <main>

These elements add structure to a web page. The tags don’t add any new behavior but make
it easier to determine the structure of the page and apply CSS styles.

We wrap the navigation partial in the <header> tag:

<header>
<%= render 'layouts/navigation' %>

</header>

The <header> tag is typically used for branding or navigation.

Notice the main tag:

<main role="main">
<%= render 'layouts/messages' %>
<%= yield %>

</main>

We wrap our messages partial and yield expression in a <main role="main"> element. The
<main> tag is among the newest HTML5 elements (see the W3C specification for details).
From the specification: “The main content area of a document includes content that is unique
to that document and excludes content that is repeated across a set of documents such as site
navigation links, copyright information, site logos.” We follow the advice of the specification
and wrap our unique content in the <main> tag.

The specification recommends, “Authors are advised to use ARIA role=‘main’ attribute on
the main element until user agents implement the required role mapping.” ARIA, the
Accessible Rich Internet Applications Suite, is a specification to make web applications more
accessible to people with disabilities. That means the role="main" attribute is there for any
web browsers that don’t yet recognize the <main> tag, and may help people with disabilities.

We could add a <footer> tag. It typically contains links to copyright information, legal
disclaimers, or contact information. We don’t have a footer in our tutorial application but
you can add the <footer> tag, with additional content, if you want.

150

http://www.w3.org/html/wg/drafts/html/master/grouping-content.html#the-main-element
http://www.w3.org/WAI/intro/aria

Application Layout
Let’s look again at the app/views/layouts/application.html.erbapp/views/layouts/application.html.erb file.

We don’t have to add anything because the rails_layout gem has created everything we
need.

<!DOCTYPE html>
<html>

<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title><%= content_for?(:title) ? yield(:title) : "Learn Rails" %></title>
<meta name="description" content="<%= content_for?(:description) ?

yield(:description) : "Learn Rails" %>">
<%= stylesheet_link_tag "application", media: "all", "data-turbolinks-track" => true

%>
<%= javascript_include_tag "application", "data-turbolinks-track" => true %>
<%= csrf_meta_tags %>

</head>
<body>

<header>
<%= render 'layouts/navigation' %>

</header>
<main role="main">

<%= render 'layouts/messages' %>
<%= yield %>

</main>
</body>

</html>

We have the viewport metatag, a title, and a description.

We have partials for navigation links and flash messages.

Finally we have HTML5 structural elements.

Our application layout is complete, for now. In the next chapter, we’ll revise it to support
styling with Zurb Foundation.

Simple CSS
So far, we’ve examined four files that were added by the rails_layout gem:

• app/views/layouts/application.html.erbapp/views/layouts/application.html.erb
• app/views/layouts/_messages.html.erbapp/views/layouts/_messages.html.erb

151

• app/views/layouts/_navigation.html.erbapp/views/layouts/_navigation.html.erb
• app/views/layouts/_navigation_links.html.erbapp/views/layouts/_navigation_links.html.erb

Let’s examine the CSS file that was created by the rails_layout gem.

Open the file app/assets/stylesheets/simple.cssapp/assets/stylesheets/simple.css:

152

/*
* Simple CSS stylesheet for a navigation bar and flash messages.
*/

mainmain {
background-color: #eee;
padding-bottom: 80px;
width: 100%;
}

headerheader {
border: 1px solid #d4d4d4;
background-image: linear-gradient(to bottom, white, #f2f2f2);
background-color: #f9f9f9;
-webkit-box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1);
-moz-box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1);
box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;

}
ulul.nav lili {
display: inline;

}
ulul.nav lili aa {
padding: 10px 15px 10px;
color: #777777;
text-decoration: none;
text-shadow: 0 1px 0 white;

}
.flash_notice, .flash_alert {
padding: 8px 35px 8px 14px;
margin-bottom: 20px;
text-shadow: 0 1px 0 rgba(255, 255, 255, 0.5);
border: 1px solid #fbeed5;
-webkit-border-radius: 4px;
-moz-border-radius: 4px;
border-radius: 4px;
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 20px;

}
.flash_notice {
background-color: #dff0d8;
border-color: #d6e9c6;
color: #468847;

}
.flash_alert {
background-color: #f2dede;
border-color: #eed3d7;
color: #b94a48;

}

153

If you already know CSS, you’ll see we’ve set a background color for the main section of the
page. We’ve also styles for a header, navigation links, and flash messages. This book is about
Rails, not CSS, so we won’t examine this closely. For more on CSS, there are thousands of
tutorials on the web, but I like these:

• Codeacademy
• HTML Dog

Remember what we learned about the Rails asset pipeline. By default, any CSS file in the
app/assets/stylesheets/app/assets/stylesheets/ folder will be added automatically to the application.cssapplication.css file that is
included in the default application layout.

In the next chapter, we remove the app/assets/stylesheets/simple.cssapp/assets/stylesheets/simple.css and use Zurb
Foundation to supply styles for the header, navigation links, and flash messages. For now,
the simple.csssimple.css file adds some basic styling and layout to the application.

Test the Application
Let’s run the application to see how it looks with the new application layout. The web server
may already be running. If not, enter the command:

$ rails server

Open a web browser window and navigate to http://localhost:3000/.

If you experimented with adding flash messages “Welcome” and “My birthday is soon,”
you’ll see the messages when you visit the home page.

Our home page now has only one navigation link, for “Home.” We’ll add links for “About”
and “Contact” pages soon.

Git
Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "update application layout"
$ git push

154

http://www.codecademy.com/courses/web-beginner-en-TlhFi/0/1?curriculum_id=50579fb998b470000202dc8b
http://htmldog.com/guides/css/beginner/
http://localhost:3000

Chapter 20
Front-End Framework
This chapter discusses front-end development and design using CSS. I’ll show you how to
add style to a Rails application, using Zurb Foundation for a simple theme.

What do we mean by “front-end development”? A website back end is the Rails application
that assembles files that are sent to the browser, plus a database and any other server-side
services. A website front end is all the code that runs in the browser. Everything that controls
the appearance of the website in the browser is the responsibility of a front-end developer,
including page layout, CSS stylesheets, and JavaScript code.

Front-end development has grown increasingly important as websites have become more
sophisticated. And front-end technology has grown increasingly complex, to the degree that
front-end development has become a job for specialists.

Front-end developers are primarily concerned with:

• markup – the layout and structure of the page
• style – graphic design for visual communication
• interactivity – browser-based visual effects and user interaction

Broader concerns include:

• cross-browser and cross-device functionality
• interaction design to improve website usability
• accessibility for users with physical or perceptual limitations

For years, front-end development was haphazard; webmasters each had their own quirky
techniques. Around the time that Rails became popular, front-end developers at large
companies began to share best practices and establish open source projects to bring structure
and consistency to front-end development, leading to development of CSS frameworks.

CSS Frameworks
Web developers began putting together “boilerplate” CSS stylesheets as early as 2000, when
browsers first began to fully support CSS. Boilerplate CSS made it easy to reuse CSS
stylesheet rules from project to project. More importantly, designers often implemented “CSS
reset” stylesheets to enforce typographic uniformity across different browsers.

155

Engineers at Yahoo! released the Yahoo! User Interface Library (YUI) as an open source
project in February 2006. Inspired by an article by Jeff Croft, and reacting to the huge size of
the YUI library, independent developers began releasing other CSS frameworks such as the
960 grid system and the Blueprint CSS framework.

There are dozens of CSS frameworks. In general, they all seek to implement a common set of
requirements:

• An easily customizable grid
• Some default typography
• A typographic baseline
• CSS reset for default browser styles
• A stylesheet for printing

More recently, with the ubiquity of smartphones and tablets, CSS frameworks support
responsive web design, accommodating differences in screen sizes across a range of devices.

In tandem with the development of CSS frameworks, we’ve seen the emergence of JavaScript
libraries and frameworks.

JavaScript Libraries and Frameworks
As a programming language, JavaScript is as powerful as Ruby or any other established
language. Unfortunately, JavaScript doesn’t include a native package manager for code
libraries. There is no JavaScript version of RubyGems. Despite this obstacle, availability of
open source JavaScript libraries has grown in recent years.

Prototype was one of the first open source JavaScript libraries, created by Sam Stephenson in
February 2005 to improve JavaScript support in Ruby on Rails. MooTools, Dojo, and jQuery
soon followed. Of these libraries, jQuery has become the most popular, largely because of
thousands of modular jQuery plug-ins that implement a wide range of effects and widgets
(web page features). These plug-ins are used to add visual effects and interactivity to web
pages. Examples are drop-down menus, modal windows, tabbed panels, autocompletion
search forms, and sliders or carousels for images. Even without plugins, jQuery is useful as a
high-level interface for manipulating the browser DOM (document object model), to make it
easy to do things like hiding or revealing HTML elements on a page. Any Rails application
can use jQuery because it is included by default in any new Rails application.

Libraries such as jQuery add functionality to server-side applications, such as those built
with Rails. Other JavaScript libraries serve as fully featured web application development
frameworks, allowing developers to build client-side applications that run in the browser
and only interact with a server to read or write data. Examples of these full-fledged
JavaScript frameworks are Ember.js, AngularJS, and Backbone.js. All use a variant of the
model-view-controller (MVC) software design pattern to implement single-page applications

156

http://yuilibrary.com/
http://www.yuiblog.com/blog/2006/02/
http://web.archive.org/web/20080516101830/http://www.alistapart.com/articles/frameworksfordesigners/
http://960.gs/
http://www.blueprintcss.org/
http://en.wikipedia.org/wiki/CSS_frameworks
http://en.wikipedia.org/wiki/Responsive_web_design
http://en.wikipedia.org/wiki/Prototype_JavaScript_Framework
http://en.wikipedia.org/wiki/MooTools
http://en.wikipedia.org/wiki/Dojo_Toolkit
http://en.wikipedia.org/wiki/Jquery
http://en.wikipedia.org/wiki/Document_Object_Model
http://emberjs.com/
http://www.angularjs.org/
http://backbonejs.org/
http://en.wikipedia.org/wiki/Single-page_application

which function more like desktop or mobile applications than websites. Developers who
build a single-page application with one of these frameworks often use Ruby on Rails as a
back end; an MVC JavaScript framework can replace all the Rails view files. None of these
JavaScript frameworks dominate web application development like Ruby on Rails, but they
are quickly gaining popularity and are said to represent the future of web development. We
won’t look at Ember.js, AngularJS, or Backbone.js in this book; they are an advanced topic
and require entire books themselves.

Front-End Frameworks
Front-end frameworks combine CSS and JavaScript libraries. Many elements that are found
on sophisticated web pages, such as modal windows or tabs, require a combination of
JavaScript and CSS. Combining CSS and JavaScript libraries in a common framework makes
it possible to standardize and reuse common web page features.

There are many responsive front-end frameworks to choose from, including:

• Bourbon Neat
• Cardinal
• Gumby
• Semantic UI
• Twitter Bootstrap
• Zurb Foundation
• and many others

Each has its fans, though Twitter Bootstrap and Zurb Foundation are the most popular
among Rails developers. Each adds a library of markup, styles, and standardized web page
features such as modal windows, pagination, breadcrumbs, and navigation.

Twitter Bootstrap is the best-known front-end framework. It is result of an effort to
document and share common design patterns and assets across projects at Twitter, released
as an open source project in August 2011.

Zurb Foundation was released as an open source project in October 2011, after more than a
year of internal use at Zurb, a Silicon Valley design consultancy.

Just ahead, we’ll look at why we use Zurb Foundation in this book. But first, you’ll need to
learn about LESS and Sass.

157

http://neat.bourbon.io/
http://cardinalcss.com/
http://gumbyframework.com/
http://semantic-ui.com/
http://getbootstrap.com/
http://foundation.zurb.com/
http://speckyboy.com/2013/10/13/15-new-responsive-frameworks/
http://getbootstrap.com/
http://foundation.zurb.com/
http://zurb.com/

CSS Preprocessing with LESS or Sass
Ordinary CSS is not a programming language. As a result, CSS rules are verbose and often
repetitive. To add efficiency to CSS, Twitter Bootstrap and Zurb Foundation rely on CSS
preprocessors; LESS for Twitter Bootstrap and the Sass project for Zurb Foundation. LESS
and Sass extend CSS to give it more powerful programming language features. As a result,
your stylesheets can use variables, mixins, and nesting of CSS rules, just like a real
programming language.

For example, in Sass you can create a variable such as $blue: #3bbfce and specify colors
anywhere using the variable, such as border-color: $blue . Mixins are like variables that let
you use snippets of reusable CSS. Nesting eliminates repetition by layering CSS selectors.

Sass is generally recognized as more powerful than LESS, and Sass is included in any new
Rails application. The creators of Twitter Bootstrap recently explained, Why Less?, and it
seems a primary reason was their greater comfort with JavaScript (the underlying language
of the LESS preprocessor) than with Ruby (the language underlying Sass).

Twitter Bootstrap or Zurb Foundation?
Which should you use, Twitter Bootstrap or Zurb Foundation?

Twitter Bootstrap has a larger developer community and more third-party projects, as
evidenced by a Big Badass List of Useful Twitter Bootstrap Resources. In its sheer
magnitude, this list, from Michael Buckbee and Bootstrap Hero, demonstrates the popularity
of Bootstrap and the vitality of its open source community.

However, Zurb Foundation is gaining popularity with Rails developers. One factor is
Foundation’s use of Sass, leading to easier integration with Rails applications. Another factor
is direct support for Rails by the creators of Foundation. Zurb provides a gem that installs
Foundation in any Rails application. When Zurb releases new versions of Foundation, the
company updates the gem themselves.

There are several versions of Twitter Bootstrap that have been converted to a Sass
implementation but they tend to lag behind Twitter Bootstrap releases because they are not
directly supported by the Bootstrap creators. For example, at the time this book was written,
Twitter Bootstrap 3.0 had been released but gems for the new version were not yet out.

Twitter Bootstrap is popular, and if you’re eager to try Twitter Bootstrap, the RailsApps
project provides a Rails Bootstrap example application and an accompanying tutorial.
Learning about Twitter Bootstrap is a great way to expand your knowledge as a next step
after you complete this book.

Before I show you how to integrate Zurb Foundation with your Rails application, let’s briefly
consider matters of design.

158

http://lesscss.org/
http://sass-lang.com/
http://www.wordsbyf.at/2012/03/08/why-less/
http://www.bootstraphero.com/the-big-badass-list-of-twitter-bootstrap-resources/
http://railsapps.github.io/rails-bootstrap/

Graphic Design Options
There are three approaches to graphic design for your Rails application.

If you’re well-funded and well-connected, you can put together a team or hire a freelance
graphic designer to implement a unique design, built from scratch using CSS or customized
from a framework such as Twitter Bootstrap or Zurb Foundation. If you’ve got strong design
skills, or can partner with an experienced web designer, you’ll get a custom design that
expresses the purpose and motif of your website.

A second approach is to use Twitter Bootstrap or Zurb Foundation to quickly add attractive
CSS styling to your application. Many developers don’t have the skill or resources to
customize the design. Consequently, sites that use Twitter Bootstrap or Zurb Foundation
look very similar. If that’s your situation, it’s okay, really! It’s better to have a decent site
with the clean look of Twitter Bootstrap or Zurb Foundation than to leak ugliness onto the
web.

A third option is to purchase a pre-designed theme for your website. You may have visited
ThemeForest or other theme galleries that offer pre-built themes for a few dollars each. These
huge commercial galleries offer themes for WordPress, Tumblr, or CMS applications such as
Drupal or Joomla. They don’t offer themes for Rails and it is not easy to adapt one of their
themes for a Rails application. I’m only aware of one firm that sells prepackaged themes for
Rails applications using Zurb Foundation: RailsThemes (it is worth a look to see what can be
done). An alternative is to convert open source themes designed with Twitter Bootstrap,
such as themes from Start Bootstrap, Bootswatch, or the Themestrap gallery.

Even if you use a prepackaged theme, you’ll need to know how to set up a front-end
framework in Rails. We’ll look at setting up Zurb Foundation next.

Zurb Foundation Gem
Zurb Foundation provides a standard grid for layout plus dozens of reusable components
for common page elements such as navigation, forms, and buttons. More importantly, it
gives CSS the kind of structure and convention that makes Rails popular for back-end
development. Zurb Foundation is packaged as a gem.

In your GemfileGemfile, you’ve already added:

gem 'compass-rails', '~> 2.0.alpha.0'
gem 'zurb-foundation'

and previously run $ bundle install .

Zurb Foundation requires the compass-rails gem which (at the time this was written) is
available in a prerelease version for Rails 4.0.

159

http://themeforest.net/
https://railsthemes.com/
http://startbootstrap.com/
http://bootswatch.com/
http://code.divshot.com/themestrap/
https://github.com/Compass/compass-rails

Rather than following the installation instructions provided in the Foundation 4
Documentation, we’ll use the rails_layout gem to set up Zurb Foundation and create the files
we need. Our approach is slightly different from the Zurb instructions but yields the same
results.

Rails Layout Gem with Zurb Foundation
In the previous chapter, we used the rails_layout gem to configure the default application
layout with HTML5 elements, navigation links, and flash messages. Now we’ll use the
rails_layout gem to set up Zurb Foundation and generate new files for the application layout
as well as the navigation and messages partials. The new files will replace the layout files we
created in the previous chapter.

We’ll use the generator provided by the rails_layout gem uses to set up Foundation and add
the necessary files. Run:

$ rails generate layout foundation4 --force

With the --force argument, the rails_layout gem will replace existing files.

The rails_layout gem will rename the file:

• app/assets/stylesheets/application.cssapp/assets/stylesheets/application.css

to:

• app/assets/stylesheets/application.css.scssapp/assets/stylesheets/application.css.scss

It will create the file:

• app/assets/stylesheets/framework_and_overrides.css.scssapp/assets/stylesheets/framework_and_overrides.css.scss

and modify the file:

• app/assets/javascripts/application.jsapp/assets/javascripts/application.js

The gem will replace four files:

• app/views/layouts/application.html.erbapp/views/layouts/application.html.erb
• app/views/layouts/_messages.html.erbapp/views/layouts/_messages.html.erb
• app/views/layouts/_navigation.html.erbapp/views/layouts/_navigation.html.erb
• app/views/layouts/_navigation_links.html.erbapp/views/layouts/_navigation_links.html.erb

It will also remove the file:

160

http://foundation.zurb.com/docs/rails.html
http://foundation.zurb.com/docs/rails.html
https://github.com/RailsApps/rails_layout
https://github.com/RailsApps/rails_layout

• app/assets/stylesheets/simple.cssapp/assets/stylesheets/simple.css

Let’s examine the files to see how our application is configured to use Zurb Foundation.

Renaming the application.css File
The rails_layout gem renamed the app/assets/stylesheets/application.cssapp/assets/stylesheets/application.css file as app/assets/app/assets/
stylesheets/application.css.scssstylesheets/application.css.scss. Note the .scss.scss file extension. This will allow you to use the
advantages of an improved syntax for your application stylesheet.

You learned earlier that stylesheets can use variables, mixins, and nesting of CSS rules when
you use Sass.

Sass has two syntaxes. The most commonly used syntax is known as “SCSS” (for “Sassy
CSS”), and is a superset of the CSS syntax. This means that every valid CSS stylesheet is
valid SCSS as well. SCSS files use the extension .scss.scss. The Sass project also offers a second,
older syntax with indented formatting that uses the extension .sass.sass. We’ll use the SCSS
syntax.

You can use Sass in any file by adding the file extension .scss.scss. The asset pipeline will
preprocess any .scss.scss file and expand it as standard CSS.

For more on the advantages of Sass and how to use it, see the Sass website or the Sass Basics
RailsCast from Ryan Bates.

Before you continue, make sure that the rails_layout gem renamed the app/assets/app/assets/
stylesheets/application.cssstylesheets/application.css file as app/assets/stylesheets/application.css.scssapp/assets/stylesheets/application.css.scss. Otherwise you
won’t see the CSS styling we will apply.

The application.css.scss File
In the previous chapter, I introduced the Rails asset pipeline.

Your CSS stylesheets get concatenated and compacted for delivery to the browser when you
add them to this directory:

• app/assets/stylesheets/app/assets/stylesheets/

The asset pipeline helps web pages display faster in the browser by combining all CSS files
into a single file (it does the same for JavaScript).

Let’s examine the file app/assets/stylesheets/application.css.scssapp/assets/stylesheets/application.css.scss:

161

http://sass-lang.com/
http://railscasts.com/episodes/268-sass-basics
http://railscasts.com/episodes/268-sass-basics

/*
* This is a manifest file that'll be compiled into application.css, which will include
all the files
* listed below.
*
* Any CSS and SCSS file within this directory, lib/assets/stylesheets, vendor/assets/
stylesheets,
* or vendor/assets/stylesheets of plugins, if any, can be referenced here using a
relative path.
*
* You're free to add application-wide styles to this file and they'll appear at the
top of the
* compiled file, but it's generally better to create a new file per style scope.
*
*= require_self
*= require_tree .
*/

The app/assets/stylesheets/application.css.scssapp/assets/stylesheets/application.css.scss file serves two purposes.

First, you can add any CSS rules to the file that you want to use anywhere on your website.
Second, the file serves as a manifest, providing a list of files that should be concatenated and
included in the single CSS file that is delivered to the browser.

A Global CSS File

Any CSS style rules that you add to the app/assets/stylesheets/application.css.scssapp/assets/stylesheets/application.css.scss file will
be available to any view in the application. You could use this file for any style rules that are
used on every page, particularly simple utility rules such as highlighting or resetting the
appearance of links. However, in practice, you are more likely to modify the style rules
provided by Zurb Foundation. These modifications don’t belong in the app/assets/app/assets/
stylesheets/application.css.scssstylesheets/application.css.scss file; they will go in the app/assets/stylesheets/app/assets/stylesheets/
framework_and_overrides.css.scssframework_and_overrides.css.scss file.

In general, it’s bad practice to place a lot of CSS in the app/assets/stylesheets/app/assets/stylesheets/
application.css.scssapplication.css.scss file (unless your CSS is very limited). Instead, structure your CSS in
multiple files. CSS that is used on only a single page can go in a file with a name that
matches the page. Or, if sections of the website share common elements, such as themes for
landing pages or administrative pages, make a file for each theme. How you organize your
CSS is up to you; the asset pipeline lets you organize your CSS so it is easier to develop and
maintain. Just add the files to the app/assets/stylesheets/app/assets/stylesheets/ folder.

A Manifest File

It’s not obvious from the name of the app/assets/stylesheets/application.css.scssapp/assets/stylesheets/application.css.scss file that it
serves as a manifest file as well as a location for miscellaneous CSS rules. For most websites,

162

you can ignore its role as a manifest file. In the comments at the top of the file, the
*= require_self directive indicates that any CSS in the file should be delivered to the
browser. The *= require_tree . directive (note the Unix “dot operator”) indicates any files in
the same folder, including files in subfolders, should be combined into a single file for
delivery to the browser.

If your website is large and complex, you can remove the *= require_tree . directive and
specify individual files to be included in the file that is generated by the asset pipeline. This
gives you the option of reducing the size of the application-wide CSS file that is delivered to
the browser. For example, you might segregate a file that includes CSS that is used only in
the site’s administrative section. In general, only large and complex sites need this
optimization. The speed of rendering a single large CSS file is faster than fetching multiple
files.

Zurb Foundation JavaScript
Zurb Foundation provides both CSS and JavaScript libraries.

Like the application.css.scssapplication.css.scss file, the application.jsapplication.js file is a manifest that allows a developer
to designate the JavaScript files that will be combined for delivery to the browser.

The rails_layout gem modified the file app/assets/javascripts/application.jsapp/assets/javascripts/application.js to include the
Foundation JavaScript libraries:

//= require jquery
//= require jquery_ujs
//= require turbolinks
//= require foundation
//= require_tree .
$(function() {
$(document).foundation();

});

It added the directive //= require foundation before //= require_tree . .

The last three lines use jQuery to load the Foundation JavaScript libraries after the browser
has fired a “DOM ready” event (which means the page is fully rendered and not waiting for
additional files to download).

$(function() {
$(document).foundation();

});

Note that this configuration is different from the instructions provided in the Foundation 4
Documentation. In keeping with Rails best practices, we load the Foundation JavaScript

163

http://foundation.zurb.com/docs/rails.html
http://foundation.zurb.com/docs/rails.html

libraries using the asset pipeline in the <head> section of the default application layout. Using
the jQuery “DOM ready” event to load Foundation insures that Foundation is compatible
with other jQuery plugins or JavaScript code.

Zurb Foundation CSS
The rails_layout gem added a file app/assets/stylesheets/framework_and_overrides.css.scssapp/assets/stylesheets/framework_and_overrides.css.scss
containing:

// import the CSS framework
@import "foundation";
.
.
.

The file app/assets/stylesheets/framework_and_overrides.css.scssapp/assets/stylesheets/framework_and_overrides.css.scss is automatically included
and compiled into your Rails application.css file by the *= require_tree . statement in the
app/assets/stylesheets/application.css.scssapp/assets/stylesheets/application.css.scss file.

The @import "foundation"; directive will import the Foundation CSS rules from the
Foundation gem.

You could add the Foundation @import code to the app/assets/stylesheets/app/assets/stylesheets/
application.css.scssapplication.css.scss file. However, it is better to have a separate app/assets/stylesheets/app/assets/stylesheets/
framework_and_overrides.css.scssframework_and_overrides.css.scss file. You may wish to modify the Foundation CSS rules;
placing changes to Foundation CSS rules in the framework_and_overrides.css.scssframework_and_overrides.css.scss file will
keep your CSS better organized.

In addition to the simple @import "foundation"; directive, the app/assets/stylesheets/app/assets/stylesheets/
framework_and_overrides.css.scssframework_and_overrides.css.scss contains a collection of Sass mixins. We’ll look at these
later in the chapter.

Using Foundation CSS Classes
Now that you’ve installed Zurb Foundation, you have a rich library of interactive effects you
can add to your pages.

Take a look at the Foundation documentation to see your options. Here are just a few
examples:

• buttons
• pricing tables
• modal dialogs

164

http://foundation.zurb.com/docs/
http://foundation.zurb.com/docs/components/buttons.html
http://foundation.zurb.com/docs/components/pricing-tables.html
http://foundation.zurb.com/docs/components/reveal.html

At a simpler level, Foundation provides a collection of carefully-crafted styling rules in the
form of CSS classes. These are building blocks you use for page layout and typographic
styling. For example, Foundation gives you CSS classes to set up rows and columns in a grid
system.

Let’s take a closer look at the Foundation grid system.

Foundation Grid

By default, the Foundation grid is 940 pixels wide. Two grids are available; “small” for
browsers less than 768 pixels in width, and “large” for all others. Start by designing for the
small screen with the classes prefixed “small”; then add classes prefixed “large” to change
the layout for a large screen. The layout will change when the browser width is less than 768
pixels wide.

The grid gives you 12 columns by default. You can organize your layout in horizontal and
vertical sections using row and columns classes.

For example, you could use Foundation grid classes to set up an application layout with a
footer as a row with two sections:

<footer<footer class="row">>
<section<section class="small-4 columns">>

Copyright 2013
</section></section>
<section<section class="small-8 columns">>

All rights reserved.
</section></section>

</footer></footer>

The Foundation row class will create a horizontal break. The footer will contain two side-by-
side sections. The first will be four columns wide; the second will be eight columns wide.

To better understand the grid system with all its options, see the documentation for the
Foundation Grid.

Presentational Versus Semantic Styles

There are two schools of thought among front-end developers. Some developers are content
to use Foundation’s classes directly in Rails view files. For these developers, the Foundation
classes are both practical and descriptive, making it easy for any developer who knows the
Foundation framework to visualize the layout of a page.

Other developers take issue with this approach. They argue that Foundation’s markup is
often presentational, with class names describing the appearance of the page. In an ideal
world, all markup would be semantic, with class names describing the function or purpose of

165

http://foundation.zurb.com/docs/components/grid.html
http://foundation.zurb.com/docs/components/grid.html

a style. For example, a submit button often needs styling. Compare these two approaches to
markup:

• presentational: <button class="big red button">Order Now</button>

• semantic: <button class="submit">Order Now</button>

Suppose your user testing indicates a green button generates more sales. With the
presentational approach you’d have to change both the Rails view file and the CSS file. With
a semantic approach, you’d just change the CSS file to reassign the color of the submit class.

Using Foundation Classes Directly

Foundation often mixes presentational and semantic markup.

For quick and simple websites, where you don’t need to be concerned about long-term
maintenance, use Foundation’s CSS classes directly.

For example, you can style a button like this:

• Foundation 4.0: <button class="large alert button">Order Now</button>

It is is immediately obvious that you’ll get a large button. The alert class is a bit more
semantic, indicating it will apply an “alert color” which is red, by default, in Foundation.

Using Sass Mixins with Foundation

If you don’t like the presentational approach, you can use Sass mixins to create your own
semantic class names.

Sass mixins add a layer of complexity that can map Foundation class names to your own
semantic class names.

For example, the Foundation grid system is presentational. Specifying rows and columns,
and quantifying the size of columns, describes the visual appearance of sections of the layout
rather than the purpose of each section. The presentational makes it easy visualize the layout
of a page. But you’ll be tied to Foundation 4.0 class names for the life of your website. If class
names change in Foundation 5.0, or you decide to switch to another front-end framework, it
will be difficult to update your application, as you will have to carefully rebuild each view
file.

Is it worth the effort to add the complexity of Sass mixins just to future-proof your website?
Probably not for a simple website such as the one you are building for Foobar Kadigan.

The rails_layout gem uses Sass mixins to apply CSS style rules to the default application
layout. In doing so, the default application layout is free of framework-specific code and can
be used with either Twitter Bootstrap or Zurb Foundation.

166

Before we examine the default application layout, let’s take a look at the Sass mixins
supplied by the rails_layout gem.

Look again at the file app/assets/stylesheets/framework_and_overrides.css.scssapp/assets/stylesheets/framework_and_overrides.css.scss created by
the rails_layout gem:

167

// import the CSS framework
@import "foundation";

// override for the 'Home' navigation link
.top-bar .name {
font-size: 0.8125em;
line-height: 45px; }

.top-bar .name aa {
font-weight: bold;
color: white;
padding: 0 15px; }

// THESE ARE EXAMPLES YOU CAN MODIFY
// create mixins using Foundation classes
@mixin twelve-columns {
@extend .small-12;
@extendextend .columns;
}

@mixin six-columns-centered {
@extend .small-6;
@extendextend .columns;
@extendextend .text-center;
}

// create your own classes
// to make views framework-neutral
.column {
@include six-columns-centered;
}

.form {
@include grid-column(6);
}

.form-centered {
@include six-columns-centered;
}

.submit {
@extend .button;
@extendextend .radius;
}

// apply styles to HTML elements
// to make views framework-neutral
mainmain {
@include twelve-columns;
background-color: #eee;
}

sectionsection {
@extend .row;
margin-topmargin-top: 20px20px;
}

168

The rails_layout gem is in active development so the file you’ve created may be different
from the example in this tutorial. It will probably be very similar.

At the top of the file we import the Foundation framework CSS files from the gem.

We override two Foundation style rules so the “Home” navigation link matches the other
links in the navigation bar.

Then we use mixins to create semantic classes.

Mixins are declared in Sass files by the @mixin directive, which takes a block of CSS styles,
other mixins, or a CSS selector (a CSS class or ID).

If you’d like to combine CSS classes, or rename a CSS class, use the @extend directive to add a
CSS class to a mixin.

The first declaration @mixin twelve-columns combines the Foundation classes small-12 and
columns to make a new class, twelve-columns .

The second declaration @mixin six-columns-centered makes a column that is six columns wide
with centered text.

Next we create a few classes that use the mixins or combine Foundation CSS classes. For
example, the new submit class can be used for a rounded button. When we use it in a view,
this class will be purely semantic since describes the purpose of the element, allowing us to
set its appearance outside of any view file.

Finally, to avoid applying Foundation classes in the application layout file, we apply styles
to HTML elements main and section to make the views framework-neutral. We use the
@include directive to add the mixins we need. We also use the @extend directive to add a
Foundation CSS class. And we directly set CSS properties such as background-color and
margin-top .

Using this technique, the file app/assets/stylesheets/framework_and_overrides.css.scssapp/assets/stylesheets/framework_and_overrides.css.scss
becomes the single point of intersection between the Foundation framework and the
application layout. For a simple website, this could be over-engineering and counter-
productive. The rails_layout gem uses the technique so that either Twitter Bootstrap or Zurb
Foundation can be used without any change to the default application layout.

We’ll use the CSS classes provided by the rails_layout gem in the tutorial application, but if
you choose to customize the application, feel free to use Foundation classes directly to keep
your project simple.

Application Layout with Zurb Foundation
Let’s look at the application layout file created by the rails_layout gem:

169

Examine the contents of the file app/views/layouts/application.html.erbapp/views/layouts/application.html.erb:

<!DOCTYPE html>
<html>

<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title><%= content_for?(:title) ? yield(:title) : "Learn Rails" %></title>
<meta name="description" content="<%= content_for?(:description) ?

yield(:description) : "Learn Rails" %>">
<%= stylesheet_link_tag "application", media: "all", "data-turbolinks-track" => true

%>
<%# Modernizr is required for Zurb Foundation 4 %>
<%= javascript_include_tag "vendor/custom.modernizr" %>
<%= javascript_include_tag "application", "data-turbolinks-track" => true %>
<%= csrf_meta_tags %>

</head>
<body>

<header>
<%= render 'layouts/navigation' %>

</header>
<main role="main">

<%= render 'layouts/messages' %>
<%= yield %>

</main>
</body>

</html>

This file is almost identical to the simple application layout file we looked at in the previous
chapter.

Modernizr JavaScript Library

You’ll see the file now includes:

.

.

.
<%# Modernizr is required for Zurb Foundation 4 %>
<%= javascript_include_tag "vendor/custom.modernizr" %>
.
.
.

The Modernizr JavaScript library is a prerequisite for Foundation. Modernizr makes it
possible for older browsers to use HTML5 elements. It also detects mobile devices. It must be
loaded before Foundation, so it is included above javascript_include_tag "application" .

170

http://modernizr.com/

Because we’ve applied Foundation classes to the HTML element main in the app/assets/app/assets/
stylesheets/framework_and_overrides.css.scssstylesheets/framework_and_overrides.css.scss file, there’s no need to use Foundation
classes directly in the application layout.

Flash Messages with Zurb Foundation
The messages partial we use with Zurb Foundation is complex.

Examine the file app/views/layouts/_messages.html.erbapp/views/layouts/_messages.html.erb:

<%# Rails flash messages styled for Zurb Foundation 4 %>
<% flash.each do |name, msg| %>

<% if msg.is_a?(String) %>
<div data-alert class="alert-box round <%= name == :notice ? "success" : "alert" %>">

<%= content_tag :div, msg %>
×

</div>
<% end %>

<% end %>

We use each to iterate through the flash hash, retrieving a name and msg that are passed to a
block to be output as a string. The expression if msg.is_a?(String) serves as a test to make
sure we only display messages that are strings. We construct a div that applies Foundation
CSS styling around the message. Foundation recognizes a class alert-box and round (for
rounded corners). A class of either success or alert styles the message. Rails notice
messages will get styled with the Foundation success class. Any other Rails messages,
including alert messages, will get styled with the Foundation alert class.

We use the Rails content_tag view helper to create a div containing the message.

Finally, we create a “close” icon by applying the class close to a link. We use the HTML
entity × (a big “X” character) for the link; it could be the word “close” or anything else
we like. Foundation’s integrated JavaScript library will hide the alert box when the “close”
link is clicked.

Foundation provides detailed documentation if you want to change the styling of the alert
boxes.

Navigation Partial with Zurb Foundation
The layout and styling required for the Foundation navigation bar are in the navigation
partial file.

Examine the file app/views/layouts/_navigation.html.erbapp/views/layouts/_navigation.html.erb:

171

http://foundation.zurb.com/docs/components/alert-boxes.html

<%# navigation styled for Zurb Foundation 4 %>
<nav class="top-bar">

<ul class="title-area">
<li class="name"><%= link_to 'Home', root_path %>
<li class="toggle-topbar menu-icon">Menu

<div class="top-bar-section">

<%= render 'layouts/navigation_links' %>

</div>

</nav>

The navigation partial is now more complex, with layout and Foundation classes needed to
produce a responsive navigation bar.

At the conclusion of this chapter, you’ll test the responsive navigation by resizing the
window. At small sizes, the navigation links will disappear and be replaced by an icon
labeled “Menu.” Clicking the icon will reveal a vertical menu of navigation links. The
navigation menu is a great demonstration of the ability of Zurb Foundation to adjust to the
small screen size of a tablet or smartphone.

If you’d like to add a site name or logo to the tutorial application, you can replace the link
helper <%= link_to 'Home', root_path %> . It is important to preserve the enclosing layout and
classes, even if you don’t want to display a site name or logo. The enclosing layout is used to
generate the navigation menu when the browser window shrinks to accommodate a tablet or
smartphone.

You’ll see we wrap the nested partial render 'layouts/navigation_links' with a Foundation
class to complete the navigation bar.

Navigation Links Partial
The file app/views/layouts/_navigation_links.html.erbapp/views/layouts/_navigation_links.html.erb is unchanged:

<%# add navigation links to this file %>

Later we’ll add links to “About” and “Contact” pages.

The navigation links partial will be simply a list of navigation links. It doesn’t require
additional CSS styling.

We’re following the separation of concerns principle here. By separating the links from the
styling that creates the navigation bar, we segregate the code that is unique to Zurb
Foundation. In the future, if the Zurb Foundation layout or CSS classes change, we can make

172

changes without touching the navigation links. If we wish, we can replace the navigation
partial and substitute one that uses Twitter Bootstrap styles instead of Foundation, leaving
the navigation links intact.

Set up SimpleForm with Zurb Foundation
One of the requirements for our tutorial application is a contact form. We could set up
styling for the form when we implement the contact page, but it is convenient to set up form
styling now, as we would if we were adding multiple forms to the site.

Rails provides a set of view helpers for forms. They are described in the RailsGuides: Rails
Form Helpers document. But, as you’ve learned, Rails has more than one stack, and most
developers use an alternative set of form helpers named SimpleForm, provided by the
SimpleForm gem. The SimpleForm helpers are more powerful, easier to use, and offer an
option for styling with Zurb Foundation.

In your GemfileGemfile, you’ve already added:

gem 'simple_form'

and previously run $ bundle install .

Run the generator to install SimpleForm with a Zurb Foundation option:

$ rails generate simple_form:install --foundation

which installs several configuration files:

config/initializers/simple_form.rb
config/initializers/simple_form_foundation.rb
config/locales/simple_form.en.yml
lib/templates/erb/scaffold/_form.html.erb

Here the SimpleForm gem uses the rails generate command to create files for initialization
and localization (language translation). SimpleForm can be customized with settings in the
initialization file. We’ll use the defaults.

Test the Application
Let’s see how the application looks with Zurb Foundation. The web server may already be
running. If not, enter the command:

173

http://guides.rubyonrails.org/form_helpers.html
http://guides.rubyonrails.org/form_helpers.html
https://github.com/plataformatec/simple_form

$ rails server

Open a web browser window and navigate to http://localhost:3000/.

You should see a new page design that displays Zurb Foundation styling. Thanks to the
open source efforts of the Zurb firm, we’ve added powerful front-end features to our website
with little effort.

You can click the “X” close icons to hide the flash messages, thanks to the integrated CSS and
JavaScript of the Foundation framework.

Watch what happens when you resize the page. At smaller sizes, the navigation bar changes
to display a menu icon. Clicking the menu icon reveals a drop-down menu of navigation
links (just one right now, for “Home”).

Here’s a troubleshooting tip. If clicking the menu icon doesn’t reveal a drop-down menu, the
application may not be loading the Foundation JavaScript library. Make sure that the file
app/assets/javascripts/application.jsapp/assets/javascripts/application.js contains:

//= require jquery
//= require jquery_ujs
//= require turbolinks
//= require foundation
//= require_tree .
$(function() {
$(document).foundation();

});

Next we’ll add “About” and “Contact” pages to the application.

Remove the Flash Messages
Before we continue, we’ll remove the flash messages we created for our demonstration.

Update the file app/controllers/visitors_controller.rbapp/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

def new
@owner = Owner.new

end

end

174

http://localhost:3000

Git
Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "front-end framework"
$ git push

175

Chapter 21
Add Pages
Let’s begin adding pages to our web application.

There are three types of web pages in a Rails application. We’ve looked at two types so far:

• static pages in the public/public/ folder that contain no Ruby code
• dynamic pages such as our home page that use the application layout

There’s another type of web page that is required on many websites. It has static content;
that is, no dynamic data is needed on the page. But it uses the default application layout to
maintain consistency in the website look and feel. We classify this type of page as a:

• static view that uses the application layout

Examples include:

• “About” page
• Legal page
• FAQ page

It’s possible to place these pages in the public/public/ folder and copy the HTML and CSS from the
default application layout but this leads to duplicated code and maintenance headaches. And
dynamic elements such as navigation links can’t be included. For these reasons, developers
seldom create static pages in the public/public/ folder.

Alternatively, a dynamic page can be created that has no model, a nearly-empty controller,
and a view that contains no instance variables. This solution is quite common for static views
that use the application layout.

This solution is implemented so frequently that many developers create a gem to
encapsulate the functionality. We’re going to use the best-known of these gems, the
high_voltage gem created by the Thoughtbot consulting firm.

We’ll use the High Voltage gem to create an “About” Page.

We also will create a Contact page. We’ll again use the High Voltage gem, but only for the
first version of the Contact page. Later we’ll discard the page we created with the High
Voltage gem and replace it with a full model-view-controller implementation. The process
will show the difference between an older form of web application architecture and a newer
“Rails way.”

176

https://github.com/thoughtbot/high_voltage
http://www.thoughtbot.com/

High Voltage Gem
We can add a page using the High Voltage gem almost effortlessly. The gem implements
Rails “convention over configuration” so well that there is nothing to configure. There are
alternatives to its defaults which can be useful but we won’t need them; visit the GitHub
home page for the high_voltage gem if you want to explore all the options.

In your GemfileGemfile, you’ve already added:

gem 'high_voltage'

and previously run $ bundle install .

Views Folder
Create a folder app/views/pagesapp/views/pages:

$ mkdir app/views/pages

Any view files we add to this directory will automatically use the default application layout
and appear when we use a URL that contains the filename.

The High Voltage gem contains all the controller and routing magic required for this to
happen.

Let’s try it out.

“About” Page
Create a file app/views/pages/about.html.erbapp/views/pages/about.html.erb:

<% content_for :title do %>About<% end %>
<h3>About Foobar Kadigan</h3>
<p>He was born in Waikikamukau, New Zealand. He left New Zealand for England, excelled
at the University of Mopery, and served in the Royal Loamshire Regiment. While in
service, he invented the kanuten valve used in the processing of unobtainium for
industrial use. He founded Acme Manufacturing, later acquired by the Advent
Corporation, to commercialize the product. Mr. Kadigan is now retired and lives in
Middlehampton where he raises Griadium frieda.</p>
<p>His favorite quotation is:</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.</p>

177

https://github.com/thoughtbot/high_voltage

Our simple “About” view will be combined with the default application layout by the High
Voltage gem.

We include a content_for Rails view helper that passes a page title to the application layout.

Contact Page
For the initial version of the Contact page, create a file app/views/pages/contact.html.erbapp/views/pages/contact.html.erb:

<% content_for :title do %>Contact<% end %>
<h3>Contact</h3>

This is a placeholder page we’ll use to test the navigation link we’ve already created.

We include a content_for Rails view helper that passes a page title to the application layout.

Routing for the High Voltage Gem
The High Voltage gem provides a PagesController. You’ll never see it; it is packaged inside
the gem.

In addition to providing a controller, the High Voltage gem provides default routing so any
URL with the form http://localhost:3000/pages/about will obtain a view from the app/app/
views/pagesviews/pages directory.

Like the PagesController, the code that sets up the route is packaged inside the gem. If we
wanted to add the route explicitly to the file config/routes.rbconfig/routes.rb, the file would look like this:

LearnRails::Application.routes.draw do
get "/pages/*id", to: 'pages#show'
root to: 'visitors#new'

end

Again, you don’t need to add the code above because the High Voltage gem already
provides the route.

For details about the syntax of routing directives, refer to RailsGuides: Routing from the
Outside In.

178

http://localhost:3000/pages/about
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html

Update the Navigation Partial
You can use a Rails route helper to create a link to any view in the app/views/pagesapp/views/pages
directory like this:

link_to 'About', page_path('about')

Let’s add links to the “About” and “Contact” pages.

Replace the contents of the file app/views/layouts/_navigation_links.html.erbapp/views/layouts/_navigation_links.html.erb with this:

<%# add navigation links to this file %>
<%= link_to 'About', page_path('about') %>
<%= link_to 'Contact', page_path('contact') %>

With an updated navigation bar, we can test the application.

Test the Application
The web server may already be running. If not, enter the command:

$ rails server

Open a web browser window and navigate to http://localhost:3000/.

Links to the pages “About” and “Contact” should work.

If you get an error “uninitialized constant PagesController,” it is likely you copied code into
the config/routes.rbconfig/routes.rb file that was intended only for explanation. The config/routes.rbconfig/routes.rb file
should look like this:

LearnRails::Application.routes.draw do
root to: 'visitors#new'

end

Git
Let’s commit our changes to the Git repository and push to GitHub:

179

http://localhost:3000

$ git add -A
$ git commit -m "add 'about' and 'contact' pages"
$ git push

There is nothing more we need for our “About” page.

In the next chapter, we’ll explore two different implementations for the Contact page.

180

Chapter 22
Contact Form
Forms are ubiquitous on the web, to the degree we seldom notice how often they are used
for data entry, whether we’re logging into a website or posting a blog comment. To build any
interactive website, you’ll need to understand forms. Here we’ll build a contact form for our
tutorial application.

A contact form is common on many websites. If you think about it, contact forms are often
unnecessary; simply displaying an email address is sufficient, more convenient, and easier to
implement. But building a contact form is an excellent way to learn how to handle user data
input. We’ll pretend that our odd client, Mr. Foobar Kadigan, insists that he needs a contact
form on his website.

We’re not backing the tutorial application with a database so we won’t store the contact data
after the information is submitted. Instead, in a subsequent chapter we’ll learn how to send
the contents of the form by email to the website owner.

The “Old Way” and the “Rails Way”
In this chapter, we’ll explore two ways to implement a contact form. The first way will be
familiar to anyone who has used PHP or similar web platforms. It is an obvious and
straightforward way to handle a form. As we look closer, we’ll see the approach has
limitations. We’ll discard our first approach and rebuild the Contact page, discovering how
the “Rails way” is more powerful.

You may wonder why I’m going to show you two different ways to implement the contact
form.

First, it is worthwhile to see there is more than one way to implement a web application.
Maturity as a software developer means imagining different approaches and evaluating your
options. With this exercise, you’ll contrast two approaches and see how we make choices
about software architecture.

More importantly, it is not always obvious why we do things in a “Rails way.” It would be
easy to simply walk you through the steps to build a contact form without showing you
alternative implementations (that’s how most tutorials do it). But you’ll gain a deeper
understanding of Rails by building the contact form in a less sophisticated fashion and then
seeing the more elegant Rails approach.

181

User Story
Let’s plan our work with a user story:

Contact Page
As a visitor to the website
I want to fill out a form with my name, email address, and some text
In order to send a message to the owner of the website

Our first step will be to create a route to a controller that will process the submitted form.

Routing
We’re going to create a ContactsController to process the submitted form data. Every form
must have a destination URL that receives the form submission. We need to set a route to
generate the destination URL.

Open the file config/routes.rbconfig/routes.rb. Replace the contents with this:

LearnRails::Application.routes.draw do
post 'contact', to: 'contacts#process_form'
root to: 'visitors#new'

end

The route post 'contact', to: 'contacts#process_form' will create a route helper that generates
a URL and hands off the request to a controller.

You can run the rake routes command to see our routes in the console:

$ rake routes
Prefix Verb URI Pattern Controller#Action

contact POST /contact(.:format) contacts#process_form
root GET / visitors#new
page GET /pages/*id high_voltage/pages#show

The output of the rake routes command is somewhat cryptic but confirms we’ve created the
routes we need.

The first item in the rake routes output indicates we can add “contact” to “_path” to get our
route helper, contact_path :

• contact_path – a route helper that can be used in a controller or view

182

The second item indicates the request will be handled with the HTTP POST protocol:

• POST – HTTP method to submit form data

The third item indicates the application will respond to the following URL:

• http://localhost:3000/contact – URL generated by the route helper

The fourth item indicates a request to the URL will be handled by:

• contacts – the name of the controller (ContactsController)
• process_form – a controller action

For details about the syntax of routing directives, refer to RailsGuides: Routing from the
Outside In.

The route won’t work yet; we need to create a ContactsController. But first we’ll create the
form.

Adding a Form to the Contact Page
You’ll recall that we set up the SimpleForm gem when we added Zurb Foundation to our
application. The SimpleForm gem provides Rails view helpers for forms. You’ll remember
that we described Rails view helpers as “macros to generate HTML.” The SimpleForm gem
gives us view helpers to generate all the HTML required by complex forms. Forms require
some of the most complex HTML a developer will encounter, so the SimpleForm gem is
truly worthwhile.

Let’s add the code for a contact form to the Contact page.

Replace the contents of the file app/views/pages/contact.html.erbapp/views/pages/contact.html.erb:

<% content_for :title do %>Contact<% end %>
<h3>Contact</h3>
<div class="form">

<%= simple_form_for :contact, url: contact_path do |form| %>
<%= form.input :name, autofocus: true %>
<%= form.input :email %>
<%= form.input :content, as: :text %>
<%= form.button :submit, 'Submit', class: 'submit' %>

<% end %>
</div>

The code is compact but complex. We see several elements:

• content_for is a view helper that passes a page title to the application layout

183

http://localhost:3000/contact
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html
https://github.com/plataformatec/simple_form

• <div class="form"> sets the width of the form and applies any styles we desire
• simple_form_for is the view helper for the form

The simple_form_for view helper instantiates a form object which we assign to a variable
named form . SimpleForm offers many standard form elements, such as text fields and
submit buttons. Each element is available as a method call on the form object.

The view helper simple_form_for requires parameters and a block.

Every form needs a name and a route in the application that will handle processing of the
form data. The parameters are:

• contact – the name of the form
• url – set to contact_path , the destination for the form data

Later, when we change this form to accommodate the “Rails way,” we’ll replace these two
parameters with a single instance variable. The magic of Rails will generate the name of the
form and the destination URL from the instance variable. For now, to implement the “old
way,” we supply the name of the form and the destination URL.

The simple_form_for view helper accommodates a Ruby block. The block begins with do and
closes with end . The code inside the block works just like code inside a method. In this case,
the form object is passed to the block and methods belonging to the form object are called to
produce HTML output.

Inside the block, the form object methods generate HTML for:

• a name field
• an email field
• a content field
• a submit button

Each of the form methods takes various parameters, such as:

• autofocus – displays the cursor in the field
• as: :text – displays a multiline text area
• input_html – adds any HTML such as a CSS class
• class – applies a CSS class to modify a button’s appearance

The structure of the form is clearly visible in the code. The form begins with a simple_form_for
helper and closes with the end keyword. Each line of code produces an element in the form
such as a field or a button.

This is a common structure for a Rails view helper and it will soon become familiar.

184

Controller
We need code to process the form data. The form data is sent to the server as a POST request
attached to a URL. As we’ve learned, in Rails we use controllers to respond to browser
requests. For this implementation, we’ll create a ContactsController to process the submitted
form data.

Create a file app/controllers/contacts_controller.rbapp/controllers/contacts_controller.rb:

class ContactsController < ApplicationController

def process_form
Rails.logger.debug "DEBUG: params are #{params}"
flash[:notice] = "Received request from #{params[:contact][:name]}"
redirect_to root_path

end

end

The ContactsController inherits the behavior of the base ApplicationController.

We create a process_form method to respond when the form is submitted. Later we’ll learn
that process_form doesn’t fit the “Rails way.” We’ll use it for now.

Before we look closely at the code for the process_form method, we need to learn about the
params hash.

Params Hash

Take a close look at these two lines:

Rails.logger.debug "DEBUG: params are #{params}"
flash[:notice] = "Received request from #{params[:contact][:name]}"

Notice the params object.

Earlier we learned about the Ruby Hash class. It is a data structure for key/value pairs and
Hash instances are ideal for storing form data. Each field on the form can be mapped as label
and data, or key and value, and stored in a Hash.

Rails does all the work of extracting the form data from the browser’s POST request. Rails
creates a hash with the form field data mapped to the form field labels and gives the hash the
name of the form. Here’s the hash as pure Ruby code:

185

contact = {name: 'Daniel', email: 'daniel@danielkehoe.com', contents: 'hi!'}

Rails goes a step further and nests the form hash inside another hash named params .

As pure Ruby code, the params hash looks like this:

params = {controller: 'contacts',
action: 'process_form',
contact: {name: 'Daniel', email: 'daniel@danielkehoe.com', content: 'hi!'}
}

The params hash includes these elements (plus others we won’t cover):

• current controller
• current action
• form data (our contact hash)

You will see the contents of the params hash in the console log after you submit the form.
We’ll look at the console log when we test the implementation.

Process_form Method

Now that we know about the params hash, take a look again at the process_form method:

def process_form
Rails.logger.debug "DEBUG: params are #{params}"
flash[:notice] = "Received request from #{params[:contact][:name]}"
redirect_to root_path

end

We use a logger.debug method to reveal the form data in our console log by revealing the
contents of the params hash.

Then we extract the data posted to the name field of the form and construct a flash message.
A hash containing the data from the contact form is nested inside the params hash. We can
retrieve the value of the name field with the expression params[:contact][:name] . We use
double quotes and string interpolation to form the message using the #{...} syntax that
evaluates a Ruby expression and combines it with a string.

Finally we use the redirect_to directive to render the home page.

186

We haven’t actually sent the contact data to anyone. We’ll add code for that later, after we
refactor the controller to be a better example of the “Rails way.” Before we do that, let’s test
the current implementation. We’ve already set up routing for the new controller.

Test the Application
If you need to start the server:

$ rails server

Open a web browser window and navigate to http://localhost:3000/.

Click the “Contact” link; then fill out and submit the form.

You should see the flash message “Received request from …” on the home page. If you see
the message “My birthday is soon” you need to delete your earlier experiment from the
Visitors controller.

Notice what appears in the console log:

Started POST "/contact" for 127.0.0.1 at ...
Processing by ContactsController#process_form as HTML

Parameters: {"utf8"=>"✓", "authenticity_token"=>"rQJfWNurHbEI3RBj/
myfUkcbkeX5cgQ06y4y91Jqthw=", "contact"=>{"name"=>"Daniel Kehoe",
"email"=>"daniel@danielkehoe.com", "content"=>"Looking forward to your birthday!"},
"commit"=>"Submit"}
DEBUG: params are{"utf8"=>"✓", "authenticity_token"=>"rQJfWNurHbEI3RBj/
myfUkcbkeX5cgQ06y4y91Jqthw=", "contact"=>{"name"=>"Daniel Kehoe",
"email"=>"daniel@danielkehoe.com", "content"=>"Looking forward to your birthday!"},
"commit"=>"Submit", "action"=>"process_form", "controller"=>"contacts"}
Redirected to http://localhost:3000/
Completed 302 Found in 0ms (ActiveRecord: 0.0ms)

The console log is our most important tool for debugging. Let’s analyze what we see:

• Started POST – shows the server is responding to an HTTP POST request
• “/contact” – the path portion of the URL
• for 127.0.0.1 – the IP address for localhost
• at … – timestamp
• Processing by ContactsController – the controller
• process_form – the controller action (the method that handles the request)
• as HTML – not XML or some other markup

187

http://localhost:3000

• Parameters: – the params hash containing all the submitted data
• “utf8”=>"✓" – a Rails workaround to set the language encoding in Internet Explorer
• “authenticity token” – prevents CSRF security exploits
• “contact” – a hash containing the form data
• “commit” – the “Submit” label from the button
• DEBUG – our debug message containing the form data
• Redirected to http://localhost:3000/ – responded by displaying the home page
• Completed 302 Found – HTTP response status code 302 indicating a redirection
• in 0ms – time required to process the request

That’s a lot of data. For now, we really only care about the form data buried in the params
hash.

You can see that we really don’t need the debug message because the console log shows us
the contents of the params hash.

The Validation Problem
It looks like we’ve got everything we need to handle a form submission. As a next step, we
could implement code to send an email message using form data extracted from the params
hash.

But consider a potential problem. What if the email address is poorly formed? The visitor
will think the message has been sent but it will never be delivered.

Or what if the name field or message is blank? It’s not just a problem for the hapless visitor.
An evildoer could repeatedly click the submit button, filling Foobar Kadigan’s email inbox
with endless empty messages.

We need validation of the form data before we process it.

We could dig into the Rails String API and look for a way to test if the string is empty or
contains only whitespaces. And we could raise an Exception if the string is blank.

Here’s what validation code could look like. We won’t use this code (because there’s a better
way to do this):

188

class ContactsController < ApplicationController

def process_form
if params[:contact][:name].blank?
raise 'Name is blank!'

end
if params[:contact][:email].blank?
raise 'Email is blank!'

end
if params[:contact][:content].blank?
raise 'Message is blank!'

end
message = "Received request from #{params[:contact][:name]}"
redirect_to root_path, :notice => message

end

end

We would need additional code to test for invalid email addresses (it will be a complex regex,
or regular expression). And we would need a nicer way of showing the error to the visitor
(right now, raising the exception displays an error message that makes it appear the
application is broken). If we were implementing this on another web application platform,
we might go further down this path, googling for code examples, and implementing a
lengthy but bulletproof validation function.

Rails offers a better way.

Remove the Contact Page
We will implement a model-view-controller architecture for our Contact feature. That means
we need a Contact model, a Contacts controller, and view files in the app/views/contacts/app/views/contacts/
folder.

We no longer need the Contact page in the app/views/pages/app/views/pages/ folder.

Let’s get started by removing the file app/views/pages/contact.html.erbapp/views/pages/contact.html.erb:

$ rm app/views/pages/contact.html.erb

Before we implement a model-view-controller architecture, let’s take time to understand the
advantages of the Rails model-view-controller approach.

189

Implementing the “Rails Way”
Our initial implementation of the contact form is consistent with the earliest approach to web
application development. That’s why I call it the “old way.” It is an approach that originated
in 1993 with a specification for CGI, the Common Gateway Interface. Before CGI, every page
on the web existed only as a static HTML file. CGI made it possible to run a program, or CGI
script, that dynamically generated HTML. In the early years of the web, every web URL
matched either an HTML file or a CGI script. This is the “page paradigm” of the web.

So far, we’re following the “page paradigm.” Our Contact page hosts the form. Clicking the
submit button makes a request to another page that is actually a program that returns
HTML. Until the late 1990s, this is how the web worked. But soon after the introduction of
CGI, developers began exploring the possibility of running a single program (an application
server) that responds to any URL, parsing the URL to establish routing, and generating
pages dynamically. This was the genesis of the “web application paradigm.” It’s how Rails
works.

The web application paradigm frees us from one-to-one correspondence of a URL with a
single file or script. It allows us to refactor our code into object-oriented classes and methods
that can be inherited rather than duplicated, which means we don’t repeat the same code on
every page that processes a form.

The web application paradigm makes it possible to use the model-view-controller
architecture. Instead of looking at the web as URLs that return pages, we see requests that
are routed to controllers that render views. We can segregate any code that manipulates data
into a model class, instead of mixing HTML with data manipulation in a single script. With
the “web application paradigm,” we can have a generic model class that isolates the code
that connects to a database or validates form data. We can create models that inherit the
generic behavior from a parent class and get a database connection or validation “for free.”
Unlike the “page paradigm,” we’ll avoid duplicating validation code every time we need to
process a form.

Consider our process_form method again:

190

http://en.wikipedia.org/wiki/Common_Gateway_Interface

class ContactsController < ApplicationController

def process_form
if params[:contact][:name].blank?
raise 'Name is blank!'

end
if params[:contact][:email].blank?
raise 'Email is blank!'

end
if params[:contact][:content].blank?
raise 'Message is blank!'

end
message = "Received request from #{params[:contact][:name]}"
redirect_to root_path, :notice => message

end

end

We’ll replace it with something better.

Our “segregation of concern” philosophy suggests that validation belongs in a model, since
validation is a type of data manipulation (strictly speaking, a test of data integrity).
Furthermore, it would be nice to make the validation tests generic so they could be used to
validate data submitted from any form.

Rails, as a framework, provides all this for us. We call it the “Rails way.”

ActiveRecord
Rails extracts and generalizes common code that every website requires. The code that
websites need for access to databases is abstracted into the Rails ActiveRecord class.
ActiveRecord includes code from the ActiveModel class that handles interaction with forms
and data validation.

The ActiveRecord class interfaces with SimpleForm to provide sophisticated validation and
error handling. We can inherit behavior from the ActiveRecord class to add validation and
error handling to any model we create.

SimpleForm will recognize ActiveRecord methods if we provide a model as an argument to
the SimpleForm view helper. SimpleForm will give the form a name that matches the model
name. And SimpleForm will automatically generate a destination URL for the form based on
the model name.

More significantly, SimpleForm will add sophisticated error handling to the form. If a visitor
doesn’t enter a name or submits an invalid email address, and we declare in our model that
we require validation, SimpleForm will highlight the invalid field and display an inline

191

https://github.com/rails/rails/tree/master/activerecord
https://github.com/rails/rails/tree/master/activemodel

message indicating the problem. Compared to what we’ve implemented so far, this kind of
error handling provides a vastly superior user experience. Instead of displaying a message
that the application failed, the form will be redisplayed with the problem marked and noted.

Now that we’ve seen the advantages of the “Rails way,” let’s re-implement our contact form
using the model-view-controller architecture.

Model
When we build database-backed applications with Rails, we base our models on a parent
class named ActiveRecord. We are not using a database for our tutorial application, so we’ll
use the activerecord-tableless gem to disable the database features of ActiveRecord.

Note: There’s another way to create a model without a database using only the ActiveModel
class, described in the RailsCasts: ActiveModel screencast. Either approach is fine; we’re
using the activerecord-tableless gem because a tableless implementation using ActiveModel
requires an understanding of Ruby modules, get and set methods, and object initialization.
It’s just easier to use the activerecord-tableless gem.

Let’s set up a model that inherits from ActiveRecord.

Create a file app/models/contact.rbapp/models/contact.rb:

class Contact < ActiveRecord::Base
has_no_table

column :name, :string
column :email, :string
column :content, :string

validates_presence_of :name
validates_presence_of :email
validates_presence_of :content
validates_format_of :email,
:with => /\A[-a-z0-9_+\.]+\@([-a-z0-9]+\.)+[a-z0-9]{2,4}\z/i

validates_length_of :content, :maximum => 500

end

We give the model the name “Contact” and inherit from the ActiveRecord class.

We use the has_no_table directive from the activerecord-tableless gem to disable database
features of ActiveRecord.

We specify attributes (data fields) for the model by using the column keyword from the
activerecord-tableless gem. These match the fields in the contact form.

192

https://github.com/softace/activerecord-tableless
https://github.com/rails/rails/tree/master/activemodel
http://railscasts.com/episodes/219-active-model

ActiveRecord gives us validation methods named validates_presence_of , validates_format_of ,
and validates_length_of . We check that name , email , and content exist (no blanks are
allowed). We provide a complex regex, or regular expression, to test if the email address is
valid. Finally, we declare that the message content cannot exceed 500 characters.

The model is elegant. We describe the fields we need and state our validation requirements.
ActiveRecord does all the rest.

Next we’ll add a new Contact page by creating a view in the app/views/contacts/app/views/contacts/ folder.

The new contact form will use our new model.

Create a New Contact Page
First, let’s create the app/views/contacts/app/views/contacts/ folder:

$ mkdir app/views/contacts/

Create a file app/views/contacts/new.html.erbapp/views/contacts/new.html.erb:

<% content_for :title do %>Contact<% end %>
<h3>Contact</h3>
<div class="form">

<%= simple_form_for @contact do |form| %>
<%= form.error_notification %>
<%= form.input :name, autofocus: true %>
<%= form.input :email %>
<%= form.input :content, as: :text %>
<%= form.button :submit, 'Submit', class: 'submit' %>

<% end %>
</div>

The form is the same as we used before, but we’re now providing only one argument, the
@contact instance variable, to the SimpleForm view helper. That’s enough to generate the
form name and destination URL.

We haven’t yet created a controller that assigns the Contact model to the @contact instance
variable. We’ll do that soon.

Earlier, I explained that SimpleForm configures itself if we provide a model that inherits
from ActiveRecord. SimpleForm gives the form a name that matches the model name. And
SimpleForm generates a destination URL based on the model name.

SimpleForm uses the @contact instance variable to name the form, set a destination for the
form data, and initialize each field in the form using attributes from the Contact model.

193

Setting the values for the form fields from the attributes in the model is called “binding the
form to the object” and you can read about it in the RailsGuides: Form Helpers article.

We’ve added the error_notification method which provides all the error handling. The
method call is very simple but the results will be impressive.

We’ll need a controller and routing to complete our model-view-controller architecture. But
first, we’ll detour to learn about seven standard controller actions.

Seven Controller Actions
Consider all the possibilities for managing a list. It’s a list of anything: users, inventory,
thingamajigs. We use a web application to manage the list, so we’ll fill out a form to record
each item in our list.

The web application offers seven features to help us manage our records:

• index – display a list of all items
• show – display a record of one item
• new – display an empty form
• create – save a record of a new item
• edit – display a record for editing
• update – save an edited record
• destroy – delete a record

You can manage any list using these seven actions. There are a few extra actions that are
helpful, such as:

• pagination – displaying a portion of a list
• sorting – displaying the list in a different order
• bulk edit – changing multiple items at once

But seven basic actions are all you need for managing any list of items.

The “Rails way” is about taking advantage of structure and convention to leverage the
power of the framework.

The ApplicationController contains code to implement each of the seven standard actions.
When we create a controller that inherits from the ApplicationController, we get these
standard actions “for free.” That’s why our new method in our VisitorsController was so
simple. The controller knew to render a view file named new.html.erbnew.html.erb from the views/views/
visitors/visitors/ folder because of behavior inherited from the ApplicationController.

194

http://guides.rubyonrails.org/form_helpers.html#binding-a-form-to-an-object

Just like the Rails directory structure provides consistency to make it easy for any Rails
developer to collaborate with other Rails developers, relying on the seven standard
controller actions makes it easy for other team members to understand how your controllers
work.

When necessary, you will add other controller actions. For example, imagine you’ve built a
subscription website. When a user’s subscription ends, you may not want to destroy the
subscriber record. Instead you might add a controller expire or suspend action that marks the
subscriber record as expired so you can continue to access the subscriber’s contact
information for customer service or renewal offers. To the extent you can, use the seven
standard controller actions and be cautious about adding more.

Earlier, I said our ContactsController process_form method isn’t suitable for the “Rails way.”
With our model-view-controller architecture, we can piggyback on the
ApplicationController to display our empty contact form and process the form when it is
submitted.

We’ll use only two of the seven standard controller actions:

• new – display the empty contact form
• create – validate and process the submitted form

Our ContactsController will know to render a view from the app/views/contacts/app/views/contacts/
new.html.erbnew.html.erb file when we call the controller new method.

We won’t piggyback on behavior from the ApplicationController create method. But we’ll
implement a create method because, by convention, the form will submit the data to the
controller’s create method. SimpleForm will create a destination URL that corresponds to
the ContactsController#create action.

Controller
Replace the contents of the file app/controllers/contacts_controller.rbapp/controllers/contacts_controller.rb:

195

class ContactsController < ApplicationController

def new
@contact = Contact.new

end

def create
@contact = Contact.new(secure_params)
if @contact.valid?
TODO save data
TODO send message
flash[:notice] = "Message sent from #{@contact.name}."
redirect_to root_path

else
render :new

end
end

private

def secure_params
params.require(:contact).permit(:name, :email, :content)

end

end

We’ve dropped the “old school” process_form method and added the “Rails way” new and
create methods.

The controller new action will instantiate an empty Contact model, assign it to the @contact
instance variable, and render the app/views/contacts/new.html.erbapp/views/contacts/new.html.erb view. We’ve already
created the view file containing the form.

SimpleForm will set a destination URL that corresponds to the ContactsController#create
action. The create method will instantiate a new Contact model using the data from the form
(we take steps to avoid security vulnerabilities first—more on that later).

The ActiveRecord parent class provides a method valid? which we can call on the Contact
model. Our conditional statement if @contact.valid? checks each of the validation
requirements we’ve set in the model.

If all the Contact fields are valid, we can save data (not yet implemented), send a message
(not yet implemented), prepare a flash message, and redirect to the home page. Notice that
we don’t need to dig into the params hash for the visitor’s name; it is now available as
@contact.name directly from the model.

If any validation fails, the controller create action will render the app/views/contacts/app/views/contacts/
new.html.erbnew.html.erb view. This time, appropriate error messages are set and the form object’s
error_notification method will highlight the invalid field and display a matching prompt.

196

You’re looking at the tightly bound interaction of the “Rails way” model, view, and
controller.

The only element we are missing is routing. But first, let’s look closer at the steps we take to
avoid security exploits.

Mass-Assignment Vulnerabilities

Rails protects us from a class of security exploits called “mass-assignment vulnerabilities.”
Rails won’t let us initialize a model with just any parameters submitted on a form. Suppose
we were creating a new user and one of the user attributes was a flag allowing administrator
access. A malicious hacker could create a fake form that provides a user name and sets the
administrator status to “true.” Rails forces us to “white list” each of the parameters used to
initialize the model.

We create a method named secure_params to screen the parameters sent from the browser.
The params hash contains two useful methods we use for our screening:

• require(:contact) – makes sure that params[:contact] is present
• permit(:name, :email, :content) – our “white list”

With this code, we make sure that params[:contact] only contains :name, :email, :content . If
other parameters are present, they are stripped out. Rails will raise an error if a controller
attempts to pass params to a model method without explicitly permitting attributes via
permit .

In older versions of Rails (before Rails 4.0), the mass-assignment exploit was blocked by
using a “white list” of acceptable parameters with the attr_accessible keyword in a model.
You’ll see this code in examples and tutorials that were written before Rails 4.0 introduced
“strong parameters” in the controller.

Private Methods

If you paid close attention to the code you added to the Contacts controller, you may have
noticed the keyword private above the secure_params method definition. This is a bit of
software architecture that limits access to the secure_params method (plus any more methods
we might add beneath it).

Very simply, adding the private keyword restricts access to the secure_params method so
only methods in the same class can use it. You might be puzzled; after all, how else could it
be accessed? We haven’t explored calling methods from other classes, so I’ll just say that
without the private keyword, the secure_params method could be used from code anywhere
in our application. In this case, we apply the private keyword because we want to be sure
the secure_params method is only used in the ContactsController class. It’s just a bit of “best

197

practice” and for now, you can simply learn that secure_params method should be a private
method.

Now let’s look at routing for controllers that are built the “Rails way.”

Routing
Rails routing is aware of the seven standard controller actions.

In fact, it takes only one keyword (with one parameter) to generate seven different routes for
any controller.

The keyword is resources and supplying a name that matches a model and controller
provides all seven routes.

Open the file config/routes.rbconfig/routes.rb. Replace the contents with this:

LearnRails::Application.routes.draw do
resources :contacts, only: [:new, :create]
root to: 'visitors#new'

end

Here we’ve added resources :contacts, only: [:new, :create] .

We only want two routes so we’ve added the restriction only: [:new, :create] .

The new route has these properties:

• new_contact_path – route helper
• contacts – name of the controller (ContactsController)
• new – controller action
• http://localhost:3000/contacts/new – URL generated by the route helper
• GET – HTTP method to display a page

The create route has these properties:

• contacts_path – route helper
• contacts – name of the controller (ContactsController)
• create – controller action
• http://localhost:3000/contacts – URL generated by the route helper
• POST – HTTP method to submit form data

198

http://localhost:3000/contacts/new
http://localhost:3000/contacts

You can run the rake routes command to see these in the console:

$ rake routes
Prefix Verb URI Pattern Controller#Action

contacts POST /contacts(.:format) contacts#create
new_contact GET /contacts/new(.:format) contacts#new

root GET / visitors#new
page GET /pages/*id high_voltage/pages#show

The output of the rake routes command shows we’ve created the routes we need.

Our new route new_contact_path can now be used. We’ve completed our move to the model-
view-controller architecture by adding the appropriate routes.

Change Navigation Links
With our new model-view-controller architecture, we need to change the navigation links.

Change the file app/views/layouts/_navigation_links.html.erbapp/views/layouts/_navigation_links.html.erb:

<%# add navigation links to this file %>
<%= link_to 'About', page_path('about') %>
<%= link_to 'Contact', new_contact_path %>

We’re ready to test the model-view-controller implementation of the Contact feature.

Be sure you’ve removed the file app/views/pages/contact.html.erbapp/views/pages/contact.html.erb, as it is no longer used.

Test the Application
If you need to restart the server:

$ rails server

Open a web browser window and navigate to http://localhost:3000/.

Click the “Contact” link; then fill out and submit the form.

You should see the flash message “Message sent from …” on the home page.

Try submitting the form with a blank name. You’ll see a warning message, “Can’t be blank,”
pointing to the name field.

199

http://localhost:3000

Try submitting the form with an invalid email address such as “me@foo”. The form will re-
display with a message, “Please review the problems below,” and next to the email field, “is
invalid.”

Combining SimpleForm error handling with ActiveModel validation is powerful. If a field is
required but blank, SimpleForm will use JavaScript to point to the error before the form is
submitted. If validation fails after the form is submitted, the page will redisplay and
SimpleForm will display an appropriate error message.

Git
Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "contact form"
$ git push

We’ve built a sophisticated Contact form.

Now let’s implement code to store the data in a Google Drive spreadsheet.

200

Chapter 23
Spreadsheet Connection
In the last chapter, we added a contact form to the website. When a visitor submits the form,
we display an acknowledgment message. Now we want to capture the data for later analysis
or review.

We’ve purposely chosen not to implement a database application so we can focus on web
application basics. Though many Rails applications are backed by databases, a database adds
complexity to a Rails application. One of the requirements that adds complexity is
authentication and authorization. If data is stored in an application database, we have to
implement access control so only an administrator can view it.

Fortunately, Google Drive (formerly known as Google Docs) gives us an easy way to store
and access our visitor data without a database. It’s an elegant solution. We can use the
Google Drive API (application programming interface) to save form data to a spreadsheet
that is stored in Google Drive. We don’t have to implement authentication and authorization
in our application because Google Drive already manages user access. Our application will
send the data to a spreadsheet and our imaginary client, Mr. Foobar Kadigan, can access the
data on Google Drive.

Like other computer-literate people in business, Mr. Kadigan has experience with
spreadsheets. Making data available in a spreadsheet makes it easy for an administrator or a
website owner to analyze or review the data.

User Story
Let’s plan our work with a user story:

Save Data to a Spreadsheet
As the owner of the website
I want all contact requests saved in a spreadsheet
In order to analyze the data

To implement the user story, let’s create a feature that saves the data to Google Drive.

Google Drive Gem
We’ll use the google_drive gem to connect to the spreadsheet and save data.

201

The google_drive gem is a Ruby library to read and write data to spreadsheets in Google
Drive. It provides convenient Ruby methods to wrap the Google Spreadsheets API. You can
see all the features of the google_drive gem by reviewing the google_drive gem API.

In your GemfileGemfile, you’ve already added:

gem 'google_drive'

and previously run $ bundle install .

The google_drive gem requires a username and password to access your Google Drive
account. In the “Configure” chapter, we set this in the config/application.ymlconfig/application.yml file.

You may have set up your Google account for 2-step verification, which sends a unique code
to your mobile phone each time you log in from an unfamiliar device. If your Google account
requires two-factor authentication, you can generate an application-specific password. See
Google’s instructions for setting an application-specific password.

Implementation
We will use the API from the google_drive gem to write code that saves data to the
spreadsheet. But where should we put the code?

At first glance, it looks like it could be added to the controller. But is there somewhere else to
put the code?

When you ask such a question, you are putting on the cape of the software architect. Your
decision will be both practical and aesthetic, aligning (hopefully) with tried-and-true
software design patterns, and impacting the maintainability of the code. More than any other
area of programming, this challenge requires skills honed by experience and informed by
reading and discussion with peers. Given a choice of several places to insert the new code,
the beginner might say, “Does it really matter?” and make an arbitrary decision. But to the
experienced software engineer, the decision is at the heart of the craft.

Let’s consider our options.

In this case, the form data is received by the controller. It would be a small extra step to add
code to the Contacts controller create method to connect to Google Drive to save the
visitor’s email address and contact message. The code will work, though seasoned Rails
developers will raise an eyebrow. Why?

202

https://github.com/gimite/google-drive-ruby
https://developers.google.com/google-apps/spreadsheets/
http://gimite.net/doc/google-drive-ruby/index.html
https://support.google.com/mail/answer/1173270?hl=en

Skinny Controller, Fat Model

If you think about it, saving data to Google Drive is a data operation, and all data
manipulation should be handled by a model.

Rails is opinionated, which means there is often a “Rails way” that is preferred to other
approaches. One of the slogans of the “Rails way” is “skinny controller, fat model.” The
slogan exists to remind developers that separation of concerns makes more modular,
maintainable programs. Data manipulation goes in a model. Controllers should contain only
enough code to instantiate a model and render a web page.

Consequently, we’ll add a method to the Contacts model named update_spreadsheet that will
use the google_drive gem to connect to Google Drive and save the data. We’ll call the
@contact.update_spreadsheet method from the Contacts controller create method.

Modify the Contact Model
We’ll add our spreadsheet code to the Contact model.

Replace the contents of the file app/models/contact.rbapp/models/contact.rb:

203

http://en.wikipedia.org/wiki/Separation_of_concerns
https://github.com/gimite/google-drive-ruby

class Contact < ActiveRecord::Base
has_no_table

column :name, :string
column :email, :string
column :content, :string

validates_presence_of :name
validates_presence_of :email
validates_presence_of :content
validates_format_of :email, :with => /\A[-a-z0-9_+\.]+\@([-a-z0-9]+\.)+[a-z0-9]{2,4}\z/

i
validates_length_of :content, :maximum => 500

def update_spreadsheet
connection = GoogleDrive.login(ENV["GMAIL_USERNAME"], ENV["GMAIL_PASSWORD"])
ss = connection.spreadsheet_by_title('Learn-Rails-Example')
if ss.nil?
ss = connection.create_spreadsheet('Learn-Rails-Example')

end
ws = ss.worksheets[0]
last_row = 1 + ws.num_rows
ws[last_row, 1] = Time.new
ws[last_row, 2] = self.name
ws[last_row, 3] = self.email
ws[last_row, 4] = self.content
ws.save

end

end

We’ll call the new update_spreadsheet method from the controller.

The google_drive gem gives us a GoogleDrive class.

Create a connection to Google Drive by passing your credentials to the login method. Here’s
where we use the environment variables we set in the config/application.ymlconfig/application.yml file using the
figaro gem.

We look for a spreadsheet named “Learn-Rails-Example.” The first time we attempt to save
data, the spreadsheet will not exist, so we use the create_spreadsheet method to create it. If it
already exists, the spreadsheet_by_title method will find it.

A single spreadsheet file can contain multiple worksheets. We’ll use only one worksheet to
store our data, designated as “worksheet 0” (we count from zero).

Here the code gets a little tricky. You might expect the API to provide an “append row”
method. In fact, we have to retrieve a count of rows, and then add one, to calculate the row
number of the last empty row.

204

https://github.com/laserlemon/figaro

We add data on a cell-by-cell basis, by designating the row number and column number of a
cell. We add the current date and time using the Ruby API method Time.new to the first cell
in the last row. Then we add name , email , and content attributes to additional columns (we
refer to the current instance of the class by using the keyword “self”).

Setting the cell value doesn’t save the data. We explicity call the worksheet save method to
update the worksheet.

Modify the Contacts Controller
Our Contact model now has a method to save data to a spreadsheet.

We’ll update the Contacts controller to save the data.

Replace the contents of the file app/controllers/contacts_controller.rbapp/controllers/contacts_controller.rb:

class ContactsController < ApplicationController

def new
@contact = Contact.new

end

def create
@contact = Contact.new(secure_params)
if @contact.valid?
@contact.update_spreadsheet
TODO send message
flash[:notice] = "Message sent from #{@contact.name}."
redirect_to root_path

else
render :new

end
end

private

def secure_params
params.require(:contact).permit(:name, :email, :content)

end

end

We’ve added only one line, the @contact.update_spreadsheet statement.

When the visitor submits the form, the ContactsController#create action is called. The create
method will instantiate a new Contact model using the data from the form after laundering

205

the parameters. If the validation check succeeds, we save data to the spreadsheet, set a flash
notice, and redisplay the home page.

In only a few lines of code, we’ve added data storage using Google Drive.

Test the Application
Make sure the web server is running:

$ rails server

Open a web browser window and navigate to http://localhost:3000/.

Click the “Contact” link and try submitting the form. You’ll see an acknowledgment
message.

You’ll get an error “Error=BadAuthentication Info=InvalidSecondFactor” if your Google
account is set for 2-step verification. Change your Google account settings to turn off two-
factor authentication if you want to complete the test successfully. Or see Google’s
instructions for setting an application-specific password.

Visit your Google Drive account (“Drive” is in the navigation bar when you visit the Google
Search or Gmail home pages). You’ll see a list of Google Drive files. The newest one will be a
Learn-Rails-ExampleLearn-Rails-Example spreadsheet. Open the file and you will see the data from the contact
form. Whenever a visitor submits the contact form, the spreadsheet will update within
seconds.

Git
Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "save data to a spreadsheet"
$ git push

We’ve got a fully functional contact form that stores data in a Google Drive spreadsheet.

Now let’s add the code to email the form data to the site owner.

206

http://localhost:3000
https://support.google.com/mail/answer/1173270?hl=en

Chapter 24
Send Mail
Email sent from a web application is called transactional email. As a website visitor, you’ve
probably seen transactional email such as these messages:

• sign up confirmation email
• response to a password reset request
• acknowledgment of a purchase
• notice of a change to a user profile setting

A web application can send email to a visitor. It can also send messages to its owner or
webmaster. On large active sites, email notices can be impractical (an admin interface is
better) but for our small-volume tutorial application, it makes sense to email the contact
request directly to the site owner (Foobar Kadigan is retired and enjoys receiving email).

User Story
Let’s plan our work with a user story:

Send Contact Message
As the owner of the website
I want to receive email messages with a visitor's name, email address, and some text
In order to communicate with visitors

To implement the user story, let’s create a feature that sends the contact data as an email
message.

Implementation
Rails makes it easy to send email. The ActionMailer gem is part of any Rails installation.

Implementation of email closely follows the model-view-controller architecture. To
implement email, you’ll need:

• model
• view

207

http://blog.mailchimp.com/what-is-transactional-email/
https://github.com/rails/rails/tree/master/actionmailer

• mailer

The “mailer” is similar to a controller, combining data attributes from a model with a view
file. Any methods we add to the mailer class can be called from a controller, triggering
delivery of an email message.

The model can be any we’ve already created. In this case, we’ll use the Contact model, since
it gives us access to the visitor’s name, email address, and message.

We’ll create a mail-specific view file in the app/views/user_mailer/app/views/user_mailer/ folder. Our folder for
mail-specific views will go in the app/views/app/views/ directory as a sibling of the app/views/layoutsapp/views/layouts
folder.

The Rails directory structure already gives us a folder app/mailers/app/mailers/ for the mailer class and,
not surprisingly, it is a sibling of the app/controllers/app/controllers/ folder.

We don’t have to create the necessary folders and files manually, as the rails generate
command runs a utility to create what we need.

Create View Folder and Mailer
Use the rails generate command to create a mailer with a folder for views:

$ rails generate mailer UserMailer

The name of the mailer isn’t important; we’ll use UserMailer because it is obvious.

The rails generate command will create one file and one folder:

• app/mailers/user_mailer.rbapp/mailers/user_mailer.rb
• app/views/user_mailerapp/views/user_mailer

It also creates a test file which we won’t use in this tutorial.

This implements our model-view-mailer architecture.

Edit the Mailer
Add a contact_email method to the mailer by editing the file app/mailers/user_mailer.rbapp/mailers/user_mailer.rb:

208

class UserMailer < ActionMailer::Base
default from: "do-not-reply@example.com"

def contact_email(contact)
@contact = contact
mail(to: ENV["OWNER_EMAIL"], from: @contact.email, :subject => "Website Contact")

end
end

The UserMailer class inherits behavior from the ActionMailer class. We’ll create a method
definition that assigns the contact argument to the instance variable @contact . Like a
controller that combines a model with a view, our mailer class makes the instance variable
available in the view.

The name of the method isn’t important; it can be anything obvious. We’ll use it in the
ContactsController to trigger mail delivery.

Like the render method in a web page controller, the ActionMailer parent class has a mail
method that renders the view.

You’ll need to use your email address in the mailer. You should have already set an
environment variable for your email address in the file config/application.ymlconfig/application.yml. If you
haven’t done so, do it now. By inserting the environment variable with your email address
after to: , your inbox will receive the message. If Foobar Kadigan was a real person, we’d
supply his email address here.

We need to insert a “from” address in two places. First there is a default, for all messages
that do not set a “from” address. We will use “do-not-reply@example.com” for the default
“from” address. The email is originating from a web application that does not receive email,
so this indicates the email address should not be used for replies. For emails going to website
visitors, it would be best to provide a default email address for a customer service
representative on the “from” line, so the recipient can easily reply. We’re not sending email
messages to visitors so we can ignore this nicety.

For our contact_email method, we’ll insert the email address of the visitor as the “from”
address since we are sending a message to the site owner. This makes it easy for Foobar
Kadigan to click “reply” when he is reading the contact messages in his inbox. You can see
our use of the email attribute from the Contact model in the expression from: @contact.email .

That’s all we need for mailer class. Next we’ll create a view containing the message.

Create Mailer View
There are two types of mailer views. One contains plain text, for recipients who don’t like
formatted email (some people still read email from the Unix command line). The other type

209

contains HTML markup to provide formatting. It’s good to create a message of both types,
though most recipients will benefit from HTML formatting.

The mailer view for formatted email looks very similar to a web page view file. It contains
HTML markup plus Ruby expressions embedded in <%= ... %> delimiters. In the UserMailer
class, we’ve assigned the Contact model to the instance variable @contact so any attributes
are available for use in the message.

Create a file app/views/user_mailer/contact_email.html.erbapp/views/user_mailer/contact_email.html.erb:

<!DOCTYPE html>
<html>

<head>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />

</head>
<body>

<h1>Website Contact</h1>
<p>

This visitor requested contact:
</p>
<p>

<%= @contact.name %>

<%= @contact.email %>

</p>
<p>

The visitor said:
</p>
<p>

"<%= @contact.content %>"
</p>

</body>
</html>

You can easily imagine how this view would look as a web page. You’ll soon see it as an
email message in your inbox.

For those recipients who like plain text, create a view without HTML markup.

Create a file app/views/user_mailer/contact_email.text.erbapp/views/user_mailer/contact_email.text.erb:

You received a message from <%= @contact.name %> with email address <%= @contact.email
%>.

The visitor said:

"<%= @contact.content %>"

You’ve created views for the email message.

210

Now we can integrate our email feature with the ContactsController.

Modify Controller
We’ll add code to the ContactsController:

UserMailer.contact_email(@contact).deliver

Replace the contents of the file app/controllers/contacts_controller.rbapp/controllers/contacts_controller.rb:

class ContactsController < ApplicationController

def new
@contact = Contact.new

end

def create
@contact = Contact.new(secure_params)
if @contact.valid?
@contact.update_spreadsheet
UserMailer.contact_email(@contact).deliver
flash[:notice] = "Message sent from #{@contact.name}."
redirect_to root_path

else
render :new

end
end

private

def secure_params
params.require(:contact).permit(:name, :email, :content)

end

end

The UserMailer class is available to any controller in the application. We call the contact_email
method we’ve created, passing the @contact instance variable as an argument, which renders
the email message. Finally, the deliver method initiates delivery.

For more on sending email from a Rails application, see RailsGuides: Action Mailer Basics.

Test the Application
If your web server is not running, start it:

211

http://guides.rubyonrails.org/action_mailer_basics.html

$ rails server

Open a web browser window and navigate to http://localhost:3000/.

Click the “Contact” link and try submitting the form.

The email message should be visible in the console.

If you didn’t get an email message in your inbox, make sure you set your config/config/
environments/development.rbenvironments/development.rb file to perform deliveries as described in the “Configuration”
chapter. Be sure to restart your server if you change the configuration file.

You may see a warning message when you log into your Gmail account, indicating that
someone used your credentials to send email. You can dismiss the warning as you know it
was yourself.

Asynchronous Mailing
You may notice a delay in the responsiveness of the Contact form after adding the email
feature. Unfortunately, there’s a performance penalty with our new feature. Our controller
code connects to the Gmail server and waits for a response before it renders the home page
and displays the acknowledgment message.

The performance penalty can be avoided by changing the implementation so that the
controller doesn’t wait for a response from the Gmail server. We call this asynchronous
behavior because sending email does not need to be “in sync” with displaying the
acknowledgment. Eliminating a delay improves the user experience and makes the site feel
more responsive.

Unfortunately, asynchronous mailing, which requires a queueing system, is an advanced topic
for Rails developers.

Earlier I wrote that Rails, as a framework, is not complete. This is an example. The developer
community has explored the possibility of implementing a standard queueing system for
Rails. In fact, an early version of Rails 4.0 contained a queueing system but it was dropped
because it did not fully address several complicated issues (see What happened to the Rails 4
Queue API?).

For our tutorial application, and for a typical small business website, the delay caused by
lack of queueing is no big deal. Keep in mind, though, as you tackle bigger projects in Rails,
you may need to learn how to implement a queueing system. You’ll find examples in more
advanced tutorials.

212

http://localhost:3000
https://blog.engineyard.com/2013/rails-4-queue-api
https://blog.engineyard.com/2013/rails-4-queue-api

Git
Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "sending mail"
$ git push

You’ve created a Rails application that handles a form and sends email to the site owner.

Mail is a practical way to connect with site visitors. Let’s implement a feature that collects
email addresses for mass mailing of a newsletter.

213

Chapter 25
Mailing List
Even as other messaging avenues become increasingly popular, such as SMS text or
Facebook messages, email remains the most practical way to stay in touch with website
visitors. Encouraging a visitor to provide an email address means offering an invitation to a
dialog and a relationship beyond a single visit.

If you have a legitimate reason to stay in touch, and you’ve motivated the visitor to leave an
email address, you’ll need a mailing list service. You’ve seen how Rails can send an email
message. From what you’ve seen so far, you can imagine it would not take much code to
loop through a list of email addresses from a database, sending a message to each. In the
early days of the web, it was easy for any system administrator to write a script for mass
mailings. Since there is negligible cost to sending bulk email, unscrupulous and ignorant
operators sent email to any address they could scrape, borrow, or steal. The resulting flood
of spam made checking one’s inbox an icky experience and destroyed much of the early
culture of the Internet. Fortunately, services such as Gmail arose to filter email. There is now
a thick (but leaky) layer of screening protocols that redirect spam to a junk folder. One
reason you won’t use a Rails application to send bulk email is that a web application server
is not the most efficient tool for sending email. More significantly, there’s a good chance your
email won’t go through or, if it does (and someone complains), you’ll quickly see your IP
address blacklisted. That’s why we use mailing list services to send bulk email such as
newsletters or promotional offers.

Considerable expertise is required to keep email from being filtered as spam (see
MailChimp’s article Email Delivery For IT Professionals). Email service providers increase
reliability of delivery. These services track deliveries and show how well your email is being
delivered. You’ll also get features such as management of “unsubscribe” requests and
templates to design attractive messages.

There are at least a dozen well-established email service providers that allow a Rails
application to programmatically connect to the service (via an API) to add or remove email
addresses. For a list, see the article Send Email with Rails. For this tutorial application, we’ll
use MailChimp because there is no cost to open an account and you can send up to 12,000
emails/month to list of 2000 or fewer subscribers for free.

Spam is unsolicited email. Don’t ever send spam, whether for yourself, a client, or an
employer. If recipients complain, your IP address and domain name will be blacklisted. So
be very careful to only send to subscribers who signed up, send what subscribers expect, and
be sure to offer value. If you get complaints, or the unsubscribe rate is high, stop.

We’ll assume we’ve discussed the rules with Foobar Kadigan and he is eager to offer a
newsletter to his visitors that will be genuinely appreciated.

214

http://mailchimp.com/resources/guides/html/email-delivery-for-it-professionals/
http://railsapps.github.io/rails-send-email.html
http://mailchimp.com/pricing/

User Story
Let’s plan our work with a user story:

Subscribe to Mailing List
As a visitor to the website
I want to sign up for a mailing list
In order to receive news and announcements

To implement the user story, we’ll add a mailing list feature.

Implementation
We’ll use the Rails model-view-controller architecture. We’ll need:

• Visitors model
• view for visitors#new
• Visitors controller with new and create methods
• routing for visitors#new and visitors#create

We’ll add a Visitor model that has a data attribute for an email address. We already have a
Visitors controller that renders the home page using the file in the app/views/visitors/app/views/visitors/ folder.
We’ll replace the contents of the view file with a nice photo, a marketing message, and a
form.

Our Visitors controller new and create methods will be very similar to what we created for
the Contacts controller. Instead of saving data to Google Drive, or connecting to Gmail to
send a message, we’ll call a method to save the visitor’s email address to a MailChimp
mailing list.

Gibbon Gem
The Gibbon gem is a convenient wrapper for the MailChimp API. We could connect to the
MailChimp API using other gems that provide low-level plumbing such as HTTP
connections (httparty) and data parsing (multi_json), but other developers have already done
the work of wrapping the plumbing in a higher-level abstraction that easily fits into a Rails
application. Amro Mousa’s Gibbon gem is popular and actively maintained.

In your GemfileGemfile, you’ve already added:

215

https://github.com/amro/gibbon
http://apidocs.mailchimp.com/
http://johnnunemaker.com/httparty/
https://github.com/intridea/multi_json

gem 'gibbon'

and previously run $ bundle install .

Home Page
Earlier we built a home page that provided a simple demonstration of the Ruby language.
We’ll discard it and replace it with a page that you could adapt for a typical small-business
website.

We want a nice photo, space for a marketing message, and the “sign up” form.

Replace the contents of the file app/views/visitors/new.html.erbapp/views/visitors/new.html.erb:

<% content_for :title do %>Foobar Kadigan<% end %>
<% content_for :description do %>Website of Foobar Kadigan<% end %>
<section>

</section>
<section>

<div class="column">
<h2>Stay in touch.</h2>

</div>
<div class="column">

<div class="form-centered">
<%= simple_form_for @visitor do |f| %>

<%= f.error_notification %>
<%= f.input :email, label: false, :placeholder => 'Your email address...' %>

<%= f.button :submit, "Sign up for the newsletter", :class => "submit" %>

<% end %>
</div>

</div>
</section>

We include content_for view helpers that pass a title and description to the application
layout.

We add a photo to the page with an tag. We’re taking a shortcut and using a
placeholder photo from the lorempixel.com service.

The section and <div class="column"> tags apply a grid from Zurb Foundation to create a row
with two columns, one for our marketing message, and one for the form.

216

http://lorempixel.com/

Our marketing message is merely a placeholder. For a real website, you’d likely craft a
stronger call to action than merely “Stay in touch.”

The form is very similar to the form on the Contact page, except we initialize it with the
@visitor instance variable and only need a field for an email address. We suppress display of
the email field label with the flag label: false and use the :placeholder parameter to create a
hint in the empty input field.

A submit element will contain the text, “Sign up for the newsletter,” and we apply a CSS
class to style the element as a button.

Photo Options

You’re free to modify this page as you wish, as long as you keep the form intact.

You might wish to modify the placeholder photo. If you don’t like cats, try
http://lorempixel.com/1170/600/nightlife/1 or any other categories from the
lorempixel.com service. You can change the size by modifying the dimensions from 1170
(pixel width) by 600 (pixel height).

You can replace the placeholder photo with your own. Look for the app/assets/imagesapp/assets/images folder
and add an image. Instead of the HTML tag, use the Rails image_tag view helper, like
this:

<%= image_tag "myphoto.jpg" %>

We’ll need a Visitor model to initialize the form.

Visitor Model
The Visitor model is almost identical to the Contact model we created earlier, except there is
just one data attribute for the email field.

We’ll also add a subscribe method to add a visitor to a MailChimp list. We’ll call this method
from the controller when we process the submitted form.

Create a file app/models/visitor.rbapp/models/visitor.rb:

217

http://lorempixel.com/1170/600/nightlife/1
http://lorempixel.com/

class Visitor < ActiveRecord::Base
has_no_table
column :email, :string
validates_presence_of :email
validates_format_of :email, :with => /\A[-a-z0-9_+\.]+\@([-a-z0-9]+\.)+[a-z0-9]{2,4}\z/

i

def subscribe
mailchimp = Gibbon::API.new
result = mailchimp.lists.subscribe({
:id => ENV['MAILCHIMP_LIST_ID'],
:email => {:email => self.email},
:double_optin => false,
:update_existing => true,
:send_welcome => true

})
Rails.logger.info("Subscribed #{self.email} to MailChimp") if result

end

end

Once again, we inherit behavior from the ActiveRecord parent class and use the has_no_table
keyword from the activerecord-tableless gem to disable ActiveRecord’s database
functionality.

We create the email attribute and set validation requirements.

Our subscribe method does the work of connecting to the MailChimp server to add the
visitor to the mailing list. We instantiate the Gibbon object which provides all the
connectivity. The Gibbon gem looks in the environment variables for the MAILCHIMP_API_KEY
value so we don’t need to specify it here. We assign the Gibbon object to the mailchimp
variable (we could name it anything).

Gibbon offers a lists.subscribe method which takes five parameters:

• id – environment variable to identify the MailChimp list
• email – address of the visitor (inside a hash)
• double_optin – setting true sends a double opt-in confirmation message
• update_existing – updates a subscriber record if it already exists
• send_welcome – sends a “Welcome Email” to the new subscriber

The parameters are described further in the MailChimp API Documentation.

If the application successfully adds the new subscriber, we write a message to the logger.

If we get an error when trying to add the subscriber, Gibbon will raise an exception.

218

http://apidocs.mailchimp.com/api/2.0/lists/subscribe.php

Visitors Controller
We already have a Visitors controller that contains a simple new method. We’ll change the
new method, add a create method, and provide a secure_params private method to secure the
controller from mass assignment exploits.

Replace the contents of the file app/controllers/visitors_controller.rbapp/controllers/visitors_controller.rb:

class VisitorsController < ApplicationController

def new
@visitor = Visitor.new

end

def create
@visitor = Visitor.new(secure_params)
if @visitor.valid?
@visitor.subscribe
flash[:notice] = "Signed up #{@visitor.email}."
redirect_to root_path

else
render :new

end
end

private

def secure_params
params.require(:visitor).permit(:email)

end

end

Our new method now assigns the Visitor model to an instance variable instead of the Owner
model.

The create method is almost identical to the Contacts controller create method. We
instantiate the Visitor model with scrubbed parameters from the submitted form.

If the validation check succeeds, we subscribe the visitor to the MailChimp mailing list with
the @visitor.subscribe method. All the work of connecting to MailChimp happens in the
Visitor model.

If the validation check fails, we redisplay the home page (the new action).

219

Clean Up
We no longer use the Owner model, so we can delete the file app/models/owner.rbapp/models/owner.rb:

$ rm app/models/owner.rb

There’s no harm if it remains but it is good practice to remove code that is no longer used.

Routing
Our routing is now more complex. In addition to rendering the visitors#new view as the
application root (the home page), we need to handle the create action. We can use a
“resourceful route” as we did with the Contacts controller.

Open the file config/routes.rbconfig/routes.rb. Replace the contents with this:

LearnRails::Application.routes.draw do
resources :contacts, only: [:new, :create]
resources :visitors, only: [:new, :create]
root to: 'visitors#new'

end

The root path remains visitors#new . Order is significant in the config/routes.rbconfig/routes.rb file. As the
final designated route, the root path will only be active if nothing above it matches the route.

We’ve added resources :visitors, only: [:new, :create] .

We only want two routes so we’ve added the restriction only: [:new, :create] .

The new route has these properties:

• new_visitor_path – route helper
• visitors – name of the controller (VisitorsController)
• new – controller action
• http://localhost:3000/visitors/new – URL generated by the route helper
• GET – HTTP method to display a page

The create route has these properties:

• visitors_path – route helper
• visitors – name of the controller (VisitorsController)

220

http://localhost:3000/visitors/new

• create – controller action
• http://localhost:3000/visitors – URL generated by the route helper
• POST – HTTP method to submit form data

You can run the rake routes command to see these in the console:

$ rake routes
Prefix Verb URI Pattern Controller#Action

contacts POST /contacts(.:format) contacts#create
new_contact GET /contacts/new(.:format) contacts#new

visitors POST /visitors(.:format) visitors#create
new_visitor GET /visitors/new(.:format) visitors#new

root GET / visitors#new
page GET /pages/*id high_voltage/pages#show

The output of the rake routes command shows we’ve created the routes we need.

Test the Application
If you need to start the server:

$ rails server

Open a web browser window and navigate to http://localhost:3000/.

You’ll see our new home page with the placeholder photo and the “sign up” form.

Enter your email address and click the “sign up” button. You should see the page redisplay
with an acknowledgment message. Try entering an invalid email address such as
“me@foo@”, or click the submit button without entering an email address, and you should
see an error message.

You’ll have to log in to MailChimp and check your mailing list to see if the new email
address was added successfully.

With MailChimp, you can send a welcome message automatically when the visitor signs up
for the mailing list. Use the welcome message to inform the visitor that they’ve successfully
subscribed to the mailing list and will receive the next newsletter email.

It’s a bit difficult to find the MailChimp option to create a welcome message. Strangely,
MailChimp considers a welcome message a “form.” Here’s how to find it. On the MailChimp
“Lists” page, click the “down arrow” for a menu and click “Signup forms.” Then click “Link
to a form.” On the “Create Forms” page, there is a dropdown list of “Forms & Response

221

http://localhost:3000/visitors
http://localhost:3000
https://admin.mailchimp.com/

Emails.” The gray box shows “Signup form.” Click the down arrow. Select the menu item
named “Final ‘Welcome’ Email” and you’ll be able to create a welcome message.

Git
Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "mailing list"
$ git push

Our tutorial application is feature complete.

Let’s deploy it so we can see it running as a real website.

222

Chapter 26
Deploy
You’ve been running the default Ruby WEBrick server on your local machine. If you wanted,
you could leave your computer running, set up a managed DNS service, and your web
application would be accessible to anyone. But even if you wanted to leave your computer
running 24 hours a day, you’re probably not a security expert, WEBrick isn’t tuned to handle
much traffic, and your computer is distant from the interconnection hubs where most
websites are hosted. For these reasons, when we move a web application from development
to production, we deploy it to a web hosting service that provides a hosting platform on a
server located in a strategically-located data center.

Data centers offer colocation services, renting rack-mounted computers with fast Internet
connections that can be configured as web servers. In the early days of the web, deploying a
web application required system administration skills to configure and maintain a web
server. Today, some developers like to set up their web servers “from bare metal” using
virtual private servers from Linode, Slicehost, Rackspace, Amazon EC2, or others. With
sufficent skills and study, they say there is a feeling of satisfaction from doing it yourself. But
not everyone wants to be a system administrator. Most Rails developers simply use a hosted
platform as a service (PaaS) provider such as Heroku, EngineYard, OpenShift, Cloud
Foundry, or Shelly Cloud.

You may already be using a shared web hosting service such as GoDaddy or DreamHost for
a static website or WordPress site. Be skeptical if a shared web hosting service claims to
support Rails applications; most do so badly. Shared hosting services offer file space for
static websites on servers that are shared by thousands of websites. A Rails application
requires considerably greater computing resources and specialized expertise. A PaaS
platform provides a hardware and software stack optimized for application performance and
developer convenience.

Heroku is the best known and most popular PaaS provider and we’ll use it to deploy the
tutorial application. Using Heroku or another PaaS provider means you don’t need skills as a
system administrator to manage your web server. Instead, you’ll have experts maintaining
the production environment, tuning system performance, and keeping the servers running.

Our Rails Heroku Tutorial goes into more detail.

Heroku Costs
It costs nothing to set up a Heroku account and deploy as many applications as you want.
You’ll pay only if you upgrade your hosting to accommodate a busy website.

223

http://en.wikipedia.org/wiki/List_of_managed_DNS_providers
http://en.wikipedia.org/wiki/Web_hosting_service
http://en.wikipedia.org/wiki/Data_center
http://en.wikipedia.org/wiki/Colocation_centre
http://en.wikipedia.org/wiki/System_administration
http://en.wikipedia.org/wiki/Virtual_private_server
http://en.wikipedia.org/wiki/Platform_as_a_service
https://www.heroku.com/
https://www.engineyard.com/
https://www.openshift.com/
http://www.cloudfoundry.com/
http://www.cloudfoundry.com/
https://shellycloud.com/
http://en.wikipedia.org/wiki/Shared_web_hosting_service
https://www.heroku.com/
http://railsapps.github.io/rails-heroku-tutorial.html

Heroku pricing is based on a measure of computing resources the company calls a “dyno.”
Think of a dyno as a virtual server (though it is not). Heroku provides one dyno for every
web application for free. For personal projects, you can run your Rails application on a single
dyno and never incur a charge.

A single dyno idles after one hour of inactivity, “going to sleep” until it receives a new web
request. For a personal project, this means your web application will respond with a few
seconds delay if it hasn’t received a web request in over an hour. After it wakes up, it will
respond quickly to every browser request.

If you want your web application to respond to every request without delay, you can run
two dynos. Heroku charges $35 per month for a second dyno running full time (a dyno is
billed at $0.05/hour).

A single dyno can serve thousands of requests per second, but performance depends greatly
on your application. With the Ruby WEBrick server, Rails processes only one request at a
time. Heroku doesn’t support WEBrick, but as a default it supports Thin, a similar “single-
threaded, non-concurrent” web server. Serving a typical Rails application that takes 100ms
on average to process each request, Thin can accommodate about 10 requests per second per
dyno, which is adequate for a personal project.

If traffic surges on your website and exceeds 10 requests per second, you can scale up. First,
you can replace the default Thin web server with the Unicorn web server which handles
concurrent requests. Configuring Unicorn requires more expertise than Thin, but Heroku
recommends it. Second, you can double the size of Heroku’s dynos to handle more requests.
Finally, you can buy more dynos, adding as many dynos as you need to handle traffic. This
is where convenience comes at a price. You won’t need system administration expertise to
deploy a website on Heroku but you’ll pay a premium to host a high-traffic site.

Heroku is ideal for hosting our application:

• no system administration expertise is required
• hosting is free
• performance is excellent

For this tutorial application, we won’t concern ourselves with the possibility that the website
may get a lot of traffic. I’m sure you’ll join me in offering hearty thanks to Heroku for
providing a convenient service that beginners can use for free.

Let’s deploy!

Test the Application
Before deploying an application to production, a professional Rails developer runs
integration or acceptance tests. If the developer follows the discipline of test-driven development,

224

http://code.macournoyer.com/thin/
http://unicorn.bogomips.org/

he or she will have a complete test suite that confirms the application runs as expected. Often
the developer uses a continuous integration server which automatically runs the test suite each
time the code is checked into the GitHub repository.

We haven’t used test-driven development to build this application so no test suite is
available. You’ve tested the application manually at each stage.

Preparing for Heroku
You’ll need to prepare your Rails application for deployment to Heroku.

Gemfile

We need to modify the Gemfile for Heroku.

We add a group :production block for gems that Heroku needs:

• pg – PostgreSQL gem
• thin – web server
• rails_12factor – logging and static assets

Heroku doesn’t support the SQLite database; the company provides a PostgreSQL database.
Though we won’t need it for our tutorial application, we must include the PostgreSQL gem
for Heroku. We’ll mark the sqlite3 gem to be used in development only.

The Thin web server is easy to use and requires no configuration. Note that Heroku
recommends Unicorn for handling higher levels of traffic efficiently. Unicorn can be difficult
to setup and configure, so we’re using Thin for our tutorial application.

On Heroku, Rails 4.0 needs an extra gem to handle logging and serve CSS and JavaScript
assets. The rails_12factor gem provides these services.

Open your GemfileGemfile and replace the contents with the following:

GemfileGemfile

225

https://rubygems.org/gems/pg
http://code.macournoyer.com/thin/
https://github.com/heroku/rails_12factor
https://rubygems.org/gems/sqlite3
http://code.macournoyer.com/thin/
https://blog.heroku.com/archives/2013/2/27/unicorn_rails
https://blog.heroku.com/archives/2013/2/27/unicorn_rails
https://github.com/heroku/rails_12factor

source 'https://rubygems.org'
ruby '2.0.0'
gem 'rails', '4.0.1'
gem 'sass-rails', '~> 4.0.0'
gem 'uglifier', '>= 1.3.0'
gem 'coffee-rails', '~> 4.0.0'
gem 'jquery-rails'
gem 'turbolinks'
gem 'jbuilder', '~> 1.2'
gem 'activerecord-tableless'
gem 'compass-rails', '~> 2.0.alpha.0'
gem 'figaro'
gem 'gibbon'
gem 'google_drive'
gem 'high_voltage'
gem 'simple_form'
gem 'zurb-foundation'
group :development do
gem 'better_errors'
gem 'quiet_assets'
gem 'rails_layout'
gem 'sqlite3'

end
group :production do
gem 'pg'
gem 'rails_12factor'
gem 'thin'

end

We have to run bundle install because we’ve changed the Gemfile. The gems we’ve added
are only needed in production so we don’t install them on our local machine. When we
deploy, Heroku will read the Gemfile and install the gems in the production environment.
We’ll run bundle install with the --without production argument so we don’t install the new
gems locally:

$ bundle install --without production

Let’s commit our changes to the Git repository and push to GitHub:

$ git add -A
$ git commit -m "gems for Heroku"
$ git push

226

Precompile Assets

In development mode, the Rails asset pipeline “live compiles” all CSS and JavaScript files
and makes them available for use. Compiling assets adds processing overhead. In
production, a web application would be slowed unneccesarily if assets were compiled for
every web request. Consequently, we must precompile assets before we deploy our
application to production.

When you precompile assets for production, the Rails asset pipeline will automatically
produce concatenated and minified application.jsapplication.js and application.cssapplication.css files from files listed
in the manifest files app/assets/javascripts/application.jsapp/assets/javascripts/application.js and app/assets/stylesheets/app/assets/stylesheets/
application.css.scssapplication.css.scss. You must commit the compiled files to your git repository before
deploying.

Here’s how to precompile assets and commit to the Git repo:

$ RAILS_ENV=production rake assets:precompile
$ git add -A
$ git commit -m "assets compiled for Heroku"
$ git push

The result will be several files added to the public/assets/public/assets/ folder. The filenames will contain a
long unique identifier that prevents caching when you change the application CSS or
JavaScript.

If you don’t precompile assets for production, all web pages will look strange. They won’t
have CSS styling.

Option to Ban Spiders

Do you want your website to show up in Google search results? If there’s a link anywhere on
the web to your site, within a few days (sometimes hours) the Googlebot spider will visit
your site and add it to the database for the Google search engine. Most webmasters want
their sites to be found in Google search results. If that’s not what you want, you may want to
modify the file public/robots.txtpublic/robots.txt to prevent indexing by search engines.

Only change this file if you want to prevent your website from appearing in search engine
listings:

public/robots.txt
To allow spiders to visit the entire site comment out the next two lines:
User-Agent: *
Disallow: /

To block all search engine spiders, remove the commenting from the User-Agent and Disallow
lines.

227

You can learn more about the format of the robots exclusion standard.

Humans.txt

Many websites include a robots.txtrobots.txt file for nosy bots so it’s only fair that you offer a
humans.txthumans.txt file for nosy people. Few people will look for it but you can add a file public/public/
humans.txthumans.txt to credit and identify the creators and software behind the website. The HTML5
Boilerplate project offers an example file or you can borrow from RailsApps.

Sign Up for a Heroku Account
In the chapter, “Accounts You May Need,” I suggested you sign up for a Heroku account.

To deploy an app to Heroku, you must have a Heroku account. Visit
https://id.heroku.com/signup/devcenter to set up an account.

Be sure to use the same email address you used to configure Git locally. You can check the
email address you used for Git with:

$ git config --get user.email

Heroku Toolbelt
Heroku provides a command line utility for creating and managing Heroku apps.

Visit https://toolbelt.heroku.com/ to install the Heroku Toolbelt. A one-click installer is
available for Mac OS X, Windows, and Linux.

The installation process will install the Heroku command line utility. It also installs the
Foreman gem which is useful for duplicating the Heroku production environment on a local
machine. The installation process will also make sure Git is installed.

To make sure the Heroku command line utility is installed, try:

$ heroku version
heroku-toolbelt/...

You’ll see the heroku-toolbelt version number.

You should be able to login using the email address and password you used when creating
your Heroku account:

228

http://en.wikipedia.org/wiki/Robots_exclusion_standard
http://html5boilerplate.com/humans.txt
https://tutorials.railsapps.org/humans.txt
https://id.heroku.com/signup/devcenter
https://toolbelt.heroku.com/
http://blog.daviddollar.org/2011/05/06/introducing-foreman.html

$ heroku login
Enter your Heroku credentials.
Email: adam@example.com
Password:
Could not find an existing public key.
Would you like to generate one? [Yn]
Generating new SSH public key.
Uploading ssh public key /Users/adam/.ssh/id_rsa.pub

The Heroku command line utility will create SSH keys if necessary to guarantee a secure
connection to Heroku.

Heroku Create
Be sure you are in your application root directory and you’ve committed the tutorial
application to your Git repository.

Use the Heroku create command to create and name your application.

$ heroku create myapp

Replace myapp with something unique. Heroku demands a unique name for every hosted
application. If it is not unique, you’ll see an error, “name is already taken.” Chances are,
“learn-rails” is already taken.

If you don’t specify your app name (myapp in the example above), Heroku will supply a
placeholder name. You can easily change Heroku’s placeholder name to a name of your
choice with the heroku apps:rename command (see Renaming Apps from the CLI).

Don’t worry too much about getting the “perfect name” for your Heroku app. The name of
your Heroku app won’t matter if you plan to set up your Heroku app to use your own
domain name. You’ll just use the name for access to the instance of your app running on the
Heroku servers; if you have a custom domain name, you’ll set up DNS (domain name service)
to point your domain name to the app running on Heroku.

The heroku create command sets your Heroku application as a Git remote repository. That
means you’ll use the git push command to deploy your application to Heroku.

Set a Domain Name
Earlier, when we created the config/application.ymlconfig/application.yml file and set environment variables, we
left a placeholder for a domain name in the file. Now we can replace the placeholder.

229

https://devcenter.heroku.com/articles/renaming-apps

Open the file config/application.ymlconfig/application.yml:

Add account credentials and API keys here.
See http://railsapps.github.io/rails-environment-variables.html
This file should be listed in .gitignore to keep your settings secret!
Each entry sets a local environment variable and overrides ENV variables in the Unix
shell.
GMAIL_USERNAME: Your_Username
GMAIL_PASSWORD: Your_Password
MAILCHIMP_API_KEY: Your_MailChimp_API_Key
MAILCHIMP_LIST_ID: Your_List_ID
DOMAIN_NAME: example.com
OWNER_EMAIL: me@example.com

If you don’t have a custom domain name, use the domain name you’ve chosen for
deployment on Heroku. Replace example.com with myapp.herokuapp.com , replacing myapp with
the name that Heroku has accepted for your application.

If you already have a custom domain name in the file, you don’t have to change anything,
but you will have to set up Heroku to use your custom domain name. That involves setting
up DNS, which we won’t cover in this tutorial.

Enable Email
You’ll need to enable email for production or else you’ll get errors when your application
tries to send email from Heroku.

To use Gmail from Heroku, add the following to your config/environments/production.rbconfig/environments/production.rb
file:

email enabled in production
config.action_mailer.default_url_options = { :host => ENV["DOMAIN_NAME"] }
config.action_mailer.delivery_method = :smtp
config.action_mailer.perform_deliveries = true
config.action_mailer.raise_delivery_errors = false
config.action_mailer.default :charset => "utf-8"
config.action_mailer.smtp_settings = {
address: "smtp.gmail.com",
port: 587,
domain: ENV["DOMAIN_NAME"],
authentication: "plain",
enable_starttls_auto: true,
user_name: ENV["GMAIL_USERNAME"],
password: ENV["GMAIL_PASSWORD"]

}

230

Be sure to add the new settings before the end keyword in the file. The settings can be added
anywhere, as long as they precede the end keyword!

You’ll need to specify the unique name you’ve selected for your hosted application. We’re
using an environment variable ENV["DOMAIN_NAME"] in two places in the file. Be sure you set the
environment variable for the domain name in the file config/application.ymlconfig/application.yml in the previous
step.

Next we’ll set Heroku environment variables.

Set Heroku Environment Variables
You’ll need to set the configuration values from the config/application.ymlconfig/application.yml file as Heroku
environment variables.

With the figaro gem, just run:

$ rake figaro:heroku

Alternatively, you can set Heroku environment variables directly.

Here’s how to set environment variables directly on Heroku with heroku config:add .

$ heroku config:add GMAIL_USERNAME='myname@gmail.com' GMAIL_PASSWORD='secret'
$ heroku config:add MAILCHIMP_API_KEY='mykey' MAILCHIMP_LIST_ID='mylistid'
$ heroku config:add OWNER_EMAIL='me@example.com' DOMAIN_NAME='myapp.herokuapp.com'

You can check that the environment variables are set with:

$ heroku config

See the Heroku documentation on Configuration and Config Vars and the article Rails
Environment Variables for more information.

Push to Heroku
After all this preparation, you can finally push your application to Heroku.

Be sure you’ve run RAILS_ENV=production rake assets:precompile . Run it each time you change
your CSS or JavaScript files.

Be sure to commit your code to the Git local repository before you push to Heroku:

231

https://devcenter.heroku.com/articles/config-vars
http://railsapps.github.io/rails-environment-variables.html
http://railsapps.github.io/rails-environment-variables.html

$ git add -A
$ git commit -m "assets compiled for Heroku"
$ git push

You commit your code to Heroku just like you push your code to GitHub.

Here’s how to push to Heroku:

$ git push heroku master

The push to Heroku takes several minutes. You’ll see a sequence of diagnostic messages in
the console, beginning with:

-----> Ruby/Rails app detected

and finishing with:

-----> Launching... done

Updating the Application
It is likely you’ll make changes to your application after deploying to Heroku.

Each time you update your site and push the changes to GitHub, you’ll also have to push the
new version to Heroku.

If you’ve changed anything in the assetsassets folder (including images, JavaScript, or stylesheets),
you’ll need to precompile assets. A typical update scenario looks like this:

$ git add -A
$ git commit -m "revised application"
$ RAILS_ENV=production rake assets:precompile
$ git add -A
$ git commit -m "assets compiled for Heroku"
$ git push
$ git push heroku master

Visit Your Site
Open your Heroku site in your default web browser:

232

$ heroku open

Your application will be running at http://my-app-name.herokuapp.com/.

If you’ve configured everything correctly, you should be able to sign up for the newsletter
and send a contact request.

Customizing
For a real application, you’ll likely want to use your own domain name for your app.

See Heroku’s article about custom domains for instructions.

You may also want to improve website responsiveness by adding page caching with a
content delivery network such as CloudFlare. CloudFlare can also provide an SSL connection
for secure connections between the browser and server.

Heroku offers many add-on services. These are particularly noteworthy:

• Adept Scale – automated scaling of Heroku dynos
• New Relic – performance monitoring

For an in-depth look at your options, see the Rails Heroku Tutorial.

Troubleshooting
When you get errors, troubleshoot by reviewing the log files:

$ heroku logs

If necessary, use the Unix tail flag to monitor your log files. Open a new terminal window
and enter:

$ heroku logs -t

to watch the server logs in real time.

233

http://my-app-name.herokuapp.com/
https://devcenter.heroku.com/articles/custom-domains
http://cloudflare.com/
https://addons.heroku.com/
http://www.adeptscale.com/
http://newrelic.com/
http://railsapps.github.io/rails-heroku-tutorial.html

Where to Get Help
Your best source for help with Heroku is Stack Overflow. Your issue may have been
encountered and addressed by others.

You can also check the Heroku Dev Center or the Heroku Google Group.

234

http://stackoverflow.com/questions/tagged/heroku
http://devcenter.heroku.com/
http://groups.google.com/group/heroku/

Chapter 27
Analytics
In earlier chapters, we’ve built the tutorial application and deployed it for hosting on
Heroku.

We’ve left something out. Though not obvious, it’s very important.

Analytics services provide reports about website traffic and usage.

You’ll use the data to increase visits and improve your site. Analytics close the
communication loop with your users; your website puts out a message and analytics reports
show how visitors respond.

Google Analytics is the best known tracking service. It is free, easy to use, and familiar to
most web developers. In this chapter we’ll integrate Google Analytics with the tutorial
application.

There are several ways to install Google Analytics for Rails 4.0. The article on Analytics for
Rails looks at various approaches and explains how Google Analytics works.

For this tutorial, we’ll use the Segment.io service. The service provides an API to send
analytics data to dozens of different services, including Google Analytics.

Segment.io
Segment.io is a subscription service that gathers analytics data from your application and
sends it to dozens of different services, including Google Analytics. The service is free for
low- and medium- volume websites, providing one million API calls (page views or events)
per month at no cost. There is no charge to sign up for the service.

Using Segment.io means you install one JavaScript library and get access to reports from
dozens of analytics services. You can see a list of supported services. The company offers
helpful advice about which analytics tools to choose from. For low-volume sites, many of the
analytics services are free, so Segment.io makes it easy to experiment and learn about the
available analytics tools. The service is fast and reliable, so there’s no downside to trying it.

Accounts You Will Need
You will need an account with Segment.io. Sign up for Segment.io.

235

http://railsapps.github.io/rails-google-analytics.html
http://railsapps.github.io/rails-google-analytics.html
https://segment.io/
https://segment.io/
https://segment.io/docs/integrations
https://segment.io/academy/
https://segment.io/signup

You will need accounts with each of the services that you’ll use via Segment.io.

You’ll likely want to start with Google Analytics, so you’ll need a Google Analytics account
and tracking ID.

Visit the Google Analytics website to obtain the Tracking ID for your website. You’ll need to
know the domain name of your website to get an account for your website. If you’ve
deployed to Heroku without a custom domain, use the domain that looks like
“myapp.herokuapp.com”. Or use your custom domain if you have one. Use it for fields for
“Website Name,” “Web Site URL,” and “Account Name.”

Choose the defaults when you create your Google Analytics account and click “Get Tracking
ID.” Your tracking ID will look like this: UA-XXXXXXX-XX . You won’t need the tracking code
snippet as we will use the Segment.io JavaScript snippet instead.

You’ll check your Google Analytics account later to verify that Google is collecting data.

Installing the JavaScript Library
Segment.io provides a JavaScript snippet that sets an API token to identify your account and
installs a library named analytics.jsanalytics.js. This is similar to how Google Analytics works. The
Segment.io library loads asynchronously, so it won’t affect page load speed.

The Segment.io JavaScript snippet should be loaded on every page and it can be included as
an application-wide asset using the Rails asset pipeline.

We’ll add the Segment.io JavaScript snippet to a file named app/assets/javascripts/app/assets/javascripts/
segmentio.jssegmentio.js. The manifest directive //= require_tree . in the file app/assets/javascripts/app/assets/javascripts/
application.jsapplication.js will ensure that the new file is included in the concatenated application
JavaScript file. If you’ve removed the //= require_tree . directive, you’ll have to add a
directive to include the app/assets/javascripts/segmentio.jsapp/assets/javascripts/segmentio.js file.

Create a file app/assets/javascripts/segmentio.jsapp/assets/javascripts/segmentio.js and include the following:

236

http://www.google.com/analytics/

var analytics=analytics||[];(function(){var
e=["identify","track","trackLink","trackForm","trackClick","trackSubmit","page",
"pageview","ab","alias","ready","group"],t=function(e){return
function(){analytics.push([e].concat(Array.prototype.slice.call(arguments,0)))}};for(var
n=0;n<e.length;n++)analytics[e[n]]=t(e[n])})(),analytics.load=function(e){var
t=document.createElement("script");t.type="text/javascript",t.async=!0,
t.src=("https:"===document.location.protocol?"https://":"http://")+
"d2dq2ahtl5zl1z.cloudfront.net/analytics.js/v1/"+e+"/analytics.min.js";var
n=document.getElementsByTagName("script")[0];n.parentNode.insertBefore(t,n)};
analytics.load("YOUR_API_TOKEN");
$(document).on('page:load', function() {
console.log('page loaded');
analytics.pageview();
analytics.trackForm($('#new_visitor'), 'Signed Up');
analytics.trackForm($('#new_contact'), 'Contact Request');

})

If you find you can’t copy this code from this page, you can get it directly from the reference
implementation of the tutorial application. The app/assets/javascripts/segmentio.js file is
on GitHub.

The Segment.io website offers a minified version of the snippet for faster page loads. We’ve
used it here for convenience. You can look at the non-minified version on the Segment.io
website if you want to read the code and comments.

You must replacemust replace YOUR_API_TOKEN with your Segment.io API token. You can find the API
token on your “Settings” page when you log in to Segment.io (it is labelled “Your API Key”).

We’ve added extra code to the minified Segment.io JavaScript snippet. The extra code
accomodates page view and event tracking, which we’ll look at next.

Page View Tracking with Turbolinks
Rails 4.0 introduced a feature named Turbolinks to increase the perceived speed of a website.

Turbolinks makes an application appear faster by only updating the body and the title of a
page when a link is followed. By not reloading the full page, Turbolinks reduces browser
rendering time and trips to the server.

With Turbolinks, the user follows a link and sees a new page but Segment.io or Google
Analytics thinks the page hasn’t changed because a new page has not been loaded. To
resolve the issue, you could disable Turbolinks by removing the turbolinks gem from the
Gemfile. However, it’s nice to have both the speed of Turbolinks and tracking data, so I’ll
show you how get tracking data with Turbolinks.

237

https://github.com/RailsApps/learn-rails.com/blob/master/app/assets/javascripts/segmentio.js
https://segment.io/
https://github.com/rails/turbolinks/

To make sure every page is tracked when Rails 4.0 Turbolinks is used, we’ve already
appended the following JavaScript to the app/assets/javascripts/segmentio.jsapp/assets/javascripts/segmentio.js file:

$(document).on('page:load', function() {
analytics.pageview();

});

This code follows the analytics.load('YOUR_API_TOKEN'); statement at the end of the file.

Turbolinks fires a page:change event when a page has been replaced. The code listens for the
page:load event and calls the Segment.io pageview() method.

Event Tracking
Segment.io gives us a convenient method to track page views. Page view tracking gives us
data about our website traffic, showing visits to the site and information about our visitors.

It’s also important to learn about a visitor’s activity on the site. Site usage data helps us
improve the site and determine whether we are meeting our business goals. This requires
tracking events as well as page views.

The Segment.io JavaScript library gives us two methods to track events:

• trackLink

• trackForm

Link tracking can be used to send data to Segment.io whenever a visitor clicks a link. It is not
useful for our tutorial application because we simply record a new page view when a visitor
clicks a link on our site. However, if you add links to external sites and want to track click-
throughs, you could use the trackLink method. The method can also be used to track clicks
that don’t result in a new page view, such as changing elements on a page.

The trackForm method is more useful for our tutorial application. We’ve already appended it
to the app/assets/javascripts/segmentio.jsapp/assets/javascripts/segmentio.js file:

$(document).on('page:load', function() {
analytics.trackForm($('#new_visitor'), 'Signed Up');
analytics.trackForm($('#new_contact'), 'Contact Request');

})

The trackForm method takes two parameters, the ID attribute of a form and a name given to
the event.

238

Form tracking will show us how many visitors sign up for the newsletter or submit the
contact request form. Obviously we can count the number of subscribers in MailChimp or
look in the site owner’s inbox to see how many contact requests we’ve received. But form
tracking helps us directly correlate the data with visitor data. For example, we can analyze
our site usage data and see which traffic sources result in the most newsletter sign-ups.

With Google Analytics enabled as a Segment.io integration, you’ll see form submissions
appear in the Google Analytics Real-Time report, under the “Events” heading.

You can read more about the Segment.io JavaScript library in the Segment.io documentation.

Segment.io Integrations
After installing the Segment.io JavaScript snippet in your application, visit the Segment.io
integrations page to select the services that will receive your data. When you log in to
Segment.io you will see a link to “Integrations” in the navigation bar.

Each service requires a different configuration information. At a minimum, you’ll have to
provide an account identifier or API key that you obtained when you signed up for the
service.

For Google Analytics, enter your Google Analytics tracking id. It looks like UA-XXXXXXX-XX .
Check the box to “Enable Client-Side Universal Analytics.” Accept the other defaults.

Click “Dashboard” in the navigation bar so you can monitor data sent to Segment.io from
your application.

Deploy
When you are ready to deploy to Heroku, you must recompile assets and commit to the Git
repo:

$ git add -A
$ git commit -m "analytics"
$ RAILS_ENV=production rake assets:precompile
$ git add -A
$ git commit -m "assets compiled for Heroku"
$ git push

Then you can deploy to Heroku:

$ git push heroku master

239

https://segment.io/libraries/analytics.js
https://segment.io/
https://segment.io/

When you visit the site, you should see real-time tracking of data sent to Segment.io in the
Segment.io dashboard.

Log into your Google Analytics account to see real-time tracking of visits to your website.
Under “Standard Reports” see “Real-Time Overview.” You’ll see data within seconds after
visiting any page.

Improving the User Experience
Website analytics can be used to improve visitors’ experience of the website. Deploying the
website is not the last step in your project. Unlike many earlier forms of communication
(such as releasing a film, publishing a book, or broadcasting an advertisement), we can see
how every visitor responds to the website. That means your work is not done when you
deploy the site. Look at your usage data to see which elements of the site are getting
attention and which are being used.

Does no one visit the “About” page? Maybe the navigation link is difficult to find. Do many
people visit the Contact page but few submit a contact request form? Maybe you should
change the label on the button or offer other ways to contact the site owner.

Effective and successful websites often are the result of systematic A/B testing (sometimes
called split testing). A/B testing is a technique of creating variations on a web page, such as
changing text, layout, or button colors, and using website analytics to measure the effect of
the change. You can learn more about services such as Content Analytics in Google
Analytics, Optimizely, or Visual Website Optimizer. These services provide complete
“dashboards” to set up usage experiments and measure results (Optimizely is available as a
Segment.io integration).

Conversion Tracking
You may only be interested in knowing that people visit your site, without measuring
visitors’ engagement or response to the site. But in most cases, if you build a website, you’ll
offer a way for visitors to respond, whether it is by purchasing a product, signing up for a
newsletter, or clicking a “like” button.

The ultimate measure of website effectiveness is the conversion rate. The term comes from
the direct marketing industry and originally referred to a measure of how people responded
to “junk mail” offers. For a website, the conversion rate indicates the proportion of visitors
who respond to a call to action, which may be an offer to make a purchase, register for a
membership, sign up for a newsletter, or any other activity which shows the visitor is
engaged and interested.

For our tutorial application, we can measure our website effectiveness by looking at the
conversion rate for newsletter sign-ups.

240

http://en.wikipedia.org/wiki/A/B_testing
http://www.google.com/analytics/features/content.html
https://www.optimizely.com/
http://visualwebsiteoptimizer.com/
https://www.optimizely.com/
http://en.wikipedia.org/wiki/Conversion_rate

We’re tracking page views which will give us a count of visits to the website home page.
And we’ve got event tracking in place to count newsletter sign-ups. If 100 people visit the
home page and 10 people request a newsletter, we’ve got a conversion rate of 10%.

We can try to improve the conversion rate by improving the user experience (perhaps
through A/B testing) or focusing on increasing traffic from sources that provide a higher
conversion rate.

You can monitor your site’s conversion rate by setting up events as goals in Google
Analytics. Segment.io also integrates with many services which provide conversion tracking.

241

https://support.google.com/analytics/answer/1032415?hl=en

Chapter 28
Rails Challenges
Rails is popular. Rails is powerful. But Rails isn’t easy to learn.

You may have heard of a psychological phenomenon called “resistance.” When we struggle
with something new, or must adapt to the unfamiliar, we resist. We get discouraged. We
complain. Sometimes we feel we should quit.

This chapter is here to help with your resistance.

Its purpose is to acknowledge that, yes, Rails can be difficult.

Tens of thousands of people are successfully using Rails. I’ll hazard a guess that none are
significantly smarter, more motivated, or a better student than you. Perhaps some of them
had more time to study or better access to mentors, but these factors simply accelerate the
speed of learning Rails. If you get discouraged, or think Rails is too hard, recognize that you
are encountering your own resistance, not any genuine limitation. Take a break, set aside
your learning materials, and come back when your natural curiosity and eagerness has
returned.

Sometimes resistance attaches to imaginary problems (like “I’m not smart enough”). Just as
often, resistance attaches to real problems, but magnifies them into insurmountable obstacles
(“Rails is impossible to use on Windows!”). The best way to overcome these obstacles is to
acknowledge the resistance, investigate the obstacle, and seek support from peers.

This chapter describes some of things that make Rails difficult.

These Rails challenges are obstacles, but other people overcame them. You can, too.

The list is incomplete. If you’ve encountered a Rails challenge that isn’t listed here, email me
at daniel@danielkehoe.com and I will add your suggestion to the next revision of the book.

It is difficult to install Ruby.

The installation process for Ruby on Rails is more difficult than downloading and installing
any consumer software applications. You are setting up a development environment and
you need system software as well as Ruby. Depending on what you’ve done before, you may
have altered your system, introducing potentials for conflicts. This book provides links to
good installation guides in the “Get Started” chapter. But installation instructions can’t
accommodate the specific configuration of your computer. Sometimes you just have to look
for someone to help. I’ve also suggested using Nitrous.io, a hosted development
environment.

242

mailto:daniel@danielkehoe.com

Rails is a nightmare on Windows.

Windows is very popular, so why is it difficult to develop with Rails on Windows? It seems
the Rails community has a bias against Windows. It does, and there’s a reason. Rails is an
open source project. Most open source developers use Unix-based system tools. It is difficult
and time-consuming to convert Unix-based system tools to the Microsoft Windows
operating system. Open source developers prefer to spend their time maintaining and
improving their Unix-based projects. And expert Windows developers are seldom interested
in porting Unix-based system tools to Windows. So system utilities such as RVM are not
available for Windows. And developers who create gems are seldom interested in spending
time to solve the problems that arise when code has to be adapted for the idiosyncrasies of
the Windows platform. This situation is not going to change, so you have to make a choice.
Stay with Windows or get comfortable with Unix-based systems.

Why do I have to learn Git? It is difficult.

Real software development requires version control and Git is the standard tool for Rails
developers. If all you do is build applications as a classroom exercise, you don’t need to learn
Git. You can skip all the parts of the book that mention Git. But sooner or later, if you start
doing real projects, you’ll need Git. Simple Git commands are not difficult to learn. When
you’ve developed your skills and confidence you can learn the more advanced Git functions,
such as branching.

RVM seems unnecessary. Why worry about versions?

For simple projects you don’t need RVM. This book introduces RVM and prepares you to
handle version conflicts. As you tackle more complex projects, and as new versions of Rails
are released, you’ll face version issues and RVM will be helpful.

Do I really need to learn about testing?

For student projects, no, you don’t need to learn about testing. But as soon as money or
reputation is at stake on a project, you’ll need to begin using test-driven development. This
book doesn’t teach TDD because it is overwhelming for a beginner. After you complete the
book, intermediate-level tutorials will introduce you to testing. Once you’ve grasped the
basics of Rails, testing will become easy, and it actually is fun and satisfying.

Rails error reporting is cryptic.

Actually, Rails error reporting is quite good. Stack traces are detailed and error messages are
descriptive. Beginners have a problem because the stack traces and error messages provide a
technical analysis of a problem in terms that an experienced developer can understand. If
error reporting was “simplified” it might not be as intimidating but it would not as accurate.
It’s up to you to gain enough knowledge to understand the error messages. Finally, the error

243

reporting mechanism can point you to the line in your code that triggers a problem, but it
can’t know what you trying to do, or describe the error in anything but technical terms.

There is too much magic.

The Rails “convention over configuration” principle leads to obscurity. Default behavior
often looks like magic because the underlying implementation is hidden in the depths of the
Rails code library. If you like to know how things work, this can be frustrating. You really
have only two choices when you encounter Rails magic. You can take time to dig into the
source code. If you do so, you’ll encounter frustration as you encounter complex and
sophisticated code, but you may also improve your understanding and skill as a Ruby
programmer. Or you can take on faith that “it just works.” Often, you just need to use the
convention several times in different projects to get comfortable with the magic and stop
worrying that you don’t fully understand it.

Rails contains lots of things I don’t understand.

If you look at the Rails directory structure, you’ll see many files and folders. If you look at
the Rails API, or pick up a Ruby tutorial, you’ll also see code that is unfamiliar. This book
has described some of what you see. As you build more applications, you will gain
proficiency and master more of Rails and Ruby. Yet even as you gain mastery of Rails, there
will be aspects that remain unfamiliar. Don’t let the sheer complexity stop you. The truth is,
you don’t have to know “all” of Rails or Ruby to build web applications.

There is too much to learn.

Very true. To be a full-stack web developer you need to know HTML, JavaScript, CSS, Ruby,
testing, databases, and much, much more. You might think that developers who started ten
years ago have an advantage because there wasn’t as much to learn when they started. But
today there are many more high-quality tutorials and educational programs to accelerate
your learning. And resources like Google and Stack Overflow have many more answers to
questions. As the knowledge domain has grown, so have the learning resources. You don’t
have to learn everything. Get a foundation in the basics and then dive deep as a specialist in
an area that appeals to you.

It is difficult to find up-to-date advice.

Rails has been around since 2004 with major new versions released every two years. Chances
are, answers to questions you find on Stack Overflow or Google were written for an older
version of Rails. There is no easy way to determine if the answer is out of date. A particular
aspect of Rails may have changed—or not. Even worse, the answer may work, but there may
be a better way that reflects current best practices. To filter the outdated in Google, use the
“Search Tools” options for specifying a timeframe. Look closely at the date of a blog posting
or Stack Overflow answer. Try to find a newer answer. Usually, if there are a series of

244

answers and things have changed, you’ll see the current best answer. If you’re uncertain,
don’t be shy about posting your question to Stack Overflow. More importantly, make it your
business to keep up with the community, reading Peter Cooper’s Ruby Weekly email
newsletter or his daily RubyFlow site.

It is difficult to know what gems to use.

There are so many gems available for Rails. Some add useful features, like tagging or a
mailing list API. Some are basic, such as gems for a database or front-end framework. Even
among basic gems, Rails offers choices. Which are best? The Ruby Toolbox can help, but
mostly you will find guidance from looking at example projects and noticing what other
developers are using. There’s wisdom in the crowd.

Rails changes too often.

If you look at the Ruby on Rails Release History you’ll see there is a new major release
approximately every 1.5 years. Each major release is well tested and relatively free of bugs.
But new features or new approaches often require rewrites of older applications.
Commercial software products often make a priority of keeping the API consistent over time.
That’s not Rails. Rails is an open source project and the core team embraces innovation. The
maintainers expect that you’ll keep up with changes.

It is difficult to transition from tutorials to building real applications.

Copying and pasting from tutorials is a good way to begin learning Rails. But you’ll only
become a skilled Rails developer when you build something that is not shown in a tutorial.
The first few hours (or days) when you start building a custom application can be very
difficult. Focus on the basics that are described in this book. Start with user stories. Build
pieces that you know how to do. Look for code samples on blogs or GitHub or Stack
Overflow. Try “spikes,” little experiments that test ideas for implementation. Seek advice
from peers or mentors. At first it will be slow going. But you will pick up momentum.

I’m not sure where the code goes.

If you follow tutorials, you’ll learn “where the code goes” with the model–view–controller
design pattern. With a sense of the request-response cycle, RESTful actions in the controller,
and a few guidelines such as “skinny controller, fat model” you’ll be able to build
intermediate-level Rails applications. Front-end code, particularly JavaScript, can be difficult
because not a lot has been published about Rails best practices. In particular, the Rails asset
pipeline can be confusing for anyone who has done front-end development without Rails. If
you don’t know what you’re supposed to do, do whatever works, then look for someone
who can help you by providing a code review.

245

http://rubyweekly.com/
http://www.rubyflow.com/
http://ruby-toolbox.com/
http://railsapps.github.io/rails-release-history.html

People like me don’t go into programming.

Until recently, most Rails developers have been young men with an engineering
background. For people who don’t fit the stereotypical profile, it can be hard to find role
models or peers who demonstrate that Rails is something everyone can learn. The challenge
can be subtle, as when you have the feeling that maybe if you were different you’d find it
easier to make progress. Or the challenge can be overt, when behavior of fellow students or
co-workers is disturbing or hurtful (often they don’t even know!). Lack of diversity, and the
cluelessness that accompanies it, is unfortunate in the Rails community. But many people are
working to make the community more welcoming and inclusive. Organizations such as Rails
Girls and Railsbridge are creating more diversity in the community. You may find support
from peers there to affirm that you, too, are entitled to knowledge and success.

246

http://railsgirls.com/
http://railsgirls.com/
http://railsbridge.org/

Chapter 29
Credits and Comments
Credits
Daniel Kehoe wrote the book and implemented the application.

The book was created with the encouragement, financial support, and editorial assistance of
hundreds of people in the Rails community.

Financial Backers

The following individuals and organizations provided financial contributions of over $50 to
help launch the book. Please join me in thanking them for their encouragement and support.

Al Zimmerman
Avi Flombaum
Brian Hays
Charles Treece
Dave Doolin
Denzil Villarico
Derek Rockwell
Eito Katagiri
Frank Castle
Fred Dixon
Gerard de Brieder
GoodWorksOnEarth.org
Hanspeter Leupin
Harald Lazardzig
Gant Laborde
Jared Koumentis
Jeff Whitmire
Jesse House
Joost Baaij
Kathleen Sidenblad
Logan Hasson
Mark Gilbert
Matt Esterly
Mike Gilbert
Niko Roberts
Paul Philippov

247

Robert Nadar
Rogier Hof
Ross Kinney
Susan Wilson
Sven Fuchs
Tom Michel
Youn Shin Kang

Editors and Proofreaders

Dozens of volunteers offered corrections and made suggestions, from fixing typos to advice
about organizing the chapters.

Alberto Dubois Ribó, Alex Finnarn, Alex Zielonko, Alexandru Muntean, Alexey Dotokin,
Alexey Ershov, André Arko, Andreas Basurto, Ben Swee, Brandon Schabel, Daniella
Zimmermann, Dapo Babatunde, Dave Levine, Dave Mox, David Kim, Duany Dreyton
Bezerra Sousa, Erik Trautman, Erin Nedza, Flavio Bordoni, Fritz Rodriguez Jr, Hendri
Firmana, Ishan Shah, James Hamilton, Jasna Vukovic, Joanne Daudier, Joel Dezenzio, Jonah
Ruiz, Jonathan Lai, Jonathan Miller, Jordan Stone, Josh Morrow, Joyce Hsu, Julia Mokus,
Julie Hamwood, Jutta Frieden, Laura Pierson Wadden, Marc Ignacio, Mark D. Blackwell,
Mark Everhart, Michael Wong, Miguel Herrera, Mike Janicki, Miran Omanovic, Neha Jain,
Norman Cohen, Oana Sipos, Peter Rangelov, Richard Afolabi, Robin Paul, Roderick Silva,
Sakib Ash, Silvia Obajdin, Stas Sușcov, Stefan Streichsbier, Sven Fuchs, Tam Eastley, Tim
Goshinski, Timothy Jones, Tom Connolly, Tomas Olivares, Verena Brodbeck, Will Schive,
William Yorgan, Zachary Davy

Photos

Images provided by the lorempixel.com service are used under the Creative Commons
license (CC BY-SA). Visit the Flickr accounts of the photographers to learn more about their
work:

• photo of a white cat by Tomi Tapio
• photo of a cat by Steve Garner
• photo of a cat by Ian Barbour

The photo of a white cat by Tomi Tapio appears in the screenshot in the Introduction chapter
and on the tutorial cover page.

Did You Like the Tutorial?
Was the book useful to you? Follow @rails_apps on Twitter and tweet some praise. I’d love
to know you were helped out by the tutorial.

248

http://lorempixel.com/
http://creativecommons.org/licenses/
http://creativecommons.org/licenses/
http://www.flickr.com/photos/tomitapio/4305303148/
http://www.flickr.com/people/22032337@N02/
http://www.flickr.com/people/barbourians/
http://www.flickr.com/photos/tomitapio/4305303148/
http://twitter.com/rails_apps

You can find me on Facebook or Google+. I’m happy to connect if you want to stay in touch.

Comments
I regularly update the book. Your comments and suggestions for improvements are
welcome.

Feel free to email me directly at daniel@danielkehoe.com.

Any issues with the tutorial application? Please create an issue on GitHub. Reporting issues
helps everyone.

249

https://www.facebook.com/daniel.kehoe.sf
https://plus.google.com/+DanielKehoe/
mailto:daniel@danielkehoe.com
http://github.com/RailsApps/learn-rails/issues

Learn Ruby on Rails
Copyright (C) 2013 Daniel Kehoe. All rights reserved.

250

	Learn Ruby on Rails
	About the Book
	Introduction
	Is It for You?
	Warnings
	What To Expect
	The Application
	A Note to Reviewers and Teachers

	Concepts
	How the Web Works
	JavaScript and Ruby
	What is Rails?
	Stacks

	Get Help When You Need It
	Getting Help
	References
	Staying Up-to-Date
	Meetups, Hack Nights, and Workshops
	Pair Programming
	Pairing With a Mentor

	Plan Your Product
	Product Owner
	User Stories
	Wireframes and Mockups
	Graphic Design
	Software Development Process
	Behavior-Driven Development

	Manage Your Project
	To-Do List
	Kanban
	Agile Methodologies

	Accounts You May Need
	GitHub
	Gmail
	MailChimp
	Heroku

	Get Started
	Before You Start
	Your Computer
	Text Editor
	Terminal
	Installing Ruby
	Understanding Version Numbers
	Ruby 2.0 and Rails 4.0
	RVM
	Project-Specific Gemset

	Create the Application
	Starter Applications
	Your Workspace
	Use Your RVM Gemset
	“Rails New” Help
	Use “Rails New” to Build the Application
	Make a Sticky Gemset
	Test the Application
	Getting Organized for Efficiency

	The Parking Structure
	Project Directory
	Important Folders and Files
	The App Directory

	Time Travel with Git
	Git
	Is Git Installed?
	Is Git Configured?
	Create a Repository
	GitIgnore
	Git Workflow
	The README

	Gems
	Rails Gems
	Gems for a Rails Default Application
	Where Do Gems Live?
	Gemfile
	Gemfile for a Rails Default Application
	Adding Gems
	Adjust the Rails Version
	Install the Gems
	Git

	Configure
	Configuration File
	Configure Email
	Git

	Static Pages and Routing
	Add a Home Page
	Routing Error
	Add an About Page
	Introducing Routes
	Using the “About” Page

	Request and Response
	Investigating the Request Response Cycle
	Document Object Model
	Model View Controller
	Remove the About Page

	Dynamic Home Page
	User Story
	The Name Game
	Naming Conventions
	Routing
	Model
	View
	Controller
	Scaffolding
	Test the Application
	Git

	Troubleshoot
	Git
	Interactive Ruby Shell
	Rails Console
	Rails Logger
	Revisiting the Request-Response Cycle
	The Stack Trace
	Raising an Exception
	Git

	Just Enough Ruby
	Reading Knowledge of Ruby
	Ruby Example
	Ruby Keywords
	Object-Oriented Terminology
	Ruby Files
	Classes
	Whitespace and Line Endings
	Comments
	Attributes
	Methods
	Dot Operator
	Question and Exclamation Methods
	Method Parameters
	Initialize Method
	Variable
	Symbol
	Instance Variable
	Double Bar Equals Operator
	Conditional
	Ternary Operator
	Interpolation
	Access Control
	Hash
	Array
	Iterator
	Block
	Rails and More Keywords
	More Ruby
	Git

	Layout and Views
	Template Languages
	Introducing the Application Layout
	Where did all the extra HTML come from?
	Yield
	Yield Variations
	ERB Delimiters
	Introducing View Helpers
	The Rails Layout Gem
	Basic Boilerplate
	Adding Boilerplate
	Asset Pipeline
	Navigation Links
	Flash Messages
	HTML5 Elements
	Application Layout
	Simple CSS
	Test the Application
	Git

	Front-End Framework
	CSS Frameworks
	JavaScript Libraries and Frameworks
	Front-End Frameworks
	CSS Preprocessing with LESS or Sass
	Twitter Bootstrap or Zurb Foundation?
	Graphic Design Options
	Zurb Foundation Gem
	Rails Layout Gem with Zurb Foundation
	Renaming the application.css File
	The application.css.scss File
	Zurb Foundation JavaScript
	Zurb Foundation CSS
	Using Foundation CSS Classes
	Application Layout with Zurb Foundation
	Flash Messages with Zurb Foundation
	Navigation Partial with Zurb Foundation
	Navigation Links Partial
	Set up SimpleForm with Zurb Foundation
	Test the Application
	Remove the Flash Messages
	Git

	Add Pages
	High Voltage Gem
	Views Folder
	“About” Page
	Contact Page
	Routing for the High Voltage Gem
	Update the Navigation Partial
	Test the Application
	Git

	Contact Form
	The “Old Way” and the “Rails Way”
	User Story
	Routing
	Adding a Form to the Contact Page
	Controller
	Test the Application
	The Validation Problem
	Remove the Contact Page
	Implementing the “Rails Way”
	ActiveRecord
	Model
	Create a New Contact Page
	Seven Controller Actions
	Controller
	Routing
	Change Navigation Links
	Test the Application
	Git

	Spreadsheet Connection
	User Story
	Google Drive Gem
	Implementation
	Modify the Contact Model
	Modify the Contacts Controller
	Test the Application
	Git

	Send Mail
	User Story
	Implementation
	Create View Folder and Mailer
	Edit the Mailer
	Create Mailer View
	Modify Controller
	Test the Application
	Asynchronous Mailing
	Git

	Mailing List
	User Story
	Implementation
	Gibbon Gem
	Home Page
	Visitor Model
	Visitors Controller
	Clean Up
	Routing
	Test the Application
	Git

	Deploy
	Heroku Costs
	Test the Application
	Preparing for Heroku
	Sign Up for a Heroku Account
	Heroku Toolbelt
	Heroku Create
	Set a Domain Name
	Enable Email
	Set Heroku Environment Variables
	Push to Heroku
	Updating the Application
	Visit Your Site
	Customizing
	Troubleshooting
	Where to Get Help

	Analytics
	Segment.io
	Accounts You Will Need
	Installing the JavaScript Library
	Page View Tracking with Turbolinks
	Event Tracking
	Segment.io Integrations
	Deploy
	Improving the User Experience
	Conversion Tracking

	Rails Challenges
	Credits and Comments
	Credits
	Did You Like the Tutorial?
	Comments

