
www.allitebooks.com

http://www.allitebooks.org

MEAP Edition
Manning Early Access Program

Rails 4 in Action MEAP version 11
Revised Edition of Rails 3 in Action

Copyright 2013 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818
Licensed to <alex@vinova.sg>www.allitebooks.com

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

brief contents

Chapter 1 Ruby on Rails, the framework

Chapter 2 Testing saves your bacon

Chapter 3 Developing a real Rails application

Chapter 4 Oh CRUD!

Chapter 5 Nested resources

Chapter 6 Authentication

Chapter 7 Basic access control

Chapter 8 Fine-grained access control

Chapter 9 File uploading

Chapter 10 Tracking state

Chapter 11 Tagging

Chapter 12 Sending email

Chapter 13 Designing an API

Chapter 14 Deployment

Chapter 15 Alternative authentication

Chapter 16 Basic performance enhancements

Chapter 17 Rack-based applications

Appendix A Why Rails?

Appendix B Tidbits

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818
Licensed to <alex@vinova.sg>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

1
Welcome aboard! It’s great to have you with us on this journey through the world
of Ruby on Rails. Ruby on Rails is known as a powerful web framework that helps
developers rapidly build modern web applications. In particular, it provides lots of
niceties to help you in your quest to develop a full-featured real-world application
and be happy doing it. Great developers are happy developers.

If you're wondering who uses Rails, well there's plenty of companies out there.
There's Twitter, Hulu, and Urban Dictionary, just to name a few. This book will
teach you how to build a very small and simple application in this first chapter,
right after we go through a brief description of what Ruby on Rails actually .is
Within the first couple of chapters, you'll have some pretty solid foundations of an
application and then build on that throughout the rest of the book.

Ruby on Rails is a framework built on the Ruby language, hence the name Ruby
on Rails. The Ruby language was created back in 1993 by ("Matz") of Japan.
Ruby was released to the general public in 1995. Since then, it has earned both a
reputation and an enthusiastic following for its clean design, elegant syntax, and
wide selection of tools available in the standard library and via a package
management system called . It also has a worldwide community andRubyGems
many active contributors constantly improving the language and the ecosystem
around it.

The foundation for Ruby on Rails was created during 2004 when David
Heinemeier Hansson was developing an application called Basecamp. For his next
project, the foundational code used for Basecamp was abstracted out into what we

know as Ruby on Rails today, with it being released under the MIT License .1

Ruby on Rails, the framework

1.1 Ruby on Rails Overview

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

1

Licensed to <alex@vinova.sg>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

Footnote 1 m The MIT license: http://en.wikipedia.org/wiki/MIT_License

Since then, Ruby on Rails has quickly progressed to become one of the leading
web development frameworks. This is in no small part due to the large community
surrounding it, improving everything from documentation, through to bug fixes, all
the way up to adding new features to the framework.

This book is written for version 4.0.0 of the framework, which is the latest
version of Rails. If you've used Rails 3.2, you'll find that much feels the same, yet
Rails has learned some new tricks, as well. There will be an appendix at the end of
the book giving you a quick overview of what's new.

Ruby on Rails allows for rapid development of applications by using a concept
known as . A new Ruby on Rails application isconvention over configuration
created by running the application generator. This generator creates a standard
directory structure and the files that act as a base for every Ruby on Rails
application. These files and directories provide categorization for pieces of your
code, such as the app/models directory for containing files that interact with the
database and the app/assets directory for assets, such as stylesheets, javascript files
and images. Because all of this is already there for you, you won’t be spending
your time configuring the way your application is laid out. It’s done for you.

How rapidly can you develop a Ruby on Rails application? Take the annual
 event. This event brings together small teams of one to fourRails Rumble

developers around the world to develop Ruby on Rails applications in a 48-hour2

period. Using Rails, these teams deliver amazing web applications in just two days.

 Another great example of rapid development of a Rails application is the3

20-minute blog screencast recorded by Yehuda Katz. This screencast takes you4

from having nothing at all to having a basic blogging and commenting system.

Footnote 2mAnd now other Ruby-based web frameworks, such as Sinatra.

Footnote 3 m To see an example of what has come out of previous Rails Rumbles, take a look at their alumni
archive: http://r09.railsrumble.com/entries

Footnote 4 m 20-minute blog screencast: http://vimeo.com/10732081

Once learned, Ruby on Rails affords you a level of productivity unheard of in
other web frameworks because every Ruby on Rails application starts out the same
way. The similarity between the applications is so close that working on different
Rails applications is not tremendous. If and when you jump between Rails

1.1.1 Benefits

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

2

Licensed to <alex@vinova.sg>www.allitebooks.com

http://en.wikipedia.org/wiki/MIT_License
http://r09.railsrumble.com/entries
http://vimeo.com/10732081
http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

applications, you don’t have to relearn how it all connects—it’s mostly the same.
The Rails ecosystem may seem daunting at first, but Rails conventions allow even
the new to seem familiar very quickly, smoothing the learning curve substantially.

The core features of Rails are split up into many different parts, such as Active

, , , and . These gems provide aRecord Active Support Action Mailer Action Pack 5

wide range of methods and classes that help you develop your applications. They
eliminate the need for you to perform boring, repetitive tasks—such as coding how
your application hooks into your database—and let you get right down to writing
valuable code for your business.

Footnote 5 m These gems share the same version number as Rails, which means when you're using Rails 4.0,
you're using the 4.0 version of the sub-gems. This is helpful to know when you upgrade Rails because the version
number of the installed gems should be the same as the version number of Rails.

Ever wished for a built-in way of writing automated tests for your web
application? Ruby on Rails has you covered with , part of Ruby’s standardMinitest
library. It’s incredibly easy to write automated test code for your application, as
you’ll see throughout this book. Testing your code saves your bacon in the long
term, and that’s a fantastic thing. We touch on Minitest in the next chapter before
moving on to RSpec, which is a testing framework that is preferred the majority of
the community over Minitest and is a little easier on the eyes too.

In addition to testing frameworks, the Ruby community has produced several
high-quality libraries (called RubyGems, or gems for short) for use in your
day-to-day development with Ruby on Rails. Some of these libraries add additional
functionality to Ruby on Rails; others provide ways to turn alternative markup
languages such as Markdown and Textile into HTML. Usually, if you can think it,
there’s a gem out there that will help you do it.

Noticing a common pattern yet? Probably. As you can see, Ruby on Rails (and
the great community surrounding it) provides code that performs the trivial
application tasks for you, from setting up the foundations of your application to
handling the delivery of email. The time you save with all these libraries is
immense! And because the code is open source, you don’t have to go to a specific
vendor to get support. Anyone who knows Ruby will help you if you're stuck. Just
ask.

You’ll hear a few common Ruby on Rails terms quite often. This section explains
what they mean and how they relate to a Rails application.

1.1.2 Common terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

3

Licensed to <alex@vinova.sg>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

MVC
The odel- iew- ontroller () paradigm is not unique to Ruby on Rails butM V C MVC
provides much of the core foundation for a Ruby on Rails application. This
paradigm is designed to keep the logically different parts of the application
separate while providing a way for data to flow between them.

In applications that don’t use MVC, the directory structure and how the
different parts connect to each other is commonly left up to the original developer.
Generally, this is a bad idea because different people have different opinions on
where things should go. In Rails, a specific directory structure encourages all
developers to conform to the same layout, putting all the major parts of the
application inside an app directory.

This app directory has three main sub-directories: models, controllers, and
views.

Models contain the of your application. This logic dictates howdomain logic
the records in your database are retrieved, validated or manipulated. In Rails
applications, models define the code that interacts with the database’s tables to
retrieve and set information in them. Domain logic also means things such as
validations or particular actions to perform on the data.

Controllers interact with the models to gather information to send to the view.
They are the layer between the user and the database. They call methods on the
model classes, which can return single objects representing rows in the database or
collections (arrays) of these objects. Controllers then make these objects available
to the view through instance variables. Controllers are also used for permission
checking such as ensuring that only users who have special permission to perform
certain actions can perform those actions, and users without that permission
cannot.

Views display the information gathered by the controller, by referencing the
instance variables set there, in a developer-friendly manner. In Ruby on Rails, this
display is done by default with a templating language known as mbedded u y (E R b

). ERB allows you to embed Ruby (hence the name) into any kind of file youERB
wish. This template is then preprocessed on the server side into the output that’s
shown to the user.

The assets, helpers, and mailers directories aren’t part of the MVC paradigm,
but they are important parts of Rails.

The directory is for the static assets of the application, such as JavaScriptassets
files, images, and Cascading Style Sheets (CSS) for making the application look

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

4

Licensed to <alex@vinova.sg>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

pretty. We look more closely at this in chapter 3.
The directory is a place to put Ruby code (specifically, modules) thathelpers

provide helper methods for just the views. These helper methods can help with
complex formatting that would otherwise be messy in the view or is used in more
than one place.

Finally, is a home for the classes of our application that deal withmailers
sending email. In previous versions of Rails, these classes were grouped with
models but have since been given their own home. We look at them in chapter 11.

REST

MVC in Rails is aided by presentational tate ransfer () , a routingRe S T REST 6

paradigm. REST is the convention for in Rails. When something adheres torouting
this convention, it’s said to be . Routing in Rails refers to how requests areRESTful
routed within the application itself. You benefit greatly by adhering to these
conventions, because Rails provides a lot of functionality around RESTful routing,
such as determining where a form can submit data.

Footnote 6 http://en.wikipedia.org/wiki/Representational_state_transferm

One of the most well-known sites that runs Ruby on Rails is GitHub. Github is a
hosting service for Git repositories. The site was launched in February 2008 and is
now the leading Git web-hosting site. GitHub’s massive growth was in part due to
the Ruby on Rails community quickly adopting it as their de facto repository
hosting site. Now GitHub is home to over a million repositories for just about
every programming language on the planet. It’s not exclusive to programming
languages either; if it can go in a Git repository, it can go on GitHub. As a matter
of fact, this book and its source code are kept on GitHub!

You don't have to build huge applications with Rails, either. There is a Rails
application that was built for the specific purpose of allowing people to review this
book and it's just over 2,000 lines of code. This application allowed reviewers
during the writing of the book to view the chapters for the book and leave notes on
each element in the book, leading overall to a better book.

Now that you know what other people have accomplished with Ruby on Rails,
let’s dive into creating your own application.

1.1.3 Rails in the wild

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

5

Licensed to <alex@vinova.sg>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

We covered the theory behind Rails and showed how quickly and easily you can
develop an application. Now it’s your turn to get an application going. This
application will be a simple application that can be used to track items that have
been purchased, tracking just the name and the price for an item. In the next
section, you'll learn how to install Rails and use the scaffold generator that Rails
comes with.

To get started, you must have these three things installed:

Ruby
RubyGems
Rails

If you’re on a UNIX-based system (Linux or Mac), we recommend you use
RVM (http://rvm.io) to install Ruby and RubyGems. It is a favored solution for
many in the community because it is simple to get started with. You can install it
by following the instructions on the https://rvm.io/rvm/install/ page. If you prefer a
different tool, such as or , that works fine as well. These optionschruby rbenv

are a bit more complex to get started with, but some developers prefer them.
Whichever way you choose, please don't install from your package manager, if
you're on Linux. Installing from a package management system such as Ubuntu’s

Aptitude has been known to be broken. After installing RVM, you must run this7

command to install a 2.0.0 version of Ruby:

Footnote 7 m Broken Ubuntu Ruby explained here:
http://ryanbigg.com/2010/12/ubuntu-ruby-rvm-rails-and-you/

To use this version of Ruby, you would need to use everyrvm use 2.0.0

time you wished to use it or else set up a .rvmrc file in the root of your project,
which is explained on the RVM site in great detail. Alternatively, you can set this

1.2 Developing your first application

1.2.1 Installing Rails

$ rvm install 2.0.0

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

6

Licensed to <alex@vinova.sg>www.allitebooks.com

http://rvm.io
https://rvm.io/rvm/install/
http://ryanbigg.com/2010/12/ubuntu-ruby-rvm-rails-and-you/
http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

version of Ruby as the default with the command rvm use --default

, and use if you ever want to swap back to the2.0.0 rvm use system

system-provided Ruby install if you have one.
If you’re on Windows, you can’t use RVM. We would recommend the use of

the Rails Installer program (http://railsinstaller.org) from Engine Yard, or installing
the Ruby 2.0.0 binary from http://ruby-lang.org or http://rubyinstaller.org as an
alternative to RVM.

Next, you need to install the rails gem. The following command installs both
Rails and its dependencies. If you're using the Rails installer you will not need to
run this command as Rails will already be installed.

Okay, let's check we've got everything. Type these commands, and check out
the responses.

If you see something that looks close to this, you're good to go! These particular
values are the ones that I'm using right now: as long as you have Ruby 2.0 or later,
Rails 4.0 or later, and RubyGems 2.0 or later, everything should be fine.

If you do not get these answers, or you get some sort of error message, please
make sure to get this set-up completed before trying to move on; you can't just
ignore errors with this process! Certain gems (and Rails itself) only support
particular versions of Ruby, and so if you don't get this right, things won't work.

$ gem install rails -v 4.0.0

$ ruby -v
ruby 2.0.0p195 (2013-05-14 revision 40734) [x86_64-linux]
$ gem -v
2.0.2
$ rails -v
Rails 4.0.0

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

7

Licensed to <alex@vinova.sg>www.allitebooks.com

http://railsinstaller.org
http://ruby-lang.org
http://rubyinstaller.org
http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

With Rails now installed, to generate an application, you run the commandrails

and pass it the argument and the name of the application you want tonew

generate: . When you run this command, it creates a new directorythings_i_bought
called , which is where all your application’s code will go.things_i_bought

WARNING Don't use reserved words for application naming
You can call your application anything you wish, but it can’t be given
the same name as a reserved word in Ruby or Rails. For example, you
wouldn’t call your application rails because the application class would
be called , and that would clash with the from within theRails Rails

framework itself.
When you use an invalid application name, you'll see an error like this:

The application that you’re going to generate will be able to record purchases
you have made. You can generate it using this command:

The output from this command may seem a bit overwhelming at first, but rest
assured, it’s for your own good. All of the directories and files generated here
provide the building blocks for your application, and you’ll get to know each of
them as we progress. For now, let’s get rolling and learn by doing, which is the
best way of learning.

To get the server running, you must first change into the newly created
application’s directory and then run these commands to start the application server:

1.2.2 Generating an application

$ rails new rails
Invalid application name rails, constant Rails is already in use.
Please choose another application name.

$ rails new things_i_bought

1.2.3 Starting the application

$ cd things_i_bought

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

8

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The (or , for short) starts a web serverbin/rails server bin/rails s

on your local address on port 3000 using a Ruby standard library web server
known as WEBrick. It will say its “starting in development on http://0.0.0.0:3000,”
which indicates to us that the server will be available on port 3000 on all network

interfaces of this machine . To connect to this server, go to http://localhost:3000 in8

your favorite browser. You’ll see the “Welcome aboard” page, which is so famous
to Rails (Figure 1.1).

Footnote 8 m This is what the address represents. It is not an actual address, so to speak, and so 0.0.0.0

 or should be used.localhost 127.0.0.1

Careful readers will notice that previously, we used the command torails

generate the application, and we use here. Here's the rule of thumb:bin/rails

use to generate applications, and use everywhere else. We'llrails bin/rails

talk more about the 'binstub' later on. For now, just know that most commands are
prefixed with .bin/

Figure 1.1 Welcome aboard!

$ bin/rails server

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

9

Licensed to <alex@vinova.sg>

http://0.0.0.0:3000,%E2%80%9D
http://localhost:3000
http://www.manning-sandbox.com/forum.jspa?forumID=818

On the right-hand side of this page, there's four links to more documentation for
Rails and Ruby. The first link will take you to the official guides page, which will
give you great guidance that complements the information in this book. The second
link will take you to the Rails API, where you can look up the documentation for
classes and methods within Ruby. The final two links will take you to
documentation about Ruby itself.

If you click About Your Application’s Environment, you’ll find your Ruby,
RubyGems, Ruby on Rails, and Rack versions and other environmental data. One
of the things to note here is that the output for Environment is Development. Rails
provides three environments for running your application: , , and development test

. How your application functions can depend on the environment inproduction
which it is running. For example, in the development environment, classes are not
cached, so if you make a change to a class when running an application in
development mode, you don’t need to restart the server, but the same change in the
production environment would require a restart.

To get started with this Rails application, you generate a . Scaffolds inscaffold
Rails provide a lot of basic functionality and are generally used just as a temporary
structure to get started, rather than for full-scale development. Let’s generate a
scaffold by running this command:

When you used the command earlier, it generated an entire Railsrails

application. You can use this command inside of an application to generate a
specific part of the application by passing the argument to the generate rails

command, followed by what it is you want to generate. You can also use
 as a shortcut to .bin/rails g bin/rails generate

The command generates a model, controller, views and tests basedscaffold

on the name passed after scaffold in this command. These are the three important
parts needed for your purchase tracking. The model provides a way to interact with

1.2.4 Scaffolding

$ bin/rails generate scaffold purchase name:string cost:float

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

10

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

a database. The controller interacts with the model to retrieve and format its
information and defines different actions to perform on this data. The views are
rendered by the controller and display the information collected within them.

Everything after the name for the scaffold are the fields for the database table
and the for the objects of this scaffold. Here you tell Rails that the tableattributes
for your purchase scaffold will contain a and field, which are a stringname cost

and a float, respectively. To create this table, the scaffold generator generates9

what’s known as a . Let’s have a look at what migrations are.migration

Footnote 9 m Usually you wouldn’t use a float for storing monetary amounts because it can lead to incorrect
rounding errors. Generally, you store the amount in cents as an integer and then do the conversion back to a full
dollar amount. In this example, you use float because it’s easier to not have to define the conversion at this point.

Migrations are used in Rails as a form of version control for the database,
providing a way to implement incremental changes to the schema of the database.
They are usually created along with a model, or by running the migration
generator. Each migration is timestamped right down to the second, which
provides you (and anybody else developing the application with you) an accurate
timeline of your database. When two developers are working on separate features
of an application and both generate a new migration, this timestamp will stop them
from clashing. Let’s open the only file in db/migrate now and see what it does. Its
contents are shown in the following listing.

Listing 1.1 db/migrate/[date]_create_purchases.rb

Migrations are Ruby classes that inherit from
. Inside the class, one method is defined: the ActiveRecord::Migration

 method.change

1.2.5 Migrations

class CreatePurchases < ActiveRecord::Migration
 def change
 create_table :purchases do |t|
 t.string :name
 t.float :cost

 t.timestamps
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

11

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Inside the method, you use database-agnostic commands to create achange

table. When this migration is run forward, it will create a table called "purchases",
with a "name" column that's a string, a "cost" column that's a float , and two
timestamp fields . These timestamp fields are called and created_at

 and are automatically set to the current time when a record isupdated_at

created or updated respectively. This is a feature that is built into Active Record. If
there are fields present with these names (or "created_on" and "updated_on"), they
will be automatically updated when necessary.

When the migration is reverted, Rails will know how to undo it because it is a
simple table creation. The opposite of creating a table is to drop that table from the
database. If the migration was more complex than this, you would need to split it
out into two methods, one called and one called that would tell Railsup down

what to do in both cases. Rails is usually smart enough to figure out what you want
to do, but sometimes it's not clear and you will need to be explicit. You'll see
examples of this in later chapters.

To run the migration, type this command into the console:

This command runs the part of this migration. Because this is your first timeup

running migrations in your Rails application, and because you’re using a SQLite3
database, Rails first creates the database in a new file at db/development.sqlite3
and then creates the table inside that. When you run purchases bin/rake

, it doesn’t just run the method from the latest migrationdb:migrate change

but runs any migration that hasn’t yet been run, allowing you to run multiple
migrations sequentially.

Your application is, by default, already set up to talk to this new database, so
you don’t need to change anything. If you ever want to roll back this migration,
you’d use , which rolls back the latest migration bybin/rake db:rollback

running the method of the migration.down 10

Footnote 10 m If you want to roll back more than one migration, use the bin/rake db:rollback

 command, which rolls back the three most recent migrations.STEP=3

Rails keeps track of the last migration that was run by storing it using this line
in the db/schema.rb file:

$ bin/rake db:migrate

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

12

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This version should match the prefix of the migration you just created, and11

Rails uses this value to know what migration it’s up to. The remaining content of
this file shows the combined state of all the migrations to this point. This file can
be used to restore the last-known state of your database if you run the bin/rake

 command.db:schema:load

Footnote 11 m where in this example is an actual timestamp formatted like [timestamp]

.YYYYmmddHHMMSS

With your database set up with a table in it, let’s look at how youpurchases

can add rows to it through your application.

Ensure that your Rails server is still running, or start a new one up by running
 or again. Start your browser now and gobin/rails s bin/rails server

to http://localhost:3000/purchases. You’ll see the scaffolded screen for purchases,
as shown in Figure 1.2.

Figure 1.2 Purchases

No purchases are listed yet, so let’s add a new purchase by clicking New
Purchase.

In Figure 1.3, you see two inputs for the fields you generated.

ActiveRecord::Schema.define(version: [timestamp]) do

1.2.6 Viewing and creating purchases

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

13

Licensed to <alex@vinova.sg>

http://localhost:3000/purchases
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 1.3 A new purchase

This page is the result of action from the new PurchasesController

controller. What you see on the page comes from the view located at
app/views/purchases/new.html.erb, and it looks like the following listing.

Listing 1.2 app/views/purchases/new.html.erb

This is an ERB file, which allows you to mix HTML and Ruby code to generate
dynamic pages. The beginning of an ERB tag indicates that the result of the<%=

code inside the tag will be output to the page. If you want the code to be evaluated
but not output, you use the tag, like this:<%

If you were to use here, the <%= some_variable = "foo" %>

 variable would be set and the value output to the screen. Bysome_variable

using , the Ruby code is evaluated but not output.<%

The method, when passed a string as in this example, renders a render partial

. A partial is a separate template file that we can include into other templates to

<h1>New purchase</h1>

<%= render 'form' %>

<%= link_to 'Back', purchases_path %>

<% some_variable = "foo" %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

14

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

repeat similar code. We'll take a closer look at these in chapter 3.
The method generates a link with the text of the first argument (link_to

) and with an attribute specified by the second argument (Back href

), which is simply . How this works ispurchases_path /purchases

explained a little later on when we look at how Rails handles routing.
This particular partial is at app/views/purchases/_form.html.erb, and the first

half of it looks like the following listing.

Listing 1.3 first half of app/views/purchases/_form.html.erb

This half is responsible for defining the form by using the form_for

helper. The method is passed one argument—an instance variableform_for

called —and with it generates a form. This variable@purchase @purchase

comes from the ’s action which is shown in thePurchasesController new

following listing.

Listing 1.4 The new action of PurchasesController

The first line in this action sets up a new variable by calling the @purchase

 method on the model, which initializes a new object of thisnew Purchase

model. By simply calling on the model, it does not create a new record in thenew

database. Instead, it only just initializes a new instance of the class.Purchase

<%= form_for(@purchase) do |f| %>
 <% if @purchase.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@purchase.errors.count, "error") %>
 prohibited this purchase from being saved:</h2>

 <% @purchase.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

def new
 @purchase = Purchase.new
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

15

Licensed to <alex@vinova.sg>

mailto:@purchase.errors.any?
mailto:pluralize(@purchase.errors.count
mailto:@purchase.errors.full_messages.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

The variable is then automatically passed through to the view by@purchase

Rails.
So far, all of this functionality is provided by Rails. You’ve coded nothing

yourself. With the generator, you get an awful lot for free.scaffold

Going back to the app/views/purchases/_form.html.erb partial, the block for the
 is defined between its and the at the end of the file.form_for do <% end %>

Inside this block, you check the object for any errors by using the @purchase

 method. These errors will come from the model if@purchase.errors.any?

the object did not pass the validation requirements set in the model. If any errors
exist, they’re rendered by the content inside this statement. Validation is aif

concept covered shortly.
The second half of this partial looks like the following listing.

Listing 1.5 second half of app/views/purchases/_form.html.erb

Here, the object from the block is used to define labels and fieldsf form_for

for your form. At the end of this partial, the method provides a dynamicsubmit

submit button.
Let’s fill in this form now and press the submit button. You should now see

something similar to Figure 1.4

<div class="field">
 <%= f.label :name %>

 <%= f.text_field :name %>
 </div>
 <div class="field">
 <%= f.label :cost %>

 <%= f.text_field :cost %>
 </div>
 <div class="actions">
 <%= f.submit %>
 </div>
<% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

16

Licensed to <alex@vinova.sg>

mailto:@purchase.errors.any?
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 1.4 Your first purchase

What you see here is the result of your posting: a successful creation of a
. Let’s see how it got there. This submit button posts the data from thePurchase

form to the action, which looks like the following listing.create

Listing 1.6 The create action of PurchasesController

Here, you use the you first saw used in the action. ButPurchase.new new

this time you pass it an argument of , which is actuallypurchase_params

another method, defined below. That method calls (short for params

) is a method that returns the parameters sent from your form in a parameters Hash

-like object. We'll talk more about why you need this little dance later, this is a
feature called "strong parameters." When you pass this params hash into ,new

Rails sets the to the values from the form.attributes12

def create
 @purchase = Purchase.new(purchase_params)

 respond_to do |format|
 if @purchase.save
 format.html {
 redirect_to @purchase,
 notice: 'Purchase was successfully created.'
 }
 format.json {
 render action: 'show', status: :created, location: @purchase
 }
 else
 format.html { render action: 'new' }
 format.json {
 render json: @purchase.errors, status: :unprocessable_entity
 }
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

17

Licensed to <alex@vinova.sg>www.allitebooks.com

mailto:@purchase.save
mailto:@purchase.errors
http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

Footnote 12mThe Rails word for fields.

Inside the is an statement that calls .respond_to if @purchase.save

This method the record, and if it’s valid, the method saves the record tovalidates
the database and returns .true

If the return value is , the action responds by redirecting to the new true

 object using the method, which takes either a path@purchase redirect_to

or an object that it turns into a path (as seen in this example). The redirect_to

method interprets what the object is and determines the path required@purchase

is because it’s an object of the model. This pathpurchase_path Purchase

takes you to the action for this controller. The option passed toshow :notice

the sets up a . A flash message is a message that canredirect_to flash message

be displayed on the next request. This is the green text at the top of Figure 1.4
You’ve seen what happens when the purchase is valid, but what happens when

it’s invalid? Well, it uses the method to show the action’s templaterender new

again. We should note here that this doesn’t call the action/method againnew 13

but only renders the template.

Footnote 13 m To do that, you call , but that wouldn’t persist theredirect_to new_purchase_path

state of the object to this new request without some seriously bad hackery. By rerendering the@purchase

template, you can display information about the object if the object is invalid.

You can make the creation of the object fail by adding a@purchase

validation. Let’s do that now.

You can add validations to your model to ensure that the data conforms to certain
rules or that data for a certain field must be present or that a number you enter must
be above a certain other number. You’re going to write your first code for this
application and implement both of these things now.

Open up your model and change the whole file to what’s shown inPurchase

the following listing.

1.2.7 Validations

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

18

Licensed to <alex@vinova.sg>

mailto:@purchase.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 1.7 app/models/purchase.rb

You use the method to define a validation that does what it saysvalidates

on the box: validates that the field is present. The other validation option
 validates that the attribute is a number and then with the :numericality cost

 option validates that it is greater than 0.:greater_than

Let’s test out these validations by going back to
http://localhost:3000/purchases, clicking New Purchase, and clicking Create
Purchase. You should see the errors shown in Figure 1.5

Figure 1.5 Errors on purchase

Great! Here, you’re told that name can’t be blank and that the value you entered
for cost isn’t a number. Let’s see what happens if you enter for the name field,foo

 for the cost fields, and press Create Purchase. You should get a different-100

error for the cost field now, as shown in Figure 1.6

class Purchase < ActiveRecord::Base
 validates :name, presence: true
 validates :cost, numericality: { greater_than: 0 }
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

19

Licensed to <alex@vinova.sg>

http://localhost:3000/purchases
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 1.6 Cost must be greater than 0

Good to see! Both of your validations are working now. When you change cost
to and press Create Purchase, it should be considered valid by the validations100

and take you to the action. Let’s look at what this particular action doesshow

now.

This action displays the content such as shown in Figure 1.7

Figure 1.7 A single purchase

The number at the end of the URL is the unique numerical ID for this purchase.
But what does it mean? Let’s look at the view for this action now, as shownshow

in the following listing.

1.2.8 Showing off

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

20

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 1.8 app/views/purchases/show.html.erb

On the first line is the method, which displays the set on the notice notice

 from the action. After that, field values are displayed in redirect_to create

 tags by simply calling them as methods on your object. This objectp @purchase

is defined in your ’s action, as shown in thePurchasesController show

following listing.

Listing 1.9 The show action of PurchasesController

Or is it? It turns out that it's not actually defined here. There's a
 defined:before_action

<p id="notice"><%= notice %></p>

<p>
 Name:
 <%= @purchase.name %>
</p>

<p>
 Cost:
 <%= @purchase.cost %>
</p>

<%= link_to 'Edit', edit_purchase_path(@purchase) %> |
<%= link_to 'Back', purchases_path %>

def show
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

21

Licensed to <alex@vinova.sg>

mailto:@purchase.name
mailto:@purchase.cost
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 1.10 PurchasesController

This code will get executed before every action given, hence the name '
'. The method of the class is used to find thebefore_action find Purchase

record with the ID of and instantiate a new objectparams[:id] Purchase

from it with as the number on the end of the URL.params[:id]

Going back to the view (Listing 1.8 app/views/purchases/show.html.erb) now,
and at the end of this file is , which generates a link using the firstlink_to

argument as the text for it and the second argument as the for that URL. Thehref

second argument for is a method itself: . Thislink_to edit_purchase_path

method is provided by a method call in config/routes.rb, which we now look at.

The config/routes.rb file of every Rails application is where the application routes
are defined in a succinct Ruby syntax. The methods used in this file define the
pathways from requests to controllers. If you look in your config/routes.rb while
ignoring the commented-out lines for now, you’ll see what’s shown in the
following listing.

Listing 1.11 config/routes.rb

class PurchasesController
 before_action :set_purchase, only: [:show, :edit, :update, :destroy]

 ...

 # Use callbacks to share common setup or constraints between actions.
 def set_purchase
 @purchase = Purchase.find(params[:id])
 end

 ...
end

1.2.9 Routing

ThingsIBought::Application.routes.draw do
 resources :purchases
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

22

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Inside the block for the method is the method. Collectionsdraw resources

of similar objects in Rails are referred to as . This method defines theresources
routes and routing helpers (such as the method) to youredit_purchase_path

purchases resources. Look at table 1.1 for a list of the helpers and their
corresponding routes.

In this table, can be substituted for the ID of a record. Each routing helper:id

has an alternative version that will give you the full URL to the resource. Use the
 extension rather than and you’ll get a URL such as_url _path

http://localhost:3000/purchases for .purchases_url

From this table, two of these routes will act differently depending on how
they’re requested. The first route, , takes you to the action/purchases index

of if you do a GET request. GET requests are thePurchasesController

standard type of requests for web browsers, and this is the first request you did to
this application. If you do a POST request to this route, it will go to the create

action of the controller. This is the case when you submit the form from the new

view.
Let’s go to http://localhost:3000/purchases/new now and look at the source of

the page. You should see the beginning tag for your form looking like the
following listing.

Table 1.1 Table 1.1 Routing helpers and their routesm

Helper Route

purchases_path /purchases

new_purchase_path /purchases/new

edit_purchase_path /purchases/:id/edit

purchase_path /purchases/:id

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

23

Licensed to <alex@vinova.sg>

http://localhost:3000/purchases
http://localhost:3000/purchases/new
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 1.12 The HTML source of app/views/purchases/new.html.erb

The two attributes to note here are the and attributes. The action method

 dictates the route to where this form goes, and the tells the formaction method

what kind of HTTP request to make.
How’d this tag get rendered in the first place? Well, as you saw before, the

app/views/purchases/new.html.erb template uses the form partial from
app/views/purchases/_form.html.erb, which contains this as the first line:

This one simple line generates that form tag. When we look at the actionedit

shortly, you’ll see that the output of this tag is different, and you’ll see why.
The other route that responds differently is the route,/purchases/{id}

which acts in one of three ways. You already saw the first way: it’s the show

action to which you’re redirected (a GET request) after you create a purchase. The
second of the three ways is when you update a record, which we look at now.

Let’s change the cost of the foo purchase now. Perhaps it only cost 10. To change
it, go back to http://localhost:3000/purchases and click the Edit link next to the foo
record. You should now see a page that looks similar to the page, shown innew

Figure 1.8

<form accept-charset="UTF-8"
 action="/purchases"
 class="new_purchase"
 id="new_purchase"
 method="post">

<%= form_for(@purchase) do |f| %>

1.2.10 Updating

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

24

Licensed to <alex@vinova.sg>

http://localhost:3000/purchases
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 1.8 Editing a purchase

This page looks similar because it re-uses the
app/views/purchases/_form.html.erb partial that was also used in the template for
the action. Such is the power of partials: you can use the same code for twonew

different requests to your application. The template for this action can be seen in
the following listing.

Listing 1.13 app/views/purchases/edit.html.erb

For this action, you’re working with a pre-existing object rather than a new
object, which you used in the action. This pre-existing object is found by the new

 action in , shown in the next listing.edit PurchasesController

Listing 1.14 The edit action of PurchasesController

<h1>Editing purchase</h1>

<%= render 'form' %>

<%= link_to 'Show', @purchase %> |
<%= link_to 'Back', purchases_path %>

def edit
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

25

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Oops, it's not here! The code to find the object here is identical to@purchase

what you saw earlier in the action: it's set in the .show before_action

Back in the view for a moment, at the bottom of it you can see two uses of
. The first creates a Show link, linking to the object, whichlink_to @purchase

is set up in the action of your controller. Clicking this link would take you toedit

 or /purchases/:id. Rails will figure out wherepurchase_path(@purchase)

the link needs to go according to the class of the object. Using this syntax, it will
attempt to call the method because the object has a class of purchase_path

 and will pass the object along to that call, generating the URL.Purchase 14

Footnote 14 m This syntax is exceptionally handy if you have an object and are not sure of its type but still
want to generate a link for it. For example, if you had a different kind of object called Order and it was used instead,
it would use rather than .order_path purchase_path

The second use of in this view generates a Back link, which uses thelink_to

routing helper . It can’t use an object here because it doesn’tpurchases_path

make sense to; calling is the easy way to go back to the indexpurchases_path

action.
Let’s try filling in this form now, for example, by changing the cost from 100 to

10 and pressing Update Purchase. You now see the page but with a differentshow

message, shown in Figure 1.9

Figure 1.9 Viewing an updated purchase

Pressing Update Purchase brought you back to the page. How did thatshow

happen? Press the back button on your browser and view the source of this page,
specifically the tag and the tags directly underneath, shown in the followingform

listing.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

26

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 1.15 The rendered HTML for app/views/purchases/edit.html.erb

This ’s points at , which is the route to the form action /purchases/2

 action in . You should also note two othershow PurchasesController

things. The attribute of this form is a , but there’s also the method post input

tag underneath.
The tag passes through the parameter with the value set to input _method

. Rails catches this parameter and turns the request from a POST into a"patch"

PATCH . This is the second (of three) ways the responds15 /purchases/{id}

according to the method. By making a PATCH request to this route, you’re taken
to the action in . Let’s take a look at this inupdate PurchasesController

the following listing.

Footnote 15mThe HTTP method is implemented by Rails by affixing a parameter on thePATCH _method

form with the value of , because the HTML specification dows not allow the method for formPATCH PATCH

elements.

 <form accept-charset="UTF-8"
 action="/purchases/2"
 class="edit_purchase"
 id="edit_purchase_2"
 method="post">
 <div style="margin:0;padding:0;display:inline">
 <input name="_method" type="hidden" value="patch" />
 <co id="ch01_613_1"/>
 </div>
...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

27

Licensed to <alex@vinova.sg>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

Listing 1.16 The update action of PurchasesController

Just as in the and actions, you fetch the object first by using the show edit

 method. The parameters from the form are sent through in the same fashionfind

as they were in the action, coming through as .create purchase_params

Rather than instantiating a new object by using the class method, you use new

 on the object. This does what it says:update_attributes @purchase

updates the attributes. What it doesn’t say, though, is that it validates the attributes
and, if the attributes are valid, saves the record and returns . If they aren’ttrue

valid, it returns .false

When returns , you’re redirected back to the update_attributes true

 action for this particular purchase by using .show redirect_to

If the call returns , you’re shown the update_attributes false edit

action’s template again, just as back in the action where you were showncreate

the template again. This works in the same fashion and displays errors if younew

enter something wrong. Let’s try editing a purchase and setting the name to blank
and then pressing Update Purchase. It should error exactly like the create

method did, as shown in Figure 1.10

def update
 respond_to do |format|
 if @purchase.update(purchase_params)

 format.html { redirect_to(@purchase,
 notice: 'Purchase was successfully updated.') }
 format.json { head :no_content }
 else
 format.html { render action: "edit" }
 format.json { render json: @purchase.errors,
 status: :unprocessable_entity }
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

28

Licensed to <alex@vinova.sg>

mailto:@purchase.update
mailto:@purchase.errors
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 1.10 Update fails!

As you can see by this example, the validations you defined in your
 model take effect for both the creation and updating of recordsPurchase

automatically.
Now what would happen if, rather than update a purchase, you wanted to delete

it? That’s built in to the scaffold too.

In Rails, delete is given a much more forceful name: . This is anotherdestroy

sensible name because to destroy a record is to put an end to the existence of.16

Once this record’s gone, it’s gone, baby, gone.

Footnote 16mMac OS X dictionary

You can destroy a record by going to http://localhost:3000/purchases and
clicking the Destroy link shown in Figure 1.11 and then clicking OK on the
confirmation box that pops up.

Figure 1.11 Destroy!

When that record’s destroyed, you’re taken back to the Listing Purchases page.

1.2.11 Deleting

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

29

Licensed to <alex@vinova.sg>

http://localhost:3000/purchases
http://www.manning-sandbox.com/forum.jspa?forumID=818

You’ll see that the record no longer exists. You should now only have one record,
as shown in Figure 1.12

Figure 1.12 Last record standing

How does all of this work? Let’s look at the template in the followingindex

listing to understand, specifically the part that’s used to list the purchases.

Listing 1.17 app/views/purchases/index.html.erb

In this template, is a collection of all the objects from the @purchases

 model, and is used to iterate over each, setting asPurchase each purchase

the variable used in this block.
The methods and are the same methods used inname cost

app/views/purchases/show.html.erb to display the values for the fields. After these,
you see the three uses of .link_to

The first passes in the object, which links to the link_to purchase show

action of by using a route such as PurchasesController

<% @purchases.each do |purchase| %>
 <tr>
 <td><%= purchase.name %></td>
 <td><%= purchase.cost %></td>
 <td><%= link_to 'Show', purchase %></td>
 <td><%= link_to 'Edit', edit_purchase_path(purchase) %></td>
 <td><%= link_to 'Destroy', purchase, method: :delete,
 data: { confirm: 'Are you sure?' } %></td>

 </tr>
<% end %>
</table>

<%= link_to 'New Purchase', new_purchase_path %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

30

Licensed to <alex@vinova.sg>

mailto:@purchases.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

, where is the ID for this object./purchases/{id} {id} purchase

The second links to the action using link_to edit

 and passes the object as the argument toedit_purchase_path purchase

this method. This routing helper determines the path is
./purchases/{id}/edit

The third links seemingly to the object exactly as thelink_to purchase

first, but it doesn’t go there. The option on the end of this route:method

specifies the method of , which is the third and final way the :delete

 route can be used. If you specify as the method/purchases/{id} :delete

of this , Rails interprets this request and takes you to the link_to destroy

action in the . This action is shown in the followingPurchasesController

listing.

Listing 1.18 The destroy action of PurchasesController

Just as in the , , and actions shown earlier, this actionshow edit update

finds the object by using and then destroys the@purchase Purchase.find

record by calling on it, which permanently deletes the record. Then itdestroy

uses to take you to the , which is the routeredirect_to purchases_url

helper defined to take you to http://localhost:3000/purchases. Note that this action
uses the method rather than , whichpurchases_url purchases_path

generate a full URL back to the purchases listing, such as
http://localhost:3000/purchases/1.

That wraps up our application run-through!

def destroy
 @purchase.destroy
 respond_to do |format|
 format.html { redirect_to(purchases_url) }
 format.json { head :no_content }
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

31

Licensed to <alex@vinova.sg>

mailto:@purchase.destroy
http://localhost:3000/purchases
http://localhost:3000/purchases/1
http://www.manning-sandbox.com/forum.jspa?forumID=818

In this chapter you learned what Rails is and how to get an application started with
it, the absolute bare, bare, essentials of a Rails application. But look how fastbare
you got going! It took only a few simple commands and an entire two lines of your
own code to get the bones of a Rails application going. From this basic skeleton,
you can keep adding on bits and pieces to develop your application, and all the
while you get things for free from Rails. You don’t have to code the logic of what
happens when Rails receives a request or specify what query to execute on your
database to insert a record—Rails does it for you.

You also saw that some big-name players—such as Groupon and GitHub—use
Ruby on Rails. This clearly answers the question Yes, it very muchIs Rails ready?
is. A wide range of companies have built successful websites on the Rails
framework, and a lot more will do so in the future.

Still wondering if Ruby on Rails is right for you? Ask around. You’ll hear a lot
of people singing its praises. The Ruby on Rails community is passionate not only
about Rails but also about community building. Events, conferences, user group
meetings, and even camps are held all around the world for Rails. Attend these and
discuss Ruby on Rails with the people who know about it. If you can’t attend these
events, you can explore the IRC channel on Freenode , the mailing list#rubyonrails

 on Google Groups, not to mention Stack Overflow and arubyonrails-talk
multitude of other areas on the internet where you can discuss with experienced
people what they think of Rails. Don’t let this book be the only source for your
knowledge. There’s a whole world out there, and no book could cover it all!

The best way to answer the question is to experience it forWhat is Rails?
yourself. This book and your own exploration can eventually make you a Ruby on
Rails expert.

When you added validations to your application earlier, you manually tested
that they were working. This may seem like a good idea for now, but when the
application grows beyond a couple of pages, it becomes cumbersome to manually
test them. Wouldn’t it be nice to have some automated way of testing your
applications? Something to ensure that all the individual parts always work?
Something to provide the peace of mind that you crave when you develop
anything? You want to be sure that it’s continuously working with the most
minimal effort possible, right?

Well, Ruby on Rails does that too. There are several testing frameworks for

1.3 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

32

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

bin/rails generate
bin/rails server
config/routes.rb
destroy, ActiveRecord::Base
errors, ActiveRecord::Base
find, ActiveRecord::Base
form_for
form_partial
form tag
link_to
Migrations
MVC
new, ActiveRecord::Base
notice
params
rails new command
redirect_to
redirect_to, :notice option
render, partial
REST
Routing, resources method
Routing helpers
save, ActiveRecord::Base
scaffold generator
update_attributes, ActiveRecord::Base
validates, :presence option
validates, :presence option

Ruby and Ruby on Rails, and in chapter 2 we look at the two major ones: Minitest
and RSpec.

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

33

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

2
Chapter 1 presented an extremely basic layout of a Rails application and an

example of the scaffold generator. One question remains, though: how do you1

make your Rails applications maintainable?

Footnote 1mWe won’t use the scaffold generator for the rest of the book because people tend to use it as a
crutch, and it generates extraneous code. There's a thread on the rubyonrails-core mailing list where people have
discussed the scaffold generator's downsides:
https://groups.google.com/forum/?fromgroups#!topic/rubyonrails-core/lkEqGjY_vcU

The answer is that you write automated tests for the application as you develop
it, and you write these all the time.

By writing automated tests for your application, you can quickly ensure that
your application is working as intended. If you didn’t write tests, your alternative
would be to check the entire application manually, which is time consuming and
error prone. Automated testing saves you a ton of time in the long run and leads to
fewer bugs. Humans make mistakes; programs (if coded correctly) do not. We’re

going to be doing it right from step one.2

Footnote 2mUnlike certain other books.

In the Ruby world a huge emphasis is placed on testing, specifically on
 (TDD) and (BDD). Thistest-driven development behavior-driven development

chapter covers two testing tools -- Minitest and RSpec -- in a basic fashion so you
can quickly learn their format.

By learning good testing techniques now, you’ve got a solid way to make sure
nothing is broken when you start to write your first real Rails application. If you
didn’t write tests, there would be no automatic way of telling what could go wrong
in your code.

A cryptic yet true answer to the question is “because you areWhy should I test?

Testing saves your bacon

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

34

Licensed to <alex@vinova.sg>

https://groups.google.com/forum/?fromgroups#!topic/rubyonrails-core/lkEqGjY_vcU
http://www.manning-sandbox.com/forum.jspa?forumID=818

human.” Humans—the large majority of this book’s audience—make mistakes. It’s
one of our favorite ways to learn. Because humans make mistakes, having a tool to
inform them when they make one is helpful, isn’t it? Automated testing provides a
quick safety net to inform developers when they make mistakes. By they, of
course, we mean you. We want you to make as few mistakes as possible. We want
you to save your bacon!

TDD and BDD also give you time to think through your decisions before you
write any code. By first writing the test for the implementation, you are (or, at
least, you should be) thinking through the implementation: the code you’ll write

 the test and how you’ll make the test passes. If you find the test difficult toafter
write, then perhaps the implementation could be improved. Unfortunately, there’s
no clear way to quantify the difficulty of writing a test and working through it
other than to consult with other people who are familiar with the process.

Once the test is implemented, you should go about writing some code that your
test can pass. If you find yourself working backwards—rewriting your test to fit a
buggy implementation—it’s generally best to rethink the test and scrap the
implementation. Test first, code later.

TDD is a methodology consisting of writing a failing test case first (usually
using a testing tool such as), then writing the code to make the test pass,Minitest
and finally refactoring the code. This process is commonly called

. The reasons for developing code this way are twofold. First, itred-green-refactor
makes you consider how the code should be running before it is used by anybody.
Second, it gives you an automated test you can run as often as you like to ensure
your code is still working as you intended. We'll be using the Minitest tool for
TDD.

BDD is a methodology based on TDD. You write an automated test to check
the interaction between the different parts of the codebase rather than testing that
each part works independently.

Two tools used for BDD when building Rails applications are and RSpec

, with this book heavily relying on RSpec and foregoing Cucumber .Cucumber 3

Footnote 3 Cucumber was previously used in earlier editions of this book, but the community has drifted awaym
from using it, as there are other tools (like Capybara, mentioned later) that provide a very similar way to test, but in
a much neater syntax.

Let’s begin by looking at TDD and Minitest.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

35

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Automated testing is much, much easier than manual testing. Have you ever gone
through a website and manually filled in a form with specific values to make sure it
conforms to your expectations? Wouldn’t it be faster and easier to have the
computer do this work? Yes, it would, and that’s the beauty of automated testing:
you won’t spend your time manually testing your code because you’ll have written
test code to do that for you.

On the off chance you break something, the tests are there to tell you the what,
when, how, and why of the breakage. Although tests can never be 100%
guaranteed, your chances of getting this information without first having written
tests are 0%. Nothing is worse than finding out something is broken through an
early-morning phone call from an angry customer. Tests work toward preventing
such scenarios by giving you and your client peace of mind. If the tests aren’t
broken, chances are high (though not guaranteed) that the implementation isn’t
either.

You’ll likely at some point face a situation in which something in your
application breaks when a user attempts to perform an action you didn’t consider in
your tests. With a base of tests, you can easily duplicate the scenario in which the
user encountered the breakage, generate your own failed test, and use this
information to fix the bug. This commonly used practice is called regression

.testing
It’s valuable to have a solid base of tests in the application so you can spend

time developing new features rather than fixing the old ones you didn’t doproperly
quite right. An application without tests is most likely broken in one way or
another.

2.1 Test-driven development basics

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

36

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The first testing library for Ruby was Test::Unit, which was written by Nathaniel
Talbott back in 2000 and is now part of the Ruby core library. The documentation
for this library gives a fantastic overview of its purpose, as summarized by the man
himself:

The general idea behind unit testing is that you write a that makestest method
certain assertions about your code, working against a . A bunch of these test fixture

 are bundled up into a and can be run any time the developertest methods test suite
wants. The results of a run are gathered in a and displayed to the usertest result
through some UI.

-- —Nathaniel Talbott

The UI Talbott references could be a terminal, a web page, or even a light.4

Footnote 4mSuch as the one GitHub has made: http://github.com/blog/653-our-new-build-status-indicator

In Rails 4, Test::Unit has been superseded by Minitest, which is a library of a
similar style, but a more modern heritage. Minitest is part of the Ruby standard
library.

A common practice you’ll hopefully by now have experienced in the Ruby
world is to let the libraries do a lot of the hard work for you. Sure, you writecould
a file yourself that loads one of your other files and runs a method and makes sure
it works, but why do that when Minitest already provides that functionality for
such little cost? Never re-invent the wheel when somebody’s done it for you.

Now you’re going to write a test, and you’ll write the code for it later. Welcome
to TDD.

To try out Minitest, first create a new directory called example and in that
directory make a file called example_test.rb. It’s good practice to suffix your
filenames with so it’s obvious from the filename that it’s a test file. In this_test

file, you’re going to define the most basic test possible, as shown in the following
listing.

2.1.1 Writing your first test

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

37

Licensed to <alex@vinova.sg>www.allitebooks.com

http://github.com/blog/653-our-new-build-status-indicator
http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

Listing 2.1 example/example_test.rb

To make this a Minitest test, you begin by requiring ,minitest/autorun

which is part of Ruby’s standard library. This provides the Minitest::Test

class inherited from on the next line. Inheriting from this class provides the
functionality to run any method defined in this class whose name begins with

.test

To run this file, you run in the terminal. Whenruby example_test.rb

this command completes, you see some output, the most relevant being the last
three lines:

The first line is a singular period. This is Minitest’s way of indicating that it ran
a test and the test passed. If the test had failed, it would show up as an ; if it hadF

errored, an . The second and third lines provide statistics on what happened,E

specifically that there was one test and one assertion, and that nothing failed, there
were no errors, and nothing was skipped. Great success!

The method in your test makes an assertion that the argument passedassert

to it evaluates to . This test passes given anything that’s not or .true nil false

When this method fails, it fails the test and raises an exception. Go ahead, try
putting there instead of . It still works:1 true

require 'minitest/autorun'

class ExampleTest < Minitest::Test
 def test_truth
 assert true
 end
end

.

Finished tests in 0.000618s, 1618.1230 tests/s, 1618.1230 assertions/s.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

38

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In the following listing, you remove the from the beginning of yourtest_

method and define it as simply a method:truth

Listing 2.2 example/example_test.rb, alternate truth test

Minitest tells you there were no tests specified:

See no tests! Remember to always prefix Minitest methods with !test

Let’s make this a little more complex by creating a bacon_test.rb file and writing
the test shown in the following listing.

Listing 2.3 example/bacon_test.rb

Run options:

Running tests:

.

Finished tests in 0.001071s, 933.7068 tests/s, 933.7068 assertions/s.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

def truth
 assert true
end

0 tests, 0 assertions, 0 failures, 0 errors, 0 skips

2.1.2 Saving bacon

require 'minitest/autorun'

class BaconTest < Minitest::Test
 def test_saved
 assert Bacon.saved?
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

39

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Of course, you want to ensure that your bacon is always saved, and this is how5

you do it. If you now run the command to run this file, ,ruby bacon_test.rb

you get an error:

Footnote 5mBoth the metaphorical and the crispy kinds.

Your test is looking for a constant called and cannot find it because youBacon

haven’t yet defined the constant. For this test, the constant you want to define is a
 class. You can define this new class before or after the test. Note that inBacon

Ruby you usually must define constants and variables before you use them. In
Minitest tests, the code is only run when it finishes evaluating it, which means you
can define the class after the test. In the next listing, you follow the moreBacon

conventional method of defining the class above the test.

Listing 2.4 example/bacon_test.rb, now with Bacon class

Upon rerunning the test, you get a different error:

Progress! It recognizes there’s now a class, but there’s no Bacon saved?

method for this class, so you must define one, as in the following listing.

NameError: uninitialized constant BaconTest::Bacon

require 'minitest/autorun'

class Bacon
end

class BaconTest < Minitest::Test
 def test_saved
 assert Bacon.saved?
 end
end

NoMethodError: undefined method `saved?' for Bacon:Class

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

40

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 2.5 Bacon class inside example/bacon_test.rb

One more run of and you can see that the test is nowruby bacon_test.rb

passing:

Your bacon is indeed saved! Now any time that you want to check if it’s saved,
you can run this file. If somebody else comes along and changes that valuetrue

to a , then the test will fail:false

Minitest reports “Failed assertion, no message given” when an assertion fails.
You should probably make that error message clearer! To do so, you can specify
an additional argument to the method in your test, like this:assert

class Bacon
 def self.saved?
 true
 end
end

.

Finished tests in 0.000596s, 1677.8523 tests/s, 1677.8523 assertions/s.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

F

Finished tests in 0.000757s, 1321.0040 tests/s, 1321.0040 assertions/s.

 1) Failure:
test_saved(BaconTest) [test.rb:11]:
Failed assertion, no message given.

assert Bacon.saved?, "Our bacon was not saved :("

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

41

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Now when you run the test, you get a clearer error message:

And that, my friend, is the basics of TDD using Minitest. While we don’t use
this method in the book, it’s handy to know about because it establishes the basis
for TDD in Ruby in case you wish to use it in the future. Minitest is also the
default testing framework for Rails, so you may see it around in your travels. From
this point on, we focus on just pure RSpec which you'll be using to develop your
next Rails application.

BDD is similar to TDD, but the tests for BDD are written in an
easier-to-understand language so that developers and clients alike can clearly
understand what is being tested. The tool that you'll be using for all BDD examples
in this book is RSpec.

RSpec tests are written in a Ruby domain-specific language (DSL), like this:

The benefits of writing tests like this are that clients can understand precisely

what the test is testing and then use these steps in acceptance testing; a developer6

can read what the feature should do and then implement it; and finally, the test can
be run as an automated test. With tests written in DSL, you have the three
important elements of your business (the clients, the developers, and the code) all
operating in the same language.

Footnote 6mA process whereby people follow a set of instructions to ensure a feature is performing as
intended.

RSpec is an extension of the methods already provided by Minitest. You can
even use Minitest methods inside of RSpec tests if you wish. But we’re going to

 1) Failure:
test_saved(BaconTest) [bacon_test.rb:11]:
Our bacon was not saved :(

2.2 Behavior-driven development basics

describe Bacon do
 it "is edible" do
 expect(Bacon.edible?).to be_true
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

42

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

use the simpler, easier-to-understand syntax that RSpec provides.

RSpec is a BDD tool written by Steven R. Baker and now maintained by Myron
Marston and Andy Lindeman as a cleaner alternative to Minitest. With RSpec, you
write code known as that contain , which are synonymous to the specs examples

 you know from Minitest. In this example, you’re going to define the tests Bacon

constant and then define the method on it.edible?

Let’s jump right in and install the gem by running rspec gem install

. You should see something like the following output:rspec

You can see that the final line says the rspec gem is installed, with the version
number specified after the name.

When the gem is installed, create a new directory for your tests called bacon
anywhere you like, and inside that, create another directory called spec. If you’re
running a UNIX-based operating system such as Linux or Mac OS X, you can run
the command to create these two directories. Thismkdir -p bacon/spec

command will generate a bacon directory if it doesn’t already exist, and then
generate in that directory a spec directory.

Inside the spec directory, create a file called bacon_spec.rb. This is the file you
use to test your currently nonexistent class. Put the code from theBacon

following listing in spec/bacon_spec.rb.

2.2.1 Introducing RSpec

Successfully installed rspec-core-2.14.5
Successfully installed diff-lcs-1.2.4
Successfully installed rspec-expectations-2.14.2
Successfully installed rspec-mocks-2.14.3
Successfully installed rspec-2.14.1

2.2.2 Writing your first spec

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

43

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 2.6 bacon/spec/bacon_spec.rb

You the (undefined) class and write an example for it,describe Bacon

declaring that is edible. The block contains tests (examples)Bacon describe

that describe the behavior of bacon. In this example, whenever you call edible?

on , the result should be . and serve a similar purpose to Bacon true expect to

, which is to assert that the object passed to matches theassert expect

arguments passed to . If the outcome is not what you say it should be, thento

RSpec raises an error and goes no further with that spec.
To run the spec, you run in a terminal in the root of your baconrspec spec

directory. You specify the spec directory as the first argument of this command so
RSpec will run all the tests within that directory. This command can also take files
as its arguments if you want to run tests only from those files.

When you run this spec, you get an uninitialized constant

 error, because you haven’t yet defined your constant.Object::Bacon Bacon

To define it, create another directory inside your Bacon project folder called lib,
and inside this directory, create a file called bacon.rb. This is the file where you
define the constant, a class, as in the following listing.Bacon

Listing 2.7 bacon/lib/bacon.rb

You can now require this file in spec/bacon_spec.rb by placing the following
line at the top of the file:

describe Bacon do
 it "is edible" do
 expect(Bacon.edible?).to be_true
 end
end

class Bacon
end

require 'bacon'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

44

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

When you run your spec again, because you told it to load bacon, RSpec has
added the lib directory on the same level as the spec directory to Ruby’s load path,
and so it will find the lib/bacon.rb for your . By requiring therequire

lib/bacon.rb file, you ensure the constant is defined. The next time you runBacon

it, you get an undefined method for your new constant:

This means you need to define the method on your class.edible? Bacon

Re-open lib/bacon.rb and add this method definition to the class:

Now the entire file looks like the following listing.

Listing 2.8 bacon/lib/bacon.rb

By defining the method as , you define it for the class. If youself.edible?

didn’t prefix the method with , it would define the method for an instanceself.

of the class rather than for the class itself. Running now outputs arspec spec

period, which indicates the test has passed. That’s the first test—done.
For the next test, you want to create many instances of the class andBacon

1) Bacon is edible
Failure/Error: expect(Bacon.edible?).to be_true
NoMethodError:
 undefined method `edible' for Bacon:Class
./spec/bacon_spec.rb:5:in `block (2 levels) in <top (required)>'

def self.edible?
 true
end

class Bacon
 def self.edible?
 true
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

45

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

have the method defined on them. To do this, open lib/bacon.rb andedible?

change the class method to an instance method by removing the edible? self.

from before the method, as in the next listing.

Listing 2.9 bacon/lib/bacon.rb

When you run again, you get the familiar error:rspec spec

Oops! You broke a test! You should be changing the spec to suit your new
ideas before changing the code! Let’s reverse the changes made in lib/bacon.rb, as
in the following listing.

Listing 2.10 bacon/lib/bacon.rb

When you run , it passes. Now let’s change the spec first, as inrspec spec

the next listing.

class Bacon
 def edible?
 true
 end
end

1) Bacon is edible
 Failure/Error: expect(Bacon.edible?).to be_true
 NoMethodError:
 undefined method `edible?' for Bacon:Class
 # ./spec/bacon_spec.rb:5:in `block (2 levels) in <top (required)>'

class Bacon
 def self.edible?
 true
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

46

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 2.11 bacon/spec/bacon_spec.rb

In this code, you instantiate a new object of the class rather than using the
 class. When you run , it breaks once again:Bacon rspec spec

If you remove the from the method, your test will now pass:self. edible?

Now you can go about breaking your test once more by adding additional
functionality: an method, which will make your bacon inedible. Thisexpired!

method sets an instance variable on the object called to ,Bacon @expired true

and you use it in your method to check the bacon’s status.edible?

First you must test that this method is going to actually do whatexpired!

you think it should do. Create another example in spec/bacon_spec.rb so that the
whole file now looks like the following listing.

describe Bacon do
 it "is edible" do
 expect(Bacon.new.edible?).to be_true
 end
end

NoMethodError:
 undefined method `edible?' for #<Bacon:0x101deff38>

.

Finished in 0.00167 seconds
1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

47

Licensed to <alex@vinova.sg>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

Listing 2.12 bacon/spec/bacon_spec.rb

If you run again, your first spec still passes, but your second one failsrspec

because you have yet to define your method. Let’s do that now inexpired!

lib/bacon.rb, as shown in the following listing.

Listing 2.13 bacon/lib/bacon.rb

By running again, you get an error:rspec spec undefined method

This method is called by the following line in the previous example:

require 'bacon'

describe Bacon do
 it "is edible" do
 expect(Bacon.new.edible?).to be_true
 end

 it "expired!" do
 bacon = Bacon.new
 bacon.expired!
 expect(bacon).to_not be_edible
 end
end

class Bacon
 def edible?
 true
 end

 def expired!
 self.expired = true
 end
end

NoMethodError:
 undefined method `expired=' for #<Bacon:0x101de6578>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

48

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

To define this method, you can use the method provided byattr_accessor

Ruby, as shown in Listing 2.16; the prefix of the method means attribute. Ifattr

you pass a (or collection of symbols) to this method, it defines methodsSymbol

for setting () and retrieving the attribute values, referred toexpired= expired

as a and a respectively. It also defines an instance variable called setter getter
 on every object of this class to store the value that was specified by the@expired

 method calls.expired=

WARNING self. prefix
In Ruby you can call methods without the prefix. You specifyself.

the prefix because otherwise the interpreter will think that you’re
defining a . The rule for setter methods is that you shouldlocal variable
always use the prefix.

Listing 2.14 attr_accessor for Bacon in bacon/lib/bacon.rb

With this in place, if you run again, your example fails on therspec spec

line following your previous failure:

Even though this sets the attribute on the object, you’ve stillexpired Bacon

hardcoded true in your method. Now change the method to use theedible?

attribute method, as in the following listing.

self.expired = true

class Bacon
 attr_accessor :expired
 ...
end

1) Bacon expired!
Failure/Error: expect(bacon).to_not be_edible
 expected edible? to return false, got true
./spec/bacon_spec.rb:11:in `block (2 levels) in <top (required)>'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

49

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 2.15 Bacon#edible? method

When you run again, both your specs will pass:rspec spec

Let’s go back in to lib/bacon.rb and remove the from the self. expired!

method:

If you run again, you’ll see your second spec is now broken:rspec spec

Tests save you from making mistakes such as this. If you write the test first and
then write the code to make the test pass, you have a solid base and can refactor the
code to be clearer or smaller and finally ensure that it’s still working with the test
you wrote in the first place. If the test still passes, then you’re probably doing it
right.

If you change this method back now:

def edible?
 !expired
end

..

Finished in 0.00191 seconds
2 examples, 0 failures

def expired!
 expired = true
end

1) Bacon expired!
Failure/Error: expect(bacon).to_not be_edible
 expected edible? to return false, got true
./spec/bacon_spec.rb:11:in `block (2 levels) in <top (required)>'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

50

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

and then run your specs using , you’ll see that they once again pass:rspec

Everything’s normal and working once again, which is great!
That ends our little foray into RSpec for now. You’ll use it again later when

you develop your application. If you’d like to know more about RSpec, The RSpec
 (DavidBook: Behavior-Driven Development with RSpec, Cucumber, and Friends

Chelimsky et al., Pragmatic Bookshelf, 2010) is recommended reading.

This chapter demonstrated how to apply TDD and BDD principles to test some
rudimentary code. You can (and should!) apply these principles to all code you
write, because testing the code ensures it’s maintainable from now into the future.
You don’t have to use the gems shown in this chapter to test your Rails
application; they are just preferred by a large portion of the community.

You’ll apply what you learned in this chapter to building a Rails application
from scratch in upcoming chapters. You’ll use RSpec and another tool called
Capybara to build out acceptance tests that will describe the behavior of your
application. Then you will go about implementing the behaviour of the applicaton
to make these tests pass, and you'll know that you're doing it right when the tests
are all green.

Let’s get into it!

def expired!
 self.expired = true
end

..

2 examples, 0 failures

2.3 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

51

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

3
This chapter gets you started on building a Ruby on Rails application from scratch
using the techniques covered in the previous chapter plus a couple of new ones.
With the techniques you learned in chapter 2, you can write features describing the
behavior of the specific actions in your application and then implement the code
you need to get the feature passing.

For the remainder of the book, this application is the main focus. We guide you
through it in an Agile-like fashion. Agile focuses largely on iterative development,
developing one feature at a time from start to finish, then refining the feature until

it's viewed as complete before moving on to the next one.1

Footnote 1mMore information about Agile can be found on Wikipedia:
http://en.wikipedia.org/wiki/Agile_software_development.

For this example application, your imaginary client, who has limitless time and
budget (unlike those in the real world), wants you to develop a ticket tracking
application to track the company's numerous projects. You'll develop this
application using the methodologies outlined in chapter 2: you'll work iteratively,
delivering small working pieces of the software to the client and then gathering the
client's feedback to improve the application as necessary. If no improvement is
needed, then you can move on to the next prioritized chunk of work.

The first couple of features you develop for this application will be laying down
the foundation for the application, enabling people to create projects and tickets.
Later on, in Chapters 6 and 7, you implement authentication and authorization so
that people can sign in to the application and only have access to certain projects.
Other chapters cover things like adding comments to tickets and notifying users by
email and file uploading.

BDD is used all the way through the development process. It provides the client

Developing a real Rails application

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

52

Licensed to <alex@vinova.sg>

http://en.wikipedia.org/wiki/Agile_software_development
http://www.manning-sandbox.com/forum.jspa?forumID=818

with a stable application, and when (not if) a bug crops up, you have a nice test
base you can use to determine what is broken. Then you can fix the bug so it
doesn't happen again, a process called (mentioned in chapter 2).regression testing

As you work with your client to build the features of the application using this
behaviour-driven development technique, the client may ask why all of this
prework is necessary. This can be a tricky question to answer. Explain that writing
the tests before the code and then implementing the code to make the tests pass
creates a safety net to ensure that the code is always working. Note: Tests will
make your code more maintainable; however it will not make your code bug-proof.

The tests also give you a clearer picture of what your client wants. Byreally
having it all written down in code, you have a solid reference to point to if clients
say they suggested something different. Story-driven development is simply BDD
with emphasis on things a user can actually do with the system.

By using story-driven development, you know what clients want, clients know
you know what they want, you have something you can run automated tests with to
ensure that all the pieces are working, and finally if something break, youdoes
have the test suite in place to catch it. It's a win-win-win situation.

Some of the concepts covered in this chapter were explained in chapter 1.
However, rather than using scaffolding, as you did previously, you write this
application from the ground up using the BDD (behavior-driven development)
process and other generators provided by Rails.

The generator is great for prototyping, but it's less than ideal forscaffold

delivering simple, well-tested code that works precisely the way you want it to
work. The code provided by the scaffold generator often may differ from the code
you want. In this case, you can turn to Rails for lightweight alternatives to the
scaffold code options, and you'll likely end up with cleaner, better code.

First, you need to set up your application!

Chapter 1 explained how to quickly start a Rails application. This chapter explains
a couple of additional processes that improve the flow of your application
development. One process uses BDD to create the features of the application; the
other process uses version control. Both will make your life easier.

3.1 First steps

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

53

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Your client may have a good idea of the application he or she wants you to
develop. How can you transform the idea in your client's brain into beautifully
formed code? First, you sit down with your client and talk through the parts of the
application. In the programming business, we call these parts , and we'lluser stories
use RSpec and Capybara to develop these stories.

Start with the most basic story and ask your client how he or she wants it to
behave. Then sketch out a basic flow of how the feature would work by building an
acceptance test using RSpec and Capybara. If this feature was a login form, the test
for it would look something like this:

The form of this test is simple enough that even people who don't understand
Ruby should be able to understand the flow of it.

With the function and form laid out, you have a pretty good idea of what the
client wants.

You may find it helpful to put these stories into a system such as Pivotal
Tracker (https://pivotaltracker.com) so you can keep track of them. Pivotal Tracker
allows you to assign points of difficulty to a story and then, over a period of weeks,
estimate which stories can be accomplished in the next iteration on the basis of
how many were completed in previous weeks. This tool is exceptionally handy to
use when working with clients because the client can enter stories and then follow
the workflow process. In this book, we don't use Pivotal Tracker because we aren't
working with a real client, but this method is highly recommended.

To start building the application you'll be developing throughout this book, run
the good old command, preferably outside the directory of the previousrails

application. Call this app , the Australian slang for a person who validatesticketee

3.1.1 The application story

describe "log in" do
 it "as a user" do
 visit "/login"
 fill_in "Email", with: "user@ticketee.com"
 fill_in "Password", with: "password"
 click_button "Login"
 expect(page).to have_content("You have been
 successfully logged in.")
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

54

Licensed to <alex@vinova.sg>

mailto:user@ticketee.com
https://pivotaltracker.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

tickets on trains in an attempt to catch fare evaders. It also has to do with this

project being a ticket tracking application, and a Rails application, at that . To2

generate this application, run this command:

Footnote 2mHey, at least thought it was funny!we

TIP Help!
If you want to see what else you can do with this commandnew

(hint: there's a lot!), you can use the option:--help

The option shows you the options you can pass to the --help

 command to modify the output of your application.new

Presto, it's done! From this bare-bones application, you'll build an application
that:

Tracks tickets (of course) and groups them into projects
Provides a way to restrict users to certain projects
Allows users to upload files to tickets
Lets users tag tickets so they're easy to find
Provides an API on which users can base development of their own applications

You can't do all of this with command as simple as rails new

, but you can do it step by step and test it along the way[application_name]

so you develop a stable and worthwhile application.
Throughout the development of the application, we advise you to use a version

control system. The next section covers that topic using Git. You're welcome to use
a different version control system, but this book uses Git exclusively.

$ rails new ticketee

$ rails new --help

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

55

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

It is wise during development to use version control software to provide
checkpoints in your code. When the code is working, you can make a commit, and
if anything goes wrong later in development, you can revert to the commit.
Additionally, you can create branches for experimental features and work on those
independently of the main code base without damaging working code.

This book doesn't go into detail on how to use a version control system, but it
does recommend using Git. Git is a distributed version control system that is easy
to use and extremely powerful. If you wish to learn about Git, we recommend

reading , a free online book by Scott Chacon.Pro Git 3

Footnote 3mhttp://progit.org/book/.

Git is used by most developers in the Rails community and by tools such as
Bundler, discussed shortly. Learning Git along with Rails is advantageous when
you come across a gem or plugin that you have to install using Git. Because most
of the Rails community uses Git, you can find a lot of information about how to
use it with Rails (even in this book!) should you ever get stuck.

If you do not have Git already installed, GitHub's help site offers installation

guides for Mac, Linux, and Windows. The precompiled installer should work4 5 6

well for Macs, and the package distributed versions (APT, eMerge, etc.) work well
for Linux machines. For Windows, the application does just fine.msysGit

Footnote 4mhttp://help.github.com/mac-set-up-git/. Note this lists four separate ways, not four separate steps,
to install Git.

Footnote 5mhttp://help.github.com/linux-set-up-git/.

Footnote 6mhttp://help.github.com/windows-set-up-git/.

For an online place to put your Git repository, we recommend GitHub, which7

offers free accounts. If you set up an account now, you can upload your code to
GitHub as you progress, ensuring that you don't lose it if anything were to happen
to you computer. To get started with GitHub, you first need to generate a secure
shell (SSH) key, which is used to authenticate you with GitHub when you do a git

push to GitHub's servers. Once generate the key, copy the public key's content8

(usually found at ~/.ssh/id_rsa.pub) into the SSH Public Key field on the Signup
page or, if you've already signed up, click the Account Settings link (Figure 3.1) in
the menu at the top, select SSH Public Keys, and then click Add Another Public
Key to enter it there (Figure 3.2).

3.2 Version control

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

56

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Footnote 7mhttp://github.com.

Footnote 8mA guide for this process can be found at http://help.github.com/linux-key-setup/.

Figure 3.1 Click account settings

Figure 3.2 Add an SSH key

Now that you're set up with GitHub, click the New Repository button on the
dashboard to begin creating a new repository (Figure 3.3).

Figure 3.3 Create a new repository

On this page, enter the Project Name as and click the Create Repositoryticketee
button to create the repository on GitHub. Now you are on your project's page.
Follow the instructions, especially concerning the configuration of your identity. In
Listing 3.1, replace with your real name and "Your Name"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

57

Licensed to <alex@vinova.sg>www.allitebooks.com

http://help.github.com/linux-key-setup/
http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

 with your email address. The email address you provideyou@example.com

should be the same as the one you used to sign up to GitHub. The commandsgit

should be typed into your terminal or command prompt.

Listing 3.1 Configuring your identity in GitHub

You already have a ticketee directory, and you're probably inside it. If not, you
should be. To make this directory a git repository, run this easy command:

Your ticketee directory now contains a .git directory, which is your git
repository. It's all kept in one neat little package

To add all the files for your application to this repository's , run:staging area

The staging area for the repository is the location where all the changes for the
next commit are kept. A commit can be considered as a checkpoint of your code. If
you make a change, you must stage that change before you can create a commit for
it. To create a commit with a message, run:

This command generates quite a bit of output, but the most important lines are
the first two:

$ git config --global user.name "Your Name"
$ git config --global user.email you@example.com

$ git init

$ git add .

$ git commit -m "Generate the Rails 4 application"

Created initial commit cdae568: Generate the Rails 4 application

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

58

Licensed to <alex@vinova.sg>

mailto:you@example.com
mailto:you@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

The is the short commit ID, a unique identifier for the commit, so itcdae568

changes with each commit you make. The number of files and insertions may also
be different. In Git, commits are tracked against , and the default branchbranches
for a git repository is the master branch, which you just committed to.

The second line lists the number of files changed, insertions (additional line
count), and deletions. If you modify a line, it's counted as both an insertion and a
deletion because, according to Git, you've removed the line and replaced it with the
modified version.

To view a list of commits for the current branch, type . You shouldgit log

see an output similar to the following listing.

Listing 3.2 Viewing the commit log

The hash after the word is the ; it's the longer versioncommit long commit ID

of the previously sighted short commit ID. A commit can be referenced by either
the long or the short commit ID in Git, providing no two commits begin with the

same short ID. With that commit in your repository, you have something to push9

to GitHub, which you can do by running:

Footnote 9mThe chances of this happening are 1 in 268,435,456.

The first command tells Git that you have a remote server called fororigin

this repository. To access it, you use the git@github.com:[your github

 path, which connects to the repository using SSH.username]/ticketee.git

35 files changed, 9280 insertions(+), 0 deletions(-)

commit cdae568599251137d1ee014c84c781917b2179e1
Author: Your Name <you@example.com>
Date: [date stamp]

 Generate the Rails 4 application

$ git remote add origin git@github.com:yourname/ticketee.git
$ git push origin master -u

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

59

Licensed to <alex@vinova.sg>

mailto:you@example.com
mailto:git@github.com:yourname/ticketee.git
mailto:git@github.com:
http://www.manning-sandbox.com/forum.jspa?forumID=818

The next command pushes the named branch to that remote server, and the -u

option tells Git to always pull from this remote server for this branch unless told
differently. The output from this command is similar to the following listing.

Listing 3.3 git push output

The second to last line in this output indicates that your push to GitHub
succeeded because it shows that a new branch called was created onmaster

GitHub.
As we go through the book, we will also just like you. You cangit push

compare your code to ours, by checking out our repository on GitHub:
https://github.com/steveklabnik/ticketee

To roll back the code to a given point in time, check out :git log

Counting objects: 73, done.
Compressing objects: 100% (58/58), done.
Writing objects: 100% (73/73), 86.50 KiB, done.
Total 73 (delta 2), reused 0 (delta 0)
To git@github.com:rails3book/ticketee.git
* [new branch] master -> master
Branch master set up to track remote branch master from origin.

commit e407ef5193de50b09f987f2cf4de0afd2be644b3
Author: Steve Klabnik <steve@steveklabnik.com>
Date: Mon Sep 9 19:30:50 2013 -0700

 Protect state_id from users who do
 not have permission to change it

commit d3e25028fbaeae6b79a68c9c08224c1692663f31
Author: Steve Klabnik <steve@steveklabnik.com>
Date: Mon Sep 9 18:51:37 2013 -0700

 Only users with the 'change states'
 permission can change states

commit 23729a46e6031ca2fabaf3c58b52c9bcbd9ccc78
Author: Steve Klabnik <steve@steveklabnik.com>
Date: Mon Sep 9 18:40:50 2013 -0700

 Admins can now set a default state for tickets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

60

Licensed to <alex@vinova.sg>

mailto:git@github.com:rails3book/ticketee.git
https://github.com/steveklabnik/ticketee
mailto:steve@steveklabnik.com
mailto:steve@steveklabnik.com
mailto:steve@steveklabnik.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Each one of these lines represents a commit, and the commits line up with when
we tell you to commit in the book. You can also check out the commit list on
GitHub, if you find that easier: https://github.com/steveklabnik/ticketee/commits

Once you've found the commit with the right message, make note of the big
long series of numbers and letters next to it: that's the commit's hash. Use this hash
with to roll the code back in time:git checkout

You only need to know enough of the hash for it to be unique: six characters is
usually enough. When you're done poking around, go forward in time to the most
recent commit with again:git checkout

This is a tiny, tiny taste of the power of git. Time travel at will! You just have
to learn the commands.

Next, you must set up your application to use RSpec.

Even though Rails promotes the line passionately,convention over configuration
there's still some parts of the application that will need configuration. It's
impossible to avoid configuration. The main parts are gem dependencyall
configuration, database settings and styling. Let's look at these parts now.

The Gemfile is used for tracking which gems are used in your application. The
Bundler gem is responsible for everything to do with this file; it's the Bundler's job
to ensure that all the gems are installed when your application is initialized. Let's
look at the following listing to see how this looks inside (commented lines are
removed for simplicity).

$ git checkout 23729a

$ git checkout master

3.3 Application configuration

3.3.1 The gemfile and generators

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

61

Licensed to <alex@vinova.sg>

https://github.com/steveklabnik/ticketee/commits
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 3.4 Gemfile

source 'https://rubygems.org'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'
gem 'rails', '4.0.0'

Use sqlite3 as the database for Active Record
gem 'sqlite3'

Use SCSS for stylesheets
gem 'sass-rails', '~> 4.0.0'

Use Uglifier as compressor for JavaScript assets
gem 'uglifier', '>= 1.3.0'

Use CoffeeScript for .js.coffee assets and views
gem 'coffee-rails', '~> 4.0.0'

See https://github.com/sstephenson/execjs#readme for more
supported runtimes
gem 'therubyracer', platforms: :ruby

Use jquery as the JavaScript library
gem 'jquery-rails'

Turbolinks makes following links in your web application
faster. Read more: https://github.com/rails/turbolinks
gem 'turbolinks'

Build JSON APIs with ease.
Read more: https://github.com/rails/jbuilder
gem 'jbuilder', '~> 1.2'

group :doc do
 # bundle exec rake doc:rails generates the API under doc/api.
 gem 'sdoc', require: false
end

Use ActiveModel has_secure_password
gem 'bcrypt-ruby', '~> 3.0.0'

Use unicorn as the app server
gem 'unicorn'

Use Capistrano for deployment
gem 'capistrano', group: :development

Use debugger
gem 'debugger', group: [:development, :test]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

62

Licensed to <alex@vinova.sg>

https://rubygems.org
https://github.com/sstephenson/execjs#readme
https://github.com/rails/turbolinks
https://github.com/rails/jbuilder
http://www.manning-sandbox.com/forum.jspa?forumID=818

In this file, Rails sets a source to be https://rubygems.org (the canonical
repository for Ruby gems). All gems you specify for your application are gathered
from the source. Next, it tells Bundler it requires version of the 4.0.0 rails

gem. Bundler inspects the dependencies of the requested gem as well as all gem
dependencies of those dependencies (and so on), then does what it needs to do to
make them available to your application.

This file also requires the gem, which is used for interacting withsqlite3

SQLite3 databases, the default when working with Rails. If you were to use
another database system, you would need to take out this line and replace it with
the relevant gem, such as for MySQL or for PostgreSQL.mysql2 pg

Chapter 2 focused on BDD and, as was more than hinted at, you'll be using it to
develop this application. First, alter the Gemfile to ensure you have the correct gem
for RSpec for your application. Add the lines from the following listing to the
bottom of the file:

Listing 3.5 Gemfile - Adding rspec and capybara gems

In the Gemfile, you specify that you wish to use the latest 2.x release of RSpec
in the and groups. You put this gem inside the test development

 group because without it, the tasks you can use to run your specsdevelopment

will be unavailable. Additionally, when you run a generator for a controller or
model, it'll use RSpec, rather than the default Test::Unit, to generate the tests for
that class.

With , you specified a version number with ,rspec-rails ~> 2.1410

which tells RubyGems you want RSpec 2.14 , but less than RSpec 3.0.or higher
This means when RSpec releases 2.14.1 or 2.15 and you go to install your gems,
RubyGems will install the latest version it can find rather than only 2.14.

Footnote 10mThe operator is called the . You can read more about it on the~> approximate version constraint

RubyGems documentation page here: http://docs.rubygems.org/read/chapter/16#page74

group :test, :development do
 gem 'rspec-rails', "~> 2.14"
end

group :test do
 gem 'capybara', "2.1.0"
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

63

Licensed to <alex@vinova.sg>

https://rubygems.org
http://docs.rubygems.org/read/chapter/16#page74
http://www.manning-sandbox.com/forum.jspa?forumID=818

A new gem is used in Listing 3.5: . Capybara is a browser simulatorCapybara
in Ruby that is used for , which you'll be doing in just a shortintegration testing
while. This kind of testing ensures that when a link is clicked in your application, it
goes to the correct page, or when you fill in a form and click the Submit button, an
onscreen message tells you that the form's operation was successful.

Capybara also supports real browser testing by launching an instance of
Firefox. You can then test your application's JavaScript, which you'll use
extensively in chapter 9.

Groups in the Gemfile are used to define gems that should be loaded in specific
scenarios. When using Bundler with Rails, you can specify a gem group for each
Rails , and by doing so, you specify which gems should be required byenvironment
that environment. A default Rails application has three standard environments:

, , and .development test production
Development is used for your local application, such as when you're playing

with it in the browser. In development mode, page and class caching is turned off,
so requests may take a little longer than they do in production mode. Don't worry.
This is only the case for larger applications. We're not there yet.

Test is used when you run the automated test suite for the application. This
environment is kept separate from the development environment so your tests start
with a clean database to ensure predictability.

Production is used when you finally deploy your application. This mode is
designed for speed, and any changes you make to your application's classes are not
effective until the server is restarted.

This automatic requiring of gems inside the Rails environment groups is done
by this line in config/application.rb:

To install these gems to your system, run at the root of yourbundle update

application. This command tells Bundler to ignore your and useGemfile.lock

your to install all the gems specified in it. Bundler then will update theGemfile

Gemfile.lock with the list of gems that were installed, as well as their versions. The
next time is run, the gems will be read from the Gemfile.lock file, ratherbundle

than Gemfile. You commit this file to your repository so that when other people

Bundler.require(:default, Rails.env)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

64

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

work on your project and run , they get exactly the samebundle install

versions that you have.

NOTE Ubuntu users
If you're running Ubuntu, you must install the build-essential
package because some gems build native extensions and require
the make utility. You may also have to install the libxslt1-dev
package because the (which will be used later) gemnokogiri

depends on it. You'll also need to install the libsqlite3-dev
package to allow the gem to install.sqlite3

With the necessary gems for the application installed, you should run the
 generator to set up a testing environment for the application:rspec:install

One more thing: it's sort of annoying to run everybundle exec rspec

time we want to use Rspec. We can use bundler's 'binstubs' feature to generate
stubs that eliminate the need for . Run this:bundle exec

This will spit out some information about the stubs that rspec-rails

supports:

Go ahead and generate a stub for and by typing rspec autospec

. If you look inside your bin/bundle binstubs rspec-core bin

directory, you should see both stubs there.
With this generated code in place, you should make a commit so you have

$ bin/rails generate rspec:install

$ bin/bundle binstubs rspec-rails

rspec-rails has no executables, but you may want one
 from a gem it depends on.
railties has: rails
rspec-core has: autospec, rspec

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

65

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

another base to roll back to if anything goes wrong.

By default, Rails uses a database system called SQLite3, which stores each
environment's database in separate files inside the db directory. SQLite3 is the
default database system because it's the easiest to set up. Out of the box, Rails also
supports the MySQL and PostgreSQL databases, with gems available that can
provide functionality for connecting to other database systems such as Oracle.

If you want to change which database your application connects to, you can
open config/database.yml (development configuration shown in the following
listing) and alter the settings to the new database system.

Listing 3.6 config/database.yml, SQLite3 example

For example, if you want to use PostgreSQL, you change the settings to read
like the following listing. It's common convention, but not mandatory, to call the
environment's database [app_name]_[environment].

Listing 3.7 config/database.yml, PostgreSQL example

$ git add .
$ git commit -m "Set up gem dependencies and run rspec generator"
$ git push

3.3.2 Database configuration

development:
 adapter: sqlite3
 database: db/development.sqlite3
 pool: 5
 timeout: 5000

development:
 adapter: postgresql
 database: ticketee_development
 username: root
 password: t0ps3cr3t

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

66

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You're welcome to change the database if you wish. Rails will go about its
business. It's good practice to develop and deploy on the same database system to
avoid strange behavior between two different systems. Systems such as
PostgreSQL perform faster than SQLite, so switching to it may increase your
application's performance. Be mindful, however, that switching database systems
doesn't automatically switch your data over for you.

It's generally wise to use different names for the different database
environments because if you use the same database in development and test, the
database would be emptied of all data when the tests were run, eliminating
anything you may have set up in development mode. You should never work on
the live production database directly unless you are absolutely sure of what you're
doing, and even then extreme care should be taken.

Finally, if you're using MySQL, it's wise to set the encoding to for theutf-8

database, using this setup in the config/database.yml file:

Listing 3.8 config/database.yml, MySQL example

This way, the database is set up automatically to work with UTF-8, eliminating
any potential encoding issues that may be encountered otherwise.

That's database configuration in a nutshell.

You now have version control for your application, and you're hosting it on

GitHub. You also cheated a little and got a pre-prepared stylesheet.11

Footnote 11m We wouldn't have a pre-prepared stylesheet in the real world, where designers would design at
the same time we're developing features.

It's now time to write your first Capybara-based test, which isn't nearly as
daunting as it sounds. We explore things such as models and RESTful routing
while we do it. It'll be simple, promise!

development:
 adapter: mysql2
 database: ticketee_development
 username: root
 password: t0ps3cr3t
 encoding: utf8

3.4 Beginning your first feature

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

67

Licensed to <alex@vinova.sg>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=818
http://www.allitebooks.org

The CRUD (reate, ead, pdate, elete) acronym is something you see all the timec r u d
in the Rails world. It represents the creation, reading, updating, and deleting of
something, but it doesn't say what that something is.

In the Rails world, CRUD is usually referred to when talking about .resources
Resources are the representation of the information from your database throughout
your application. The following section goes through the beginnings of generating
a CRUD interface for a resource called by applying the BDD practicesProject
learned in chapter 2 to the application you just bootstrapped. What comes next is a
sampler of how to apply these practices when developing a Rails application.
Throughout the remainder of the book, you continue to apply these practices to
ensure you have a stable and maintainable application. Let's get into it!

The first story for your application is the creation (the C in CRUD). You create
a resource representing projects in your application by first writing a test for it, and
then creating a controller and model, and a resource route. Then you add a
validation to ensure that no project can be created without a name.

When you're done with this feature, you will have a form that looks like Figure
3.4.

Figure 3.4 Form to create projects

First, you should create a new directory at spec/features and then in a file called
spec/features/creating_projects_spec.rb you will put the test that would make sure
that this feature works correctly when it is fully implemented. This code is the code
shown in the following listing:

3.4.1 Creating projects

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

68

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 3.9 spec/features/creating_projects_spec.rb

To run this test, run . This command will run all of your specs,bin/rspec

and display your application's first test's first failure:

It falls upon the application's to figure out where the request should go.router
Typically, the request would be routed to an action within a controller, but at the
moment there's no routes at all for the application. With no routes at all, the Rails
router can't find the route for "/" and so gives you the error shown above.

Rails is claiming that can't handle the route and is throwing an exception./

You have to tell Rails what to do with a request for . You can do this easily in/

config/routes.rb. At the moment, this file has the content seen in the following
listing (comments removed).

require 'spec_helper'

feature 'Creating Projects' do
 scenario "can create a project" do
 visit '/'

 click_link 'New Project'

 fill_in 'Name', with: 'TextMate 2'
 fill_in 'Description', with: 'A text-editor for OS X'
 click_button 'Create Project'

 expect(page).to have_content('Project has been created.')
 end
end

1) Creating Projects can create a project
 Failure/Error: visit '/'
 ActionController::RoutingError:
 No route matches [GET] "/"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

69

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 3.10 config/routes.rb

The comments are good for a read if you're interested in the other routing
syntax, but they're not necessary at the moment. To define a root route, you use the
root method like this inside the block for the method:draw

This defines a route for requests to (the root route) to point at the /

's action. This controller doesn't exist yet, andProjectsController index

so the test should probably complain about that if you got the route right. Run
 to find out.bin/rspec

This error is happening because the root route is pointing at a controller that
doesn't exist. When the request is made, the router attempts to load the controller,
and because it cannot find it, you will get this error. To define this constant, you
must generate a . The controller is the first port of call for your routes (ascontroller
you can see now!) and is responsible for querying the model for information inside
an action and then doing something with that information (such as rendering a
template). (Lots of new terms are explained later. Patience, grasshopper.) To
generate this controller, run this command:

Ticketee::Application.routes.draw do
end

Ticketee::Application.routes.draw do
 root "projects#index"
end

Failure/Error: visit '/'
 ActionController::RoutingError:
 uninitialized constant ProjectsController

$ bin/rails generate controller projects

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

70

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You may be wondering, why are we using a pluralized name for the controller?
Well, the controller is going to be dealing with a plural number of projects during
its lifetime, and so it only makes sense to name it like this. The models are singular
because their name refers to their type. Another way to put it: You're a Human, not
a Humans. But a controller that dealt with multiple humans, would be called
HumansController.

The controller generator produces output similar to the output produced when
you ran earlier, but this time it creates files just for the projectsrails new

controller, the most important of these being the controller itself, which is housed
in app/controllers/projects_controller.rb and defines the ProjectsController

constant that your test needs. This controller is where all the actions will live, just
like your app/controllers/purchases_controller.rb back in chapter 1. Here's what
this command outputs:

Before we dive into that, a couple of notes about the output.
app/views/projects contains the views relating to your actions (more on this

shortly).
invoke helper shows that the generator was called here,helper

generating a file at app/helpers/projects_helper.rb. This file defines a
 module. Helpers generally contain custom methods to use inProjectsHelper

your view that help with the rendering of content, and they come as blank slates
when they are first created.

invoke erb signifies that the Embedded Ruby (ERB) generator was

create app/controllers/projects_controller.rb
invoke erb
create app/views/projects
invoke rspec
create spec/controllers/projects_controller_spec.rb
invoke helper
create app/helpers/projects_helper.rb
invoke rspec
create spec/helpers/projects_helper_spec.rb
invoke assets
invoke coffee
create app/assets/javascripts/projects.js.coffee
invoke scss
create app/assets/stylesheets/projects.css.scss

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

71

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

invoked. Actions to be generated for this controller have corresponding ERB views
located in app/views/projects. For instance, the action's default view willindex

be located at app/views/projects/index.html.erb.
invoke rspec shows that the RSpec generator was invoked during the

generation also. This means that RSpec has generated a new file at
spec/controllers/projects_controller_spec.rb, which you can use to test your

controller; but not right now. 12

Footnote 12 By generating RSpec tests rather than Test::Unit tests, a long-standing issue within Rails has beenm
fixed. In previous versions of Rails, even if you specified the RSpec gem, all the default generators would still
generate Test::Unit tests. With Rails, the testing framework you use is just one of a large number of configurable
things in your application.

Finally, the assets for this controller are generated. There's two files generated
here: app/assets/javascripts/projects.js.coffee and
app/assets/stylesheets/projects.css.scss. The first file should contain any JavaScript

related to the controller, written as CoffeeScript . The second file should contain13

any CSS related to the controller, written using SCSS . In the development14

environment, these files are automatically parsed into Javascript and CSS
respectively.

Footnote 13 Coffeescript: http://coffeescript.orgm

Footnote 14 http://sass-lang.com/m

Now, you've just run the generator to generate a new
 class and all its goodies. This should fix theProjectsController

"uninitialized constant" error message. If you run again, it declaresbin/rspec

that the index action is missing:

To define the action in your controller, you must define a method insideindex

the class, just as you did when you generated your firstProjectsController

application, shown in the following listing.

Failure/Error: visit '/'
AbstractController::ActionNotFound:
 The action 'index' could not be found for ProjectsController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

72

Licensed to <alex@vinova.sg>

http://coffeescript.org
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 3.11 app/controllers/projects_controller.rb

If you run again, this time Rails complain of a missing template bin/rspec

:projects/index

The error message isn't the most helpful to the untrained eye, but it's quite
detailed. If you know how to put the pieces together, you can determine that it's
trying to look for a template called projects/index or application/index, but it's not
finding it. These templates are primarily kept at app/views, so it's fair to guess that
it's expecting something like app/views/projects/index.

The extension of this file is composed of two parts: the followed by the format
. In your output, you've got a handler of either or and ahandler :erb :builder

format of , so it's fair to assume from this that the file it's looking for is:html

either index.html.erb or index.html.builder. Either of these file names for the
 action's view is fine, but we'll use the first one, because we're wanting aindex

HTML page rather than an XML document, which is what a builder template
would provide.

The first part, , is the name of the action; that's the easy part. The secondindex
part, , indicates the format of this template. Actions in Rails can respond tohtml
different formats (using , which you saw in chapter 1); the defaultrespond_to

format is . The third part, , indicates the templating language you're using,html erb

class ProjectsController < ApplicationController
 def index
 end
end

ActionView::MissingTemplate:
Missing template projects/index, application/index
 with {:locale=>[:en], :formats=>[:html],
 :handlers=>[:erb, :builder, :raw,
 :ruby, :jbuilder, :coffee]}.
Searched in:
 * ".../ticketee/app/views"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

73

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

or the handler for this specific template. Templates in Rails can use different
templating languages/handlers, but the default in Rails is ERB, hence the erb
extension.

You could also create a file at app/views/application/index.html.erb to provide
the view for the action. This would work because the index

 inherits from the . IfProjectsController ApplicationController

you had another controller inherit from , you could putProjectsController

an action's template at app/views/application, app/views/projects or
app/views/that_controller, and Rails would still pick up on it. This allows different
controllers to share views in a simple fashion.

To generate this view, create the app/views/projects/index.html.erb file and
leave it blank for now. You can run just the single spec for creating projects with

. Whenbin/rspec spec/features/creating_projects_spec.rb

you do, you get back to what looks like the original error:

Although this looks like the original error, the test is actually visiting the new
root route for your application, making the first line in the test pass for real now.
You've defined a homepage for your application by defining a root route,
generating a controller, putting an action in it, and creating a view for that action.
Now Capybara is navigating to it. That's the first step in the first test passing for
your first application, and it's a great first step!

The second line in your "Creating Projects" spec is now failing, and it's up to
you to fix it. You need a link on the root page of your application that reads "New

. That link should go in the view of the controller that's serving the rootProject"

route request: app/views/projects/index.html.erb. Open
app/views/projects/index.html.erb and put the link in by using the link_to

method:

Failure/Error: click_link 'New Project'
Capybara::ElementNotFound:
 Unable to find link "New Project"

<%= link_to "New Project", new_project_path %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

74

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This single line re-introduces two old concepts and one new one: ERB output
tags, the method (both of which we saw in chapter 1), and thelink_to

mysterious method.new_project_path

As a refresher, in ERB, when you use (known as an ERB output tag), you<%=

are telling ERB that whatever the output of this Ruby is, put it on the page . If you
only want to evaluate Ruby, you use an ERB evaluation tag: , which doesn't<%

output content to the page but only evaluates it. Both of these tags end in .%>

The method in Rails generates a tag with the text of the firstlink_to <a>

argument and the of the second argument. This method can also be used inhref

block format if you have a lot of text you want to link to:

Where comes from deserves its own section. It's thenew_project_path

very next one.

The method is as yet undefined. If you ran the test again, itnew_project_path

would still complain of an undefined method or local variable

. You can define this method by defining a route to,'new_project_path'

what's known as a in Rails. Resources are collections of objects that allresource
belong in a common location, such as projects, users, or tickets. You can add the
projects resource in config/routes.rb by using the method, putting itresources

directly under the method in this file, as shown in the following listing.root

Listing 3.12 resources :projects line, in config/routes.rb

<%= link_to new_project_path do %>
 bunch
 of
 text
<% end %>

3.4.2 RESTful routing

Ticketee::Application.routes.draw do
 root "projects#index"

 resources :projects
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

75

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This is called a route, and it defines the routes to the seven resource RESTful
actions in your projects controller. When something is said to be RESTful, it
means it conforms to the Representational State Transfer (REST) architectural

style . Rails can't get you all the way there, but it can help. With Rails, this means15

the related controller has seven potential actions:

Footnote 15 http://en.wikipedia.org/wiki/Representational_state_transferm

index

show

new

create

edit

update

destroy

These seven actions match to just four request paths:

/projects
/projects/new
/projects/:id
/projects/:id/edit

How can four be equal to seven? It can't! Not in this world, anyway. Rails will
determine what action to route to on the basis of the HTTP method of the requests
to these paths. Table 3.1 lists the routes, HTTP methods, and corresponding actions
to make it clearer:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

76

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The routes listed in the table are provided when you use resources

. This is yet another great example of how Rails takes care of the:projects

configuration so you can take care of the coding.
To review the routes you've defined, you can run the bin/rake routes

command and get output similar to that in table 3.1.

Table 3.1 Table 3.1 RESTful routing matchupm

HTTP Method Route Action

GET /projects index

POST /projects create

GET /projects/new new

GET /projects/:id show

PATCH/PUT /projects/:id update

DELETE /projects/:id destroy

GET /projects/:id/edit edit

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

77

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 3.13 bin/rake routes output

The words in the leftmost column of this output are the beginnings of the
method names you can use in your controllers or views to access them. If you want
just the path to a route, such as , then use . If you/projects projects_path

want the full URL, such as http://yoursite.com/projects, use . It'sprojects_url

best to use these helpers rather than hardcoding the URLs; doing so makes your
application consistent across the board. For example, to generate the route to a
single project, you would use either or :project_path project_url

This method takes one argument and generates the path according to this object.
You'll see later how you can alter this path to be more user friendly, generating a
URL such as rather than the impersonal /projects/1-our-project

./projects/1

The four paths mentioned earlier match up to the helpers in table 3.2.

 Prefix Verb URI Pattern Controller#Action
 root GET / projects#index
 projects GET /projects(.:format) projects#index
 POST /projects(.:format) projects#create
 new_project GET /projects/new(.:format) projects#new
edit_project GET /projects/:id/edit(.:format) projects#edit
 project GET /projects/:id(.:format) projects#show
 PATCH /projects/:id(.:format) projects#update
 PUT /projects/:id(.:format) projects#update
 DELETE /projects/:id(.:format) projects#destroy

project_path(@project)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

78

Licensed to <alex@vinova.sg>

http://yoursite.com/projects
http://www.manning-sandbox.com/forum.jspa?forumID=818

Running now produces a complaint about a missing new action:bin/rspec

In the following listing, you define the action in your controller bynew

defining a method directly underneath the method.new index

Listing 3.14 app/controllers/projects_controller.rb

Running now results in a complaint about a missing bin/rspec new

template, just as it did with the action:index

Table 3.2 Table 3.2 RESTful routing matchupm

URL Helper

GET /projects projects_path

GET /projects/new new_project_path

GET /projects/:id project_path

GET /projects/:id/edit edit_project_path

1) Creating Projects can create a project
Failure/Error: click_link 'New Project'
AbstractController::ActionNotFound:
 The action 'new' could not be found for ProjectsController

class ProjectsController < ApplicationController
 def index
 end

 def new
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

79

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You can create the file at app/views/projects/new.html.erb to make this test go
one step further, although this is a temporary solution. We will come back to this
file later to add content to it. When you run the spec again, the line that should be
failing is the one regarding filling in the "Name" field. Find out if this is the case
by running .bin/rspec

Now Capybara is complaining about a missing field on the page it's"Name"

currently on, the new page. You must add this field so that Capybara can fill it in.
Before you do that, however, fill out the action in the new

 so you have an object to base the fields on. Change the ProjectsController

 to this:new

The constant is going to be a class, located at app/models/project.rb,Project

thereby making it a . A model is used to retrieve information from themodel
database. Because this model inherits from Active Record, you don't have to set up
anything extra. Run the following command to generate your first model:

Failure/Error: click_link 'New Project'
ActionView::MissingTemplate:
 Missing template projects/new, application/new
 with {:locale=>[:en],
 :formats=>[:html],
 :handlers=>[:erb, :builder,
 :raw, :ruby,
 :jbuilder, :coffee]}.
Searched in:
 * ".../ticketee/app/views"

Failure/Error: fill_in 'Name', :with => 'TextMate 2'
Capybara::ElementNotFound:
 Unable to find field "Name"

def new
 @project = Project.new
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

80

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This syntax is similar to the controller generator's syntax except that you
specified you want a model, not a controller. When the generator runs, it generates
not only the model file but also a containing the code to create this tablemigration
and the specified fields. You can specify as many fields as you like after the
model's name. They default to type, so we didn't specify them. If westring

wanted to be explicit, we could use a colon, like this:

A model provides a place for any business logic that your application does. One
common bit of logic is the way your application to interact with a database what to
do with those objects once they've been retrieved. A model is also the place where
you define scopes (easy to use filters for database calls, done in Chapter 8) and
associations (done in Chapter 5) and validations (seen later in this chapter),
amongst other things. To perform any interaction with data in your database, you

will be going through a model.16

Footnote 16 Although it is possible to perform database operations without a model within Rails, 99% of the timem
you'll want to use a model.

Migrations are effectively version control for the database. They are defined as
Ruby classes, which allows them to apply to multiple database schemas without
having to be altered. All migrations have a method in them when they arechange

first defined. For example, the code shown in the following listing comes from the
migration that was just generated:

$ bin/rails g model project name description

$ bin/rails g model project name:string description:string

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

81

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 3.15 db/migrate/[date]_create_projects.rb

When you run the migration forward (using), itbin/rake db:migrate

creates the table. When you roll the migration back (with bin/rake

), it deletes (or drops) the table from the database. If you need todb:rollback

do something different on the 'up' and 'down' parts, you can use those methods
instead:

Here, the method would be called if you ran the migration forward,self.up

and the method if you ran it backwards.self.down

This syntax is especially helpful if the migration does something that has a
reverse function that isn't clear such as removing a column:

class CreateProjects < ActiveRecord::Migration
 def change
 create_table :projects do |t|
 t.string :name
 t.string :description

 t.timestamps
 end
 end
end

class CreateProjects < ActiveRecord::Migration
 def up
 create_table :projects do |t|
 t.string :name
 t.string :description

 t.timestamps
 end
 end

 def down
 drop_table :projects
 end
end

class CreateProjects < ActiveRecord::Migration

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

82

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This is because ActiveRecord won't know what type of field to re-add this
column as, so you must tell it what to do in the case of this migration being rolled
back.

The first line tells Active Record you want to create a table called .projects

You call this method in the block format, which returns an object that defines the
table. To add fields to this table, you call methods on the block's object (called int

this example and in all model migrations), the name of which usually reflects the
type of column it is, and the first argument is the name of that field. The

 method is special: it creates two fields, the and timestamps created_at

 datetime fields, which are by default set to the current time inupdated_at

coordinated universal time (UTC) by Rails when a record is created and updated
respectively.

A migration doesn't automatically run when you create it -- you must run it
yourself using this command:

This command migrates the database up to the latest migration, which for now
is the only migration. If you create a whole slew of migrations at once, then
invoking will migrate them in the order they werebin/rake db:migrate

created.
With this model created and its related migration run on both the development

and test databases, you can now run and get a little further:bin/rspec

 def up
 remove_column :projects, :name
 end

 def down
 add_column :projects, :name, :string
 end
end

$ bin/rake db:migrate

Failure/Error: fill_in 'Name', with: 'TextMate 2'
Capybara::ElementNotFound:
 Unable to find field "Name"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

83

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Now you are back to the element not found error. To add this field to the new

action's view, you can put it inside a form, but not just any form. A ,form_for

like in the following listing:

Listing 3.16 app/views/projects/new.html.erb

So many new things! The call allows you to specify the fieldsform_for

that belong to the object specified. In this case, all you're doing is specifying that
the form should have a text field that belongs to the name attribute of the

 object.@project

The method is passed the object as the first argument,form_for @project

and with this, the helper does more than simply place a form tag on the page.
 inspects the object and creates a form builder specificallyform_for @project

for that object. The two main things it inspects are (1) whether or not it's a new
record and (2) what the class name is.

Determining what attribute the form has (where the form sends to) isaction

dependent on whether or not the object is a new record. A record is classified as
new when it hasn't been saved to the database, and this check is performed
internally to Rails using the method, which returns if thepersisted? true

record is stored in the database or if it's not. The class of the object alsofalse

plays a pivotal role in where the form is sent. Rails inspects this class and from it,
determines what the route should be. In this case, it is /projects. Because the record
is new, the path is /projects and the method for the form is . Therefore, aPOST

request is sent to the action in .create ProjectsController

<h2>New Project</h2>
<%= form_for(@project) do |f| %>
 <p>
 <%= f.label :name %>

 <%= f.text_field :name %>
 </p>

 <p>
 <%= f.label :description %>

 <%= f.text_field :description %>
 <%= f.submit %>
<% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

84

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

After that part of is complete, you use the block syntax to receiveform_for

an variable, which is a object. You can use this object to definef FormBuilder

your forms fields. The first element you define is a . tagslabel label

correspond to their field elements on the page and serve two purposes in our
application. First, they give users a larger area to click rather than just the field,
radio button, or checkbox itself. The second purpose is so you can reference the
label's text in the test, and Capybara will know what field to fill in.

TIP Alternative label naming
If you want to customize a label, you can pass the method alabel

second argument:

After the label, you put the , which renders an tagtext_field <input>

corresponding to the label and the field. The output tag looks like this:

Then you use the method to provide users with a Submit button forsubmit

your form. Because you call this method on the object, Rails checks whether orf

not the record is new and sets the text to read "Create Project" if the record is new
or "Update Project" if it is not. You'll see this in use a little later on when you build
the action. For now, focus on the new action!edit

N o w , r u n n i n g b i n / r s p e c

 once more, you can seespec/features/creating_projects_spec.rb

that your spec is one step closer to finishing: the field fill-in step has passed.

 <%= f.label :name, "Your name" %>

<input id="project_name" name="project[name]"
 size="30" type="text">

Failure/Error: click_button 'Create Project'
AbstractController::ActionNotFound:
 The action 'create' could not be found for ProjectsController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

85

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Capybara finds the label containing the text you ask for in your"Name"

scenario and fills out the corresponding field. Capybara has a number of ways to
locate a field, such as by the name of the corresponding label, the attribute ofid

the field, or the attribute. The last two look like this:name

NOTE Field selector preferences
Some argue that using the id or name of the field is a better way
because these attributes don't change as often as labels may. But
to keep things simple, you should continue using the label name.

The spec is now complaining of a missing action called . To definecreate

this action, you define the method underneath the new method in the create

, as in the following listing:ProjectsController

Listing 3.17 create action of ProjectsController

The method takes one argument, which is a list of attributesProject.new

that will be assigned to this new object. The method isProject params

available inside all controller actions and returns the parameters passed to the
action, such as those from the form or query parameters from a URL, as a object.

fill_in "project_name", with: "TextMate 2"
or
fill_in "project[name]", with: "TextMate 2"

def create
 @project = Project.new(params[:project])

 if @project.save
 flash[:notice] = "Project has been created."
 redirect_to @project
 else
 # nothing, yet
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

86

Licensed to <alex@vinova.sg>

mailto:@project.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

These are different from normal objects, because you can reference a Hash

 key by using a matching and vice versa. In this case, the String Symbol

 hash is:params

TIP Inspecting params
If you'd like to inspect the hash at any point in time, youparams

can put in any action and then run the action either byp params

accessing it through or by running a scenario thatrails server

will run an action containing this line. This outputs to the console
the hash and is equivalent to doing params puts

.params.inspect

All the hashes nested inside this hash are also
 hashes. If you want to get the name key fromHashWithIndifferentAccess

the hash here, you can use either project { :name => "TextMate 2"

, as in a normal object, or }[:name] Hash { :name => "TextMate 2"

; you may use either the or the version--it doesn't}['name'] String Symbol

matter.
The first key in the hash, , comes from the Submit button,params commit

which has the value "Create Project". This is accessible as .params[:commit]

The second key, , is one of two parameters always available, the otheraction

being . These represent exactly what their names imply: thecontroller

controller and action of the request, accessible as and params[:controller]

 respectively. The final key, , is, as mentionedparams[:action] project

before, a . It contains the fields from yourHashWithIndifferentAccess

form and is accessible via . To access the key insideparams[:project] name

{
 "commit" => "Create Project",
 "action" => "create",
 "project" => {
 "name" => "TextMate 2",
 "description" => "A text-editor for OS X"
 },
 "controller" => "projects"
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

87

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

the object, use , whichparams[:project] params[:project][:name]

calls the method on to get the value of the key and then,[] params :project

on the resulting hash, calls again, this time with the key to get the name[] :name

of the project passed in.
When receives this , it generates anew HashWithIndifferentAccess

new object with the based on the parameters passed in. The Project attributes

 object will have a attribute set to the value from Project name

.params[:project][:name]

You call to save your new object into the @project.save Project

 table. Before that happens though, Rails will run all the data validations onprojects
the model, ensuring it's correct. At the moment, you have no validations on the
model and so it will save just fine.

The method in your action is a way of passing messages toflash create

the next request, and it's also a . TheseHashWithIndifferentAccess

messages are stored in the session and are cleared at the completion of the next
request. Here you set the key to be to inform:notice Project has been created

the user what has happened. This message is displayed later, as is required by the
final step in your feature.

The method takes either an object, as in the action, orredirect_to create

a path to redirect to as a string. If an object is given, Rails inspects that object to
determine what route it should go to, in this case, project_path(@project)

because the object has now been saved to the database. This method generates the
path of something such as /projects/:id, where is the record attribute:id id

assigned by your database system. The method tells the browserredirect_to

to begin making a new request to that path and sends back an empty response
body; the HTTP status code will be a 302 Redirected to /projects/1, which is the
currently nonexistent action.show

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

88

Licensed to <alex@vinova.sg>

mailto:@project.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

TIP Combining redirect_to and flash
You can combine the and by passing theflash redirect_to

flash as an option to the . If you want to pass aredirect_to

success message, you use the flash key; otherwise younotice

use the key. By using either of these two keys, you can usealert

this syntax:

If you do not wish to use either or , you mustnotice alert

specify as a hash:flash

With the action now established within your create

, the test should be getting a little further. Find out byProjectsController

running . You will see this error:bin/rspec

Oooh, 'forbidden attributes.' Sounds scary. This is important: it's one form of
security help that Rails gives you via a feature called 'strong parameters.' This
feature is new to Rails 4. We don't want to accept just any parameters: we want to
accept the ones that we want, and no more. That way, someone can't mess around
with our app by sending funky information in. Change your

 code for the create action to look like this:ProjectsController

redirect_to @project,
notice: "Project has been created."
or
redirect_to @project,
alert: "Project has not been created."

redirect_to @project,
flash: { success: "Project has been created."}

Failure/Error: click_button 'Create Project'
ActiveModel::ForbiddenAttributesError:
 ActiveModel::ForbiddenAttributesError

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

89

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

We now call the method on our , and we require that the require params

 key exists. We also allow it to have and :project :name :description

entries. Finally, we wrap up that logic into a method so that we can use it in other
actions, and make it private so we don't expose it as some kind of weird action!

Now that that's done, run again, and you'll get a new error:bin/rspec

The action is responsible for displaying a single record's information. Toshow

retrieve a record, you need an ID to fetch. You know the URL for this page is
going to be something like /projects/1, but how do you get the from that URL?1

Well, when you use resource routing, as you have done already, the part of this1

URL is available as , just as and params[:id] params[:controller]

 are also automatically made available by Rails. You canparams[:action]

then use this parameter in your action to find a specific params[:id] show

 object. In this case, the action should be showing the newlyProject show

created project.
Put the code from the following listing into

app/controllers/projects_controller.rb to set up the action right now. Makeshow

sure it comes above the declaration.private

def create
 @project = Project.new(project_params)

 if @project.save
 flash[:notice] = "Project has been created."
 redirect_to @project
 else
 # nothing, yet
 end
end

private

 def project_params
 params.require(:project).permit(:name, :description)
 end

Failure/Error: click_button 'Create Project'
AbstractController::ActionNotFound:
 The action 'show' could not be found for ProjectsController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

90

Licensed to <alex@vinova.sg>

mailto:@project.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 3.18 show action of ProjectsController

You pass the object to here, which givesparams[:id] Project.find

you a single object that relates to a record in the database, which has its Project

 field set to whatever is. If Active Record cannot find a recordid params[:id]

matching that ID, it raises an exception.ActiveRecord::RecordNotFound

W h e n y o u r e r u n b i n / r s p e c

, you will get an errorspec/features/creating_projects_spec.rb

telling you the action's template is missing:show

You can create the file app/views/projects/show.html.erb with the following
content for now to just display the project's name:

Now when you run the test again with bin/rspec

, you see this message:spec/features/creating_projects_spec.rb

def show
 @project = Project.find(params[:id])
end

Failure/Error: click_button 'Create Project'
ActionView::MissingTemplate:
Missing template projects/show, application/show
 with {:locale=>[:en],
 :formats=>[:html],
 :handlers=>[:erb, :builder,
 :raw, :ruby,
 :jbuilder, :coffee]}.
Searched in:
 * ".../ticketee/app/views"

<h2><%= @project.name %></h2>

Failure/Error: expect(page).to have_content('Project has been created.')
 expected there to be text "Project has been created." in "TextMate 2"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

91

Licensed to <alex@vinova.sg>

mailto:@project.name
http://www.manning-sandbox.com/forum.jspa?forumID=818

This error message shows that the 'Project has been created.' text is not being
displayed on the page. Therefore, you must put it somewhere, but where? The best
location is in the application layout, located at
app/views/layouts/application.html.erb. This file provides the layout for all
templates in your application, so it's a great spot to output a flash message from
anywhere.

The application layout is quite the interesting file:

The first line sets up the doctype to be HTML for the layout, and three new
methods are used: , ,stylesheet_link_tag javascript_include_tag

and .csrf_meta_tags

stylesheet_link_tag is for including stylesheets from the

app/assets/stylesheets directory. Using this tag results in the following output:

<!DOCTYPE html>
<html>
<head>
 <title>Ticketee</title>
 <%= stylesheet_link_tag "application", media: "all",
 "data-turbolinks-track" => true %>
 <%= javascript_include_tag "application",
 "data-turbolinks-track" => true %>
 <%= csrf_meta_tags %>
</head>
<body>

<%= yield %>

</body>
</html>

<link data-turbolinks-track="true"
 href="/assets/application.css?body=1"
 media="all"
 rel="stylesheet" />
<link data-turbolinks-track="true"
 href="/assets/projects.css?body=1"
 media="all"
 rel="stylesheet" />

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

92

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The path is served by a gem called . In this case, the/assets sprockets

tag specifies the /assets/application.css path, and any route prefixed with
 is served by Sprockets. Sprockets provides a feature commonly referred/assets

to as the . When files are requested through this, they'reAsset Pipeline
pre-processed and then served out to the browser.

There's also a second tag for our file. In development mode,projects.css

Rails generates tags for all of your stylesheets and JavaScripts separately, for ease
of debugging. If we run the application in production mode, we get something very
different:

This single stylesheet is all of our stylesheets, concatenated and minified. That
way, your users will load up all your styles on their first visit, and they'll be cached
for the rest of their stay, increasing overall performance.

When the asset is requested, Sprockets looks/assets/application.css

for a file beginning with application.css inside the asset paths for your application.
The three asset paths it will search by default are , app/assets lib/assets

and , in that order. Some gems will add to these lookup paths,vendor/assets

and so you will be able to use assets from within them as well.
If the file has any additional extensions on it, such as a file called

application.css.scss, Sprockets will look up a preprocessor for the extensionscss

and run the file through that, before serving it as CSS. You can chain together any
number of extensions and Sprockets will parse the file for each extension, working
right to left.

The file that is being searched for here lives at application.css

 and is the stylesheet you created aapp/assets/application.css.scss

short while ago. This has an additional extension on it, so will bescss

preprocessed by the Sass preprocessor before being served as CSS by the
 call in the application layout.stylesheet_link_tag

<link data-turbolinks-track="true"
 href="/stylesheets/application.css"
 media="all"
 rel="stylesheet" />

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

93

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

TIP Using Sass or SCSS
For your CSS files, you can use the Sass or SCSS languages to
produce more powerful stylesheets. Your application depends on
the gem, which itself depends on , the gem forsass-rails sass

these stylesheets. We don't go into detail here because the Sass
site covers most of that ground: http://sass-lang.com/. Rails
automatically generates stylesheets for each controllers that uses
Sass, as indicated by its .css.scss extensions. This final extension
tells Sprockets to process the file using Sass before serving it as
CSS.

 is for including JavaScript files from thejavascript_include_tag

javascript directories of the Asset Pipeline. When the string isapplication

specified here, Rails loads the app/assets/javascripts/application.js file, which looks
like this:

This file includes some Sprockets-specific code that will include the
 and files located in the gemjquery.js jquery_ujs.js jquery-rails

that the application's specifies as a dependency of the application. ItGemfile

also includes the JavaScript for Turbolinks, which is a feature that we'll discuss
later. It compiles these three files, plus all the files in the

 directory with the intoapp/assets/javascripts //= require_tree .

one superfile called , which is referenced by this line in theapplication.js

output of your pages:

This file is also served through the gem. As with your CSSsprockets

//= require jquery
//= require jquery_ujs
//= require turbolinks
//= require_tree .

<script src="/assets/application.js" type="text/javascript"></script>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

94

Licensed to <alex@vinova.sg>

http://sass-lang.com/
http://www.manning-sandbox.com/forum.jspa?forumID=818

stylesheets, you can use an alternative syntax called CoffeeScript
(http://coffeescript.org), which provides a simpler JavaScript syntax that compiles
into proper JavaScript. Just as with the Sass stylesheets, Rails generates
CoffeeScript files inside app/assets/javascripts with the extension .js.coffee,
indicating to Sprockets they are to be parsed by a CoffeeScript interpreter first,
then served as JavaScript. We use CoffeeScript a little later, in chapter 9.

csrf_meta_tags is for protecting your forms from cross-site request

forgery (CSRF) attacks. It creates two tags, one called and17 meta csrf-param

the other . This unique token works by setting a specific key oncsrf-token

forms that is then sent back to the server. The server checks this key, and if the key
is valid, the form is submitted. If the key is invalid, an

 exception occursActionController::InvalidAuthenticityToken

and the user's session is reset as a precaution.

Footnote 17mhttp://en.wikipedia.org/wiki/CSRF

Later in is the singleapp/views/layouts/application.html.erb

line:

This line indicates to the layout where the current action's template is to be
rendered. Create a new line just before and place the following<%= yield %>

code there:

This code renders all the messages that get defined, regardless of theirflash

name and the controller that they come from. These lines will display the
 that you set up in the 's flash[:notice] ProjectsController create

<%= yield %>

<% flash.each do |key, value| %>
 <div class='flash' id='<%= key %>'>
 <%= value %>
 </div>
<% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

95

Licensed to <alex@vinova.sg>

http://coffeescript.org
http://www.manning-sandbox.com/forum.jspa?forumID=818

action. Run again and see that the test is now fully passing!bin/rspec

Why do we have two pending tests? If you examine the output more closely,
you'll see this:

The key part is that 'or delete.' Let's delete those two files, since we're not using
them yet.

Afterwards, run one more time:bin/rspec

3 examples, 0 failures, 2 pending

**.

Pending:
 Project add some examples to (or delete)
 /.../ticketee/spec/models/project_spec.rb
 # No reason given
 # ./spec/models/project_spec.rb:4
 ProjectsHelper add some examples to (or delete)
 /.../ticketee/spec/helpers/projects_helper_spec.rb
 # No reason given
 # ./spec/helpers/projects_helper_spec.rb:14

Finished in 0.31466 seconds
3 examples, 0 failures, 2 pending

Randomized with seed 24201

$ rm spec/models/project_spec.rb
$ rm spec/helpers/projects_helper_spec.rb

.

Finished in 0.32084 seconds
1 example, 0 failures

Randomized with seed 26038

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

96

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Yippee! You have just written your first BDD test for this application! That's all
there is to it. If this process feels slow, that's how it's supposed to feel when you're
new to any process. Remember when you were learning to drive a car? You didn't
drive like Michael Schumacher as soon as you got into the car. You learned by
doing it slowly and methodically. As you progress, it becomes quicker, as all
things do with practice.

Now you're at a point where all (just the one for now) your specs are running, and
points like this are great times to make a commit.

You should commit often because commits provide checkpoints you can revert
back to if anything goes wrong. If you're going down a path where things aren't
working and you want to get back to the last commit, you can revert all your
changes by using:

WARNING A warning about git checkout
This command doesn't prompt you to ask whether you're sure you
want to take this action. You should be incredibly sure that you want to
destroy your changes. If you're not sure and want to keep your
changes while reverting back to the previous revision, it's best to use
the command. This command stashes your unstagedgit stash

changes to allow you to work on a clean directory and allows you to
restore the changes using .git stash pop

With the changes committed to your local repository, you can push them off to
the GitHub servers. If for some reason the code on your local machine goes
missing, you have GitHub as a backup. Run this command to push the code up to
GitHub's servers:

3.4.3 Committing changes

$ git add .
$ git commit -m "'Create a new project' feature complete."

$ git checkout .

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

97

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Commit early. Commit often.

Before you completely finish working with this story, there is one more thing to
point out: the templates are rendered the layout. You can use this to yourbefore
benefit by setting an instance variable such as in the action's@title show

template; then you can reference it in your application's layout to show a title for
your page at the top of the tab or window.

To test that the page title is correctly implemented, add a little bit extra to your
scenario for it. At the bottom of the test inside
spec/features/creating_projects_spec.rb, add the four lines shown in the following
listing.

Listing 3.19 spec/features/creating_projects_spec.rb

The first line here uses two methods to find a project: and . where first

 will give us all of the s that have a name "Textmate 2". The where Project

 chained onto our will give us just the first one. You want to findfirst where

the project that has just been created so you can use it later in the test. The second
line ensures that you're on what should be the action inside the show

. The third line finds the element on the page byProjectsController title

using Capybara's method and checks using that thisfind have_content

element contains the content of "TextMate 2 - Projects - Ticketee". If you run
 now,bin/rspec spec/features/creating_projects_spec.rb

you'll see this error:

$ git push

3.4.4 Setting a page title

project = Project.where(name: "TextMate 2").first

expect(page.current_url).to eql(project_url(project))

title = "TextMate 2 - Projects - Ticketee"
expect(page).to have_title(title)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

98

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This error is happening because the title element doesn't contain all the right
parts, but this is fixable! Write this code into the top of
app/views/projects/show.html.erb.

This sets up a instance variable in the template. Because the template@title

is rendered before the layout, you are able to then use this variable inside the
layout. However, if a page doesn't have a variable set, there should be a@title

default title of just "Ticketee". To do this, enter the following code in
app/views/layouts/application.html.erb where the tag currently is.title

In Ruby, instance variables that aren't set will return as their values. If younil

try to access an instance variable that returns a value, you can use to returnnil ||

a different value, as in this example.
With this in place, the test should now pass when you run :bin/rspec

With this test now passing, you can change your code and have a solid base to
ensure that whatever you change works as you expect. To demonstrate this point,
change the code in your to use a instead of setting a variable.show helper

Helpers are methods you can define in the files inside app/helpers, and they are
made available in your views. Helpers are for extracting the logic from the views,
as views should just be about displaying information. Every controller that comes

Failure/Error: expect(find("title")).to have_content(title)
expected there to be text "TextMate 2 - Projects - Ticketee"
 in "Ticketee"

<% @title = "TextMate 2 - Projects - Ticketee" %>

<title><%= @title || "Ticketee" %></title>

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

99

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

from the controller generator has a corresponding helper, and another helper
module exists for the entire application: the module thatApplicationHelper

lives at app/helpers/application_helper.rb. Now open this file
(app/helpers/application_helper.rb) and insert the code from the following listing.

Listing 3.20 app/helpers/application_helper.rb

When you specify an argument in a method beginning with the splat operator
(*), any arguments passed from this point will be available inside the method as
an array. Here that array can be referenced as . Inside the method, youparts

check to see if is by using the opposite keyword to : .parts empty? if unless

If no arguments are passed to the method, parts will be empty andtitle

therefore will return .empty? true

If parts are specified for the method, then you use the title content_for

method to define a named block of content, giving it the name of . Inside"title"

this content block, you join the parts together using a hyphen (-), meaning this
helper will output something like "TextMate 2 - Projects -

.Ticketee"

Now you can replace the title line in your app/views/projects/show.html.erb
with this:

You don't need here any more because the method puts it in forTicketee

you. Let's replace the tag line in app/views/layouts/application.html.erbtitle

with this:

module ApplicationHelper
 def title(*parts)
 unless parts.empty?
 content_for :title do
 (parts << "Ticketee").join(" - ")
 end
 end
 end
end

<% title(@project.name, "Projects") %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

100

Licensed to <alex@vinova.sg>

mailto:title(@project.name
http://www.manning-sandbox.com/forum.jspa?forumID=818

This code uses a new method called , which checks that thecontent_for?

specified content block is defined. It will only be defined if
 is called somewhere, like the template. If it is, you usecontent_for(:title)

 and pass it the name of the content block, which causes the content for thatyield

block to be rendered. If it isn't, then you just output the word , and thatTicketee

becomes the title.
When you run this test again with bin/rspec

, it will pass:spec/features/creating_projects_spec.rb

That's a lot neater now, isn't it? Let's create a commit for that functionality and
push your changes.

Next up, we look at how to stop users from entering invalid data into your
forms.

<title>
 <% if content_for?(:title) %>
 <%= yield(:title) %>
 <% else %>
 Ticketee
 <% end %>
</title>

1 example, 0 failures

$ git add .
$ git commit -m "Add title functionality for show page"
$ git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

101

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The next problem to solve is preventing users from leaving a required field blank.
A project with no name isn't useful to anybody. Thankfully, Active Record
provides for this issue. Validations are run just before an object isvalidations
saved to the database, and if the validations fail, then the object isn't saved. Ideally
in this situation, you want to tell the user what went wrong so that they can fix it
and attempt to create the project again.

With this in mind, you should add another test for ensuring that this happens to
spec/features/creating_projects_spec.rb using the code from the listing:

Listing 3.21 spec/features/creating_projects_spec.rb

The first two lines here are identical to the ones you placed inside the other
scenario. You should eliminate this duplication by making your code DRY (on't D

epeat ourself!). This is another term you'll hear a lot in the Ruby world. It's easyR Y
to extract common code from where it's being duplicated and into a method or a
module you can use instead of the duplication. One line of code is 100 times better
than 100 lines of duplicated code. To DRY up your code, before the first scenario,
you define a block. For RSpec, blocks will be run before before before every

single test inside the file.
To DRY this file up, change spec/features/creating_projects_spec.rb to look

like this:

3.4.5 Validations

scenario "can not create a project without a name" do
 visit '/'

 click_link 'New Project'
 click_button 'Create Project'

 expect(page).to have_content("Project has not been created.")
 expect(page).to have_content("Name can't be blank")
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

102

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 3.22 spec/features/creating_projects_spec.rb

There! That looks a whole lot better! Now when you run , it willbin/rspec

fail because it cannot see the error message that it's expecting to see on the page:

To get this test to do what you want it to do, you will need to add a validation.
Validations are defined on the model and are run before the data is saved to the

require 'spec_helper'

feature 'Creating Projects' do
 before do
 visit '/'

 click_link 'New Project'
 end

 scenario "can create a project" do
 fill_in 'Name', with: 'TextMate 2'
 fill_in 'Description', with: 'A text-editor for OS X'
 click_button 'Create Project'

 expect(page).to have_content('Project has been created.')

 project = Project.where(name: "TextMate 2").first

 expect(page.current_url).to eql(project_url(project))

 title = "TextMate 2 - Projects - Ticketee"
 expect(page).to have_title(title)
 end

 scenario "can not create a project without a name" do
 click_button 'Create Project'

 expect(page).to have_content("Project has not been created.")
 expect(page).to have_content("Name can't be blank")
 end
end

Failure/Error: expect(page).to
 have_content("Project has not been created.")
 expected there to be text "Project has not been created."
 in "Project has been created."

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

103

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

database. To define a validation to ensure that the name attribute is provided when
a project is created, open the app/models/project.rb file and make it look like the
following listing.

Listing 3.23 app/models/project.rb

The validates method usage here is exactly how you used it for the first time in
the first chapter. It tells the model that you want to validate the field and thatname

you want to validate its presence. There are other kinds of validations as well, such
as the key, which, when passed as the value, validates the:uniqueness true

uniqueness of this field as well, ensuring that only one record in the table has that
specific value.

WARNING Beware race conditions with uniqueness validator
The validator works byvalidates :foo, uniqueness: true

checking to see if a record matching the validation criteria exists
already. If this record doesn't exist, the validation will pass.
A problem arises if two connections to the database both make this
check at almost exactly the same time. Both connections will claim that
a record doesn't exist and therefore will allow a record to be inserted
for each connection, resulting in nonunique records.
A way to prevent this is to use a database uniqueness index so the
database, not Rails, does the uniqueness validation. For information
how to do this, consult your database's manual.
While this problem doesn't happen all the time, it happen, so it'scan
something to watch out for.

With the presence validation in place, you can experiment with the validation
by using the Rails console, which allows you to have all the classes and the
environment from your application loaded in a sandbox environment. You can
launch the console with this command:

class Project < ActiveRecord::Base
 validates :name, presence: true
end

$ bin/rails console

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

104

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

or with it's shorter alternative:

If you're familiar with Ruby, you may realize that this is effectively withIRB
some Rails sugar on top. For those of you new to both, IRB stands for nteractive I R
u y, and it provides an environment for you to experiment with Ruby withoutb
having to create new files. The console prompt looks like this:

At this prompt , you can enter any valid Ruby and it'll be evaluated. But for18

now, the purpose of opening this console was to test the newly appointed
validation. To do this, try to create a new project record by calling the create

method. The method is similar to the method, but it attempts tocreate new

create an object and then a database record for it rather than just the object. You
use it identically to the method:new

Footnote 18 m Although you may see something similar to too, which is fine.ruby-2.0.0:001 >

Here you get a new object with the and Project name description

attributes set to , as you should expect because you didn't specify it. The nil id

attribute is too, which indicates that this object is not persisted (saved) in thenil

database.
If you comment out or remove the validation from inside the classProject

$ bin/rails c

Loading development environment (Rails 4.0.0)
irb(main):001:0>

irb(main):001:0> Project.create
=> #<Project id: nil,
 name: nil,
 description: nil,
 created_at: nil,
 updated_at: nil>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

105

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

and type in your console, the changes you just made to the model arereload!

reloaded. When the validation is removed, you have a slightly different outcome
when you call :Project.create

Here, the field is still expectedly , but the other three attributes havename nil

values. Why? When you call on the model, Rails builds a new create Project

 object with any attributes you pass it and checks to see if that object isProject 19

valid. If it is, Rails sets the and attributes to thecreated_at updated_at

current time and then saves it to the database. After it's saved, the is returnedid

from the database and set on your object. This object is valid, according to Rails,
because you removed the validation, and therefore Rails goes through the entire
process of saving.

Footnote 19mThe first argument for this method is the attributes. If there is no argument passed, then all
attributes default to their default values.

The method has a bigger, meaner brother called create create!

(pronounced). Re-add or uncomment the validation from the modelcreate BANG!
and type in the console, and you'll see what this mean variant does withreload!

this line:

The method, instead of nonchalantly handing back a create! Project

object regardless of any validations, raises an
 exception if any of the validations fail,ActiveRecord::RecordInvalid

showing the exception followed by a large stacktrace, which you can safely ignore
for now. You are notified which validation failed. To stop it from failing, you must
pass in a attribute, and it will happily return a saved object:name Project

irb(main):001:0> Project.create
=> #<Project id: 1,
 name: nil,
 description: nil,
 created_at: "2010-05-06 01:00:15",
 updated_at: "2010-05-06 01:00:15">

irb(main):001:0> Project.create!
ActiveRecord::RecordInvalid: Validation failed: Name can't be blank

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

106

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

That's how to use to test it in the console, but in your create

, you use the method shown in the following listingProjectsController

instead.

Listing 3.24 project creation inside ProjectsController's new action

save doesn't raise an exception if validations fail, as did, butcreate!

instead returns . If the validations pass, returns . You can usefalse save true

this to your advantage to show the user an error message when this returns false

by using it in an statement. Make the action in the if create

, as in the following listing.ProjectsController

Listing 3.25 create action for ProjectsController

irb(main):002:0> Project.create!(name: "TextMate 2")
=> #<Project id: 1,
 name: "TextMate 2",
 description: nil,
 created_at: "[timestamp]",
 updated_at: "[timestamp]">

@project = Project.new(project_params)
@project.save

def create
 @project = Project.new(project_params)

 if @project.save
 flash[:notice] = "Project has been created."
 redirect_to @project
 else
 flash[:alert] = "Project has not been created."

 render "new"
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

107

Licensed to <alex@vinova.sg>

mailto:@project.save
mailto:@project.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

Now if the object has a name attribute -- meaning that it is "valid"@project

-- then returns and executes everything between the and the save true if else

. If it isn't valid, then everything between the and the following iselse end

executed. In the , you specify a different key for the flash messageelse

because you'll want to style alert messages differently from notices later in the
application's lifecycle. When good things happen, the messages for them will be
colored with a green background. When bad things happen, red.

W h e n y o u r u n b i n / r s p e c

 here, the line in the specspec/features/creating_projects_spec.rb

that checks for the "Project has not been created." message is now not failing, and
so it's going to the next line, which checks for the "Name can't be blank" message.
You haven't done anything to make this message appear on the page right now
which is why this test is failing again.

The validation errors for the project are not being displayed on this page, which
is causing the test to fail. To display validation errors in the view, you code
something up yourself.

Directly under this line, on a new line, insert the following intoform_for

app/views/projects/new.html.erb to display the error messages for your object
inside the form:

Failure/Error: expect(page).to have_content("Name can't be blank")
 expected there to be content "Name can't be blank" in ...

<% if @project.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@project.errors.count, "error") %>
 prohibited this project from being saved:</h2>

 <% @project.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
<% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

108

Licensed to <alex@vinova.sg>

mailto:@project.errors.any?
mailto:pluralize(@project.errors.count
mailto:@project.errors.full_messages.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

Error messages for the object represented by your form, the object,@project

will now be displayed by the . When you run , you get thiseach bin/rspec

output:

Commit and push, and then you're done with this story!

We first covered how to version control an application, which is a critical part of
the application development cycle. Without proper version control, you're liable to
lose valuable work or be unable to roll back to a known working stage. We used
Git and GitHub as examples, but you may use alternatives -- such as SVN or
Mercurial -- if you prefer. This book covers only Git, because covering everything
would result in a multivolume series, which is difficult to transport.

Next we covered the basic setup of a Rails application, which started with the
 command that initializes an application. Then we segued into settingrails new

up the Gemfile to require certain gems for certain environments, such as RSpec in
the test environment, learned about the beautiful Bundler gem in the process, and
then ran the installers for these gems so your application was then fully configured
to use them. For instance, after running , yourbin/rails g rspec:install

application was set up to use RSpec and so will generate RSpec specs rather than
the default Test::Unit tests for your models and controllers.

Finally, we wrote the first story for your application, which involved generating
a controller and a model as well as an introduction to RESTful routing and
validations. With this feature of your application covered by RSpec, you can be
notified if it is broken by running , a command that runs allbin/rspec spec

2 examples, 0 failures

$ git add .
$ git commit -m "Add validation to ensure names are
 specified when creating projects"
$ git push

3.5 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

109

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

ActiveRecord::Base#create
ActiveRecord::RecordNotFound
Agile
app/assets
capybara
config/database.yml
content_for?
controller generator
create_table
created_at
CRUD
Displaying flash messages
DRY
Environments
flash
Git
git checkout
git commit
git config
git push
git remote add
git stash
HashWithIndifferentAccess
javascript_include_tag
label, FormBuidler
model generator
routing, resources
rspec-rails
Sass
Sprockets
Sprockets manifest file
stylesheet_link_tag
text_field, FormBuilder
timestamps
updated_at
Validators, presence
Validators, uniqueness
yield

the tests of the application and lets you know if everything is working or if
anything is broken. If something is broken, the spec will fail, and then it's up to you
to fix it.

Without this automated testing, you would have to do it all manually, and that
just isn't any fun.

Now that you've got a first feature under your belt, let's get into writing the next
one!

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

110

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

4
In chapter 3, you began writing stories for a CRUD (create, read, update, delete)
interface for your resource. Here, you continue in that vein, beginningProject

with writing a story for the part of CRUD: reading. We often refer to reading as R
 in this and future chapters—we mean the same thing, but sometimesviewing

viewing is just a better word.
For the remainder of the chapter, you’ll round out the CRUD interface for

projects, providing your users with ways to edit, update, and delete projects too.
Best of all, you’ll be doing this using behavior-driven development the whole way
through, continuing your use of the RSpec and Capybara gems. This chapter's
length is testament to exactly how quickly you can get some CRUD actions up and
running on a resource with Ruby on Rails.

Also in this chapter, you'll see a way to create test data extremely easily for
your tests, using a gem called factory_girl, as well as a way to make a way to make
standard controllers a lot neater.

The action generated for the story in chapter 3 was only half of this part ofshow

CRUD. The other part is the action, which is responsible for showing a listindex

of the projects. From this list, you can navigate to the action for a particularshow

project. The next story is about adding functionality to allow you to do that.
Create a new file in the features directory called

spec/features/viewing_projects_spec.rb, shown in the following listing.

Oh CRUD!

4.1 Viewing projects

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

111

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 4.1 spec/features/viewing_projects_spec.rb

Now, to run this single test, you can run bin/rspec

. When you do this, you'llspec/features/viewing_projects_spec.rb

see the following failure:

The constant is defined by another gem: the FactoryGirl factory_girl

gem.

The gem, created by thoughtbot, provides an easy way to use factory_girl 1

 to create new objects for your tests. Factories define a bunch of defaultfactories
values for an object, allowing you to easily craft example objects you can use in
your tests. you can use to run our tests on.

Footnote 1 m Thoughtbot’s website: http://thoughtbot.com.

Before you can use this gem, you need to add it to the group in your:test

Gemfile. Now the whole group looks like this:

require 'spec_helper'

feature "Viewing projects" do
 scenario "Listing all projects" do
 project = FactoryGirl.create(:project, name: "TextMate 2")
 visit '/'
 click_link 'TextMate 2'
 expect(page.current_url).to eql(project_url(project))
 end
end

Failure/Error: project = FactoryGirl.create(:project,
 name: "TextMate 2")
 NameError:
 uninitialized constant FactoryGirl

4.1.1 The Factory Girl

group :test do
 gem 'capybara', '2.1.0'
 gem 'factory_girl_rails', '~> 4.2.1'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

112

Licensed to <alex@vinova.sg>

http://thoughtbot.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

To install, run . With the gembin/bundle factory_girl_rails

installed, the constant will be defined. Run FactoryGirl bin/rspec

 again and you will see aspec/features/viewing_projects_spec.rb

new error:

When using Factory Girl, you must create factories. If a factory isn't registered
with Factory Girl, you'll get the above error. To register/create a factory, create a
new directory inside spec called factories and then inside that directory create a
new file called project_factory.rb. Fill that file with the content from the following
listing:

Listing 4.2 spec/factories/project_factory.rb

When you define the factory inside this file, you give it a default name. The
 part of this method call insidename: name

spec/features/viewing_projects_spec.rb changes the default name to the one passed
in. You use factories here because you needn’t be concerned about any other
attribute on the object. If you weren’t using factories, you’d have to useProject

this method to create the object instead:

end

Failure/Error: project = FactoryGirl.create(:project,
 name: "TextMate 2")
 ArgumentError:
 Factory not registered: project

FactoryGirl.define do
 factory :project do
 name "Example project"
 end
end

Project.create(name: name)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

113

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

While this code is about the same length as its variant, it isn’tFactory

future-proof. If you were to add another field to the table and add aprojects

validation (say, a presence one) for that field, you’d have to change all occurrences
of the method to contain this new field. When you use factories, you cancreate

change it in one place—where the factory is defined. If you cared about what that
field was set to, you could modify it by passing it as one of the key-value pairs in
the call.Factory

That’s a lot of theory—now how about some practice? Let’s see what happens
w h e n y o u r u n b i n / r s p e c

 again:spec/features/viewing_projects_spec.rb

A link appears to be missing. You’ll add that right now.

Capybara is expecting a link on the page with the words “TextMate 2” but can’t
find it. The page in question is the homepage, which is the action fromindex

your . Capybara can’t find it because you haven’t yetProjectsController

put it there, which is what you’re going to do now. Open
app/views/projects/index.html.erb and add the contents of the following listing
underneath the first link.

Listing 4.3 app/views/projects/index.html.erb

If you run the spec again, you get this error, which isn’t helpful at first glance:

Failure/Error: click_link 'TextMate 2'
Capybara::ElementNotFound:
 Unable to find link "TextMate 2"

4.1.2 Adding a link to a project

<h2>Projects</h2>

 <% @projects.each do |project| %>
 <%= link_to project.name, project %>
 <% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

114

Licensed to <alex@vinova.sg>

mailto:@projects.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

This error points at line 5 of your app/views/projects/index.html.erb file. From
this you can determine that the error has something to do with the @projects

variable. This variable isn’t yet been defined, and because there’s no methodeach

on , you get this error. As mentioned in chapter 3, instance variables in Rubynil

return rather than raise an exception if they’re undefined. Watch out for this innil

Ruby—as seen here, it can sting you hard.
To define this variable, open atProjectsController

app/controllers/projects_controller.rb and change the method definition toindex

look like the following listing.

Listing 4.4 index action of ProjectsController

By calling on the model, you retrieve all the records from theall Project

database as objects, and they’re available as an -like object.Project Array

Now that you’ve put all the pieces in place, you can run the feature with
, and itbin/rspec spec/features/creating_projects_spec.rb

should all pass:

The spec now passes. Is everything else still working, though? You can check
by running . Rather than just running the one test, this command willbin/rspec

run all the tests inside the spec directory. When you run this command, you should
see this:

Failure/Error: visit '/'
 ActionView::Template::Error:
 undefined method `each' for nil:NilClass
 # ./app/views/projects/index.html.erb:3 ...

def index
 @projects = Project.all
end

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

115

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

All of the specs are passing, meaning all of the functionality you’ve written so
far is working as it should. Commit and push this using:

The reading part of this CRUD resource is done! You’ve got the and index

 actions for the behaving as they should. Nowshow ProjectsController

you can move on to .updating

With the first two parts of CRUD (creating and reading) done, you’re ready for the
third part: updating. Updating is similar to creating and reading in that it has two
actions for each part (creation has and , reading has and new create index

). The two actions for updating are and . Let’s begin byshow edit update

writing a feature and creating the action.edit

As with the form used for creating new projects, you want a form that allows users
to edit the information of a project that already exists. You first put an Edit Project
link on the show page that takes users to the edit action where they can edit the
project. Write the code from the following listing into
spec/features/editing_projects_spec.rb:

3 examples, 0 failures

git add .
git commit -m "Add the ability to view a list of all projects"
git push

4.2 Editing projects

4.2.1 The edit action

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

116

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 4.5 spec/features/editing_projects_spec.rb

If you remember, will build us an entire object, andFactoryGirl#create

let us tweak the defaults. In this case, we're changing the title.
Also, it's common for tests to take this overall form: arrange, act, assert. That's

why the whitespace is there: it clearly splits the test. Your tests won't always look
like this, but it's good form.

In this story, you again use the command to run just this onebin/rspec

feature: .bin/rspec spec/features/editing_projects_spec.rb

The first couple of lines for this scenario pass because of the work you’ve
already done, but it fails on the line that attempts to find the "Edit Project" link:

To add this link, open app/views/projects/show.html.erb and add this link
underneath all the code currently in that file:

require 'spec_helper'

feature "Editing Projects" do
 scenario "Updating a project" do
 FactoryGirl.create(:project, name: "TextMate 2")

 visit "/"
 click_link "TextMate 2"
 click_link "Edit Project"
 fill_in "Name", with: "TextMate 2 beta"
 click_button "Update Project"

 expect(page).to have_content("Project has been updated.")
 end
end

Failure/Error: click_link "Edit Project"
Capybara::ElementNotFound:
 Unable to find link "Edit Project"

<%= link_to "Edit Project", edit_project_path(@project) %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

117

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The method generates the link to the edit_project_path Project

object, pointing at the ’s action. This method isProjectsController edit

provided to you because of the line inresources :projects

config/routes.rb.
I f y o u r u n b i n / r s p e c

 again, it now complainsspec/features/editing_projects_spec.rb

about the missing action:edit

You should now define this action in your ,ProjectsController

underneath the action, as in the following listing.show

Listing 4.6 app/controllers/projects_controller.rb

As you can see, this action works in an identical fashion to the action,show

where the ID for the resource is automatically passed as . Let’sparams[:id]

work on DRYing this up once you’re done with this controller. When you run the2

spec again, you’re told that the view is missing:edit

Footnote 2mAs a reminder: DRY = Don’t Repeat Yourself!

It looks like you need to create this template. The action's form is goingedit

The action 'edit' could not be found for ProjectsController

def edit
 @project = Project.find(params[:id])
end

Failure/Error: click_link "Edit Project"
ActionView::MissingTemplate:
Missing template projects/edit, application/edit with
 {:locale=>[:en],
 :formats=>[:html],
 :handlers=>[:erb, :builder, :raw, :ruby, :jbuilder, :coffee]}.
 Searched in: * "/Users/steve/src/ticketee/app/views"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

118

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

to be very similar to the form inside the action. If only there were a way tonew

extract out just the form into its own template. Well, in Rails, there is! You can
extract out the form from app/views/projects/new.html.erb into what's called a

.partial
A is a template that contains some code that can be shared betweenpartial

other templates. To extract the form from the new template into a new partial, take
this code out of app/views/projects/new.html.erb:

This first section is where we deal with all of the error handling for this form.
Rails doesn't handle this for you because people need to heavily customize the
HTML, but this will serve our needs for now.

Then create a new file called app/views/projects/_form.html.erb and put the
code that you've just extracted from the new template into this new file. The new

template should now use this partial to show the form. To do this, just put this line
in app/views/projects/new.html.erb:

<%= form_for(@project) do |f| %>
 <% if @project.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@project.errors.count, "error") %>
 prohibited this project from being saved:</h2>

 <% @project.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

 <p>
 <%= f.label :name %>

 <%= f.text_field :name %>
 </p>

 <p>
 <%= f.label :description %>

 <%= f.text_field :description %>
 <%= f.submit %>
<% end %>

 <%= render "form" %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

119

Licensed to <alex@vinova.sg>

mailto:@project.errors.any?
mailto:pluralize(@project.errors.count
mailto:@project.errors.full_messages.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

Now, you need to create the action's template. Create a new file atedit

app/views/projects/edit.html.erb and put the content from this listing in it:

Listing 4.7 app/views/projects/edit.html.erb

When you pass a string to the method, Rails looks up a partial in therender

same directory as the current template matching the string and renders that instead.
Using the partial, the next line passes without any further intervention from you
w h e n y o u r u n b i n / r s p e c

:spec/features/editing_projects_spec.rb

The test has filled in the "Name" field successfully, but fails when the "Update
Project" button is pressed, because it cannot find the action inside the update

. To make this work, you're going to need to create that ProjectsController

 action.update

As the following listing shows, you can now define this actionupdate

underneath the action in your controller:edit

<h2>Edit project</h2>

<%= render "form" %>

Failure/Error: click_button "Update Project"
AbstractController::ActionNotFound:
 The action 'update' could not be found for ProjectsController

4.2.2 The update action

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

120

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 4.8 app/controllers/projects_controller.rb

Notice the new method here, . It takes a hash of attributes identicalupdate

to the ones passed to or , updates those specified attributes on thenew create

object, and then saves them to the database if they are valid. This method, like
, returns if the update is valid or if it is not.save true false

Now that you’ve implemented the action, let’s see how the test isupdate

g o i n g b y r u n n i n g b i n / r s p e c

:spec/features/editing_projects_spec.rb

What happens if somebody fills in the name field with a blank value? The user
receives an error, just as in the action. You should move the first fourcreate

steps from the first scenario in spec/features/editing_projects_spec.rb into a
 block, because when a user is editing a project the first four steps arebefore

always going to be the same: A project needs to exist, then a user goes to the
homepage, finds a project, clicks "Edit Project". Change
spec/features/editing_projects_spec.rb so it looks like the following listing.

def update
 @project = Project.find(params[:id])
 @project.update(project_params)

 flash[:notice] = "Project has been updated."
 redirect_to @project
end

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

121

Licensed to <alex@vinova.sg>

mailto:@project.update
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 4.9 spec/features/editing_projects_spec.rb

A block can help set up state for multiple tests: the block runsbefore

before each test executes.
Sometimes, setting up is more than just creating objects; interacting with an

application is totally legitimate as part of setup.
Now you can add a new scenario, shown in the following listing, to test that the

user is shown an error message for when the validations fail during the update

action. Add this new scenario directly underneath the one currently in this file:

Listing 4.10 spec/features/editing_projects_spec.rb

W h e n y o u r u n b i n / r s p e c

, the filling in the "Name"spec/features/editing_projects_spec.rb

works, but when the form is submitted the test doesn't see the "Project has not been

require 'spec_helper'

feature "Editing Projects" do
 before do
 FactoryGirl.create(:project, name: "TextMate 2")

 visit "/"
 click_link "TextMate 2"
 click_link "Edit Project"
 end

 scenario "Updating a project" do
 fill_in "Name", with: "TextMate 2 beta"
 click_button "Update Project"

 expect(page).to have_content("Project has been updated.")
 end
end

scenario "Updating a project with invalid attributes is bad" do
 fill_in "Name", with: ""
 click_button "Update Project"

 expect(page).to have_content("Project has not been updated.")
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

122

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

updated." message:

Again, this error means that it was unable to find the text "Project has not been
updated." on the page. This is because you haven’t written any code to test for
what to do if the project being updated is now invalid. In your controller, you
should now use the code in the following listing for the action so that itupdate

shows the error message if the method returns .update false

Listing 4.11 update action inside ProjectsController

And now you can see that the feature passes when you rerun bin/rspec

:spec/features/editing_projects_spec.rb

Again, you should ensure everything else is still working by running
; you should see this summary:bin/rspec

Let’s make a commit and push now:

expected there to be content "Project has not been updated." in ...

def update
 @project = Project.find(params[:id])
 if @project.update(project_params)
 flash[:notice] = "Project has been updated."
 redirect_to @project
 else
 flash[:alert] = "Project has not been updated."
 render "edit"
 end
end

2 examples, 0 failures

5 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

123

Licensed to <alex@vinova.sg>

mailto:@project.update
http://www.manning-sandbox.com/forum.jspa?forumID=818

The third part of CRUD, updating, is done now. The fourth and final part is
.deleting

We’ve reached the final stage of CRUD: deletion. This involves implementing the
final action of your controller, the action, which allows you to deletedestroy

projects.
Of course, you’re going to need a feature to get going: a Delete Project link on

the show page that, when clicked, prompts the user for confirmation. You put the3

feature at spec/features/deleting_projects_spec.rb using the following listing.

Footnote 3 Although the test won't check for this prompt, due to the difficulty in testing JS confirmation boxes inm
tests.

Listing 4.12 spec/features/deleting_projects_spec.rb

When you run this test using bin/rspec

, the first couple of linesspec/features/deleting_projects_spec.rb

git add .
git commit -m "You can now update a project."
git push

4.3 Deleting projects

require 'spec_helper'

feature "Deleting projects" do
 scenario "Deleting a project" do
 FactoryGirl.create(:project, name: "TextMate 2")

 visit "/"
 click_link "TextMate 2"
 click_link "Delete Project"

 expect(page).to have_content("Project has been destroyed.")

 visit "/"

 expect(page).to have_no_content("TextMate 2")
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

124

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

will pass because they're just creating a project using Factory Girl, visiting the
home page and then clicking the link to take us to the project page. The fourth line
inside this scenario will fail however, with this message:

To get this to work, you'll need to add a "Delete Project" link to the show

action’s template, app/views/projects/show.html.erb. You should put this on the
line after the "Edit Project" link using this code:

Here you pass two new options to the method, and link_to :method

.:confirm

The option tells Rails what HTTP method this link should be using,:method

and here’s where you specify the method. In the previous chapter, the:delete

four HTTP methods were mentioned; the final one is . When youDELETE

developed your first application, chapter 1 explained why we use the DELETE

method, but let's review why. If all actions are available by GET requests, then
anybody can send you a link to, say, the action for one of yourdestroy

controllers, and if you click on that, it’s bye-bye precious data.
By using , you protect an important route for your controller byDELETE

ensuring that you have to follow the link from the site to make the proper request
to delete this resource.

The option brings up a prompt, using JavaScript, that asks users if:confirm

they’re sure of what they clicked on. Because Capybara doesn’t support JavaScript
by default, this prompt is ignored, so you don’t have to tell Capybara to click OK
on the prompt—there is no prompt because Rails has a built-in fallback for users

Failure/Error: click_link "Delete Project"
Capybara::ElementNotFound:
 Unable to find link "Delete Project"

<%= link_to "Delete Project",
 project_path(@project),
 method: :delete,
 data: { confirm:
 "Are you sure you want to delete this project?"
 } %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

125

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

without JavaScript enabled. If you launch a browser and follow the steps in the
feature to get to this "Delete Project" link, and then clicked on the link, you would
see the confirmation prompt. This prompt is exceptionally helpful for preventing
accidental deletions.

When you run the spec again with bin/rspec

, it complains of aspec/integeration/deleting_projects_spec.rb

missing action:destroy

The final action you need to implement in your controller and we’ll put it
underneath the action. This action is shown in the following listing.update

Listing 4.13 destroy action inside ProjectsController

Here you call the method on the object you get backdestroy @project

from your call. No validations are run here, so no conditional setup isfind

needed. Once you call on that object, the relevant database record isdestroy

gone for good but the Ruby object representation of this record still exists until the
end of the request. Once the record has been deleted from the database, you set the

 to indicate to the user that their action was successful andflash[:notice]

redirect back to the projects index page by using the routingprojects_path

helper.
With this last action in place, your newest feature should pass when you run

:bin/rspec spec/features/deleting_projects_spec.rb

Failure/Error: click_link "Delete Project"
AbstractController::ActionNotFound:
 The action 'destroy' could not be found for ProjectsController

def destroy
 @project = Project.find(params[:id])
 @project.destroy

 flash[:notice] = "Project has been destroyed."

 redirect_to projects_path
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

126

Licensed to <alex@vinova.sg>

mailto:@project.destroy
mailto:redirect_toprojects_pathendHereyoucallthedestroymethodonthe@projectobjectyougetbackfromyourfindcall.Novalidationsarerunhere
mailto:redirect_toprojects_pathendHereyoucallthedestroymethodonthe@projectobjectyougetbackfromyourfindcall.Novalidationsarerunhere
mailto:redirect_toprojects_pathendHereyoucallthedestroymethodonthe@projectobjectyougetbackfromyourfindcall.Novalidationsarerunhere
mailto:redirect_toprojects_pathendHereyoucallthedestroymethodonthe@projectobjectyougetbackfromyourfindcall.Novalidationsarerunhere
http://www.manning-sandbox.com/forum.jspa?forumID=818

Great, let’s see if everything else is running with :bin/rspec

Great! Let’s commit that:

Done! Now you have the full support for CRUD operations in pour
. Let’s refine this controller into simpler code before weProjectsController

move on.

People sometimes poke around an application looking for things that are no longer
there, or they muck about with the URL. As an example, launch your application’s
server by using and try to navigate tobin/rails server

http://localhost:3000/projects/not-here. You’ll see the exception shown in Figure
4.1

Figure 4.1 ActiveRecord::RecordNotFound exception

1 example, 0 failures

6 examples, 0 failures

git add .
git commit -m "Implement delete functionality for projects"
git push

4.4 What happens when things can't be found

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

127

Licensed to <alex@vinova.sg>

http://localhost:3000/projects/not-here
http://www.manning-sandbox.com/forum.jspa?forumID=818

The exception is Rails’s way ofActiveRecord::RecordNotFound

displaying exceptions in development mode. Underneath this error, more
information is displayed, such as the backtrace of the error. Rails will only do this
in the development environment because of the

 configuration setting inconsider_all_requests_local

config/environments/development.rb. This file contains all the custom settings for
your development environment, and the consider_all_requests_local

setting is by default. This means that Rails will show the complete exceptiontrue

information when it runs in the environment.development

If you were running in the environment, you would see a differentproduction
error because inconsider_all_requests_local

config/environments/production.rb is set to false. Let's try to reproduce this error
now.

Stop any Rails server that is currently running and run these commands to start a
new one in production mode:

In order for the Rails production environment to work correctly, you must first
compile the assets for the project using the rake task.assets:precompile

This will go through all the assets of the application and compile them into their
CSS and JS counterparts and then place these new files into public/assets so that
they can be served by the web server that is running Rails. Not too relevant to what
you're doing now, but necessary so that you can see what the production

environment will do.
On the second line you must specify the RAILS_ENV environment variable to

tell Rails you want to run the migrations on your production database. By default
in Rails, the development and production databases are kept separate so you don’t
make the mistake of working with production data and deleting something you
shouldn’t when you're working in the development environment. This problem is
also solved by placing the production version of the code on a different server from
the one you’re developing on. You only have to run the migration command when
migrations need to be run, not every time you need to start your server.

4.4.1 Visualizing the error

bin/rake assets:precompile
bin/rake db:migrate RAILS_ENV=production

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

128

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In the production environment, the Rails server is configured to not serve static
assets itself. Instead, it will rely on the host server to serve the assets out of the
public directory. In order for assets to be served correctly in the production
environment while running a session, you will need to gobin/rails server

into the config/environments/production.rb file and change this line:

To this:

This then tells Rails that you want to serve static assets from the public
directory using Rails itself. Next, start the server running using the production
environment by using this command:

You pass the option to the -e production bin/rails server

command, which tells Rails to boot the server using the production environment.
Next, navigate to http://localhost:3000/project/not-here. When you do this, you

will get the standard Rails 404 page (Figure 4.2), which, to your users, is
unhelpful.

Figure 4.2 Page does not exist error

It’s not the page that’s gone missing, but rather the we’re looking forresource
isn’t found. If users see this error, they’ll probably have to click the Back button
and then refresh the page. You could give users a much better experience by

config.serve_static_assets = false

config.serve_static_assets = true

bin/rails s -e production

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

129

Licensed to <alex@vinova.sg>

http://localhost:3000/project/not-here
http://www.manning-sandbox.com/forum.jspa?forumID=818

dealing with the error message yourself and redirecting them back to the home
page.

Before we move on, we want to un-do the stuff we just did: it's not a good idea
to have Rails serve assets in production, and it's also not good to check compiled
assets into source control. To back out your changes, just do this:

Yay for git! This just adds our changes to the index, then resets our index to the
last commit. Easy!

To do so, you can rescue the exception and, rather than letting Rails render a 404
page, you redirect the user to the index action with an error message. To test that
users are shown an error message rather than a “Page does not exist” error, you’ll
write an RSpec controller test rather than a feature test, because viewing projects
that aren’t there is something a user do, but not something they do.can should
Plus, it’s easier.

The file for this controller test, spec/controllers/projects_controller_spec.rb, was
automatically generated when you ran the controller generator because you have

the gem in your Gemfile. Open this controller spec file and takerspec-rails 4

a look. It should look like the following listing.

Footnote 4mThe gem automatically generates the file using a Railtie, the code of which canrspec-rails

be found at https://github.com/rspec/rspec-rails/blob/master/lib/rspec-rails.rb.

Listing 4.14 spec/controllers/projects_controller_spec.rb

In this controller spec, you want to test that you get redirected to the Projects
page if you attempt to access a resource that no longer exists. You also want to
ensure that a is set.flash[:alert]

To do all this, you put the following code inside the block:describe

$ git add .
$ git reset --hard

4.4.2 Handling the ActiveRecord::NotFound exception

require 'spec_helper'
describe ProjectsController do
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

130

Licensed to <alex@vinova.sg>

https://github.com/rspec/rspec-rails/blob/master/lib/rspec-rails.rb
http://www.manning-sandbox.com/forum.jspa?forumID=818

The first line this RSpec test—more commonly called an —tellsinside example
RSpec to make a GET request to the action for the show

. How does it know which controller should receive theProjectsController

GET request? RSpec infers it from the class used for the block.describe

In the next line, you tell RSpec that you expect the response to take you back to
the through a call. If it doesn’t, the test fails,projects_path redirect_to

and nothing more in this test is executed: RSpec stops in its tracks.
The final line tells RSpec that you expect the to contain aflash[:alert]

useful message explaining the redirection to the index action.
To run th i s spec , u se the bin/rspec

 command.spec/controllers/projects_controller_spec.rb

When this runs, you'll see this error:

This is the same failure you saw when you tried running the application using
the development environment with . Now that you have abin/rails server

failing test, you can fix it.
Open the app/controllers/projects_controller.rb file and put the code from the

following listing underneath the last action in the controller but before the end of
the class.

it "displays an error for a missing project" do
 get :show, id: "not-here"
 expect(response).to redirect_to(projects_path)
 message = "The project you were looking for could not be found."
 expect(flash[:alert]).to eql(message)
end

Failure/Error: get :show, id: "not-here"
ActiveRecord::RecordNotFound:
 Couldn't find Project with id=not-here

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

131

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 4.15 find_project method inside ProjectsController

This method has the method before it so the controller doesn’tprivate

respond to this method as an action. You already had declared for the private

 method. To call this method before every action, use the project_params 5

 method. Place these lines directly under the before_action class

 definition:ProjectsController

Footnote 5mThe lines for the flash[:alert] are separated into two lines to accommodate the page width of this
book. You can put it on one line if you like. We won’t yell at you.

What does all this mean? Let’s start with the . before_action

s are run before all the actions in your controller unless youbefore_action

specify either the or option. Here you have the option:except :only :only

defining actions you want the to run for. The optionbefore_action :except

is the opposite of the option, specifying the actions you do not want the :only

 to run for. The calls the before_action before_action find_project

method before the specified actions, setting up the variable for you.@project

This means you can remove the following line from four of your actions: , show

, , and :edit update destroy

private
 def set_project
 @project = Project.find(params[:id])
 rescue ActiveRecord::RecordNotFound
 flash[:alert] = "The project you were looking" +
 " for could not be found."
 redirect_to projects_path
 end

before_action :set_project, only: [:show,
 :edit,
 :update,
 :destroy]

@project = Project.find(params[:id])

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

132

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

By doing this, you make the and actions empty. If you removeshow edit

these actions and run again, all the scenarios will still pass.bin/rspec

Controller actions don’t need to exist in the controllers if there are templates
corresponding to those actions, which you have for these actions. For readability’s
sake, it’s best to leave these in the controller so anyone who reads the code knows
that the controller can respond to these actions. You can also remove the first line
of and actions as well.update destroy

Back to the spec now: if you run bin/rspec

 once more, thespec/controllers/projects_controller_spec.rb

test now passes:

Let’s check to see if everything else is still working by running .bin/rspec

You should see this:

Red-Green-Refactor! Now with that out of the way, let’s commit and push that!

This completes the basic CRUD implementation for your projects resource.
Now you can create, read, update, and delete projects to your heart’s content.

1 example, 0 failures

7 examples, 0 failures

git add .
git commit -m "Redirect the users back to the projects
 page if they try going to a project that doesn’t exist."
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

133

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

ActiveRecord::Base#update
before_action
before_action, :only option
link_to, :method
link_to, data: {confirm: "..."}

This chapter covered developing the first part of your application using test-first
practices with RSpec and Capybara, building it one step at a time. Now you have
an application that is truly maintainable. If you want to know if these specs are
working later in the project, you can run and if something is brokenbin/rspec

that you've written a test for, you’ll know about it. Now doesn’t that beat manual
testing? Just think of all the time you’ll save in the long run.

You learned firsthand how rapidly you can develop the CRUD interface for a
resource in Rails. There are even faster ways to do it (such as by using ,scaffolding
discussed in chapter 1), but to absorb how this whole process works, it’s best to go
through it yourself, step by step, as you did in these last two chapters.

So far you’ve been developing your application using test-first techniques, and
as your application grows, it will become more evident how useful these
techniques are. The main thing they’ll provide is assurance that what you’ve coded
so far is still working exactly as it was when you first wrote it. Without these tests,
you may accidentally break functionality and not know about it until a user—or
worse, a client—reports it. It’s best that you spend some time implementing tests
for this functionality now so that you don’t spend even more time later apologizing
for whatever’s broken and fixing it.

With the basic projects functionality done, you’re ready for the next step.
Because you’re building a ticket tracking application, it makes sense to implement
functionality that lets you track tickets, right? That’s precisely what we do in the
next chapter. We also cover nested routing and association methods for models.
Let’s go!

Index Terms

4.5 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

134

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

5
With the project resource CRUD done in Chapter 4, the next step is to set up the
ability to create tickets within the scope of a given project. This chapter explores
how to set up a nested resource in Rails, defining routing for resources byTicket

creating a CRUD interface for them, scoped underneath the projects resource that
you just created. In this chapter you'll see just how easy it is to retrieve all ticket
records for a specific project and perform CRUD operations on them, mainly with
the powerful associations interface that Rails provides through its Active Record
component.

To add the functionality to create tickets underneath the projects, you first develop
the Capybara features and then implement the code required to make them pass.
Nesting one resource under another involves additional routing, working with
associations in Active Record, and using more s. Let’s get intobefore_action

this.
To create tickets for your application, you need an idea of what you’re going to

implement. You want to create tickets only for particular projects, so you need a
New Ticket link on a project’s show page. The link must lead to a form where a
title and a description for your ticket can be entered, and the form needs a button
that submits it to a action in your controller. You also want to ensure thecreate

data entered is valid, just as you did with the model. This new form willProject

look like Figure 5.1.

Nested resources

5.1 Creating tickets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

135

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 5.1 Form for creating new tickets

Start by using the code from the following listing in a new file.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

136

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 5.1 spec/features/creating_tickets_spec.rb

You've seen before, but this time, we use it to create the parentbefore

object. Our children need a parent, so it makes sense to build one before every test.
We want to make sure to test the basic functionality of creating a ticket. It's

pretty straightforward: fill in the attributes, click the button, and make sure it
works!

We should also test the failure case. Because we need to have a title and
description, a failing case is easy: just click the "Create Ticket" button
prematurely!

When you run this new feature using the bin/rspec

 command, your spec/features/creating_tickets_spec.rb before

block fails, as shown in the following listing.

require 'spec_helper'

feature "Creating Tickets" do
 before do
 FactoryGirl.create(:project, name: "Internet Explorer")

 visit '/'
 click_link "Internet Explorer"
 click_link "New Ticket"
 end

 scenario "Creating a ticket" do
 fill_in "Title", with: "Non-standards compliance"
 fill_in "Description", with: "My pages are ugly!"
 click_button "Create Ticket"

 expect(page).to have_content("Ticket has been created.")
 end

 scenario "Creating a ticket without valid attributes fails" do
 click_button "Create Ticket"

 expect(page).to have_content("Ticket has not been created.")
 expect(page).to have_content("Title can't be blank")
 expect(page).to have_content("Description can't be blank")
 end
end

Failure/Error: click_link "New Ticket"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

137

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You need to add this "New Ticket" link to the app/views/projects/show.html.erb
template so that this line in the test will work. Add it underneath the "Delete
Project" link.

This helper is called a , and is just like the standardnested routing helper
routing helper. The similarities and differences between the two are explained in
the next section.

When defining the "New Ticket" link, you used a nested routing helper—
—rather than a standard routing helper such as new_project_ticket_path

 because you want to create a new ticket for a given project.new_ticket_path

Both helpers work in a similar fashion, except the nested routing helper takes one
argument always, the object for which you want to create a new ticket:@project

the object that you’re nested inside. The route to any ticket URL is always scoped
by in your application. This helper and its brethren are defined/projects/:id

by changing this line in ,config/routes.rb

to these lines:

This code tells the routing for Rails that you have a tickets resource nested
inside the projects resource. Effectively, any time you access a ticket resource, you

Capybara::ElementNotFound:
 Unable to find link "New Ticket"

<%= link_to "New Ticket", new_project_ticket_path(@project) %>

5.1.1 Nested routing helpers

resources :projects

resources :projects do
 resources :tickets
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

138

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

access it within the scope of a project too. Just as the resources :projects

method gave you helpers to use in controllers and views, this nested one gives you
the helpers (where represents the identifier of a resource) shown in table 5.1.id

As before, you can use the or alternatives to these helpers,*_url *_path

such as , to get the full URL if you so desire. The project_tickets_url

 symbol here would normally be replaced by the project ID as well:project_id

as the symbol, which would be replaced by a ticket’s ID.:id

In the left column are the routes that can be accessed, and in the right, the
routing helper methods you can use to access them. Let’s make use of them by first
creating your .TicketsController

Because you defined this route in your routes file, Capybara can now click the link
in your feature and proceed before complaining about the missing

, spitting out an error followed by a stack trace:TicketsController

Some guides may have you generate the model before you generate the

Table 5.1 Nested RESTful routing matchupm

Route Helper

/projects/:project_id/tickets project_tickets_path

/projects/:project_id/tickets/new new_project_ticket_path

/projects/:project_id/tickets/:id/edit edit_project_ticket_path

/projects/:project_id/tickets/:id project_ticket_path

5.1.2 Creating a tickets controller

Failure/Error: click_link "New Ticket"
 ActionController::RoutingError:
 uninitialized constant TicketsController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

139

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

controller, but the order in which you create them is not important. When writing
tests, you just following the bouncing ball, and if the test tells you it can’t find a
controller, then you generate the controller it’s looking for next. Later, when you
inevitably receive an error that it cannot find the model, as you did for theTicket

 model, you generate that too. This is often referred to as Project top-down

.design1

Footnote 1 http://en.wikipedia.org/wiki/Top-down_and_bottom-up_designm

To generate this controller and fix this error,uninitialized constant

use this command:

You may be able to pre-empt what’s going to happen next if you run the test:
it’ll complain of a missing action that it’s trying to get to by clicking the Newnew

Ticket link. Open app/controllers/tickets_controller.rb and add the action,new

shown in the following listing.

Listing 5.2 new action, TicketsController

The method simply instantiates a new record for the build tickets

association on the object, working in much the same way as the@project

following code would:

Of course, you haven’t yet done anything to define the variable in @project

, so it would be . You should define the variableTicketsController nil

using a , just as you did in the . Putbefore_action ProjectsController

$ bin/rails g controller tickets

def new
 @ticket = @project.tickets.build
end

Ticket.new(project_id: @project.id)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

140

Licensed to <alex@vinova.sg>

mailto:@project.tickets.build
mailto:@project.id
http://www.manning-sandbox.com/forum.jspa?forumID=818

the following line just under the definition inclass

app/controllers/tickets_controller.rb.

You don’t restrict the here because you want to have a before_action

 to work with in all actions because the tickets resource is only@project

accessible through a project. Underneath the action, define the method thatnew

the uses:before_action

Where does come from? It’s made availableparams[:project_id]

through the wonders of Rails’s routing, just as was back in params[:id]

. It’s called instead of because youProjectsController project_id id

could (and later will) have a route that you want to pass through an ID for a ticket
as well as a project route, and the ticket id would be . Now howparams[:id]

about that method on your object? Let’s make sure ittickets @project

doesn’t already exist by running bin/rspec

:spec/features/creating_tickets_spec.rb

No Rails magic here yet. We'll be getting into some of that with Active Record
associations right now.

before_action :set_project

private
 def set_project
 @project = Project.find(params[:project_id])
 end

Failure/Error: click_link "New Ticket"
 NoMethodError:
 undefined method `tickets' for #<Project:0x007fc6222100a8>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

141

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The method on objects is defined by calling an associationtickets Project

method in the class called , which you can use as followsProject has_many

inside app/models/project.rb:

As mentioned before, this defines the method you need as well astickets

the association. With the code method called inside the has_many Project

model, you will now be able to get to all the tickets for any given project by simply
calling the method on any object.tickets Project

By defining a association in the model, it also gives you a wholehas_many

slew of other useful methods, such as the method, which you are currentlybuild

calling in the action of . The method isnew TicketsController build

equivalent to for the class (which you create in a moment) butnew Ticket

associates the new object instantly with the object by setting a foreign@project

key called automatically.project_id

U p o n r e - r u n n i n g bin/rspec

, you will get this:spec/features/creating_tickets_spec.rb

You can determine from this output that the method is looking for the Ticket

class, but why? The method on objects is defined by the tickets Project

 call in the model. This method assumes that when you wanthas_many Project

to get the tickets, you actually want objects of the model. This model isTicket

currently missing; hence, the error. You can add this model now with the following
command

5.1.3 Defining a has_many association

has_many :tickets

Failure/Error: click_link "New Ticket"
NameError:
 uninitialized constant Project::Ticket (NameError)

$ bin/rails generate model ticket title:string description:text \
 project:references

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

142

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This command is written as above so it will fit into the book. You can put it all
on one line and it will work the same. The backslash at the end is just to tell your
prompt not to run the command just yet, as there's more arguments to go.

The part defines an column for the project:references integer tickets

table called in the migration that creates the table. It willproject_id tickets

also define an index on this column, so that lookups for the tickets for a specific
project will be faster. The new migration for this model looks like this:

As you can see here, this migration will also add an index on the table which
will make lookups for tickets relating to a specific project faster than if there was
no index.

The column represents the project this ticket links to and isproject_id

called a . The purpose of this field is to simply store the primaryforeign key

key of the project that the ticket relates to. By creating a ticket on the project with
the field of "1", the field in the table will also be setid project_id tickets

to "1".
You should now run the migration with and loadbin/rake db:migrate

the updated schema into your test database by running bin/rake

.db:test:prepare

The task runs the migrations and then dumps thebin/rake db:migrate

structure of the database to a file called db/schema.rb. This structure allows you to
restore your database using the task if you wish,bin/rake db:schema:load

which is better than running all the migrations on a large project again!2

class CreateTickets < ActiveRecord::Migration
 def change
 create_table :tickets do |t|
 t.string :title
 t.text :description
 t.references :project, index: true

 t.timestamps
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

143

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Footnote 2mLarge projects can have hundreds of migrations, which may not run due to changes in the system
over time. It's best to just use the .bin/rake db:schema:load

The task performs a very similar task to bin/rake db:test:prepare

. It loads this schema into the test database,bin/rake db:schema:load

making the fields that were just made available on the development database by
running the migration also now available on the test database.

N o w w h e n y o u r u n bin/rspec

, you’re told the newspec/features/creating_tickets_spec.rb

template is missing:

A file seems to be missing! You must create this file in order to continue.

Create the file at app/views/tickets/new.html.erb and put the following inside:

This template renders a partial, which will be relative to the currentform

folder and will be placed at app/views/tickets/_form.html.erb, using the code from
Listing 5.3

Failure/Error: click_link "New Ticket"
Missing template tickets/new, application/new
 with {handlers: [:erb, :builder, :coffee],
 formats: [:html],
 locale: [:en]}.

 Searched in:
 * ".../ticketee/app/views"

5.1.4 Creating tickets within a project

<h2>New Ticket</h2>

<%= render "form" %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

144

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 5.3 app/views/tickets/_form.html.erb

Note that is passed an array of objects rather than simply:form_for

This code indicates to that you want the form to post to the nestedform_for

route you’re using. For the action, this generate a route like /projects/1/tickets,new

and for the action, it generates a route like /projects/1/tickets/2. This type ofedit

routing is known as .polymorphic routing3

Footnote 3mA great description of which can be found at http://ryanbigg.com/2012/03/polymorphic-routes

W h e n y o u r u n b i n / r s p e c

 again, you’re told the spec/features/creating_tickets_spec.rb

 action is missing:create

<%= form_for [@project, @ticket] do |f| %>
 <% if @ticket.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@ticket.errors.count, "error") %>
 prohibited this ticket from being saved:</h2>

 <% @ticket.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

 <p>
 <%= f.label :title %>

 <%= f.text_field :title %>
 </p>
 <p>
 <%= f.label :description %>

 <%= f.text_area :description %>
 </p>
 <%= f.submit %>
<% end %>

<%= form_for @ticket do |f| %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

145

Licensed to <alex@vinova.sg>

mailto:@ticket.errors.any?
mailto:pluralize(@ticket.errors.count
mailto:@ticket.errors.full_messages.each
http://ryanbigg.com/2012/03/polymorphic-routes
http://www.manning-sandbox.com/forum.jspa?forumID=818

To define this action, put it directly underneath the action inside new

 but before the method. You'll also add theTicketsController private

appropriate strong parameters helper method right below the , as shownprivate

in the following listing:

Listing 5.4 create action, TicketsController

Inside this action, you use and specify an here—theredirect_to Array

same array you used in the earlier—containing a object andform_for Project

a object. Rails inspects any array passed to helpers, such as Ticket

 and , and determines what you mean from the values.redirect_to link_to

For this particular case, Rails determine that you want this helper:

Rails determines this helper because, at this stage, and @project @ticket

are both objects that exist in the database, and you can therefore route to them. The
route generated would be /projects/1/tickets/2 or something similar. Back in the

, was new, so the route happened to be /projects/1/tickets.form_for @ticket

Failure/Error: click_button "Create Ticket"
AbstractController::ActionNotFound:
 The action 'create' could not be found for TicketsController

def create
 @ticket = @project.tickets.build(ticket_params)
 if @ticket.save
 flash[:notice] = "Ticket has been created."
 redirect_to [@project, @ticket]
 else
 flash[:alert] = "Ticket has not been created."
 render "new"
 end
end
private
 def ticket_params
 params.require(:ticket).permit(:title, :description)
 end

project_ticket_path(@project, @ticket)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

146

Licensed to <alex@vinova.sg>

mailto:@project.tickets.build
mailto:@ticket.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

You could have been explicit and specifically used project_ticket_path

in the action, but using an array is DRYer.
W h e n y o u r u n b i n / r s p e c

, both scenarios report thespec/features/creating_tickets_spec.rb

same error:

Therefore, you must create a action for the , butshow TicketsController

when you do so, you’ll need to find tickets only for the given project.

Currently, both of our scenarios are failing. :'(
Of course, now you must define the action for your controller, but youshow

can anticipate that you’ll need to find a ticket for the , , and edit update

 actions too and pre-empt those errors. You can also make this a destroy

, just as you did in the with the before_action ProjectsController

 method. You define this finder underneath the set_project set_project

method in the :TicketsController

find is yet another association method provided by Rails when you declared

that your model . This code attempts to findProject has_many :tickets

tickets only within the scope of the project. Put the at the top ofbefore_action

your class, just underneath the one to find the project:

Failure/Error: click_button 'Create Ticket'
AbstractController::ActionNotFound:
 The action 'show' could not be found for TicketsController

5.1.5 Finding tickets scoped by project

def set_ticket
 @ticket = @project.tickets.find(params[:id])
end

before_action :set_project
before_action :set_ticket, only: [:show, :edit, :update, :destroy]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

147

Licensed to <alex@vinova.sg>

mailto:@project.tickets.find
http://www.manning-sandbox.com/forum.jspa?forumID=818

The sequence here is important because you want to find the before@project

you go looking for tickets for it. Then create the view template for this action at
app/views/tickets/show.html.erb using this code:

The new method, , converts the line breaks entered into thesimple_format 4

description field into HTML break tags () so that the description renders

exactly how the user intends it to.

Footnote 4 m Line breaks are represented as and in strings in Ruby rather than as visible line breaks.\n \r\n

Based solely on the changes that you’ve made so far, your first scenario should
be passing. Let’s see with a quick run of bin/rspec

:spec/features/creating_tickets_spec.rb

This means that you’ve got the first scenario under control and that users of
your application can create tickets within a project. Next, you need to add
validations to the model to get the second scenario to pass.Ticket

The second scenario fails because the that it saves is valid, at least@ticket

according to your tests in their current state:

<div id='ticket'>
 <h2><%= @ticket.title %></h2>
 <%= simple_format(@ticket.description) %>
</div>

Failure/Error: expect(page).to have_content("Ticket has not ...
 expected there to be content "Ticket has not been created." in [text]
...

2 examples, 1 failure

5.1.6 Ticket validations

expected there to be content "Ticket has not been created" in "[text]"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

148

Licensed to <alex@vinova.sg>

mailto:@ticket.title
mailto:simple_format(@ticket.description
http://www.manning-sandbox.com/forum.jspa?forumID=818

You need to ensure that when somebody enters a ticket into the application, the
 and attributes are filled in. To do this, define thetitle description

following validations inside the model:Ticket

Listing 5.5 app/models/ticket.rb

NOTE Validating two fields using one line
You could also validate the presence of both of these fields using a
single line:

It's just the author's preference to have validations for different
fields on individual lines. You don't have to use two lines to do it, we
can still be friends.

N o w w h e n y o u r u n bin/rspec

, the entire feature passes:spec/features/creating_tickets_spec.rb

Before we wrap up here, let’s add one more scenario to ensure that what is
entered into the description field is longer than 10 characters. You want the
descriptions to be useful! Let’s add this scenario to the
spec/features/creating_tickets_spec.rb file:

validates :title, presence: true
validates :description, presence: true

validates :title, :description, presence: true

2 examples, 0 failures

scenario "Description must be longer than 10 characters" do
 fill_in "Title", with: "Non-standards compliance"
 fill_in "Description", with: "it sucks"
 click_button "Create Ticket"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

149

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

To implement the code needed to make this scenario pass, add another option to
the end of the validation for the in your model, like this:description Ticket

If you go into and try to create a new objectbin/rails console Ticket

by using , you can get the full text for your error:create!

That is the precise error message you are looking for in your new scenario, and
if you're getting it on the console then that must mean that would appear in the app
t o o . F i n d o u t b y r u n n i n g bin/rspec

 again.spec/features/creating_tickets_spec.rb

Alright, that one's passing now. Excellent! You should ensure that the rest of
the project still works by running again. You will see this output:bin/rspec

There looks to be two pending specs here, one located in
spec/helpers/tickets_helper_spec.rb and the other in spec/models/ticket_spec.rb.

 expect(page).to have_content("Ticket has not been created.")
 expect(page).to have_content("Description is too short")
end

validates :description, presence: true,
 length: { minimum: 10 }

irb(main):001:0> Ticket.create!
ActiveRecord::RecordInvalid: ... Description is too short
(minimum is 10 characters)

3 examples, 0 failures

12 examples, 0 failures, 2 pending

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

150

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You don't need these right now, and so you should delete these two files. Once
you've done that, re-running will output a lovely green result:bin/rspec

Great! Everything’s still working. Push the changes!

This section covered how to create tickets and link them to a specific project
through the foreign key called on records in the table.project_id tickets

The next section shows how easily you can list tickets for individual projects.

Now that you have the ability to create tickets, you use the action to createshow

the functionality to view them individually.
When displaying a list of projects, you use the action of the index

. For tickets, however, you use the action becauseProjectsController show

this page is currently not being used for anything else in particular. To test it, put a
new feature at spec/features/viewing_tickets_spec.rb using the code from the
following listing.

10 examples, 0 failures

$ git add .
$ git commit -m "Implement creating tickets for a project"
$ git push

5.2 Viewing tickets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

151

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 5.6 spec/features/viewing_tickets_spec.rb

Quite the long feature! We’ll go through it piece by piece in just a moment.
First, let’s examine the usage in your scenario. Rather than checkingwithin

the entire page for content, this step checks the specific element using Cascading
Style Sheets (CSS) selectors. The prefix finds all elements with an ID of#ticket

 that contain an element with the content you specified. This contentticket h2

require 'spec_helper'

feature "Viewing tickets" do
 before do
 textmate_2 = FactoryGirl.create(:project,
 name: "TextMate 2")

 FactoryGirl.create(:ticket,
 project: textmate_2,
 title: "Make it shiny!",
 description: "Gradients! Starbursts! Oh my!")

 internet_explorer = FactoryGirl.create(:project,
 name: "Internet Explorer")
 FactoryGirl.create(:ticket,
 project: internet_explorer,
 title: "Standards compliance",
 description: "Isn't a joke.")

 visit '/'
 end

 scenario "Viewing tickets for a given project" do
 click_link "TextMate 2"

 expect(page).to have_content("Make it shiny!")
 expect(page).to_not have_content("Standards compliance")

 click_link "Make it shiny!"
 within("#ticket h2") do
 expect(page).to have_content("Make it shiny!")
 end

 expect(page).to have_content("Gradients! Starbursts! Oh my!")
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

152

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

should appear inside the specified tag only when you’re on the ticket page, so this
is a great way to make sure that you’re on the right page and that the page is
displaying relevant information.

When you run this spec with bin/rspec

 you'll see that it cannotspec/features/viewing_tickets_spec.rb

find the ticket factory:

Just like before when the project factory wasn't registered, you're going to need
to create the ticket factory now. What this should do is create an example ticket
with a valid title and description. To do this, create a new file called
spec/factories/ticket_factory.rb and put the content from the following listing in it:

Listing 5.7 spec/factories/ticket_factory.rb

With the ticket factory now defined, the block of this spec should nowbefore

run all the way through when you run bin/rspec

, and you'll see this error:spec/features/viewing_tickets_spec.rb

The spec is now attempting to see the ticket's title on the page, but it cannot see
it at the moment, because you're not displaying a list of tickets on the project show

template yet.

Failure/Error: Factory(:ticket,
ArgumentError:
 Factory not registered: ticket

FactoryGirl.define do
 factory :ticket do
 title "Example ticket"
 description "An example ticket, nothing more"
 end
end

Failure/Error: expect(page).to have_content("Make it shiny!")
 expected there to be text "Make it shiny!" in ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

153

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

To display a ticket on the template, you can iterate through the project’sshow

tickets by using the method on a object, made available bytickets Project

the call in your model. Put this code at the bottom ofhas_many :tickets

app/views/projects/show.html.erb, as shown in the following listing:

Listing 5.8 app/views/projects/show.html.erb

TIP Be careful about variables here
If you use a variable in place of the variable in@ticket ticket

the ’s second argument, it will be . You haven’tlink_to nil

initialized the variable at this point, and uninitialized@ticket

instance variables are by default. If rather than thenil @ticket

correct is passed in here, the URL generated will be aticket

projects URL, such as , rather than the correct /projects/1

./projects/1/tickets/2

Here you iterate over the items in using the @project.tickets each

method, which does the iterating for you, assigning each item to a ticket

variable used inside the block. The code inside this block runs for every single
t i c k e t . W h e n y o u r u n bin/rspec

 it will pass because the appspec/features/viewing_tickets_spec.rb

now has the means to go to a specific ticket from the project's page:

Time to make sure everything else is still working by running .bin/rspec

5.2.1 Listing tickets

<ul id='tickets'>
 <% @project.tickets.each do |ticket| %>

 #<%= ticket.id %> -
 <%= link_to ticket.title, [@project, ticket] %>

 <% end %>

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

154

Licensed to <alex@vinova.sg>

mailto:@project.tickets.each
mailto:@project.tickets
http://www.manning-sandbox.com/forum.jspa?forumID=818

You should see that everything is green.

Fantastic! Push!

Now you can see tickets just for a particular project, but what happens when a
project is deleted? The tickets for that project would not be magically deleted. To
implement this behavior, you can pass some options to the association,has_many

which will delete the tickets when a project is deleted.

When a project is deleted, its tickets become useless as they’re inaccessible
because of how you defined their routes. Therefore, when you delete a project, you
should also delete the tickets for that project, and you can do that by using the

 option on the association for tickets defined in your :dependent has_many

 model.Project

This option has three choices that all act slightly differently from each other.
The first one is the value::destroy

If you put this in your model, any time you call on a Project destroy

 object, Rails will iterate through the tickets for this project and will call Project

 on them, then calls any destroy callbacks (such as any ’s indestroy has_many

the model, which also have the option) the Ticket dependent 5 ticket

objects have on them, any destroy callbacks for those objects, and so on. The

11 examples, 0 failures

$ git add .
$ git commit -m "Implement displaying a list of relevant tickets.

You can see them on projects, and view a particular ticket."
$ git push

5.2.2 Culling tickets

has_many :tickets, dependent: :destroy

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

155

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

problem is that if you have a large number of tickets, is called on eachdestroy

one, which will be slow.

Footnote 5 m Or any callback defined with or .after_destroy before_destroy

The solution is the second value for this option:

This simply deletes all the tickets using a SQL delete, like this:

This operation is quick and is exceptionally useful if you have a large number
of tickets that have callbacks, or have callbacks that you don't necessarilydon’t
care about when deleting a project. If you have callbacks on for ado Ticket

destroy operation, then you should use the first option, dependent:

.:destroy

Finally, if you just want to disassociate tickets from a project and unset the
 field, you can use this option:project_id

When a project is deleted with this type of option defined then it:dependent

will execute an SQL query such as this:

Rather than deleting the tickets, this option keeps them around, but their
 fields are unset, leaving them orphaned, which isn't suitable for thisproject_id

system.
Using this option would be helpful, for example, if you were building a task

has_many :tickets, dependent: :delete_all

DELETE FROM tickets WHERE project_id = :project_id

has_many :tickets, dependent: :nullify

UPDATE tickets SET project_id = NULL WHERE project_id = :project_id

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

156

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

tracking application and instead of projects and tickets you had users and tasks. If
you delete a user, you may want to reassign rather than delete the tasks associated
with that user, in which case you’d use the optiondependent: :nullify

instead.
In your projects and tickets scenario, though, you use dependent:

 if you have callbacks to run on tickets when they’re destroyed or :destroy

 if you have no callbacks on tickets.dependent: :delete_all

To ensure that all tickets are deleted on a project when the project is deleted,
change the association in your model to this:has_many Project

With this new option in the model, all tickets for the:dependent Project

project will be deleted when the project is deleted.
We haven't written any tests for this behavior, as it's quite simple and we'd

basically be testing that we changed one tiny option. This is more of an internal
implementation detail than it is customer-facing, and we're writing testsfeature

right now, not tests. Let's check that we didn't break existing tests, commit,model

and push!

Let’s look at how to edit the tickets in your application next.

You want users to be able to edit tickets, the part of this CRUD interfaceupdating
for tickets. This section covers creating the and actions for the edit update

.TicketsController

The next feature you’re going to implement is the ability to edit tickets. This
functionality follows a thread similar to the projects edit feature where you follow
an Edit link in the template, change a field and then hit an update button andshow

has_many :tickets, dependent: :delete_all

$ bin/rspec
$ git add .
$ git commit -m "Cull tickets when project gets destroyed"
$ git push

5.3 Editing tickets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

157

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

expect to see two things: a message indicating that the ticket was updated
successfully, and the modified data for that ticket.

With that in mind, you can write this feature using the code in the following
listing, placing the code in a file at spec/features/editing_tickets_spec.rb.

Listing 5.9 spec/features/editing_tickets_spec.rb

At the top of this feature you use a new RSpec method, called . In fact,let!

you use it twice! Its lesser brother, (no bang), defines a new method with thelet

same name as the symbol passed in, and that new method then evaluates the

require 'spec_helper'

feature "Editing tickets" do
 let!(:project) { FactoryGirl.create(:project) }
 let!(:ticket) { FactoryGirl.create(:ticket, project: project) }

 before do
 visit '/'
 click_link project.name
 click_link ticket.title
 click_link "Edit Ticket"
 end

 scenario "Updating a ticket" do
 fill_in "Title", with: "Make it really shiny!"
 click_button "Update Ticket"

 expect(page).to have_content "Ticket has been updated."

 within("#ticket h2") do
 expect(page).to have_content("Make it really shiny!")
 end

 expect(page).to_not have_content ticket.title
 end

 scenario "Updating a ticket with invalid information" do
 fill_in "Title", with: ""
 click_button "Update Ticket"

 expect(page).to have_content("Ticket has not been updated.")
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

158

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

content of the block whenever that method is called. If you were using (nolet

bang), you would need to call the method somewhere in the test, eitherproject

in the or blocks, in order for it to create a project.before scenario

By using , it will automatically call the block and therefore the projectlet!

and ticket that these definitions reference will be created. You can then referlet!

to them later on in your tests, as you do in the block underneath.before

Just like we made a spec for creating a ticket, we need one for updating, as
well. Updating specs are always complex, because you need to already have an
existing object that's built properly, and then change it.

It's also a good idea to test the failure case. It looks pretty similar to the
update case, but rather than try to factor out all the commonalities, we repeat
ourselves. Some duplication in tests is okay; if it makes the test easier to follow, it's
worth a litte bit of repetition.

When you run this feature using bin/rspec

, the first three lines in the spec/features/editing_tickets_spec.rb

 run just fine, but the fourth fails:before

To fix this, add the "Edit Ticket" link to the ’s TicketsController show

template, as that’s where you’ve navigated to in your feature. Put it on the line
underneath the tag in app/views/tickets/show.html.erb.<h2>

Here is yet another use of the argument passed to the Array link_to

method, but rather than passing all Active Record objects, you pass a Symbol

first. Rails, yet again, works out from this what route you wish to follow.Array

Rails interprets this array to mean the method,edit_project_ticket_path

which is called like this:

Failure/Error: click_link "Edit Ticket"
Capybara::ElementNotFound:
 Unable to find link "Edit Ticket"

<%= link_to "Edit Ticket", [:edit, @project, @ticket] %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

159

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Now that you have an "Edit Ticket" link, you need to add the action toedit

the , as that will be the next thing to error when you run TicketsController

:bin/rspec spec/features/editing_tickets_spec.rb

The next logical step is to define the action in your edit TicketsController

, which you can leave empty because the before action does all theset_ticket

heavy lifting for you. Define the action to be a blank method, just so other people
reading this code know that this controller deals with this action:

Again, you’re defining the action here so that anybody coming through and
reading your class knows that this controller responds toTicketsController

this action. It’s the first place people will go to determine what the controller does,
because it is the . While the blank action is not necessary, it goodcontroller is
form, so that those coming to this project after you know that the action has been
implemented.

The next logical step is to create the view for this action. Put it at
app/views/tickets/edit.html.erb and fill it with this content:

edit_project_ticket_path(@project, @ticket)

Failure/Error: click_link "Edit Ticket"
AbstractController::ActionNotFound:
 The action 'edit' could not be found for TicketsController

5.3.1 Adding the edit action

def edit
end

<h2>Editing a ticket in <%= @project.name %></h2>

<%= render "form" %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

160

Licensed to <alex@vinova.sg>

mailto:@project.name
http://www.manning-sandbox.com/forum.jspa?forumID=818

Here you re-use the partial you created for the action, which isform new

handy. The knows which action to go to. If you run the featureform_for

command here, you’re told the update action is missing:

You should now define the update action in your , asTicketsController

shown in the following listing:

Listing 5.10 update action, TicketsController

Remember that in this action you don’t have to find the or @ticket

 objects because a does it for the , , @project before_action show edit

, and actions. With this single action implemented, bothupdate destroy

scenarios inside the "Editing Tickets" feature will now pass when you run
:bin/rspec spec/features/editing_tickets_spec.rb

Now check to see if everything works with a quick run of :bin/rspec

Failure/Error: click_button "Update Ticket"
AbstractController::ActionNotFound:
 The action 'update' could not be found for TicketsController

5.3.2 Adding the update action

def update
 if @ticket.update(ticket_params)
 flash[:notice] = "Ticket has been updated."

 redirect_to [@project, @ticket]
 else
 flash[:alert] = "Ticket has not been updated."

 render action: "edit"
 end
end

2 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

161

Licensed to <alex@vinova.sg>

mailto:@ticket.update
http://www.manning-sandbox.com/forum.jspa?forumID=818

Great! Let’s commit and push that.

In this section, you implemented and for the edit update

 by using the scoped finders and some familiar methods,TicketsController

such as . You’ve got one more part to go: deletion.update_attributes

We now reach the final story for this nested resource, the deletion of tickets. As
with some of the other actions in this chapter, this story doesn’t differ from what
you used in the , except you’ll change the name ProjectsController project

to for your variables and . It’s good to have theticket flash[:notice]

reinforcement of the techniques previously used: practice makes perfect.
Let’s use the code from the following listing to write a new feature in

spec/features/deleting_tickets_spec.rb.

13 examples, 0 failures

$ git add .
$ git commit -m "We can now edit tickets."
$ git push

5.4 Deleting tickets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

162

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 5.11 spec/features/deleting_tickets_spec.rb

When you run this spec using bin/rspec

, it will fail because youspec/features/deleting_tickets_spec.rb

don’t yet have a "Delete Ticket" link on the template for tickets:show

You can add the "Delete Ticket" link to the app/views/tickets/show.html.erb file
just under the "Edit Ticket" link, exactly like what you did with projects:

The is specified again, turning the request into onemethod: :delete

headed for the action in the controller. Without this option,destroy :method

require 'spec_helper'

feature 'Deleting tickets' do
 let!(:project) { FactoryGirl.create(:project) }
 let!(:ticket) { FactoryGirl.create(:ticket, project: project) }

 before do
 visit '/'
 click_link project.name
 click_link ticket.title
 end

 scenario "Deleting a ticket" do
 click_link "Delete Ticket"

 expect(page).to have_content("Ticket has been deleted.")
 expect(page.current_url).to eq(project_url(project))
 end
end

Failure/Error: click_link "Delete Ticket"
Capybara::ElementNotFound:
 Unable to find link "Delete Ticket"

<%= link_to "Delete Ticket", [@project, @ticket], method: :delete,
 data: { confirm: "Are you sure you want to delete this ticket?"} %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

163

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

you’d be off to the action because the method defaults to the show link_to GET

m e t h o d . U p o n r u n n i n g bin/rspec

 again, you’re told a spec/features/deleting_tickets_spec.rb

 action is missing:destroy

The next step must be to define this action, right? Open
app/controllers/tickets_controller.rb and define it directly under the update

action:

Listing 5.12 destroy action, TicketsController

With that done, your feature should now pass when bin/rspec

 is run again:spec/features/deleting_tickets_spec.rb

Yet again, check to see that everything is still going as well as it should by
using . You've not changed much, and so it's likely that things willbin/rspec

still be working. You should see this output:

Failure/Error: click_link "Delete Ticket"
AbstractController::ActionNotFound:
 The action 'destroy' could not be found for TicketsController

def destroy
 @ticket.destroy
 flash[:notice] = "Ticket has been deleted."

 redirect_to @project
end

1 example, 0 failures

14 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

164

Licensed to <alex@vinova.sg>

mailto:@ticket.destroy
http://www.manning-sandbox.com/forum.jspa?forumID=818

ActiveRecord, associations, find
ActiveRecord, build
ActiveRecord::Base, has_many
bin/rake db:schema:load
bin/rake db:test:prepare
foreign key
form_for, Array usage
simple_format

Commit and push!

You’ve now completely created another CRUD interface, this time for the
tickets resource, which is only accessible within the scope of a project. This means
you must request it using a URL such as /projects/1/tickets/2 rather than /tickets/2.

In this chapter, you generated another controller, the ,TicketsController

which allows you to create records for your model that will end up inTicket

your tickets table. The difference between this controller and the
 is that the is accessible onlyProjectsController TicketsController

within the scope of an existing project because you used nested routing.
In this controller, you scoped the finds for the model by using the Ticket

 association method provided by the association helper method tickets

 call in your model. also provides the has_many Project has_many build

method, which you used to begin to create new records that are scoped toTicket

a project.
In the next chapter, you will learn how to let users sign up and sign in to your

application. You also implement a basic authorization for actions such as creating a
project.

Index Terms

$ git add .
$ git commit -m "Implement deleting tickets feature"
$ git push

5.5 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

165

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

6
You’ve created two resources for your Ticketee application: projects and tickets.
Now you’ll add authentication to let users sign in to your application. With this
feature, you can track which tickets were created by which users. A little later,
you’ll use these user records to allow and deny access to certain parts of the
application. The general idea behind having users for this application is that some
users are in charge of creating projects (project owners) and others use whatever
the projects provide. If they find something wrong with it or wish to suggest an
improvement, filing a ticket is a great way to inform the project owner about their
request. You don’t want absolutely everybody creating or modifying projects, so
you’ll learn to restrict project creation to a certain subset of users. To round out the
chapter, you’ll create another CRUD interface, this time for the users resource, but
with a twist.

There are lots of different ways that you can implement this functionality, and a
balance needs to be struck. Authentication (as you’ll see) deals with cryptography,
and we don’t know about you, but we’re not experts in the field. So writing 100%
of the code yourself probably isn’t the best thing for you or your users. There are
gems (such as Devise) that do everything you could ever want (and more), but we
don’t feel comfortable outsourcing such an important part of an application to a
gem. Furthermore, you can often spend as much time customizing the more
full-stack gems as you would writing authentication in the first place.

In this chapter, you’ll build authentication with
. This comes with Rails (as part of ActiveModel::HasSecurePassword

) and is very, very minimal: it only handles the cryptographyActiveModel

portion of authentication. The rest is up to you. That way, you can be safe, yet get
exactly what you want: a win/win.

Authentication

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

166

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Let’s get down to brass tacks. As you’ve seen, every time you have a concept in
your project, you make a model for it: projects and tickets were both made so far.
Because you have the concept of a user, let’s make a model to represent it. You’ll
use the generator to make it:

Easy! You may be wondering why you didn’t include a type, like
. If you leave off the type, Rails will assume that you want a email:string

 type. In this case, this saved you typing three times! Everystring :string

little bit counts.
So why ? It’s important that you don’t save your users’password_digest

passwords directly, because if someone gains access to your database, they could
read all of your users’ passwords. We hope we don’t have to tell you that’s bad.
What to do?

Cryptographers call text that you want to encrypt . If you encrypt itplaintext
using an encryption algorithm (a), you get out. You could docypher cyphertext
this, but then it’d be possible for someone to take your cyphertext and decrypt it
and get plaintext back out. You need something else.

You don’t care what the user types as their password; you just care that when
they type it again, you can recognize that it’s the same thing they typed when they
signed up. It’d be nice if your transformation was irreversible as well, so the
original passwords can’t be recovered; cryptographers call this a .one-way function
You’ll use one of those one-way functions called a . You’ll save this hash function

 (the output of a hash function) in your database instead. So, a user gives youhash
their password, you hash it, and then you save the hash. When they log in next
time, they give you their password, you hash it, and then you compare it to the
hash you saved. That way, you know they typed the same password, but you don’t
save it to the database. Neat!

Rails comes with a helper method to help you properly hash your passwords:
it’s called . Let’s get that going. First, you need to addhas_secure_password

a gem to your Gemfile. Uncomment the appropriate line so it looks like this:

6.1 Authentication basics

$ bin/rails g model user name email password_digest
$ bin/rake db:migrate db:test:prepare

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

167

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Then you need to rebundle:

Before you implement it in your model, let’s write some tests to verify that
everything is working as you’d expect. Normally we wouldn’t consider testing
something that is a feature of Rails; but authentication is an incredibly important
part of your application, and you want to be sure it’s working properly. We always
write more tests than we might otherwise write for parts of our apps that are
complex or important, like authentication, authorization, administrator
functionality, payment systems, or anything that interacts with an external service.

spec/models/user_spec.rb already exists. Replace its content with this:

To use ActiveModel has_secure_password
gem 'bcrypt-ruby', '~> 3.0.0'

$ bin/bundle

require 'spec_helper'

describe User do
 describe "passwords" do
 it "needs a password and confirmation to save" do
 u = User.new(name: "steve")

 u.save
 expect(u).to_not be_valid

 u.password = "password"
 u.password_confirmation = ""
 u.save
 expect(u).to_not be_valid

 u.password_confirmation = "password"
 u.save
 expect(u).to be_valid
 end

 it "needs password and confirmation to match" do
 u = User.create(
 name: "steve",
 password: "hunter2",
 password_confirmation: "hunter")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

168

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Usually we’d write tests in small batches and work on them one by one. But
because all this functionality is provided by , andhas_secure_password

we’re just double-checking that the application uses it correctly, we expect all
these tests to pass, so we wrote them all at once.

The first test is kinda long, so let’s break it down. First you want to make sure a
user without a username or password is invalid, so you assert that it’s not valid
immediately. Then you want to make sure you require a confirmation as well as
a password; so you add a password with no confirmation, save, and assert that
that’s not valid either. Finally, you change that confirmation to be the same as
the password and then assert that it’s valid.

Some people prefer to write this as three separate tests. We don’t think that’s a
bad thing to do, but we like the process here, where the user gets progressively
more and more correct.

If you run the spec with ,bin/rspec spec/models/user_spec.rb

you should see this:

You didn’t write any code to implement this functionality, so it’s expected to
fail. Let’s get them passing!

 expect(u).to_not be_valid
 end
 end

 describe "authentication" do
 let(:user) { User.create(
 name: "steve",
 password: "hunter2",
 password_confirmation: "hunter2") }

 it "authenticates with a correct password" do
 expect(user.authenticate("hunter2")).to be
 end

 it "does not authenticate with an incorrect password" do
 expect(user.authenticate("hunter1")).to_not be
 end
 end
end

4 examples, 4 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

169

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The usage of is simple. You need to add one linehas_secure_password

to your model—open app/models/user.rb, and do this:

That’s it! As we mentioned before, Rails provides this functionality for you, but
you have to tell Rails you want to use it. This is how you turn it on. Now run the
tests:

Awesome! The specs tell the story: you have and password

 fields on your user, they have to match, and youpassword_confirmation

get an method to check if the password is correct. Easy.authenticate

With your model in shape, let’s commit:User

Well done. Now that you have a useful , let’s let your users sign up andUser

create a .User

class User > ActiveRecord::Base
 has_secure_password
end

$ bin/rspec spec/models/user_spec.rb
....

Finished in 0.06553 seconds
4 examples, 0 failures

Randomized with seed 28571

$ bin/rspec
..................

Finished in 1.03 seconds
18 examples, 0 failures

Randomized with seed 17704

$ git add .
$ git commit -m "Make a User model with password."
$ git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

170

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Having users is nice, but if they can’t sign up via your app, it’s not much use. Let’s
write that interface. As always, you’ll start with a feature test. You need a test to
demonstrate that a user can sign up for an account in your system. Here it is, for
spec/features/signing_up_spec.rb:

You’ll get this failure:

This should start to feel familiar by now. Do you know what you need to do?
That’s right: add a link! This time, it’ll go in
app/views/layouts/application.html.erb. Why? Because you want your users to be
able to sign up on every page, and the application layout is the basis of all of your
HTML:

6.2 Signing up

require 'spec_helper'

feature 'Signing up' do
 scenario 'Successful sign up' do
 visit '/'

 click_link 'Sign up'
 fill_in "Email", with: "user@example.com"
 fill_in "Password", with: "password"
 fill_in "Password confirmation", with: "password"
 click_button "Sign up"

 expect(page).to have_content("You have signed up successfully.")
 end
end

Failure/Error: click_link 'Sign up'
Capybara::ElementNotFound:
 Unable to find link "Sign up"

<nav>
 <%= link_to "Sign up", new_user_path %>
</nav>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

171

Licensed to <alex@vinova.sg>

mailto:user@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

This fails because you haven’t defined a route yet. Here’s the failure:

As you saw before, routes are the ways you connect URLs to your controllers,
models, and views. You know you need a route because you’re making a new link
and because it can’t find a method ending in , which is one of the two_path

endings that route helpers have. Open config/routes.rb, and add this:

Now, because you defined your route, you get a different failure:

The error says it can’t find a controller, so let’s make one for your s. YouUser

could use the generator you’ve used before, but here’s another little trick. What
actions will you need? Well, you’ll need to show your form, you’ll need new

 to make the user, and you’ll need to show your user’s profile page.create show

Turns out that the controller generator has a shortcut to create not just the
controller, but also some actions. Try this on for size:

Failure/Error: visit '/'
ActionView::Template::Error:
 undefined local variable or method `new_user_path'
 for #<#<Class:0x007fe08a7b70d8>:0x007fe08a7bd7f8>

resources :users

Failure/Error: click_link 'Sign up'
ActionController::RoutingError:
 uninitialized constant UsersController

$ bin/rails g controller users new create show
create app/controllers/users_controller.rb
 route get "users/show"
 route get "users/create"
 route get "users/new"
invoke erb
create app/views/users
create app/views/users/new.html.erb
create app/views/users/create.html.erb

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

172

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Tons of stuff! A lot of this you’ve seen before, but now it’s also making files in
app/views. Before, you were just making the controllers, but now you’re making
views, routes, and actions as well. This is the advantage and disadvantage of
certain generators: they can help you make stuff you don’t want to make yourself,
but they can also make too much. For example, run again:bin/rspec

Four pending? That’s because the generator generated sample test files for your
actions. It also generated a view for your action, which you won’t use;create

and finally, it added three routes you won’t use. Let’s get rid of all that:

Don’t forget to remove the three routes from config/routes.rb as well. Withget

all that done, you should see when you run 18 examples, 1 failure

.bin/rspec

OK, let’s implement this spec. The error you’re currently getting is

This makes sense because you haven’t put anything in your view yet. Putnew

this code in app/views/users/new.html.erb:

create app/views/users/show.html.erb
...

Finished in 1.2 seconds
26 examples, 1 failure, 4 pending

$ rm -rf spec/views/users
$ rm spec/controllers/users_controller_spec.rb
$ rm -rf spec/helpers
$ rm app/views/users/create.html.erb

Failure/Error: fill_in "Email", with: "user@example.com"
Capybara::ElementNotFound:
 Unable to find field "Email"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

173

Licensed to <alex@vinova.sg>

mailto:user@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

That gives you the structure; now let’s make the form. This goes in
app/views/users/_form.html.erb:

I f you rerun your spec wi th bin/rspec

, you’ll get this:spec/features/signing_up_spec.rb

<h1>Sign Up</h1>

<%= render "form" %>

<%= form_for @user do |f| %>
 <% if @user.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@user.errors.count, "error") %>
 prohibited this user from being saved:</h2>

 <% @ticket.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

 <p>
 <%= f.label :name, "Username" %>

 <%= f.text_field :name %>
 </p>
 <p>
 <%= f.label :email %>

 <%= f.text_field :email %>
 </p>
 <p>
 <%= f.label :password %>

 <%= f.password_field :password %>
 </p>
 <p>
 <%= f.label :password_confirmation %>

 <%= f.password_field :password_confirmation %>
 </p>
 <%= f.submit "Sign up" %>
<% end %>

Failure/Error: click_link 'Sign up'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

174

Licensed to <alex@vinova.sg>

mailto:@user.errors.any?
mailto:pluralize(@user.errors.count
mailto:@ticket.errors.full_messages.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

Ruby initializes instance variables to on first access, and because you havenil

no controller action, you never set a . Let’s fix that by adding a controller@user

action in app/controllers/users_controller.rb:

R e r u n y o u r t e s t s w i t h bin/rspec

:spec/features/signing_up_spec.rb

You’ve seen this before, and it usually means you need to make a new view
file. But this is your action: you want to redirect elsewhere rather thancreate

render a page. So let’s open app/controllers/users_controller.rb and code this up:

And down under , add this:private

ActionView::Template::Error:
 First argument in form cannot contain nil or be empty

def new
 @user = User.new
end

Missing template users/create, application/create with...

def create
 @user = User.new(user_params)

 if @user.save
 flash[:notice] = "You have signed up successfully."
 redirect_to projects_path
 else
 render :new
 end
end

private
 def user_params
 params.require(:user).permit(:name,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

175

Licensed to <alex@vinova.sg>

mailto:@user.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

You’ve seen this before: it looks very similar to what you did for sProject

and s. Rrerun the test:Ticket

Bam! You’re all green! Let’s commit and push:

Because you don’t have a lot of functionality for your s, you use User

, because that will be more useful.redirect_to projects_path

Eventually, users will want to see a profile page or edit their information. You’re
getting pretty good at CRUD by now: you have , , and show edit update

working. Here are some specs for you. Put them in
spec/features/user_profile_spec.rb:

 :password,
 :password_confirmation)
 end

$ bin/rspec spec/features/signing_up_spec.rb
.

Finished in 0.31269 seconds
1 example, 0 failures

$ bin/rspec
..................

Finished in 1.06 seconds
19 examples, 0 failures

 $ git add .
 $ git commit -m "Implemented sign up."
 $ git push

require 'spec_helper'

feature "Profile page" do
 scenario "viewing" do
 user = FactoryGirl.create(:user)

 visit user_path(user)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

176

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

G i v e i t a r u n w i t h bin/rspec

. Once that’s all working, your spec/features/user_profile_spec.rb

 should say this:bin/rspec

There is one little tricky part you might need help on. If you have a problem
getting the last spec to pass, check this out. Otherwise, just read up, and see how
your solution compares to ours.

The issue is with an error that looks like this:

If you’ve followed all the steps, you may be really confused. Let’s check out
where that button’s code comes from, in app/views/users/_form.html.erb:

 expect(page).to have_content(user.name)
 expect(page).to have_content(user.email)
 end
end

feature "Editing Users" do
 scenario "Updating a project" do
 user = FactoryGirl.create(:user)

 visit user_path(user)
 click_link "Edit Profile"

 fill_in "Username", with: "new_username"
 click_button "Update Profile"

 expect(page).to have_content("Profile has been updated.")
 end
end

.....................

Finished in 0.75249 seconds
10 examples, 0 failures

1) Editing Users Updating a project
 Failure/Error: click_button "Update Profile"
 Capybara::ElementNotFound:
 Unable to find button "Update Profile"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

177

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Oh no! You hard-coded the button’s text as in an earlier test."Sign up"

What to do? Well, if you haven’t saved the user yet, you know they’re signing up.
If you have saved the user, you know they’re editing their profile. Active Record
provides a convenient method to do just this. Here are our modifications, which get
you on to the next failure:

When you have 21 examples passing, it’s time to commit:

That wasn’t so bad, was it? You’re done with authentication. It’s time for
authorization: now that users can sign up, let’s allow them to sign in. No good
having an account if you can’t use it!

<%= f.submit "Sign up" %>

<% if @user.new_record? %>
 <%= f.submit "Sign up" %>
<% else %>
 <%= f.submit "Update Profile" %>
<% end %>

$ git add .
$ git commit -m "Implement profile pages"
$ git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

178

Licensed to <alex@vinova.sg>

mailto:@user.new_record?
http://www.manning-sandbox.com/forum.jspa?forumID=818

Now that users can sign up, it’s time to let them sign in. Let’s talk about .sessions
HTTP is a stateless protocol, which means you have to resend your credentials on
each request. This is for scalability purposes; if your servers had to keep track of
clients, it would get complex. Clients know who they are and can tell you on
subsequent requests. We call that set of requests a session, which Rails implements
by default through cookies. The plan is this: when someone logs in with the correct
credentials, you’ll tell them to set a cookie with a certain value. On the next
request, they will send that cookie along, and you use that information to
authenticate them.

Let’s get started. As always, you’ll write a spec first. Put this in
spec/features/sign_in_spec.rb:

If you run this spec, you’ll get this failure:

This should be getting easy at this point. You have a missing link, so let’s add
one. Put this new Sign In link in app/views/layouts/application.html.erb:

6.3 Signing in

require 'spec_helper'

feature "signing in." do
 scenario 'Signing in via form' do
 user = FactoryGirl.create(:user)

 visit '/'
 click_link 'Sign in'
 fill_in 'Name', with: user.name
 fill_in 'Password', with: user.password
 click_button "Sign in"

 expect(page).to have_content("Signed in successfully.")
 end
end

Failure/Error: click_link 'Sign in'
Capybara::ElementNotFound:
 Unable to find link "Sign in"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

179

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Now that you have more than one navigation link, it seems appropriate to put
the links in a list. If you rerun your specs, you’ve gotten farther:

You know what this means: you need a new route. Put this in config/routes.rb:

This makes a new route. If you remember from the output of bin/rake

, routes consist of a , , , and routes Prefix Verb URI Pattern

. All four parts are in this declaration: the is the Controller#Action get

, the is the , and the is the Verb "/signin" URI Pattern to:

. The is inferred from the URL and is Controller#Action Prefix

. Rerunning your specs, you get a new error:"signin"

Easy enough; you don’t have a controller. Make one in
app/controllers/sessions_controller.rb:

<nav>

 <%= link_to "Sign up", new_user_path %>
 <%= link_to "Sign in", signin_path %>

</nav>

ActionView::Template::Error:
 undefined local variable or method `signin_path'

get "/signin", to: "sessions#new"

ActionController::RoutingError:
 uninitialized constant SessionsController

class SessionsController < ApplicationController
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

180

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

So easy . Now run the spec , bin/rspec

:specs/features/sign_in_spec.rb

Go ahead and make one, and then rerun the specs:

Make a new file, app/views/sessions/new.html.erb, and put this in it:

:signin makes your form link to , and changessignin_path method:

the form to have as well. is better than becausemethod="POST" POST GET

you’re possibly making a new session here, and therefore it’s not idempotent or
safe. Running your specs brings a new failure:

This is true. Off to the routes file (config/routes.rb):

Failure/Error: click_link 'Sign in'
AbstractController::ActionNotFound:
 The action 'new' could not be found for SessionsController

ActionView::MissingTemplate:
 Missing template sessions/new

<h1>Sign in</h1>
<%= form_for :signin, method: "POST" do |f| %>
 <p>
 <%= f.label :name %>

 <%= f.text_field :name %>
 </p>
 <p>
 <%= f.label :password %>

 <%= f.password_field :password %>
 </p>

 <%= f.submit "Sign in" %>
<% end %>

ActionController::RoutingError:
 No route matches [POST] "/signin"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

181

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This is similar to your last map, except that the action is and thecreate

method is . Running your tests, you get another red:post

You know how to make a new action, right? Put this in it:

A few things are going on here. First, you use an Active Record method called
 to find all the s with a that you got in your parameters. Thatwhere User name

gives you a , so you call on it to retrieve the first row thatRelation first

matches the query. You may be wondering why you’re accessing params

directly, when before (in chapter 3) you filtered them through strong parameters.
The reason is that you’re not doing any kind of mass assignment here; you’re
mapping one part of your hash to one argument. Therefore, there’s noparams

problem. Second, there’s this awkward thing. If you don’t have a user &&

post "/signin", to: "sessions#create"

AbstractController::ActionNotFound:
 The action 'create' could not be found for SessionsController

def create
 user = User.where(:name => params[:signin][:name]).first

 if user && user.authenticate(params[:signin][:password])

 session[:user_id] = user.id
 flash[:notice] = "Signed in successfully."

 redirect_to root_url
 else
 flash[:error] = "Sorry."
 render :new
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

182

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

 record that matches your query, the variable will be . So youUser user nil

make a check that it’s not before you attempt to call to stopnil authenticate

those pesky ’s.NoMethodError on nil

Runn ing your t e s t s w i th bin/rspec

, you should see this:spec/features/sign_in_spec.rb

Great! Let’s run all the tests and then commit:

That’s all there is to it. With authentication finished: you can sign up and sign
in.

Now that users can sign up and sign in to your application, it’s time to link a ticket
with the user who created it automatically so it can be indicated to everyone who
created a ticket. When you’re done with this feature, a little indication will appear
under a ticket’s title in the app/views/tickets/show.html.erb view, as shown in
figure 6.3.

Figure 6.1 Ticket author indicator

That part is easy: you need a “Created by $USER” message displayed on the

.

Finished in 0.28416 seconds
1 example, 0 failures

 $ bin/rspec
 $ git add .
 $ git commit -m "Implemented signing in."
 $ git push

6.4 Linking tickets to users

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

183

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

ticket page. The background work needed to make it function properly is a little
more difficult, but you’ll get through it.

You can test for this functionality by amending the “Creating a ticket” scenario
in spec/features/creating_tickets_spec.rb to have the following final lines:

When you run the feature using bin/rspec

, it fails on this newspec/features/creating_tickets_spec.rb

requirement like this:

This particular problem is easy to fix. All you need to do is add a new element
to the app/views/tickets/show.html.erb page in the element that has an#ticket

ID of . Under the ticket title on this page, do exactly that:"author"

That’s all the scenario is asking for. Running bin/rspec

 again should provide aspec/features/creating_tickets_spec.rb

better error message that has a more complicated fix:much

That’s better. Now the test is telling you the author can’t be seen in that element
on the page. You need to make sure the user is signed in before they can create a
ticket; otherwise, you won’t know who to make the owner of that ticket. When

within "#ticket #author" do
 expect(page).to have_content("Created by sample@example.com")
end

Failure/Error: within("#ticket #author") do
Capybara::ElementNotFound:
 Unable to find css "#ticket #author"

expected there to be content "Created by sample@example.com" in ""

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

184

Licensed to <alex@vinova.sg>

mailto:sample@example.com
mailto:sample@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

users go to a project page and click the New Ticket link, they should be redirected
to the sign-in page and asked to sign in, if they aren’t already. Once they’re signed
in, they should be able to create the ticket. Change the block of the before

 in spec/features/creating_tickets_spec.rb to ensure that this processfeature

happens, using the code from the following listing.

Listing 6.1 spec/features/creating_tickets_spec.rb

With these changes, you’ve added a call to the user factory under the one to
the project factory, so a user exists. When the New Ticket link is clicked, you’re
checking that the user sees the message “You need to sign in or sign up before
continuing” and that they can then sign in using the username and password for the
user that was created. Once they’re signed in, they should then see New Ticket on
the page within a tag, indicating that they’re back on the new ticket page.<h2>

W h a t n e x t ? W e l l , r u n bin/rspec

, and follow the bouncingspec/features/creating_tickets_spec.rb

ball.

before do
 project = FactoryGirl.create(:project)
 user = FactoryGirl.create(:user)

 visit '/'
 click_link project.name
 click_link "New Ticket"
 message = "You need to sign in or sign up before continuing."
 expect(page).to have_content(message)

 fill_in "Name", with: user.name
 fill_in "Password", with: user.password
 click_button "Sign in"

 click_link project.name
 click_link "New Ticket"
end

expected there to be text "You need to sign in or sign up...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

185

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The line that checks for the text “You need to sign in or sign up before
continuing” fails because you’re not ensuring that the user is signed in before the

 action in the . To do so, you’ll write a new TicketsController

. This filter ensures that a user is signed in before they canbefore_action

perform a specific action. If the user isn’t signed in, they will be redirected to the
sign in page and given the “You need to sign in or sign up before continuing”
message. Here’s the implementation, in :TicketsController

This line ensures that users are authenticated before they go to any action in the
controller that isn’t or , including the and actions.index show new create

By ensuring that a user is authenticated before they can create a ticket, there
will always be a object around that you can use to link a ticket tocurrent_user

a u s e r . W h e n y o u r u n bin/rspec

, it now gets through the spec/features/creating_tickets_spec.rb

 block in this feature and proceeds to create a new ticket, failing againbefore

with this error:

You didn’t write a method to make sure you’re signed in, you just called it. Ha!
Thank goodness for tests! You could write the method in TicketsController

, but this will be useful for things other than s. Put this code inTicket

app/controllers/application_controller.rb:

before_action :require_signin!, except: [:show, :index]

Failure/Error: click_link "New Ticket"
NameError:
 undefined local variable or method `require_signin!' for ...

private
 def require_signin!
 if current_user.nil?
 flash[:error] =
 "You need to sign in or sign up before continuing."
 redirect_to signin_url
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

186

Licensed to <alex@vinova.sg>

Now, rerunning the spec, you get a new error:

This is happening because you aren’t displaying any information about who the
ticket belongs to. In order for that to happen, first you’ll need to assign a user to the
ticket when it has been created. Let’s do that right now.

To link tickets to specific users, you alter the line in your actionbuild create

in from this lineTicketsController

to these two lines:

The setter method is used here because you shouldn’t be able to assignuser=

the user via a parameter. You always want it to be the , so youcurrent_user

set it that way.
W h e n y o u r u n b i n / r s p e c

, it complains because thisspec/features/creating_tickets_spec.rb

 method isn’t available on the object:user= Ticket

 end
 helper_method :require_signin!

 def current_user
 @current_user ||= User.find(session[:user_id]) if session[:user_id]
 end
 helper_method :current_user

 expected there to be content "Created by ticketee@example.com" ...

6.5 Attributing tickets to users

@ticket = @project.tickets.build(ticket_params)

@ticket = @project.tickets.build(ticket_params)
@ticket.user = current_user

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

187

Licensed to <alex@vinova.sg>

mailto:ticketee@example.com
mailto:@project.tickets.build
mailto:@project.tickets.build
mailto:@ticket.user
http://www.manning-sandbox.com/forum.jspa?forumID=818

The method should be defined on the model by using a user= Ticket

 association, because a ticket will always a user. Do thisbelongs_to belong to

by putting this line under the line inbelongs_to :project

app/models/ticket.rb:

By defining a association on this model, calls to the belongs_to :user

 method on any object will attempt to look up a user record in the user Ticket

 table with an field that matches the field on the users id user_id tickets

table. You don’t have a field at the moment, so you’ll need to add thisuser_id

for it to work. Run the migration generator again like this:

Based solely on how you wrote the name of this migration, along with the
 at the end of it, Rails will understand that you want to add auser_id:integer

particular column to the table and that the column will be called tickets

 and will be of the integer type.user_id

If you open the new migration file (it’s the last one in the db/migrate directory),
you’ll see exactly what this migration generator output.

Listing 6.2 db/migrate/[timestamp]_add_user_id_to_tickets

Failure/Error: click_button "Create Ticket"
NoMethodError:
undefined method `user=' for #<Ticket:...>

belongs_to :user

$ bin/rails g migration add_user_id_to_tickets user:references

class AddUserIdToTickets < ActiveRecord::Migration
 def change
 add_reference :tickets, :user, index: true
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

188

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You can close this file and then run the migration with bin/rake

, and prepare the test database by using db:migrate bin/rake

.db:test:prepare

SIDEBAR Bash migrate alias
If you’re using bash as a shell (which is probably the case if you’re on a
UNIX operating system), you can add an alias to ~/.bashrc or
~/.bash_profile to do both of these steps for you rather than having to
type them out all the time:

Then type or , andsource ~/.bashrc source ~/.bash_profile

the alias will be available to you in your current terminal window. It’ll
also be available in new terminal windows even if you didn’t use

, because this file is processed every time a new bash sessionsource

is started. If you don’t like typing , then or source . ~/.bashrc .

 will do.~/.bash_profile

You’ll now be able to run rather than migrate rake db:migrate;

 each time you want to migrate both therake db test:prepare

development and test databases.

SIDEBAR Make sure to run db:test:prepare
If you don’t prepare the test database, the following error occurs when
you run the feature:

Watch out for that one.

L e t ’ s r e r u n b i n / r s p e c

 and see where it standsspec/features/creating_tickets_spec.rb

now:

alias migrate='bin/rake db:migrate && bin/rake db:test:prepare'

And I press "Create Ticket"
undefined method 'name' for nil:NilClass (ActionView::Template::Error)

Failure/Error:
 expect(page).to have_content("Created by sample@example.com")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

189

Licensed to <alex@vinova.sg>

mailto:sample@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

This is now failing because the author isn’t displayed in the span#author

element in app/views/tickets/show.html.erb. Change this element to this:

This small change should make the feature pass, because all the pieces are in
place. Run bin/rspec spec/features/creating_tickets_spec.rb

, and you should see this output:

The “Created by $USER” line is appearing on the ticket page. Good job! Run
 as usual to ensure that you haven’t broken anything:bin/rspec

Oops, it looks like you did. If you didn’t have these tests in place, you wouldn’t
have known about this breakage unless you tested the application manually or
guessed (or somehow knew) that your changes would break the application in this
way. Let’s see if you can fix it.

Luckily, the failed tests have the same error. The common error is this:

 expected there to be content "Created by sample@example.com" ...

Created by <%= @ticket.user.email %>

3 examples, 0 failures

Failed examples:

rspec ./spec/features/deleting_tickets_spec.rb:13
rspec ./spec/features/editing_tickets_spec.rb:14
rspec ./spec/features/editing_tickets_spec.rb:24
rspec ./spec/features/signing_in_spec.rb:8
rspec ./spec/features/viewing_tickets_spec.rb:20

6.6 You broke something!

Failure/Error: click_link "Make it shiny!"
ActionView::Template::Error:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

190

Licensed to <alex@vinova.sg>

mailto:sample@example.com
mailto:@ticket.user.email
http://www.manning-sandbox.com/forum.jspa?forumID=818

Whatever is causing this error is on line 7 of app/views/tickets/show.html.erb.
It’s this line:

Aha! The error is ,undefined method 'email' for nil:NilClass

and the only place you call on this line is on the object from email user

, so you can determine that must be . But why? Let’s look at@ticket user nil

how to set up the data in the spec/features/viewing_tickets_spec.rb feature, as
shown in the following listing.

Listing 6.3 spec/features/viewing_tickets_spec.rb

The issue is happening because no user is assigned to the ticket in this setup.
You should rewrite this feature to make it create a ticket and link it to a specific
user.

The first step is to create a user you can link the ticket to, so change the ticket setup
in the block to this:before

 undefined method `email' for nil:NilClass
 # ./app/views/tickets/show.html.erb:7...

Created by <%= @ticket.user.email %>

FactoryGirl.create(:ticket,
 project: textmate_2,
 title: "Make it shiny!",
 description: "Gradients! Starbursts! Oh my!")

6.7 Fixing the Viewing Tickets feature

user = FactoryGirl.create(:user)
ticket = FactoryGirl.create(:ticket,
 project: textmate_2,
 title: "Make it shiny!",
 description: "Gradients! Starbursts! Oh my!")
ticket.update(user: user)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

191

Licensed to <alex@vinova.sg>

mailto:@ticket.user.email
http://www.manning-sandbox.com/forum.jspa?forumID=818

The method updates an attribute on an object and then saves theupdate

object. It’s really a shortcut for this:

It’s used in this situation to link the ticket to the user created, and should cause
the s cena r io t o pa s s . Run bin/rspec

. You should see thisspec/features/viewing_tickets_spec.rb

output:

That looks like the feature is now unbroken, which is perfect. Let’s fix up the
other two using the same technique, beginning with the Editing Tickets feature.

You can fix the Editing Tickets feature using a methodology similar to what you
used for the Viewing Tickets feature. Change the blocks at the top of thislet!

feature to the code shown in the next listing.

Listing 6.4 spec/features/editing_tickets_spec.rb

In the block, it now reads as let!(:user)

, which is your usual factory.FactoryGirl.create(:user) User

When you run the feature—unlike the Viewing Tickets feature—it doesn’t pass,

ticket.user = user
ticket.save

1 example, 0 failures

6.8 Fixing the Editing Tickets feature

let!(:project) { FactoryGirl.create(:project) }
let!(:user) { FactoryGirl.create(:user) }
let!(:ticket) do
 ticket = FactoryGirl.create(:ticket, project: project)
 ticket.update(user: user)
 ticket
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

192

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

complaining that it can’t find the field called . Uh oh:Title

Back in the , you restricted some of the actions byTicketsController

using the :before_action

This restricts access to the and actions forbefore_action edit create

people who aren’t signed in. To be able to edit a ticket, a user must first be signed
in. In this feature, then, you should sign in as the user you create so you can edit
this ticket. Change the first line of to sign in as that user:before

When you run this feature using bin/rspec

, you’ll see that this new spec/features/editing_tickets_spec.rb

 method is undefined:sign_in_as!

It’s OK that it can’t find this helper, because it’s something you should define
yourself. Create a new file at spec/support/authentication_helpers.rb, and use the
code from the next listing to define the helper.

Failure/Error: fill_in "Title", :with => ""
Capybara::ElementNotFound:
 Unable to find field "Title"

before_action :require_signin!, except: [:index, :show]

 sign_in_as!(user)

Failure/Error: sign_in_as!(user)
NoMethodError:
 undefined method `sign_in_as!' for ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

193

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 6.5 spec/support/authentication_helpers.rb

In this new file, you define an module thatAuthenticationHelpers

contains the single method, which goes through the motions ofsign_in_as!

signing in as a particular user. The final three lines includes this module into all
specs in the spec/features directory, which means the
spec/features/editing_tickets_spec.rb spec should now have access to this helper.

I f tha t ’s the case , running bin/rspec

 should pass:spec/features/editing_tickets_spec.rb

One more feature with this error to go: Deleting Tickets.

To fix the Deleting Tickets feature, replace these lines from
spec/features/editing_tickets_spec.rb

module AuthenticationHelpers
 def sign_in_as!(user)
 visit '/signin'
 fill_in "Name", with: user.name
 fill_in "Password", with: user.password
 click_button 'Sign in'
 expect(page).to have_content("Signed in successfully.")
 end
end

RSpec.configure do |c|
 c.include AuthenticationHelpers, type: :feature
end

2 examples, 0 failures

6.9 Fixing the Deleting Tickets feature

let!(:project) { FactoryGirl.create(:project) }
let!(:user) { FactoryGirl.create(:user) }
let!(:ticket) do
 ticket = FactoryGirl.create(:ticket, project: project)
 ticket.update(user: user)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

194

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

with the following lines:

You also need to add the helper to the beginning of the sign_in_as!

 block:before

The entire spec/features/deleting_tickets_spec.rb file should now look like this:

 ticket
end

let!(:project) { FactoryGirl.create(:project) }
let!(:ticket) { FactoryGirl.create(:ticket, project: project) }

before do
 sign_in_as!(user)
 ...
end

require 'spec_helper'

feature 'Deleting tickets' do
 let!(:project) { FactoryGirl.create(:project) }
 let!(:user) { FactoryGirl.create(:user) }
 let!(:ticket) {
 FactoryGirl.create(:ticket, project: project, user: user) }

 before do
 sign_in_as!(user)

 visit '/'
 click_link project.name
 click_link ticket.title
 end

 scenario "Deleting a ticket" do
 click_link "Delete Ticket"

 expect(page).to have_content("Ticket has been deleted.")
 expect(page.current_url).to eq(project_url(project))
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

195

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

When you run this f i le using bin/rspec

, it passes:spec/features/deleting_tickets_spec.rb

There! You’ve fixed the last of the broken features with the same error … or at
least you hope so. What happens when you run ? This should be thebin/rpec

result:

All passing! Great—go ahead and commit:

In this section, you’ve added a feature to associate users with the tickets they
create. A user must be signed in before they can create a ticket, so the application
can associate the two together. In implementing this feature, you broke a couple of
seemingly unrelated features of your application that depended on the code being
as it was. Shoring up these features did take a bit of time to get right, but it’s worth
it in order to have that feature safety net. This is the major reason why testing the
features of your application the way you’ve been doing currently is a very good
thing.

1 example, 0 failures

.....................

Finished in 1.55 seconds
22 examples, 0 failures

$ git add .
$ git commit -m "Associate users to tickets
 when tickets are created"
$ git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

196

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

before_action, :except option
update

This chapter covered how to set up authentication so that users can sign up and
sign in to your application to accomplish certain tasks. You built a simple
authentication system on top of . You alsoActiveModel::SecurePassword

tested the functionality by writing Capybara features to go with it.
Then came linking tickets to users, so you can track which user created which

ticket. You did this by using the setter method provided by the belongs_to

method’s presence on the class.Ticket

We encourage you to start up the application with , visitbin/rails s

http://localhost:3000, and play around, to get an idea of how it’s looking right now.
This is one of the interesting side effects of TDD; you’ve built an entire
application, and you haven’t even looked at it in the browser!

In the next chapter, we’ll look at restricting certain actions to only users who
are signed in or who have a special attribute set on them.

Index Terms

6.10 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

197

Licensed to <alex@vinova.sg>

http://localhost:3000
http://www.manning-sandbox.com/forum.jspa?forumID=818

7
As your application now stands, anybody, whether they're signed in or not, can
create new projects. As you did for the actions in the ,TicketsController

you must restrict access to the actions in the . The twistProjectsController

here is that you'll allow only a certain subset of users—users with one particular
attribute set in one particular way—to access the actions.

You'll track which users are administrators by putting a boolean field called
 in the users table. This is the most basic form of user , whichadmin authorization

is not to be confused with , which you implemented in chapter 6.authentication
Authentication is the process users go through to confirm their identity, while
authorization is the process used by the system to determine which users should
have access to certain things.

Later on this chapter, you'll see how you can organize code into sonamespaces
that you can easily restrict access to all subcontrollers to only admin users. If you
didn't do this, then you would need to restrict access on a per-controller basis.

To restrict the creation of projects to admins, you're going to add an admin

attribute to objects. Only users who have this attribute set to User admin true

will be able to create projects. To test this, you must first alter the existing
 in spec/features/creating_projects_spec.rb and insert a line to sign in asbefore

an admin user at the beginning of the block:before

Basic access control

7.1 Turning users into admins

before do
 sign_in_as!(FactoryGirl.create(:admin_user))
 ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

198

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This line uses a factory that we haven't defined yet.. Thisadmin_user

factory will simply create a different "breed" of user; one that will eventually have
permission to do everything in the system. To create this new factory, open
spec/factories/user_factory.rb and make it look like this:

This looks just like our factory from Chapter 6, but it's inside of it! It alsouser

adds another attribute default, this time that should be true.admin

W h e n y o u r u n b i n / r s p e c

 you'll see that there isspec/features/creating_projects_spec.rb

no method defined for a object:admin= User

Therefore the next logical step is to define a field in the database so that the
attribute setter method is available.

You can generate a migration to add the field by running this command:admin

You want to modify this migration so that when users are created, the admin

FactoryGirl.define do
 factory :user do
 name "username"
 email "sample@example.com"
 password "hunter2"
 password_confirmation "hunter2"

 factory :admin_user do
 admin true
 end
 end
end

 Failure/Error: sign_in_as!(FactoryGirl.create(:admin_user))
 NoMethodError:
 undefined method `admin=' for #<User:0x007fb194180a90>

7.1.1 Adding the admin field to the users table

$ bin/rails g migration add_admin_to_users admin:boolean

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

199

Licensed to <alex@vinova.sg>

mailto:sample@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

field is set to rather than defaulting to . Even though is 'falsey' infalse nil nil

Ruby, it's more clear to make it explicitly false. means that they have nonil

admin information, but they do: they're not an admin. Better to be explicit about
things. To do this, open the freshly generated migration and change this line:

to this:

When you pass in the option here, the field defaults to :default admin

, ensuring that users aren't accidentally created as admins.false

TIP Jumping the gun
If you jumped the gun and ran beforebin/rake db:migrate

modifying the migration, this field will default to , which is nonull

good. It may seem like you're screwed at this point, but you're not.
Just run and that will undo this latestbin/rake db:rollback

migration so that you can modify it and get back on track. Once the
modification is done correctly, don't forget to run bin/rake

 again!db:migrate

Run and nowbin/rake db:migrate bin/rake db:test:prepare

so that the migration adds the field to the users table in both theadmin

development and test databases. When you run bin/rspec

 it will now run fully:spec/features/creating_projects_spec.rb

Great! With the factory defined, you can go about using this toadmin_user

test the restriction of the acts of creating, updating, and destroying projects to only
those users who are admins.

add_column :users, :admin, :boolean

add_column :users, :admin, :boolean, default: false

2 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

200

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Before we do that, let's commit everything:

For this step, you will implement a that checks not onlybefore_action

whether the user is signed in but also whether the user is an admin. If the user isn't
an admin, they shouldn't be able to perform any of the protected actions on that
controller.

Before you write this , you will write a controller spec ratherbefore_action

than an integration spec to test it. Integration tests are great for defining a set of
actions that a user can perform in your system, but controller specs are much better
for quickly testing singular points, such as whether or not a user can go to a
specific action in the controller. You used this same reasoning back in chapter 4 to
test what happens when a user attempts to go to a project that doesn't exist.

You want to ensure that all visits to the , , , , and new create edit update

 actions are done by admins and are inaccessible to other users.destroy

Create spec/controllers/projects_controller_spec.rb and add a set up for a new
user:

 $ git add .
 $ git commit -m "Added admin flag to user."
 $ git push

7.2 Restricting actions to admins only

7.2.1 Testing admin-only controller access

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

201

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 7.1 spec/controllers/projects_controller_spec.rb

Here you use set up a user by using the factory, and then sign in as thisuser

new user inside a block using a new helper called , which webefore sign_in

will write.
Inside the test, you are testing that when a user makes a request to the GET new

action of the that the response should redirect them toProjectsController

the root path of the application and should also set a messageflash[:alert]

to "You must be an admin to do that."
When you run this test using bin/rspec

 it will fail likespec/controllers/projects_controller_spec.rb

this:

The method isn't yet available. Just like with the sign_in email_spec

helper methods in the previous chapter, you'll need to include your own
authorization helpers into RSpec's configuration too. Open

require 'spec_helper'

describe ProjectsController do
 let(:user) { FactoryGirl.create(:user) }

 context "standard users" do
 before do
 sign_in(user)
 end

 it "cannot access the new action" do
 get :new

 expect(response).to redirect_to('/')
 expect(flash[:alert]).to eql("You must be an admin to do that.")
 end
 end
end

Failure/Error: sign_in(user)
 NoMethodError:
 undefined method `sign_in' for ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

202

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

spec/support/authentication_helpers.rb, and add this chunk of code:

By passing the option along here, the methods for will:type AuthHelpers

only be made available on the controller specs inside the application, as that's the
only place that you'll be needing these methods.

TIP Including for models or views only
You can specify as a filter if you want to include atype: :model

module only in your model specs. If you ever write any view specs,
you can use to include this module only in the viewtype: :view

specs. Similarly, you can use for specs that reside in:features

spec/features.

Going back to your spec, you make a request on the third line to the actionnew

in the controller. The that you haven't yet implemented shouldbefore_action

catch the request before it gets to the action; it won't execute the request but instead
redirects the user to and shows a telling the userroot_path flash[:alert]

that they "must be an admin to do that".
I f you run th i s spec wi th bin/rspec

, it fails as youspec/controllers/projects_controller_spec.rb

expect:

This error message tells you that although you expected to be redirected, the
response was actually a response, indicating a successful response. This isn't200

module AuthHelpers
 def sign_in(user)
 session[:user_id] = user.id
 end
end

RSpec.configure do |c|
 c.include AuthHelpers, type: :controller
end

Failure/Error: response.should redirect_to('/')
 Expected response to be a <redirect>, but was <200>]>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

203

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

what you want; you want a redirect! Now let's get it to pass.
The first step is to define a new method to be used as the before_action

admin check on the . This method checks whether a userProjectsController

is an admin, and if not, displays the “You must be an admin to do that” message
and then redirects the user back to the root path.

First define this new method inside app/controllers/projects_controller.rb by
placing the code from the following listing underneath the method in destroy

:ProjectsController

Listing 7.2 app/controllers/projects_controller.rb

This method uses the method (that we wrote earlier) torequire_signin!

ensure that the user is signed in. This was previously used in Chapter 6 as a
, but it can be called on its own like this. To refresh yourbefore_action

memory, if the user isn't signed in when the method isrequire_signin!

called, they are asked to sign in.
If the user but isn't an admin they are then shown the “You must beis signed in

an admin to do that” message and redirected to the root path when
 is called.authorize_admin!

To call this method, call at the top of your before_action

 ensuring that it's above the filter, likeProjectsController set_project

this:

private

 def authorize_admin!
 require_signin!

 unless current_user.admin?
 flash[:alert] = "You must be an admin to do that."
 redirect_to root_path
 end
 end

before_action :authorize_admin!, except: [:index, :show]
before_action :set_project, only: [:show, :edit, :update, :destroy]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

204

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

With that in place, you can re-run the spec bin/rspec

, which shouldspec/controllers/projects_controller_spec.rb

now pass as the is in place and will re-route non-admin usersbefore_action

correctly:

Great, now we know this is working for the new action, but does it work for
, , , and ? You can replace the create edit update destroy "cannot

 example you just wrote with the code from theaccess the new action"

following listing.

Listing 7.3 spec/controllers/projects_controller_spec.rb

In this example, you call out to a currently-undefined local variableproject

or method in order to pass the parameter to some of these requests. The:id

reason for doing this is because requests to the , and edit update destroy

actions require an parameter so that they can be correctly routed to.id

The first line of this example has a hash. Its keys are all of the actions that you
want to make sure are behind a protective , and the values arebefore_action

the HTTP methods that you use to make those actions happen. You use each action
here to give your examples dynamic names, and you use all of them them further
down when you use the method. The method allows you tosend send

dynamically call methods and pass arguments to them. It's used here because for

each key-value pair of the hash, the and change. You pass inaction1 method

1 examples, 0 failures

{ new: :get,
 create: :post,
 edit: :get,
 update: :put,
 destroy: :delete }.each do |action, method|
 it "cannot access the #{action} action" do
 sign_in(user)
 send(method, action, :id => FactoryGirl.create(:project))
 expect(response).to redirect_to(root_path)
 expect(flash[:alert]).to eql("You must be an admin to do that.")
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

205

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

the parameter because, without it, the controller can't route to the , :id edit

, or actions. The and actions ignore thisupdate destroy new create

parameter.

Footnote 1mThe action variable is a frozen string (because it's a block parameter), so you need to duplicate the
object because Rails forces the encoding on it to be UTF-8.

The remainder of this spec is unchanged, and when you run bin/rspec

, you should seespec/controllers/projects_controller_spec.rb

all five examples passing:

Now's a good time to ensure you haven't broken anything, so let's run
.bin/rake spec

Oops. Three tests are broken. They failed because, for these features, you're not
signing in as an admin user--in fact, as user! -- which is now required forany
performing the actions in the scenario. You can fix these scenarios by simply
signing in as an admin user.

For the spec/features/deleting_projects_spec.rb feature, add a new block,before

as shown in the following listing.

5 examples, 0 failures

Failed examples:

rspec ./spec/features/deleting_projects_spec.rb:4
rspec ./spec/features/editing_projects_spec.rb:11
rspec ./spec/features/editing_projects_spec.rb:17

7.2.2 Fixing three broken scenarios

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

206

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 7.4 spec/features/deleting_projects_spec.rb

When you run this feature using bin/rspec

 it'll once again pass:spec/features/deleting_projects_spec.rb

Wasn't that just incredibly easy? The other scenarios, which both live in the
same file, should be just as easy to fix.

For the spec/features/editing_projects_spec.rb, use the same line from inside the
 block from Listing 7.4 again, putting it at the top of the already existing before

 block in this file:before

Now this feature should also pass when you run it with bin/rspec

:spec/features/editing_projects_spec.rb

That should be the last of it. Now when you run , everythingbin/rake spec

once again passes:

feature "Deleting projects" do
 before do
 sign_in_as!(FactoryGirl.create(:admin_user))
 end
 ...

1 example, 0 failures

before do
 sign_in_as!(FactoryGirl.create(:admin_user))
 ...
end

2 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

207

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Great! Now that accessing the actions is restricted, let's make a commit here:

You've restricted the controller actions, but the links to perform these actions,
such as "New Project" and "Edit Project" will still be visible to the users. You
should hide these links from the users who are not admins, because it's useless to
show actions to people who can't perform them.

Now you'll learn how to hide certain links, such as the "New Project" link, from
users who have no authorization to perform those actions in your application.

To begin, open a new file called spec/features/hidden_links_spec.rb. Inside this
file, you'll write scenarios to ensure that the right links are shown to the right
people. Let's start with the code for checking that the "New Project" link is hidden
from regular users who are either signed out or signed in, but shown to admins.
The code to do this is shown in the following listing.

26 examples, 0 failures

$ git add .
$ git commit -m "Restrict access to project
 actions to admins only"
$ git push

7.3 Hiding links

7.3.1 Hiding the New Project link

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

208

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 7.5 spec/features/hidden_links_spec.rb

In this spec, you first define two let blocks, one for and one for .user admin

These create a non-admin user and an admin user respectively when they're called.
There's three blocks, one for each permutation of the scenario. In thecontext

first, you act as an anonymous user and check that there is indeed no "New
Project" link on the page. On the second, you act as a regular user and again check
that there's no "New Project" link on the page. In the third, however, you sign in as
an admin and when happens then there should be a "New Project" link on thethat
page.

When you run this feature using bin/rspec

 the first thing you'll realise isspec/features/hidden_links_spec.rb

that there is no or methodassert_link_for assert_no_link_for

defined:

require 'spec_helper'

feature "hidden links" do
 let(:user) { FactoryGirl.create(:user) }
 let(:admin) { FactoryGirl.create(:admin_user) }

 context "anonymous users" do
 scenario "cannot see the New Project link" do
 visit '/'
 assert_no_link_for "New Project"
 end
 end

 context "regular users" do
 before { sign_in_as!(user) }
 scenario "cannot see the New Project link" do
 visit '/'
 assert_no_link_for "New Project"
 end
 end

 context "admin users" do
 before { sign_in_as!(admin) }
 scenario "can see the New Project link" do
 visit '/'
 assert_link_for "New Project"
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

209

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

That's because they were made up! But the intention of these methods is clear:
they're supposed to check that a link either does or does not appear on the page. If
you know the intention of a method, then writing it becomes much easier. You
should define these methods now in a new file called
spec/support/capybara_helpers.rb using the code from the following listing:

Listing 7.6 spec/support/capybara_helpers.rb

With this new file you define a module called thatCapybaraHelpers

includes the definitions for the two missing methods. Inside each method, you
assert that within an element on the page, there should or should not be thea

specified text. By using , it will use a CSS selector to attempt to find ahave_css

tag that matches the conditions.
With the two new methods defined, running bin/rspec

 should produce some actualspec/features/hidden_links_spec.rb

failures:

Failure/Error: assert_no_link_for "New Project"
NoMethodError:
 undefined method `assert_no_link_for' for ...

module CapybaraHelpers
 def assert_no_link_for(text)
 expect(page).to_not(have_css("a", :text => text),
 "Expected not to see the #{text.inspect} link, but did.")
 end

 def assert_link_for(text)
 expect(page).to(have_css("a", :text => text),
 "Expected to see the #{text.inspect} link, but did not.")
 end
end

RSpec.configure do |config|
 config.include CapybaraHelpers, :type => :feature
end

1) hidden links anonymous users cannot see the New Project link
Failure/Error: assert_no_link_for "New Project"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

210

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The first two scenarios from the "Hidden links" feature fail, of course, because
you've done nothing yet to hide the link that they're checking for! Open
app/views/projects/index.html.erb and change the "New Project" link to the
following in order to work towards hiding it:

The method isn't going to magically be there, so you'll need toadmins_only

define this yourself. The method will need to take a block, and then if the
 is an admin it should run the code inside the block, and if they'recurrent_user

not then it should show nothing.
You're going to want this helper to be available everywhere inside your

application's views, and so the best place to define it would be inside the
. If you only wanted it to be available to a specificApplicationHelper

controller's views, you would place it inside the helper that shares the name with
the controller. To define the helper, openadmins_only

app/helpers/application_helper.rb and define the method inside the module using
this code:

The method takes a block (as promised), which is the codeadmins_only

between the and in the call to it in your view. To run this code inside thedo end

 Expected not to see the "New Project" link, but did.
 # ./spec/support/capybara_helpers.rb:3 ...
 # ./spec/features/hidden_links_spec.rb:11 ...

2) hidden links regular users cannot see the New Project link
 Failure/Error: assert_no_link_for "New Project"
 Expected not to see the "New Project" link, but did.
 # ./spec/support/capybara_helpers.rb:3 ...
 # ./spec/features/hidden_links_spec.rb:19 ...

<% admins_only do %>
 <%= link_to "New Project", new_project_path %>
<% end %>

def admins_only(&block)
 block.call if current_user.try(:admin?)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

211

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

block, you call , which only runs it if block.call

 returns . This method tries acurrent_user.try(:admin?) true try

method on an object, and if that method doesn't exist (as it wouldn't if
 were), then it gives up and returns , rather than raisingcurrent_user nil nil

a exception.NoMethodError

When you run this feature using bin/rspec

, it will pass because the linksspec/features/hidden_links_spec.rb

are now being hidden and shown as required:

Now that you've got the "New Project" link hiding if the user isn't an admin,
let's do the same thing for the "Edit Project" and "Delete Project" links.

You're going to need to add this helper to the "Edit Project" andadmins_only

"Delete Project" links on the projects view as well to hide these links fromshow

the people who shouldn't see them. Before you do this, however, you should add
further scenarios to cover these changes to spec/features/hidden_links_spec.rb.

In order to test that these links work, you're going to need to create a project
during these tests. To enable that, define a block underneath the two for userslet

and admins inside this file using this line:

Now you can use this method to define scenarios inside theproject

"anonymous users" block to ensure that anonyomous users cannot seecontext

the "Edit Project" and "Delete Project" links by using the code from the following
listing:

3 examples, 0 failures

7.3.2 Hiding the edit and delete links

let(:project) { FactoryGirl.create(:project) }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

212

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 7.7 spec/features/hidden_links_spec.rb

Next, take these two scenarios and copy them into the "regular users" context
block:

And then finally define two scenarios that ensure that admin users can see the
links by placing the code from the following list inside the "admin users"

:context

context "anonymous users" do
 ...
 scenario "cannot see the Edit Project link" do
 visit project_path(project)
 assert_no_link_for "Edit Project"
 end

 scenario "cannot see the Delete Project link" do
 visit project_path(project)
 assert_no_link_for "Delete Project"
 end
end

context "regular users" do
 ...
 scenario "cannot see the Edit Project link" do
 visit project_path(project)
 assert_no_link_for "Edit Project"
 end

 scenario "cannot see the Delete Project link" do
 visit project_path(project)
 assert_no_link_for "Delete Project"
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

213

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 7.8 spec/features/hidden_links_spec.rb

With these latest changes, you should now have 6 new scenarios inside the
"Hidden links" feature, two checking the links for anonymous users, two checking
for regular users and two checking for admins. Run this feature now with

 to see the newbin/rspec spec/features/hidden_links_spec.rb

failures:

There are now four failing tests here, but only two shown above as the other
two are nearly identical. These tests are failing because the "Edit Project" and
"Delete Project" links are still visible to anonymous and signed in regular users. To
make these tests pass change the links inside app/views/projects/show.html.erb and
wrap the links in the helper, as shown in the following listing.admins_only

context "admin users" do
 ...
 scenario "can see the Edit Project link" do
 visit project_path(project)
 assert_link_for "Edit Project"
 end

 scenario "can see the Delete Project link" do
 visit project_path(project)
 assert_link_for "Delete Project"
 end
end

1) hidden links anonymous users cannot see the Edit Project link
 Failure/Error: assert_no_link_for "Edit Project"
 Expected not to see the "Edit Project" link, but did.
 # ./spec/support/capybara_helpers.rb:3 ...
 # ./spec/features/hidden_links_spec.rb:16 ..

2) hidden links anonymous users cannot see the Delete Project link
 Failure/Error: assert_no_link_for "Delete Project"
 Expected not to see the "Delete Project" link, but did.
 # ./spec/support/capybara_helpers.rb:3 ...
 # ./spec/features/hidden_links_spec.rb:21 ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

214

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 7.9 app/views/projects/show.html.erb

Now the links should be hidden from the users who are not admins. A great
way to know if this is the case is to run the test using bin/rspec

. When you run it, you shouldspec/features/hidden_links_spec.rb

see this:

All right, that was a little too easy, but that's just Rails.
This is a great point to ensure that everything is still working by running all the

tests wiht . According to the following output, everything's stillbin/rake spec

in working order:

Let's commit and push that:

In this section, you ensured that only users with the attribute set to admin

 can get to specific actions in your . This is a greattrue ProjectsController

<% admins_only do %>
 <%= link_to "Edit Project", edit_project_path(@project) %>
 <%= link_to "Delete Project", project_path(@project),
 method: :delete,
 data: { confirm:
 "Are you sure you want to delete this project?"} %>
<% end %>

9 examples, 0 failures

31 examples, 0 failures

git add .
git commit -m "Lock down specific projects controller
 actions for admins only"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

215

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

example of basic authorization.
Next, you learn to "section off" part of your site using a similar methodology

and explore the concept of namespacing.

While it's all fine and dandy to ensure that admin users can get to special places in
your application, you haven't yet added the functionality to allow other admins to
"promote" users to being admins themselves.

Since this functionality will only be provided to admins, it should go into its
own namespace, imaginatively called "admin". The purpose of namespacing in this
case is to separate a controller from the main area of the site so you can ensure that
the only users accessing this particular controller (and any future controllers you
create in this namespace) are admins.

The first thing you will need is a namespaced controller, where the actions on users
will be performed by admins. You can generate this namespaced controller by
running this command:

When the separator is used between parts of the controller, Rails knows to/

generate a namespaced controller called atAdmin::UsersController

app/controllers/admin/users_controller.rb. The views for this controller are at
app/views/admin/users , and the spec is at
spec/controllers/admin/users_controller_spec.rb. By passing in the word atindex

the end, this controller will contain an index action, and there will also be a view at
app/views/admin/users/index.html.erb for this action, as well as a route defined in
config/routes.rb, like this:

You won't be using this particular route, so you can remove it from

. We do need an actual route though. Give this a try:config/routes.rb 2

7.4 Namespace routing

7.4.1 Generating a namespaced controller

$ bin/rails g controller admin/users index

get "users/index"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

216

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Footnote 2mThe route is also incorrect. You generated a namespaced controller which should have a
namespaced route as well (e.g.), so even if you did leave this route in theget "/admin/users/index"

routes file, it wouldn't do anything particularly useful.

You've used before, but now we use it again: this time,resources :users

it's inside a namespace. Running will show you more aboutbin/rake routes

this route:

We've just included the relevant parts. You can now see that we have a double
set of routes with in them: one inside the namespace and one outside.users

The difference between this controller and all the other controllers you have
generated so far is that this controller should block requests from non-admin users
and allow admin users. To ensure that this is what the controller does, you must
write a spec for this newly generated controller.

Open spec/controllers/admin/users_controller_spec.rb and write an example to
ensure non-signed-in users can't access the action, as shown in theindex

following listing.

namespace :admin do
 resources :users
end

 admin_users GET /admin/users(.:format) admin/users#index
 POST /admin/users(.:format) admin/users#create
 new_admin_user GET /admin/users/new(.:format) admin/users#new
edit_admin_user GET /admin/users/:id/edit(.:format) admin/users#edit
 admin_user GET /admin/users/:id(.:format) admin/users#show
 PATCH /admin/users/:id(.:format) admin/users#update
 PUT /admin/users/:id(.:format) admin/users#update
 DELETE /admin/users/:id(.:format) admin/users#destroy
 users GET /users(.:format) users#index
 POST /users(.:format) users#create
 new_user GET /users/new(.:format) users#new
 edit_user GET /users/:id/edit(.:format) users#edit
 user GET /users/:id(.:format) users#show
 PATCH /users/:id(.:format) users#update
 PUT /users/:id(.:format) users#update
 DELETE /users/:id(.:format) users#destroy

7.4.2 Testing a namespaced controller

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

217

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 7.10 spec/controllers/admin/users_controller_spec.rb

In this new spec, you create a new confirmed user by using the factory,user

and then sign in as them by using the method, provided by the sign_in

 module that you had previously included in spec/spec_helper.rb.AuthHelpers

In the test, you attempt a request to the action of GET index

 and when that happens, the response shouldAdmin::UsersController

redirect you to the root path of the application and a messageflash[:alert]

should be set declaring that "You must be an admin to do that".
When you run this spec file using bin/rspec

, it willspec/controllers/admin/users_controller_spec.rb

make the request to the action just fine, but precisely the opposite of whatindex

it should do:

Normal users should not have access to the action of index

, but should instead be sent away.. This test isAdmin::UsersController

failing because you have not implemented the authorize_admin!

 inside the . Rather thanbefore_action Admin::UsersController

require 'spec_helper'

describe Admin::UsersController do
 let(:user) { FactoryGirl.create(:user) }

 context "standard users" do
 before { sign_in(user) }

 it "are not able to access the index action" do
 get 'index'
 expect(response).to redirect_to('/')
 expect(flash[:alert]).to eql("You must be an admin to do that.")
 end
 end
end

Failure/Error: response.should redirect_to('/')
Expected response to be a <:redirect>, but was <200>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

218

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

placing this inside , what youbefore_action Admin::UsersController

should do is create a new controller that all controllers inside the "admin"
namespace should inherit from, and then inside this controller put the

 call.before_action

Create a new file at app/controllers/admin/base_controller.rb and fill it with this
code:

This file can double as an eventual homepage for the admin namespace and as a
class that the other controllers inside the admin namespace can inherit from, which
you'll see in a moment. You inherit from with thisApplicationController

controller so you receive all the benefits it provides, like the
 method and the typical controller functions provided by authorize_admin!

.ActionController::Base

One small thing that you will need to fix first is the availability of the
 method. At the moment, this is locked away inside authorize_admin!

, but should be made available to all controllers ofProjectsController

application, since you are now depending on it inside
. Remove these lines from the end of Admin::BaseController

 inside app/controllers/projects_controller.rb:ProjectsController

And then place them inside app/controllers/application_controller.rb inside the
 definition, underneath a keyword:ApplicationController private

class Admin::BaseController < ApplicationController
 before_action :authorize_admin!
end

def authorize_admin!
 require_signin!

 unless current_user.admin?
 flash[:alert] = "You must be an admin to do that."
 redirect_to root_path
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

219

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Now the method will be made available to allauthorize_admin!

controllers that inherit from . One final thing toApplicationController

change is the inheritance of the class, so that itAdmin::UsersController

inherits from , meaning that the Admin::BaseController

 filter will run before all actions inside this controller. Openauthorize_admin

app/controllers/admin/users_controller.rb and change the first line of the controller
from this:

to this:

Because now inherits from Admin::UsersController

, the from Admin::BaseController before_action

 now runs for every action inside Admin::BaseController

, and therefore in your spec, should pass. Run itAdmin::UsersController

w i t h b i n / r s p e c

 now, andspec/controllers/admin/users_controller_spec.rb

you should see just that

private

 def authorize_admin!
 require_signin!

 unless current_user.admin?
 flash[:alert] = "You must be an admin to do that."
 redirect_to root_path
 end
 end

class Admin::UsersController < ApplicationController

class Admin::UsersController < Admin::BaseController

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

220

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Excellent! Now you have a controller that is only accessible by admin users of
your application. With that done, you should ensure that everything is working as
expected by running :bin/rake spec

Great, everything is still passing, but there are two pending tests:

These two tests were added when you ran bin/rails g controller

. The first test is a simple helper test, and the second is a admin/users view spec

, which can be used to ensure that rendering that particular view works as intended.

 You don't have a need for these two particular tests, so delete both of these files.3

When you re-run you should see this output:bin/rake spec

Footnote 3 Read more about view spec testing atm
https://www.relishapp.com/rspec/rspec-rails/v/2-9/docs/view-specs/view-spec

Let's commit this now:

34 examples, 0 failures, 2 pending

./spec/helpers/admin/users_helper_spec.rb:14
./spec/views/admin/users/index.html.erb_spec.rb:4

36 examples, 0 failures

git add .
git commit -m "Add admin namespaced users controller"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

221

Licensed to <alex@vinova.sg>

https://www.relishapp.com/rspec/rspec-rails/v/2-9/docs/view-specs/view-spec
http://www.manning-sandbox.com/forum.jspa?forumID=818

Now that only admins can access this namespace, you can create the CRUD
actions for the too, as you did for the Admin::UsersController

 and controllers. This willTicketsController ProjectsController

allow admin users to create new users in the application, without them needing to
sign up first. Along the way, you'll also set up a homepage for the admin
namespace.

With the first part of CRUD being the "creation" of a resource, it would be a
great idea to start with that. Begin by first creating a new directory for the admin
features called spec/features/admin and then writing a new feature in a new file
called spec/features/admin/creating_users_spec.rb. Use the code from the
following listing for this new feature:

Listing 7.11 spec/features/admin/creating_users_spec.rb

When you run this feature using bin/rspec

, the first couple ofspec/features/admin/creating_users_spec.rb

lines in the block will pass, but it will fail due to a missing "Admin" link:before

7.5 Namespace-based CRUD

require 'spec_helper'

feature "Creating Users" do
 let!(:admin) { FactoryGirl.create(:admin_user) }

 before do
 sign_in_as!(admin)
 visit '/'
 click_link "Admin"
 click_link "Users"
 click_link "New User"
 end

 scenario 'Creating a new user' do
 fill_in "Email", with: "newbie@example.com"
 fill_in "Password", with: "password"
 click_button "Create User"
 expect(page).to have_content("User has been created.")
 end
end

Failure/Error: click_link "Admin"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

222

Licensed to <alex@vinova.sg>

mailto:newbie@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Of course, you need this link for the feature to pass, but you want to show it
only for admins. You can use the helper you defined earlier andadmins_only

put the link in app/views/layouts/application.html.erb in the if

 statement in the element:user_signed_in? nav

This way, the link will only be shown to users who are both signed in an
admins. The next thing you will need to do is to define a namespaced root route.

At the moment, doesn't exist. To define it, openadmin_root_path

config/routes.rb and define an namespace using this code:admin

When you re-run the spec with bin/rspec

, it fails because youspec/features/admin/creating_users_spec.rb

don't have an action for :index Admin::BaseController

This action should render a view that provides links to special admin

Capybara::ElementNotFound:
 Unable to find link "Admin"

<% if current_user %>
 Signed in as <%= current_user.email %>
 <% admins_only do %>
 <%= link_to "Admin", admin_root_path %>
 <% end %>
<% else %>
...

7.5.1 Adding a namespace root

namespace :admin do
 root :to => "base#index"
 resources :users
end

The action 'index' could not be found for Admin::BaseController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

223

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

functionality. Let's add that now.

Open app/controllers/admin/base_controller.rb and add the action so theindex

class definition looks like the following listing.

Listing 7.12 app/controllers/admin/base_controller.rb

You define the action here to show users that this controller has an index

action. The next step is to create the view for the action by creating a newindex

file at app/views/admin/base/index.html.erb and filling it with the following
content:

You needn't wrap the link in an here because you're inside aadmins_only

page that's visible only to admins. When you run the feature again using
, you bin/rspec spec/features/admin/creating_users_spec.rb

 get a message saying don't The action 'index' could not be found

even though you should. Instead, you get this:

This unexpected output occurs because the Admin::UsersController

inherits from , where you just defined an Admin::BaseController index

method. By inheriting from this controller, alsoAdmin::UsersController

7.5.2 The index action

class Admin::BaseController < ApplicationController
 before_action :authorize_admin!

 def index
 end
end

<%= link_to "Users", admin_users_path %>
Welcome to Ticketee's Admin Lounge. Please enjoy your stay.

Failure/Error: click_link "New User"
 Unable to find link "New User"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

224

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

inherits its views. When you inherit from a class like this, you get the methods
defined in that class too. So really, there an action defined in is index

. You can override the action from Admin::UsersController index

 by redefining it in Admin::BaseController

, as in the following listing.Admin::UsersController

Listing 7.13 app/controllers/admin/users_controller.rb

Next, you will need to rewrite the template for this action, which lives at
app/views/admin/users/index.html.erb, so it contains the "New User" link and lists
all the users gathered up by the controller, as shown in the following listing.

Listing 7.14 app/views/admin/users/index.html.erb

In this example, when you specify a as an element in the route for the Symbol

, Rails uses that element as a literal part of the route generation, makinglink_to

it use rather than . You saw this in chapter 5admin_user_path user_path

when we used it with , but it bears repeating[:edit, @project, ticket]

here.
W h e n y o u r u n b i n / r s p e c

 again, you're toldspec/features/admin/creating_users_spec.rb

the action is missing:new

class Admin::UsersController < Admin::BaseController
 def index
 @users = User.order(:email)
 end
end

<%= link_to "New User", new_admin_user_path %>
<ul id='users'>
 <% @users.each do |user| %>
 <%= link_to user.email, [:admin, user] %>
 <% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

225

Licensed to <alex@vinova.sg>

mailto:@users.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

Let's add the action now by using this code:new Admin::UsersController

And let's create the view for this action at app/views/admin/users/new.html.erb:

Next, you'll need to create the form partial that's used in the template,new

which you can do by using the code from the following listing, Listing 7.15. It
must contain the and fields, which are the bare essentials foremail password

creating a user.

Failure/Error: click_link "New User"
AbstractController::ActionNotFound:
 The action 'new' could not be found for Admin::UsersController

7.5.3 The new action

def new
 @user = User.new
end

<h2>New User</h2>
<%= render "form" %>

<%= form_for [:admin, @user] do |f| %>
 <% if @user.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@user.errors.count, "error") %> prohibited
 this user from being saved:</h2>

 <% @user.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>
 <p>
 <%= f.label :email %>
 <%= f.text_field :email %>
 </p>

 <p>
 <%= f.label :password %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

226

Licensed to <alex@vinova.sg>

mailto:@user.errors.any?
mailto:pluralize(@user.errors.count
mailto:@user.errors.full_messages.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

For this , you use the array form you saw earlier with form_for

, but this time you pass in a symbol rather than a[@project, @ticket]

model object. Rails interprets the symbol literally, generating a route such as
 rather than , which would normally beadmin_users_path users_path

generated. You can also use this array syntax with (seen earlier) and link_to

 helpers. Any symbol passed anywhere in the array is interpretedredirect_to

literally.
When you run the feature once again with bin/rspec

, you're told there'sspec/features/admin/creating_users_spec.rb

no action called :create

Let's create that action now by using this code:

 <%= f.password_field :password %>
 </p>
 <%= f.submit %>
<% end %>

Failure/Error: click_button "Create User"
AbstractController::ActionNotFound:
 The action 'create' could not be found for Admin::UsersController

7.5.4 The create action

def create
 params = user_params.dup
 params[:password_confirmation] = params[:password]
 @user = User.new(params)

 if @user.save
 flash[:notice] = "User has been created."
 redirect_to admin_users_path
 else
 flash.now[:alert] = "User has not been created."
 render :action => "new"
 end
end

private
 def user_params
 params.require(:user).permit(:name,
 :password,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

227

Licensed to <alex@vinova.sg>

mailto:@user.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

There's now an "Admin" link that an admin can click on, which takes them to
the action within . On the templateindex Admin::BaseController

rendered for this action (app/views/admin/base/index.html.erb) there's a "Users"
link that goes to the action within . On theindex Admin::UsersController

template for action, there's a "New User" link that presents the user with athis
form to create a user. When the user fills in this form and hits the "Create User"
button, it goes to the action inside .create Admin::UsersController

There's only one tricky part about this: because we want to create a new user
with just a password, we have to manually duplicate our parameters hash and add
in a copy of the password as our . Normally, "don'tpassword_confirmation

make a user without a confirmation" is a great setting, but it makes for some
slightly awkward code here. I think that's a pretty good tradeoff, though.

We need one more thing, though. Try to run your tests with bin/rspec

:spec/features/admin/creating_users_spec.rb

With all the steps implemented, both scenarios inside the "Creating Users"
feature should now pass. Find out with a final run of bin/rspec

.spec/features/admin/creating_users_spec.rb

This is another great middle point for a commit, so let's do so now. As usual,
you should run to make sure everything's still working:bin/rake spec

 :password_confirmation)
 end

Failure/Error: expect(page).to have_content("User has not...
 expected there to be text "User has not been created." in
 "User has been created. Signed in as sample@example.com
 Admin New User /admin/users/2 sample@example.com"

1 examples, 0 failures

37 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

228

Licensed to <alex@vinova.sg>

mailto:sample@example.com
mailto:sample@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Great! Let's push that.

While this functionality allows you to create new users through the admin
backend, it doesn't let you create users. That's up next.admin

To create users who are an admin, you will need to be able to trigger this field by
using a a check box on the user form. When this checkbox is checked and the

 record is saved, that user will now be an admin.User

To get started, let's add another scenario to the
spec/features/admin/creating_users_spec.rb using the code from the following
listing.

Listing 7.15 spec/features/admin/creating_users_spec.rb

N o w w h e n y o u r u n bin/rspec

, it will fail when itspec/features/admin/creating_users_spec.rb

attempts to check the "Is an admin?" checkbox.

git add .
git commit -m "Add the ability to create users
 through the admin backend"
git push

7.5.5 Creating admin users

scenario "Creating an admin user" do
 fill_in "Email", with: "admin@example.com"
 fill_in "Password", with: "password"
 check "Is an admin?"
 click_button "Create User"
 expect(page).to have_content("User has been created")
 within("#users") do
 expect(page).to have_content("admin@example.com (Admin)")
 end
end

Failure/Error: check "Is an admin?"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

229

Licensed to <alex@vinova.sg>

mailto:admin@example.com
mailto:admin@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

You want to add this check box to the form for creating users, which you can
do by adding the following code to the block insideform_for

app/views/admin/users/_form.html.erb:

With this check-box in place, when you re-run bin/rspec

, it will not be ablespec/features/admin/creating_users_spec.rb

to find "admin@example.com (Admin)" on the page, within the element.#users

The problem here is that only the user's email address is displayed: no text
appears to indicate he or she is a user. To get this text to appear, change the line in
app/views/admin/users/index.html.erb from this:

to this:

By not calling any methods on the object and attempting to write it out ofuser

the view, you cause Ruby to call on this method, which by default outputsto_s

something similar to the following, which isn't human friendly:

Capybara::ElementNotFound:
 Unable to find checkbox "Is an admin?"

<p>
 <%= f.check_box :admin %>
 <%= f.label :admin, "Is an admin?" %>
</p>

 expected there to be content "admin@example.com (Admin)" in ...

<%= link_to user.email, [:admin, user] %>

<%= link_to user, [:admin, user] %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

230

Licensed to <alex@vinova.sg>

mailto:admin@example.com
mailto:admin@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

You can override the method on the model to provide the stringto_s User

containing the email and admin status of the user by putting the following code
inside the class definition in app/models/user.rb, underneath the

 line:has_secure_password

The method will now output something like "user@example.com (User)"to_s

if the user is not an admin, and "admin@example.com (Admin)" if the user is an
admin. Now that the field is set and the indication of the user being anadmin

admin is displayed on the page, the feature should pass when you run bin/rspec

. But it doesn't:spec/features/admin/creating_users_spec.rb

What gives? Well, it says , but we were expecting"sample@example.com"

. The admin is the one"admin@example.com" "sample@example.com"

we're logged in as, not the one we made.
The answer is . Re-examine yourstrong_parameters

app/controllers/admin/users_controller.rb:

Yup. We're not allowing assignment of . Normally, this would be great,admin

#<User:0xb6fd6054>

def to_s
 "#{email} (#{admin? ? "Admin" : "User"})"
end

Failure/Error: expect(page).to have_content("admin@example.com (Admin)")
expected there to be text "admin@example.com (Admin)"
 in "(user) sample@example.com (Admin)"

def user_params
 params.require(:user).permit(:name, :password, :password_confirmation)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

231

Licensed to <alex@vinova.sg>

mailto:user@example.com
mailto:admin@example.com
mailto:admin@example.com
mailto:admin@example.com
mailto:sample@example.com
mailto:sample@example.com
mailto:admin@example.com
mailto:sample@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

but we need to do this here! Since this controller is only accessable by admins, it's
okay to assign this value. Let's change it to this:

This is another great time to commit, and again, run tobin/rake spec

make sure everything works:

Good stuff. Push it.

Now you can create normal and admin users through the backend. In the future,
you may need to modify an existing user's details or delete a user, so we examine
the and parts of the CRUD next.updating deleting

This section focuses on adding the updating capabilities for the
.Admin::UsersController

As usual, you start by writing a feature to cover this functionality, placing the
file at spec/features/admin/editing_users_spec.rb and filling it with the content

def user_params
 params.require(:user).permit(:name,
 :email,
 :password,
 :password_confirmation,
 :admin)
end

2 examples, 0 failures

38 examples, 0 failures

git add .
git commit -m "Add the ability to create admin
 users through the admin backend"
git push

7.5.6 Editing users

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

232

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

from the following listing.

Listing 7.16 spec/features/admin/editing_users_spec.rb

W h e n y o u r u n t h i s w i t h bin/rspec

, you'll get a curiousspec/features/admin/editing_users_spec.rb

error:

require 'spec_helper'

feature 'Editing a user' do
 let!(:admin_user) { FactoryGirl.create(:admin_user) }
 let!(:user) { FactoryGirl.create(:user) }

 before do
 sign_in_as!(admin_user)
 visit '/'
 click_link "Admin"
 click_link "Users"
 click_link user.email
 click_link "Edit User"
 end

 scenario "Updating a user's details" do
 fill_in "Email", with: "newguy@example.com"
 click_button "Update User"

 expect(page).to have_content("User has been updated.")

 within("#users") do
 expect(page).to have_content("newguy@example.com")
 expect(page).to_not have_content(user.email)
 end
 end

 scenario "Toggling user's admin ability" do
 check "Is an admin?"
 click_button "Update User"

 expect(page).to have_content("User has been updated.")

 within("#users") do
 expect(page).to have_content("#{user.email} (Admin)")
 end
 end
end

2) Editing a user Toggling user's admin ability

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

233

Licensed to <alex@vinova.sg>

mailto:newguy@example.com
mailto:newguy@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Capybara is concerned about having two links on the page with the same name.
If you think about it, we're making two users here, and since the factory declares
our like this:User

All of our users will have the same email. Seems bad. Let's write a test to fix it.
Open up spec/models/user_spec.rb:

When you run this with ,bin/rspec spec/models/user_spec.rb

you'll get a failure:

Awesome. This was expected: We don't think our user should be valid without
an email, but they are. Luckily, we can fix this! Add this line to

Failure/Error: click_link user.email
Capybara::Ambiguous:
 Ambiguous match, found 2 elements matching link "sample@example.com"

FactoryGirl.define do
 factory :user do
 name "username"
 email "sample@example.com"
...

it "requires an email" do
 u = User.new(name: "steve",
 password: "hunter2",
 password_confirmation: "hunter2")

 u.save
 expect(u).to_not be_valid

 u.email = "steve@example.com"
 u.save
 expect(u).to be_valid
end

Failure/Error: expect(u).to_not be_valid
 expected valid? to return false, got true

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

234

Licensed to <alex@vinova.sg>

mailto:sample@example.com
mailto:sample@example.com
mailto:steve@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

app/models/user.rb:

This validation ensures that we have to have an email for a user to be valid. But
we still get the same failure when we run it:

What gives?
This one gave me a pause when I saw it. However, I figured it out quickly due

to a habit I've made: always read the error message. Let's read that again:

Line 18? Which test is line 18? It's part of the block with line 5:

That's a totally different test! We need to fix every call to . ForUser.new

example, on line 6:

Once we do this, we our tests pass again:

validates :email, presence: true

Failure/Error: expect(u).to be_valid
 expected valid? to return true, got false

Failure/Error: expect(u).to be_valid
 expected valid? to return true, got false
./spec/models/user_spec.rb:18:in ...

it "needs a password and confirmation to save" do

old
u = User.new(name: "steve")

new
u = User.new(name: "steve", email: "steve@example.com")

5 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

235

Licensed to <alex@vinova.sg>

mailto:steve@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Now that we have a passing test for our behavior, we need to bring our factory
in line with our models. We're going to use a feature called "sequences." Update
your spec/factories/user_factory.rb to look like this:

The method provides a sequence of things: every time you call it,sequence

the number gets bigger. So the first time, we'll get , then user1@example.com

second time we'll get , and so on.user2@example.com

Now, let's re-run this feature using bin/rspec

. You will discoverspec/features/admin/editing_users_spec.rb

the action is missing:show

This failure is happening when the link containing the user's email address is
clicked on in the block for the feature. Define the action in the before show

, directly under the action, becauseAdmin::UsersController index

grouping the different parts of CRUD is conventionaly done in this order: index,
show, new, create, edit, update and destroy. Define the action as a blankshow

action:

FactoryGirl.define do
 sequence(:email) {|n| "user#{n}@example.com" }

 factory :user do
 name "username"
 email { generate(:email) }
 password "hunter2"

 factory :admin_user do
 admin true
 end
 end
end

Failure/Error: click_link user.email
AbstractController::ActionNotFound:
 The action 'show' could not be found for Admin::UsersController

def show
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

236

Licensed to <alex@vinova.sg>

mailto:user1@example.com
mailto:user2@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

The action template will require a variable, and so you shouldshow @user

create a method that you can call as a in the set_user before_action

. Define this new method underneathAdmin::UsersController set_user

all the other methods already in the controller, since it will be a method:private

You then need to call this method using a , which shouldbefore_action

run before the , , , and actions. Put this line at theshow edit update destroy

top of your class definition for :Admin::UsersController

With the and methods now in place in the controller,find_user show

what's the next step going to be? Find out by running bin/rspec

 again. You will seespec/features/admin/editing_users_spec.rb

this error now:

private

 def set_user
 @user = User.find(params[:id])
 end

before_action :set_user, only: [:show, :edit, :update, :destroy]

Failure/Error: click_link user.email
ActionView::MissingTemplate:
Missing template admin/users/show,
 admin/base/show,
 application/show
 with {:locale=>[:en],
 :formats=>[:html],
 :handlers=>[:erb,
 :builder,
 :coffee]}.
Searched in:
 * "...ticketee/app/views"]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

237

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

NOTE Template inheritance
Notice how in the error message above three different templates
are listed: , and admin/users/show admin/base/show

. Rails is attempting to look for these threeapplication/show

templates in exactly that order, but can't find any of them.
The reason why this happens was explained earlier, but is good

to re-enforce here. The reason is because the
 inherits from Admin::UsersController

 and therefore inherits its templatesAdmin::BaseController

inside app/views/admin/base as well. The
 inherits from Admin::BaseController

, and so by inheritance both ApplicationController

 and Admin::BaseController Admin::UsersController

also have the templates from inside the (imaginary)
app/views/application directory as well.

You can write the template for the action to make this step pass. This fileshow

goes at app/views/admin/users/show.html.erb and uses the following code:

N o w w h e n y o u r u n bin/rspec

, the line that clicksspec/features/admin/editing_users_spec.rb

the link containing the user's email passes, and you're on to the next step:

Good, you're progressing nicely. You created the action for the show

, which displays information for a user to aAdmin::UsersController

signed-in admin user. Now you need to create the action so admin users canedit

edit a user's details.

<h2><%= @user %></h2>
<%= link_to "Edit User", edit_admin_user_path(@user) %>

Failure/Error: click_link "Edit User"
AbstractController::ActionNotFound:
 The action 'edit' could not be found for Admin::UsersController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

238

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Add the action directly underneath the action in your controller. Itedit create

should be another blank method like the action.show

With this action defined and the variable used in its view already set by@user

the , you now create the template for this action atbefore_action

app/views/admin/users/edit.html.erb. This template renders the same form partial
as the template:new

Okay, that's the current failure for the feature dealt with. Find out what's next
w i t h a n o t h e r r u n o f bin/rspec

. You should be toldspec/features/admin/editing_users_spec.rb

the action doesn't exist:update

Indeed, it doesn't, so let's create it! Add the action to your update

, as shown in the following listing. You don't needAdmin::UsersController

to set up the variable here because the @user find_user before_action

does it for you:

7.5.7 The edit and update actions

def edit
end

<h2>Editing a User</h2>
<%= render "form" %>

Failure/Error: click_button "Update User"
AbstractController::ActionNotFound:
 The action 'update' could not be found for Admin::UsersController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

239

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 7.17 app/controllers/admin/users_controller.rb

With this action in place, you need to delete the password parameters from
 if they are blank. Otherwise, the application will attempt toparams[:user]

update a user with a blank password and users wouldn't like that. Above if

, insert this code:@user.update(user_params)

Now the entire action looks like the following listing.

Listing 7.18 app/controllers/admin/users_controller.rb

def update
 if @user.update(user_params)
 flash[:notice] = "User has been updated."
 redirect_to admin_users_path
 else
 flash[:alert] = "User has not been updated."
 render action: "edit"
 end
end

if params[:user][:password].blank?
 params[:user].delete(:password)
 params[:user].delete(:password_confirmation)
end

def update
 if params[:user][:password].blank?
 params[:user].delete(:password)
 params[:user].delete(:password_confirmation)
 end

 if @user.update_attributes(params[:user], :as => :admin)
 flash[:notice] = "User has been updated."
 redirect_to admin_users_path
 else
 flash[:alert] = "User has not been updated."
 render :action => "edit"
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

240

Licensed to <alex@vinova.sg>

mailto:@user.update
mailto:@user.update
mailto:@user.update_attributes
http://www.manning-sandbox.com/forum.jspa?forumID=818

W h e n y o u r u n b i n / r s p e c

 again, all thespec/features/admin/editing_users_spec.rb

scenarios should pass:

In this section, you added two more actions to your
: and . Admin users can nowAdmin::UsersController edit update

update users' details as they please.
As always, you'll want to run to make sure you didn't breakbin/rake spec

everything. Just one quick run.... oh no!

What'd we do? Looking more closely at the failures, it has to do with emails.
The new email code probably broke this: thank goodness for automated tests!

The issue is this:

Ahhh. Our test is looking for the wrong email address. We can fix it! Open up
spec/features/creating_tickets_spec.rb, and check out the lines that failed:

Ah. A hardcoded email. Let's save the one that we used in our setup. Change
this line to this:

2 examples, 0 failures

41 examples, 1 failure

expected there to be text "Created by sample@example.com" in
 "Created by user12@example.com Edit Ticket Delete Ticket My
 pages are ugly!"

expect(page).to have_content("Created by sample@example.com")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

241

Licensed to <alex@vinova.sg>

mailto:sample@example.com
mailto:user12@example.com
mailto:sample@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

And then change the very start of the block:before

Great! Let's run that spec again, using bin/rspec

:spec/features/creating_tickets_spec.rb

Awesome! Now run to ensure nothing was broken by thesebin/rake spec

latest changes. You should see this output:

Whew! Done! Let's make a commit for this new feature:

With the updating done, there's only one more part to go for your admin CRUD
interface: deleting users.

expect(page).to have_content("Created by #{@email}")

before do
 project = FactoryGirl.create(:project)
 user = FactoryGirl.create(:user)
 @email = user.email

3 examples, 0 failures

41 examples, 0 failures

git add .
git commit -m "Add ability to edit and update users"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

242

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

There comes a time in an application's life when you need to delete users. Maybe
they asked for their account to be removed. Maybe they were being pesky. Or
maybe you have another reason to delete them. Whatever the case, having the
functionality to delete users is helpful.

Keeping with the theme so far, you first write a feature for deleting users (using
the following listing) and put it at spec/features/admin/deleting_users_spec.rb.

Listing 7.19 spec/features/admin/deleting_users_spec.rb

When you run this feature using bin/rspec

, you get right up tospec/features/admin/deleting_users_spec.rb

the first line inside the scenario with no issue and then it complains about the
second line:

Of course, you need the "Delete User" link! Add it to the template atshow

app/views/admin/users/show.html.erb right underneath the "Edit User" link:

7.5.8 Deleting users

require 'spec_helper'

feature 'Deleting users' do
 let!(:admin_user) { FactoryGirl.create(:admin_user) }
 let!(:user) { FactoryGirl.create(:user) }

 before do
 sign_in_as!(admin_user)
 visit '/'

 click_link 'Admin'
 click_link 'Users'
 end

 scenario "Deleting a user" do
 click_link user.email
 click_link "Delete User"

 expect(page).to have_content("User has been deleted")
 end
end

 Unable to find link "Delete User"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

243

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You need to add the action next, directly under the actiondestroy update

in , as shown in the following listing.Admin::UsersController

Listing 7.20 app/controllers/admin/users_controller.rb

W h e n y o u r u n b i n / r s p e c

, the feature passesspec/features/admin/deleting_users_spec.rb

because you now have the "Delete User" link and its matching action:destroy

There's one small problem with this feature, though: it doesn't stop you from
deleting yourself!

To make it impossible to delete yourself, you must add another scenario to the
spec/features/admin/deleting_users_spec.rb, shown in the following listing.

<%= link_to "Delete User", admin_user_path(@user), method: :delete,
 data: { confirm: "Are you sure you want to delete this user?"} %>

def destroy
 @user.destroy
 flash[:notice] = "User has been deleted."
 redirect_to admin_users_path
end

1 example, 0 failures

7.5.9 Ensuring you can't delete yourself

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

244

Licensed to <alex@vinova.sg>

mailto:@user.destroy
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 7.21 spec/features/admin/deleting_users_spec.rb

When you run this feature with bin/rspec

, the first two linesspec/features/admin/deleting_users_spec.rb

of this scenario pass, but the third one fails, as you might expect, because you
haven't added the message! Change the action in the destroy

 to the following listing.Admin::UsersController

Listing 7.22 app/controllers/admin/users_controller.rb

Now, before the method does anything, it checks to see if the userdestroy

attempting to be deleted is the current user and stops it with the "You cannot

 message. When you run delete yourself!" bin/rspec

 this time, thespec/features/admin/deleting_users_spec.rb

scenario passes:

scenario "Users cannot delete themselves" do
 click_link admin_user.email
 click_link "Delete User"

 expect(page).to have_content("You cannot delete yourself!")
end

def destroy
 if @user == current_user
 flash[:alert] = "You cannot delete yourself!"
 else
 @user.destroy
 flash[:notice] = "User has been deleted."
 end

 redirect_to admin_users_path
end

2 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

245

Licensed to <alex@vinova.sg>

mailto:@user.destroy
http://www.manning-sandbox.com/forum.jspa?forumID=818

Great! With the ability to delete users implemented, you've completed the
CRUD for and for the users resource entirely.Admin::UsersController

Now make sure you haven't broken anything by running . Youbin/rake spec

should see this output:

Fantastic! Commit and push that!

With this final commit, you've now got your admin section created, and it
provides a great CRUD interface for users in this system so that admins can modify
their details when necessary.

For this chapter, you dove into basic access control and added a field called
 to the users table. You used to allow and restrict access to aadmin admin

namespaced controller.
Then you wrote the CRUD interface for the users resource underneath the

admin namespace. This interface is used in the next chapter to expand on the
authorization that you've implemented so far: restricting users, whether admin
users or not, to certain actions on certain projects. We rounded out the chapter by
not allowing users to delete themselves.

The next chapter focuses on enhancing the basic permission system you've
implemented so far, introducing a gem called . With this permissioncancan

system, you'll have much more fine-grained control over what users of your
application can and can't do to projects and tickets.

43 examples, 0 failures

$ git add .
$ git commit -m "Add feature for deleting users,
 including protection against self-deletion"
$ git push

7.6 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

246

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

actions, controller generator
add_column, :default option
concat, ActionView::Base
form_for, Array with Symbol usage
have_css, Capybara
Namespaces
sign_in, test helper
try method

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

247

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

8
At the end of chapter 7, you learned a basic form of authorization based on a
Boolean field called on the table. If this field is set to ,admin users true

identifying admin users, those users can access the CRUD functions of the
 resource as well as an admin namespace where they can perform CRUDProject

on the resource.User

In this chapter, you’ll expand on authorization options by implementing a
broader authorization system using a model. The records for thisPermission

model’s table define the actions specified users can take on objects from your
system, such as projects. Each record tracks the user who has a specific permission,
the object to which the permission applies, and the type of permission granted.

The authorization implemented in this chapter is . Underwhitelist authorization
whitelist authorization, all users are denied access to everything by default, and
you must specify what the user can do. The opposite is ,blacklist authorization
under which all users are allowed access to everything by default and you must
block what they may not access. You use whitelist authorization for your
application because you may have a large number of projects and want to assign a
user to only one of them. Whitelist authorization involves fewer steps in restricting
a user to one project.

A good way to think about whitelist authorization is as the kind of list a security
guard would have at an event. If you’re not on the list, you don’t get in. A blacklist
comparison would be if the security guard had a list of people who weren’t
allowed in.

This chapter guides you through restricting access to the CRUD operations of
 one by one, starting with reading and then moving intoTicketsController

creating, updating, and deleting. Any time a user wants to perform one of these

Fine-grained access control

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

248

Licensed to <alex@vinova.sg>

actions, they must be granted permission to do so, or added to “the list.” During
this process, you’ll see another gem called CanCan, which provides some methods
for your controllers and views that help you check the current user’s permission to
perform a specific action.

You’ll first set up permissions through the Capybara features. Once you’re
finished with restricting the actions in your controller, you’ll generate functionality
in the backend to allow administrators of the application to assign permissions to
users.

A time comes in every ticket-tracking application’s life when it’s necessary to
restrict which users can see which projects. For example, you could be operating in
a consultancy where some people are working on one application and others are
working on another. You want the admins of the application to be able to
customize which projects each user can see.

First, you’ll create a model called that tracks which users havePermission

which permissions for which actions. But before you create that model, you must
update one of your Viewing Projects features to make sure only users who have
permission to view a project are able to do so.

Add a background, and change the scenario in this feature to set up a user with the
correct permissions. Then make the user visit that project. Change the code in the
scenario in this feature to what is shown in the following listing.

8.1 Restricting read access

8.1.1 Testing read-access restriction

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

249

Licensed to <alex@vinova.sg>

Listing 8.1 spec/features/viewing_projects_spec.rb

You’ve effectively rewritten a large portion of this feature, which is common
practice when implementing such large changes. The define_permission!

 method defines a permission record. It’s responsible for giving the specified
user access to the specified object—a object, in this case. This methodProject

is currently undefined, so when you run bin/rspec

, it complains about that:spec/features/viewing_projects_spec.rb

To create this method, create a new file at
spec/support/authorization_helpers.rb. In this file, put the following content.

require 'spec_helper'

feature "Viewing projects" do
 let!(:user) { FactoryGirl.create(:user) }
 let!(:project) { FactoryGirl.create(:project) }

 before do
 sign_in_as!(user)
 define_permission!(user, :view, project)
 end

 scenario "Listing all projects" do
 visit '/'
 click_link project.name

 expect(page.current_url).to eql(project_url(project))
 end
end

Failure/Error: define_permission!(user, :view, project)
NoMethodError:
 undefined method `define_permission!' for ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

250

Licensed to <alex@vinova.sg>

Listing 8.2 spec/support/authorization_helpers.rb

With the method defined, re-running this spec with define_permission!

 results inbin/rspec spec/features/viewing_projects_spec.rb

it now complaining about the missing class:Permission

This model will be used to track what users have what kind of permission on
certain objects. Therefore, it needs to track the associationfour fields: user_id

with the user, to track what kind of action this permission gives, and action

 and to track the association with the object on whichthing_id thing_type

the permission is granted.
Two fields are used to track the association because a “thing” could bething

one of many things. It could be a project; it could be a ticket; it could be anything.
This type of association is called a . You’ll see how thepolymorphic association
polymorphic association works when you define the actual association in the
model in a short while.

Create the model by generating it using the following command,Permission

typed all on one line:

module AuthorizationHelpers
 def define_permission!(user, action, thing)
 Permission.create!(user: user,
 action: action,
 thing: thing)
 end
end

RSpec.configure do |c|
 c.include AuthorizationHelpers
end

Failure/Error: define_permission!(user, :view, project)
NameError:
 uninitialized constant AuthorizationHelpers::Permission

8.1.2 Creating and using the Permission model

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

251

Licensed to <alex@vinova.sg>

With this model and its related migration, you can run bin/rake

 and to set up the developmentdb:migrate bin/rake db:test:prepare

and test databases. When you run your feature again with bin/rspec

, you get this errorspec/features/viewing_projects_spec.rb

message:

You know better than Rails! This “attribute” is supposed to be an association
for the user this permission relates to. Define this association using this line in
app/models/permission.rb:

Running the feature again with bin/rspec

, you’ll see that it’s nowspec/features/viewing_projects_spec.rb

the attribute Rails doesn’t know about.

Define this association in the model by using this line, placing itPermission

under the association:user

$ bin/rails g model permission user_id:integer thing_id:integer
 thing_type:string action:string

Failure/Error: define_permission!(user, :view, project)
ActiveRecord::UnknownAttributeError:
 unknown attribute: user

class Permission < ActiveRecord::Base
 belongs_to :user
end

Failure/Error: define_permission!(user, :view, project)
ActiveRecord::UnknownAttributeError:
 unknown attribute: thing

 belongs_to :thing, polymorphic: true

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

252

Licensed to <alex@vinova.sg>

This code represents a polymorphic association, which, as mentioned earlier,
needs to associate with many types of objects. A polymorphic association uses the

 and fields to determine what object a thing_type thing_id Permission

object relates to. Figure 8.1 illustrates how this association works.

Figure 8.1 Polymorphic saving

When you assign an object to the polymorphic association, instead ofthing

saving as in a normal , Rails also saves the thing_id belongs_to

 field, which is the string version of the object’s class, or thing_type

. In this step of the application, the field isthing.class.to_s thing_type

set to because you’re assigning a object to ."Project" Project thing

Therefore, the new record in the table has both and thing_type thing_id

attributes set.
When Rails loads this object, it goes through the process shown in figure 8.2.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

253

Licensed to <alex@vinova.sg>

Figure 8.2 Polymorphic loading

Rails knows this is a polymorphic association because you told it in the
 model by using the option on the association, andPermission polymorphic

it therefore uses the and fields to find the object. Bything_id thing_type

knowing , Rails can figure out what model the association is andthing_type

then use that model to load a specific object with the of . Thenid thing_id

boom, you’ve got a object.Project

N o w w h e n y o u r u n bin/rspec

, it passes:spec/features/viewing_projects_spec.rb

The feature should pass with or without the new permission step, because, at
the moment, the permission settings have no bearing on what projects a user can
see.

The easiest way to specify which projects users can see is to restrict the scope
of the projects the action searches on so that projects the user doesn’t haveshow

access to don’t appear in this list. By default, a on a model searches allfind

records in the related table, but you can add a method to your model toscope

allow you to search on restricted sets of records.

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

254

Licensed to <alex@vinova.sg>

To restrict the action to certain record sets, you implement a on the show scope

 model that returns only the projects with related recordsProject Permission

that declare the user is authorized to read the projects. Before you scope down this
, you must write a spec to test that the action in the find show

 really does scope down this find; and if the projectProjectsController

can’t be found, the controller should deny all knowledge of a project ever having

existed.1

Footnote 1 m For if you don’t write a test, we will give you one of these: _

The spec goes in spec/controllers/projects_controller_spec.rb directly under the
spec for testing that standard users can’t access specified actions, but still in the

 block for standard users. This spec is shown in the following listing.context

Listing 8.3 spec/controllers/projects_controller_spec.rb

You use the same error message from the missing-project spec because you
don’t want to acknowledge to unauthorized users that the project they’re looking
for exists when they don’t have permission to read it.

N o w r e - r u n b i n / r s p e c

:spec/controllers/projects_controller_spec.rb

The spec fails because you haven’t yet scoped down the callProject.find

in the method, which is called using a in set_project before_action

8.2 Restricting by scope

it "cannot access the show action without permission" do
 project = FactoryGirl.create(:project)
 get :show, id: project.id

 expect(response).to redirect_to(projects_path)
 expect(flash[:alert]).to eql("The project you were looking " +
 "for could not be found.")
end

Failure/Error: response.should redirect_to(projects_path)
 Expected response to be a <redirect>, but was <200>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

255

Licensed to <alex@vinova.sg>

.ProjectsController

With a failing spec testing the nonexistent behavior, open
app/controllers/projects_controller.rb and change the method toset_project

look for projects the current user has access to so your spec will pass. But there’s
one problem: you’re not restricting the action to only users who are signedshow

in.
You must make it so that the user has to sign in before accessing the show

action, because you need to use the method to check whatcurrent_user

permissions this user has access to in the method. To do so, callset_project

the method as a in this controller, asrequire_signin! before_action

you did for certain actions in . Place this method above TicketsController

 to ensure that a user is authenticated before doesset_project set_project

its job. The filters in should now look like this.ProjectsController

Listing 8.4 app/controllers/projects_controller.rb

Alter the method to check the permissions of the projectset_project

before letting authorized users see it or refusing unauthorized users access. Change
the line that defines the variable from this@project

to this:

The method doesn’t exist yet; you’ll define it in a moment. Itviewable_by

will return a scope of only the projects the user is allowed to view. This scope has

before_action :authorize_admin!, except: [:index, :show]
before_action :require_signin!, only: [:show]
before_action :set_project, only: [:show, :edit, :update, :destroy]

@project = Project.find(params[:id])

@project = Project.viewable_by(current_user).find(params[:id])

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

256

Licensed to <alex@vinova.sg>

exactly the same methods as an Active Record class, so you can treat it like one.
You can define this method using the class method in your scope Project

model.
The method provides a method you can call on your class or on anscope

association collection for this class that returns a subset of records. The following
 call, for example, defines a method called :scope admins

If you wanted to, you could call this method on your model toadmins User

return all the users who are admins:

As you can see, manually specifying isn’t nearly as pretty as calling where

. This may seem like a contrived example, but trust us: it gets uglyUser.admins

when the conditions become more complex. Scopes are yet another great example
of the DRY (Don’t Repeat Yourself) convention seen throughout Rails. Because
the method defines your scope’s logic in one central location, you canscope

easily change all uses of this scope by changing it in this one spot.
Scopes are also chainable. Imagine that you had another defined onscope

your model, such as the following:User

You can call this scope by itself

which returns all of your users, ordered by their name; no surprises there. The
real magic comes when you chain both the and scopesadmins by_name

scope :admins, ->{ where(:admin => true) }

User.admins

scope :by_name, -> { order(:name) }

User.by_name

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

257

Licensed to <alex@vinova.sg>

together, like this

or this:

Rails builds up the queries by applying the scopes one at a time. Calling them
in any order will result in the same query.

Let’s define a now, along with the association it needsscope permissions

to use. Put this scope under the validation lines in the model:Project

The option on the association links your:as has_many :permissions

projects to the association on the objects. You need thisthing Permission

association defined here because it’s used by the below it.scope

The method joins the table using a SQL joins permissions INNER

, allowing you to perform queries on columns from that table too. You doJOIN

that with the method, specifying a hash that contains the where permissions

key, which points to another hash containing the fields you want to search on and
their expected values. This scope then returns all the objects containingProject

a related record in the table that has the field set to permissions action

 and the user ID equal to that of the passed-in user.view

With this method in place, when you run this spec file again with scope

,bin/rspec spec/controllers/projects_controller_spec.rb

your tests (almost!) pass because you’re scoping down the in the find

User.admins.by_name

User.by_name.admins

has_many :permissions, as: :thing

scope :viewable_by, ->(user) do
 joins(:permissions).where(permissions: { action: "view",
 user_id: user.id })
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

258

Licensed to <alex@vinova.sg>

 method:set_project

This failure was surprising to us. Then, by reading the error message, we
realized something: “displays an error for a missing project” is an older test, and
we added the requirement for a user to be signed in. To fix this, move the before

block that contains your sign-in logic outside of the and put it right aftercontext

the . Here’s our entire spec/controllers/projects_controller_spec.rb:let

$ bin/rspec spec/controllers/projects_controller_spec.rb
FF.....

Failures:

 1) ProjectsController displays an error for a missing project
 Failure/Error: expect(response).to redirect_to(projects_path)
 Expected response to be a redirect to <http://test.host/projects>
 but was a redirect to <http://test.host/signin>.
 Expected "http://test.host/projects"
 to be === "http://test.host/signin".

 2) ProjectsController cannot access the show action without permission
 Failure/Error: expect(response).to redirect_to(projects_path)
 Expected response to be a redirect to <http://test.host/projects>
 but was a redirect to <http://test.host/signin>.
 Expected "http://test.host/projects"
 to be === "http://test.host/signin".

require 'spec_helper'

describe ProjectsController do
 let(:user) { FactoryGirl.create(:user) }
 before do
 sign_in(user)
 end

 it "displays an error for a missing project" do
 get :show, id: "not-here"

 expect(response).to redirect_to(projects_path)
 message = "The project you were looking for could not be found."

 expect(flash[:alert]).to eql(message)
 end

 context "standard users" do
 { new: :get,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

259

Licensed to <alex@vinova.sg>

Try running this one more time with bin/rspec

:spec/controllers/projects_controller_spec.rb

All right! The examples for this controller are now passing, but how about the
feature—the one you wrote previously to test that users access this can show

action if they have the correct permissions? This spec tested the negative, making
sure a user without permission access this project.can’t

With the code you just implemented, this feature should still pass as it did the
last time you ran it. Let’s find out by running bin/rspec

:spec/features/viewing_projects_spec.rb

 create: :post,
 edit: :get,
 update: :put,
 destroy: :delete }.each do |action, method|

 it "cannot access the #{action} action" do
 sign_in(user)

 send(method, action, :id => FactoryGirl.create(:project))

 expect(response).to redirect_to(root_path)
 expect(flash[:alert]).to eql("You must be an admin to do that.")
 end
 end
 end

 it "cannot access the show action without permission" do
 project = FactoryGirl.create(:project)
 get :show, id: project.id

 expect(response).to redirect_to(projects_path)
 expect(flash[:alert]).to eql("The project you were looking for
 could not be found.")
 end
end

7 examples, 0 failures

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

260

Licensed to <alex@vinova.sg>

Isn’t that wonderful? You rewrote the feature, and it still passed! You’ve tested
both the granted and denied facets of this particular permission by writing a feature
and spec, respectively.

Now that you’ve implemented that little chunk of functionality and everything
seems to be going smoothly, let’s make sure the entire application is going the
same way by running . Oh dear! You broke just about every featurebin/rspec

in some way:

These features are all broken because you restricted the permissions on the
 method, and these features depend on this functionality in oneset_project

way or another. Let’s fix them, from the top, one at a time.

Currently, you have a whole bundle of features that are failing. When this happens,
it may look like everything’s broken (and maybe some things are on fire), but in
reality it’s not as bad as it seems. The best way to fix a mess like this is to break it
into smaller chunks and tackle it one chunk at a time. The output from

 provided a list of the broken features: they’re your chunks. Let’s gobin/rspec

through them and fix them, starting with the Creating Projects feature.

W h e n y o u r u n b i n / r s p e c

, it fails becausespec/features/creating_projects_spec.rb

Capybara can’t see the created-project flash message on the page:

rspec ./spec/features/creating_tickets_spec.rb:24
rspec ./spec/features/creating_tickets_spec.rb:36
rspec ./spec/features/creating_tickets_spec.rb:44
rspec ./spec/features/hidden_links_spec.rb:50
rspec ./spec/features/hidden_links_spec.rb:55
rspec ./spec/features/editing_tickets_spec.rb:22
rspec ./spec/features/editing_tickets_spec.rb:35
rspec ./spec/features/editing_projects_spec.rb:14
rspec ./spec/features/editing_projects_spec.rb:21
rspec ./spec/features/viewing_tickets_spec.rb:25
rspec ./spec/features/deleting_projects_spec.rb:8
rspec ./spec/features/deleting_tickets_spec.rb:20
rspec ./spec/features/creating_projects_spec.rb:11

8.3 Fixing what you broke

8.3.1 Fixing the Creating Projects feature

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

261

Licensed to <alex@vinova.sg>

If you look closely at the actual output Capybara shows you, you’ll see that it
contains a different message instead: “The project you were looking for could not
be found.” This is happening due to the way you’ve restricted visibility on the
projects to only users with permission to view them. This restriction isn’t taking
into account that the user is signed in as an admin user and therefore should be able
to see all projects, regardless of whether they have the recordPermission

defined.
The problem lies in the method in .set_project ProjectsController

This method should not restrict the finding of projects when the user is an admin.
To fix this problem, change how the variable is defined in the @project

 method in app/controllers/projects_controller.rb from thisset_project

to this:

As you can see, this code won’t scope the find using the scopeviewable_by

if the user is an admin, but it will if the user isn’t. When you run bin/rspec

, it should now pass:spec/features/creating_projects_spec.rb

This change should fix a couple of other features projects as well, so rerun
 to find the ones that are still broken. You have a much shorter listbin/rspec

expected there to be content "Project has been created." in ...

@project = Project.viewable_by(current_user).find(params[:id])

@project = if current_user.admin?
 Project.find(params[:id])
else
 Project.viewable_by(current_user).find(params[:id])
end

2 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

262

Licensed to <alex@vinova.sg>

now:

You reduced your failing scenarios from 13 to 7 (across 4 features), which is
pretty good. Let’s fix the first of these, the Creating Tickets feature.

Run the f i r s t f ea tu re wi th bin/rspec

. You’ll see that it can’tspec/features/creating_tickets_spec.rb

find the New Ticket link.

This is the same problem as before: the user doesn’t have permission to access
that project. To fix this issue, you need to alter the beginning of the blockbefore

in spec/features/creating_tickets_spec.rb. You’ll Change it so that permission to
view the project is granted to the user. Replace these lines in this file

with these lines:

rspec ./spec/features/deleting_tickets_spec.rb:20
rspec ./spec/features/creating_tickets_spec.rb:24
rspec ./spec/features/creating_tickets_spec.rb:44
rspec ./spec/features/creating_tickets_spec.rb:36
rspec ./spec/features/editing_tickets_spec.rb:35
rspec ./spec/features/editing_tickets_spec.rb:22
rspec ./spec/features/viewing_tickets_spec.rb:25

8.3.2 Fixing the four failing features

Failure/Error: click_link "New Ticket"
Capybara::ElementNotFound:
 Unable to find link "New Ticket"

project = FactoryGirl.create(:project)
user = FactoryGirl.create(:user)
@email = user.email

project = FactoryGirl.create(:project)
user = FactoryGirl.create(:user)
define_permission!(user, "view", project)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

263

Licensed to <alex@vinova.sg>

With these revisions, you change the first line to assign a new local variable
called so that it can be referenced later. On the second line, you swapproject

out the two lines that previously created a new user and then confirmed them,
replacing them with a single line that creates a new confirmed user. On the third
line, you define a new permission for the user to view the project.

Because you’re now signing in as a user, you no longer need these lines in the
 block of this feature, so you should remove them:before

All the pieces are in place now for this feature to work. When you run it again
with , allbin/rspec spec/features/creating_tickets_spec.rb

the scenarios should pass:

One down, three to go. The next failing feature is Deleting Tickets.
It fails for the same reason as the previous feature: the user doesn’t have access

to the project to delete a ticket. Let’s fix this now by putting the following line at
the top of the block in this feature:before

@email = user.email
sign_in_as!(user)

message = "You need to sign in or sign up before continuing."
expect(page).to have_content(message)

fill_in "Email", with: "ticketee@example.com"
fill_in "Password", with: "password"
click_button "Sign in"
click_link project.name
click_link "New ticket"

3 examples, 0 failures

before do
 define_permission!(user, "view", project)
 ...
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

264

Licensed to <alex@vinova.sg>

That’s a little too easy! When you run bin/rspec

, this feature passes oncespec/features/deleting_tickets_spec.rb

again:

Next up is the Editing Tickets feature, which contains not one but two broken
scenarios. The two scenarios in this feature, similarly to the Editing Projects
scenario, are broken because the feature can’t find a link:

Again, the error occurs because the user doesn’t have permission to access this
particular project. You must specify that this user has access to this project in

, as you did for the Creating Tickets and Editing Tickets features. Add thisbefore

line directly under the line that creates the project in :before

W h e n y o u r u n b i n / r s p e c

, both scenarios shouldspec/features/editing_tickets_spec.rb

pass:

Great! You fixed another feature. The one remaining feature that fails is
Viewing Tickets, which you fix the same way you fixed the previous features. Add
this line again under where you create the TextMate 2 project, this time in

1 example, 0 failures

Capybara::ElementNotFound:
 Unable to find link "Example ticket"

before do
 define_permission!(user, "view", project)
 ...

2 examples, 0 failure

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

265

Licensed to <alex@vinova.sg>

spec/features/viewing_tickets_spec.rb:

You also need to add one for the Internet Explorer project:

To sign in, add this line above the call in the block:visit before

Running bin/rspec spec/features/viewing_tickets_spec.rb

, you see that this feature is passing:

That was fast! All four failing features are fixed. Well, so you hope. You
independently verified them, but run to make sure nothing else isbin/rspec

broken:

There’s one pending spec from spec/models/permission_spec.rb. You can
delete this file now, and then when you re-run , you’ll see this output:bin/rspec

define_permission!(user, "view", textmate_2)

define_permission!(user, "view", internet_explorer)

sign_in_as!(user)

1 example, 0 failures

46 examples, 0 failures, 1 pending

Pending:
 Permission add some examples to (or delete) ...
 # No reason given

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

266

Licensed to <alex@vinova.sg>

Ah. No reason to keep an empty spec around. Get rid of it with rm

, and then run your tests (with spec/models/permission_spec.rb

) one more time:bin/rspec

Great! Everything’s working again! Let’s commit that:

In these first two sections, you added the restriction on the
 that projects should be accessible only to users with ProjectsController

 records with the action set to . In the process, you broke aPermission view

couple of features, but fixing them was simple.
But these changes only protect the actions in thatProjectsController

use the method and those in . Beforeset_project not TicketsController

you make changes in , however, the links to all projectsTicketsController

are still visible to all users through ’s , which isProjectsController index

definitely something you should fix first.

As described previously, the links to all projects are still visible to all users on the
homepage. The way to fix it is to write a new scenario to test that this behavior is
always present. You don’t have to write the entire scenario, because you have a
scenario you can , instead: the one inmodify
spec/features/viewing_projects_spec.rb.

To test that the links are hidden on the action, change the first part ofindex

 # ./spec/models/permission_spec.rb:4

Finished in 2.64 seconds
45 examples, 0 failures, 1 pending

45 examples, 0 failures

$ git add .
$ git commit -m "Make projects only visible to users with
permission to see them"
$ git push

8.3.3 One more thing

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

267

Licensed to <alex@vinova.sg>

viewing_projects_spec.rb to look like this:

This feature will now ensure that the user who doesn’t have permission to view
the first project no longer can see the second project. When you run this feature
using , itbin/rspec spec/features/viewing_projects_spec.rb

fails as expected:

To fix it, open app/controllers/projects_controller.rb and modify the index

action to do exactly what the method does: restrict the list ofset_project

visible projects to just the ones the user has permission to view. You could reuse
the code from the method in the action, but that isn’t veryset_project index

DRY. Instead, extract the code from and move it into the set_project

 model. Take the code from the methodProject set_project

and change it to this much shorter version:

The model is a better place than the controller for this logic because it’s

FactoryGirl.create(:project, name: "Hidden")
visit '/'
expect(page).to_not have_content("Hidden")
click_link project.name

Failure/Error: expect(page).to_not have_content("Hidden")
 expected there not to be text "Hidden" in...

@project = if current_user.admin?
 Project.find(params[:id])
else
 Project.viewable_by(current_user).find(params[:id])
end

@project = Project.for(current_user).find(params[:id])

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

268

Licensed to <alex@vinova.sg>

operating on data from the database. Open app/models/project.rb, and define this
new class method using the following code. You’ll also refactor the methodfor

down a smidgeon:

The first line of this method uses a , which is a shorter versionternary statement
of this:

This statement is useful when you have short conditional statements like this
one, but it shouldn’t be (ab)used for longer conditional statements. As a general
rule of thumb, if the line for a ternary statement is longer than 80 characters, it’s
probably best to split it out over multiple lines for better readability.

In the method, you can call on what this new set_project find for

method returns. And in the method, you can use it in an identical fashion,index

like this:

Because you’re referencing in this action, you must modifycurrent_user

the line that references to ensure thatbefore_action require_signin!

users are signed in before they visit this page. Let’s change it to this:

scope :for, ->(user) do
 user.admin? ? Project.all : Project.viewable_by(user)
end

if current_user.admin?
 Project.all
else
 Project.viewable_by(current_user)
end

def index
 @projects = Project.for(current_user)
end

before_action :require_signin!, only: [:index, :show]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

269

Licensed to <alex@vinova.sg>

When you run the feature again with bin/rspec

, it passes:spec/features/viewing_projects_spec.rb

Ensure that everything is working as it should by running . Oops!bin/rspec

You broke one of the scenarios in the Signing Up feature, as shown by this output
from the command you just ran:

You’ve fixed every other feature, but now the Signing Up feature is
misbehaving.

Let’s see why. When users sign up to your application, they’re shown the
“Please open the link to activate your account" message, as the scenario says they
should; and they’re also redirected to the root of your application. The problem lies
with this final step: people are redirected to the root of the application, the

’s action, which is now locked down to requireProjectsController index

that users be authenticated before they can view this action. This is problematic,
but it’s fixable.

The Signing Up feature is broken, and the problem lies solely with the latest
changes you made to . When users sign up, they’re sentProjectsController

to the in the application, which resolves to the action in root_path index

. This controller has the methodProjectsController require_login!

called before all actions in it, checking whether users are authenticated. If they
aren’t, they’re redirected to the sign-in page.

You can see all this in action if you start your server using rails server

and attempt to sign up. Rather than being properly shown the “Please open the link
to activate your account” message, you’ll see the Sign In page, as shown in figure

1 example, 0 failures

Failure/Error: expect(page).to have_content("You have signed up...
 expected there to be text "You have signed up successfully." in...

8.3.4 Fixing the Signing Up feature

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

270

Licensed to <alex@vinova.sg>

8.3.

Figure 8.3 Sign In page

Lucky for you, this is easy to fix! You need to make sure you not only make a
new account, but also sign in the user. Add a line between these two in
app/controllers/users_controller.rb, the action:create

By putting the user’s in the session, you’ve logged them in. The Signing Upid

feature is probably fixed now, but the only true way to make sure it’s working is to
test it manually or run the feature. Running the feature is easier, so let’s do that
with :bin/rspec

if @user.save
 session[:user_id] = @user.id
 flash[:notice] = "You have signed up successfully."

45 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

271

Licensed to <alex@vinova.sg>

Everything is green. Awesome! This feature is passing again. Let’s make a
commit for that:

You’ve limited the ability of users to take action on things in
 and fixed the Signing Up feature that broke because ofProjectsController

the changes you made. But you haven’t protected . This isTicketsController

a problem because users who can’t view a project will still be able to view its
tickets, which could pose a security risk. A project’s most vital assets (for now) are
the tickets associated with it, and users who don’t have permission to see the
project shouldn’t be able to see the associated tickets. Let’s address this restriction
next.

When implementing permissions, you have to be careful to ensure that all users
who should have access to something do, and all users who have accessshouldn’t
to something don’t. All of ’s actions are still available toTicketsController

all users because it has no permission checking. If you leave it in that state, users
who are unable to see the project can still make requests to the actions in

. They shouldn’t be able to do anything to the tickets in aTicketsController

project if they don’t have permission to view tickets for it. Let’s implement
permission-checking to remedy this problem.

To prevent users from seeing tickets in a project they’re unauthorized to see,
you must lock down the action of . To test thatshow TicketsController

when you put this restriction in place, it’s correct, write a spec in the
spec/controllers/tickets_controller_spec.rb file, as you did for

. Make it look like the following listing.ProjectsController

$ git add .
$ git commit -m "Don’t show projects that a
 user doesn't have permission to see"
$ git push

8.4 Blocking access to tickets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

272

Licensed to <alex@vinova.sg>

Listing 8.5 spec/controllers/tickets_controller_spec.rb

This test sets up a project, a ticket, and a user who has no explicit permission to
view the project and therefore shouldn’t be able to view the ticket. You test this
spec by signing in as the unauthorized user and trying to go to the action forshow

the ticket, which requires you to pass a to help it find what projectproject_id

the ticket is in. The test should pass if the user is redirected to the root_path

and if, upon the user seeing the , the application denies allflash[:alert]

knowledge of this project ever having existed.
When you run this test using bin/rspec

, it fails becausespec/controllers/tickets_controller_spec.rb

the user can still access this action:

With this test failing correctly, you can work on restricting access to only the
projects the user has access to. Open app/controllers/tickets_controller.rb and

require 'spec_helper'

describe TicketsController do
 let(:user) { FactoryGirl.create(:user) }
 let(:project) { FactoryGirl.create(:project) }
 let(:ticket) { FactoryGirl.create(:ticket,
 project: project,
 user: user) }

 context "standard users" do
 it "cannot access a ticket for a project" do
 sign_in(user)
 get :show, :id => ticket.id, :project_id => project.id

 expect(response).to redirect_to(root_path)
 expect(flash[:alert]).to eql("The project you were looking " +
 "for could not be found.")
 end
 end
end

Failure/Error: response.should redirect_to(root_path)
 Expected response to be a <redirect>, but was <200>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

273

Licensed to <alex@vinova.sg>

remove the option from the filter, so it goes from:except require_signin!

this

to this:

Now users should always be asked to sign in before accessing the and index

 actions for this controller, meaning will always return a show current_user

 object.User

You can reference the method in and usecurrent_user set_project

the method to limit the project scope to only the projects to which thatfor find

user has access. Change the method to the following example:set_project

The rewritten method retrieves a only if set_project Project

 has permission to view that project or is an admin. Otherwise, ancurrent_user

 exception will be thrown and rescued,ActiveRecord::RecordNotFound

showing users “The project you were looking for could not be found.”
When you run the spec again with bin/rspec

, it passes becausespec/controllers/tickets_controller_spec.rb

this user can no longer see this project and is shown the error:

before_action :require_signin!, :except => [:index, :show]

before_action :require_signin!

def set_project
 @project = Project.for(current_user).find(params[:project_id])
rescue ActiveRecord::RecordNotFound
 flash[:alert] = "The project you were looking " +
 "for could not be found."
 redirect_to root_path
end

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

274

Licensed to <alex@vinova.sg>

You scoped the project find for the same way you didTicketsController

for , limiting it to only those projects to which theProjectsController

current user has access.
That’s the end of that! Now ensure that all your specs and features are passing

by running . You should see this output:bin/rspec

In this section, you altered so that only users withTicketsController

permission to access a project can see the tickets in it. Let’s commit that:

Next you’ll add a new permission that restricts who can create tickets in a
project.

Sometimes, when working on a project, you’ll want to limit the creation of tickets
to a certain person or a group of people, such as to only developers or only clients.
For this, you want the New Ticket link to be hidden from people who don’t have
this permission, and you need both the and actions to reject suchnew create

users.
You’re lucky to already have the feature for creating tickets; you need to add a

step to the block declaring that the user can create tickets in the project.before

Place this step directly under the one declaring that the user can view the project.
Open spec/features/creating_tickets_spec.rb, and modify the so itbefore

contains these two lines:

46 examples, 0 failures

$ git add .
$ git commit -m "Restrict reading tickets to correct project scope"
$ git push

8.5 Restricting write access

define_permission!(user, "view", project)
define_permission!(user, "create tickets", project)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

275

Licensed to <alex@vinova.sg>

With this permission defined, run bin/rspec

, and the entire featurespec/features/creating_tickets_spec.rb

passes:

This feature passes regardless of whether the user has permission to create a
ticket. You’re basically in the same situation you faced with the Viewing Tickets
feature: the feature would pass either way. So, like before, you can use a controller
test to test that users can’t create a ticket if they don’t have permission to do so.

Let’s write the specs to test that users permission to view the project but with
 permission to create tickets can’t create tickets. Put the specs shown in thewithout

following listing in spec/controllers/tickets_controller_spec.rb in the standard users
 block so all the examples are grouped nicely.context

3 examples, 0 failures

8.5.1 Blocking creation

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

276

Licensed to <alex@vinova.sg>

Listing 8.6 spec/controllers/tickets_controller_spec.rb

You first set up the specs using a , signing in as a user, and defining abefore

permission for that user to view the project. Next, you define a method called
, asserting that unauthorized users should becannot_create_tickets!

redirected to the project and shown an alert stating that they’re not allowed to
create tickets. Rather than duplicating these two lines in each spec where you want
to check that a user receives the correct message, you call the

 method in that place. The two examples you justcannot_create_tickets!

added ensure that unauthorized visitors to the and actions can’tnew create

create tickets.
When you run th is f i le wi th bin/rspec

, the specs fail, asspec/controllers/tickets_controller_spec.rb

you might expect:

context "with permission to view the project" do
 before do
 sign_in(user)
 define_permission!(user, "view", project)
 end

 def cannot_create_tickets!
 response.should redirect_to(project)
 message = "You cannot create tickets on this project."
 flash[:alert].should eql(message)
 end

 it "cannot begin to create a ticket" do
 get :new, project_id: project.id
 cannot_create_tickets!
 end

 it "cannot create a ticket without permission" do
 post :create, project_id: project.id
 cannot_create_tickets!
 end
end

Failure/Error: response.should redirect_to(project)
 Expected response to be a <redirect>, but was <200>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

277

Licensed to <alex@vinova.sg>

To make the spec pass, you need to implement the permission-checking on the
 and actions in . To do this, place a new create TicketsController

 that runs before the and actions and that checksbefore_action new create

whether the current user has permission. If the user doesn’t have permission, then
this should redirect the user to ’s action and showProjectsController show

the “You cannot create tickets on this project.” error message.
Change the calls at the top ofbefore_action

app/controllers/tickets_controller.rb to include this new one to restrict the
permissions:

This is placed after the authorize_create! before_action

 and because it usesauthorize_admin! set_project before_actions

the object set up by the method and the current_user authorize_admin!

 object from .@project set_project

Define the method like this under the authorize_create! private

declaration in :TicketsController

In this new filter, you call a new method called , which returns cannot? true

or to indicate whether the currently signed-in user can’t or can do afalse

particular action.
In this example, you use to create a symbolized version of a string,to_sym

which is required because the method takes only symbols. You alsocannot?

check whether the user is an admin; if so, the user should be allowed to create

before_action :require_signin!
before_action :set_project
before_action :set_ticket, only: [:show, :edit, :update, :destroy]
before_action :authorize_create!, only: [:new, :create]

def authorize_create!
 if !current_user.admin? && cannot?("create tickets".to_sym, @project)
 flash[:alert] = "You cannot create tickets on this project."
 redirect_to @project
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

278

Licensed to <alex@vinova.sg>

tickets. If you run the controller’s spec again with bin/rspec

, the example failsspec/controllers/tickets_controller_spec.rb

because the method is undefined:cannot?

Rails doesn’t come with a method, but a gem called cancan (stylizedcannot?

as CanCan) does. This gem helps you tie together the and User Permission

records. Let’s install it now.

CanCan is a gem written by Ryan Bates of RailsCasts fame; it provides some nice
helper methods (such as the method and its antithesis,) to use incannot? can?

controllers and views. The and methods use the same can? cannot?

 table you created to check that a user has permission to perform apermissions

specific action on a specific object.
To install CanCan, add this line to your Gemfile:

To install the CanCan gem, run .bin/bundle install

W h e n y o u r u n b i n / r s p e c

, you get thisspec/controllers/tickets_controller_spec.rb

output:

This error occurs because CanCan is now defining the method forcannot?

Failure/Error: get :new, project_id: project.id
undefined method 'cannot?' for #<TicketsController:0xb651244c>

8.5.2 What is CanCan?

gem 'cancan', '~> 1.6.10'

8.5.3 Adding abilities

Failure/Error: post :create, :project_id => project.id
NameError:
 uninitialized constant Ability

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

279

Licensed to <alex@vinova.sg>

the controller, which uses a CanCan built-in method called :current_ability

||= sets if it isn’t already set. The before @current_ability ::

 indicates to Ruby that you want the at the root namespace.Ability Ability

This allows you to have a module called and a class at CanCan::Ability

 and to differentiate between the two. This example is trying to access Ability

, which is a class that doesn’t yet exist.Ability

This new class will provide the link between users and theirAbility

permissions. Define it in a new file at app/models/ability.rb, exactly like the
following listing.

Listing 8.7 app/models/ability.rb

The class’s method defines how and Ability initialize can?

 will act. In this example, you iterate over all the users’ permissions andcannot?

use the method to say that a user can perform a specific function. Users whocan?

shouldn’t be able to perform that function won’t have an entry in the
 table for it. This is the described at thepermissions whitelist authorization

beginning of the chapter.
W h e n y o u r u n b i n / r s p e c

, you get this error:spec/controllers/tickets_controller_spec.rb

@current_ability ||= ::Ability.new(current_user)

class Ability
 include CanCan::Ability

 def initialize(user)
 user.permissions.each do |permission|
 can permission.action.to_sym,
 permission.thing_type.constantize do |thing|
 thing.nil? ||
 permission.thing_id.nil? ||
 permission.thing_id == thing.id
 end
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

280

Licensed to <alex@vinova.sg>

This error occurs because you haven’t yet defined a association onhas_many

the model to the model. To do so, open app/models/user.rbUser Permission

and add this line in the class:

With this association in place, run bin/rspec

, and the wholespec/controllers/tickets_controller_spec.rb

spec file passes:

Great! Now that the spec’s passing, unauthorized users don’t have access to the
 and actions. How about checking that those who have permissionsnew create

can access these actions? Let’s check the Creating Tickets feature. With this
permission-checking in place, any user with the right permissions should still be
ab le to c rea te t i cke t s . Run bin/rspec

 to make sure. It shouldspec/features/creating_tickets_spec.rb

pass:

Good—users without permission to create tickets can no longer do so.
Now that you’ve implemented this story, it’s time to commit. As usual, you

should ensure that everything is still working by running . Everythingbin/rspec

should pass:

Failure/Error: post :create, project_id: project.id
NoMethodError:
 undefined method `permissions' for #<User:0x007fc6232e6210>

has_many :permissions

3 examples, 0 failures

3 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

281

Licensed to <alex@vinova.sg>

Let’s commit the changes now:

In this section, you limited the creation of tickets to only those users who’re
granted permission to do so by using the class and the CanCanPermission

gem.

You just learned how to restrict access to the creation of tickets; your next step is
to restrict which users can update tickets. Thankfully, you can reuse the framework
that’s already in place with CanCan to make this a cinch. You can also reuse the
Editing Tickets feature to test the restriction.

For this feature, at spec/features/editing_tickets_spec.rb, you’ll set up a
 that says the user you sign in as has permission to update tickets.Permission

To do this, write a step in the directly under the other one that sets upbefore

read access:

W h e n y o u r u n b i n / r s p e c

, it all passes, as youspec/features/editing_tickets_spec.rb

expect. This covers the scenario in which the user permission to update tickets;has
to cover the scenario in which the user doesn’t have permission, you need to write
a couple of specs first.

48 examples, 0 failures

$ git add .
$ git commit -m "Restrict creating tickets to only users
 who have permissions to do it"
$ git push

8.6 Restricting update access

define_permission!(user, "view", project)
define_permission!(user, "edit tickets", project)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

282

Licensed to <alex@vinova.sg>

In this section, you’ll restrict updating of tickets in the same way you restricted
creating tickets. You’ll start by writing two examples: one to test the actionedit

and the other to test to the action. Inupdate

spec/controllers/tickets_controller_spec.rb, in the “with permission to view the
project” context, define a method right under the cannot_update_tickets!

 method:cannot_create_tickets!

Then, under the existing examples for ensuring that a user can’t create a new
ticket, put the specs ensuring that a user can’t update a ticket, as shown in the
following listing.

Listing 8.8 Update tests for spec/controllers/tickets_controller_spec.rb

These two examples make requests to their respective actions and assert that the
user is redirected away from them with an error message explaining why. With
both these actions, you need to pass a parameter so the project_id

 method can find a project and an parameter so the set_project id

 method can find a ticket. For the action, you pass anset_ticket update

8.6.1 No updating for you!

def cannot_update_tickets!
 expect(response).to redirect_to(project)
 expect(flash[:alert]).to eql("You cannot edit tickets " \
 "on this project.")
end

it "cannot edit a ticket without permission" do
 get :edit, { project_id: project.id, id: ticket.id }
 cannot_update_tickets!
end

it "cannot update a ticket without permission" do
 put :update, { project_id: project.id,
 id: ticket.id,
 ticket: {}
 }
 cannot_update_tickets!
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

283

Licensed to <alex@vinova.sg>

empty hash so is set. If you didn’t do this, you would get aparams[:ticket]

confusing error in your test:

This error would occur because the call in the action wouldupdate update

be passed , as that’s what defaults to if you don’t pass itnil params[:ticket]

in here. This error would happen only if the user had permission to update a ticket,
which all users have for now (but not for long).

When you run this f i le using bin/rspec

, these twospec/controllers/tickets_controller_spec.rb

examples fail:

Now you can implement this feature in your controller.

Before the and actions are run, you want to check to see whetheredit update

the user is authorized to run those actions. Write another for before_action

: the list for this controller shouldTicketsController before_action

now look like this.

NoMethodError:
 undefined method 'stringify_keys' for nil:NilClass

1) TicketsController standard users with permission to view
 the project cannot edit a ticket without permission
 Failure/Error: response.should redirect_to(project)
 Expected response to be a <redirect>, but was <200>

2) TicketsController with permission to view the project cannot update a
ticket without permission
 Failure/Error: put :update, { project_id: project.id,
 ActionController::ParameterMissing:
 param not found: ticket

8.6.2 Authorizing editing

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

284

Licensed to <alex@vinova.sg>

Listing 8.9 app/controllers/tickets_controller.rb

At the bottom of this controller class, define the new authorize_update!

method:

Now check whether the specs pass by running bin/rspec

:spec/controllers/tickets_controller_spec.rb

Wasn’t that easy? The and actions in edit update TicketsController

are restricted, like the action. How’s the feature going? Let’s see if userscreate

with permission can still update tickets—run bin/rspec

:spec/features/editing_tickets_spec.rb

Just like that, you’re finished restricting updating tickets to only some users.
Now run to make sure nothing is broken. Everything should bebin/rspec

good:

before_action :authorize_admin!
before_action :set_project
before_action :set_ticket, only: [:show, :edit, :update, :destroy]
before_action :authorize_create!, only: [:new, :create]
before_action :authorize_update!, only: [:edit, :update]

def authorize_update!
 if !current_user.admin? && cannot?("edit tickets".to_sym, @project)
 flash[:alert] = "You cannot edit tickets on this project."
 redirect_to @project
 end
end

5 examples, 0 failures

2 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

285

Licensed to <alex@vinova.sg>

Fantastic! Let’s commit that:

Good stuff. In this section, you learned how to restrict the and edit update

actions using the permissions you implemented earlier. There’s one last port of call
for this restricting business: the action.destroy

The final action you restrict is the action in the destroy

. Again, you can reuse a feature to test this behavior: theTicketsController

Deleting Tickets feature.
As you did with the Creating Tickets and Updating Tickets features, you

implement a step in the Deleting Tickets feature to give the user permission to
delete tickets. Under the line that grants users permission to view the TextMate 2
project, put another one to grant them permission to delete tickets:

When you run this feature with bin/rspec

, the whole thing passesspec/features/deleting_tickets_spec.rb

because you already have the step that supports the different permissions you
require:

50 examples, 0 failures

$ git add .
$ git commit -m "Restrict ticket updating to only
 those who have permission"
$ git push

8.7 Restricting delete access

define_permission!(user, "view", project)
define_permission!(user, "delete tickets", project)

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

286

Licensed to <alex@vinova.sg>

This feature ensures that anybody with permission can delete tickets for
projects, but you need another spec to test that anybody permission iswithout
prevented from deleting tickets.

To ensure that users without permission to delete tickets can’t do so, write a
spec (shown next) directly under the one for the action inupdate

spec/controllers/tickets_controller_spec.rb:

You don’t have to put the last two lines in their own method because you won’t
use them more than once. When you run this spec, it fails on the final line rather
than on the third line:

This error occurs because the action is being processed, and itdestroy

redirects the user to the project once it’s complete. The spec doesn’t know the
difference between a redirect from within the action or within the

, nor should it.before_action

To make this spec pass, define a new method called authorize_delete!

at the bottom of :TicketsController

it "cannot delete a ticket without permission" do
 delete :destroy, { project_id: project.id, id: ticket.id }

 expect(response).to redirect_to(project)
 message = "You cannot delete tickets from this project."
 expect(flash[:alert]).to eql(message)
end

1) TicketsController standard users with permission to view the project
 cannot delete a ticket without permission
 Failure/Error: flash[:alert].should eql(message)

 expected: "You cannot delete tickets from this project."
 got: nil

def authorize_delete!
 if !current_user.admin? && cannot?(:"delete tickets", @project)
 flash[:alert] = "You cannot delete tickets from this project."
 redirect_to @project
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

287

Licensed to <alex@vinova.sg>

Then you can call this method in a too:before_action

Now, when you run this spec using bin/rspec

, it’s all passing:spec/controllers/tickets_controller_spec.rb

You’re stopping users without permission; how goes your feature? Run
 to findbin/rspec spec/features/deleting_tickets_spec.rb

out:

Great! With this last permission in place, all the actions in
 are restricted to their appropriate users. Of course, youTicketsController

need to run all your specs with :bin/rspec

Let’s make a commit:

end

before_action :authorize_delete!, only: :destroy

6 examples, 0 failures

1 example, 0 failures

...

Finished in 2.64 seconds
51 examples, 0 failures

$ git add .

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

288

Licensed to <alex@vinova.sg>

Because the controller’s actions are restricted, the links associated with these
actions should be hidden from users who are unable to perform these actions. Users
who aren’t able to create, update, or delete tickets shouldn’t see the the related
links.

To ensure that these links are hidden from those who shouldn’t be able to see them
but are still visible to admins (because admins should be able to do everything),
you use spec/features/hidden_links_spec.rb. Start with the New Ticket link by
adding this scenario in the “regular users” context:

When a user has the permission to both view a project and create a ticket for
that project, they should be able to see the New Ticket link on the project page.
Simple. Here’s another scenario, also in the “regular users” context: ensure that a
user permission can’t see the link:without

In this latest scenario, the user only has permission to view the project and has
no permission to create a ticket. If they go to the project page, they shouldn’t see a
New Ticket link. Now for one more scenario, this time in the “admin users”
context, to ensure that admins view this new link, regardless of whether theycan
have permission to:

$ git commit -m "Restrict destroy action to only people with permission"
$ git push

8.8 Hiding links based on permission

scenario "New ticket link is shown to a user with permission" do
 define_permission!(user, "view", project)
 define_permission!(user, "create tickets", project)
 visit project_path(project)
 assert_link_for "New Ticket"
end

scenario "New ticket link is hidden from a user without permission" do
 define_permission!(user, "view", project)
 visit project_path(project)
 assert_no_link_for "New Ticket"
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

289

Licensed to <alex@vinova.sg>

These three scenarios test all three permutations of users who could possibly
see this page. Users with permission and admins should be able to see the link, and
users without permission shouldn’t. When you run this feature with bin/rspec

, the second scenario fails:spec/features/hidden_links_spec.rb

This error occurs because the link is visible independently of whether the user
has permission. With these scenarios in place, you can work on making them pass.
You can wrap the New Ticket link in a helper method, similar to the

 helper used in chapter 6. Open app/views/projects/show.html.erb,admins_only

and change the New Ticket link from this

to this:

Currently, this method is undefined. This is the method youauthorized?

need in views all across your application to determine whether the user has
permission to see the specific action and whether that user is an admin. Because
you’ll use this helper everywhere, define it in app/helpers/application_helper.rb:

scenario "New ticket link is shown to admins" do
 visit project_path(project)
 assert_link_for "New Ticket"
end

Failure/Error: assert_no_link_for "New Ticket"
 expected not to find css "a" with text "New Ticket", but...

<%= link_to "New Ticket", new_project_ticket_path(@project) %>

<% authorized?(:"create tickets", @project) do %>
 <%= link_to "New Ticket", new_project_ticket_path(@project) %>
<% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

290

Licensed to <alex@vinova.sg>

This helper uses CanCan’s method to check whether the user iscan?

authorized to perform this action. If so, then all is fine and dandy. If not, then the
method checks to see whether is set (it won’t be set if the usercurrent_user

isn’t signed in); and if it is, the method checks to see whether that user is an admin
by using the method, which returns . If the method specified can’t betry nil

found on , is called. If it’s found, then you use , whichthing try block.call

runs the passed-in block and outputs the content to the view.
With this helper implemented, all three new scenarios should pass. Run

 to find out:bin/rspec spec/features/hidden_links_spec.rb

Great! They’re passing. Next let’s implement another few for testing the Edit
Ticket link for tickets. First up, add a new scenario to the “regular users” context in
spec/features/hidden_links_spec.rb:

Just as with the New Ticket link, here you define two permissions: one for the
user to view the project and the other so that they can edit tickets in that project.
You then go to the project’s page and click a ticket’s title, and you should see an
Edit Ticket link on that page. Write another scenario that checks what happens

def authorized?(permission, thing, &block)
 block.call if can?(permission.to_sym, thing) ||
 current_user.try(:admin?)
end

12 examples, 0 failures

scenario "Edit ticket link is shown to a user with permission" do
 # this scenario needs the ticket created first to set correct
 permissions
 ticket
 define_permission!(user, "view", project)
 define_permission!(user, "edit tickets", project)
 visit project_path(project)
 click_link ticket.title
 assert_link_for "Edit Ticket"
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

291

Licensed to <alex@vinova.sg>

when the user doesn’t have permission to edit tickets, placing it in the “regular
users” context also:

And then add one more for the admins of the application in the “admin users”
context of spec/features/hidden_links_spec.rb, making sure they can always see the
Edit Ticket link:

You need to call in these scenarios as the first step, because if youticket

visited the project before creating the ticket, there would be no link—the ticket
wouldn’t have been made yet!

When you run these scenarios using bin/rspec

, the method can’t bespec/features/hidden_links_spec.rb ticket

found for any of them:

This method is to return a object that you can use in yoursupposed Ticket

test, but it doesn’t exist yet. This is pretty easy to fix. Define another underlet

the one for at the top of spec/features/hidden_links_spec.rb, like this:project

scenario "Edit ticket link is hidden from a user without permission" do
 ticket
 define_permission!(user, "view", project)
 visit project_path(project)
 click_link ticket.title
 assert_no_link_for "Edit Ticket"
end

scenario "Edit ticket link is shown to admins" do
 ticket
 visit project_path(project)
 click_link ticket.title
 assert_link_for "Edit Ticket"
end

undefined local variable or method `ticket'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

292

Licensed to <alex@vinova.sg>

When you run this feature again with bin/rspec

, the second scenario fails, asspec/features/hidden_links_spec.rb

when you implemented the New Ticket link filtering:

This time, edit the file app/views/tickets/show.html.erb. Change the Edit Ticket
link from this

to this:

With this one small change to use the helper to check for theauthorized?

permission to edit tickets for the current project, the Hidden Links feature now
p a s s e s w h e n y o u r u n bin/rspec

:spec/features/hidden_links_spec.rb

Great! You’ve got one last link to protect now: the Delete Ticket link on the
tickets Show page. For this, you’ll need to add another three scenarios. The first
scenario will ensure that a user with permission can see the Delete Ticket link, and

let(:ticket) { FactoryGirl.create(:ticket, project: project,
 user: user) }

Failure/Error: assert_no_link_for "Edit Ticket"
 Expected to not see the "Edit Ticket" link, but did.

<%= link_to "Edit Ticket", [:edit, @project, @ticket] %>

<%= authorized?("edit tickets", @project) do %>
 <%= link_to "Edit Ticket", [:edit, @project, @ticket] %>
<% end %>

15 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

293

Licensed to <alex@vinova.sg>

it should be placed in the “regular users” context:

The second will ensure that a user without permission can’t see the Delete
Ticket link. Also place it in the “regular users” context:

Finally, one more to check that admins can still see the Delete Ticket
link—place it in the “admin users” context block:

When you run this feature with bin/rspec

, the middle scenario fails again:spec/features/hidden_links_spec.rb

scenario "Delete ticket link is shown to a user with permission" do
 ticket
 define_permission!(user, "view", project)
 define_permission!(user, "delete tickets", project)
 visit project_path(project)
 click_link ticket.title
 assert_link_for "Delete Ticket"
end

scenario "Delete ticket link is hidden from users without permission" do
 ticket
 define_permission!(user, "view", project)
 visit project_path(project)
 click_link ticket.title
 assert_no_link_for "Delete Ticket"
end

scenario "Delete ticket link is shown to admins" do
 ticket
 visit project_path(project)
 click_link ticket.title
 assert_link_for "Delete Ticket"
end

Failure/Error: assert_no_link_for "Delete Ticket"
expected not to find css "a" with text "Delete Ticket", but...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

294

Licensed to <alex@vinova.sg>

To fix it, open app/views/tickets/show.html.erb and wrap the Delete Ticket link
in the warm embrace of the method, as you did with the Editauthorized?

Ticket link:

W h e n y o u r u n b i n / r s p e c

, all 18 scenarios pass:spec/features/hidden_links_spec.rb

Fantastic! Now you’ve stopped displaying links to the users who shouldn’t see
them and switched to displaying them only to people who should be able to see
them.

What a whirlwind adventure! First you learned to check for permissions for all
the actions in , and then you learned to hide links fromTicketsController

users in the views. Let’s make sure everything is working by running bin/rspec

:

Great! Let’s commit.

With all that done, you have the scaffold for setting up permissions but no

<% authorized?("delete tickets", @project) do %>
 <%= link_to "Delete Ticket", [@project, @ticket], method: :delete,
 data: { confirm: "Are you sure you want to delete this ticket?"} %>
<% end %>

18 examples, 0 failures

60 examples, 0 failures

$ git add .
$ git commit -m "Restrict actions in TicketsController based
 on permissions and hide links"
$ git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

295

Licensed to <alex@vinova.sg>

interface to it! There’s currently no way in the system for a user (in particular, an
admin) to set up the permissions on other users. You’ll implement that next.

In chapter 7, you added an field to the table and then triggered itadmin users

through the admin backend by checking or unchecking a check box. You’ll do the
same thing with the permissions for projects. When you’re finished, you’ll see a
permissions screen that allows you to pick and choose the permissions for users
and projects.

You’ll implement this screen one check box at a time because you must
confirm that the permissions you assign through this interface work. Let’s get
started with the permission to view projects.

In this section, you’ll implement the foundations for assigning permissions through
the admin backend, starting with the permission to view projects. Create a new
spec/features/admin/assigning_permissions_spec.rb file, and begin with the code
from the following listing.

8.9 Assigning permissions

8.9.1 Viewing projects

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

296

Licensed to <alex@vinova.sg>

Listing 8.10 spec/features/admin/assigning_permissions_spec.rb

This scenario has two users: an admin user and a standard user. You sign in as
the admin user, go to the permissions page, check the view permission for the
project, click Update, and then sign out. Then you sign in as the user who was
granted permission to test that permission, which you do in the next step. This
ensures that the assigning of the permissions always works. For now, you’re only
testing the permission to view a project permission.

W h e n y o u r u n b i n / r s p e c

, it failsspec/features/admin/assigning_permissions_spec.rb

when it tries to follow the Permissions link:

require 'spec_helper'

feature "Assigning permissions" do
 let!(:admin) { FactoryGirl.create(:admin_user) }
 let!(:user) { FactoryGirl.create(:user) }
 let!(:project) { FactoryGirl.create(:project) }
 let!(:ticket) { FactoryGirl.create(:ticket, project: project,
 user: user) }

 before do
 sign_in_as!(admin)

 click_link "Admin"
 click_link "Users"
 click_link user.email
 click_link "Permissions"
 end

 scenario "Viewing a project" do
 check_permission_box "view", project

 click_button "Update"
 click_link "Sign out"

 sign_in_as!(user)
 expect(page).to have_content(project.name)
 end
end

Failure/Error: click_link "Permissions"
Capybara::ElementNotFound:
 Unable to find link "Permissions"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

297

Licensed to <alex@vinova.sg>

If you look at how the gets to this point, you can see that it follows thebefore

Admin link, which leads to the admin dashboard; then goes to Users, to take you to
the place where you can see users; and finally clicks a user’s email, taking you to
the action. Therefore, you need to add theAdmin::UsersController show

missing Permissions link to the app/views/admin/users/show.html.erb directly
under the Delete User link:

The path for this (which isn’t yet defined) takes you to the link_to

’s action. To get this Admin::PermissionsController index link_to

to work, define that permissions are nested under users in config/routes.rb, and add
the namespace in the definition using this code:admin

With these changes in the config/routes.rb file, the
 used in the is now defined.admin_user_permissions_path link_to

When you run the feature using bin/rspec

, you seespec/features/admin/assigning_permissions_spec.rb

there’s more to be done for this step:

Ah, of course! You must create the controller for this link.

<%= link_to "Permissions", admin_user_permissions_path(@user) %>

namespace :admin do
 root "base#index"
 resources :users do
 resources :permissions
 end
end

Failure/Error: click_link "Permissions"
 ActionController::RoutingError:
 uninitialized constant Admin::PermissionsController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

298

Licensed to <alex@vinova.sg>

You can generate the file by running thisAdmin::PermissionsController

command:

Along with an app/controllers/admin/permissions_controller.rb file, this
command generates other goodies, such as a helper and a directory for the views at
app/views/admin/permissions. Before you go further, you must modify this file to
make the class inherit from the right place so that only admins can access it. Open
the file, and change the first line to this:

This line makes the controller inherit from the Admin::BaseController

class, which restricts all actions in this controller to only admin users.
W h e n y o u r u n b i n / r s p e c

 again,spec/features/admin/assigning_permissions_spec.rb

you see an undefined method:

This method is used in the Assigning Permissions feature to check a specific
project’s permission check box. Unlike the other form elements you’ve seen
previously, the check boxes on this page don’t have labels associated with them
and therefore can’t be targeted that way. Instead, they must be targeted using either
their or attribute: or id name permissions_1_view

, respectively. The attribute is slightly less typing,permissions[1][view] id

so you’ll use that one.
The method uses two arguments in the Assigningcheck_permission

THE PERMISSIONS CONTROLLER

$ bin/rails g controller admin/permissions

class Admin::PermissionsController < Admin::BaseController

Failure/Error: check_permission_box "view", project
NoMethodError:
 undefined method `check_permission_box' ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

299

Licensed to <alex@vinova.sg>

Permissions feature:

The first argument is the permission name, in this case . The second is a view
 object. The method should take these two arguments and then check theProject

related check box: that is, the check box for the permission for that specificview
project. Define this new method in the module inAuthorizationHelpers

spec/support/authorization_helpers.rb:

You define a method like this rather than calling check

 in the scenario so it’s clear to other"permission_#{project.id}_view"

people (and your later self) reading the scenario exactly what this step in the
scenario is intended to perform. When you run this feature again with
b i n / r s p e c

, it gets aspec/features/admin/assigning_permissions_spec.rb

little further:

Obviously, you need to define the action and view before you carry on.index

In this action, load all the permissions for the user you’re currently looking at, and
then, with the view, display a page from which an admin can choose what
permissions this user has on each project. It would be helpful if this user was
loaded by a , because you’ll need it for the action that updatesbefore_action

the permissions later. With all this in mind, update the entire controller to resemble
the following listing.

 check_permission_box "view", project

def check_permission_box(permission, object)
 check "permissions_#{object.id}_#{permission}"
end

Capybara::ElementNotFound:
 Unable to find checkbox "permissions_1_view"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

300

Licensed to <alex@vinova.sg>

Listing 8.11 app/controllers/admin/permissions_controller.rb

The new instance created here lets you check the user’s ability toAbility

perform specific actions on any project by calling this code:

This syntax may look similar to the syntax used in TicketsController

—it is. In that controller, you used the method, which is the opposite ofcannot?

the method. These methods are added to the controller by CanCan and arecan?

shorter helper methods to do almost exactly what you did in this controller. The
only difference is that you’re not acting on the here, so you mustcurrent_user

define an object yourself and use that instead.Ability

Now that you have the action up, you need to make its view look like whatindex

is shown in f igure 8.5. Create a new fi le at
app/views/admin/permissions/index.html.erb, and fill it with the content from the
next listing.

class Admin::PermissionsController < Admin::BaseController
 before_action :set_user

 def index
 @ability = Ability.new(@user)
 @projects = Project.all
 end

 private

 def set_user
 @user = User.find(params[:user_id])
 end
end

@ability.can?(:view, @project)

THE PERMISSIONS SCREEN

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

301

Licensed to <alex@vinova.sg>

Figure 8.4 The Permissions screen

Listing 8.12 app/views/admin/permissions/index.html.erb

This template defines the table discussed earlier. It provides a header row of

<h2>Permissions for <%= @user.email %></h2>
<%= form_tag admin_user_set_permissions_path, :method => :put do %>
 <table id='permissions' cellspacing='0'>
 <thead>
 <th>Project</th>
 <% permissions.each do |name, text| %>
 <th><%= text %></th>
 <% end %>
 </thead>
 <tbody>
 <% @projects.each do |project| %>
 <tr class='<%= cycle("odd", "even") %>'
 id='project_<%= project.id %>'>
 <td><%= project.name %></td>
 <% permissions.each do |name, text| %>
 <td>
 <%= check_box_tag "permissions[#{project.id}][#{name}]",
 @ability.can?(name.to_sym, project),
 @ability.can?(name.to_sym, project) %>
 </td>
 <% end %>
 </tr>
 <% end %>
 </tbody>
 </table>
 <%= submit_tag "Update" %>
<% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

302

Licensed to <alex@vinova.sg>

permission titles, and rows for each project containing that project’s name followed
by check boxes for each of the permissions. In this view, you use the ,form_tag

which generates a form that points to the path specified by its first argument. You
also use a helper method, which isn’t currently defined but willpermissions

provide a list of permissions to iterate through to check on each project.
Right under where you use , you use another helper methodpermissions

called . This method is built in to Rails and cycles through its givencycle

arguments for each iteration of whatever it’s encapsulated in; so when this page
displays the first project, the method sets the class of that tag to and thetr odd

second one to . It cycles between these two classes until it runs out ofeven

projects to iterate through. This is how you can easily get different rows in this
table to be styled differently. On the same line, you set the attribute for the id tr

tag to be . This is so Capybara can locate theproject_[a project's id]

correct check box.
Before we look at how to define the method, run permissions bin/rspec

:spec/features/admin/assigning_permissions_spec.rb

You get an error because you haven’t yet defined the route for the form.
 serves a different purpose than theAdmin::PermissionsController

standard REST controllers. For this controller, you use the action toupdate

update a slew of permissions rather than a single one. To map to this action by
using the method, you must define another in yourupdate named route

config/routes.rb file using the method:put

Failure/Error: click_link "Permissions"
 ActionView::Template::Error:
 undefined local variable or method
 `admin_user_set_permissions_path' for ...

namespace :admin do
 root to: "base#index"
 resources :users do
 resources :permissions

 put "permissions", to: "permissions#set",
 as: "set_permissions"
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

303

Licensed to <alex@vinova.sg>

With this method, you define a new route for your application that will only
respond to requests to this route. The controller and action are defined usingPUT

the symbol, and finally the method itself is given a name with the option.:to :as

When you run the feature again, this route method is defined, but the
 method isn’t:permissions

Great! It seems as though your page just requires this helperpermissions

method.

Back in chapter 7, you defined a helper method called in admins_only

, which allowed you to show links only for admin users.ApplicationHelper

This time, you define the method, which contains a list ofpermissions

permissions for which to display check boxes on this page. Because this method is
specific to views from the controller,Admin::PermissionsController

place it in app/helpers/admin/permissions_helper.rb and define it as shown in the
following listing.

Listing 8.13 app/helpers/admin/permissions_helper.rb

This method returns a hash containing only one key-value pairpermissions

at the moment because you’re testing only one particular check box. You use this
method to display all the permissions you want to be configurable by admins, and

end

And I follow "Permissions"
undefined local variable or method 'permissions' [...]

DEFINING A HELPER METHOD

module Admin::PermissionsHelper
 def permissions
 {
 "view" => "View"
 }
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

304

Licensed to <alex@vinova.sg>

you revisit this method later to define more pairs. You use this method in your
view twice; the first time, you iterate over it like this:

When you iterate over a object with the method, the key for theHash each

hash becomes the first block variable and the value becomes the second block
variable; these variables change for each key-value pair of the object. In thisHash

case, it renders headers for the table in this view. You use this helper later in the
view too:

Here you use just the key from the hash to define a uniquely identifiable name
for this check box. The second argument is the value returned to the controller,
which you use to determine whether this check box is selected. The third argument
uses the object to determine whether this check box is displayed as@ability

checked. By using this method, you get a tag like this:

You’re given both the and attributes, which are generated from theid name

first argument you passed to . The attribute indicates not thecheck_box_tag id

permission’s ID but the ID of the project you’re determining the permission is for.

<% permissions.each do |name, text| %>
 <th><%= text %></th>
<% end %>

<% permissions.each do |name, text| %>
 <td>
 <%= check_box_tag "permissions[#{project.id}][#{name}]",
 1,
 @ability.can?(name.to_sym, project) %>
 </td>
<% end %>

<input id=\"permissions_1_view\"
 name=\"permissions[1][view]\"
 type=\"checkbox\"
 value=\"1\" />

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

305

Licensed to <alex@vinova.sg>

You’ll use the attribute shortly to select this check box using Capybara and theid

parsed-into- version of the attribute after that in your controller:params name

This action is a little tricky. Not only do you want it to add permissions for

users, you also want to delete those permissions. This action receives 2

 in this format from the form:params[:permissions] Hash

Footnote 2 m Which is possibly why the action is called .set

The first key is the ID of the project, and the hash in contains the permissions
for that project. If no check boxes are selected for that project, then no hash exists
in for it. Therefore, you use this hash to update theparams[:permissions]

permissions that a user can do now, as shown next.

Listing 8.14 action in app/controllers/admin/permissions_controller.rbset

You first clear all the user’s permissions using the association method .clear

Next, you iterate through all the key-value pairs in params[:permissions]

Failure/Error: click_button "Update"
AbstractController::ActionNotFound:
The action 'set' could not be found for Admin::PermissionsController

{"1"=>{"view"=>"1"}}

def set
 @user.permissions.clear
 params[:permissions].each do |id, permissions|
 project = Project.find(id)
 permissions.each do |permission, checked|
 Permission.create!(user: @user,
 thing: project,
 action: permission)
 end
 end
 flash[:notice] = "Permissions updated."
 redirect_to admin_user_permissions_path(@user)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

306

Licensed to <alex@vinova.sg>

and find the project for each one. Then you iterate through the forpermissions

the parameter and create a new permission for every project. Finally, you set a
 and redirect back to the permissions page. When you run thisflash[:notice]

feature, you’ll see that the Sign Out link is missing:

You didn’t add this link in chapter 7 because you didn’t need it, but in
hindsight, you should have. Add this link now to
app/views/layouts/application.html.erb, directly under the text:Signed in as

This link now appears only to people who are signed in. When you re-run the
Assigning Permissions feature with bin/rspec

,spec/features/admin/assigning_permissions_spec.rb

everything should pass, but…

Oh yeah! You haven’t implemented sign out yet. Don’t worry: it’s very, very
simple. All you have to do to log someone out is remove their ID from the session.
Easy. First, though, let’s fix that route to config/routes.rb:

And implement the action in app/controllers/sessions_controller.rb:destroy

no link with title, id or text 'Sign out' found ...

Signed in as <%= current_user.email %>
<%= link_to "Sign out", signout_path, method: :delete %>

Failure/Error: sign_in_as!(admin)
ActionView::Template::Error:
 undefined local variable or method `signout_path' for...

delete "/signout", to: "sessions#destroy", as: "signout"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

307

Licensed to <alex@vinova.sg>

O K , o n e l a s t t i m e , r u n bin/rspec

:spec/features/admin/assigning_permissions_spec.rb

Great! You created a way for admins to choose which users can see which
projects through an interface of check boxes and confirmed that users can see the
project they have access to and can’t see the projects they aren’t authorized to see.
Let’s run all the tests with to make sure everything is working:bin/rspec

The one pending test lives at spec/helpers/admin/permissions_helper_spec.rb.
This file can be deleted because it doesn’t contain any useful tests. Once it’s
deleted, another run of shows this result:bin/rspec

All systems green! Let’s make a commit before you go any further:

Next, you’ll implement this feature for the other permissions used.

def destroy
 session[:user_id] = nil
 flash[:notice] = "Signed out successfully."

 redirect_to root_url
end

1 example, 0 failures

62 examples, 0 failures, 1 pending

61 examples, 0 failures

$ git add .
$ git commit -m "Add permissions screen for admins"
$ git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

308

Licensed to <alex@vinova.sg>

With the foundation in place for this check box screen, you can add the rest of the
permissions you’ve implemented. The next permission you implemented after the
restriction of read access was the restriction of write access, restricting which users
could and couldn’t perform the and actions on new create

. Now that you have an interface for admins to assignTicketsController

permissions through the backend, you should ensure that they can assign the
permission to create tickets and that users to whom they assign this permission can
perform that action.

Open spec/features/admin/assigning_permissions_spec.rb, and add the scenario
shown in the following listing right under the scenario currently in this file.

Listing 8.15 spec/features/admin/assigning_permissions_spec.rb

Just as in your first scenario, you select the View check box for the project.
Otherwise, the user wouldn’t be able to see the project where the New Ticket link
was. Then you select the Create Tickets check box, update the user’s permissions,
and sign out. Next, you sign in as that user and make sure you can do what you just
gave that user permission to do. When you run this feature with bin/rspec

, the stepspec/features/admin/assigning_permissions_spec.rb

that checks the permission box for fails because it can’t findcreate_tickets

the check box:

8.9.2 And the rest

CREATING TICKETS

scenario "Creating tickets for a project" do
 check_permission_box "view", project
 check_permission_box "create_tickets", project
 click_button "Update"
 click_link "Sign out"

 sign_in_as!(user)
 click_link project.name
 click_link "New Ticket"
 fill_in "Title", with: "Shiny!"
 fill_in "Description", with: "Make it so!"
 click_button "Create"

 expect(page).to have_content("Ticket has been created.")
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

309

Licensed to <alex@vinova.sg>

Let’s add this check box. Open app/helpers/admin/permissions_helper.rb, and
add the permission to your hash, changing this method from

to

Keep in mind that the key match the intended for the must action

 object; the value is just a label for this permission. The action isPermission

what you use in your helpers around the application. When youauthorized?

add another key-value pair in this hash, the code in
app/views/admin/permissions/index.html.erb automatically shows a check box for
this new permission.

When you run this feature again with bin/rspec

, it passesspec/features/admin/assigning_permissions_spec.rb

because this new check box is visible and the permission is applied correctly:

Failure/Error: check_permission_box "create_tickets", project
Capybara::ElementNotFound:
 Unable to find checkbox "permissions_1_create_tickets"

def permissions
 {
 "view" => "View"
 }
end

def permissions
 {
 "view" => "View",
 "create tickets" => "Create Tickets"
 }
end

2 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

310

Licensed to <alex@vinova.sg>

Wasn’t that a piece of cake? Let’s move on to the next permission: updating
tickets. Actually, let’s do both updating tickets and deleting tickets at the same
time.

To show the world how great you are at developing this application, you’ll next
write two scenarios and get them both to pass at the same time. Add both of these
scenarios to the end of spec/features/admin/assigning_permissions_spec.rb, as
shown in the following listing.

Listing 8.16 spec/features/admin/assigning_permissions_spec.rb

The scenarios should be descriptive enough to understand—no particular magic
is going on. When you run this feature using bin/rspec

, it can’tspec/features/admin/assigning_permissions_spec.rb

THE DOUBLE WHAMMY

scenario "Updating a ticket for a project" do
 check_permission_box "view", project
 check_permission_box "edit_tickets", project
 click_button "Update"
 click_link "Sign out"

 sign_in_as!(user)
 click_link project.name
 click_link ticket.title
 click_link "Edit Ticket"
 fill_in "Title", with: "Really shiny!"
 click_button "Update Ticket"

 expect(page).to have_content("Ticket has been updated")
end

scenario "Deleting a ticket for a project" do
 check_permission_box "view", project
 check_permission_box "delete_tickets", project

 click_button "Update"
 click_link "Sign out"

 sign_in_as!(user)
 click_link project.name
 click_link ticket.title
 click_link "Delete Ticket"

 expect(page).to have_content("Ticket has been deleted.")
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

311

Licensed to <alex@vinova.sg>

find the check boxes for both the updating and deleting permissions:

Of course! You have no check boxes for Capybara to check yet. Add them by
changing the method in app/helper/admin/permissions_helper.rbpermissions

from this

to this:

By adding these two permissions, you display the check boxes that should make
your scenarios all green. Let’s run the feature with bin/rspec

 to findspec/features/admin/assigning_permissions_spec.rb

out:

Failure/Error: check_permission_box "edit_tickets", project
 Unable to find checkbox "permissions_1_edit_tickets"
Capybara::ElementNotFound:
Failure/Error: check_permission_box "delete_tickets", project
Capybara::ElementNotFound:
 Unable to find checkbox "permissions_1_delete_tickets"

def permissions
 {
 "view" => "View",
 "create tickets" => "Create Tickets"
 }
end

def permissions
 {
 "view" => "View",
 "create tickets" => "Create Tickets",
 "edit tickets" => "Edit Tickets",
 "delete tickets" => "Delete Tickets"
 }
end

4 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

312

Licensed to <alex@vinova.sg>

How great are you? Two features with one blow. Awesome stuff.
That’s the final piece of the authorization puzzle. You now have a way for

admins to assign permissions to users. But does everything work? Here’s hoping!
Run to find out:bin/rspec

Awesome! Let’s commit this:

Now there’s a way for admin users of your application to assign permissions to
users so that they’re able to view projects as well as create, edit, and update tickets
for those projects. In doing so, you’ve learned how you can update multiple
records at the same time.

Although it’s great that you have an interface for assigning permissions, you
don’t have a way to do it without first having an admin user set up. You can set up
an admin user manually through the console, or you can do so by creating seed

.data

Seed data are records created for the purpose of providing the minimal viable
requirements to get an application running. Before Rails 2.2, many applications
implemented such records by using plugins such as , but since 2.2, seedseed_fu
data is built in.

Seed data allows you to create records for your application to provide a usable
base if you or anybody else wants to get set up with the application quickly and
easily. For your application’s seed data, you’ll create an admin user and an
example project. From there, anybody using the admin user will be able to perform
all the functions of the application.

Seed data lives under db/seeds.rb, and you can run this file by running

62 examples, 0 failures

$ git add .
$ git commit -m "Add creating, editing, updating and deleting
 tickets to assigning permissions interface"
$ git push

8.9.3 Seed data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

313

Licensed to <alex@vinova.sg>

. The code for the task is this:bin/rake db:seed bin/rake

The method works in a fashion similar to , loading andload require

executing the code in the file. One difference, however, is that expects theload

given string (or) to be the full path, with the extension, to the file.Pathname

First write a feature to ensure that when the seed data is loaded, you can sign in
with the email admin@example.com and the password “password” and get to the
Ticketee Beta project. Put this feature at spec/features/seeds_spec.rb, and write it
as shown in the following listing.

Listing 8.17 spec/features/seeds_spec.rb

It’s a pretty basic feature, but your seed file will be equally basic. When you
run this feature using , itbin/rspec spec/features/seeds_spec.rb

fails like this:

It can’t find this user because you haven’t yet created one for this scenario. This
user should be created by the db/seeds.rb file. Open db/seeds.rb and add a couple
of lines to create this user, set up the user as an admin, and confirm the user, as
shown next.

load Rails.root + "db/seeds.rb"

require 'spec_helper'

feature "Seed Data" do
 scenario "The basics" do
 load Rails.root + "db/seeds.rb"
 user = User.where(email: "admin@example.com").first!
 project = Project.where(name: "Ticketee Beta").first!
 end
end

Failure/Error: user = User.where(email: "admin@example.com").first!
ActiveRecord::RecordNotFound:
 ActiveRecord::RecordNotFound

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

314

Licensed to <alex@vinova.sg>

Listing 8.18 db/seeds.rb

Run to ensure that youbin/rspec spec/features/seeds_spec.rb

can sign in as this user. If you can, you should see that the feature can’t see the
Ticketee Beta content:

To get this last step of the scenario to pass, you must add the project to
db/seeds.rb by putting this line in there:

Now your whole seeds file should look like the following listing.

Listing 8.19 db/seeds.rb

This is all you need to get this feature to pass. Let’s run it with bin/rspec

 to make sure:spec/features/seeds_spec.rb

admin_user = User.create(email: "admin@example.com",
 name: "admin",
 password: "password",
 password_confirmation: "password",
 admin: true)

Failure/Error: project = Project.where(name: "Ticketee Beta").first!
ActiveRecord::RecordNotFound:
 ActiveRecord::RecordNotFound

Project.create(name: "Ticketee Beta")

admin_user = User.create(email: "admin@example.com",
 password: "password",
 admin: true)

Project.create(name: "Ticketee Beta")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

315

Licensed to <alex@vinova.sg>

Great! With this seeds file, you have data to put in the database so you can
bootstrap your application. Let’s run to load this data.bin/rake db:seed

Start your application’s server by typing into a terminal, andrails server

then go to your server at http://localhost:3000 in your browser. Sign in as the
admin user using the email admin@example.com and password “password”. You
should see the display shown in figure 8.6.

Figure 8.5 What admins see

When you’re signed in as a user, you should be able to do everything from
creating a new ticket to creating a new user and setting up user permissions. Go
ahead and play around with what you’ve created so far.

When you’re done playing, run for the final time this chapter:bin/rspec

Everything’s still green, which means it’s time for another commit:

1 example, 0 failures

65 examples, 0 failures

$ git add .

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

316

Licensed to <alex@vinova.sg>

Now you’re finished!

This chapter covered implementing authorization for your application and setting
up a permissions-based system for both and ProjectsController

. You started with a model, which youTicketsController Permission

used in a on the model to show only the projects a user shouldscope Project

be able to access.
Then you used the CanCan plug-in, which provided the and can? cannot?

methods to use first in the controllers to stop users from accessing specified actions
and then in the views, through the method, to stop users fromauthorized?

seeing specified links.
You implemented a way for admins to change the permissions of a user through

the admin backend of the system by displaying a series of check boxes. Here you
used an action that wasn’t quite like the normal action, and youupdate update

had to define a custom-named route for it.
Finally, you learned how to set up seed data for your application so you have a

solid base of objects to work from. Without using seed data, you’d have to
manually set up the data not only for your local development environment but also
for your production server, which can be tedious. Seed data saves you that effort.
You also wrote a test for this data in the form of a feature that ensures that the data
from the seed file is always created when the seed task is run.

In chapter 9, you’ll learn how to attach files to tickets. File uploading is an
essential part of any ticket-tracking application because files can provide that
additional piece of context required for a ticket, such as a screenshot, a patch, or
any type of file. You’ll also learn some CoffeeScript to make it easy to upload any
number of files, and strategies for testing JavaScript.

$ git commit -m "Add a seeds file"
$ git push

8.10 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

317

Licensed to <alex@vinova.sg>

ActiveRecord::Base, has_many, :as option
ActiveRecord::Base, joins
ActiveRecord::Base, scope method
ActiveRecord::Base, where
authorized? helper
belongs_to, polymorphic option
CanCan, cannot?
clear, ActiveRecord::Base
cycle, helper method
db/seeds.rb
named routes
polymorphic associations
scopes
ternary statement
to_sym
try?

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

318

Licensed to <alex@vinova.sg>

9
In chapter 8, you learned how to restrict access to specific actions in your
application, such as viewing projects and creating tickets, by defining a

 model that keeps track of which users have access to which actions.Permission

Ticketee’s getting pretty useful now. This chapter focuses on file uploading, the
next logical step in a ticket tracking application. Sometimes, when people file a
ticket on an application such as Ticketee, they want to attach a file to provide more
information for that ticket, because words alone can only describe so much. For
example, a ticket description saying, “This button should move up a bit,” could be
better explained with a picture showing where the button is now and where it
should be. Users may want to attach any kind of file: a picture, a crash log, a text
file, you name it. Currently, Ticketee has no way to attach files to the ticket: people
would have to upload them elsewhere and then include a link with their ticket
description.

By providing Ticketee the functionality to attach files to the ticket, you provide
the project owners a useful context that will help them more easily understand
what the ticket creator means. Luckily, there’s a gem called CarrierWave that
allows you to implement this feature easily.

Once you’re familiar with CarrierWave, you’ll change your application to
accept multiple files attached to the same ticket using a JavaScript library called
jQuery (which comes with Rails by default, through the jquery-rails gem) and
some custom JavaScript code of your own. Because you’re using JavaScript, you
have to alter the way you test parts of your application. To test JavaScript

functionality, you’ll be using WebDriver, which is a framework built for1

automatic control of web browsers. WebDriver is especially useful because you
can use the same steps you use for standard Capybara tests and because Capybara

File uploading

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

319

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

will take care of driving the browser. By running the tests inside the browser, you
ensure the JavaScript on the page will be executed, and then you can run the tests
on the results. Pretty handy!

Footnote 1mThere’s a great post explaining WebDriver on the Google Open Source blog:
http://google-opensource.blogspot.com/2009/05/introducing-webdriver.html .

Finally, you’ll see how you can restrict access to the files contained within the
projects of your application so that confidential information isn’t shared with
people who don’t have access to a particular project.

File uploading is also useful in other types of applications. Suppose you wrote a
Rails application for a book. You could upload the chapters to this application, and
then people could provide notes on those chapters. Another example is a photo
gallery application that allows you to upload images of your favorite cars for
people to vote on. File uploading has many different uses and is a cornerstone of
many Rails applications.

We start off by letting users attach files when they begin creating a ticket. As
explained before, files attached to tickets can provide useful context as to what
feature a user is requesting or can point out a specific bug. A picture is worth a
thousand words, as they say. It doesn’t have to be an image; it can be any type of
file. This kind of context is key to solving tickets.

To provide this functionality, you must add a file upload box to the new ticket
page, which allows users to select a file to upload. When the form is submitted, the
file is submitted along with it. You use the CarrierWave gem to store the file inside
your application’s directory.

You first need to write a scenario to make sure the functionality works. This
scenario shows you how to deal with file uploads when creating a ticket. Users
should be able to create a ticket, select a file, and upload it. Then they should be
able see this file, along with the other ticket details, on the ticket’s page. They may
choose to click on the filename, which would download the file. Let’s test all this
by adding a scenario at the bottom of spec/features/creating_tickets_spec.rb that

creates a ticket with an attachment, as shown in the following listing.2

9.1 Attaching a file

9.1.1 A feature featuring files

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

320

Licensed to <alex@vinova.sg>

http://google-opensource.blogspot.com/2009/05/introducing-webdriver.html
http://www.manning-sandbox.com/forum.jspa?forumID=818

Footnote 2 m In this attachement, we reference the tag. Please note that although the tag wasblink blink

once a part of HTML, it should never be used. Same goes for the tag. We reference them here inmarquee

our text files to add some light humor to the scenario, not because documentation for these tags is actually a good
idea.

Listing 9.1 spec/features/creating_tickets_spec.rb

In this feature you introduce a new concept: the attach_file method of this
scenario, which attaches the file found at the specified path to the specified field.
The path here is deliberately in the spec/fixtures directory because you may use
this file for functional tests later. This directory would usually be used for test

fixtures, except that at the moment, you don’t have any. Create the3

spec/fixtures/speed.txt file now and fill it with some random filler text like this:

Footnote 3mNor will we ever, as factories replace them in our application.

Try running this feature using bin/rspec

 and see how far you get. It willspec/features/creating_tickets.rb

fail on the line because the field isn’t available yet.attach_file File

scenario "Creating a ticket with an attachment" do
 fill_in "Title", with: "Add documentation for blink tag"
 fill_in "Description", with: "The blink tag has a speed attribute"
 attach_file "File", "spec/fixtures/speed.txt"
 click_button "Create Ticket"

 expect(page).to have_content("Ticket has been created.")

 within("#ticket .asset") do
 expect(page).to have_content("speed.txt")
 end
end

The blink tag can blink faster if you use the speed="hyper" attribute.

Failure/Error: attach_file "File", "spec/fixtures/speed.txt"
Capybara::ElementNotFound:
 Unable to find file field "File"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

321

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Add the field to the ticket form partial directly underneath the tag forFile p

the field using the code in the following listing.description

Listing 9.2 app/views/tickets/_form.html.erb

We call this field internally, but the user will see File. The reason forasset

this is explained a little later.
You have to do one other thing when using a : add a bit to your file_field

 call:form_for

This attribute is needed on the generated HTML form tag in order to actually
upload the files. Rails tries to be smart about it, but since we're adding them with
JavaScript, Rails can't detect that we wanted it on there, so we have to add it
ourselves.

I f y o u r u n b i n / r s p e c

 again, it will fail with thisspec/features/creating_tickets_spec.rb

error instead:

You can see that the scenario failed because Capybara can’t find the text within
this element on the ’s page: this text and thisTicketsController show

<p>
 <%= f.label :asset, "File" %>

 <%= f.file_field :asset %>
</p>

<%= form_for [@project, @ticket], html: { multipart: true } do |f| %>

Failure/Error: within("#ticket .asset") do
Capybara::ElementNotFound:
 Unable to find css "#ticket .asset"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

322

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

element don’t exist! You need to add this element for your scenario to go one step
further, so add it underneath the spot in the view where you currently haveshow

the following:

You must also wrap all the code in this view inside a tag with the div id

attribute and spice it up a little by adding the content type and file sizeticket

there too, as shown in the following listing.

Listing 9.3 app/views/tickets/show.html.erb

You use the method here with to provide the user with a linkurl link_to

to download this file. In this case, the URL for this file would be something like4

http://localhost:3000/system/assets/1/original/file.txt.

Footnote 4 m Some browsers open certain files as pages rather than downloading them. Modern browsers do
so for .txt files and the like.

Where is this system route defined? Well, it’s not a route. It’s actually a
directory inside the public folder of your application where CarrierWave saves
your files.

Requests to files from the public directory are handled by the server rather than
by Rails, and anybody who enters the URL in their browser can access them. This

<%= simple_format(@ticket.description) %>

<small>Created by <%= @ticket.user.email %></small>

<%= simple_format(@ticket.description) %>

<% if @ticket.asset.present? %>
 <h3>Attached File</h3>
 <div class="asset">
 <p>
 <%= link_to File.basename(@ticket.asset.path),
 @ticket.asset.url %>
 </p>
 <p><small><%= number_to_human_size(@ticket.asset.size) %>
 </small></p>
 </div>
<% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

323

Licensed to <alex@vinova.sg>

mailto:simple_format(@ticket.description
mailto:@ticket.user.email
mailto:simple_format(@ticket.description
mailto:@ticket.asset.present?
mailto:File.basename(@ticket.asset.path
mailto:@ticket.asset.url
mailto:number_to_human_size(@ticket.asset.size
http://localhost:3000/system/assets/1/original/file.txt
http://www.manning-sandbox.com/forum.jspa?forumID=818

is bad because the files in a project should be visible only to authorized users.
You’ll handle that problem a little later in the chapter.

Underneath the filename, you display the size of the file, which is stored in the
database as the number of bytes. To convert it to a human-readable output, (such as
“71 Bytes,” which will be displayed for your file), you use the

 Action View helper.number_to_human_size

I f y o u r u n b i n / r s p e c

 again, it will fail with thisspec/features/creating_tickets_spec.rb

error instead:

Rather than running a migration to add an attribute by this name, you use the
CarrierWave gem to handle it.

Uploading files is something that many web applications need to allow, which
makes it perfect functionality to put into a gem. The current best-of-breed gem in
this area is CarrierWave. CarrierWave makes uploading files really easy. When
you need more advanced features, such as processing uploaded files or storing
them in something like Amazon S3 rather than on your web server, CarrierWave is
there to help you too. To install CarrierWave, you need to add a line to the Gemfile
to tell Bundler that you want to use this gem. Put this underneath the line
specifying the CanCan gem, separated by a line because it’s a different type of gem
(CanCan has to do with users, CarrierWave has to do with files):

Next, you must run to install this gem.bundle install

With CarrierWave now installed, you can work on defining the asset attribute
that your model wants. It’s not really an attribute; the error message is misleading

Failure/Error: click_button "Create Ticket"
ActionView::Template::Error:
 undefined method `asset' for #<Ticket:0x007fb090a7c1a8>

9.1.2 Enter stage right, CarrierWave

gem 'cancan', '1.6.9'

gem 'carrierwave', '0.8.0'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

324

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

in that respect. All it needs is a setter method () and it would be happy.asset=

However, you need this method to do more than set an attribute on this object; you
need it to accept the uploaded file and store it locally. CarrierWave lets you define
this fairly easily with its method. This method goes inhas_attached_file

the model, defines the setter method you need, and gives four applicationTicket

the ability to accept and process this file. Add it to your model with thisTicket

line:

Now this method is defined, but it’s not yet over!asset=

We also need to generate an uploader. Do this with bin/rails generate

. You'll see a new file: app/uploaders/asset_uploader.rb.uploader Asset

While we have an uploader, we need to connect it with our s, so we need aTicket

migration. Generate one with bin/rails generate migration

. To add these columns to youradd_asset_to_tickets asset:string

development environment’s database, run . Then run bin/rake db:migrate

 to add them to your test environment’sbin/rake db:test:prepare

database.
We have one last thing to do: update our controller to allow us to pass in assets.

Change your method in yourticket_params

app/controllers/tickets_controller.rb to look like this:

With the file’s information now being output in
app/views/tickets/show.html.erb, this feature now passes when you run

:bin/rspec spec/features/creating_tickets_spec.rb

mount_uploader :asset, AssetUploader

9.1.3 Using CarrierWave

def ticket_params
 params.require(:ticket).permit(:title, :description, :asset)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

325

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Awesome! Your files are being uploaded and taken care of by CarrierWave,
which stores them at public/uploads. Let’s see if your changes have brought
destruction or salvation by running .rake spec

Sweet salvation! Let’s commit but not push this just yet.

Have a look at the commit output. It contains this line:

This line is a leftover file from your test and shouldn’t be committed to the
repository because you could be testing using files much larger than this. You can
tell Git to ignore the entire public/system directory by adding it to the .gitignore
file. Open that file now and add this line to the bottom:

This file tells Git which files you don’t want versioned. The whole file should
look like this now (minus all the comments):

4 examples, 0 failures

64 examples, 0 failures

git add .
git commit -m "Add the ability to attach a file to a ticket"

create mode 100644 public/uploads/ticket/asset/1/speed.txt

public/uploads

/.bundle
/db/*.sqlite3
/log/*.log
/tmp

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

326

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

By default, the directory (for Bundler’s configuration), the SQLite3.bundle

databases, the logs for the application, and any files in tmp are ignored. With
public/system added, this directory is now ignored by Git too. You should also
remove this directory from your latest commit, and thankfully, Git provides a way
to do so by using these two commands:

The first command removes the file from the filesystem and tells Git to remove
it from the repository. The second command amends your latest commit to exclude
this file, and it will be as if your first commit with this message never existed. The

 option uses the commit message of our latest--reuse-message HEAD

commit. Let’s push this change now:

Great! Now you can attach a file to a ticket. There’s still some work to do,
however. What would happen if somebody wanted to add more than one file to a
ticket? Let’s take a look at how to do that now.

You now have an interface for attaching a single file to a ticket but no way for a
user to attach more than one. Let’s imagine your pretend client asked you to boost
the number of file input fields on this page to three.

If you’re going to add these three file input fields to your view, you need some
more fields in your database to handle them. You could define four fields for each
file upload field, but a much better way to handle this is to add another model.

Creating another model gives you the advantage of being able to scale it to not
just three file input fields but more if you ever need them. Call this model ,Asset

after the name we gave to the in the model.has_attached_file Ticket

public/uploads

git rm public/uploads/ticket/asset/1/speed.txt
git commit --amend --reuse-message HEAD

git push

9.2 Attaching many files

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

327

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

When you’re done with this feature, you should see three file upload fields as
shown in Figure 9.1

Figure 9.1 File upload
boxes

You can create new instances of this model through the ticket form by using
. Nested attributes have been a feature of Rails since version 2.3,nested attributes

and they allow the attributes of any kind of association to be passed from the
creation or update of a particular resource. In this case, you’ll be passing nested
attributes for a collection of new asset objects while creating a new Ticket

model. The best part is that the code to do all of this remains the same in the
controller.

Let’s take the scenario for creating a ticket with an attachment from
spec/features/creating_tickets_spec.rb and add two additional file upload fields so
the entire scenario looks like the following listing.

9.2.1 Testing multiple file upload

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

328

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 9.4 File attachment scenario, spec/features/creating_tickets_spec.rb

In this scenario, you attach three files to your ticket and assert that you see them
within the assets element, which was previously called but#ticket .asset

now has the pluralized name of .#ticket .assets

Now run this single scenario using bin/rspec

. It should fail on the firstspec/features/creating_tickets_spec.rb

"attach_file" step, because you renamed the label of this field.

To get this step to pass, you can change the label on the field in
app/views/tickets/_form.html.erb to :"File #1"

scenario "Creating a ticket with an attachment" do
 fill_in "Title", with: "Add documentation for blink tag"
 fill_in "Description", with: "The blink tag has a speed attribute"

 attach_file "File #1", Rails.root.join("spec/fixtures/speed.txt")
 attach_file "File #2", Rails.root.join("spec/fixtures/spin.txt")
 attach_file "File #3", Rails.root.join("spec/fixtures/gradient.txt")

 click_button "Create Ticket"

 expect(page).to have_content("Ticket has been created.")

 within("#ticket .assets") do
 expect(page).to have_content("speed.txt")
 expect(page).to have_content("spin.txt")
 expect(page).to have_content("gradient.txt")
 end
end

Failure/Error: attach_file "File #1", "spec/fixtures/speed.txt"
Capybara::ElementNotFound:
 Unable to find file field "File #1"

9.2.2 Implementing multiple file upload

<p>
 <%= f.label :asset, "File #1" %>
 <%= f.file_field :asset %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

329

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

While you’re changing things, you may as well change
app/views/tickets/show.html.erb to reflect these latest developments. First, change
the around the asset field to use the method, because it’ll need toif assets

check the of a ticket rather than the . This line inassets asset

app/views/tickets/show.html.erb should change from this:

To this:

You also need to change the that currently reads so ith3 Attached File

reads because now there’s more than one file. You shouldAttached Files

also change the that encapsulates your assets to have the attribute of div class

. These three changes mean that you now have these three lines inassets

app/views/tickets/show.html.erb:

When you call this time, it calls the present? ActiveRecord::Base

association method, which checks if there are any assets on a ticket and returns
 if there are. Although isn’t yet defined, you can probably guesstrue assets

what you’re about to do.
First, though, you need to change the lines underneath the ones you just

changed to the following:

</p>

 <% if @ticket.asset.present? %>

 <% if @ticket.assets.present? %>

<% if @ticket.assets.exists? %>
 <h3>Attached Files</h3>
 <div class="assets">

<% @ticket.assets.each do |asset| %>
 <p>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

330

Licensed to <alex@vinova.sg>

mailto:@ticket.asset.present?
mailto:@ticket.assets.present?
mailto:@ticket.assets.exists?
mailto:@ticket.assets.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

Here you switch to using the method and iterate through each elementassets

in the array, rendering the same output as you did when you had a single asset.
All of these changes combined will help your scenario pass, which is a great

thing. When you run this feature again with bin/rspec

, the first attachment stepspec/features/creating_tickets_spec.rb

inside the scenario passes, but the second fails:

To fix this error, create a new file at spec/fixtures/spin.txt and put this content
in it:

O n t h e n e x t r u n o f bin/rspec

 this error is replaced withspec/features/creating_tickets_spec.rb

a new one:

You add another field:could

 <%= link_to File.basename(asset.asset.path), asset.asset.url %>
 </p>
 <p>
 <small><%= number_to_human_size(asset.asset.size) %></small>
 </p>
<% end %>

Failure/Error: attach_file "File #2", Rails.root.join...
 Capybara::FileNotFound:
 cannot attach file, spec/fixtures/spin.txt does not exist

Spinning blink tags have a 200% higher click rate!

Failure/Error: attach_file "File #2", Rails.root.join...
Capybara::ElementNotFound:
 Unable to find file field "File #2"

<p>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

331

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

But that’s a messy way of going about it. The best way to handle this problem
is by having some code to automatically present a number of fields -- say, three --
on the page to the user with an option to add more if they like. This is possible by
using a association for assets on the class, and by using has_many Ticket

. To use nested attributes in the view, you use the nested attributes fields_for

helper. This helper defines the fields for an association’s records, as many as you
like. Let’s remove the file field completely and replace it with the code from this
listing:

Listing 9.5 app/views/tickets/_form.html.erb, asset fields

Directly before the call, you set a local variable called fields_for

, which is incremented whenever you render a .number label

You use much in the same way you use . You call fields_for form_for

 on the block variable from , which tells it you want tofields_for f form_for

define nested fields inside this original form. The argument to —fields_for

—tells Rails the name of the nested fields.:assets

The file field inside this now has the attribute of fields_for name

 rather than simply , meaning itticket[assets][asset] ticket[asset]

wi l l be ava i l ab l e i n t he con t ro l l e r a s
.params[:ticket][:assets][:asset]

When you run this feature with bin/rspec

, the final scenario nowspec/features/creating_tickets_spec.rb

fails because it still can’t find the second file upload field:

 <%= f.label :asset_2, "File #2" %>
 <%= f.file_field :asset_2 %>
</p>

<% number = 0 %>
<%= f.fields_for :assets do |asset| %>
 <p>
 <%= asset.label :asset, "File ##{number += 1}" %>

 <%= asset.file_field :asset %>
 </p>
<% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

332

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

To make this appear, define an association in your model soassets Ticket

the in your view can eventually provide s for threefields_for file_field

new objects. The defining of this association will also stop the otherAsset

scenario that is currently failing in "Creating Tickets" from complaining about the
missing method.assets

If this association is defined on the model and you’veassets Ticket

declared that your model accepts nested attributes for the association,
 iterates through the output from this method and renders the fieldsfields_for

from for each element. This means that a file field will be renderedfields_for

for every single object in the collection.Asset @ticket.assets

You can define this method by defining a association inassets has_many

your model:Ticket

Underneath this , you also define that a model acceptshas_many Ticket

nested attributes for assets by using :accepts_nested_attributes_for

This little helper tells your model to accept asset attributes along with ticket
attributes whenever you call methods like , , or . It has thenew build update

added bonus of switching how performs in your form, making itfields_for

reference the association and calling the attributes it defines
 rather than .assets_attributes assets

When you run our scenario with bin/rspec

, you see that Rails is nowspec/features/creating_tickets_spec.rb

And I attach the file "spec/fixtures/spin.txt" to "File #2"
 cannot attach file, no file field with id, name,
 or label 'File #2' found (Capybara::ElementNotFound)

has_many :assets

accepts_nested_attributes_for :assets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

333

Licensed to <alex@vinova.sg>

mailto:@ticket.assets
http://www.manning-sandbox.com/forum.jspa?forumID=818

basically that there is an class. So needy!demanding Asset

We’d best get onto that then!

You used the term Asset rather than File throughout your application because of
this model. You can’t define a model because there’s already a classFile File

in Ruby. Asset is an alternative name you can use. Rails uses it itself to describe
static files, which is why you have an app/assets directory. To define this Asset

constant in your application, you can run the model generator:

Each record for this model refers to a single file that has been uploaded to a
ticket. Therefore, each record in the table must have the same assets asset

field that each record currently has. Storing the asset references in the tickets

 table now makes the references in the table irrelevant, so youassets tickets

should remove them. You should also add a relationship between the asset records
and the ticket records by adding a field to the table. Openticket_id assets

the migration this generates and change it to the following listing to reflect these
ideas.

And I follow "New Ticket"
 uninitialized constant Ticket::Asset (ActionView::Template::Error)

9.2.3 Using nested attributes

$ bin/rails g model asset

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

334

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 9.6 db/migrate/[date]_create_assets.rb

Run this migration with to migrate yourbin/rake db:migrate

development environment’s database, and then run bin/rake

 to migrate the test environment’s database. When you rundb:test:prepare

t h e f e a t u r e a g a i n w i t h bin/rspec

, your field isspec/features/creating_tickets_spec.rb File #1

once again missing!

You’ve gone backwards! Or so it seems.
As mentioned earlier, detects that the method isfields_for assets

defined on your object and then iterates through each object in thisTicket

collection while rendering the fields inside for each. When youfields_for

create a new ticket in ’s action, however, you don’tTicketsController new

initialize any assets for this ticket, so returns an empty array and no fieldsassets

at all are displayed.
To get this action to render three file input fields, you must initialize three

 objects associated to the object the form uses. Change your Asset Ticket new

action inside to this:TicketsController

class CreateAssets < ActiveRecord::Migration
 create_table :assets do |t|
 t.string :asset
 t.references :ticket

 t.timestamps
 end

 remove_column :tickets, :asset
end

And I attach the file "spec/fixtures/speed.txt" to "File #1"
Capybara::ElementNotFound:
 Unable to find file field "File #1"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

335

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The final line of this action calls three times,@ticket.assets.build

which creates the three objects you need for your .Asset fields_for

When you run our scenario again, the three fields are now available, but the
scenario now fails because it can’t find a file to upload:

Create this gradient.txt file now inside the spec/fixtures directory and give it the
following content:

This text piece is random filler meant only to provide some text if you ever
need to reference it. Let’s run the scenario again with bin/rspec

:spec/features/creating_tickets_spec.rb

Remember this from last time? It means we need in ourstrong_parmeters

controller. Modify your method inticket_params

app/controllers/tickets_controller.rb:

def new
 @ticket = @project.tickets.build
 3.times { @ticket.assets.build }
end

Failure/Error: attach_file "File #3", "spec/fixtures/gradient.txt"
Capybara::FileNotFound:
 cannot attach file, spec/fixtures/gradient.txt does not exist

Everything looks better with a gradient!

Failure/Error: within("#ticket .assets") do
Capybara::ElementNotFound:
 Unable to find css "#ticket .assets"

def ticket_params
 params.require(:ticket).permit(:title, :description,
 assets_attributes: [:asset])

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

336

Licensed to <alex@vinova.sg>

mailto:@project.tickets.build
mailto:@ticket.assets.build
mailto:@ticket.assets.build
http://www.manning-sandbox.com/forum.jspa?forumID=818

Tricky! becomes , and we also need to say:asset :assets_attributes

that that array of attributes contains an inner . This mirrors the structure of:asset

our models: a s. And each has an uploadedTicket has_many Asset Asset

file, named . Whew!asset

This should be all that is required to get the multiple asset uploading working.
F i n d o u t b y r u n n i n g bin/rspec

. You should see thisspec/features/creating_tickets_spec.rb

output:

Hooray, the scenario passed! In this section, you set up the form that creates
new objects to also create three associated objects by usingTicket Asset

nested attributes. This process was made possible by moving the responsibility of
handling file uploads out of the model and into the associated Ticket Asset

model. The call inside the model,accepts_nested_attributes Ticket

as well as the call in app/views/tickets/_form.html.erb also playedfields_for

vital roles in getting this to work.
Let’s ensure that nothing is broken by running .bin/rake spec

Yup, nothing's broken, but there's one pending spec that lives in
spec/models/asset_spec.rb. Let's delete this file now. If you re-run rake spec

you should see no more pending specs:

end

4 examples, 0 failures

63 examples, 0 failures, 1 pending

64 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

337

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Awesome, let’s commit and push this.

Great. You’re done with nested attributes! Earlier, it was mentioned that the
files uploaded to your application are publicly available for anybody to access
because these files are in the public directory. Any file in the public directory is
served up automatically by any Rails server, bypassing all the authentication and
authorization in your application. This is a bad thing. What if one of the projects in
your application has files that should be accessed only by authorized users?

You can solve this issue by serving the uploaded files through a controller for your
application. Using a similar to the one you used previously inbefore_filter

the , this controller will check that the user attempting toTicketsController

access a file has permission to access that particular project.
When you implemented permission behavior before, you ensured that any

unauthorized user would be blocked from accessing the resource you were trying
to protect by writing a controller spec. You write this same kind of spec test for
serving files.

You first need to generate the controller through which you’ll serve the assets. Call
it , because is already reserved by the asset pipeline:files assets

Now write a spec to ensure that unauthorized users can’t see the files inside it.
For this spec test, you must create two users, a project, a ticket, and an asset. The
first user should have permission to read this project, and the second user
shouldn’t.

Open spec/controllers/files_controller_spec.rb now and add definitionslet

that set up your users, project, ticket, and asset inside the for describe

$ git add .
$ git commit -m "Users can now upload 3 files at a time"
$ git push

9.3 Serving files through a controller

9.3.1 Protecting files

$ bin/rails g controller files

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

338

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

, as shown in the following listing.FilesController

Listing 9.7 spec/controllers/files_controller_spec.rb

You used a for setting up a project, two users, a ticket for this project, alet

path to the file that’s served from the controller, and the asset for the ticket. This is
the asset you’ll be serving from the controller for this spec test.

You set up the permission in a block because you won’t bebefore

referencing it anywhere in your tests, so having it as a block wouldn’t work.let

You should use blocks only when you’re going to be referencing them insidelet

your tests. If you need code set up beforehand, you should use a blockbefore

instead.
To serve the files from this controller, use the action, using the show id

parameter to find the asset the user is requesting. When the application finds this
asset, you want it to check that the user requesting the asset has permission to read
the project this asset links to. The object should be able to, and the good_user

 object shouldn’t. Now add the spec to test the ’s abilitybad_user good_user

to download this asset by using the code from the following listing.

require 'spec_helper'

describe FilesController do
 let(:good_user) { FactoryGirl.create(:user) }
 let(:bad_user) { FactoryGirl.create(:user) }

 let(:project) { FactoryGirl.create(:project) }
 let(:ticket) { FactoryGirl.create(:ticket,
 project: project,
 user: good_user) }

 let(:path) { Rails.root + "spec/fixtures/speed.txt" }
 let(:asset) do
 ticket.assets.create(asset: File.open(path))
 end

 before do
 good_user.permissions.create!(action: "view",
 thing: project)
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

339

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 9.8 spec/controllers/files_controller_spec.rb

If you’re using Windows you may have to do this on the response.body

line instead, as the line breaks on Windows are slightly different:

In this example, you sign in as the by using another good_user before

block. Then you assert that when this user attempts to get this asset through the
 action, the user should receive it as a response. Write another andshow context

spec for the too, as shown in the following listing.bad_user

Listing 9.9 spec/controllers/files_controller_spec.rb

Here you sign in as the and then deny all knowledge of the asset’sbad_user

context "users with access" do

 before do
 sign_in(good_user)
 end

 it "can access assets in a project" do
 get 'show', id: asset.id
 expect(response.body).to eql(File.read(path))
 end
end

 expect(response.body.gsub!(/\r\n?/, "\n")).to eql(File.read(path))

context "users without access" do
 before do
 sign_in(bad_user)
 end

 it "cannot access assets in this project" do
 get 'show', id: asset.id
 expect(response).to redirect_to(root_path)
 expect(flash[:alert]).to eql("The asset you were looking for " +
 "could not be found.")
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

340

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

existence by redirecting to root and displaying an alert flash message. Let’s run
t h e s e s p e c s n o w w i t h bin/rspec

. Both examplesspec/controllers/files_controller_spec.rb

complain:

Well, that’s no good. Now you need to define this action.show

Open your file now and define the action, along withFilesController show

a to set the variable, which you’ll need forbefore_filter current_user

permission checking. This code is shown in the following listing.

Listing 9.10 app/controllers/files_controller.rb

In this action, you find the object by using the theAsset params[:id]

action receives. Then you use the object in combination with the asset

 method to send the file back as a response rather than a view in yoursend_file

application.
The first argument for is the path to the file you’re sending. Thesend_file

next argument is an options hash used to pass in the and filename

 options so the browser receiving the file knows what to call itcontent_type

and what type of file it is.
To route requests to this controller, you need to define a route in your

ActionController::UrlGenerationError:
 No route matches {:id=>"1", :controller=>"files", :action=>"show"}

9.3.2 Showing your assets

class FilesController < ApplicationController
 before_filter :require_signin!

 def show
 asset = Asset.find(params[:id])
 send_file asset.asset.path,
 filename: asset.asset_identifier,
 content_type: asset.content_type
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

341

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

config/routes.rb file, which you can do with this line:

Okay, we're ready to run our tests again. Check it out with bin/rspec

:spec/controllers/files_controller_spec.rb

Right, we don't have a method on our class. We needcontent_type Asset

to save the type when the file is uploaded, so we know what type to serve it with.
To do that, we need a few things: a new column in our database, as well as a

way of storing it. Let's generate that migration:

It's so simple, we didn't even look at it before migrating. You should have seen
some output like this:

Anyway, now we need to save the content type when our asset is uploaded. To
do this you can use a callback. A callback is a method that’s called either before or
after a certain event. For models, there are before-and-after callbacks for the
following events (where * can be substituted for either or):before after

Validation ()*_validation

Creating ()*_create

resources :files

NoMethodError:
 undefined method `content_type' for #<Asset:0x007f819c3be500>

$ bin/rails g migration add_content_type_to_assets content_type:string
$ bin/rake db:migrate db:test:prepare

== AddContentTypeToAssets: migrating ======================
-- add_column(:assets, :content_type, :string)
 -> 0.0055s
== AddContentTypeToAssets: migrated (0.0056s) =============

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

342

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Updating ()*_update

Saving ()*_save

Destruction ()*_destroy

We’re able to trigger a specific piece of code or method to run before or after
any of these events. The “Saving” item in the above list refers to when a record is
saved to the database, which occurs when a record is created or updated. For your

 model you’ll want to define a callback that occurs before a record is aboutAsset

to be saved and for this you’ll use the method at the top of your before_save

 model, like this:Asset

When you run the specs for this controller again using bin/rspec

, the first spec passes,spec/controllers/files_controller_spec.rb

but the second one fails:

The action doesn’t redirect as this example expects because you’re notshow

doing any permission checking in your action, which is what this example is all
about: “users without access cannot access assets in this

.” To fix this problem, check that the user has permission to access thisproject

asset’s project by using the CanCan helpers you used in chapter 8. you can use
them in your action now, as shown in the following listing.show

class Asset < ActiveRecord::Base
 mount_uploader :asset, AssetUploader

 before_save :update_content_type

 private

 def update_content_type
 if asset.present? && asset_changed?
 self.content_type = asset.file.content_type
 end
 end
end

Failure/Error: response.should redirect_to(root_path)
Expected response to be a <redirect>, but was <200>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

343

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 9.11 app/controllers/files_controller.rb

Now when you rerun the specs with bin/rspec

, you'll see that you'respec/controllers/files_controller.rb

missing a method:

This method is a simple , which you must define inside the belongs_to

 model:Asset

When you rerun your specs, they both pass because the authorized user (
) can get a file and the unauthorized user () can’t:good_user bad_user

Great! Now you’ve begun to serve the files from to onlyFilesController

people who have access to the asset’s relative projects. There’s one problem,
though: all users can still access these files without having to go through the

def show
 asset = Asset.find(params[:id])
 if can?(:view, asset.ticket.project)
 send_file asset.asset.path,
 filename: asset.asset_identifier,
 content_type: asset.content_type
 else
 flash[:alert] = "The asset you were looking for could not be found."
 redirect_to root_path
 end
end

undefined method 'ticket' for #<Asset:0x000001043d1e18>

belongs_to :ticket

2 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

344

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

. This is because these files still live in public/system, andFilesController

therefore requests to them will be served by the webserver. These files need to
move.

People can still get to your files as long as they have the link provided to them
because the files are still stored in the public folder. Let’s see how this is possible
by starting up the server using , signing in, and creating abin/rails server

ticket. Upload the spec/fixtures/spin.txt file as the only file attached to this ticket.
You should see a ticket like the one in Figure 9.2

Figure 9.2 A ticket with spin!

Hover over the link on this page and you’ll see a link like this:spin.txt

As you saw earlier in this chapter, this link is not a route to a controller in your
application but to a file inside the public directory. Any file in the public directory
is accessible to the public. Sensible naming schemes rock!

If you copy the link to this file, sign out, and then paste the link into your
browser window, you can still access it. These files need to be protected, and you
can do that by moving them out of the public directory and into another directory
at the root of your application called files. You should create this directory now.

9.3.3 Public assets

http://localhost:3000/system/assets/5/original/spin.txt?1282564953

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

345

Licensed to <alex@vinova.sg>

http://localhost:3000/system/assets/5/original/spin.txt?1282564953
http://www.manning-sandbox.com/forum.jspa?forumID=818

You can make these files private by storing them in the files folder. You don’t
have to move them there manually: you can tell CarrierWave to put them there by
default by implementing the method on your .store_dir AssetUploader

The generator provided us with a nice default implementation, let's change it to
look like this:

Now try creating another ticket and attaching the spec/fixtures/spin.txt file. This
time when you use the link to access the file, you’re told there’s no route. This is
shown in Figure 9.3

Figure 9.3 No route!

The URL generated for this file is incorrect because we were linking to it
wrong. Modify your app/views/tickets/show.html.erb:

A great test to see if you can still upload assets correctly after this change is to
run the scenario from spec/features/creating_tickets_spec.rb, which creates a ticket
wi th three a t tachments . Run bin/rspec

 now to see if this stillspec/features/creating_tickets_spec.rb

works.

9.3.4 Privatizing assets

def store_dir
 Rails.root + "uploads/#{model.class.to_s.underscore}/" + \
 "#{mounted_as}/#{model.id}"
end

<%= link_to File.basename(asset.asset.path), file_path(asset) %>

4 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

346

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Great! With this feature still passing, the files are being served through the
 controller correctly. You’re done with implementing theFilesController

functionality to protect assets from unauthorized access, so you should commit.
First ensure that nothing is broken by running .rake spec

The one pending spec here is in the file located at
spec/helpers/files_helper_spec.rb. This file only contains this pending spec, so go
ahead and delete it now. Another run of should give you this output:rake spec

It’s great to see everything is still in working order. Now commit and push your
changes.

By serving these files through the , you can provide aFilesController

level of control over who can see them and who can’t by allowing only those who
have access to the asset’s project to have access to the asset.

Inevitably, somebody’s going to want to attach more than three files to a ticket,
and then what? Well, you could add more fields until people stop asking for them,
or you could be lazy and code a solution to save time. This solution entails putting
an Add Another File link underneath the final file field in your form that, when
clicked, add another file field. Users should be able to continue to do this ad
infinitum. How do you implement this?

You use JavaScript. That’s how.

67 examples, 0 failures, 1 pending

66 examples, 0 failures

$ git add .
$ git commit -m "Uploaded Assets are now strictly served through
 the FilesController"
$ git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

347

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You started this chapter with only one file field, then moved to three after you
realized users may want to upload more than one file to your application. While
having three fields suits the purposes of many users, others may wish to upload yet
more files.

You could keep adding file fields until all the users are satisfied, or you could
be sensible about it and switch back to using one field and, directly underneath it,
providing a link that, when clicked, adds another file field. Using this solution, you
also clean up your UI a bit by removing possible extra file fields yet still allowing
users to attach as many files as they like. This is where JavaScript comes in.

When you introduce JavaScript into your application, you have to run any
scenarios that rely on it through another piece of software called WebDriver.
WebDriver is a browser driver, which was installed when the Capybara gem was
installed, so you don’t have to do anything to set it up. Capybara without
WebDriver won’t run JavaScript because it doesn’t support it by itself. By running
these JavaScript-reliant scenarios through WebDriver, you ensure the JavaScript
will be executed. One of the great things with this WebDriver and Capybara
partnership is that you can use the same old, familiar Capybara steps to test
JavaScript behavior.

Capybara provides an easy way to trigger WebDriver testing. You a scenariotag
(or feature) with the option and it launches a new web browserjs: true

window and tests your code by using the same steps as standard Capybara testing,
but in a browser. Isn’t that neat? Let’s replace the "Creating a ticket with an
attachment" scenario in this feature with the one from the following listing:

9.4 Using JavaScript

9.4.1 JavaScript testing

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

348

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 9.12 spec/features/creating_tickets_spec.rb

The tag at the top of this scenario tells Capybara that the scenariojs: true

should use JavaScript, so it should be run in a browser using WebDriver. Also in
this scenario, you’ve filled in only one file field because, as stated before,
you’re going to reduce the number of initial file fields to one. After filling in this
field, you follow the Add Another File link that triggers a JavaScript event, which
renders the second file field that you can then fill in. The rest of this scenario
remains the same: ensuring that the ticket is created and that you can see the
files inside the element with the class .assets

If you run this scenario with bin/rspec

, you'll see that signing inspec/features/creating_tickets_spec.rb

for this scenario is now not working:

That's strange. Why isn't this scenario working but the other ones still are? The
only thing that was changed was the addition of the option to the endjs: true

scenario "Creating a ticket with an attachment", js: true do
 fill_in "Title", with: "Add documentation for blink tag"
 fill_in "Description", with: "Blink tag's speed attribute"

 attach_file "File #1", "spec/fixtures/speed.txt"

 click_link "Add another file"
 attach_file "File #2", Rails.root.join("spec/fixtures/spin.txt")

 click_button "Create Ticket"

 expect(page).to have_content("Ticket has been created.")

 within("#ticket .assets") do
 expect(page).to have_content("speed.txt")
 expect(page).to have_content("spin.txt")
 end
end

Failure/Error: sign_in_as!(user)
expected there to be content "Signed in successfully." in "..."

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

349

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

of the scenario. Well, that's exactly the problem! When you pass this option to a
scenario, it will run the test using a real browser, and the real browser requires a
real server to access. So what's actually happening here is that your test
environment is now loading two Rails environments, one for normal testing and
one for the JavaScript tests.

By itself, this isn't a big problem. But in combination with this line inside the
spec/spec_helper.rb configuration:

A perfect storm is created. What this line does is tells RSpec to run all the tests
inside database transactions. This means that a new database transaction is begun
at the same time as a test, and then a command is issued to revert theROLLBACK

database back to a clean state. This is why you can always test using the same
database without having to clean out the data from inside it after the test run.

Due to this transaction, the data created by the test setup inside
spec/features/creating_tickets_spec.rb will exist purely within this transaction. It's
never committed to the database. So when the other Rails process spawns for the
JavaScript testing and accesses the same database, it cannot see this test data and
so this error happens.

The solution to this problem is to use transactions within JavaScript tests.not
Instead, you should be using . Rather than running the tests inside adata truncation
transaction block which is then rolled back at the end of it, data truncation involves
an automatic wipe of the database at the end of the tests. To acheive this, you can
use a gem called .database_cleaner

The gem can be installed into your application bydatabase_cleaner

adding this line inside the group of your Gemfile:test

Run to install this gem now. To configure the gem, youbundle install

should create a new file at spec/support/database_cleaning.rb and put the content
from the following listing inside that file:

9.4.2 Cleaning the database

 config.use_transactional_fixtures = true

 gem 'database_cleaner', '1.0.1'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

350

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You'll also need to change the line inuse_transactional_fixtures

spec/spec_helper.rb to set this option to :false

With these changes, the database will now be truncated after every test run.
W h e n y o u r u n b i n / r s p e c

, it fails because the "Addspec/features/creating_tickets_spec.rb

Another File" link doesn’t yet exist:

Before you fix it, however, let’s make form render only a single asset field by
changing this line in the action in :new TicketsController

to this:

RSpec.configure do |config|
 config.before(:suite) do
 DatabaseCleaner.strategy = :truncation
 DatabaseCleaner.clean_with(:truncation)
 end

 config.before(:each) do
 DatabaseCleaner.start
 end

 config.after(:each) do
 DatabaseCleaner.clean
 end
end

config.use_transactional_fixtures = false

And I follow "Add another file"
 no link with title, id or text 'Add another file' found

3.times { @ticket.assets.build }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

351

Licensed to <alex@vinova.sg>

mailto:@ticket.assets.build
http://www.manning-sandbox.com/forum.jspa?forumID=818

By building only one asset to begin with, you show users that they may upload
a file. By providing the link to "Add Another File", you show them that they may
upload more than one if they please. This is the best UI solution because you’re not
presenting the user with fields they may not use.

Now it’s time to make the "Add Another File" link exist and do something
useful!

The "Add Another File" link, when clicked, will trigger an asynchronous call to an
action, which renders a second file field. Every time this link is clicked, another
file field will be added to the page.

For the "Add Another File" link to perform an asynchronous request when it’s
clicked, you can use the JavaScript framework called jQuery. This is already in use
in your application, as your application's Gemfile references the jquery-rails

gem, which provides the correct jQuery files. It's the task of your
app/assets/javascripts/application.js file to include the two jQuery files Rails needs,
which it does by using these two lines:

If you were to remove these two lines from application.js or if you were to
remove the line that includes application.js in the application layout, things such as
confirmation boxes on delete requests and asynchronous links would stop working.
So please don't remove these lines! The line in
app/views/layouts/application.html.erb is this one:

It generates HTML like this:

@ticket.assets.build

9.4.3 Introducing jQuery

//= require jquery
//= require jquery_ujs

<%= javascript_include_tag "application" %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

352

Licensed to <alex@vinova.sg>

mailto:@ticket.assets.build
http://www.manning-sandbox.com/forum.jspa?forumID=818

The path here is handled by the gem, which comes/assets sprockets

standard with Rails. When this route is requested, the Sprockets gem takes care of
s e r v i n g i t . I t b e g i n s b y r e a d i n g t h e

 file, which specifies theassets/javascripts/application.js

following things:

The lines prefixed with in this file (not shown in above example) are//

comments, but the lines prefixed with are that tell Sprockets what//= directives

to do. These directives the and files from the require jquery jquery_ujs

 gem. The file is the jQuery framework itself, while the jquery-rails jquery

 file provides helpers for things such as thejquery-ujs unobtrusive JavaScript

confirmation box that pops up when you click on a link that was defined using
’s helper. Again, if you removed this file this would stoplink_to :confirm

working. Just be mindful of that, as it catches a lot of people out.
Rails has already required all the JavaScript files you need to get started here.

Let’s define the "Add Another File" link now.

You must add the "Add Another File" link to your tickets form at
app/views/tickets/_form.html.erb. Put it underneath the for the end fields_for

so it’s displayed below existing file fields:

<script src="/assets/application.js" type="text/javascript"></script>

//= require jquery
//= require jquery_ujs
//= require_tree .

9.4.4 Adding more files with JavaScript

<%= link_to "Add another file",
 new_file_path,
 :remote => true,
 :update => "files",
 :position => "after" %>

Remote
Update
Position

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

353

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Here you use the method to define a link, and you pass some optionslink_to

to it. The first option is , which tells Rails you want to:remote => true

generate a link that uses JavaScript to make a background request, called an
, to the server. More precisely, the request uses theasynchronous request

JavaScript provided by the file that comes with the jquery-ujs.js

 gem.jquery-rails

This request then responds with some content, which is dealt with by the
 and options. The first option, , tells Rails:update :position :update

to tell the JavaScript that handles the response that you want to insert the content
from the background request into the element with the attribute of . Theid files

second, , tells it that you want to insert the content after any other:position

content in the element, which would make your second file field appear after the
first file field.

The element this updates doesn’t currently exist, but you can easily create it by
wrapping the inside a with the attribute set to , asfields_for div id files

shown in the following listing.

Listing 9.13 app/views/tickets/_form.html.erb

This tag provides an element for your new to insert a file fielddiv link_to

into. There's also been a change to the tag so that it uses the fields_for

 option to manually set the unique field identifier that is used for:child_index

each of the file fields in this rendering. You'll see why this is donefields_for

a little later on.

<div id='files'>
 <%= f.fields_for :assets, :child_index => number do |asset| %>
 <p>
 <%= asset.label :asset, "File ##{number += 1}" %>
 <%= asset.file_field :asset %>
 </p>
 <% end %>
</div>

Failure/Error: attach_file "File #2", Rails.root.join...
Capybara::ElementNotFound:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

354

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The "Add Another File" link currently uses the helper,new_file_path

which generates a route such as . This route points to the action/files/new new

in . This action isn’t defined at the moment, so the featureFilesController

won’t work. Therefore, the next step is to define the action you need.

The job of the action inside the is to render a single filenew FilesController

field for the ticket form so users may upload another file. This action needs to
render the fields for an asset, which you already do inside
app/views/tickets/_form.html.erb by using these lines:

To re-use this code for the action in , move it into anew FilesController

partial located at app/views/files/_form.html.erb.
In app/views/tickets/_form.html.erb, you can replace the lines with this simple

line:

When you pass the option to , you can set local variables:locals render

that can be used in the partial. Local variables in views are usable only in the views

 cannot attach file, no file field with id, name,
 or label 'File #2' found

9.4.5 Responding to an asynchronous request

<p>
 <%= f.fields_for :assets, :child_index => number do |asset| %>
 <p>
 <%= asset.label :asset, "File ##{number += 1}" %>
 <%= asset.file_field :asset %>
 </p>
 <% end %>
</p>

<%= render partial: "files/form",
 locals: { number: number } %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

355

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

or partials in which they’re defined unless you pass them through by using this
. You pass through the number of your file field and the object:locals asset

provided by .fields_for :assets

To get the action to render this partial, you can use the same code in the new

 action in but with a small change:new FilesController

Here you must pass the name of the partial using the option so the:partial

controller will attempt to render a partial. If you left it without the option, the
controller would instead try to render the template at app/views/files/form.html.erb,
which doesn’t exist.

Before this line, you need to set up the variable that you reference. Addasset

these two lines directly above the first line inside the action:new

Because the object for your form is only a new record, it isn’tTicket

important precisely what object it is: all new objects are the same untilTicket

they’re saved to the database and given a unique identifier. You can exploit this by
creating another object and building your new asset from it.Ticket

If you run the "Creating tickets" feature now using bin/rspec

, you will see this errorspec/features/creating_tickets_spec.rb

come up:

def new
 render partial: "files/form",
 locals: { number: params[:number].to_i }
end

@ticket = Ticket.new
asset = @ticket.assets.build

Failure/Error: click_link "New Ticket"
ActionView::Template::Error:
 undefined local variable or method `f'
 for #<#<Class:0x007f89768bd330>:0x007f89788278d8>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

356

Licensed to <alex@vinova.sg>

mailto:@ticket.assets.build
http://www.manning-sandbox.com/forum.jspa?forumID=818

This error is happening because in the new partial at
app/views/files/_form.html.erb you are referencing the variable without firstf

defining it. This variable needs to represent a form builder object, and this can be
done by wrapping the entire content in a block as shown in thefields_for

following listing:

Listing 9.14 app/views/files/_form.html.erb

W h e n y o u r e - r u n b i n / r s p e c

, you'll now see that'sspec/features/creating_tickets_spec.rb

unable to see the second file field on this page:

This is happening because the link to add another file field to the page is
working, but the action of clicking that link is not returning any JavaScript that
would modify the page. Let's fix this now using a little language called
CoffeeScript.

<%= fields_for @ticket do |f| %>
 <p>
 <%= f.fields_for :assets, child_index: number do |asset| %>
 <p>
 <%= asset.label :asset, "File ##{number += 1}" %>
 <%= asset.file_field :asset %>
 </p>
 <% end %>
 </p>
<% end %>

Failure/Error: attach_file "File #2", Rails.root.join...
Capybara::ElementNotFound:
 Unable to find file field "File #2"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

357

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The variable indicates what file field you are up to, so you need a way tonumber

tell the action in how many file fields are currently onnew FilesController

the page. Previous versions of Rails had an option for this called , which:with

has now, unfortunately, been removed. No matter, you can do it in JavaScript. It’s
better to put this code in JavaScript anyway, because it’ll already be using some to
determine the number to pass through. Rather than using pure JavaScript, you’ll be
using CoffeeScript, which comes with Rails but can be used with any other
language. Let’s learn some CoffeeScript now.

CoffeeScript is, in the words of its website, “a little language that compiles into
JavaScript.” It’s written in a simple syntax, like this:

This code compiles into the following JavaScript code:

In the CoffeeScript version, you define a variable called . Because thissquare

isn’t yet initialized, it is set up using in the JavaScript output. Youvar square;

assign a function to this variable, specifying the arguments using parentheses (x)

and then specifying the code of the function after . The code inside the function->

in this case is converted into literal JavaScript, making this function take an
argument, multiply it by itself, and the result.return

Although this is a pretty basic example of CoffeeScript, it shows off its power.
What you would write on four lines of JavaScript requires just one line of
extremely easy-to-understand CoffeeScript.

Each time you generate a controller using Rails, a new file called

app/assets/javascripts/[controller_name].js.coffee is created. This file is created so5

9.4.6 Sending parameters for an asynchronous request

LEARNING COFFEESCRIPT

square = (x) -> x * x

var square;
square = function(x) {
 return x * x;
};

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

358

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

you have a location to put CoffeeScript code that is specific to views for the
relevant controller. This is really helpful in your situation, because you’re going to
use some CoffeeScript to tell your "Add Another File" link what to do when it’s
clicked.

Footnote 5 m As long as you have the gem in your Gemfile.coffee-rails

Open app/assets/javascripts/tickets.js.coffee, and we’ll build up your function
line by line so you can understand what you’re doing. Let’s begin by putting this
line first:

It seems like a random amalgamation of characters, but this line is really

helpful. It calls the jQuery function and passes it a function as an argument.$6

This line runs the function only when the page has fully loaded. You need this7

because the JavaScript otherwise would be executed before the link you’re going to
be referencing is loaded. Let’s add a second line to this:

Footnote 6 m Aliased from the function: http://api.jquery.com/jquery/.jQuery

Footnote 7mFor the meaning of “loaded,” see this: http://api.jquery.com/ready

This line uses jQuery’s function to select an element on the page called ,$ a

which has an attribute of that will soon be your Addid add_another_file

Another File link. This would happen only after the page is ready. After this, you
call the function on it and pass it a function that runs when you click onclick

this link. Let’s now add a third line:

$(->

$ ->
 $('a#add_another_file').click(->

$(->
 $('a#add_another_file').click(->
 url = "/files/new?number=" + $('#files input').length

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

359

Licensed to <alex@vinova.sg>

http://api.jquery.com/jquery/
http://api.jquery.com/ready
http://www.manning-sandbox.com/forum.jspa?forumID=818

The double-space indent here indicates to CoffeeScript that this code belongs

inside the function passed to . Here, you define a variable called ,click 8 url

which will be the URL you use to request a new file field on your page. At the end
of this URL you specify the parameter with some additional jQuery code.number

This code selects all the elements inside the element on the page with the input

 attribute of and stores them in an array. To find out how many elementsid files

are in that array, you call on it. The URL for the first time you click onlength

this link would now look something like , indicating/files/new?number=1

that you already have one file field on your page.

Footnote 8mhttp://api.jquery.com/click/

Let’s make the fourth line now:

This line is pretty simple; you call the jQuery function , and then call the $ get

 function on it, which starts an asynchronous request to the specified URL that is9

the first argument here, using the variable you set up on the previous line. Another
line:

Footnote 9mhttp://api.jquery.com/jQuery.get/

This line is indented another two spaces again, meaning it is going to be an
argument for the function. This line defines a new function with an argumentget

called , which is called when the asynchronous request completes, with the data

 argument being the data sent back from the request. One more line:data

$(->
 $('a#add_another_file').click(->
 url = "/files/new?number=" + $('#files input').length
 $.get(url,

$(->
 $('a#add_another_file').click(->
 url = "/files/new?number=" + $('#files input').length
 $.get(url,
 (data)->

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

360

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This final line takes the received from the request and s it todata append 10

the end of the element that has the attribute of on this page. That’s theid files

one with the single file input field currently.

Footnote 10mhttp://api.jquery.com/append.

Finally, you need to close these functions you’ve defined, which you can do
with three closing parentheses matching the levels of indentation, finalizing your
code as this:

That’s all there is to it! When your server receives a request at
, the request will be handled by the Sprockets/assets/application.js

gem. The Sprockets gem will then combine the , , and thejquery jquery_ujs

app/assets/javascripts/tickets.js.coffee into one JavaScript file, parsing the
CoffeeScript into the following JavaScript:

$(->
 $('a#add_another_file').click(->
 url = "/files/new?number=" + $('#files input').length
 $.get(url,
 (data)->
 $('#files').append(data)

$(->
 $('a#add_another_file').click(->
 url = "/files/new?number=" + $('#files input').length
 $.get(url,
 (data)->
 $('#files').append(data)
)
)
)

(function() {
 $(function() {
 return $('a#add_another_file').click(function() {
 var url;
 url = "/files/new?number=" + $('#files input').length;
 return $.get(url, function(data) {
 return $('#files').append(data);
 });
 });

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

361

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You can see this JavaScript in action if you start up your server using rails

 and then go to http://localhost:3000/assets/tackets.js.s

In the environment, this file is compiled upon the first requestproduction

and then cached to save valuable processing time.
This is a little more verbose than the CoffeeScript and another great

demonstration of how CoffeeScript allows you to write more with less. For more
information and usage examples of CoffeeScript, see the CoffeeScript site:
http://coffeescript.org .

Let’s now give your link the attribute that’s required to get this working soid

we can move on.

Open your app/views/tickets/_form.html.erb and replace the code for your "Add
Another File" link with this:

This gives the element the attribute you require. Let’s witness thisid

JavaScript in action now by running to start up a server, signingrails server

in using the email address and the password , andticketee@example.com password
then creating a ticket on a project. Clicking on the "Add Another File" results in an
error that you’ll fix shortly. Click on it anyway. Afterwards, go back to the window
where is running.rails server

This window shows information such as queries and results for every request,
but you’re only interested in the last request made. This request should begin with
the following line:

 });

}).call(this);

PASSING THROUGH A NUMBER

<%= link_to "Add another file", 'javascript:',
 id: "add_another_file" %>

Started GET "/files/new?number=1...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

362

Licensed to <alex@vinova.sg>

http://localhost:3000/assets/tackets.js
http://coffeescript.org
mailto:ticketee@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

This line tells you that Rails has begun serving a request to the GET

 route with a bunch of URL parameters. Your parameter is/files/new number

the first one in this example. The following lines show you the URL that was
requested as well as what action and controller served this request:

The line you’re most interested in is the third line:

This is the hash output in a semi-human-readable format. Here youparams

can see it has the parameter, so you can use this inside the action.number new

With all this in mind, you can change how you render the partial in the actionnew

inside to this:FilesController

You must convert the parameter to an integer using the methodnumber to_i

because it’ll be a when it comes from . It needs to be a String params Fixnum

so the partial can increment it by 1 to use that in the generation of the next id of the
field.

Now if you refresh this page and attempt to upload two files, you should see
that it works. Does your scenario agree? Let’s find out by running bin/rspec

:spec/features/creating_tickets_spec.rb

Started GET "/files/new?number=1" for 127.0.0.1 at [timestamps]
 Processing by FilesController#new as */*
 Parameters: {"number"=>"1"}

Parameters: {"number"=>"1", ... }

render partial: "files/form",
 locals: { number: params[:number].to_i,
 asset: asset }

Failure/Error: attach_file "File #2", Rails.root....
Capybara::ElementNotFound:
 Unable to find file field "File #2"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

363

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Wait, what? But it was right there! You can even see the link to add a file right
there! When we first saw this error, we were stumped. Big time. But that sentence
before was the key: the link to add a file was there, but nothing happened when
Capybara clicked on it. This generally means that the JavaScript isn't working. So,
we fired up a web browser and a and checked it out...bin/rails s

And it worked. What in the world is going on here?
After thinking long and hard, and asking a few friends, we figured it out. The

issue? Turbolinks.
Turbolinks is a gem that comes automatically installed with Rails 4. It attempts

to speed up your site by overriding the links in your page with JavaScript.
So here's what's happening: When we loaded up the page in our browser, we

went straight to the 'New Ticket' page. The page loads, our handler gets set, and it
all works. When the tests run, they click through several pages in order to get to
the 'New Tickets' page. This means Turbolinks handles the page loads, and
therefore the browser's native event never gets sent, which means that theonload

handler doesn't get attached, and so clicking on the link does nothing.
Now, Turbolinks provides its own event to replace the event, so thatonload

this kind of code can work properly. However, it's our opinion that Turoblinks is
great to speed up mostly-server-side sites, but as soon as you start writing some
JavaScript, it causes more problems than it's worth. Therefore, we're going to
remove Turbolinks from our application, and the tests should pass.

Removing Turbolinks is really easy. There are three places you have to remove
lines. First, remove the line from your Gemfile. Run require 'turbolinks'

 afterwards to update the lock file so it's truly gone. Then,bundle update

remove the from your//= require turbolinks

app/assets/javascripts/application.js. Finally, change these two lines in your
app/views/layouts/application.html.erb to look like this:

With all of that done, try running bin/rspec

 another time:spec/features/creating_tickets_spec.rb

<%= stylesheet_link_tag "application", media: "all" %>
<%= javascript_include_tag "application" %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

364

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Yup, all working! Great. You’ve now switched the ticket form back to only
providing one file field but providing a link called Add Another File, which adds
another file field on the page every time it’s clicked. You originally had
implemented this link using the option for , but switched to:remote link_to

using CoffeeScript when you needed to pass the parameter through. Anumber

couple of other small changes, and you got it all working very neatly again!
This is a great point to see how the application is faring before committing.

Let’s run the tests with . You should see the following:rake spec

Awesome! Let’s commit it:

This section showed how you can use JavaScript and CoffeeScript to provide
the user with another file field on the page using some basic helpers. JavaScript is a
powerful language and is a mainstay of web development that has gained a lot of
traction in recent years thanks to libraries such as the two we saw here, jQuery and
CoffeeScript, as well as others such as Prototype and Raphael.

By using JavaScript, you can provide some great functionality to your users.
The best part? Just as you can test your Rails code, you can make sure JavaScript is
working by writing tests that use WebDriver.

This chapter covered two flavors of file uploading: single file uploading and
multiple file uploading.

You first saw how to upload a single file by adding the helper tofile_field

your view, making your form multipart, and by using the CarrierWave gem to

4 examples, 0 failures

66 examples, 0 failures

git add .
git commit -m "Provide an 'Add another file' link that uses Javascript
 so that users can upload more than one file"
git push

9.5 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

365

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

accepts_nested_attributes_for
Callbacks, before_save
fields_for
file_field
git commit, --amend option
link_to, :position option
link_to, :remote option
link_to, :update option
number_to_human_size helper
present?, ActiveRecord::Base
render, :locals option
render, :partial option
send_file

handle the file when it arrives in your application.
After you conquered single file uploading, you tackled multiple file uploading.

You offloaded the file handling to another class called , which kept a recordAsset

for each file you uploaded. You passed the files from your form by using nested
attributes, which allowed you to create objects related to the ticket beingAsset

created through the form.
After multiple file uploading, you learned how to restrict which files are served

through your application by serving them through a controller. By using a
controller, you can use CanCan’s helper to determine if the currentlycan?

signed-in user has access to the requested asset’s project. If so, then you give the
user the requested asset using the controller method. If not, you denysend_file

all knowledge of the asset ever having existed.
Finally, you used a JavaScript library called jQuery, in combination with a

simpler way of writing JavaScript called CoffeeScript, to provide users with an
"Add Another File" link which they could click every time they wanted to add
another file to the form. jQuery does more than simple asynchronous requests,

though, and if you’re interested, the documentation is definitely worth exploring.11

Footnote 11mhttp://jquery.com.

In the next chapter, we look at giving tickets a concept of state, which enables
users to see which tickets need to be worked on and which are closed. Tickets will
also have a default state so they can be easily identified when they’re created.

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

366

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

10
In a ticket-tracking application such as Ticketee, tickets aren’t there to provide
information of a particular problem or suggestion; rather, they’re there to provide
the workflow for it. The general workflow of a ticket is that a user will file it and
it’ll be classified as a “new” ticket. When the developers of the project look at this
ticket and decide to work on it, they’ll switch the state on the ticket to “open” and,
once they’re done, mark it as “resolved.” If a ticket needs more information on it
then they'll add another state, such as “needs more info.” A ticket could also be a
duplicate of another ticket or it could be something that the developers determine
isn’t worthwhile putting in. In cases such as this the ticket may be marked as
“duplicate” or “invalid,” respectively.

The point is that tickets have a workflow, and that workflow revolves around
state changes. We’ll allow the admin users of this application to add states, but not
to delete them. The reason for this is if an admin were to delete a state that was
used then we’d have no record of that state ever existing. It’s best if, once states are

created and used on a ticket, that they can’t be deleted.1

Footnote 1 m Alternatively, these states could be moved into an “archive” state of their own so they couldn’t
be assigned to new tickets but still would be visible on older tickets.

To track the states we’ll let users leave a comment. With a comment, users will
be able to leave a text message about the ticket and may also elect to change the
state of the ticket to something else by selecting it from a drop-down box. But not
all users will be able to leave a comment and change the state. We will protect both
creating a comment and changing the state.

By the time you’re done with all of this, the users of your application will have
the ability to add comments to your tickets. Some users, due to permission
restriction, will be able to change the state of a ticket through the comment

Tracking State

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

367

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

interface.
We’ll begin with creating that interface for a user to create a comment and then

build on top of that the ability for the user to change the state of a ticket while
adding a comment. Let’s get into it.

Let’s get started by adding the ability to leave a comment. When you’re done you
will have a simple form that looks like Figure 10.1

Figure 10.1 The comment form

To get started with this you’ll write a Capybara feature that goes through the
process of creating a comment. When you’re done with this feature you will have a
comment form at the bottom of the action for the show TicketsController

which you’ll then use as a base for adding your state drop-down box to later on.
You’ll put this feature in a new file at spec/integration/creating_comments_spec.rb
and make it look like the following listing.

Listing 10.1 spec/integration/creating_comments_spec.rb

10.1 Leaving a comment

require 'spec_helper'

feature "Creating comments" do
 let!(:user) { Factory(:confirmed_user) }
 let!(:project) { Factory(:project) }
 let!(:ticket) { Factory(:ticket, :project => project, :user => user) }

 before do
 define_permission!(user, "view", project)

 sign_in_as!(user)
 visit '/'
 click_link project.name
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

368

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Here you navigate from the homepage to the ticket page by following the
respective links, fill in the box with the label “Text,” and create your comment.
You’ve put the link to the ticket inside the scenarios rather than the before

because you’ll use this feature for permission checking later on. Let’s try running
th is fea ture now by running bin/rspec

. You'll see thisspec/integration/creating_comments_spec.rb

output:

This failing step means that you’ve got work to do! The label it’s looking for is
going to belong to the comment box underneath your ticket’s information. Both the
label and the field aren't there, and that's what's the scenario requires, so now's a
great time to add them.

Let’s begin to build this comment form for the application, the same one you’ll
eventually add a state select box to to complete this feature. This comment form
will consist of a single text field with which the user can insert their comment.

Let’s add a single line to the bottom of app/views/tickets/show.html.erb to

 scenario "Creating a comment" do
 click_link ticket.title
 fill_in "Text", :with => "Added a comment!"
 click_button "Create Comment"
 page.should have_content("Comment has been created.")
 within("#comments") do
 page.should have_content("Added a comment!")
 end
 end

 scenario "Creating an invalid comment" do
 click_link ticket.title
 click_button "Create Comment"
 page.should have_content("Comment has not been created.")
 page.should have_content("Text can't be blank")
 end
end

Failure/Error: fill_in "Text", :with => "Added a comment!"
Capybara::ElementNotFound:
 cannot fill in, no text field, text area or password field
 with id, name, or label 'Text' found

10.2 The comment form

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

369

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

render a comment form partial:

This line renders the partial from app/views/comments/_form.html.erb which
you’ll now create and fill with the content from the following listing.

Listing 10.2 app/views/comments/_form.html.erb

Pretty much the standard here, except you use the form_for Array

-argument syntax again, which will generate a nested route. You need to do four
things before this form will work.

Firstly, you must define the variable that references a new @comment

 instance in the action inside so this Comment show TicketsController

 has something to work with.form_for

Secondly, has hinted before, you’ll need to create the model andComment

associate this with your model so you can create new records from theTicket

data in the form and associate it with the right ticket.
Thirdly, you need to define the nested resource so that the knowsform_for

to POST to the correct URL, one similar to /tickets/1/comments. Without this we
will run into an undefined method of when the ticket_comments_path

 tries to generate the URL by combining the classes of the objects inform_for

the array for its .action

Finally, you’ll need to generate the and the CommentsController create

action along with it so that your form has somewhere to go when a user submits it.
Now set up your to use the model forTicketsController Comment

<%= render "comments/form" %>

New comment
<%= form_for [@ticket, @comment] do |f| %>
 <%= f.error_messages %>
 <p>
 <%= f.label :text %>

 <%= f.text_area :text %>
 </p>
 <%= f.submit %>
<% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

370

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

creating new comments, which you’ll create shortly afterwards. To do this, you
need to first build a new object using the association onComment comments

your object.@ticket

The first step to getting this feature to pass is to set up the action in your show

 to define a variable for the comment form.TicketsController @comment

To do this, you’ll change the action, as shown in the following listing.show

Listing 10.3 app/controllers/tickets_controller.rb

This will use the method on the association for your build comments

 object (which is set up by the) to@ticket find_ticket before_filter

create a new object for the view’s .Comment form_for

Next, you’ll generate the model so that you can define the Comment

 association on your model. This model’s going to need tocomments Ticket

have an attribute called “text” for the text from the form, a foreign key to link it to
a ticket, and another foreign key to link to a user record. Let’s generate this model
using this command:

Then you’ll run the migration for this model on both your development and test
databases by running these familiar commands:

With these done, your next stop is to add the associations to the and Ticket

10.3 The comment model

def show
 @comment = @ticket.comments.build
end

rails g model comment text:text ticket_id:integer user_id:integer

rake db:migrate
rake db:test:prepare

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

371

Licensed to <alex@vinova.sg>

mailto:@ticket.comments.build
http://www.manning-sandbox.com/forum.jspa?forumID=818

 models. For this, you add this line to app/models/ticket.rb directly underComment

the line:accepts_nested_attributes_for :assets

Add a validation to your model to validate the presence of text forComment

the records by adding this line to app/models/comment.rb:

This will help your second scenario pass, because it requires that an error
message is displayed when you don’t enter any text. You’ll also add a

 association definition to this model too, given that you’ve a belongs_to

 column in your table:user_id comments

While you're in this model, change the line from this:attr_accessible

Into this:

The and attributes should not be mass-assignable byuser_id ticket_id

users of this application, just the attribute should be, since that's the onlytext

field available in the form.
When you run your feature with bin/rspec

has_many :comments

validates :text, :presence => true

belongs_to :user

attr_accessible :text, :user_id, :ticket_id

attr_accessible :text

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

372

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

 at this mid-pointspec/integration/creating_comments_spec.rb

you’ll be told that it can’t find the routing helper that is trying to use:form_for

This is because you don’t have a nested route for comments inside your tickets
resource yet. To define one, you’ll need to add it to config/routes.rb.

Currently in your config/routes.rb you’ve got the tickets resource nested inside
the projects resource with these lines:

This generates helpers such as . But for your formproject_tickets_path

it’s not important what comment the project is being created for, so you use
 instead. This means you’ll need to define a separateticket_comments_path

nonnested resource for your tickets and then a nested resource under that for your
comments, as shown in the following listing.

Listing 10.4 config/routes.rb

The last three lines in Listing 10.4 are the lines we need in order for
 to be defined which will make your form work.ticket_comments_path

With a route now defined you'll need to define the related controler for that route.

Failure/Error: click_link ticket.title
ActionView::Template::Error:
 undefined method `ticket_comments_path' for

resources :projects do
 resources :tickets
end

resources :projects do
 resources :tickets
end

resources :tickets do
 resources :comments
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

373

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Now finally we need to generate the so that our formCommentsController

has somewhere to post to. We can do this by running the following command:

A action in this controller will provide the receiving end for thecreate

comment form so we should add this now. We’ll need to define two
s in this controller. The first is to to ensure the user is signed inbefore_filter

because we don’t want anonymous users creating comments and another is to find
the object. This entire controller is shown in the following listing.Ticket

Listing 10.5 app/controllers/comments_controller.rb

In this action you use the option of when your template render

 returns to render a template of another controller.@comment.save false

Previously you’ve used the option to render templates that are for theaction

10.4 The comments controller

rails g controller comments

class CommentsController < ApplicationController
 before_filter :authenticate_user!
 before_filter :find_ticket

 def create
 @comment = @ticket.comments.build(params[:comment])
 @comment.user = current_user
 if @comment.save
 flash[:notice] = "Comment has been created."
 redirect_to [@ticket.project, @ticket] <co id="ch10_v2_5_1"/>
 else
 flash[:alert] = "Comment has not been created."
 render :template => "tickets/show" <co id="ch10_v2_5_2"/>
 end
 end

 private

 def find_ticket
 @ticket = Ticket.find(params[:ticket_id])
 end
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

374

Licensed to <alex@vinova.sg>

mailto:@ticket.comments.build
mailto:@comment.user
mailto:@comment.save
mailto:redirect_to[@ticket.project
mailto:@comment.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

current controller. By doing this, the and objects will be@ticket @comment

available when the app/views/tickets/show.html.erb template is rendered.
If the object saves successfully you redirect back to the ticket’s page by passing

an argument to , which compiles the path from theArray redirect_to

arguments passed in, like does to a nested route similar to form_for

./projects/1/tickets/2

But if the object doesn’t save successfully you want it to render the template
that ’s action renders. You can do this by using the TicketsController show

 method and passing it “tickets/show” . Keep in mind that the render render

method doesn’t call the action, and so any code within the method of show

 wouldn’t be run. This is fine, though, as you’re settingTicketsController

up the variable the template renders by using the @ticket find_ticket

before filter in your controller.
By creating the controller you’ve now got all the important parts needed to

create comments. Let’s run this feature again by running bin/rspec

 to see how you’respec/integration/creating_comments_spec.rb

progressing. You’ll see that it’s able to create the comment but it’s unable to find
the text within the element on the page.#comments

This step is failing because you haven’t added the element with the attributeid

of “comments” to the template yet. This element will contain all theshow

comments for a ticket. Let’s add it by adding the code from Listing 10.6 above the
spot where you render the comment form partial.

Listing 10.6 app/views/tickets/show.html.erb

Failure/Error: within("#comments") do
 Capybara::ElementNotFound:
 Unable to find css "#comments"

<h3>Comments</h3>
<div id='comments'>
 <% if @ticket.comments.exists? %> <co id="ch10_190_1"/>
 <%= render @ticket.comments.select(&:persisted?) %>
 <% else %>
 There are no comments for this ticket.
 <% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

375

Licensed to <alex@vinova.sg>

mailto:@ticket.comments.exists?
mailto:@ticket.comments.select(&:persisted?
http://www.manning-sandbox.com/forum.jspa?forumID=818

Here you create the element the scenario requires: one with an attribute of id

. In this we check if there are no comments by using the comments exists?

method from Active Record. This will do a light query similar to this to check if
there are any comments:

It only selects the “id” column from the comments table and limits the result set
to 1, which results in a super-fast query to check if there’s any comments at all. We
used back in chapter 8 when we checked if a ticket had any assets. Youexists?

could use here instead, but that would load the association inempty? comments

its entirety and then check to see if the array is empty. If there were a lot of
comments, then this would be slow. By using , you stop this potentialexists?

performance issue from cropping up.
Inside this , if there are comments, you call and pass it thediv render

argument of . On the end of that call on it.@ticket.comments select

You use here because you don’t want to render the comment objectselect

you’re building for the form at the bottom of the page. If you left off the , select

 would include this new object and render a blank@ticket.comments

comment box. When you call on an array, you can pass it a block whichselect

it will evaluate on all objects inside that array and return any element which makes
the block evaluate to anything that’s not or .nil false

The argument you pass to is called a and is a shorterselect Symbol-to-Proc

way of writing this:

This is a new syntax versions of Ruby >= 1.8.7 and used to be in Active
Support in Rails 2. It’s a handy way of writing a shorter block syntax if we’re only

</div>
<%= render "comments/form" %>

SELECT "comments"."id" FROM "comments"
WHERE ("comments".ticket_id = 1) LIMIT 1

{ |x| x.persisted? }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

376

Licensed to <alex@vinova.sg>

mailto:@ticket.comments
mailto:@ticket.comments
http://www.manning-sandbox.com/forum.jspa?forumID=818

looking to call a single method on an object.
The method checks if an object is persisted in the database bypersisted?

checking if it has its attribute set and will return if that’s the case and id true

 if not.false

By using in this form, Rails will render a partial for every singlerender

element in this collection and will try to locate the partial using the first object’s
class name. Objects in this particular collection are of the class, so theComment

partial Rails will try to find will be at app/views/comments/_comment.html.erb,
but you don’t have this file right now. Let’s create it and fill it with the content
from the following listing.

Listing 10.7 app/views/comments/_comment.html.erb

Here you’ve used a new method, . This method generates a tagdiv_for div

around the content in the block and also sets a and attribute based onclass id

the object passed in. In this instance, the tag would be the following:div

The method from this tag is used to style your comments so that theyclass

will look like Figure 10.2 when the styles from the stylesheet are applied.

Figure 10.2 A comment

With the code in place not only to create comments but also display them, your
feature should pass when you run it with bin/rspec

<%= div_for(comment) do %>
 <h4><%= comment.user %></h4>
 <%= simple_format(comment.text) %>
<% end %>

<div id="comment_1" class="comment">

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

377

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

:spec/integration/creating_comments_spec.rb

Good to see. You’re now giving users the ability to leave comments on a ticket.
Before proceeding further, you should make sure that everything is working as it
should by running , and you should also commit your changes. Whenrake spec

you run the tests we'll see this output:

The two pending tests in this output are from
spec/helpers/comments_helper_spec.rb and spec/models/comment_spec.rb. You
can go ahead and delete these two files now, as they don't contain any useful tests.
If you re-run you'll see this:rake spec

Good stuff! Let’s only commit and push this:

With this form added to the ticket’s page, users are now able to leave comments
on tickets. This feature of your application is useful because it provides a way for
users of a project to have a discussion about a ticket and keep track of it. Next up,
we’ll look at adding another way to provide additional context to this ticket by
adding states.

2 examples, 0 failures

68 examples, 0 failures, 2 pending

66 examples, 0 failures

git add .
git commit -m "Users can now leave comments on tickets"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

378

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

States provide a helpful way of standardizing the way that a ticket’s progress is
tracked. By glancing at the state of a ticket, a user will be able to determine if that
ticket needs more work or if it’s complete, as shown in Figure 10.3

Figure
10.3 A
ticket's
state

To change a ticket’s state, you’ll add a drop-down box on the comment form
where a user can select a state from a list of states. These states will be stored in
another table called and they’ll be accessed through the model.states State

Eventually, you’ll let some users of the application have the ability to add states
for the select box and make one of them the default. For now you’ll focus on
creating the drop-down box so that states can be selected.

As usual, you’ll cover creating a comment that changes a ticket’s state by
writing another scenario. The scenario you’ll now write will go at the bottom of
spec/integration/creating_comments_spec.rb and it’s shown in the following
listing.

Listing 10.8 spec/integration/creating_comments_spec.rb

In this scenario you go through the process of creating a comment, much like in
the first “Creating comments” scenario, only this time you select a state. This is

10.5 Changing a ticket’s state

scenario "Changing a ticket's state" do
 fill_in "Text", :with => "This is a real issue"
 select "Open", :from => "State"
 click_button "Create Comment" <co id="ch10_234_1"/>
 page.should have_content("Comment has been created.")
 within("#ticket .state") do
 page.should have_content("Open")
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

379

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

the first part of the scenario that you can expect to fail because you don’t have a
state select box yet. After the comment is created, you should see the state appear
in the “#ticket .state” area. This is the second part of the scenario that will fail.

When you run this scenario by running bin/rspec

 it will fail like this:spec/integration/creating_comments_spec.rb

As you can see from this output, the “I select” step will attempt to select an
option from a select box. In this case, it can’t find the select box because you
haven’t added it yet! With this select box, users of your application should be able
to change the ticket’s state by selecting a value from it, entering some comment
text, and pressing the “Create comment” button.

Before you do all that, however, you need to create the model and itsState

related table, which is used to store the states.

Right now you need to add a select box. When you’re done, you should have one
that looks like Figure 10.4.

Failure/Error: select "Open", :from => "State"
 Capybara::ElementNotFound:
 cannot select option, no select box with id, name,
 or label 'State' found

10.5.1 Creating the state model

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

380

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 10.4 State select box

Before adding this select box, let’s set the ’s TicketsController show

action up to return a collection of states that you can populate the drop select box
with. You’ll change the action inside to be likeshow TicketsController

this now:

Here you call on the class, which doesn’t exist yet. You’ll beall State

storing the states in a table because we’d like the users to eventually be able to
create their own states. For now, you’ll define this model to have a State name

field as well as two other fields: and which will define thecolor background

colors of the label for this state. Later on, you’ll add a field whichposition

def show
 @comment = @ticket.comments.build
 @states = State.all
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

381

Licensed to <alex@vinova.sg>

mailto:@ticket.comments.build
http://www.manning-sandbox.com/forum.jspa?forumID=818

you’ll use to determine the sort order of the states in the select box on the comment
form. Let’s create this model and the associated migration by running thisState

command:

Before running this migration, you’ll need to define a way that states link to
comments and to tickets, but there’s a couple of things worth mentioning
beforehand. For comments, you want to track the previous state so you can display
that a comment has changed the ticket’s state. For tickets, you want to track the
current state of the ticket which you’ll use a foreign key for.

With all of this in mind, let’s add these fields to the migration now. You’ll also
remove the call from within as it’s not importanttimestamps create_table

when states were created or updated. When you’re done the whole migration
should look like the following listing.

Listing 10.9 db/migrate/[date]_create_states.rb

In this migration you use the method to add a database index onadd_index

the table’s field. By adding an index on this field, you cantickets state_id

speed up queries made that search for tickets that have a particular value in this
field. The side-effect of indexing is that it will result in slower writes and more

disk-space. It’s always important to have indexes on nonprimary-key fields2

rails g model state name:string color:string background:string

class CreateStates < ActiveRecord::Migration
 def change
 create_table :states do |t|
 t.string :name
 t.string :color
 t.string :background
 end

 add_column :tickets, :state_id, :integer
 add_index :tickets, :state_id

 add_column :comments, :state_id, :integer
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

382

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

because of this great read speed increase, as applications generally read from the
database more often than write to it.

Footnote 2 m Primary key in this case is the id field which is automatically created for each model by
. Primary key fields are, by default, indexed.create_table

Let’s run this migration now by running these two commands:

There you have it! The model is up and running. Let’s now associateState

this class with the class by adding this line to the top of the Comment Comment

model’s definition:

The method provided by this will be used shortly tostate belongs_to

display the state on the ticket page, like Figure 10.5

Figure
10.5 A
ticket's
state

Before doing that, however, you’ll need to add the select box for the state to the
comment form.

In our comment form partial you’ll add this select box underneath the text box, as
shown in the following listing.

Listing 10.10 app/views/comments/_form.html.erb

rake db:migrate
rake db:test:prepare

belongs_to :state

10.5.2 Selecting states

<p>
 <%= f.label :state_id %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

383

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Here you use a new method, , which takes its first argument as theselect

foreign-key of your object, not the association. You also useattribute Comment

the value for the argument passed to the , but Rails is smart:state_id label

enough to know the text for this should be “State”. ’s second argument isselect

a two-dimensional which you create by using on the objects3Array map State

returned from the controller in the variable. The first element of each@states

array is the value you want shown as an option in the select box to the user,
whereas the second element is the value that’s passed back to the controller.

Footnote 3mA 2-dimensional array is an array that contains arrays as elements.

Use the option in the call to select the current state of:selected select

the ticket from the list. This value must match the value argument for one of the
options in the select box, otherwise it will default to the first option.

Let’s assume for a moment that you’ve got three states: “New,” “Open,” and
“Closed.” For a ticket that has its state set to “New,” the select box generated by

 would look like this:f.select

The first tag in the tag has an additional attribute: option select

. When this attribute is set, the will be the one selected as theselected option

default option for the . This is achieved by using the optionselect :selected

for . The value for this option is the corresponding attribute forf.select value

the tag. In this case it’s the of the object.option state_id @ticket

With the select box in place you’re almost at a point where this scenario will be
passing. Let’s see how far you’ve gotten by running bin/rspec

. It won’t be able tospec/integration/creating_comments_spec.rb

 <%= f.select :state_id , @states.map { |s| [s.name, s.id] } ,
 <co id="ch10_286_1"/>
 :selected => @ticket.state_id %> <co id="ch10_286_2"/>
</p>

<select id="comment_state_id" name="comment[state_id]">
 <option value="1" selected="selected">New</option>
 <option value="2">Open</option>
 <option value="3">Closed</option>
</select>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

384

Licensed to <alex@vinova.sg>

mailto:@states.map
mailto:@ticket.state_id
http://www.manning-sandbox.com/forum.jspa?forumID=818

find the “Open” option in your select box.

This is because you need to add a state to your database! Let’s add this line
underneath the call to in the block ofdefine_permission! before

spec/integration/creating_comments_spec.rb to do this:

For this to work, you will need to define a state factory. Go ahead and do that in
a new file called spec/support/factories/state_factory.rb using the content from the
following listing:

Listing 10.11 spec/support/factories/state_factory.rb

Now with the state factory defined, when you re-run bin/rspec

, the final scenariospec/integration/creating_comments_spec.rb

will fail with this error:

This error is happening because the field is not mass-assignable forstate_id

Failure/Error: select "Open", :from => "State"
 Capybara::ElementNotFound:
 cannot select option, no option with text
 'Open' in select box 'State'

Factory(:state, :name => "Open")

FactoryGirl.define do
 factory :state do
 name "A state"
 end
end

Failure/Error: click_button "Create Comment"
ActiveModel::MassAssignmentSecurity::Error:
 Can't mass-assign protected attributes: state_id

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

385

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

comment instances, but it should be. To make this happen, go into the Comment

model and add this attribute to the list:attr_accessible

The and attributes have been removed here becauseuser_id ticket_id

they should not be mass-assignable by the form. This will fix the error that was
causing the scenario to fail, so re-run it again with bin/rspec

 to find out what tospec/integration/creating_comments_spec.rb

do next:

This output means it’s looking for any element with the attribute of id

 that contains any type of element with the of , but it can’tticket class state

find it.
Rather than putting the state inside the ’s TicketsController show

template, put it in a partial. This is due to the fact that you’ll be reusing this to
display a state wherever we need it in the future. Additionally, we’ll apply a
dynamic class around the state so we can style it later on. Let’s create a new partial
at app/views/states/_state.html.erb and fill it with this content:

To style the element you need a valid CSS class name. You can get one by
using the method. If, for example, you had a state called “Dropparameterize

bears strike without warning!,” and used on it, all the spaces andparameterize

non-url-valid characters would be stripped, leaving you with
“drop-bears-strike-without-warning,” which is a perfectly valid CSS class name.

attr_accessible :text, :state_id

Failure/Error: within("#ticket .state") do
Capybara::ElementNotFound:
 Unable to find css "#ticket .state"

<div class='state state_<%= state.name.parameterize %>'>
 <%= state %>
</div>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

386

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You’ll use this later on to style the state using the and color background

attributes.
You’re now going to render this partial underneath the “Created by” line on

app/views/tickets/show.html.erb using the following line:

You’re using the short form of rendering a partial here once again, and you
conditionally render it if the ticket has a state. If you don’t have the at the endif

and the state is , this will raise an exception because it will try to determine thenil

model name of .nil

To get this method for your , you should add the associationstate Ticket

method to the model. This method should go directly above the belongs_to

 line in app/models/ticket.rb::user

If you run the feature again with bin/rspec

 it will fail becausespec/integration/creating_comments_spec.rb

there’s nothing shown in the element:#ticket .state

This is because you’re updating the state on the object you’reComment

creating, not the associated object! You’re trying to get the new state toTicket

display on the ticket object so that the users of the application can change the state
of a ticket when they add a comment to it. For this to work, you’ll need to define a

 in your model.callback Comment

<%= render @ticket.state if @ticket.state %>

belongs_to :state

And I should see "Open" within "#ticket .state"
<false> is not true. (Test::Unit::AssertionFailedError)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

387

Licensed to <alex@vinova.sg>

mailto:@ticket.state
mailto:@ticket.state
http://www.manning-sandbox.com/forum.jspa?forumID=818

When a user selects a state from the drop-down box attached to the comment form
on a ticket’s page, you want that ticket’s state to be updated with what that user
picked.

To do this you can use a callback to set the ticket’s status when you change it
through the comment form. A callback is a method that’s called either before or
after a certain event. For models, there are before-and-after callbacks for the
following events (where * can be substituted for either or):before after

Validation ()*_validation

Creating ()*_create

Updating ()*_update

Saving ()*_save

Destruction ()*_destroy

We’re able to trigger a specific piece of code or method to run before or after
any of these events. The “Saving” item in the above list refers to when a record is
saved to the database, which occurs when a record is created or updated. For your

 model you’ll want to define a callback that occurs after a record hasComment

been created and for this you’ll use the method at the top of yourafter_create

 model, as well as a association, transforming this model intoComment ticket

the code shown in the following listing.

Listing 10.12 app/models/comment.rb

While you’re here, you can also set it up so that you can access the project

association that the association has in this model by using the ticket

 method:delegates

10.5.3 Callbacks

class Comment < ActiveRecord::Base
 after_create :set_ticket_state

 belongs_to :ticket
 belongs_to :user
 belongs_to :state
 validates :text, :presence => true
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

388

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

If you were to call the method on a object, this methodproject Comment

will “delegate” the project method to the object, making a call exactlyticket

like . This makes your code shorter and will come in handyticket.project

later on.
The symbol passed to the method here is the name of theafter_create

method to call for this callback. You can define this method at the bottom of your
 model using the code from the following listing.Comment

Listing 10.13 app/models/comment.rb

With this callback and associated method now in place, the associated ticket’s
state will be set to the comment’s state after the comment is created. When you run
your feature again by running bin/rspec

, it still fails:spec/integration/creating_comments_spec.rb

Even though you’re correctly assigning the state to the ticket, it still doesn’t
display as the state in the view. But why is this? You can attempt to duplicate this
issue by running the server using the . By visitingrails server

http://localhost:3000 we can follow the steps inside the scenario to attempt to
duplicate the behavior you’ve seen in your feature.

delegate :project, :to => :ticket

class Comment < ActiveRecord::Base
 ...
 private

 def set_ticket_state
 self.ticket.state = self.state
 self.ticket.save!
 end
end

And I should see "Open" within "#ticket .state"
 Failed assertion, no message given. (MiniTest::Assertion)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

389

Licensed to <alex@vinova.sg>

http://localhost:3000
http://www.manning-sandbox.com/forum.jspa?forumID=818

Because you have no states in the development database, you won’t be able to
reproduce this problem right away. Yur feature uses the “Given there is a state
called...” steps to define states, but you can’t use these in your development
environment. It would be better if you added seed data to your database because
then you’ll have a repeatable way of setting up the states in your application’s
database.

If you add some states to the db/seeds.rb file, users will be able to select them from
the “State” drop-down box on the tickets page rather than leaving it blank and
useless, much like it is now. With these states in the db/seeds.rb file, as mentioned
before, you will have a repeatable way of creating this data if you ever needed to
run your application on another server, such as would be the case when you put the
application on another computer.

You’re adding these files to the db/seeds.rb so you have some to “play around”
with in the development environment of your application. You’re attempting to
figure out why, when a user picks “Open” from the state select box and presses
“Create Comment,” the state doesn’t display on the ticket that should be updated.

When you go to the “Ticketee Beta” project to create a ticket and then attempt
to create a comment on that ticket with the state of “Open,” you’ll see that there are
no states (as shown in Figure 10.6).

Figure 10.6 Oops!
No states!

You should add a couple of states to your seeds file now; they’ll be “New,”
“Open,” and “Closed.” Ideally, “New” will be the default state of tickets and you’ll
set this up a little later on. Before adding these states, let’s add a couple of steps to
your features/seed.feature to always ensure that your states are defined.

You’ll extend this feature to go inside the “Ticketee Beta” project, create a
ticket, and then begin to create a comment on that ticket. When it’s on the
comment creation screen, you’ll check to see that all your states are in the state
box. To do this, you’ll modify the block in this file to what’s shown inscenario

the following listing.

10.5.4 Seeding states

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

390

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 10.14 spec/integration/seeds_spec.rb

The element referenced here is the state select box for#comment_state_id

your comments. It has this id because it's inside the form for a comment, and the
field is called . Uou’re confirming that this state select box has got thestate_id

three states you’re going to be seeding your database with. When you run this
feature by running itbin/rspec spec/integration/seeds_spec.rb

will fail because you don’t have your states yet:

Let’s add these states to your db/seeds.rb file by using the lines shown in the
following listing.

Listing 10.15 db/seeds.rb

scenario "The basics" do
 load Rails.root + "db/seeds.rb"
 user = User.find_by_email!("admin@ticketee.com")
 sign_in_as!(user)
 click_link "Ticketee Beta"
 click_link "New Ticket"
 fill_in "Title", :with => "Comments with state"
 fill_in "Description", :with => "Comments always have a state."
 click_button "Create Ticket"
 within("#comment_state_id") do
 page.should have_content("New")
 page.should have_content("Open")
 page.should have_content("Closed")
 end
end

Then I should see "New" within "#comment_state_id"
 <false> is not true. (Test::Unit::AssertionFailedError)

State.create(:name => "New",
 :background => "#85FF00",
 :color => "white")

State.create(:name => "Open",
 :background => "#00CFFD",
 :color => "white")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

391

Licensed to <alex@vinova.sg>

mailto:admin@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

If you try to run now, you’ll see that this task was aborted:rake db:seed

When a rake task aborts it means an exception has been raised. As the output
above suggests, you can see the backtrace by running the same command with
--trace: . You’ll now be given the complete backtracerake db:seed --trace

of your rake task and can determine what broke. The first line of application
related backtrace in the output provides you with a useful clue.

It’s the first line of db/seeds.rb that’s causing the problem! This is the line that
creates your admin user and it’s rightly failing because you already have a user
with the email address . Let’s comment out these firstadmin@ticketee.com

couple of lines as well as the line that creates the “Ticketee Beta” project, because
you don’t want two “Ticketee Beta” projects. The only line left uncommented in
your seeds file should be the line you’ve just added. When you run rake

 again, it will run successfully. Let’s uncomment these lines that you’vedb:seed

just commented out.
With these states now defined inside db/seeds.rb your feature at

spec/integration/seeds_spec.rb will pass when you run it using bin/rspec

.spec/intgration/seeds_spec.rb

State.create(:name => "Closed",
 :background => "black",
 :color => "white")

rake aborted!
Validation failed: Email has already been taken

(See full trace by running task with --trace)

/home/you/ticketee/db/seeds.rb:1:in `<top (required)>'

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

392

Licensed to <alex@vinova.sg>

mailto:admin@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Also, because you’ve now got your states seeding, you can go back to your
server at http://localhost:3000 and create a comment on your ticket with any status
because you’re trying to figure out why the “Creating comments” feature is failing.
After creating your comment you should see that the ticket’s state doesn’t display
as simple text like “New,” “Open,” or “Closed,” but rather as a standard inspect

output, as shown in Figure 10.7

Figure 10.7 Ugly state output

Well, isn’t that ugly and not user-friendly? It flows off the end of the ticket
box! Thankfully, you can fix this by defining the method in your to_s State

model to call the name method:

By default, objects in Ruby have a method which will output the uglyto_s

version, the inspected version of this object, you saw earlier. By overriding this in
the model to call the method you’ll get it to display the state’s name rathername

than it’s object output.
When you refresh the page in your browser you should see the correct state, as

shown in Figure 10.8.

Figure
10.8
The
correct
state

Great! This should mean that the last scenario in your “Creating comments”
feature will pass. Let’s run it with bin/rspec

def to_s
 name
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

393

Licensed to <alex@vinova.sg>

http://localhost:3000
http://www.manning-sandbox.com/forum.jspa?forumID=818

 and find out.spec/integration/creating_comments_spec.rb:34

Indeed it’s passing! This is a good stage to ensure that everything is working by
running . Blast, one of the features is failing!rake spec

A broken feature often means a broken part of your code, so you should
investigate this before continuing. If there are thoughts of “it’s only one failing
feature,” think again. At what point do you draw the line? One? Two? Three
failing scenarios? Let’s have a zero-tolerance policy on these and fix them when
they break, before any problem could potentially appear to users.

The entire reason why we write features before we write code is so that we can
catch scenarios like this where something unexpectedly breaks. If we didn’t have
these scenarios in place, then we wouldn’t be made aware of these scenarios until a
user of our site stumbled across it. This isn’t what we want. We want our users to
assume that we’re perfect.

You should look into why this feature is failing and fix it right away. This
particular scenario is failing with this backtrace:

Here it claims you’re calling on a object, and that it’s on line 11 ofmap nil

app/views/comments/_form.html.erb. The line it’s referencing is the following:

1 example, 0 failures

Failed examples:

rspec ./spec/integration/creating_comments_spec.rb:28

10.5.5 Fixing creating comments

Failure/Error: click_button "Create Comment"
 ActionView::Template::Error:
 undefined method `map' for nil:NilClass
 # ./app/views/comments/_form.html.erb:11

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

394

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Alright, the only place where is being called is on the variable,map @states

so it’s pretty straightforward that is the object. But how did it come@states nil

to be? Let’s review this scenario, as shown in the following listing.

Listing 10.16 spec/integration/creating_comments_spec.rb:28

This scenario tests that you’re shown the “Text can’t be blank” error when you
don’t enter any text for your comment. In this scenario, you press the “Create
Comment” button, which submits your form, which goes to the action in create

. This action looks like the following listing.CommentsController

Listing 10.17 app/controllers/comments_controller.rb

As you can see from this action, when the comment fails validation (when
 returns), then it rerenders the@comment.save false

app/views/tickets/show.html.erb template. The problem with this is that, by
rerendering this template, it calls the following line in the template:

<%= f.select :state_id, @states.map { |s| [s.name, s.id] } %>

scenario "Creating an invalid comment" do
 click_button "Create Comment"
 page.should have_content("Comment has not been created.")
 page.should have_content("Text can't be blank")
end

def create
 @comment = @ticket.comments.build(params[:comment])
 @comment.user = current_user
 if @comment.save
 flash[:notice] = "Comment has been created."
 redirect_to [@ticket.project, @ticket]
 else
 flash[:alert] = "Comment has not been created."
 render :template => "tickets/show"
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

395

Licensed to <alex@vinova.sg>

mailto:@states.map
mailto:@ticket.comments.build
mailto:@comment.user
mailto:@comment.save
mailto:redirect_to[@ticket.project
mailto:@comment.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

Which inevitably leads you right back to app/views/comments/_form.html.erb,
the source of the problem. Therefore, you can determine that you need to set up the

 variable during the “failed save” part of your action and the best place@states

for this is right after the so that this part ends up looking like the followingelse

listing.

Listing 10.18 app/controllers/comments_controller.rb

Now that you’re correctly initializing your variable, this scenario@states

will pass. Let’s run the whole feature now using bin/rspec

. You'll see that thisspec/integration/creating_comments_spec.rb

is now passing:

Awesome! Now let’s try re-running . That should be the last thingrake spec

you need to fix in order to get everything back to all green. You should see the
following output:

The one pending spec that's cramping our style is located in
spec/models/state_spec.rb. You can delete this file, as it doesn't contain any useful
specs. When you re-run you'll see it's now lovely and green:rake spec

<%= render "comments/form" %>

else
 @states = State.all
 flash[:alert] = "Comment has not been created."
 render :template => "tickets/show"
end

3 examples, 0 failures

68 examples, 0 failures, 1 pending

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

396

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Excellent, everything’s fixed. Let’s commit these changes now:

It’s great and all that you’ve now got the ticket status updating along with the
comment status, but it would be handy to know what the timeline of a status
change looks like. You can display this on the comment by showing a little
indication of whether the state has changed during that comment. Let’s work on
adding this little tidbit of information to the comments right now.

When a person posts a comment that changes the state of a ticket, you’d like this
information displayed on the page next to the comment, as shown in Figure 10.9

Figure 10.9 State
transitions

By visually tracking this state change, along with the text of the comment, you
can provide context as to why the state was changed. At the moment, you only
track the state of the comment and then don’t even display it alongside the
comment’s text; you only use it to update the ticket’s status.

What you’ll need now is some way of making sure that, when changing a ticket’s
state by way of a comment, the “State: Open” text appears in the comments area. A
scenario would fit this bill and lucky for us you wrote one that fits almost perfectly.
This scenario would be the final scenario (“Changing a ticket’s state”) in
spec/integration/creating_comments_spec.rb.

To check for the state change text in your “Changing a ticket’s state” scenario

67 examples, 0 failures

git add .
git commit -m "When updating a comment's status,
 also update the ticket's status"
git push

10.6 Tracking changes

10.6.1 Ch-ch-changes

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

397

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

you’ll add these lines to the bottom of it:

If the ticket was assigned the “New” state, this text would say “State: New '
Open,” but because your tickets don’t have default states assigned to them the
previous state for the first comment will be . When we run this scenario bynil

u s i n g b i n / r s p e c

 it will fail.spec/integration/creating_comments_spec.rb

Good, now you’ve got a way to test this state message that should be appearing
when a comment changes the state of the ticket. Now, you’d like to track the state
the ticket was at the comment as well as the state of the comment itself. Tobefore
track this extra attribute, you’ll create another field on your tablecomments

called . Before you save a comment, you’ll update thisprevious_state_id

field to be the current state of the ticket. Let’s now create a new migration to add
the field to your table by running theprevious_state_id comments

following command:

Again, Rails is pretty smart here and will use the name of the migration to infer
that you want to add a column called to a table called previous_state_id

. You only have to tell it what the type of this field is by passing comments

 to the migration.previous_state_id:integer

If you open up this migration now you’ll see that it defines a methodchange

which calls the method inside it. You can see the entire migrationadd_column

within("#comments") do
 page.should have_content("State: Open")
end

Failure/Error: page.should have_content("State: Open")
 expected there to be content "State: Open" in ...

 rails g migration add_previous_state_id_to_comments \
 previous_state_id:integer

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

398

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

shown in the following listing.

Listing 10.19 Add previous_state_id to comments migration

It’s done this way because Rails knows how to rollback this migration easily.
It’s a simple call to passing in the first two arguments in thisremove_column

method.
You don’t need to do anything else to this migration other than run it. Do this

now by running and . Thisrake db:migrate rake db:test:prepare

field will be used for storing the previous state’s id so that you can then use it to
show a state transition on a comment, as pictured in Figure 10.10

Figure 10.10 A
state transition

With this little bit of information, users can see what comments changed the
ticket’s state, which is helpful for determining what steps the ticket has gone
through to wind up at this point.

To use the field properly, you’re going to need to addprevious_state_id

another callback to save it.

To set this field before a comment is created you’ll use a before_create

callback on the model. A callback is triggered—asComment before_create

the name suggests—before a record is created, but the validations have beenafter
run. This means that this callback will only be triggered for valid objects that are
about to be saved to the database for the first time.

Put this new callback on a line directly above the inside the after_create

 model because it makes sense to have all your callbacks groupedComment

together and in the order that they’re called in.

class AddPreviousStateIdToComments < ActiveRecord::Migration
 def change
 add_column :comments, :previous_state_id, :integer
 end
end

10.6.2 Another C-c-callback

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

399

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Call the method for this callback, which you’llset_previous_state

define at the bottom of our model just before the Comment

 method, like this:set_ticket_state

The method you call here isn’t yet defined. You canprevious_state=

define this method by declaring that your objects a Comment belongs_to

, which is a object. Let’s put this line with the previous_state State

 in your model:belongs_to Comment

Here you use a new option for : . The field inbelongs_to class_name

your table is called and so you call yourcomments previous_state_id

association . To tell Rails what class this associated record is,previous_state

you must use the option, otherwise Rails will go looking for the class_name

 class.PreviousState

With this defined, you get the method forbelongs_to previous_state=

free and so your callback should work alright. There’s one way to make sure of
this, and that’s to attempt to display these transitions between the states in your
view so that your feature will potentially pass. You’ll now work on displaying
these transitions.

When you display a comment that changes a ticket’s state you want to display this
state transition along with the comment.

To get this text to show up, add the following lines to

before_create :set_previous_state

def set_previous_state
 self.previous_state = ticket.state
end

belongs_to :previous_state, :class_name => "State"

10.6.3 Displaying changes

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

400

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

app/views/comments/_comment.html.erb underneath the tag.h4

This is almost correct, but there’s a slight problem. Your callback will set the
 regardless of what the current state is and in this case you canprevious_state

end up with something like Figure 10.11.

Figure 10.11 State
transition from
itself to itself

To stop this from happening, you can wrap this code in an statement, likeif

this:

Now this text will only show up when the previous state isn’t the same as the
current state.

You can go one step further and move this code into a helper. Views are more
for displaying information than for deciding how it should be output, which should
be left to the helpers and controllers. Move this code into the
app/helpers/tickets_helper.rb because this partial is displayed from the

’s template. The entire shouldTicketsController show TicketsHelper

now look like the following listing.

Listing 10.20 app/helpers/tickets_helper.rb

<%= render comment.previous_state %> →
 <%= render comment.state %>

<% if comment.previous_state != comment.state %>
 <%= comment.previous_state %> → <%= comment.state %>
<% end %>

module TicketsHelper
 def state_for(comment)
 content_tag(:div, :class => "states") do

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

401

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In this example, you’ll check to see if the comment has an assigned state and
then if it has a previous state. If it has a previous state that isn’t the assigned state
then you show the state transition, otherwise you render the assigned state.

You can now replace the whole statement inif

app/views/comments/_comment.html.erb with this single line:

Now you’ll check to see if this is working by running your scenario using
. Itbin/rspec spec/integration/creating_comments_spec.rb

will now pass:

Excellent! You’ve now got your application showing the users what state a
comment has switched the ticket to. Now’s a good time to check that you haven’t
broken anything. When you run you should see that everything israke spec

A-OK.

Now we have state transition showing in your application neatly, which is great
to see. Let’s commit and push this to GitHub.

 if comment.state
 previous_state = comment.previous_state
 if previous_state && comment.state != previous_state
 "#{render previous_state} → #{render comment.state}"
 else
 render(comment.state)
 end
 end
 end
 end
end

State: <%= state_for(comment) %>

3 examples, 0 failures

67 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

402

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Currently, your styles aren’t distinguishable. Look at Figure 10.12 and gaze
upon their ugliness.

Figure 10.12 Ugly, ugly
states

You could distinguish them by using the colors you’ve specified in the
attributes. Earlier, you wrapped the state name in a special which will allowdiv

you to style these elements, based on the class. For the “New” state, the HTML for
the looks like this:div

The part of this you can use to apply the colors from the record tostate_new

this element. To do this, you’ll put a tag at the top of your application’sstyle

layout and dynamically define some CSS that will apply the colors.

The states in your system can change at any point in time in the future and so you
can’t have set styles in public/stylesheets/application.css for them. To get around
this little problem, put a tag in your app/views/layouts/application.html.erbstyle

file, which will contain some ERB code to output the styles for the states. Directly
underneath the line, put this code:stylesheet_link_tag

git add .
git commit -m "Display a comment's state transition"
git push

<div class="state state_new">
 New
</div>

10.6.4 Styling states

<style>
 <% for state in @states %>
 .state_<%= state.name.parameterize %> {
 background: <%= state.background %>;

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

403

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You’re going to need to define the variable in a place that will be@states

accessible in all views of your application. This means you can’t define it inside
any controller other than . Lucky for you, this isApplicationController

like a normal controller and you can use a to load the states.before_filter

Underneath the class definition for you can addApplicationController

this :before_filter

Now you will define the method under the definition:authorize_admin!

With these few lines of code, your states should now be styled. If you visit a
ticket page that has comments which have changed the state, you should see a state
styled, as shown in Figure 10.13

Figure 10.13
States, now
with 100%
more style

While you’re in the business of prettying things up, you can also add the state
of your ticket to the listing on app/views/projects/show.html.erb so that users can
easily glance at the list of tickets and see a state next to each of them. Let’s add this

 color: <%= state.color %>;
 }
 <% end %>
</style>

before_filter :find_states

def find_states
 @states = State.all
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

404

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

to the left of the ticket name so that the element becomes:li

Now that’s looking a lot better! You’ve completed all that you need to do to let
users change the state of a ticket. They’ll be able to select one from the “State”
select box on the comment form and when they create a comment, that ticket will
be updated to the new state. Right next to the comment’s text on the ticket page
there’s a state transition shown and (ideally) the comment’s text will provide
context for that change.

Why did you add states in the first place? Because they provide a great way of
standardizing the lifecycle of a ticket. When a ticket is assigned a “New” state it
means that the ticket is up-for-grabs. The next “phase” of a ticket’s life is the
“Open” state, which means that this ticket is being looked into/cared for by
somebody. When the ticket is fixed, then it should be marked as “Closed,” perhaps
with some information in its related comment relating where the fix is located.

If you want to add more states than these three default states, you can’t at the
moment. Tickets can have two different types of “Closed”: one could be “Yes, this
is now fixed” and another could be “No, I don’t believe this is a problem.” A third
type could be “I couldn’t reproduce.” It would be great if you could add more
states to the application without having to add them to the state list in db/seeds.rb,
wouldn’t it? Well, that’s easy enough. You can create an interface for the admin
users of your application to allow them to add additional states.

Currently your application has only three states: “New,” “Open,” and “Closed.” If
you want to add more, you’d have to go into the console and add them there.
Admins of this application should be able to add more states through the
application itself, not the console. They should also be able to rename them and
delete them, but only if they don’t have any tickets assigned to them. Finally, the
admins should also be able to set a default state for the application, because no
ticket should be without a state.

You’ll start out by writing a feature to create new states which will involve

 <%= render ticket.state if ticket.state %>
 #<%= ticket.id %> - <%= link_to ticket.title, [@project, ticket] %>

10.7 Managing states

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

405

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

creating a new controller called . This controllerAdmin::StatesController

will provide the admins of your application with the basic CRUD functionality for
states, as well as the ability to mark a state as the default, which all tickets will then
be associated with.

You’re not going to look at adding an , or action toedit update destroy

this controller because it’s been covered previously and it should be left as an
exercise to the reader.

You’ve three default states from our db/seeds.rb file currently: “New,” “Open,”
and “Closed.” If the admin users of your application wish to add more, they can’t.
Not until you’ve created the and the and Admin::StatesController new

 actions inside it. This will allow those users to create additional statescreate

which then can be assigned to a ticket.
You’ve this lovely model, but no way for admins of the application toState

add any new records to it. What if they want to add more states? You’ll create a
new controller called and put a and Admin::StatesController new

 action in it so that admins can create more states.create

But before you write any real code, you’ll write a feature that describes the
process of creating a state. You’ll put it in a new file called
spec/integration/creating_states_spec.rb which is shown in the following listing.

Listing 10.21 spec/integration/creating_states_spec.rb

10.7.1 Adding additional states

require 'spec_helper'

feature 'Creating states' do
 before do
 sign_in_as!(Factory(:admin_user))
 end

 scenario "Creating a state" do
 click_link "Admin"
 click_link "States"
 click_link "New State"
 fill_in "Name", :with => "Duplicate"
 click_button "Create State"
 page.should have_content("State has been created.")
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

406

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Here you sign in as an admin user and go through the motions of creating a new
state. When you run this feature through using the command bin/rspec

, it will fail because itspec/integration/creating_states_spec.rb

can’t find the “States” link:

The “States” link should take you to the ’s Admin::StatesController

 action, but it doesn't. This is because this link is is missing from the adminindex

home page, located at app/views/admin/base/index.html.erb. You can add this link
now by adding the following line to this file:

The method won’t be defined yet and you can fix thisadmin_states_path

by adding another line inside the admin inresources namespace

config/routes.rb like this:

With this line inside the admin namespace, the admin_states_path

method (and its siblings) will be defined. Let’s run the feature again with
 now tobin/rspec spec/integration/creating_states_spec.rb

see what you have to do next.

Failure/Error: click_link "States"
Capybara::ElementNotFound:
 no link with title, id or text 'States' found

<%= link_to "States", admin_states_path %>

namespace :admin do
 ...
 resources :states
end

Failure/Error: click_link "States"
ActionController::RoutingError:
 uninitialized constant Admin::StatesController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

407

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Ah, that’s right! You need to generate your controller. You can do this by
running the controller generator:

When you run this feature again you’ll be told that you’re missing the index

action from this controller:

You’ll add this action to the app/controllers/admin/states_controller.rb file now,
as well as making this controller inherit from .Admin::BaseController

After you’re done, the whole controller class will appear as shown in the following
listing

Listing 10.22 app/controllers/admin/states_controller.rb

Next on the menu is defining the view for this action in a brand new file to be
located at app/views/admin/states/index.html.erb. This view must contain the
“New State” link our feature will go looking for, and it should also include a list of
states so that anyone looking at the page know which states already exist The code
to do all this is shown in the following listing.

Listing 10.23 app/views/admin/states/index.html.erb

rails g controller admin/states

And I follow "States"
 The action 'index' could not be found for Admin::StatesController

class Admin::StatesController < Admin::BaseController

 def index
 @states = State.all
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

408

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

With this view now written, your feature will now whinge about the actionnew

w h e n y o u r u n b i n / r s p e c

:spec/integration/creating_states_spec.rb

Alright then, you should add the action to new

 if you want to continue any further. It should beAdmin::StatesController

defined like the following inside that controller:

You’ll now need to create the view for this action at
app/views/admin/states/new.html.erb and fill it in with the following content:

You’re using a form partial here again because it’s best practice and also just in
case you ever wanted to use it for an action. In a new file for your partial atedit

app/views/admin/states/_form.html.erb you’ll put the form that will be used to
create new states. This form is pretty simple: it only needs a text field for the name
and a submit button to submit the form.

<%= link_to "New State", new_admin_state_path %>

<ul id='states'>
 <% for state in @states %>
 <%= state.name %>
 <% end %>

Failure/Error: click_link "New State"
AbstractController::ActionNotFound:
 The action 'new' could not be found for Admin::StatesController

def new
 @state = State.new
end

<h1>New State</h1>
<%= render "form" %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

409

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Because the variable coming from the is a new instance of the @state new

 model, the method will display a submit button with the textState submit

“Create State,” just like your feature needs. Speaking of which, with this form
partial done your feature should run a little further. You should check this now by
running bin/rspec spec/integration/creating_states_spec.rb

.

Right, so you’ll need to create the action too, whichyou’ll definecreate

inside as shown in the following listing.Admin::StatesController

Listing 10.24 app/controllers/admin/states_controller.rb

With the action defined in your create Admin::StatesController

y o u ’ l l n o w b e a b l e t o r u n bin/rspec

<%= form_for [:admin, @state] do |f| %>
 <p>
 <%= f.label :name %>
 <%= f.text_field :name %>
 </p>

 <%= f.submit %>
<% end %>

Failure/Error: click_button "Create State"
AbstractController::ActionNotFound:
 The action 'create' could not be found for Admin::StatesController

def create
 @state = State.new(params[:state])
 if @state.save
 flash[:notice] = "State has been created."
 redirect_to admin_states_path
 else
 flash[:alert] = "State has not been created."
 render :action => "new"
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

410

Licensed to <alex@vinova.sg>

mailto:@state.save
http://www.manning-sandbox.com/forum.jspa?forumID=818

 and have it pass.spec/integration/creating_states_spec.rb

Very good! By implementing a feature that lets the admin users of your site
create states, you’ve provided a base to build the other state features upon. You
shouldn’t have broken anything by these changes but it won’t hurt to run rake

 to make sure. You should see the following:spec

There's one pending spec inside spec/helpers/admin/states_helper_spec.rb. You
can delete this file now. When you re-run there should be this greatrake spec

green output:

Great! Let's commit this now:

With this base defined, you can move on to more exciting things than CRUD,
such as defining a default state for your tickets.

A default state for the tickets in your application will provide a sensible way of
grouping tickets that are new to the system, making it easier for them to be found.
The easiest way to track which state is the default state is to add a boolean column
called to your table, which is set to true if the state is thedefault states

default, false if not.

1 example, 0 failures

69 examples, 0 failures, 1 pending

 68 examples, 0 failures

git add .
git commit -m "Add Admin::StatesController for managing states"
git push

10.7.2 Defining a default state

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

411

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

To get started, you’ll write a feature that covers changing of the default status
first. At the end of this feature, you’ll end up with the field in the default

 table and then you can move onto making the tickets default to this state.states

Let’s create a new feature called spec/integration/managing_states_spec.rb and fill
it with the content from the following listing.

Listing 10.25 spec/integration/managing_states_spec.rb

In this scenario you’ve got one new line , which you’ll need to define for this
feature to run. This new method will need to return the CSSstate_line_for

selector for the table row that contains the "Make Default" link for the specified
state. This method is assisting the Capybara test in its job, and so should go into
spec/support/capybara_helpers.rb. Define it using the code from the following
listing, placing it inside the module:CapybaraHelpers

Listing 10.26 spec/support/capybara_helpers.rb

require 'spec_helper'

feature "Managing states" do
 before do
 load Rails.root + "db/seeds.rb"
 sign_in_as!(Factory(:admin_user))
 end

 scenario "Marking a state as default" do
 visit "/"
 click_link "Admin"
 click_link "States"
 within state_line_for("New") do <co id="ch10_740_1"/>
 click_link "Make Default"
 end

 page.should have_content("New is now the default state.")
 end
end

def state_line_for(state)
 state = State.find_by_name!(state)
 "#state_#{state.id}"
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

412

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This method simply takes the name of the state, finds the corresponding State

object for it, and then gets the of that attribute to put into a CSS selector, whichid

would then be passed to to perform the lookup.within

Now that this method is defined, let's see what the test says when its run using
.bin/rspec spec/integration/managing_states_spec.rb

The feature is failing because it cannot find the state element on the page. The
reason that it can't do this is because the state elements on the page haven't yet
been given an attribute! This needs to happen, and the way to make it happenid

would be to alter the code within app/views/admin/states/index.html.erb to include
this attribute. We should also add the "Make Default" link. With that in mind,id

replace the code in app/views/admin/states/index.html.erb with the code from the
following listing:

Listing 10.27 app/views/admin/states/index.html.erb

In this view now, what you have is the states being displayed along with either
a "(Default)" label next to them if they are indeed the state that is the default one. If
the state is not the default state, then there's the option there to make it the default
with the "Make Default" link instead.

When you run your feature again with bin/rspec

Failure/Error: within state_line_for("New") do
Capybara::ElementNotFound:
 Unable to find css "#state_1"

<%= link_to "New State", new_admin_state_path %>

<ul id='states'>
 <% for state in @states %>
 <li id='state_<%= state.id %>'>
 <%= state.name %>
 <%= link_to "Make Default",
 make_default_admin_state_path(state) %>

 <% end %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

413

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

 you’ll rightly be toldspec/integration/managing_states_spec.rb

that the method is undefined.make_default_admin_state_path

This method should take you to the action in the make_default

, much like takesAdmin::StatesController edit_admin_state_path

you to the action. You can define this method as a on youredit member route

states resource. A member route provides the routing helpers and more
importantly, the route itself, to a custom controller action for a single instance of a
resource. To define this, you’ll change the line inside theresources :states

admin namespace inside into the following:config/routes.rb

Inside the block here, you define that each resource has a newmember state

action called on them that can be accessed through a make_default GET

request. As stated previously, by defining the route in this fashion you also get the
 helper which you use inmake_default_admin_state_path

app/views/admin/states/index.html.erb. With this member route now defined, your
feature will now complain that it’s missing the action when youmake_default

r e - r u n i t w i t h b i n / r s p e c

:spec/integration/managing_states_spec.rb

Failure/Error: click_link "States"
ActionView::Template::Error:
 undefined method `make_default_admin_state_path' for ...

resources :states do
 member do
 get :make_default
 end
end

Failure/Error: click_link "Make Default"
AbstractController::ActionNotFound:
 The action 'make_default' could not be
 found for Admin::StatesController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

414

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The action will be responsible for making the state you’vemake_default

selected the new default state, as well as setting the old default state to not be the
default anymore. You can define this action inside
app/controllers/admin/states_controller.rb, as shown in the following listing.

Listing 10.28 app/controllers/admin/states_controller.rb

Rather than putting the logic to change the selected state to the new default
inside the controller, you’ll place it in the model. To trigger a state to become the
new default state, you’ll call the method on it. It’s best practice todefault!

put code that performs functionality like this inside the model, so that it can be in
any place that uses an instance of this model.

This method can be defined in the model, as shown in thedefault! State

following listing.

Listing 10.29 app/models/state.rb

The method here is a method fromfind_by_default dynamic finder

def make_default
 @state = State.find(params[:id])
 @state.default! <co id="ch10_802_1"/>

 flash[:notice] = "#{@state.name} is now the default state."
 redirect_to admin_states_path
end

def default!
 current_default_state = State.find_by_default(true)
 <co id="ch10_813_1"/>

 self.default = true
 self.save!

 if current_default_state <co id="ch10_813_2"/>
 current_default_state.default = false
 current_default_state.save!
 end

end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

415

Licensed to <alex@vinova.sg>

mailto:@state.default
http://www.manning-sandbox.com/forum.jspa?forumID=818

Active Record. The will either return the object forfind_by_default State

the default state, or . If it doesn’t return then you change its nil nil default

state to and save the record.false

When you run your feature again with bin/rspec

 you’ll see that the spec/integration/managing_states_spec.rb

 method isn’t defined.find_by_default

The method is a dynamic method, which would onlyfind_by_default

work if there happened to be a column in the table. There isn'tdefault states

one, and so the test is correctly claiming that this method is undefined. To make
this method available , you’ll need to generate a migration which will add the

 columnt to the table. You can do this by using the followingdefault states

command:

Don’t run this migration just yet. With the column being a booleandefault

field, it’s going to need to know what its default value should be; either or true

. To set a default for this column, open your newly created migration andfalse

change the line which adds the column to the following:

With this small change, every object that’s created will have the State

 attribute set to by default. You’ll now run your migration using default false

 and .rake db:migrate rake db:test:prepare

W h e n y o u r u n b i n / r s p e c

 now, it will passspec/integration/managing_states_spec.rb

Failure/Error: click_link "Make Default"
NoMethodError:
 undefined method `find_by_default' for ...

rails g migration add_default_to_states default:boolean

add_column :states, :default, :boolean, :default => false

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

416

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

because you’ve got this column allowing the whole process of making adefault

state the default to complete.

Great to see! When a ticket is created now, the state of that ticket will default to
the , which is set to default. You should make “New” the default state inState

your application now by adding a attribute from where you create itdefault

inside to the following:db/seeds.rb

When this seeds file is run later on, you’ll have a default state for your tickets
so that they display properly in your tickets listing.

You should now commit these changes but, before that, you should make sure
you haven’t caused anything to break. Let’s run to find out.rake spec

Oops, there's two broken tests. But fortunately, they're broken in the same way:

1 example, 0 failures

State.create(:name => "New",
 :background => "#85FF00",
 :color => "white",
 :default => true)

69 examples, 2 failures

1) Managing states Marking a state as default
 Failure/Error: load Rails.root + "db/seeds.rb"
 ActiveModel::MassAssignmentSecurity::Error:
 Can't mass-assign protected attributes: default
 # ./db/seeds.rb:8 ...
 # ./spec/integration/managing_states_spec.rb:5 ...

2) Seed Data The basics
 Failure/Error: load Rails.root + "db/seeds.rb"
 ActiveModel::MassAssignmentSecurity::Error:
 Can't mass-assign protected attributes: default
 # ./db/seeds.rb:8:in ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

417

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

These tests are failing because you're now attempting to assign a protected
attribute called on line 8 of db/seeds.rb. This line is the line where youdefault

have now set up the "New" state with a new attribute called , which isdefault

not declared to be mass-assignable in the model.State

To fix this problem, you add the attribute to the list ofcould default

assignable attributes in the model, but since it's only used in this one place,State

that's not a good idea. Instead, what would be better is to tell Rails that we don't
care about mass-assignment protection in this one case. To do this, we can use the

 option on the call. Replace the code inwithout_protection create

db/seeds.rb that creates the "New" state with these lines:

The option will tell the method to ignorewithout_protection create

any protection rules regarding the attributes and to just create the object as is. This
should be enough to fix your tests, so check the status of them by running rake

 now.spec

There’s nothing broken, so it’s time to commit:

You’re so close to being done with states. So far, you’ve added the
functionality for users to change the state through the comment form, to display the

 # ./spec/integration/seeds_spec.rb:5 ...

State.create({ :name => "New",
 :background => "#85FF00",
 :color => "white",
 :default => true}, :without_protection => true)

git add .
git commit -m "Admins can now set a default state for tickets"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

418

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

state transition on a comment, and (just recently) the ability for admins to be able
to create new states and toggle which state is the default.

At the moment, any user is able to change the state of a ticket, which isn’t a
good thing. You’d only like some users to still have the ability to leave a comment
but not to change the state and you’ll look at creating this feature right now. This is
the final feature you’ll be implementing for states.

This feature is going to take a little more than hiding the state select box from the
form; you’re also going to need to tell the application to ignore the state parameter
if the user doesn’t have permission to change the state. You’ll implement this one
piece at a time, beginning with ensuring the state select box is hidden from those
who should be unable to change the state.

In previous chapters you’ve seen how we can hide links from certain users by
using the CanCan-provided view helper. You can use this helper to also hidecan?

the state field in your comment form from the users without the permission to
change the state. Firstly, you’ll write a Cucumber scenario to ensure that the state
box is always hidden from these users.

You’ll add this particular scenario to the bottom of the
spec/integration/creating_comments_spec.rb because its operation is based around
creating a comment. The scenario to ensure that you don’t see this state field is a
short and simple one:

This scenario contains two simple steps: navigating to the ticket and then
attempting to locating the element with the attribute of .id comment_state_id

When the method cannot find an element, the find

 exception is raised. With the Capybara::ElementNotFound should

 assertion here, you ensure that when this exception occurrs, it israise_error

captured by the assertion and checked. If the exception is what you say it should

10.8 Locking down states

10.8.1 Hiding a select box

scenario "A user without permission cannot change the state" do
 click_link ticket.title
 find_element = lambda { find("#comment_state_id") }
 find_element.should raise_error(Capybara::ElementNotFound)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

419

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

be, then the test will pass. The call to the method is wrapped in a lambda sofind

that RSpec will rescue the exception rather than it bubbling up and making the test
incorrectly fail when it is raised. When you run this scenario by running

,bin/rspec spec/integration/creating_comments_spec.rb:50

you will see it fail like this:

This test is correctly failing because the element is actually found on the page
when it shouldn't be. If the element was found on the page, then the not

 exception would be thrown. The message forCapybara::ElementNotFound

the test is a little cryptic, so it should be fixed. To do this, change the test to this:

Inside the scenario on the second line, there's been a new variable added that is
the error message that should be shown when the assertion on the final line of the
scenario fails. On the final line, we use this variable by passing it as a second
argument to . This replaces the cryptic message with the custom message.should

W h e n y o u r e - r u n b i n / r s p e c

 you'll now seespec/integration/creating_comments_spec.rb:50

this error:

That's definitely a step in the right direction. Now it's time to actually make this
test pass. To do this, you’ll use the method to check that the userauthorized?

Failure/Error:
 find_element.should raise_error(Capybara::ElementNotFound)
 expected Capybara::ElementNotFound but nothing was raised

scenario "A user without permission cannot change the state" do
 click_link ticket.title
 find_element = lambda { find("#comment_state_id") }
 message = "Expected not to see #comment_state_id, but did."
 find_element.should(raise_error(Capybara::ElementNotFound), message)
 <co id="ch10_813_1"/>
end

 Expected not to see #comment_state_id, but did.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

420

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

has permission to change states for this project. If the user doesn’t have this
permission then you’ll hide the state field. With this change, our state select box
code in app/views/comments/_form.html.erb will now look like the following
listing.

Listing 10.30 app/views/comments/_form.html.erb

This little change will make your scenario pass because the user you’re signing
in as doesn’t have this particular permission setup. Let’s run for the third-and-final
time with tobin/rspec features/creating_comments_spec.rb:47

make sure:

Good to see, but this little view change has definitely broken the scenario in this
feature, which change the state. You can run this other scenario by running does

.bin/rspec spec/integration/creating_comments_spec.rb:34

When you do that, you’ll see that it’s indeed broken:

You’ve done something similar to this before in chapter 8. Back then, you set
up a step which set the current user up with a permission to perform a specific
protected action. This is no different. Let’s write a new setup permission step

<% authorized?(:"change states", @project) do %>
 <p>
 <%= f.label :state_id %>
 <%= f.select :state_id, @states.map { |s| [s.name, s.id] },
 :selected => @ticket.state_id %>
 </p>
<% end %>

1 example, 0 failures

cannot select option, no select box with id, name,
 or label 'State' found

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

421

Licensed to <alex@vinova.sg>

mailto:@states.map
mailto:@ticket.state_id
http://www.manning-sandbox.com/forum.jspa?forumID=818

underneath the title of the scenario on line 34 of
spec/integration/creating_comments_spec.rb, which should be the scenario title of
“Changing a ticket's state”:

With this new line inside the scenario, the user for this scenario should have
permission to change states and therefore should actually be able to change it. Find
out if that's the case by re-running this scenario using bin/rspec

:spec/integration/creating_comments_spec.rb:34

Good! All the scenarios in this feature should now be passing; you’ll check that
in a minute. Your next step was going to be to ensure that the state_id

parameter isn’t passed through if the user doesn’t have access to create a state, but
you’ve just added a new permission to the system. You should ensure that this
permission is assignable to users before continuing, which you can do by adding a
scenario to the “Assigning Permissions” feature.

The spec/integration/admin/assigning_permissions_spec.rb file contains the
“Assigning Permissions” feature which you’ve used to ensure that permissions are
assignable from the permissions page in the backend accessible by admins. Let’s
add another scenario now to test that you can assign this “change states”
permission, as shown in the following listing.

Listing 10.31 spec/integration/admin/assigning_permissions_spec.rb

define_permission!(user, "change states", project)

1 scenario (1 passed)
16 steps (16 passed)

10.8.2 Bestowing changing state permissions

scenario "Changing states for a ticket" do
 check_permission_box "view", project
 check_permission_box "change_states", project
 click_button "Update"
 click_link "Sign out"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

422

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

When you run this scenario with the command bin/rspec

spec/integration/admin/assigning_permissions_spec.rb:72

you’ll see that it can’t find the “Change States” select box for the project.

This is fine. You haven’t added it to the list of permissions inside of
app/helpers/admin/permissions_helper.rb yet. You can add this now by adding this
key-value pair to the object in the method’s hash:Hash permissions

With this now added to the permissions hash, your scenario will move a little
further toward success. When you rerun the scenario with bin/rspec

,spec/integration/admin/assigning_permissions_spec.rb:72

it will complain that it can’t find the “Open” state from your select box:

Ah, not a problem! This means that the “Open” state isn’t yet defined in your
test database. You need to create this state in the block for this feature.before

 sign_in_as!(user)
 click_link project.name
 click_link ticket.title
 fill_in "Text", :with => "Opening this ticket."
 select "Open", :from => "State"
 click_button "Create Comment"
 page.should have_content("Comment has been created.")
 within("#ticket .state") do
 page.should have_content("Open")
 end
end

cannot check field, no checkbox ... 'permissions_1_change_states'

"change states" => "Change States"

Failure/Error: select "Open", :from => "State"
 Capybara::ElementNotFound:
 cannot select option, no option with text 'Open' in select box 'State'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

423

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You can do this by adding the following line at the bottom of the block:before

When you rerun this scenario using bin/rspec

spec/integration/admin/assigning_permissions_spec.rb:734

it will now pass.

Footnote 4 If you get no scenario and no steps running for this feature, are you sure you’re running the right line?m
Check to make sure you’re running line 73, not 72, which is now a blank line.

That’s good! Now admins are able to assign the “Change states” permission
and users are able to see and touch the “State” select box on the comment form if
they have this permission.

This is a great halfway point before you go diving into the final stage of this
particular set of features to run your specs to ensure that nothing is broken. Let’s
run now and you should see that all your tests are passing:rake spec

Yay! Everything is in working order which means you can commit and push
these changes to GitHub:

The final piece of your states puzzle is to stop the state parameter from being
set in your if a user passes it through and doesn’t haveCommentsController

permission to set states. Firstly, you’ll investigate how a user can fake this

 State.create!(:name => "Open")

1 example, 0 failures

71 examples, 0 failures

git add .
git commit -m "Only users with the 'change states'
 permission can change states"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

424

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

response. Afterwards, you’ll write a controller spec which duplicates this and
ensures that the state isn’t set.

Even if your state field is hidden from view, users are still able to submit a form
containing this parameter and your application will accept it. Let’s now see this in
practice.

The first things you need to do are to create a user and give it read access to a
project, which you can do by starting (or) andrails console rails c

running these commands:

Let’s quit the console by typing and then start up the application with exit

. Now you can sign in with the “test@example.com” email andrails server

“password” password. Once you’re in, you should see the page shown in Figure
10.14.

Figure 10.14 What the user sees

Let’s go into this project and pick any ticket in the list or create your own. It
doesn’t matter, you just need a ticket. When you’re on the ticket page, save this

10.8.3 Hacking a form

user = User.create!(:email => "test@example.com",
 :password => "password")
user.confirm!
user.permissions.create({:thing => Project.first,
 :action => "view"},
 :without_protection => true)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

425

Licensed to <alex@vinova.sg>

mailto:test@example.com
mailto:test@example.com%E2%80%9D
http://www.manning-sandbox.com/forum.jspa?forumID=818

page by going to “File” and then “Save” or “Save Page As,” and save this file in a
memorable location. You’re going to be editing this saved file and adding in a state
select box of your own.

Open this saved file in a text editor and look for the following lines:

These lines display the “Text” label and the associated for a newtextarea

comment. You’re able to add the state field underneath the text field ourselves by

adding this code to the page:5

Footnote 5 Assuming you know -- or can at least guess -- the IDs of the states.m

When you save this page you’ll now be able to choose a state when you open it
in a browser. The of the tag on this page goes toaction form

http://localhost:3000/tickets/[id]/comments (where is the id of the ticket this[id]

form will create a comment for) and this route will take you to the actioncreate

inside .CommentsController

Let’s open this saved page in a browser now, fill in the text for the comment
with anything, and select a value for the state. When you submit this form, it will
create a comment and set the state. You should see your comment showing the
state transition, as shown in Figure 10.15.

<p>
 <label for="comment_text">Text</label>

 <textarea cols="40" id="comment_text"
 name="comment[text]" rows="20"></textarea>
</p>

<p>
 <label for="comment_state">State</label>

 <select id="comment_state_id" name="comment[state_id]">
 <option value="1" selected="selected">New</option>
 <option value="2">Open</option>
 <option value="3">Closed</option>
 </select>
</p>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

426

Licensed to <alex@vinova.sg>

http://localhost:3000/tickets/
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 10.15 Hacked
state transition

Obviously, hiding the state field isn’t a foolproof way to protect it. A better way
to protect this attribute would be to delete it from the parameters before it gets to
the method that creates a new comment.

If you remove the key from the parameters before they’restate_id comment

passed to the method in the action for build create CommentsController

then this problem would not happen. You should write a .regression test
Regression tests are tests that save you from causing regressions.

You’ll now open spec/controllers/comments_controller_spec.rb and set up a
project, ticket, state, and user for the spec you’re about to write by putting the code
from the following listing inside the describe CommentsController

block.

Listing 10.32 spec/controllers/comments_controller_spec.rb

The state you create will be the one you’ll attempt to transition to in your spec,
with the ticket’s default state being not set, and therefore . The you setnil user

up will be the user you use to sign in and change the state with. You need to set the

10.8.4 Ignoring a parameter

let(:user) { Factory(:confirmed_user) }
let(:project) { Project.create!(:name => "Ticketee") }

let(:ticket) do
 ticket = project.tickets.build(:title => "State transitions",
 :description => "Can't be hacked.")
 ticket.user = user
 ticket.save
 ticket
end

let(:state) { State.create!(:name => "New") }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

427

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

 attribute separate to the other ticket attributes because it is protected fromuser

being mass-assigned. This user has no permissions at the moment and so they
won’t be able to change the states.

Your spec needs to make sure that a change doesn’t take place when a user who
doesn’t have permission to change the status of a ticket for that ticket’s project
submits a parameter. You’ll put this code, shown in the next listing,state_id

directly underneath the setup you just wrote.

Listing 10.33 spec/controllers/comments_controller_spec.rb

This spec uses a to sign in as the user before the example runs. Insidebefore

the example you use the method to make a POST request to the post create

action inside passing in the specified parameters. It’sCommentsController

this parameter that should be ignored in the action.state_id

After the method you use a new method: . When you call post reload

 on an Active Record object it will fetch it again from the database andreload

update the attributes for it. You use this because the action acts on acreate

different object and doesn’t touch the one you’ve set up for your spec.Ticket

The final line here asserts that the should be . When youticket.state nil

r u n t h i s s p e c b y r u n n i n g bin/rspec

 this final linespec/controllers/comments_controller_spec.rb

will be the one to fail:

context "a user without permission to set state" do
 before do
 sign_in(:user, user)
 end

 it "cannot transition a state by passing through state_id" do
 post :create, { :comment => { :text => "Hacked!",
 :state_id => state.id },
 :ticket_id => ticket.id }
 ticket.reload <co id="ch10_1072_1"/>
 ticket.state.should eql(nil)
 end
end

Failure/Error: ticket.state.should eql(nil)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

428

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The is returning a state object because the user has been ableticket.state

to post it through in the parameter hash. With a failing spec now in place, you can
go about stopping this state parameter from going unchecked. To “ignore” this
parameter you can remove it from the hash if the user doesn’t haveparams

permission to change states. At the top of the action, inside of create

, put the following lines:CommentsController

This code will remove the key from the state_id params[:comment]

hash if the user doesn’t have permission to change the states on the ticket’s project,
thereby preventing them from being able to change the state. If you rerun your spec
u s i n g b i n / r s p e c

 you’ll see that itspec/controllers/comments_controller_spec.rb

passes:

Great! Now nobody without permission will be able to download the ticket
page, make modifications to it to add a state field, and then be able to change the
states.

You’re done with this feature now so it’s time to make sure you didn’t break
anything with your changes by running . You should see thatrake spec

everything is squeaky clean:

 expected: nil
 got: #<State id: 1, name: "New" ...>

if cannot?(:"change states", @ticket.project)
 params[:comment].delete(:state_id)
end

1 example, 0 failures

72 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

429

Licensed to <alex@vinova.sg>

mailto:@ticket.project
http://www.manning-sandbox.com/forum.jspa?forumID=818

Great! You’ll now commit and push this Github:

The will now reject the parameter if theCommentsController state_id

user doesn’t have permission to set it, thereby protecting the form from anybody
“hacking” it to add a field when they shouldn’t.state_id

The feature of protecting the field from changes was the final piecestate_id

of the state features puzzle. You’ve now learned how to stop a user from changing
not only a particular record when they don’t have permission to, but rather a
specific field on a record.

We began this chapter by writing the basis for the work later on in the chapter:
comments. By letting users posts comments on a ticket we can let them add further
information to it and tell a story with them.

With the comment base laid down we implemented the ability for users to be
able to change a ticket’s state when they post a comment. For this, we tracked the
state of the ticket before the comment was saved and the state assigned to the
comment so we could show transitions (as shown in Figure 10.16)

Figure 10.16
Replay: State
transitions

We finished up by limiting the ability to change states to only those who have
permission to do so, much like how we’ve previously limited the abilities of
reading projects and creating tickets in previous chapters. While doing this, we saw
how easy it was for somebody to download the source of our form and alter it to do
their bidding and then how to protect it from that.

In chapter 11, you will add to your tickets. Tags are words or short phrasestags
that provide categorization for tickets, making them easier for users to manage.

git add .
git commit -m "Protect state_id from users who do
 not have permission to change it"
git push

10.9 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

430

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

add_index
belongs_to, :class_name option
Callbacks, after_create
div_for
exists?
parameterize
persisted?
raise_error, RSpec matcher
redirect_to, Array form
reload, ActiveRecord::Base
render, :template option
Routing, get method
select, FormBuilder
Symbol-to-Proc

Additionally, you’ll implement a search interface that will allow users to find
tickets with a given tag or state.

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

431

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

11
In Chapter 10, you saw how to give your tickets states ("New," "Open," and
"Closed") so that their progress can be indicated.

In this chapter, you'll see how to give your tickets tags. Tags are useful for

grouping similar tickets together into things such as iterations or similar feature1

sets. If you didn't have tags, you could crudely group tickets together by setting a
ticket's title to something such as "Tag - [name]." This method, however, is messy
and difficult to sort through. Having a group of tickets with the same tag will make
them much, much easier to find.

Footnote 1 For example, by using a process such as Agile, feature sets, or any other method of grouping.m

To manage tags, you'll set up a model, which will have a Tag

 association to the model. You'll set uphas_and_belongs_to_many Ticket

a for this association, which is a table that contains foreign key fields forjoin table
each side of the association. A join table's sole purpose is to join together the two
tables whose keys it has. In this case, the two tables are the and tickets tags

tables. As you move forward in developing this association, note that, for all
intents and purposes, works like a two-way has_and_belongs_to_many

.has_many

You'll create two ways to add tags to a ticket. A text field for new tickets
beneath the form's description field will allow users to add multiple tags by using a
space to separate different tags, as shown in Figure 11.1.

Figure 11.1 The tag box

Tagging

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

432

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Additional tags may also be added on a comment, with a text field similar to the
one from the new ticket page providing the tagging mechanism. When a ticket is
created, you'll show these tags underneath the description, as shown in Figure 11.2

Figure 11.2 A tag for a ticket

When a user clicks on a tag, they'll be taken to a page where they can see all
tickets with that particular tag. Alternatively, if the user clicks the little "x" next to
the tag, that tag will be removed from the ticket. The actions of adding and
removing a tag are both actions you'll add to your permission checking.

Finally, you'll implement a way to search for tickets that match a state, a tag, or
both, by using a gem called searcher. The query will look like "tag:iteration_1
state:open"

That's all there is to this chapter! You'll be adding tags to Ticketee, which will
allow you to easily group and sort tickets. Let's dig into your first feature, adding
tags to a new ticket.

Tags in this application will be extremely useful for making similar tickets easy to
find and manage. In this section, you'll create the interface for adding tags to a new
ticket by adding a new field to the new ticket page and defining a

 association between the model and thehas_and_belongs_to_many Ticket

not-yet-existent model.Tag

You're going to add a text field beneath the description field on the new ticket page
for this feature, like you saw earlier in Figure 11.1.

Figure 11.3 The tag box

11.1 Creating tags

11.1.1 Creating tags feature

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

433

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The words you enter into this field will become the tags for this ticket, and you
should see them on the ticket page. At the bottom of
spec/integration/creating_tickets_spec.rb, you'll add a scenario that creates a new
ticket with tags, as shown in the following listing:

Listing 11.1 spec/integration/creating_tickets_spec.rb

When you run the "Creating a ticket with tags" scenario using bin/rspec

 it will fail,spec/integration/creating_tickets_spec.rb:58

declaring that it can't find the "Tags" field. Good! It's not there yet.

You're going to take the data from this field, process each word into a new Tag

object, and then link the tags to the ticket when the ticket is created. You'll use a
 tag to render the "tags" field this way, but unlike the text_field text_field

s that you've used previously, this one will not be tied to a database field.
To define this field, you'll put the following code underneath the tag for thep

description in app/views/tickets/_form.html.erb:

scenario "Creating a ticket with tags" do
 fill_in "Title", :with => "Non-standards compliance"
 fill_in "Description", :with => "My pages are ugly!"
 fill_in "Tags", :with => "browser visual"
 click_button "Create Ticket"
 page.should have_content("Ticket has been created.")
 within("#ticket #tags") do
 page.should have_content("browser")
 page.should have_content("visual")
 end
end

Failure/Error: fill_in "Tag names", :with => "browser visual"
 Capybara::ElementNotFound:
 cannot fill in, no text field, text area or
 password field with id, name, or label 'Tag names' found

<p>
 <%= f.label :tag_names %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

434

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

When you re-run this scenario again with bin/rspec

 it no longerspec/integration/creating_tickets_spec.rb:58

complains about the missing "Tag names" field, telling you instead that it can't find
the method on objects: ticket:tag_names Ticket

As said previously, the attribute isn't going to be tied to atag_names

database field, but instead will be a . A virtual attribute works justvirtual attribute
like a real attribute, except that it's not persisted to the database along with the
normal attributes. Instead, it's constructed from other data within the model. To
define this virtual attribute in your model, put this line underneath the Ticket

 call in app/models/ticket.rb:attr_accessible

You're grouping the and calls in theattr_accessor attr_accessible

model because they're both defining actions on attributes of this model, and it's a
good code organisation practice to group similar things together. The

 call defines virtual attributes in classes for Ruby, and so weattr_accessor

can use this feature also in our Rails applications. The method will define a setter
and a getter method for this attribute, performing the equivalent of this code:

 <%= f.text_field :tag_names %>
</p>

Failure/Error: click_link "New Ticket"
 ActionView::Template::Error:
 undefined method `tag_names' for #<Ticket:0x007ff1211eef28>

attr_accessor :tag_names

def tag_names
 @tag_names
end

def tag_names=(names)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

435

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The now will define the method that is soughtattr_accessor tag_names

after by the scenario. To make sure of this and to see what next to do, re-run the
s c e n a r i o w i t h b i n / r s p e c

:spec/integration/creating_tickets_spec.rb:58

Ah, of course! You'll need to add to the list of accessibletag_names

attributes inside the model also, because it's being passed in along withTicket

the and attributes as well. To do that, just turn this linetitle description

inside app/models/ticket.rb:

Into this:

That'll be enough to get the scenario happy regarding that little problem, so if
y o u r e - r u n b i n / r s p e c

, you'll be toldspec/integration/creating_tickets_spec.rb:58

what needs fixing again:

 @tag_names = names
end

Failure/Error: click_button "Create Ticket"
ActiveModel::MassAssignmentSecurity::Error:
 Can't mass-assign protected attributes: tag_names

attr_accessible :description, :title, :assets_attributes

attr_accessible :description, :title, :assets_attributes, :tag_names

Failure/Error: within("#ticket #tags") do
 Capybara::ElementNotFound:
 Unable to find css "#ticket #tags"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

436

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You'll now need to define this element inside the element on#tags #ticket

the ticket's page so that this part of the scenario will pass. This element will contain
the tags for your ticket, which your scenario will assert are actually visible.

You can add this new element, with its attribute set to , toid tags

app/views/tickets/show.html.erb by adding this simple line underneath where you
render the ticket's description:

This creates the element that your feature is looking for,#ticket #tags

and will render the soon-to-be-created app/views/tags/_tag.html.erb partial for
every element in the also-soon-to-be-created association on the tags @ticket

object. So which of these two steps do you take next? If you run your scenario
again, you'll see that it cannot find the method for a object:tags Ticket

This method is the method, which you'll be defining with a tags

 association between objects and has_and_belongs_to_many Ticket Tag

objects. This method will be responsible for returning a collection of all the tags
associated with the given ticket, much like a would. The difference ishas_many

that this method works in the opposite direction as well, allowing you to find out
what tickets have a specific tag.

You can define the association on the has_and_belongs_to_many Ticket

model by placing this line after the definitions inside your has_many Ticket

model:

11.1.2 Showing tags

<div id='tags'><%= render @ticket.tags %></div>

undefined method `tags' for #<Ticket:0x0..

11.1.3 Defining the tags association

has_and_belongs_to_many :tags

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

437

Licensed to <alex@vinova.sg>

mailto:@ticket.tags
http://www.manning-sandbox.com/forum.jspa?forumID=818

This association will rely on a join table that doesn't yet exist called
. The name is the combination, in alphabetical order, of the twotags_tickets

tables you want to join. This table contains only two fields--one called
 and one called --which are both foreign keys for tags andticket_id tag_id

tickets. The join table will easily facilitate the union of these two tables, as it will
have one record for each tag that links to a ticket, and vice versa.

When you re-run your scenario you're told that there's no constant called Tag

yet:

In other words, there is no model yet. You should define this now if youTag

want to go any further.

Your model will have a single field called , which should be unique. ToTag name

generate this model and its related migration, run the command like this:rails

The option passed here determines whether or not the model'stimestamps

migration is generated with timestamps. Because you've passed the value of
 to this option, there will be no timestamps added.false

Before you run this migration, however, you'll need to add the join table called
 to your database. The join table has two fields: one called tags_tickets

 and the other . The table name is the pluralized names of theticket_id tag_id

two models it is joining, sorted in alphabetical order. This table will have no
primary key, as you're never going to look for individual records from this table
and only need it to join the and tables.tags tickets

To define the table, put this code at the bottom of the tags_tickets

 method of your db/migrate/[timestamp]_create_tags.rb migration:change

uninitialized constant Ticket::Tag (ActionView::Template::Error)

11.1.4 The Tag model

rails g model tag name:string --timestamps false

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

438

Licensed to <alex@vinova.sg>

The option passed to here tells Active:id => false create_table

Record to create the table without the field, as the join table only cares aboutid

the link between tickets and tags, and therefore does not need a unique identifier.
Next, run the migration on your development database by running rake

, and on your test database by running db:migrate rake

. This will create the and tables.db:test:prepare tags tags_tickets

When you run this scenario again with bin/rspec

, it is nowspec/integration/creating_tickets_spec.rb:58

satisfied that the method is defined and has now moved on to complainingtags

that it can't find the "browser" tag within the element on the#ticket #tags

ticket's page:

This failure is because you're not doing anything to associate the text from the
"Tags" field to the ticket you've created. You need to parse the content from this
field into new objects and then associate them with the ticket you are creating,Tag

which you'll do right now.

You're now going to take the name for the tags that are passed in to the
 attribute for objects and turn them into objects of the tag_names Ticket Tag

class. You're going to be doing this with an Active Record callback, just like you
saw back in Chapter 10.

To make this happen, go into your model and put these lines insideTicket

the class definition, at the bottom:

create_table :tags_tickets, :id => false do |t|
 t.integer :tag_id, :ticket_id
end

And I should see "browser" within "#ticket #tags"
 Failed assertion, no message given. (MiniTest::Assertion)

11.1.5 Displaying a ticket's tags

before_create :associate_tags

private

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

439

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Before a new object is saved to the database, this new Ticket

 method will go through all the associated withassociate_tags tag_names

this object and associate new objects with the ticket. It does this by using theTag

dynamic finder . The whole thing is wrapped in anfind_or_create_by_name

, because if is , you don't want it to attempt to parse theif tag_names nil

non-existant tags.
The method you have just written will create the tags thatassociate_tags

you are displaying on the app/views/tickets/show.html.erb view by using the
 method:render

When you run this scenario again by running bin/rspec

, you'll see thisspec/integration/creating_tickets_spec.rb:58

render is now failing with an error:

This error is happening now because actually contains some@ticket.tags

tickets, and the call is attempting to render them. Just like back inrender

Chapter 10 when we used this line:

Rails will render a partial for the given objects based off the class name of the

def associate_tags
 if tag_names
 tag_names.split(" ") each do |name|
 self.tags << Tag.find_or_create_by_name(name)
 end
 end
end

<%= render @ticket.tags %>

Missing partial tags/tag ...

<%= render @ticket.state %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

440

Licensed to <alex@vinova.sg>

mailto:@ticket.tags
mailto:@ticket.tags
mailto:@ticket.state
http://www.manning-sandbox.com/forum.jspa?forumID=818

object. In the case of that class was , and therefore the@ticket.state State

app/views/states/_state partial was used. When you iterate over a collection of
objects, just as you're doing in the case of , Rails will pick the@ticket.tags

first object from that collection and then render a partial for each of the objects
based off the class of that first element. Therefore this partial is going to live in
app/views/tags/_tag.html.erb, because the class for the first object is .Tag

The next step is to write the tag partial that your feature has complained about.
Put the following code in a new file called app/views/tags/_tag.html.erb:

By wrapping the tag name in a span with the of tag, it will be styled asclass

defined in your stylesheet (app/assets/stylesheets/application.css.scss). With this
partial defined, this will stop the "Missing template" error from happening. When
you run your scenario again with bin/rspec

 it should nowspec/integration/creating_tickets_spec.rb:58

pass:

Great! This scenario is now complete. When a user creates a ticket, they are
now able to assign tags to that ticket and those tags will display along with the
ticket's information on the action for . The tagshow TicketsController

display was shown earlier in figure 11.2, and is shown here again.

Figure 11.4 Look ma, a tag!

<%= tag.name %>

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

441

Licensed to <alex@vinova.sg>

mailto:@ticket.state
mailto:@ticket.tags
http://www.manning-sandbox.com/forum.jspa?forumID=818

You'll now commit this change, but before you do you'll ensure that you haven't
broken anything by running .rake cucumber:ok spec

Good to see that nothing's blown up this time. There's one pending spec located
in spec/models/tag_spec.rb and since there's nothing else in that file, it's safe to
delete it. So go ahead and do that now. After you're done, a re-run of rake spec

will produce this lovely green output:

Let's commit this change.

Now that users can add a tag to a ticket when that ticket is being created, you
should also let them add tags to a ticket when they create a comment as well. When
a ticket is being discussed, new information may come about that would require
another tag be added to the ticket and group it into a different set. A perfect way to
let your users do this would be to let them add the tag when they comment.

The tags for a ticket can change throughout the ticket's life; new tags can be added
and old ones can be deleted. Let's look at how you can add more tags to a ticket
after it's been created through the comments form. Underneath the comment form
on a ticket's page, add the same tags field that you previously used to add tags to
your ticket on the new ticket page. One thing you have to keep in mind here is that
if someone enters a tag that's already been entered, you don't want it to show up.

You've got two scenarios to implement then: the first is a vanilla addition of
tags to a ticket through a comment, and the second is a scenario ensuring that

74 examples, 0 failures, 1 pending

73 examples, 0 failures

git add .
git commit -m "Users can tag tickets upon creation"
git push

11.2 Adding more tags

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

442

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

duplicate tags do not appear. Let's implement this function one scenario at a time.
When you're done, you'll end up with this pretty picture (Figure 11.5.

Figure 11.5 Comment form with tags

To test that users can add tags when they're creating a comment, you'll add a new
scenario to the features/creating_comments.feature feature that looks like the
following listing:

Listing 11.2 spec/integration/creating_comments_spec.rb

First, you ensure that you don't see this tag within , to ensure#ticket #tags

you don't have a false positive. Next, you fill in the text for the comment so it's
valid, add the word "tag" to the "Tags" field, and press the "Create Comment"

11.2.1 Adding tags through a comment

scenario "Adding a tag to a ticket" do
 click_link ticket.title
 within("#ticket #tags") do
 page.should_not have_content("bug")
 end

 fill_in "Text", :with => "Adding the bug tag"
 fill_in "Tags", :with => "bug"
 click_button "Create Comment"

 page.should have_content("Comment has been created.")
 within("#ticket #tags") do
 page.should have_content("bug")
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

443

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

button. Finally, you ensure that the comment has been created and that the "bug"
tag you entered into the comment form now appears in .#ticket #tags

When you run this scenario using bin/rspec

, it will failspec/integration/creating_comments_spec.rb:55

because there is no "Tags" field on the ticket's page yet:

You can fix this by taking these lines from app/views/tickets/_form.html.erb
and moving them into a new partial at app/views/tags/_form.html.erb:

Replace the code you removed from app/views/tickets/_form.html.erb with this
line:

This new line will render your new app/views/tags/_form.html.erb partial,
passing in the form building object, , so that it's also available in that partial. Inf

order to make the failing step in your scenario now pass, you'll re-use this same
line now inside the block insideauthorized?

app/views/comments/_form.html.erb underneath the code you use to render the
state select box.

Listing 11.3 Adding tags to app/views/comments/_form.html.erb

cannot fill in, no text field, text area or password
 field with id, name, or label 'Tags' found

 <%= f.label :tag_names, "Tags" %>
 <%= f.text_field :tag_names %>
</p>

<%= render "tags/form", :f => f %>

<% authorized?(:"change states", @project) do %>
 <p>
 <%= f.label :state_id %>
 <%= f.select :state_id, @states.map { |s| [s.name, s.id] },

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

444

Licensed to <alex@vinova.sg>

mailto:@states.map
http://www.manning-sandbox.com/forum.jspa?forumID=818

When rendering the partial here, you'll be passing in the formtags/form

builder object for a object, not a . Not that the partial willComment Ticket

mind; all it needs really is some kind of object that has a method ontag_names

it and it's quite content.
When you re-run the scenario with bin/rspec

, you'll see thisspec/integration/creating_comments_spec.rb:55

message:

When defining the tag fields inside the form for a you came acrossTicket

this same problem. The problem back then was because there was no attribute --
real or virtual -- defined for objects. The problem you're facing is almostTicket

exactly the same, but this time it's for the model. So open upComment

app/models/comment.rb and make a call to right underneathattr_accessor

the call in this model to define a virtual attribute for attr_accessible

. You'll also need to add to the tag_names tag_names attr_accessible

call in the model, so that you end up with these two lines:

This new call in your model will define the attr_accessor Comment

 method that the scenario is looking for and the addition to tag_names

 will make the To see what to do next, re-runattr_accessible tag_names

the scenario. You will see this:

 :selected => @ticket.state_id %>
 </p>
<% end %>

<%= render "tags/form", :f => f %>

Failure/Error: click_link ticket.title
ActionView::Template::Error:
 undefined method `tag_names' for #<Comment:0x007faf7dab8e78>

attr_accessible :text, :state_id, :tag_names
attr_accessor :tag_names

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

445

Licensed to <alex@vinova.sg>

mailto:@ticket.state_id
http://www.manning-sandbox.com/forum.jspa?forumID=818

This scenario is not seeing the word "bug" within the content for the ticket's
tags (which is empty), and so the scenario fails. This is because the code to
associate a tag with a ticket isn't in the model, as it is inside the Comment

 model. To associate the tags from a comment with the relevant ticketTicket

when the comment is saved, you will use an callback inside yourafter_create

 model:Comment

You want to use an here so that the tags aren't associatedafter_create

prematurely to a ticket, which they would be if you were using a
. For this callback to work, you will need to have the before_create

 method defined too. Define this methodassociate_tags_with_ticket

underneath the method inside the model,set_previous_state Comment

like this:

This method is slightly different to the one found within the model. InTicket

this method, rather than iterating over each of the tag names and then adding a tag
to the ticket for each tag name, you're using the method instead . What thismap

will do is iterate through each tag, find or create a object for it, and then whenTag

it's done will return an array of objects. This array is then added to the ticket'sTag

tags , and then the ticket is saved.

Failure/Error: page.should have_content("bug")
 expected there to be content "bug" in ""

after_create :associate_tags_with_ticket

def associate_tags_with_ticket
 if tag_names
 tags = tag_names.split(" ").map do |name| <co id="ch11_v2_21_1"/>
 Tag.find_or_create_by_name(name)
 end
 self.ticket.tags += tags <co id="ch11_v2_21_2"/>
 self.ticket.save
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

446

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This should mean that now a comment's tags are associated with the ticket. Find
o u t b y r u n n i n g b i n / r s p e c

.spec/integration/creating_comments_spec.rb:55

Boom, that's passing! Good stuff. Now for the cleanup. Make sure you haven't
broken anything else by running :rake spec

With all the specs passing, it's commit time! In this section, you've created a
way for your users to add more tags to a ticket when they add a comment, which
allows your users to easily organize tickets into relevant groups after the ticket's
creation. Let's commit this change now:

With the ability to add tags when creating a ticket or a comment now available ,
you need to restrict this power to users with permission to manage tags. You don't
want all users to create tags willy-nilly, as it's likely you would end up with an

overabundance of tags . Too many tags makes it hard to identify which tags are2

useful and which are not. People with permission to tag things will know that with
great power, comes great responsibility.

Footnote 2 Such as the tags on the Rails Lighthouse account, on the bottom right-hand side of this page:m
https://rails.lighthouseapp.com/projects/8994-ruby-on-rails/overview

Using the permissions system you built in chapter 8, you can easily add another
type of permission: one for tagging. If a user has this permission, they will be able
to add and (later on) remove tags.

1 example, 0 failures

74 examples, 0 failures

git add .
git commit -m "Users can add tags when adding a comment"
git push

11.3 Tag restriction

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

447

Licensed to <alex@vinova.sg>

https://rails.lighthouseapp.com/projects/8994-ruby-on-rails/overview
http://www.manning-sandbox.com/forum.jspa?forumID=818

When a user without permission attempts to submit a ticket or comment, the
application should not tag the ticket with the tags they have specified. Add this
restriction to the , but first you'll write a controller specCommentsController

to cover this behavior. Put the code from the following listing at the bottom of the
block for insidedescribe CommentsController

spec/controllers/comments_controller_spec.rb:

Listing 11.4 spec/controllers/comments_controller_spec.rb

In this test, you passing through the parameters to create a comment , and
then asserting that there are no tags created . You need to reload the ticket here
because the object that's been loaded for this spec by the setup won't be the same
object that's modified in the controller spec. If the test is working as it should, then
r u n n i n g b i n / r s p e c

 will produce thisspec/controllers/comments_controller_spec.rb

error:

Good! A failing test is a good start to a new feature. To make this test pass, you

11.3.1 Testing tag restriction

context "a user without permission to tag a ticket" do
 before do
 sign_in(:user, user)
 end

 it "cannot tag a ticket when creating a comment" do
 post :create, { :comment => { <co id="ch11_327_1"/>
 :text => "Tag!",
 :tag_names => "one two"
 },
 :ticket_id => ticket.id
 }
 ticket.reload <co id="ch11_327_2"/>
 ticket.tags.should be_empty
 end
end

Failure/Error: ticket.tags.should be_empty
 expected empty? to return true, got false

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

448

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

should use the method in to check the user'scan? CommentsController

permission. Tto remove the parameter from the comment'stag_names

parameters if the user is unable to tag, just like you did with the state parameter if
they weren't able to change the state, you'll put these lines at the top of the

 action, underneath the first statement in it:create if

The action now has a lot of logic at the top of the method that iscreate

sanitizing the parameters. It's getting quite crowded in there! To make it easier to
follow, move the two statements checking for permissions out into a newif

private method for this class, like this:

Then rather than having two statements at the top of the action,if create

you can now call the method, so that the sanitize_parameters! create

action is a little neater.

If you were going to add an action to this controller later on, thisupdate

action could also use the method.sanitize_parameters!

if cannot?(:tag, @ticket.project)
 params[:comment].delete(:tag_names)
end

def sanitize_parameters!
 if cannot?(:"change states", @ticket.project)
 params[:comment].delete(:state_id)
 end

 if cannot?(:tag, @ticket.project)
 params[:comment].delete(:tag_names)
 end
end

sanitize_parameters!
@comment = @ticket.comments.build(params[:comment])
@comment.user = current_user
...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

449

Licensed to <alex@vinova.sg>

mailto:@ticket.project
mailto:@ticket.project
mailto:@ticket.project
mailto:@ticket.comments.build
mailto:@comment.user
http://www.manning-sandbox.com/forum.jspa?forumID=818

When you re-run the spec with bin/rspec

, it will passspec/integration/comments_controller_spec.rb

because the user in the spec does not have permission to tag a project.

Good! You have something in place to block users from tagging tickets when
they create a comment. Now you're only missing the blocking code for tagging a
ticket when it is being created. You can create a spec test for this too, this time in
spec/controllers/tickets_controller_spec.rb. Underneath the "cannot delete a ticket
without permission" example, add this example:

You can run this spec by running bin/rspec

, and you'llspec/controllers/tickets_controller_spec.rb:62

see that it fails:

Because there is no restriction on tagging a ticket through the action,create

there are tags for the ticket that was just created, and so your example fails. For
your 's action, you can do exactly what you didTicketsController create

in the 's create action and sanitize the parameters beforeCommentsController

2 examples, 0 failures

it "can create tickets, but not tag them" do
 Permission.create(:user => user,
 :thing => project,
 :action => "create tickets")
 post :create, :ticket => { :title => "New ticket!",
 :description => "Brand spankin' new",
 :tag_names => "these are tags"
 },
 :project_id => project.id
 Ticket.last.tags.should be_empty
end

Failure/Error: Ticket.last.tags.should be_empty
 expected empty? to return true, got false

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

450

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

they're passed to where the object is created. To do this, make the beginning of the
 action inside look like this:create TicketsController

When you re-run your spec it will now pass:

Great, now you're protecting both the ways a ticket can be tagged. Because of
this new restriction, the two scenarios which you created earlier to test this
behavior will now be broken.

When you run you'll see them listed as the only two failures:rake spec

To fix these two failing scenarios, you'll use a new step, which you'll first put in
the "Creating comments" feature. Underneath this line in the for thisbefore

feature:

Put this line:

if cannot?(:tag, @project)
 params[:ticket].delete(:tag_names)
end

1 example, 0 failures

11.3.2 Tags are allowed, for some

Failing Scenarios:
rspec ./spec/integration/creating_comments_spec.rb:55
rspec ./spec/integration/creating_tickets_spec.rb:57

define_permission!(user, "view", project)

define_permission!(user, "tag", project)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

451

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

When you re-run this scenario using bin/rspec

 it will pass:spec/integration/creating_comments_spec.rb

One scenario down, one to go! The next one is the
spec/integration/creating_tickets_spec.rb scenario. At the top of the feature, you
can put the same line you used in the "Creating comments" feature, right under the
"view" permission.

This scenario too will now pass:

Great! Only certain users can now tag tickets. Let's make sure that everything is
still running at 100% by running again.rake spec

In this section, you have restricted the ability to add tags to a ticket—whether
through the new ticket or comment forms—to only users who have the permission
to "tag." You've done this to restrict the "flow" of tags. Generally speaking, the
people with the ability to tag should know only to create useful tags, so that the
usefulness of the tags is not diluted. In the next section, you'll use this same
permission to determine what users are able to remove a tag from a ticket.

5 examples, 0 failures

define_permission!(user, "tag", project)

1 scenario (1 passed)
16 steps (16 passed)

76 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

452

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Removing a tag from a ticket is a helpful feature, because a tag may become
irrelevant over time. Say that you've tagged a ticket as "v0.1" for your project, but
that milestone is complete and the feature isn't yet and therefore needs to be moved
to "v0.2." Without this feature, there will be no way to delete the old tag. Then
what? Was this ticket for "v0.1" or "v0.2"? Who knows? With the ability to delete
a tag, you have some assurance that people will clean up tags if they're able to.

To let users delete a tag, add a little "x" to the left of each of your tags, as
shown in Figure 11.6

Figure 11.6 X marks the spot

When this little "x" is clicked, the tag will disappear through the magic of
JavaScript. Rather than making a whole request out to the action for deleting a tag
and then redirecting back to the ticket page, the JavaScript will remove the tag's
element from the page and make an asynchronous behind-the-scenes request to the
delete tag action.

To click this link using Capybara, you'll give the link around the "x" an id so you
can easily locate it in your feature, which you'll now write. Let's create a new file
at spec/integration/deleting_tags_spec.rb and put the code from the following in
there.

Listing 11.5 spec/integration/deleting_tags_specs.rb

11.4 Deleting a tag

11.4.1 Testing tag deletion

require 'spec_helper'

feature "Deleting tags" do
 let!(:user) { Factory(:confirmed_user) }
 let!(:project) { Factory(:project) }
 let!(:ticket) do
 Factory(:ticket,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

453

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In this scenario, it's important to note that you're passing through the tags field
as a field in the "created a ticket" step, just like the other fields. The "tags" field
isn't in the tickets table. You'll get to that in a second.

In this feature, you create a new user and sign in as them. Then you create a
new project called "Ticketee" and give the user the ability to view and tag the
project. You create a ticket by the user and tag it with a tag called
"this_tag_must_die". Finally, you navigate to the page of the ticket you've created.

In the scenario, you follow the "delete-this-tag-must-die" link, which will be the
id on the link to delete this tag. When this link has been followed, you shouldn't
see "this_tag_must_die", meaning that the action to remove the tag from the ticket
has worked its magic.

When you run this feature using bin/rspec

 you'll get this error:spec/integration/deleting_tickets_spec.rb

Alright, time to implement this bad boy.

 :project => project,
 :tag_names => "this-tag-must-die",
 :user => user)
 end

 before do
 sign_in_as!(user)
 define_permission!(user, "view", project)
 define_permission!(user, "tag", project)
 visit '/'
 click_link project.name
 click_link ticket.title
 end

 scenario "Deleting a tag", :js => true do
 click_link "delete-this-tag-must-die"
 within("#ticket #tags") do
 page.should_not have_content("this-tag-must-die")
 end
 end
end

Failure/Error: click_link "delete-this-tag-must-die"
Capybara::ElementNotFound:
 no link with title, id or text 'delete-this-tag-must-die' found

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

454

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You need a link with the id of "delete-this-tag-must-die", which is the word
"delete", followed by a hyphen and then the 'd version of theparameterize

tag's name. You last used the method back in Chapter 10 toparameterize

provide a class name for states. This delete tag link needs to trigger an
asynchronous request to an action that would remove a tag from a ticket. The
perfect name for an action like this, if you were to put it in the

, would be "remove_tag". But because it's acting on a tag,TicketsController

a better place for this action would be inside a new controller called
.TagsController

Before you go and define this action, let's define the link that your scenario is
looking for first. This link goes into the tag partial at app/views/tags/_tag.html.erb
inside the tag:span

Here, you check that a user can "tag" in the ticket's project. If they can't tag,
then you won't show the "x" to remove the tag. This is to prevent everyone from
removing tags as they feel like it. Remember? With great power comes great
responsibility.

You use the option for the , to indicate to Rails that:remote link_to

you want this link to be an asynchronous request. This is similar to the "Add
another file" button you provided in chapter 9, except this time you don't need to
call out to any javascript to determine anything, you only need to make a request to
a specific URL.

For the option here, you pass through the object to :url @ticket

 so that your action knows what ticket to deleteremove_ticket_tag_path

the tag from. Remember: your primary concern right now is disassociating a tag
and a ticket, not completely deleting the tag.

11.4.2 Adding a link to delete the tag

<% if can?(:tag, @ticket.project) || current_user.admin? %>
 <%= link_to "x",
 remove_ticket_tag_path(@ticket, tag), <co id="ch11_409_1"/>
 :method => :delete,
 :remote => true <co id="ch11_409_2"/>
 :id => "delete-#{tag.name.parameterize}" %> <co id="ch11_409_3"/>
<% end %>
<%= tag.name %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

455

Licensed to <alex@vinova.sg>

mailto:@ticket.project
http://www.manning-sandbox.com/forum.jspa?forumID=818

Because this is a destructive action, you use the method. You've:delete

used this previously for calling actions, but the method is notdestroy :delete

exclusive to the action, and so you can use it here as well.destroy

The final option, , lets you define the for this link. You set that to be:id id

"delete", followed by a hyphen and then the name of your tag 'd.parameterize

For the tag in your scenario, this is the that you'll use to click this link.id

Capybara supports following links by their internal text, the attribute, or the name

 attribute.id

When you run your feature with bin/rspec

, you'll see that it reportsspec/integration/deleting_tags_spec.rb

the same error message at the bottom:

Ah! A quick eye would have spotted an error when the browser launched by
WebDriver tried going to this page; it looks like Figure 11.7

Figure 11.7 Internal Server Error

This error is coming up because you haven't defined the route to the remove

action yet. You can define this route in config/routes.rb inside the resources

 block, morphing it into this::tickets

When I follow "delete-this-tag-must-die"
 no link with title, id or text 'delete-this-tag-must-die'

resources :tickets do
 resources :comments
 resources :tags do
 member do
 delete :remove
 end
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

456

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

By nesting the tags resource inside the ticket's resource, you are given routing
helpers such as . With the block inside the ticket_tag_path member

, you can define further actions that this nested resourceresources :tags

responds to. You'll define that you should accept a request to a route to a DELETE

 action inside the , which you should now create.remove TagsController

Before you add this action to the , you must first generateTagsController

this controller by using:

Now that you have a controller to define your action in, open
app/controllers/tags_controller.rb and define the action in it like this:remove

In this action, you find the ticket based on the id passed through as
, and then you do something new. On the left side of params[:ticket] -=

you have . On the right, an array containing . This@ticket.tags @tag

combination will remove the tag from the ticket, but will not delete the tag from
the database.

On the second-to-last line of this action, you save the ticket minus one tag. On
the final line you tell it to return nothing, which will return a status to200 OK

your browser, signaling that everything went according to plan.
When you re-run your scenario with bin/rspec

 it will now successfullyspec/integration/deleting_tags_spec.rb

end

rails g controller tags

def remove
 @ticket = Ticket.find(params[:ticket_id])
 if can?(:tag, @ticket.project) || current_user.admin?
 @tag = Tag.find(params[:id])
 @ticket.tags -= [@tag] <co id="ch11_409_1"/>
 @ticket.save
 render :nothing => true
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

457

Licensed to <alex@vinova.sg>

mailto:@ticket.project
mailto:@ticket.tags
mailto:@ticket.save
mailto:@ticket.tags
http://www.manning-sandbox.com/forum.jspa?forumID=818

click the link, but the tag is still there:

Your tag is unassociated from the ticket but not removed from the page, and so
your feature is still failing. The request is made to delete the ticket, but there's no
code currently that removes the tag from the page. Let's add that code now.

You're removing a tag's association from a ticket, but you're not yet showing
people that it has happened on the page. If a request is made asynchronously, the
format for that request will be , rather than the standard . For views,js html

you've always used the extension, because HTML is all you've beenhtml.erb

serving. As of now, this changes. You're going to be rendering a js.erb

template, which will contain JavaScript code to remove your element. Let's create
the view for the action in a file called app/views/tags/remove.js.erb, andremove

fill it with this content:

This code will be run when the request to the action is complete. Itremove

uses the jQuery library's function to locate an element with the attribute of$ id

"delete-this-tag-must-die" and then calls the function to find theparent()3

element wrapping the delete link, and then the on it, which willremove()4

remove the tag from the page.

Footnote 3 http://api.jquery.com/parentm

Footnote 4 http://api.jquery.com/remove/m

Because you're now rendering a template for the action, you will needremove

to remove the line from the action that tells the action to render nothing:remove

Failure/Error: page.should_not have_content("this-tag-must-die")
 expected content "this-tag-must-die" not to return anything

11.4.3 Actually removing a tag

$('#delete-<%= @tag.name.parameterize %>').parent().remove();

render :nothing => true

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

458

Licensed to <alex@vinova.sg>

mailto:@tag.name.parameterize
http://www.manning-sandbox.com/forum.jspa?forumID=818

If you don't remove this line, then the action will not render the template and
then the tag will not be removed. Without the line, the template will be rendered
and the JavaScript inside it will be processed during the request.

When you run your feature using bin/rspec

, you'll see that it nowspec/integration/deleting_tags_spec.rb

passes:

Awesome! With this feature done, users with permission to tag on a project will
now be able to remove tags too. Before you commit this feature, let's run rake

 to make sure everything is ok.spec

That's awesome too! There's one pending spec inside
spec/models/tags_helper_spec.rb. You can delete this file now, and when
re-running you'll see this now:rake spec

That's awesome too! Commit and push this:

Now that you can add and remove tags, what is there left to do? Find them! By
implementing a way to find tickets with a given tag, you make it easier for users to
see only the tickets they want to see. As an added bonus, you'll also implement a

1 example, 0 failures

78 examples, 0 failures, 1 pending

77 examples, 0 failures

git add .
git commit -m "Add remove tag functionality"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

459

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

way for the users to find tickets for a given state, perhaps even at the same time as
finding a tag.

When you're done with this next feature, you'll add some more functionality
that will let users go to tickets for a tag by clicking on the tag name inside the
ticket show page.

At the beginning of this chapter, there was mention of searching for tickets using a
query such as "tag:iteration_1 state:open". This magical method would return all
the tickets in association with the "iteration_1" tag that had the state of "open".
This helps users scope down the list of tickets that appear on a project page to be
able to better focus on them.

There's a gem developed specifically for this purpose called Searcher which5

you can use. This provides you with a method on specific classes, whichsearch

accepts a query like the one above and returns the records that match it.

Footnote 5 This gem is good for a lo-fi solution, but shouldn't be used in a high search-volume environment. Form
that, look into full text search support for your favorite database system.

As usual, you should (and will) test that searching for tickets with a given tag
works, which you can do by writing a new feature called
spec/integration/searching_spec.rb and filling it with the content from Listing 11.6.

Listing 11.6 spec/integration/searching_spec.rb

11.5 Finding tags

11.5.1 Testing search

require 'spec_helper'

feature "Searching" do
 let!(:user) { Factory(:confirmed_user) }
 let!(:project) { Factory(:project) }
 let!(:ticket_1) do
 Factory(:ticket,
 :title => "Create projects",
 :project => project,
 :user => user,
 :tag_names => "iteration_1")
 end

 let!(:ticket_2) do
 Factory(:ticket,
 :title => "Create users",
 :project => project,
 :user => user,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

460

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In the for this feature, you create two tickets and give them twoBackground

separate tags: and . When you look for ticketsiteration_1 iteration_2

tagged with , you shouldn't see tickets that don't have this tag, suchiteration_1

as the one that is only tagged .iteration_2

R u n t h i s f e a t u r e u s i n g bin/rspec

 and it'll complain becausespec/integration/searching_spec.rb

there's no "Search" field on the page:

In your feature, the last thing you do before attempting to fill in this "Search"
field is go to the project page. This means that the "Search" field should be on that
page so that your feature, and more importantly your users, can fill it out. You'll
add the field above the element for the tickets list, insideul

app/views/projects/show.html.erb:

 :tag_names => "iteration_2")
 end

 before do
 define_permission!(user, "view", project)
 define_permission!(user, "tag", project)

 sign_in_as!(user)
 visit '/'
 click_link project.name
 end

 scenario "Finding by tag" do
 fill_in "Search", :with => "tag:iteration_1"
 click_button "Search"
 within("#tickets") do
 page.should have_content("Create projects")
 page.should_not have_content("Create users")
 end
 end
end

Failure/Error: fill_in "Search", :with => "tag:iteration_1"
Capybara::ElementNotFound:
 cannot fill in, no text field, text area or
 password field with id, name, or label 'Search' found

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

461

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You've only used once, back in Chapter 8. This method generates aform_tag

form that's not tied to any particular object, but still gives you the same style of
form wrapper that does. Inside the , you use the form_for form_tag

 and helpers to define a label and input field forlabel_tag text_field_tag

the search terms, and use for a submit button for this form.submit_tag

The method is undefined at thesearch_project_tickets_path

moment, which you'll see when you run bin/rspec

:spec/integration/searching_spec.rb

Notice the pluralized "tickets" in this method. To define non-standard RESTful
actions, you've previously used the method inside of config/routes.rb.member

This has worked fine because you've always acted on a single resource. This time,
however, you want to act on a collection of a resource. This means that you use the

 method in config/routes.rb instead. To define this method, changecollection

these lines in config/routes.rb:

Into these:

<%= form_tag search_project_tickets_path(@project),
 :method => :get do %>
 <%= label_tag "search" %>
 <%= text_field_tag "search", params[:search] %>
 <%= submit_tag "Search" %>
<% end %>

undefined local variable or method `search_project_tickets_path' ...

resources :projects do
 resources :tickets
end

resources :projects do
 resources :tickets do
 collection do
 get :search
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

462

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The block here defines that there's a action that maycollection search

act on a collection of tickets. This action will receive the parameterssearch

passed through from the you have set up. When you run your featureform_tag

again by using ,bin/rspec spec/integration/searching_spec.rb

you'll see that it's reporting that the action is missing:search

Good! The job of this action is to find all the tickets that match the criteria
passed in from the form as , which is what you can use theparams[:search]

Searcher gem for.

The Searcher gem provides the functionality of parsing the labels in a query such
as "tag:iteration_1" and determines how to go about finding the records that match
the query. Rather than working like Google, where you could put in "iteration_1"
and it would "know," you have to tell it what "iteration_1" means by prefixing it
with "tag:". You use this query with the method provided by Searcher onsearch

a configured model, and it will return only the records that match it:

You'll use this method in the action for in asearch TicketsController

bit.
The first port of call to begin to use the Searcher gem is to add it to your

Gemfile underneath :gem 'paperclip'

 end
end

Failure/Error: click_button "Search"
AbstractController::ActionNotFound:
 The action 'search' could not be found for TicketsController

11.5.2 Searching by state with Searcher

Ticket.search("tag:iteration_1")

gem 'searcher', :git => "git://github.com/radar/searcher"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

463

Licensed to <alex@vinova.sg>

git://github.com/radar/searcher
http://www.manning-sandbox.com/forum.jspa?forumID=818

You're using the option to install the gem here, which is different to:git

every other gem that you've installed so far. This option will clone the gem's git
repository to your local machine and the load the gem from that repository, rather
than the traditional method of installing it from RubyGems. This allows gem
authors to update their gems code on GitHub and provide an alternative way to
distribute their gems that isn't RubyGems.

To install this gem, you run . Now for the configuration.bundle install

Searcher is configured by a call in a model class, just as associationssearcher

are setup by using and friends. In app/models/ticket.rb directly abovehas_many 6

the first , put this code:belongs_to

Footnote 6 Code from gems or plugins should go above any code for your models, as it may modify the behaviorm
of the code that follows it.

The option tells Searcher what association this label should be searched:from

upon, while the option tells it what field to perform a lookup on.:field

The method is evaluated internally to Searcher and will result in a label

 method being defined on your model, which will be used by theby_tag Ticket

 method if you pass in a query such as "tag:iteration_1". This method willsearch

perform an SQL join on your tags table, returning only the tickets that are related
to a tag with the given name.

With this configuration now in your model, you'll be able to define the
 action directly underneath the action in search destroy

 to use the method on :TicketsController search Ticket

Assign all the tickets retrieved with the method to the search @tickets

searcher do
 label :tag, :from => :tags, :field => :name
end

def search
 @tickets = @project.tickets.search(params[:search])
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

464

Licensed to <alex@vinova.sg>

mailto:@project.tickets.search
http://www.manning-sandbox.com/forum.jspa?forumID=818

variable, which you would render in the search template if you didn't already have
a template that was useful for rendering lists of tickets. That template would be the
one at app/views/projects/show.html.erb, but to render it you're going to make one
small modification.

Currently this template renders all the tickets by using this line to start:

This line will iterate through each of the tickets in the project and do whatever
is inside the block for each of those tickets. If you were to render this template
right now with the action, it would still return all tickets for the project,search

rather than the ones returned by the search query. You can get around this by
changing the line in the template to read:

With this change, you break the 's action,ProjectsController show

because the variable is not defined there. You can see the error you@tickets

w o u l d g e t w h e n y o u r u n b e r

:spec/integration/viewing_tickets_spec.rb

To fix this error, you'll set up the variable inside the action@tickets show

of , which you should place directly under the definitionProjectsController

for the action:index

<% @project.tickets.each do |ticket| %>

 <% @tickets.each do |ticket| %>

You have a nil object when you didn't expect it!
You might have expected an instance of Array.
The error occurred while evaluating nil.each

def show
 @tickets = @project.tickets
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

465

Licensed to <alex@vinova.sg>

mailto:@project.tickets.each
mailto:@tickets.each
mailto:@project.tickets
http://www.manning-sandbox.com/forum.jspa?forumID=818

W h e n y o u r e - r u n b i n / r s p e c

, you'll see that itspec/integration/viewing_projects_spec.rb:

now passes once again:

Great! With the insurance that you're not going to break anything now, you can
render the app/views/projects/show.html.erb template in the action of search

 by putting this line at the bottom of that action:TicketsController

By rendering this template, you'll show a similar page to
, but this time it will only have the tickets for theProjectsController#show

given tag. When you run your "Searching" feature using bin/rspec

 you'll see that it all passes now:spec/integration/searching_spec.rb

With this feature, users will be able to specify a search query such as
"tag:iteration_1" to return all tickets that have that given tag. You prevented one
breaking change by catching it as it was happening, but how about the rest of the
test suite? Let's find out by running . You should see this result:rake spec

Great! Let's commit this change now:

1 example, 0 failures

render "projects/show"

1 example, 0 failures

78 examples, 0 failures

git add .

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

466

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Now that you have tag-based searching, why don't you spend a little bit of extra
time letting your users search by state as well? This way, they'll be able to perform
actions such as finding all remaining "open" tickets in the tag "iteration_1" by
using the search term of "state:open tag:iteration_1". It's easy to implement.

Implementing searching for a state is incredibly easy now that you have the
Searcher plugin setup and have the search feature in place. As you did with
searching for a tag, you'll test this behavior in the "Searching" feature. But first,
you need to set up your tickets to have states. Let's change the code at the top of
the feature in spec/integration/searching_spec.rb so that states are now specified
for each of the tickets, replacing the two blocks for the tickets with the codelet

from the following listing:

Listing 11.7 spec/integration/searching_spec.rb

When the two tickets in this feature are created, there will be two states
associated with these tickets also. The next task is to write a scenario that will
search for all tickets with a specific state. That scenario can be seen in the next

git commit -m "Add label-based searching for tags using Searcher"
git push

11.5.3 Searching by state

let!(:ticket_1) do
 state = State.create(:name => "Open")
 Factory(:ticket,
 :title => "Create projects",
 :project => project,
 :user => user,
 :tag_names => "iteration_1",
 :state => state)
end

let!(:ticket_2) do
 state = State.create(:name => "Closed")
 Factory(:ticket,
 :title => "Create users",
 :project => project,
 :user => user,
 :tag_names => "iteration_2",
 :state => state)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

467

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

listing.

Listing 11.8 Finding by state scenario, for the 'Searching' feature

This should show any ticket with the "Open" state, and hide all other tickets.
When you run this feature with bin/rspec

 you'll see that this is not thespec/integration/searching_spec.rb

case. It can still see the "Create users" ticket.

When a user performs a search on only an undefined label (such as your "state"
label), Searcher will return all the records for that table because it will completely
ignore queries that it won't recognise. This is the behavior you are seeing right
now, so it means that you need to define your label in your model. Let'sstate

open app/models/ticket.rb and add this line to your block:searcher

With this label defined, your newest scenario will now pass when you re-run
:bin/rspec spec/integration/searching_spec.rb

scenario "Finding by state" do
 fill_in "Search", :with => "state:Open"
 click_button "Search"
 within("#tickets") do
 page.should have_content("Create projects")
 page.should_not have_content("Create users")
 end
end

Failure/Error: page.should_not have_content("Create users")
 expected content "Create users" not to return anything

label :state, :from => :state, :field => :name

2 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

468

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You only had to add states to the tickets that were being created and tell
searcher to search by states, and now this feature passes.

That's it for the searching feature! In it, you've added the ability for users to find
tickets by a given tag and/or state. It should be mentioned that these queries can be
chained, so a user may enter a query such as "tag:iteration_1 state:Open" and it
will find all tickets with the "iteration_1" tag and the "Open" state.

As per usual, commit your changes because you're done with this feature. But
also per usual, you'll check to make sure that everything is A-OK by running rake

:spec

Brilliant, let's commit:

With searching in place and the ability to add and remove tags, you're almost
done with this set of features.

The final feature for this chapter involves changing the tag name rendered in
app/views/tags/_tag.html.erb so that when a user clicks on it they are shown all
tickets for that specific tag. To test this functionality, you can add another scenario
to the bottom of spec/integration/searching_spec.rb to test that when a user clicks
on a ticket's tag, they are only shown tickets for that tag. The new scenario looks
pretty much identical to this:

79 examples, 0 failures

git add .
git commit -m "Users may now search for tickets by state or tag"
git push

11.5.4 Search, but without the search

scenario "Clicking a tag goes to search results" do
 click_link "Create projects"
 click_link "iteration_1"
 within("#tickets") do
 page.should have_content("Create projects")
 page.should_not have_content("Create users")
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

469

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

When you run this last scenario using bin/rspec

, you're told that it cannot findspec/integration/searching_spec.rb

the "iteration_1" link on the page:

This scenario is successfully navigating to a ticket and then attempting to click
a link with the name of the tag, only to not find the tag's name. Therefore, it's up to
you to add this functionality to your app. Where you display the names of tags in
your application, you need to change them into links that go to pages displaying all
tickets for that particular tag. Let's open app/views/tags/_tag.html.erb and change
this simple little line:

Into this:

For this , you use the helperlink_to search_project_tickets_path

to generate a route to the action in for thesearch TicketsController

current ticket's project, but then you do something different. After you specify
which project to search with using , you specify options.@ticket.project

These options are passed in as additional parameters to the route. Your search
form passes through the field, and your does theparams[:search] link_to

same thing. So you'll see that when you run bin/rspec

, this new scenario will nowspec/integration/searching_spec.rb

pass:

end

no link with title, id or text 'iteration_1' found

<%= tag.name %>

<%= link_to tag.name,
 search_project_tickets_path(@ticket.project,
 :search => "tag:#{tag.name}") %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

470

Licensed to <alex@vinova.sg>

mailto:search_project_tickets_path(@ticket.project
mailto:@ticket.project
http://www.manning-sandbox.com/forum.jspa?forumID=818

This feature allows users to click a tag on a ticket's page to then see all tickets
that have that tag. Let's make sure you didn't break anything with this small change
by running . You should see this output:rake spec

Great, nothing broke! Let's commit this change:

Users are now able to search for tickets based on their state or tag, as well as go
to a list of all tickets for a given tag by clicking on the tag name that appears on the
ticket's page. This is the final feature you needed to implement before you have a
good tagging system for your application.

In this chapter, we've covered how to use a has_and_belongs_to_many

association to define a link between tickets and tags. Tickets are able to have more
than one tag, but a tag is also able to have more than one ticket assigned to it, and
therefore you use this type of association. A has_and_belongs_to_many

could also be used to associate people and the locations they've been to .7

Footnote 7 Like foursquare doesm

You first wrote the functionality for tagging a ticket when it was created, and
then continued by letting users tag a ticket through the comment form as well.

Next, we looked at how to remove a tag from the page using the parent()

and functions from jQuery with the help of a format template file,remove() js

which is used specifically for JavaScript requests. This file allowed you to execute

3 examples, 0 failures

80 examples, 0 failures

git add .
git commit -m "Users can now click a tag's name to go to
 a page showing all tickets for it"
git push

11.6 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

471

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

attr_accessor
create_table, id option
link_to, :remote option
link_to, :url option
migration generator, timestamps option
Routing helpers, additional parameters

JavaScript code when an AJAX request completes, and you used it to remove the
tag from the page.

You saw how to use the Searcher gem to implement label-based searching for
not only tags, but states as well. Usually you would implement some sort of help
page that would demonstrate to the users how to use the search box, but that's
another exercise for the reader.

Your final feature, based off the previous feature, allowed users to click a tag
name and view all the tickets for that tag, and also showed how you can limit the
scope of a resource without using nested resources.

In chapter 12, we'll look at how you can send emails to your users using Action
Mailer. You'll use these emails to notify new users of new tickets in their project,
state transitions, and new comments.

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

472

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

12
In the previous chapter, you implemented tagging for your application, which
allows users to easily categorize and search for tickets.

In this chapter, you'll begin to send emails to your users. When a user signs up
to Ticketee, they use their email address as a way for the system to uniquely
identify them. You then verify that the address is valid by sending the user a
confirmation email. With a user's validated email address, you're able to send them
updates for important events in the system, such as a ticket being updated.

Back in chapter 6, you changed a setting for the authentication engine Devise
that caused Devise to send a confirmation email to a new user when they signed
up. To test this setting, you used a gem called , which only testedemail_spec

that the emails were delivered in a test environment, and not in the real world. This

is how Action Mailer (the Rails component responsible for email) acts during a1

test environment.

Footnote 1 m It defaults to not truly sending out the emails, but rather keeping track of them in a variable that
you can access by using , or by using the methods found in ActionMailer::Base.deliveries

email_spec

Before you go about configuring your application to send emails into the real
world, you'll add two more features to Ticketee. The first feature automatically
subscribes a user to a "watchers" list whenever that user creates a ticket. Every
time this ticket is updated by another user, the creator of the ticket should receive
an email. This is helpful, as it allows users to keep up-to-date with the tickets that
they have created. The second feature will allow users to add or remove themselves
from the watching list for a given ticket.

With these features in place, all users who are watching a ticket will be notified
via email that a comment has been posted to the ticket, what that comment was,

Sending Email

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

473

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

and any state change that took place. This email message will additionally contain
a link to the ticket and a link to unsubscribe from further notifications regarding
the ticket. If a user posts a comment to a ticket and they're not watching it, then
they will automatically be added to this "watchers" list and receive notifications
whenever anybody who's not them posts a comment on the ticket. They can
unsubscribe later if they wish by following the unsubscribe link in the email. Email
is a tried-and-true solution to receiving notifications of events such as this.

Once that's all said and done, you'll work on sending emails through an actual
server—Gmail—which will test that your application is able to send out emails
into the real world and that you're doing everything you can to let your users

receive them. Gmail is great for low-volume sending , but if you needed2

something with a larger capacity, other services such as SendGrid or Mailchimp3 4

are acceptable alternatives. While you don't look at how to use large-volume
services in this chapter, it's always great to be aware of alternatives, should you
ever need to scale up. To check for the emails on a Gmail account, you'll be using

the (unofficial) gmail gem.5

Footnote 2 Gmail has a daily send limit of 200 emailsm

Footnote 3 http://sendgrid.comm

Footnote 4 http://mailchimp.comm

Footnote 5 As in, not sponsored by Googlem

After spending most of the chapter looking at how to emails, you'll take asend
look at how to them using the Gmail gem and Action Mailer. When a userreceive
receives an email notifying them that a comment has been posted to a ticket, they
will be able to send a reply that you can read using both the Gmail gem and Action
Mailer. You'll also be able to create a new comment from their reply's text. Nifty
stuff.

The first thing you're going to do is set up a way for users to receive
notifications when a comment is posted to a ticket they've created. Let's dive into
creating the feature and code for this functionality now.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

474

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The next feature of your application will provide users with the ability to watch a
ticket. You'll build off this functionality to notify users by email that a ticket has
been updated any time somebody posts a comment to it. This email will contain the
name of the user who updated the ticket, the comment text, a URL to the ticket,
and finally a link to unsubscribe from all future ticket updates.

To test all this, you'll use the email_spec gem, which you first used back in
chapter 6. This gem provides very useful RSpec helpers that allow you to easily
verify that an email was sent during a test, and you'll be taking full advantage of
these steps in the feature that you'll be writing right now.

This feature will initially test that a user automatically watches a ticket when they
create it. Whenever someone else updates this ticket, the user who created it (and
later, anybody else watching the ticket) will receive an email notification. You'll
put this new feature in spec/integration/ticket_notifications_spec.rb and fill it with
the content from Listing 12.1.

12.1 Sending ticket notifications

12.1.1 Automatically watching a ticket

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

475

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 12.1 spec/integration/ticket_notifications_spec.rb

In this feature, you set up two users: one called Alice and one called Bob. At
the top of the for this feature, you need to clear all of Action Mailer'sbefore

deliveries , as it will otherwise contain the confirmation emails for the user.
When the feature signs in as bob and leaves a comment on the ticket, then Alice
should receive an email .

The method here is from the gem, and wil openfind_email! email_spec

the last email for the specified email address or will raise an exception if it couldn't

require "spec_helper"
feature "Ticket Notifications" do
 let!(:alice) { Factory(:user, :email => "alice@example.com") }
 let!(:bob) { Factory(:user, :email => "bob@example.com") }
 let!(:project) { Factory(:project) }
 let!(:ticket) do
 Factory(:ticket,
 :project => project,
 :user => alice)
 end

 before do
 ActionMailer::Base.deliveries.clear <co id="ch12_28_1"/>

 define_permission!(alice, "view", project)
 define_permission!(bob, "view", project)

 sign_in_as!(bob)
 visit '/'
 end

 scenario "Ticket owner receives notifications about comments" do
 click_link project.name
 click_link ticket.name
 fill_in "comment_text", :with => "Is it out yet?"
 click_button "Create Comment"

 email = find_email!(alice.email) <co id="ch12_28_2"/>
 subject = "[ticketee] #{project.name} - #{ticket.title}"
 email.subject.should include(subject)
 click_first_link_in_email(email) <co id="ch12_28_3"/>

 within("#ticket h2") do
 page.should have_content(ticket.title)
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

476

Licensed to <alex@vinova.sg>

mailto:alice@example.com
mailto:bob@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

find one. The next couple of lines in the scenario will check that email to see if it
contains the correct subject and for the ticket notification email. The final trick in
the scenario is to click the first link in the email using the

 method , and then validate that the linkclick_first_link_in_email

goes to a page that has the ticket title inside a element.h2

When you run this feature using bin/rspec

, you'll see thatspec/integration/ticket_notifications_spec.rb

Alice is not yet receiving an email:

When "bob" updates the ticket, "alice" doesn't receive an email, yet. That's why
you wrote the feature: so you can test the behavior that you're about to create!

TIP You're not really sending emails
These emails aren't actually sent to these addresses in the real
world, but captured by Action Mailer and stored in

. You then access theseActionMailer::Base.deliveries

emails using the helpers provided by email_spec. There's a setting
inside config/environments/test.rb that goes like this:

By default, this setting is set to , which means that Action:smtp

Mailer will attempt to connect to an SMTP server that is running on
localhost. You don't have one of these set up yet, nor will you. Later
on, you'll look at how you can actually send out "real world" emails
from your application using a Gmail account.

The setting in config/environments/test.rb will tell Action Mailer
to store all "sent" emails internally in

.ActionMailer::Base.deliveries

To make "alice" receive an email, you're going to use what's known as an
.observer

Failure/Error: email.should_not(be_nil ...
 Couldn't open email for alice@example.com

config.action_mailer.delivery_method = :test

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

477

Licensed to <alex@vinova.sg>

mailto:alice@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

An observer is a class that sits outside the model, watching it for specific actions
such as a save to the database. If new instances of the model are created, then the

 and methods in the observer will be called.before_create after_create

Observers are handy if you have complex logic for your callbacks, or for sending
out email. Hey, isn't that what you want to do? Indeed it is!

In this instance, your observer will be called . It's namedCommentObserver

like that because it will observe the model. Observers will watch aComment

model for specific changes and allow you to implement callback-like methods in
them to order your application to do something when an action takes place in the
model. While you could use a callback in a model, abstracting out code such as this
to an observer is much better because it can lead to reduced code clutter in the
model.

Let's now create a new folder at app/observers so that you can also reduce
clutter in the app/models folder too. All the files inside the app directory are added
to the load path, so they will be 'able by your application. Inside therequire

app/observers folder you'll create a new file called comment_observer.rb that will
hold the code for the observant observer. In this file you'll put this:

This defines the observer that watches the model and defines aComment

method that will be called after a new is saved to the database, moreComment

commonly known as callback.after_create

At the top of the method, you get the list of watchers for aafter_create

ticket and remove the user who has just made the comment from that list, as they
shouldn't receive an email for a comment they just created!

The referenced inside the is something you'llNotifier after_create

create in a little while. Consider it similar to an Active Record object, but for
handling emails instead. The method will build an email forcomment_updated

12.1.2 Using observers

class CommentObserver < ActiveRecord::Observer
 def after_create(comment)
 (comment.ticket.watchers - [comment.user]).each do |user|
 Notifier.comment_updated(comment, user).deliver
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

478

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

each of the users watching this ticket and will send it out.deliver

There's a little bit of configuration you must do before this observer is used,
however. You must open and put this line insideconfig/application.rb

the class definition:Ticketee::Application

By calling this method, you are telling Rails to load the CommentObserver

class, which it will find without your help, as Rails will infer the name of the
observer from the symbol passed in. When you run bin/rspec

 you're toldspec/integration/ticket_notifications_spec.rb

this:

In this method in your observer, you're calling the after_create

 method to get at the watchers for this ticket. It's failing because youwatchers

haven't defined this association yet, so let's go ahead and do that now.

The method should return a collection of users who are watching awatchers

ticket, including (by default) the user who has created the ticket in the first place,
so that in your feature alice@ticketee.com receives the email triggered by
bob@ticketee.com's comment.

Here you must do two things: firstly, define the association, andwatchers

secondly, add the ticket owner to the list when the ticket is created.watchers

You'll use another association to define the has_and_belongs_to_many

 collection, this time in your model. To define it, you'll putwatchers Ticket

this code inside the model, along with the other Ticket

 for tags:has_and_belongs_to_many

config.active_record.observers = :comment_observer

Failure/Error: click_button "Create Comment"
NoMethodError:
 undefined method `watchers' for #<Ticket:0x007fcc16d9cf80>

12.1.3 Defining the watchers association

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

479

Licensed to <alex@vinova.sg>

mailto:alice@ticketee.com
mailto:bob@ticketee.com's
http://www.manning-sandbox.com/forum.jspa?forumID=818

Here you pass the option to specify a custom table name for:join_table

your . If you didn't do this, then the table namehas_and_belongs_to_many

would be inferred by Rails to be , which doesn't really explainticket_users

the of this table as much as does. You pass anotherpurpose ticket_watchers

option too, , which tells your model that the objects from this:class_name

association are objects. If you left this option out, Active Record wouldUser

imply that you wanted the class instead, which doesn't exist.Watcher

You can create a migration that can be used to create this table by using this
command:

Unfortunately, the won't read your minds in this instance, somigration

you'll need to open it and change it to resemble Listing 12.2

Listing 12.2 db/migrate/[timestamp]_create_ticket_watchers_table.rb

Remember: you need to specify the option here so that your join tableid

doesn't have a primary key.
Let's save and then run this file using , and let's not forgetrake db:migrate

to run either. When you run rake db:test:prepare bin/rspec

 you'll see thatspec/integration/ticket_notifications_spec.rb

the email still isn't being sent:

has_and_belongs_to_many :watchers, :join_table => "ticket_watchers",
 :class_name => "User"

rails g migration create_ticket_watchers_table

class CreateTicketWatchersTable < ActiveRecord::Migration
 def change
 create_table :ticket_watchers, :id => false do |t|
 t.integer :user_id, :ticket_id
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

480

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Now that you have your method defined, you need to add the userwatchers

who creates a ticket to the list of watchers for that ticket so that the observer will
know who to notify once a comment has been posted. You can do this by using an

 callback on your model like this:after_create Ticket

To define the method, you'll put the following codecreator_watches_me

at the bottom of the class definition:Ticket

This method will now add the user of the ticket the list of watchers for this
ticket whenever the callbacks are triggered. This means thatafter_create

each object will now have a list of users who are watching the ticket, andTicket

then will be able to act on those eventually.
Now that you have the user who created the ticket watching it, your

 will have something to act on. Let's see what happens whenCommentObserver

y o u r u n b i n / r s p e c

 now:spec/integration/ticket_notifications_spec.rb

This time, your feature is failing because it can't find the constant ,Notifier

Failure/Error: email.should_not(be_nil, ...)
 Couldn't open email for alice@example.com

after_create :creator_watches_me

private
 def creator_watches_me
 if user
 self.watchers << user unless self.watchers.include?(user)
 end
 end

And I press "Create Comment"
 uninitialized constant CommentObserver::Notifier (NameError)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

481

Licensed to <alex@vinova.sg>

mailto:alice@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

which is actually going to be the class that you use to send out the notifications of
new activity to your users. To create this class, you'll use Action Mailer.

You need to define the mailer to send out ticket update notificationsNotifier

using your fresh-out-of-the-oven 's CommentObserver after_create

method. You can do this by running the generator.mailer

A is a class defined for sending out emails. To define your mailer, you'llmailer
run this command:

When running this command, you'll see this output:

The first thing the command generates is the class itself, defining itNotifier

in a new file at app/mailers/notifier.rb. This is done to keep the models and mailers
separate. In previous versions of Rails, mailers used to live in the app/models
directory, which led to clutter. By separating mailers out into their own folder, the
codebase becomes easier to manage. Inside this class,you'll define (as methods)
your different notifications that you'll send out, beginning with the comment
notification. You'll get to that in just a minute.

The second thing that is generated is the directory,app/views/notifier

which is used to store all the templates for your emails. The methods in the
 class will correspond to each of the files in this directory.Notifier

The final thing that is generated is the spec/mailers/notifier_spec.rb, which you
won't use because you've got your feature testing this notifier anyway.

In app/mailers/notifier.rb you'll see this code:

12.1.4 Introducing Action Mailer

rails g mailer notifier

create app/mailers/notifier.rb
invoke erb
create app/views/notifier
invoke rspec
create spec/mailers/notifier_spec.rb

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

482

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

ActionMailer::Base defines helpful methods such as the one,default

which you can use to send out your emails. The method here6 default

configures default options for this mailer and will set the "from" address on all
emails to be the one specified. Let's change this now to be "ticketee@gmail.com".

Footnote 6 m Action Mailer had a revamp with Rails 3, switching to be based off the new gem rathermail

than the old gem. 's syntax is much nicer, and won't crash when it parses a spam email, unlike tmail mail

tmail

Now that you have the class defined, what happens when you runNotifier

your feature? Let 's run i t using bin/rspec

 and find out:spec/integration/ticket_notifications_spec.rb

In this class, you need to define the method, which willcomment_updated

build an email to send out when a comment is updated. This method needs to get
the email address for all the watchers for 's ticket and send an email tocomment

each of them. To do this, you can define the method like this:

Even though you're defining this as an instance method (the error complains
about a method), the method is truly the method that isclass comment_updated

used by Action Mailer to set up your email. This is a little bit of magic performed

by Action Mailer for your benefit. 7

class Notifier < ActionMailer::Base
 default from: "from@example.com"
end

undefined method `comment_updated' for Notifier:Class (NoMethodError)
 ./app/observers/comment_observer.rb:3:in `after_create'

def comment_updated(comment, user)
 @comment = comment
 @user = user
 @ticket = comment.ticket
 @project = @ticket.project
 subject = "[ticketee] #{@project.name} - #{@ticket.title}"
 mail(:to => user.email, :subject => subject)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

483

Licensed to <alex@vinova.sg>

mailto:from@example.com
mailto:ticketee@gmail.com
mailto:@ticket.project
http://www.manning-sandbox.com/forum.jspa?forumID=818

Footnote 7 m By calling the method on the class, it's caught by , which then initializes amethod_missing

new instance of this class and then eventually ends up calling your method.comment_update

When this method is called, it will attempt to render a plain-text template for
the email, which should be found at app/views/notifier/comment_updated.text.erb.
You'll define this template after you've got the method working. You define a

 instance variable as the first line of your method so that the object in @comment

 will be available to your template.comment

You use the method to generate a new email, passing it a hash containingmail

 and keys, which define where the email goes to as well as theto subject

subject for the email.
W h e n y o u r u n b i n / r s p e c

, you'll see thatspec/integration/ticket_notifications_spec.rb

the user now receives an email and therefore is able to open it, but the link you're
looking for is not there, which brings up this cryptic error:

It's not seeing the link because you have not set up any content for this email
yet. The methods defined within an Action Mailer class need to have
corresponding templates to them that define the content of the email, much like

actions in controllers have (sometimes) had templates for them. Let's define a8

template for the mailer method now.comment_updated

Footnote 8 As an example, the create, update and destroy actions for your controllers do not have correspondingm
templates. This is not necessarily saying that they should never have templates. These actions sometimes do have
templates too.

Templates for Action Mailer classes go in app/views because they serve an
identical purpose as the controller views: they display a final, dynamic result to the
users. Once you have this template in place, the plain-text email a user receives
will look like Figure 12.1.

Failure/Error: click_first_link_in_email(email)
URI::InvalidURIError:
 bad URI(is not URI?):

12.1.5 An Action Mailer template

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

484

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 12.1 Your first email

As shown in the above figure, you'll need to mention who updated the ticket,
what they updated it with, and provide a link to the ticket. Let's define a text
template for your method atcomment_updated

app/views/notifier/comment_updated.text.erb, as shown in Listing 12.3.

Listing 12.3 app/views/notifier/comment_updated.text.erb

Wait, hold on! text.erb? Yes! This is the template for the plain-text version of
this email, after all. Remember, the format of a view in Rails is the first part of the
file extension, with the latter part being the actual file type. Because you're sending
a text-only email, you use the format here. This template is a little barren attext

the moment, but it's all that's required to get this feature working. You'll flesh it out
in a little while.

The template is the final part for your feature, yay! When you run bin/rspec

 you'll see thatspec/integration/ticket_notifications_spec.rb

it's now all passing:

You've done quite a lot to get this little simple feature to pass.
In the beginning you created an called , whichobserver CommentObserver

watches the model for any specific changes. You defined an Comment

 method on this, which took the object that was beingafter_create comment

updated and then called , passing along the Notifier.comment_updated

 object.comment

<%= project_ticket_url(@ticket.project, @ticket) %>

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

485

Licensed to <alex@vinova.sg>

mailto:project_ticket_url(@ticket.project
http://www.manning-sandbox.com/forum.jspa?forumID=818

Notifier is an Action Mailer class that is responsible for sending out emails

to the users of your application, and in this file you defined the
 method called in your and set the comment_updated CommentObserver

 up to use the object's related ticket's watchers.recipients comment

To define the method, you used a watchers

 join table again. Your first experience usinghas_and_belongs_to_many

these was back in chapter 11, when you linked the and models byTicket Tag

setting one up on both of them. Back then, you used the tabletags_tickets

link the two. This is the default naming schema of a
 join table in Rails. In the case of your tickethas_and_belongs_to_many

watchers, however, your method was called , and so would look for awatchers

class called to determine where it should find your watchers. This wasWatcher

incorrect, so you told your association that your join table should be
 and that the related model was , not . Youticket_watchers User Watcher

used the and methods for this.:join_table :class_name

Finally, you defined the template for the email atcomment_updated

app/views/notifier/comment_updated.text.erb and including the link that you click
to complete the final step of your scenario.

This scenario completes the first steps of sending email notifications to your
users. You should now run all your tests to make sure you didn't break anything by
running :rake spec

Great to see everything still passing! The one pending spec is located in
spec/mailers/notifier_spec.rb, but rather than deleting the file, keep it and just
simply delete the pending spec in it. We're going to be using that file in the next
section. If you delete just the spec and re-run you'll see this:rake spec

You've added email ticket notifications to your application, so you should now

82 examples, 0 failures, 1 pending

81 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

486

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

make a commit saying just that and push it:

Now that you've got your application sending plain-text emails, you should
flesh the plain text emails out a bit more, making them have some content that tells
the user why they're receiving the email, rather than just having them contain a
link. To test that, you'll be using the mailer spec that was generated along with the
mailer.

Now you're going to get down into the nitty-gritty of exactly how your mailer
works. You're going to do this with . Mailer specs are generallymailer specs
contained within the files that are generated along with the mailer, and test intimate
details about the mail that is sent out by those mailers, such as body content. In this
section, you're going to be learning how to write a mailer spec by writing one that
checks that the email contains some content.

The test that you'll be writing now is to make sure that when a user receives the
email and it contains a phrase like "[user] has just updated the [ticket title] for

[project name]" and the content for the comment. . To test it, you'll first need to9

create a project, and then a ticket for that project that belongs to a user. The test
itself will create a comment and then check the email that's just been sent to ensure
that it's got the correct content.

Footnote 9 You may already be familiar with these types of emails from services such as Facebook.m

To test that, write the content from Listing 12.4 into
spec/mailers/notifier_spec.rb:

git add .
git commit -m "Added basic email ticket notifications"
git push

12.1.6 Testing with mailer specs

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

487

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 12.4 spec/mailers/notifier_spec.rb

At the beginning of this test, a whole bunch of things are setup. First, the test
needs a project and a ticket. That part's easy. The ticket needs to have a user
associated with it so that there's someone to be notified when the comment
notification goes out. Next, there needs to be a comment so that the mailer can
act on something. The comment needs to have some text so that it can be validated
that it shows up in the email that is sent out.

When creating the comment, you pass it a and attribute. Theseticket user

attributes are typically not mass-assignable, because they're not listed within the
 call in the model. To get around this, you pass aattr_accessible Comment

second argument to the method which is a hash containing just the key new

, which references the value . This will bypass thewithout_protection true

require 'spec_helper'

describe Notifier do
 context "comment_updated" do
 let!(:project) { Factory(:project) } <co id="ch12_v2_12_1"/>
 let!(:ticket_owner) { Factory(:user) }
 let!(:ticket) { Factory(:ticket, :project => project,
 :user => ticket_owner) }
 <co id="ch12_v2_12_2"/>
 let!(:commenter) { Factory(:user) }
 let(:comment) do
 Comment.new({ <co id="ch12_v2_12_3"/>
 :ticket => ticket,
 :user => commenter,
 :text => "Test comment"
 }, :without_protection => true) <co id="ch12_v2_12_4"/>
 end

 let(:email) do
 Notifier.comment_updated(comment, ticket_owner)
 end

 it "sends out an email notification about a new comment" do
 email.to.should include(ticket_owner.email)
 title = "#{ticket.title} for #{project.name} has been updated."
 email.body.should include(title)
 email.body.should include("#{comment.user.email} wrote:")
 email.body.should include(comment.text)
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

488

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

mass-assignment protection for this creation and allow you to assignComment

these attributes.
Inside the test itself, you create a new mail message by calling the

 method and passing it the and comment_updated comment

 objects. The ticket owner is passed here because that is the userticket_owner

that needs to be notified by this email. For the test, you assert that the to address
for the email contains the ticket owner's email, that the body should contain a
message saying that a ticket has been updated, and that the body contains the
comment's text.

When you run this tes t wi th bin/rspec

 you'll see that the email bodyspec/integration/notifier_spec.rb

doesn't contain that specialized message:

This failure is happening because you have not yet put the special message
inside the email; all it contains is just a link. To put that special message in the
email and to make it look a whole lot nicer, replace the link inside
app/views/notifier/comment_updated.text.erb with this:

When you re-run bin/rspec spec/mailers/notifier_spec.rb

Failure/Error: email.body.should include(title)
 expected http://localhost:3000/projects/1/tickets/1
 to include "Example ticket for Example project has been updated."
 Diff:
 @@ -1,2 +1,2 @@
 -["Example ticket for Example project has been updated."]
 +http://localhost:3000/projects/1/tickets/1

Hello!

<%= @ticket.title %> for <%= @project.name %> has been updated.

<%= @comment.user.email %> wrote:

<%= @comment.text %>

You can view this ticket online by going to:
<%= project_ticket_url(@project, @ticket) %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

489

Licensed to <alex@vinova.sg>

http://localhost:3000/projects/1/tickets/1
http://localhost:3000/projects/1/tickets/1
mailto:@ticket.title
mailto:@project.name
mailto:@comment.user.email
mailto:@comment.text
http://www.manning-sandbox.com/forum.jspa?forumID=818

you'll see that this spec is now passing because the email now contains the text that
you are looking for:

Now that you've spruced up the text template for the email, users will receive
more relevant information about the comment notification, rather than just simply a
link.

In this section, you've learned how to generate a mailer and create a mailer
method to it, and now you're going to move into how you can let people subscribe
to receive these emails. You're currently only subscribing the ticket's author to the
list of watchers associated with this ticket, but other people may also wish to be
notified of ticket updates. You can do this in two separate ways: through a watch
button and through automatic subscription when a user leaves a comment on a
ticket.

You'll provide other users with two ways to stay informed of ticket updates. The
first will be very similar to the automatic subscription of a user when they create
the ticket, but this time you'll automatically subscribe users who on acomment
ticket. You'll reuse the same code that you used in the previous section to achieve
this, but not in the way you might think.

The second will be a "watch" button on the ticket page, which will display
either "Watch this ticket" or "Stop watching this ticket," depending on if the user is
watching the ticket or not, as shown in Figure 12.2

Figure 12.2 The watch button

You'll first look at implementing the automatic subscription when a user posts a
comment to a ticket.

 1 example, 0 failures

12.2 Subscribing to updates

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

490

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You'll now implement a feature to make users automatically watch a ticket when
they create a comment on it. This is useful because your users will want to keep
up-to-date with tickets that they have commented on. Later on, you'll implement a
way for these users to opt-out.

To automatically subscribe a user to a ticket of a new comment, use an
, just as you did in the model for only the author of thatafter_create Ticket

ticket. But first, you need to ensure that this works!
You'll add another scenario to the "Ticket notifications" feature, but first let's

consider the current flow. Here, a couple of diagrams help explain this process.
First, let's look at Figure 12.3.

Figure 12.3 Alice creates a ticket

Here, alice@ticketee.com creates a ticket that will automatically subscribe her
to be notified of any comments posted to it. Next, figure Figure 12.4

12.2.1 Testing comment subscription

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

491

Licensed to <alex@vinova.sg>

mailto:alice@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 12.4 Bob comments on the ticket

Then bob@ticketee.com comes along and leaves a comment on the ticket,
which should now subscribe bob@ticketee.com to these ticket updates. This is the
feature that you'll code in a short while. After Bob has commented on the ticket,
Alice receives a notification telling her that Bob has left a comment. Now that Bob
is subscribed to the ticket, he should receive comment notifications every time
somebody else--such as Alice--comments on the ticket, as shown in Figure 12.5

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

492

Licensed to <alex@vinova.sg>

mailto:bob@ticketee.com
mailto:bob@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 12.5 Alice comments on the ticket

In this case, alice@ticketee.com shouldn't receive a notification about a
comment if she's the one posting it! With the scenario explained, you can write it
in Capybara-form at the bottom of the "Ticket notifications" feature. Add the
scenario from Listing 12.5 inside the feature of
spec/integration/ticket_notifications_spec.rb:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

493

Licensed to <alex@vinova.sg>

mailto:alice@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 12.5 Testing comment automatic subscription

In this scenario, you're already logged in as Bob (courtesy of the inbefore

this feature). With Bob, you create a comment on the ticket, check that Alice
receives an email and then sign out. Then you clear the email queue to ensure that
Alice receives no emails after this point. You then sign in as Alice and create a
comment, which should trigger an email to be sent to Bob, but not to Alice,
because the users shouldn't receive notifications for their own actions!

On the final line for this scenario, the method would typicallyfind_email!

raise an exception and make the test fail, which is bad. You it to raise anwant
exception in this case because Alice should not receive an email. Therefore you
wrap the method call in a and use the lambda should raise_error

assertion from RSpec to validate that the method call does raise an exception.
When you run this scenario using bin/rspec

 you'll seespec/integration/ticket_notifications_spec.rb:38

that Bob never receives an email from that final comment left by Alice.

scenario "Comment authors are automatically subscribed to a ticket" do
 click_link project.name
 click_link ticket.title
 fill_in "comment_text", :with => "Is it out yet?"
 click_button "Create Comment"
 page.should have_content("Comment has been created.")
 find_email!(alice.email)
 click_link "Sign out"

 reset_mailer

 sign_in_as!(alice)
 click_link project.name
 click_link ticket.title
 fill_in "comment_text", :with => "Not yet!"
 click_button "Create Comment"
 page.should have_content("Comment has been created.")
 find_email!(bob.email)
 lambda { find_email!(alice.email) }.should raise_error
 <co id="ch12_548_1"/>
end

Failure/Error: find_email!(bob.email)
 Could not find email .
 Found the following emails:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

494

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This is failing on the step that checks if bob@ticketee.com has an email. You
can therefore determine that bob@ticketee.com isn't subscribed to receive
comment update notifications as he should have been when he posted a comment.
You need to add any commenter to the watchers list when they post a comment so
that they're notified of ticket updates.

To keep users up to date with tickets, you'll automatically add them to the
 list for that ticket when they post a comment. You currently do thiswatchers

when people create a new ticket, and so you can apply the same logic to adding
them to the list when they create a comment.

You can define another callback in the model byafter_create Comment

using this line:

Next, you need to define the method that this callback calls, which you can do
by placing this code at the bottom of your model:Comment

By using on the association, you can add the creator of this<< watchers

comment to the watchers for this ticket. This should mean that when a comment is
posted to this ticket, any user who has posted a comment previously, and not only
the ticket creator, will receive an email.

Now that a comment's owner is automatically added to a ticket's watchers

list, that should be enough to get the new scenario to pass. Find out by re-running
.bin/rspec spec/integration/ticket_notifications_spec.rb

 []

12.2.2 Automatically add a user to a watchlist

after_create :creator_watches_ticket

def creator_watches_ticket
 ticket.watchers << user
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

495

Licensed to <alex@vinova.sg>

mailto:bob@ticketee.com
mailto:bob@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Perfect! Now users who comment on tickets are added to the watchers list
automatically the user who posts the comment isn't notified if they are alreadyand
on that list.

Did you break anything by implementing this change? Let's have a look-see by
running . You should have this:rake cucumber:ok spec

Every test that you have thrown at this application is still passing, which is a
great thing to see. Let's commit this change:

You now have automatic subscription for ticket notifications when a user
creates a ticket or posts a comment to one, but currently there is no way to switch
notifications . To implement this, you'll add a "Stop watching" button that, whenoff
clicked, will remove the user from the list of watchers for that ticket.

You'll add a button to the ticket page to unsubscribe users from future ticket
notifications. When you're done here, the ticket page will look like Figure 12.6.

Figure 12.6 The watch button

Along with implementing the ability to turn the notifications by clicking thisoff
button, you'll also add a way for the users to turn notifications, using what willon

1 example, 0 failures

83 examples, 0 failures

git add .
git commit -m "Automatically subscribe users
 to a ticket when they comment on it"

12.2.3 Unsubscribing from ticket notifications

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

496

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

effectively be the same button with a different label. This button will toggle users'
watching status, which will allow them to subscribe to ticket notifications without
1) creating their own ticket or 2) posting a comment.

You'll implement the "on" and "off" functionality simultaneously by writing a
new feature in a new file at spec/integration/watching_tickets_spec.rb. Let's start
with the code from listing 12.6.

Listing 12.6 Watching tickets feature setup

In this example, you create a single user, a project, and a ticket. Because this
user created the ticket, they're automatically subscribed to watching this ticket and
therefore they should see the "Stop watching this ticket" button on the ticket page,
which you'll test by writing the scenario from listing 12.7 underneath the before

inside this feature.

require 'spec_helper'

feature "Watching tickets" do
 let!(:user) { Factory(:confirmed_user) }
 let!(:project) { Factory(:project) }
 let!(:ticket) { Factory(:ticket, :project => project,
 :user => user) }

 before do
 define_permission!(user, "view", project)
 sign_in_as!(user)
 visit '/'
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

497

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 12.7 Ticket watch toggling

In this scenario, you check that a user is automatically subscribed to the ticket
by asserting that their email address is visible in the element on#watchers

the page. When that user clicks the "Stop watching this ticket" button then they
will be told that they're no longer watching the ticket, and their email will no
longer be visible inside #watchers

To begin to watch a ticket again, all the user has to do is press the "Watch
ticket" button, which you can also test by adding the following code to this
scenario:

See? how you'll test the watching / not watching functionThat's
simultaneously! You don't need to post a comment and test that a user is truly
watching this ticket, you can instead check to see if a user's name appears in a list
of all the watchers on the right hand side of the ticket page, which will look like
Figure 12.7.

scenario "Ticket watch toggling" do
 click_link project.name
 click_link ticket.title
 within("#watchers") do
 page.should have_content(user.email) <co id="ch12_645_1"/>
 end

 click_button "Stop watching this ticket"
 page.should have_content("You are no longer watching this ticket.")
 within("#watchers") do <co id="ch12_645_2"/>
 page.should_not have_content(user.email)
 end
end

click_button "Watch this ticket"
page.should have_content("You are now watching this ticket.")
within("#watchers") do
 page.should have_content(user.email)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

498

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 12.7 Who's watching

As usual, you'll see what you need to code to get your feature on theright now
road to pass ing by runn ing bin/rspec

. You'll see that it'sspec/integration/watching_tickets_spec.rb

actually this watchers list, indicated by Capybara telling you that it can't find that
element:

To get this feature to pass, you're going to need this element! You can add it to
app/views/tickets/show.html.erb underneath the ticket , and above thediv

"Comments" tag by using the code from Listing 12.8h3

Listing 12.8 app/views/tickets/show.html.erb

You've created a with the attribute set to , which is thespan id watchers

element that your scenario looks for. In this you collect all the watcher'sspan

emails using , and then use on that array. What this will do ismap to_sentence

turn the array of user's emails into a proper sentence, something such as
"alice@example.com, bob@example.com and corey@example.com".

When you have this element and you run your feature again with bin/rspec

, you'll see that yourspec/integration/watching_tickets_spec.rb

Failure/Error: within("#watchers") do
Capybara::ElementNotFound:
 Unable to find css "#watchers"

 Watchers:
 <%= @ticket.watchers.map(&:email).to_sentence %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

499

Licensed to <alex@vinova.sg>

mailto:@ticket.watchers.map(&:email).to_sentence
mailto:alice@example.com
mailto:bob@example.com
mailto:corey@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

feature gets one step closer to passing by locating the user's email in the
 element, but it now can't find the "Stop watching this ticket" button:#watchers

This button will toggle the watching status of the ticket of the current user, and
the text will differ depending on if the user is or isn't watching this ticket. In both
cases, however, the button will go to the same action. To get this next scenario to
pass, you'll add the button to the element you just created bydiv#watchers

using a helper, changing the first few lines of the element to this:

This helper will only appear in views for the toggle_watching_button

, and so you should put the method definition inTicketsController

app/helpers/tickets_helper.rb inside the module, using the codeTicketsHelper

from listing 12.9 to define the method:

Listing 12.9 toggle_watching_button inside TicketsHelper

On the final line of this method, you use a new method: . Thisbutton_to

method works in a similar fashion as does, providing a user with anlink_to

element to click on to go somewhere. In this case, the element is a button wrapped

Failure/Error: click_button "Stop watching this ticket"
Capybara::ElementNotFound:
 no button with value or id or text 'Stop watching this ticket' found

 <%= toggle_watching_button %>

def toggle_watching_button
 text = if @ticket.watchers.include?(current_user)
 "Stop watching this ticket"
 else
 "Watch this ticket"
 end
 button_to(text, watch_project_ticket_path(@ticket.project, @ticket))
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

500

Licensed to <alex@vinova.sg>

mailto:@ticket.watchers.include?
mailto:watch_project_ticket_path(@ticket.project
http://www.manning-sandbox.com/forum.jspa?forumID=818

in a form that points to the specified action. When the user clicks the button, it
submits this form through a POST request, with the only parameter passed through
being , which contains the text of the button.params[:commit]

Inside the , you use a new route helper that you haven't definedbutton_to

y e t . W h e n y o u r u n b i n / r s p e c

 it will complain thatspec/integration/watching_tickets.feature

this method is undefined when it tries to render the
app/views/tickets/show.html.erb page:

This route helper points to a specific action on a project's ticket. You can define
it in config/routes.rb inside the block, which itself isresources :tickets

nested inside the block, as shown in Listing 12.9resources :projects

Listing 12.10 adding watch route to config/routes.rb

The 's purpose is to toggle the watch status of a single ticket,button_to

meaning you want to define a route for your ticket resource. You put itmember

inside the tickets resource, nested under the projects resource, because for your
 action you'll want to confirm that the person has permission to "view" thiswatch

project. You define the route to the action with becausewatch post

 generates a form by default, and a form's HTTP method will defaultbutton_to

to .POST

And I follow "Release date"
 undefined method `watch_project_ticket_path' for ...

resources :projects do
 resources :tickets do
 collection do
 get :search
 end

 member do <co id="ch12_706_1"/>
 post :watch
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

501

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

When you run your feature again using bin/rspec

 it will complain now because there is no spec/integration/watching

 action for your button to go to:watch

You're almost done! Defining this action is the last thing you have towatch

do. This action will add the user who visits it to a specific ticket's watcher list if
they aren't already watching it, or remove them if they are. To define this action
you'll open app/controllers/tickets_controller.rb and define the action by using the
code found in Listing 12.10

Listing 12.11 watch action inside TicketsController

The first thing to notice about this method is that you don't define the
 variable before you use it on the first line of this method. This is@ticket

because you can add this action to the list of actions that the before_filter

 runs on by changing these lines at the top of your controller::find_ticket

And I press "Stop watching this ticket"
 The action 'watch' could not be found for TicketsController

def watch
 if @ticket.watchers.exists?(current_user)
 @ticket.watchers -= [current_user]
 flash[:notice] = "You are no longer watching this ticket."
 else
 @ticket.watchers << current_user
 flash[:notice] = "You are now watching this ticket."
 end

 redirect_to project_ticket_path(@ticket.project, @ticket)
end

before_filter :find_ticket,
 :only => [:show,
 :edit,
 :update,
 :destroy]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

502

Licensed to <alex@vinova.sg>

mailto:@ticket.watchers.exists?
mailto:@ticket.watchers
mailto:@ticket.watchers
mailto:project_ticket_path(@ticket.project
http://www.manning-sandbox.com/forum.jspa?forumID=818

To these lines:

In this method you use the , which will check if the given user is inexists?

the list of watchers. If they are, then you'll use to remove awatchers -=

watcher from a ticket. If they aren't on the watchers list then you'll use watchers

to add them to the list of watchers.

The action now defines the behaviour for a user to start and stopwatch

watching a ticket by pressing the button above the watchers list. When you run
, itbin/rspec spec/integration/watching_tickets_spec.rb

will pass:

Great! Now you have a way for users to toggle their watch status on any given
ticket. Let's make sure that everything is working by running rake

. You should see the following output:cucumber:ok spec

Everything is still A-OK, which is good to see. Let's commit this change:

before_filter :find_ticket,
 :only => [:show,
 :edit,
 :update,
 :destroy,
 :watch]

1 example, 0 failures

84 examples, 0 failures

git add .
git commit -m "Add button so users can toggle
 watching on a ticket"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

503

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You've now got a way that a user can start or stop watching a ticket. By
watching a ticket, a user will receive an email when a comment is posted to the
ticket. You're going great in theoretically testing email, but you haven't yet
configured your application to send out emails in the real world. Let's do that now.

You've just created the beginnings of a way to send email in your application, but
there's still a part missing: the SMTP server that receives your mail objects and
then sends them out to their recipients. You could spend a lot of time configuring

one yourself, but many people offer a free SMTP service, such as Gmail. You'll10

use a Gmail account to send out tests of your emails, and you can use Action
Mailer to connect to this service.

Footnote 10mSendGrid offers one too which you use, but you're going to need to receive emails nextwould
and having a Gmail account will allow you to do that.

NOTE Beware Gmail's daily send limit
You wouldn't use Gmail to send or receive your emails if you were
running a much larger application, but rather another webservice
such as SendGrid. This is because Gmail has a limit of about 200
sent emails a day and if there are 200 tickets updated in a single
day then it's goodbye email cap. Gmail is great for light email
usage, but if you want to scale up your usage, SendGrid is one of
the best options out there.

Action Mailer has a setting that you can use to set up your SMTP connection:

Before you dive into setting this up, you're going to need a feature to ensure
that it always works. When you set up your application to send emails in the real
world, it may work from the get-go, and you can test it manually by sending out
emails in your application through , but how do you ensure that itrails server

works all the time? The feature will provide that insurance.
When you're done here, you'll have your application hooked up to Gmail's

12.3 Real world email

ActionMailer::Base.smtp_settings = {
 :username = "youraccount@example.com",
 :password = "yourpassword"
 ...
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

504

Licensed to <alex@vinova.sg>

mailto:youraccount@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

SMTP server so that you can send emails in the real world, and you'll have a

Cucumber feature to ensure that it's never broken Let's jump into it.11

Footnote 11 That is to say, if you run all the tests and they all pass before you commit, then you know that yourm
Gmail connection would be working, too.

In this section, you'll create a feature in which you set up Action Mailer to send out
emails to Gmail's SMTP service. You'll then update a ticket's comment, which
should trigger the emails to be sent to the real world. Finally, you'll check the
Gmail account (using the Mail gem on which Action Mailer is based), to make sure
that the email was received. If it wasn't received, then the cause is most likely a
configuration problem, such as an invalid password.

Let's write this new feature in a new file called spec/integration/gmail_spec.rb a
bit at a time. You'll start with just these lines from Listing 12.11:

Listing 12.12 Gmail feature setup

Here you're creating two new user accounts: one that's just a typical test user,
and another user which have your real email address listed. In the exampleshould
above, we use "youraccount@example.com", as we don't want to bombard any real
email address with real emails! If you don't have a Gmail address, sign up! It's free
and will only take a minute.

Inside the block for this feature, you set Action Mailer's deliverybefore

method to . This means that it will send out emails, delivering them viasmtp real

the SMTP protocol There's some more setup you'll need to do to get this to send12

12.3.1 Testing real world email

require 'spec_helper'

feature "Gmail" do
 let!(:alice) { Factory(:confirmed_user) }
 let!(:me) { Factory(:confirmed_user,
 :email => "youraccount@example.com") }

 before do
 ActionMailer::Base.delivery_method = :smtp
 end

 after do
 ActionMailer::Base.delivery_method = :test
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

505

Licensed to <alex@vinova.sg>

mailto:youraccount@example.com
mailto:youraccount@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

out real emails, and you'll get around to doing that in just a bit. Let's fill out the
feature a bit more first.

Footnote 12 http://en.wikipedia.org/wiki/SMTPm

You need to set up a project that both Alice and you can see, and create a ticket
on that project that is posted by you. In a short while, you'll get Alice to sign in and
post a comment to this ticket, which should make an email appear in your inbox.
You'll then check this email using the Mail gem. You'll now set up the project and
ticket by putting these lines underneath the calls that are already insidelet!

spec/integration/gmail_spec.rb:

And then these lines to set up the permissions for the users in the before

block of the feature:

In these setup lines, you set up that Alice and your user object both have the
"view" permission on the project. After this, you need a ticket that you've created
so that Alice can post a comment to it and you can receive an email notification
informing you of what Alice has posted.

Now you can get to the of your feature: the scenario itself. In thismeat
scenario, you want to log in as "alice@ticketee.com," visit the ticket that has been
created in the setup and post a comment to it. After all that's said and done, you
need to assert that your Gmail inbox has one new message. The code for the
scenario should therefore look like Listing 12.12

let!(:project) { Factory(:project) }
let!(:ticket) do
 Factory(:ticket, :project => project,
 :user => me)
end

define_permission!(alice, "view", project)
define_permission!(me, "view", project)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

506

Licensed to <alex@vinova.sg>

mailto:alice@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 12.13 Receiving a real-world email scenario

In this scenario, you walk through the process of signing in as Alice and
creating a ticket as here. The assertion on the final line of this scenario will call the

 method which will log into your Gmail account and checkticketee_emails

for emails from the application. Te method is undefined atticketee_emails

the moment and you'll define it in a short while.
When you run this feature using bin/rspec

, you'll see that your feature failsspec/integration/gmail_spec.rb

when Alice presses the "Create Comment" button:

Remember before how it was mentioned that Action Mailer would (by default)
try to connect to an SMTP server running on ? That's what islocalhost

happening here, because when a comment is updated, a notification will be
attempted through an SMTP server running on localhost. If that server is not
running, then you will see this "Connection refused" error. You didn't see this
previously because it's only now that you've switched to delivery_method

 You don't have one running locally so it's unable to connect. You can tell:smtp 13

that it's now using SMTP, because the first line of the stacktrace points to

scenario "Receiving a real-world email" do
 sign_in_as!(alice)
 visit project_ticket_path(project, ticket)
 fill_in "comment_text", :with => "Posting a comment1"
 click_button "Create Comment"
 page.should have_content("Comment has been created.")

 ticketee_emails.count.should == 1
 email = ticketee_emails.first
 subject = "[ticketee] #{project.name} #{ticket.title}"
 email.subject.should == subject
 clear_ticketee_emails!
end

And I press "Create Comment"
 Connection refused - connect(2) (Errno::ECONNREFUSED)
 .../net/smtp.rb:551:in `initialize'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

507

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

net/smtp.rb in Ruby's standard library, which is what Action Mailer (by way of the
Mail gem) uses to connect to SMTP servers. Therefore, you must change
something in order to make this work once more.

Footnote 13 Unless you've got it set up from some other place that's not this book.m

To fix this error, you must tell Action Mailer to connect to your Gmail server so
that it has a way to send out emails. You can create a new file in config/initializers
that provides Action Mailer with the necessary information it needs. But what
would this information be? Well, let's hop on over to Google's "Configuring other

mail clients" page, where you'll see the table from figure Figure 12.814

Footnote 14 http://mail.google.com/support/bin/answer.py?hl=en&answer=13287m

Figure 12.8 Configuring other mail clients

You're trying to send email so you want to use the "Outgoing mail" section,
which tells you to use "smtp.gmail.com" as the server. You'll connect to it using
TLS, so you'll connect on port 587. The account name and password should be the
gmail address and password for your email address. With these settings, you'll
create a config/initializers/mail.rb file that looks like Listing 12.13

12.3.2 Configuring Action Mailer

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

508

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 12.14 config/initializers/mail.rb

WARNING Do not commit mail.rb to Git
Because config/initializers/mail.rb contains sensitive data, we would
recommend that you do not commit this file to your Git repository.
You can tell Git to completely ignore the file by adding a single line to
another file called .gitignore at the root of your Rails application. That
line is just the name of the file you want ignored:

Later on when you go to create a commit for all your changes, Git will
acknowledge that you don't want this file committed to your Git
repository and will leave it out.

With these settings now in this file, you can rerun bin/cucumber

 to see that it is now erroring out because features/gmail.feature

 is not defined:ticketee_emails

With this method, you'll connect to Gmail using yourticketee_emails

email settings you've just specified in config/initializers/mail.rb and then check for

ActionMailer::Base.smtp_settings = {
 :user_name => "youraccount@gmail.com",
 :password => "password",
 :address => "smtp.gmail.com",
 :port => 587,
 :enable_starttls_auto => true
}

config/initializers/mail.rb

Failure/Error: ticketee_emails.count.should == 1
NameError:
 undefined local variable or method `ticketee_emails' ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

509

Licensed to <alex@vinova.sg>

mailto:youraccount@gmail.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

an email with a subject beginning with "[ticketee]", which should be sent earlier in
this scenario. You need to define this method now toticketee_emails

connect to Gmail.

You've now sent the email to the server, but you don't have any steps in place to
read these emails from your Gmail account and check that one of the emails is
from Ticketee. As you can now almost anticipate, there's a gem that can help you
with this called quite simply "gmail". This gem will let you connect to a Gmail
server using the username and password you just used to set up an SMTP
connection, and also read the emails for that account. The code it uses looks like
this:

You'll also use this gem in the next major section, when you look at how you
can receive emails into your application. It's a pretty neat gem, and it's got a great
README, which can be seen at http://github.com/nu7hatch/gmail.

To install this gem, you must add it to the Gemfile by adding this line inside the
group block for development and test, because you only want this gem used in
those environments:

Then you need to run to install this gem so that you canbundle install

use it. When is finished running, create a new file calledbundle install

spec/support/gmail_helpers.rb and put the content from Listing 12.14 in that file:

12.3.3 Connecting to Gmail

Gmail.connect(username, password)

group :test, :development do
 gem 'gmail', '0.4.0'
 ...
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

510

Licensed to <alex@vinova.sg>

http://github.com/nu7hatch/gmail
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 12.15 GmailHelpers

In this new file, you've created a module called and within itGmailHelpers

defined three helper methods that will assist you in your testing of gmail email
sending. The first method, will establish a connection togmail_connection

Gmail using the settings from . The second method willActionMailer::Base

call the method on this connection and then retrieve all the unread emailsinbox

from the inbox that are from "Ticketee App". The third and final method gets all
the emails and deletes them, leaving a pristine state for the next time the test is run.
The final few lines of this file make these three methods available in the RSpec
tests of your application.

Now that you've defined the method that the feature wasticketee_emails

after (and two other utility methods), when you re-run bin/rspec

 you'll see that this test cannot find thespec/integration/gmail_spec.rb

email:

module GmailHelpers
 def gmail_connection
 settings = ActionMailer::Base.smtp_settings
 @gmail_connection ||= Gmail.connect(settings[:user_name],
 settings[:password])
 end

 def ticketee_emails
 gmail_connection.inbox.find(:unread,
 :from => "Ticketee App")
 end

 def clear_ticketee_emails!
 ticketee_emails.map(&:delete!)
 end
end

RSpec.configure do |c|
 c.include GmailHelpers
end

Failure/Error: ticketee_emails.count.should == 1
expected: 1
 got: 0 (using ==)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

511

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

If you sign into your Gmail account, you'll see that there is actually an email
there, as shown in Figure 12.9.

Figure 12.9 Gmail email

Sure enough, the email is there, but the "From" address on the email (on the left
of the above image) says "me" rather than "Ticketee App", which is why the email
is not being found. You will need to change the "From" address to display
"Ticketee App" instead.

To make this change, you will need to alter the "From" address defined within
your mailer. Currently this is defined as being "from@example.com". When the
email is sent to Gmail, it recognises this is a fake address and so it will substitute it
for your real one. Therefore you will need to use your real address and assign a
name to the from field as well. Open up app/mailers/notifier.rb and change the

 line from this:default

Into this:

What this will do is send the email using the address as configured in your mail
settings (config/initializers/mail.rb) and will set a display name of "Ticketee App",
which is what the feature is looking for. When you run the feature again with

 you'll see that it's nowbin/rspec spec/integration/gmail_spec.rb

finding the email correctly:
The test sends out an email to your personal inbox using the settings provided

by the Action Mailer configuration inside ,config/initializers/mail.rb

and then uses those same settings again to sign in to your Gmail account and
validate that the email arrived successfully. Once it's validated that, then it clears
out all the emails from Ticketee.

default from: "from@example.com"

from_address = ActionMailer::Base.smtp_settings[:user_name]
default from: "Ticketee App <#{from_address}>"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

512

Licensed to <alex@vinova.sg>

mailto:from@example.com
mailto:from@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Everything should still be working now. You haven't changed anything that
would have broken your existing features or specs, but it's still great practice to run
them just to make sure. Let's do this by running now. You'll see therake spec

following output:

Indeed, nothing is broken. Let's make a commit now:

You've now got your application sending out emails in the real world using
Gmail as the server. With these settings, the emails notifying users that tickets have
had new comments posted to them, as well as the confirmation emails sent from
Devise for new user sign ups, will be sent out through Gmail.

So you have the emails part of your application done, but what about ifsending
you wanted to let users reply to comments by replying to the email notification
they receive in their inbox? That would be cool. To do this, you're going to need to
figure out how you can receive emails with Rails.

You'd now like to add a feature to Ticketee where users can reply to the email
notifications for a new comment on a ticket, and by replying create a new comment
on that ticket with their text. Many other applications do this by having an email
such as this:

Text above the "ADD YOUR REPLY ABOVE THIS LINE" will be parsed out
and turned into a new object. In Ticketee, this would be a comment.

85 examples, 0 failures

git add .
git commit -m "Set up application to connect to Gmail to send emails"
git push

12.4 Receiving emails

== ADD YOUR REPLY ABOVE THIS LINE ==
Bob has just updated the "Due date" ticket for "TextMate 2"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

513

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In the previous section, you learned how you could connect to a Gmail account
to check to see if there was an email that had a subject beginning with "[ticketee]."
You can use the same method in order to check for replies to your emails too, but
you need to make one small modification.

To determine what ticket and project the reply is directed at, you need to tag the
emails in a certain way. The best way to do this is to add the tags to the email
addresses themselves, so that an email address with a tag looks like
"ticketee+tag@gmail.com," where the "+tag" part of the email is "ignored" and the
email arrives in "ticketee@gmail.com"'s mailbox. For your emails, you'll set a
reply-to address such as "ticketee+61+23@gmail.com, where the first number is
the project ID and the second number is the ticket ID.

You're not going to post comments straight from emails. Check to see if the
user has permission to view the project where the ticket is, which means that they
would be able to create a comment for that ticket too. If they're unable to post a
comment to that ticket, you'll assume the user is trying to do something malicious
and just ignore their email.

To parse these emails, you'll be using the method in an ActionMailerreceive

class, which takes an email object and allows you to process it.
A quick summary: you're going to use the Gmail gem to check for emails in

your inbox that are replies to comment notifications and then parse them using
Action Mailer into new objects. If a user is restricted from viewing aComment

project, then you'll ignore their emails.
Firstly, you'll want to check that the outgoing email contains the tag on the

"from" address, so that when a user replies to it you know what project and ticket
they're replying to.

By having a different "from" address set on the outgoing email, you'll be able to
determine what project and ticket the user's reply comment should be created on.
To ensure that all outgoing emails from the method in comment_updated

 have this set, you're going to write a simple test.Notifier

Let's now open spec/mailers/notifier_spec.rb and add in a new test that ensures
that the Reply-To address for the email is correct. The code to do this can be seen
in Listing 12.15.

12.4.1 Setting a reply-to address

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

514

Licensed to <alex@vinova.sg>

mailto:tag@gmail.com
mailto:ticketee@gmail.com
mailto:23@gmail.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 12.16 Reply-To test

Here you test that the for the email contains the project and ticketreply_to

ids that are related to the comment you setup. You will need to replace
"youraccount" in this example with your real GMail account name. With this
information contained in the email address, you'll be able to know what project and
ticket to create the comment for when a user replies to that email.

Now when you run ,bin/rspec spec/mailers/notifier_spec.rb

you'll see that it fails with this error:

Right then! This test is failing because there is currently no Reply-To address
set for this email. A failing test is a great place to begin with, and now you need to
fix it. Let's open up app/mailers/notifier.rb and add a option to the :reply_to

 call inside method:mail comment_updated

This will change the from address on emails that go out to your users by
tagging the addresses with the project and ticket id. When the user replies to this
email, you can use this tag to find the project and ticket that you need to create a
new comment on . Le t ' s run bin/rspec

 again to see it now pass:spec/mailers/notifier_spec.rb

it "correctly sets the Reply-To" do
 address = "youraccount+#{project.id}+#{ticket.id}@gmail.com"
 email.reply_to.should == [address]
end

expected "youraccount+1+1@gmail.com"
 got nil

mail(:to => user.email, :subject => subject,
 :reply_to => "Ticketee App <youraccount+" +
 "#{@project.id}+#{@ticket.id}@example.com>")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

515

Licensed to <alex@vinova.sg>

mailto:1@gmail.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Now when a user replies to an email that they receive, they will be replying to
this specially crafted email that contains the project and ticket ids, which can then
be used to refer to the project and tickets so that the application can create
comments on them. The next step is of course working on receiving these replies!

With the correct reply-to set, you can implement the feature responsible for
creating new comments from email replies. You'll create a new class for dealing
with incoming email and call it , placing it in app/mailers by runningReceiver

this command:

This will generate the mailer you'll use for receiving email, as well as the
RSpec file that you can use to write the tests for the class in. To test this particular
feature, you'll use a very similar set up to the spec/notifier_spec.rb test that you just
wrote. This test needs to generate a comment and then a reply to the email you
would receive from the comment. This new reply should have the same body as the
original email, but prefixed with some text. This new text will become the new
comment.

At this stage you only want to check that you can parse emails using this new
class and a currently undefined method on it called . This method will takeparse

a object and create a new comment on a ticket.Mail::Message

2 examples, 0 failures

12.4.2 Receiving a reply

rails g mailer receiver

require 'spec_helper'

describe Receiver do
 let!(:ticket_owner) { Factory(:user) }
 let!(:ticket) { Factory(:ticket, :project => project,
 :user => ticket_owner) }
 let!(:commenter) { Factory(:user) }
 let(:comment) do
 Comment.new({
 :ticket => ticket,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

516

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

With this email object, you can build a new "reply" to thisMail::Message

email using these lines:

With these lines, you're constructing a new reply using the body from the
original email to generate a multi-lined string with "This is a brand new comment"
before the body of the first email. The first line in this first email will eventually be
"== ADD YOUR REPLY ABOVE THIS LINE ==", which is how you distinguish
what should be the new content for the comment and what's just from the old
email.

The final step for this spec is to actually parse the incoming email using the
 class, and to check that it changes the related ticket's comment countReceiver

by 1.

Finish up this example by checking that the last comment for the ticket contains
the text from the reply:

 :user => commenter,
 :text => "Test comment"
 }, :without_protection => true)
 end

 it "parses a reply from a comment update into a comment" do
 email = Notifier.comment_updated(comment, ticket_owner)

mail = Mail.new(:from => "user@ticketee.com",
 :subject => "Re: #{comment_email.subject}",
 :body => %Q{This is a brand new comment
 <co id="ch12_2490_1"/>
 #{comment_email.body}
 },
 :to => comment_email.from)

lambda { Receiver.parse(mail) }.should(
 change(comment.ticket.comments, :count).by(1)
)

ticket.comments.last.text.should eql("This is a brand new comment")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

517

Licensed to <alex@vinova.sg>

mailto:user@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

The spec/mailers/receiver_spec.rb should now look like Listing 12.16

Listing 12.17 spec/mailers/receiver_spec.rb

In this spec, you build a comment and reference the ticket for it and then build
an email using the method from . From thiscomment_updated Notifier

email, you build a new object and give it the content "This is a brand newMail

comment" followed by the content of the original email. Passing this new email

require 'spec_helper'

describe Receiver do
 let!(:project) { Factory(:project) }
 let!(:ticket_owner) { Factory(:user) }
 let!(:ticket) { Factory(:ticket, :project => project,
 :user => ticket_owner) }
 let!(:commenter) { Factory(:user) }
 let(:comment) do
 Comment.new({
 :ticket => ticket,
 :user => commenter,
 :text => "Test comment"
 }, :without_protection => true)
 end

 it "parses a reply from a comment update into a comment" do
 original = Notifier.comment_updated(comment, ticket_owner)
 <co id="ch12_921_1"/>
 reply_text = "This is a brand new comment"
 reply = Mail.new(:from => "user@ticketee.com",
 :subject => "Re: #{original.subject}",
 :body => %Q{#{reply_text}
 <co id="ch12_921_2"/>
 #{original.body}
 },
 :to => original.reply_to)
 lambda { Receiver.parse(reply) }.should(
 change(ticket.comments, :count).by(1)
)
 ticket.comments.last.text.should eql(reply_text)
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

518

Licensed to <alex@vinova.sg>

mailto:user@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

message through the method on the is supposed to increase theparse Reciever

comment count for the ticket by 1, and the final comment for the ticket should
contain the same content as the reply email.

When you run this spec using bin/rspec

 you'll be told this:spec/mailers/receiver_spec.rb

To make this spec parse, you need to define this method.This method should
take a object, read out everything from the body of that objectMail::Message

above the line "ADD YOUR REPLY ABOVE THIS LINE", and create a comment
from it. Before you go about defining this method, take out the default

definition at the top of this mailer because you won't be using it.
You can begin to define this method in app/mailers/receiver.rb like this:

Here you match the body of the email with the expected reply separator, getting
back either a object (indicating the email is a valid reply to aMatchData

comment), or . If you get back a valid reply then you do this:nil

Here you take the list of addresses for the email, get the first of them andto

then it on the symbol. This separates the username and the domain namesplit @

in your email. The username contains the project id and ticket id, which you get by
calling again, this time separating the individual elements by the symbol.split +

Failure/Error: lambda { Receiver.parse(mail) }.should(
 undefined method `parse' for Receiver:Class

def self.parse(email)
 reply_separator = /(.*?)\s?== ADD YOUR REPLY ABOVE THIS LINE ==/m
 comment_text = reply_separator.match(email.body.to_s)

if comment_text

 to, project_id, ticket_id =
 email.to.first.split("@")[0].split("+")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

519

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Next, you need to find the relative project, ticket, and user for this email, which
you can do using these lines all inside the that you just opened:if

Finally, you need to create the comment from the email body (stripping all
extra spaces from it) and close the , which is done with the following lines:if

The here will get the first match for the , which will[1] comment_text

be the new comment's text, throwing on the end in case they've got astrip

couple of extra spaces / lines between the comment text and the separator. You'll
need to use the option here so that the user attribute canwithout_protection

be assigned at the same time as the text attribute.
That's the final bit of code you need to get in the app/mailers/receiver.rb. The

whole file should now look like this:

project = Project.find(project_id)
ticket = project.tickets.find(ticket_id)
user = User.find_by_email(email.from[0])

ticket.comments.create({
 :text => comment_text[1].strip, <co id="ch12_921_1"/>
 :user => user
}, :without_protection => true)
 end
end

class Receiver < ActionMailer::Base
 default from: "from@example.com"

 def self.parse(email)
 reply_separator = /(.*?)\s?== ADD YOUR REPLY ABOVE THIS LINE ==/m
 comment_text = reply_separator.match(email.body.to_s)
 if comment_text
 to, project_id, ticket_id =
 email.to.first.split("@")[0].split("+")
 project = Project.find(project_id)
 ticket = project.tickets.find(ticket_id)
 user = User.find_by_email(email.from[0])

 ticket.comments.create({
 :text => comment_text[1].strip,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

520

Licensed to <alex@vinova.sg>

mailto:from@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

When you run this spec again with bundle exec rspec

 it will still fail:spec/mailers/receiver_spec.rb

This is because your original comment notification doesn't have the reply
separator, and therefore the condition in the method you just wrote saysif parse

"oh, can't find it then I'll just ignore this email," or something to that effect. So in
order to get this to work, you must add that line to the comment notification. You
can do this by opening up app/views/notifier/comment_updated.text.erb and adding
this line to the beginning of both files:

Now when you run your spec once more with bundle exec rspec

, it will pass because the spec/mailers/receiver_spec.rb parse

method can now find the separator.

Great! Now you have a feature inside your application that will receive emails
and translate them into comments for tickets. Alright, now that you've got that
feature passing, does everything else still work? Let's find out by running rake

spec

 :user => user
 }, :without_protection => true)
 end
 end
end

Failure/Error: lambda { Receiver.parse(mail) }.should(
 count should have been changed by 1, but was changed by 0

== ADD YOUR REPLY ABOVE THIS LINE ==

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

521

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Good! Everything is still going great. Let's commit the new feature:

Right, this feature isn't complete quite yet, as it only takes mail objects but
doesn't actually do any of the fetching itself. You'll revisit this feature in chapter 15
and complete it there. This is a great start, however.

In this chapter, you learned how to send out your own kind of emails. Before that,
however, you added two ways that users can subscribe to a ticket.

The first of these ways was an automatic subscription that occurred when a user
created a ticket. Here, every time a comment was posted to a ticket, the owner of
the ticket was notified through a simple email message.

The second of the two ways was to allow users to choose to subscribe or
unsubscribe to a ticket. By doing this, all users, and not just those who created the
ticket, can choose to receive emails when a ticket has had a comment posted to it.
This way, all users can stay up to date on tickets they may be interested in.

Next, you made sure that you could actually send emails into the real world by
connecting to a real Gmail account using Action Mailer's SMTP settings. You also
ensured that when you send an email using the STMP setting, you can read it from
the server by using the gem.gmail

By actually sending emails into the real world, you're bringing your application
one step closer to being complete. Now you'll be able to put the application on a
server and it should work just as it does in your tests. But, you're going to polish
your application a little more before you do that.

The next chapter covers how you can use Rails to present your data to other
developers so that they can create other applications or libraries to parse it into new
and interesting formats.

87 examples, 0 failures

git add .
git commit -m "Add Receiver class to receive emails"
git push

12.5 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

522

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

ActionMailer, delivery_method
ActionMailer::Base, default
ActionMailer::Base, deliveries
ActionMailer::Base, mail
button_to
has_and_belongs_to_many, :join_table option
has_and_belongs_to_many :class_name option
Observers
Routing, member

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

523

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

13
In the past chapters, you've created a great application that allows your users to
manage projects and tickets through a web browser. In this chapter, you are going
to create a way for your users to manage this content through what's known as an
API ("Application Programming Interface"). Like its name implies, an API is a
programming interface (for your application) that returns either JSON (JavaScript

Object Notation) or XML data for its requests, which are the two most common1 2

formats for modern APIs to return information in. People can then create programs
or libraries (referred to as "clients") to read and present this data in any way they
see fit.

Footnote 1 http://json.orgm

Footnote 2 http://xml.orgm

One great example of how an API is used is Twitter. Twitter has had an API for
an exceptionally long time now, and people have written Twitter clients for just
about every operating system out there using this API. The functionality of the site
is effectively the same, but people have come up with interesting ways of
displaying and modifying that information, such as the Twitter for Mac clients.

There are many, many Rails sites out there that already provide an API

interface, such as GitHub , and (as previously mentioned) Twitter . Both of these3 4

APIs have exceptionally well-documented examples of how to use them and what
can be done with them, which is a great way to convince people to start using your
API. API documentation, however, is an exercise best left to the reader after this
chapter's done.

Designing an API

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

524

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Footnote 3 The octopi gem was built to interact with the GitHub API--you can see the source atm
http://github.com/fcoury/octopi

Footnote 4 The (non-official) twitter gem was built to interact with the API that Twitter provides; you can see them
source of this gem at http://github.com/jnunemaker/twitter

APIs aren't unique to Rails. There are plenty of other sites out there that have
implemented their own APIs, such as the StackExchange services that run on
Microsoft.Net. Furthermore, APIs created in one language are not for exclusive use
of API clients written in that specific language. For example, if you wanted to
parse the data from the StackExchange API in Ruby, you could do that just fine.

In Rails, however, it's extremely easy to make a modern API for an application,
as you'll see in this chapter. Our application will serve in two formats: JSON and
XML.

Back to the Twitter and GitHub examples now, and one further thing to note is
both of these APIs are also versioned. The point of this is that an API should be
presented in a "frozen" state and should not be modified once it's considered stable.
This way, a user is be able to use an API without fear of it changing and potentially
breaking the code that they're using to parse the data from the API.

Twitter has a URL such as http://api.twitter.com/1/statuses/public_timeline.json
that has the version as the first "part" of the URL after the site name and then the
format as an extension at the end. Github's is slightly different, with a URL such as
http://github.com/api/v2/json/repos/show/rails3book/ticketee having the version
prefixed with a "v" as the second part of the URL, and the format as the part of the
URL directly after. The "v" prefix here makes the version part of the URL clearer
to those who are reading it, which is a good thing.

You're going to "borrow" ideas from both of these API designs, presenting your
API at the base URL of /api/v1 and the format at the end of the URL, like most
web requests. Our URLs will look like /api/v1/projects.json, which will be the
URL to return a list of projects that the user is able to read. The reason for this
versioning is so that you can always provide data that is predictable to your end
users. If you wished to change the format of this data, you would create a new
version namespace, which is the final thing we look at towards the end of this
chapter. Really, these new version numbers can be whatever you wish, with
"minor" versions such as "0.1" being the standard for unstable APIs, and major

versions such as "1", "v1", or "1.0"being the standard for the stable, fixed APIs .5

Footnote 5 Although logical (incremental) versioning is recommended to stave off questions such as "What werem
they thinking?!" and "Are they crazy?". This is often referred to as "Semantic Versioning," http://semver.org/

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

525

Licensed to <alex@vinova.sg>

http://github.com/fcoury/octopi
http://github.com/jnunemaker/twitter
http://api.twitter.com/1/statuses/public_timeline.json
http://github.com/api/v2/json/repos/show/rails3book/ticketee
http://semver.org/�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
http://semver.org/�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
http://semver.org/�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
http://semver.org/�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
http://semver.org/�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
http://semver.org/�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders

To check what user is making a request to your API, you'll use a token-based
authentication system, which is something that the Devise gem can be configured
to provide. You'll require the token attribute to be passed through in every API
request, as without it you cannot be sure of who is doing what with the API. You
can then restrict things, such as the list of projects, based on the user's permissions.
You can also use tokens to track the number of requests the user has performed on
the API and then block them if they make more than 100 requests per hour, which
is one of the final things you look at in this chapter. Twitter and GitHub both
implement rate-limiting so that people do not spam the system with too many API
requests.

Along the path of developing this API, you'll learn additional Rails goodies
such as the and methods, which will convert an object intoto_json to_xml

JSON or XML representations of that object respectively, as well as the
 and controller methods, which are responsiblerespond_with respond_to

for serving data in different formats.
When you're done with this chapter, you'll have a nice solid API that other

developers can build upon. Other applications (be it Rails or not) will also be able
to read the data from your application.

To get started with Ticketee's API, you're going to write the projects part of it. In
this section, we make extensive use of the and respond_with respond_to

methods, which are new in Rails 3.
Before you go about implementing the first building blocks for your API, you'll

learn about a module called , provided by the Rack::Test::Methods

 gem, which will allow you to easily test your API.rack-test

After that, you'll begin writing the API by creating the action, whichindex

will be responsible for displaying all the projects in a JSON format. Next,
implement token-based authentication so you can know who's who when they
access the API. This will allow you to restrict the list of projects shown in the

 action to only those that the user should see. Later on, you'll get this actionindex

to return XML as well as the JSON output.
With an API, you don't need to provide a and actions, as thisnew edit

functionality should be provided by the client that is accessing the API. Instead,

13.1 The projects API

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

526

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

you'll only write the "action" parts of your API: the , , 6 create show update

and actions. Along the way, you'll be restricting the , destroy create update

and actions to administrators of the application.destroy

Footnote 6 An absolutely terrible pun. Forgive us.m

When learning about these actions, you'll see a lot of reference to HTTP status
codes, which are the standard for all pages of the web. These status codes play a
critical role in an API, providing key information such as if the request was
successful (the 200 status code) or if the user is unauthorized (the 401 status code)
to perform the request. These are standardized ways of quickly informing people of
the result of their requests.

TIP Cheat!
There's a handy gem called that provides cheat sheets for acheat

number of things, including one for HTTP status codes. You can
install this gem using the command andgem install cheat

then bring up the cheat sheet for status codes using cheat
.status_codes

However if you're on Windows this won't work as Cheat requires
a function not found on your system. Instead, go to
http://cheat.errtheblog.com/b where you can view the list of all the
cheat sheets.

To begin writing this API, you'll need to define the routes to it. Without routes,
making requests to /api/v1/projects.json will forever be fruitless. If you recall from
this chapter's introduction, the API URL that you'll be using looks like
/api/v1/projects.json. Previously, when you wanted URLs to be prefixed with a
name (such as back in chapter 7), you used a method for them.namespace

You're going to do the same thing here, except you'll use a namespace within
another namespace. Let's open config/routes.rb and add the code from Listing 13.1
to the top of the routes definition.

Listing 13.1 config/routes.rb

Ticketee::Application.routes.draw do
 namespace :api do
 namespace :v1 do
 resources :projects
 end
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

527

Licensed to <alex@vinova.sg>

http://cheat.errtheblog.com/b
http://www.manning-sandbox.com/forum.jspa?forumID=818

This new route defines routes and routing helpers for the projects resources,
such as /api/v1/projects, and respectively. You'reapi_v1_projects_path

going to need to be serving content from this route, namely a list of projects. This
list will be served in one of two forms: XML or JSON. Before you actually
implement the code that makes these responses get served, you're going to write a
new RSpec test that makes sure these routes return the right data. To help you
along, you'll be using a feature provided by one of the dependencies of Rails: the

 gem.rack-test

This gem provides you with a module called ,Rack::Test::Methods

which contains methods such as , , and . Look familiar?get post put delete

They should. They're the 4 basic HTTP methods that you use when making
requests. The methods from take a path on which toRack::Test::Methods

make a request and then return a Rack response (an) that consists of threeArray

parts: the HTTP status code, the HTTP headers (in form), and the body. TheHash

simplest Rack response would look something like this:

The first element of this result is the HTTP status code, and in this case it
indicates that your fictional response was 200, or in human-terms: OK. The second
element contains no special HTTP headers, but you'll see these as you progress in
the next section. Finally, the third element contains a string, which represents the
body of this request, returning the string "Hello World!".

Using , you can initiate requests to yourRack::Test::Methods

application's API that then return these Rack responses, and you can then use these
responses to check that your API is responding in the correct way. You're
purposely not using the standard RSpec controller tests here to make sure that the
precise URLs are responding in the correct manner, instead of only testing that the
actions are doing what you tell them.

Let's get into writing this initial test for your API.

 ...

[200, {}, "Hello World!"]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

528

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You're going to continue on the running theme of "test everything" with your API,
and with the gem you've got the necessary tools to test what yourrack-test

API's URLs are doing. Rather than testing this in Cucumber, you're instead going
to use RSpec, which provides a nicer DSL for testing your APIs. To begin with,
you're going to create a new folder structure at spec/api/v1. You should name the
apis directory as a plural for two reasons: the first being that it matches the
consistency of the other directories in the spec directory and secondly, it may one
day contain more than one API version. Then you'll create a new file called
spec/api/v1/projects_spec.rb and you'll begin to fill it with the following:

There's much more code to come after this short snippet, but it's a pretty good
start.

In the block here you pass through an option of describe :type => :api

. What does this do? Well, you can use it to modify the behavior of this
 block in many ways, such as including modules. The describe

 module you're going to use needs to be included intoRack::Test::Methods

each test. Rather than doing this manually, you can use this option to do:type

the for us, as well as some additional behavior. Let's open a new file atinclude

spec/support/api_helpers.rb and put the content from listing 13.2 inside.

Listing 13.2 spec/support/api_helpers.rb

13.1.1 Our first API

require "spec_helper"

describe "/api/v1/projects", :type => :api do <co id="ch13_20_1"/>

end

module ApiHelper
 include Rack::Test::Methods <co id="ch13_458_1"/>

 def app <co id="ch13_458_2"/>
 Rails.application
 end
end

RSpec.configure do |c|

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

529

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Here you define a module called , which you include into any testApiHelper

marked as an API test with the option . Inside the module, you use the :type

 module, which provides useful methods that you'llRack::Test::Methods

see throughout this chapter for making requests to your application, such as the
 method (not yet shown). You define the method here so that the get app

 knows which application to act on. With this done,Rack::Test::Methods

let's go back to your test.
Inside the block here underneath this new method you're going todescribe

want to create a new user (an admin one at that, because later on you'll need it for
the and other actions) who you'll use to make this request to the API. Youcreate

can create this admin by adding a inside spec/api/v1/projects_spec.rb:let

You'll need to set up Devise to include the token_authenticatable

module so that you can authenticate API requests from users by using a token they
provide with each request. This is so that you will know what projects to show to
your users, as well as any other authorization criteria that you need to apply to this
user's request. For example, only users with permission to create projects in the
application should be able to do so through the API.

To implement the change that you need, go into the modelUser

(app/models/user.rb) and change the call to be this:devise

Next, generate a migration to add a field called toauthentication_token

the table, which will be used to store this token. You'll need to add thisusers

 c.include ApiHelper, :type => :api <co id="ch13_458_3"/>
end

describe "/api/v1/projects", :type => :api do
 let!(:admin) { Factory(:admin_user) }
end

devise :database_authenticatable, :registerable, :confirmable,
 :recoverable, :rememberable, :trackable, :validatable,
 :token_authenticatable

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

530

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

migration to both the development and test environments. To do this, run these
three commands:

The migration generator is smart here and will know to add the
 to the table based off the name of theauthentication_token users

migration and the specified field at the end that you're passing through. The
additional argument on the end tells Rails what type of field you'd like this to be.

With the migration created and run, you still need to add a callback to your
 model, so that tokens are generated for users when they're created, or forUser

when users are updated but don't have a token . To do this, you'll put this line in7

your model:User

Footnote 7 A situation that is unlikely to happen (as you've got no serious users currently), but could potentiallym
happen.

The method here is run on a record whenever it is created orbefore_save

updated, as opposed to the callback that you saw back inbefore_create

chapter 10, which only calls the specified method upon record creation.
With the callback to create the token in place, let's jump back to your spec and

write a test to make a request with this token. Directly underneath the
 in spec/api/v1/projects_spec.rb, you'll put the code from listinglet(:user)

13.3.

Listing 13.3 spec/api/v1/projects_spec.rb

rails g migration add_token_to_users authentication_token:string
rake db:migrate
rake db:test:prepare

before_save :ensure_authentication_token

require "spec_helper"

describe "/api/v1/projects", :type => :api do
 let!(:user) { Factory(:user) }
 let!(:token) { user.authentication_token }
 let!(:project) { Factory(:project) }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

531

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You're using another to define a method that, when called, willlet! token

return the for the user set up by the previous .authentication_token let!

You'll use this later for authenticating requests for your API. The method get

you use here is provided by and simply makes a GETRack::Test::Methods

request with the provided URL. You put the URL in a is because you don'tlet

want to repeat the URL too many times if you have multiple tests, and the let

stops you from repeating yourself in your code.
After the request is done in the test, you ensure that the

 returns , which is the HTTP status code for last_response.status 200 OK

and means the request was successful. The rest of this spec tests that the data
contained within contains the appropriate data. This last_response.body

 method will take the attributes for each project returned and turn themto_json

into JSON, resulting in an output such as:

 before do
 user.permissions.create!(:action => "view", :thing => project)
 end

 context "projects viewable by this user" do
 let(:url) { "/api/v1/projects" }
 it "json" do <co id="ch13_126_1"/>
 get "#{url}.json", :token => token

 projects_json = Project.all.to_json
 last_response.body.should eql(projects_json)
 last_response.status.should eql(200)

 projects = JSON.parse(last_response.body)

 projects.any? do |p|
 p["name"] == project.name
 end.should be_true
 end
 end
end

[
 {
 "created_at":"[timestamp]",
 "id":1,
 "name":"Ticketee",
 "updated_at":"[timestamp]"
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

532

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This output can then be read with a JSON parser by the receiving user, which is
what you do on the line directly after this by using the method thatJSON.parse

is provided by the gem. This method takes JSON string and converts it intojson

a Ruby or . On the final line of your spec, you check that there'sArray Hash

anything in this array–anything at all–which returns for true

, to make sure that the projectp["project"]["name"] == "Ticketee"

you've created really shows up. You need the first key, , as this is howproject

elements are returned in JSON response so that their types can easily be identified.
If something does match for the method, then your test passes.any?

Let's see what happens when you run bin/rspec

 now:spec/api/v1/projects_spec.rb

You haven't yet defined any controllers for your API, and so this test is going to
quite obviously fail. To make it pass, you'll need to define the full constant it will
require, . This controller will beApi::V1::ProjectsController

responsible for serving all the requests for your projects API.

To begin to define controllers for your namespace-within-a-namespace, you'll
create a new file at app/controllers/api/v1/base_controller.rb. This file will serve as
a base for all controllers within version 1 of your API, providing functionality
(eventually) for authenticating and authorizing users, much like the

 currently does. InApplicationController

app/controllers/api/v1/base_controller.rb, you'll define the following:

]

Failure/Error: get "#{url}.json", :token => token
ActionController::RoutingError:
 uninitialized constant Api

13.1.2 Serving an API

class Api::V1::BaseController < ActionController::Base
 respond_to :json
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

533

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Eventually you'll put in the token authentication code into this, but for now
you're only trying to get the example to pass. The method here setsrespond_to

up any inheriting controller to respond to requests, such as the JSON

 that you're about to create. To make your test pass, youProjectsController

need to return JSON data from the action inside index

, which is much easier than it sounds. YouApi::V1::ProjectsController

can get the functionality you need from this controller by creating a new file at
app/controllers/api/v1/projects_controller.rb and filling it with this content:

By inheriting from , the Api::V1::BaseController

 will inherit the definitionApi::V1::ProjectsController respond_to

from , as well as any future methods that youApi::V1::BaseController

define. The method here inside the action will return therespond_with index

a serialized representation of when you make a request to thisProject.all

controller. If you make a JSON request, the data will be serialized into json by
calling on the result. Rails knows to return JSON data back from anyto_json

request with the format (that's the bit after the dot in api/v1/projects.json) of JSON.
Rails handles all of this internally for us, which is nice of it to do.

Let's find out if this new controller and its only action make the spec pass with
:bin/rspec spec/api/v1/projects_spec.rb

There you have it, your first API route and action are serving up data! Now
you're going to need to restrict what this action returns to only the projects that the
user can read, but you'll need to first authenticate a user based on their token,
which is made easy with Devise.

class Api::V1::ProjectsController < Api::V1::BaseController
 def index
 respond_with(Project.all)
 end
end

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

534

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Our next task is authenticating the user who's making the request in your API. The
first step is to do something with the token parameter that gets passed through with
your request. A sensible place to check this token would be in

, as you want to authenticate for all controllers inApi::V1::BaseController

the API (although there's only one, for now). For this authentication, you'll find if
there's a user with the token passed in by using a like this inbefore_filter

app/controllers/api/v1/base_controller.rb:

To check and see if this is working, you'll alter your test in
spec/api/v1/projects_spec.rb to generate another project, give the user read access
to only that project, and check that the response from the API only contains that
project. To do this, you'll add a new to the "projects viewable by thisbefore

user" inside the spec, using the code from Listing 13.4context

Listing 13.4 spec/api/v1/projects_spec.rb

In the block you create one project that the user should not havebefore

access to read. Inside the test itself, you're still using the scope on the for

13.1.3 API Authentication

before_filter :authenticate_user

private
 def authenticate_user
 @current_user = User.find_by_authentication_token(params[:token])
 end

 def current_user
 @current_user
 end

context "projects viewable by this user" do

 before do
 Factory(:project, :name => "Access Denied")
 end

 ...
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

535

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

 class to get only the projects that the specified user has access to. Let'sProject

add a couple of more lines to your example now to check that this user cannot see
the "Access Denied" project:

When you run this spec with bin/rspec

 you'll see that when the test is expecting spec/api/v1/projects_spec.rb

, it's actually getting :false true

This test is failing because it can still see the 'Access Denied' project within the
returned results, even though we say it shouldn't.

To make this test pass, you're going to need to stop returning the projects inall
the action of and only return theindex Api::V1::ProjectsController

projects that this user should be able to see. Let's now open
app/controllers/api/v1/projects_controller.rb and change the action to useindex

the method and pass in the , rather than the method:for current_user all

This will now return only the list of projects that the user should be able to see,
which should be enough to get this test passing. You can find out with another
quick run of :bin/rspec spec/api/v1/projects_spec.rb

 projects.any? do |p|
 p["name"] == "Access Denied"
 end.should be_false

Failure/Error: projects.any? do |p|
 expected: false value
 got: true

def index
 respond_with(Project.for(current_user).all)
end

Failure/Error: last_response.body.should eql(projects_json)
 expected: [two projects]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

536

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Oops, not quite! In the spec you're definining the expected JSON result of this
request as the variable , like this:projects_json

This is not correct because the JSON coming back from the controller is now
defined like this inside the action of index

:Api::V1::ProjectsController

In the controller, the result is scoped using the scope on the for Project

model, but in the spec it is not. To fix this, change the line in the spec that defines
the to this:projects_json

When you re-run the test with bin/rspec

 it will now pass:spec/api/v1/projects_spec.rb

Great, now you've got your API finding a user based on the token that you've
gathered in your spec. One thing you haven't tested for yet is: what happens when
an invalid (or no) token is given? Well, you should return an error when that
happens. This is the final change you'll be making before you make a commit, as

it's been a little too long since you've last done that .8

 got: [one project]

projects_json = Project.all.to_json

respond_with(Project.for(current_user).all)

projects_json = Project.for(user).all.to_json

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

537

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Footnote 8 As a reminder: You should commit after every "safe" point so that if you stuff something up (itm
happens!) you won't have to rollback as much.

Something will inevitably go wrong in your application, and when that happens
you're going to want to provide useful error messages to your users. One of the
things that could go wrong in your API is that the user uses an invalid token to
authenticate against your API. When a user makes a request with an invalid token,
you should inform them of their mistake, which you can do by returning JSON that
looks like this:

To test this behavior, you're going to make a request without a token and then
fix up your test to pass in a token. You'll write your firstprojects_spec.rb

test now in a new file at spec/api/v1/authentication_spec.rb, which will be filled
with the content from Listing 13.5

Listing 13.5 No token test

You're using in the spec again, and you've set upRack::Test::Methods

the token to be a blank string so will pass this through as the token. Let's runget

this spec to make sure it's failing first with bin/rspec

:spec/api/v1/authentication_spec.rb

13.1.4 Error reporting

{ error: "Token is invalid." }

require "spec_helper"

describe "API errors", :type => :api do

 it "making a request with no token" do
 get "/api/v1/projects.json", :token => ""
 error = { :error => "Token is invalid." }
 last_response.body.should eql(error.to_json)
 end

end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

538

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Yup, definitely looks like it's failing. Line 13 of app/models/project.rb attempts
to call on the object passed in to the method. If you attempt toadmin? User for

make a request without a valid token, the call to
 will return , resulting in theUser.find_by_authentication_token nil

error you see here. You should check if the user has been found, and if not then
you'll show the error. To make your method do this inauthenticate_user

app/controllers/api/v1/base_controller.rb, you'll change it to what is shown in
Listing 13.6.

Listing 13.6 authenticate_user method in Api::V1::BaseController

If a user doesn't have a token that matches up with a user within the application
then the call will return and thefind_by_authentication_token nil

response's body will be set to the JSON-form of { :error => "Token is

 and the user will see that response. Does this work? Let's find outinvalid" }

w i t h a q u i c k r u n o f bin/rspec

:spec/api/v1/authentication_spec.rb

Booyah, i t works! How about bin/rspec

 too?spec/api/v1/projects_spec.rb

Failure/Error: get "/api/v1/projects.json", :token => ""
NoMethodError:
 undefined method `admin?' for nil:NilClass

def authenticate_user
 @current_user = User.find_by_authentication_token(params[:token])
 unless @current_user
 respond_with({:error => "Token is invalid." })
 end
end

1 example, 0 failures

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

539

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

All green there too, and so it's definitely time to do a commit now. You should
run the customary checks before you commit by running :rake spec

Great! Everything's still green. You'll commit and push the changes that you've
made:

You've begun to implement the API now, and you've got the
 URL returning a list of the projects that a user can see. To/api/v1/projects

check what user this is, you've implemented a basic token authentication using
functionality built in to Devise.

There's still a little ways to go before you're done with the API. For starters, this
API only serves JSON requests, and some people who use it may wish for the data
to be returned in XML. You've also only got the one action in your controller, and
you need to implement a way for people to create, update and delete projects
through the API. Before you do that, you'll add in support for XML. This is
incredibly easy to implement, as you'll soon see.

So far, you've been using the and methods torespond_with respond_to

serve JSON responses. You can serve XML using these same methods while
continuing to serve JSON. It's very, very easy. First of all, you're going to want to
create a test to make sure that your new XML data is being returned correctly.
You'll place this test in the "index" for "projects viewable by this user"context

in spec/api/v1/projects_spec.rb using the code from Listing 13.7.

Listing 13.7 spec/api/v1/projects_spec.rb

89 examples, 0 failures

git add .
git commit -m "Implement token-based authentication API foundations"
git push

13.1.5 Serving XML

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

540

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In this spec you use the gem to parse the XML. Then you use the nokogiri 9

 method to find an element called inside another called , andcss name project

then check to see if its is equal to the name of your project, which it shouldtext

be if everything works out fine. When you run bin/rspec

 this spec will fail:spec/api/v1/projects_spec.rb

Footnote 9 Nokogiri is a gem used to parse XML and HTML documents, written by Aaron Patterson, one of them
Rails core contributors. A bit of trivia: Aaron is also a Ruby core committer too.

The diff here shows that the expected XML is nowhere to be found in the
response, and instead you're getting back a final line of absolutely nothing. This is
because your doesn't yet respond to XMLApi::V1::BaseController

requests. So now with a failing test you can go right ahead and change this
controller to fix it. To make your API serve XML requests, you'll change this line
in app/controllers/api/v1/base_controller.rb:

it "XML" do
 get "#{url}.xml", :token => token
 last_response.body.should eql(Project.for(user).to_xml)
 projects = Nokogiri::XML(last_response.body)
 projects.css("project name").text.should eql(project.name)
end

expected: "[projects XML]
got: " "

Diff:
 @@ -1,10 +1,2 @@
 -<?xml version="1.0" encoding="UTF-8"?>
 -<projects type="array">
 - <project>
 - <created-at type="datetime">[timestamp]</created-at>
 - <id type="integer">1</id>
 - <name>Example project</name>
 - <updated-at type="datetime">[timestamp]</updated-at>
 - </project>
 -</projects>
 +]]>
 ...

respond_to :json

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

541

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

To this:

This simple little change will now make your spec pass, which you can see by
running bin/rspec spec/api/v1/projects_spec.rb

Apologies if something harder was expected, but it really is this simple in Rails.
You've only changed the API controller and spec, and it's all contained in itself, but
even so it's still a good habit to run all the features and specs to make sure
everything is fine.

Green is good. Now you'll commit this change:

Now that you've got your first action of your API responding to both XML and
JSON, why don't you make some more actions, like the action forcreate

creating projects in Ticketee.

In this section, you're going to implement a new API action that will allow you to
create projects. The route for this action was provided by this code in
config/routes.rb:

respond_to :json, :xml

2 examples, 0 failures

90 examples, 0 failures

git add .
git commit -m "Support XML & JSON with /api/v1/projects"
git push

13.1.6 Creating projects

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

542

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You only need to implement the action in your controller, whichcreate

makes it all quite simple. When you make a request to this action and it passes
validations, you will return the XML or JSON representation of the project that
was created, along with a HTTP status code, which indicates that201 Created

a new resource has been created . If the creation of the project fails any10

validation, then Rails will return a 422 Unprocessable Entity HTTP Status Code ,11

which will indicate that there are errors with the request. The body returned by this
failing will contain those errors and look something like this:

Footnote 10 This isn't unique to Rails, but is rather part of RFC 2616:m
http://tools.ietf.org/html/rfc2616#section-10.2.2

Footnote 11 As described in RFC 4918, Section 11.2: http://tools.ietf.org/html/rfc4918#section-11.2m

It's then up to the people receiving the status back from the API to choose how
to display this information.

To make this request to the action, you need to make a requestcreate POST

to the path, and to do this there's the method/api/v1/projects post

provided by that you can use. You'll open upRack::Test::Methods

spec/api/v1/projects_spec.rb now and add in another block under thecontext

first for checking that creating a project through JSON works, as shown in Listing
13.8.

Listing 13.8 Creating a project test

namespace :api do
 namespace :v1 do
 resources :projects
 end
end

{"name":"can't be blank"}

context "creating a project" do

 let(:url) { "/api/v1/projects" }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

543

Licensed to <alex@vinova.sg>

http://tools.ietf.org/html/rfc2616#section-10.2.2
http://tools.ietf.org/html/rfc4918#section-11.2
http://www.manning-sandbox.com/forum.jspa?forumID=818

In the normal action for the normal in yourcreate ProjectsController

application, you're restricting creation of projects to admin users. You'll do this for
this API action in a bit–you're only trying to get the most basic example going first.
Here you again set up the in a so that you can re-use it for the other testsurl let

you'll implement later.
You begin your test by making a POST request using (provided by the post

 module, just like) passing through theRack::Test::Methods get

parameters of a project as the second argument in this method. Then you check that
the status of the is set to 201, which is the correct reply if thelast_response

resource was created successfully. Next, check that the in theLocation

header is set to the correct API route, which would be something such as
. You'll find out why when youhttp://example.com/api/v1/projects

go to implement this action. On the final line of the spec, check that the
 contains the JSON representation of the project thatlast_response.body

should have been created.
When you run this testbin/rspec spec/api/v1/projects_spec.rb

will fail, because you've yet to implement the action for its controller:create

You'll need to implement this action to make the spec pass. Let's open up
app/controllers/api/v1/projects_controller.rb and add this action underneath your

 it "successful JSON" do
 post "#{url}.json", :token => token,
 :project => {
 :name => "Inspector"
 }

 project = Project.find_by_name!("Inspector")
 route = "/api/v1/projects/#{project.id}"

 last_response.status.should eql(201)
 last_response.headers["Location"].should eql(route)
 <co id="ch13_431_1"/>
 last_response.body.should eql(project.to_json)
 end
end

Failure/Error: post "#{url}.json", :token = token,
 The action 'create' could not be found for Api::V1::ProjectsController

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

544

Licensed to <alex@vinova.sg>

http://example.com/api/v1/projects
http://www.manning-sandbox.com/forum.jspa?forumID=818

 action, using the code shown in Listing 13.9.index

Listing 13.9 Api::V1::ProjectsController, create method

By attempting to save a project, your application will run the validations set up
in the model. If this succeeds, then the status that will be returned willProject

be and you'll get back the proper representation (either JSON or XML) of the201

new project. On the final line of this action, you manually set the keyLocation

in the headers by passing through the option so that it points to:location

t he co r r ec t URL o f some th ing such a s
, rather than the Rails defaulthttp://example.com/api/v1/projects/1

of . People who are using your API canhttp://example.com/projects/1

then store this location and reference it later on when they wish to retrieve
information about the project. The URL that Rails defaults to goes to the
user-facing version of this resource (/projects/1.json), which is incorrect.

If the project isn't valid (i.e. if the method returns), then yousave false

simply let Rails return a response that will contain the errors of the project, without
having a custom location set.

This should be all that you need in order to get your spec to pass, so let's see
what happens when you run bin/rspec

.spec/api/v1/projects_spec.rb

Great! Now you need to write a test to check that when you attempt to pass
through a project with no name we're given a 422 status code and an error along

def create
 project = Project.new(params[:project])
 if project.save
 respond_with(project, :location => api_v1_project_path(project))
 <co id="ch13_485_1"/>
 else
 respond_with(project)
 end
end

3 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

545

Licensed to <alex@vinova.sg>

http://example.com/api/v1/projects/1
http://example.com/projects/1
http://www.manning-sandbox.com/forum.jspa?forumID=818

with it, indicating that the project wasn't created due to those errors. Directly
underneath the previous test in spec/api/v1/projects_spec.rb you'll add this test
shown in Listing 13.10.

Listing 13.10 Unsuccessful creation example

Naughty us, writing the test after the code is already there, but you can get
away with it once. Let's run the spec and see how it goes now:

Great success! With this URL working for valid and non-valid projects
appropriately, you are now providing a way for your users to create a project
through the API, and so it's time to make a commit:

Our next task is to restrict this action to only the admins of your application,
like in the real controller. You want to limit the numberProjectsController

of people who can change the projects to a select few who know what they're
doing.

it "unsuccessful JSON" do
 post "#{url}.json", :token => token,
 :project => {}
 last_response.status.should eql(422)
 errors = {"errors" => {
 "name" => ["can't be blank"]
 }}.to_json
 last_response.body.should eql(errors)
end

4 examples, 0 failures

git add .
git commit -m "Add API to create projects"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

546

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In app/controllers/projects_controller.rb you've got this line, which restricts some
actions to only admins:

As it says on the line, every action other than or has this filter runindex show

before it. This filter is defined in app/controllers/application_controller.rb like this:

You're not going to be able to use this same for your APIbefore_filter

because the API doesn't return flash messages. You have to return errors in a
lovely little JSON or XML format. This particular error, for example, is "You must
be an admin." Also, redirection doesn't make sense here, because it wouldn't tell
users they were redirected. Therefore, you'll implement a different why

 method in your instead.authorize_admin! Api::V1::BaseController

You'll take the time, however, to write a test to check for this error occurring. Let's
open a new file at spec/api/v1/project_errors_spec.rb and add a test that if you
attempt to make a POST request to using a token for a userapi/v1/projects

who's an admin, you get an error. Use the code from Listing 13.11.not

Listing 13.11 spec/api/v1/project_errors_spec.rb

13.1.7 Restricting access to only admins

before_filter :authorize_admin!, :except => [:index, :show]

def authorize_admin!
 authenticate_user!
 unless current_user.admin?
 flash[:alert] = "You must be an admin to do that."
 redirect_to root_path
 end
end

require "spec_helper"

describe "Project API errors", :type => :api do
 context "standard users" do
 let(:user) { Factory(:user) }

 it "cannot create projects" do

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

547

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

With this spec, you test that a normal user who's using a valid authenticity
token cannot create a project through the API because they're not an admin.
Instead, the API should return a response of "You must be an admin to do that."
This response should have a of 401, indicating an "Unauthorized" response.code

When you run th is spec us ing bin/rspec

 it will not return the error likespec/api/v1/project_errors_spec.rb

you expect:

To make this error happen, you' l l go into
app/controllers/api/v1/base_controller.rb and underneath your

 method you'll add the methodauthenticate_user authorize_admin!

shown in Listing 13.12.

Listing 13.12 authorize_admin method inside Api::V1::BaseController

 post "/api/v1/projects.json",
 :token => user.authentication_token,
 :project => {
 :name => "Ticketee"
 }
 error = { :error => "You must be an admin to do that." }
 last_response.body.should eql(error.to_json)
 last_response.status.should eql(401)
 Project.find_by_name("Ticketee").should be_nil
 end
 end
end

 expected "{\"error\":\"You must be an admin to do that.\"}"
 got "{[project hash]}"

def authorize_admin!
 if !@current_user.admin?
 error = { :error => "You must be an admin to do that." }
 warden.custom_failure! <co id="ch13_548_1"/>
 render params[:format].to_sym => error, :status => 401
 <co id="ch13_548_2"/>
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

548

Licensed to <alex@vinova.sg>

mailto:!@current_user.admin?
http://www.manning-sandbox.com/forum.jspa?forumID=818

Here you use to inform Warden (the Rackwarden.custom_failure!

backend to Devise) that you're going to raise a custom 401 response. Without this,
Devise would instead take over from this 401 response, showing a "You must be
signed in to continue" error message.

You also use the method in a unique manner here. You call it and passrender

in a hash with the key being a symbolized version of the format (in this case,
) and the value being the hash that contains the error. By calling injson render

this way, Rails will convert the hash to JSON, or if it were an XML request, to
XML. The reason for doing it this way rather than using isrespond_with

because will attempt to do some weird behavior and doesn'trespond_with

work for POST requests, so you must work around that little issue.
By specifying the option to the here, your response'sstatus render

status code will be set to that particular status, which will let the code used to
connect to the API know that the user is unauthorized to perform the specific
request.

Now all you need to do is add this as a intobefore_filter

app/controllers/api/v1/projects_controller.rb using this line:

With this line now in the , any request to any actionProjectsController

that's not the or action will have the admin check run before it. If aindex show

user doesn't meet this criteria, then you will return the "You must be an admin to
do that" error. These pieces of code should now be enough to get your test running,
s o l e t ' s f i n d o u t w i t h bin/rspec

:spec/api/v1/project_errors_spec.rb

Now when people who aren't admins try to create a project, they will see the
"You must be an admin to do that" error message returned from the API and the

before_filter :authorize_admin!, :except => [:index, :show]

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

549

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

project won't be created. You can see this happen when you run the final
 block of spec/api/v1/projects_spec.rb when you run context bin/rspec

spec/api/v1/projects_spec.rb:45

Because this is now the case, you'll need to set up the user in the projects API
examples to be an admin when they attempt to create a project, which you can do
by putting this after the beginning of the "creating a project" contextbefore

block:

When you run all thebin/rspec spec/api/v1/projects_spec.rb

examples will be passing:

With this new authorization added you will make a commit, but before that
you'll run a customary check to make sure everything is still alright by running

. You should see this output:rake spec

Great, so let's go ahead and commit this then:

Failure/Error: project = Project.find_by_name!("Inspector")
ActiveRecord::RecordNotFound:
 Couldn't find Project with name = Inspector

 before do
 user.admin = true
 user.save
 end

4 examples, 0 failures

93 examples, 0 failures

git add .

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

550

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In the response for your action, the headers point to a location (youcreate

customized) of a project, something such as http://example.com/api/v1/projects/1.
Currently, this URL doesn't anywhere because it needs the action togo show

exist. You should probably get on to that.

You've got a link (http://example.com/api/v1/projects/1) provided by your
 action that doesn't go anywhere if people try to access it. Soon this URLcreate

will show a particular project's attributes through the action in your show

. Within those attributes, you'll also showApi::V1::ProjectsController

a element, which will contain the attributes for the most recentlylast_ticket

updated ticket. To do this, you'll be using another option of , the respond_with

 option. Using this option will change the output of each project:methods

resource in your JSON API to something like this:

Using the method, people using the API will be able tolast_ticket

discover when the last activity was on the project. You could add other fields such

git commit -m "Only admins are able to create projects through API"
git push

13.1.8 A single project

{
 "project": {
 "created_at": "[timestamp]",
 "id": 1,
 "name": "Ticketee",
 "updated_at": "[timestamp]",
 "last_ticket": {
 "ticket": {
 "asset_updated_at": null,
 "created_at": "[timestamp]",
 "description": "A ticket, nothing more.",
 "id": 1,
 "project_id": 1,
 "state_id": null,
 "title": "A ticket, nothing more.",
 "updated_at": "[timestamp]",
 "user_id": 2
 }
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

551

Licensed to <alex@vinova.sg>

http://example.com/api/v1/projects/1
http://example.com/api/v1/projects/1
http://www.manning-sandbox.com/forum.jspa?forumID=818

as the comments too if you wished, but this example is kept simple for quality and
training purposes.

To get started with this action, you'll write a test inshow

spec/api/v1/projects_spec.rb for it as shown in the following listing.

Listing 13.13 show action test for spec/api/v1/projects_spec.rb

You're using the method that was set up by the "projects viewable byproject

this user" block earlier to generate the URL to a resource, ascontext Project

well as using it to create a new ticket for this project so that last_ticket

returns something of value. You take this URL and do a JSON request on it, and
you expect to get back a JSON representation of the object with the

 method being called and also returning data. Then you check thatlast_ticket

the response's status should be 200, indicating a good request, and finally you
check that the last ticket title isn't blank.

To make this test pass you'll open app/controllers/api/v1/projects_controller.rb
and add in the action, as shown in Listing 13.14.show

Listing 13.14 app/controllers/api/v1/projects_controller.rb

context "show" do
 let(:url) { "/api/v1/projects/#{@project.id}"}

 before do
 Factory(:ticket, :project => @project)
 end

 it "JSON" do
 get "#{url}.json", :token => token
 project_json = @project.to_json(:methods => "last_ticket")
 last_response.body.should eql(project_json)
 last_response.status.should eql(200)

 project_response = JSON.parse(last_response.body)

 ticket_title = project_response["last_ticket"]["title"]
 ticket_title.should_not be_blank
 end
end

def show

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

552

Licensed to <alex@vinova.sg>

mailto:@project.to_json(:methods
http://www.manning-sandbox.com/forum.jspa?forumID=818

In this action, you find the based off the value andProject params[:id]

then this object, asking it to call the method. Ifrespond_with last_ticket

this method is undefined (like it is right now), then the method will not be called at
all . When you run this test with bin/rspec

, you'll see this error:spec/api/v1/projects_spec.rb

The error occurs because you're attempting to call the method on something[]

that is , and it's really likely that the something is the hashnil last_ticket

contained within the project's response, which doesn't exist yet because the method
is not defined on instances. If a method is not defined but is specified asProject

a method to be provided through a method, then that undefinedrespond_with

method will be ignored.
To define this method, open app/models/project.rb and add this method inside

the class:

Why are you doing it this way? Well, doesn't let you chainrespond_with

methods, and so you'll work around this by defining a method that calls the chain
in your model . When you run bin/rspec

, this test will pass because the spec/api/v1/projects_spec.rb

 method is now defined:last_ticket

 @project = Project.find(params[:id])
 respond_with(@project, :methods => "last_ticket")
end

Failure/Error: ticket_title = last_response ...
 You have a nil object when you didn't expect it!
 You might have expected an instance of Array.
 The error occurred while evaluating nil.[]

def last_ticket
 tickets.last
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

553

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Great! Now the action is responding with data similar to this:show

How goes the rest of your application? Let's find out with a quick run of rake

:spec

Ok, that's good to see, time to make a commit:

Back in the main part of the application, you've got permissions on users that
restrict which projects they can see. Currently in the API there is no such
restriction, and so you need to add one to bring it in line with how the application

1 example, 0 failures

{
 "created_at": "[timestamp]",
 "id": 1,
 "name": "Ticketee",
 "updated_at": "[timestamp]",
 "ticket": {
 "asset_updated_at": null,
 "created_at": "[timestamp]",
 "description": "A ticket, nothing more.",
 "id": 1,
 "project_id": 1,
 "state_id": null,
 "title": "A ticket, nothing more.",
 "updated_at": "[timestamp]",
 "user_id": 2
 }
 }
}

94 examples, 0 failures

git add .
git commit -m "Add API action for a single project with last ticket"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

554

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

behaves.

Currently, any user can see the details of any project through the API. The main
application enforces the rule that users without permission to view a project are not
able to do so. To enforce this rule in your API as well, you use the

 method:find_project

Here you use the method, which will return a scope for all projectsfor

viewable by the current user. By calling on this scope, if the user doesn'tfind

have access to the project then an ActiveRecord::RecordNotFound

exception will be raised. You then this exception and lie to the user,rescue

telling them the project is mysteriously gone . Much like the 12

 method you ported over before, you can't set the flashauthorize_admin!

notice or redirect here. Instead, you're going to have to present an API error like

you did before .13

Footnote 12 It's not really.m

Footnote 13 While this may seem like repetition (which it is), it's part of the project's API and will help youm
understand the concepts better. Practice, practice, practice! It makes perfect prefects.

To test this new , you'll write a newbefore_filter :authorize_user

test in spec/api/v1/project_errors_spec.rb where a user without permission on a
project attempts to view it, only to be rebuked by the server with an error. This test
should be placed inside the "standard users" block, and is shown incontext

Listing 13.15

Listing 13.15 cannot view projects test

13.1.9 No project for you!

def find_project
 @project = Project.for(current_user).find(params[:id])
rescue ActiveRecord::RecordNotFound
 flash[:alert] = "The project you were looking for could not be found."
 redirect_to projects_path
end

it "cannot view projects they do not have access to" do
 project = Factory(:project)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

555

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

When the user attempts to go to the show page, they should receive the error
informing that the project has run away (or doesn't exist). The status code for this
response should be 404, indicating the resource the user was looking for is not
found. To make this work, you'll remove this line from the action inshow

app/controllers/api/v1/projects_controller.rb

Then you'll put this line under the filter inside thisauthorize_admin!

controller's class:

Next, you need to add the after the action as a privatefind_project show

method, as shown in Listing 13.16.

Listing 13.16 Api::V1::ProjectsController, find_project method

Here you respond with the error message and set the status to 404 to tell the

 get "/api/v1/projects/#{project.id}.json",
 :token => user.authentication_token
 error = { :error => "The project you were looking for" +
 " could not be found." }
 last_response.status.should eql(404)
 last_response.body.should eql(error.to_json)
end

project = Project.find(params[:id])

before_filter :find_project, :only => [:show]

private

def find_project
 @project = Project.for(current_user).find(params[:id])
 rescue ActiveRecord::RecordNotFound
 error = { :error => "The project you were looking for " +
 "could not be found."}
 respond_with(error, :status => 404)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

556

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

user that the project doesn't exist. When you run bin/rspec

 your spec will pass:spec/api/v1/project_errors_spec.rb

You're now restricting the projects that a user can access to only the ones they
have permission to view. If the API user doesn't have the permission, you'll deny
all knowledge of the project and return a 404 status code. It's quite grand how this
is possible in such few lines of easy-to-understand code.

You'll run all the specs now to make sure everything's rosy with .rake spec

You should see that it's all green:

Edging ever closer to 100 examples! A commit you shall make:

Currently you've got the , , and actions implemented forindex show create

your controller. What's missing? Well, you could say the , , ,new edit update

and actions are, but you don't need the and actions, becausedestroy new edit

this should be handled on the client side of the API, not the server. It is the client's
duty to present the new and edit dialogs to the user. Therefore, you only need to
implement the and methods and then you're done with thisupdate destroy

API. So close!

To update a project in the API, people will need to make a POST request to the
 URL with the project's new information contained in/api/v1/projects/:id

a hash. Simple, really.params[:project]

2 examples, 0 failures

95 examples, 0 failures

git add .
git commit -m "Restricting projects API show to only users
 who have permission to view a project"
git push

13.1.10 Updating a project

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

557

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

To test that this action works correctly, you'll add yet another spec to
spec/api/v1/projects_spec.rb using the code from Listing 13.17

Listing 13.17 updating a project test

At the top of this new block, you've defined that the user is an admincontext

again. You could wrap the and tests within another context thatcreate update

sets this flag too, but you'll do it this way for now.
You need to make a request to this action for Rails to accept it, and youput

can do that by using the method . Along with this request, you send the put

 and parameters. The parameter contains a new nametoken project project

for this project. Because it's a valid (non-blank) name, the response's status code
will be 204 indicating that the request was processed and no content is to be
returned. This request doesn't return an updated object, because what's the point?
The client should be aware of the updates which have occurred, given it triggered
them!

At the end of this spec, you use the method to find this object againreload

from the database. This is because the object that the spec is working with will be a

context "updating a project" do
 before do
 user.admin = true
 user.save
 end

 let(:url) { "/api/v1/projects/#{@project.id}" }
 it "successful JSON" do
 put "#{url}.json", :token => token, <co id="ch13_731_1"/>
 :project => {
 :name => "Not Ticketee"
 }

 last_response.status.should eql(204)
 last_response.body.should eql("")

 project.reload
 project.name.should eql("Not Ticketee")
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

558

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

completely different Ruby object from the one in the action in theupdate

controller. By calling , Rails will fetch the data for this object again fromreload

the database and update the object in the process.
To begin with writing this action in ,Api::V1::ProjectsController

you're going to need to first modify the before_filter :find_project

line to include the action, changing it from this:update

To this:

Now in the action you'll have a project that you can work withupdate

because this will find it for us. Next, you'll write this actionbefore_filter

into the controller using the code from Listing 13.18

Listing 13.18 update action of Api::V1::ProjectsController

Well isn't this quite a difference from your standard actions? You onlyupdate

need to call here, which will save the object and return aupdate_attributes

valid object in the format that you've asked for. If this object fails validation, the
status code returned by will be 422, which represents anrespond_with

"Unprocessable Entity," and the body would contain only the validation errors that
occurred. If the object is valid, will return a 200 status code, butrespond_with

an empty response. This is because the client should be aware of what changes it
has made to the object, and so there's no need to send back the object.

So which is it? Does the action work and return the 200 status codeupdate

before_filter :find_project, :only => [:show]

before_filter :find_project, :only => [:show, :update]

def update
 @project.update_attributes(params[:project])
 respond_with(@project)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

559

Licensed to <alex@vinova.sg>

mailto:@project.update_attributes
http://www.manning-sandbox.com/forum.jspa?forumID=818

you want, or does it break? It's easy to find out: bin/rspec

.spec/api/v1/projects_spec.rb

All working, good stuff. You've now got a check that the actionupdate

responds correctly when a valid object is given, but what if invalid parameters are
given instead? Well, the action should return that 422 response mentioned earlier.

Although this is testing the already extensively tested Rails behavior, you're14

making sure that this action always does what you think it should. No misbehaving
allowed! You'll quickly whip up a spec for this, placing it right underneath the
previous example, "successful JSON" that you wrote in
spec/api/v1/projects_spec.rb. The code for it is shown in Listing 13.19

Footnote 14 It's tested within Rails itselfm

Listing 13.19 Unsuccessful updating test

In this example, you attempt to set the project's name to a blank string, which
should result in the 422 error you want to see. After you the project, thereload

name should be the same. You should then get the 422 error as the response.
A quick run of shouldbin/rspec spec/api/v1/projects_spec.rb

let you know if this is working:

5 examples, 0 failures

it "unsuccessful JSON" do
 put "#{url}.json", :token => token,
 :project => {
 :name => ""
 }
 last_response.status.should eql(422)
 errors = { :errors => { :name => ["can't be blank"] } }
 last_response.body.should eql(errors.to_json)
end

7 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

560

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Indeed it is! Is everything else working? A run of will let yourake spec

know:

"97 examples, 0 failures" is exactly what you like to see. That means that your
 action is all wrapped up, and now it's time for a commit:update

You've now got 3/4ths of the CRUD of this API. You're able to create, read and
update project resources. With updating, clients authorized with an admin's token
can send through updates to the project resource, which will update the information
in the application. The one remaining action you've got to implement is the

 action, for making projects go bye-bye. You're almost home!destroy

You need to create the action, which allows admins of Ticketee todestroy

delete projects through the API. To do this, API clients need to make a DELETE
request to or ./api/v1/projects/1.json /api/v1/projects/1.xml

Upon making this request, the specified project will be deleted–gone forever,
exterminated!

You'll write the final example in the spec/api/v1/projects_spec.rb to make sure
that people are able to delete projects using this route. You'll use the code from
Listing 13.20 to do this.

Listing 13.20 deleting a project test

97 examples, 0 failures

git add .
git commit -m "Implement update action for projects API"
git push

13.1.11 Exterminate!

context "deleting a project" do
 before do
 user.admin = true
 user.save
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

561

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In this test you make a request as an admin to the DELETE

 route. Once this request is over, the HTTP status/api/v1/projects/1

returned from it will be , indicating that there's no content for this reply and204

that the deletion was a success. This is the same status code that was returned when
you made a successful update request.

When you run , thisbin/rspec spec/api/v1/projects_spec.rb

spec will fail because the action doesn't exist:destroy

You need to add the action to the destroy

, which you can do with this code:Api::V1::ProjectsController

The here will respond with a 200 status code and an emptyrespond_with

JSON or XML response, which indicates the object was successfully destroyed.
But where does come from? Our should set this@project before_filter

up, but it doesn't right now. Let's fix it by changing it from this:

 let(:url) { "/api/v1/projects/#{project.id}" }
 it "JSON" do
 delete "#{url}.json", :token => token
 last_response.status.should eql(204)
 end
end

Failure/Error: delete "#{url}.json", :token => token
The action 'destroy' could not be found for Api::V1::ProjectsController

def destroy
 @project.destroy
 respond_with(@project)
end

before_filter :find_project, :only => [:show,
 :update]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

562

Licensed to <alex@vinova.sg>

mailto:@project.destroy
http://www.manning-sandbox.com/forum.jspa?forumID=818

To this:

When you run , does itbin/rspec spec/api/v1/projects_spec.rb

pass?

It does, because you're great at what you do! That's the final piece of the
projects API, and now people are able to create, read, update and delete projects
through it. The rest of your specs probably pass because you didn't change
anything outside the scope, but it's still good to do a check. Run now.rake spec

For this command, you should see this output:

All systems are go, so let's make a commit at this lovely point in time where
everything is beautiful:

The entire projects API is now complete. What you've got at the moment is a
solid base for version 1 of Ticketee's projects API. You'll now see how you can
begin creating the nested API for tickets on a project.

before_filter :find_project, :only => [:show,
 :update,
 :destroy]

8 examples, 0 failures

98 examples, 0 failures

git add .
git commit -m "Projects can now be deleted through the API"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

563

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In this section you'll begin to create an API for tickets on a project. You're only
going to be creating the part of the API to list tickets for now, as the remaining
parts are similar in style to what you saw with the projects API. This section will
give you a taste of how to work with nested resources within the context of an API.

The first part you're going to need for this API is two tests: one to make sure
you can get XML results back from this API and another for JSON results. You're
going to put these new tests in a new file at spec/api/v1/tickets_spec.rb, beginning
with the setup required for both of these tests shown in Listing 13.21

Listing 13.21 beginning of spec/api/v1/tickets_spec.rb

With this setup, you can begin the for your action and thencontext index

in a block, create 5 tickets for the project by using these lines after the before

 line:let!(:project)

Finally, you can write the XML and JSON tests by placing the code shown in
Listing 13.22 inside the block you have written.context "index"

13.2 Beginning the Tickets API

require 'spec_helper'

describe "/api/v1/tickets", :type => :api do
 let!(:project) { Factory(:project, :name => "Ticketee") }
 let!(:user) { Factory(:user) }

 before do
 user.permissions.create!(:action => "view",
 :thing => project)
 end

 let(:token) { user.authentication_token }

context "index" do
 before do
 5.times do
 Factory(:ticket, :project => project, :user => user)
 end
 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

564

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 13.22 spec/api/v1/projects_spec.rb

You've defined the here to point to the nested route for tickets oflet(:url)

a given project. This URL is currently undefined and so when you run this test
with , you'll get told thatbin/rspec spec/api/v1/tickets_spec.rb

the route you're requesting doesn't exist:

You can define this route easily inside config/routes.rb by changing these lines:

To this:

context "index" do
 ...

 let(:url) { "/api/v1/projects/#{project.id}/tickets" }

 it "XML" do
 get "#{url}.xml", :token => token
 last_response.body.should eql(project.tickets.to_xml)
 end

 it "JSON" do
 get "#{url}.json", :token => token
 last_response.body.should eql(project.tickets.to_json)
 end
end

Failure/Error: get "#{url}.json", :token => token
 ActionController::RoutingError:
 No route matches [GET] "/api/v1/projects/1/tickets.json"

namespace :api do
 namespace :v1 do
 resources :projects
 end
end

namespace :api do
 namespace :v1 do

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

565

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Now you've got the resource nested within projects for your APItickets

again. When you re-run this spec you'll be told this:

You can create this controller by creating a new file at
app/controllers/api/v1/tickets_controller.rb. This controller needs to first of all
respond to both JSON and XML, and find the project for each request using a

. You can begin to define this controller using the code frombefore_filter

Listing 13.23

Listing 13.23 app/controllers/api/v1/tickets_controller.rb

In the beginning, you set up the controller to inherit from
 so that it inherits the basic behavior of yourApi::V1::BaseController

API, providing the controller with the method which it usescurrent_user

 resources :projects do
 resources :tickets
 end
 end
end

uninitialized constant Api::V1::TicketsController

class Api::V1::TicketsController < Api::V1::BaseController

 before_filter :find_project

 private
 def find_project
 @project = Project.for(current_user).find(params[:project_id])
 rescue ActiveRecord::RecordNotFound
 error = { :error => "The project you were looking for" +
 " could not be found."}
 respond_with(error, :status => 404)
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

566

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

inside the method. Then you define a find_project before_filter

 that will find a project, providing that the user is able to access:find_project

it. If the user cannot access it, then you a 404 error.respond_with

Underneath the in this controller, you need to define the before_filter

 action to return a list of tickets for your project. You can do that with theindex

code shown in Listing 13.24

Listing 13.24 app/controllers/api/v1/tickets_controller.rb

That like you're getting too much for free, doesn't it? Rails is handling afeels
lot of the actions here for us. When you run bin/rspec

 specs again, your tests will now passspec/api/v1/tickets_spec.rb

because you've got the controller defined correctly:

This is a great start to generating a tickets API, and now with the skills you've
learned a little earlier in this chapter you should be able to bash out the rest with
little effort. Rather than covering that old ground again, it'll be left as an exercise to
the reader.

Let's run all the tests with to make sure you didn't break anything:rake spec

Nope, nothing broken there which is awesome to see. Oh and hey look at that,
100 examples! Nice work! Time for a commit:

def index
 respond_with(@project.tickets)
end

2 examples, 0 failures

100 examples, 0 failures

git add .

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

567

Licensed to <alex@vinova.sg>

mailto:respond_with(@project.tickets
http://www.manning-sandbox.com/forum.jspa?forumID=818

You should probably limit the number of tickets that are sent back through the
API or, even better, cache the result. You'll see ways to do both of these things in
chapter 16, and then you can apply them to the API when you feel it's right. For
now, it would be fine for a project with a small amount of tickets, but if a project

grew to something say, the size of the Rails project then it would be problematic15

because your application would have to instantiate thousands of new Ticket

objects per-request. That's no good.

Footnote 15 7,500 tickets, as of this writingm

Now that you're versed in the Ways of the API, you can tackle potential
problems with it. One of the potential problems with this API is that you'll have too
many users accessing it all at once, which may cause performance problems with
the application. To prevent, this you'll implement the rate of requests people can
make to your server.

When a server receives too many requests, it can seem unresponsive. This is
simply because it is too busy serving existing requests to serve the hoard of
incoming requests. This can happen when an application provides an API to which
many clients are connecting. To prevent this, you'll implement rate-limiting on the
API side of things, limiting users to only 100 API requests per hour.

The way you're going to do this is to add a new field to the users table that
stores a count of how many requests the user has made per hour. To reset the user's
count back to 0, you'll create a method that finds only the users who've made
requests in the last hour and reset their counts.

Currently in app/controllers/api/v1/base_controller.rb you've got code that only
checks if the token specified is correct, and if so, assigns a user to the

 variable:@current_user

git commit -m "Add beginnings of the V1 Tickets API"
git push

13.3 Rate limiting

13.3.1 One request, two request, three request, four

def authenticate_user
 @current_user = User.find_by_authentication_token(params[:token])
 unless @current_user
 respond_with({ :error => "Token is invalid." })

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

568

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You'll now be able to do whatever you wish to this user object in an API
request. First, you're going to make sure that it's incrementing the request count for
a user whenever they make an API request. For this, you're going to need a field in
the database to keep a track of user API requests. You'll generate a migration using
this command:

This migration will do exactly what you say it should do: add a field called
 to the table. You'll need to modify this migrationrequest_count users

slightly so that the field defaults to 0, which you can do by replacing this line in the
new migration:

with this:

You can run these two commands to run this migration, and then you'll be on
your way:

You can now write a test to make sure that the request count is going to be
incremented with each request. You'll open a new file at
spec/api/v1/rate_limit_spec.rb so that you can separate these tests from the others,

 end
end

rails g migration add_request_count_to_users request_count:integer

add_column :users, :request_count, :integer

add_column :users, :request_count, :integer, :default => 0

rake db:migrate
rake db:test:prepare

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

569

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

as they are not part of the projects API or the errors from it. Into this file you'll put
the code from Listing 13.25

Listing 13.25 spec/api/v1/rate_limit_spec.rb

When you run this spec now with bin/rspec

, it's going to fail on the final linespec/api/v1/rate_limit_spec.rb

because the request count hasn't been incremented:

Alright, now that you've got a failing test, you can make it work! To do that,
you're going to need to make the request count for the user increment every time
they make a request through the API. Open
app/controllers/api/v1/base_controller.rb and add in a new method called

 right underneath the method. Thischeck_rate_limit current_user

method will just increment the field for the current user andrequest_count

uses this code:

require 'spec_helper'

describe "rate limiting", :type => :api do
 let(:user) { Factory(:user) }

 it "counts the user's requests" do
 user.request_count.should eql(0)
 get '/api/v1/projects.json', :token => user.authentication_token
 user.reload
 user.request_count.should eql(1)
 end
end

Failure/Error: user.request_count.should eql(1)

 expected 1
 got 0

 (compared using eql?)

def check_rate_limit
 @current_user.increment!(:request_count)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

570

Licensed to <alex@vinova.sg>

mailto:@current_user.increment!(:request_count
http://www.manning-sandbox.com/forum.jspa?forumID=818

By calling the method on the user object, the field specified willincrement!

be incremented once. To call this method, you'll put it as another
 underneath the one at the top of thisbefore_filter authenticate_user

controller:

That's all there is to it, and so it will pass when you run bin/rspec

:spec/api/v1/rate_limit_spec.rb

Which is splendid. Before you run any more specs or make any commits, you'll
do what you came here to do: limit some rates.

You've got the method called , but it's not actually doingcheck_rate_limit

any checking right now, it's only incrementing. You should do something about
this.

You'll begin by writing a test to check that people who reach the rate limit (of
100) receive a warning that tells them simply "Rate limit exceeded." You'll put this
new test underneath the previous test you wrote in spec/api/v1/rate_limit_spec.rb
using the code from Listing 13.26.

Listing 13.26 Rate limiting test

end

before_filter :check_rate_limit

1 example, 0 failures

13.3.2 No more, thanks!

it "stops a user if they have exceeded the limit" do
 user.update_attribute(:request_count, 101)
 get '/api/v1/projects.json', :token => user.authentication_token
 error = { :error => "Rate limit exceeded." }
 last_response.status.should eql(403) <co id="ch13_900_1"/>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

571

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

In this spec, you set the request count to be one over the 100 limit. If the user
makes another request, they should see the "Rate limit exceeded" error. For the
status in this spec, you're expecting the error to be set to a , which would403

indicate a forbidden request that is perfectly in line with the no, we're not going to
 theme you've got going on.let you make any more requests

To make this work you'll change the method incheck_rate_limit

app/controllers/api/v1/base_controller.rb to what is shown in Listing 13.27

Listing 13.27 check_rate_limit method of Api::V1::BaseController

In this method, if the user's current is greater than 100, thenrequest_count

you respond with the "Rate limit exceeded" error and set the status code of the
response to 403, meaning "Forbidden". If it's less than 100, then you'll increment
their request count. This should be enough to make your spec pass now, so let's run

 and find out if this isbin/rspec spec/api/v1/rate_limit_spec.rb

working:

Our API is now limiting requests to 100 per user, but that's for all time right
now, which isn't fun. So you're going to need a method that will reset the request
count for all users who've made requests. It's the final step you need to complete
the rate limiting part of your API.

 last_response.body.should eql(error.to_json)
end

def check_rate_limit
 if @current_user.request_count > 100
 error = { :error => "Rate limit exceeded." }
 respond_with(error, :status => 403)
 else
 @current_user.increment!(:request_count)
 end
end

2 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

572

Licensed to <alex@vinova.sg>

mailto:@current_user.request_count
mailto:@current_user.increment!(:request_count
http://www.manning-sandbox.com/forum.jspa?forumID=818

You need to reset the of each user who's made a request torequest_count

your API. This will be a method on the model, and so you'll put its test in aUser

new file as spec/models/user_spec.rb file, inside the block,describe User

using the code from Listing 13.28

Listing 13.28 spec/models/user_spec.rb

With this spec, you set a new user's request count to something other than 0. 42

is a random number , and you're quite fortunate for it to exist so that you can use16

it. The method isn't defined, but as the remainder ofreset_request_count!

the test implies, the user's request count should be 0. This test will fail when you
run it with because the bin/rspec spec/models/user_spec.rb

 method does not exist:reset_request_count!

Footnote 16 Not really.m

As the method is called on , you'll bereset_request_count! User

defining this method in app/models/user.rb. This method will need to reset the
 attribute for all users, and can acheive this goal by using thisrequest_count

code, placed above the method inside the class:to_s User

13.3.3 Back to zero

require 'spec_helper'

describe User do
 it "resets user request count" do
 user = Factory(:user)
 user.update_attribute(:request_count, 42)
 User.reset_request_count!
 user.reload
 user.request_count.should eql(0)
 end
end

Failure/Error: User.reset_request_count!
NoMethodError:
 undefined method `reset_request_count!' for ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

573

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You're placing this code right above the method because it is bestto_s

practice to place class methods (such as) abovereset_request_count!

instance methods in a model, as some instance methods may refer to class
methods. Also, if everybody puts their code in logical places, then you won't be
confused when you look at it, which is what Rails is all about.

The method here will set the on all userupdate_all request_count

records (the first argument) that have a (the secondrequest_count > 0

argument), or a greater than 0. No point resetting counts thatrequest_count

are zero back to zero.
Now that the method is defined, does it work asreset_request_count!

your test says it should? Well, let's run bin/rspec

:spec/models/user_spec.rb

Cool, so now you've got the request count being reset for all users whenever
this method is called. You'll take a look at calling this method automatically when
we look at background jobs in chapter 16.

That completes everything you need to do for rate limiting in your API. Before
you make a commit you'll run all the specs with the to see if the APIrake spec

is still working:

All good! You can commit this now.

def self.reset_request_count!
 update_all("request_count = 0", "request_count > 0")
end

1 example, 0 failures

103 examples, 0 failures

git add .

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

574

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You've implemented a way to stop people from making too many requests to
your API, which will possibly stop your application from being overloaded due to
excessive API requests. Next, you look at how you can implement versioning in
your API.

At the beginning of this chapter, you discussed how all your API routes would be
under the namespace. This was because you wanted to provide a/api/v1/

predictable outcome of the requests to the URLs. If you go changing URLs to
provide extra data or to take away data, some API clients may malfunction. So
when you want to make changes to your API, you group them all up into logical
versions.

With this separation, you can provide a link, such as
, which will return the attributes you're already/api/v1/projects.json

familiar with, as well as another path for the next version. This second version's
path will be and the difference between the two is/api/v2/projects.json

that you'll change the field to be called instead. While this isname title

potentially a trivial example , it's a great case to show off how to make two API17

versions different.

Footnote 17 Also a tiny fraction slower than v1, given you'll be calling a method from within another methodm
rather renaming it

To begin the versioning process, you'll copy these routes from
 in your application:config/routes.rb

And place them beneath, renaming to .v1 v2

git commit -m "Add rate limiting to the V1 API"
git push

13.4 Versioning an API

13.4.1 Creating a new version

namespace :api do
 namespace :v1 do
 resources :projects do
 resources :tickets
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

575

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Now you'll need to create a new directory,app/controllers/api/v2

which you can do by copying into that location.app/controllers/api/v1

You've now got version 2 of your API. You'll need to open these controllers and
replace the multiple occurrences of with .Api::V1 Api::V2

Strangely, version 2 of your API is, right now, identical to version 1 of your
API. That's intentional: a new version of the API should be an improvement, not an
entirely new thing. With this separation, you can modify version 2 of the API how
you please, leaving version 1 alone.

Before deprecate the field in your project responses, you'll write a test toname

make sure that this is gone. This test will now test version 2 of the API, and so
you'll copy over the directory to , also replacingspec/api/v1 spec/api/v2

occurrences of in these files with . The test for the new field willv1 v2 title

now go in spec/api/v2/projects_spec.rb and will test that the projects

 action returns projects with , and not ,viewable by this user title name

using the code from Listing 13.29 to replace the "JSON" example in the "index"
.context

Listing 13.29 spec/api/v2/projects_spec.rb

namespace :api do

 namespace :v1 do
 ...
 end

 namespace :v2 do
 resources :projects do
 resources :tickets
 end
 end
end

context "projects viewable by this user" do

 before do
 Factory(:project, :name => "Access Denied")
 end

 let(:url) { "/api/v2/projects" }
 let(:options) { { :except => :name, :methods => :title } }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

576

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

At the beginning of this test, you need to pass the same options to to_json

as you pass to , as the method generates therespond_with respond_with

same output as .to_json

In the final lines of this test, you're checking that it's now and not title name

that returns the correct project title, and that the key on all projects arename

blank. You'll also need to change the XML test of this method to the code shown in
Listing 13.30.

Listing 13.30 XML test for response of /api/v2/projects request

When you run this test using bin/rspec

, it's broken:spec/api/v2/projects_spec.rb

 it "JSON" do
 get "#{url}.json", :token => token

 body = Project.for(user).to_json(options)

 last_response.body.should eql(body)
 last_response.status.should eql(200)

 projects = JSON.parse(last_response.body)
 projects.any? do |p|
 p["title"] == project.title
 end.should be_true

 projects.all? do |p|
 p["name"].blank?
 end.should be_true
 end
 ...

it "XML" do
 get "#{url}.xml", :token => token

 body = Project.for(user).to_xml(options)
 last_response.body.should eql(body)
 projects = Nokogiri::XML(last_response.body)
 projects.css("project title").text.should eql("Ticketee")
 projects.css("project name").text.should eql("")
end

Failure/Error: last_response.body.should eql(body)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

577

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This is because the field is still being returned by your API. To excludename

this field from your API, you can use the option to :except respond_with

calls. In app/controllers/api/v2/projects_controller.rb the method can nowindex

be altered to this:

The option here will exclude the field from the responses:except name

provided by this API, and the option will call the method (we'llmethods title

define it in a moment), providing that in your API response. You still need to have
the field in your database as it's used in quite a few places in yourname

application. You could change it all now, but this example is purely to show off the
 option and API versioning. A change like that would be recommended:except

over this example, however it's best left as another exercise to the reader.
To make your API respond with the method, you need to define it intitle

app/models/project.rb inside the class like this:Project

Now when you run bin/rspec spec/api/v2/projects_spec.rb

the tests that you edited will pass:

You've seen how you can generate a new version of your API and alter the

 expected "[{[ticket hash without name key]}]"
 got "[{[ticket hash with name key]}]"

def index
 projects = Project.for(current_user)
 respond_with(projects, :except => :name, :methods => :title)
end

def title
 name
end

8 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

578

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

output of it, and the text that your original API (v1) shouldn't be effected, butsays
was it? A great way to check is a quick run of .bin/rspec spec/api/v1

Great, that's all working! A quick run of will confirm yourrake spec

suspicions that nothing is broken.

Awesome stuff. Let's make a new commit:

Alright, so now you've got two versions of your API. Generally, there's much
more than a single change in a new API version, but this is a good start. When you
announce this API to the people who use your application, they can switch their
libraries over to using it immediately, or, ideally, remain using the old version.
After a while, you may elect to turn off the first version of the API, and you would
do that by giving your users considerable notice such as a month, and then
un-defining the routes and deleting the controllers and tests associated with that
version. Out with the old and in with the new, as they say.

That wraps up Chapter 13, "Designing an API."
You've seen here how you can use the module,Rack::Test::Methods

given to you for free by the gem, to test that requests to URLsrack-test

provided by your application return valid API responses in JSON and XML
formats. Users will then be able to make these same requests for their own
applications or libraries to get at the data in your system. What they come up with

15 examples, 0 failures

118 examples, 0 failures

git add .
git commit -m "Implement v2 of the API,
 renaming name to title for projects"
git push

13.5 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

579

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Callbacks, before_save
Rack::Test::Methods module
respond_to
respond_with
respond_with, :except option
respond_with, :methods option

is up to their imagination. In this chapter, we only covered one aspect (projects) for
your API, but with the knowledge found in this chapter you could easily create the
other aspects for tickets, users, states or tags.

In the second section of this chapter you saw how you can limit the request rate
to your API on a per-user basis. Users can make up to 100 requests to your system,
and when they attempt to make their 101st the application denies them the request
and provides a relevant error message. This is to deter people from excessively
using the API, as you do not want your server to become overloaded immediately.

Lastly, you saw how you can generate a new version of your API so that you
can introduce a change, or changes, so as to not break the previous version of the
API. Once an API has been released to the public, its output shouldn't be modified,
as this may affect the libraries referring to it. The easiest way to introduce these
modifications is through a new version, which is what you did. Eventually, you
may choose to deprecate the old API, or you may not. It's really a matter of
personal choice.

Our application's at a pretty great point now and is ready for prime time! To
show it off to the masses, it's best that you put the code on a computer dedicated to
serving the application, rather than running it on some local hardware. In chapter
14, you'll deploy your application to an Ubuntu 10.10 box, learning about the core
components to a deployment software stack as you go.

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

580

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

14
In this chapter we'll deploy your Ticketee application to a new Ubuntu install.
Ubuntu is the preferred operating system for deploying Rails applications, mainly
due to its simplicity of use and easy package management. You don't need to
install another operating system on your computer, we'll be using a product called
Oracle VM VirtualBox.

You'll set up this machine manually so that you can see how all the pieces fit

together. There are automatic tools such Puppet , Chef , Babushka and1 2 3

Gitpusshuten that can do most, if not all, of this setup for us. To cover them all4

adequately in this chapter would turn the chapter into a book. Deployment is an
enormous subject and different people have very different opinions of how it
should be done. This chapter will give you an adequate taste of what parts are
involved in setting up a server, but shouldn't be considered as the be all and end all
of deployment. There are countless ways to skin this cat.

Footnote 1 http://puppetlabs.comm

Footnote 2 http://opscode.com/chef/m

Footnote 3 http://babushka.mem

Footnote 4 http://gitpusshuten.com/m

This chapter covers the following processes:

Setting up a server
Installing RVM and Ruby
Creating a user account
Deploying an application using Capistrano
Setting up a database server using PostgreSQL
Running the application using Nginx and Passenger
Securing the server

Deployment

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

581

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

While this isn't an exhaustive list of everything that needs to be done for
deployment, it is a great start. When you're done, you're going to have a server
that's able to receive requests and return responses from your application like a
normal web server. Let's get into it.

Your first step is to set up the Oracle VirtualBox software on your machine. This
software is free, works on all of the main operating system variants, and provides a
virtual box (or "environment") that you can run another operating system in while
running your current operating system.

As an alternative to VirtualBox you could get a VPS with a paid service such as

Linode Slicehost or Amazon EC2 , which allows you to set up a box with Ubuntu5 6 7

(or any one of a few other operating systems) pre-installed. You could also use

Heroku , which provides free hosting that has read-only access to the file-system .8 9

Each of these services have in-depth guides, which should be used as a primary
reference if you're going to take this path.

Footnote 5 http://linode.comm

Footnote 6 http://slicehost.orgm

Footnote 7 http://aws.amazon.com/ec2/m

Footnote 8 http://heroku.comm

Footnote 9 This would cause the file upload part of Ticketee to fail as it requires write-access. To fix this, youm
would upload images to Amazon S3. Amazon S3 and Paperclip have good enough documentation that this should
be easily figured out.

Either direction is fine. If the latter path is taken, jump straight to Section 2.

Oracle VirtualBox is software that allows you to run another operating system10

inside your main operating system. Coupled with Vagrant --a gem used for11

setting up VirtualBox servers--this is a perfect combination for getting an
experimental server up and running. Vagrant will allow you to download an
operating system image and then sett up VirtualBox in an exceptionally easy
fashion.

Footnote 10 http://virtualbox.orgm

Footnote 11 http://vagrantup.comm

To install VirtualBox, you must first download it from http://virtualbox.org and

14.1 Server setup

14.1.1 Setting up a server using VirtualBox

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

582

Licensed to <alex@vinova.sg>

http://virtualbox.org
http://www.manning-sandbox.com/forum.jspa?forumID=818

install it like a normal program. After that, you need to install the vagrant gem,12

which you can do by running this command:

Footnote 12 m However if you're on Windows XP you may encounter issues where it claims to have not been
verified correctly. This is a known problem. If you skip the errors, it will still work.

Now that you've got VirtualBox and Vagrant, you can install Ubuntu using
Vagrant. This is the operating system that you'll use to run your server. This file is
pretty large (over 500 MB) and may not be good for some connections. As an
alternative, you would recommend using a VPS, as suggested in the introductory
text.

This command will download Ubuntu Lucid Lynx (10.04) which you can use as
a perfectly-fine base to set up your server. To start up this server, you need to
create a new folder called ubuntu (the name isn't important and could be anything),
where the configuration of your server will be stored. You can then run vagrant

 and to boot it and connect to it through SSH. Altogether:up vagrant ssh

The command will take a couple of minutes to run, but the commandup ssh

should be instantaneous after that.

NOTE Stopping your servers
If at any point you wish to shut down your server, you can use the

 command.vagrant halt

gem install vagrant

vagrant box add base http://files.vagrantup.com/lucid32.box

mkdir ubuntu
cd ubuntu
vagrant init
vagrant up
vagrant ssh

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

583

Licensed to <alex@vinova.sg>

http://files.vagrantup.com/lucid32.box
http://www.manning-sandbox.com/forum.jspa?forumID=818

This is how you connect to servers in the real world, except you would use a
command such as this:

The is a good-enough "analogy" to that. By running vagrant ssh vagrant

 you connect to your server as the user . This user has administrativessh vagrant

(or more commonly referred to as "root") access on this box, and so you're able to
install the packages that you need.

If you're using a non-Vagrant machine, you'll first need to set up a user for

yourself rather than operating as the root user, as this can be dangerous . To do13

this, use this command (replacing "user" with a username such as 'ryan'):

Footnote 13 m For example, if you were running a script as the root user and that script attempted to delete the
 directory, the command would execute. By executing commands as non-root, you save yourself some/usr

potential damage from malevolent scripts. This is because the user will only have access to some directories, rather
than , which has access to everything.root

This command will create a directory at /home/user and set this user's home
path to that directory. This is done with the and options, respectively. Next,-m -d

the command sets the user's shell to —which is the default shell of/bin/bash

Unix operating systems—using the option. Near the end of this command, the -s

 option specifies that this user will be a part of the "sudo" group, which will let-g

the user execute commands using , a kind of super-user command. This partsudo

is important because you'll need these permissions to set up your server. At the end
of the command, you specify the username of this new user.

Next, you need to set a password for this user, which you can do with this
command:

ssh username@some-server.somewhere.com

sudo useradd -d /home/user -m -s /bin/bash -g sudo user

passwd user

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

584

Licensed to <alex@vinova.sg>

mailto:username@some-server.somewhere.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

You need to enter the new password for this user twice, and then you're done.
You mustn't forget the password, otherwise you'll have to reset it as the user.root

With that done, let's switch into this user by using this command:

Now you're all set up to go about installing the different software packages
you'll need to get your server up and running.

The majority of software packages are installed on Ubuntu using a system called
Aptitude. You can install packages from their source code too, if you wish (with
the help of a package called , which contains the build toolsbuild_essential

you need). These Aptitude packages are downloaded from a package repository
and then installed for you. To ensure that the list of these packages are up-to-date,
run this command:

This command goes through the list of sources, connecting to each of them and
downloading a package list that is then cached by Ubuntu. When you go to install a
package (your next step), Ubuntu will reference these lists to find the packages and
the necessary dependencies for them.

Once this command is complete, continue these up by configuring RVM and
creating a deploy user.

RVM is short for "Ruby Version Manager" and provides a simple way to install
and maintain versions of Ruby on your system. You're going to be using it today to
install a single Ruby version on your system, but it's good to learn it.

To get started, you're going to need to install some packages that will provide
the necessary tools to use RVM. These packages are , build-essential

 and . RVM uses these packages to build the Ruby version forgit-core curl

your server. The provides the base Git functionality that RVM uses togit-core

stay up to date, and is also used to deploy your application because you're hosting

su user

14.1.2 Installing the base

sudo aptitude update

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

585

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

it on GitHub. Finally, allows you to connect to a URL and download itscurl

content. You'll use this last package to pull down the script to install RVM.
To install these packages, run this command:

There are some additional packages required for Ruby itself and its gems. You
can install these packages by running this command (all on one line):

The part of this command tells Ubuntu to run a command as a super-usersudo

(called). This particular command will install the root build-essential

package, which contains helpful build tools that you'll need for Ruby and the
 package containing the Git version control system as well as ,git-core curl

which you'll need for installing RVM. With these packages installed, let's install
RVM and a version of Ruby.

You could install Ruby by downloading the package manually, extracting it, and
then running the necessary commands yourself, but that's boring. You could also
install it using the package manager that comes with Ubuntu, but the Ruby that it
provides is old and has been known to be broken.

Wouldn't it be nice if there was a tool that would install Ruby for you? There is!
It's called RVM!

RVM provides several benefits over a standard Ruby compile, such as the ability to
easily install and upgrade your Ruby install using commands like rvm install

 to install the latest release for Ruby 1.9.3. You can even choose to install1.9.3

Ruby when you install RVM, which is exactly what you're going to do in a bit. No
digging for links on the http://ruby-lang.org site for you, no siree.

sudo aptitude -y install build-essential git-core curl

sudo aptitude -y install openssl libreadline6 libreadline6-dev zlib1g
zlib1g-dev libssl-dev libyaml-dev libsqlite3-dev sqlite3 libpq-dev
libxml2-dev libbxslt-dev autoconf libc6-dev ncurses-dev automake
libtool bison libcurl4-openssl-dev

14.2 RVM and Ruby

14.2.1 Installing RVM

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

586

Licensed to <alex@vinova.sg>

http://ruby-lang.org
http://www.manning-sandbox.com/forum.jspa?forumID=818

There are a couple of ways you can install RVM. The first is a user-based
install, installing it in an directory within the user's own directory. But,.rvm

you're going to want to access gems at a system-level later on in this chapter, so it's

best to install RVM at a system level. To do this, run this command:14

Footnote 14 To install RVM at a user level, just remove "sudo" from the command.m

This script will take a long time to execute as it is installing both RVM and a
new version of Ruby. Go grab a coffee, or a glass of water if glorious boosts of
caffeine are not your thing.

With these packages installed, you'll experience minimum hassle when you
install Ruby itself. To install Ruby using your current user, the user needs to be a
part of the group, which is a group created by the installation of RVM. To addrvm

your current user to this group, run this command, while remembering to replace
'user' with your actual username:

The option here tells the command to append some groups to the list of-a

groups that the user is in, and the option (like you saw before with)-G useradd

specifies the group. You specify your username on the end of this command,
telling it who you want this new group applied to.

To make the command effective for all users, add a line to rvm

. Whenever new terminal sessions are launched, this file is read/etc/profile

and run. Put a line in it using these commands:

The source command here will load the /usr/local/rvm/scripts/rvm

curl -L https://get.rvm.io | sudo bash -s stable --ruby

sudo usermod -a -G rvm user

sudo su
echo 'source "/usr/local/rvm/scripts/rvm"' >> /etc/profile
exit

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

587

Licensed to <alex@vinova.sg>

https://get.rvm.io
http://www.manning-sandbox.com/forum.jspa?forumID=818

file for each user whenever they start a new session. To make this change effective
for the current session, exit out of the server completely using the command.exit

Once back in, you should be able to run rvm and have it output the help
information.

So now you've got the beginnings of a pretty good environment setup for your
application, but you don't have your application on the server yet. To do this, you
need to undertake a process referred to as "deployment." Through this process
you'll put your application's code on the server and be one step closer to letting
people use the application.

When you deploy, you'll use a user without root privileges to run the
application, just in case. Call this user the same as your (imaginary) domain:

.ticketeeapp.com

You're calling this user because if you wanted to deployticketeeapp.com

more than one application to your server, there will be no confusion as to which
user is responsible for what. When you set up a database later on, this username
will be the same as your database name. This is for convenience's sake, but also
because the database will be owned by a user with the same name, allowing this
account and none other (bar the database super user) to access it. It's all quite neat.

To begin to set up this user, run these commands:

We've used a couple of options to the command. The option setsuseradd -s

the shell for the user to (the standard shell found in most Unix based/bin/bash

operating systems) and the option sets their home directory to -d

, while the option makes sure that the user's/home/ticketeeapp.com -m

home directory exists. The second command, (short for "change owner"),chown

changes the owner of the directory to be the /home/ticketeeapp.com

 user. The final command, , prompts you to set aticketeeapp.com passwd

password for this user, which you should set to something complex (that you'll be

able to remember) to stop people hacking your user .ticketeeapp.com 15

14.3 Creating a user for the app

sudo useradd ticketeeapp.com -s /bin/bash -m -d /home/ticketeeapp.com
sudo usermod -a -G rvm ticketeeapp.com
sudo chown -R ticketeeapp.com /home/ticketeeapp.com
sudo passwd ticketeeapp.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

588

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Footnote 15 m Even though this won't matter in a short while (when you turn off password authentication and
switch to the more secure), it's still good practice to always secure any user accountkey-based authentication
on any system with a strong password.

To make this account even more secure, you can switch to key-based
authentication.

In this next step, you'll set up a key that will allow you to login as your user and
 on your server without a password. This is called key-baseddeploy

authentication and requires two files: a private key and a public key. The private
key goes on the developer's computer and should be kept private, as the name
implies, because it is the key to gain access to the server. The public key file can be
shared with anybody and is used by a server to authenticate a user's private key.

We'll use a key-based authentication for your server because it is incredibly
secure versus a password authentication scheme. To quote the official Ubuntu

instructions on this :16

To be as hard to guess as a normal SSH key, a password would have to contain
634 random letters and numbers.

-- OpenSSH Configuring

Footnote 16 https://help.ubuntu.com/community/SSH/OpenSSH/Configuringm

Not many people today would be willing to use a password containing 634
random letters and numbers! Considering the average password length is 8
characters, this a vast improvement over password-based authentication.

We're going to enable this key-based authentication for both your current user
and your . For now, use the same key generated for use withticketeeapp.com

GitHub; however, it's recommended that a key be used for the server.different
Public keys are stored at a file called .ssh/authorized_keys located in the user's

home directory, the user being the user you will connect as through SSH. When the
user attempts to connect to the server, the private and public keys are used to

confirm the user's identity. Because the chances of two users having the same17

public and private key are so astronomically high, it is generally accepted as a
secure means of authentication.

Footnote 17 For a good explanation of how this process works, check this page:m
http://unixwiz.net/techtips/ssh-agent-forwarding.html#agent

In this instance, you'll create two of these ~/.ssh/authorized_keys files; one for

14.3.1 Key-based authentication

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

589

Licensed to <alex@vinova.sg>

http://unixwiz.net/techtips/ssh-agent-forwarding.html#agent
http://www.manning-sandbox.com/forum.jspa?forumID=818

each user. In each case, create the directory before creating the ~/.ssh

. Begin with the user you're currently logged in as.authorized_keys

TIP If you're using Vagrant...
Vagrant already has a ~/.ssh/authorized_keys file, so there's no
need to recreate it. Overwriting this file may cause vagrant ssh
to no longer work.

You will also need to forward the SSH port from the virtual
machine launched by Vagrant to a local port in order to connect
without using Vagrant. While you're here, forward the HTTP port
(80) as well so that you can access it from the outside. Go into the
Ubuntu directory that you created at the beginning of this chapter,
open VagrantFile, and add this inside the Vagrant::Config.run
block:

To connect to this server, use port 2200 for SSH and port 4567
for HTTP. When you use the command, the port can bescp

specified using the (capital-p) option and using -P ssh -p

(lowercase-p), with the port number specified directly after this
option. In places where these commands are used, substitute

 with and with .your-server localhost user vagrant

Let's create the directory now using this command:~/.ssh

Now you need to copy over the public key from your local computer to the
 directory on the server, which you can do by running this command on~/.ssh

your local system, again replacing 'user' with your actual username:

config.vm.forward_port "ssh", 22, 2200
config.vm.forward_port "http", 80, 4567

mkdir ~/.ssh

NOTE: Run this on your *local* machine, not the server!
scp ~/.ssh/id_rsa.pub user@your-server:~/.ssh/[your_name]_key.pub

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

590

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

At this stage, you'll be prompted for a password, which is the complex one you
set up a little earlier. Enter it here and the file will be copied over to the server.

Add this key to the file by using~/.ssh/authorized_keys on the server

this:

This command will append the key to ~/.ssh/authorized_keys if that file already
exists, or create the file and then fill it with the content if it doesn't. Either way,
you're going to have a ~/.ssh/authorized_keys file, which means that you'll be able
to SSH to this server without using your complex password. If you disconnect
from the server and then reconnect, you shouldn't be prompted for your password.
This means that the authentication is working.

Finally, change the permissions on this ~/.ssh/authorized_keys file so that only
the user it belongs to can read it:

With that set, change into the application's user account by running sudo su

 and run the same steps, beginning with ticketeeapp.com mkdir ~/.ssh

and ending with disconnecting and reconnecting without password prompt.
Remember to change in the command to be the user scp ticketeeapp.com

user this time around.
If both of these accounts are working without password authentication, then

you may as well turn it off!

You've just implemented key-based authentication on your system for both the
accounts you have, thus removing the need for any kind of password
authentication. To secure your server against possible password attacks, it's a good
idea to turn off password authentication altogether.

To do this, open /etc/ssh/sshd_config using sudo nano

 and add /etc/ssh/sshd_config18 PasswordAuthentication no

cat ~/.ssh/[your_name]_key.pub >> ~/.ssh/authorized_keys

chmod 600 ~/.ssh/authorized_keys

14.3.2 Disabling password authentication

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

591

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

where it would otherwise say (the #PasswordAuthentication yes #

symbol indicates a commented line, just like Ruby). You can find this line by
pressing Ctrl+W, typing in "PasswordAuth", and pressing enter. This configures
your SSH server to not accept password authentication.

Footnote 18 nano is the basic editor that comes with Ubuntum

Towards the top of this file there's a line that says .PermitRootLogin yes

Change this line to read instead, so that it blocks allPermitRootLogin no

SSH connections for the user, increasing the security further.root

Lastly, quit by pressing Ctrl+X and then Y to confirm that you do wantnano

to quit and save. Next, you need to restart the SSH daemon by using this
command:

NOTE Two files, different purposes
There is also /etc/ssh/ssh_config, which is a little confusing... two
files with nearly identical names. The file you just edited is the file
for the SSH (or daemon, hence the at the end), while theserver d

ssh_config file is for the SSH client. Make sure you're editing the
right one.

The server is now set up with key-based authentication, which completes the
user setup part of this chapter. You can confirm that this is actually working by
attempting to SSH to the machine from itself by running this command:

This command should output . IfPermission denied (publickey)

you did not turn off password authentication properly, then you would be prompted
for a password. Because password authentication is now disabled, it attempts to use
a key to authenticate the request but no keys match, and therefore the request fails.

The next step is to install a sturdy database server where you can keep the data

sudo su
service ssh restart
exit

ssh localhost

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

592

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

for your application when it's deployed. At the moment (on your local machine)
you're using the SQLite database for this. That's great for light development, but
you probably want something more robust for your application, just in case it gets

popular overnight . That robust something is a database server called19

PostgreSQL.

Footnote 19 Chances are low, but this is more to demonstrate how to set it up with a different database server.m

PostgreSQL is the relational-database preferred by the majority of Rails20

developers. It will work perfectly with the Ticketee application because there's no

SQLite3 specific code within the Ticketee application at the moment.21

Footnote 20 m http://en.wikipedia.org/wiki/Relational_database. Constrasts the NoSQL term:
http://en.wikipedia.org/wiki/NoSQL

Footnote 21 Some Rails applications are developed on specific database systems and may contain code thatm
depends on that system being used. Be wary.

To install, use the command again:aptitude

This will install the necessary software and commands for the database server,
such as (used for interacting with the database server in a console), psql

 (for creating a user in the system) and (for creatingcreateuser createdb

databases on the server) . You'll be using these commands to create a user and a22

database for your application.

Footnote 22 m For more information about how to configure PostgreSQL, read about the pg_hba.conf file:
http://www.postgresql.org/docs/9.0/static/auth-pg-hba-conf.html

To begin this, switch to the user, which is another account that this postgres

 install has set up. To switch into this user, use this command:postgresql-8.4

14.4 The database server

sudo aptitude install postgresql-9.1

14.4.1 Creating a database and user

sudo su postgres

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

593

Licensed to <alex@vinova.sg>

http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/NoSQL
http://www.postgresql.org/docs/9.0/static/auth-pg-hba-conf.html
http://www.manning-sandbox.com/forum.jspa?forumID=818

This user account is the super user for the database and can perform commands
such as creating databases and users, precisely what you want! Creating the
database is easy enough, you only need to run like this:createdb

Creating a user in PostgreSQL is a little more difficult, but (thankfully) isn't
rocket science. Using the command, answer no to all the questionscreateuser

provided:

Create the database and the user in PostgreSQL with the same name so that
when the system user account of attempts to connect to thisticketeeapp.com

database they are automatically granted access. There is no need to configure this
at all, which is most excellent. This process is referred to as .ident authentication

Ident authentication works by determining if the user connecting has an account
with an identical name on the database server. Your system's user account is
named and the PostgreSQL user you created is also named ticketeeapp.com

. You can attempt to connect using the command fromticketeeapp.com psql

the user, after first exiting from the user'sticketeeapp.com postgres

session:

If everything goes well, you should see this prompt:

createdb ticketeeapp.com

$ createuser ticketeeapp.com
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

14.4.2 Ident authentication

exit
sudo su ticketeeapp.com
psql

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

594

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This means that you're connected to the databaseticketeeapp.com

successfully. You can now execute SQL queries here if you wish. Exit out of this
prompt by typing and pressing Enter.\q

That's all you need to do for your database for now. You've got a
fully-functioning server, ready to accept your tables and data for your application.
Now you need to give it what it needs! You can do this by putting the application
on the server and running the command, which will createrake db:migrate

the tables, and then , which will insert the basic data found insiderake db:seed

db/seeds.rb.
We're not going to make you manually copy over this application, as this can

get repetitive and boring. As programmers, we don't like repetitive and boring. One
of your kind is called Jamis Buck, and he created a little tool called Capistrano to
help automate the process of deploying your application.

Capistrano is a gem originally created by Jamis Buck that is now maintained by
Lee Hambley and additional volunteers, as well as the growing community that use
it. It was initially designed for easy application deployment for Rails applications,
but can now be used for other applications as well. Capistrano provides an easy
way to configure and deploy versions of an application to one or many servers.

You'll use Capistrano to put your application's code on the server, automatically
run the migrations, and restart the server after this has been completed. This action
is referred to as a "deploy."

Before you leap into that however, you're going to set up a for yourdeploy key
repository on GitHub.

If your repository was private on GitHub, you would clone it with the url of
 and would need togit@github.com:our_username/ticketee.git

authenticate with a private key. You shouldn't copy your private key to the server
because if a malicious person gains access to the server they will also then have
your private key, which may be used for other things.

psql (9.1.4)
Type "help" for help.

ticketeeapp.com=>

14.5 Deploy away!

14.5.1 Deploy keys

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

595

Licensed to <alex@vinova.sg>

mailto:git@github.com:our_username/ticketee.git
http://www.manning-sandbox.com/forum.jspa?forumID=818

To solve this particular conundrum, generate another private/public key pair
just for the server itself and put the public key on GitHub to be a deploy key for
this repository. This will allow the server to clone the repository.

To do this, run the following command as the user onticketeeapp.com

your server:

Hit enter to put the key at the default location. You~/.ssh/id_rsa.pub

can enter a password for it, however, if you do this you will be prompted for it on
every deploy. It's really personal preference whether or not to do this.

This command will generate two new files: a public and private key. The
private key should remain secret on the server and shouldn't be shared with any
external parties. The public key, however, can be given to anybody. You're going
to put this key on GitHub now.

Run the command to get the contents of the public key file, like this:cat

You should copy the output of this command into your clipboard. Your next
step is to go to the repository on GitHub and click the "Admin" link in the bar in
the view for the repository, shown in Figure 14.1

ssh-keygen -t rsa

cat ~/.ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAA...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

596

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 14.1 Admin button

From here, press the "Deploy Keys" link and then paste the key into the box,
calling it "ticketeeapp.com" to keep up with your current naming scheme, shown in
Figure 14.2

Figure 14.2 Paste in the key, and add a title

When you're done here, press the "Add Key" button, which will add the key
you've specified to the list of deploy keys on GitHub. You should then be able to
run a command on the server using the private URL to clone yourgit clone

repository.

git clone git@github.com:[your_github_username]/ticketee.git ~/ticketee

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

597

Licensed to <alex@vinova.sg>

mailto:git@github.com:
http://www.manning-sandbox.com/forum.jspa?forumID=818

If there is a directory at the current location of the server thatticketee

contains the directories your application should contain, then this works. You can
delete this directory now and you'll be putting the code on the server at another
location using Capistrano.

Before that happens, you'll need to configure Capistrano.

To begin with, add the to your application's Gemfile using thiscapistrano

code:

To install this gem, you (and other developers of your application) are able to
run , which will keep those other developers up-to-date withbundle install

all gems. Running would only update them withgem install capistrano

Capistrano, and even then it may be a version that is incompatible with the one that
you've developed.

When the gem is installed you can set it up inside a Rails application by
running this command from the root of the application:

This will create two files: Capfile and config/deploy.rb. The Capfile is a file
containing set up for Capistrano in the application and the following default code
that will be used to load your Capistrano configuration:

The final line of this file is the most important, as it loads the config/deploy.rb

14.5.2 Configuring Capistrano

group :development do
 gem 'capistrano'
end

capify .

load 'deploy' if respond_to?(:namespace) # cap2 differentiator
Dir['vendor/plugins/*/recipes/*.rb'].each { |plugin| load(plugin) }

load 'config/deploy' # remove this line to skip loading any ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

598

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

file. This file contains the configuration for deploying your application. Everything
in this file dictates how your application is deployed. We'll go through it with you
line-by-line, beginning with these two lines:

When you call in Capistrano, it sets a variable you (or Capistrano itself)set

can reference later. The variable here should be the name of yourapplication

application and the variable should be the path to your application.repository

Change these lines to this:

TIP Deploying a branch
When you deploy your application to the server, it will read from the

 branch. If you'd like to change this, set the branch usingmaster

this line in your configuration:

You would also need to create this new branch in the GitHub
repository called "production" with the git checkout -b

 and commands.production git push origin production

For a good branching model, check out this post:
http://nvie.com/posts/a-successful-git-branching-model/.

On the next line of config/deploy.rb there's the setting:scm

You're going to use Git and not Subversion in this case, so change the line to

set :application, "set your application name here"
set :repository, "set your repository location here"

set :application, "ticketee"
set :repository, "git@github.com:[your github username]/ticketee.git"

set :branch, "production"

set :scm, :subversion

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

599

Licensed to <alex@vinova.sg>

mailto:git@github.com:
http://nvie.com/posts/a-successful-git-branching-model/
http://www.manning-sandbox.com/forum.jspa?forumID=818

this:

On the next few lines there are a couple of roles defined. These roles point to:

web: The server or servers responsible for serving requests for your application
app: The server or servers where the application's code is hosted.
db: The server or servers where the database for the application is hosted.

Right now we won't worry about multiple server setups, focusing only on
having everything on the one box. Your , , and roles are all the sameweb app db

server in this instance. Therefore, you can replace those three lines with this:

Here you replace with the address of the server, which is[your-server]

the same one that you've been SSH'ing to. If you're using Vagrant, this address is
simply "localhost" and you'll need to add another line to specify the port:

Now that you've covered all the default options in config/deply.rb, you'll add
some others to provide more information to Capistrano so that it can set up your
application correctly.

The first two settings that you'll need to set up are the user and the path to
which you'll deploy your application. Capistrano (unfortunately) can't guess what
these are, and so you have to be explicit. The user will be the

 user and the path will be ticketeeapp.com

. Use the application name as the name of a/home/ticketeeapp.com/apps

sub-folder of that application so the application will be deployed into

set :scm, :git

role :web, "[your-server]"
role :app, "[your-server]"
role :db, "[your-server]", :primary => true

set :port, 2200

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

600

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

/home/ticketeeapp.com/apps/ticketee. Underneath the line, put theseset :scm

settings:

The user doesn't have privileges, so tellticketeeapp.com sudo

Capistrano not to use the command by using this line:sudo

When you deploy your application, you don't want to keep every single release
that you've ever deployed on the server. To get rid of the old deploys (referred to as
"releases"), put this in config/deploy.rb:

This will keep the last five releases that you have deployed, deleting any
releases that are older than that.

Next, you're going to need to tell it to use the prompt to send commandsbash

through, as you will need access to RVM during the deployment. To do this, put
this line in config/deploy.rb:

Lastly, at the bottom of the file there are a couple of lines for defining
, and tasks for Passenger,deploy:start deploy:stop deploy:restart

which are commented out. Remove the comment hash from the beginning of these
lines, transforming them to this:

set :user, "ticketeeapp.com"
set :deploy_to, "/home/ticketeeapp.com/apps/#{application}"

set :use_sudo, false

set :keep_releases, 5

default_run_options[:shell] = '/bin/bash --login'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

601

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This defines a blank and task and a full task for your start stop restart

 ro le . Th i s t a sk wi l l run the app touch

/home/ticketeapp.com/apps/ticketee/tmp/restart.txt

command, which will tell your server (not yet set up) to restart the application,
causing your newly deployed code to be started up upon the next request.

With the Capistrano configuration done, you can run the command,cap

passing in the name of a task to set up your application, such as .deploy:setup

This task is one of a group of tasks that are provided by default with Capistrano.
To see a list of these tasks, use the command.cap -T

There's two more things you'll need to do. The first is to tell Capistrano to
precompile the assets for your application during the deployment. This step is easy
and just requires an extra line at the top of the config/deploy.rb file, which you
should put there now:

By loading this file, Capistrano will create a shared/assets directory at your
deploy path which will be linked to the directory of the latestpublic/assets

deploy. During a deploy, this script will tell Capistrano to run rake

 inside the application's directory to generate all theassets:precompile

assets, placing them in public/assets.
The second thing is related to the first: Ubuntu does not come with a JavaScript

runtime pre-installed, but Mac and Windows do. This is used during the asset
precompilation step by execjs, a dependency of the Sprockets gem which provides
the asset pipeline features. If you don't install a JavaScript runtime then you will
get this error:

namespace :deploy do
 task :start do ; end
 task :stop do ; end
 task :restart, :roles => :app, :except => { :no_release => true } do
 path = File.join(current_path, 'tmp', 'restart.txt')
 run "#{try_sudo} touch #{path}"
 end
end

load "deploy/assets"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

602

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Fixing this problem is a simple matter of adding another gem to your Gemfile
just for the production environment by using these lines:

As long as this gem remains in the Gemfile, then the asset precompilation on
the server will run just fine. Alternatively, you could install any one of the
supported runtimes listed in the README for
https://github.com/sstephenson/execjs. You will need to run bundle install

to update your application's bundle, and then add both the Gemfile and
Gemfile.lock files to Git with this command:

This is done so that the dependency is available when thetherubyracer

application is cloned onto the server, meaning the deploy will go smoother. Now
that that's done, time to setup the environment on the server in preparation for your
deploy.

You'll now use the task, which will set up the folder where yourdeploy:setup

application is deployed, , with/home/ticketeeapp.com/apps/ticketee

some basic folders:

Could not find a JavaScript runtime. See
https://github.com/sstephenson/execjs for a list of
available runtimes.

group :production do
 gem 'therubyracer'
end

git add Gemfile*
gc -m "Added therubyracer and capistrano as dependencies"
git push

14.5.3 Setting up the deploy environment

cap deploy:setup

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

603

Licensed to <alex@vinova.sg>

https://github.com/sstephenson/execjs
https://github.com/sstephenson/execjs
http://www.manning-sandbox.com/forum.jspa?forumID=818

This command is in the same vein as the command you've usedrails new

previously because it sets up an identical, standard scaffold for every Capistrano.
When this command runs, you'll see a large chunk of output that we'll now break
down, one line at a time:

Capistrano tells you the name of the currently executing task, deploy:setup

. The next line tells you what command it is about to execute.

These are the basic directories required for Capistrano. The first directory acts
as a base for your application, containing several different sub directories, the first
of which is . Whenever you deploy using Capistrano, a new release isreleases

created in the directory, timestamped to the current time using thereleases

same time format as migrations within Rails (e.g. 20110205225746, or the full year
followed by two-digits each for the month, day, minute, hour and second, or

). The latest release would be the final one in this directory.YYYYMMDDHHmmSS

The directory is the directory where files can be shared acrossshared

releases, such as uploads from Paperclip, that would usually go in the
 directory, which would now be placed in .public/system shared/system

The directory is symbolically linked to the current release's shared/log 23

 directory when you run a deploy. This is so all logs are kept in the log

 directory (rather than in each release) so that, if you choose to, youshared/log

can go back over them and read them.

Footnote 23 http://en.wikipedia.org/wiki/Symbolic_linkm

The directory is symbolically linked to the current release's shared/pids

 up on deploy. This folder is used for process ids of any other parts oftmp/pids

* executing `deploy:setup'

* executing "mkdir -p /home/ticketeeapp.com/apps/ticketee
 /home/ticketeeapp.com/apps/ticketee/releases
 /home/ticketeeapp.com/apps/ticketee/shared
 /home/ticketeeapp.com/apps/ticketee/shared/system
 /home/ticketeeapp.com/apps/ticketee/shared/log
 /home/ticketeeapp.com/apps/ticketee/shared/pids

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

604

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

your application. At the moment, you don't have any of these and so this directory
is of no major concern.

The next line after this makes these folders group writable with the chmod

command:

At the bottom of this command's output you can see what servers it will be
executed on, with only your one server listed for now. It also tells you that the
command is being executed and, faster than you can blink, that the command has
finished. isn't an intensive operation.chmod

Once the Capistrano task has finished, you are returned to adeploy:setup

console prompt. Now you can put the application on the server by deploying it!

Capistrano has now been configured to deploy the Ticketee application and you've
set up your server using the command, leaving it up to youcap deploy:setup

now to deploy your code. Capistrano's task will let you do this, and youdeploy

can run this task with this command:

This command outputs an even larger output to , butcap deploy:setup

again we'll go through it line by line. It's not really all that intimidating when it's

chmod g+w /home/ticketeeapp.com/apps/ticketee
 /home/ticketeeapp.com/apps/ticketee/releases
 /home/ticketeeapp.com/apps/ticketee/shared
 /home/ticketeeapp.com/apps/ticketee/shared/system
 /home/ticketeeapp.com/apps/ticketee/shared/log
 /home/ticketeeapp.com/apps/ticketee/shared/pids

servers: ["your-server"]
[your-server] executing command
command finished

14.5.4 Deploying the application

cap deploy

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

605

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

broken down into little chunks, really! The first output you'll see from a deploy is:

These first three lines tell you the tasks which are being executed. The deploy

task is going to be executed because you asked Capistrano to do that. This task
depends on the task, and so it will run that first.deploy:update

The task begins a transaction (the third line in the abovedeploy:update

output), which is exceptionally helpful. If anything goes wrong in your deploy,
Capistrano will rollback everything to the beginning of this transaction, deleting
any code it's deployed. This transaction is a failsafe for your deploy.

The final part of the output is the task, which isdeploy:update_code

responsible for updating the application's code in your deployment environment.
This task is responsible for the next chunk of output you see:

This task first runs , a lesser known Git command, locallygit ls-remote

(not on the server), which will get the current SHA for , the latest commit toHEAD

the branch, unless you set a in Capistrano's configuration.master branch

The next thing Capistrano does is put the current revision in a file called
. If you like, you can alter the layout of your application to read theREVISION

value from this file and put it in your application's layout as a HTML comment so
that when you do a deploy to the server, you can check this hash to see if it is the
latest code.

The next couple of lines output from are from the beginning ofcap deploy

the task:deploy:finalize_update

* executing `deploy'
* executing `deploy:update'
** transaction: start
* executing `deploy:update_code'

executing locally: "git ls-remote [git_path] HEAD"
 * executing "git clone -q [git_path] [release_path] &&
 cd [release_path] &&
 git checkout -q -b deploy [SHA1 hash] &&
 (echo [SHA1 hash] > [release_path]/REVISION)"
 servers: ["your-server"]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

606

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

With this command, Capistrano ensures that your new release'schmod

directory is group writable (), allowing the user / group to make anyg+w

modifications to this directory they like, barring all others.
Finally, the then removes the , deploy:finalize_update log

 and directories and symbolically links the public/system tmp/pids

, and directories (in yourshared/log shared/system shared/pids

application's deployed path) to these paths respectively. It does that in this little
series of commands:

Next, Capistrano will use the command to every file in the find touch

, and topublic/images public/stylesheets public/javascripts

update their last modified time. This is so that when a user visits your site they get
the latest image, stylesheet or javascript file rather than a cached file. It does this
with this part of the output:

* executing "chmod -R g+w [release_path]"
 servers: ["localhost"]
 [localhost] executing command
 command finished

* executing "rm -rf [release_path]/log
 [release_path]/public/system
 [release_path]/tmp/pids &&

 mkdir -p [release_path]/public &&
 mkdir -p [release_path]/tmp &&

 ln -s [shared_path]/log [release_path]/log &&
 ln -s [shared_path]/system [release_path]/public/system &&
 ln -s [shared_path]/pids [release_path]/tmp/pids
 servers: ["your-server"]
 [your-server] executing command
 command finished

* executing "find [release_path]/public/images
 [release_path]/public/stylesheets
 [release_path]/public/javascripts
 -exec touch -t [timestamp] {} ';'; true"
 servers: ["your-server"]
 [your-server] executing command

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

607

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The second-to-last step for the task is to run the deploy:update

 task, which symbolically links the new release directory todeploy:symlink

the folder within your deploy path (in this example, current

)./home/ticketeeapp.com/apps/ticketee/current

The last action of the task is to commit the transaction thatdeploy:update

began at the start, meaning your deploy was successful:

The absolutely final thing the task does is call ,deploy deploy:restart

which will touch the file in your new application directory (tmp/restart

), which would/home/ticketeeapp.com/apps/ticketee/current

restart the server if you had one running:

And that's it! Our application is deployed for the first time; however, it's not
quite ready for prime-time usage. For starters, the application's gems are not
installed! On your development box you will do this by running the bundle

 command finished

* executing `deploy:symlink'
* executing "rm -f [current_path] &&

 ln -s [release_path] [current_path]
 servers: ["your-server"]
 [your-server] executing command
 command finished

** transaction: commit

* executing `deploy:restart'
* executing "touch [current_path]/tmp/restart.txt"
 servers: ["your-server"]
 [your-server] executing command
 command finished

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

608

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

 task, but you're no longer in Kansas or on your own development boxinstall 24

for that matter. Bundler has some pretty slick integration with Capistrano, which
will run when you deploy. This functionality is provided tobundle install

you by a file that comes with the gem.

Footnote 24 Apologies for any Kansas-based readers out there. Let me assure you, you are still (most likely) inm
Kansas.

You can trigger the task to happen (in a slightly differentbundle install

fashion from usual) when you do a deploy by requiring the
 file in the of your application,bundler/capistrano config/deploy.rb

right at the top:

You'll also need to require RVM's configuration so that whencapistrano

you do a deploy it can locate the command (provided by a gem that wasbundle

installed using an RVM-provided Ruby install), which it will need to run bundle

. At the top of , put these lines:install config/deploy.rb

The first line here adds the directory of RVM to the load path (representedlib

in Ruby by). This is required so that this file knows where to find $:

. Without it, it may fail.rvm/capistrano

Now that you're requiring when you run rvm/capistrano cap deploy

again, you'll see this additional output just after the stylesheets, javascripts and
images touching:

14.5.5 Bundling gems

require 'bundler/capistrano'

$:.unshift(File.expand_path('./lib', ENV['rvm_path']))
require 'rvm/capistrano'

* executing `bundle:install'
* executing "ls -x /home/ticketeeapp.com/apps/ticketee/releases"
 servers: ["your-server"]
 [your-server] executing command

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

609

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Bundler's added a task to your Capistrano configurationbundle:install

which runs after . This task runs deploy:finalize_update ls -x

command at the beginning to get the last release's directory (,20110207202618

in this case), which it then uses to specify the location of the using the Gemfile

 flag passed to . Rather than installing the gems--gemfile bundle install

to a system location which may not be writable by this user , Bundler elects to25

i n s t a l l t h i s t o t h e
/home/ticketeeapp.com/apps/ticketee/shared/bundler

directory instead, specified by the flag.--path

Footnote 25 m This directory would be located within /usr/local/rvm, which is only writable by members of
the group which this member is not a part of and thus, is unable to install any gems at a system-widervm

level.

The flag specifies that the repository must contain a --deployment

 file (meaning the gem versions are locked) and that the Gemfile.lock

 file is up-to-date according to the . This is to ensureGemfile.lock Gemfile

that you're running an identical set of gems on your server and local machines.
Lastly, the flag tells Bundler what groups to ignore. The --without

 and groups are ignored in this case, meaning gemsdevelopment test

specified in these two groups will not be installed at all.
With your application's gems installed, you're getting even closer to having an

application running. When you deploy changes to your application, these changes
may include new migrations, which will need to be run on the server after you do a
deploy. You can deploy your code migrate by running this lovely command:and

 command finished
* executing "bundle install --gemfile [release_path]/Gemfile
 --path [shared_path]/bundle
 --deployment
 --quiet
 --without development test"
 servers: ["your-server"]
 [your-server] executing command
 command finished

cap deploy:migrations

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

610

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

After your code deploys, Capistrano will run the task,rake db:migrate

which is of great use, as it sets up your database tables. You'll see output like this:

This indicates that the migrations have happened successfully. Unfortunately,
this is in the wrong database! You spent all that time setting up a PostgreSQL
server and it's gone ahead and instead used SQLite3. The nerve!

To fix this, you can make a little change to your application's . RatherGemfile

than having out there in the open and not in a group, switch it to only besqlite3

used in development and test by moving it down into the group

 block just underneath, so that it now looks like ::development, :test 26

Footnote 26 Generally, this is a bad idea. You should always develop on the same database system that you deploym
on so that you don't run into any unexpected production issues. We're being "lazy" here because it's easier.

Then, inside the group add the gem, like this:production pg

The gem provides the PostgreSQL adapter that you need to connect to yourpg

PostgreSQL database server on your server. If you run now itbundle install

will install this gem for you. Now you can make a commit for this small change

 ** [out :: [server]] (in [path_to_application])
 ** [out :: [server]] == CreateProjects: migrating ===
 ** [out :: [server]] -- create_table(:projects)
 ** [out :: [server]] -> 0.0012s
 ...

14.5.6 Choosing a database

group :test, :development do
 gem 'gmail', '0.4.0'
 gem 'rspec-rails', '~> 2.9'
 gem 'sqlite3'
end

group :production do
 gem 'therubyracer'
 gem 'pg'
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

611

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

and push your changes:

You haven't yet configured your production application to connect to
PostgreSQL, which is somewhat of a problem. You would usually do this by
editing the config/database.yml file in your application, but in this case you want to
keep your development and production environments separate. Therefore, you'll set
this up on the server.

Put this file in the shared directory of your application's deploy, so that all
releases can just symlink it to config/database.yml inside the application itself.
Connect to the server now with your user and then switch over to

 using so that you can addticketeeapp.com sudo su ticketeeapp.com

this file. Go into this shared directory now and open a new file for editing by
running these commands as the user:ticketeeapp.com

Inside this file, put the database settings for the environment ofproduction

your application. These are as follows:

You can exit out of by using Ctrl+X and then press Y to confirm yournano

changes.
Your next step is to get this file to replace the config/database.yml that your

git add Gemfile*
git commit -m "Add pg gem for PostgreSQL on the server"
git push

cd /home/ticketeapp.com/apps/ticketee/shared
mkdir config
cd config
nano database.yml

production:
 adapter: postgresql
 database: ticketeeapp.com
 min_messages: warning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

612

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

application contains upon deployment. For this, define a new task at the bottom of
config/deploy.rb in your application:

This task will remove the current config/database.yml located at the
 and will then link the one from 'srelease_path shared_path

config/database.yml into that spot. The final line that you have added tells
Capistrano to run this task after the task has been completed,bundle:install

meaning it will happen before anything else.
Now when you run again, you'll see thiscap deploy:migrations

additional output:

It looks like your command is working! Another clue indicating this is the
migration output just beneath. Check that the command is truly working by going
onto the server as the user and then going into the ticketeeapp.com

 folder and/home/ticketeeapp.com/apps/ticketee/current

running to load the default datarake RAILS_ENV=production db:seed

into the production database. Then launch a PostgreSQL console by running the
 command. Inside this console, run . Youpsql SELECT * FROM projects;

should see output like this:

task :symlink_database_yml do
 run "rm #{release_path}/config/database.yml"
 run "ln -sfn #{shared_path}/config/database.yml
 #{release_path}/config/database.yml"
end
after "bundle:install", "symlink_database_yml"

* executing `symlink_database_yml'
* executing "rm [release_path]/config/database.yml"
 servers: ["your-server"]
 [localhost] executing command
 command finished
* executing "ln -s [shared_path]/config/database.yml
 [release_path]/config/database.yml"
 servers: ["your-server"]
 [localhost] executing command
 command finished

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

613

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The above output shows the data in the projects table that comes from
db/seeds.rb, which means that your database configuration has been copied over
and your database has been set up correctly.

Capistrano allows you to put the code on your server in a simple fashion. Once
you make a change to your application, you can make sure that the tests are still
passing, make a commit out of that, and push the changes to GitHub. When you're
happy with the changes, you can deploy them to your server using the simple cap

 command. This will update the code on your application,deploy:migrations

run , and then run any new migrations you may have added.bundle install

There's much more to Capistrano than this, and you can get to know more of it

by reading the Capistrano Handbook or by asking questions on the Capistrano27

Google Group at http://groups.google.com/group/capistrano.

Footnote 27 https://github.com/leehambley/capistrano-handbook/blob/master/index.markdownm

To run this application and make it serve requests, you could use rails

 like in development, but there's a couple of problems with this approach.server

For starters, it requires you to always be running a terminal session with it running,
which is just hackish. Secondly, this process is only single-threaded, meaning it
can only serve a single request at a time.

There's got to be a better way!

Rather than taking this approach, you're going to show you how to use the
Passenger gem along with the nginx webserver to host your application. The
benefit of this is that when a request comes into your server, it's handled by nginx
and an nginx module provided by the Passenger gem, as shown in Figure 14.3

ticketeeapp.com=> SELECT * FROM projects;
 id | name | created_at | ...
----+---------------+----------------------------+ ...
 1 | Ticketee Beta | 2012-08-18 12:05:55.447643 | ...
(1 row)

14.6 Serving requests

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

614

Licensed to <alex@vinova.sg>

http://groups.google.com/group/capistrano
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 14.3 nginx request path

When the client sends a request to the server on port 80, nginx will receive it.
nginx then looks up what is supposed to be serving that request and sees that
Passenger is configured to do that, and so passes the request to Passenger.

Passenger manages a set of Rails instances (referred to as a "pool") for you. If
Passenger hasn't received a request in the last five minutes, Passenger will start a

new instance , passing the request to that instance, with each instance serving one28

request at a time. The more instances you have, the more (theoretical) requests29

you can do. If there has been a request within that timeframe, then the request is

passed to one of the instances in the pool already launched by a previous request .30

Footnote 28 m The configuration option is responsible for this:passenger_pool_idle_time

http://www.modrails.com/documentation/Users%20guide%20Nginx.html#PassengerPoolIdleTime

Footnote 29 There's a hardware limit (when you run out of CPU and RAM) that will be reached if too manym
instances are started up. Things can get slow then.

Footnote 30 m Passenger will scale up instances depending on the speed of requests coming to the application.
The maximum number of application instances running at any one time by default is 6, and can be configured by
the setting:passenger_max_pool_size

http://www.modrails.com/documentation/Users%20guide%20Nginx.html#PassengerMaxPoolSize

Once Rails has done its thing, it sends the request back up the chain, going
through Passenger to Nginx and then finally back to the client as the response,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

615

Licensed to <alex@vinova.sg>

http://www.modrails.com/documentation/Users%20guide%20Nginx.html#PassengerPoolIdleTime
http://www.modrails.com/documentation/Users%20guide%20Nginx.html#PassengerMaxPoolSize
http://www.manning-sandbox.com/forum.jspa?forumID=818

most commonly HTML but it could be anything, really. When you launch rails

, a request from the client is directly dealt with by the server, rather thanserver

being proxied through nginx.
In the example, there's only one instance of your applicationrails server

serving requests and so it's going to be slower than having a collection of instances
serving them, which is what automatically happens when you use Passenger.
Additionally, nginx is super quick at serving files (like your CSS and JavaScript
ones) and handles these requests itself, without Rails knowing about it. When you
run , it serves request, and is definitely not "webscale", andrails server every

therefore not suitable for a production environment. nginx and Passenger are
designed for speed and reliability, and so you should feel pretty confident in using
them.

Enough talk, let's get into this! you're going to install the gempassenger

now, and it's nice enough to set up nginx for you too!

To install Passenger, as your user on the box (, if Vagrant) you canvagrant ssh

run the same you've been running all this time:gem install

Once this gem is installed, install nginx and the Passenger module by running
this lovely command. The option "simulates initial login", meaning that the-i

RVM script will run before this command, making it available:

At the prompt, press 1 for the install process to download and compile nginx
automatically. When prompted for a directory (), hit enter. This'll be/opt/nginx

the directory where your server runs from. After this, nginx will be compiled and
installed. This process takes a minute or two, so go grab something to eat or drink,
or stretch.

Once it's done, you're told that Passenger inserted some configuration for you,

14.6.1 Installing Passenger

gem install passenger

sudo -i passenger-install-nginx-module

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

616

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

wasn't that nice of it?

When you upgrade Passenger you'll need to edit the linepassenger_root

to point to the new version, and if you ever upgrade Ruby then you'll need to
change the line. Hit enter now to see the next bit of output,passenger_ruby

where you're told how to deploy a Rails application.

This bit of configuration goes inside the /opt/nginx/conf/nginx.conf file. You
can open this file with . It's alreadysudo /opt/nginx/conf/nginx.conf

got a server block in there which is a default configuration for nginx that you can
remove. In it's place, put the code from Listing 14.1 (based on the advice offered
by Passenger).

Listing 14.1 /opt/nginx/conf/nginx.conf

The Nginx configuration file (/opt/nginx/conf/nginx.conf)
must contain the correct configuration options in order for
Phusion Passenger to function correctly.

This installer has already modified the configuration file for you! The
following configuration snippet was inserted:

 http {
 ...
 passenger_root /usr/local/rvm/gems/ruby-1.9.3-p0/gems/pas...
 passenger_ruby /usr/local/rvm/wrappers/ruby-1.9.3-p0/ruby;
 ...
 }

After you start Nginx, you are ready to deploy any number of
Ruby on Rails applications on Nginx.

server {
 listen 80;
 server_name www.yourhost.com;
 root /somewhere/public; # <--- be sure to point to 'public'!
 passenger_enabled on;
 }

server {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

617

Licensed to <alex@vinova.sg>

http://www.yourhost.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

You can now start the nginx server by running the executable:nginx

You can make sure that requests to this server are working by accessing
http://your-server or http://localhost:4567 if you're using Vagrant. You should see
the sign-in page for your application, as shown in Listing 14.2

Figure 14.4 Sign in page for Ticketee

This means your web server is now working seamlessly with your application
and everything's almost ready. If the operating system of the server restarts
however, this nginx process will not. To fix this small problem, you need to create
an .init script

An init script is a script that is run on startup (init) of the operating system and is
usually used for launching applications or running commands. In Ubuntu, they
reside in the /etc/init.d directory. Here, you're going to use one to start nginx. This
script has already been prepared for you and you can download it using this
command:

 listen 80;
 server_name your-server.com;
 root /home/ticketeeapp.com/apps/ticketee/current/public;
 passenger_enabled on;
}

sudo /opt/nginx/sbin/nginx

14.6.2 An init script

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

618

Licensed to <alex@vinova.sg>

http://your-server
http://localhost:4567
http://www.manning-sandbox.com/forum.jspa?forumID=818

This command will download the nginx init script and place it at
. This file won't automatically run on boot unless you tell/etc/init.d/nginx

Ubuntu it should, which you can do with these following commands:

If you were to reboot the deploy server right now, nginx would restart
automatically along with the other services on the system. You don't need to do it
now, but it's good to know that it'll start nginx when the server boots now.

There you have it, the application is now deployed onto your Ubuntu server
using Capistrano and is running through the power of nginx and Passenger.

In this chapter we covered one of the many different permutations you can use to
deploy a Rails application to a server. This one has covered the most commonly
used software packages such as RVM, Capistrano, PostgreSQL, nginx and
Passenger, and therefore it should be a great starting ground for anybody learning
about deployment.

There's plenty of other tools out there such as Puppet Chef Babushka and31 32 33

Gitpusshuten Different people prefer different ways of doing similar things, and34

so there's a wide variety of choice out there. To cover everything within one
chapter is just not possible.

Footnote 31 http://puppetlabs.comm

Footnote 32 http://opscode.com/chef/m

Footnote 33 http://babushka.mem

Footnote 34 http://gitpusshuten.com/m

You set up your server with Ruby 1.9.3 running your Rails 3.2.8 application.
You began by installing the essential packages you needed, then installing RVM,
followed by Ruby.

Afterwards, you set up a user with the same name as your application. This was

sudo wget http://bit.ly/nginx-init-script -O /etc/init.d/nginx

sudo chmod +x /etc/init.d/nginx
sudo /usr/sbin/update-rc.d -f nginx defaults

14.7 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

619

Licensed to <alex@vinova.sg>

http://bit.ly/nginx-init-script
http://www.manning-sandbox.com/forum.jspa?forumID=818

RVM (Ruby Version Manager)
Vagrant gem
VirtualBox

shortly followed by the locking down of SSH access on the machine: now nobody
is able to access it with a password, as they need to have the private key instead.
Disabling root access is just generally good practice. Nobody should ever need to
use the root account on this machine, as everything can be managed by your user
or the application's user.

Then we had you set up a database server using PostgreSQL, one of the most
popular relational-datastores today. You discovered that giving your system user
the same name as your database came in handy; PostgreSQL supports a kind of
authentication that automatically grants a system user access to a database with the
same name. That is of course provided a PostgreSQL user and database exist with
that name. Very handy!

Second-to-last, you got down to the meat of the chapter: the first deployment of
your application to your server using Capistrano. You saw that the
config/deploy.rb file comes in handy, allowing you to specify the configuration of
your deployment environment simply. With Capistrano, you distill everything you
need to get your application's latest code onto the server down to one command:

. Every time you need to deploy, run this commandcap deploy:migrations

and Capistrano (along with your configuration) will take care of the rest.
Finally, you set up nginx and Passenger to serve your application's requests, as

well as the static assets of your application. Generally, this is the setup preferred by
Rails developers, and so there's a lot of useful knowledge out there. An alternative
to this setup would be to use the Apache web server instead of nginx. Both work
suitably.

That's your application "done," really. From the first time you ran a test all the
way up to deployment, you've covered a lot of important things within Rails.
There's still much more to learn (which is why there's more chapters after this one),
but right now readers should have a firm grasp of what the process of developing
and deploying a Rails application is. In the next chapter, we show you how you can
let people authenticate to your application through either Facebook or Twitter.

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

620

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

15
Now that your application has been deployed to a server somewhere (or at least
we've gone through the motions of doing that!), we're going to look at adding
additional features to your application. One of these is OAuth authentication from
services such as Twitter and GitHub.

When you sign into a website, you can generally use a couple of authentication
methods. The first of these would be a username and password, with the username
being forced to be unique. This method provides a solid way to identify what user
has logged into the website, and from that identification the website can choose to
grant or deny access to specific parts of the site. You have done this with your
Ticketee application, except in place of a username, you're using an email address.
An email address is an already unique value for users of a website that also allows
you to have a way of contacting the user if the need arises. On other websites,
though, you may have to choose a username (like with Twitter), or you could be
able to use both a username and email to sign in, like with GitHub.

Entering your email address and a password into every website that you use1

can be time consuming. Why should you be throwing your email addresses and
passwords into every website?

Footnote 1 Ideally, a unique password per-site is best for added security. If one site is breached you do not wantm
your password to be the same across multiple sites, as the attackers would gain access to everything.

Then along came OAuth. OAuth allows you to authenticate against an OAuth
provider. Rather than giving your username/email and password to yet another site,
you authenticate against a central provider, who then provides tokens for the
different applications to read and/or write to the user's data on the application.

In this chapter you're going to be using the OAuth process to let users sign in to
your Ticketee application using Twitter and GitHub. You'll not only see how easy

Alternative Authentication

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

621

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

this is, but also how you can test to make sure that everything works correctly.
Rather than implementing this process yourself, you can use the OmniAuth

gem in combination with the gem that you're already using. While thisdevise

combination abstracts a lot of the complexity involved with OAuth, it's still helpful
to know how this process works. Let's take a look now.

OAuth authentication works in a multi-step process. In order to be able to
authenticate against other applications, you must first register your application with
them. After this process is complete, you're given a unique key to identify your
application and a secret passphrase, which is actually a hash. Neither of these
should be shared. When your application makes a request to an OAuth provider, it
will send these two parameters along as part of the request so the provider knows
which application is connecting. Twitter's API documentation has a pretty good
description of the process as an image, which you can see as Figure 15.1.

15.1 How OAuth Works

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

622

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 15.1 Twitter OAuth

First of all (not shown in the figure), a user initiates a request to your
application (the "Consumer") to announce their intentions to login with Twitter
(the "Service Provider"). Your application then sends that unique identifier and that
secret key (given to us by Twitter when you register your application), and begins
the authentication process by requesting a token (A). This token will be used as an
identifier for this particular authentication request cycle.

The provider (Twitter) then grants you this token and sends it back to your
application. Your application then redirects the user to the provider (B) in order to
gain the user's permission for this application to access its data. When signing in
with Twitter, your users would see something like Figure 15.2.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

623

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 15.2 Twitter Authorization

The user can then choose to "Sign In" or "Cancel" on this screen. If they choose
"Sign In," the application then has access to their data, which authorizes the
request token you were given at the beginning. If they press "Cancel," it redirects
the user back to the application without giving it access to the data.

In this case, we'll assume the user has pressed "Sign In." The user is then
redirected back to your application from the provider, with two parameters: an

 and a . The is the requestoauth_token oauth_verifier oauth_token

token you were granted at the beginning, and the is a verifieroauth_verifier

of that token. OmniAuth then uses these two pieces of information to gain an
, which will allow your application to access this user's data. There'saccess token

also additional data, such as the user's attributes, that gets sent back here. The
provider determines the extent of this additional data.

This is just a basic overview of how the process works. All of this is covered in
more extensive detail in Section 6 of the OAuth 1.0 spec, which can be found at
http://oauth.net/core/1.0/.

In the case of your application, you're going to be letting users go through this
process with the intention of using their authorization with Twitter to sign them in
whenever they wish. After this process has been completed a first time, a user will

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

624

Licensed to <alex@vinova.sg>

http://oauth.net/core/1.0/
http://www.manning-sandbox.com/forum.jspa?forumID=818

not be re-prompted to authorize your application (unless they have removed it from
their authorized applications list), meaning the authorization process will be
seamless for the user.

Let's see how you can use the OmniAuth gem to set up authentication with
Twitter in your application.

You're going to be using OmniAuth to let people sign in using Twitter and GitHub
as OAuth providers. We'll begin with Twitter authentication and then move on to
GitHub after.

OmniAuth not only supports OAuth providers, but also supports OpenID, CAS and
LDAP. You're only going to be using Twitter's OAuth authentication for now,
which you can install in your application by putting this line in your Gemfile:

The different parts of OmniAuth are separated out into different gems by an
 prefix so that you can use some parts without including all the codeomniauth-

for the other parts. In your Gemfile you're loading the gem,omniauth-oauth

which will provide just the OAuth functionality you need.
Next, you need to tell Devise that your model is going to be usingUser

OmniAuth. You can do this by putting the symbol at the end of:omniauthable

the list in your app/models/user.rb so that it now becomes this:devise

With OmniAuth setup, you can now configure your application to provide a
way for your users to sign in using Twitter. Twitter first requires you to register
your application on its site.

15.2 Twitter Authentication

15.2.1 Setting up OmniAuth

gem 'omniauth-twitter',
 :git => 'https://github.com/arunagw/omniauth-twitter.git'

devise :database_authenticatable, :registerable, :confirmable,
 :recoverable, :rememberable, :trackable, :validatable,
 :token_authenticatable, :omniauthable

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

625

Licensed to <alex@vinova.sg>

https://github.com/arunagw/omniauth-twitter.git
http://www.manning-sandbox.com/forum.jspa?forumID=818

You need to register your application with Twitter before your users can use it to
login to your application. The registration process gives you a unique identifier and
secret code for your application (called a "consumer key" and "consumer secret"
respectively), which is how Twitter will know what application is requesting a
user's permission.

The process works by a user clicking a small Twitter icon on your application,
which will then redirect them to Twitter. If they aren't signed in on Twitter, they
will first need to do so. Once they are signed in, they will then be presented with
the authorization confirmation screen that you saw earlier, shown again in Figure
15.3.

Figure 15.3 Twitter Authorization Request

On this screen you can see that Twitter knows what application is requesting
permission for this user, and that the user can either choose to "Allow" or "Deny."
By clicking "Allow," the user will be redirected back to your application and then
signed in using code that you'll write after you've registered your application.

To register your application with Twitter, you need to go to
http://dev.twitter.com and click the "Create an app" link.

15.2.2 Registering an application with Twitter

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

626

Licensed to <alex@vinova.sg>

http://dev.twitter.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

On this new page you need to fill in the name, description and URL fields. The
name should be "[Your name]'s Ticketee" as it needs to be unique; the description
can be anything, and the URL can be http://manning.com/bigg2. When you click
create on this application, you'll see the consumer key and secret that you'll be
using shortly, as shown in Figure 15.4.

Figure 15.4 A brand new application!

This screen will show you the consumer key and the consumer secret which
you will need to use for Omniauth. The other values on this page aren't important
for you to know, as OmniAuth will take care of them for you.

You now need to set up your application to use this consumer key and
consumer secret when authenticating with Twitter. You can do this in Devise's
configuration file in your application, which is located at
config/initializers/devise.rb. In this file, you'll see the following commented-out
OmniAuth configuration:

This shows you how to add a new OmniAuth provider, using GitHub as an
example. In this example, the and values would be theAPP_ID APP_SECRET

consumer key and consumer secret given to you by the provider. Set up a new
provider for Twitter by putting these lines underneath the commented-out section:

==> OmniAuth
Add a new OmniAuth provider. Check the wiki for more information
on setting up on your models and hooks.
config.omniauth :github, 'APP_ID', 'APP_SECRET',
:scope => 'user,public_repo'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

627

Licensed to <alex@vinova.sg>

http://manning.com/bigg2
http://www.manning-sandbox.com/forum.jspa?forumID=818

This will configure Devise to provide OmniAuth-based authentication for
Twitter, but you're not done yet. You need some way for a user to be able to
initiate the sign in process with Twitter.

To provide a user with a way to sign in with Twitter, you'll add a small addition to
your menu bar that lets people sign up and sign in using Twitter, as shown in
Figure 15.5.

Figure 15.5 Sign in
with Twitter

When a user clicks this button, your application will begin the OAuth process
by requesting a request token from Twitter, and then using that token to redirect to
Twitter. From here, the user will authorize your application to have access to their
data on Twitter, and then they'll be redirected back to your application. It's the user
being redirected back to your application that is the most important part. Twitter
will send back the and , and then youroauth_token oauth_verifier

application makes the request for the access token to Twitter. Twitter will then
send back this access token and any additional parameters it sees fit, and you'll be
able to access this information in a Hash format. For example, Twitter sends back
the user's information in the response like this:

config.omniauth :twitter,
 '[consumer key]',
 '[consumer secret]'

15.2.3 Setting up an OmniAuth testing environment

{
 ...
 "extra" => {
 ...
 "user_hash" => {
 "id" => "14506011"
 "screen_name" => "ryanbigg"
 "name" => "Ryan Bigg",
 ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

628

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This is quite a stripped down version of the response you'll be getting back
from Twitter, but it contains three very important values. The first is the unique
Twitter-provided of the user, the second is their Twitter username, and the thirdid

is their display name. Currently in Ticketee, you've been using the user's email to
display who you're logged in as. Because Twitter doesn't send back an email
address, you'll have to change where you'd usually display an email address to
instead display the user's display name or screen name if they've chosen to sign in
with Twitter.

First things first though: you need to have a link that a user can click to begin
this process, and to make sure that the link is working you're going to need to write
a feature. With this feature, you shouldn't always rely on being able to connect to
your OAuth providers like Twitter. Instead, you should create fake responses
(referred to as "mocks") for the requests you'd normally do. By doing this you can
substantially speed up the rate at which your tests run, as well as not depend on
something like connectivity, which is out of your control.

OmniAuth provides a configuration option for setting whether or not you're in a
test mode, which will mock a response rather than making a call to an external
service. This option is conveniently called . You can set this option attest_mode

the bottom of your config/environments/test.rb like this:

With your test environment now set up correctly, you can write a feature to
make sure that users can sign in with Twitter.

Next, you can begin to write your feature to test Twitter authentication in a new
file at spec/integration/twitter_auth_spec.rb as shown in Listing 15.1.

Listing 15.1 spec/integration/twitter_auth_spec.rb

 }
 }
}

OmniAuth.config.test_mode = true

15.2.4 Testing Twitter Sign-in

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

629

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This is a simple little feature with a short, 3-line scenario. The code inside the
 block here will create a fake response from Twitter, which will be usedbefore

by Omniauth to identify the user who has signed in for this spec. These three fields
will be stored in the database and can then be used to link users within Ticketee to
users from Twitter.

W h e n y o u r u n b i n / r s p e c

, you'll see that you'respec/integration/twitter_auth_spec.rb

missing your link:

Rather than have a link that reads "sign_in_with_twitter", you'll actually be
giving the link an attribute of "sign_in_with_twitter" and Capybara will still beid

able to find this link. The link itself is actually going to be a small button that you
can get from https://github.com/intridea/authbuttons. You should download these
images (just the 32x32px versions) and put them in the app/assets/images/icons
directory of your application. Leave them named as they are.

To create this new link, open app/views/layouts/application.html.erb. This file

require 'spec_helper'

feature 'Twitter Auth' do
 before do
 OmniAuth.config.mock_auth[:twitter] = {
 "extra" => {
 "user_hash" => {
 "id" => '12345',
 "screen_name" => 'twit',
 "display_name" => "A Twit"
 }
 }
 }
 end

 it "signing in with Twitter" do
 visit '/'
 click_link 'sign_in_with_twitter'
 page.should have_content("Signed in with Twitter successfully.")
 page.should have_content("Signed in as A Twit (@twit)")
 end
end

And I follow "sign_in_with_twitter"
 no link with title, id or text 'sign_in_with_twitter' found ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

630

Licensed to <alex@vinova.sg>

https://github.com/intridea/authbuttons
http://www.manning-sandbox.com/forum.jspa?forumID=818

contains the layout for your application and is responsible for displaying the "Sign
up" and "Sign in" links for your application if the user isn't signed in already. It's
underneath these links that you want to display your little twitter icon, which you
can do by making this small change to this file:

With this link you use the downloaded icon as the first argument of link_to

by using . The second argument to is the routing helperimage_tag link_to

method with the argument.user_omniauth_authorize_path :twitter

This method is provided by Devise because you've told it your model is User

. This routing helper will go to a controller that is internal toomniauthable

Devise, as it will deal with the hand-off to Twitter.
When you run this spec again, the second step of your scenario will still fail,

but this time with a different error:

By default, Devise handles the callbacks from external services using the
. Because different people willDevise::OmniAuthCallbacksController

want this controller to perform differently, Devise provides a set of common
functionality in this controller and expects you to subclass it to define the actions
(like your action) yourself. To do this, create a new controller for thesetwitter

callbacks by running this command:

<%= link_to "Sign up", new_user_registration_path %>
<%= link_to "Sign in", new_user_session_path %>

Or use <%= link_to image_tag("icons/twitter_32.png"),
 user_omniauth_authorize_path(:twitter),
 :id => "sign_in_with_twitter" %>

And I follow "sign_in_with_twitter"
 The action 'twitter' could not be found
 for Devise::OmniauthCallbacksController

rails g controller users/omniauth_callbacks

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

631

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This command will generate a new controller at
app/controllers/users/omniauth_callbacks_controller.rb, but it's not quite what you
want. You want this controller to inherit from

, and you also want it to have aDevise::OmniauthCallbacksController

 action. Before you do that, though, tell Devise to use this new controllertwitter

for its callbacks. You can do this by changing these lines in your config/routes.rb
file:

into this:

This will tell Devise to use your newly generated
 controller rather than its own users/omniauth_callbacks

, which you'll use as theDevise::OmniauthCallbacksController

superc lass of your new cont ro l le r . This
 contains some code that willDevise::OmniauthCallbacksController

be used in case something goes wrong with the authentication process.
Now you need to define the action in this new controller. This actiontwitter

is going to be called when Twitter sends a user back from having authorized your
application to have access. Define this controller using the code from Listing 15.2.

Listing 15.2 app/controllers/users/omniauth_callbacks_controller.rb

devise_for :users, :controllers => {
 :registrations => "registrations",
}

devise_for :users, :controllers => {
 :registrations => "registrations",
 :omniauth_callbacks => "users/omniauth_callbacks"
}

module Users
 class OmniauthCallbacksController < Devise::OmniauthCallbacksController
 def twitter
 @user = User.find_or_create_for_twitter(env["omniauth.auth"])
 <co id="ch15_170_1"/>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

632

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

When a request is made to this action, the details for the user are accessible in
the key, with being the Rack environment ofenv["omniauth.auth"] env

this request, which contains other helpful things such as the path of the request .2

Footnote 2 Covered in much more detail in chapter 18.m

You then pass these details to a currently undefined method called
, which will deal with finding a find_or_create_for_twitter User

record for this information from Twitter, or creating one if it doesn't already exist.
You then set a telling the user they've signed in and then useflash[:notice]

the Devise provided method to redirect your user tosign_in_and_redirect

the of your application, which will show the root_path

's action.ProjectsController index

To make this action work you're going to need to define the
 in your model, which you can dofind_or_create_for_twitter User

using the code from Listing 15.3.

Listing 15.3 app/models/user.rb

You've defined this class method to take one argument, which is the response

 flash[:notice] = "Signed in with Twitter successfully."
 sign_in_and_redirect @user, :event => :authentication
 end
 end
end

def self.find_or_create_for_twitter(response)
 data = response['extra']['user_hash']
 if user = User.find_by_twitter_id(data["id"]) <co id="ch15_188_1"/>
 user
 else # Create a user with a stub password.
 user = User.new(:email => "twitter+#{data["id"]}@example.com",
 <co id="ch15_188_2"/>
 :password => Devise.friendly_token[0,20])
 <co id="ch15_188_3"/>
 user.twitter_id = data["id"]
 user.twitter_screen_name = data["screen_name"]
 user.twitter_display_name = data["display_name"]
 user.confirm!
 user
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

633

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

you get back from Twitter. In this response, there's going to be the access token
that you get back from Twitter that you don't care so much about, and also the

 key and its value that you do really care about. It's with these that theextra

application then attempts to find a user based on the key within the id

 (here as to make it easier toresponse["extra"]["user_hash"] data

type). If it can find this user, it'll return that object.
If it can't find a user with that attribute, then you need to createtwitter_id

one! Because Twitter doesn't pass back an email, you make one up , as well as a
password, using Devise's very helpful method, whichfriendly_token

generates a secure phrase like . The user won't beQfVRz8RxHx4Xkqe6uIqL

using these to sign in; Devise needs them so it can validate the user record
successfully.

You have to do this the long way, because the prefixed parameterstwitter_

aren't mass-assignable due to your call earlier on in thisattr_accessible

model, so you must assign them manually one at a time. Store the id of the user so
you can find it again if you need to re-authenticate this user, the

 and the . Then you needtwitter_screen_name twitter_display_name

to confirm and save the object, which you can do with the method, andconfirm!

finally you need to return the object as the final line in this block.else

These fields are not yet fields in your database, so you'll need to add them in.
You can do this by creating a new migration using this command:

In this migration you want to add the fields to your table, which you can do by
adding them to your migration, as shown in Listing 15.4

Listing 15.4 db/migrate/[timestamp]_add_twitter_fields_to_users.rb

rails g migration add_twitter_fields_to_users

class AddTwitterFieldsToUsers < ActiveRecord::Migration
 def change
 add_column :users, :twitter_id, :string
 add_column :users, :twitter_screen_name, :string
 add_column :users, :twitter_display_name, :string
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

634

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

With this migration set up, you can run it on your development and test
databases with and rake db:migrate rake db:test:prepare

respectively. Now when you run your spec again with bin/rspec

, you'll see that your new spec/integration/twitter_auth_spec.rb

 object is being created and that you can see the "Signed in with TwitterUser

successfully." message:

The final check of your spec is now failing, but this is a pretty easy one to fix.
You need to change where it would normally display a user's email to display
something like "A Twit (@twit)" if the attribute is set. To do this,twitter_id

define a new method in your model above the method, using the codeUser to_s

from Listing 15.5

Listing 15.5 app/models/user.rb

If the attribute is set in this method, then you assume the twitter_id

 and attributes are settwitter_display_name twitter_screen_name

also and use those to display the twitter name. If it isn't set, then you'll fall back to
using the field instead. You'll be able to use this method later on to check ifemail

the field is set and use the values for that instead .github_id 3

Footnote 3 Alternatively, you could add a feature to let the user pick which one they would like to display.m

Now you need to change the occurrences of where is referenceduser.email

to use the method instead. The first occurrence of this is indisplay_name

Failure/Error: page.should have_content("Signed in as A Twit (@twit)")
 expected there to be content ...

def display_name
 if twitter_id
 "#{twitter_display_name} (@#{twitter_screen_name})"
 else
 email
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

635

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

app/models/user.rb in your method, which should now become:to_s

The rest of the occurrences are found in a handful of views throughout your
application, and you'll need to fix these up now. The first of these is the first line of
app/views/admin/permissions/index.html.erb, which should now become this:

Next, there's one in the application layout at
app/views/layouts/application.html.erb:

This needs to become simply:

By placing an object like this in the view, the method will be called on itto_s

automatically which is of course the method in the model.to_s User

Finally, you'll need to update the app/views/tickets/show.html.erb page in the
same manner, changing this:

To this:

def to_s
 "#{display_name} (#{admin? ? "Admin" : "User"})"
end

<h2>Permissions for <%= @user.display_name %></h2>

Signed in as <%= current_user.email %>

Signed in as <%= current_user %>

<%= @ticket.user.email %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

636

Licensed to <alex@vinova.sg>

mailto:@user.display_name
mailto:@ticket.user.email
http://www.manning-sandbox.com/forum.jspa?forumID=818

That's it! That's all the occurrences of calls to the attribute in placesemail

where it's shown to users has been changed to instead. So doesdisplay_name

this mean that your spec will now run? Find out with a quick run of bin/rspec

.spec/integration/twitter_auth_spec.rb

All green, all good. Now users are able to sign up and sign in by clicking the
Twitter icon in your application rather than providing you with their email and
password. The first time a user clicks this icon, they'll be redirected off to Twitter,
which will ask them to authorize your application to access their data. If they
choose "Allow," they will be redirected back to your application. With the
parameters sent back from the final request, you'll attempt to find a recordUser

matching their Twitter ID or, if there isn't one, create one instead. Then you'll sign
them in.

After that, when the user attempts to sign in using the Twitter icon, they'll still
be redirected back to Twitter, but this time Twitter won't ask them for
authorization again. Instead, Twitter will instantly redirect them back to your
application; the whole process will seem pretty smooth, albeit with the delay that
can normally be expected from doing two HTTP requests.

Go ahead, try launching now and accessing the application atrails server

http://localhost:3000 by pressing the small Twitter icon on the sign in page. You'll
be redirected off to Twitter, which deals with the authentication process before
sending you back to the application.

Did you break anything? Let's see by running .rake spec

Nope, it seems like everything is functioning correctly. Let's make a commit:

<%= @ticket.user.display_name %>

1 example, 0 failures

120 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

637

Licensed to <alex@vinova.sg>

mailto:@ticket.user.display_name
http://localhost:3000
http://www.manning-sandbox.com/forum.jspa?forumID=818

With the work you've done in this section, users will now be able to easily sign
into your application using Twitter. You can see this for yourself by starting a
server using and clicking the Twitter icon if you've got a Twitterrails s

account.
If your users don't have a Twitter account, then their only other choice at the

moment is to provide you with their email address and a password, and that's not
really useful to anyone who has a GitHub but not a Twitter account. So let's see
how you can authenticate people using GitHub's OAuth next, while recycling some
of the Twitter-centric code in the process.

We've shown how you can let people authenticate using Twitter's OAuth. GitHub
also provides this service, and the OmniAuth gem you're using can be used to
connect to that too, in much the same way as you did with Twitter. Rather than
re-doing everything that you did in the previous section again and changing
occurrences of "twitter" to "github," you'll be seeing how you can make the code
that you've written so far support both Twitter and GitHub in a clean fashion.
When you're done, you're going to have a little GitHub icon next to your Twitter
one so that people can use GitHub, Twitter or email to sign in, making your "sign
in / sign up area" look like Figure 15.6

Figure 15.6 GitHub Login

As was the case with Twitter, your first step will be registering an application
with GitHub.

git add .
git commit -m "Add OmniAuth-driven support for signing in with Twitter"

15.3 GitHub Authentication

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

638

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

To register an application with GitHub, you must first be signed in. Then you can
visit https://github.com/settings/applications/new and fill in the form that it
provides. After that, you'll need to copy the "Client Id" and "Client Secret" values
and put them in your config/initializers/devise.rb file under your Twitter details,
like this:

With GitHub now set up in your application, you can now write the feature to
ensure that its authentication is working. To begin testing your application's ability
to authenticate users from GitHub, you're going to write a new spec at
spec/integration/github_auth_spec.rb and fill it with the content from Listing 15.6.

Listing 15.6 spec/integration/github_auth_spec.rb

Although it may look like all you've done here is replace all the references to
Twitter with GitHub... actually, that's precisely what you've done! This is because

15.3.1 Registering and Testing GitHub Auth

config.omniauth :github, "[Client ID]", "[Client Secret]"

require 'spec_helper'
feature "GitHub Auth" do
 before do
 OmniAuth.config.mock_auth[:github] = {
 "extra" => {
 "user_hash" => {
 "id" => '12345',
 "email" => 'githubber@example.com',
 "login" => "githubber",
 "name" => "A GitHubber"
 }
 }
 }
 end

 it "can sign in withn GitHub" do
 visit '/'
 click_link "sign_in_with_github"
 page.should have_content "Signed in with GitHub successfully."
 page.should have_content "Signed in as A GitHubber"
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

639

Licensed to <alex@vinova.sg>

https://github.com/settings/applications/new
mailto:githubber@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

there should be little difference in how the user interacts with your site to sign in
with Twitter or GitHub. The differences should only be behind the scenes, as this

is how a user would expect an application to behave .4

Footnote 4 Also known as "Principle of least surprise" (POLS) or more colloquially, "keep it simple, stupid!"m
(KISS)

GitHub returns a similar hash to that of Twitter, containing an key withextra

a key nested inside. Within this nested hash you've got the threeuser_hash

parameters that you'll be storing on your end: the id, the login and a name.
When you run your feature with bin/rspec

, you'll see that it can't findspec/integration/github_auth_spec.rb

the button to sign in with GitHub on the page:

This means that your link doesn't exist yet, sosign_in_with_github

you're going to need to create it like you did with your
 link. You could do this by copying and pasting thesign_in_with_twitter

Twitter link code underneath itself in app/views/layouts/application.html.erb,
ending up with something like this:

This code in your application layout is going to get ugly as you add providers,
and it's quite a lot of duplication! What would be more sensible is moving this code
into a helper method in a new file such as app/helpers/oauth_helper.rb, defining it
as shown in Listing 15.7:

Listing 15.7 app/helpers/oauth_helper.rb

And I follow "sign_in_with_github"
 no link with title, id or text 'sign_in_with_github' found

Or use <%= link_to image_tag("icons/twitter_32.png"),
 user_omniauth_authorize_path(:twitter),
 :id => "sign_in_with_twitter" %>
<%= link_to image_tag("icons/github_32.png"),
 user_omniauth_authorize_path(:github),
 :id => "sign_in_with_github" %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

640

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Then in place of the ugly code in your application layout, you'd put this instead:

How's that for simplicity? Well, you could make it even cleaner by accepting
any number of arguments to your method, by turning it into this:

This helper uses the method to output the links to your view. If youconcat

didn't use this, it wouldn't render them at all. You could then write this in your
application layout:

Now isn't that way nicer? If at any time you want to add or remove one of the
links, you only have to add or remove arguments to this method.

When you run this feature again with bin/cucumber

 you'll see that you're on to the nextfeatures/github_auth.feature

error:

module OauthHelper
 def auth_provider(name)
 link_to image_tag("icons/#{name}_32.png"),
 user_omniauth_authorize_path(name),
 :id => "sign_in_with_#{name}"
 end
end

Or use <%= auth_provider(:twitter) %> <%= auth_provider(:github) %>

def auth_providers(*names)
 names.each do |name|
 concat(link_to(image_tag("icons/#{name}_32.png"),
 user_omniauth_authorize_path(name),
 :id => "sign_in_with_#{name}"))
 end
 nil
end

Or use <%= auth_providers(:twitter, :github) %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

641

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Like you did with Twitter, you're going to need to define a action ingithub

the . This action will find orUsers::OmniauthCallbacksController

create a user based on the details sent back from GitHub, using a class method
you'll define after in your model. Sound familiar? You can duplicate the User

 action in this controller and create a new action from it liketwitter github

this:

When you run your feature again with bin/rspec

, you'll see that it's nowspec/integration/github_auth_spec.rb

hitting your new action, as it can't find a method that you use in it:github

In this error output you're seeing that Rails is unable to find a
 method on a class, which is the class.find_or_create_for_github User

You created one of these for Twitter, and unlike the provider links and the callback
actions, you're not able to easily create a bit of smart code for your model. But, you
can separate out the concerns of the model into separate files, which would make it
easier to manage. Rather than filling your model with methods for each ofUser

your providers, you'll separate this code out into another module and then extend
your class with it.

You can do this by creating a new directory at app/models/user and placing a
file called app/models/user/omniauth_callbacks.rb inside it. You should put the
content from listing 15.10 inside this file.

The action 'github' could not be found
for Users::OmniauthCallbacksController

def github
 @user = User.find_or_create_for_github(env["omniauth.auth"])
 flash[:notice] = "Signed in with GitHub successfully."
 sign_in_and_redirect @user, :event => :authentication
end

undefined method `find_or_create_for_github' for ...
(eval):3:in `github'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

642

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 15.8 Listing 15.10 app/models/user/omniauth_callbacks.rb

In this file you define an module inside your OmniauthCallbacks User

class. Inside this module, you've put the find_or_create_for_twitter

method straight from your model, except you've removed the prefixUser self

to the method name. You can now go ahead and remove this method from the
 model, making it temporarily unavailable.User

By separating out the concerns of your model into separate modules, you can
decrease the size of the individual model file and compartmentalize the different
concerns of a model when it becomes complicated, like your model has.User

To make this method once again available, you need to extend your model with
this module. You can do this by making the first two lines of your model into:

The method here will make the methods available for the module onextend

the class itself as class methods.

class User < ActiveRecord::Base
 module OmniauthCallbacks
 def find_or_create_for_twitter(response)
 data = response['extra']['user_hash']
 if user = User.find_by_twitter_id(data["id"])
 user
 else # Create a user with a stub password.
 user = User.new(:email => "twitter+#{data["id"]}@example.com",
 :password => Devise.friendly_token[0,20])
 user.twitter_id = data["id"]
 user.twitter_screen_name = data["screen_name"]
 user.twitter_display_name = data["display_name"]
 user.confirm!
 user
 end
 end
 end
end

class User < ActiveRecord::Base
 extend OmniauthCallbacks

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

643

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

TIP Where to extend
It's generally a good idea to put any or calls atextend include

the beginning of a class definition so that anybody else reading it
will know if the class has been modified in any way. If an isextend

buried deep within a model, then it can be difficult to track down
where its methods are coming from.

By adopting a convention of putting things that can potentially
seriously modify your class at the top of the class definition, you're
giving a clear signal to anyone (including your future self who may
have forgotten this code upon revisiting) that there's more code for
this model in other places.

You can now define your method in the find_or_create_by_github

 module by using the code from listing 15.11.User::OmniauthCallbacks

Listing 15.9 app/models/user/omniauth_callbacks.rb

You're lucky this time around, as the form of the data you get back from
GitHub isn't too different to Twitter, coming back in the

 key. In the case of other providers,response['extra']['user_hash']

you may not be so lucky. The form of the data sent back is not standardized, and so
providers will choose however they like to send back the data.

Included in the data you get back from GitHub is the user's email address,
which you can use to create the new user, unlike with the

 method where you had to generate a fakefind_or_create_for_twitter

def find_or_create_for_github(response)
 data = response['extra']['user_hash']
 if user = User.find_by_github_id(data["id"])
 user
 else # Create a user with a stub password.
 user = User.new(:email => data["email"],
 :password => Devise.friendly_token[0,20])
 user.github_id = data["id"]
 user.github_user_name = data["login"]
 user.github_display_name = data["name"]
 user.confirm!
 user
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

644

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

email. The added bonus of this is that if a user wishes to sign in using either
GitHub or their email, they would be able to do so after resetting their password.

The final lines of this method should be familiar; you're setting the
, and fields togithub_id github_user_name github_display_name

store some of the important data sent back from GitHub. You're able to re-sign-in
people who visit a second time from GitHub based on the field yougithub_id

save. Finally, you confirm the user so that you're able to sign in as them.
With the method defined, has yourfind_or_create_for_github

feature progressed? Find out with a run of bin/cucumber

:features/github_auth.feature

Ah, it would appear that you're not quite done! You need to define the github
fields in your users table so that your newly added method can reference them. Go
ahead and create a migration to do this now by running this command:

You can then alter this migration to add the fields you need by using the code
from listing 15.12.

Listing 15.10 Listing 15.12 db/migrate/[timestamp]_add_github_fields_to_users.rb

Alright, you can now run this migration using and rake db:migrate rake

And I follow "sign_in_with_github"
 undefined method `find_by_github_id' for ...

rails g migration add_github_fields_to_users

class AddGithubFieldsToUsers < ActiveRecord::Migration
 def change
 add_column :users, :github_id, :integer
 add_column :users, :github_user_name, :string
 add_column :users, :github_display_name, :string
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

645

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

 to add these fields to your users table. Now you can rundb:test:prepare

your fea ture again wi th bin/cucumber

 to see this output:features/github_auth.feature

The third step of your scenario is now passing, but the fourth is failing because
you're not displaying the GitHub-provided name as the "Sign in as ..." line in your
application. You can easily rectify this by changing the methoddisplay_name

in app/models/user.rb to detect if the field is set like it does alreadygithub_id

with the field.twitter_id

Underneath the display name output for the case inif twitter_id

app/models/user.rb, add these two lines:

Transforming this whole method into this:

N o w w h e n y o u r u n bin/cucumber

 again, you should see that it's allfeatures/github_auth.feature

Scenario: Signing in with GitHub
 Given I am on the homepage
 And I follow "sign_in_with_github"
 Then I should see "Signed in with Github successfully."
 Then I should see "Signed in as A GitHubber (githubber)"
 expected there to be content "Signed in as A Githubber"

elsif github_id
 "#{github_display_name} (#{github_user_name})"

def display_name
 if twitter_id
 "#{twitter_display_name} (@#{twitter_screen_name})"
 elsif github_id
 "#{github_display_name} (#{github_user_name})"
 else
 email
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

646

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

passing:

Now users are able to use GitHub to sign in to your site, as well as Twitter or
their email address if they please. Make a commit for the changes that you've done,
but first make sure everything's running with a quick run of rake

.cucumber:ok spec

All systems green! Time to commit:

Now you've seen how you can support another authentication provider, GitHub,
along with supporting Twitter and email-based authentication too. To add another
provider you'd only need to follow these 6 easy steps:

Create a new client on the provider's website, which differs from provider to provider.
Add the new client's information to config/initializers/devise.rb as a new provider.
Write a test for your new provider to make sure that people can always use it to sign in.
Add the provider icon to your listed providers in app/views/layouts/application.html.erb
by passing another argument to the helper method that you defined in auth_proviers

OauthHelper

Add a callback to the by using the Users::OmniauthCallbacksController provides

method. Again, passing another argument to this method is all you need.
Define the method in the find_or_create_for_[provider] User::OmniauthCallbacks

module.

1 scenario (1 passed)
5 steps (5 passed)

64 scenarios (64 passed)
746 steps (746 passed)
and
56 examples, 0 failures

git add .
git commit -m "Add GitHub authentication support"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

647

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Devise omniauthable module
Devise OmniAuth configuration
OmniAuth

Due to the flexibility offered by Devise and Omniauth, there's no
provider-specific configuration you need to do: it all works beautifully. For a
full-list of providers, check out the project on GitHub:omniauth

https://github.com/intridea/omniauth.
Let's see for ourselves if GitHub's authentication is working by launching

 again and going to http://localhost:3000 and clicking on therails server

GitHub icon.

In this chapter you've seen how easy it is to implement authentication using two
OAuth providers: Twitter and GitHub. You did this using the OmniAuth
integration, which is available in Devise versions after 1.2.

For the Twitter section, you implemented the complete flow in a very simple
manner using the features given to you by Devise, such as the routing helper,
which initially sends a request off to the provider. Before OmniAuth came along,
this process was incredibly tedious. It's truly amazing what OmniAuth offers you
in terms of integrating with these providers.

When you got to the GitHub section, rather than copying and pasting the code
you created for Twitter, you saw how you could reduce repetition in your code by
using methods that iterate through a list of providers to display the icons or to
provide callbacks.

Now that you've got multiple ways to allow people to sign in to your
application, the barrier of entry is lowered because people can now choose to sign
in with a single-click (after they've authorized the application on the relevant
provider), rather than filling in the sign in form each time. You've also got a great
framework in place if you want to add any more providers.

Your application is at a pretty good state now, but you've not yet made sure that
it can perform as efficiently as possible. If thousands of users flock to your
application, how can you code it in such a way to reduce the impact on your
servers? In the next chapter, we look at how you can implement some basic
performance enhancements to make your application serve requests faster, or even
create a way where a request skips the application altogether.

Index Terms

15.4 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

648

Licensed to <alex@vinova.sg>

https://github.com/intridea/omniauth
http://localhost:3000
http://www.manning-sandbox.com/forum.jspa?forumID=818

16
When an application is written, it may be done in such a way that it will not
perform ideally. A common situation is that an application with a small database
will perform quickly because there is less data to retrieve, but starts to slow as the
database grows larger. This problem can be fixed in many different ways.

The first way is to limit the amount of data retrieved in any one call to a fixed
limit; a process known as . At the moment, for example, you're notpagination
limiting the number of tickets shown in the action of the show

. The more tickets that get added to a project, the slowerProjectsController

the page that shows this data is going to perform because it will have to retrieve
more data from the database and render it out to the page. By breaking the data
down into a set of pages, you can show 50 tickets per page. This will lessen the
load on your database, but not completely eliminate it. That would only be possible
if you were to run no queries at all.

You could do exactly that if you cached the output of the page, or even just the
part of the page that showed the list of tickets.

The first process involves saving a copy of the page in the public directory,
which would then be used to serve this page. Any action on tickets, such as
creating one, adding a comment, or changing a state would then wipe this cache
and start afresh.

The second process is slightly different. Rather than storing the fragment as a
file on the system, you will store it in memory and then access it through a key.

Finally, by adding indexes to key columns in your tables, such as foreign keys,
you can greatly speed up the queries it runs too. If you had 10,000 tickets in your
system and you wanted to find all the tickets which had set toproject_id

"123", an index would help speed up this process.

Basic performance enhancements

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

649

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

We'll show you examples of all of these approaches in this chapter, beginning
with pagination.

We'll discuss two different kinds of pagination here. The first kind paginates the
interface that users can see, as shown in figure 16.1.

Figure 16.1 Tickets for a project

If this project had a thousand tickets, it wouldn't make sense to show all one
thousand at a time. It would also be terribly slow, because the database would have
to retrieve 1000 records. Rails would then have to instantiate 1000 Ticket

objects, render 1000 tickets to the page, and send back that massive chunk of
HTML.

The second kind of pagination has to do with your API. Back in chapter 12 you
wrote the beginnings of the ticket API and we promised you we'd revisit it in this
chapter. Inside the 's action youApi::V1::TicketsController index

have this innocuous looking line:

Again, if the database's table contains 1,000 records for this project,tickets

it will have to send all of them to Rails. Rails will then have to instantiate 1,000
objects, parsing them all to JSON or XML before sending them off to the user. All
of this would happen with each request, and if you were getting a lot of requests it
would bring your application to its knees.

By paginating the result sets in both of these situations, you can change your

16.1 Pagination

respond_with(@project.tickets)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

650

Licensed to <alex@vinova.sg>

mailto:respond_with(@project.tickets
http://www.manning-sandbox.com/forum.jspa?forumID=818

application to return only 50 tickets at a time, which would theoretically make your
application respond 20 times faster than if it were returning 1,000 tickets. Let's
begin by installing a gem called kaminari that will help you with pagination.

The Kaminari gem is a new breed of pagination gem written by Akira Matsuda,1

and is considered the Rails 3 successor to the gem , which waswill_paginate 2

the favorite for a long time.3

Footnote 1 http://github.com/amatsuda/kaminarim

Footnote 2 http://github.com/mislav/will_paginatem

Footnote 3 m Since this original writing, has been updated to be Rails 3 compatible.will_paginate

After you install this gem, you're given an interface on the models of your
application, which allows you to make calls like this:

This call would ask for the second page of tickets, with each page containing 50
tickets. It's a very clean API. Those familiar with will_paginate will be used to a
syntax like this:

The syntax is a little longer, but it's a little clearer what it's doing to those who
are familiar with it. You'll use kaminari here just for something different. In your
views, you can use the same method, which is made available by bothpaginate

gems:

This little helper generates the output shown in figure 16.2.

16.1.1 Introducing Kaminari

@project.tickets.page(2).per(50)

@project.tickets.paginate(:per_page => 50, :page => 2)

<%= paginate @tickets %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

651

Licensed to <alex@vinova.sg>

mailto:@project.tickets.page
mailto:@project.tickets.paginate(:per_page
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 16.2 Pagination helper

To install this gem, add this line to your Gemfile underneath the searcher

gem:

You'll then run the command to install the gem. With thebundle install

gem installed, you can now begin to write a Cucumber feature to test that when
you're on the tickets page with more than 50 tickets in the system you will see a
pagination link somewhere on that page. You should be able to press "Next" and
then see the next 50 tickets.

You're going to now implement paging for your tickets listing, showing 50 tickets
at a time. Users will be able to navigate between pages by clicking the "Next" and
"Prev" links. These two links will be provided by a helper from the kaminari

gem.

Testing pagination

gem 'kaminari'

16.1.2 Paginating an interface

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

652

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

To tes t th is , we ' l l wri te a new scenar io a t
spec/integration/paginating_tickets_spec.rb, shown in Listing 16.1. If we create
100 tickets in this feature, we'll see the pagination links and can then make sure
they're working.

spec/integration/paginating_tickets_spec.rb

require 'spec_helper'

feature 'Paginating tickets' do

 let(:project) { FactoryGirl.create(:project) }

 let(:user) { FactoryGirl.create(:confirmed_user) }

 before do

 sign_in_as!(user)

 define_permission!(user, :view, project)

 @default_per_page = Kaminari.config.default_per_page

 Kaminari.config.default_per_page = 1

 3.times do |i|

 ticket = project.tickets.new

 ticket.title = "Test"

 ticket.description = "Placeholder ticket."

 ticket.user = user

 ticket.save

 end

 visit root_path

 click_link project.name

 end

 after do

 Kaminari.config.default_per_page = @default_per_page

 end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

653

Licensed to <alex@vinova.sg>

mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders
mailto:ticket.user=userticket.saveendvisitroot_pathclick_linkproject.nameendafterdoKaminari.config.default_per_page=@default_per_pageend�ManningPublicationsCo.Wewelcomereadercommentsaboutanythinginthemanuscript-otherthantyposandothersimplemistakes.Thesewillbecleanedupduringproductionofthebookbycopyeditorsandproofreaders

 it "displays pagination" do

 all(".pagination .page").count.should == 3

 within(".pagination .next") do

 click_link "Next"

 end

 current_page = find("*.pagination .current").text.strip

 current_page.should == "2"

 end

end

In this feature you use the FactoryGirl definition for a project you've used many
times before to create a project, and then you set Kaminari's default per page to be
a low value so that the pagination links are displayed after only a small amount of
tickets. Then you create a handful of tickets for this project to ensure that the
pagination links will actually appear. If you didn't have enough tickets in your
project to warrant pagination then the links would not appear at all.

You then go through the motions of creating a user, giving them access to that
project so that they can see into it, signing in as them, and then navigating to that
project. On that project's page you should see the pagination links displaying two
pages worth of pagination. When you click the "Next" link within the pagination
element, you should be on the second page.

W h e n y o u r u n b i n / r s p e c

 you'll see thoisspec/integration/paginating_tickets_spec.rb

error:

Implementing pagination helpers
Your step that checks for 2 pages of pagination wasn't able to see any at all, most
likely because you aren't showing any right now! To fix this, you'll have to display
the pagination link in app/views/projects/show.html.erb by putting this line above
the that displays tickets:ul

Failure/Error: all(".pagination .page").count.should == 3
expected: 3
 got: 0 (using ==)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

654

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This line will display the pagination links that your failing step currently
requires. You're going to need to set up the variable for pagination in@tickets

your controller so that these pagination links know what page you're on and that
there are only 50 tickets displayed. You'll replace this line in the action ofshow

app/controllers/projects_controller.rb:

With this line:

This method will set to display only the tickets for thepage @tickets

current page number, available in the variable.params[:page]

When you run your feature again with bin/rspec

, it will passspec/integration/paginating_tickets_spec.rb

because you've now got your pagination links showing:

That's all there is to paginating a resource. You can also call the and page per

methods on models themselves rather than associations; it was just in this case that
you were calling it on an association.

Before you make a commit for this change, quickly make sure that everything's
working by running .rake spec

 <%= paginate @tickets %>

@tickets = @project.tickets

@tickets = @project.tickets.page(params[:page])

1 example, 0 failures

Failed examples:

rspec ./spec/integration/searching_spec.rb:34
rspec ./spec/integration/searching_spec.rb:43
rspec ./spec/integration/searching_spec.rb:52

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

655

Licensed to <alex@vinova.sg>

mailto:@project.tickets
mailto:@project.tickets.page
http://www.manning-sandbox.com/forum.jspa?forumID=818

Oh dear, it appears the feature in spec/integration/searching_spec.rb has been
broken by your changes! Good thing that you've got a feature to catch these kinds
of things.

Fixing broken scenarios
All three tests in this feature failed with the same error:

This looks to be associated with the feature you just implemented, as it's trying
to call a method called . If you look a couple of lines down in thecurrent_page

output, you'll see that there's a line in the stack trace that shows that this is from
Kaminari:

Okay, so it looks to be a problem coming from Kaminari, but why? Well, if you
look even further down in the stacktrace for this error for somewhere in your
application, probably from the app folder you'll come across this line:

So what's so great about this line? Well, this line renders the
 view:projects/show

Above that however, is the real culprit:

undefined method `current_page' for ...

...kaminari/helpers/action_view_extension.rb:21:in `paginate'

./app/controllers/tickets_controller.rb:60:in `search'

render "projects/show"

@tickets = @project.tickets.search(params[:search])

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

656

Licensed to <alex@vinova.sg>

mailto:@project.tickets.search
http://www.manning-sandbox.com/forum.jspa?forumID=818

You're not calling either or on your search results, and so it's notpage per

going to be paginating them. You're going to call the same methods you called
back in the 's action here so that you getProjectsController show

paginated search results.

With paginated search results, the feature in features/searching.feature will no
longer complain when you run it with bin/rspec

:spec/integration/searching_spec.rb

Alright, so that one's passing. Let's see what happens now when you run rake

 again.cucumber:ok spec

Great, time to make a commit with this new feature.

Seeing pagination for yourself
Here you've seen an easy way to add pagination links to resources in your
application by using the Kaminari gem. You could have used the will_paginate
gem and that would have worked just as easily. It's really up to personal
preference. Pagination allows you to ease the load on the database server by
returning only limited amounts of records per page, and also doesn't overwhelm the
user with choices.

Let's see how this works in a browser before we continue. First, you'll need to
create a hundred tickets for a project so that you can get two pages of pagination.

@tickets = @project.tickets.search(params[:search])
@tickets = @tickets.page(params[:page]).per(50)

3 examples, 0 failures

122 examples, 0 failures

git add .
git commit -m "Add pagination for tickets"
git push

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

657

Licensed to <alex@vinova.sg>

mailto:@project.tickets.search
mailto:@tickets.page
http://www.manning-sandbox.com/forum.jspa?forumID=818

To do that, launch and put in this code:rails console

Next, type and hit enter to exit out of the console, then launch yourexit

application with . You can login using the email and passwordrails server

you've set up in , which is "admin@ticketee.com" and "password"db/seeds.rb

respectively. You can then click on the "Ticketee Beta" page and you should see a
page like figure 16.3.

Figure 16.3 Paginated tickets

The pagination here shows that you're on the first page and that there's a second
page you can go to, either by clicking the "2" link or the "Next" link. By clicking
this link, the page switches to the second page of tickets and the URL now

project = Project.first
100.times do |i|
project.tickets.create!(
:title => "Fake ticket",
:description => "Fake description",
:user => User.first
)
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

658

Licensed to <alex@vinova.sg>

mailto:admin@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

becomes http://localhost:3000/projects/1?page=2. This parameter is passedpage

to the controller as and then passed to the methodparams[:page] page

provided by Kaminari.
If you click the "1" link or the "Prev" link, you'll be taken back to the first page.

All of that functionality was given to you by the method in your viewspaginate

and the call in your controller. You didn't have to code any of this yourself,page

which is great.
Next, we'll look at how you can add this same kind of pagination to the Tickets

API in your API.

You've easily set up pagination for your tickets on the interface that a user sees to
ease the load on the database. However, for your tickets API you're still returning
all the tickets for a project when they're requested, and therefore you'll run into the
same problems you solved in the previous section.

Your API is different though. You can't provide a pagination link for the tickets
returned by an API. Instead, you'll have to rely on people passing in a page
number, which you'll then use to return that page of tickets.

To test this, you're going to go into your API spec file for tickets at
spec/api/v2/tickets_spec.rb and you'll add another test. This one should assert that
when you pass in a page parameter to your requests that you receive that page of
tickets, rather than all of the tickets or a different page.

In your API you'll limit requests to 50 per response, however, you may choose

to set this a little higher . Therefore, you'll create 100 tickets, which should give4

you enough tickets to test that you can get the first and second pages of your API.

Footnote 4 200 seems to be a common number to use for API return objects per requestm

You'll add another to spec/api/v2/tickets_spec.rb to test pagination,context

using the code shown in Listing 16.2.

Listing 16.2 spec/api/v2/tickets_spec.rb

16.1.3 Paginating an API

context "pagination" do
 before do
 3.times do
 Factory(:ticket, :project => project, :user => @user)
 end

 @default_per_page = Kaminari.config.default_per_page

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

659

Licensed to <alex@vinova.sg>

http://localhost:3000/projects/1?page=2
http://www.manning-sandbox.com/forum.jspa?forumID=818

In this new , you'll create 100 tickets using the ticket factory,context

referencing the variable set up in the spec's block and also@user before

pointing it at the object set up near the top of this file. Your first testproject

makes sure that you're getting back the first 50 tickets for the project, and the
second test checks for the second 50.

When you run this test using bin/rspec

, it won't pass because you've not gotspec/api/v2/tickets_spec.rb:36

the pagination in place yet:

You can easily fix this by changing this line in the action ofindex

app/controllers/api/v2/tickets_controller.rb:

 Kaminari.config.default_per_page = 1
 end

 after do
 Kaminari.config.default_per_page = @default_per_page
 end

 it "gets the first page" do
 get "/api/v2/projects/#{project.id}/tickets.json",
 :token => token,
 :page => 1

 last_response.body.should eql(project.tickets.page(1).to_json)
 end

 it "gets the second page" do
 get "/api/v2/projects/#{project.id}/tickets.json?page=2",
 :token => token,
 :page => 2

 last_response.body.should eql(project.tickets.page(2).to_json)
 end
end

expected [small array of JSON'ified tickets]
got [larger array of JSON'ified tickets]

respond_with(@project.tickets)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

660

Licensed to <alex@vinova.sg>

mailto:respond_with(@project.tickets
http://www.manning-sandbox.com/forum.jspa?forumID=818

To this:

When you rerun the pagination with context bin/rspec

, both tests will pass:spec/api/v2/tickets_spec.rb:35

N o w u s e r s c a n g o t o
 to get the first page/api/v2/projects/:project_id/tickets.json

of 50 tickets, or specify the parameter by putting it on the end of the URL aspage

a q u e r y p a r a m e t e r (i . e .
) to get to/api/v2/projects/:project_id/tickets.json?page=2

the second page of tickets.
You can now run to check for any breakage:rake cucumber:ok spec

By paginating the number of tickets shown both on the interface and in the API,
you can ease the load on the server and provide a better interface to your users at
the same time.

Sometimes when you're coding your application you may inadvertently call
queries that don't perform all that well. This could happen in a view if you were
wanting to display all tags for each ticket as you iterated through them. In the next
section, we take a look at how you can cause this problem to happen and at two
ways to fix it.

respond_with(@project.tickets.page(params[:page]))

2 examples, 0 failures

124 examples, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

661

Licensed to <alex@vinova.sg>

mailto:respond_with(@project.tickets.page
http://www.manning-sandbox.com/forum.jspa?forumID=818

What would you do without database queries? Well, you'd have a boring
application, that's for sure! But it's database queries that can be the biggest
bottleneck for your application once it grows to a larger size. Having a page
that--in the beginning--only ran five queries, and is now running 100 on each
request will just not be webscale.

The most common place where performance degradation can occur in a Rails
application is when an operation called "n+1 selects" takes place. Let's use your
application as an example of this. Imagine that you have 50 tickets and want to
display them all on the same page, but also along with these tickets you wanted to
display all the tags for these tickets. Before you render this page, you know all the
tickets but don't yet know what the tags are for the tickets. Therefore, you'd need to
retrieve the tags as you are iterating over each of the tickets, generating another
query to retrieve all the tags for each ticket.

This is the "N+1 selects" problem. You have an initial query for all of your
tickets, but then queries more, depending on the amount of tickets you'reN

showing. This problem is not so much of a "big deal" now that you've got
pagination, but it still can crop up.

In your app/views/projects/show.html.erb you can perform N+1 selects, asking for
each ticket's tags just like in the example, by putting this line within the block
where you iterate over each ticket:

When you start your server using and navigate to your firstrails server

project's page, Rails will diligently run through each ticket in the @tickets

array, performing a query for each one to find its tags. If you switch back over to
the console, you'll see queries like this:

16.2 Database query enhancements

16.2.1 Eager loading

<%= render ticket.tags %>

SELECT * FROM "tags"
INNER JOIN "tags_tickets" ON "tags".id = "tags_tickets".tag_id
WHERE ("tags_tickets".ticket_id = 1)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

662

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

There should be 50 of these little queries, and 50 adds up to a big number5

when it comes to lots of requests hitting this page and running these queries. Fifty
requests to this page would result in over 2,500 queries. Oh, your poor database

server! It would be much better if you didn't have to run so many queries.6

Footnote 5 When used in a function that uses squares, or even worse, cubes.m

Footnote 6 Yes, they're made for this kind of thing, but that's not the point!m

Thankfully, there's yet another thing in Rails that helps us be better
programmers and better friends with our databases. This wonderful invention is
known as and will allow you to run two queries to get all the ticketseager loading
and all the tags, rather than one query for the ticket and N queries for all the tags
for all the tickets.

There are two ways of doing this: you can use the or joins includes

method when you attempt to grab all the tags for the tickets in
app/controllers/projects_controller.rb. You're currently grabbing and paginating all
the tickets for the current project using this line in the action in show

:ProjectsController

The part of this line generates a query , but doesn't@project.tickets 7

eager load the tags yet. To make it do this, you could use the method likejoins

this:

Footnote 7 m But doesn't run it! When it gets to the view and you call on it, then it runs.each

This line would generate an SQL query like this:

@tickets = @project.tickets.page(params[:page])

@tickets = @project.tickets.joins(:tags).page(params[:page])

SELECT "tickets".* FROM "tickets"
INNER JOIN "tags_tickets"
ON "tags_tickets"."ticket_id" = "tickets"."id"
INNER JOIN "tags"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

663

Licensed to <alex@vinova.sg>

mailto:@project.tickets.page
mailto:@project.tickets
mailto:@project.tickets.joins(:tags).page
http://www.manning-sandbox.com/forum.jspa?forumID=818

The parts of the query here mean that it will find all records inINNER JOIN

the table that have tags only. It will also return a ticket record for everytickets

tag that it has, so if one ticket has three tags it will return three tickets. This is
somewhat of a problem, given that you're going to want to display all tickets
regardless of if they are tagged or not, and you definitely don't want three of them
appearing when only one should.

To fix this, use brother , switching the line in the joins includes show

action to this:

When you refresh the page, Rails will generate two queries this time around:

Rails has run the query to find all the tickets first, then another query to gather
all the tags for all the selected tickets as the second query. This query doesn't care
if tickets have tags or not, it will still fetch them.

Here you've seen a way to cause an N+1 query and how to stop it from
happening. You can remove the line from app/views/projects/show.html.erb now,

as you're done with this experiment.
This is just one way your database can be slow. Another is more insidious. It

creeps in slowly over months of the application seemingly running fine and makes
it progressively slower and slower. The problem is a lack of , anddatabase indexes
effects many Rails applications even today.

ON "tags"."id" = "tags_tickets"."tag_id"
WHERE ("tickets".project_id = 1)

@tickets = @project.tickets.includes(:tags).page(params[:page])

SELECT "tickets".* FROM "tickets"
WHERE ("tickets".project_id = 1)
LIMIT 50
OFFSET 0

SELECT "tags".*, t0.ticket_id as the_parent_record_id FROM "tags"
INNER JOIN "tags_tickets" t0 ON "tags".id = t0.tag_id
WHERE (t0.ticket_id IN (1,2,[...],49,50))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

664

Licensed to <alex@vinova.sg>

mailto:@project.tickets.includes(:tags).page
http://www.manning-sandbox.com/forum.jspa?forumID=818

Database indexes aren't a Rails feature, they're a feature of your own database that
can greatly improve its performance when used correctly. The absence of database
indexes may not seem like a problem immediately, but when you're dealing with
larger datasets it becomes more and more of a problem. Take for example if you
had 10,000 tickets with 2,300 of them belonging to Project A. To find all the
tickets for Project A, your database sans indexes would have to do a ,full table scan
searching through each ticket and determining if it belonged to Project A or not.
That's a problem, because the more records you have, the longer this scan is going
to take.

Indexing the data in your databases allows you to perform fast lookups and
avoid full table scans. Imagine that your database is a phonebook and that the
names are in no particular order. In this situation, it would be difficult to find all
people with a name such as "John Smith-McGee," because you'd have to scan the
entire phone book to find out who has this name.

An index sorts this data into a logical order and allows for a much faster
lookup. Ever seen how a phonebook that has the letter and the first name on the top
left hand side, and maybe the same or a different letter on the top right-hand side,
with another name? That's an index. That allows you to easily find names because
you know that the letter A comes before B, and C after B and so on.

Indexes allow you to run much faster queries as you tell your database how to
index the data. Although it may seem like premature optimization at this point,
you're going to put an index on your table to speed up findingtickets

collections of tickets for a project. It's common sense to have these from the
beginning, because adding them onto large datasets will take a long time, as you'll
need to work out how to index each record.

To add this index, create a new migration with this command:

This will generate a file at db/migrate that ends with the name you've given it.
You're going to need to open this file now and add in the index, as Rails cannot

16.2.2 Database indexes

rails g migration add_project_id_index_to_tickets

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

665

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

(yet) read your mind. You'll add this index inside the part of theself.up

migration using the and remove it in the method using add_index self.down

, like this:remove_index

Run this migration using to runrake db:migrate db:test:prepare

it on the development and test environment databases. You'll see this line in the
output:

Just to reinforce the message: it's better to add the indexes when the database is
first being designed, rather than at a later point because this "0.0015 seconds"
could easily become whole seconds on a larger dataset. This index will now group
your tickets into groups of columns, allowing for much fasterproject_id

lookups to find what tickets belong to a specific project.
You want the absolute best performance you can get out of your database

because it's a key point in your requests. Indexes and eager loading are the two
most basic ways you can get better performance out of your database.

If your database is performing optimally and your pages still aren't loading fast
enough, you'll need to look for alternative methods of speeding them up. Two of
these methods are page and action caching, which allow you to store the output of
a page to serve it up rather than re-processing the code and hitting the database
again.

Rails has several methods of caching pages. The first of these methods serves a
request and then stores the output of that page in the public folder of your
application so that it can be served without going through the Rails stack by the
web server. This is known as page caching

You'd cache a page if that page took a long time to process, or if there were a

def change
 add_index :tickets, :project_id
end

-- add_index(:tickets, :project_id)
 -> 0.0015s

16.3 Page and action caching

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

666

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

lot of requests to it. If either of these situations happen, the performance of the web
server can be degraded and requests can end up piling up.

By caching a page, you take the responsibility of processing and serving it off

your Rails stack and put it on the (usually) more-than-capable web server .8

Footnote 8 Such as Apache or Nginx, or any other HTTP server. Not Webrick. There are some things that Ruby'sm
made for, and being a fast / stable HTTP server ain't one.

The first time a page is requested, you store it as a file in your application. The
next time the request is made, that static page will be served rather than having the
action processed again.

This first type of caching is great for pages that don't require authentication. For
pages that require authentication you'll need to use a different kind of cachingdo
called . This type of caching runs the before filters on a requestaction caching
before it serves the cached page, and you'll see a great example of this in this
section.

Let's take a look at the first kind of caching, plain ol' page caching.

You're going to cache the page that's rendered when a user looks at
's action. By caching this particular page, RailsProjectsController show

will serve the first request to this file and then save the output of the request to a
new file at public/projects/:id.html. This public/projects directory will be created
by Rails automatically. This process is shown in figure 16.4.

16.3.1 Caching a page

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

667

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 16.4 First request, no cached page

On the next request, due to how the web server is configured, it will serve the
file rather than hit the Rails stack, as shown in figure 16.5.

Figure 16.5 Subsequent requests, cached page

This is absolutely a faster request, regardless of how little goes on in an action
in Rails. If a request doesn't have to go down that extra level in the stack it's going
to save a great deal of time, and again: modern web servers are to serve thesebuilt
static files.

One of the downsides of this is that it will not cache the GET parameter on the
request, like your page numbers. Earlier when you used to userails server

your pagination, the URL became http://localhost:3000/projects/1?page=2. The

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

668

Licensed to <alex@vinova.sg>

http://localhost:3000/projects/1?page=2
http://www.manning-sandbox.com/forum.jspa?forumID=818

page that's cached doesn't have this parameter at the end, and so it will always
display the first page, as that's what will be stored at public/projects/:id.html.

Regardless of this, you'll at least see how this method works. In your
, underneath the lines, you can putProjectsController before_filter

this method to tell Rails to cache the page for the action:show

In development mode, caching is turned off by default. Obviously, in
development mode you don't care so much about caching, as all requests are going
to be local and not on a heavy-load server. You can turn caching on by going into
config/environments/development.rb and changing this line:

To this:

Without this option, you can still have in your controllers, itcaches_page

just won't do anything. With it turned on, your pages will be cached upon their first
request.

Launch again and this time go torails server

http://localhost:3000/projects/1. In the server output, you'll see an additional line:

This time, rather than simply processing your action and sending the response
body back to the server, Rails will save the body in a new file in your application
at public/projects/1.html. The next time this route is requested, because the

caches_page :show

config.action_controller.perform_caching = false

config.action_controller.perform_caching = true

Write page /.../ticketee/public/projects/1.html (0.3ms)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

669

Licensed to <alex@vinova.sg>

http://localhost:3000/projects/1
http://www.manning-sandbox.com/forum.jspa?forumID=818

public/projects/1.html page exists, it will be served by your web server, rather than
Rails. A side-effect of this means that your request will not show up in the Rails
console, but at least it will be served faster.

Let's reload the page now, it should be a little faster because it's serving that
static page. If you press the next link on your pagination, you'll still be shown the
first page. This is because the GET parameter was ignored, and the first page for
this project's tickets was what was cached.

There's another problem too: this result is cached for users of yourall
application. At the top of the page, you'll be able to see the message that says
"Signed in as admin@ticketee.com," as shown in figure 16.6.

Figure 16.6 Signed in as admin

To see this little issue in action, sign up as another user by first clicking the
"Sign out" link in the application to sign up, then the "Sign up" link to be presented
with a form to sign up. In this form, enter "user@ticketee.com" for the email and
"password" for both the password and password confirmation fields. When you hit
the "Sign up" button, this will create your new user account.

You currently require users to confirm their account through an email they
receive, but because you're in development mode there will be no emails sent. To
confirm this user, launch now and run these commands:rails console

You'll also need to give this user access to the first project in your system, so
that they can view the tickets too. To do this, run these couple of commands:

user = User.find_by_email("user@ticketee.com")
user.confirm!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

670

Licensed to <alex@vinova.sg>

mailto:admin@ticketee.com
mailto:user@ticketee.com
mailto:user@ticketee.com
http://www.manning-sandbox.com/forum.jspa?forumID=818

Alright, now that your user is confirmed and has access to this project, let's see
what happens when you sign in with the email and password you used to sign up,
"user@ticketee.com" and "password". At the top of the page you'll see that you're
signed in as the new user, as seen in figure 16.7.

Figure 16.7 Signed in as a user

However, when you click the "Ticketee Beta" link to go to your first project,
the page will change to saying that you're signed in as the "admin@ticketee.com"
user again, as shown in figure 16.8.

Figure 16.8 Still signed in as admin@ticketee.com?

You know better; you're actually signed in as the user! This is happening
because Rails has cached the entire page, rather than just the tickets list. This page
also ignores any kind of authorization you've set up in your controllers, making it
available for every single person who wishes to access it, which is just a Very Bad
Thing.

project = Project.first
user.permissions.create!(:action => "view", :thing => project)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

671

Licensed to <alex@vinova.sg>

mailto:user@ticketee.com
mailto:admin@ticketee.com
mailto:admin@ticketee.com?
http://www.manning-sandbox.com/forum.jspa?forumID=818

So it looks like that isn't going to work in this situation. Thiscaches_page

method is better for pages that don't have dynamic elements on them, such as the
place at the top that displays the currently logged in user or the list of tickets.

This method has a brother called that will help you fix bothcaches_action

the issue of the currently logged in user display message, as well as the issue of it
only showing the first page of pagination.

Caching an entire page is helpful when you don't have authentication, but if you
have authentication then it's better to cache the response of the action on a per-user
basis. Caching an action involves caching the response for a particular session, so
that when that user requests it again they'll be shown it again.

Caching a page is great for a page that's accessible by anybody, as the body
would be served as a static file from the public folder by the web server. Caching
an action is best used for actions that take a long time to process (you don't have
any at the moment) and that require some interaction with the Rails stack, such as a

 that authenticates your user.before_filter

There's a third way of caching, and that's , where you'd cachefragment caching
just a bit of a page at a time, rather than the entire result. Before you get on to
using that, let's see what provides you.caches_action

NOTE Cleaning up after yourself
Before you do anything, you'll want to remove the old file that has
been cached. To do this, delete the public/projects directory. Next
time this page is requested, the cache will be recreated.

Let's replace this line in your :ProjectsController

With this line:

16.3.2 Caching an action

caches_page :show

caches_action :show

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

672

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

For this change to take effect, you only need to refresh the page at
http://localhost:3000/projects/1 or actually visit it again if you've closed the
browser since the last time. If you switch over to the terminal where your server is
running, you won't see the line that says this:

Rather, you'll see this line instead:

This time, Rails has written a rather than writing a page. In this case,fragment
the fragment is actually the entire page, but it is the page available only for this
user. When you request this page again, you'll see this line in the server's output:

Upon the second request here, Rails has found the fragment pertaining to this
request and served that instead. Rather than saving these files into the public
directory, Rails instead saves them to the tmp/cache directory. Files that are in the
public directory are automatically served by your web server without hitting the
Rails stack, but cached responses in tmp/cache are served by the Rails stack itself.
This may seem counterintuitive at first, but it's really helpful if you want to alter
what cache fragments are served to what user.

Currently, the fragment is written to a file such as
tmp/cache/CC6/080/views%2Flocalhost%3A3000%2Fprojects%2F1. This location
is simply a location in the tmp/cache folder with a hashed path, followed by the
escaped name of . It's with this nameviews/localhost:3000/projects/1

that Rails can retrieve this fragment and show it again.
But, you're still going to have the problem that both of your users are going to

see the same page. Sign out of your current user and sign in as the other one. Once
you visit this page again, you'll see you're still signed in as the first user! It's doing

Write page /.../ticketee/public/projects/1.html (0.3ms)

Write fragment views/localhost:3000/projects/1 (40.3ms)

Read fragment views/localhost:3000/projects/1 (0.3ms)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

673

Licensed to <alex@vinova.sg>

http://localhost:3000/projects/1
http://www.manning-sandbox.com/forum.jspa?forumID=818

the same darn thing as !caches_page

But, as stated before, is different! It runs the caches_action

 of your controller and has one more special benefit: you canbefore_filters

change the path of where this file is cached by using the optioncache_path

passed to . You can then set this option to be a object,caches_action Proc

which means it will be evaluated before every request made to the action (or
actions) you are caching. In this object you'll have access to the currentProc

controller instance, meaning you'll have access to . With thiscurrent_user

access, you'll be able to customise the path where the cache is kept so that you can
cache the same page for different users.

To do this, change your line in your controller to thesecaches_action

lines:

Here, you've passed the option to . This is a cache_path caches_action

 object, and you need to wrap the value for this option in brackets otherwiseproc

Ruby will think the block is for the call.caches_action

This object is evaluated within the context of an instance of thisProc

controller, and therefore you'll have access to the and params current_user

methods usually available within an action or a . With these,before_filter

you're building a string by combining the URL of the current project (provided to
you by the helper) and the of .project_path id current_user

When you access this page again in the browser, Rails will re-process this
action because the cache path has changed and then save the page in a new
location. In the output for the server you'll see this new fragment has been written,
indicated by this line:

This time, the path to the file and the file itself have changed because you've

caches_action :show, :cache_path => (proc do
 project_path(params[:id], :user_id => current_user.id)
end)

Write fragment views/localhost:3000/projects/1/1 (4.4ms)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

674

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

changed the URL of the page; it's now the cached version of this page currently for
this user. When you sign out as your current user and sign in as the other user and
navigate to this project's page, you'll see that the "Signed in" message at the top of
the page is now the correct one, as shown in figure 16.9.

Figure 16.9 Signed in as admin for a cached page

This means that you've now fixed the problem where the same cached page was
shown for all users, meaning that each of your users will see a slightly different
version of this page. This is right, but not quite. When you click on thealmost
"Next" link for pagination, you'll still only be shown the first page. This is because
much like , your also ignores the pagecaches_page caches_action

parameter.
You can fix this, however, by changing the path generated for the cached page

to contain the current page number. To do this, change this line in
's option in :caches_action cache_path ProjectsController

To this:

The next time you request this page, it will again save a new version of it, this
time outputting a line like this:

project_path(params[:id]) + "/#{current_user.id}"

project_path(params[:id]) +
"/#{current_user.id}/#{params[:page] || 1}"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

675

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The first 1 here represents the project's id, the second represents the user's and
the third represents the page number. This file is saved to a path such as
tmp/cache/E62/3E0/views%2Flocalhost%3A3000%2Fprojects%2F1%2F1%2F1.

So in this section you've fixed the problem where all people would see that they
were signed in as the first person who requested the page, as well as the case where
only one page of your tickets were available. Now what happens when you update
this page and the tickets change? These pages will still be cached and your new
tickets or updates to them will not be shown!

You're going to need a way to clear this cache, to expire the fragments that are
created when these events happen. Right now, the number one situation where
that's going to happen is when you create a new ticket for a project. You can
trigger this event to clear your cache by using a feature in Rails known as cache

.sweepers

Cache sweepers are much like the observers you used back in chapter 11. In fact,
the class fromActionController::Caching::Sweeper inherits

ActiveRecord::Observer, effectively making them the same thing. The difference
here is that you refer to the sweeper in the controller, telling it to run after certain

actions have complete .9

Footnote 9 m It uses to do this, which can also be used to run other actions after aafter_filter

controller's action has been processed, just like a can be used to run actions before abefore_filter

controller's action runs.

In this case, whenever a ticket is created, updated or destroyed in a project,
you'll want your application to clear out the cached pages because they would be
out of date at that point. This is precisely what you can use a sweeper for. To call
this sweeper, put this line underneath the calls in before_filter

:TicketsController

Write fragment views/localhost:3000/projects/1/1/1

16.3.3 Cache sweepers

cache_sweeper :tickets_sweeper, :only => [:create, :update, :destroy]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

676

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You put this line in your because you want it to runTicketsController

after the , and actions.create update destroy

TIP Alternatively, pass a constant
Rather than passing the symbolized version of the name along to
the method, you can also alternatively pass alongcache_sweeper

a class:

This doesn't perform any different to when you pass in a
symbol, but is really helpful if your sweeper was modularized:

You can't pass a modularized sweeper name as a symbol, and
so the method supports passing both a symbolcache_sweeper

and a constant reference as well.

Now when you go to a project in your application and attempt to create a new
ticket on it, you'll get this error:

Rails is looking for the constant, which is supposed toTicketsSweeeper

define the cache sweeping behaviour for your , but can'tTicketsController

find it because you haven't defined it yet. To define this, create a new folder at

app/sweepers for this sweeper and its brethren to live . In this directory you'll10

create a new file called app/sweepers/tickets_sweeper.rb and fill it with this
content:

Footnote 10 Because it doesn't really belong in the controllers, helpers, models, observers or views directory, butm
is still a vital part of your application.

cache_sweeper TicketsSweeeper

cache_sweeper Ticketee::TicketsSweeper

uninitialized constant TicketsSweeper

class TicketsSweeper < ActionController::Caching::Sweeper

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

677

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You'll get around to putting the expire fragment code in just a bit, but first a bit
of explanation is needed. A sweeper looks and acts in much the same way as an
observer. By calling the method at the top of the ,observe TicketsSweeper

you tell this sweeper to watch the class for changes. The Ticket

 method here will be called after creation of a new after_create Ticket

object, but because you're in a sweeper, you'll have access to the controller's
parameters also. With them, you can use what's usually available in the controller
to expire the cached fragments.

To do this, you can call the method, passing it a regularexpire_fragment

expression. This regular expression will match all cached fragments for the ticket's
project for all users, effectively wiping clean the slate for this project in terms of
cached pages. Inside your method you'll put this:after_create

Now when you create a new ticket for a project, this expire_fragment

method will be called. Let's try this out now, creating a new ticket by clicking the
"New Ticket" link on a project's page and filling out the form. Once you've pressed
the "Create Ticket" button on the form, you'll see this in the console:

Rails has now gone through and expired all the fragments associated with this
ticket's project. If you now go into tmp/cache and into any one of the directories
there looking for a file, you shouldn't see any. The directories (with names like
"E62" and "3E0") will still exist, but there aren't any files. This means that Rails
has successfully cleared its cache of fragments for the project.

Let's get your sweeper to perform this same action when tickets are updated and

 observe Ticket
 def after_create(ticket)
 # expire fragment code goes here
 end
end

expire_fragment(/projects\/#{ticket.project.id}\/.*?/)

Expire fragment (?-mix:projects\/1\/.*?) (327.3ms)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

678

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

destroyed. Move the call into another method and then callexpire_fragment

it in the , and methods in after_create after_update after_destroy

 using the code shown in Listing 16.3.TicketsSweeper

Listing 16.3 app/sweepers/tickets_sweeper.rb

Now you have Rails caching the pages of tickets for all projects in your
application and clearing that cache when tickets are updated. This is a great
demonstration of caching on a per-user basis, even if your project page isn't that
intensive. If you had a system resource (CPU / memory) intensive action in your
application that required user customization like this, you could use this same
method to cache that action to stop it from being hit so often, which would reduce
the strain on your server.

class TicketsSweeper < ActionController::Caching::Sweeper
 observe Ticket
 def after_create(ticket)
 expire_fragments_for_project(ticket.project)
 end

 def after_update(ticket)
 expire_fragments_for_project(ticket.project)
 end

 def after_destroy(ticket)
 expire_fragments_for_project(ticket.project)
 end

 private

 def expire_fragments_for_project(project)
 expire_fragment(/projects\/#{project.id}\/.*?/)
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

679

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

TIP Expiring pages
If you were still using , you wouldn't use caches_page

 to expire the cache files that were generated.expire_fragment

Instead, you'd use , which can take a hash like this:expire_page

Or, better still would be to pass it the URL helper:

Even though you're not caching pages any more, it's still handy
to know how to clear cached pages and fragments.

Let's make a commit now for this:

Another way to ease the load on the server side is to use the browser (client)
side caching by sending back a status from your Rails304 Not Modified

application. In the next section, we'll look at a Rails controller method that'll help
you with this.

There's one more method in the controller you're going to see in this section, and

that's the method. This method will send an header backfresh_when ETag11

with the initial request to a client and then the client's browser will cache that page

with that ETag on the client's machine . The ETag is the unique identifier for this12

page, or "entity," at the current point in time.

Footnote 11 The "E" stands for entity. More information is available on the Wikipedia page for this:m
http://en.wikipedia.org/wiki/HTTP_ETag

Footnote 12 If "Private Browsing" is turned on in the browser, this wouldn't happen.m

expire_page(:controller => "projects",
:action => "show",
:id => 1)

expire_page(project_path(1))

git add .
git commit -m "Add fragment caching to ticket listings on a project"

16.3.4 Client-side caching

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

680

Licensed to <alex@vinova.sg>

http://en.wikipedia.org/wiki/HTTP_ETag
http://www.manning-sandbox.com/forum.jspa?forumID=818

In this situation, you'll use this type of caching for the action on a ticketshow

in a project, meaning the URL will be something like /projects/1/tickets/2. The first
request to this action after you're done will follow the steps shown in figure 16.10.

Figure 16.10 E-Tag caching

The next time the page is requested, the browser will send a request with the
E-Tag it received on the first request to the server, this time in a

 header. The server then re-generates the E-Tag for the pageIf-None-Match

that's been requested and compares it against the incomingIf-None-Match

header. If these two match, then the server will send back a 304 Not

 header, telling the browser to use its cached copy. This means that,Modified

rather than having the server re-render the view and its pieces, the client does all
the hard work of just re-showing the initial page. This whole process is shown in
figure 16.11.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

681

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 16.11 304 Not Modified response

Even though this goes through the same series of events both times, what
happens in the controller is the clincher: by returning a ,304 Not Modified

you can respond with a lightweight response and get the user's browser to render
the page, rather than having your application do it again.

For your ticket page, you're going to want your application to send back this
status only when your ticket hasn't been updated. When a ticket's information, such
as the title or description are updated, or when a comment is posted to the ticket,
you'd want to send back a proper response rather than the 304 Not Modified

header. It's this timestamp that you're going to be using to determine if a page is
either fresh or stale. A fresh page is one that's been recently updated, with a stale
one being one that hasn't been.

You've got a column in your table that you can use to determine if atickets

ticket's been updated: the column. Each time a ticket's updatedupdated_at

through your application, this field will be set to the timestamp automatically. But,
when a comment is posted to the ticket, the field for the ticket willupdated_at

remain the same.
To fix this problem, you can configure the model to touch the ticketComment

object it's related to, which will update its timestamp. The way youupdated_at

do this is with an option on the association in called belongs_to Comment

. Let's change the line currently intouch belongs_to :ticket

app/models/comment.rb to this:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

682

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Whenever a comment is updated, created, or even destroyed, the related ticket's
 attribute will be updated. With the touch option, you can nowupdated_at

confidently use this attribute to provide a reliable timestamp for your new form of
caching. This particular form of caching uses a new method in your controllers
called .fresh_when

To make the action in conditionally send backshow TicketsController

the , put this at the bottom of the method in304 Not Modified show

app/controllers/tickets_controller.rb:

The option here sends back another header to the client:last_modified

the header. This header is used by a browser to detect when theLast-Modified

page was last updated, which provides a near-identical purpose to an ETag. A
browser sends an header that contains the last If-Modified-Since

 time. If the server sees that the time is laterLast-Modified Last-Modified

than the , it will send a new copy of the page. Otherwise,If-Modified-Since

it will send a header.304 Not Modified

The option tells to generate a new ETag for the:etag fresh_when

resource. Until this resource changes, the ETag generated will be the same for each
user. This wouldn't be the case if you didn't pass through the

 to the ETag, but only for two user accounts accessedcurrent_user.id.to_s

on the same computer. By using the 's attribute to seed the current_user id

 option, the tag will be different between users. How this ETag is generatedetag

differs from implementation to implementation; in Rails it's an MD5 hash, which is
guaranteed uniqueness.

Even though these two options are nearly identical, some browsers may support
one or the other. It's more of a way to cover your bases to pass through both
headers, and it's a worthwhile thing to cover.

You can see this in action now if you attempt to visit a ticket's page. Your first

belongs_to :ticket, :touch => true

fresh_when :last_modified => @ticket.updated_at,
 :etag => @ticket.to_s + current_user.id.to_s

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

683

Licensed to <alex@vinova.sg>

mailto:@ticket.updated_at
mailto:@ticket.to_s
http://www.manning-sandbox.com/forum.jspa?forumID=818

request will have a final line that says something like this:

In this instance, the views have been rendered and the entire procedure has
taken 486ms. Rather than refreshing the page (because in some browsers, this
triggers them to send the or not If-Modified-Since If-None-Match

headers), you'll go back to the project's page and then click back on the same ticket
again. This time in the server output you'll see this output:

The server has sent back a response in a slightly304 Not Modified

quicker time than your original request, mainly because it didn't have to re-render
the views for the application and send back all that HTML.

This is another way to ease the load on your server, by getting the browser to
deal with the page caching and serving, rather than the server.

That wraps up this section. You've made a small change here you should
probably commit. You can do that by typing these commands into the terminal:

You've now seen many different flavors of controller caching, ranging from
caching pages and caching actions (actually, fragments), to getting the browser to
take care of the hard part of the caching process (storing a file and expiring it). All
of these caching methods deal with caching entire pages, so what's a Railer
supposed to do if they want to cache only a bit of a page at a time? For that, you
can tell Rails to cache just these parts using an aptly-named method: .cache

Completed 200 OK in 486ms (Views: 200.4ms | ActiveRecord: 5.6ms)

Completed 304 Not Modified in 267ms

git add .
git commit -m "Add ETag and Last-Modified
 support to ticket show page"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

684

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

If part of a page takes a long time to render, then that's a problem. To fix this kind
of problem, you can use fragment caching, which allows you to cache fragments of
pages using the method in your views where appropriate. This methodcache

takes a block, like this:

This way when Rails attempts to load the page and comes across your cache

call, it will check to see if there's an available fragment for it otherwise will
perform the code inside the block and then store it in tmp/cache, just like

 does for an entire page.caches_action

You don't have an actual use-case for this in your application at the moment,
but you'll still use it just to see what it does. You're going to be using it back on the
app/views/projects/show.html.erb view, meaning you're going to want to
temporarily disable in for thiscaches_action ProjectsController

action so that it doesn't cache the page before has a chance to run. You cancache

do this by simply removing the lines in :ProjectsController

In the app/views/projects/show.html.erb, the primary content that's going to be
changing is the list of tickets, and so you'll want to cache that and leave out the
rest. To do this, you'll wrap the whole list of tickets, including the pagination link
above it, in a block, as shown in Listing 16.4cache

Listing 16.4 app/views/projects/show.html.erb

16.3.5 Caching page fragments

<% cache do %>
 # some horribly long and complex thing
<% end %>

caches_action :show, :cache_path => (proc do
project_path(params[:id]) +
"/#{current_user.id}/#{params[:page] || 1}"
end)

<% cache do %>
 <%= paginate @tickets %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

685

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The next time you reload this page in your browser, you'll see this line in your
server's output:

Look familiar? It's exactly the same output generated by .caches_action

The method that you just used assumes that it's only being used once percache

page and so will save it with the same path (more commonly referred to as the
"cache key"). We had a problem with this initially, didn't we?

Yes, we did. It was saving the page name just fine, but it didn't care if you were
on your first page of pagination or the last, it was always showing the first cached
page. If you click on the "Next" link on your pagination, you'll find that you've
regressed this behaviour accidentally. Not to worry, this is easy to fix. You need to
tell your method that there's more than one type of this page. You can docache

that by passing a string containing the page number to the method to give it a
unique name, or key. By making this key unique for each page, Rails will cache a
list of tickets for each page rather than one for all.

To fix this, change the call in your app/views/projects/show.html.erbcache

file to this:

When you refresh this page and switch back into the terminal where your server
is running, you'll see this line output:

 <ul id='tickets'>
 <% @tickets.each do |ticket| %>

 <%= render ticket.state if ticket.state %>
 #<%= ticket.id %> -
 <%= link_to ticket.title, [@project, ticket] %>

 <% end %>

<% end %>

Write fragment views/localhost:3000/projects/1 (3.0ms)

<% cache "projects/#{@project.id}/#{params[:page] || 1}" do %>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

686

Licensed to <alex@vinova.sg>

mailto:@tickets.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

You've specified the key that the cache now uses to store the fragment and so
you'll see that it's saved it as "views/projects/1/1" now, with the first 1 being the ID
of your project and the second one being the page number. If you create, update or
delete a ticket now, you'll see that this fragment gets cleared away.

The next time you revisit the project's page you'll see that it rewrites the
fragment again:

In this section, you've seen that fragment caching is useful for not only caching
dynamic actions with , but also for caching small chunks ofcaches_action

pages by using the method. The latter allowed you to cache a smallcache

fragment of the page rather than the entire page, which is great if you have a small
chunk of the page that takes a long time to render. You didn't, but it's always good
to know what tools are available if you come up against this particular beast.

With the method in the view, you don't have to set the cache cache_path

for the user because you're only caching the part of the page that is user-agnostic.
Everything else in either the layout or elsewhere in this view would be processed
each time the page is requested, but the part you have cached will be retrieved from
that cache and added to the output, rather than re-processed. All in all, this solution
is more elegant than . Another commit is in order!caches_action

Write fragment views/projects/1/1 (3.3ms)

Expire fragment (?-mix:projects\/1\/.*?) (1.9ms)

Write fragment views/projects/1/1 (1.5ms)

git add .
git commit -m "Implement tidier caching for the tickets
 list on the projects page"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

687

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

That covers all the major methods for basic caching in controllers and views.
You've seen ways to cache entire pages and parts of pages as cached files on the
filesystem. In a Rails application there may be a lot of reading and writing to the
filesystem, which can cause degradation of performance, so storing these files on
the filesystem may not be the best idea. A speedier way of doing this would be to
store these files in memory by switching the cache store that Rails uses. You can
do this by putting this line in one of your config/environments files, probably
production.rb:

Rather than storing the fragments on the file system, Rails will now store them
in memory along with the code for the application. The retrieval time is faster here,
but comes at the cost losing the cache if the server was ever stopped. If you want
something more persistent, you may choose to use either Memcached
(http://memcached.org) or Redis (http://redis.io). We won't go into these in this
chapter, as they exceed the boundaries of what would be considered "basic"
performance enhancements.

In this section you've learned how to use view fragment caching to store parts
of the view that may take a long time to process. This type of caching would store
these fragments in the tmp/cache directory; they can be retrieved later on.

There are other situations where requests can be slow for your application too. One
of these cases would be if a ticket had a large number of watchers and a comment
was posted to that ticket. The reason for this slowdown would be because Rails
would have to iterate through all the watchers and send out the update notification
email to each of them individually, using the feature that you developed in chapter
12.

Rather than having a user make the request to create a comment in the
application, having the server process the email notifications, and then send a
response back, you can take the long-running task of sending these emails and
move it into a job that runs in a background.

This will work by having your add the task of sendingCommentObserver

these emails to a job queue that runs in the background. You'll then have a

config.action_controller.cache_store = :memory_store

16.4 Background workers

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

688

Licensed to <alex@vinova.sg>

http://memcached.org
http://redis.io
http://www.manning-sandbox.com/forum.jspa?forumID=818

background process separate from your application that will run these jobs as it
receives them. This way, the hard work is done behind the scenes and the user
receives the request back almost as if nothing of consequence happened.

To make this happen, you'll use a gem called . This gem willdelayed_job

allow you to create a table in your database where the jobs that the background
worker needs to work off will be stored. The gem will also provide you with the
ability to start a worker process. To add this to your application you'll put this line
in your Gemfile:

Then you'll need to run to install it. Once you're donebundle install

there, you can run this command, which will generate a migration to create the
 table:delayed_jobs

You can now run this migration with rake db:migrate

. That's all that's needed to set up the gem itself.db:test:prepare

Your next task is to create a job. A job is any object that responds to .perform

This method needs to perform the action of sending out the email to all the
watchers of the ticket, which is currently the responsibility of the

 method in , which uses this code.after_create CommentObserver

You'll take this code out of the method and replace it withafter_create

code to enqueue your job to be performed, using a method given to you by the
 gem:delayed_job

gem 'delayed_job'

rails g delayed_job

watchers = comment.ticket.watchers - [comment.user]
watchers.each do |user|
 Notifier.comment_updated(comment, user).deliver
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

689

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The class here will actually be a object.CommentNotifierJob Struct

You can create the code by first creating a new directory called app/jobs and then a
new file in it called comment_notifier_job.rb, using the code you stole from the

 method as shown in Listing 16.5after_create

Listing 16.5 app/jobs/comment_notifier_job.rb

In the method here, you find the comment based on the perform

 and then iterate through all the watchers of the comment's ticketcomment_id

who are not the commenter themselves, sending them each an email that the ticket
has been updated with a new comment.

By enqueueing this job using the method, the Delayed::Job.enqueue

 gem will store a format (actually a YAML string) ofdelayed_job marshalled

this object in the table, such as this:

When a worker reads this row, it will convert this marshalled object back into a
real object and then call the method on it. The reason for makingperform

another class and using a over using one such as the is that a Struct Comment

 object will always be lighter than a full-on class that inherits from Struct

. If you enqueued a object instead, the resultActiveRecord::Base Comment

would be this:

Delayed::Job.enqueue CommentNotifierJob.new(comment.id)

class CommentNotifierJob < Struct.new(:comment_id)
 def perform
 comment = Comment.find(comment_id)
 watchers = comment.ticket.watchers - [comment.user]
 watchers.each do |user|
 Notifier.comment_updated(comment, user).deliver
 end
 end
end

--- !ruby/struct:CommentNotifierJob \ncomment_id: 1\n

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

690

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This contains a lot of useless information that you don't care about when you're
enqueuing the job, and so you should not use it. When enqueuing jobs, you should
always try for the lightest possible solution so that the job is queued quickly.

Now when a comment is created, a job will be enqueued to notify the watchers
of the relevant ticket. This job is actually a record in a table called

 that the worker reads from, running each job one at a time anddelayed_jobs

working them off the queue. When there are no more jobs, it will simply wait.
To make sure that this is working, you're going to write a test for it. The test

should check that a job is enqueued when a comment is created and that the
watchers of the comment's ticket are notified by email when the job is run.
Primarily, this test will check the method in the model, andperform Comment

so you'll put it in spec/models/comment_spec.rb, using the code shown in Listing
16.6

Listing 16.6 spec/models/comment_spec.rb

"--- !ruby/ActiveRecord:Comment ...

require 'spec_helper'

describe Comment do
 let(:user) { Factory(:user) }

 before do
 @ticket = Factory(:ticket)
 @ticket.watchers << user
 end

 it "notifies people through a delayed job" do
 Delayed::Job.count.should eql(0)
 ticket.comments.create!(:text => "This is a comment",
 :user => ticket.user)
 Delayed::Job.count.should eql(1)

 Delayed::Worker.new.work_off!
 Delayed::Job.count.should eql(0)

 email = ActionMailer::Base.deliveries.last
 email.to.should eql(user.email)
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

691

Licensed to <alex@vinova.sg>

mailto:@ticket.watchers
http://www.manning-sandbox.com/forum.jspa?forumID=818

At the beginning of the block, you set up a user whodescribe Comment

will be the one to watch the ticket that you set up in the block.before

In the test itself you make reference to a class, which isDelayed::Job

actually a model provided by the gem which connects to the delayed_job

 table. You call first up and make sure that's 0 becausedelayed_jobs count

you don't want any jobs in the table before comments exist.
Next, you create a comment for the ticket, making it originate from the creator

of the ticket (). This way, you can be sure that the user you set upticket.user

with the block will receive the notification. After the comment has beenlet

created, there should be exactly one job in the table.
You then call to create a new Delayed::Worker.new.work_off(1)

 instance that will work off a single job on the queue andDelayed::Worker

then finish . When it's done, there will be no more jobs in the queue.13

Footnote 13 The default of this method is 100 jobsm

Finally, you check that the last email sent out (by referencing
, which stores the emails that have beenActionMailer::Base.deliveries

sent but only in the environment) has gone to the user who should have beentest

notified, indicating that the job has run successfully.
This test should pass automatically because you've already implemented the

feature. You can see this by running bin/rspec

:spec/model/comment_spec.rb

Great! Now when a comment is created it should be created at the same speed,
independent of the number of watchers on a ticket. Although the number of
watchers on a ticket would have to reach a high number before a problem like this
would arise, it is still a perfect example of how you can use todelayed_job

queue jobs in the background.
One final thing. You've seen how you can enqueue the jobs and work them off

using the method, but that isn't quite the wayDelayed::Worker#work_off

you'd do it in the real world or in a production environment. There, you'd run a

1 example, 0 failures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

692

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

command like this:

This command will start a single delayed job worker , which will check the14

database every five seconds for jobs and work them off as they come in. However,
there is no monitoring in place for this and so it is advisable that a tool such as
Monit or God is used to monitor this process and restart it if it happens to go down.

Footnote 14 Watch out: this loads the entire Rails environment again. On a low-memory system a large number ofm
Rails instances and job workers can suck up all the RAM of the system. It is advised to take care when deciding
how many of each process is running on a machine. If this is outside the bounds of the system, then perhaps it is
time to upgrade.

You can stop this job runner by using this command:

If you're using extensively, you may wish to start more thandelayed_job

one worker, which you can do by passing in the option to the command, like-n

this:

This particular example will start two workers rather than one. For more
examples on how to use this gem, check out the README on
https://github.com/collectiveidea/delayed_job.

That does it for background jobs. You've learned how to take things that could
potentially slow down a request and move them into the background, allowing the
Rails application to continue serving the request.

Let's make a commit for these changes now:

script/delayed_job start

script/delayed_job stop

script/delayed_job -n 2 start

git add .

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

693

Licensed to <alex@vinova.sg>

https://github.com/collectiveidea/delayed_job
http://www.manning-sandbox.com/forum.jspa?forumID=818

Now you're done!

In this chapter you learned how to implement small, easy changes that help your
application perform faster, beginning with pagination and ending with view
fragment caching and delayed jobs.

By using pagination, you're able to lighten the load on the database by
retrieving smaller sets of records at a time. This is the easiest way to lessen the
load on your application's infrastructure.

Database queries are often the bottleneck in the application because they may
inadvertently be performed in excessive amounts, or they may not be indexed in
the correct manner. You saw in the beginning how to implement eager loading for
your queries so that rather than doing more requests than necessary, Rails will load
all the necessary objects in a second, separate query.

The second way to improve database performance is to use an index similar to
the page titles in a phonebook, but for a database. If you had a large number of
records in your database, the index would allow for speed increases in the lookups
for records for that index.

If your database speed can't be enhanced any further, then the next stop is
caching the resulting pages from your actions. You first attempted to use

 but found that it came with a couple of problems: the page wascaches_page

available to all users regardless of their authorization, showing "Signed in as x"
where "x" was the first user who requested the page, and it completely ignored
your page parameter. So you moved on to the method, whichcaches_action

allowed you to pass an option called to define where your file wascache_path

saved.
Then you learned that you can cache specific parts of a view using the

simply-named method in them. This saves fragments of a view into thecache

tmp/cache directory, allowing you to store the result of potentially computationally
expensive parts of your view.

These are the basic concepts for enhancing the performance of your application.
There is more you can do, like integrating with tools such as Memcached
(http://memcached.org) or Redis (http://redis.io), and interacting with the

git commit -m "Ticket notifications are now a background job"
git push

16.5 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

694

Licensed to <alex@vinova.sg>

http://memcached.org
http://redis.io
http://www.manning-sandbox.com/forum.jspa?forumID=818

ActionController::Caching::Sweeper
belongs_to, :touch option
cache_sweeper
Cache fragment
cache method
delayed_job gem
Delayed::Job
Delayed::Worker
Eager loading
ETags
fresh_when
includes
Kaminari
observe method
Pagination

 variable which gives you fine-grained control over the cache thatRails.cache

Rails uses to store fragments and can be used to store other pieces of information.
For more information, we would recommend reading the official caching guide

at http://guides.rubyonrails.org/caching_with_rails.html

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

695

Licensed to <alex@vinova.sg>

http://guides.rubyonrails.org/caching_with_rails.html
http://www.manning-sandbox.com/forum.jspa?forumID=818

17
So far, this book has primarily focused on how to work with pieces of the Rails
framework, such as application and engines. In this chapter, we'll look at how you
can use Rack-based applications to respond more quickly than what you'd
otherwise be capable of with your main application.

Rack is the underlying web server framework that powers the underlying
request/response cycle found in Rails, but it isn't a part of Rails itself. It's
completely separate, with Rails requiring the parts of Rack it needs. When your
application is running, it's running through a web server. When your web server
receives a request it will pass it off to Rack, as shown in Figure 18.1

Rack-based Applications

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

696

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 17.1 Application
request through the
stack

Rack then determines where to route this request, and in this case it has chosen
to route to a specific application stack. The request passes through a series of
pieces called (covered in the final section of this chapter) beforemiddleware
arriving at the application itself. The application will then generate a response and
pass it back up through the stack to Rack, and then Rack will pass it back to the
server, which will finally pass it back to the browser. All of this happens in a
lightning quick fashion.

Separating Rack from Rails not only reduces bloat in the framework, but also
provides a common interface that other frameworks can use. By standardizing the
request/response cycle, applications that are built on top of Rack can interact with
one another. In this chapter, you'll see how you can do this by making your Rails
application work with applications built using Rack, but not Rails.

You'll build some Rack applications in this chapter that aren't Rails applications
but will work just as seamlessly. You'll learn how the Rack provides the
request/response cycle underneath Rails and other Ruby frameworks, and learn

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

697

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

how to build your own small, lightweight Rack-based applications.
With these lightweight applications crafted, you'll then create one more

application that will re-implement the Tickets API functionality you first created in
chapter 13, using another Rack-based web framework called Sinatra. You'll then
mount this Sinatra application inside your Rails application using methods that
Rails provides. This will provide an apt example of how you're able to interact with
classes from your Rails application from within a mounted Rack application.

Finally, we'll take a look at Middleware within both the Rack and Rails stacks,
and you'll learn how to use it to your advantage to manipulate requests coming into
your application.

All Rack-based applications work the same way. You request a URL from the
application and it sends back a response. But it's what goes on between that request
and the response that's the most interesting part. Let's create a basic Rack
application now so that you can understand the basics.

Rack standardizes the way an application receives requests across all the Ruby
frameworks. With this standardization, you know that any application purporting to
be a Rack application is going to have a standard way for you to send requests to it
and a standard way of receiving responses.

You're going to build a basic Rack application so that you can learn about the
underlying architecture for requests and responses found in Rails and other Ruby
frameworks. With this knowledge, you'll be able to build lightweight Rack
applications that you can hook into your Rails stack, or even Rack middleware.

When you're content with the first application, you'll create another and then
make them work together as one big application. First things first, though.

To build a basic Rack application, you only need to have an object in Ruby that
responds to the method. That method needs to take one argument (thecall call

request) and also needs to return a three-element object. This arrayArray

represents the response that will be given back to Rack, and looks something like
this:

17.1 Building Rack applications

17.1.1 A basic Rack application

[200, { "Content-Type": "text/plain"}, ["Hello World"]]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

698

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The first element in this response array is the status code for your response. In
this case, it's , which represents a successful response. You had a bit of a play200

with status codes back in chapter 13 when you were building your API, so these
should be no mystery at this point.

The second element in this array are the headers that will be sent back. These
headers are used by the browser to determine how to deal with the response. In this
case, the response will be rendered as-is to the page because the Content-Type

header is , indicating normal text with no formatting applied.text/plain

Usually your Rack application would set this to to indicate an HTMLtext/html

response.
Finally, the third element represents the response body, which is sent back

along with the status code and headers to Rack. Rack then compiles it all into an
HTTP response, which is sent back to where the request came from.

Let's see this in action now. You're going to create a light Rack application that
responds with "Hello World" whenever it receives a request. This kind of
application is often used to check and see if a server is still up and responding to
HTTP calls. You'll create a new file inside your Ticketee's application's lib called
lib/heartbeat.ru (you're checking the "heartbeat" of the server) and fill it with this
content:

The extension for this file represents a Rack configuration file, also known.ru

as a "Rackup" file. In it, you call the method, which needs an object thatrun

responds to . When Rack receives a request to this application it will call the call

 method on the object passed to , which will then generate and return acall run

response back to the server. The object in this case is a (or) object,lambda Proc

which automatically responds to .call

When the method is called on this , it will respond with thecall lambda

three-element array inside it, completely ignoring the object that is passedenv

through. Inside this array, you have the three elements Rack needs: the HTTP
status, the headers for the response, and the body to return.

run lambda { |env| [200, {'Content-Type': 'text/plain'}, ['OK']] }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

699

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

NOTE You already have a Rackup file
Your Rails application also has one of these .ru files, called
config.ru, which is used by Rack-based servers to run your
application. You can see this in action by running the rackup

 command, which will start up your application usingconfig.ru

the config.ru file's configuration.
If you look in this file, you'll see these lines:

The first line requires config/environment.rb of the application
which is responsible for setting up the environment of the
application. Then it uses the method—just as you are—exceptrun

it's passing which actually responds toTicketee::Application

.call

Cool stuff.

To see your lib/heartbeat.ru in action, you can launch a Rack server by using
the command you saw in the above note:

This is now running a server on 9292 (the standard port for Rack) using the
built-in-to-Ruby WEBrick HTTP server, as indicated by the server output you'll
see:

You can now go to your browser and open http://localhost:9292 to make a
request to this application. You'll get back "Hello World", and that's okay with us.

This file is used by Rack-based servers to start the application.
require ::File.expand_path('../config/environment', __FILE__)
run Ticketee::Application

rackup lib/heartbeat.ru

[timestamp] INFO WEBrick 1.3.1
...
[timestamp] INFO WEBrick::HTTPServer#start: pid=... port=9292

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

700

Licensed to <alex@vinova.sg>

http://localhost:9292
http://www.manning-sandbox.com/forum.jspa?forumID=818

You can also make a request to any path at the http://localhost:9292 application
and it will respond in the same way, such as http://localhost:9292/status.

What you've done here is write one of the simplest Rack applications possible.
This application receives a response to any path using any method, and always
responds with . This application will respond very quickly because it hasn'tOK

loaded anything, but at the cost of being a one-trick pony.
You can make this little application respond differently in a number of ways.

The easiest (and most fun!) would be to program it to change its response
depending on the path it's given, like a Rails application does. For this, you'll use
the object. First up, let's see what this object gives you by changing yourenv env

little script to do this:

The method provided by the standard library file willto_yaml yaml

transform your object (spoilers: it's a) into a human-readable YAMLenv Hash

output (like that found in config/database.yml in a Rails application).
To make this new change apply you can't refresh the page like you would in a

Rails application, you have to stop the server and start it again. You can press
Control+C to stop it and rerun . This time whenrackup lib/heartbeat.ru

you go to your server, you'll see output that looks like this:

This output is the YAML-ized version of the hash, which comes fromenv

Rack itself. Rack parses the incoming request and provides this hash so thatenv

require 'yaml'
run lambda { |env| [200,
 {'Content-Type': 'text/plain'},
 ["#{env.to_yaml}"]]
}

GATEWAY_INTERFACE: CGI/1.1
PATH_INFO: /
QUERY_STRING: ""
REMOTE_ADDR: 127.0.0.1
REQUEST_METHOD: GET
REQUEST_URI: http://localhost:9292/
...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

701

Licensed to <alex@vinova.sg>

http://localhost:9292
http://localhost:9292/status
http://localhost:9292/...ThisoutputistheYAML-izedversionoftheenvhash
http://localhost:9292/...ThisoutputistheYAML-izedversionoftheenvhash
http://localhost:9292/...ThisoutputistheYAML-izedversionoftheenvhash
http://www.manning-sandbox.com/forum.jspa?forumID=818

you can determine how you'd like to respond to the request. You can alter the

behavior of the request using any one of the keys in this hash , but in this case1

you'll keep it simple and use the key.PATH_INFO

Footnote 1 m Yes, even the key to send users of a certain browser elsewhere.HTTP_USER_AGENT

A is great for one-liners, but now your Rack application is going tolambda

become more complex, and so you've probably outgrown the usefulness of a
. You don't have to use a though, you only need to pass anlambda lambda run

object that has a method that responds with that three-element array. Yourcall

new code will be a couple of lines long, and so it's probably best to define it as a
method (called) on an object, and what better object to define it on than acall

class?
A class object would allow you to define other methods, and can be used to

abstract chunks of the method as well. For good measure, let's call this class call

 and put it inside a module called , replacing theApplication Heartbeat

content of lib/heartbeat.ru as shown in Listing 18.1.

Listing 17.1 A classy Rack application

Here you've defined the to have a Heartbeat::Application call

method, which once again returns "OK" for any request. On the final line, call run

and pass in , which will work like your firstHeartbeat::Application

example because has a method defined onHeartbeat::Application call

it. If this looks familiar, it's because there's a similar looking line in your
application's config.ru file that you saw earlier:

module Heartbeat
 class Application
 def self.call(env)
 [200, {'Content-Type': 'text/plain'}, ["Classy!"]
 end
 end
end

run Heartbeat::Application

run Ticketee::Application

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

702

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Your Rails application is actually a Rack-based application! Of course, there's a
little bit more that goes on behind the scenes in your Rails application than in your
Rack application at the moment, but the two are used identically. They both
respond in nearly-identical ways with the three-element response array. Your Rack
application is nearly the simplest form you can have. If you restart it and make a
request to it, you'll see it output "Classy!"

Let's change your Heartbeat application now to respond differently to different
request paths by referencing the key within . You'll now replacePATH_INFO env

the code inside your method with this:call

The here returns the path that has been requested. Ifenv["PATH_INFO"]

you made a request like http://localhost:9292/books to your Rack application, this
variable would return . You compare this string to a regular expression/books

using the operator and if it contains you'll return "Success" in the body=~ 200

along with an HTTP status of . For everything else, it's "Failure" with an200

HTTP status of 500.
Let's restart the server once again and then make a new request to

http://localhost:9292. You'll see this output:

This is because for any request to this server that doesn't have 200 in it, you're

def self.call(env)
 default_headers = { "Content-Type": "text/plain"}

 if env["PATH_INFO"] =~ /200/ <co id="ch18_90_1"/>
 body = "Success!"
 status = 200
 else
 body = "Failure!"
 status = 500 <co id="ch18_90_2"/>
 end

 [status, default_headers, ["#{env["PATH_INFO"]} == #{body}"]]
end

/ == Failure!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

703

Licensed to <alex@vinova.sg>

http://localhost:9292/books
http://localhost:9292
http://www.manning-sandbox.com/forum.jspa?forumID=818

returning this message. If you make a request to http://localhost:9292/200 or even
http://localhost:9292/the/200/page, you'll see the success message instead:

Also, if you look in the console you can see a single line for each request that's
been served:

This output shows the IP where the request came from, the local time the
request happened, the request itself, the HTTP status contained within the
response, and finally how long the page took to run. For the first request, it
returned a 500 HTTP status and for the other two requests that contained "200" in
their paths, it returned a 200 HTTP status.

What you've done here is implement a basic router for your Rack application. If
the route for a request contains "200", then you give back a successful response.
Otherwise, you give back a 500 status, indicating an error. Rails implements a
much more complex routing system than this, extracting the complexity away and
leaving us with methods such as and that you use inroot resources

config/routes.rb. The underlying theory is the same though.
You've learned the basics of how a Rack application works and gained an

understanding that your Rails application is a bigger version of this little
application you've written. There's much more to Rack than providing this
abstraction for the underlying request/response cycle. For example, you can build
more complex apps with logic for one part of the application in one class and
additional logic in another.

One other feature of Rack is the ability to build applications by combining
smaller applications into a larger one. You saw this with Rails when you used the

 method in your application's config/routes.rb to mount the engine youmount

developed in the last chapter (chapter 17). Let's see how you can do this with Rack.

/the/200/page == Success!

127.0.0.1 - - [[timestamp]] "GET / HTTP/1.1" 500 - 0.0004
127.0.0.1 - - [[timestamp]] "GET /200 HTTP/1.1" 200 - 0.0004
127.0.0.1 - - [[timestamp]] "GET /the/200/page HTTP/1.1" 200 - 0.0004

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

704

Licensed to <alex@vinova.sg>

http://localhost:9292/200
http://localhost:9292/the/200/page
http://www.manning-sandbox.com/forum.jspa?forumID=818

Your basic Rack application quickly outgrew the shell you placed it in,lambda

and so you moved the logic in it into a class and added some more. With the class,
you're able to define a method on it, which then returns the response thatcall

Rack needs. The class allows you to cleanly write a more complex Rack
application than a would.lambda

So what happens now if you outgrow a class? Well, you can abstract the
function of your application into multiple classes and build a Rack application
using those classes. The structure is not unlike the controller structure you have in
a Rails application, because it will have separate classes that are responsible for
different things.

In your new Rack application, you'll have two classes that perform separate
tasks, but are still running on the same instance of the server. The first class is
going to be your class, and the second one willHeartbeat::Application

provide two forms, each with one button: one for success and one for failure. These
forms will then submit to the actions provided within the

 class, which will demonstrate how you can getHeartbeat::Application

your classes to talk to each other.

Now that your Rack application is getting more complex, you're going to break it
out into three files. The first file will be the class,Heartbeat::Application

the second will be a new class called , andHeartbeat::TestApplication

the third will be the Rackup file that will be responsible for combining these two
classes into one glorious application.

Let's begin by separating out your application and the Rackup file into two
separate files. In a new directory at lib/heartbeat.rb, add the code shown in Listing
18.2 to lib/heartbeat/application.rb.

17.2 Building bigger Rack applications

17.2.1 You're breaking up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

705

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 17.2 lib/heartbeat/application.rb

Next, in lib/heartbeat/config.ru, add the code shown in Listing 18.3.

Listing 17.3 lib/heartbeat/config.ru

This new lib/heartbeat/config.ru sets up a variable so thatheartbeat_root

you can files relative to the root of the heartbeat directory withoutrequire

having to specify direct paths to them . At the moment, this file still contains the 2

 line from the old heartbeat.ru, but you'll be changing this shortly.run

Footnote 2mYou could also use Ruby 1.9's require_relative

Before that change though, you're going to add your second application class,
 to a new file atHeartbeat::TestApplication

lib/heartbeat/test_application.rb by using the content shown in Listing 18.4.

module Heartbeat
 class Application
 def self.call(env)
 default_headers = { "Content-Type": "text/plain"}

 if env["PATH_INFO"] =~ /200/
 body = "Success!"
 status = 200
 else
 body = "Failure!"
 status = 500
 end

 [status, default_headers, ["#{env["PATH_INFO"]} == #{body}"]]
 end
 end
end

heartbeat_root = File.expand_path(File.dirname(__FILE__))
require heartbeat_root + '/application'

run Heartbeat::Application

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

706

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Listing 17.4 lib/heartbeat/test_application.rb

This file follows the same style as the file that defines
, however in this class the body returned as part ofHeartbeat::Application

the Rack response consists of two form tags each with their own submit button.
The first form goes to /test/200 which should give you the response of "Success!"
and /test/500 which should give you a "Failure!" response because the path doesn't
include the number .200

A keen eye may have noticed that you've nested the paths to the heartbeat
responses underneath a path called . This is because when you build yourtest

combined class application, you'll make your sitHeartbeat::Application

under the route. This is so that when you click the submit button on those/test

two forms from , the request will be sent to Heartbeat::TestApplication

. When do you do this? Right now!Heartbeat::Application

module Heartbeat
 class TestApplication
 def self.call(env)
 default_headers = { "Content-Type": "text/html"}
 body = %Q{
 <h1>Success or FAILURE?!</h1>
 <form action='/test/200'>
 <input type='submit' value='Success!'>
 </form>

 <form action='/test/500'>
 <input type='submit' value='Failure!'>
 </form>
 }

 [200, default_headers, [body]]
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

707

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You're now going to change the lib/heartbeat/config.ru file to now create a Rack
application that combines both of your Rack application classes. For this, you're
going to use the class's method, which lets you build RackRack::Builder app

applications from different parts. Effectively providing something that's very
similar to how the routing and controllers work within Rails. Let's fill
lib/heartbeat/config.ru with the content shown in Listing 18.5

Listing 17.5 Combining two Rack applications

Rather than calling here, you'rerun Heartbeat::Application

compiling a multi-faceted Rack application using . The Rack::Builder.app

 method you've been using all this time is defined inside the run

 class, actually. A *.ru file is usually evaluated within theRack::Builder

instance of a object by the code the command uses,Rack::Builder rackup

and so you are able to use the method without having to call run

 before it or wrapping or .ru code in a Rack::Builder.new

 block.Rack::Builder.app

This time, you're being implicit and building a new instanceRack::Builder

using . Inside this instance, you'll declare two routesRack::Builder.app

using the method. Within a block given to each of your calls you'remap map

calling the method again, passing it one of your two "application" classes.run

When a request comes into this application beginning with the path it/test

17.2.2 Running a combined Rack application

heartbeat_root = File.expand_path(File.dirname(__FILE__))
require heartbeat_root + '/application'
require heartbeat_root + '/test_application'

app = Rack::Builder.app do
 map '/test' do
 run Heartbeat::Application
 end

 map '/' do
 run Heartbeat::TestApplication
 end
end

run app

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

708

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

will be served by the class. All other requests willHeartbeat::Application

be served by the class. This is not unlikeHeartbeat::TestApplication

certain requests in your Rails application beginning with are routed to/tickets

the and others beginning with go to TicketsController /projects

.ProjectsController3

Footnote 3 In fact, the similarities are astounding.m

Let's start this application and see what it can do by running this command:

Now remember, to make requests to the classHeartbeat::Application

you must prefix them with /test, otherwise they'll be served by
. Keeping that in mind, let's make a requestHeartbeat::TestApplication

to http://localhost:9292/test/200. You'll see something unusual: the path displayed
on the page isn't as you may expect, but rather it's . The /test/200 /200

 key doesn't need to contain the path where yourenv["PATH_INFO"]

application is mounted, as that's not important for routing requests within the
application itself.

If you make a request to another path not beginning with the (such as/test

http://localhost:9292/foo/bar) prefix, you'll see the two buttons in forms provided
by the , as shown in Figure 18.2.Heartbeat::TestApplication

Figure 17.2 Success or FAILURE?!

When you click on the "Success!" button, you'll send a request to the /test/200
path, which will be served by the class and willHeartbeat::Application

respond with a body that says . When you press the back/200 == Success!

button in your browser and press the "Failure!" button, you'll see the /500 ==

.Failure!

rackup lib/heartbeat/config.ru

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

709

Licensed to <alex@vinova.sg>

http://localhost:9292/test/200
http://localhost:9292/foo/bar
http://www.manning-sandbox.com/forum.jspa?forumID=818

This is the basic foundation for Rack applications and a lightweight
demonstration of how routing in very basic Rack applications works. When you
began, you were able to write to run arun Heartbeat::Application

single class as your Rack application, but as it's grown more complex you've split
different pieces of the functionality out into different classes. To combine these
classes into one super-application you used the method.Rack::Builder.app

Now you should have a basic understanding of how you can build Rack
applications to have a lightweight way of creating dynamic responses. So how does
all of this apply to Rails? Well, in Rails you're able to mount a Rack application so
that it can serve requests on a path (like you did with), ratherRack::Builder

than having the request go through the entire Rails stack.

Sometimes, you'll want to serve requests in a lightning-fast fashion. Rails is great
for serving super-dynamic requests quickly, but occasionally you'll want to forego
the heaviness of the Rails controller stack and have a piece of code that receives a
request and quickly responds.

Previously, your Rack application had done just that. However, when you
mount your Rack application inside of a Rails application, you're able to use the
classes (i.e. models) from within the Rails application. With these models, you can
do any number of things. For example, you can build a re-implementation of your
tickets API, which will allow you to see an alternate way to craft the API you
created in chapter 13. So let's do this.

This new API will be version 3 of your API (things move fast in this app!). It

will be accessible at /api/v3/json/projects/:project_id/tickets and—as with your4

original API—will require a token parameter to be passed through to your
application. If the token matches to a user and that user has access to the requested
project, you can send back a list of tickets in a JSON format. If the token sent
through doesn't match to a user then you'll send back a helpful error message
explaining that; if the project requested isn't accessible by the authenticated user
you'll deny all knowledge of its existence by sending back a 404 response.

Footnote 4 This URL closely resembles the URL that GitHub uses for v2 of its API, but the similarities are purelym
coincidental.

17.3 Mounting a Rack application with Rails

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

710

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Before you get into any of that though, you should probably look at how mounting
works within Rails by using one of your basic applications first! Mounting a Rack
application involves defining a route in your Rails application that basically says "I
want to put this application at this path." Back when you were doing a pure Rack
application, you did this in the lib/heartbeat/config.ru file like this:

Rails has a better place than that for routes: config/routes.rb. This location
provides you with some lovely helpers for mounting your Rack applications. In
your Rails application, to do the same thing as you did in your Rack application,
you'd need to first require the application by placing this line at the top of
config/routes.rb:

Then inside the routes block of config/routes.rb put this line:

The method accepts an object to mount and an options hash containingmount

an option to declare where this should be mounted. Alternatively, you couldat

use the method in routes:match

Both lines are identical in function. So let's make these changes to your
config/routes.rb file now and boot up your Rails server with this command:

17.3.1 Mounting Heartbeat

map '/heartbeat' do
 run Heartbeat::Application
end

require 'heartbeat/application'

mount Heartbeat::Application, at: "/heartbeat"

match '/heartbeat' => Heartbeat::Application

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

711

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

You should now be able to go to http://localhost:3000/heartbeat/200 and see the
friendly message. This means that your /200 == Success!

 is responding as you'd like it to, nestled withinHeartbeat::Application

the confines of your Rails application.
Rails has been told to forward requests that go to /heartbeat to this Rack

application and it has done so diligently. Rather than initializing a new instance of
a controller (which is what normally happens in a standard Rails request), a Rack
class is much lighter and is perfect for serving high-intensity requests that don't
require views, like the response from your andHeartbeat::Application

the responses from your API.
So now that you've learned how you can mount your

, let's build this slightly more complex RackHeartbeat::Application

application that will serve JSON API requests for tickets. To make sure everything
works, you'll be writing tests using the same helpersRack::Test::Methods

that you used back in chapter 13. These helpers are designed for Rack applications,
but they worked with your Rails application because... well, it's a Rack app too.

Rather than writing this application as a standard Rack app, let's mix things up a
bit and use another Ruby web framework called Sinatra, which uses the Rack
architecture underneath, just like Rails.

Sinatra is an exceptionally light-weight Ruby web framework that's perfect for
building small applications, such as those that serve an API. Like Rails, it's built on
top of Rack and so you'll have no worries about using them together. You'll use it
here to create version 3 of your API. Building you app this way not only
demonstrates the power of Sinatra, but also shows that there's more than one way

to skin this particular cat .5

Footnote 5 Although why anybody would skin a cat these days is unknown to the authors.m

To install the gem, run this command:sinatra

bin/rails s

17.3.2 Introducing Sinatra

gem install sinatra

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

712

Licensed to <alex@vinova.sg>

http://localhost:3000/heartbeat/200
http://www.manning-sandbox.com/forum.jspa?forumID=818

You can make a small Sinatra script now by creating a file called sin.rb, as
shown in Listing 18.6.

Listing 17.6 sin.rb

This is the most basic Sinatra application that you can write. On the first line
you require the sinatra file, which gives you some methods you can use to define
your application, such as the method you use on the next line. This get get

method is used to define a root route for your application, which returns the string
"Hello World" for requests to . You could also make it into a class, which isGET /

what you'll need to do for it to be mountable in your application:

By making it a class, you'll be able to mount it in your application using the
 method in config/routes.rb and specifying the class name. By mountingmount

this Sinatra application inside your Rails application, it will have access to all the
classes from your Rails application, such as your models, which is precisely what
you're going to need for this new version of your API. You won't use this code
example right now; it's handy to know that you can do this.

To use Sinatra with your application, you'll need to add it to the Gemfile with
this line:

require 'sinatra'

get '/' do
 "Hello World"
end

require 'sinatra'

class Tickets < Sinatra::Base
 get '/' do
 "Hello World"
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

713

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Then you'll need to run to install it. So let's go ahead nowbundle install

and start building this API using Sinatra.6

Footnote 6 You can learn more about Sinatra at https://github.com/sinatra/sinatra/, and atm
http://sinatrarb.com/intro.

Let's create a new file to test your experimental new API at
spec/api/v3/json/tickets_spec.rb. In this file you want to set up a project that has at
least one ticket, as well as a user that you can use to make requests to your API.
After that, you want to make a request to /api/v3/json/tickets and check that you
get back a proper response of tickets. With this in mind, let's write a spec that looks
like the code shown in Listing 18.7

Listing 17.7 spec/api/v3/json/tickets_spec.rb

This test looks remarkably like the one in spec/api/v2/tickets_spec.rb, except
this time you're only testing for JSON responses and you've changed the URL that

gem 'sinatra'

17.3.3 The API, by Sinatra

require 'spec_helper'

describe Api::V3::JSON::Tickets, type: :api do
 let(:project) { FactoryGirl.create(:project) }
 let(:user) { FactoryGirl.create(:user) }
 let(:token) { user.authentication_token }

 before do
 FactoryGirl.create(:ticket, project: project)
 user.permissions.create!(thing: project, action: "view")
 end

 let(:url) { "/api/v3/json/projects/#{project.id}/tickets" }

 context "successful requests" do

 it "can get a list of tickets" do
 get url, token: token
 expect(last_response.body).to eql(project.tickets.to_json)
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

714

Licensed to <alex@vinova.sg>

https://github.com/sinatra/sinatra/
http://sinatrarb.com/intro
http://www.manning-sandbox.com/forum.jspa?forumID=818

you're requesting to . When you run thisapi/:version/:format/:path

spec with you'll seebin/rspec spec/api/v3/json/tickets_spec.rb

that it's giving you this error:

This is because you haven't yet defined the module for the Api::V3

namespace yet. Let's create a new file at app/controllers/api/v3/json/tickets.rb that
defines this module, as shown in Listing 18.8.

Listing 17.8 app/controllers/api/v3/json/tickets.rb

Within this file you define the class that is Api::V3::JSON::Tickets

'd at the top of your spec, which will now make your spec run. Thisdescribe

class inherits from so that you'll get the helpful methods thatSinatra::Base

Sinatra provides, such as the and methods that you use here.before get

You've already seen what can do, but is new. This method is similarget before

to a in Rails and will execute the block before each request. Inbefore_action

this block, you set the headers for the request, using Sinatra's method,headers

so that your API identifies as sending back a response.text/json

Why put this code inside app/controllers? Well, even though this "controller" is

... uninitialized constant Api::V3

require 'sinatra'

module Api
 module V3
 module JSON
 class Tickets < Sinatra::Base
 before do
 headers "Content-Type": "text/json" <co id="ch18_12601_1"/>
 end
 get '/' do
 []
 end
 end
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

715

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

most definitely not a controller -- in the common Rails sense -- it's stilla class that's
going to be handling requests and acting a controller, and thereforelike
app/controllers is still a perfectly good place for it.

Let's rerun the spec again using bin/rspec

:spec/api/v3/json/tickets_spec.rb

This is a better start, now your test is running and failing as it should because
you haven't defined the route for it yet. Your test is expecting to be able to do a

 request to but cannot.GET /api/v3/json/projects/1/tickets

This route can be interpreted as /api/v3/json/projects/:project_id/tickets and you
can use the namespace already in config/routes.rb to act as a 'home' for thisapi

route. Let's put some code for of your API inside this now:v3 namespace

By placing this call inside the namespaces, the Rack application will bemount

mounted at /api/v3/json/projects/:project_id/tickets rather than the /tickets URI if
you didn't have it nested. Additionally, you've specified a dynamic parameter in the
form of inside the option for the call, which means:project_id at mount

you'll be able to access the requested project id from inside your Rack application
using a method very similar to how you'd usually access parameters in a controller.

If you attempted to run your spec again with bin/rspec

 it would bomb out with anotherspec/api/v3/json/tickets_spec.rb

new error:

Failure/Error: get url, token: token
ActionController::RoutingError:
 No route matches [GET] "/api/v3/json/projects/1/tickets"

namespace :v3 do
 namespace :json do
 mount Api::V3::JSON::Tickets,
 at: "/projects/:project_id/tickets"
 end
end

expected "[tickets array]"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

716

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

This means that requests are able to get to your Rack app and that the response
you've declared is being served successfully. Now you need to fill this response
with meaningful data. To do this, find the project that's being referenced in the
URL by using the parameters passed through found with the method.params

Unfortunately, Sinatra doesn't load the parameters from your Rails application and
so is not going to be set. You can see this if youparams[:project_id]

change your root route in your Sinatra application to this:

Then if you run your test, you'll see only the parameter is available:token

Luckily, you can still get to this through one of the keys in the environment
hash, which is accessible through the method in your Sinatra actions, like itenv

was available when you built your Rack applications. You saw this environment
hash earlier when you were developing your first Rack application, but this time
it's going to have a little more to it because it's gone through the Rails request
stack. Let's change your root route to this:

When you rerun your test, you'll see all the available keys output at the top,
w i t h o n e o f t h e k e y s b e i n g

. This key stores theaction_dispatch.request.path_parameters

got ""

get '/' do
 p params
end

{"token"=>"6E06zoj01Pf5texLXVNb"}

get '/' do
 p env.keys
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

717

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

parameters discovered by Rails routing, and your parameter shouldproject_id

fall neatly into this category. Let's find out by changing the line inp env.keys

y o u r r o o t r o u t e t o p

 and thenenv["action_dispatch.request.path_parameters"]

re-running your test. You should see this:

Okay, so you can access two parameter hashes, but you'll need to merge them
together if you are to do anything useful with them. You can merge them into a
super method by re-defining the method as a private method inparams params

your app. Underneath the you'll put this:get

By calling the method here, you'll reference the method in thesuper params

superclass, . You want to access the keys in this hash usingSinatra::Base

either symbols or strings like you can do in your Rails application, so you create a
new object, which is returned by thisHashWithIndifferentAccess

method. This lets you access your token with either or params[:token]

. This hash is quite indifferent to its access methods.params["token"]

Let's switch your root route back to calling . When you run yourp params

test again, you should see that you finally have both parameters inside the one
hash:

With these parameters you'll now be able to find the user based on their token,
get a list of projects they have access to, and then attempt to find the project with

{:project_id=>"3"}

def params
 hash = env["action_dispatch.request.path_parameters"].merge!(super)
 HashWithIndifferentAccess.new(hash)
end

{:project_id=>"3", "token"=>"ZVSREe1aQjNZ2SrB9e8I"}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

718

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

the id specified. You can do this by putting two calls, a and find_user

 method, in the block you already have, using this code:find_project before

The and methods can be defined underneathfind_user find_project

the keyword using this code:private

This code should look fairly familiar, it's basically identical to the code found in
the and Api::V1::TicketsController Api::V1::BaseController

classes inside your Rack application. First you find the user based on their token
and then generate a scope for all projects that the user is able to view with the

 method. With this scope, you can then find the project matchingProject.for

the id passed in through . You are referencing theparams[:project_id]

models from your Rails application inside your Sinatra application and there's
nothing special you have to configure to allow this.

Because you're not too concerned with what happens if an invalid
 or user token is passed through at the moment, you'llparams[:project_id]

fix those up after you've got this first test passing. With the project now found, you
should be able to display a list of tickets in JSON form in your method. Let'scall

change your root route to return a list of JSON-ified tickets for this project:

before do
 headers "Content-Type": "text/json"
 find_user
 find_project
end

private

 def find_user
 @user = User.find_by_authentication_token(params[:token])
 end

 def find_project
 @project = Project.for(@user).find(params[:project_id])
 end

get '/' do

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

719

Licensed to <alex@vinova.sg>

mailto:find_userfind_projectendThefind_userandfind_projectmethodscanbedefinedunderneaththeprivatekeywordusingthiscode:privatedeffind_user@user=User.find_by_authentication_token
mailto:find_userfind_projectendThefind_userandfind_projectmethodscanbedefinedunderneaththeprivatekeywordusingthiscode:privatedeffind_user@user=User.find_by_authentication_token
mailto:find_userfind_projectendThefind_userandfind_projectmethodscanbedefinedunderneaththeprivatekeywordusingthiscode:privatedeffind_user@user=User.find_by_authentication_token
mailto:find_userfind_projectendThefind_userandfind_projectmethodscanbedefinedunderneaththeprivatekeywordusingthiscode:privatedeffind_user@user=User.find_by_authentication_token
mailto:find_userfind_projectendThefind_userandfind_projectmethodscanbedefinedunderneaththeprivatekeywordusingthiscode:privatedeffind_user@user=User.find_by_authentication_token
mailto:find_userfind_projectendThefind_userandfind_projectmethodscanbedefinedunderneaththeprivatekeywordusingthiscode:privatedeffind_user@user=User.find_by_authentication_token
mailto:find_userfind_projectendThefind_userandfind_projectmethodscanbedefinedunderneaththeprivatekeywordusingthiscode:privatedeffind_user@user=User.find_by_authentication_token
mailto:find_userfind_projectendThefind_userandfind_projectmethodscanbedefinedunderneaththeprivatekeywordusingthiscode:privatedeffind_user@user=User.find_by_authentication_token
mailto:Project.for(@user).find
http://www.manning-sandbox.com/forum.jspa?forumID=818

Now your root route should respond with the list of tickets required to have
your test pass. Let's see if this is the case by running bin/rspec

:spec/api/v3/json/tickets_spec.rb

Great, this spec is now passing, which means that your Rack application is now
serving a base for version 3 of your API. By making this a Rack application you
can serve requests in a more lightweight fashion than you could within Rails.

But, you don't have basic error checking in place yet if a user isn't found
matching a token or if a person can't find a project. So before you move on, let's
quickly add tests for these two issues.

You'll open spec/api/v3/json/tickets_spec.rb and add two tests inside the
 block in a new block, as shown in Listing 18.9.describe context

Listing 17.9 spec/api/v3/json/tickets_spec.rb

In the first test you make a request without passing through a token, which
should result in a (unauthorized) status and a message telling you the "Token401

 @project.tickets.to_json
end

1 example, 0 failures

17.3.4 Basic error checking

context "unsuccessful requests" do
 it "doesn't pass through a token" do
 get url
 expect(last_response.status).to eql(401)
 expect(last_response.body).to eql("Token is invalid.")
 end

 it "cannot access a project that they don't have permission to" do
 user.permissions.delete_all
 get url, token: token
 expect(last_response.status).to eql(404)
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

720

Licensed to <alex@vinova.sg>

mailto:@project.tickets.to_json
http://www.manning-sandbox.com/forum.jspa?forumID=818

is invalid." In the second test, you use the association method todelete_all

remove all permissions for the user and then attempt to request tickets in a project
that the user no longer has access to. This should result in the response being a 404
response, which means your API will deny all knowledge of that project and its
tickets.

To make your first test pass you'll need to check that your methodfind_user

actually returns a valid user, otherwise you'll return this 401 (Unauthorized)
response. The best place to do this would be inside the method itself,find_user

turning it into this:

The method here will stop a request dead in its tracks. In this case, it willhalt

return a 401 status code with the body being the string specified. When you run
y o u r t e s t s a g a i n w i t h bin/rspec

 the first two should be passing,spec/api/v3/json/tickets_spec.rb

with the third one still failing:

Alright, so now if an invalid token is passed, you're throwing exactly the same
error as the last two iterations of your API did, good progress! This error tells the
API client that the token used is invalid and returns a 401 (Unauthorized) status.

Finally, you'll need to send a 404 response when a project cannot be found
within the scope for the current user. To do this, change the find_project

method in your app to this:

def find_user
 @user = User.find_by_authentication_token(params[:token])
 halt 401, "Token is invalid." unless @user
end

3 examples, 1 failure

def find_project
 @project = Project.for(@user).find(params[:project_id])
 rescue ActiveRecord::RecordNotFound

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

721

Licensed to <alex@vinova.sg>

mailto:Project.for(@user).find
http://www.manning-sandbox.com/forum.jspa?forumID=818

When you run your tests for a final time with bundle exec rspec

, they should all pass:spec/api/v3/tickets_spec.rb

Awesome! This should give you a clear idea of how you could implement an
API similar to the one you created back in chapter 13 by using the lightweight
framework of Sinatra. All of this is possible because Rails provides an easy way to
mount Rack-based applications inside your Rails applications. You could go
further with this API, but this is probably another exercise for you later on if you
wish to undertake it.

You've learned how you can use Rack applications to serve as endpoints of
requests, but you can also create pieces that hook into the middle of the request
cycle called . Rails has a few of these already, and you saw the effectsmiddleware
of one of them when you were able to access the

 key insideenv["action_dispatch.request.path_parameters"]

your Sinatra application. Without the middleware of the Rails stack, this parameter
would be unavailable. In the next section, we look at the middleware examples in
the real world, including some found in the Rails stack, as well as how you can
build and use your own.

When a request comes into a Rack application, it doesn't go straight to a single
place that serves the request. Instead, it goes through a series of pieces known as

, which may process the request before it gets to the end of the stackmiddleware
(your application) or modify it and pass it onward, as shown in Figure 18.3.

 halt 404, "The project you were looking for could not be found."
end

3 examples, 0 failures

17.4 Middleware

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

722

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 17.3 Full request
stack, redux

You can run the within your Rails application'sbin/rake middleware

directory to see the list of middleware currently in use by your Rails application:

Each of these middleware pieces perform their own individual function. For
instance, the first middleware intercepts requestsActionDispatch::Static

for static files such as images, javascript files, or stylesheets found in public and
serves them immediately, without the request to them falling through to the rest of

use ActionDispatch::Static
use Rack::Lock
use ActiveSupport::Cache::Strategy::LocalCache
use Rack::Runtime
...
use ActionDispatch::BestStandardsSupport
use Warden::Manager
run Ticketee::Application.routes

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

723

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

the stack. It's important to note that this middleware is only active in the
development environment, as in production your web server (such as nginx) is
better suited for serving static assets.

O t h e r m i d d l e w a r e , s u c h a s
, set additional headers onActionDispatch::BestStandardsSupport

your request. This particular piece of middleware sets the X-UA-Compatible

header to , which tells Microsoft Internet Explorer toIE=Edge,chrome=1

"display content in the highest mode available" that is "equivalent to IE9 mode",

meaning your pages should render in a "best standards" fashion . The 7 chrome=1

part of this header is for the Google Chrome Frame which again, will support "best
standards" rendering on a page.

Footnote 7 m For more information about the and header:IE=Edge X-UA-Compatible

http://msdn.microsoft.com/en-us/library/cc288325(v=vs.85).aspx

Let's look at how works.ActionDispatch::BestStandardsSupport

In the case of the middleware, a response isActionDispatch::Static

returned when it finds a file to serve and the request stops there. In the case of
, the request is modified andActionDispatch::BestStandardsSupport

allowed to continued down the chain of middleware until it hits
, which will serve the request using theTicketee::Application.routes

routes and code in your application. The process of
 can be seen in Figure 18.4ActionDispatch::Static

17.4.1 Middleware in Rails

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

724

Licensed to <alex@vinova.sg>

http://msdn.microsoft.com/en-us/library/cc288325
http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 17.4 ActionDispatch::Static Request

When a request is made to /images/bin/rails.png, the middleware checks to see
if the public/images/bin/rails.png file exists. If it does, then it is returned as the
response of this request. This middleware will also check for cached pages. If you
make a request to /projects, Rails (by default) will first check to see if a
public/projects.html file exists before sending the request to the rest of the stack.
This type of request is shown in Figure 18.5.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

725

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

Figure 17.5 ActionDispatch::BestStandardsSupport

In this request, the middleware first checks forActionDispatch::Static

the presence of public/projects.html, which would be there if you had cached the
page. Because it's not there, the request goes through the rest of the middleware
stack being passed along. When i t gets to

, this middleware sets the ActionDispatch::Best::StandardsSupport

 header and passes along the request to the application,X-UA-Compatbile

which then serves the request like normal.
L e t ' s d i v e i n t o e x a c t l y h o w

 works.ActionDispatch::BestStandardsSupport

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

726

Licensed to <alex@vinova.sg>

http://www.manning-sandbox.com/forum.jspa?forumID=818

The is the simplest piece ofActionDispatch::BestStandardsSupport

middleware within the Rails stack. Here's the entirety of this class's code, from
actionpack/lib/action_dispatch/best_standards_support.rb within Rails itself:

Listing 17.10 ActionDispatch::BestStandardsSupport class definition

The first method defined in this class is the initialize method, which takes two
arguments: an object and a object, which defaults to . The app type true app

object is the next piece of middleware in the stack. This is made available so that
you can choose to call it and delegate the job of serving the request to that piece of
middleware instead. That piece may then choose to serve an actual three-part Rack
response, or pass it on to another piece of middleware. At any time during the
stack, a piece of middleware can choose to send back a response and then all future
middleware objects will not be parsed. We'll get to what this piece of middleware
is doing in just a moment.

The other code inside this method will define a variable, checking@header

the value of . If that value is true, then it will set to type @header

 which will tell Internet Explorer to use the edge mode, andIE=Edge,chrome=1

17.4.2 Investigating ActionDispatch::BestStandardsSupport

module ActionDispatch
 class BestStandardsSupport
 def initialize(app, type = true)
 @app = app

 @header = case type
 when true
 "IE=Edge,chrome=1"
 when :builtin
 "IE=Edge"
 when false
 nil
 end
 end

 def call(env)
 status, headers, body = @app.call(env)
 headers["X-UA-Compatible"] = @header
 [status, headers, body]
 end
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

727

Licensed to <alex@vinova.sg>

mailto:@app.call
http://www.manning-sandbox.com/forum.jspa?forumID=818

will enable Google Chrome Frame on a user's browser, if they have it. If it's set to
, it will just use the header. If it's set to , then there:builtin IE=Edge false

will be no header. These two parts of the header are explained in much greater
detail here: http://stackoverflow.com/a/6771584/15245.

The other method inside this class, the method, takes one argumentcall

called which is the Rack environment hash. This will pass the request downenv

the chain of middleware, returning that three-part Rack response you've come to
know and love. Once it's got that, it adds the header to theX-UA-Compatible

headers Hash and then returns all three parts.
Now that you've got a nice grasp of how one piece of middleware works, let's

build your own!

Soon you'll have your own piece of middleware that you can put into the
middleware stack of a Rails or Rack application. This middleware will allow the
request to run all the way down the chain to the application and then will modify
the body, replacing specific letters in the text for links with other, equally specific
letters. Create a new file for your middleware at lib/link_jumbler.rb and fill it with
the content shown in Listing 18.11.

Listing 17.11 lib/link_jumbler.rb

17.4.3 Crafting middleware

require 'nokogiri'
class LinkJumbler

 def initialize(app, letters)
 @app = app
 @letters = letters
 end

 def call(env)
 status, headers, response = @app.call(env)
 body = Nokogiri::HTML(response.body)
 body.css("a").each do |a|
 @letters.each do |find, replace|
 a.content = a.content.gsub(find.to_s, replace.to_s)
 end
 end
 [status, headers, body.to_s]
 end
end

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

728

Licensed to <alex@vinova.sg>

http://stackoverflow.com/a/6771584/15245
mailto:@app.call
mailto:@letters.each
http://www.manning-sandbox.com/forum.jspa?forumID=818

In this file you've defined the class, which contains an LinkJumbler

 and a method. The method sets the stage,initialize call initialize

setting up the and variables you'll use in your method.@app @letters call

In the method, you make a call down the middleware stack in order tocall

setup your , , and values. You can do this because the status headers body

 call will always return a three-element array. Each element of@app.call(env)

this array will be assigned to its respective variable. In a Rails application's
middleware stack, the third element isn't an array but rather an instance of

. To get to the good part of this response youActionDispatch::Response

can use the method, like you do on the second line of your method.body call

With this body you use the method (provided by the Nokogiri::HTML

 line at the top of this file) to parse the body returned byrequire 'nokogiri'

the application into a object. This will allowNokogiri::HTML::Document

you to parse the page more easily than if you used regular expressions. With this
object, you call the method and pass it the argument, which finds all css "a" a

tags in the response body. You then iterate through each of these tags and go
through all of your letters from , using the keys of the hash as the @letters

 argument and the values as the argument. You then set thefind replace

content of each of the tags to be the substituted result.a

Finally, you return a three-element array using your new body, resulting in links
being jumbled. To see this middleware in action, you'll need to add it to the
middleware stack in your application. To do that, put these two lines inside the

 class definition in config/application.rb:Ticketee::Application

The method will add your Middleware to theconfig.middleware.use

end of the middleware stack, making it the last piece of middleware to be

processed before a request hits your application . Any additional arguments passed8

to the method will be passed as arguments to the method foruse initialize

this middleware, and so this hash you've passed here will be the letters

argument in your middleware. This means your middleware willLinkJumbler

replace the letter "e" with "a" anytime it finds it in an tag.a

require 'link_jumbler'
config.middleware.use LinkJumbler, { "e": "a" }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

729

Licensed to <alex@vinova.sg>

mailto:@app.call
http://www.manning-sandbox.com/forum.jspa?forumID=818

Footnote 8 m For more methods for look at the "Configuring Middleware" section ofconfig.middleware

the Configuring official guide: http://guides.rubyonbin/rails.org/configuring.html#configuring-middleware

To see this middleware in action, let's fire up a server by running bin/rails

 in a terminal. When you go to http://localhost:3000 you should notices

something's changed, as shown in Figure 18.6

Figure 17.6 What's a Tickataa?!

As you can see in this figure your links have had their "e's" replaced with "a's"
and any other occurrence, such as the user's email address, has been left untouched.

This is one example of how you can use middleware to affect the outcome of a
request within Rails; you could have modified anything or even sent a response
back from the middleware itself. The opportunities are endless. This time though,
you've made a piece of middleware which finds all the tags and jumbles up thea

letters based on what you tell it to.

You've now seen a lot of what Rack, one of the core components of the Rails stack
can offer us. In the beginning of this chapter you built a small Rack application that
responded with "OK". You then fleshed this application out to respond differently
based on the provided request. Then you built another Rack application that called
this first Rack application, running both of these within the same instance by using
the class.Rack::Builder

Then you saw how you could use these applications within the Rails stack by
first mounting your initial Rack application and then branching out into something
a little more complex, with a Sinatra-based application serving what could possibly
be the beginnings of version 3 of Ticketee's API. Sinatra is a lightweight
framework offering the same basic features as Rails.

Finally, you saw two pieces of middleware, the

17.5 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

730

Licensed to <alex@vinova.sg>

http://guides.rubyonbin/rails.org/configuring.html#configuring-middleware
http://localhost:3000
http://www.manning-sandbox.com/forum.jspa?forumID=818

ActionDispatch::BestStandardsSupport
ActionDispatch::Static
config.middleware
Middleware
PATH_INFO
Rack environment object
rake middleware
Sinatra, halt method
Using middleware

 piece and the ActionDispatch::Static

. You dissected the first ofActionDispatch::BestStandardsSupport

these, figuring out how it worked so that you could use that knowledge to build
your own middleware, a neat little piece that jumbles up the text on the link based
on the options passed to it.

Index Terms

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=818

731

http://www.manning-sandbox.com/forum.jspa?forumID=818

	Rails 4 in Action MEAP v11
	Copyright
	Table of Contents
	Chapter 1: Ruby on Rails, the framework
	1.1 Ruby on Rails Overview
	1.1.1 Benefits
	1.1.2 Common terms
	1.1.3 Rails in the wild

	1.2 Developing your first application
	1.2.1 Installing Rails
	1.2.2 Generating an application
	1.2.3 Starting the application
	1.2.4 Scaffolding
	1.2.5 Migrations
	1.2.6 Viewing and creating purchases
	1.2.7 Validations
	1.2.8 Showing off
	1.2.9 Routing
	1.2.10 Updating
	1.2.11 Deleting

	1.3 Summary

	Chapter 2: Testing saves your bacon
	2.1 Test-driven development basics
	2.1.1 Writing your first test
	2.1.2 Saving bacon

	2.2 Behavior-driven development basics
	2.2.1 Introducing RSpec
	2.2.2 Writing your first spec

	2.3 Summary

	Chapter 3: Developing a real Rails application
	3.1 First steps
	3.1.1 The application story

	3.2 Version control
	3.3 Application configuration
	3.3.1 The gemfile and generators
	3.3.2 Database configuration

	3.4 Beginning your first feature
	3.4.1 Creating projects
	3.4.2 RESTful routing
	3.4.3 Committing changes
	3.4.4 Setting a page title
	3.4.5 Validations

	3.5 Summary

	Chapter 4: Oh CRUD!
	4.1 Viewing projects
	4.1.1 The Factory Girl
	4.1.2 Adding a link to a project

	4.2 Editing projects
	4.2.1 The edit action
	4.2.2 The update action

	4.3 Deleting projects
	4.4 What happens when things can't be found
	4.4.1 Visualizing the error
	4.4.2 Handling the ActiveRecord::NotFound exception

	4.5 Summary

	Chapter 5: Nested resources
	5.1 Creating tickets
	5.1.1 Nested routing helpers
	5.1.2 Creating a tickets controller
	5.1.3 Defining a has_many association
	5.1.4 Creating tickets within a project
	5.1.5 Finding tickets scoped by project
	5.1.6 Ticket validations

	5.2 Viewing tickets
	5.2.1 Listing tickets
	5.2.2 Culling tickets

	5.3 Editing tickets
	5.3.1 Adding the edit action
	5.3.2 Adding the update action

	5.4 Deleting tickets
	5.5 Summary

	Chapter 6: Authentication
	6.1 Authentication basics
	6.2 Signing up
	6.3 Signing in
	6.4 Linking tickets to users
	6.5 Attributing tickets to users
	6.6 You broke something!
	6.7 Fixing the Viewing Tickets feature
	6.8 Fixing the Editing Tickets feature
	6.9 Fixing the Deleting Tickets feature
	6.10 Summary

	Chapter 7: Basic access control
	7.1 Turning users into admins
	7.1.1 Adding the admin field to the users table

	7.2 Restricting actions to admins only
	7.2.1 Testing admin-only controller access
	7.2.2 Fixing three broken scenarios

	7.3 Hiding links
	7.3.1 Hiding the New Project link
	7.3.2 Hiding the edit and delete links

	7.4 Namespace routing
	7.4.1 Generating a namespaced controller
	7.4.2 Testing a namespaced controller

	7.5 Namespace-based CRUD
	7.5.1 Adding a namespace root
	7.5.2 The index action
	7.5.3 The new action
	7.5.4 The create action
	7.5.5 Creating admin users
	7.5.6 Editing users
	7.5.7 The edit and update actions
	7.5.8 Deleting users
	7.5.9 Ensuring you can't delete yourself

	7.6 Summary

	Chapter 8: Fine-grained access control
	8.1 Restricting read access
	8.1.1 Testing read-access restriction
	8.1.2 Creating and using the Permission model

	8.2 Restricting by scope
	8.3 Fixing what you broke
	8.3.1 Fixing the Creating Projects feature
	8.3.2 Fixing the four failing features
	8.3.3 One more thing
	8.3.4 Fixing the Signing Up feature

	8.4 Blocking access to tickets
	8.5 Restricting write access
	8.5.1 Blocking creation
	8.5.2 What is CanCan?
	8.5.3 Adding abilities

	8.6 Restricting update access
	8.6.1 No updating for you!
	8.6.2 Authorizing editing

	8.7 Restricting delete access
	8.8 Hiding links based on permission
	8.9 Assigning permissions
	8.9.1 Viewing projects
	8.9.2 And the rest
	8.9.3 Seed data

	8.10 Summary

	Chapter 9: File uploading
	9.1 Attaching a file
	9.1.1 A feature featuring files
	9.1.2 Enter stage right, CarrierWave
	9.1.3 Using CarrierWave

	9.2 Attaching many files
	9.2.1 Testing multiple file upload
	9.2.2 Implementing multiple file upload
	9.2.3 Using nested attributes

	9.3 Serving files through a controller
	9.3.1 Protecting files
	9.3.2 Showing your assets
	9.3.3 Public assets
	9.3.4 Privatizing assets

	9.4 Using JavaScript
	9.4.1 JavaScript testing
	9.4.2 Cleaning the database
	9.4.3 Introducing jQuery
	9.4.4 Adding more files with JavaScript
	9.4.5 Responding to an asynchronous request
	9.4.6 Sending parameters for an asynchronous request

	9.5 Summary

	Chapter 10: Tracking State
	10.1 Leaving a comment
	10.2 The comment form
	10.3 The comment model
	10.4 The comments controller
	10.5 Changing a ticket’s state
	10.5.1 Creating the state model
	10.5.2 Selecting states
	10.5.3 Callbacks
	10.5.4 Seeding states
	10.5.5 Fixing creating comments

	10.6 Tracking changes
	10.6.1 Ch-ch-changes
	10.6.2 Another C-c-callback
	10.6.3 Displaying changes
	10.6.4 Styling states

	10.7 Managing states
	10.7.1 Adding additional states
	10.7.2 Defining a default state

	10.8 Locking down states
	10.8.1 Hiding a select box
	10.8.2 Bestowing changing state permissions
	10.8.3 Hacking a form
	10.8.4 Ignoring a parameter

	10.9 Summary

	Chapter 11: Tagging
	11.1 Creating tags
	11.1.1 Creating tags feature
	11.1.2 Showing tags
	11.1.3 Defining the tags association
	11.1.4 The Tag model
	11.1.5 Displaying a ticket's tags

	11.2 Adding more tags
	11.2.1 Adding tags through a comment

	11.3 Tag restriction
	11.3.1 Testing tag restriction
	11.3.2 Tags are allowed, for some

	11.4 Deleting a tag
	11.4.1 Testing tag deletion
	11.4.2 Adding a link to delete the tag
	11.4.3 Actually removing a tag

	11.5 Finding tags
	11.5.1 Testing search
	11.5.2 Searching by state with Searcher
	11.5.3 Searching by state
	11.5.4 Search, but without the search

	11.6 Summary

	Chapter 12: Sending Email
	12.1 Sending ticket notifications
	12.1.1 Automatically watching a ticket
	12.1.2 Using observers
	12.1.3 Defining the watchers association
	12.1.4 Introducing Action Mailer
	12.1.5 An Action Mailer template
	12.1.6 Testing with mailer specs

	12.2 Subscribing to updates
	12.2.1 Testing comment subscription
	12.2.2 Automatically add a user to a watchlist
	12.2.3 Unsubscribing from ticket notifications

	12.3 Real world email
	12.3.1 Testing real world email
	12.3.2 Configuring Action Mailer
	12.3.3 Connecting to Gmail

	12.4 Receiving emails
	12.4.1 Setting a reply-to address
	12.4.2 Receiving a reply

	12.5 Summary

	Chapter 13: Designing an API
	13.1 The projects API
	13.1.1 Our first API
	13.1.2 Serving an API
	13.1.3 API Authentication
	13.1.4 Error reporting
	13.1.5 Serving XML
	13.1.6 Creating projects
	13.1.7 Restricting access to only admins
	13.1.8 A single project
	13.1.9 No project for you!
	13.1.10 Updating a project
	13.1.11 Exterminate!

	13.2 Beginning the Tickets API
	13.3 Rate limiting
	13.3.1 One request, two request, three request, four
	13.3.2 No more, thanks!
	13.3.3 Back to zero

	13.4 Versioning an API
	13.4.1 Creating a new version

	13.5 Summary

	Chapter 14: Deployment
	14.1 Server setup
	14.1.1 Setting up a server using VirtualBox
	14.1.2 Installing the base

	14.2 RVM and Ruby
	14.2.1 Installing RVM

	14.3 Creating a user for the app
	14.3.1 Key-based authentication
	14.3.2 Disabling password authentication

	14.4 The database server
	14.4.1 Creating a database and user
	14.4.2 Ident authentication

	14.5 Deploy away!
	14.5.1 Deploy keys
	14.5.2 Configuring Capistrano
	14.5.3 Setting up the deploy environment
	14.5.4 Deploying the application
	14.5.5 Bundling gems
	14.5.6 Choosing a database

	14.6 Serving requests
	14.6.1 Installing Passenger
	14.6.2 An init script

	14.7 Summary

	Chapter 15: Alternative Authentication
	15.1 How OAuth Works
	15.2 Twitter Authentication
	15.2.1 Setting up OmniAuth
	15.2.2 Registering an application with Twitter
	15.2.3 Setting up an OmniAuth testing environment
	15.2.4 Testing Twitter Sign-in

	15.3 GitHub Authentication
	15.3.1 Registering and Testing GitHub Auth

	15.4 Summary

	Chapter 16: Basic performance enhancements
	16.1 Pagination
	16.1.1 Introducing Kaminari
	16.1.2 Paginating an interface
	16.1.3 Paginating an API

	16.2 Database query enhancements
	16.2.1 Eager loading
	16.2.2 Database indexes

	16.3 Page and action caching
	16.3.1 Caching a page
	16.3.2 Caching an action
	16.3.3 Cache sweepers
	16.3.4 Client-side caching
	16.3.5 Caching page fragments

	16.4 Background workers
	16.5 Summary

	Chapter 17: Rack-based Applications
	17.1 Building Rack applications
	17.1.1 A basic Rack application

	17.2 Building bigger Rack applications
	17.2.1 You're breaking up
	17.2.2 Running a combined Rack application

	17.3 Mounting a Rack application with Rails
	17.3.1 Mounting Heartbeat
	17.3.2 Introducing Sinatra
	17.3.3 The API, by Sinatra
	17.3.4 Basic error checking

	17.4 Middleware
	17.4.1 Middleware in Rails
	17.4.2 Investigating ActionDispatch::BestStandardsSupport
	17.4.3 Crafting middleware

	17.5 Summary

