

LARRY ULLMAN

with PHP and MySQL
E-COMMERCE
EFFORTLESS

Effortless E-Commerce with PHP and MySQL
Larry Ullman

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)
Find us on the Web at: www.newriders.com
To report errors, please send a note to: errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education.

Copyright © 2011 by Larry Ullman

Project Editor: Rebecca Gulick
Editor: Robyn G. Thomas
Technical Reviewer: Jay Blanchard
Production Coordinator: Myrna Vladic
Compositor: David Van Ness
Proofreader: Patricia Pane
Cover Designer: Aren Howell Straiger
Interior Designer: Terri Bogaards
Indexer: Valerie Haynes Perry

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
MySQL is a registered trademark of MySQL AB in the United States and in other countries. Macintosh and
Mac OS X are registered trademarks of Apple Computer, Inc. Microsoft and Windows are registered trade-
marks of Microsoft Corp. This book is not officially endorsed by nor affiliated with any of the above compa-
nies, including MySQL AB.
 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-65622-3
ISBN 10: 0-321-65622-9

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com

This book is dedicated to all the friends, family, and coworkers who have been
so helpful, supportive, understanding, and generous with their time over the

past year and a half. It’s a long list, in no particular order: Roxanne, Nicole,
Sarah, Meredith, Paula, Barb, Christina, Shirley, Cyndi, Sommar, Brian, Gary,

Heather, Rich, Gina, Mike, Kay, Janice, David, and everyone at Peachpit Press.

A BUSHEL—THAT’S FOUR WHOLE
PECKS—OF THANKS TO…

Rebecca, Nancy, and Nancy, for making this project happen. And for continuing to work with
me time and again.

Robyn, for managing the project, and for being so pleasant and well organized.

Jay, for providing a top-notch technical review, and a couple of good jokes, to boot.

David and Myrna, for magically converting a handful of random materials into something
that walks and talks like a book.

Patricia, for the sharp proofreading eye.

The indexer, Valerie, who makes it easy for readers to find what they need to know without
wading through all of my blather.

Terri and Aren, for the snazzy interior and cover design work.

All the readers who requested that I write this book and provided detailed thoughts as to
what they would and would not want this book to be. I hope it’s what you were looking for!

Gary at Kona Earth coffee (www.konaearth.com) for the ton of feedback. And for the truly
excellent coffee!

Templates.com (www.templates.com) and spyka Webmaster (www.spyka.net) for permis-
sion to use their templates in the book’s examples.

Jon, for permission to use his “Architecture by Hand” stencil for some of the book’s figures
(www.jonathanbrown.me).

Karnesha, for entertaining the kids so that I can get some work done, even if I’d rather not.

Zoe and Sam, for being the kid epitome of awesomeness.

Jessica, for doing everything you do and everything you can.

www.konaearth.com
www.templates.com
www.spyka.net
www.jonathanbrown.me

Introduction . xiii

What is E-Commerce? . xiii

About This Book . xiv

Technologies Used . xv

Getting Help . xv

What You’ll Need . xv

Some Fundamental Skills . xvi

A Web Server . xvi

And a Bit More . xvi

PART ONE: FUNDAMENTALS . 1

Chapter 1: Getting Started . 2

Identifying Your Business Goals . 3

Researching Legal Issues . 4

National and International Laws . 4

PCI Compliance . 6

Choosing Web Technologies . 7

Selecting a Web Host . 8

Hosting Options . 9

My Hosting Recommendation . 12

Finding a Good Host . 12

Using a Payment System . 13

Payment Processors . 14

Payment Gateways . 15

Which Should You Use? . 16

The Development Process . 17

Site Planning . 18

HTML Design . 18

CONTENTS

vi CONTENTS

Database Design . 19

Programming . 21

Testing . 22

Going Live . 24

Maintaining . 24

Improving . 25

Chapter 2: Security Fundamentals . 26

Security Theory . 26

No Web Site Is Secure . 27

Maximum Security Isn’t the Goal . 28

Security for Customers . 29

PCI Requirements . 31

Server Security . 33

Hosting Implications . 33

PHP and Web Security . 34

Database Security . 36

Secure Transactions . 38

Common Vulnerabilities . 40

Protecting Information . 40

Protecting the User . 41

Protecting the Site . 42

PART TWO: SELLING VIRTUAL PRODUCTS . 47

Chapter 3: First Site: Structure and Design . 48

Database Design . 49

Server Organization . 52

Connecting to the Database . 55

The Config File . 57

The HTML Template . 61

Creating the Header . 63

Adding Dynamic Functionality to the Header . 64

CONTENTS vii

Creating the Footer . 66

Adding Dynamic Functionality to the Footer . 68

Creating the Home Page . 70

Chapter 4: User Accounts . 72

Defining Helper Functions . 72

Creating Form Inputs . 73

Protecting Passwords . 77

Redirecting the Browser . 79

Registration . 81

Creating the Basic Shell . 82

Creating the Form . 83

Processing the Form . 84

Logging In . 91

Processing the Form . 91

Creating the Form . 94

Logging Out . 95

Managing Passwords . 96

Recovering Passwords . 97

Changing Passwords . 100

Improving the Security . 104

Chapter 5: Managing Site Content . 106

Creating an Administrator . 106

Adding Pages . 107

Creating the Basic Script . 108

Adding a WYSIWYG Editor . 112

Displaying Page Content . 115

Creating category.php . 115

Creating page.php . 118

Adding PDFs . 121

Setting Up the Server . 122

Creating the PHP Script . 123

viii CONTENTS

Displaying PDF Content . 130

Creating pdfs.php . 130

Creating view_pdf.php . 132

Chapter 6: Using PayPal . 136

About PayPal . 136

Payment Solutions . 138

Payment Buttons . 139

Testing PayPal . 140

Registering at the PayPal Sandbox . 140

Creating Test Accounts . 141

Creating a Button . 143

Integrating PayPal . 145

Updating the Registration Page . 145

Creating thanks.php . 146

Creating cancel.php . 148

Testing the Site . 149

Using IPN . 150

Enabling IPN . 151

Updating the Registration Script . 151

Creating the IPN Script . 153

Updating the Thanks Script . 157

Renewing Accounts . 158

Going Live . 159

PART THREE: SELLING PHYSICAL PRODUCTS . 161

Chapter 7: Second Site: Structure and Design . 162

About the Site . 162

What’s Being Sold . 163

No Customer Registration . 164

Implementing MVC . 164

Heightened Security . 165

CONTENTS ix

Database Design . 166

Product Tables . 166

Customer Tables . 167

The SQL . 169

Server Setup . 172

Server Organization . 172

Customizing the Server Behavior . 173

Helper Files . 179

Connecting to the Database . 179

The Config File . 180

The HTML Template . 182

Newer MySQL Features . 185

Prepared Statements . 186

Stored Procedures . 188

Chapter 8: Creating a Catalog . 192

Preparing the Database . 192

Populating the Tables Using SQL . 193

Looking at the Stored Procedure Queries . 196

Creating Stored Procedures . 201

Shopping by Category . 204

Creating the PHP Script . 204

Creating the View Files . 206

Listing Products . 210

Creating the PHP Script . 210

Creating the View Files . 212

Creating the “No Products” View . 216

Indicating Availability . 217

Showing Sale Prices . 219

Updating the Stored Procedure . 220

Updating product_functions.inc.php . 222

Updating list_products.html . 223

Updating list_coffees.html . 224

x CONTENTS

Highlighting Sales . 224

Creating the Home Page . 225

Creating the Sales Page . 227

Chapter 9: Building a Shopping Cart . 230

Defining the Procedures . 230

Adding Products . 231

Removing Products . 232

Updating the Cart . 232

Fetching the Cart’s Contents . 233

Defining the Helper Functions . 234

Making a Shopping Cart . 236

Creating the PHP Script . 236

Creating the Views . 240

Making a Wish List . 244

Creating the PHP Script . 244

Creating the Views . 245

Calculating Shipping . 247

Chapter 10: Checking Out . 250

About Authorize.net . 251

Creating a Test Account . 252

Preparing the Site . 253

The New HTML Template . 253

The Helper Function . 255

Creating the Procedures . 259

Taking the Shipping Information . 266

Creating the PHP Script . 267

Creating the View Files . 274

Taking the Billing Information . 282

Creating the Basic PHP Script . 283

Creating the View File . 284

Validating the Form Data . 288

CONTENTS xi

Processing Credit Cards . 294

Creating gateway_setup.php . 294

Defining gateway_process.php . 296

Examining the Server Response . 298

Updating billing.php . 300

Completing the Order . 302

Creating the PHP Script . 303

Creating the View File . 304

Testing the Site . 306

Going Live . 307

Chapter 11: Site Administration . 308

Setting Up the Server . 309

Requiring Authentication . 309

Creating a Template . 310

Using Superfish . 313

Updating create_form_input() . 315

Adding Products . 316

Adding Non-Coffee Products . 316

Adding Coffee Products . 325

Adding Inventory . 331

Creating Sales . 335

Viewing Orders . 340

Listing Every Order . 341

Viewing One Order . 344

Shipping Orders . 349

Creating gateway_setup_admin.php . 349

Updating view_order.php . 350

Index . 354

This page intentionally left blank

Electronic commerce has been an important and viable part of the Internet for well over
a decade now. From the behemoths like Amazon.com to the mom-and-pop online stores,
e-commerce is performed in a number of ways. Despite the dozen, or hundred, of failures for
every single commercial success, e-commerce can still be an excellent business tool when
done properly. And yet, surprisingly, there are very few books dedicated to the subject.

Using two concrete examples, plus plenty of theory, this book covers the fundamentals of
developing e-commerce Web sites using PHP and MySQL. Emphasizing security, a positive
customer experience, and modular, extendable programming, this book presents tons of
detailed solutions to today’s real-world e-commerce demands. Whether you’ve been creating
dynamic Web sites for years or just weeks, you’re bound to learn something new over the
course of the next 11 chapters.

WHAT IS E-COMMERCE?
In the broadest sense, the term e-commerce covers the gamut of possible online commer-
cial transactions. Any Web site with the intention of making money for a business could fall
under the “e-commerce” label. Of course, such a liberal definition encompasses the vast
majority of existing Web sites. On the opposite end of the scale, e-commerce can be defined
as strictly the online act of taking money directly from customers. And that’s the kind of
e-commerce this book addresses.

There are two key differences between a site hoping simply to make money and one intend-
ing to take money:

■ How comfortable the customer needs to be

■ How secure the site needs to be

A site can make money from selling ads, in which case all that’s required of the customer
is that they visit. Or a site could make money from referrals, where the hope is that the
customer will use a link on the site to purchase something from another site. In both cases,
what’s being asked of the user is insignificant. But when a site wants a customer to provide
their full name, address, and credit card information, that becomes serious business. The
customer must be respected, their questions answered, their concerns addressed, and their
fears mitigated in order for the site to succeed in the endeavor.

INTRODUCTION

xiv CONTENTS

When it comes to e-commerce, I can’t overstress the importance of security. To protect both
the business and the customers, a site must be designed and programmed so as to establish
and maintain an appropriate level of security. As you’ll see, especially in Chapter 2, “Security
Fundamentals,” the overall security of a Web site is impacted not just by the code you write
but also by some of the initial decisions that you make, such as the chosen hosting environ-
ment. With this in mind, security concerns are presented in the book from the big picture
and the general theories down to the nuances of specific code. You can rest assured that the
book’s examples have no known security holes. Moreover, there’s plenty of discussion as to
how you can make specific processes even more secure, as well as warnings as to what you
shouldn’t do, from a security perspective.

ABOUT THIS BOOK
The goal of this book is to portray the widest possible range of what e-commerce can be, in
terms of PHP code, SQL and MySQL, and a Web site’s user interface. Toward that end, the
book is broken into three parts, cleverly named Part One, Part Two, and Part Three (and in
that order, no less!).

Part One, “Fundamentals,” has just two chapters. They:

■ Discuss the fundamental theories and issues surrounding an e-commerce business

■ Examine what decisions will need to be made up front

■ Lay out critical aspects of online security

In Part Two, “Selling Virtual Products,” an entire e-commerce site is developed. This site
sells virtual products, namely access to content. With virtual products, there’s no inventory
management or anything to sell. The business just needs to accept payment from customers
and ensure that access is denied to nonpaying customers. For this example, PayPal will be
used to handle customer payments. PayPal is a wise choice for beginning e-commerce sites,
because it’s easy to integrate, has a name that almost all customers will be familiar with (and
therefore, trust), and minimizes the security risks taken by the site itself.

Part Three, “Selling Physical Products,” creates an entire e-commerce site for the sake of
selling physical products. This means: inventory management, an online catalog, shopping
carts, order history, and more. For that example, the Authorize.net payment gateway will be
integrated directly into the Web site, creating a more seamless and professional experience.

By using two examples with different goals and features, the book presents a smorgasbord
of ideas, database designs, HTML tricks, and PHP code. The intention is that, after complet-
ing the book, you’ll feel comfortable implementing any number or combination of features
and approaches on your own e-commerce sites.

CONTENTS xv

Technologies Used
This book, as its title implies, uses the PHP scripting language (www.php.net) and the
MySQL database application (www.mysql.com) as the foundation of the Web site. The
book uses version 5.3.2 of PHP and version 5.1.44 of MySQL, although you should have no
problems with any of the code so long as you’re using PHP 5.2 or greater and MySQL 5.0 or
greater. In places where newer versions of these technologies are required, you’ll see alter-
native ways to accomplish the same tasks.

As with any modern Web site, HTML is involved (of course), as is CSS. The book does not
explain either in great detail, but does show some best practices in terms of their use.

In Part Three of the book, you’ll encounter some JavaScript, involving the jQuery framework
(www.jquery.com). In those few instances, jQuery is used to enhance the site and add some
functionality, but the JavaScript itself is not complicated.

Part Three of the book also taps into some of what the Apache Web server
(http://httpd.apache.org) can do. As with the JavaScript, the Apache particulars are not too
complex, but are still very useful and worth knowing.

Getting Help
If you have any problems with, or questions about, what is said or done in this book, there
are several resources to which you can turn, starting with, naturally, the book’s correspond-
ing Web site, www.DMCInsights.com/ecom/. There you can find all the files, code, and SQL
commands used in this book.

At www.DMCInsights.com/phorum/ is a support forum dedicated to this book. If you post a
question or comment there, you’ll get a relatively prompt reply, from others or me.

Finally, as this book was designed to be both modular and extendable, I came up with liter-
ally dozens of additional ideas or alternative approaches as I created the two examples. As
time permits, these extras will be discussed, and sample code provided, through the book’s
corresponding Web site.

WHAT YOU’LL NEED
Just as e-commerce is a transaction between a customer and a Web site, a book can be
viewed as a transaction between the writer and the reader (just not one that takes place in
real time). I’ve already presented a short sense of what this book is, but who do I imagine
you to be and what will you need?

www.php.net
www.mysql.com
www.jquery.com
www.DMCInsights.com/ecom/
www.DMCInsights.com/phorum/
http://httpd.apache.org

xvi CONTENTS

Some Fundamental Skills
The goal of this book is to demonstrate the application of PHP and MySQL to the task of cre-
ating an e-commerce site. Although I expect that even a seasoned Web developer will learn a
lot, the book does not, nor cannot, teach the absolute fundamentals of either PHP or MySQL.
If you’re not already somewhat comfortable with these two technologies, this is not the book
for you. If you have no problems executing a MySQL query using PHP and then handling
those query results, you’ll be fine.

The same must be said for the secondary technologies involved, namely HTML and CSS. If
the definition of an HTML form is foreign to you, you should learn those basics before getting
immersed in this book’s material.

As for the JavaScript, jQuery, and Apache work that you’ll come across, no previous experi-
ence with them is expected.

A Web Server
In order to develop a Web site using PHP and MySQL, you’ll need a Web server, which is
to say a computer running PHP through a Web server application (such as Apache or IIS,
Internet Information Server) and the MySQL database application server. Fortunately, you
can install all these on your own computer, at absolutely no cost. The easiest way to do
so is to use an all-in-one package, such as XAMPP (www.apachefriends.org) or MAMP
(www.mamp.info). If you already have a Web site being hosted on a live server, that will
work as well.

And a Bit More
A Web server will let you run a dynamic Web site, but you need additional tools to develop
one: at the very least, a decent text editor or Integrated Development Environment (IDE). A
commercial IDE like Adobe Dreamweaver (www. adobe.com/go/dreamweaver) is fine, as
is an open-source IDE like Aptana Studio (www.aptana.com) or a plain-text editor such as
TextMate (www.macromates.com). Just use something with more features than Notepad!

It really doesn’t matter what Web browser you’re using, although Firefox (www.mozilla.com)
has better debugging tools available (such as Firebug, www.getfirebug.com) than the others.

And that’s really it! If you’ve already done some PHP and MySQL development (which is a
requirement for following along with this book), you probably already have everything you
need. So let’s get started!

www.apachefriends.org
www.mamp.info
www.adobe.com/go/dreamweaver
www.aptana.com
www.macromates.com
www.mozilla.com
www.get.rebug.com

FUNDAMENTALS
PART ONE

1 GETTING
STARTED

Just as the process of building a house does not begin with a hammer, creat-
ing an e-commerce site does not start with your computer. Well, you’ll prob-
ably use your computer for research, but actual coding is a step that comes
much later. In this chapter, you’ll learn how to get started developing your
e-commerce site. The goal is to explain two things:

■ The actual steps you’ll need to take

■ The perspective I have on e-commerce, which is also to say the perspective
of this book

While the point of this book is to provide concrete answers and usable code,
there will be some subjects, especially over the next few pages, for which I
cannot tell you what to do. In such cases, I try to identify what questions you’ll
need to answer and how you might go about doing so.

At a root level, the success of any type of Web site, whether or not it’s intended
to make money, depends upon its reliability and performance: If people are
attempting to use the site, can they? In this chapter, you’ll encounter many
of the decisions you’ll need to make that impact your site’s availability. The
choices you make aren’t permanent, but as with most things, not having to
make big changes further down the road is preferable.

The success of an e-commerce site further depends upon security. This chapter
touches upon a few security issues, but security is addressed in more detail in
the next chapter, and then throughout the rest of the book.

GETTING STARTED 3

The last thing to note is that you may be creating an e-commerce site under
one of two scenarios: for yourself or for someone else. When creating a
site for yourself, you’ll need to make most of the decisions. When creating
a site for someone else, they’ll be the ones making most of these decisions
and your part in the process is, at best, advisory. Take, for example, the busi-
ness’s goals…

IDENTIFYING YOUR
BUSINESS GOALS
Before you do anything, anything at all—mock up a Web design, identify your
Web host, or even buy the domain name—you need to identify your business
goals. For an e-commerce site, the goal is to make money, which you can do in
different ways:

■ Selling goods or services directly

■ Advertising on the site

■ Promoting goods or services that can be purchased elsewhere

In this book, I’m using the term e-commerce to refer to sites that directly accept
money from end users. I’ve limited myself to that scope, because it demands
a level of security well beyond other types of sites. Say you wanted to create
a site that reviews music: You might give all the content away for free but hope
to make money by displaying ads on your site and/or by using affiliate links
to other sites that actually sell music. In either case, the security issues you
would have are no bigger than those for most other non-e-commerce sites.
As another example, my company’s Web site, www.dmcinsights.com, sup-
ports and augments the books I write, which ideally increases the sales of
the books; however, the site itself does not take money directly. The goal in
this book is to create sites that sell goods or services directly to customers.

There are many facets to achieving a business’s goals. The focus of this book is
strictly on manufacturing the online experience; you’ll need to follow through
on your own with the other key issues, such as:

■ Creating a legal business entity

■ Properly handling business taxes

■ Accounting

■ Coordinating with vendors

tip

A good way to get people to your

site is to offer something, almost

anything, for free!

www.dmcinsights.com

4 CHAPTER 1

■ Marketing your business

■ Managing employees and payroll

■ Controlling physical inventory

■ Managing shipping and returns

In short, just creating the Web site is not all you’ll need to do. Most impor-
tantly, know going into this that even if you make a fantastic e-commerce Web
site, that alone is no guarantee of business success.

So stop reading right now and write down your business goals. What do you
hope to achieve? What are your short-term goals? What are your long-term
goals? Try to be realistic about them.

Next, write down (on a large piece of paper!) everything you think you’ll need
to do and have in order to achieve those goals. How much money can you
invest up front? How much time? Who will help you? How will they be compen-
sated? From where will you get more money when that need arises? Who is
going to handle the bookkeeping? How will you get people to visit your site?
If you’re selling physical products, where will they be stored? How will you
perform the actual shipping of the merchandise?

Clearly, there are a lot of questions involved, even for the most basic of goals.
There is one key question I can answer for you: How do you create a good,
secure e-commerce site? Answer: Read this book!

RESEARCHING LEGAL
ISSUES
Rightfully so, whenever you’re dealing with other people’s money, and when-
ever you’re creating your own business, there are plenty of legal issues to con-
sider. This is a big area in which I can be of little assistance: I’m not a lawyer,
and I don’t know in which country, state, province, territory, or city you live. But
this doesn’t mean I can’t point you in the right direction.

National and International Laws
The legal issues involved differ when the Web site is for your business and
when you’re creating it for a client. When working for a client, you need to sign
a sound, legal contract. In particular, the contract should limit the liability you
personally have should something go wrong. As a general rule, good contracts

tip

Give people a reason to visit

your site even when they’re not

shopping, so they might buy

something on impulse or think of

your site first when they do want

to make a purchase.

GETTING STARTED 5

limit your liability to the amount of money you made on the project itself,
should you be at fault. Also, you should define a process for how to handle
change requests. Normally, my clients get one round of requests after the
initial version of the site is complete. Secondary requests, or any additions
unreasonably beyond the original scope of the contract, must be renegotiated.

If you have your own business and there is no client, then there are tons of
other legal issues to investigate, having nothing to do with the e-commerce
site itself. For these, start by contacting every applicable governmental depart-
ment to see what you must know and do. Many cities and states have small
business branches dedicated to helping people like you navigate the maze of
legal necessities.

In either case, you must be knowledgeable about legal issues specifically
addressing online commerce. Again, your local and national governments
should be able to provide you with this information. The particulars will dif-
fer greatly from one country to the next. They may even depend upon where
you’re located, where the client is located, where the customers are, where
the site is physically hosted, where the associated bank can be found, and so
forth. In the United States, the Federal Trade Commission (FTC) oversees many
aspects of e-commerce. On their Web site, www.ftc.gov, they provide guide-
lines for e-commerce, international sales, security, and more.

As another example, in the United Kingdom, there are exact requirements as
to what information should be available on the Web site, as well as on order
forms and in emails. This includes:

■ The company’s physical address

■ The company’s registration number

■ Any trade associations

■ The Value Added Tax (VAT) number

Because you’ll be storing information about the customers, there are other
laws involved. The European Union has specific regulations as to how personal
data is stored and used. The United States also has precise rules about using
customer email addresses for advertising, promotional emails, and how to
handle disclosures. All these laws just apply to basic personal information; if
you’re storing credit card data (and you really shouldn’t), more laws apply.

You’ll also need to know whether or not Internet sales should be taxed and,
if so, at what rate. In the United States, this is currently a hotly debated topic
and varies from state to state. And if you’re shipping physical products, there

www.ftc.gov

6 CHAPTER 1

are rules about when you can actually charge the customer based upon when
the order ships. If part of the order ships, you can only charge the customer
part of the order total at that time.

Should the worst happen—your system be hacked and the data be breached—
laws may apply as well. The state of California, for example, has very specific
and strict laws as to what you must do once you find a security violation. Part of
planning—a big part, really—is preparing yourself should the worst happen, so
that you’re not scrambling to find answers in the middle of a crisis.

PCI Compliance
Another legal issue on which you should be extremely well versed is
PCI DSS, short for Payment Card Industry Data Security Standard
(www.pcisecuritystandards.org). This is a specific set of rules for ensuring
secure, proper handling of credit cards by all commercial vendors. Any com-
pany that processes, stores, or transmits credit card information must follow
these guidelines, thereby being PCI compliant.

By following the code in this book, you’ll neither store nor process any credit
cards yourself, which is really for the best. You absolutely do not want to store
the user’s credit card information! There are companies that do that, yes, but
that’s their full-time job and they have the knowledge, resources, and money
to do that properly. Still, even taking credit card information on your site and
passing it off to another company means you should be PCI compliant. The
specific requirements differ based upon what you actually do with credit cards
and how many transactions per year you process. I’ll get into those require-
ments in the next chapter.

If your site is not PCI compliant and there is a security breach, several bad
things could happen (beyond the effects of the security breach itself). First,
the credit cards companies will likely escalate your security requirements to
a higher level, such as requiring external security scans of your system. This
means more work and likely more money. Second, the credit card companies
that created the PCI DSS—Visa, MasterCard, American Express, Discover, and
JCB—could make you pay any damages they incur because of your security
breach. They may even fine you as well. Third, those same companies could
deny you the option of accepting their cards, which will pretty much shut down
your business.

Now technically, the PCI DSS is not a law, but some parts of the specification
may also be an applicable law in your country, state, province, or territory. And,

tip

All laws aside, treat the cus-

tomer and their personal infor-

mation as you would hope sites

treat you and your information.

tip

Many payment gateways allow

for recurring payments, mean-

ing you can charge a customer

multiple times, still without

storing their payment informa-

tion yourself.

www.pcisecuritystandards.org

GETTING STARTED 7

the potential penalties that the credit card companies can impose can be just
as scary as any legal repercussion.

CHOOSING WEB
TECHNOLOGIES
Over the past 20 years, the Web has changed in many ways. It has changed
significantly in just the past five! But some things still remain the same. For
starters, there’s HTML (HyperText Markup Language). Whatever else has
changed, whatever image types you use, video options, and server-side
technologies, the end user first interacts with HTML. This book does not, and
cannot, teach HTML. Pick up a book on that subject, such as the de facto
standard, Elizabeth Castro’s HTML, XHTML, and CSS: Visual QuickStart Guide,
Sixth Edition (Peachpit Press, 978-0-321-43084-7), if you need more informa-
tion along those lines.

With modern Web browsers, much of a site’s layout and design comes from
CSS (Cascading Style Sheets). I’ll be using CSS in this book, too, and just like
with HTML, I don’t explain it in much detail. Still, I won’t be using CSS in any
super-fancy way, so it shouldn’t be a problem following along.

When I first began doing Web development in the late 1990’s, there was this
annoying little thing called JavaScript. At that time, JavaScript was largely
used for petty and cutesy tricks. JavaScript was almost entirely unnecessary.
Today, things are quite different, thanks to Ajax, Web 2.0, and other marketing
terms that people throw around. Now, JavaScript, when properly used, greatly
improves the user’s experience. Many Web-site features that people appreci-
ate, such as being able to present lots of content in a limited space, being
able to add something to a cart without leaving the page, and so forth, use
JavaScript. While JavaScript is valuable, it’s really an “extra.”

Another way to create a rich user interface in the browser is to use Flash, a
platform of tools and software managed by Adobe. Flash has a mixed reputa-
tion, largely because it can be used for really distracting advertisements, but
people’s misuse of a technology does not mean the technology itself isn’t
worthwhile. You might be surprised to know that Flash-based e-commerce
applications have a higher success rate (in terms of sales) than non-Flash
sites. In part, this is because the different client-server model used in Flash can
result in a more seamless process, giving the user fewer reasons not to com-
plete the sale. All that being said, e-commerce with Flash would be an entirely
different book.

note

This book doesn’t teach HTML,

CSS, JavaScript, PHP, SQL, or

MySQL; instead it demonstrates

real-world application of these

technologies.

tip

If you are curious about

programming Flash content,

consider my Effortless Flex 4

Development (New Riders,

978-0-321-70594-5).

8 CHAPTER 1

On the server-side of the equation, unlike in the client, you have a vast range
of Web technology to consider. This book uses PHP as the programming
language of choice and MySQL as the database application. These are my
personal favorite server-side technologies, and if you’re reading this book,
I assume you think so as well. I’m going to forgo the sales pitch on PHP and
MySQL, and move on. If you aren’t already well-versed in PHP and MySQL, you
might have diffi culty with some of this book’s code. Consider my PHP 6 and
MySQL 5 for Dynamic Web Sites: Visual QuickPro Guide, Third Edition (Peachpit
Press, 978-0-321-52599-4) to learn more about these technologies.

EASY E-COMMERCE ALTERNATIVES

In this book, you’ll learn how to write an e-commerce

application from scratch, using a combination of HTML, CSS,

JavaScript, PHP, SQL, and MySQL. There are, however, faster,

less custom approaches you can use.

If you just want to get an e-commerce site online quickly,

or if you don’t actually know any of the listed technolo-

gies, you can use “turnkey” e-commerce sites that Yahoo!,

Google, and others provide. By answering some questions

and using their interface, you can create a basic e-commerce

site in a day. It’ll even be tied automatically into a payment

system. But make no mistake: Although you’ll get up and

running in no time, the end result will be rather amateurish

and very limited.

A middle-ground solution between using an entire

third-party system and creating your own custom

one is to use an off-the-shelf e-commerce package,

such as ZenCart (www.zen-cart.com) or osCommerce

(www.oscommerce.com). They provide all the functionality,

from creating a catalog or a shopping cart to administration,

which can then be tied to one of several payment systems.

These tools have been around for years, are quite solid, and

well supported, but will still have some limitations compared

to writing your own e-commerce site, especially when it’s

time to add features that will be uniquely yours. At the same

time, these packages will also be bogged down with lots of

features that you might not ever use.

SELECTING A WEB HOST
In order to make your Web site available for the public to access, it needs to
be hosted on a server. A server is just another computer whose hardware and
software are oriented for network use.

In theory, you may be able to use your personal computer as a server, but you
absolutely do not want to do this. First, doing so may violate the terms of your
Internet provider’s service; ISPs are in the business of providing you access
to the Internet, not hosting Web sites. Second, most ISPs change your IP
address on a regular basis. Getting any domain name to work with a dynamic
IP address requires extra know-how and effort. Third, even if you can overcome
those fi rst two hurdles, the resulting performance for the end user will be

note

After this chapter, I’ll stop

 recommending other books

to buy, I promise!

tip

You will need to put your site on

a hosted server in order to test it

with PayPal.

www.zen-cart.com
www.oscommerce.com

GETTING STARTED 9

terrible. The Internet access you have at home, no matter how fast, will likely
have an upload speed that’s a fraction of the download speed. It’s this upload
speed that’ll impact the end user, as they’ll be uploading the site’s content—
HTML, CSS, JavaScript, and media—through that narrow connection.

To be clear, you can develop the entire site using just your personal computer.
You can install all the necessary tools—a Web server, PHP, and MySQL—on
your own computer, then develop the database, write the code, test, and so
on. Developing on your personal computer is faster (because you don’t have
to upload files), cheaper (because you’re not paying for hosting during this
time), and more secure (because incomplete, potentially unsecure code won’t
be online).

Hosting Options
With regard to hosting, you can generally say that you get what you pay for, and I
say that as a person who’s generally inclined to go the cheapest route whenever
possible. I’ve used probably five or six hosts for my own Web sites and dealt with
many others for clients. The old adage says that you have to spend money to
make money and finding a cheap host is a bad way to go about making money.

Hosting plans vary based upon:

■ Price

■ Features

■ Performance

■ Amount of control

The price is directly related to the quality of the other three attributes. If you
spend more, you’ll get more.

To be honest, the features don’t really matter. Well, some do and many don’t.
Most hosting plans will offer around 56 features, of which you’ll need 10. This
even goes for disk space and bandwidth limitations: Hosting plans will offer
you more of these than you’ll ever need, thereby tempting you with trivialities.
The minimally required features are PHP, MySQL, a mail server (to send and
receive email), and security software, such as a firewall, a virus detector, and
so forth. Additionally, beneficial features include regular backups and excel-
lent—truly excellent—customer support. When it comes time to compare one
hosting option to another, decide what really counts—like uptime, backups,
security, and customer service—and ignore the rest.

note

Do not attempt to host your Web

site from your home!

tip

Buy cheap beer if you must,

but never purchase cheap

Web hosting!

10 CHAPTER 1

The performance of a server will depend upon the type of hosting involved,
the server’s specific hardware—amount of RAM, disk types, processor types,
the number of processors, and the server’s network connection. As I say in the
beginning of this chapter, the site’s performance is hugely important, but it’s
unfortunately something that’s not easily determined in advance.

The amount of control you have over the server will depend upon the host-
ing type. Different Web-hosting companies offer different plans, but the basic
hosting options are:

■ Free

■ Shared

■ Virtual Private Server (VPS)

■ Dedicated or colocation (colo)

Free hosting plans are harder to come by now than they used to be, but you
shouldn’t even consider them for an e-commerce site. You may have a free
site possibility with your .Mac account or from your ISP, but you probably can’t
even use your domain name on them.

Shared hosting plans are the most common and the cheapest (of the paid
choices). Shared hosting involves putting tens of clients and possibly hun-
dreds of Web sites on a single server. Shared hosting is inexpensive—decent
plans range from $10 to $20 (all prices in the book will be in U.S. dollars) per
month and may be a reasonable way to start. However, because there are mul-
tiple users on each server, your Web site will only be as secure as the weakest
security link in any site on the server. The performance of the site will also suf-
fer, as the demands are so high. Finally, you’ll have little to no control over how
the server runs. You won’t be able to use a particular version of PHP, enable
certain PHP settings or features, or tweak how MySQL runs. Shared hosts are
not likely to make any changes that might adversely impact the other clients
on the same server. Still, shared hosting may be appropriate for smaller, less
demanding sites without higher security concerns.

A happy medium between shared hosting and dedicated is the Virtual Private
Server (it’s what I’ve personally used for a couple of years). Instead of having
tens of clients on a single server, there may be only a couple or a handful, each
running their own virtual operating system. Although all the server’s hard-
ware is still being shared, limitations can be placed so that you’ll always get a
minimum amount of RAM, thereby guaranteeing some performance no matter
what happens to the other sites on the server. From a security perspective,

tip

You’ll eventually come to regret

using free or very cheap hosting

plans for your Web site, so save

yourself that headache!

GETTING STARTED 11

each virtual server is a separate entity, so what some other client does with
their VPS cannot impact yours. And since the VPS is yours alone, you can do
whatever you want with it in terms of installing and confi guring software. VPS
hosting plans run from as cheap as $30 per month to around $100 per month.

A dedicated or colocated server is on the other end of the hosting spectrum.
This kind of hosting puts an entire computer—its software and hardware—
under your command, but the server is physically housed at the hosting com-
pany’s location. That location, unlike your home, should have multiple, fast
connections to the Internet, redundant power supplies with battery backups,
secure physical access to the server rooms, climate control, and so on. (The
technical difference between dedicated and colocated hosting is that the host
typically owns a dedicated server whereas you typically own a colocated one.)

The other hosting types cannot match the amount of control, the number of
features, or possibly the performance of running your own entire server. But
the cost of a dedicated or colocated server will be much, much higher—from a
couple of hundred dollars per month to several hundred. Just as important is
the fact that, depending upon the particulars of the hosting plan, you may be
responsible for all the maintenance and security of the server. So you’ll need to
decide if you think you’re better suited to handle server security than someone
who does that full time and has likely been doing it for years. Also, the Web-
hosting company will have people monitoring your server 24 hours per day,
whereas you’ve got to sleep sometime.

CLOUD COMPUTING

There is another hosting option that’s come up in the past

couple of years: cloud hosting. Cloud computing sounds

ethereal, but it’s just moving some server functionality—

processing of data, storing of data, handling emails, or

whatever—to a different computer (or bank of computers),

not under your control and on a different network. One

benefi t to cloud computing is that it can automatically scale

to your needs without you needing to take extra steps. If,

for some freak, benevolent reason, you go from processing

an average of 100 sales per day to 10,000, the cloud will be

able to handle the increased traffi c, which might otherwise

have crashed a basic hosting plan. But there are extra

security concerns with cloud computing, and you’d need

to be prepared to pay the price. For example, if your site

gets hit with a Denial of Service (DOS) attack (discussed in

 Chapter 2, “Security Fundamentals,”) you’ll have to foot the

bill for the extra cloud computing, but the attack itself will

have generated no extra revenue.

This book does not discuss cloud computing beyond what

I’ve just said, as cloud hosting is appropriate for a compara-

tively small percentage of the market, and the technical

particulars will depend upon whose cloud service you’re

using. But be aware of this potential avenue. You might want

to look into vendors and pricing if you suspect that cloud

computing could be a good fi t for your site and situation.

tip

When using dedicated or colo-

cated hosting, make sure that

the Web host will still provide

some maintenance and security

assistance.

12 CHAPTER 1

My Hosting Recommendation
As a reader, you’re probably looking for as many definitive answers as possi-
ble, so my recommendation is to select a quality shared or VPS hosting plan to
begin, depending upon the project itself and your budget. You absolutely don’t
want to host the site on your personal computer; you absolutely don’t want
to use free hosting; and you most likely shouldn’t go with dedicated hosting
to start, unless you have money to burn. One important thing to know is that
you’re not permanently locked into a given hosting plan or even a Web host.
A good Web host should be able to upgrade or expand your hosting plan with
little or no downtime. So start with a plan that’s reasonably basic, and, should
you have the good fortune of profound success, you can scale up your plan to
meet the increased demands over time.

It’s possible to change Web hosts, as well, just not as easy. It’s best to start
with a great host that you’ll be able to stick with for years and years. This
means not only someone reliable, but also a host that’s established in such a
way to allow for your site’s expansion. For example, a really cheap host prob-
ably does only shared hosting. You would never be able to move to a dedicated
server with them, and you probably wouldn’t want to. Conversely, the hosting
company I use only provides VPS and dedicated hosting plans. The VPS works
for me for now, and I can move to one or more dedicated servers with this
same company when I have that need.

Finding a Good Host
The final question, then, is how do you know if a Web host is good? First, go
online and search using terms like web host review or best web host. In the
search results, ignore every site whose sole purpose is to rate and review
Web hosts. Yes, that’s right: ignore those. They’re unreliable, built upon adver-
tising, and you’ll never know what kind of relationship they may have with the
companies they’re “ranking.” Plus, in my experience, such sites are ranking
Web hosts for the masses, for those that don’t know any better. If you want to
find a couple of recommendations this way, mostly as a basis of comparison,
that’s fine, but these rankings should not be used to make a decision.

The best way to find a good host is to get real-world feedback and comments
from real people. One way to do so is by finding forums where people talk
about their hosting experiences. In the past, I’ve also emailed people to ask
them if they’re happy with their host. You can also get recommendations
through mailing lists and the like. If you want, you can ask for my recommen-
dation, or ask in my support forums (www.dmcinsights.com/phorum/) to see
what experiences other readers have had. You’ll note that I haven’t mentioned

note

I found all the lousy Web hosts

that I’ve used over the years by

listening to “official” rankings of

the best Web hosts!

www.dmcinsights.com/phorum/

GETTING STARTED 13

who my host is, despite the fact that I’m quite pleased with them. I don’t feel
comfortable naming my Web host in this book, but you can find their name in
my forums, newsletters, and blog.

Once you’ve got a few potential candidates, start by excluding those that are
really cheap. You don’t want to try to save money by skimping on Web hosting.
It’s not a good long-term plan. There are certainly cheaper hosting options
than the one I’ve been using for a couple of years; but my site is always avail-
able; I’ve got peace of mind; and you can’t put a price on that. Interestingly, my
current host doesn’t even offer a free month of hosting, as many companies
do. Their argument, which I buy into, is that providing a free month invites
malicious people to temporarily get a server just to send spam or do other
harmful or annoying activities. You don’t want to be part of a network where
that’s happening.

You should also rule out those companies that try to do too much: better to
have a host that excels at one or two things than one that is average at several.
One of the worst hosting experiences I ever had, if not the worst, was with a
company whose primary function was as a domain registrar. They were fine as
registrars but terrible as hosts.

As I already said, all Web hosts will offer tons of features and more disk space,
bandwidth, and add-ons than you’ll ever need. And it’s almost impossible to
compare performance from one host to the next. For me, then, I look at secu-
rity and customer service. Great security minimizes the chances of a problem
and great customer service provides a quick fix should a problem arise.

USING A PAYMENT SYSTEM
As with your choice of a Web-hosting company, the payment system you use
for your e-commerce site will have a significant impact on the end result. This
is not to say that the site will be married to a single payment system for eter-
nity, but as with any divorce, ending a relationship with a payment system can
be tedious and costly for your business.

The payment system is the differentiating element between a standard Web
site and an e-commerce one. The whole point of a payment system is to trans-
fer money between the customers and the business.

There are two broad types of payment systems, which are frequently known
by a variety of names but can be described as either a payment processor or a
payment gateway. In this book, I’ll demonstrate an example of each type, but
here, I’ll outline the pros and cons of each.

note

Some companies, like PayPal,

offer both types of payment

systems.

14 CHAPTER 1

Payment Processors
A payment processor is a delayed payment system that normally goes through
a third-party site (Figure 1.1). The best example is the Website Payments
Standard option at PayPal (www.paypal.com). If you want to accept payment
through PayPal using their basic service, you’ll send the customer to PayPal’s
site along with your PayPal identifi cation and some other information. The
customer then uses PayPal to authorize the transfer of that amount of money.
After which, PayPal returns the customer to your site, and at some later point
in time PayPal will make the funds available to you, minus their fees.

Customer Experience

Your Web Site

Payment Processor’s Site

Browse/
Search

View Cart Thank You

Approval

Checkout

Log In

Figure 1.1

Using a payment processor like PayPal’s Website Payments Standard or
Google’s Checkout is easy to establish, has low up-front costs, and uses a ser-
vice that many customers will be familiar with (especially PayPal). On the other
hand, these systems aren’t as integrated into your site as the alternatives, and
sending customers away from your site is a risky e-commerce move, increas-
ing the odds of losing the sale. Also, the per-transaction costs tend to be a bit
higher, and deposits may not be automatically made into your business’s bank
account (that is, you may need to go into the payment processor’s system in
order to accept and then transfer your credits).

In previewing this book with potential readers, many agreed with me that
PayPal is a common enough option that it’s worth using in an example in this
book. Surprisingly, several others expressed a strong dislike for PayPal, both
as a customer and as a developer. I’ve no objection to PayPal, and as I said, it’s
highly universal, so the fi rst e-commerce example in this book, Knowledge Is
Power, will use it.

www.paypal.com

GETTING STARTED 15

Payment Gateways
A payment gateway is a real-time payment system that can be directly inte-
grated into your own site, resulting in a process that’s more professional and
seamless. Instead of sending the user away, in the hopes they come back,
transaction data will be transmitted behind the scenes and the customer won’t
leave your site at any point in the entire process (Figure 1.2). Also, a gateway
will offer much better fraud prevention, among other extra features (more on
fraud protection in the next section). The gateway will deposit your monies
into a merchant account automatically, normally charging less per transaction
than payment processors do.

Customer Experience

Your Web Site

Payment Gateway System

Browse/
Search

View Cart Thank YouCheckout

Figure 1.2

On the other side of the equation, a payment gateway may have higher setup
costs and will require more programming to integrate the system into your
site. They also require a merchant account, which is an account into which
credit card charges can be deposited and refunded (for customer returns). You
may or may not be able to use your business bank as your merchant account,
depending upon your bank.

There are tons of payment gateways available; some gateway systems are
actually resold through other vendors, giving you the ability to shop around for
the best deal. Authorize.net (www.authorize.net) is perhaps the best-known
payment gateway, and it will be used in the book’s second example, Coffee.

www.authorize.net

16 CHAPTER 1

Which Should You Use?
The short answer is that a payment gateway is more professional and ought
to be your solution for all but the simplest e-commerce sites. But payment
processors are quite commonly used and do make sense for some businesses,
so don’t dismiss them as an option entirely.

When selecting among payment providers, you should first determine if your
business bank or Web-hosting company has an arrangement with any com-
panies. By choosing a pre-approved vendor for this important service, you’ll
minimize some of the potential headaches and hopefully have an expert to
turn to when you need technical support.

Another factor is geography: Different providers will work in your part of the
world and will be limited as to what other regions they support. Also, you’ll
want to check that the currency the provider uses gels with your business.

There are many features to weigh when making your selection:

■ Tools for fraud prevention

■ Ability to perform recurring billing

■ Acceptance of eChecks

■ Automatic tax calculation

■ Automatic shipping calculation and processing

■ Digital content handling

■ Integrated shopping cart

Clearly, many of these features can greatly simplify the development of your
e-commerce site and result in a more professional Web application, but I
would like to highlight fraud prevention. You may not have given much thought
to the subject, but excellent fraud prevention is in the best long-term interest
of your site. If someone can use a credit card at your site that isn’t valid or isn’t
theirs, you’ll have a false sale and later have some cleanup to perform to undo
the transaction. Further, the person whose credit card was fraudulently used
will think poorly of your business for allowing the fraud in the first place. For
these reasons, using a gateway with sophisticated fraud-prevention tools is a
must. The two most common techniques are to verify the billing address and
the Card Verification Value (CVV)—those numbers on the back of the card.

tip

Payment systems will provide

test accounts, dummy credit

card numbers, and false pro-

cessing systems through which

you can test your site before

going live.

tip

Make sure your payment solu-

tion provider is in full PCI compli-

ance and can assist in guiding

your site’s compliance, too.

tip

Some gateways offer virtual ter-

minals where the merchant can

process credit card payments

manually. These can be used to

issue returns, for example.

GETTING STARTED 17

A fi nal, obvious factor that was not listed earlier is cost. You’ll need to con-
sider the initial setup costs, the monthly fees, plus the individual transaction
expenses. If you require features that come at an extra cost, factor those
in, too.

THE DEVELOPMENT
PROCESS
After you’ve fi nalized your business plan, researched the laws, decided upon
a hosting company, and selected a payment system, it’s time to start putting
down HTML tags, SQL commands, and if-then statements. The development
process itself is really the point of this book, so let’s take a look at that in
detail (Figure 1.3).

Figure 1.3

The development process occurs in phases. If each phase is approached
deliberately and the end results are properly generated, you’ll develop a great
e-commerce site as effi ciently as possible. If, on the other hand, you jump
around, rush the process, skip steps, and make omissions, the whole proce-
dure will take much longer, and the end result will be buggier.

At the end of the development process, you’ll hopefully have created the best
possible e-commerce site, but that site will undoubtedly need to be changed
next week (as clients always want), next month, or next year. If the fi rst goal is
a smooth, optimal process, then the second is output—specifi cally PHP code
and a MySQL database—that is fl exible and scalable. When those inevitable
changes need to be made, you should be able to do so without breaking or
rewriting the entire system.

tip

If the price of your transactions

will be small, like less than $10

on average, fi nd a payment

provider that supports micro-

payments, which have smaller

transaction fees.

18 CHAPTER 1

Site Planning
The first step in the development process is planning a generic site. This is
much like establishing your business goals, but specifically with the site itself.
What should the site do? What should it look like? Who are the target users?
What browsers and/or devices should the site support? Use pen and paper, or
any application in which you can make notes, and be as inclusive as you pos-
sibly can. It’ll be much better, further down the road, if you considered an idea
and ruled it out than if you never thought of it in the first place.

The best thing you can do at this point is look online. The Web is a rich tapestry
of both the good and the bad, so look at the sites you like and use. What do
they do well? What would you do differently? What fonts, colors, and designs
appeal to you? There’s an old adage about writing: good writers plagiarize,
great ones steal. That’s kind of true for the Web sites, too.

HTML Design
The next thing you should do in the development process is mock up the HTML
designs for the site. I, for one, have absolutely no design skills whatsoever. If
you could say the same, there are two simple solutions:

■ Hire a qualified designer to create the HTML templates.

■ Use an off-the-shelf design that you tweak a bit.

I’ve taken both approaches several times, which you use depends upon the
site and your budget. If you’re hiring someone, at a minimum, you’ll want him
or her to create a few templates:

■ The home page

■ An inner, basic content page

■ A styled form

From these you can easily generate the looks of most of your site. If you’re devel-
oping an e-commerce site that sells products, you’ll also want representative
browsing (that is, showing multiple products at once) and detailed listing pages.

If you don’t have the budget or time to purchase a custom design, you can take
an existing one and modify it to your needs. There are both free and commer-
cial designs available, although you’ll need to abide by the licensing where
applicable. For example, some designs are free to use as long as you give
credit to the designer in the footer. Other designs are free for noncommercial
use but require licenses for commercial endeavors. In any case, you can take

tip

As a model for how to do

e-commerce well, you can’t do

much better than examining

Amazon.com.

tip

The HTML design process will,

rightfully, include a few itera-

tions of feedback, followed by

updated designs.

tip

As I’m not a Web designer, I’ve

relied upon freely available

third-party templates for the two

e-commerce sites in this book.

GETTING STARTED 19

the existing template and then adjust the HTML and CSS to personalize the
design for your or your client’s tastes.

The goal at this point is to get the client (or you) to sign off on the look of
the site. Moreover, the design also implies much of the functionality; getting
approval of that is even more critical to the process. Think about: How will
the look and function of the site be different if the user is logged in? How will
navigation be handled? How are items added to the cart? How will the cart
contents be shown? Also pay attention to the fundamentals of the user inter-
face: simplicity, ease of use, proper navigation, breadcrumbs, obvious access
to the cart, and so on.

Database Design
Designing the database is a key step, largely because changes to the database
at a later date have far larger implications and potential complications than
changing any other aspect of the site. Adding functionality through database
changes is a steep challenge and fixing database flaws is excruciating, so
make every effort you can to get the database design right the first time.

Good database design begins, naturally, with normalizing the database. If
you aren’t familiar with normalization, see any good resource on the subject,
including my MySQL: Visual QuickStart Guide, 2nd Edition (Peachpit Press,
0-321-37573-4). Normalization and performance mean that you also:

■ Use the smallest possible column types.

■ Avoid storing NULL values as much as possible.

■ Use fixed-length columns when you can.

■ Provide default values for columns, if applicable.

Performance is also greatly affected by using indexes properly. Declaring
indexes is somewhat of an art, but some general rules are:

■ Index columns that will be involved in WHERE and ORDER BY clauses.

■ Avoid indexing columns that allow NULL values.

■ Apply length restrictions to indexes on variable-length columns, such as
indexing only the first 10 characters of a person’s last name.

■ Use EXPLAIN queries to confirm that indexes are being used.

■ Revisit your indexes after some period of site activity to ensure they are still
appropriate to the real-world data.

tip

Your site’s design should include

obvious links for contacting the

administrator, finding the site’s

return policy, and seeing the

privacy policy.

note

This is absolutely the last refer-

ence I make to another book,

I promise. Unless I think of

another….

tip

The --log-slow-queries option in

MySQL can be used to help you

catch detrimental queries.

20 CHAPTER 1

A fi nal consideration in your database design, which gets less attention, is the
storage engine (or table type) in use. One of MySQL’s strengths is its support
for multiple storage engines, meaning you can select the one whose features
best match your needs. For example, you can create MySQL tables in memory,
which will perform exceptionally well but provide no data permanence. The
two most common MySQL storage engines are InnoDB and MyISAM. The
former is the default type for Windows computers and the latter is the default
for all other operating systems. MyISAM is an excellent, all-purpose storage
engine that also supports FULLTEXT indexes, useful in searches. The InnoDB
engine doesn’t support FULLTEXT but can handle transactions, an excellent
fail-safe in sensitive situations.

If you have administrative-level control over your database, there are a number
of confi gurations that impact MySQL’s performance. To start, there is back_log,
key_buffer_size, max_connections, and thread_cache_size. You can use a
confi guration fi le to change these settings from their defaults to values more
appropriate to your server and site. See the MySQL manual for more informa-
tion for the version of MySQL that your server is running—assuming that you
have that kind of control over your server, of course.

Should you get to a point where your site is so active that multiple servers are
appropriate, you can consider replicating the database. Database replication
stores the same data on more than one server. By doing so you’ll get improved
security, reliability (should one server fail, the data still lives on elsewhere),
and performance.

YOUR DEVELOPMENT TOOLS

What software you use on your computer to develop an e-commerce site is such a big

and personal topic that I don’t offer any recommendations on that front (at the very

least because I primarily use a Mac and therefore couldn’t recommended any develop-

ment programs on Windows). If you don’t already have a text editor or IDE that you like,

again look online and get actual recommendations from people in order to select one.

As with everything, your budget comes into play, although there are lots of excellent

choices available at little to no cost.

Along with the programming software, you should consider project management tools,

such as applications for organizing projects and taking notes. You may also need to

use some accounting software, depending upon whether the e-commerce site is yours

or not.

tip

If MySQL is running with the

--log-long-format feature

enabled, the database will

write to the log any queries

that aren’t using indexes.

GETTING STARTED 21

Programming
The primary focus of this book is really the PHP programming, where PHP
acts as the glue between the user/browser and, well, pretty much everything
else: the database, email, payment systems, and more. From a programming
perspective, you’ll want to create code that’s not only functional, but also
 reusable, extendable, and secure.

To make reusable, extendable code, it must be well organized and thoroughly
documented. I cannot stress this enough: Document your code to the point
of overkill. As you program, begin with your comments and revisit them
frequently. When you make any changes to your code, double-check that the
comments remain accurate. You should also use flowcharts, UML diagrams
(Unified Modeling Language), and other tools to outline and represent your
site in graphical and noncode ways.

The security of your code is based upon so many factors that the next chapter
will start discussing just this one subject. Secure programming is even more
critical in e-commerce sites, however, so the topic will be reinforced time and
again throughout the entire book.

Depending upon the circumstances, you may also want to look into version-
control software such as subversion (http://subversion.tigris.org) or Git
(http://git-scm.com). Version-control software makes site updates a smoother
process, allowing you to accurately implement all site changes or roll back
problems to previously sound states. If you’re developing a site with a team of
people, version control will help manage the shared files.

With PHP, unlike with many other languages, you have a choice of using an
object-oriented or procedural approach. I’m perfectly comfortable doing either,
and I don’t believe one approach is clearly better than the next. I would advise
against buying into the myth that OOP is more extendable or secure than
procedural code. Poorly written OOP will cause you endless headaches and
well-written procedural code won’t hamper your site’s long-term development
in any way.

When asking for reader input on this book, there was a moderately heated
discussion as to which approach I should use and to what extent. Some feel
that OOP is the hallmark of professional programming; others don’t know or
care for it and wouldn’t get much value out of an OOP-based book. In the end, I
decided to use a mostly procedural approach, as it’s the common denominator
of all PHP programmers, and procedural code can more easily be turned into
OOP than vice versa.

tip

Formal PHP documentation

can be achieved using PHPDoc

(www.phpdoc.org).

note

Because this book is really one

giant comment on entire sites of

PHP code, the scripts displayed

in the book won’t be as docu-

mented as yours should be.

tip

MVC, short for Model, View,

Controller, is a popular approach

to designing Web sites. At the

core, this design just implies

good code organization.

www.phpdoc.org
http://subversion.tigris.org
http://git-scm.com

22 CHAPTER 1

Similarly, there was some discussion as to whether I should incorporate a
framework or not. Again, my heart is not set one way or the other on frame-
works. Sometimes I use them, sometimes I don’t. In the end, I decided against
using any framework in this book, because those chapters would inherently be
more about the framework than the underlying example—an e-commerce site,
the real focus of the book.

All that being said, when it comes to your own projects, you’ll need to make
the decision on procedural versus object-oriented, frameworks or not, and if
using a framework, which one. Know upfront that these decisions will neither
adversely affect nor guarantee the success of your e-commerce site. The only
thing you don’t want to do is start off on one path only to later change courses.
That’s a recipe for frustration and a likely guarantee of disaster.

Testing
Testing your Web site isn’t a one-time, standalone step, but rather something
you’ll need to do often. You cannot test your site too much! Unfortunately, it’s
hard for the site developer to perform a truly good test of the site: He or she
created it, so he or she knows how it should work and uses it accordingly. A
better test is what happens when your family, coworkers, and annoying friends
give the site a whirl. And I specify the annoying friends, because they’re the
ones who will attempt to do things you never would have imagined. When
these people, who aren’t Web developers themselves, purposefully or acciden-
tally misuse the site, what happens? From these experiences you can improve
the user interface and security of the whole application. Improving those two
things will go a long way toward a successful e-commerce venture. Still, there
are steps you can take to effectively test your site yourself.

Relatively new to PHP is the concept of test-driven development and unit test-
ing: You define concrete and atomic tests of your code, and then run the tests
to confirm the results. Each test should be concise and clear. As you write more
code, you define more tests and continue to check each test to ensure that
what you just did didn’t break any other functionality. Test-driven development
and unit testing are big enough subjects that I recommend you research both
further on your own, when you’re ready.

A different type of site testing you could address is performance. If you
want to start with the big picture—how well the server copes with
demand—software like ApacheBench (http://httpd.apache.org) and Siege
(www.joedog.org/index/siege-home) will run benchmarks on your Web
server, reporting on how many requests can be handled per second, which is
the standard measuring tool for a site’s performance. Once you start checking

www.joedog.org/index/siege-home
http://httpd.apache.org

GETTING STARTED 23

your site’s performance, you will fi nd that big, systemwide changes you make
will have the greatest impact. These include:

■ Changing the server hardware: increasing memory, installing faster hard
drives, and using faster processors

■ Changing the demands on the server: disabling unnecessary features,
putting fewer users or sites on a single server, and balancing loads across
multiple servers

■ Caching the PHP output

■ Caching the PHP execution

■ Caching the database results

If you think about the process involved for handling the request of a PHP-
MySQL based page, you’ll see three areas where caching can be applied
 (Figure 1.4). First, if the database or PHP is caching the results of a data-
base query, then that query will not need to be executed with each request.
Second, by default, each request of a PHP script requires that the PHP code
be executed as if it had never been run before. By applying an opcode cache
such as the Alternative PHP Cache (APC, www.php.net/apc), the PHP code
itself is cached by the system, making that execution faster. Finally, the end
result is that HTML is sent to the Web browser. If you can cache the dynami-
cally generated HTML, then no PHP code will be executed at all, no database
queries are required, and the request itself becomes as fast as a request for
a static HTML page.

Web Server

HTML

User

DatabasePHP

Request

HTML et al.

12

3

Figure 1.4

tip

Look online for specifi cs on

implementing any of these

 caching techniques.

www.php.net/apc

24 CHAPTER 1

You can also spend some time profiling your code, using tools like Xdebug
(www.xdebug.org) or the Advanced PHP Debugger (APD, www.php.net/apd)
to see where potential bottlenecks are in the PHP itself. Bottlenecks usually
occur when PHP interacts with the file system, whether that means literal files
on the server (like reading and writing text files or using sessions) or through
the database application. I caution you against spending too much time worry-
ing about profiling individual sections of code, because the improvements you
can make that way will be relatively minor and possibly not worth your time.
Better to learn good programming habits so that you don’t have to worry about
profiling after the fact.

Going Live
Once a site has been completely developed, tested, then updated to include
the latest bug fixes and customer requests, it’s time to go live. Before doing
so, you should revisit all the legal and security issues to make sure the site is
in full compliance. Second, have a plan in place for what should be done when
something goes wrong (notice I said when, not if). Third, if any assumptions
were made in the code, or any dummy processes installed, remove those. By
“assumptions,” I mean things such as using the test version of the payment
system, not requiring real authentication to the administration pages, and
so forth.

Brick and mortar stores normally have what’s called a soft opening. During
this period the business is open and fully functioning, but not promoting itself
actively. The hope is that the arrival of some traffic will catch issues and allow
for improvements, without attempting to do so under the burden of a full user
base. This is something you may want to consider as well, although in truth,
pretty much every Web site that doesn’t have millions of dollars of advertising
behind it has a soft opening.

Maintaining
Depending upon the situation, going live may or may not be the end of your
involvement with the project. If it’s not, such as when it’s your site, you’ll need
to have a plan in place for maintaining the project. Site maintenance begins
and ends with creating good, frequent backups of your site’s data. This is
something the hosting company should be doing for you (check when you are
researching hosts) and something you should be doing as well. Make sure that
there are backups kept in multiple locations, too, so that a natural or man-
made disaster doesn’t wipe out both your server and your backups.

note

Performance testing and profil-

ing are most useful in actual con-

ditions. Testing the performance

of your site under nonproduction

situations is only theoretically

meaningful.

tip

Once your site is live, don’t

forget to submit it to all the

top search engines.

tip

For security purposes, safely

store your backups, such as

in a locked safe or a bank

deposit box.

www.xdebug.org
www.php.net/apd

GETTING STARTED 25

The maintenance of a site also requires that you keep an eye on the data itself.
Check and optimize your database tables to improve their performance. Watch
your database logs for slow and underperforming queries. Review your Web-
server logs for fi le not found errors, high loads, and potential security prob-
lems. Analyze your data to fi nd sales trends and places where you can make
improvements. In short, collect and examine as much information as you can.
And keep making backups!

Improving
The fi nal step in the development process is improving what you’ve created.
Improvements may stem from the client, from customer feedback, or changes
in available technologies. Improving a site is really a subroutine of this entire
development process: Think about what you want to change, plan its imple-
mentation, mock up the design, retool the database, write the code, test the
end result, go live, and maintain the updated version of the site.

Although it’s best to treat the development process as a linear progression of
discrete steps, when you factor in repeated places for feedback, and the high
potential for the process to be revisited for improvements, the real design
process is best represented by Figure 1.5.

Figure 1.5

note

The actual running of the

site—dealing with customers,

handling inventory, processing

orders, reviewing customer

feedback, and so on—is a whole

separate way that a site has to

be maintained.

2 SECURITY
FUNDAMENTALS

Although every chapter in the rest of the book will have some recommenda-
tions for improving the security of your Web site, security is such an important
subject that this chapter focuses on it alone. There are three broad topics:

■ Exploring general theory and background information

■ Creating a secure environment

■ Recognizing and combating common vulnerabilities

Some of the topics discussed here will be implemented in real-world code in
subsequent chapters. A few of the other recommendations are steps to imple-
ment a single time. And a handful of tips will only apply if you have administra-
tive-level infl uence over the server. Still, it’s only by grasping the whole picture
that you can implement security on a high level.

SECURITY THEORY
Before getting into actual security specifi cs, let’s think about what it means to
be secure. I want to start with two simple, but perhaps heretical, ideas:

■ No Web site is secure.

■ Maximum security isn’t the goal.

These two statements probably sound so absurd that I’ve lost all credibility,
but in no way am I saying that security isn’t important. In fact, when it comes
to e-commerce sites, security is the most important criteria. I’m just saying

SECURITY FUNDAMENTALS 27

that you may need to think about security differently than you currently do.
I’ll explain…

No Web Site Is Secure
The fi rst fact you have to accept about any type of security is that security
is not a binary thing: where a site, application, or computer is either secure
or not. Security is measured on a spectrum (Figure 2.1). The code, software,
environment, people involved, and other factors move the security rating up
and down that scale. No matter what you know or do, you’ll never create a Web
site that’s absolutely secure; the only thing you can do is attempt to make it
more secure.

Less MoreSecurity

Figure 2.1

I’ve had people—well, one person—say this approach is wrong and danger-
ous, but I think quite the contrary is true: When you begin to believe that your
site is absolutely secure, that’s when it’s the most vulnerable because you’ve
let your guard down. What you really should be doing is taking steps so that
your site is secure enough.

As an analogy, think about a car: If you drive somewhere, get out, but don’t
lock the car, it still may be relatively secure, depending upon the time of day,
the type of car, the area in which it’s parked, and the length of time you’ll
leave it there. Just leaving a car unlocked does not mean it’s guaranteed to be
broken into, just as locking it doesn’t mean it won’t be. It’s certainly harder to
break into a locked car, but not impossible. If you leave the car in your garage,
it’s much, much less likely to get broken into, until you leave the garage door
open or someone breaks into the garage. And, of course, never taking a car out
of the garage defeats the whole point of having a car.

The same is true for a Web site: Doing X, Y, and Z will make it harder to break
into, but not impossible because there’s always a potential fl aw just around
the corner. Even if the server isn’t turned on and is sitting in a locked hosting
cage somewhere, there are people who work for that hosting company who
can still access the machine. Simply put, there is nothing you can do to guaran-
tee absolute security.

I say that no Web site is secure for two reasons. First, to promote eternal
vigilance when it comes to your site’s security. Complacency is dangerous.
The second reason is…

note

Accepting that you cannot create

absolute security doesn’t mean

you shouldn’t try but rather that

you should never stop trying.

28 CHAPTER 2

Maximum Security Isn’t the Goal
Again, this may sound blasphemous, but it’s really not. You have to fi rst accept
that security comes at a cost. Making something—pretty much anything—
more secure requires more time and money. Also, anything that’s more secure
is inherently less usable and, in terms of computers, slower (Figure 2.2).

Less

Better

More

Worse

Security

Time

Money

Usability

Performance
Figure 2.2

Returning to my car analogy, if you live in a city, you likely lock the car when
you drive it somewhere and park. But when you park it in your garage, you
probably don’t lock it. The same might be true if you live in a small town or
if your car is a total beater. In some situations, maybe you use a secondary
anti-theft device, like a steering wheel lock. What you’re doing with your car,
consciously or not, is adjusting the security measures in place based upon the
perceived level of risk and the potential loss (for example, an expensive car
versus a cheap one).

This is true of Web sites, as well: Different types of sites require different levels
of security. A site that lists my favorite books is at a different point on the
security spectrum than one that stores user information. Even that is on a less
critical plateau than a site that handles credit cards. Even beyond that high-
security level, there are sites for online banking, sensitive government and/or
military data, and so forth (Figure 2.3).

Less

Just
Information

Online
Banking

User
Registration

Basic
E-Commerce

MoreSecurity

Figure 2.3

The goal, then, isn’t to implement the highest level of security but rather the
highest level of security that’s appropriate for the site. Here are two concrete
examples of what I mean:

tip

The success of a site will

increase its risks, as the extra

attention will make it a bigger

target for hackers.

SECURITY FUNDAMENTALS 29

You may already know that the Secure Sockets Layer (SSL) is an essential part
of the e-commerce system. SSL provides the first line of defense for protect-
ing user-submitted information; when the time comes to take the customer’s
credit card, SSL must be used. But this doesn’t mean that SSL must be used for
every page on your site. SSL puts a strain on the server, and only a fraction of
SSL requests can be handled simultaneously compared to non-SSL requests.
As a compromise between security and performance, you may choose to only
use SSL for the checkout process, and use a non-SSL connection for the bulk
of the site.

As another example, a shared host is going to be less secure than a dedicated
host simply because more people have access to, and more software is run-
ning on, the server. On the other hand, a shared host will cost a tenth or less
of what a dedicated host costs. You can increase the security by purchasing a
more expensive hosting plan, but that may not be necessary, let alone prudent.

All this being said, I don’t want you thinking that I’m cavalier about security or
that you should be. In this chapter, you’ll learn the fundamentals for creating a
secure Web site, but it’s not reasonable to think that your site has to be secure
to the nth degree. There are many baseline recommendations—in terms of
code and server environments—that you should ideally implement for any
site. But you’ll be presented with plenty of choices for which you must weigh
all the pros and cons before coming to a decision. The goal is to hit the appro-
priate mark on the security spectrum for the given situation (as in Figure 2.3).
Then, give your site a nudge just a wee bit to the right on that spectrum, just to
be safe.

Security for Customers
E-commerce sites and Web sites in general have a client-server relationship:
two parties equally participating in an event. There are two sides to security, as
well: one you implement as the site developer and/or server administrator and
one the customer is aware of. Now let’s take a couple of pages to think about
security from the customer’s perspective.

There’s an old expression that says cleanliness is next to godliness. My house
wouldn’t suggest that I live by that expression, but it leads me to an analogy
I have for Web site security:

Security is Next to Godliness.

Think of security the way you might think about cleanliness. Say you go to eat
at a restaurant … the restaurant may or may not look clean, and it may or may
not be clean. But if the restaurant doesn’t look clean, then it probably isn’t

tip

When making security decisions,

always err on the side of being

too overprotective.

tip

The success of an e-commerce

site partly depends upon a

customer’s comfort in spending

money there.

30 CHAPTER 2

actually clean, and you don’t want to eat there. The same goes for a Web site’s
security: If it doesn’t give the appearance of being secure, it probably isn’t
secure, and potential customers won’t want to use the site (and shouldn’t). So
how does a site look secure to the lay user? It…

■ Is professional in appearance

■ Is honest and transparent with respect to what the business is, what its
policies are, how customer information will be used, and so on

■ Uses SSL

■ Doesn’t do anything that may make the customer feel the site isn’t secure

This last quality is really the most important, as the common person may not
really know the difference between a secure-looking and unsecure-looking
site. A successful e-commerce site gives customers every reason to complete
their sale and absolutely no reason not to. If a customer goes to a site and
sees technical error messages, alerts from their browser (for example, because
of poor JavaScript or improper use of SSL), and so forth, they’ll likely take their
business elsewhere. If the Web site does something that makes the customer
say “Huh?” think of it like seeing a rodent scurry across the restaurant floor:
It’s time for the customer to go.

The second part of this analogy is that while it’s important for a restaurant to
look clean (so people will eat there), it’s more important that it’s actually clean
(so that patrons don’t get sick, so that the inspector doesn’t shut it down, and
so on). Your Web site must actually be secure, so that nothing bad can happen
to the customers or your client.

The final reason I believe this analogy works is that it also supports the two
maxims I already put forth. Security, like cleanliness, isn’t an absolute and the
amount of effort you put into it should depend upon the situation. The place
where a restaurant keeps its garbage doesn’t need to be that clean, but the
kitchen sure does. Maybe you’re the kind of person that would thoroughly clean
monthly, weekly, or daily. Maybe you’re the kind that will take cleaning to the
disinfecting level. There’s no right answer in these situations: There’s better and
there’s worse, and there’s what’s right for you and your situation. The same goes
for security. Most importantly, just because you cleaned today, doesn’t mean it
will stay clean forever. And the Web site that went live today without any issues
could become vulnerable tomorrow, even if that’s through no fault of your own.

tip

Having friends and family test

your site is a good way to get

feedback on potentially confus-

ing or problematic parts.

tip

If you’re creating a site for a

client, put a plan in place so that

someone continues to maintain

the site’s security after you’re

finished with the project.

SECURITY FUNDAMENTALS 31

PCI REQUIREMENTS
In Chapter 1, “Getting Started,” I mention that you’ll need to be aware of PCI
compliance. Compliance means abiding by all twelve requirements outlined
in the PCI DSS. Depending upon your level of involvement in the e-commerce
project, some of these may not be applicable to you personally, but you should
still be aware of them and pass them along to those that are responsible.

Taken verbatim from www.pcisecuritystandards.org, the requirements are:

Build and Maintain a Secure Network

Requirement 1: Install and maintain a firewall configuration to protect
cardholder data.

Requirement 2: Do not use vendor-supplied defaults for system passwords
and other security parameters.

Protect Cardholder Data

Requirement 3: Protect stored cardholder data.

Requirement 4: Encrypt transmission of cardholder data across open, public
networks.

Maintain a Vulnerability Management Program

Requirement 5: Use and regularly update anti-virus software.

Requirement 6: Develop and maintain secure systems and applications.

Implement Strong Access Control Measures

Requirement 7: Restrict access to cardholder data by business need-to-know.

Requirement 8: Assign a unique ID to each person with computer access.

Requirement 9: Restrict physical access to cardholder data.

Regularly Monitor and Test Networks

Requirement 10: Track and monitor all access to network resources and card-
holder data.

Requirement 11: Regularly test security systems and processes.

Maintain an Information Security Policy

Requirement 12: Maintain a policy that addresses information security.

If you go to the PCI Web site, you can download a 70-plus-page PDF that
explains each of these regulations in more detail. The document also dis-
cusses how to test each condition and provides a worksheet to annotate your
results. You should read this PDF at some point, but I want to add a few notes
of my own here.

note

Extra precautions apply if wire-

less technology will be used on

your business’s internal network.

note

Depending upon the level of

PCI compliance that applies

to your business, you may be

required to perform annual

validation tests.

www.pcisecuritystandards.org

32 CHAPTER 2

First, some of these rules, such as using a firewall and anti-virus software, may
be beyond your role and server authority, but they still need to be done. In fact,
you should use a firewall and anti-virus software on any server. Changing the
default passwords is also a must, but the second requirement goes well beyond
just changing passwords, into areas such as disabling unnecessary software.

As for requirements three and four, the best advice I can give is not to store
credit card information at all, but if you do, ratchet your security up many,
many levels. Also know that there are key pieces of data that you’re not
allowed to store, such as the card verification code or its PIN. Storing credit
card information is not for the beginning developer or the small business, so
please design your site and use payment gateways in such a way to relieve
you of that burden.

Requirement number six—develop and maintain secure systems and applica-
tions—is really what this book is all about. That’s a big topic whose bottom
line is to program securely.

Requirements seven through nine are impacted by both the business and the
hosting company. But one rule you can use in just the programming facet is
number eight: providing unique identifiers to each administrator. Unless there
will literally only be one person ever administrating a site, create a system and
get in the habit of defining multiple users with appropriate permissions. In this
book’s first e-commerce example (paid access to content), one administrator
type might only be able to manage the site’s content. Another administrator
might be able to do that and access the non-commercial customer data. The
highest level of access might also allow for viewing payment data (in this case,
a record of payments made, not the actual customer information charged
for payments). Extra security can be achieved by forcing regular password
changes, adding password requirements (length, use of capital and non-let-
ters), and by disabling inactive accounts.

The remaining three requirements are ongoing tasks, necessary even if none
of the site’s code changes. I talk about this some in the first chapter: keeping
a close eye on the server to catch something bad, and having a plan in place
when it does.

These twelve requirements are excellent and appropriately encompassing.
When you read the full PCI DSS document, you’ll get tons of specific recom-
mendations, each of which will improve your site’s security that much more.

Some people feel that the PCI DSS is too demanding, although I think it’s
better to overdo security than to take risks. An opposite complaint about
the PCI DSS is that it can fool people into thinking that their site or system

tip

The PCI DSS has lots of

useful security recommen-

dations, applicable to even

non-e-commerce sites.

SECURITY FUNDAMENTALS 33

is secure just because they’ve abided by these requirements. Remember that
PCI DSS establishes a baseline for the minimum you must do toward improving
security. If your situation warrants, there are always more steps you can take.

SERVER SECURITY
Most of the rest of the book will address security as affected by the PHP code
you write, but let’s first look at many of the server-based factors that play into
the overall security of your e-commerce site. The approach to server security
is simple:

1. Deny
2. Authorize
3. Record

You should first deny everybody and everything you can. Then allow limited
capability only after proper authorization and authentication. Finally, record
pretty much everything, so that you know what people might be trying to do
(but failing) and what they did do.

Hosting Implications
The biggest question with respect to server security will be the hosting of
the site. A shared host will be less secure than a VPS or dedicated hosting
plan just by the virtue of having more people with access to the server itself.
Further, any hosting that gives you some administrative-level control over the
server can be more secure, as you’ll be able to customize how the server runs
and better lock it down. I would argue, however, that unless you’re an expert
in server administration, using a managed server is better than trying to do it
all by yourself. Whatever your situation, do your best to limit the number of
people that have physical and network access to the server.

Per the PCI DSS, the server should also be running a firewall and an anti-virus
program. The anti-virus program has to be kept up to date if it’s to be any
good at all. But the same can be said for all the software on the server. Quite
frequently, security holes are introduced when a design flaw (a bug) is found
in common applications, like the Apache Web server, DNS, or an email system.
Upgrading and patching these tools when new versions are released is a key
component to your server’s security.

And, of course, you should create very secure passwords for accessing the
server and change them regularly.

tip

A public Web page has an oppo-

site security model: anyone and

everyone is allowed to view it.

note

An organization’s own employ-

ees can be a weak security link.

Be aware of the potential for

“inside jobs.”

tip

Subscribe to software mailing

lists so that you’re contacted

when new versions are released.

34 CHAPTER 2

Finally, use the server’s logs to track who accesses a site and when. This way you
have a record of who could have done something bad. You may also want to be
notified (via email or text message) when anyone logs in to the server at all.

PHP and Web Security
A secondary level of security is controlled by how the Web server (for example,
Apache, IIS, and so on) and PHP are configured. First, keep both up to date,
along with any related software. Specific security issues will depend upon the
actual Web server in use, so research and stay up to date on security factors sur-
rounding your particular Web server. By learning more about Apache, for exam-
ple, you’ll find that the DocumentRoot directive, which limits the Web server to
working only with files found within that directory, can be a great security asset.

There are a number of adjustments you can make as to how PHP runs. The cur-
rent settings can be seen by invoking the phpinfo() function (Figure 2.4). You’ll
find each setting listed with two columns: Local Value and Master Value. The
local column indicates settings that are being overridden within the current
directory.

Figure 2.4

To change how PHP runs, edit the php.ini configuration file. The phpinfo()
function also reveals its location. Some PHP settings can be set within a PHP
script; although in terms of security, it’s best to make the change on a global
basis (otherwise, if you forget to make the change in any given script, you’d
create a security hole).

You should start by using the open_basedir setting. It limits the directories
from which PHP can open files. If you set this value to your Web directory, or
the parent of the Web directory, malicious PHP code can’t be used to read
important system files located in other places.

On a similar note, you should, if you can, take advantage of non-Web direc-
tories as a place to store sensitive information. For example, your URL,
www.example.com, might point to the actual server directory /var/www/
username/htdocs, so that loading http://www.example.com/home.php

tip

The PHP manual lists other secu-

rity recommendations depend-

ing upon PHP’s relationship

to the Web server (CGI binary

versus Apache module).

tip

The recommendation used to

be to run PHP in safe mode, but

that was never a great solution

and has been deprecated.

tip

Don’t leave a phpinfo() script

publicly available on your server.

It displays too much information

about your server!

note

After making changes to the

Web server or PHP configuration,

restart the Web server to enact

those changes.

www.example.com
http://www.example.com/home.php

SECURITY FUNDAMENTALS 35

executes (through the Web browser) /var/www/username/htdocs/home.php
(Figure 2.5 on the next page). In this case, the htdocs folder is called the Web
root directory. Anything placed within that directory is theoretically accessible
via the HTTP protocol. For example, the image.png fi le stored in the images
subdirectory is available via http://www.example.com/images/image.png.
Anything stored above the htdocs directory—/var/www/username, the par-
ent of the Web directory—is not available via HTTP. Files and folders placed
there can still be accessed by PHP running on the server, but cannot be directly
accessed remotely via HTTP.

home.php/var/www/username/ htdocs

unavailable images Image.png

unavailable

Server

http://www.example.com

http://www.example.com/home.php

http://www.example.com/images/image.png

User

Figure 2.5

A second setting you can change is to disable register_globals. This setting
makes global variables available in the local scope and is not inherently inse-
cure: A properly written program will be just as safe, regardless of this setting.
For that matter, disabling this setting does not mean your site will necessarily
be secure. But disabling register_globals means not having to worry about
someone’s casual programming mistake creating a potential vulnerability. If
you use third-party software, such as PHP-based forums and other add-ons,
there’s even more reason to disable register_globals.

How errors are handled can often undermine the security, and the profes-
sionalism, of a Web site. A common attack is for hackers to supply problem-
atic data in the hopes that generated errors will be revealing. To safeguard
against this type of attack, start by developing your site under the error level
of E_ALL | E_STRICT. By doing so, any potential problem will be reported to
you via email or a log. Then, before the site goes live, disable display_errors
so that no PHP problem will be shown to the user. Instead, use a custom error

note

The register_globals directive,

along with safe_mode, Magic

Quotes, and others, has been

deprecated and will disappear

from future versions of PHP.

http://www.example.com/images/image.png

36 CHAPTER 2

handler that displays appropriate messages to end users and reports detailed,
technical messages only to you. You’ll see specific code for doing this in the
example chapters.

If you’re using a shared host, another recommendation I’d make is to change
the session directory. By default, PHP will write all session data to a com-
mon, temporary directory, such as /tmp on *nix systems. But this directory
is readable and writable by anyone on the server, meaning that any user on
the server—and a shared host may have dozens—can read the session data
stored therein. A better alternative is to create a writable directory within your
own, private area of the server that only your site will use for the sessions.

My final PHP recommendation isn’t a setting, but involves practices you won’t
see me do elsewhere, so I want it to be clear now. You should absolutely avoid
using functions that execute code on the server, such as system() and exec().
Also, be careful when using any function that manipulates server files and
directories, whether that means creating, opening, reading, or writing. When
you must manipulate server files and directories, be 100 percent certain that
you’re using thoroughly validated data in these function calls, not unvalidated
user-supplied data.

Database Security
Even if your Web site will not be storing the most dangerous customer informa-
tion—their credit card data—the database needs to be thoroughly protected,
as the breach of any customer information is a huge business liability.

The front line of database defense is MySQL’s access privileges system. MySQL
allows you to create specific users that have limited permissions on only particu-
lar databases. Users are identified by the combination of their name, password,
and host (that is, which computer the user is on). To start, create unique, secure
usernames with unique, extremely secure passwords. And, as with pretty much
everything, it’s really best to change those passwords regularly. Also, be certain
to change the root user’s password on a new MySQL installation.

Next, every MySQL user should only be able to connect to MySQL from
 localhost or 127.0.0.1 (that is, from the same server). If MySQL is running on a
machine separate from the Web server, you can create a MySQL user that has
permission to connect only from that other server’s IP address. An added ben-
efit of restricting users to just 127.0.0.1 and specific IP addresses (if other IP
addresses are absolutely necessary) is that you can then run MySQL with the
--skip-name-resolve and --skip-networking options. This is more secure and
will improve performance, because MySQL won’t need to resolve host names.

tip

*nix is a common abbreviation

for Unix and Unix-like operating

systems, such as Linux.

tip

See the MySQL manual, or my

book MySQL: Visual QuickStart

Guide, 2nd Edition (Peachpit

Press, 0-321-37573-4) for

instructions on creating MySQL

users.

note

Delete any databases whose

name begins with “test,”

because MySQL allows any

user to connect to them.

SECURITY FUNDAMENTALS 37

You should also create separate MySQL users for different types of activity. For
example, the administrator user for the site will need SELECT, INSERT, and
UPDATE permissions. They may also need DELETE, but it’s best not to allow
that unless absolutely necessary. Conversely, almost everything a customer
will do on an e-commerce site will only require a MySQL user with SELECT
privileges. Browsing and searching the catalog are simple SELECT queries. It
may not be until the user starts to complete an order—actually check out—
that an INSERT is required. An UPDATE would be needed if they can change
their password or other personal information. DELETE permissions would
never be appropriate. In theory, you could create three distinct types of MySQL
users with specific permissions:

■ Public: SELECT

■ Customer: SELECT, INSERT, UPDATE

■ Admin: SELECT, INSERT, UPDATE, DELETE

By taking this approach, any potential vulnerability that exists in the bulk of
the site could not damage the database. The MySQL users with more privileges
might only be connecting in areas that require customer or administrator login
and an SSL connection, so there would be some added built-in safety there.

You should avoid giving PROCESS, FILE, SHUTDOWN, GRANT, RELOAD, DROP,
ALTER, and CREATE privileges to any MySQL user that will be connecting from
a Web site. If that site can be hacked, then the cracker will have too much
database power. Instead, create a database administrator, for one or a limited
number of databases, and only use that account to create and manage the
database through a command-line interface, if at all possible.

In order to get data to and from the MySQL server in the most secure way
possible, you can use SSL. This is only necessary when MySQL and PHP are
running on separate machines, of course, and when the data is particularly
sensitive. See the MySQL manual for instructions on setting up MySQL for
your server’s operating system and MySQL version. Understand that there will
be performance degradation when using SSL with MySQL, due to the extra
encryption and decryption work involved.

For the purposes of security, separation of site logic, and performance, you
should consider putting as much functionality in the database as possible.
This includes using view tables, stored procedures, triggers, and so forth. The
Coffee site example in Part Three, “Selling Physical Products,” of the book will
demonstrate this point concretely.

tip

Simplifying MySQL user

permissions will also improve

performance, because permis-

sions have to be checked with

each query.

38 CHAPTER 2

As a final note, the MySQL server itself (the process known as mysqld) is a sys-
tem process that is run by a specific operating system user (that is, the server
process does not run as one of the MySQL database users). While it used to be
common to run the mysqld process as the computer’s root user, you should
not do this. There are MySQL commands that manipulate the file system; if
MySQL is running with ultimate authority, then it can manipulate any file on the
server. Instead, run mysqld as a different, limited computer user.

SECURE TRANSACTIONS
Secure Sockets Layer (SSL) defines a protocol for protecting data transmitted
over public networks. SSL is an absolute must for e-commerce sites and for
many non-e-commerce sites, too. SSL provides encryption and decryption of
data passed back and forth between the server and the client, making it safe
from potentially prying eyes. If your site properly uses SSL, the user will see a
closed lock icon in their browser (Figure 2.6). If the site improperly uses SSL,
such as serving a mixture of SSL and non-SSL content, the user will see a bro-
ken lock icon (or one with a warning, Figure 2.7). Each browser behaves a bit
differently, but for those users who pay attention to such things (and you do,
don’t you?), this visual indicator is a reassurance that it’s safe to provide their
most critical personal information.

Figure 2.6 Figure 2.7

The process works like this:

1. The browser makes an SSL request of a server.
2. The server sends a digital certificate to the browser.
3. The browser indicates what encryption it supports.
4. The server selects the best encryption possible.
5. Encryption keys are generated by the browser and server for the session.

These steps are required only the first time the browser makes an SSL request
from that server; subsequent requests will use the encryption keys already
created.

To use SSL, you must first buy a certificate. In terms of actual security, the
digital certificate acts as the public key used for the encryption. In terms of
perceived security, a certificate is intended to reassure the user that SSL is
properly in place, that the underlying business is legitimate—that it’s been

note

Transmitted data will pass

through any number of comput-

ers between the client and the

server, which is why SSL is

necessary.

note

SSL should be used whenever it

would be a problem if the data

being transmitted could be seen

by others.

note

In cases where sensitive form

data is submitted, you should

display AND handle the form

using an SSL connection.

tip

Cookies can be restricted so that

they’re sent only over secure

connections.

SECURITY FUNDAMENTALS 39

verified—and that the site is therefore safe to use. Browsers provide a way for
users to view the certificate’s details (Figure 2.8 on the next page), although I
don’t know how commonly most people do this. If there’s a mismatch between
the certificate and how it’s being used, or if you use a less secure certificate
(like a self-signed one), the browser may even directly warn the user of the
potential danger. Figure 2.9, which shows a Firefox response, is explicitly tell-
ing the user not to trust the site and the user has to take extra steps in order to
proceed. If your site displayed this message to the user, it would be very bad
for your business.

Figure 2.8 Figure 2.9

A certificate can be purchased from any number of Certifying Authorities (CA),
from security specialists like Thawte (www.thawte.com) and VeriSign
(www.verisign.com) to simple resellers such as GoDaddy (www.godaddy.com),
to possibly your own hosting company. Built into all major browsers is a list of
50-plus major Certifying Authorities that are to be trusted. When you purchase
a certificate from a major company, you’re buying, in part, the assurance that
the user’s browser isn’t going to warn them about the validity of the certificate
(as in Figure 2.9). That’s a legitimate reason to purchase a quality certificate
instead of using a cheaper one. Each of these companies also sells levels of
certificates at different prices, which is the next consideration.

In terms of actual security (not perceived), one thing that may cost more is
the maximum level of encryption used, from 40-bit to 256-bit. The higher the
encryption, the better, although the maximum actual encryption level that
will be used will depend upon the Web server and the browser involved in
the transaction. A 128-bit security is fine for most sites; 256-bit is the online-
banking level.

Next, some certificates come with warranties to reimburse you in case of a
failure. The cheapest GoDaddy certificates might insure you for up to $2,000;
expensive VeriSign ones cover up to $250,000. That’s a big difference.

note

Failing to provide all the content

on an HTTPS page—the HTML,

the media, the JavaScript, the

CSS, and so on—through the

HTTPS protocol can create a

broken lock icon in the browser.

tip

SSL can be used to secure lots of

connection types, not just HTTP,

but also FTP, SMTP, and so forth.

note

As already stated, because

of the extra encryption work

involved, servers can handle

only a fraction—one-tenth

is a reasonable rule of thumb—

of SSL requests compared to

non-SSL ones.

www.thawte.com
www.verisign.com
www.godaddy.com

40 CHAPTER 2

You’ll also pay more to have a more flexible certificate. A valid certificate for
a single domain is cheaper than one for all subdomains (www.example.com,
shop.example.com, and admin.example.com); a single certificate valid for
multiple domains (example.com and example.net) costs even more. Another
consideration is the ability to use the same certificate on multiple servers or
not. Only very active sites require multiple servers, but if you do, you’ll need to
buy the more expensive certificate.

Conversely, you should not use certificates tied to a given host or that are
shared by multiple sites on the same server. These kinds of certificates may
be free or cheap with your hosting, but they’ll be a red flag to customers.

More expensive certificates also mean that the issuer has done more extensive
checks into who the purchaser is. A cheap certificate basically says someone
bought this certificate. An expensive certificate says someone bought this certif-
icate for this domain that we’ve validated they own, and we’ve confirmed they’re
a valid company operating in X country, and we’ve spoken to them on the phone,
and read a letter from their accountant, and so on (and I’m not making all that
up). Finally, you can buy high-end certificates that enable the “green address
bar” effect in some Web browsers, also called “extended validation” or EV). This
is an obvious, visual cue to the user that they’ve got a really secure connection,
and it’s safe for them to do whatever they’re about to do.

COMMON
VULNERABILITIES
To wrap up this chapter, I want to talk about some of the common vulner-
abilities Web sites are prone to and that you’ll need to watch out for. You’ll see
some redundancies with the information already presented, but reinforcing
good security approaches is never a bad thing.

Security is all about protecting data: protecting it from being seen, altered, or
deleted by the wrong people. What most vulnerabilities have in common is they
provide potential holes through which hackers can see or manipulate data to
which they shouldn’t have access. The following sections cover the most com-
mon security hacks and attacks, and what you need to do to prevent them.

Protecting Information
Dynamic Web sites deal with lots of information, from just content to user-
supplied data to transaction histories. This data will be received by PHP
scripts, passed to a MySQL database, and later retrieved from the database

tip

Fairly active sites may only

require one Web server but

multiple database servers, in

which case the one certificate

might suffice.

tip

Certificates can be self-signed

and cost nothing, but these

aren’t appropriate for e-com-

merce sites.

tip

If you spend more money on a

certificate, you'll also get better

technical support.

tip

The security measures you can

take will also depend upon the

versions of software in use—

another reason to keep software

up to date!

SECURITY FUNDAMENTALS 41

so it’s again available in PHP. To strengthen this process, start by taking only
the minimum amount of information needed: You don’t need to worry about
protecting something you don’t have. Next, validate the user-supplied data to
the utmost degree. PHP’s Filter functions (www.php.net/filter), formerly found
in PECL (PHP Extension Community Library, http://pecl.php.net) and part of
the language core as of PHP 5.2, provide excellent tools for validating and
sanitizing values. Always assume that user input is wrong and then verify that
it’s right.

Third, store only the minimum amount of data. For example, you may need to
take twelve pieces of information about a customer, and then pass seven of
those along to a payment gateway while storing only five in your own data-
base. Fourth, if PHP and MySQL are on separate servers, use SSL to protect the
data during transmission. Fifth, retrieve from the database only the informa-
tion you actually need.

These just-mentioned techniques for handling data in PHP and MySQL can also
be applied to the client-server relationship. Be very careful about what you
store in the browser (in cookies), pass to the browser in HTML, or display as
part of the URL. PayPal, with an amazing lack of foresight, used to accept the
total price being charged in the URL, where it’s available for anyone to easily—
really easily—change! You also need to validate and/or sanctify cookie and
URL data, treating it the same as any other user-supplied data (such as from a
form), because cookies and URL parameters really are under the user’s control.

For sensitive data being stored, but not stored in a database, change your ses-
sions directory, and use the Web root directory’s parent folder (see Figure 2.5).
Make sure your server isn’t giving away anything with error messages that are
too revealing or lingering in phpinfo() scripts.

Finally, to protect all the server data, perform regular backups. If you use a
RAID array of hard drives, you’ll also be protected should a single drive fail.

Protecting the User
Protecting the user, aka the customer in an e-commerce site, is really the
primary goal, because the trust of the customer is what makes your busi-
ness thrive. Protecting their information is part of protecting them, but there’s
another way that your site may be of some harm: through Cross-Site Scripting
(XSS) attacks. In an XSS attack, malicious person Alice injects JavaScript into
your site. Most commonly this is done through components intended for
user input, such as a comments or reviews area. When Bob loads your page
in his Web browser (for example, when he looks at the product reviews), the

tip

RAID drives or other fast hard

drives can greatly improve the

performance of your site.

www.php.net/filter
http://pecl.php.net

42 CHAPTER 2

 malicious JavaScript is executed, to his detriment. The JavaScript might be
used to read Bob’s cookies or execute code found on Alice’s site. Bob is the
victim, and your site was an accomplice.

As scary as XSS may sound, preventing it is really quite simple. As always, you
must validate user input. Admittedly, in a case like comments or reviews, you
can’t really come up with a strict model for what the submission should con-
tain (compared to, say, an email address that has a precise format). However,
you do know that it shouldn’t contain JavaScript. By applying the strip_tags()
function, which removes any HTML, JavaScript, or PHP from a string, to any
user-provided input that will be redisplayed in the Web browser, you can pre-
vent XSS attacks.

Another way to protect users is to educate them about common scams, poten-
tially involving your site or not. The Web site associated with my personal bank
does an excellent job of sending out emails indicating fake scams making the
rounds. They also make it clear that they would never ask for certain types of
personal information through email, stating that you should never send such
information in any email reply.

Another recommendation for protecting users involves protecting their
account. When people attempt to log in to your site, using a combination of
a username or email address and a password, you have a choice as to how
mistakes are reported. Indicating that just the password is wrong verifies that
a submitted username or email address does exist in the database. This gives
any potential hacker half of the equation; from there they can continue trying
common passwords in order to access the user’s actual account. Instead, just
indicate that the combination does not match the database: Such a message
doesn’t confirm the validity of a given email address or username.

Protecting the Site
The Web site itself is the agent between the customer and the data, and it, too,
has vulnerabilities. The first kind of attacks to be aware of are Denial of Service
(DoS) attacks. These are brute force attacks where many zombie or slave serv-
ers, all around the world, attempt to connect to your site simultaneously. By
doing so, your server will be so overwhelmed that it will not be able to handle
legitimate requests. Unfortunately, there’s not much you can do to prevent a
DoS attack. Even if you have lots and lots and lots of servers, all around the
world, service denial can still happen (it has happened to even the biggest
sites). But by closing unused server ports, using a firewall, and monitoring
network activity, you can minimize the potential. Fortunately, you have to be

tip

If you want to allow some HTML

in user content, the second

argument to the strip_tags()

function lets you dictate what

specific tags are acceptable.

note

Since a site would logically have

fewer constraints on adminis-

trator-supplied content, it’s that

much more critical that you can

trust those with admin access.

tip

Notifying customers of security

issues not only protects them,

but it also makes your site

look good.

SECURITY FUNDAMENTALS 43

pretty successful to even be a target, so you could look at a DoS attack as a
sign that you’ve made it (in a lemons-to-lemonade kind of way).

Whereas DoS attacks are relatively rare and hard to prevent, SQL Injection
attacks are quite common and very easy to prevent. The premise behind an
SQL Injection attack is that the user submits SQL to a site in the hope that a
problematic SQL command will be executed, thereby either revealing sensitive
information or damaging the database. For example, a login form might run a
query like:

SELECT * FROM users WHERE email='$email' AND pass=SHA1('$pass')

The $email and $pass values presumably come from the login form. If the
user were to submit ';DROP TABLE users; as the password, and if steps weren’t
taken to prevent this, the resulting query would be:

SELECT * FROM users WHERE email='whatever@example.edu'
AND pass=SHA1('';DROP TABLE users;')

In theory, the one SQL command becomes three separate ones. First, there’s
an syntactically invalid SELECT, which would do nothing other than create an
error, then the DROP TABLE command would be run, and then there’s a third
meaningless, syntactically invalid query. If these three queries were executed,
that would be bad.

There are many ways of stopping these attacks from being productive. First,
you should validate data to expected values as much as possible (that is,
an email address has an exact format and certain values must be positive
integers). Second, run all strings, even those you’ve validated, through a
database-specific escaping function, such as mysqli_real_escape_string():

$pass = mysqli_real_escape_string($dbc, $_POST['pass']);

Next, you should typecast all values that should be numeric to force them to
be numbers:

$id = (int) $_GET['id'];

With that code, if the user manipulated $_GET['id'] to be ';DROP TABLE users;,
that string would be typecasted to an integer with a value of zero. When used
in a query, it will probably return no results, but it won’t do any harm.

An alternative is to use prepared statements, in which specific values get
separated from the query and are recombined on the database level. You must
still validate data used in prepared statements—there’s no purpose in running
a query with data that’s known to be bad, but the query will always be safe.

tip

Prepared statements can also

have a performance benefit, as

you’ll learn in Part Three.

44 CHAPTER 2

Hackers will supply bad data to achieve three other goals:

■ Remote File Inclusion

■ Local File Inclusion

■ System Calls

In a Remote File Inclusion (RFI) attack, the hacker attempts to get a site to
include a file found on another server (probably theirs). PHP, when it calls
fopen(), require(), include(), and the like, will execute any PHP code in the
included file as if that code was part of the original file. So if Chuck can get
your site to open and execute his code, he can start manipulating your server,
with disastrous results. Again, prevention is simple: Don’t use unvalidated
user data in these function calls.

A Local File Inclusion (LFI) attack is similar, but the hopes are that a sensitive
document on the same server, like a password file, will be read and displayed.

The same steps used to prevent RFI and LFI attacks apply if your site uses
exec() and other functions that run commands on the server itself. It’s best
that your server not use these functions, but if they do, you absolutely cannot
use unvalidated user data in them.

Moving on, if your site accepts file uploads from users, that system can be
used to attempt a Malicious File Execution on your server. The hacker’s hope
is that he or she can upload, for example, his own PHP script to your system,
and then execute that PHP script by loading it directly in their browser. Say
your site allows users to upload images of themselves. You should validate
that the upload is of a given type—gif, jpg, png—but that can easily be faked.
If you were to store the uploaded files in the Web directory (for example, the
images folder in Figure 2.5), then the hacker can later run the script by going
to http://www.yoursite.com/images/scriptname.php. But if you store user
submissions outside the Web directory (such as the unavailable folder in
Figure 2.5), then uploaded files cannot be directly executed through the Web
browser. Another prevention technique involves changing the name of the
uploaded file: If the hacker doesn’t know what it’s called on the server, he or
she can’t invoke it.

The last type of attack you should know about is the Cross-Site Request
Forgery (CSRF). This attack attempts to execute unauthorized commands from
an authorized user. The success of these attacks is predicated upon the site
trusting the user as they have previously been authenticated. For example,
say your site has a page that adds credits to user accounts: There’s a form for
selecting a user and the number of credits; when the form is submitted, the

tip

Disabling the register_globals

setting and using open_basedir

can also help prevent RFI and LFI

attacks.

tip

In Parts Two and Three of the

book, you’ll see techniques for

securely handling file uploads.

http://www.yoursite.com/images/scriptname.php

SECURITY FUNDAMENTALS 45

credits are processed. Now say that Alice is an administrator who went to your
site, was authenticated, and did whatever (it doesn’t matter whether she used
the add credit system or not). If Alice doesn’t log out, there’s still a cookie in
her browser indicating that she’s an authenticated user of your site. Next, Alice
comes across some page in which hacker Bob has identified a PHP script as
the source for an image tag:

<img src="http://www.yoursite.com/add_credits.php?user=12&credits=
➥100" />

This might be a public forum, or a review system, or any site that allows users
to post images in some way.

When Alice loads the page with that image tag, her browser will make a
request for the add_credits.php script on your site, passing along the user
and credits numbers. This request will look, to the server, exactly the same as
if Alice had consciously gone to the add_scripts.php page. That page will first
confirm that the requesting user is authenticated, which Alice is. The page
would then, in theory, perform whatever action is the result of receiving those
two values in the URL.

This is a blind attack in that the original hacker Bob will never see the results
of the request being made: He’s just putting this out there in the hopes that,
in this case, his account at your site gets credited when some authenticated
user stumbles upon this code. Know that just authenticating the user will not
prevent this kind of attack, because it’s that trust that makes this kind of attack
plausible.

To prevent a CSRF attack, start by teaching your administrators to log out.
Then, restrict the lifetime of an authentication cookie so that it will expire some
minutes after they’ve stopped being active on your site (online banks may only
allow ten or fifteen minutes of user inactivity). This will narrow the window of
CSRF danger to just that brief cookie lifetime.

Not making sensitive information (like a user ID value) public is also important,
but just relying on a hacker not knowing about something isn’t real security.
Although it’s possible to perform CSRF requests via POST, relying upon posted
data for sensitive requests is more secure (and is in keeping with the approach
that POST is to be used when a request will result in site changes).

The true CSRF prevention comes from guaranteeing that sensitive requests,
like the transfer of credits, are actually prompted by your own site. You cannot
reliably use a browser’s “referrer” value (that is, what page the browser was
on before this one), though. Instead, create your own tie between the HTML

note

CSRF attacks are more success-

ful against very popular sites

that use long-lasting cookies.

46 CHAPTER 2

form and the page that handles its request. The tie itself will be a secret token,
uniquely generated for each request. Here’s what you’d do on the page that
displays the form (with much of the code implied):

<?php // form.php
...
$csrf_token = uniqid(); // or uniqid(rand(), true);
session_start();
$_SESSION['csrf_token'] = $csrf_token;
...
echo '<input type="hidden" name="csrf_token" value="' . $csrf_token . '"
➥/>';
...
?>

On the page that handles the request, validate the token:

<?php // handle_form.php
...
session_start();
if (($_SERVER['REQUEST_TYPE'] == 'POST') // only POST is allowed
&& (isset($_SESSION['csrf_token'], $_POST['csrf_token'])) // make sure
➥the tokens exist
&& ($_SESSION['csrf_token'] == $_POST['csrf_token'])) { // OK!
...
} else { // Invalid request!
}
...
?>

Now the request will only be processed if Alice is still logged in (that is, her
cookie is still live), if the request is via the POST method, if a csrf_token ele-
ment exists in both $_SESSION and $_POST, and if the two values match.
That’s pretty good security!

tip

To prevent bots from trying to

use a form, integrate a CAPTCHA

(Completely Automated Public

Turing test to tell Computers and

Humans Apart) system.

PART TWO
SELLING VIRTUAL

PRODUCTS

3 FIRST SITE:
STRUCTURE
AND DESIGN

The fi rst e-commerce site being developed in this book, Knowledge is Power,
will provide content to paid subscribers. It will have these primary features:

■ Straightforward use of HTML, PHP, and MySQL

■ User accounts

■ Ability for administrators to add HTML and PDF content

■ PayPal for processing payments

This will be a relatively standard e-commerce example, applicable to most
small- to medium-size businesses. By comparison, the more complex project,
developed in Part Three, “Selling Physical Products,” of the book, will use
HTML, PHP, and MySQL in more advanced ways, won’t require user accounts,
will sell products that get shipped later (that is, the customer will not be billed
immediately), and will integrate a different payment system. This is not to say
that what you’ll learn in this part of the book won’t be applicable to real-world
situations, quite the contrary.

The user account system will have several pieces: registering, logging in, log-
ging out, retrieving forgotten passwords, and changing existing passwords. As
a bonus, the user’s password will be handled with extra security, in a way that
you perhaps have not yet seen.

The available content that the customer is paying to see will be in two formats:
HTML and PDF. For the former, you’ll integrate a WYSIWYG editor into an HTML
form so that administrators can easily create HTML without knowledge of

FIRST SITE: STRUCTURE AND DESIGN 49

HTML. For the latter, you’ll write a proxy script that serves protected fi les not
available over HTTP or to non-validated users.

In this chapter, you’ll set the stage for developing the site. This includes
the database design, the organization of fi les on the server, the HTML
template, plus a couple of necessary helper fi les that every other PHP
script will use. The entire code for the site is also downloadable from
www.DMCInsights.com/ecom/.

DATABASE DESIGN
The database I’ve designed for this example is simple, yet appropriate, with
only fi ve tables (Figure 3.1).

categories

id SMALLINT

category VARCHAR(30)

pdfs

id SMALLINT

tmp_name CHAR(40)

title VARCHAR(100)

description TINYTEXT

file_name VARCHAR(40)

size MEDIUMINT

date_created TIMESTAMP

orders

id INT

user_id INT

transaction_id VARCHAR(19)

payment_status VARCHAR(15)

payment_amount DECIMAL(6,2)

payment_date_time TIMESTAMP

users

id INT

type ENUM

username VARCHAR(30)

email VARCHAR(80)

pass VARBINARY(32)

first_name VARCHAR(20)

last_name VARCHAR(40)

date_expires DATE

date_created TIMESTAMP

date_modified TIMESTAMP

pages

id MEDIUMINT

category_id SMALLINT

title VARCHAR(100)

description TINYTEXT

content LONGTEXT

date_created TIMESTAMP

Figure 3.1

The categories, pages, and pdfs tables represent the “products” side of this
e-commerce example. The categories table just lists the categories into which
the HTML content will be organized. Each category will contain one or more
pages, but each page will be in only one category.

The pages table stores the actual HTML content. For each HTML page, there
are three important fi elds: title, description, and content. The title will be
used as a link to each page and will also be used as the browser’s title. The
description is a short block of text that, um, describes the page’s content. This
value will be viewable to any user and to search engines. The content column
stores the actual HTML content. You’ll see all of this in action in Chapter 5,
“Managing Site Content.”

tip

I’m a programmer, so I start

designing the database and

work my way to the HTML

design. You might start with

the user interface and work

your way down to the database

instead.

www.DMCInsights.com/ecom/

50 CHAPTER 3

The pdfs table lists the particulars for each PDF file the site has, including a
title for the PDF, like the HTML page title, a short description—viewable by
anyone—the name of the actual PDF file, and its size in kilobytes. When a PDF
file is uploaded to the site, it’ll be given a non-obvious, temporary name (for
example, a0f07b9b15e38ca77219884a8bba9e57d01fae88) that must also be
stored; but when the PDF is served to the user, its original file name will be
used instead. The PDFs are not being associated with information categories.

The users table stores a minimum amount of information about the custom-
ers. Each customer can create a username, and the system will also store their
email address, a password, their first name, and their last name. The password
will be stored as a hash, which is a representation of a value (as opposed to
being an encrypted version that could be decrypted). Hashes always have
exact lengths, so that column could be declared as a fixed CHAR. However, the
password can take up less space if it’s stored as binary data, which is how the
column will be defined.

The site will have two types of users—members and administrators—so an
ENUM column (that is, an enumerated list of options) will store the type, with
the default value being member. Although administrators will never have to
pay for access to the site, I thought it would make sense to use the same login
system the non-administrators use, which means the administrators must be
registered in the database, too. The users table also has a date_expires col-
umn that stores the date through which their account is active (that is, paid).
When the user first subscribes and pays, the account will be set to expire in a
year. When the user renews their membership, the account will be updated to
one year later. Users whose accounts have expired will still be able to log in,
but they won’t be able to view any content and will be notified that they need
to renew.

All payments will be handled through PayPal. Even though PayPal will pro-
vide detailed logs of every transaction, it’s wise to record the basics of each
transaction in this system as well. The orders table will store every transaction
that goes through PayPal, associated with the ID of the user (as taken from the
users table). Each order will be associated with exactly one user, but each user
can have one or more records in the orders table. Three pieces of information
from the PayPal transaction will be recorded, too: the transaction_id, which
is a unique identifier; the payment_status, which is just a confirmation code;
and the payment_amount. Storing this basic data will allow you to create
a simple admin interface for viewing the total number of orders, amount of
money taken in, and so on, without going to PayPal for that information. The
transaction_id is the most sensitive piece of data stored in the database;
through it, many details are accessible, but only to authorized PayPal users.

note

Most of the tables have a col-

umn that reflects when a record

was added. The users table also

has a field indicating when a

record was last modified.

tip

With databases, it’s much, much

better to save more information

than you end up needing than to

later discover you haven’t been

storing something you do need.

FIRST SITE: STRUCTURE AND DESIGN 51

I assume that you know how to create a database and its tables using a tool
like phpMyAdmin, the command-line mysql client, and so forth. If you don’t,
see one of my MySQL-related books, search online, or just ask in my support
forum. You can download the SQL commands from my Web site, but here they
are as well:

CREATE TABLE `categories` (
 `id` SMALLINT NOT NULL AUTO_INCREMENT,
 `category` VARCHAR(30) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `category` (`category`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `orders` (
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `user_id` INT UNSIGNED NOT NULL,
 `transaction_id` VARCHAR(19) NOT NULL,
 `payment_status` VARCHAR(15) NOT NULL,
 `payment_amount` DECIMAL(6,2) UNSIGNED NOT NULL,
 ̀payment_date_time` TIMESTAMP NOT NULL DEFAULT

➥CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 KEY `user_id` (`user_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `pages` (
 `id` MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `category_id` SMALLINT UNSIGNED NOT NULL,
 `title` VARCHAR(100) NOT NULL,
 `description` TINYTEXT NOT NULL,
 `content` LONGTEXT NOT NULL,
 `date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 KEY `category_id` (`category_id`),
 KEY `creation_date` (`date_created`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `pdfs` (
 `id` SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `tmp_name` CHAR(40) NOT NULL,
 `title` VARCHAR(100) NOT NULL,
 `description` TINYTEXT NOT NULL,
 `file_name` VARCHAR(40) NOT NULL,
 `size` MEDIUMINT UNSIGNED NOT NULL, (continues on next page)

tip

Within SQL commands, wrap-

ping table and column names

in backticks isn’t required but

prevents possible conflicts with

existing MySQL keywords.

tip

Because the cost of this site’s

service is only $10.00, the

payment_amount column could

be defined as a more restrictive

DECIMAL(4,2).

52 CHAPTER 3

 `date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 UNIQUE KEY `tmp_name` (`tmp_name`),
 KEY `date_created` (`date_created`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `users` (
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `type` ENUM('member','admin') NOT NULL,
 `username` VARCHAR(30) NOT NULL,
 `email` VARCHAR(80) NOT NULL,
 `pass` VARBINARY(32) NOT NULL,
 `first_name` VARCHAR(20) NOT NULL,
 `last_name` VARCHAR(40) NOT NULL,
 `date_expires` DATE NOT NULL,
 `date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `date_modified` TIMESTAMP NOT NULL DEFAULT '0000-00-00 00:00:00',
 PRIMARY KEY (`id`),
 UNIQUE KEY `username` (`username`),
 UNIQUE KEY `email` (`email`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

You’ll see that almost every column is defined as NOT NULL, which is ideal, in
terms of performance and normalization standards. Default values are also
set, as appropriate. Indexes, or keys, have been established on the primary
keys, columns whose values must be unique, and columns that will be used
in joins, WHERE clauses, and ORDER BY clauses, although you could certainly
add a couple more indexes here and there.

SERVER ORGANIZATION
Before creating any HTML documents or PHP scripts, let’s look at how the
server should be organized. Unless your site is quite large (that is, it has so
many separate files that creating subdirectories is appropriate), you’ll normally
place all the pages of the site within the Web root directory, which will be the
case with this example. The Web root directory should also have folders for:

■ Administration files

■ CSS

■ Images

■ Media

■ PHP includes

■ JavaScript

note

The database and the site as a

whole will use the UTF-8 charac-

ter set, allowing for any possible

written language to be used.

FIRST SITE: STRUCTURE AND DESIGN 53

This site will not place the administration pages—there are only two being
developed in this book—in a separate directory, so you don’t have to worry
about that folder. Also, the initial version of the site won’t need JavaScript or
media folders. So the Web root directory needs just three subfolders to start,
which I’ll cleverly name css, images, and includes.

The css directory will contain one file, from the site template, named styles.css
(more on the template later in the chapter). Eight images that come with the
template will go into the images folder. The includes directory will store PHP
scripts that will be included by other scripts. In other words, the includes
directory is for files that won’t be executed on their own. Over the next three
chapters, you’ll create six documents for the includes directory:

■ config.inc.php is a script that defines the site’s general behavior and
 various constants.

■ footer.html is half of the HTML template.

■ form_functions.inc.php defines a function used by every form.

■ header.html is the other half of the HTML template.

■ login.inc.php handles the login process.

■ login_form.inc.php is the login form.

As you can tell, I’m breaking out much of the site functionality into separate
files to make the site easy to maintain.

Along with all the PHP scripts that represent specific pages, such as regis-
tering, logging out, and so on, the site needs one more PHP script named
mysql.inc.php. This script will connect to the database. Because that script
defines sensitive information, it should ideally be stored outside the Web
root directory.

The site also needs a folder to store PDFs that are available to paid subscrib-
ers. The PDFs will be placed in this folder by a script that handles the upload.
In order to do that, the permissions on the folder must allow the Web server
to write to it. Since this creates a potential security hole, it’s best to place that
folder outside the Web root. Additionally, the PDF scripts should be available
to paid subscribers only, through a proxy script that validates the user. Keep-
ing the PDF files from the Web directory prevents unpaid visitors from load-
ing them.

tip

For marginally improved security,

give your includes and adminis-

tration directories non-obvious

names.

note

In Chapter 7, “Second Site:

Structure and Design,” you’ll

learn other ways to protect your

site’s directories.

note

A proxy script is a file that’s used

in place of something else, like

a PHP script that presents a PDF

instead of the user accessing the

PDF directly.

54 CHAPTER 3

Figure 3.2 shows the server organization, where the html folder is the Web
root directory (www.example.com points there).

If you can’t put anything below the Web root directory, which is common on
shared hosts, you should use a structure like that shown in Figure 3.3.

Figure 3.2 Figure 3.3

As a precaution, use the Web server’s tools to restrict access to the includes
directory. Doing so will deny people access to it and the pdfs subfolder but
won’t interfere with a PHP script’s ability to access its contents. Chapter 7 will
discuss ways of doing this in detail.

FILE EXTENSIONS

When a user requests a page that uses a .html extension,

the server will pass along the page’s contents directly to

the browser without any additional server processing. But

when the user requests a page with a .php extension, the

server will fi rst run the page’s content (that is, the code)

through the PHP interpreter, which will then execute the

code. (These are the standard settings; servers can be set

up to treat extensions in other ways.) With this in mind, it’s

important that the site’s primary pages—those that the user

will directly access—use the .php extension in order for the

code to be processed. Pages that are included by other PHP

scripts and not run directly in the browser aren’t handled by

the server directly, so you have your choice of what exten-

sion to use.

I use the .html extension for fi les that are primarily HTML,

such as the header and footer. For pages that are primarily

PHP, but are intended as included fi les, I use a combination:

.inc.php. The .inc part indicates that it’s a fi le to be included,

but the .php prevents the code from being revealed should

the fi le somehow be run directly in a Web browser. If you

were to use just .inc, the server would probably not send

the contents through the PHP interpreter, thereby sending

potentially sensitive information to the browser. That’s a

security risk that’s not worth taking.

note

Figures 3.2 and 3.3 together

show every fi le and folder that

will be created over the next four

chapters.

note

The robots.txt fi le shown in

the fi gures won’t be formally

developed in this book but is

available for viewing in the

downloadable code.

www.example.com

FIRST SITE: STRUCTURE AND DESIGN 55

CONNECTING TO THE
DATABASE
Every PHP script in the site will require a connection to the database, so let’s
create a separate file in the includes directory for that purpose.

1. Create a new PHP script in your text editor or IDE to be named
mysql.inc.php.

See Figures 3.2 and 3.3 for indications of where this file should be placed.

2. Define the constants for accessing the database:

<?php
DEFINE ('DB_USER', 'username');
DEFINE ('DB_PASSWORD', 'password');
DEFINE ('DB_HOST', 'localhost');
DEFINE ('DB_NAME', 'ecommerce1');

You’ll need to replace these values with those that are correct for your
server. For my setup, I created a database called ecommerce1 and cre-
ated a MySQL user with SELECT, INSERT, and UPDATE privileges on that
database. You absolutely must use a more secure username and password
than these!

3. Connect to the database:

$dbc = mysqli_connect (DB_HOST, DB_USER, DB_PASSWORD, DB_
➥NAME);

The mysqli_connect() function is used to connect to the database. The
connection is assigned to the $dbc variable, which will be used by many
functions in other scripts.

4. Establish the character set:

mysqli_set_charset($dbc, 'utf8');

This function indicates what character set should be used for communi-
cations between PHP and the database. The database tables, the HTML
pages, and the PHP-MySQL connection must all use the same character set.

5. Begin defining a function for making data safe to use in queries:

function escape_data ($data) {
 global $dbc;

note

Since the site will be using the

UTF-8 character set, your text

editor or IDE must be set to

encode each page also using

UTF-8.

note

If your PHP-MySQL setup does

not support the MySQL Improved

extension, which I’ll be using,

you’ll need to use the older

MySQL functions, which have

slightly different syntax. See the

PHP manual for details.

note

Any connection errors that occur

will be handled by the custom

error handler defined in the con-

figuration file (in just a couple

of pages).

56 CHAPTER 3

This function will take a piece of data as its lone argument and make it safe
to use in database queries. In other words, this function will prevent SQL
Injection attacks from succeeding (see Chapter 2, “Security Fundamentals”).
The function does three things:

mysqli_real_escape_string() function

This last task is the most important, because the
mysqli_real_escape_string() function will make a value safe to use in a
query, keeping in mind the database’s configuration and character set in
use. The function needs the database connection, which is made available
through the global command.

6. Strip the extra slashes if Magic Quotes is on:

if (get_magic_quotes_gpc()) $data = stripslashes($data);

Magic Quotes was created to provide a blanket level of security on incom-
ing data, but it’s not as secure as using mysqli_real_escape_string().
Hopefully, Magic Quotes is disabled on your server; but if Magic Quotes is
enabled, then incoming data will already have slashes applied to poten-
tially problematic characters that might break a query. Those slashes
would be a problem, because mysqli_real_escape_string() will also apply
slashes, thereby creating two slashes when there should be only one. To
prevent that from happening, this line of code checks the Magic Quotes set-
ting and calls the stripslashes() function if Magic Quotes is on.

7. Return a trimmed, secure version of the data:

return mysqli_real_escape_string (trim ($data), $dbc);

The difference between mysqli_real_escape_string() and something like
Magic Quotes or addslashes() is that mysqli_real_escape_string() identi-
fies what characters could be problematic based upon the database, the
character set in use, and so forth.

8. Complete the escape_data() function:

} // End of the escape_data() function.

9. Save the file.

You may notice that you’re not being instructed to include the closing PHP
tag here. This is acceptable and, in some situations, actually better. If you
were to use the closing tag and then inadvertently leave an extra space or
blank line after that tag, the inclusion of this file by other scripts will result

note

Magic Quotes as a feature has

been deprecated and will disap-

pear from future versions of PHP.

note

The mysql.inc.php file found in

the downloadable source code

for this book contains additional

code discussed in later chapters.

note

All included PHP files will omit

the closing PHP tag to prevent

“headers already sent” errors.

FIRST SITE: STRUCTURE AND DESIGN 57

in headers being sent to the Web browser. If the including (that is, par-
ent) script later attempts to send a cookie, start a session, or redirect the
browser, you’ll get a “headers already sent” error message (Figure 3.4). By
omitting the closing tag, that cannot happen (at least not when this script is
included).

Figure 3.4

THE CONFIG FILE
The next PHP script to be created is a configuration file. Like the mysql.inc.php
script, this one will be used by every script in the site (although some sites will
have pages that don’t require a database connection, every PHP script in every
site should always use the configuration file). The configuration file has four
purposes:

■ Define systemwide settings so they may be changed easily

■ Define useful constants that may be used by multiple scripts

■ Start the session

■ Establish how errors will be handled

Let’s start defining the configuration file now, and in Chapter 4, “User
Accounts,” more code will be added to it.

1. Create a new PHP script in your text editor or IDE to be named config.inc.php
and stored in your includes directory, as in Figures 3.2 and 3.3.

2. Define the $live and $contact_email variables:

<?php
$live = false;
$contact_email = 'you@example.com';

The $live variable is really the most important variable because it’ll dictate
how errors will be handled. Depending upon the payment gateway, this
variable could also be used to switch from just testing the payment pro-
cessing to actually using it. However, PayPal is a bit different, so that won’t
be the case in this example.

tip

In the downloaded version of

config.inc.php you’ll see a bit of

extra code, which you’ll add in

Chapter 4.

58 CHAPTER 3

The $contact_email variable is for the email address to which error mes-
sages will be sent when the site goes live. It could also be used for contact
forms, or you could define different email addresses for different purposes.

3. Define the constants:

define ('BASE_URI', '/path/to/Web/parent/folder/');
define ('BASE_URL', 'www.example.com/');
define ('MYSQL', '/path/to/mysql.inc.php');

These are the first three constants the site will use, and you’ll need
to change the values accordingly. The first constant should point
to the parent of the Web root directory, if your site can use it. So, in
Figure 3.2, BASE_URI . pdfs will be where the PDFs are stored and
BASE_URI . mysql.inc.php will be the location of the MySQL con-
nection script. If you can’t access above the Web root directory, then
assign to BASE_URI the Web root directory itself. So, in Figure 3.3,
BASE_URI . 'includes/pdfs' will be where the PDFs are stored.

The second constant is the base URL of the site, without the protocol, such
as www.example.com/. I’ve specifically left off the http:// part, because
some pages will use https://.

The third constant points to the MySQL connection script just created. You
can use BASE_URI to help create this full path.

Constants like these are used for a couple of reasons. First, if you refer-
ence certain values in multiple scripts in multiple directories, it can be hard
getting the references consistently correct. By using absolute references,
they’ll always be right. Second, if you change anything big about the site—
its domain name or its hosting—just changing these values is all you will
need to do.

4. Start the session:

session_start();

The site will use sessions to track logged-in users. Since every page will
require the configuration file, starting the session here will make sure that
every page has access to the session data. Plus, if you want to customize
the session, like its name or how long it lasts, you can do that in one place.

On the other hand, this also means that sessions will be started in some
situations where they’re not actually necessary, like when someone views
the home page or a content listing page, without going further.

note

Both the BASE_URI and

BASE_URL values end with

a slash.

www.example.com/
www.example.com/

FIRST SITE: STRUCTURE AND DESIGN 59

5. Begin defining an error-handling function:

function my_error_handler ($e_number, $e_message, $e_file, $e_line,
➥$e_vars) {
 global $live, $contact_email;

PHP allows you to define your own functions for handling errors. By
doing so, you can precisely control what errors get reported, how, and
in what detail. Every time a PHP error occurs, or one is triggered using
trigger_error(), this function will be called by a script that will be created
shortly. The only exceptions are parse and other serious PHP errors that
would prevent this script from being executed in the first place.

An error-handling function can be defined to take anywhere from two to five
arguments. Here I’m using all five. The first is a numeric error identifier that
might be assigned a value such as 2, which represents an E_WARNING. The
second argument is the received error message. The next argument is the
name of the file in which the error occurred, and the fourth is on which line.
The fifth argument is an array of every variable that existed when the error
occurred. This can be useful debugging information (and when it comes to
debugging, more information is almost always better than less).

6. Begin creating a detailed error message:

$message = "An error occurred in script '$e_file' on line $e_line:
➥\n$e_message\n";

The detailed error message will start with the name of the file in question,
the line number, and the message string.

7. Add the backtrace information:

$message .= "<pre>" .print_r(debug_backtrace(), 1) . "</pre>\n";

A backtrace is essentially everything that happened up until the point of the
error. This will include files that were executed, functions that were called,
arguments passed to the functions, and variables that existed. You can get
the backtrace information by calling the debug_backtrace() function, which
returns an array. To add that array to the error message, pass it (or the func-
tion call that creates the array) as the first argument to print_r() and use 1
or true as the second value in print_r(). Providing a positive second argu-
ment to print_r() tells the function to return the value, instead of printing it.
I’m wrapping this code in HTML preformatted tags, <pre>...</pre>, to make
it easier to read.

If you don’t want the detailed backtrace, you could just append the list of
variables and values to the message, like so:

$message .= "<pre>" . print_r ($e_vars, 1) . "</pre>\n";

60 CHAPTER 3

8. If the site isn’t live, show the error message in the browser:

if (!$live) {
 echo '<div class="error">' . nl2br($message) . '</div>';

For a nonlive site, it’s best to immediately be notified of any problems.
Here, the error message will be printed within a <DIV> that’s been
assigned a class of error. To turn the newlines (the \n) into HTML break
tags, the nl2br() function is applied. Figure 3.5 shows a sample detailed
error message in the browser.

Figure 3.5

9. If the site is live, send the error in an email:

} else {
 error_log ($message, 1, $contact_email, 'From:admin@example.

➥com');

The error_log() function can log errors in different ways. Its first argument
is the error message. The second is a destination type, with 1 meaning
email (the default of zero would send the message to the operating sys-
tem’s log). The third argument is the destination itself; with an email, this is
the “to” email address. The fourth argument is only for sending emails and
is for adding any additional headers, such as the “from” email address.

10. If the site is live, show a generic message, if the error isn’t a notice:

if ($e_number != E_NOTICE) {
 echo '<div class="error">A system error occurred. We apologize for

➥the inconvenience.</div>';
}

If the site is live, the user should not see the detailed error message (that
would be a terrible security violation); instead they’ll get a nondescript

note

Hopefully, in a fully tested, live

site, customers will never see

even the generic error message,

because all the bugs will have

been squashed already.

FIRST SITE: STRUCTURE AND DESIGN 61

response. But some errors that occur may not be actual problems, just
technical oversights that have no impact on the functionality. Such errors
are raised as notices, so an error will only be reported if it’s not on the
notice level. In fact, the error indicated in Figure 3.5 would not be reported
if the site were live. Figure 3.6 shows what the user might see with a dif-
ferent type of error.

Figure 3.6

11. Complete the my_error_handler() function:

 } // End of $live IF-ELSE.
 return true;
} // End of my_error_handler() definition.

The error-handling function should return a nonfalse value to indicate the
error has been handled. If the function returns false, then PHP’s default
error handler will also be invoked (which would be bad on a live site).

12. Apply the error handler:

set_error_handler ('my_error_handler');

This line actually tells PHP to use the custom function for handling errors.
If you don’t execute this function call, then PHP will still use its default
handler. This is also why a parse error won’t go through your own error
handler, because the parse error prevents the PHP script from being
executed.

13. Save the file.

THE HTML TEMPLATE
To create the browser side of the site, you should start by designing one or
more HTML templates that portray what the final, dynamic site should look
like. For this site, I wanted to use an elegant design that wouldn’t detract from
what the site is selling: its content. I am incapable of creating such a design.
Looking around online for available Web templates, I settled upon the free
Kilo theme, created by spyka Webmaster (www.spyka.net). To customize that
template to this site, I updated the header for this site’s theoretical name
and byline, changed the top navigation items, altered the side content bar,
tweaked the footer, and played with the CSS a bit. You can find the end result
by downloading the code from my Web site.

tip

Feel free to use your own design

or tweak the Kilo theme to your

tastes instead.

www.spyka.net

62 CHAPTER 3

On the right side of the screen, I wanted the site to show a login form if the
user is not logged in (Figure 3.7), but display some account management links
if they are (Figure 3.8). If the logged-in user is an administrator, they’ll see an
additional group of options (Figure 3.9).

The site’s content will be organized in categories, listed on the right as well.
Visitors that aren’t paid subscribers will just be able to see what content is
available (titles and short descriptions); paid subscribers will be able to see
the content itself.

Figure 3.7

Figure 3.8 Figure 3.9

FIRST SITE: STRUCTURE AND DESIGN 63

To incorporate this HTML design into every page in the site, I’ll use a standard
technique whereby the template is broken down into a header file and a footer
file. Each page will include the header, then display the page-specific content,
and then include the footer. Once you’ve finalized the basic template (or tem-
plates), you can start creating the individual files.

Creating the Header
The header needs to begin the HTML page, include any necessary CSS and
JavaScript, and code the body of the page up until the point where the page-
specific content begins.

1. Open your designed template file in your text editor or IDE, if it is not
already.

2. Copy all the HTML from the template file, up to the page-specific content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
➥"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;

➥charset=utf-8" />
 <title>Knowledge is Power: And It Pays to Know</title>
 <link rel="stylesheet" href="css/styles.css" type="text/css" />
</head>
<body>
<div id="wrap">
 <div class="header">
 <!-- TITLE -->
 <h1>Knowledge is Power</h1>
 <h2>and it pays to know</h2>
 <!-- END TITLE -->
 </div>
 <div id="nav">

 <!-- MENU -->
 <li class="selected">Home

➥
 About
 Contact
 Register
 <!-- END MENU --> (continues on next page)

tip

If your site uses more than one

template, just create multiple

header and footer files and then

include the proper ones for each

specific page.

64 CHAPTER 3

 </div>
 <div class="page">
 <div class="content">

3. Create a new file to be named header.html and stored in the includes
 directory.

4. Paste in the copied code.

5. Save the file.

Adding Dynamic Functionality
to the Header
The next series of steps add dynamic functionality to the HTML template by
incorporating PHP within the HTML. You’ll want to do this for anything that
might change on a page-by-page basis or otherwise won’t be static. For the
header file, there are two areas that should be dynamic: the page title and
the highlighting of the top navigation link (see the first tab in Figure 3.7).

1. In header.html, use an if-else clause to define the page title:

<title><?php if (isset($page_title)) {
 echo $page_title;
} else {
 echo 'Knowledge is Power: And It Pays to Know';
}
?></title>

The page’s title shows at the top of the browser window, in bookmarks, and
in the browser’s history; it should be different from one page to the next.
The aptly named $page_title variable will be available to the header file to
represent that value. However, proper programming says that you shouldn’t
assume that the variable exists. So this code first checks if that variable is
set (that is, has a value). If it is, that value will be printed as the page’s title.
If $page_title is not set, a default title will be used.

2. Remove the list items (between the opening and closing MENU comments)
that constitute the top navigation tabs.

The navigation tab for the currently viewed page has a specific CSS class
applied to it, which changes how it appears. You could use JavaScript to
 create this effect, but for easy, all-browser compatibility, I’ll make this
 happen in PHP.

FIRST SITE: STRUCTURE AND DESIGN 65

3. In place of the list items, begin a PHP code block:

<?php

4. Create an array of pages:

$pages = array (
 'Home' => 'index.php',
 'About' => 'about.php',
 'Contact' => 'contact.php',
 'Register' => 'register.php'
);

This array represents the main navigation items. The key for each element
is the text to be displayed on the tab. The value for each element is the cor-
responding page (that is, what page that tab will be linked to).

5. Determine which page is currently being viewed:

$this_page = basename($_SERVER['PHP_SELF']);

In order to dynamically apply a class to the current page, the script
needs to know what the current page is, which happens to be the
value PHP assigns to $_SERVER['PHP_SELF']. If the user is viewing
http://www.example.com/dir/file.php, then $_SERVER['PHP_SELF']
will have a value of /dir/file.php. To get just the file.php part of that, the
basename() function is applied.

6. Loop through each page:

foreach ($pages as $k => $v) {

 echo '<li';

This loop will run once for each item in the array. Within the loop, the $k
and $v values can be used to create the navigation tabs. The first line of
code within the loop begins a new HTML list item.

7. Add the class if it’s the current page:

if ($this_page == $k) echo ' class="selected"';

The current page needs to use the HTML: <li class="selected">. This code
will do that.

8. Complete the list item started in Step 6:

echo '>' . $k . '
';

First the opening tag is closed. Then a link is created to the specific
page, represented by $v. Next, the displayed text is written within
tags, and the link and list item tags are completed. The echo statement

note

A few of the pages linked in the

header and footer won’t actually

be created in this book but will

be quite easy for you to create,

when necessary.

note

I generally recommend that

programmers use curly brackets

for all conditionals. When you

don’t, like when I’m saving space

in this book, place the entire

construct on one line to be clear,

as in Step 7.

http://www.example.com/dir/.le.php

66 CHAPTER 3

concludes on the next line so that a newline is added to the HTML source
of the page (Figure 3.10).

Figure 3.10

9. Complete the foreach loop and the PHP code block:

} // End of FOREACH loop.
?>

To be clear, this closing PHP tag is required, because this closes a PHP
block dropped within a larger body of HTML.

10. Save the file.

That’s it for the header.

Creating the Footer
The footer takes over after the page-specific content. It creates the sidebar
items, and the page footer (such as the copyright and other tertiary links), and
completes the HTML page.

1. Open the designed template file in your text editor or IDE, if it is not already.

2. Copy all the HTML from the template file, from the page-specific content to
the end, like so:

 </div>
 <div class="sidebar">
 <!-- SIDEBAR -->
 <div class="title">
 <h4>Manage Your Account</h4>
 </div>

 Renew

➥Account
 <a href="change_password.php" title="Change Your

➥Password">Change Password
 <a href="favorites.php" title="View Your Favorite

➥Pages">Favorites

tip

Have your PHP code create tidy

HTML output in case you need to

examine it.

FIRST SITE: STRUCTURE AND DESIGN 67

 <a href="recommendations.php" title="View Your
➥Recommendations">Recommendations

 Logout

 <div class="title">
 <h4>Content</h4>
 </div>

➥Common Attacks

➥Database Security
 <a href="category.php?id=1" title="General Web

➥Security">General Web Security

➥JavaScript Security
 PHP

➥Security
 PDF Guides

➥

 <!-- END SIDEBAR -->
 </div>
 <div class="footer">
 <p>Site Map |

➥Policies
➥ © Knowledge is Power | Design by
➥spyka webmaster</p>

 </div>
 </div> <!-- END PAGE -->
</div>
</body>
</html>

That’s the footer code for a logged-in, non-administrative user. In the next
series of steps, the code for the other two possible situations (a visitor who
is not logged in and an administrator who is logged in) are changed.

3. Create a new file to be named footer.html and stored in the includes
 directory.

68 CHAPTER 3

4. Paste in the copied code.

5. Save the file.

Adding Dynamic Functionality
to the Footer
Now you need to do to the footer file what you did to the header: Use PHP to
dynamically generate some HTML. There are two alterations to make. First,
the sidebar should show the login form if the user is not logged in, account
links if they are, and also administrative links if they’re logged in and are an
administrator. Second, you can dynamically pull the list of categories from the
database.

1. In footer.html, in lieu of the Manage Your Account links, begin an if-else
conditional:

<?php
if (isset($_SESSION['user_id'])) {

The page will know that the user is logged in if $_SESSION['user_id'] is set.

2. Recreate the Manage Your Account links using PHP:

echo '<div class="title">
 <h4>Manage Your Account</h4>
</div>

 Renew

➥Account

➥Change Password

➥Favorites
 <a href="recommendations.php" title="View Your

➥Recommendations">Recommendations
 Logout

';

This PHP code creates the same links as in the original template. Two
of these linked pages will be created in subsequent chapters. The clos-
ing single quote ends on its own line in order to create a newline in the
HTML source.

FIRST SITE: STRUCTURE AND DESIGN 69

3. Display administration options, if the user is also an administrator:

if (isset($_SESSION['user_admin'])) {
 echo '<div class="title">
 <h4>Administration</h4>
</div>

 Add Page
 Add PDF
 Blah

';
}

If the user is logged in and is of type admin, they should get extra options.
This code will create a secondary panel of links in the sidebar. You’ll
develop the add_page.php and add_pdf.php scripts in Chapter 5.

4. Complete the primary conditional:

} else {
 require ('includes/login_form.inc.php');
}
?>

The else clause applies if the user’s not logged in. In that case, the login
form should be displayed instead of any account links. To keep the code
tidy, the login form will be written in a separate file that you’ll develop in
the next chapter.

5. In place of the static HTML category links, dynamically generate them:

<?php
$q = 'SELECT * FROM categories ORDER BY category';
$r = mysqli_query($dbc, $q);
while (list($id, $category) = mysqli_fetch_array($r, MYSQLI_NUM)) {
 echo '<a href="category.php?id=' . $id . '" title="' . $category .

➥'">' . $category . '';
}
?>

This is basic PHP and MySQL: A query is run, its results are fetched, and
one list item is created for each returned record. The links pass along the
category ID in the URL that will be used by category.php, which you’ll write
in Chapter 5.

tip

If you want to test how the site

comes together, prior to creating

the login form file, just comment

out the line that includes it (in

Step 4).

note

If your content categories aren’t

likely to change often, it’d be

better to hardcode the category

links as HTML and save yourself

the overhead of the extra data-

base query.

70 CHAPTER 3

The link to the PDFs page is separate because that’s not a content category
in the database.

6. Save the file.

And that’s it for the footer.

Creating the Home Page
To put it all together, you’ll create the home page, which will combine the
four files—configuration, header, MySQL connection, and footer—into one
complete page.

1. Create a new PHP script in your text editor or IDE to be named
index.php and stored in the Web root directory.

2. Include the configuration file:

<?php
require ('./includes/config.inc.php');

The config file defines system settings, handles errors, and starts the ses-
sion, so it should always be the first (noncomment) code in your pages.

3. Include the header file:

include ('./includes/header.html');

4. Require the database connection:

require (MYSQL);

The database connection script can be included by referring to the MYSQL
constant, defined in the configuration file. This means that even if you
change the name or location of mysql.inc.php, you have to change only
one line in the configuration file and all your pages will still include that
script properly.

In this particular version of the home page, the database connection isn’t
needed until the footer, but most pages will need it before the page-specific
content.

5. Create the page-specific content:

?><h3>Welcome</h3>
<p>Welcome to Knowledge is Power, a site dedicated to keeping you up
➥to date on the Web security and programming information you need to
➥know. Blah, blah, blah. Yadda, yadda, yadda.</p>

note

The parentheses with require

and include aren’t required,

but you’ll see me use them in

this book.

note

In the downloadable version

of index.php, you’ll see a bit of

extra code, which you’ll add in

Chapter 4.

FIRST SITE: STRUCTURE AND DESIGN 71

 6. Include the footer fi le:

<?php
include ('./includes/footer.html');
?>

 7. Save the fi le.

 8. Load the fi le in your Web browser to test the result.

Since this is PHP, you must run index.php through a URL (such as
http://something), not through fi le://.

 9. To test what it looks like when logged in, add this line after including the
confi guration fi le:

$_SESSION['user_id'] = 1;

10. To test what the page looks like when logged in as an administrator, add
the following line of code after including the confi guration fi le:

$_SESSION['user_type'] = 'admin';

REQUIRE AND INCLUDE

In the home page, I use both require and include to bring in the four scripts. These

two control structures (they’re not technically functions) serve the same purpose but

differ in how they fail. Failure to include a fi le results in a warning; failure to require a

fi le results in a fatal error. Because the confi guration and MySQL fi les are critical to the

site’s functionality, failure to incorporate them should be fatal. Conversely, failure to

incorporate the header or footer is just a cosmetic issue, not that you’d want that to

happen either.

You may notice that I did not use require_once or include_once. These two control

structures run checks to ensure that the same fi le isn’t incorporated multiple times by

the same script. Because of those repeated checks, using them has an adverse effect

on the site’s performance. In this site, which is straightforward, a repeated inclusion

of a fi le is highly unlikely, so it’s best to go with the more direct require and include. If

you have a very complex site, with lots of included fi les that include other fi les, using

the _once variants may be necessary. You will see a couple of appropriate uses of

include_once in later chapters.

4 USER
ACCOUNTS

The next step in the evolution of the Knowledge is Power e-commerce site is to
create a system of user accounts. When the site is complete, PayPal will be the
crucial part in the registration process, but just to understand the user account
system on its own, as well as to be able to create an administrative user for the
next chapter, let’s look at user accounts as a separate entity fi rst.

There are four primary facets to the implementation of user accounts in this
chapter. First, a new user registers. Second, a registered user logs in. Third, the
logged-in user logs out (in theory, many people, including me, don’t always do
so). Fourth, users need to be able to retrieve a forgotten password and change
an existing password.

Although this example won’t be storing any sensitive e-commerce data, secu-
rity will still be taken seriously, for the benefi t of the customers and the site
itself. In a few places, I’ll make recommendations as to how you can increase
security even further, and the chapter ends with even more suggestions.

DEFINING HELPER
FUNCTIONS
Before getting into the primary scripts, there are three helper functions that
you should defi ne. The fi rst will greatly facilitate handling some of the site’s
forms. The second will transform a user-supplied password into a format that’s

USER ACCOUNTS 73

more secure to store. And the third will redirect the browser should the user
not meet the requirements for accessing a particular page.

There are a few benefits to using these custom functions:

■ Keeps complex logic from cluttering up other code

■ Allows the same logic to be used in multiple scripts

■ Makes changes to the logic a snap

The last two are really the key points: If you separate out processes, they can
be used by different parts of a site without having to repeat the code. And if
you later decide you need to tweak the process, you can do so in one place.

Creating Form Inputs
The functionality provided by the scripts in this chapter is almost entirely
 form-based: The user must complete a registration, login, change password,
or forgot password form. All these forms use just two types of form inputs—
text and password (not counting the submit buttons). An input starts off
with this simple HTML:

<input type="type" name="name" id="name" />

For example:

<input type="text" name="username" id="username" />

In cases where the form was submitted but not properly completed, the user
will be presented with the form again. As a convenience, the form should
remember the entered values (that is, it should be sticky). To achieve that
effect, you need to add value="whatever value" to each input. In PHP code,
that would be:

<input type="text" name="username" id="username"
➥value="<?php echo $_POST['username']; ?>" />

However, the first time the form is loaded, $_POST['username'] won’t be set,
so the code should really be:

<input type="text" name="username" id="username" value=
➥"<?php if (isset($_POST['username'])) echo $_POST['username']; ?>" />

tip

You can add sizes to the inputs,

if you want. I chose not to size

them, so they would all be

equally sized to the browser’s

default.

74 CHAPTER 4

If the user, for whatever reason, used quotation marks in their value, the
quotation marks will mess up the HTML. Figure 4.1 shows the result if the user
enters Jeff "The Dude" Lebowski as the username. To protect against that, you
can use the htmlspecialchars() function (Figures 4.2 and 4.3):

\<input type="text" name="username" id="username" value=
➥"<?php if (isset($_POST['username'])) echo htmlspecialchars(
➥$_POST['username']); ?>" />

Figure 4.3

And, if Magic Quotes is enabled, the stripslashes() function should be applied
to the value. You’ll add that code shortly, but first, there’s one more complica-
tion: If the form isn’t completed properly, it’d be nice to add a CSS class to the
input so that it’s displayed with a red border:

<input type="text" name="username" id="username" value=
➥"<?php if (isset($_POST['username'])) echo htmlspecialchars(
➥$_POST['username']); ?>" <?php if (/* error on this input */)
➥echo ' class="error"'; ?> />

Also, in that case, the error message should be added after the input
(Figure 4.4):

Figure 4.4

<input type="text" name="username" id="username" value=
➥"<?php if (isset($_POST['username'])) echo htmlspecialchars(
➥$_POST['username']); ?>" <?php if (/* error on this input */)
➥echo ' class="error"'; ?> /> <?php if (/* error on this input */)
➥echo '' . /* error message */ . ''; ?>

As you can tell, there’s a lot of logic going into these inputs and their error
handling, and they haven’t even addressed Magic Quotes yet. The code above
is just a mess to look at; it’ll need to be used a dozen times; and if you later
decide to handle things differently, you’ll be editing code all day. So instead,
let’s write one function that does all this automatically. In Chapter 5, “Manag-
ing Site Content,” forms will also contain textareas, so this function will be
flexible enough to handle those, too.

Figure 4.1

Figure 4.2

USER ACCOUNTS 75

1. Create a new PHP file in your text editor or IDE to be named
form_functions.inc.php.

This file should be stored in the includes directory.

2. Begin defining the function:

<?php
function create_form_input($name, $type, $errors) {

The function takes three arguments. The first is the name that will be given
to the element. The second is the element type, which will be either text or
password in this chapter, and textarea in the next. The third argument will
be an array of errors.

3. Check for and process the value:

$value = false;
if (isset($_POST[$name])) $value = $_POST[$name];
if ($value && get_magic_quotes_gpc()) $value = stripslashes($value);

First, the function assumes that no value exists. Then, if a value does
exist for this input in $_POST, that value is assigned to $value. The third
step strips extraneous slashes from the value, but only if Magic Quotes
is enabled.

This function assumes that the form uses the POST action. You could
create another argument that accepts POST or GET and checks the corre-
sponding superglobal for the value, if you want to make the function even
more flexible.

4. Check the input type:

if (($type == 'text') || ($type == 'password')) {

This function will create text inputs, password inputs, and textareas. The
first two are virtually the same in syntax, except for the type value used in
the HTML. The function starts by handling those two types.

5. Begin creating the input:

echo '<input type="' . $type . '" name="' . $name . '" id="' . $name . '"';

This is the initial shell of the HTML input, with its type, name, and id
 properties.

6. Add the input’s value, if applicable:

if ($value) echo ' value="' . htmlspecialchars($value) . '"';

If the $value variable has a value, then it should be added to the input, after
running it through htmlspecialchars().

note

I’m using the plural functions in

the file name even though only

one function is being defined.

Other functions might be added

to it later (in theory).

note

If you’re new to programming, I

recommend writing conditionals

over multiple lines and always

using curly brackets, but this

book will have some single-line

conditionals to save space.

76 CHAPTER 4

7. Check for an error:

if (array_key_exists($name, $errors)) {
 echo 'class="error" /> ' . $errors[$name] .

➥'';
} else {
 echo ' />';
}

The $errors variable will be assigned to an array when the function is called.
That array will contain every form error that occurred, indexed by the input’s
name (you’ll see this in the scripts that handle the forms). So if the array has
a key with the same name as this input, the error class is added to the input
and then the error message is added after the input (see Figure 4.4).

If no such array element exists, then the input is completed without any
additional class styling.

8. Check if the input type is a textarea:

} elseif ($type == 'textarea') {

9. Display the error first:

if (array_key_exists($name, $errors)) echo ' ' .
➥$errors[$name] . '';

Unlike with the text and password inputs, where the error message will be
displayed to the right of the input itself, for textareas, I want to display the
error message above the textarea, so that it’s most obvious (Figure 4.5).

10. Start creating the textarea:

echo '<textarea name="' . $name . '" id="' . $name . '" rows="5"
➥cols="75"';

Here, the textarea’s opening tag is created, providing dynamic name and
id values. I’ve chosen to hardcode the textarea’s size into this function to
make the default scale a bit bigger than what the browser would other-
wise create.

11. Add the error class, if applicable:

if (array_key_exists($name, $errors)) {
 echo ' class="error">';
} else {
 echo '>';
}

The error class must be added to the opening textarea tag, if an error
exists with this element.

Figure 4.5

USER ACCOUNTS 77

12. Add the value to the textarea:

if ($value) echo $value;

The value for textareas is written between opening and closing textarea
tags. Step 11 closed the opening tag and Step 13 will create the closing
one, so the value should just be printed here.

13. Complete the textarea:

echo '</textarea>';

14. Complete the function:

 } // End of primary IF-ELSE.
} // End of the create_form_input() function.

15. Save the file.

Again, I’m not using a closing PHP tag, the reason for which I discussed in
Chapter 3, “First Site: Structure and Design.”

Protecting Passwords
The next helper function will turn the user-supplied password into a more
secure format to be stored in the database. Passwords can be represented in
three ways:

■ In plain text, which is a terrible thing to do

■ In an encrypted format, which can be decrypted

■ In a hashed format, which cannot be decrypted

If you store passwords in an encrypted format, it’s safe from prying eyes and
can be retrieved when necessary. But if someone gets onto your server and
can find your code for performing the decryption, they’ll be able to view every
user’s password. And it turns out that you don’t really need passwords to be
decryptable: It doesn’t matter whether anyone can ever see the plain text in its
original form again or not.

An alternative is to create a hash of the password, a hash being a representa-
tion of data. For example, MD5 is a hashing algorithm that’s been around for
years. The MD5 hash of the word password is 5f4dcc3b5aa765d61d8327deb
882cf99; the MD5 hash of the word omnivore is 04f7696e917f292f99925f80fc
db1db1. You can create a hash out of any piece of data, and, in theory, no two
pieces of data have the same hash.

Storing the hash version of a password is more secure in that it cannot be
decrypted. If a hacker gets your data, the best she or he can do is create

note

The discovery of a user’s pass-

word is a huge security violation

as many people use the same

email and password combina-

tion at many sites.

78 CHAPTER 4

hashes of common words in the hope that she or he finds the matching hash
(this is called a “dictionary attack”). But storing a hash still makes logging in
possible: When a user logs in, the hashed version of their login password just
needs to equal the already stored hashed version. If the two hashes equate,
the submitted password is correct.

Once you’ve decided to hash the passwords, you’ll need to choose what hash-
ing algorithm (or, formula) to use and where the hashing should take place.
By the latter I mean that you can hash the password in either the database or
in your PHP code. Normally, I recommend having the database do as much as
possible, but PHP has more sophisticated hashing functions available than
MySQL, and if you perform the hash in PHP, you no longer have the risk of
sending a plain text password to the database.

MD5 is a common, legacy, hashing algorithm, but not very secure. An improve-
ment is SHA or SHA1, which is fine for many applications. For improved
security, I’m going to turn to PHP’s relatively new hash_hmac() function. This
function is part of PHP’s Hash extension, enabled by default as of PHP 5.1.2.

Hashing algorithms create hexadecimal representations: fixed strings contain-
ing only numbers and letters (as in the password and omnivore examples). You
can store a hash in a database in that format. But as an improvement, it’s more
efficient to store binary data in the database instead of character data, so let’s
tell the hashing function to return binary data. Since binary data can contain
characters that will break queries (such as a single quotation mark or a back-
slash), the output should still be run through the mysqli_real_escape_string()
function. The resulting password generating function is defined like so:

function get_password_hash($password) {
 global $dbc;
 return mysqli_real_escape_string ($dbc, hash_hmac('sha256',

➥$password, 'c#haRl891', true));
}

The hash_hmac() function takes up to four arguments. The first is the algo-
rithm to use, SHA256 in this case. This is an improved version of SHA1.

The second argument is the data to be hashed. This will be the value assigned
to $password when the get_password_hash() function is called.

The third argument is a hash key, which makes the generated hash unique.
The same key must be used when comparing two hashes.

The fourth argument is optional. If you use true, the output will be in raw,
binary format. Otherwise, the output will be hexadecimal characters.

note

If you use an SSL connection

between PHP and MySQL, send-

ing plain text data back and forth

is less dangerous.

note

You cannot later change the

algorithm for processing pass-

words without resetting every

existing user’s password.

tip

Use the hash_algos() function

to see what algorithms your

server supports.

tip

Search online for more informa-

tion on hashing, algorithms,

and keys.

USER ACCOUNTS 79

The output of the hash_hmac() function is then run through
mysqli_real_escape_string() before being returned.

If your server doesn’t support hash_hmac(), you could use this syntax
instead:

return mysqli_real_escape_string ($dbc, sha1($password, true));

Just using sha1(), instead of the SHA256 algorithm, isn’t as secure, but
SHA256 level of security may not be warranted in your situation.

Because this function will be used with database queries, and because it
requires the database connection, it should be defi ned in the mysql.inc.php
script.

Redirecting the Browser
The third helper function will be used to limit access to pages to proper users.
For example, a couple of public pages should only be viewable by current
users, and the two administrative pages should be viewable by administrators
only. If the current user doesn’t meet the page’s criteria, the browser should be
redirected elsewhere, and the current page should be terminated (Figure 4.6).
By writing this process in a function, any page that requires authorization will
need to invoke only this function, without any additional logic.

<?php

require_once ('./includes/config.inc.php');

redirect_invalid_user('user_admin');

// Rest of the page.

if(conn
 SELEC
 WHERE
 print

authorized?

somepage.php

config.inc.php

Yes No

index.php

Figure 4.6

Since the confi guration fi le, confi g.inc.php, will be included by every script in
the site, it makes sense to defi ne this function there:

function redirect_invalid_user($check = 'user_id', $destination =
➥'index.php', $protocol = 'http://') { (continues on next page)

80 CHAPTER 4

 if (!isset($_SESSION[$check])) {
 $url = $protocol . BASE_URL . $destination;
 header("Location: $url");
 exit();
 }
}

The function takes three arguments, all of which are optional. The first is
the session array element to validate against, the default being user_id. In
other words, if $_SESSION['user_id'] is not set, the user hasn’t logged in
and shouldn’t be looking at this page. In Chapter 5, this same function will
be used to restrict access to administrators or to users whose accounts have
not expired.

The second argument to the function is the page to which the user should
be redirected. By default, this will be the home page, but you could send
them to the registration page or anywhere by changing the value passed to
this function.

The third argument is the protocol to use, with the default being http://.
I’ve included this option so that users can be redirected to SSL or non-SSL pages.

Within the function, a conditional checks the session variable. If it’s not set, a
redirection URL is defined by concatenating the protocol and destination to the
BASE_URL constant (also defined in the configuration file). Then a header()
call performs the actual redirection. Finally, the exit() function (language
construct, technically) will terminate the script (the one that called this func-
tion). This is necessary because PHP will continue to execute a script after a
header() call, even if the browser has already moved on.

When creating the login script later in this chapter, you’ll have to keep in
mind how this redirection function works. Specifically, authorization is based
upon a value being set, not based upon what that value is. For example, a
logged-in user just has any user_id value and an administrator will also have
any user_admin value. But non-administrators should not be assigned a
user_admin value, even if that value is false or no.

I imagine this function only being called immediately after including the
configuration file (see Figure 4.6), so the function does not check that headers
haven’t already been sent, which would prevent the browser from being redi-
rected. If you want to account for that possibility, just use the headers_sent()
function in a conditional. If it returns false, redirect the user; if it returns true,
include the header and footer and display an error message:

tip

In a site that uses cookies, this

same function could verify the

user against $_COOKIE instead

of $_SESSION.

USER ACCOUNTS 81

if (!headers_sent()) {
 // Redirect code.
} else {
 include_once('./includes/header.html');
 trigger_error('You do not have permission to access this page. Please log

➥in and try again.');
 include_once('./includes/footer.html');
}

REGISTRATION
Now that the helper functions have been defined, let’s make the actual scripts
that perform the account services, starting with registration. The registration
form needs to present fields for everything being stored in the database. Plus,
it’s standard to have the user confirm their password, just to make sure they
know what it is (as password inputs don’t display the entered text, it’s easy to
unknowingly make a mistake). The same PHP script will display the form and
handle its results. Therefore, if the registration form is incomplete, it can be
shown again, with the existing values in place, along with detailed error mes-
sages (Figure 4.7).

Figure 4.7

tip

I use include_once() instead

of include() in this block of

code because if the headers

have been sent already, that’s

possibly because the header file

was included prior to calling this

function.

82 CHAPTER 4

The registration script I came up with, which you can download from
www.DMCInsights.com/ecom/, is about 160 lines total, including comments.
Rather than walk you through the entire script in one long series of steps, let’s
look at this script as its three distinct parts.

Creating the Basic Shell
Every PHP page in the site—every script that a user will access directly and
that won’t be included by other PHP scripts—has the same basic structure.
First, it includes the configuration file, then the HTML header (likely setting the
page title beforehand), and then the MySQL connection script. Next comes the
page-specific content and, finally, the footer is included. Here then, is what you
can start with for register.php:

register.php
 1 <?php
 2 require ('./includes/config.inc.php');
 3 $page_title = 'Register';
 4 include ('./includes/header.html');
 5 require (MYSQL);
 6 ?><h3>Register</h3>
 7 <p>Access to the site's content is available to registered users at a cost

➥of $10.00 (US) per year. Use the form below to begin the registration
➥process. Note: All fields are required. After
➥completing this form, you'll be presented with the opportunity to
➥securely pay for your yearly subscription via <a href="http://www.
➥paypal.com">PayPal.</p>

 8 <?php
 9 include ('./includes/footer.html');
10 ?>

For the registration page, it’s important that you give the customer a sense of
the process. You may want to graphically indicate the steps involved using a
progress bar (or progress meter), although this particular process really only
has two steps. Also indicate how all the data will be used (for example, explain
that they won’t be spammed), and maybe refer them to whatever site policies
exist (I’ve created a link to a policy file in the footer). Just do everything you
can to reassure the user that it’s safe to proceed.

www.DMCInsights.com/ecom/

USER ACCOUNTS 83

Creating the Form
The registration form contains six inputs: four text and two password (plus
the submit button). We’ve already defined a function for creating these
inputs, so the first thing the registration form needs to do is include the
form_functions.inc.php file. I did this just before the page-specific content:

require ('./includes/form_functions.inc.php');
?><h3>Register</h3>

The form itself looks like:

<form action="register.php" method="post" accept-charset="utf-8"
➥style="padding-left:100px">
 <p><label for="first_name">First Name</label>

➥
<?php create_form_input('first_name', 'text', $reg_errors); ?>
➥</p>

 <p><label for="last_name">Last Name</label>
➥
<?php create_form_input('last_name', 'text', $reg_errors); ?>
➥</p>

 <p><label for="username">Desired Username
➥</label>
<?php create_form_input('username', 'text',
➥$reg_errors); ?> <small>Only letters and numbers are allowed.
➥</small></p>

 <p><label for="email">Email Address</label>
➥
<?php create_form_input('email', 'text', $reg_errors); ?></p>

 <p><label for="pass1">Password</label>

➥<?php create_form_input('pass1', 'password', $reg_errors); ?>
➥<small>Must be between 6 and 20 characters long, with at least one
➥lowercase letter, one uppercase letter, and one number.</small></p>

 <p><label for="pass2">Confirm Password
➥</label>
<?php create_form_input('pass2', 'password',
➥$reg_errors); ?></p>

 <input type="submit" name="submit_button" value="Next →"
➥id="submit_button" class="formbutton" />

</form>

You’ll see that with the aid of the create_form_input() function, all the code
for creating each input plus handling all the errors is extremely simple. As
an example, for the first-name input, the function is called indicating that
the input should have name and id values of first_name and should be of
text type. The third argument to the function is an array of errors named
$reg_errors. In a few pages, this array will be added to the registration script,

tip

In theory, the user’s name may

be used to greet them person-

ally on the site or in emails sent

to them.

84 CHAPTER 4

so that it’s already defi ned prior to this point. This same function is called for
all six inputs, changing the arguments accordingly.

For the username and passwords, note that the user is being presented with
a clear indication of what’s expected of them. It drives me crazy when sites
complain that I did not complete a form properly (such as by not using at least
one number or capital letter in a password) when no such instructions were
included.

Processing the Form
The bulk of the register.php script is the validation of the form and the inser-
tion of the new record into the database. That part of the script is over 100
lines of code, so I’ll walk through it more deliberately. Figure 4.8 shows a
fl owchart of how this entire page will be used and may help you understand
what’s going on with the code. Note that all the code in the steps that follow
gets placed after the MySQL connection script is included—because you’ll
need access to the database—but before the form_functions.inc.php include
and the page-specifi c content. Again, see the downloadable scripts if you’re
confused about the order of things.

OK?

form

Yes

No

GET request

POST
request

<script
 var a=
 var xl
 if(xls

register.php

validation

PayPalmessage
1

2

3

Figure 4.8

1. Create an empty array for storing errors:

$reg_errors = array();

This array will be used to store any errors that occur during the validation
process. Normally, I might include this line within the section that begins
the validation process (see Step 2), but because the create_form_input()

USER ACCOUNTS 85

function calls are going to use $reg_errors the very first time the page is
loaded, you need to create this empty array at this point.

2. Check for a form submission:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

The first time the user goes to register.php, it will be a GET request, so this
conditional and all the code to follow won’t apply. When the user clicks
submit, a POST request will be made of register.php, and this code will
be executed.

3. Check for a first name:

if (preg_match ('/^[A-Z \'.-]{2,20}$/i', $_POST['first_name'])) {
 $fn = mysqli_real_escape_string ($dbc, $_POST['first_name']);
} else {
 $reg_errors['first_name'] = 'Please enter your first name!';
}

Names are difficult to validate, so I’m using a regular expression that’s
neither too strict nor too lenient. The pattern insists that the submitted
value be between 2 and 20 characters long and only contain a combina-
tion of letters (case-insensitive), the space, a period, an apostrophe, and
a hyphen. If the value passes this test, then the escaped version of that
value is assigned to the $fn variable. If the value does not pass this test,
then a new element is added to the $reg_errors array. The element uses the
same key as the form input, so that the create_form_input() function can
properly display the error.

4. Check for a last name:

if (preg_match ('/^[A-Z \'.-]{2,40}$/i', $_POST['last_name'])) {
 $ln = mysqli_real_escape_string ($dbc, $_POST['last_name']);
} else {
 $reg_errors['last_name'] = 'Please enter your last name!';
}

This is pretty much the same code as for the first name, but with a longer
maximum length.

5. Check for a username:

if (preg_match ('/^[A-Z0-9]{2,30}$/i', $_POST['username'])) {
 $u = mysqli_real_escape_string ($dbc, $_POST['username']);
} else {
 $reg_errors['username'] = 'Please enter a desired name!';
}

tip

If you’re not comfortable with

Perl-Compatible Regular Expres-

sions (PCRE), search online for

tutorials or see my book PHP

and MySQL for Dynamic Web

Sites: Visual QuickPro Guide.

note

Size restrictions in regular

expressions should match the

restrictions on those same val-

ues in the database columns.

86 CHAPTER 4

The username, per the instructions indicated in the form, is restricted to
just letters and numbers. The username has to be between 2 and 30 char-
acters long.

6. Check for an email address:

if (filter_var($_POST['email'], FILTER_VALIDATE_EMAIL)) {
 $e = mysqli_real_escape_string ($dbc, $_POST['email']);
} else {
 $reg_errors['email'] = 'Please enter a valid email address!';
}

Unlike names, email addresses have to adhere to a fairly strict syntax. The
simplest and most fail-safe way to validate an email address is to use PHP’s
filter_var() function, part of the Filter extension added in PHP 5.2. Its first
argument is the variable to be tested and its second is a constant repre-
senting a validation model.

If you’re not using a version of PHP that supports the Filter extension, you’ll
need to use a regular expression instead (you can find good patterns online
and in my books).

7. Check for a password and match against the confirmed password:

if (preg_match ('/^(\w*(?=\w*\d)(?=\w*[a-z])(?=\w*[A-Z])\w*)
➥{6,20}$/', $_POST['pass1'])) {
 if ($_POST['pass1'] == $_POST['pass2']) {
 $p = mysqli_real_escape_string ($dbc, $_POST['pass1']);
 } else {
 $reg_errors['pass2'] = 'Your password did not match the confirmed

➥password!';
 }
} else {
 $reg_errors['pass1'] = 'Please enter a valid password!';
}

Okay, so, um, here’s a little magic for you. Good validation normally uses
regular expressions, with which not everyone is entirely comfortable. And,
admittedly, even I often have to look up the proper syntax for patterns,
but this one requires a high level of regular expression expertise. For the
password to be relatively secure, it needs to contain at least one uppercase
letter, one lowercase letter, and one number. In other words, it can’t just be
a word out of the dictionary, all in one case. Creating a regular expression
that confirms that these characters exist in the password, but in any posi-

note

Technically, a valid email address

would not contain any charac-

ters that could be used in an SQL

Injection attack, but it’s still best

to run the email address through

the escaping function.

note

The strength of a user account

system will depend upon how

secure you require your users’

passwords to be.

tip

The Cracklib PECL extension can

be used to test the strength of

a password.

USER ACCOUNTS 87

tion in the string, requires what’s called a zero-width positive lookahead
assertion, represented by the ?=. The positive lookahead makes matches
based upon what follows a character. Rather than reading a page of expla-
nation as to how this pattern works beyond that simple definition, you can
test it for yourself to confirm that it does and research zero-width positive
lookahead assertions online if you’re really curious.

8. If there are no errors, check the availability of the email address and
username:

if (empty($reg_errors)) {
 $q = "SELECT email, username FROM users WHERE email='$e' OR

➥username='$u'";
 $r = mysqli_query ($dbc, $q);
 $rows = mysqli_num_rows($r);
 if ($rows == 0) { // No problems!

If the $reg_errors array is still empty, then no errors occurred (because
even one error would add an element to this array, making it no longer
empty). Next, a query looks for any existing record that has the submit-
ted email address or username. In theory, this query could return up
to 2 records (one for the email address and one for the username); if it
returns no records, it’s safe to proceed.

9. Add the user to the database:

$q = "INSERT INTO users (username, email, pass, first_name,
➥last_name, date_expires) VALUES ('$u', '$e', '"
➥. create_password_hash($p) . "', '$fn', '$ln', ADDDATE(NOW(),
➥INTERVAL 1 MONTH))";
$r = mysqli_query ($dbc, $q);

The query uses the submitted values to create a new record in the data-
base. Note that for the password value, the get_password_hash() function
is called. The user’s type does not need to be set because if no value
is provided for an ENUM column, the first enumerated value—here,
member—will be used.

Until PayPal is integrated in Chapter 6, “Using PayPal,” I’m setting the
account expiration date to a month from now. Once PayPal has been
integrated, the expiration will be set to yesterday. In that case, when PayPal
returns an indication of successful payment, the user’s account will be set
to expire in a year.

note

In truth, I just added the user-

name field to demonstrate how

to guarantee both unique email

addresses and usernames.

note

As a security measure, the user’s

type can only ever be member

after going through the registra-

tion process. You must go into

the database and change a

user’s type manually in order to

create an administrator.

88 CHAPTER 4

10. If the query created one row, thank the new customer and send out
an email:

if (mysqli_affected_rows($dbc) == 1) {
 echo '<h3>Thanks!</h3><p>Thank you for registering! You may now

➥log in and access the site\'s content.</p>';
 $body = "Thank you for registering at <whatever site>. Blah. Blah.

➥Blah.\n\n";
 mail($_POST['email'], 'Registration Confirmation', $body, 'From:

➥admin@example.com');
 include ('./includes/footer.html');
 exit();

First, a Thanks! page is displayed (Figure 4.9). The next step would be to
send them off to PayPal, which we’ll add in Chapter 6. Also, an email can
be sent to the user saying whatever you want, although do not include the
user’s password in that email. Finally, the footer is included and a call to
exit() stops the page. This is necessary so that the registration form isn’t
shown again, thereby confusing the user.

Figure 4.9

11. If the query didn’t work, create an error:

} else {
 trigger_error('You could not be registered due to a system error. We

➥apologize for any inconvenience.');
}

At this point, if the query didn’t create a new row, there was a database or
query error. In that case, the trigger_error() function is used to generate
an error that will be managed by the error handler in the configuration file.
On a live, already tested site, this would likely occur only if the database
server is down or overloaded.

tip

You could define an email

address in the configuration file

to be used as the “from” address

in messages to customers.

USER ACCOUNTS 89

12. If the email address or username is unavailable, create errors:

} else {
 if ($rows == 2) { // Both are taken.
 $reg_errors['email'] = 'This email address has already been

➥registered. If you have forgotten your password, use the link at
➥right to have your password sent to you.';

 $reg_errors['username'] = 'This username has already been
➥registered. Please try another.';

The else clause applies if the SELECT query returns any records. This
means that the email address and/or the username have already been
registered. Now we need to determine which of the two values is the
culprit. If two rows were returned, then both have already been regis-
tered. The assumption then is that the same customer already registered
(because their email address is in the system) and another customer
already has that username (because it’s associated with a different email
address). The error messages are added to the $reg_errors array, indexed
at email and username, so that they’ll appear beside the appropriate form
input when the form is redisplayed.

13. Confirm which item has been registered:

} else { // One or both may be taken.
 $row = mysqli_fetch_array($r, MYSQLI_NUM);
 if(($row[0] == $_POST['email']) && ($row[1] == $_POST

➥['username'])) { // Both match.
 $reg_errors['email'] = 'This email address has already been

➥registered. If you have forgotten your password, use the link at
➥right to have your password sent to you.';

 $reg_errors['username'] = 'This username has already been
➥registered with this email address. If you have forgotten your
➥password, use the link at right to have your password sent to
➥you.';

 } elseif ($row[0] == $_POST['email']) { // Email match.
 $reg_errors['email'] = 'This email address has already been

➥registered. If you have forgotten your password, use the link at
➥right to have your password sent to you.';

 } elseif ($row[1] == $_POST['username']) { // Username match.
 $reg_errors['username'] = 'This username has already been

➥registered. Please try another.';
 }
} // End of $rows == 2 ELSE.

90 CHAPTER 4

If only one row was returned, then the code needs to fi gure out if the user-
name matched, the email address matched, or both matched in the same
record. Three conditionals test for each possibility, with appropriate error
messages assigned (Figures 4.10 and 4.11).

Figure 4.10

Figure 4.11

14. Complete the conditionals:

 } // End of $rows == 0 IF.
 } // End of empty($reg_errors) IF.
} // End of the main form submission conditional.

15. Save and test the registration script.

ACTIVATING ACCOUNTS

On a site that doesn’t require payment, I would normally

include an activation process:

1. When the user registers, a random code is stored in the

users table.

2. An email is sent to the registered email address, which

includes a link to an activation page on the site. The link

passes the user’s email address and the specifi c code

to the PHP page: https://www.example.com/activate.

php?x=email@example.com&y=CODE

3. The PHP page confi rms that there is a record in the table

with that combination of email address and code, then

activates that account (normally by setting the code

column to NULL).

4. When the user logs in, the query must confi rm that the

email and password combination is correct, and that the

code column in the table has a NULL value.

This is called a “closed-loop” confi rmation process and

prevents fake registrations. In this Knowledge is Power site,

using PayPal will prevent fake registrations, because hackers

don’t normally spend money in their hack attempts.

note

The character after $rows ==

is a zero.

https://www.example.com/activate.php?x=email@example.com&y=CODE
https://www.example.com/activate.php?x=email@example.com&y=CODE

USER ACCOUNTS 91

LOGGING IN
Logging in to the site is a two-step process: completing the form and validat-
ing the submitted values against the database. The login form is not its own
page—it’s shown in the sidebar to all non-logged-in users, so it cannot use the
same single-script approach as in register.php. The question, then, was where
the user should end up when they do successfully log in and when they don’t.
In both cases, I decided they should end up back on the home page; for this
reason, the login form gets submitted to index.php. Therefore, the index page
needs to be updated with the code for handling the form. Rather than write
that code directly into the home page, it’s best included as a separate file, just
after the database connection but prior to the inclusion of the header file:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 include ('./includes/login.php');
}

This works because normally index.php will be requested via GET. If it’s a POST
request, the login form has been submitted, so this script includes the file that
will test the login credentials.

Processing the Form
I think it will actually be easier to follow the login process if I talk about the
form last, so let’s look at the code that handles the login form first. That pro-
cess needs to:

1. Validate the submitted email address and password.
2. Compare the submitted values with those in the database.
3. Create errors if the values are incorrect.
4. Store data in a session if the values are correct.

Here’s how all of that works in actual code:

1. Create a new PHP script in your text editor or IDE to be named
login.inc.php.

This will be stored in the includes directory.

2. Create an empty array for recording errors:

<?php
$login_errors = array();

This errors array will be used just like $reg_errors in the registration script.

tip

By including the login processing

code, instead of writing it to the

index.php file, I’m maintaining

better separation of code.

tip

It’s best to give variables in

included files unique names

so they don’t overwrite any

variables created by the

 parent script.

92 CHAPTER 4

3. Validate the email address:

if (filter_var($_POST['email'], FILTER_VALIDATE_EMAIL)) {
 $e = mysqli_real_escape_string ($dbc, $_POST['email']);
} else {
 $login_errors['email'] = 'Please enter a valid email address!';
}

This code replicates that in the registration process, using PHP’s Filter
extension to validate the email address.

4. Validate the password:

if (!empty($_POST['pass'])) {
 $p = mysqli_real_escape_string ($dbc, $_POST['pass']);
} else {
 $login_errors['pass'] = 'Please enter your password!';
}

To validate the password, I’m just making sure it’s not empty. Part of the
reason is performance—this will be faster than the zero-width positive
 lookahead regular expression used in the registration process—and part
of the reason will be explained later in the chapter.

In theory, you don’t need to validate the submitted values because the
database query will be confirming whether the submitted values are correct
or not, but database queries are expensive (in terms of server resources
and performance), so it’s best not to run one unless necessary.

5. If there are no errors, query the database:

if (empty($login_errors)) {
 $q = "SELECT id, username, type, IF(date_expires > NOW(), true,

false) FROM users WHERE (email='$e' AND pass='" .
➥get_password_hash($p) . "')";

 $r = mysqli_query ($dbc, $q);

The basic query selects four values from the users table: their ID, user-
name, type, and account expiration. The WHERE clause checks that the
email address matches the submitted email address and that the password
matches the hashed version of the password.

For the account expiration, I’m doing something that may be new to you.
I don’t really care when the user’s account expires, only if it’s valid right
now. One way of accomplishing this would be to select the expiration
value, which is a date, and then use PHP to convert it into a timestamp and
compare it to the current timestamp. That’s a lot of code and logic to put

USER ACCOUNTS 93

onto PHP. Instead, I’m doing an IF conditional within my MySQL query. That
syntax is just:

IF(date_expires >= NOW(), true, false)

The first expression is the condition being tested; the second is what’s
returned if the condition is true; the third value is what’s returned if the
condition is false. Thus, if the expiration date is greater than or equal to
this moment, the value true will be selected.

6. If one row was returned by the database query, fetch the data and store it
in a session:

if (mysqli_num_rows($r) == 1) {
 $row = mysqli_fetch_array ($r, MYSQLI_NUM);
 $_SESSION['user_id'] = $row[0];
 $_SESSION['username'] = $row[1];
 if ($row[2] == 'admin') $_SESSION['user_admin'] = true;
 if ($row[3] == 1) $_SESSION['user_not_expired'] = true;

First, the user’s ID and name are stored in the session, but given
user<something> names, so that they won’t possibly conflict later
on with anything else I might store in the session.

To indicate that the user is an administrator, I only want to create a
$_SESSION['user_admin'] element if the user’s type equals admin. I don’t
want to create a $_SESSION['user_admin'] element equal to false if their
type is member. This is because the function that will validate a user’s
access to pages—redirect_invalid_user() in config.inc.php—will check
only if a session variable is set, not what its actual value is.

For the expiration, I only want to store a value indicating that the account
hasn’t expired. MySQL will return the number 1 for the Boolean value true,
so if $row[3] (which is the value in the array for the expiration status)
equals that, I create a new element in $_SESSION. Again, I’m not assigning
a value if the account has expired.

7. If no row was returned, create an error message:

} else {
 $login_errors['login'] = 'The email address and password do not

➥match those on file.';
}

This error message will apply if the user supplied a valid email address and
a password but the values didn’t match those stored in the database. For
security purposes, the script doesn’t indicate which of the two values is
incorrect, or if the email address has been registered at all.

94 CHAPTER 4

8. Complete the script:

} // End of $login_errors IF.

As with all other scripts that will be included by other scripts, I’m omitting
the closing PHP tag.

9. Save the file.

Creating the Form
The last script to discuss, login_form.inc.php, is actually the first step in
the process. It needs to do just two things: present a form and report any
errors that occurred when the form was submitted. The form contains two
inputs: one for the email address and one for the password. Both are cre-
ated using the same create_form_input() function, which means that the
form_functions.inc.php script must be included. The function needs to take
an array of errors—$login_errors—as its third argument. That array is cre-
ated in login.inc.php. However, if the user is just loading the login form for
the first time, $login_errors won’t exist, so this script should initialize an
empty array in that case. As a second complication, on the register.php and
forgot_password.php pages, the form_functions.inc.php script will already
have been included, making require_once() the appropriate way to include
that file here.

Here’s the complete login_form.inc.php:

includes/login_form.inc.php
 1 <?php
 2 if (!isset($login_errors)) $login_errors = array();
 3 require_once ('./includes/form_functions.inc.php');
 4 ?><div class="title">
 5 <h4>Login</h4>
 6 </div>
 7 <form action="index.php" method="post" accept-charset="utf-8">
 8 <p><?php if (array_key_exists('login', $login_errors)) {
 9 echo '' . $login_errors['login'] . '
';
 10 }?><label for="email">Email Address</label>

➥
<?php create_form_input('email', 'text', $login_errors); ?>
➥
<label for="pass">Password</label>
➥
<?php create_form_input('pass', 'password', $login_errors); ?>
➥Forgot?

➥<input type="submit" value="Login →"></p>

 11 </form>

USER ACCOUNTS 95

Just before the email address label, you’ll see this code:

<?php if (array_key_exists('login', $login_errors)) {
 echo '' . $login_errors['login'] . '
';
}?>

By default, all errors are reported via the create_form_input() function.
However, this form is a bit different in that login.inc.php could create an error
(that is, an element in the $login_errors array) not associated with a particu-
lar form input. That error occurs when both fields are properly filled out but
the values don’t, together, match a record in the database. In that case, the
$login_errors['login'] element is assigned an error message. Therefore, the
form first checks if that array element exists in $login_errors, in which case the
error message will be displayed just before the two inputs (Figure 4.12). Other
error messages are associated with the offending form input (Figure 4.13).

Figure 4.12 Figure 4.13

After you’ve done all this, you can now test the login process.

LOGGING OUT
Logging out is the simplest part of the process. The logout.php page starts off
as a standard script, including the configuration file, the header, the MySQL
connection, and the footer. Only logged-in users should be able to access this
page, though, so a call to redirect_invalid_user() is included just after the
configuration file is defined.

To wipe out the session, three steps are required. First, clear out the
$_SESSION array that represents the variables available to this script:

$_SESSION = array();

tip

You could also change the

header file so that the register

tab is not shown to users that

are logged in.

96 CHAPTER 4

Next, the session_destroy() function actually removes the data stored on
the server:

session_destroy();

Finally, modify the session cookie in the user’s browser so it no longer has a
record of the session ID:

setcookie (session_name(), '', time()-300);

That line sends a cookie with the same session name, but no value (no session
ID) and an expiration of five minutes ago.

The complete logout.php is:

logout.php
 1 <?php
 2 require ('./includes/config.inc.php');
 3 redirect_invalid_user();
 4 $_SESSION = array();
 5 session_destroy();
 6 setcookie (session_name(), '', time()-300);
 7 $page_title = 'Logout';
 8 include ('./includes/header.html');
 9 echo '<h3>Logged Out</h3><p>Thank you for visiting. You are now

➥logged out. Please come back soon!</p>';
 10 require (MYSQL);
 11 include ('./includes/footer.html');
 12 ?>

Figure 4.14 shows the result.

Figure 4.14

MANAGING PASSWORDS
The site will have two pages for managing user passwords. One will be used to
recover a forgotten password and the other will change an existing password.
Both pages are simple forms, but a user must be logged in to change their
password and wouldn’t be logged in to recover a forgotten one.

tip

At www.php.net/session_

destroy, you can see code

to dynamically match all the

setcookie() parameters to those

used to create the cookie.

www.php.net/session_destroy
www.php.net/session_destroy

USER ACCOUNTS 97

Recovering Passwords
Because the user passwords are not being stored in an encrypted format, they
cannot be decrypted and recovered. When the user forgets or loses their pass-
word, the only option then is to create a new password and send it to them in
an email. The form to start this process is simple: it just takes an email address
(Figure 4.15).

1. Create a new PHP script in your text editor or ID to be named
forgot_password.php and stored in the Web root directory.

2. Include the standard stuff:

<?php
require ('./includes/config.inc.php');
$page_title = 'Forgot Your Password?';
include ('./includes/header.html');
require (MYSQL);

3. Create an array for storing errors:

$pass_errors = array();

4. Validate the email address:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 if (filter_var($_POST['email'], FILTER_VALIDATE_EMAIL)) {
 $q = 'SELECT id FROM users WHERE email="'. mysqli_real_

➥escape_string ($dbc, $_POST['email']) . '"';
 $r = mysqli_query ($dbc, $q);
 if (mysqli_num_rows($r) == 1) { // Retrieve the user ID.
 list($uid) = mysqli_fetch_array ($r, MYSQLI_NUM);
 } else { // No database match made.
 $pass_errors['email'] = 'The submitted email address does not

➥match those on file!';
 }

If the page is accessed via a POST request, then the form has been submit-
ted. The first thing it should do is validate that a proper email address was
provided. This is a two-step process. First, the filter_var() function confirms
that the submitted value adheres to the email syntax. Then a query specifi-
cally confirms that this email address exists in the database. If it does, then
the user ID value is retrieved. If it doesn’t exist in the database, an error
message is assigned to the array.

Figure 4.15

98 CHAPTER 4

5. Complete the filter_vars() conditional:

} else { // No valid address submitted.
 $pass_errors['email'] = 'Please enter a valid email address!';
} // End of $_POST['email'] IF.

This error applies if the user doesn’t provide a syntactically valid email
address.

6. Generate a new password:

if (empty($pass_errors)) { // If everything's OK.
 $p = substr(md5(uniqid(rand(), true)), 10, 15);

To generate the password, call the uniqid() function, which returns a
unique ID. If it’s passed some value as its first argument, that will be used
as the prefix, thereby expanding the returned string. For the prefix value,
invoke the rand() function. When a second argument of true is passed to
uniqid(), a more random unique ID will be returned. This value will be sent
through md5(), which will create a string 32 characters long, consisting of
letters and numbers. From that string, take a substring starting with the
eleventh character (because indexes start at zero) and going for fifteen
characters. The end result will be a completely random and unique pass-
word like 6e968eff0833110.

7. Add the new password to the database:

$q = "UPDATE users SET pass='" . get_password_hash($p) . "' WHERE
➥id=$uid LIMIT 1";
$r = mysqli_query ($dbc, $q);
if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.

The query uses the user ID value just fetched from the database to know
which record to update. The generated password must also be run through
the get_password_hash() function.

8. Send the new password to the user:

$body = "Your password to log into <whatever site> has been
➥temporarily changed to '$p'. Please log in using that password and this
➥email address. Then you may change your password to something more
➥familiar.";
mail ($_POST['email'], 'Your temporary password.', $body, 'From:
➥admin@example.com');

This is a very simple email message (Figure 4.16). You should make it more
interesting.

note

Because the random, generated

password won’t meet the criteria

of the user-generated password,

neither the login form nor the

change-password form applies

the zero-width positive looka-

head expression to the current

password.

tip

To make the generated pass-

word more secure, insert one

or more random capital letters

into it.

USER ACCOUNTS 99

Figure 4.16

9. Print a message and wrap up:

echo '<h3>Your password has been changed.</h3><p>You will receive
➥the new, temporary password via email. Once you have logged in
➥with this new password, you may change it by clicking on the "Change
➥Password" link.</p>';
include ('./includes/footer.html');
exit();

As with any process, you want to indicate to the user what should happen
next (Figure 4.17). The exit() line terminates the script so that the form is
not shown again.

Figure 4.17

10. If the database update couldn’t run, generate an error:

} else { // If it did not run OK.
 trigger_error('Your password could not be changed due to a system

➥error. We apologize for any inconvenience.');
}

This else clause applies if the database query didn’t work, indicating a
system error.

11. Complete the processing section of the script:

 } // End of $uid IF.
} // End of the main Submit conditional.

12. Create the form:

100 CHAPTER 4

require ('./includes/form_functions.inc.php');
?><h3>Reset Your Password</h3>
<p>Enter your email address below to reset your password.</p>
<form action="forgot_password.php" method="post" accept-charset=
➥"utf-8">
 <p><label for="email">Email Address</label>

➥
<?php create_form_input('email', 'text', $pass_errors); ?>
➥</p>

 <input type="submit" name="submit_button" value="Reset →"
➥id="submit_button" class="formbutton" />
</form>

The form uses the same create_form_input() function to generate the
single text input.

13. Complete the page:

<?php
include ('./includes/footer.html');
?>

14. Save and test the forgotten password script.

Changing Passwords
Changing a password is kind of like a combination of the login and registration
processes. The user should enter their current password as an extra precau-
tion, plus their new password, and a confirmation of their new password
(Figure 4.18). The user must be logged in to perform this task.

Figure 4.18

tip

An alternative approach is to

send an email to the user with a

link they have to click in order to

reset their password.

USER ACCOUNTS 101

1. Create a new PHP script in your text editor or IDE to be named
change_password.php and stored in the Web root directory.

2. Include the standard stuff:

<?php
require ('./includes/config.inc.php');
redirect_invalid_user();
$page_title = 'Change Your Password';
include ('./includes/header.html');
require (MYSQL);

You’ll notice that just before the header is included, the script invokes the
redirect_invalid_user() function so that only logged-in users can access
the page.

3. Create an array for storing errors:

$pass_errors = array();

4. Validate the current password:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 if (!empty($_POST['current'])) {
 $current = mysqli_real_escape_string ($dbc, $_POST['current']);
 } else {
 $pass_errors['current'] = 'Please enter your current password!';
 }

As with the login form, this conditional only checks that there’s a password
value. If the user is changing their password from a legitimate system-
generated one, the current password wouldn’t pass the more strict regular
expression.

5. Validate the new password:

if (preg_match ('/^(\w*(?=\w*\d)(?=\w*[a-z])(?=\w*[A-Z])\w*)
➥{6,20}$/', $_POST['pass1'])) {
 if ($_POST['pass1'] == $_POST['pass2']) {
 $p = mysqli_real_escape_string ($dbc, $_POST['pass1']);
 } else {
 $pass_errors['pass2'] = 'Your password did not match the

➥confirmed password!';
 }
} else {
 $pass_errors['pass1'] = 'Please enter a valid password!';
}

102 CHAPTER 4

This code is almost exactly like that in the registration script, except that
errors are assigned to the $pass_errors array.

6. If everything is fine, validate the current password against the database:

if (empty($pass_errors)) { // If everything's OK.
 $q = "SELECT id FROM users WHERE pass='" . get_password_

➥hash($current) . "' AND id={$_SESSION['user_id']}";
 $r = mysqli_query ($dbc, $q);
 if (mysqli_num_rows($r) == 1) { // Correct

To confirm that the current password is correct, a database query is run,
similar to the login query except that it uses the user’s ID (from the ses-
sion), instead of their email address.

7. Update the database with the new password:

$q = "UPDATE users SET pass='" . get_password_hash($p) . "' WHERE
➥id={$_SESSION['user_id']} LIMIT 1";
if ($r = mysqli_query ($dbc, $q)) { // If it ran OK.

This query is almost exactly like that in forgot_password.php.

8. Indicate to the user the successful change:

echo '<h3>Your password has been changed.</h3>';
include ('./includes/footer.html');
exit();

The message is printed, the footer is included, and then the script is ter-
minated using exit() so that the form isn’t shown again (Figure 4.19). You
may also want to email the user to indicate the password change (without
actually emailing the new password to them).

Figure 4.19

9. If there was a problem, trigger an error:

} else { // If it did not run OK.
 trigger_error('Your password could not be changed due to a system

➥error. We apologize for any inconvenience.');
}

This else clause applies if the database update failed, which really
shouldn’t happen on a live, tested site.

USER ACCOUNTS 103

10. Complete the processing section of the script:

 } else {
 $pass_errors['current'] = 'Your current password is incorrect!';
 } // End of current password ELSE.
 } // End of $p IF.
} // End of the form submission conditional.

This else clause applies if the supplied current password doesn’t match
the one in the database for the current user. In that case, an error is added
that will be displayed next to the current password input.

11. Display the form:

require ('./includes/form_functions.inc.php');
?><h3>Change Your Password</h3>
<p>Use the form below to change your password.</p>
<form action="change_password.php" method="post"
➥accept-charset="utf-8">
 <p><label for="pass1">Current Password

➥</label>
<?php create_form_input('current', 'password',
➥$pass_errors); ?></p>

 <p><label for="pass1">New Password</label>
➥
<?php create_form_input('pass1', 'password',
➥$pass_errors); ?> <small>Must be between 6 and 20 characters
➥long, with at least one lowercase letter, one uppercase letter, and
➥one number.</small></p>

 <p><label for="pass2">Confirm New Password
➥</label>
<?php create_form_input('pass2', 'password',
➥$pass_errors); ?></p>

 <input type="submit" name="submit_button" value="Change
➥→" id="submit_button" class="formbutton" />

</form>

The form has three password inputs. Each is generated using the
create_form_input() function.

12. Complete the page:

<?php
include ('./includes/footer.html');
?>

13. Save and test the change password script.

104 CHAPTER 4

IMPROVING THE SECURITY
The user accounts system in this example demonstrates a good approach
to security. For starters, users are forced to use both letters and numbers in
their password and at least one letter in each case. You could improve the
security by requiring at least one nonalphanumeric character and by increas-
ing the minimum length. Security is inversely proportional to convenience, so
you would only make these changes knowing that you’ll annoy some of your
potential customers. I also chose not to implement a “remember me” option
because requiring that users log in each time they visit the site makes for bet-
ter security (although, again, doing so is an inconvenience).

As another safeguard, the passwords are securely hashed before being sent to
the database, where they’re stored in binary format. And the only user account
type that can be created through the registration process is the standard mem-
ber; there’s no way to trick the system into creating an administrative account.

Another, obvious and relatively easy way you can improve the security of the site
is to implement SSL for the registration and login processes. To do so, change
the link to the registration page to: 'https://' . BASE_URL . 'register.php'. That
form will be loaded via HTTPS, and the form data will be posted back to the
server via HTTPS, too. In fact, with nothing but relative links in the site, every-
thing will be HTTPS until you create a link that returns to an HTTP connection.

Serving the login form over HTTPS is trickier, because the form is included
by other pages. Your options are to serve every page over HTTPS, which isn’t
ideal, or to create a separate login page.

As mentioned before, you could implement an activation process as part of the
registration, in which case the customer would be sent to PayPal after activat-
ing the account, not after first registering. You could also send an email when a
password change is requested and only by clicking the link in that email would
the user have their password reset. Right now, anyone can reset other users’
passwords, which is a bother, even if it doesn’t adversely affect the security.

Because this system relies upon a login to authenticate the user, much of its
security depends upon using sessions and a cookie (for storing the session
ID in the browser). Limiting the life of the cookie, changing the session name
(which is also the cookie’s name), and tweaking the other cookie parameters
can all increase the site’s security. You can even send the cookie only over SSL,
but that would require using SSL for every page once the user logged in.

tip

Part Three, “Selling Physical

Products,” of the book will

demonstrate switching the

use of SSL as appropriate.

tip

Storing session IDs in cookies is

preferred, security-wise, to stor-

ing it in links and forms.

https://'.BASE_URL.'register.php'

USER ACCOUNTS 105

For the session itself, one recommendation that I made in Chapter 2, “Security
Fundamentals,” was to change the session storage directory if using a shared
host. You can also shorten how quickly the session expires, as well as how
quickly the session cookie expires.

These are all potential alterations you could make. One recommendation you
should implement is changing the session ID for administrative users. By doing
so, you can prevent a session fixation attack.

A session fixation attack is when a malicious user, Alice, starts her own session
on your site, quite legitimately. She then gets administrator Bob to visit the
site using that same session ID, normally by getting Bob to click a link with
the session ID embedded. When Bob logs in to the site, that same session will
now be associated with an administrative account, giving Alice administra-
tive access through her browser and existing session. Preventing this is quite
simple: Change the session ID using the session_regenerate_id() function. By
doing so, when Bob logs in, his session ID will change, meaning Alice’s legiti-
mate session won’t be updated to reflect Bob’s administrative status.

To add this technique to the login.inc.php script, change the storing of data in
the session to:

if ($row[2] == 'admin') {
 session_regenerate_id(true);
 $_SESSION['user_admin'] = true;
}
$_SESSION['user_id'] = $row[0];
$_SESSION['username'] = $row[1];
if ($row[3] == 1) $_SESSION['user_not_expired'] = true;

You’ll need to call session_regenerate_id() before storing any session data,
because by passing a value of true as the first argument to the function, any
existing session data is also destroyed.

Finally, access to site content in this example will be determined by dates
without times. With the sessions as written, the worst thing that could hap-
pen would be that a user whose account expires today is allowed to continue
accessing site content for some minutes or hours into tomorrow. But even that
is only true if the user keeps their session active. Not a huge concern, in my
opinion.

tip

An even more secure way to

store session data is to put it

into the database.

5 MANAGING
SITE CONTENT

If you’re reading this book in order—and I certainly hope you are—then you’ve
got a site where users can register, log in, change their password, and log out,
but there’s nothing for them to look at! On the other hand, they haven’t paid
anything yet either, so…

In this chapter, you’ll create the content management side of the equation,
with two kinds of content: HTML pages and PDFs. I’ll tell you how to write the
code for creating and displaying the content.

But fi rst, you’ll need to create an administrative user.

CREATING AN
ADMINISTRATOR
Even though administrators will use the same login system and the same
underlying users table as regular users, for security reasons, you cannot create
an administrator through the site itself. By making that decision, no possible
fl aw in the site could result in administrators being created. And since admin-
istration accounts won’t be created often, it makes sense not to implement
that feature anyway. But you still need at least one administrator, so let’s do
that now.

1. Register the administrator using the same registration page.

MANAGING SITE CONTENT 107

This would likely be the first user that gets registered anyway, just to test
the system. Enter the administrator’s email address and give the adminis-
trator a logical username, such as admin.

2. Access your database using a third-party interface.

On a hosted server, you most likely have a phpMyAdmin interface for
manipulating your database, accessible only after logging in to a control
panel. Or you could use the command-line MySQL client, if you prefer.

3. Change the user’s type value.

You can change the type by running a query such as:

UPDATE users SET type='admin' WHERE email='theEmailAddress'

Or, if you’re using phpMyAdmin:

A. Browse the users table.

B. Click the pencil icon next to the record you want to change (Figure 5.1).

Figure 5.1

C. Use the editor form to change the user type (Figure 5.2).

D. Click Go.

ADDING PAGES
As I’ve said (several times over by now), the site will have
two kinds of content. The first kind will be HTML, but the
site’s not going to assume that the administrator knows
how to create an HTML page. Instead, there will be an
interface for doing so. The administrator will use a simple,
single page that displays and handles an HTML form. To
 create the HTML content, a What You See Is What You Get
(WYSIWYG) editor will be incorporated into the form
(Figure 5.3).

tip

The system, as written, allows

for any number of administra-

tors, all with the same powers

(which is not many).

Figure 5.2

Figure 5.3

108 CHAPTER 5

Creating the Basic Script
To start, you’ll create the PHP script, which displays and handles the form.
Then you’ll integrate the WYSIWYG editor in a separate series of steps.

1. Create a new PHP script in your text editor or IDE to be named
add_page.php and stored in the Web root directory.

2. Include the configuration file:

<?php
require_once ('./includes/config.inc.php');

3. Redirect non-administrators:

redirect_invalid_user('user_admin');

The redirect_invalid_user() function, defined in config.inc.php (in
 Chapter 4, “User Accounts”), will redirect invalid users to another page.
That function’s first argument is the session variable to check for. In this
case, it’ll be user_admin, because $_SESSION['user_admin'] is set only
if the user is an administrator.

4. Include the header file:

$page_title = 'Add a Site Content Page';
include ('./includes/header.html');

It’s important that the redirection take place before you include the header file.

5. Require the database connection:

require(MYSQL);

6. Create an array for storing errors:

$add_page_errors = array();

Just like the registration, login, and password forms, this script will use one
array for storing any problems with the user-supplied form data.

7. Validate the page title:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 if (!empty($_POST['title'])) {
 $t = mysqli_real_escape_string($dbc, strip_tags($_POST['title']));
 } else {
 $add_page_errors['title'] = 'Please enter the title!';
 }

Simply by restricting access to this page to administrative users, there’s
less risk of it being abused, so the validation routines do not need to be

tip

Validation of administrator-

generated content does not

need to be as strict as public

content as long as there is

restricted access to the admin

pages.

MANAGING SITE CONTENT 109

quite as strict as those on the public pages. For the page’s title, you’re
confirming only that it isn’t empty, as opposed to validating it using a
regular expression. The strip_tags() function is still applied to the title,
because no HTML should be there when the content is listed or displayed
(as you’ll shortly see).

8. Validate the category:

if (filter_var($_POST['category'], FILTER_VALIDATE_INT, array(
➥'min_range' => 1))) {
 $cat = $_POST['category'];
} else {
 $add_page_errors['category'] = 'Please select a category!';
}

Each HTML page is in a single category, which should be a foreign key to
the values in the categories table. To confirm that the category value is an
integer greater than, or equal to, 1, I’m again turning to PHP’s Filter exten-
sion. If you don’t have that extension enabled, you could do this:

if (isset($_POST['category']) && ((int) $_POST['category'] >= 1)) {

9. Validate the description:

if (!empty($_POST['description'])) {
 $d = mysqli_real_escape_string($dbc, strip_tags(

➥$_POST['description']));
} else {
 $add_page_errors['description'] = 'Please enter the description!';
}

The description is being treated in the same manner as the title. I’m again
stripping out any HTML or PHP tags.

For all these validation routines, failures result in messages being added
to the errors array.

10. Validate the content:

if (!empty($_POST['content'])) {
 $allowed = '<div><p>
<a><h1><h2><h3><h4>

➥<blockquote>';
 $c = mysqli_real_escape_string($dbc, strip_tags($_POST['content'],

➥$allowed));
} else {
 $add_page_errors['content'] = 'Please enter the content!';
}

110 CHAPTER 5

The content is the heart of the page and is expected to contain some
HTML. However, you probably don’t want to allow just any HTML. For
example, allowing the <SCRIPT> tag opens the door for Cross-Site Script-
ing (XSS) attacks and allowing the <TABLE> tag lets the administrator
potentially mess up the layout of the page. The strip_tags() function
takes an optional second argument, which is a string of allowed tags. I’ve
defined several allowed tags, but you might want to expand the list.

11. If there are no errors, add the record to the database:

if (empty($add_page_errors)) { // If everything's OK.
 $q = "INSERT INTO pages (category_id, title, description, content)

➥VALUES ($cat, '$t', '$d', '$c')";
 $r = mysqli_query ($dbc, $q);
 if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.
 echo '<h4>The page has been added!</h4>';
 $_POST = array();

Most of this should be fairly standard stuff for you. The last line, though,
clears the $_POST array so that the already-inserted values aren’t redis-
played in the sticky HTML form (Figure 5.4).

12. Trigger an error if the query failed:

 } else { // If it did not run OK.
 trigger_error('The page could not be added due to a system

➥error. We apologize for any inconvenience.');
 }
 } // End of $add_page_errors IF.
} // End of the main form submission conditional.

13. Include the form_functions.inc.php script:

require ('includes/form_functions.inc.php');
?>

As with the public forms, this form and add_pdf.php will use the helper
function defined in form_functions.inc.php.

14. Begin the form:

<h3>Add a Site Content Page</h3>
<form action="add_page.php" method="post" accept-charset=
➥"utf-8">
 <fieldset><legend>Fill out the form to add a page of content:</legend>
 <p><label for="first_name">Title

➥</label>
<?php create_form_input('title', 'text',
➥$add_page_errors); ?></p>

Figure 5.4

tip

Depending upon the experience

of the site administrator, you

may want to add better instruc-

tions to this page.

MANAGING SITE CONTENT 111

The form contains one text input, one drop-down menu, and two
textareas. The text input and textareas will be created using the
create_form_input() function.

15. Add the category menu:

<p><label for="category">Category</label>

<select name="category"<?php if (array_key_exists('category',
➥$add_page_errors)) echo ' class="error"'; ?>>
<option>Select One</option>
<?php // Retrieve all the categories and add to the pull-down menu:
$q = "SELECT id, category FROM categories ORDER BY category ASC";
$r = mysqli_query ($dbc, $q);
while ($row = mysqli_fetch_array ($r, MYSQLI_NUM)) {
 echo "<option value=\"$row[0]\"";
 // Check for stickyness:
 if (isset($_POST['category']) && ($_POST['category'] == $row[0]))

➥echo ' selected="selected"';
 echo ">$row[1]</option>\n";
}
?>
</select><?php if (array_key_exists('category', $add_page_errors))
➥echo ' ' . $add_page_errors['category'] .
➥''; ?></p>

The create_form_input() function wasn’t written to handle select menus.
In part, this is because they’re too different from inputs and textareas,
and in part because there’s only one select menu on the site. So this code
has to replicate all that function’s logic, including making the form sticky
and displaying errors (Figure 5.5).

16. Complete the form:

 <p><label for="description">Description
➥</label>
<?php create_form_input('description', 'textarea',
➥$add_page_errors); ?></p>

 <p><label for="content">Content</label>
➥
<?php create_form_input('content', 'textarea',
➥$add_page_errors); ?></p>

 <p><input type="submit" name="submit_button" value="Add This
➥Page" id="submit_button" class="formbutton" /></p>

 </fieldset>
</form>

tip

For the query and query result,

I prefer short variables names—

$q and $r, accordingly, but you

may want to use something

more verbose, such as $query

and $result.

Figure 5.5

112 CHAPTER 5

The two textareas are also generated by the create_form_input() func-
tion, although textareas will display their errors before the textarea box
(Figure 5.6), not after, as with the text inputs.

17. Complete the page:

<?php
include('./includes/footer.html');
?>

18. Save the file and load it in your Web browser.

At this point, the form will look like that in Figure 5.3, except the content
textarea will look like the description’s textarea.

Adding a WYSIWYG Editor
Web-based WYSIWYG editors are so common these days that you have many
to choose from. To create a WYSIWYG editor, you install the editor code on
your site, create a textarea in a form, and then indicate that the editor should
be used for that textarea. The two most common WYSIWYG editors are prob-
ably CKEditor (www.ckeditor.com, formerly FCKEditor, although FCKEditor is
still available) and TinyMCE (http://tinymce.moxiecode.com). I’ve used these
in different projects and they’re more similar than not. All are written in Java-
Script, are open source, and have a slew of plug-ins for adding features such
as spell check or fancy lists. The documentation for these projects is fair, and
if you can follow the right syntax outlined therein, you should have no trouble
installing and customizing these tools.

For no particular reason, I choose to use TinyMCE for this project. I’ll walk you
through the steps for integrating TinyMCE here. But first, there’s one thing you
should know…

A WYSIWYG editor can make it easy to create styled and formatted HTML, con-
taining any valid tag, from lists to links to font-related elements. A WYSIWYG
editor can also make it easy to add any kind of media, most commonly images
and video. However, TinyMCE and CKEditor require a plug-in to manage file
uploads and, in both cases, the plug-ins are created by the same companies
and are commercial products. For this reason, I’m not integrating that function-
ality into this example. When the time comes that you need this functionality,
just check out the corresponding documentation for the WYSIWYG editor of
your choice.

1. Download the latest version of TinyMCE from
http://tinymce.moxiecode.com.

Figure 5.6

tip

There are free third-party file

management plug-ins available,

but I have not found them to be

as good as the commercial ones.

www.ckeditor.com
http://tinymce.moxiecode.com
http://tinymce.moxiecode.com

MANAGING SITE CONTENT 113

2. Extract the files from the download.

3. Copy the tiny_mce folder from the extracted files to your Web root directory.

When you extract the files in Step 2, the result will be a folder called
tinymce. Within that are examples and jscripts folders. Within jscripts
is the tiny_mce folder that contains the files you actually need.

4. Open add_page.php in your text editor or IDE, if it is not already.

5. After the closing form tag, add:

<script type="text/javascript" src="/tiny_mce/tiny_mce.js"></script>

The first thing you’ll need to do is include the main tiny_mce.js file, which is
what this line does.

6. On the next line, begin customizing TinyMCE:

<script type="text/javascript">
 tinyMCE.init({
 // General options
 mode : "exact",
 elements : "content",
 theme : "advanced",
 width : 800,
 height : 400,

This JavaScript code will turn a textarea into a WYSIWYG editor. To do so,
the tinyMCE class’s init() function is called, sending it several name-value
pairs. You can find these all detailed in the TinyMCE documentation, of
course, but I’ll highlight the most important. A mode of exact means that
only specific textareas should be converted, as opposed to all of them on
that page. The elements value, content, indicates that the textarea with
an id value of content should be converted. This matches the name and id
values already given to the content textarea. The theme dictates what but-
tons and other configuration is used. You can see different themes in the
documentation and in the examples folder; this page will use the advanced
theme. The width and height properties change the size of the editor.

7. Identify the plug-ins to use:

plugins : "advlink,advlist,autoresize,autosave,contextmenu,fullscreen,
➥iespell,inlinepopups,media,paste,preview,safari,searchreplace,
➥visualchars,wordcount,xhtmlxtras",

TinyMCE has a slew of plug-ins. Here I’m choosing to enable 16 of them.

tip

Web pages will load more

quickly if JavaScript is placed

at the end of the document.

tip

You cannot use the same

<SCRIPT> tag to include a sepa-

rate JavaScript file and to write

inline JavaScript code.

tip

You can customize how TinyMCE

behaves using a global configu-

ration file or individually when

you use it in a particular script.

114 CHAPTER 5

8. Customize the editor’s buttons:

theme_advanced_buttons1 : "cut,copy,paste,pastetext,pasteword,|,
➥undo,redo,removeformat,|,search,replace,|,cleanup,help,code,
➥preview,visualaid,fullscreen",
theme_advanced_buttons2 : "bold,italic,underline,strikethrough,|,
➥justifyleft,justifycenter,justifyright,justifyfull,|,formatselect,|,bullist,
➥numlist,|,outdent,indent,blockquote,|,sub,sup,cite,abbr",
theme_advanced_buttons3 : "hr,|,link,unlink,anchor,image,|,charmap,
➥emotions,iespell,media",

Each line indicates a row of buttons to create in the editor (Figure 5.7).
TinyMCE uses specific names to create specific buttons, most of which are
obvious. Using the pipe character (|) creates separators within a line so
that you may group related buttons.

Figure 5.7

9. Complete the customization:

theme_advanced_toolbar_location : "top",
theme_advanced_toolbar_align : "left",
theme_advanced_statusbar_location : "bottom",
theme_advanced_resizing : true,

The first three settings dictate where the toolbar and status bar are placed
and aligned. The fourth says that the editor should be resized as the con-
tent grows, which is a nice touch.

10. Complete the script block:

 content_css : "/css/style.css",
});
</script>

You can associate your site’s CSS file with the editor so that content cre-
ated within it will look the same as it will within a site page. That’s what
this line here does. The reference to the CSS file can be absolute, as in
this case, or relative to the page that uses TinyMCE (not relative to the
TinyMCE folder).

11. Save the file.

12. Reload the Web page in your browser to see the result (see Figure 5.3).

tip

Match the allowed tags in the

strip_tags() function to the but-

tons in the editor.

tip

By restricting what’s possible in

a WYSIWYG editor, you can keep

administrators from making ugly,

unruly content.

tip

If the editor doesn’t show or

doesn’t reflect your customiza-

tions, make sure you refresh the

browser. If there’s still a problem,

the cause is probably a syntax

error in your JavaScript.

MANAGING SITE CONTENT 115

13. Create several pages of content.

Or, if you’d rather, you can use the SQL commands from my Web site
(www.DMCInsights.com/ecom/) to populate the database for you.

DISPLAYING PAGE
CONTENT
Now that you have several pages of pretend content in the database, it’s time
to create the scripts to display that content. There are two:

■ category.php lists the specifi c pages under a category.

■ page.php shows the actual content.

For marketing purposes, category.php will be available to any user. The
page.php script will also be available to any user, but if they’re not logged in
with a valid account, they’ll only see the same description of the content that’s
displayed on the category page. Only current customers can see the full content.

Creating category.php
 The category.php script receives an ID value in the URL (from the links in the
footer). The script should validate the ID value, then select the category’s
information from the database. By doing so, the category’s name can be used
as the browser’s title. Next, the script retrieves and lists all the pages that exist
within that category (Figure 5.8).

Figure 5.8

1. Create a new PHP script in your text editor or IDE to be named category.php
and stored in the Web root directory.

www.DMCInsights.com/ecom/

116 CHAPTER 5

2. Include the configuration file:

<?php
require('./includes/config.inc.php');

3. Require the database connection:

require(MYSQL);

4. Validate the category ID:

if (isset($_GET['id']) && filter_var($_GET['id'], FILTER_VALIDATE_INT,
➥array('min_range' => 1))) {

The filter_var() function is being used to validate the category ID, the same
as in the add_page.php script.

5. Get the category title:

$q = 'SELECT category FROM categories WHERE id=' . $_GET['id'];
$r = mysqli_query($dbc, $q);

This query serves two purposes. First, it confirms that the supplied ID
value is not only a valid integer, but that it also corresponds to a value from
the database. Second, it will retrieve the category’s name to use as the
browser’s title and as a page heading (see Figure 5.8).

6. If one row was not returned, report the problem:

if (mysqli_num_rows($r) != 1) {
 $page_title = 'Error!';
 include ('./includes/header.html');
 echo '<p class="error">This page has been accessed in error.</p>';
 include ('./includes/footer.html');
 exit();
}

If the query doesn’t return exactly one row, then an invalid category ID was
provided. In that case, a default page title is created, the header is included,
an error message is displayed, the footer is included, and the script is termi-
nated. Figure 5.9 shows the end result.

Figure 5.9

note

The results shown in

Figure 5.9 will only be seen

by users attempting things

they shouldn’t.

MANAGING SITE CONTENT 117

7. Fetch the category title and use it as the page title:

list ($page_title) = mysqli_fetch_array($r, MYSQLI_NUM);
include ('./includes/header.html');
echo "<h3>$page_title</h3>";

If the previous query did return one record, the selected column is fetched
directly into the $page_title variable, then the header is included and a
page header is displayed.

8. Print a message if they’re not an active user:

if (isset($_SESSION['user_id']) && !isset($_SESSION[
➥'user_not_expired'])) {
 echo '<p class="error">Thank you for your interest in this content.

➥Unfortunately your account has expired. Please
➥renew your account in order to access site content.</p>';

} elseif (!isset($_SESSION['user_id'])) {
 echo '<p class="error">Thank you for your interest in this content. You

➥must be logged in as a registered user to view site content.</p>';
}

Three types of users could be looking at this page: guests (people not
logged in), logged-in users whose accounts have expired, and logged-in
users whose accounts have not expired. In the last case, no error messages
need to be displayed.

In the second case, $_SESSION['user_id'] will be set, but
$_SESSION['user_not_expired'] won’t be. This latter element would
have been assigned a value of true if their account was still good when
the user logged in. In this situation, the user is told that they need to
renew their account.

If the user isn’t logged in at all, a message says that they need to be
 registered and logged in to view the content.

9. Get the pages associated with this category:

$q = 'SELECT id, title, description FROM pages WHERE category_id='
➥. $_GET['id'] . ' ORDER BY date_created DESC';
$r = mysqli_query($dbc, $q);
if (mysqli_num_rows($r) > 0) {
 while ($row = mysqli_fetch_array ($r, MYSQLI_ASSOC)) {
 echo "<div><h4>

➥{$row['title']}</h4><p>{$row['description']}</p>
➥</div>\n";

 }

tip

The list() function assigns

parts of an array to individual

variables.

tip

Because the PHP script finished

using the results of the first

query, it’s safe to use the same

$q and $r variables here.

118 CHAPTER 5

Each returned record will be displayed on the page as its own <DIV>.
The page title will be put within <H4> tags and linked to page.php,
 passing along the page ID in the URL. After the title, the page’s descrip-
tion is added.

10. Print a message if no pages are available:

} else {
 echo '<p>There are currently no pages of content associated with

➥this category. Please check back again!</p>';
}

On a live site, hopefully there won’t be any categories in the database that
don’t have content. But, so as not to make any assumptions, if the pages
SELECT query doesn’t return any rows, a message will be shown to the
user to check back again (Figure 5.10).

Figure 5.10

11. If no valid ID was received by the page, display an error:

} else { // No valid ID.
 $page_title = 'Error!';
 include ('./includes/header.html');
 echo '<p class="error">This page has been accessed in error.</p>';
} // End of primary IF.

This is a replication of the code executed if the category SELECT does not
return one record.

12. Include the HTML footer and complete the page:

include ('./includes/footer.html');
?>

13. Save and test the category script.

Creating page.php
Like category.php, the page.php script also receives an ID value in the URL
(from the links in category.php). The script should validate the ID value, then
select the page’s information from the database. The page’s title will be used
as the browser’s title and displayed as a page header. What comes next will
depend upon the person viewing the page:

tip

The script as written does not

paginate the page listings. If a

category might have more than,

say, 15 or 20 pages associated

with it, you may want to add

pagination, which is discussed

in my book, PHP and MySQL

for Dynamic Web Sites: Visual

QuickPro Guide.

MANAGING SITE CONTENT 119

■ Logged-in users with current accounts will see the content (Figure 5.11).

■ Logged-in users with expired accounts will see the content’s description,
along with a recommendation to renew their account.

■ Guests will see the content’s description, along with a recommendation to
register (Figure 5.12).

Figure 5.11 Figure 5.12

As you would expect, much of this functionality will be like the category.php
script.

 1. Create a new PHP script in your text editor or IDE to be named page.php
and stored in the Web root directory.

2. Include the confi guration fi le:

<?php
require('./includes/confi g.inc.php');

3. Require the database connection:

require(MYSQL);

4. Validate the page ID:

if (isset($_GET['id']) && fi lter_var($_GET['id'], FILTER_VALIDATE_INT,
➥array('min_range' => 1))) {

This is the same validation used with the category ID. If your version of PHP
does not support the Filter extension, you could use:

if (isset($_GET['id']) && ((int) $_GET['id'] >= 1)) {

5. Get the page info:

$q = 'SELECT title, description, content FROM pages WHERE id='
➥. $_GET['id'];
$r = mysqli_query($dbc, $q);

A simple query retrieves three fi elds from the pages table for one record.

120 CHAPTER 5

6. If no rows were returned, print an error:

if (mysqli_num_rows($r) != 1) {
 $page_title = 'Error!';
 include ('./includes/header.html');
 echo '<p class="error">This page has been accessed in error.</p>';
 include ('./includes/footer.html');
 exit();
}

Again, as with category.php, if the supplied ID value is an integer but
doesn’t correlate to any database record, a complete page is created that
indicates a problem (similar to Figure 5.9).

7. Fetch the page info:

$row = mysqli_fetch_array($r, MYSQLI_ASSOC);
$page_title = $row['title'];
include ('includes/header.html');
echo "<h3>$page_title</h3>";

The page’s title will be used as the browser’s title and as a header on
the page.

8. Display the content if the user’s account is current:

if (isset($_SESSION['user_not_expired'])) {
 echo "<div>{$row['content']}</div>";
} elseif (isset($_SESSION['user_id'])) { // Logged in but not current.
 echo '<p class="error">Thank you for your interest in this content, but

➥your account is no longer current. Please renew
➥your account in order to view this page in its entirety</p>';

 echo "<div>{$row['description']}</div>";
} else { // Not logged in.
 echo '<p class="error">Thank you for your interest in this content.

➥You must be logged in as a registered user to view this page in its
➥entirety.</p>';

 echo "<div>{$row['description']}</div>";
}

This conditional dictates what is shown on the page, based upon the user
viewing it. Only logged-in users with current accounts—those who have
a $_SESSION['user_not_expired'] value—can see the content itself. The
other user types see only the description, along with a message appropri-
ate to their situation.

9. Complete the ID conditional:

MANAGING SITE CONTENT 121

} else { // No valid ID.
 $page_title = 'Error!';
 include ('includes/header.html');
 echo '<p class="error">This page has been accessed in error.</p>';
} // End of primary IF.

If no valid ID value was received by this page, the user will see this error
message.

10. Complete the page:

include ('./includes/footer.html');
?>

11. Save and test the page.php script.

To test it, you’ll need to click a link on category.php. You should also test
it as three different user types—guest, expired member, and active mem-
ber—to get the full effect.

ADDING PDFS
The second administrative page for this example will handle uploading PDF
files to the site. Although the administrator needs to provide only three pieces
of information—a title, a description, and the PDF file itself—the process for
handling the form is tricky, largely because I wanted to make the form sticky,
like the others in the site. As you may know, the file form input can’t be made
sticky in the same way that a text input can, so I had to use some logic to fake
the concept (Figure 5.13).

Figure 5.13

Also, allowing users—even administrators—to upload files to your server is a
potential security hole, so several techniques need to be applied to make this
process as safe as possible. But first, the server needs to be set up to allow for
file uploads.

122 CHAPTER 5

Setting Up the Server
Server permissions on files and directories comes down to who can do what.
As for the what, the options are: read, write, and execute. The who is either the
specific server user or groups of users.

Before a PHP script can put files onto the server, there must be a folder on the
server to which the PHP script can write, which is to say alter the directory’s
contents. As PHP is run through the Web server, the who is the Web server
user. So the goal is to create a folder that the Web server user can write to.

How you go about actually doing this will depend upon how your server is set
up, the operating system in use, and how PHP is running with respect to the
Web server. At the end of the day, what this normally means is that you’ll cre-
ate a directory and give “everyone” permission to write to it. In Unix terms, this
is represented by the number 777. Normally, your Web host provides a control
panel through which you can change a folder’s permissions, or you may be
able to do it through your FTP application (Figure 5.14).

Although allowing everyone to do everything with a directory may sound
extremely dangerous, it’s not. What is meant by “everyone” is every user on
the server. By “user” I mean a user account registered with the server. For
example, there may be a mysql user that runs the database and the Web
server may run as the user nobody. With open permissions, both of these
users, as well anyone with FTP or SSH access to the server, can read from,
write to, or execute the files in the directory. That’s not insignificant, but being
available to everyone does not mean that anyone on the Internet can write
files to that directory: a recognized server user is still required.

All that being said, it doesn’t mean that you should be blasé about creating
an open directory like this. If you’re on a shared server, everyone with a user
account on that server can manipulate this directory—assuming they know it
exists, of course, which is a big if. And, if there’s a security hole in a Web site,
that vulnerability could be used to manipulate the directory—in this case, by
users over the Internet—as the Web server user would be the active agent.

There are many instances in which an open directory is necessary for the func-
tioning of a site. The question becomes how to make the system as secure as
possible. The answer is found by thinking like a hacker. If a hacker can’t break
into a server, the next goal will be to have the server execute some dangerous
code for her or him. One way of doing so is trying to get PHP (or whatever) to
open, require, or include—thereby executing—some dangerous code found
on another server. I talk about this in Chapter 2, “Security Fundamentals.”
A second route is to get the dangerous code onto the server somehow and

Figure 5.14

MANAGING SITE CONTENT 123

then execute it directly. That’s a two-step process. Protecting against such an
attempt is also, therefore, a two-step process:

1. Do everything you can to prevent dangerous code from being placed on
the server.

2. Make it difficult, if not impossible, to directly execute dynamically added
content.

For the first step, it’s largely a matter of validating uploaded content: making
sure it’s of an acceptable type. For the second step, the best solution is to store
uploaded content in a directory outside the Web root directory. In such a case,
if bad person Bob (on the Internet, not on your server) can trick your system
into uploading some dangerous script, he still could not execute that script, as
there would be no way to invoke it if it’s not in the Web root directory.

If that’s not possible (for example, some shared hosts don’t allow you to put
content above the Web directory), you should create a non-obvious folder
within the Web directory. This folder will still require the open permissions, but
you should password-protect the directory so that it’s only available (over HTTP)
to authorized users. You can do this using your Web host’s control panel.

Once you’ve created the pdfs directory with open permissions, and protected
it appropriately if you had to place it in the Web root directory, you can create
the PHP script that will upload a PDF file to that folder. But first, I would recom-
mend creating another constant in the configuration file that is an absolute
path to this folder:

// In config.inc.php:
define ('PDFS_DIR', BASE_URI . 'pdfs/');

Creating the PHP Script
This PHP script has the same basic structure as all the other forms: The form is
first displayed; the data is validated after the user submits the form; and the
form is displayed again with its current values indicated should there be any
errors. But this particular process will be trickier than the other forms in that
it’s also dealing with an uploaded file. The file input cannot be made sticky
and, more importantly, the actual file on the server must be addressed when
the form is being redisplayed because of other errors. I’ll explain all the cor-
responding logic in the following steps.

1. Create a new PHP script in your text editor or IDE to be named add_pdf.php
and stored in the Web root directory.

tip

Ways to use the Web server to

protect directories are discussed

in Chapter 7, “Second Site:

Structure and Design.”

tip

In Chapter 3, “First Site: Struc-

ture and Design,” I talked about

the server’s organization and

where the pdfs directory should

ideally go.

tip

Change the value of PDFS_DIR

so that it’s correct for your

server.

124 CHAPTER 5

2. Include the configuration file:

<?php
require_once ('./includes/config.inc.php');

3. Redirect non-administrators:

redirect_invalid_user('user_admin');

4. Include the header file:

$page_title = 'Add a PDF';
include('./includes/header.html');

5. Require the database connection:

require(MYSQL);

6. Create an array for storing errors:

$add_pdf_errors = array();

7. If the form was submitted, validate the title and description:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 if (!empty($_POST['title'])) {
 $t = mysqli_real_escape_string($dbc, strip_tags($_POST['title']));
 } else {
 $add_pdf_errors['title'] = 'Please enter the title!';
 }
 if (!empty($_POST['description'])) {
 $d = mysqli_real_escape_string($dbc, strip_tags(

➥$_POST['description']));
 } else {
 $add_pdf_errors['description'] = 'Please enter the description!';
 }

The validation routines just check for any value for both of these inputs. If
they’re not empty, the values are run through the strip_tags() function, and
then mysqli_real_escape_string(). If either value is empty, an error mes-
sage is added to the array.

8. Check for a PDF:

if (is_uploaded_file ($_FILES['pdf']['tmp_name']) && ($_FILES['pdf']
➥['error'] == UPLOAD_ERR_OK)) {
 $file = $_FILES['pdf'];

The first time the form is submitted, there should be data in the special
$_FILES array, thanks to the file input whose name is pdf. This conditional
checks that there is an uploaded file and that there is no error (because

MANAGING SITE CONTENT 125

you can have an uploaded file but also an error). If both conditions are
true, the $file variable is turned into a shorthand version of $_FILES['pdf'],
for later use.

9. Validate the file information:

$size = ROUND($file['size']/1024);
if ($size > 1024) {
 $add_pdf_errors['pdf'] = 'The uploaded file was too large.';
}
if (($file['type'] != 'application/pdf') && (substr($file['name'], -4) !=
➥'.pdf')) {
 $add_pdf_errors['pdf'] = 'The uploaded file was not a PDF.';
}

First, the file’s size is calculated in kilobytes. This value will first be used
to make sure the file isn’t too large. On the public side, this value will be
displayed to the end user indicating how big the PDF is (a nice feature).
If the file is larger than a megabyte (or 1,024 kilobytes), an error message
is created. Since the MAX_FILE_SIZE hidden form input is a recommen-
dation that’s easy to circumvent, it’s best to check the file’s size using
PHP, too.

Next, the file’s type is validated. The first part of the conditional checks
if the type is not equal to application/pdf, which is the MIME type the
browser will associate with an uploaded PDF. But a MIME type is easy to
fake, so you can’t rely upon just that. The second part of the conditional
checks that the file’s name concludes with .pdf. Since any file’s extension
dictates how the file is treated by computers, this is another good security
check (although not 100 percent foolproof).

From a security perspective, by this point, reasonable steps have been
taken to ensure that the uploaded file is not too large and is a PDF.

10. If there were no errors, create the file’s new name and destination:

if (!array_key_exists('pdf', $add_pdf_errors)) {
 $tmp_name = sha1($file['name'] . uniqid('',true));
 $dest = PDFS_DIR . $tmp_name . '_tmp';

For security purposes, the uploaded file should be renamed to something
random and unpredictable. To do so, the sha1() function will create a
40-character hash from some data. The data to be hashed is the file’s
original name plus a unique identifier.

The destination value is the absolute path to where the file will be stored
on the server—its final resting place, including the file’s new name. The

tip

As written, only one error will be

associated with the file input, so

if the uploaded file is both too

large and not a PDF, the user will

see only the second error.

tip

A stricter way of validating a

PDF’s type is to read in the file’s

binary data and make sure it

matches the PDF specification.

tip

Renaming uploaded files is

generally recommended so

that hackers won’t know what

an uploaded file is called on

the server.

126 CHAPTER 5

PDFS_DIR constant added to config.inc.php earlier in the chapter is used
for part of that destination. At this point, I’m also adding _tmp to the file’s
name to indicate that the file is on the server but not associated with a
database record as of yet.

11. Move the file:

if (move_uploaded_file($file['tmp_name'], $dest)) {
 $_SESSION['pdf']['tmp_name'] = $tmp_name;
 $_SESSION['pdf']['size'] = $size;
 $_SESSION['pdf']['file_name'] = $file['name'];
 echo '<h4>The file has been uploaded!</h4>';
} else {
 trigger_error('The file could not be moved.');
 unlink ($file['tmp_name']);
}

The move_uploaded_file() function will transfer only files uploaded via
HTTP POST, so it can’t be manipulated to move other files around on
the server. Its first argument is the file to move, which is represented by
the file’s temporary name (something like / tmp/php4902). The second
argument is the file’s destination, which includes both the directory and
file name.

Next, three pieces of information about the file are stored in the session
for later reference. This includes the file’s new name, its size, and its origi-
nal name. Then a message is displayed indicating that the file has been
handled.

If the file could not be moved, an error message is triggered and the
uploaded file is removed (so it’s not cluttering up the temporary directory).

12. If there was no uploaded file, look for an error:

 } // End of array_key_exists() IF.
} else { // No uploaded file.
 switch ($_FILES['pdf']['error']) {
 case 1:
 case 2:
 $add_pdf_errors['pdf'] = 'The uploaded file was too large.';
 break;
 case 3:
 $add_pdf_errors['pdf'] = 'The file was only partially uploaded.';
 break;
 case 6:
 case 7:

tip

There is no error code 5 (that’s

not a typo in the book).

MANAGING SITE CONTENT 127

 case 8:
 $add_pdf_errors['pdf'] = 'The file could not be uploaded due to

➥a system error.';
 break;
 case 4:
 default:
 $add_pdf_errors['pdf'] = 'No file was uploaded.';
 break;
 } // End of SWITCH.
} // End of $_FILES IF-ELSEIF-ELSE.

The PHP manual lists all the file upload-related error codes. This script
should not be too descriptive in its error reporting to the user, so each
code is turned into a more generic message. Some codes, such as 1 and 2
or 6, 7, and 8, have the same net meaning, so I’m using a fall-through in
the switch, where multiple cases have the same effect.

13. Add the PDF to the database:

if (empty($add_pdf_errors)) { // If everything's OK.
 $fn = mysqli_real_escape_string($dbc, $_SESSION['pdf']

➥['file_name']);
 $tmp_name = mysqli_real_escape_string($dbc, $_SESSION['pdf']

➥['tmp_name']);
 $size = (int) $_SESSION['pdf']['size'];
 $q = "INSERT INTO pdfs (tmp_name, title, description, file_name,

➥size) VALUES ('$tmp_name', '$t', '$d', '$fn', $size)";
 $r = mysqli_query ($dbc, $q);

If there were no errors, the next step is to insert the PDF data into the
database. To do so, the three pieces of information about the file, already
stored in the session, are made safe to use in the query (the title and
description were already run through mysqli_real_escape_string() by
this point).

14. If the query worked, rename the file:

if (mysqli_affected_rows($dbc) == 1) { // If it ran OK.
 $original = PDFS_DIR . $_SESSION['pdf']['tmp_name'] . '_tmp';
 $dest = PDFS_DIR . $_SESSION['pdf']['tmp_name'];
 rename($original, $dest);

To make the upload permanent, the file will have the _tmp removed from
its name.

15. Indicate the success to the user and clear the values:

128 CHAPTER 5

echo '<h4>The PDF has been added!</h4>';
$_POST = array();
$_FILES = array();
unset($file, $_SESSION['pdf']);

All these values need to be cleared so that the form doesn’t display any
existing values.

16. If there was a problem with the query, trigger an error:

 } else { // If it did not run OK.
 trigger_error('The PDF could not be added due to a system error.

➥We apologize for any inconvenience.');
 unlink ($dest);
 }

There should not be a database query error on a live, tested site, but
just in case, an error will be triggered and the file will be deleted (so that
there’s no file on the server without a corresponding database reference).

17. Complete the processing part of the script:

 } // End of $errors IF.
} else { // Clear out the session on a GET request:
 unset($_SESSION['pdf']);
} // End of the submission IF.

The else clause applies if this is a GET request. In that case, the script
should clear any potential value that might be in $_SESSION['pdf']. This
is really only necessary in cases where the administrator uploaded a file
but had other errors, then clicked the Add PDF link again.

18. Begin the form:

require ('includes/form_functions.inc.php');
?><h3>Add a PDF</h3>
<form enctype="multipart/form-data" action="add_pdf.php"
➥method="post" accept-charset="utf-8">
 <input type="hidden" name="MAX_FILE_SIZE" value="1048576"
/>

This form will use the same create_form_input() function for the title and
the description. The form must use the enctype property and the POST
method in order to handle the file data. The MAX_FILE_SIZE value is a
suggestion to the browser, which may or may not be ignored.

19. Create the first two elements:

MANAGING SITE CONTENT 129

<fieldset><legend>Fill out the form to add a PDF to the site:</legend>
 <p><label for="title">Title</label>

➥<?php create_form_input('title', 'text', $add_pdf_errors); ?></p>
 <p><label for="description">Description

➥</label>
<?php create_form_input('description', 'textarea',
➥$add_pdf_errors); ?></p>

20. Start creating the file input:

<p><label for="pdf">PDF</label>

<?php echo '<input type="file" name="pdf" id="pdf"';

There’s no file input generation in the create_form_input() function
because there’s only one file input in the entire site (and because file
inputs are quite different than text, password, or textareas). Because a
fair amount of PHP logic will be required to properly handle the file input,
the input code itself is begun by a PHP echo statement. The statement
does not close the input element yet so that an error class may be added
(in the next step).

21. Check for an error:

if (array_key_exists('pdf', $add_pdf_errors)) {
 echo ' class="error" /> '

➥. $add_pdf_errors['pdf'] . '';
} else { // No error.
 echo ' />';

If there was an error, the error class is added to the input—so that it’ll be
outlined in red—and the error message is added after the input. If there
was no error, then the input is closed.

22. If the file already exists, indicate that to the user:

if (isset($_SESSION['pdf'])) {
 echo " Currently '{$_SESSION['pdf']['file_name']}'";
}

This is still part of the else indicating there’s no error with this input. That
would be the case if the form was loaded for the first time or if it has been
submitted, but there were errors with the other form elements. In this
latter case, a file has been uploaded already and the form should indicate
the existence of that file to the user (see Figure 5.13).

23. Complete the file input:

} // end of errors IF-ELSE.
?> <small>PDF only, 1MB Limit</small></p>

tip

If the user sees the form again

because of an error and then

completes the form while

submitting a new PDF, the new

PDF file will be used in place of

the old one.

130 CHAPTER 5

24. Complete the form and the page:

 <p><input type="submit" name="submit_button" value="Add This
➥PDf" id="submit_button" class="formbutton" /></p>
</fi eldset>

</form>
<?php
include ('./includes/footer.html');
?>

25. Save the script and test the PDF upload process.

Figure 5.15 shows the result of successfully adding a new PDF.

DISPLAYING PDF CONTENT
Just like the HTML content, displaying the PDF content on the site requires
two scripts. The fi rst, pdfs.php, just lists every PDF in the catalog, along with
a link to view the PDF itself. The second, view_pdf.php, retrieves and displays
a specifi c PDF, but only after validating the user.

Creating pdfs.php
The pdfs.php page works much like category.php, except that it does not
receive an ID value in the URL. It just displays every PDF (Figure 5.16).

Figure 5.16

1. Create a new PHP script in your text editor or IDE to be named pdfs.php and
stored in the Web root directory.

2. Include the confi guration fi le:

<?php
require ('./includes/confi g.inc.php');

3. Require the database connection:

require(MYSQL);

note

Through incomplete use of this

script, it is possible to end up

with extraneous fi les on the

server, but their names will end

with _tmp and can be deleted

manually.

Figure 5.15

MANAGING SITE CONTENT 131

4. Include the header file and display a page header:

$page_title = 'PDFs';
include ('./includes/header.html');
echo '<h3>PDF Guides</h3>';

5. Print a message if the user is not active:

if (isset($_SESSION['user_id']) && !isset($_SESSION['user_not_
➥expired'])) {
 echo '<p class="error">Thank you for your interest in this content.

➥Unfortunately your account has expired. Please
➥renew your account in order to view any of the PDFs listed
➥below.</p>';

} elseif (!isset($_SESSION['user_id'])) {
 echo '<p class="error">Thank you for your interest in this content.

➥You must be logged in as a registered user to view any of the PDFs
➥listed below.</p>';

}

The messages differ slightly from those in category.php, but the checks on
the user’s status are the same.

6. Get the PDFs:

$q = 'SELECT tmp_name, title, description, size FROM pdfs ORDER BY
➥date_created DESC';
$r = mysqli_query($dbc, $q);
if (mysqli_num_rows($r) > 0) {

The query returns the temporary name, title, and description for each PDF
in the database, in order from newest to oldest.

7. Fetch and display every PDF:

while ($row = mysqli_fetch_array ($r, MYSQLI_ASSOC)) {
 echo "<div><h4>

➥{$row['title']} ({$row['size']}kb)</h4><p>{$row['description']}
➥</p></div>\n";

} // End of WHILE loop.

Each record is displayed as its own <DIV>, with the title as a linked <H4>,
followed by the size of the file. The file’s description comes next. Each
link points to view_pdf.php, passing along the temporary name—the
40-character hash—in the URL.

8. Complete the page:

132 CHAPTER 5

} else { // No PDFs!
 echo '<p>There are currently no PDFs available to view. Please check

➥back again!</p>';
}
include ('./includes/footer.html');
?>

This message will be shown if there are no PDFs in the database, which will
hopefully never be the case.

9. Save the script and test pdfs.php in your Web browser.

You obviously can’t test any of the links until you create view_pdf.php first.

Creating view_pdf.php
The user arrives at this final script after clicking a link in pdfs.php. This page’s
sole purpose is to display the PDF to the user, provided that their account is
active.

1. Create a new PHP script in your text editor or IDE to be named pdf.php and
stored in the Web root directory.

2. Include the configuration file and the database connection:

<?php
require ('./includes/config.inc.php');
require(MYSQL);

3. Create a flag variable:

$valid = false;

This script will have many tests before getting to the point of actually dis-
playing the PDF, so it will start by assuming that something’s wrong.

4. Validate the PDF ID:

if (isset($_GET['id']) && (strlen($_GET['id']) == 40) &&
➥(substr($_GET['id'], 0, 1) != '.')) {
 $file = PDFS_DIR . $_GET['id'];
 if (file_exists ($file) && (is_file($file))) {

The PDF identifier should come into this script through the URL. The ID
won’t be an integer, but it must be exactly 40 characters long, so that’s a
good first thing to look at. A common way to hack a system such as this
would be for the malicious user to submit ../path/to/something/useful
as the value, where the .. moves up a directory. The intention would be to
have the PHP script grab and display a sensitive document, such as a server

MANAGING SITE CONTENT 133

password file. To prevent that from happening, the third part of the condi-
tional checks that the first character isn’t a period.

If all three conditions are true, then an absolute path to the file is defined.
Next, the file is tested to confirm that it exists and is a file (as opposed to
a directory).

5. Get the PDF information from the database:

$q = 'SELECT title, description, file_name FROM pdfs WHERE
➥tmp_name="' . mysqli_real_escape_string($dbc, $_GET['id']) . '"';
$r = mysqli_query($dbc, $q);
if (mysqli_num_rows($r) == 1) { // Ok!
 $row = mysqli_fetch_array($r, MYSQLI_ASSOC);
 $valid = true;

The query fetches the PDF’s title, description, and original file name. The
first two pieces of information will be used if the current viewer doesn’t
have permission to see the PDF itself. If one row was returned, the data is
retrieved and the $valid variable is changed to true.

6. Only display the PDF to a user whose account is active:

if (isset($_SESSION['user_not_expired'])) {
 header('Content-type:application/pdf');
 header('Content-Disposition:inline;filename="' . $row['file_name']

➥. '"');
 $fs = filesize($file);
 header ("Content-Length:$fs\n");
 readfile ($file);
 exit();

If the user’s account is active, the PDF should be loaded in the browser. To
do that in PHP, start by sending a header indicating the content type. Then
indicate the content’s disposition—inline, meaning show the file in the
browser—and what its filename is. For the file’s name, the original file name
is provided. Next, the size of the file is indicated, using the actual file’s size,
not the database-stored approximation. Finally, the readfile() function
reads in all the binary data and sends it to the browser. The script is then
terminated.

7. For inactive users, show the content’s description:

} else { // Inactive account!
 $page_title = $row['title'];
 include ('./includes/header.html');
 echo "<h3>$page_title</h3>"; (continues on next page)

note

Different browsers will use the

filename disposition differently.

134 CHAPTER 5

 if (isset($_SESSION['user_id'])) {
 echo '<p class="error">Thank you for your interest in this

➥content. Unfortunately your account has expired. Please
➥renew your account in order to
➥access this fi le.</p>';

 } else {
 echo '<p class="error">Thank you for your interest in this

➥content. You must be logged in as a registered user to view this
➥fi le.</p>';

 }
 echo "<div>{$row['description']}</div>";
 include ('./includes/footer.html');
} // End of user IF-ELSE.

If the user is logged in but inactive (that is, their account has expired),
they’ll be asked to renew their account (Figure 5.17). If the user is not
logged in, they’ll be asked to log in (Figure 5.18).

Figure 5.17 Figure 5.18

 8. Complete the conditionals:

 } // End of mysqli_num_rows() IF.
 } // End of fi le_exists() IF.
} // End of $_GET['id'] IF.

 9. Indicate a problem and complete the page:

if (!$valid) {
 $page_title = 'Error!';
 include ('./includes/header.html');
 echo '<p class="error">This page has been accessed in error.</p>';
 include ('./includes/footer.html');
}
?>

If the page did not receive an ID value corresponding to a database record
and an actual fi le on the server, the user will see an error message like
that in Figure 5.9.

10. Save the fi le and test it by clicking a link on pdfs.php.

This page intentionally left blank

6 USING
PAYPAL

The fi nal, yet most important step in the Knowledge is Power site is to inte-
grate PayPal so that the site may actually make money. It’s not hard to use
PayPal, but it’s such a critical step that I want to give it extra attention. And, as
with many technologies, wading through all the documentation and possible
uses can be the hardest part.

In this chapter, you’ll learn about the current state of PayPal and what payment
options PayPal offers. The next step is to sign up for PayPal’s Sandbox feature,
so that you can create dummy PayPal accounts for testing purposes. After that,
you can complete the PHP scripts required by the site and completely test the
end result. Once you’re satisfi ed that everything is working properly with your
test accounts, you will repeat some of these steps for a live PayPal account,
quickly update a couple of pages, and you’re good to go!

ABOUT PAYPAL
PayPal is perhaps the biggest payment solution provider around, and there’s
good reason to consider using it with your e-commerce sites. From a develop-
ment standpoint, it’s quite simple to integrate PayPal. From the customer’s
point of view, PayPal is a trusted name, which makes a big difference in a
user’s willingness to part with their money. With other providers, you may be
able to create a more professional experience or save money on transaction
fees, but don’t dismiss PayPal, just because it may be the “lowest common
denominator” of solutions.

USING PAYPAL 137

One frequent misconception about PayPal is that customers must also have
a PayPal account. If a customer does have a PayPal account, they can make
a payment using it. But both PayPal users and non-PayPal users can also pay
with their credit cards through PayPal’s system. A second misconception is
that PayPal transactions always go through the PayPal site. This used to be the
case, but PayPal has two primary payment solutions now, one of which allows
you to handle customer transactions without the user leaving your site.

PayPal offers:

■ No setup fees

■ No monthly costs for the basic payment option

■ Fraud protections

■ Shipping calculators and shipping label service

■ Tax calculators

■ Availability in 190 countries and with 21 currencies

■ Currency conversions

■ International tax and shipping calculators

■ Ability to send invoices

■ Inventory management

■ A virtual terminal to manually process transactions

■ Integration with popular third-party e-commerce systems, such as
 osCommerce and ZenCart

What PayPal doesn’t do, however, is transfer money directly into your bank
account. The funds received from transactions get applied to your PayPal
account. You can then go into your PayPal account and transfer money to
your registered bank account, which will probably take a couple of days to go
through. At the PayPal Web site, you can also view monthly reports, search
through your transaction history, and even allow different types of users to
access the PayPal account (for example, a low-level user may only be allowed
to print shipping labels without seeing any payment details).

tip

PayPal has tons of documenta-

tion and videos explaining the

various programs, features, and

fees. Almost too much, really…

tip

You must have a Premiere or

Business PayPal account in

order to receive money.

note

All the information about PayPal

in this chapter is current as of

this writing and is subject to

change.

138 CHAPTER 6

Payment Solutions
PayPal offers two base payment solutions, named Website Payments Standard
and Website Payments Pro. Both solutions allow you to accept payment from
PayPal users or via credit cards. Both solutions also allow you to use a shop-
ping cart, whether a custom one of your own devising or a third-party system.

The Standard option is pretty much what people historically think of as PayPal:
The customer starts off on your site and then heads to the PayPal site to
complete the transaction, after which they can return to your site. There is no
monthly fee for this option, and it’s easy to set up: You just need your own
PayPal account. Although you can customize the PayPal experience to some
degree, it will be clear to the customer that they are no longer on your site, and
the charge on the customer’s credit card statement will use a combination of
PayPal and your business’s name.

The Pro payment solution is like other payment gateways in that the customer
does not need to leave your site to complete the transaction (that is, to pay
you). The Pro system is $30 per month and you have to complete a credit
application to qualify (you’ll need your own PayPal account as well, of course).
The Pro system will also let you customize the fraud protection, but you will
need to take extra steps to protect the credit card data because it’ll be tempo-
rarily handled on your system (stricter PCI compliance will be necessary).

The transaction fees, regardless of the solution type, are 30 cents per transac-
tion. You’ll also pay a percentage of the transaction total, depending upon how
much business you do per month (Table 6.1).

Table 6.1 PayPal Fees

Monthly Sales Per Transaction Fee

$0 to $3,000 2.9% + $0.30

$3,000.01 to $10,000 2.5% + $0.30

$10,000.01 to $100,000 2.2% + $0.30

over $100,000 1.9% + $0.30

In this chapter, you’ll use the Website Payments Standard solution. You can
assume that most of what I say and do throughout the rest of this chapter
applies only to it. The next e-commerce site, Coffee (in Chapter 7, “Second
Site: Structure and Design”), will use another payment gateway. That process
and code is comparable to using PayPal’s Website Payments Pro solution.

note

There’s no guarantee a user

will immediately return to your

site after completing the PayPal

process.

note

All prices in this chapter and

book are in United States dollars.

tip

If your transactions normally

average less than $10 each,

you can save money by using

PayPal’s micropayments rates.

note

Currency conversions and pay-

ments from other countries have

extra fees.

USING PAYPAL 139

Payment Buttons
The Website Payments Standard system relies upon using PayPal’s tools to
generate HTML code specific for your e-commerce situation. By filling out a
form and answering a few questions, PayPal will create some HTML that you
can drop into the right spot on your Web site. The code itself creates an HTML
button that, when clicked, takes the user to PayPal.

There are different types of default buttons for different situations:

■ Buy Now, for selling single items

■ Add to Cart, for selling multiple items

■ Subscribe, for selling subscriptions

■ Donate, for accepting donations

You’ve no doubt seen examples of these buttons many times over (Figure 6.1).
The Buy Now and Add to Cart buttons also let you set different attributes for
products and adjust the price based upon the selected attributes. For example,
if you sell software through your site, the customer might be allowed to select
the number or type of licenses to purchase.

You can start with one of these default buttons, customize it to your situation,
and even use a different image for the button itself. As a security feature, the
button only passes identifiers—an indicator of your account and a button
ID—to the PayPal Web site. All the particulars, such as the price to be charged,
are stored within PayPal’s system, meaning that a hacker can’t manipulate
those values.

For this project, you’ll use the subscribe option, because the site is selling
subscriptions to its content. The subscribe feature comes in two formats:

■ Recurring payments via a PayPal account

■ Recurring payments without a PayPal account

The latter allows anyone to use a credit card to make the purchase; there is a
$19.99/month fee (to you, the merchant) for this service.

Once the user subscribes via PayPal, they’ll automatically be billed again when
the time period you establish is up. From a business perspective, a recurring
payment is great, because you continue to get your money until the customer
cancels the recurring payment. You should indicate this to the user, though,
and perhaps let them know their account is about to expire and that they’ll
be billed again prior to that occurring (or else you’ll have to be prepared to
process some refunds).

tip

Buttons you’ve created can be

customized later, like to change

the price charged for an item.

Figure 6.1

tip

You can even offer trial periods

as part of a subscription,

although you won’t in this site.

tip

You could create a script that

emails any user whose account

is about to expire within the next

week. Then execute the script

once or twice a week.

tip

Users can see what automatic

billings they have agreed to

under the My preapproved

payments section of their PayPal

Profile page.

140 CHAPTER 6

TESTING PAYPAL
As part of the process of testing a new Web site, you most certainly want to
test the payment-handling system. PayPal, like most payment solutions, offers
a playground environment that can pretend to handle transactions without
any real money changing hands. With PayPal, you test transactions using the
PayPal Sandbox. So let’s start by setting that up.

THE MANY FACES OF PAYPAL

There are three different PayPal-related sites that you’ll deal with. The fi rst and most

obvious is the real PayPal, at www.paypal.com. Before the site goes live, you’ll need a

PayPal account there, representing the site. You’ll recreate your button there, and you’ll

see your transactions there.

There are two sites used as part of the testing process. The fi rst is the Sandbox, at

http://developer.paypal.com. To create and use test accounts, you’ll register at the

Sandbox with a real email address, and then log in. To use those sample accounts to

test your site, you’ll need to remain logged in to the Sandbox (in the same browser).

The last site you’ll use is the Sandbox Test Site at www.sandbox.paypal.com. This

site looks and functions exactly like the real PayPal, except that it says “Test Site”

and “Sandbox” here and there.

As you read the rest of this chapter, pay close attention to which PayPal site I refer-

ence at each step. Make sure that the URL in your browser matches each instruction

appropriately.

Registering at the PayPal Sandbox
The PayPal Sandbox is a replication of the real PayPal, but you create and
control the cast of characters. To use it, you’ll need to register with a real email
address and password to create a Sandbox account, then you can use that
account to create fake buyers and sellers.

1. Go to https://developer.paypal.com.

2. If you do not already have a PayPal Sandbox account (which is not the same
as a PayPal account), create one by clicking Sign Up Now.

3. Complete the simple registration form (Figure 6.2).

PayPal recommends that you use a different email address and password
than your actual PayPal account, for security sake.

www.paypal.com
http://developer.paypal.com
www.sandbox.paypal.com
https://developer.paypal.com

USING PAYPAL 141

Figure 6.2

4. Check your email.

After registering, you’ll receive an email with a link that you must click to
activate your account.

5. Click the link in the email to activate the account.

6. Log in to the PayPal Sandbox using your email address and password.

Creating Test Accounts
Once you’ve registered and logged in to the Sandbox, the next step is to create
at least two accounts: one merchant (the business) and one personal (the
customer).

1. Log in to the PayPal Sandbox, if you have not already.

2. Click the Test Accounts link.

At the time of this writing, there are only four main areas of the Sandbox,
aside from the home page.

3. Click the Preconfigured link beside the Create Account label (Figure 6.3).

Figure 6.3

tip

You can ignore the fact that Fig-

ure 6.3, and perhaps your own

experience, has PayPal showing

Website Payments Pro.

142 CHAPTER 6

You can create test accounts in two ways: preconfigured or manually. If you
choose preconfigured, then the site will generate almost all the account
information for you automatically, such as the email address, password,
physical address, and more. If you choose the manual option, you’ll need to
provide all this information.

4. On the Create a Sandbox Test Account page, create a Seller account
 (Figure 6.4).

Figure 6.4

You’ll need to indicate the seller’s country and the account type first. For
the login email, use any meaningful six characters, and please note that
this is not an actual email address; a temporary one will be created by the
Sandbox using this value. You may want to use just “seller.” The password
will be generated for you automatically, and you can leave it as is.

It’s up to you whether to add a credit card and/or a bank account balance
or not. For the merchant, neither is required, although by adding one or
both, the account will be marked automatically as verified (in the PayPal
Sandbox world).

5. Click the Create Account button.

6. Repeat Steps 3-5 for one or more buyer accounts.

For the buyers, you’ll need to create one or more with a positive bank
account balance and/or a credit card. For full testing, you can create a
buyer with insufficient funds, too, or buyers from other countries.

tip

Write down every password,

because you will need them for

the test account.

tip

If you create a buyer account

without a credit card or bank

account or with insufficient

funds, that buyer account will

pay using pretend e-checks.

USING PAYPAL 143

Each account you create will be listed on the Test Accounts page (Figure 6.5).

Figure 6.5

Creating a Button
Once you’ve created two or more accounts, you can add a fake PayPal button
to your Web site to simulate the e-commerce transactions. This is arguably the
most important sequence of steps, because you’ll perform these same actions
for real when you take your site live.

1. On the Sandbox Test Accounts page (see Figure 6.5), select the seller
account and click the Enter Sandbox Test Site button.

By taking this step, you’ll be able to enter fake PayPal as one of the test
users. Using the PayPal Sandbox Test Site, you can perform the same tasks
that real PayPal users perform: check account balances, review transactions,
update account details, and, for merchants, create buttons for selling prod-
ucts and services.

2. In the pop-up window that appears, log in using the seller account.

The results of Step 1 will create a pop-up window that looks like the regular
PayPal site, plus the words “Sandbox” and “Test Site” scattered about.
You’ll also see that the email address associated with the account selected
in Step 1 will be entered automatically into the login form.

3. Click the Merchant Services tab.

4. Under Create Buttons, click Subscribe.

5. On the Create PayPal payment button page, enter an item name (Figure 6.6
on the next page).

tip

Once created, an account’s

details can be updated after log-

ging in to the Sandbox Test Site

(using that account), as if it were

a real PayPal account.

tip

In the PayPal Sandbox, all pay-

ments succeed without being

reviewed unless you enable pay-

ment review for an account.

144 CHAPTER 6

Figure 6.6

The button type should be selected automatically (as a subscription). You
may or may not want to change the currency, too.

6. Further down under Step 1 of the form, enter a billing amount and cycle
period (Figure 6.7).

The billing amount is obviously the most important consideration. The
billing cycle is for how long that billing amount covers. You can choose to
have automatic billing stop after two or more cycles, or never.

7. Opt to use your secure merchant account ID (see Figure 6.7).

8. Under Step 2 of the form, make sure that the Save button at PayPal option
is selected (Figure 6.8).

Figure 6.8

9. Under Step 3 of the form, indicate that you don’t need the customer’s
shipping address.

If you were selling a physical product, you’d want the user to confirm the
shipping address in PayPal. You could then use PayPal to generate the
shipping label for you, taking the cost out of the money already trans-
ferred to your account.

10. Also under Step 3 of the form, supply the “cancel” and “finish” URLs, and
select the corresponding check boxes (Figure 6.9).

These two values must point to pages on your server, available via
HTTPS. The two scripts will be created later in this chapter to be named
cancel.php and thanks.php.

11. Click Create Button.

tip

In this first part of the form, you

can also change the text and

look of the button.

Figure 6.7

tip

If you save your button with your

PayPal account, it’ll be more

secure and easier to update.

Figure 6.9

USING PAYPAL 145

12. On the next page, copy the generated code (Figure 6.10).

Figure 6.10

This is the code to be integrated into the site, which you’ll do next.

INTEGRATING PAYPAL
Once you’ve created the test accounts and the PayPal button, you can tie your
site into the fake PayPal. Doing so is a snap:

1. Add the button code where appropriate.

2. Create the thanks.php page.

3. Create the cancel.php page.

There will be a couple of catches, however, so after you integrate and test
PayPal, you’ll learn a way to improve the system.

Updating the Registration Page
With this particular Web site, the user should go to PayPal (by clicking the
button) after successfully completing the registration process. To pull that off,
start by changing the thank you message in register.php so that it tells the
user what to do next:

echo "<h3>Thanks!</h3><p>Thank you for registering! To complete the
➥process, please now click the button below so that you may pay for your
➥site access via PayPal. The cost is $10 (US) per year. Note: When
➥you complete your payment at PayPal, please click the button to return to
➥this site.</p>";

Next, drop in the PayPal-generated code in order to add the button (Figure 6.11):

Figure 6.11

tip

Remember that you can

download all the source

code for this example from

www.DMCInsights.com/ecom/.

www.DMCInsights.com/ecom/

146 CHAPTER 6

echo '<form action="https://www.sandbox.paypal.com/cgi-bin/webscr"
➥method="post">
<input type="hidden" name="cmd" value="_s-xclick">
<input type="hidden" name="hosted_button_id" value=
➥"8YW8FZDELF296">
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/
➥btn/btn_subscribeCC_LG.gif" border="0" name="submit" alt="PayPal -
➥The safer, easier way to pay online!">
<img alt="" border="0" src="https://www.sandbox.paypal.com/en_US/i/
➥scr/pixel.gif" width="1" height="1">
</form>';

The above code should be placed just after the thank you message and before
the footer is included.

There are two more changes that need to be made. First, the original INSERT
query gave the new user access for the next month. Now it should be changed so
that the user’s access is good until yesterday (that is, their account isn’t active):

$q = "INSERT INTO users (username, email, pass, first_name, last_name,
➥date_expires) VALUES ('$u', '$e', '" . get_password_hash($p) . "', '$fn',
➥'$ln', SUBDATE(NOW(), INTERVAL 1 DAY))";

Second, let’s store the user’s new ID value in a session so that their record
may be updated when they return from PayPal. To do so, just add the following
code anywhere after you confirm that mysqli_affected_row($dbc) equals 1:

$uid = mysqli_insert_id($dbc);
$_SESSION['reg_user_id'] = $uid;

I’m specifically naming this reg_user_id instead of user_id so as not to confuse
the system into thinking the user has logged in when they haven’t (the login pro-
cess creates $_SESSION['user_id']). You’ll see $_SESSION['reg_user_id'] used
in thanks.php.

Creating thanks.php
The customer ends up at the thanks.php page after completing their PayPal
order and clicking a button to return to this site. This page needs to update the
database, adding a year of access to the user’s account (Figure 6.12). Here’s
how it might be defined:

USING PAYPAL 147

Figure 6.12

thanks.php
 1 <?php
 2 require ('./includes/config.inc.php');
 3 redirect_invalid_user('reg_user_id');
 4 require (MYSQL);
 5 $page_title = 'Thanks!';
 6 include ('./includes/header.html');
 7 $q = "UPDATE users SET date_expires = ADDDATE(date_expires,

➥INTERVAL 1 YEAR) WHERE id={$_SESSION['reg_user_id']}";
 8 $r = mysqli_query ($dbc, $q);
 9 unset($_SESSION['reg_user_id']);
 10 ?><h3>Thank You!</h3>
 11 <p>Thank you for your payment! You may now access all of the site's

➥content for the next year! Note: Your access to the site will
➥automatically be renewed via PayPal each year. To disable this feature,
➥or to cancel your account, see the "My preapproved purchases"
➥section of your PayPal Profile page.</p>

 12 <?php include ('./includes/footer.html'); ?>

Three key lines are highlighted. First, this script should be accessed only if the
reg_user_id element exists in the session, meaning the page is accessible only
after registering.

Second, the query runs an UPDATE command on the users table, adding one
year to the expiration date for this user.

Third, the $_SESSION['reg_user_id'] element is unset after the query. By tak-
ing this step, the page can be loaded only once. That check prevents hackers
from adding years to their account by just reloading this page.

From a security standpoint, there’s one problem with this script: It assumes
that the user has paid, but you don’t actually know that for certain. If you
register a new account and then change the URL to thanks.php, without going
through PayPal, the net effect will be the same. That would be bad.

note

As a courtesy, the customer is

told that payments will auto-

matically recur and what they

can do to prevent that.

148 CHAPTER 6

From a customer standpoint, there are three problems. First, they’ll be credited
for their purchase only if they return to this page. This puts the responsibility
on the customer, where the responsibility is really yours to make sure they
get what they’ve paid for. Second, there’s no confirmation that the UPDATE
query worked properly (that is, that one row was affected). And third, there’s
no record anywhere associating the customer’s PayPal order with their account
on this site.

All four of these issues will be remedied in a few pages by using something
called IPN.

Creating cancel.php
If the customer cancels the PayPal transaction, they will end up at the
cancel.php page. This page should just indicate to the customer where their
account now stands (Figure 6.13). Here’s how that script might look:

Figure 6.13

cancel.php
 1 <?php
 2 require ('./includes/config.inc.php');
 3 require (MYSQL);
 4 $page_title = 'Oops!';
 5 include ('./includes/header.html');
 6 ?><h3>Oops!</h3>
 7 <p>The payment through PayPal was not completed. You have a valid

➥membership at this site, but you will not be able to view any content
➥until you complete the PayPal transaction. You can do so by clicking on
➥the Renew link after logging in.</p>

 8 <?php include ('./includes/footer.html'); ?>

The important thing is for this script to indicate that:

1. The customer has successfully registered at the site.

2. The customer still can’t access any content.

3. To change #2, the customer should log in and click renew.

tip

The renew process will be

 implemented toward the end

of the chapter.

USING PAYPAL 149

TESTING THE SITE
By this point in time, the site is really very close to being a complete and
real-world e-commerce project. To verify this, let’s test the system as it
 currently stands.

1. Successfully register with the Knowledge is Power site.

If you want, after registering and before Step 2, you could take a look at
the database (using phpMyAdmin or another tool) to confirm that the user
was registered but with a date_expires value in the past. You could also
log in to the site with this new account (in a new browser window or tab) to
confirm this.

2. Click the PayPal button shown on the registration page.

3. On the PayPal site, use one of the test-buyer accounts to log in (Figure 6.14).

Figure 6.14

4. On the next page, click the Agree and Pay button (Figure 6.15).

Figure 6.15

note

You’ll still need to be logged

in to the PayPal Sandbox

(http://developer.paypal.com)

to use the PayPal Sandbox

Test Site.

tip

If you click the Cancel and Return

link, you’ll be taken to the site’s

cancel page.

http://developer.paypal.com

150 CHAPTER 6

5. Once the purchase has been completed, click the Return to… button to
return to the Knowledge is Power site (Figure 6.16).

Figure 6.16

6. Look at the database again, or log in, to confirm that the expiration date
now works.

7. Log in to the PayPal Sandbox Test Site using the seller account to view
the orders.

USING IPN
The PayPal system as written will work, but unfortunately the site only reacts
to a user action: If the user doesn’t, for whatever reason, return to your site
(before the session expires), they won’t be credited with a year of access. This
is pretty bad form, because the user’s action of sending you money via PayPal
should be sufficient. Granted, you can go into PayPal’s system and see every
credit you’ve received, but then it would be up to you to follow through and the
user still can’t access the site’s content until the circuit has been completed.

Fortunately, PayPal thought of this and created something called Instant
Payment Notification (IPN). IPN, when set up, will notify a Web site when a
payment has been processed. This isn’t “notify” in the sense of sending you
an email—PayPal will already do that, but rather a server-to-server commu-
nication that neither the customer nor the site’s administrator will witness.
Through these communications, the e-commerce site can verify the transaction
and update the database accordingly. More importantly, this communication
will take place automatically no matter what the customer does after complet-
ing their order within PayPal.

Integrating IPN is a two-part process: enabling it on a PayPal account and
creating the listening script on the server.

tip

The PayPal Sandbox will not

actually send emails, but the

emails that would be sent are

viewable in the Sandbox’s Test

Email section.

tip

IPN is triggered for any kind of

transaction, including purchases,

refunds, disputes, and more.

tip

An alternative to IPN is PDT (Pay-

ment Data Transfer). Through

PDT, you can confirm the results

of a PayPal order, but PDT is only

invoked when the user returns to

your site.

USING PAYPAL 151

Enabling IPN
The first part of the two-part process to integrate IPN is enabling IPN in your
PayPal account.

1. Log in to the PayPal Sandbox Text Site using the steps already outlined.

You’ll need to log in using your merchant account.

2. Click Profile.

3. Click Instant Payment Notification Preferences, under Selling Preferences.

4. On the subsequent page, enter the Notification URL (Figure 6.17).

Figure 6.17

The notification URL needs to be a page on your site accessed via HTTPS. I’m
naming it ipn.php, but you may want to use a more original name than that.

5. Select the Receive IPN messages (Enabled) option.

You can disable IPN through these preferences by selecting the Do not
receive IPN messages (Disabled) option.

6. Click Save.

Updating the Registration Script
Yes, yes: I said that integrating IPN was a two-part process and here I am intro-
ducing a third. I stand by my two-part statement because this third step may or
may not be necessary. I’ll explain…

For the user to be properly credited, there needs to be a way to tie their
account on the e-commerce site to the PayPal purchase. In the previous
register.php-PayPal-thanks.php system, the tie-in was accomplished by storing
the user’s ID value in a session and then retrieving it on the thanks.php page.
Since this new version of the process won’t rely upon the thanks.php page to per-
form the update, the user must be tracked in another way. To do so, the updated
site will use IPN to pass all sorts of information back to the e-commerce site.

152 CHAPTER 6

One theoretical option would be to use the customer’s email address
to update the account. This is information that the IPN will return in the
$_POST['payer_email'] variable. I say “theoretical,” because if the customer
registered with one email address but signed in to PayPal with another, this
won’t work. My more foolproof solution is to pass the user’s ID along to PayPal
so that PayPal may return it as part of the IPN data. Here’s how register.php
should be altered to implement this technique:

1. Remove the line that stored the user ID in the session.

2. Add the following code to the PayPal form:

<input type="hidden" name="custom" value="' . $uid . '">

This code is output by an echo statement as part of the larger form and PayPal
button. The code creates a hidden form input with a name of custom. You must
use that exact name for the input, because custom is a special way to pass
any data to PayPal with the express intent of having it returned to the site. The
value is the user’s ID, already determined by calling mysqli_insert_id().

While you are expanding the code and functionality, go ahead and pass the
user’s email address to PayPal as well, so that the PayPal login form will be
prepopulated with it (and this may also be usable as a fallback way to connect
site users with PayPal transactions). There are many hidden-form inputs that
PayPal will recognize, like first_name, last_name, and email. Here’s the new
echo statement in register.php:

echo '<form action="https://www.sandbox.paypal.com/cgi-bin/webscr"
➥method="post">
<input type="hidden" name="cmd" value="_s-xclick">
<input type="hidden" name="custom" value="' . $uid . '">
<input type="hidden" name="email" value="' . $e . '">
<input type="hidden" name="hosted_button_id" value=
➥"8YW8FZDELF296">
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/
➥btn/btn_subscribeCC_LG.gif" border="0" name="submit" alt="PayPal -
➥The safer, easier way to pay online!">
<img alt="" border="0" src="https://www.sandbox.paypal.com/en_US/i/
➥scr/pixel.gif" width="1" height="1">
</form>
';

For the email value, you’ll see that I’m using the $e variable, which would have
just been used in the INSERT query.

USING PAYPAL 153

Creating the IPN Script
The next part of the process of implementing IPN is the listener script. The IPN
listener script—the file on the e-commerce site with which PayPal will auto-
matically and behind-the-scenes communicate—is clearly important and is
accordingly complex. Most of the code in this script, which I’ll explain in detail,
was suggested by PayPal. The process goes like this:

1. When this page is requested, it must immediately confirm the request with
PayPal. This keeps the script from being fraudulently used.

2. The page reads in the response from PayPal.

3. The page validates and validates and validates the response.

4. If the data is valid, the database is updated.

What this script does not have to do is generate any HTML because it’ll never
be run through a Web browser.

1. Create a new PHP script in your text editor or IDE to be named ipn.php (or
something more original) and stored in the Web root directory:

<?php
require ('./includes/config.inc.php');

This script needs access to the configuration file for the purposes of error
reporting and connecting to the database.

2. Start by creating a request variable:

$req = 'cmd=_notify-validate';

The $req variable is first assigned the cmd=_notify-validate string value.
This value indicates the command being made to PayPal (that is, the pur-
pose for the communication).

3. Add each received key=value pair to the request:

foreach ($_POST as $key => $value) {
 $value = urlencode(stripslashes($value));
 $req .= "&$key=$value";
}

The confirmation of the request needs to contain all the data that this script
originally received via POST. For each element in $_POST, a key=value pair
is added to the $req variable.

4. Open a socket connection to PayPal:

$fp = fsockopen ('ssl://www.sandbox.paypal.com', 443, $errno, $errstr,
➥30); // Test

tip

For every transaction, PayPal

will continue requesting an

IPN script until the request is

acknowledged.

154 CHAPTER 6

This is a bit complicated and may be new to you. The PayPal request will
be made using the fsockopen() function, which opens a socket connec-
tion. The function is used similarly to fopen(), except that the code will be
reading from and writing to another computer through a socket connection,
instead of from and to a file. The address to connect to for testing purposes
is ssl://www.sandbox.paypal.com, using port 443. The $errno and $errstr
variables will store any errors that occurred during the connection process.
The last argument in the function tells the script to take up to 30 seconds to
make the connection.

When the site goes live, the connection will be made to just
ssl://www.paypal.com, with the other settings the same:

$fp = fsockopen ('ssl://www.paypal.com', 443, $errno, $errstr, 30);

5. If no connection was made, trigger an error:

if (!$fp) {
 trigger_error('Could not connect for the IPN!');

If the $fp variable does not have a positive value, then no connection was
made and an error should be triggered. The assumption is that the site is
live at this point, so the error is sent in an email to the administrator. Other-
wise the error messages would be printed out, for no one to see.

The $errno and $errstr variables might provide clues as to what the problem
was (and they’ll be available through the backtrace in the error handler.)

6. If a connection was made, send the request to PayPal:

} else {
 $header = "POST /cgi-bin/webscr HTTP/1.0\r\n";
 $header .= "Content-Type: application/x-www-form-urlencoded\r\n";
 $header .= "Content-Length: " . strlen($req) . "\r\n\r\n";
 fputs ($fp, $header . $req);

The first three lines define headers to include with the request. The first
indicates that a POST request should be made to /cgi-bin/webscr using the
HTTP 1.0 protocol. The second line says that the content type will be URL-
encoded form data. The third line indicates the length of the request.

The last line sends the headers and request data to PayPal (it “puts” it to
PayPal’s server).

7. Read in the response:

while (!feof($fp)) {
 $res = fgets ($fp, 1024);

This code is similar to what you might use to read from a file, but instead
the script is reading in the response from PayPal. The while loop is true

tip

Alternatively, you could define

the live and test URLs in the

configuration file, so the URL is

changed automatically when the

site goes live.

tip

As a useful debugging or logging

tool, you could write every IPN

transaction to a text file. The

ipn_log.php example file in the

downloadable scripts does this.

www.sandbox.paypal.com
www.paypal.com
www.paypal.com

USING PAYPAL 155

until the script has reached the end of the file of the open connection (that
is, the loop is true until there’s nothing more to be read). Then the fgets()
function fetches up to one kilobyte of data (1,024 bytes) or until the end of
the line—into the $res variable (short for response).

8. If the response equals VERIFIED, process the response:

if (strcmp ($res, "VERIFIED") == 0) {

After reading in a line of the PayPal response, examine it to confirm that
a valid request is being made. If the just-read line of the response equals
VERIFIED (case-sensitive), the request is valid.

9. Check for the right values:

if (isset($_POST['payment_status'])
&& ($_POST['payment_status'] == 'Completed')
&& ($_POST['receiver_email'] == 'you@example.com')
&& ($_POST['mc_gross'] == 10.00)
&& ($_POST['mc_currency'] == 'USD')
&& (!empty($_POST['txn_id']))
) {

Just looking for a verified response is not sufficient. For the transaction
to be official enough to warrant updating the site’s database, several
other qualities should exist. For starters, the payment_status needs to
equal Completed, because there will be other possible statuses that don’t
warrant changes (such as Pending). You should confirm that the pay-
ment was received by the proper email address (the one that matches the
e-commerce site’s merchant PayPal account). This check prevents the site
from taking action based upon a payment that didn’t go to it (because
someone attempted a hack).

Next, the mc_gross and mc_currency values should match the gross cost
and currency for the transaction. This keeps someone from trying to pay
you just one cent or 10.00 Thai baht (equivalent to 30 cents as I write this).
Finally, you want to make sure that the transaction ID is not empty.

All these values are available in $_POST, because they’re part of the origi-
nal request of this script.

10. Check for this transaction in the database:

require (MYSQL);
$txn_id = mysqli_real_escape_string($dbc, $_POST['txn_id']);
$q = "SELECT id FROM orders WHERE transaction_id='$txn_id'";
$r = mysqli_query ($dbc, $q);
if (mysqli_num_rows($r) == 0) {

note

The result of calling strcmp()

must be equal to the num-

ber zero, not the lowercase

letter “O.”

tip

Validating the values posted to

the script are key to preventing

users from defrauding your site.

note

Make sure you use your actual

PayPal-associated email

address for the receiver_email

 comparison.

tip

If you change any of your site’s

parameters, such as the cost of

a subscription, you’ll need to

change this script, too.

156 CHAPTER 6

It’s possible, through nefarious actions or normal operations, that the IPN
script might get a repeated request for the same transaction. To prevent
such an occurrence from crediting a user’s account again, this query
checks if the transaction ID is already listed in the orders table. If the
query returns no records, then this is a new, proper transaction.

11. Add this transaction to the orders table:

$uid = (isset($_POST['custom'])) ? (int) $_POST['custom'] : 0;
$status = mysqli_real_escape_string($dbc, $_POST['payment_status']);
$amount = (float) $_POST['mc_gross'];
$q = "INSERT INTO orders (user_id, transaction_id, payment_status,
➥payment_amount) VALUES ($uid, '$txn_id', '$status', $amount)";
$r = mysqli_query ($dbc, $q);
if (mysqli_affected_rows($dbc) == 1) {

First, three more values are made safe to use in a query. You’ll see here a
reference to $_POST['custom'], which is the user’s ID originally stored in
the register.php script, then passed to PayPal, and now returned home
like a loyal pet. This value gets passed back to the site, via IPN, whether
the customer immediately returns to the site or not.

The orders table also records the transaction ID, payment status, and
payment amount.

12. Update the users table:

if ($uid > 0) {
 $q = "UPDATE users SET date_expires = IF(date_expires > NOW(),
➥ADDDATE(date_expires, INTERVAL 1 YEAR), ADDDATE(NOW(),
➥INTERVAL 1 YEAR)), date_modified=NOW() WHERE id=$uid";
 $r = mysqli_query ($dbc, $q);
 if (mysqli_affected_rows($dbc) != 1) {
 trigger_error('The user\'s expiration date could not be updated!');
 }
}

Finally, the script is at the point where the user’s account can be updated
(assuming a valid user ID). To do that, an UPDATE query is run, provid-
ing a new value for both the date_expires column and date_modified.
I improved the updating of the date_expires value to allow for users
whose accounts lapsed and were later renewed.

In the original thanks.php, the query added a year to the current
date_expires value. But if the date_expires value is in the past, the user
would be credited a year from that date in the past: not a full year at all.
So instead, the new value for date_expires will be a year from its current

note

The $uid variable is

assigned the number zero

if $_POST['custom'] is

not set.

tip

As an extra check, you could

confirm that $_POST['custom']

is a valid integer.

tip

As written, I’m only logging suc-

cessful, new transactions in the

orders table, but you could eas-

ily modify the script to log every

IPN request, but still only update

the users table for successful,

new ones.

USING PAYPAL 157

value, if its current value is greater than NOW(), or it will be a year from
now, otherwise.

If one row was not affected by the query, an error is triggered.

13. Complete several conditionals:

 } else { // Problem inserting the order!
 trigger_error('The transaction could not be stored in the orders

➥table!');
 }
 } // The order has already been stored!
} // The right values don't exist in $_POST!

The else clause applies if the order couldn’t be inserted into the orders
table, in which case an error needs to be triggered. The two other curly
brackets close earlier IF conditionals, but take no further actions.

14. If the PayPal response is INVALID, log the request:

} elseif (strcmp ($res, "INVALID") == 0) {
 // Log for further investigation.
}

If this is an invalid request, as opposed to a verified one, you may want
to trigger an error or log the request so that you can investigate whether
someone is trying to manipulate the system.

15. Complete the remaining control structures and close the socket
 connection:

 } // End of the WHILE loop.
 fclose ($fp);
} // End of $fp IF-ELSE.

16. Complete the script:

?>

17. Save the file.

Don’t test it quite yet: there’s still one more step in this two-step incorporation
of IPN!

Updating the Thanks Script
And now there’s Step 4 in the two-part series on integrating IPN (math is not
my strong suit). With the current version of thanks.php, if the customer suc-
cessfully goes through PayPal and returns to the site, their expiration date will

158 CHAPTER 6

be updated twice: once in thanks.php and once in ipn.php. To fix that, remove
or comment out the following lines of code:

redirect_invalid_user('reg_user_id');
$q = "UPDATE users SET date_expires = ADDDATE(date_expires, INTERVAL 1
➥YEAR) WHERE id={$_SESSION['reg_user_id']}";
$r = mysqli_query ($dbc, $q);
unset($_SESSION['reg_user_id']);

Now you can test the new system by repeating the steps outlined in the
 “Testing the Site” section of this chapter.

RENEWING ACCOUNTS
The last addition to the site that must be created is the ability to renew an
account. Given the recurring payment system setup within PayPal, there are
only two situations in which a customer might need to renew their account:

■ The customer registered but did not complete payment at PayPal.

■ The customer registered and completed payment at PayPal, but later
canceled the recurring payment and now wants to renew the account
some time after it has expired.

A renewal page should only be accessible to logged-in users and should dis-
play the same PayPal button code that the registration page does. Everything
else about the process would be exactly the same. Here’s renew.php:

renew.php
 1 <?php
 2 require ('./includes/config.inc.php');
 3 redirect_invalid_user();
 4 $page_title = 'Renew Your Account';
 5 include ('./includes/header.html');
 6 require (MYSQL);
 7 ?><h3>Thanks!</h3><p>Thank you for your interest in renewing your

➥account! To complete the process, please now click the button below
➥so that you may pay for your renewal via PayPal. The cost is $10 (US)
➥per year.</p>

 8
 9 <form action="https://www.sandbox.paypal.com/cgi-bin/webscr"

➥method="post">
 10 <input type="hidden" name="cmd" value="_s-xclick">

USING PAYPAL 159

 11 <input type="hidden" name="custom" value="<?php echo $_SESSION
➥['user_id']; ?>">

 12 <input type="hidden" name="hosted_button_id"
value="8YW8FZDELF296">

 13 <input type="submit" name="submit_button" value="Renew →"
➥id="submit_button" class="formbutton" />

 14 </form>
 15 <?php include ('./includes/footer.html'); ?>

To show you something different and to make the button more like the rest of
the site, I changed the button itself from an tag, pointing to a file on
PayPal’s server, to a submit input with the same class used for other submit
buttons on the e-commerce site. Figure 6.18 shows the result. This change
doesn’t affect the PayPal system at all, because the button is used just as
something for the user to click; the true functionality is in the hidden inputs.
Speaking of which, you should note that the custom value is coming from the
session in this case.

Figure 6.18

GOING LIVE
When you’ve thoroughly tested how your site works with PayPal and you’re
ready to take the whole project live, you need to perform just a few simple
steps.

1. Create a real Premiere or Business PayPal account, if you do not already
have one.

2. Customize the PayPal experience (see the sidebar).

3. Using the real PayPal account, create the button code to be used your
e-commerce site.

4. Replace the button code in register.php and renew.php with the new, real
PayPal-generated button code (variations of the same code can be used
for both).

160 CHAPTER 6

5. Also in PayPal, enable IPN for the account (see the steps earlier in the
 chapter).

6. Update the ipn.php script.

You’ll want to:

■ Change the fsockopen() line to connect to the real PayPal.

■ Make sure the right email address is being used for comparison to
$_POST['receiver_email'].

■ Make sure the right payment amount is being used for comparison to
$_POST['mc_gross'].

■ Make sure the right currency abbreviation is being used for comparison
to $_POST['mc_currency'].

7. Change the value of the $live variable in confi g.inc.php to true.

Me being me, after doing all this, I would probably execute a couple of real
transactions, just to confi rm that the system is working. By doing so you’ll cost
yourself a few bucks (in the transaction fees, because the money will be going
from you to you), but you’ll get peace of mind. Also, be certain to routinely
compare the transactions in your PayPal history with those in your orders table
so that you know no customer is being cheated or cheating you.

CUSTOMIZING THE PAYPAL EXPERIENCE

Although using PayPal’s Website Payments Standard system means the customer will

leave your site and spend some time at PayPal, the experience does not need to be too

jarring. If you log in to PayPal and click Profi le, there’s quite a lot you can do under the

Selling Preferences banner. This is where you can establish tax and shipping policies.

You can also view and update your buttons there. More importantly from a customer-

experience point of view, you can create a specifi c Customer Service Message and

defi ne templates to act as Custom Payment Pages. Custom Payment Pages can use

your own images and colors—to some degree—so that the PayPal interface looks

similar to your own Web site. How you go about doing this is well documented in links

found on PayPal’s Custom Payment Pages document.

tip

The four ipn.php factors listed

could be defi ned in the confi gu-

ration fi le instead.

PART THREE
SELLING PHYSICAL

PRODUCTS

7 SECOND SITE:
STRUCTURE
AND DESIGN

The second e-commerce site that you will develop with the help of this book
will sell physical products: coffee (beans, not brewed!) and coffee-related
goodies. The Coffee site will have these primary features:

■ Increased complexity in the use of HTML, PHP, and MySQL

■ Browsable catalog, complete with sales information

■ User’s shopping cart and wish-list feature

■ Inline payment processing via Authorize.net

■ Administrative ability to create products, discount items, manage inventory,
and process orders

The fi ve chapters in Part Three, “Selling Physical Products,” of this book will
walk you through this combination of common e-commerce features and more
advanced techniques. As a fail-safe, I'll present alternatives for some of the
more complex code that you might fi nd confusing or that might be beyond
your server’s capability.

ABOUT THE SITE
Because this coffee shop example will be much more complex than the content
management one, I want to talk about its goals and functionality in some
detail before getting into the actual implementation.

SECOND SITE: STRUCTURE AND DESIGN 163

What’s Being Sold
The aim of this book is to present the widest possible range of what it means
to perform e-commerce, so the first goal of the Coffee site example is to sell
a physical product, which requires a different approach than selling virtual
content. One implication is that the Coffee site will need to be prudent about
when customers are charged for orders relative to when the orders actually
ship. Selling physical products also requires using SKUs (Stock-Keeping Unit):
unique identifiers for each item sold. Without SKUs, there’s no inventory man-
agement or certainty that a customer is receiving the exact item they wanted.

Physical products come in two broad categories:

■ Individual, unrelated items, such as works of art

■ Variations on a theme, such as a book that’s available in hardcover, paper-
back, or electronic format

The distinction between these categories is important. For example, if you’re
selling books, you’ll want the customer to be able to select the format from
among the available options, all on the same page. But each available format
still needs its own unique identifier. Conversely, a work of art or any product
that’s not available in different formats or with different attributes is much
easier to present to the customer and to manage as inventory. As you can tell,
how you handle SKUs and other product attributes differs between these two
types, so the Coffee e-commerce store sells both categories of physical prod-
ucts: goodies, such as mugs, biscotti, and so on, which are treated individually
(Figure 7.1); and coffee that has common generic properties but is purchased in
specific formats (for example, size or ground versus whole beans, Figure 7.2).

Figure 7.1 Figure 7.2

Most of the work and code in this part of the book will involve using SKUs in
the database, in the displayed catalog of products, in the shopping cart, and in
the administrative interface. In your own e-commerce projects, you can apply
these same theories and code to sell music in different formats, clothes in dif-
ferent sizes and colors, and so forth.

The database and code is further complicated by supporting the ability to offer
products at a discounted price. This is a nice feature, and that can go a long
way toward increasing business.

note

Selling virtual products may

also require SKUs, although you

don’t have to consider inventory

management.

tip

To simplify the example a bit,

I’ve opted to ignore some coffee

bean variables and entirely

ignore the issues that arise with

selling perishable goods.

164 CHAPTER 7

No Customer Registration
Another way in which the Coffee e-commerce project differs from the
 Knowledge is Power site is that this site does not obligate customers to regis-
ter in order to make their purchases. Required registration, which is mandatory
in a content access example, has actually been proven to hurt sales (truth be
told, Amazon.com gets away with required registration just fine). So this site
will focus on the purchases, not on the customer. This approach will have some
interesting ramifications in terms of the database and how the site operates,
as you’ll learn in this chapter.

If you’d rather, you could provide your customers with the option of register-
ing or not. In such a case, you would take the code from the Knowledge is
Power example and modify it in order to add registration and login capability
to your site.

Implementing MVC
For this coffee shop site, I’ve decided to implement somewhat of an MVC
approach. MVC, which stands for Model-View-Controller, is a very popular way
to design more complex Web (and other) applications. Within MVC, a project’s
code and files are divided into their discernible parts:

■ Model is the data involved.

■ View is the presentation layer (what the user sees).

■ Controller is the logic that ties everything together and reacts to user activity.

By implementing MVC, you’ll have a project that’s easier to develop—espe-
cially when working on a team—and easier to maintain, with cleaner code.
Further, the site will potentially be more scalable. Scalability is the ability to
handle an increased load implicitly through an increase in resources. A Web
site may start with one server and be able to handle up to X number of concur-
rent visitors. If the site can “scale well,” then it will also be able to handle,
say, four times the concurrent visitors by just adding another server or two
database servers. Conversely, a site that doesn’t scale well could not properly
handle four times the concurrent load even if you were to throw four or eight
more servers at the problem. With the hope that an e-commerce site will take
off, the ability for the site to scale well is a reasonable consideration.

So what does MVC mean in terms of real code? It’s actually simple in theory,
although I’m applying MVC in a casual manner. The controller is represented
by PHP code, which handles user behavior and reacts accordingly, often as an
agent between the model and the view. The data, with few exceptions, is repre-

tip

MVC is an example of a design

pattern: an accepted and stan-

dard way to programmatically

solve a problem.

tip

Advanced programmers develop

not for just today’s expectations

but also for what can reasonably

be expected down the line.

tip

OOP and frameworks generally

use MVC and other design pat-

terns by their very nature.

SECOND SITE: STRUCTURE AND DESIGN 165

sented by the database. The view is HTML. To keep these three things separate,
the Coffee shop site first moves much of the model functionality into the data-
base, using something called stored procedures (discussed at the end of the
chapter). Second, the site stores almost all the HTML in separate files, included
as appropriate by the PHP scripts. The end result will be little to no SQL or HTML
intermingled with PHP. In fact, many of the PHP scripts will be quite short.

Another benefit of this MVC approach is that you will be able to look at and
edit any facet of the site without having to wade through unrelated code. For
example, you can adjust an SQL query without seeing any PHP and tweak the
PHP without mucking about in HTML. You can also address performance issues
by focusing on individual pieces. If you look back at Figure 1.4, in which I point
out the three areas in which caching can be applied to improve performance,
you will see that the MVC approach isolates these same three areas of the pro-
cess. This means that when your site takes off and multiple servers are appro-
priate, each server can focus on a specific aspect: say two or three for just the
database (that is, the models) and one or two for the PHP and HTML. You can
also offload specific parts to cloud computing, if you want to go that route.

There are a couple of obvious downsides to using an MVC approach. First,
you’ll end up with a lot more files. Whereas one PHP script could query the
database and generate the HTML output, now you’ll have one PHP script, one
stored procedure in the database, and one or more HTML files to accomplish
the same task. Second, MVC requires that assumptions be made about what
has happened previous to certain points. Third, pushing model functionality
into the database will require a level of database access that not everyone will
necessarily have.

Heightened Security
The significant distinction between the two e-commerce examples in this book
is the level of required security. Because this site will briefly handle credit card
information and permanently store more user information, extra precautions
will be taken. To start, the site will be more exacting about using SSL (in the
Knowledge is Power content management example, SSL was used to send the
user to PayPal and back, but otherwise ignored). The first checkout page in
the Coffee site will use SSL, and SSL will continue to be required throughout
the checkout process and on every administration page.

The second security distinction will be the placement of every administra-
tion page in a separate, password-protected directory. Third, as previously
mentioned, the site will use stored procedures, which is a more secure way
to interact with the database.

tip

If you find that you can’t follow

or don’t appreciate the MVC

approach used in this example,

feel free to use the more direct

PHP-MySQL-HTML approach

used in Part Two, “Selling Virtual

Products.”

166 CHAPTER 7

DATABASE DESIGN
Since the Coffee site is more complex than the Knowledge is Power example,
the database is correspondingly more involved. I’ve come up with 12 tables,
evenly split between those for representing the catalog of products and those
associated with the customers and orders.

Product Tables
Six customer-related tables represent the specifi cs about all the products
available on the Coffee site (Figure 7.3).

non_coffee_categories

id TINYINT

category VARCHAR(40)

description TINYTEXT

image VARCHAR(45)

sizes

id TINYINT

size VARCHAR(40)

non_coffee_products

id MEDIUMINT

non_coffee_category_id TINYINT

name VARCHAR(60)

description TINYTEXT

image VARCHAR(45)

price DECIMAL(5,2)

stock MEDIUMINT

date_created TIMESTAMP

general_coffees

id TINYINT

category VARCHAR(40)

description TINYTEXT

image VARCHAR(45)

specific_coffees

id MEDIUMINT

general_coffee_id TINYINT

size_id TINYINT

caf_decaf ENUM

ground_whole ENUM

price DECIMAL(5,2)

stock MEDIUMINT

date_created TIMESTAMP

sales

id INT

product_type ENUM

product_id MEDIUMINT

price DECIMAL(5,2)

start_date DATE

end_date DATE

Figure 7.3

The non_coffee_categories table represents the types of non-coffee prod-
ucts that will be sold: books, mugs, edibles, and so on. This table stores the
category name, a description, and an image (the image will display on a page
that lists the categories). The non_coffee_products table has a many-to-
one relationship with non_coffee_categories. Each product will be in one
category and each category will have multiple products (Figure 7.3). The
non_coffee_products table has a foreign key, name, description, image, price,
stock, and creation-date columns. This table represents the specifi c non-coffee
products that customers will purchase, and its id fi eld will become part of the
product’s SKU. The stock fi eld contains an indication of the quantity of the item
in stock, not a simple Yes/No.

The general_coffees and specifi c_coffees tables have a parallel relationship
to the two non-coffee tables. The general_coffees table is defi ned exactly like
non_coffee_categories and will represent the primary types of coffee sold.
For those types, I’m using a somewhat pedestrian organization, mixing roasts,
bean types, and fl avors: original, dark roast, vanilla, Kona, and so on. If the

tip

The price column is defi ned as

DECIMAL(5,2), meaning that

it can have up to fi ve numbers

with up to three numbers to the

left of the decimal and will have

exactly two to the right.

tip

If you’re selling variations on a

product, like clothing in different

sizes and colors, you’d use a

structure similar to the coffee

tables.

SECOND SITE: STRUCTURE AND DESIGN 167

customer knew they wanted to purchase Kona coffee, they’d look into that
coffee “category.” The specifi c_coffees table lists the actual items the cus-
tomer would purchase, which is a combination of the coffee “category,” a size,
ground or whole beans, and caffeinated or decaffeinated. Each combination
of these qualities gets its own record in this table, and therefore its own SKU,
price, and quantity in stock. This allows the customer to purchase a pound of
ground Kona coffee or two pounds of decaffeinated whole beans. The available
sizes come from the sizes table.

The sixth table pertaining to products is sales. A sale is defi ned by overriding
the price of an item. The easy way to do this would be to change the price in
one of the products tables, but then you wouldn’t have any indication that the
new price is a sale price, as opposed to just the new default price. The sales
table has a price column, plus start- and end-date columns, with the end date
allowed to be NULL, indicating an open-ended sale. To associate the price
override with a specifi c product, the product’s type and ID numbers are stored.
If the product_type is coffee, the product_id will be the id value from the
specifi c_coffees table. If the product_type is other, the product_id will be the
id value from the non_coffee_products table.

Customer Tables
Four customer-related tables will represent an individual order, starting with
customers, which stores the customer’s name, mailing address, email address,
and phone number (Figure 7.4).

customers

id INT

email VARCHAR(80)

first_name VARCHAR(20)

last_name VARCHAR(40)

address1 VARCHAR(80)

address2 VARCHAR(80)

city VARCHAR(60)

state CHAR(2)

zip MEDIUMINT ZEROFILL

phone INT(10)

date_created TIMESTAMP

orders

id INT

customer_id INT

total DECIMAL(7,2)

shipping DECIMAL(5,2)

credit_card_number MEDIUMINT

order_date TIMESTAMP

carts

id INT

quantity TINYINT

user_session_id CHAR(32)

product_type ENUM

product_id MEDIUMINT

date_created TIMESTAMP

date_modified TIMESTAMP

order_contents

id INT

order_id INT

product_type ENUM

product_id MEDIUMINT

quantity TINYINT

price_per DECIMAL(5,2)

ship_date DATE

wish_lists

id INT

quantity TINYINT

user_session_id CHAR(32)

product_type ENUM

product_id MEDIUMINT

date_created TIMESTAMP

date_modified TIMESTAMP

transactions

id INT

order_id INT

type VARCHAR(18)

amount DECIMAL(7,2)

response_code TINYINT

response_reason TINYTEXT

transaction_id BIGINT

response TEXT

date_created TIMESTAMP

non_coffee_products

sales

specific_coffees

Figure 7.4

The orders table will store individual, completed orders. It stores a foreign key
to the customers table, the total of the order, the cost of shipping, the date
and time the order was entered, and part of the customer’s credit card number.

note

Figure 7.4 loosely refl ects

the relationships between

the product-related tables—

sales, specifi c_coffees, and

non_coffee_products tables—

and the order-related tables:

order_contents, carts, and

wish_lists.

note

Because no customer registra-

tion is required, or allowed, the

same customer may be repeated

multiple times in the customers

table.

168 CHAPTER 7

Note that the site will not be storing the full credit card number, just the last
four digits (so that the site can indicate the card used, as in *####).

The order_contents table represents the actual items purchased in an order.
It has a foreign key to the orders table, plus the product_type and product_id
columns as in the sales table. The quantity and price columns indicate the
number ordered and the price paid per item. This is necessary because there
may be a sale price and, over time, the prices in the two products tables will
change. Finally, the ship_date column is NULL by default, indicating that the
item has not shipped. When the item ships, this column’s value will be set to
that ship date and the customer will be billed for that part of the order.

The transactions table will be used to record every interaction between this
Web application and the payment gateway, Authorize.net. The first four
columns are for internal use, tying the transactions to a specific order and
recording exactly what was being attempted. The bulk of the columns then
store parts of the Authorize.net response. You’ll see how this table is used in
Chapter 10, “Checking Out.”

The carts and wish_lists tables have mirrored definitions and require a bit of
explanation. I decided that this project would not use sessions at all, in part
because the user isn’t logging in and out, and therefore isn’t being tracked.
But, if I forgo formal PHP sessions and move session-like functionality to the
database, the site can have data permanence. By storing the customer’s shop-
ping cart contents and wish-list items in the database, the customer can leave
and return (in a day, a week, or a month) and still have their previous actions
recorded and available, without ever logging in. This is a very nice feature that
requires a single cookie. To accomplish all this, the carts table records everything
that’s in the customer’s cart (the items the customer intends to purchase now)
and the wish_lists table records everything that the customer has saved for later
(items the customer intends to purchase down the road). Each item gets listed as
its own record, indicating the quantity, product type, and product ID. Each item
stored is associated with a user_session_id, which will be a unique representa-
tive value that’s stored in the user’s cookie (it’s not an actual session ID).

From a marketing standpoint, this system means that customers could be
emailed to:

■ Remind them to complete an order (gently: you want to be careful about this)

■ Let them know that an item they are interested in has just gone on sale

■ Let them know about similar items they may like

■ Warn them that a sale item is about to go off sale

tip

Go to www.DMCInsights.com/

ecom/ to read some extra ideas

as to how the database could be

designed.

www.DMCInsights.com/ecom/
www.DMCInsights.com/ecom/

SECOND SITE: STRUCTURE AND DESIGN 169

Of course to do any of these, the site would need to get their email address at
some point and store it in the carts and wish_lists tables. The site should also
have the customer formally opt in to such communications.

The SQL
The complete SQL commands for creating the tables are:

CREATE TABLE `carts` (
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `quantity` TINYINT UNSIGNED NOT NULL,
 `user_session_id` CHAR(32) NOT NULL,
 `product_type` ENUM('coffee','other') NOT NULL,
 `product_id` MEDIUMINT UNSIGNED NOT NULL,
 `date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `date_modified` TIMESTAMP NOT NULL DEFAULT '0000-00-00 00:00:00',
 PRIMARY KEY (`id`),
 KEY `product_type` (`product_type`,`product_id`),
 KEY `user_session_id` (`user_session_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `customers` (
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `email` VARCHAR(80) NOT NULL,
 `first_name` VARCHAR(20) NOT NULL,
 `last_name` VARCHAR(40) NOT NULL,
 `address1` VARCHAR(80) NOT NULL,
 `address2` VARCHAR(80) DEFAULT NULL,
 `city` VARCHAR(60) NOT NULL,
 `state` CHAR(2) NOT NULL,
 `zip` MEDIUMINT(5) UNSIGNED ZEROFILL NOT NULL,
 `phone` INT NOT NULL,
 `date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 KEY `email` (`email`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `general_coffees` (
 `id` TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `category` VARCHAR(40) NOT NULL,
 `description` TINYTEXT,
 `image` VARCHAR(45) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `type` (`category`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8; (continues on next page)

tip

You can download the

SQL commands from

www.DMCInsights.com/ecom/.

www.DMCInsights.com/ecom/

170 CHAPTER 7

CREATE TABLE `non_coffee_categories` (
 `id` TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `category` VARCHAR(40) NOT NULL,
 `description` TINYTEXT NOT NULL,
 `image` VARCHAR(45) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `category` (`category`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `non_coffee_products` (
 `id` MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `non_coffee_category_id` TINYINT UNSIGNED NOT NULL,
 `name` VARCHAR(60) NOT NULL,
 `description` TINYTEXT,
 `image` VARCHAR(45) NOT NULL,
 `price` DECIMAL(5,2) UNSIGNED NOT NULL,
 `stock` MEDIUMINT UNSIGNED NOT NULL DEFAULT '0',
 `date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 KEY `non_coffee_category_id` (`non_coffee_category_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `orders` (
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `customer_id` INT UNSIGNED NOT NULL,
 `total` DECIMAL(7,2) UNSIGNED DEFAULT NULL,
 `shipping` DECIMAL(5,2) UNSIGNED NOT NULL,
 `credit_card_number` mediumint(4) UNSIGNED NOT NULL,
 `order_date` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 KEY `customer_id` (`customer_id`),
 KEY `order_date` (`order_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE `order_contents` (
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `order_id` INT UNSIGNED NOT NULL,
 `product_type` ENUM('coffee','other') DEFAULT NULL,
 `product_id` MEDIUMINT UNSIGNED NOT NULL,
 `quantity` TINYINT UNSIGNED NOT NULL,
 `price_per` DECIMAL(5,2) UNSIGNED NOT NULL,
 `ship_date` date DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `ship_date` (`ship_date`),
 KEY `product_type` (`product_type`,`product_id`)

SECOND SITE: STRUCTURE AND DESIGN 171

) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE `sales` (
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `product_type` ENUM('coffee','other') DEFAULT NULL,
 `product_id` MEDIUMINT UNSIGNED NOT NULL,
 `price` DECIMAL(5,2) UNSIGNED NOT NULL,
 `start_date` date NOT NULL,
 `end_date` date DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `start_date` (`start_date`),
 KEY `product_type` (`product_type`,`product_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `sizes` (
 `id` TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `size` VARCHAR(40) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `size` (`size`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `specific_coffees` (
 `id` MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `general_coffee_id` TINYINT UNSIGNED NOT NULL,
 `size_id` TINYINT UNSIGNED NOT NULL,
 `caf_decaf` ENUM('caf','decaf') DEFAULT NULL,
 `ground_whole` ENUM('ground','whole') DEFAULT NULL,
 `price` DECIMAL(5,2) UNSIGNED NOT NULL,
 `stock` MEDIUMINT UNSIGNED NOT NULL DEFAULT '0',
 `date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 KEY `general_coffee_id` (`general_coffee_id`),
 KEY `size` (`size_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `transactions` (
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `order_id` INT UNSIGNED NOT NULL,
 `type` VARCHAR(18) NOT NULL,
 `amount` DECIMAL(7,2) NOT NULL,
 `response_code` TINYINT(1) UNSIGNED NOT NULL,
 `response_reason` TINYTEXT,
 `transaction_id` BIGINT(20) UNSIGNED NOT NULL,
 `response` text NOT NULL,
 `date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`), (continues on next page)

172 CHAPTER 7

 KEY `order_id` (`order_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
CREATE TABLE `wish_lists` (
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `quantity` TINYINT UNSIGNED NOT NULL,
 `user_session_id` CHAR(32) NOT NULL,
 `product_type` ENUM('coffee','other') DEFAULT NULL,
 `product_id` MEDIUMINT UNSIGNED NOT NULL,
 `date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `date_modified` TIMESTAMP NOT NULL DEFAULT '0000-00-00 00:00:00',
 PRIMARY KEY (`id`),
 KEY `product_type` (`product_type`,`product_id`),
 KEY `user_session_id` (`user_session_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

The table definitions and column types should be easily understood, given the
descriptions of the tables already provided. I want to point out that the orders
and order_contents tables use the InnoDB storage engine. InnoDB supports
database transactions, meaning that a series of commands that populate both
tables can be set to either completely succeed or entirely roll back.

SERVER SETUP
There are a few more server needs in the Coffee e-commerce example than in
the Knowledge is Power site, so let’s look at that in detail.

Server Organization
The server organization—how the files and folders are laid out—is repre-
sented in Figure 7.5. One file, the MySQL connection script, is stored outside
the Web root directory. Within the Web root directory are folders for the CSS,
images, and JavaScript. All the administrative pages will go in the admin direc-
tory, which you should rename to something less obvious. The includes direc-
tory will contain PHP and HTML scripts included by other PHP scripts, such as
the configuration file, the HTML header, and the HTML footer.

The products directory is a special case in that it’ll store the images for the
products sold on the site. Those products will be added via PHP, so this direc-
tory needs to be writable by the Web server. For even more security, you could
place this directory outside the Web root and use a proxy script to serve every
image (just like the PDF handling in Part Two). However, the admin script will
have plenty of precautions to prevent abuse of this open directory. As an extra

tip

For extra security, you could

put the administration pages

in a subdomain, such as

https://admin.example.com.

https://admin.example.com

SECOND SITE: STRUCTURE AND DESIGN 173

Figure 7.5

security technique to keep people from browsing the contents of this direc-
tory, place a blank index.html fi le in the products folder. By doing so, the Web
server will not provide to a nosy visitor a list of the folder’s fi les.

The views directory will store fi les that represent individual snippets of HTML.
These will be used to display elements such as:

■ The contents of the home page

■ The shopping cart

■ The wish list

■ A listing of categories

■ A listing of products

The views directory is part of the MVC breakdown that the site uses. Next, you’ll
see how to protect this and the other sensitive directories from prying eyes.

Customizing the Server Behavior
For this site, you need to customize how your server runs in four ways. Your
ability to perform any of these alterations will depend upon your hosting situ-
ation, although most hosts will allow at least two of the four alterations. The
specifi c steps involved will depend upon your hosting situation and the Web
server application (such as, Apache, IIS, and so on) involved. Here, I’ll provide
instructions for Apache, the most common Web server.

APPLYING PASSWORD PROTECTION

The administration directory needs to be password protected so that only
authenticated users can access its contents. If you want to get your hands
dirty, you can accomplish this by connecting to your server via a command-line
interface and executing the proper commands (search online for what those
would be). Or, most likely, your Web host provides a way to password protect
a directory through the site’s control panel (Figure 7.6).

note

Make sure you know what Web

server application is being used

on your server!

Figure 7.6

174 CHAPTER 7

The control panel should take you to a form where you can indicate what
directory to protect, as well as what message should be provided to someone
attempting to access that directory (Figure 7.7). This message will appear in
the Web browser’s login prompt (Figure 7.8). Depending upon your control
panel, you might use another form to establish the username and password
required to access the protected directory (Figure 7.9).

Figure 7.7 Figure 7.8 Figure 7.9

PROTECTING OTHER DIRECTORIES

Beyond password protection, there are other ways you can keep a folder safe
from unwanted visitors. The process of password protecting a directory creates
(or modifies) an .htaccess file, which alters how the Apache Web server treats
that directory and its contents (other Web servers use other approaches). This
file, literally named .htaccess and placed in the directory you want to affect,
has a specific syntax for achieving different effects.

For example, you can use the .htaccess file to make a directory entirely
unavailable through the Web browser. The syntax for that is:

Disable indexing:
Options All -Indexes
Ignore every file:
IndexIgnore *
Prevent access to any file:
<FilesMatch "^.*$">
Order Allow,Deny
Deny from all
</FilesMatch>

As the comments indicate (comments in an .htaccess are preceded by a #), the
first command allows every option except for indexing, which is to say the Web
browser should not create an index of the directory. The second command says
that every file should be ignored by any indexing (this is an extra precaution).

The final block applies a set of rules to a group of files, that group being
every file in the directory (^.*$). The Order Allow,Deny command indicates

tip

As always, use obscure and

secure usernames, passwords,

and directory names for adminis-

trative folders.

SECOND SITE: STRUCTURE AND DESIGN 175

that all allow rules should be checked first, then all deny rules. Then, the
Deny from all command says that no one should be allowed access.

If you create a file with a name of .htaccess that contains that code and place
it in both your includes and views directories, no one will be able to see the
contents of those directories, or a specific file therein, through a Web browser
(Figure 7.10).

Figure 7.10

Most likely, your Web host will not have a control panel tool for editing
.htaccess files, but you might be able to create one in any text editor, and
then FTP it to the Web server. Or, you could create one on the server via a
command-line interface and a command-line text editor like vi or Emacs.
Using .htaccess files will only work if the Web server is configured to allow
changes on a directory basis. This setting is dictated by the server’s primary
configuration file, which is likely outside your influence, unless you’ve got
your own server.

USING MOD_REWRITE

The next server alteration, which also requires .htaccess files, is to use
Apache’s mod_rewrite feature.

As mentioned in Chapter 5, “Managing Site Content,” one way to improve the
search-engine rankings of your site is to use descriptive URLs. To accomplish
this—to create so-called “pretty” URLs—requires using mod_rewrite, which
is Apache’s rewrite module. This tool can transform URLs from one format to
another, behind-the-scenes, so that the browser (that is, the user) is unaware
of the change.

For the Coffee site, two public URLs need to be rewritten: shop.php and
browse.php. The shop page will list the general coffee and non-coffee prod-
uct categories. To know which to display, the page needs to receive a type
value in the URL. Instead of having URLs like shop.php?type=coffee, let’s
use shop/coffee/. To accomplish this, you would create a .htaccess file in the
Web root directory that starts off with:

<IfModule mod_rewrite.c>
RewriteEngine on
</IfModule>

tip

This section packs a lot of

information about .htaccess

files and Apache configuration

into a small area. Look online to

expand your knowledge of these

important subjects.

tip

If you can’t use mod_rewrite on

your server, just skip this section

and change every URL in the

HTML files accordingly.

176 CHAPTER 7

These lines say: If the mod_rewrite module exists, turn on the rewrite engine.
After turning on the rewrite engine and before the closing IfModule, you define
rules. Here is the complete set of rules that will be defined, to be explained
later in detail:

<IfModule mod_rewrite.c>
RewriteEngine on
For sales:
RewriteRule ^shop/sales/?$ sales.php
For the primary categories:
RewriteRule ^shop/([A-Za-z\+]+)/?$ shop.php?type=$1
For specific products:
RewriteRule ^browse/([A-Za-z\+\-]+)/([A-Za-z\+\-]+)/([0-9]+)$
➥browse.php?type=$1&category=$2&id=$3
For HTTPS pages:
RewriteCond %{HTTPS} off
RewriteRule ^(checkout\.php|billing\.php|final\.php|admin/(.*))$
➥https://%{HTTP_HOST}/$1 [R=301,L]
</IfModule>

For the shop.php script, the rule is:

RewriteRule ^shop/([A-Za-z\+]+)/?$ shop.php?type=$1

Regular expressions are in use here, so if you’re unfamiliar with them, this may
seem like hieroglyphics to you. I’ll explain it in pieces…

The middle chunk (between RewriteRule and shop.php?type=$1) identifies
the URLs to match. That regular expression matches any URL that has text
beginning (the caret ^) with shop followed by a slash. That should be followed
by some combination of letters and the plus sign: ([A-Za-z\+])+. The square
brackets create a class of characters. The specific class matches upper and
lowercase letters and the plus sign, which is how spaces are represented in
URLs (such as, Kona Coffee in a URL is Kona+Coffee). This class is followed by
the plus sign, which is a quantity modifier that matches one or more of what-
ever the plus sign follows. So shop/Mugs matches ^shop/([A-Za-z\+]+) but
just shop does not and neither does shop/123.

The class and plus sign quantity modifier is wrapped in parentheses to make
a grouping, which will be relevant at the end of the rule. This is followed by
an optional slash. This slash is optional because it’s followed by the question
mark, another quantifier modifier. The question mark says that zero or one
of the things it follows is acceptable. At this point, ^shop/([A-Za-z\+]+)/?
matches shop/Mugs or shop/Mugs/.

tip

The rewrite rules apply to the

part of the URL after the host-

name. In www.example.com/

shop/coffee, the matching

begins after www.example.com/.

www.example.com/shop/coffee
www.example.com/shop/coffee
www.example.com/

SECOND SITE: STRUCTURE AND DESIGN 177

The dollar sign that concludes the matching rule indicates the end of the
string. This means that if any characters follow what’s been matched to this
point, the match is invalidated. Put another way, the final dollar sign still
allows for shop/Mugs or shop/Mugs/ but does not allow for shop/Mugs/a or
shop/Mugs/123.

When a match is made, the URL will be rewritten to shop.php?type=$1. The
$1 represents whatever string matched the first grouping: ([A-Za-z\+]+).
This is called backreferencing because it refers back to something already
found. The end result is that shop/coffee and shop/coffee/ become
shop.php?type=coffee and shop/goodies becomes shop.php?type=goodies.
In both cases, $_GET['type'] will be available to the shop.php script because
the rewrite module will create it and assign it a value.

Whereas all the products are available through shop.php, the sale items will
be listed on the sales.php script. But to make the URLs consistent, let’s add a
rule for that situation:

RewriteRule ^shop/sales/?$ sales.php

This rule specifically matches either shop/sales or shop/sales/ and rewrites
that as sales.php. This rule must be defined before the previous one, though,
as the previous rule would also apply to shop/sales, and we don’t want the
URL rewritten as shop.php?type=sales.

Continuing along, the browse.php page will list specific products in a general
category: all the Kona coffees available or all the mugs. The browse script needs
to know the category type and the specific category ID. For Search Engine Opti-
mization (SEO) purposes and to make the URL more accessible to the customer
as well, the URL will be in the format browse/type/CategoryName/id, such as
browse/coffee/Kona/3. The rule to handle this is:

RewriteRule ^browse/([A-Za-z\+]+)/([A-Za-z\+\-]+)/([0-9]+)$
➥browse.php?type=$1&category=$2&id=$3

This matches any URL that begins with browse, followed by a slash and some
combination of letters and the plus sign. This first grouping represents the
type value, such as coffee or goodies. After that should come a slash, and
some combination of letters, the plus sign, and a hyphen. This second group-
ing matches the category, such as Kona or Gift+Baskets. The match should
conclude with one or more numbers, which will be the ID value.

Such a match gets rewritten as browse.php?type=$1&category=$2&id=$3,
where $1, $2, and $3 represent the first, second, and third matched group-
ings. Hence, www.example.com/browse/coffee/Kona/3 becomes (behind the
scenes) www.example.com/browse.php?type=coffee&category=Kona&id=3.

www.example.com/browse/coffee/Kona/3
www.example.com/browse.php?type=coffee&category=Kona&id=3

178 CHAPTER 7

ENFORCING SSL

While the site is using mod_rewrite, let’s enforce SSL for several pages:

■ The entire administration directory

 ■ checkout.php

■ billing.php

■ fi nal.php

To do this, you must have SSL enabled (see the “Enabling SSL” sidebar), and
add this code to your .htaccess fi le, within the same <IfModule mod_rewrite.c>
block:

RewriteCond %{HTTPS} off
RewriteRule ^(checkout\.php|billing\.php|fi nal\.php|admin/(.*))$
➥https://%{HTTP_HOST}/$1 [R=301,L]

The fi rst line checks for the condition where HTTPS is off: %{something}
refers to a server environmental variable. Then the rule attempts to match
checkout.php, billing.php, fi nal.php, or admin/anything. If a match is made,
the URL is rewritten to https://hostname/$1, where $1 is the matched item.

The R=301,L part says that this should be a permanent redirection type, asso-
ciated with the server code 301, and that this should be the last rule evaluated.

By adding this rule, the server will not allow the browser to load any of those
pages over a non-secure connection.

ENABLING SSL

Enabling SSL on your server is an important step to take for any e-commerce project,

but unfortunately one for which I can’t provide you with specifi c directions: There are

just too many factors involved, from the hosting company, to the server type, to where

you get your SSL certifi cate. In Chapter 2, “Security Fundamentals,” I talked about

some of the sites that offer digital certifi cates and what features you should consider.

If you buy one through your hosting company, they will likely install it for you, which is

a benefi t. If you buy one through a third party, you may save money but have to install

it yourself (although the third party should provide some instructions). In that case,

you may be able to install the certifi cate through your Web-hosting control panel. If

that’s not an option, then installation is a matter of using the command line to put the

right fi les in the right places and then editing the server’s confi guration fi les. There are

plenty of tutorials online that will explain the steps in detail.

SECOND SITE: STRUCTURE AND DESIGN 179

HELPER FILES
The Coffee site will use several helper files, not including the HTML tem-
plates and views. The first two discussed here are largely the same, in syntax
and usage, as the corresponding scripts in Part Two, but let’s look at them
 individually.

Connecting to the Database
The first helper script will connect to the database. This file, named
mysql.inc.php, should ideally be stored outside the Web directory (see
 Figure 7.5). It’s defined as:

mysql.inc.php
 1 <?php
 2 // Set the database access information as constants:
 3 DEFINE ('DB_USER', 'username');
 4 DEFINE ('DB_PASSWORD', 'password');
 5 DEFINE ('DB_HOST', 'localhost');
 6 DEFINE ('DB_NAME', 'ecommerce2');
 7
 8 // Make the connection:
 9 $dbc = mysqli_connect (DB_HOST, DB_USER, DB_PASSWORD,

➥DB_NAME);
 9
 10 // Set the character set:
 11 mysqli_set_charset($dbc, 'utf8');
 12
 13 // Omit the closing PHP tag to avoid 'headers already sent' errors!

As I said, this code is pretty much the same as that in Chapter 3, “First Site:
Structure and Design,” except that the connection constants will have different
values, and there’s no need for the get_password_hash() or escape_data()
functions. The latter isn’t required because stored procedures and prepared
statements will be used instead (covered near the end of this chapter).

If you want to improve the security of this example, you could create different
MySQL users that have different permissions on specific tables. The most com-
mon MySQL user would have SELECT permissions on all the non-customer-
related tables; another MySQL user would have SELECT plus INSERT, UPDATE,
and DELETE permissions on the carts and wish_lists tables; and a third would
have only INSERT permissions on the order-related tables. To switch the

note

Make sure you’re using unique

and secure usernames and pass-

words, unlike my purposefully

obvious ones!

180 CHAPTER 7

MySQL user on a page-by-page basis, you would indicate the user type prior to
including the MySQL connection script:

$user = 'general';
require (MYSQL);

Then, in the connection script, you would have:

DEFINE ('DB_HOST', 'localhost');
DEFINE ('DB_NAME', 'ecommerce2');
if (isset($user) && ('user' == 'general')) {
 DEFINE ('DB_USER', 'username');
 DEFINE ('DB_PASSWORD', 'password');
} elseif (isset($user) && ('user' == 'cart')) {...
 DEFINE ('DB_USER', 'otherUser');
 DEFINE ('DB_PASSWORD', 'otherPassword');

The Config File
The configuration file in this site does pretty much what the configuration file
in the Knowledge is Power site did: define site settings, constants, and declare
an error handler. The Coffee site will not use sessions, though, so that’s omit-
ted from the configuration file, as is the redirection function.

includes/config.php
 1 <?php
 2
 3 // Are we live?
 4 $live = false;
 5
 6 // Errors are emailed here:
 7 $contact_email = 'you@example.com';
 8
 9 // Determine location of files and the URL of the site:
 10 define ('BASE_URI', '/path/to/Web/parent/folder/');
 11 define ('BASE_URL', 'www.example.com/');
 12 define ('MYSQL', '/path/to/mysql.inc.php');
 13
 14 // Function for handling errors:
 15 function my_error_handler ($e_number, $e_message, $e_file, $e_line,

➥$e_vars) {
 16 global $live, $contact_email;

SECOND SITE: STRUCTURE AND DESIGN 181

 17
 18 // Build the error message:
 19 $message = "An error occurred in script '$e_file' on line

➥$e_line:\n$e_message\n";
 20
 21 // Add the backtrace:
 22 $message .= "<pre>" .print_r(debug_backtrace(), 1) . "</pre>\n";
 23
 24 if (!$live) { // Show the error in the browser.
 25 echo '<div class="error">' . nl2br($message) . '</div>';
 25 } else { // Development (print the error).
 27 // Send the error in an email:
 28 error_log ($message, 1, $contact_email,

➥'From:admin@example.com');
 29 // Only print an error message in the browser, if the error isn't

➥a notice:
 30 if ($e_number != E_NOTICE) {
 31 echo '<div class="error">A system error occurred. We

➥apologize for the inconvenience.</div>';
 32 }
 33 } // End of $live IF-ELSE.
 34
 35 return true; // So that PHP doesn't try to handle the error, too.
 36
 37 } // End of my_error_handler() definition.
 38
 39 // Use my error handler:
 40 set_error_handler ('my_error_handler');
 41
 42 // Omit the closing PHP tag to avoid 'headers already sent' errors!

I should point out an inconsistency introduced by the error handler that may
become apparent in the next couple chapters. Every PHP script in this site uses
view files—separate HTML pages—to display content. Technically, a separate
view file should be created for displaying errors, too. Without such a file, you
may see errors displayed in odd places. I’ve omitted a dedicated error view file
here so as not to complicate things even further, but you can find it among the
downloadable code available at www.DMCInsights.com/ecom/.

tip

If you’re unsure about any of the

code in the three helper files,

see Part Two, where each is

explained in detail.

www.DMCInsights.com/ecom/

182 CHAPTER 7

THE HTML TEMPLATE
I feel that the HTML design for the Coffee site needs to be more graphically
interesting than that used in the Knowledge is Power site. Selling physical
products requires that you appeal to the user’s eye: Customers want to see
what they’re buying. Once again, designing something like that is well beyond
my abilities. This time around, I’m turning to the Coffee template (Figure 7.11)
offered by Templates.com (www.templates.com).

Figure 7.11

There’s nothing particularly fancy from a PHP perspective in the HTML tem-
plate, so rather than walking through the files in detail, I’ll just present them
in entirety. You’ll see that what follows is only moderately modified from the
Templates.com original. I have instituted the dynamic page title system in the
header, which I explained in Part Two of the book.

includes/header.html:
 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

➥"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 2 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

➥lang="en">

www.templates.com

SECOND SITE: STRUCTURE AND DESIGN 183

 3 <head>
 4 <title> <?php // Use a default page title if one wasn't provided...
 5 if (isset($page_title)) {
 6 echo $page_title;
 7 } else {
 8 echo 'Coffee - Wouldn\'t You Love a Cup Right Now?';
 9 }
 10 ?></title>
 11 <meta http-equiv="Content-Type" content="text/html;

➥charset=utf-8" />
 12 <meta name="description" content="Place your description here" />
 13 <meta name="keywords" content="put, your, keyword, here" />
 14 <meta name="author" content="Templates.com - website templates

➥provider" />
 15 <link href="/css/style.css" rel="stylesheet" type="text/css" />
 16 <!--[if lt IE 7]>
 17 <script type="text/javascript" src="/js/ie_png.js"></script>
 18 <script type="text/javascript">
 19 ie_png.fix('.png, .logo h1, .box .left-top-corner, .box

➥.right-top-corner, .box .left-bot-corner, .box .right-bot-corner,
➥.box .border-left, .box .border-right, .box .border-top, .box
➥.border-bot, .box 20 .inner, .special dd, #contacts-form input,
➥#contacts-form textarea');

 21 </script>
 22 <![endif]-->
 23 </head>
 24
 25 <body id="page1">
 26 <!-- header -->
 27 <div id="header">
 28 <div class="container">
 29 <div class="wrapper">
 30 <ul class="top-links">
 31 <img alt=""

➥src="/images/icon-home.gif" />
 32 <img alt=""

➥src="/images/icon-cart.gif" />
 33 <img alt=""

➥src="/images/icon-mail.gif" />
 34 <img alt=""

➥src="/images/icon-map.gif" />
 (continues on next page)

184 CHAPTER 7

 35
 36 <div class="logo">
 37 <h1>CoffeeWouldn't

➥you love a cup right now?</h1>
 38 </div>
 39 </div>
 40 <ul class="nav">
 41 <!-- MENU -->
 42 Coffee
 43 Goodies
 44 Sales
 45 Wish List
 46 Cart
 47 <!-- END MENU -->
 48
 49 </div>
 50 </div>
 51 <!-- content -->
 52 <div id="content">
 53 <div class="container">
 54 <div class="inside">

The footer file completes all the <DIV> tags, prints a small copyright, and links
to Templates.com, which created the template in the first place.

includes/footer.html:
 1 </div>
 2 </div>
 3 </div>
 4 <!-- footer -->
 5 <div id="footer">
 6 <div class="container">
 7 <div class="indent">
 8 <div class="fleft"> © - Clever Coffee, Inc.</div>
 9 <div class="fright">Site designed by: <a href="http://

➥www.templates.com">Templates.com</div>
 10 </div>
 11 </div>
 12 </div>
 13 </body>
 14 </html>

SECOND SITE: STRUCTURE AND DESIGN 185

The only thing to note in both files is the use of absolute references in all links,
images, CSS, and JavaScript. Because the URLs for some of the pages will
be /something/something, such as shop/coffee, the Web browser will get
confused if you just use ./images or css/style.css. Instead, you’ll see /images
and /css/style.css, where the initial slash says to begin at the Web root.

NEWER MYSQL FEATURES
For improved security and to separate some database activity from the PHP
code, this project will use a couple of features that are relatively new to MySQL.
Just as important, support for these features is also relatively new to PHP.
I’m specifically speaking of prepared statements and stored procedures. In this
chapter, I want to talk about the benefits of each feature as well as provide you
with alternative approaches should you not meet the minimum requirements.
That way, when you see the actual implementation of these features, you’ll be
informed as to how you’ll need to change your code accordingly.

The first thing you need to do, before reading any further, is confirm for certain
what versions of PHP and MySQL you’ll be using. These values will also likely
differ between your testing environment (perhaps your computer) and the live
destination server. Prepared statements were added to MySQL in version 4.1,
which was released in 2004, so every host should at least meet this require-
ment. Stored procedures were added in version 5, released in 2005.

Along with the proper version of MySQL, you’ll need the properly configured
version of PHP. To use prepared statements and stored procedures from PHP,
you’ll need at least PHP 5, with the MySQL Improved extension enabled (allow-
ing you to use the mysqli_* functions). You can confirm the version of PHP
you’re running and its support for the MySQL improved functions by running
this code (as a PHP script) on your Web server (Figures 7.12 and 7.13):

<?php phpinfo(); ?>

Figure 7.12 Figure 7.13

Once you’ve confirmed what versions you’re using, you can continue reading. If
you have PHP 5+ and MySQL 5+, you should be fine. If you don’t, pay attention to
what changes you’ll need to make in order to adapt the code to your situation.

note

I’ve also slightly modi-

fied the CSS file, which

you can download from

www.DMCInsights.com/ecom/.

note

If you’re not running PHP 5

or greater with the MySQL

Improved extension enabled,

you’ll need to modify all the PHP-

MySQL code in this book!

www.DMCInsights.com/ecom/

186 CHAPTER 7

Prepared Statements
In database-based applications, many times the same query will be executed
repeatedly using just slightly different parameters. For example, a query that
paginates some results varies in its LIMIT clause:

SELECT * FROM tablename LIMIT 0, 20
SELECT * FROM tablename LIMIT 20, 20
SELECT * FROM tablename LIMIT 40, 20

An INSERT query varies in the values being inserted:

INSERT INTO tablename (column1, column2) VALUES ('value1', 'value2')
INSERT INTO tablename (column1, column2) VALUES ('valueX', 'valueY')

Unlike those five queries, which include the table references and the data to
be used, a prepared statement separates the static content from the dynamic
values, using placeholders for the latter:

SELECT * FROM tablename LIMIT ?, 20
INSERT INTO tablename (column1, column2) VALUES (?, ?)

The database is then asked to “prepare” the statement, at which point the
database will confirm that the query is syntactically valid (assuming that
values will later be provided for each placeholder). There can be a performance
benefit to this approach, since the database can cache the preparation of the
query, making subsequent uses of the same prepared statement faster. The
next steps provide a value for all the placeholders and execute the query.

In terms of your PHP code, this is how you go about using a prepared
 statement…

Start by defining the query, using question marks to indicate the values to be
provided later. For example, if the site had a login functionality, its query might
look like:

$q = 'SELECT id, username, type, IF(date_expires >= NOW(), true, false)
➥FROM users WHERE (email=? and password=?)';

Then, call the mysqli_prepare() function, providing it with the database con-
nection and the query:

$stmt = mysqli_prepare($dbc, $q);

This function returns a MySQLi_STMT object, which will be used by later
 functions.

tip

This query comes from Chapter 4,

“User Accounts.”

note

It’s very important that you don’t

quote any placeholders, even if

their values will be strings.

SECOND SITE: STRUCTURE AND DESIGN 187

If you want to see any error that might have occurred, you could next do this:

if (!$stmt) echo mysqli_stmt_error($stmt);

The next step is to bind the variables, which is to associate each placeholder
with a PHP variable:

mysqli_stmt_bind_param($stmt, 'ss', $email, $pass);

The first argument is the statement representative variable. The next is an
indicator of the formats of the various placeholders, using one symbol for each
placeholder. The available symbols are in Table 7.1.

Table 7.1 Bound Value Types

Letter Represents

d Decimal

i Integer

b Blob (binary data)

s All other types

For this query, there are two placeholders and both will be strings (that is,
not decimals, integers, or blobs). The mysqli_stmt_bind_params() function
then takes one variable for each placeholder. These variables can have any
valid name and wouldn’t necessarily be existing variables prior to this point,
because it’s after this point that each variable is normally assigned a value:

$email = $_POST['email'];
$pass = get_password_hash($_POST['pass']);

Finally, execute the statement:

mysqli_stmt_execute($stmt);

To clarify a common point of confusion, the variables bound to the placehold-
ers must have their appropriate values when the mysqli_stmt_execute() func-
tion is called. As you’ll see in a later chapter, this means that you can prepare
and bind a statement, then associate values to use within a loop or other
control structure.

Also, and more importantly, you do not need to take any extra steps to prevent
SQL Injection attacks because the prepared statements already prevent those
simply by separating the values from the rest of the query.

188 CHAPTER 7

For UPDATE and INSERT queries, you can confirm that a record was affected
using:

if (mysqli_stmt_affected_rows($stmt) == 1) {

For SELECT queries, to count the number of returned rows, do this:

mysqli_stmt_store_result($stmt);
if (mysqli_stmt_num_rows($stmt) >= 1) {

Once you’re finished with the prepared statement, you can close it and free up
the resources:

mysqli_stmt_close($stmt);

All the previous code demonstrates inbound prepared statements, in which
the values used in a query come from variables. You can also use outbound
prepared statements—with or without inbound parameters—in which case the
query’s results are assigned to variables. Assuming the earlier query returned
a row, you could then use:

mysqli_stmt_store_result($stmt);
if (mysqli_stmt_num_rows($stmt) == 1) {
mysqli_stmt_bind_result($stmt, $id, $username, $type, $expired);
mysqli_stmt_fetch($stmt);

At this point, the $id, $username, $type, and $expired variables have the
values returned by the database.

If your server configuration does not support prepared statements, the solu-
tion is simple: Use mysqli_query() and the other standard functions as you
normally would. Just make sure you use an escaping function and other tech-
niques to prevent SQL Injection attacks.

Stored Procedures
Stored procedures, new(-ish) to MySQL but present in other database applica-
tions for years, is simply a way to define blocks of code within the database
itself. Instead of running a query on the database, you call the corresponding
stored procedure, which will do the querying for you.

Stored procedures can offer the following benefits:

■ Improved security

■ Better performance

■ Cleaner model-controller separation

■ Increased application portability

tip

Chapter 11, “Site Administration,”

will use prepared statements

exclusively.

note

Both stored procedures and

stored functions fall under

the general category of stored

routines.

note

I’m just introducing the concept

of stored procedures here; later

chapters will present much more

context and syntax.

SECOND SITE: STRUCTURE AND DESIGN 189

The most important of these is security. Because routines are stored within the
database itself, the programming interface—PHP in this case—will not have
direct access to the underlying tables and data. In fact, the interface wouldn’t
even need to know what tables and columns exist when stored procedures
are used.

You can get better performance with a stored procedure in two ways. First, as
you’ll see, stored procedures require that less data be sent to the database,
because you’ll mostly be sending just values without any SQL (this is another
security benefit). Second, stored procedures can be cached and managed so
that the database executes them as efficiently as possible.

The cleaner model-controller separation is obvious: more logic goes into the
database, removing SQL from the PHP code.

As for the increased application portability, this is both true and not. Because
the logic will be stored in the database, other interfaces, like a Java applica-
tion or the command line, can invoke the stored procedures in exactly the
same way (this may or may not be beneficial to you). On the other hand, with
the logic stored in the database, you could not as easily change the database
application in use. But to be frank, I’ve been doing Web development for over
a decade now and have had to change a Web application from one database
server to another…just about never.

Stored procedures are created using this SQL command:

CREATE PROCEDURE name (arguments)
BEGIN
 CODE
END

The procedure’s name can contain letters, numbers, and the underscore, but
avoid using the same name as an existing MySQL function, keyword, database
name, or table name.

For the procedure’s arguments, give each argument a name and a MySQL-
defined type, with multiple arguments separated by a comma:

CREATE PROCEDURE do_this(age INT, name VARCHAR(20)...

Again, stick to letters, numbers, and the underscore, and avoid using existing
names and keywords for the argument names. Note that these are MySQL
stored procedure variables, not PHP ones, so there are no dollar signs. The
variable types are also basic, omitting extra qualities such as UNSIGNED or
NOT NULL.

note

I ran a few informal benchmarks

and saw this book’s stored

procedures running significantly

faster than the literal queries.

note

Stored procedures are associ-

ated with a specific database and

become part of its definition.

note

As stored procedures transfer

more of the processing load from

the Web server to the database

server, you may find the data-

base server becomes overloaded

more quickly.

note

Banks and other extremely

secure environments rely on

stored procedures for increased

security.

note

You must use parentheses for

the procedure’s arguments, even

if there are none.

190 CHAPTER 7

The BEGIN and END blocks aren’t required with only a single command, but I
think it’s best to still use them.

The CODE part is where the magic happens. In this section you can execute
SQL queries, create and manipulate variables, use control structures (condi-
tionals and loops), and so forth. In layman’s terms, whatever is the result of
the CODE section will be what’s returned by the stored procedure (that is, what
you’d have to work with after invoking the stored procedure in PHP).

There is, however, one little catch: Because MySQL, by default, uses the
semicolon to terminate SQL commands, any use of a semicolon within the
procedure’s definition will terminate the definition itself. The workaround is to
change the delimiter prior to the definition:

DELIMITER $$
CREATE PROCEDURE name (arguments)
BEGIN
 CODE
END$$

Figure 7.14 shows a stored procedure being defined using the command-line
MySQL client.

Figure 7.14

To execute a stored procedure, use CALL name (arguments) (Figure 7.15).

Figure 7.15

note

As with prepared statements,

don’t quote the arguments used

within a stored procedure query,

even if they are strings.

SECOND SITE: STRUCTURE AND DESIGN 191

In PHP, you can use the mysqli_query() function to execute a stored procedure:

$r = mysqli_query("CALL get_non_coffee_products($id)");

Then you can use the mysqli_fetch_array() function to get the results.

The last thing you should know is that you can create stored procedures, using
phpMyAdmin, the mysql command-line client, or whatever, just as you can
execute any other query, provided that you’re connected to the database as
a user with that permission. This is to say that the MySQL user involved must
have CREATE ROUTINE permissions, which will normally also mean they have
ALTER ROUTINE and EXECUTE permissions. Unfortunately, I can’t personally
say how common it is for different Web hosts to allow stored procedures.

If your server environment makes using stored procedures impossible, you’ll
need to move all the logic and SQL back into your PHP scripts, and execute the
SQL commands as you would standard queries.

note

MySQL permissions with respect

to stored procedures are more

complicated than I’m presenting

here. See the MySQL manual if

you want all the details.

8 CREATING A
CATALOG

After preparing the server for the site (see the previous chapter), the next step is
to start creating the catalog, because the customer can’t shop without it. To do
so, you’ll need to prepopulate the database with some products, since you won’t
develop the administrative scripts for adding products until Chapter 11, “Site
Administration.” Then you can write the two PHP scripts for generating the cata-
log: one for browsing by category and a second for listing specifi c products.

After that, the chapter demonstrates better ways to show the availability of
products and any applicable sale prices. From there, you’ll write new PHP
scripts for showing the sale items on their own.

If you have intermediate PHP and MySQL experience, nothing in this chapter
should be too challenging for you, although you will learn some new tricks.
The SQL queries in this chapter are some of the most complex in the book, and
they’ll be wrapped inside stored procedures to boot. You’ll also see a real-world
way of implementing the MVC design pattern in a moderately complex site.

PREPARING THE DATABASE
Half of the database tables will be used by the code in this chapter. In order
to see any results in the Web browser, you’ll need to insert some records into
these fi rst. For three of these tables—general_coffees, non_coffee_categories,
and sizes, there will not be an administration page. The data in all three tables
should be fairly stable, and if you want administrative capability over them, it
would be easy enough for you to create corresponding administrative pages
yourself. For the other three tables—specifi c_coffees, non_coffee_products,

CREATING A CATALOG 193

and sales, you’ll create administrative scripts, but not until Chapter 11. For now,
you’ll populate these tables using just SQL, and then create the three stored
procedures used by the PHP scripts in this chapter.

Populating the Tables Using SQL
You can populate any database table via any interface to the MySQL database,
the two most common being the Web-based phpMyAdmin and the command-
line mysql client. With phpMyAdmin, which is what your Web host likely pro-
vides (perhaps indirectly through another control panel), you can use the SQL
tab or the SQL query window (Figure 8.1) to enter SQL commands.

Figure 8.1

With the command-line mysql client, you first need to access the server via a
command-line interface (even if that’s your own computer). How you do this
will depend upon the operating system you’re using:

■ On Windows, click Start, and then Run. Enter cmd in the Run prompt and
click OK.

■ On Mac OS X, open the /Applications/Utilities/Terminal program.

■ Most versions of Linux also have a Terminal application.

Once you’re in the command-line environment, you can access the database
using:

mysql -u username -p ecommerce2

Provide a real username and, at the prompt, enter that user’s password. This
command, should it work (that is, should the username and password be
correct), will also select the ecommerce2 database automatically. Change that
part of the command if your database is named differently.

If you’re using an all-in-one installer, such as XAMPP (www.apachefriends.org)
or MAMP (www.mamp.info), you’ll need to specify the full path to that version
of the mysql client (Figure 8.2 on the next page):

/Applications/MAMP/Library/bin/mysql -u username -p ecommerce2

tip

Over time, I’ll probably discuss

(on my blog and in my forum)

and outright create additional

PHP scripts for the Coffee site.

The book’s corresponding Web

site will link to these additions

as they are created.

tip

phpMyAdmin also provides an

insert option that presents forms

through which you can add

multiple records to a table.

tip

You can also use your com-

puter’s command-line interface

to access your server via the

command-line using ssh.

www.apachefriends.org
www.mamp.info

194 CHAPTER 8

Figure 8.2

Once you’ve accessed the database via any interface, you can start populating
the tables (assuming you’ve already defined them).

1. Populate the sizes table:

INSERT INTO `sizes` (`size`) VALUES
('2 oz. Sample'), ('Half Pound'), ('1 lb.'), ('2 lbs.'), ('5 lbs.');

The sizes table is used by the specific_coffees table to indicate in what
quantities someone can buy coffee. The table only has a primary key col-
umn and a size column. This query adds five values to the table.

2. Populate the non_coffee_categories table:

INSERT INTO `non_coffee_categories` (`category`, `description`, `image`)
➥VALUES
('Edibles', 'A wonderful assortment of goodies to eat. Includes biscotti,
➥baklava, lemon bars, and more!', 'goodies.jpg'),
('Gift Baskets', 'Gift baskets for any occasion! Including our many coffees
➥and other goodies.', 'gift_basket.jpg'),
('Mugs', 'A selection of lovely mugs for enjoying your coffee, tea, hot
➥cocoa or other hot beverages.', '781426_32573620.jpg'),
('Books', 'Our recommended books about coffee, goodies, plus anything
➥written by Larry Ullman!', 'books.jpg');

The non_coffee_categories table represents the categories of non-coffee
items the site will sell. The three non-primary key columns are category,
description, and image. For the images, you’ll need to create a represen-
tative image for each category, with a matching image name. The images
should be placed within the products directory (see Figure 7.5). You can, of
course, just copy the images available in the downloadable code from the
book’s corresponding Web site.

3. Populate the general_coffees table:

INSERT INTO `general_coffees` (`category`, `description`, `image`) VALUES
('Original Blend', 'Our original blend, featuring a quality mixture of
➥bean and a medium roast for a rich color and smooth flavor.',
➥'original_coffee.jpg'),

tip

All the SQL commands

can be downloaded from

www.DMCInsights.com/ecom/.

tip

See Chapter 7, “Second Site:

Structure and Design,” for a

discussion of the database’s

tables.

www.DMCInsights.com/ecom/

CREATING A CATALOG 195

('Dark Roast', 'Our darkest, non-espresso roast, with a full flavor and a
➥slightly bitter aftertaste.', 'dark_roast.jpg'),
('Kona', 'A real treat! Kona coffee, fresh from the lush mountains of
➥Hawaii. Smooth in flavor and perfectly roasted!', 'kona.jpg');

This table has the exact same structure as non_coffee_categories. Again,
grab the images from the downloadable stuff and place them in your
products folder.

4. Populate the non_coffee_products table:

INSERT INTO `non_coffee_products` (`non_coffee_category_id`, `name`,
➥`description`, `image`, `price`, `stock`, `date_created`) VALUES
(3, 'Pretty Flower Coffee Mug', 'A pretty coffee mug with a flower design on a
➥white background.', 'd9996aee5639209b3fb618b07e10a34b27baad12.jpg',
➥6.50, 100, NOW()),
(3, 'Red Dragon Mug', 'An elaborate, painted gold dragon on
➥a red background. With partially detached, fancy handle.',
➥'847a1a3bef0fb5c2f2299b06dd63669000f5c6c4.jpg', 7.95, 4, NOW());

In Chapter 11, you’ll create a PHP script that does all the heavy lifting for
you, so let’s just create a couple of records in this table for now. Each
product has a non_coffee_category_id of 3, which is Mugs. A specific name
and description is provided, along with an image’s name (also to be placed
in the products directory). Next come the price and the quantity in stock. To
test how stock availability will be handled, one product has plenty of stock
and another very little.

5. Populate the specific_coffees table:

INSERT INTO `specific_coffees` (`general_coffee_id`, `size_id`,
➥`caf_decaf`, `ground_whole`, `price`, `stock`, `date_created`) VALUES
(3, 1, 'caf', 'ground', 2.00, 20, NOW()),
(3, 2, 'caf', 'ground', 4.50, 30, NOW()),
(3, 2, 'decaf', 'ground', 5.00, 20, NOW()),
(3, 3, 'caf', 'ground', 8.00, 50, NOW()),
(3, 3, 'decaf', 'ground', 8.50, 20, NOW()),
(3, 3, 'caf', 'whole', 7.50, 50, NOW()),
(3, 3, 'decaf', 'whole', 8.00, 20, NOW()),
(3, 4, 'caf', 'whole', 15.00, 30, NOW()),
(3, 4, 'decaf', 'whole', 15.50, 15, NOW()),
(3, 5, 'caf', 'whole', 32.50, 5, NOW());

To create specific coffee products to sell, you’re actually creating multiple
products of one coffee type (Kona, with a general_coffee_id of 3).

196 CHAPTER 8

The products come in varying sizes and combinations of caffeinated, decaf-
feinated, ground beans, and whole beans. The products have different
prices and quantities in stock.

6. Populate the sales table:

INSERT INTO `sales` (`product_type`, `product_id`, `price`, `start_date`,
➥`end_date`) VALUES
('other', 1, 5.00, '2010-08-16', '2010-08-31'),
('coffee', 7, 7.00, '2010-08-19', NULL),
('coffee', 9, 13.00, '2010-08-19', '2010-08-26'),
('other', 2, 7.00, '2010-08-22', NULL),
('coffee', 8, 13.00, '2010-08-22', '2010-08-31'),
('coffee', 10, 30.00, '2010-08-22', '2010-09-30');

Finally, let’s put some items on sale by discounting their prices. For each
sale item, you need to indicate a product type, the item’s product ID (from
the corresponding specific_coffees or non_coffee_products tables), the
new price, and the starting date for the sale. The ending date is optional.
Unless you’re reading this book as I’m writing it, which would freak me out,
you’ll need to change the dates to be current for you.

Looking at the Stored Procedure Queries
The three stored procedures about to be created will use six queries, four of
which are relatively complex. Those four select:

■ All the specific coffee products in a general coffee category

■ All the specific non-coffee products in a general non-coffee category

■ All the sale items

■ A few, random sale items to be listed on the home page

Before moving onto the stored procedures themselves, let’s look at these
queries in detail.

SELECTING EVERY COFFEE PRODUCT

The query for selecting every coffee product is:

SELECT gc.description, gc.image, CONCAT("C", sc.id) AS sku,
CONCAT_WS(" - ", s.size, sc.caf_decaf, sc.ground_whole, sc.price) AS name,
sc.stock
FROM specific_coffees AS sc INNER JOIN sizes AS s ON s.id=sc.size_id
INNER JOIN general_coffees AS gc ON gc.id=sc.general_coffee_id

tip

If you want, you can run some

basic SELECT queries to confirm

the database’s contents.

tip

For help with complex SQL,

search online, see the MySQL

manual, or check out my book,

MySQL: Visual QuickStart Guide

(2nd Edition, Peachpit Press).

CREATING A CATALOG 197

WHERE general_coffee_id=<some_category_id> AND stock>0
ORDER by name ASC;

Figure 8.3 shows the MySQL output for the query, when replacing
<some_category_id> with the number 3 (for Kona coffee).

Figure 8.3

To understand what’s happening in this query, it will probably help to see how
the data is being used in a Web page (Figure 8.4). For the coffee products, the
general coffee type’s image and description will be used, so those need to be
selected. The product’s SKU will be a combination of the capital letter “C” (for
coffee) and the product’s ID value, so these are concatenated together in the
query. You can’t tell this from the figure, but the SKUs are used as the values
for each option in the drop-down menu, as in:

<select name="sku">
<option value="C4">1 lb. - caf - ground - 8.00</option>
<option value="C6">1 lb. - caf - whole - 7.50</option>

The select menu’s label—what the customer sees—is the concatenation
of the coffee’s size, caffeinated/decaffeinated status, ground/whole bean
status, and price. You can see this in Figure 8.4. To generate this value, use
the CONCAT_WS() function, short for concatenation with separator, where
the first argument provided will be used in between each concatenated value.
This whole construct is given the alias of name. The product’s stock value is
selected as well, to be used later.

Figure 8.4

198 CHAPTER 8

The query uses a JOIN across three tables: specific_coffees, general_coffees,
and sizes. The WHERE conditional restricts the results to a general coffee type,
and retrieves only those products that are currently in stock. And the whole
record set is returned in order by name, so that similar products will appear
near each other.

SELECTING EVERY NON-COFFEE PRODUCT

The query for selecting every non-coffee product is:

SELECT ncc.description AS g_description, ncc.image AS g_image,
CONCAT("O", ncp.id) AS sku, ncp.name, ncp.description, ncp.image,
ncp.price, ncp.stock
FROM non_coffee_products AS ncp INNER JOIN non_coffee_categories AS ncc
ON ncc.id=ncp.non_coffee_category_id
WHERE non_coffee_category_id=<some_category_id> ORDER by
➥date_created DESC;

Figure 8.5 shows the output for the query when replacing <some_category_id>
with the number 3 (for Mugs). Figure 8.6 shows how this data will be used in
the site.

Figure 8.5 Figure 8.6

This query is more straightforward, because it only performs a JOIN across
two tables. The query selects the description and image values from the
non_coffee_categories tables, aliasing them as g_description and g_image
accordingly (the g_ is short for general). Again, the product’s SKU is created in
the query, by concatenating the capital letter “O” (for other) to the product’s ID
value. The specific product’s name, description, image, price, and stock values
are also retrieved. The only condition in this query is for restricting the results
to a specific category, and the results are ordered from newest items to oldest.

tip

If your records in the sizes table

are in ascending size order, you

could select the coffee products

ordered by size_id first.

tip

Ending a query with \G instead

of a semicolon returns the query

results as a vertical list (as in

 Figure 8.5), rather than a hori-

zontal table. This is sometimes

easier to read.

CREATING A CATALOG 199

SELECTING EVERY SALE ITEM

The query for selecting every sale item is:

SELECT CONCAT("O", ncp.id) AS sku, sa.price AS sale_price, ncc.category,
ncp.image, ncp.name, ncp.price, ncp.stock, ncp.description
FROM sales AS sa
INNER JOIN non_coffee_products AS ncp ON sa.product_id=ncp.id
INNER JOIN non_coffee_categories AS ncc ON
➥ncc.id=ncp.non_coffee_category_id
WHERE sa.product_type="other" AND
((NOW() BETWEEN sa.start_date AND sa.end_date) OR (NOW() >
➥sa.start_date AND sa.end_date IS NULL))
UNION
SELECT CONCAT("C", sc.id), sa.price, gc.category, gc.image,
CONCAT_WS(" - ", s.size, sc.caf_decaf, sc.ground_whole), sc.price,
sc.stock, gc.description
FROM sales AS sa
INNER JOIN specific_coffees AS sc ON sa.product_id=sc.id
INNER JOIN sizes AS s ON s.id=sc.size_id
INNER JOIN general_coffees AS gc ON gc.id=sc.general_coffee_id
WHERE sa.product_type="coffee" AND
((NOW() BETWEEN sa.start_date AND sa.end_date) OR (NOW() >
➥sa.start_date AND sa.end_date IS NULL));

Figure 8.7 shows the output for the query.

Figure 8.7

This query is relatively complex, because it performs a UNION of two SELECT
queries, one of which is a JOIN across three tables and the other of which is
a JOIN across four! The complexity derives from the fact that some records
in the sales table will relate to the specific_coffees table (when the sales
table’s product_type value is coffee), and other records will relate to the
non_coffee_products table (when the sales table’s product_type value is
other). To perform both of these JOINs at one time requires the UNION state-
ment, which is a way of combining two similar but unrelated queries to create
one result set.

tip

Because of the order of the two

SELECT queries, the non-coffee

products will be returned first,

followed by the coffee products.

200 CHAPTER 8

The individual SELECT queries are similar to those just explained, but without
a WHERE condition on the category. However, both SELECT queries do require
a conditional that confirms that the item is currently on sale:

((NOW() BETWEEN sa.start_date AND sa.end_date) OR (NOW() >
➥sa.start_date AND sa.end_date IS NULL))

An item’s sale price is applicable if the current moment is between the start
and end dates of that sale, or if the current moment is after the start date and
there is no end date.

For both SELECT queries, the SKU is manufactured (as in the other queries),
and the product’s category, image, name, regular price, stock, and descrip-
tion are also returned. For the non-coffee products, the name will simply be
the name value from the non_coffee_products table, and the image and
description will come from there as well. For the coffee products, name will be
the concatenation of several values, and image and description will come from
the general_coffees table.

SELECTING A FEW RANDOM SALE ITEMS

The last complex query selects up to four random sale items:

(SELECT CONCAT("O", ncp.id) AS sku, sa.price AS sale_price, ncc.category,
ncp.image, ncp.name
FROM sales AS sa
INNER JOIN non_coffee_products AS ncp ON sa.product_id=ncp.id
INNER JOIN non_coffee_categories AS ncc ON
➥ncc.id=ncp.non_coffee_category_id
WHERE sa.product_type="other" AND
((NOW() BETWEEN sa.start_date AND sa.end_date) OR (NOW() >
➥sa.start_date AND sa.end_date IS NULL))
ORDER BY RAND() LIMIT 2)
UNION
(SELECT CONCAT("C", sc.id), sa.price, gc.category, gc.image,
CONCAT_WS(" - ", s.size, sc.caf_decaf, sc.ground_whole)
FROM sales AS sa
INNER JOIN specific_coffees AS sc ON sa.product_id=sc.id
INNER JOIN sizes AS s ON s.id=sc.size_id
INNER JOIN general_coffees AS gc ON gc.id=sc.general_coffee_id
WHERE sa.product_type="coffee" AND
((NOW() BETWEEN sa.start_date AND sa.end_date) OR (NOW() >
➥sa.start_date AND sa.end_date IS NULL))
ORDER BY RAND() LIMIT 2);

CREATING A CATALOG 201

Figure 8.8 shows the output for the query, running it twice to see the variety of
results (although with only six sale items in the database, the differences are
not that pronounced).

Figure 8.8

This UNION contains the same two SELECT queries as are used to find every
sale item, with the addition of ORDER BY RAND() LIMIT 2. This query will be
used on the home page, where only a couple of sale products can be adver-
tised. For that reason, each SELECT query returns up to two randomly selected
items: two random non-coffee products and two random coffee products.
Because the ORDER BY and LIMIT clauses can confuse the UNION statement,
both SELECT statements are individually wrapped in parentheses, making the
general structure: (SELECT…) UNION (SELECT…).

Creating Stored Procedures
This project will primarily use stored procedures, at least on the public side
of the site. For the functionality being developed in this chapter, three stored
procedures are required, each of which runs one of two SELECT queries. You
can create stored procedures using most MySQL interfaces, although you
must be connecting to the database as a MySQL user with CREATE ROUTINES
permissions.

1. Create the select_categories() procedure:

DELIMITER $$
CREATE PROCEDURE select_categories (type VARCHAR(6))
BEGIN
 IF type = 'coffee' THEN
 SELECT * FROM general_coffees ORDER by category;
 ELSEIF type = 'other' THEN (continues on next page)

tip

To sort the entire result set, use

this structure: (SELECT… UNION

SELECT…) ORDER BY…

note

A common problem with stored

procedures is trying to create

them as a MySQL user that lacks

permission to create stored

routines.

tip

Procedure names are case-

insensitive and can be up to

64 characters long.

202 CHAPTER 8

 SELECT * FROM non_coffee_categories ORDER by category;
 END IF;
END$$
DELIMITER ;

The first line changes the delimiter from the default semicolon to some-
thing else so that the semicolons within the procedure don’t cause prob-
lems. The procedure itself is named select_categories(), which is a clear
indication of what the procedure does.

The procedure takes one argument, named type, and of MySQL data
type VARCHAR(6). The procedure executes one of two possible SELECT
queries, depending upon the value of type. An IF-ELSE IF conditional
accomplishes this.

The last line reverts the delimiter back to the default semicolon. If you’re
going to be creating multiple procedures at once, as in these steps, you
only have to change the delimiter before the first definition and change it
back after the last, but I’m changing it with each definition to avoid confu-
sion and possible errors.

2. Create the select_products() procedure:

DELIMITER $$
CREATE PROCEDURE select_products(type VARCHAR(6), cat TINYINT)
BEGIN
 IF type = 'coffee' THEN
 SELECT gc.description, gc.image, CONCAT("C", sc.id) AS sku,

➥CONCAT_WS(" - ", s.size, sc.caf_decaf, sc.ground_whole, sc.price)
➥AS name, sc.stock FROM specific_coffees AS sc INNER JOIN sizes
➥AS s ON s.id=sc.size_id INNER JOIN general_coffees AS gc ON
➥gc.id=sc.general_coffee_id WHERE general_coffee_id=cat AND
➥stock>0

ORDER by name ASC;
 ELSEIF type = 'other' THEN
 SELECT ncc.description AS g_description, ncc.image AS g_image,

➥CONCAT("O", ncp.id) AS sku, ncp.name, ncp.description,
➥ncp.image, ncp.price, ncp.stock FROM non_coffee_products AS
➥ncp INNER JOIN non_coffee_categories AS ncc ON
➥ncc.id=ncp.non_coffee_category_id

WHERE non_coffee_category_id=cat ORDER by date_created DESC;
 END IF;
END$$
DELIMITER ;

This procedure takes two arguments: a type and a category. If type equals
coffee, then a SELECT runs to retrieve every specific coffee product. If type

tip

I’ve included indentations in the

procedures here for improved

legibility, but you may need to

remove the indents when past-

ing these commands into the

mysql client.

note

Because this is a MySQL stored

procedure, not PHP code, the

syntax for the conditional itself

and the equality condition (note

the single equals sign, not a

double) differs slightly.

note

Your stored procedure argu-

ments should not have the same

name as any column or table in

the database, or as any MySQL

keyword.

note

To improve legibility, I’ve not

used the backticks around table

and column names in the stored

procedure queries, but you may

prefer to use them.

CREATING A CATALOG 203

equals other, then a SELECT runs to retrieve every non-coffee product.
These are the same queries already explained, just compressed (that is,
the breaks have been removed).

3. Create the select_sale_items() procedure:

DELIMITER $$
CREATE PROCEDURE select_sale_items (get_all BOOLEAN)
BEGIN
IF get_all = 1 THEN
SELECT CONCAT("O", ncp.id) AS sku, sa.price AS sale_price, ncc.category,
➥ncp.image, ncp.name, ncp.price, ncp.stock, ncp.description FROM sales
➥AS sa INNER JOIN non_coffee_products AS ncp ON
➥sa.product_id=ncp.id INNER JOIN non_coffee_categories AS ncc ON
➥ncc.id=ncp.non_coffee_category_id WHERE sa.product_type="other"
➥AND ((NOW() BETWEEN sa.start_date AND sa.end_date) OR (NOW() >
➥sa.start_date AND sa.end_date IS NULL))
UNION SELECT CONCAT("C", sc.id), sa.price, gc.category, gc.image,
CONCAT_WS(" - ", s.size, sc.caf_decaf, sc.ground_whole), sc.price,
sc.stock, gc.description FROM sales AS sa INNER JOIN specific_coffees
AS sc ON sa.product_id=sc.id INNER JOIN sizes AS s ON s.id=sc.size_id
INNER JOIN general_coffees AS gc ON gc.id=sc.general_coffee_id WHERE
sa.product_type="coffee" AND ((NOW() BETWEEN sa.start_date AND
sa.end_date) OR (NOW() > sa.start_date AND sa.end_date IS NULL));
ELSE
(SELECT CONCAT("O", ncp.id) AS sku, sa.price AS sale_price,
➥ncc.category, ncp.image, ncp.name FROM sales AS sa INNER JOIN
➥non_coffee_products AS ncp ON sa.product_id=ncp.id INNER JOIN
➥non_coffee_categories AS ncc ON ncc.id=ncp.non_coffee_category_id
➥WHERE sa.product_type="other" AND ((NOW() BETWEEN sa.start_date
➥AND sa.end_date) OR (NOW() > sa.start_date AND sa.end_date
➥IS NULL)) ORDER BY RAND() LIMIT 2) UNION (SELECT CONCAT("C",
➥sc.id), sa.price, gc.category, gc.image, CONCAT_WS(" - ", s.size,
➥sc.caf_decaf, sc.ground_whole) FROM sales AS sa INNER JOIN
➥specific_coffees AS sc ON sa.product_id=sc.id INNER JOIN sizes AS s
➥ON s.id=sc.size_id INNER JOIN general_coffees AS gc ON
➥gc.id=sc.general_coffee_id WHERE sa.product_type="coffee" AND
➥((NOW() BETWEEN sa.start_date AND sa.end_date) OR (NOW() >
➥sa.start_date AND sa.end_date IS NULL)) ORDER BY RAND() LIMIT 2);
END IF;
END$$
DELIMITER ;

tip

Queries in stored procedures,

when written as I have in these

examples, are just as safe as

prepared statements, so you

don’t need to worry about using

the arguments in the queries.

204 CHAPTER 8

This stored procedure uses the two sale-related queries already explained.
It takes only one argument: a Boolean value indicating whether or not every
sale item should be returned (that is to say, is this the sales page or the
home page?).

4. Test the stored procedures by calling them:

CALL select_categories('coffee');
CALL select_categories('other');
CALL select_products('coffee', 3);
CALL select_products('other', 3);
CALL select_sale_items(false);
CALL select_sale_items(true);

The results of these procedure calls should be exactly as those shown in
the earlier figures (wherein the same queries are run directly).

SHOPPING BY CATEGORY
With the stored procedures and the overall HTML template in place (that is,
two parts of an MVC approach have been written), the PHP script that lists the
available categories becomes quite simple. All this file has to do is:

■ Validate the received type

■ Invoke the stored procedure

■ Include the HTML template and specific view files

As a reminder, the PHP script for listing the product categories is called
shop.php, and it’s linked in the header as either /shop/coffee/ or
/shop/goodies/. The Web server’s mod_rewrite module will convert
that URL (unbeknownst to the user) into either shop.php?type=coffee
or shop.php?type=goodies. Let’s write the PHP script first, then the view
files it uses.

Creating the PHP Script
In keeping with the MVC approach, this PHP script should have little-to-no
HTML (technically, none) and as little SQL as possible. The end result is a
 smattering of logic and the inclusion of several files.

1. Create a new PHP script in your text editor or IDE to be named shop.php
and stored in the Web root directory.

tip

See Chapter 7 for an explanation

of mod_rewrite and how this

Coffee site uses it.

CREATING A CATALOG 205

2. Include the configuration file:

<?php
require ('./includes/config.inc.php');

3. Validate the product type:

if (isset($_GET['type']) && ($_GET['type'] == 'goodies')) {
 $page_title = 'Our Goodies, by Category';
 $sp_type = 'other';
 $type = 'goodies';
} else { // Default is coffee!
 $page_title = 'Our Coffee Products';
 $type = $sp_type = 'coffee';
}

The product type can be one of only two values: goodies or coffee. The
default product type to display will always be coffee, so the first part of
the conditional just checks if $_GET['type'] is set and if it equals goodies.
For each condition, the page’s title is determined, and the $type and
$sp_type variables are assigned appropriate values. Two variables are
required here because the Web site uses the term goodies, but the data-
base uses the term other. If the same term were used in both cases, you
could use just one variable. The $sp_type variable represents what the
stored procedure expects.

The assignation of coffee to both $sp_type and $type in one line is possible
as the assignment will occur from right to left. First, $sp_type is assigned
the value coffee, then $type is assigned the value of $sp_type.

4. Include the header file and the database connection:

include ('./includes/header.html');
require (MYSQL);

5. Call the stored procedure:

$r = mysqli_query($dbc, "CALL select_categories('$sp_type')");

This one line is all you need to invoke the stored procedure for either type.
Because the $sp_type value will be a string, it must be quoted when you
pass it to the stored procedure. The root SQL command is the same that
would be run in the mysql client or phpMyAdmin:

CALL select_categories('coffee')

or

CALL select_categories('other')

note

I use “goodies” in the viewable

site instead of “other” because

it’s more meaningful to users

and search engines (in theory).

206 CHAPTER 8

For debugging purposes, you could include this line next, although you
wouldn’t want to use it on a live site:

if (!$r) echo mysqli_error($dbc);

This line will print any MySQL errors that occurred, if $r doesn’t have a posi-
tive value.

6. If records were returned, include the view file:

if (mysqli_num_rows($r) >= 1) {
 include ('./views/list_categories.html');

You can use the mysqli_num_rows() function to confirm that results were
returned by this stored procedure, as if the script had executed a standard
SELECT query. If some rows were returned, the list_categories.html file,
found within the views directory, will be included. That file will handle the
actual retrieval and display of the returned rows.

7. If no records were returned, include the error view:

} else { // Include the error page:
 include ('./views/error.html');
}

The error.html view file will be included any time a query did not return suf-
ficient results. You could also, at this point, write an error message to a log
or send it to an email address.

8. Complete the PHP page:

include ('./includes/footer.html');
?>

9. Save the file.

Creating the View Files
The shop.php script uses two view files: list_categories.html and error.html.
Remember that these view files just represent a snippet of HTML: a subset of
the entire page, representing a small portion of what the user sees. Each view
file uses a .html extension to indicate its basic nature, and should have a bare
minimum of PHP code and logic.

Looking at the error.html file, all it needs to do is display a message within the
context of the HTML template. For the Coffee template, the context is a box
generated by several <DIV> tags.

note

The MySQL user that the PHP

script is connecting as must have

EXECUTE permissions in order to

call a stored procedure.

CREATING A CATALOG 207

views/error.html
 1 <!-- box begin -->
 2 <div class="box alt">
 3 <div class="left-top-corner">
 4 <div class="right-top-corner">
 5 <div class="border-top"></div>
 6 </div>
 7 </div>
 8 <div class="border-left">
 9 <div class="border-right">
 10 <div class="inner">
 11 <h2>Error!</h2>
 12 Unfortunately a system error has occurred. Please use the

➥links at the top of the page to continue shopping. We
➥apologize for the inconvenience.

 13 </div>
 14 </div>
 15 </div>
 16 <div class="left-bot-corner">
 17 <div class="right-bot-corner">
 18 <div class="border-bot"></div>
 19 </div>
 20 </div>
 21 </div>
 22 <!-- box end -->

Unfortunately, the template is a bit <DIV>-happy; yet another reason that put-
ting this in its own file is beneficial. Should the stored procedure not return any
results, the user will see the message shown in Figure 8.9. This would occur
only if the database wasn’t available, if it wasn’t populated, or if the connect-
ing MySQL user does not have EXECUTE permissions (the right to run a stored
procedure).

Figure 8.9

208 CHAPTER 8

The list_categories.html file is a bit more complicated, but only slightly (view
files shouldn’t be truly complex). It uses a loop to run through the query
results, and writes them within the proper context.

1. Create a new HTML file in your text editor or IDE to be named
list_categories.html and stored in the views folder.

2. Begin with the contextual HTML:

<!-- box begin -->
<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div class=
➥"inner">
<ul class="items-list">

For the Coffee template that I’m using, everything goes within a series of
<DIV> tags that create a box. These lines start that box and conclude by
starting an unordered list.

3. Begin a while loop:

<?php while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {

As I wrote in Chapter 7, the MVC approach requires that assumptions are
made, such as the assumption here that there are records to be fetched.
As an extra precaution, you could add a conditional before the loop:

if ($r) {…

That being said, this while loop is as complicated as the view gets.

4. Print each item:

echo '<h3>' . $row['category'] . ' </h3>
<p><img alt="' . $row['category'] . '" src="/products/' . $row['image'] . '"
➥/>' . $row['description'] . '

<a href="/browse/' . $type . '/' . urlencode($row['category']) . '/' .
➥$row['id'] . '" class="h4">View All ' . $row['category'] . ' Products
➥</p>
';

The goal is to generate HTML that looks like (as a single example):

<h3>Gift Baskets</h3>
 <p>

➥Actual Description

 View All

➥Gift Baskets Products</p>

note

I’m compressing some of the

HTML to save space in the book

and because you’re probably

not typing in all this HTML from

scratch anyway.

tip

There’s a lot of PHP and HTML

interspersed, so be careful of

the syntax.

CREATING A CATALOG 209

For the image’s src and the link’s href attributes, absolute paths are used
(that is, each begins with a slash). This is necessary because the current
page might be www.example.com/shop/goodies/, in which case the refer-
ences to files in the products folder must start at the root directory.

The link to view all the products in the category is to /browse/type/
category/ID, where type comes from shop.php (and, therefore, the
URL), and category and ID come from the returned database record.
The browse.php page will use these values.

5. Complete the while loop and the PHP:

} ?>

6. Complete the HTML:

</div></div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div>
➥</div>
<!-- box end -->

7. Save the file and test it in your Web browser (Figures 8.10 and 8.11).

You can test this by clicking either shopping link—coffee or goodies,
although clicking the links displayed on the shop.php page won’t work,
because browse.php has not yet been written.

Figure 8.10 Figure 8.11

www.example.com/shop/goodies/

210 CHAPTER 8

LISTING PRODUCTS
Now that customers can shop by type—coffee and goodies—they need to be
able to browse through the actual products they can purchase, within each
type. The page for doing that, browse.php, is written in a very similar manner
to shop.php, although it uses a different view file to display each product type.

Creating the PHP Script
The primary difference between shop.php and browse.php is that the latter
has three values to validate—type, category, and ID—instead of just one. Still,
even with lots of spacing and comments, the result is less than 70 lines long.

1. Create a new PHP script in your text editor or IDE to be named browse.php
and stored in the Web root directory.

2. Include the configuration file:

<?php
require ('./includes/config.inc.php');

3. Start validating the required values:

$type = $sp_type = $sp_cat = $category = false;
if (isset($_GET['type'], $_GET['category'], $_GET['id']) &&
➥filter_var($_GET['id'], FILTER_VALIDATE_INT, array('min_range' => 1)))
{
 $category = $_GET['category'];
 $sp_cat = $_GET['id'];

To start the validation process, four necessary variables are initially set to
false, requiring the script to prove that everything’s okay. Next, the condi-
tion checks for the presence of three variables in the URL—type, category,
and id—and that the ID value is an integer greater than 1.

If all of these conditions are true, then two variables are assigned values
from the URL. The category value will be used as a header in the HTML
page. The $sp_cat variable will be used in the stored procedure. You really
don’t need to worry about these variables having inappropriate values here.
The ID will have already been validated using filter_var() and the category
value has to match the rewrite rule in the .htaccess file (see Chapter 7).

4. Validate the product type:

if ($_GET['type'] == 'goodies') {
 $sp_type = 'other';

CREATING A CATALOG 211

 $type = 'goodies';
} elseif ($_GET['type'] == 'coffee') {
 $type = $sp_type = 'coffee';
}

Similar to the shop.php script, the validation routine creates $sp_type
and $type variables, used in the stored procedure and the view file,
respectively. Unlike shop.php, this script does not assume a default type:
If an invalid type is somehow used, the customer will see an error page
(because, frankly, they’re probably the ones that deliberately did something
to cause the problem).

5. If there is a problem, display the error page:

if (!$type | | !$sp_type | | !$sp_cat | | !$category) {
 $page_title = 'Error!';
 include ('./includes/header.html');
 include ('./views/error.html');
 include ('./includes/footer.html');
 exit();
}

If any of the four variables still has a false value, an error page should be
displayed and the script terminated.

6. Create a page title and include the header file:

$page_title = ucfirst($type) . ' to Buy::' . $category;
include ('./includes/header.html');

The page title will be something like Coffee to Buy::Kona or Goodies to
Buy::Mugs. It will appear at the top of the browser window.

7. Include the database connection and execute the stored procedure:

require (MYSQL);
$r = mysqli_query($dbc, "CALL select_products('$sp_type', $sp_cat)");

The stored procedure is select_products(), which takes two arguments:
the product type and a category value. The former is quoted, because it’s
a string; the latter is an unquoted integer.

8. If records were returned, include the view file:

if (mysqli_num_rows($r) >= 1) {
 if ($type == 'goodies') {
 include ('./views/list_products.html');
 } elseif ($type == 'coffee') {
 include ('./views/list_coffees.html');

tip

The double pipe characters (||)

are an alternative way of saying

“or” in a PHP conditional.

212 CHAPTER 8

 }

As long as some rows were returned, the view file (which will display the
results) will be included. There are two different view files: one for non-
coffee products and one for coffee products.

9. If no records were returned, include the “no products” view:

} else {
 include ('./views/noproducts.html');
}

This will be a new view file, which neither indicates an error nor attempts
to list any products, because there aren’t any.

10. Complete the PHP page:

include ('./includes/footer.html');
?>

11. Save the file.

Creating the View Files
The browse.php script uses three new files: list_products.html,
list_coffees.html, and noproducts.html. There are two different products-
listing files because the customer will buy a category of coffee in a specific
format (based upon the size, caffeine, and bean type, see Figure 8.4) but
will purchase other products individually (Figure 8.6). For each product type,
the page should display general information about the category as a whole;
hence, each view uses a trick to show that information only once.

CREATING THE PRODUCTS LIST

This view file should first show the general category information, then each
specific product. It will create two HTML boxes (from the original template) to
do so (again, see Figure 8.6).

1. Create a new HTML file in your text editor or IDE to be named
list_products.html and stored in the views folder.

2. Begin by creating a flag variable:

<?php
$header = false;

This variable will be used to know whether or not the initial information has
been printed (so that it’s only printed once). By default, the value is false.

CREATING A CATALOG 213

3. Create the while loop and check the $header value:

while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
 if (!$header) { ?>

The loop will be executed once for each returned row. If you look at the query
results shown in Figure 8.5, you’ll see that the general category information
is included in each returned row. This information will be used to create the
header only for the first record fetched. To test for that situation, a condi-
tional sees if $header is still false. In that case, a big block of HTML and PHP
will be executed. Because that block is mostly HTML, it’s easier to just leave
the PHP code as the result of this condition, which is perfectly valid.

4. Add the header box:

<!-- box begin -->
<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right">
➥<div class="inner">
 <h2><?php echo $category; ?></h2>
 <div class="img-box">
 <p><img alt="<?php echo $category; ?>" src="/products/<?php

➥echo $row['g_image']; ?>" /><?php echo $row['g_description'];
➥?></p>

 </div>
 </div></div><div class="left-bot-corner"><div class=

➥"right-bot-corner"><div class="border-bot"></div></div></div>
➥</div>

<!-- box end --><p> <br clear="all" /></p>

This box will be at the top of the page, displaying the category’s name,
image, and description. The $category variable, used as a caption, is
defined in the browse.php page; the other two values come from the
returned row.

5. Begin the next box and complete the $header if:

<!-- box begin -->
<div class="box"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
<div class="border-left"><div class="border-right"><div class=
➥"inner">
<?php
 $header = true;
} // End of $header IF.

tip

Instead of fetching the general

category information with each

specific product, you could run

two queries: one for the general

category info and another for all

the products in that category.

214 CHAPTER 8

All the products will be displayed within another box, which is begun as
part of the $header conditional (so that the box is only created once). Then,
in a new PHP block, the $header variable is set to true, indicating that the
header has already been displayed.

6. Print each item:

echo '<h3>' . $row['name'] . '</h3>
<div class="img-box">
 <p><img alt="' . $row['name'] . '" src="/products/' . $row['image']

➥. '" />' . $row['description'] . '

 Price: $' . $row['price'] . '

 Availability: ' . $row['stock'] . '</p>
 <p><a href="/cart.php?sku=' . $row['sku'] . '&action=add"

➥class="button">Add to Cart</p></div>';

The goal is to generate HTML that looks like (as a single example):

<h3>Red Dragon Mug</h3>
<div class="img-box">
 <p>

➥Actual Description

 Price: $4.50
 Availability:

➥67</p>
 <p>

➥Add to Cart</p></div>

As with list_categories.html, the image’s src and the link’s href attributes
use absolute paths. For now, the quantity in stock is just displayed; you’ll
improve on this later. The link is a button to add the item to the cart. It
passes the SKU and an action value to the cart.php page, to be written in
the next chapter.

7. Complete the while loop and the PHP:

} ?>

8. Complete the HTML:

<p> <br clear="all" /></p>
 </div></div><div class="left-bot-corner"><div class=

➥"right-bot-corner"><div class="border-bot"></div></div></div>
➥</div>

<!-- box end -->

9. Save the file and test it in your Web browser.

You can test this view by clicking any category listed on the “goodies” shop-
ping page (again, Figure 8.6 is a representative image of this page).

tip

As already said, the HTML

template, while stylish, is over-

stuffed with <DIV> tags. You

may prefer to use the download-

able code.

tip

Make your Add to Cart buttons

big and obvious!

CREATING A CATALOG 215

CREATING THE COFFEES LIST

The list_coffees.html view should display the general coffee name, image, and
description, then provide a drop-down menu through which the user can select
which coffee to order (see Figure 8.4). Unlike list_products.html, this view
 creates one HTML box.

1. Create a new HTML file in your text editor or IDE to be named
list_coffees.html and stored in the views folder.

2. Begin by creating a flag variable:

<?php
$header = false;

This variable will be used the same way here as in list_products.html.

3. Create the while loop and check the $header value:

while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
 if (!$header) { ?>

This is still the same as in list_products.html.

4. Create the start of the box and the general information:

<!-- box begin -->
<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div
➥class="inner">
<h2><?php echo $category; ?></h2>
 <div class="img-box">
 <p><img alt="<?php echo $category; ?>" src="/products/<?php

➥echo $row['image']; ?>" /><?php echo $row['description']; ?></p>

The header for the coffees page includes the start of the HTML box, the
coffee category as a caption (this comes from browse.php), and the general
coffee’s image and description from the first returned row.

5. Begin the form and complete the header:

<p><small>All listed products are currently available.</small>
<form action="/cart.php" method="get"><input type="hidden"
➥name="action" value="add" /><select name="sku">
<?php // The header has now been shown:
 $header = true;
} // End of $header IF.

The form uses the GET method and will be submitted to cart.php. The
form contains a hidden input, named action, with a value of add.

216 CHAPTER 8

In Chapter 9, “Building a Shopping Cart,” you’ll create that script. Next,
a <SELECT> menu, named sku, is begun.

6. Print each item:

echo "<option value=\"{$row['sku']}\">{$row['name']}</option>\n";

The goal here is to generate an <OPTION> tag, whose value is the SKU and
whose label is the concatenated name (Figure 8.12).

Figure 8.12

7. Complete the while loop and the PHP block:

} ?>

8. Complete the HTML:

</select> <input type="submit" value="Add to Cart" class="button" />
➥</p></form></div></div></div></div><div class="left-bot-corner">
➥<div class="right-bot-corner"><div class="border-bot"></div>
➥</div></div>
</div><!-- box end -->

The rest of the HTML closes the <SELECT> tag and creates the Add to Cart
button.

9. Save the file and test it in your Web browser.

You can test this by clicking any category listed on the “coffee” shopping
page (again, Figure 8.4 is a representative image of this page).

Creating the “No Products” View
The noproducts.html view is similar to error.html—it primarily displays a static
message, but it includes the name of the category involved (Figure 8.13), gen-
erated in browse.php. Here are that file’s contents:

Figure 8.13

tip

It’s really best not to have,

except perhaps for search

results, pages in your site that

don’t show products available

to be purchased.

CREATING A CATALOG 217

views/noproducts.html
 1 <!-- box begin -->
 2 <div class="box alt">
 3 <div class="left-top-corner">
 4 <div class="right-top-corner">
 5 <div class="border-top"></div>
 6 </div>
 7 </div>
 8 <div class="border-left">
 9 <div class="border-right">
 10 <div class="inner">
 11 <h2><?php echo $category; ?></h2>
 12 Unfortunately there are no products to list in this category. Please

➥use the links at the top of the page to continue shopping. We
➥apologize for the inconvenience.

 13 </div>
 14 </div>
 15 </div>
 16 <div class="left-bot-corner">
 17 <div class="right-bot-corner">
 18 <div class="border-bot"></div>
 19 </div>
 20 </div>
 21 </div>
 22 <!-- box end -->

INDICATING AVAILABILITY
For the list of coffee products, the stored procedure only retrieves those cur-
rently in stock. For the other products, though, the stock is currently repre-
sented as the quantity on hand (see Figure 8.6), which you probably don’t
want to show the customer. Instead, let’s create a function that will display the
availability in a friendlier and purchase-encouraging, manner. The function will
be defined in a new script named product_functions.inc.php.

1. Create a new PHP script in your text editor or IDE to be named
product_functions.inc.php and stored in the includes directory.

<?php

218 CHAPTER 8

2. Begin defining the function:

function get_stock_status($stock) {

The function takes one argument, assigned to the variable $stock.

3. Return different messages based upon the value of $stock:

if ($stock > 5) {
 return 'In Stock';
} elseif ($stock >= 1) {
 return 'Low Stock';
} else {
 return 'Currently Out of Stock';
}

In reality, the amount of concern to be conveyed regarding an item’s quan-
tity in stock actually depends upon how quickly the item sells. Having 4 of
an item that gets purchased a couple of times a year isn’t really an issue,
whereas having 10 of a product that averages 15 purchases a day will be
problematic. Still, for representative purposes, this function returns a differ-
ent message based upon the value of $stock.

4. Complete the function:

} // End of get_stock_status() function.

5. Save the file.

As with all PHP scripts included by other pages, this one does not use a
closing PHP tag.

To use this function, you’ll need to include the PHP file in the
list_products.html script:

include ('./includes/product_functions.inc.php');

Note that the reference to the file is relative to the browse.php—the PHP script
that includes list_products.html—because it’s browse.php that will actually
be executing this code.

Next, also in list_products.html, change the availability indication to:

Availability: ' . get_stock_status($row['stock']) …

The complete echo statement should now be:

echo '<h3>' . $row['name'] . '</h3>
<div class="img-box">
 <p><img alt="' . $row['name'] . '" src="/products/' . $row['image']

➥. '" />' . $row['description'] . '

 Price: $' . $row['price'] . '

tip

In the downloadable code, you’ll

see this modified view file,

named list_products2.html, to

avoid confusion.

CREATING A CATALOG 219

 Availability: ' . get_stock_status($row['stock']) . '
➥</p>

 <p><a href="/cart.php?sku=' . $row['sku'] . '&action=add"
class="button">Add to Cart</p></div>';

And that’s it! You can now test this in your browser to see how it looks
(Figure 8.14).

Figure 8.14

SHOWING SALE PRICES
Another problem with the products listings in their current formats is that they
don’t reflect any applicable sale prices. This is an important issue because the
sale price for a product should appear everywhere the product is listed, not
just on the actual sales page (Figures 8.15 and 8.16).

Figure 8.15 Figure 8.16

In order to make this change, the two queries in the stored procedure that
fetches every product will need to be altered so that the sale price is also
retrieved. Second, the list_coffees.html and list_products.html view files
will need some additional logic to indicate the sale price, when one exists.

220 CHAPTER 8

Updating the Stored Procedure
The original stored procedure, as complex as its queries were, did not check
for any sale prices. To do that, another JOIN must be added to each query
to check the sales table. However, most items normally won’t be on sale, so
instead of an inner join, which only returns matches (records found in both
joined tables), the queries will have to use an outer join. By adding an outer
join, the query will continue to select every product currently being selected
but also add in any matching rows in the sales table. In other words, an inner
join is exclusive, in that it does not select any records without a corresponding
match, whereas an outer join is inclusive: it also selects records that do match.

The first new query for the select_products() procedure is:

SELECT gc.description, gc.image, CONCAT("C", sc.id) AS sku,
CONCAT_WS(" - ", s.size, sc.caf_decaf, sc.ground_whole, sc.price) AS name,
sc.stock, sc.price, sales.price AS sale_price
FROM specific_coffees AS sc INNER JOIN sizes AS s ON s.id=sc.size_id
INNER JOIN general_coffees AS gc ON gc.id=sc.general_coffee_id
LEFT OUTER JOIN sales ON (sales.product_id=sc.id
AND sales.product_type='coffee' AND
((NOW() BETWEEN sales.start_date AND sales.end_date)
OR (NOW() > sales.start_date AND sales.end_date IS NULL)))
WHERE general_coffee_id=<some_category_id> AND stock>0
ORDER by name;

This query selects specific coffee products. The first alteration (highlighted in
the code) is the selection of the original price and the sale price. You’ll see why
the price needs to be selected again—even though it already appears in the
item’s name—shortly. Next, the left outer join is added on the sales table. The
condition for the JOIN has three parts to it:

1. The sales.product_id must equal the product’s ID value.

2. The sales.product_type value must be coffee.

3. The dates that the product is on sale must start before right now and end
after right now, or, the sale’s date must start before right now and be open-
ended.

Figure 8.17 shows the results of running this query, using a category ID of 3
and without selecting the description or image (to save space). The important
thing to note is that the sale_price column will have a NULL value for those
products not currently on sale.

tip

This query is a good example

how a simple thought—allowing

items to be for sale without a

clear ending date—can compli-

cate queries and logic.

CREATING A CATALOG 221

Figure 8.17

The second new query for the select_products() procedure is:

SELECT ncc.description AS g_description, ncc.image AS g_image,
CONCAT("O", ncp.id) AS sku, ncp.name, ncp.description, ncp.image,
ncp.price, ncp.stock, sales.price AS sale_price
FROM non_coffee_products AS ncp INNER JOIN non_coffee_categories
➥AS ncc
ON ncc.id=ncp.non_coffee_category_id
LEFT OUTER JOIN sales ON (sales.product_id=ncp.id
AND sales.product_type='other' AND
((NOW() BETWEEN sales.start_date AND sales.end_date) OR (NOW() >
➥sales.start_date AND sales.end_date IS NULL)))
WHERE non_coffee_category_id=<some_category_id> ORDER by
➥date_created DESC;

The update to the query that selects every non-coffee product has the same
additional outer join, with similar criteria except that the product type should
be other. And the sale price is selected now as well.

There are a few ways you can go about updating the stored procedure: You
could use an ALTER ROUTINE syntax; you could create the procedure using a
new name; or you could just drop the routine and redefine it:

DROP PROCEDURE select_products;
DELIMITER $$
CREATE PROCEDURE select_products(type VARCHAR(6), cat TINYINT)
BEGIN
IF type = 'coffee' THEN
SELECT gc.description, gc.image, CONCAT("C", sc.id) AS sku,
CONCAT_WS(" - ", s.size, sc.caf_decaf, sc.ground_whole, sc.price) AS name,
sc.stock, sc.price, sales.price AS sale_price
FROM specific_coffees AS sc INNER JOIN sizes AS s ON s.id=sc.size_id
INNER JOIN general_coffees AS gc ON gc.id=sc.general_coffee_id
LEFT OUTER JOIN sales ON (sales.product_id=sc.id
AND sales.product_type='coffee' AND (continues on next page)

222 CHAPTER 8

((NOW() BETWEEN sales.start_date AND sales.end_date)
OR (NOW() > sales.start_date AND sales.end_date IS NULL)))
WHERE general_coffee_id=cat AND stock>0
ORDER by name;
ELSEIF type = 'other' THEN
SELECT ncc.description AS g_description, ncc.image AS g_image,
CONCAT("O", ncp.id) AS sku, ncp.name, ncp.description, ncp.image,
ncp.price, ncp.stock, sales.price AS sale_price
FROM non_coffee_products AS ncp INNER JOIN non_coffee_categories
➥AS ncc
ON ncc.id=ncp.non_coffee_category_id
LEFT OUTER JOIN sales ON (sales.product_id=ncp.id
AND sales.product_type='other' AND
((NOW() BETWEEN sales.start_date AND sales.end_date) OR (NOW() >
➥sales.start_date AND sales.end_date IS NULL)))
WHERE non_coffee_category_id=cat ORDER by date_created DESC;
END IF;
END$$
DELIMITER ;

You should update the procedure, using any interface to the database, before
moving forward.

Updating product_functions.inc.php
The logic for displaying the price of a product is a bit complex to
write into the view file, so it’ll go into a new function, also defined
in product_functions.inc.php.

1. Open product_functions.inc.php in your text editor or IDE.

2. After the get_stock_status() definition, begin a new function:

function get_price($type, $regular, $sales) {

This function takes three arguments: the type of product, its regular price,
and its sale price.

3. Check if the product’s type equals coffee:

if ($type == 'coffee') {

As it stands, the list of coffee products is displayed as a drop-down menu
(see Figure 8.15). In that context, there’s a limit as to how much additional
information can be displayed, compared to how the non-coffee products

CREATING A CATALOG 223

are displayed. For this reason, the sale price of each product type is treated
a bit differently.

4. Return the sale price, if appropriate:

if ((0 < $sales) && ($sales < $regular)) {
 return ' Sale: $' . $sales . '!';
}

The value of $sales will be NULL if no sale price exists (see Figure 8.17), so
this conditional confirms that the value is greater than zero but not greater
than the regular price (on account of some sort of administrative error). If
so, then the word Sale, followed by a colon and the sale price is returned
(for coffee products).

5. Check if the type equals goodies:

} elseif ($type == 'goodies') {

For the non-coffee products, the sale price can be displayed with more
information and flare.

6. Return the appropriate price:

if ((0 < $sales) && ($sales < $regular)) {
 return "Sale Price: \$$sales! (normally
➥\$$regular)
";
} else {
 return 'Price: $' . $regular . '
';
}

If the sale price is greater than zero but less than the regular price, the sale
price will be returned with the regular price in parentheses (so the customer
can see the extra value, Figure 8.16). Otherwise, just the regular price is
returned.

7. Complete the if-elseif conditional and the function definition:

 }
} // End of get_price() function.

8. Save the file.

Updating list_products.html
For list_products.html to take advantage of the new function, you just need to
replace the reference to $row['price'] with:

get_sale_price($type, $row['price'], $row['sale_price'])

224 CHAPTER 8

Within a larger context, list_products.html now has:

echo '<h3>' . $row['name'] . '</h3>
<div class="img-box">
 <p><img alt="' . $row['name'] . '" src="/products/' . $row['image']

➥. '" />' . $row['description'] . '
' .
 get_sale_price($type, $row['price'], $row['sale_price']) .
 'Availability: ' . get_stock_status($row['stock']) . '

➥</p>
 <p><a href="/cart.php?sku=' . $row['sku'] . '&action=add"

➥class="button">Add to Cart</p></div>';

Now you can test this additional code by viewing in your Web browser a list of
goodies available in one category (as in Figure 8.16).

Updating list_coffees.html
For list_coffees.html to take advantage of the new function, you just need to
replace this line:

echo "<option value=\"{$row['sku']}\">{$row['name']}</option>\n";

with:

echo '<option value="' . $row['sku'] . '">' . $row['name'] .
➥get_sale_price($type, $row['price'], $row['sale_price']) . '</option>';

You’ll notice that I purposefully switched from using double to single quotation
marks here. When you use which quotation marks is a personal preference,
but because a function call cannot be integrated into double quotation marks
anyway, I thought a switch to single quotation marks would be logical.

You can now test this additional code by viewing in your Web browser a
 specific coffee (as in Figure 8.15).

HIGHLIGHTING SALES
The preceding few pages performed the important task of reflecting sale
prices on the regular products listing pages, but sale items will appear in
two other places:

■ On the home page (Figure 8.18).

■ On a dedicated sales page (Figure 8.19).

tip

In the downloadable code,

you’ll see this modified view file

named list_products3.html, to

avoid confusion.

tip

In the downloadable code, you’ll

see this modified view file,

named list_coffees2.html, to

avoid confusion.

CREATING A CATALOG 225

Figure 8.18 Figure 8.19

You have already completed the stored procedure for performing both tasks,
now you just need to write the PHP scripts and view files.

Creating the Home Page
Because the home page doesn’t have to perform any of the validation that
the shop and browse scripts perform, it ends up being the simplest of the PHP
scripts in this chapter. It uses one view file, which represents all the page’s
content.

CREATING THE PHP SCRIPT

The index.php script, placed in the Web root directory, is simple enough that
there’s no need to walk through it in detail. It includes the three base files:
configuration, header, and footer. To retrieve some sale items, it invokes the
select_sale_items() procedure, passing it a value of false to indicate that not
every item should be retrieved. And it includes the home.html view.

index.php
 1 <?php
 2 require ('./includes/config.inc.php');
 3 $page_title = 'Coffee - Wouldn\'t You Love a Cup Right Now?';
 4 include ('./includes/header.html');
 5 require (MYSQL);
 6 $r = mysqli_query ($dbc, "CALL select_sale_items(false)");
 7 include('./views/home.html');
 8 include ('./includes/footer.html');
 9 ?>

226 CHAPTER 8

CREATING THE VIEW FILE

The view file for the home page should create all the content the customer
sees, including an introduction to the site and a few of the sale items. With the
theory that there may or may not be any current sale items, this view file will
actually confirm that there are sales records to return.

1. Create a new HTML script in your text editor or IDE to be named home.html
and stored in the views directory.

2. Start with the initial HTML for creating a box:

<!-- box begin -->
<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div
➥class="inner"><div class="wrapper">

3. Check for any sales:

<?php
if (mysqli_num_rows($r) >= 1) {
 echo '<dl class="special fright">
 <dt>Sale Items</dt>';

If the stored procedure called in index.php returns some rows, then a
definition list is begun (that’s how the template handles the inset products)
and a header is printed. The header is linked to /shop/sales/, which will be
turned into sales.php, thanks to mod_rewrite (see Chapter 7).

4. Print each sale item:

while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
 echo '<dd><a href="/shop/sales/#' . $row['sku'] . '" title="View This

➥Product">
➥' . $row['sale_price'] . '</dd>';

}

Each sale item on the home page is displayed within <DD> tags. The HTML
is just an image and a (for the price), plus a link to view the sale
item in more detail and where the customer can purchase it. The link is
to /show/sales/#SKU, where #SKU will be an anchored location on the
sales page.

5. Complete the sales section of the page:

 echo '</dl>';
} // End of mysqli_num_rows() IF.
?>

tip

The anchor on the sales page

works without changing the

mod_rewrite definition.

CREATING A CATALOG 227

6. Complete the rest of the page’s content:

 <h2>Welcome to Our Online Coffee House!</h2>
 <p>We're so glad you made it. Have a seat. Let me get you a fresh, hot

➥cup o' Joe. Cream and sugar? There you go.</p>
 <p>Please use the links at the top to browse through our catalog. If

➥you've been here before, you can find things you bookmarked by
➥clicking on your Wish List and Cart links. </p>

</div></div></div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div>
</div>
<!-- box end -->
<!-- box begin -->
<div class="box"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div
➥class="inner">
 <h3>About Clever Coffee, Inc.</h3>
 <p>Clever Coffee, Inc. has been selling coffee online since 1923.

➥For years, Clever Coffee, Inc. failed to make a profit, due to the lack of
➥computers and the Internet. Yadda, yadda, yadda.</p>

 <p>It's safe to shop here, promise!</p>
</div></div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div>
➥</div>
<!-- box end -->

The rest of the page’s content is mostly bragging about the site and encour-
aging the customer to shop there.

7. Save the file and test the home page in your Web browser (see Figure 8.18).

Creating the Sales Page
The final Web page you’ll develop in this chapter displays every sale item on
a single page (see Figure 8.19). Let’s quickly look at this page’s PHP script and
corresponding view file.

CREATING THE PHP SCRIPT

As with the index.php script, sales.php is very simple: there’s no validation,
just the invocation of a stored procedure. In fact, this is the same stored pro-
cedure used on the home page, this time passing along a value of true, so that
every sale item is fetched from the database.

228 CHAPTER 8

sales.php
 1 <?php
 2 require ('./includes/config.inc.php');
 3 $page_title = 'Sale Items';
 4 include ('./includes/header.html');
 5 require (MYSQL);
 6 $r = mysqli_query ($dbc, 'CALL select_sale_items(true)');
 7 if (mysqli_num_rows($r) > 0) {
 8 include ('./views/list_sales.html');
 9 } else {
 10 include ('./views/noproducts.html');
 11 }
 12 include ('./includes/footer.html');
 13 ?>

One difference here is that this script checks that some records are returned
by the stored procedure. If so, the list_sales.html view is included. If not, the
previously covered noproducts.html view is included.

CREATING THE VIEW FILE

The view file for the sales page just lists each product on sale. For all products,
the output will be exactly like that on the pages that list non-coffee products
(see Figure 8.19). This means a slightly different format for coffee products.

1. Create a new HTML script in your text editor or IDE to be named
list_sales.html and stored in the views directory.

2. Include the product_functions.inc.php script:

<?php include ('./includes/product_functions.inc.php'); ?>

This view will use both functions defined in this file.

3. Start the initial HTML box:

<!-- box begin -->
<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right">
➥<div class="inner">
 <h2>Current Sale Items</h2>

CREATING A CATALOG 229

4. Loop through each returned item:

<?php
while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {

5. Print each item:

echo '<h3 id="' . $row['sku'] . '">' . $row['category'] . '::' . $row['name']
➥.'</h3>
<div class="img-box">
 <p><img alt="' . $row['name'] . '" src="/products/' . $row['image']

➥. '" />' . $row['description'] . '
' .
 get_price('goodies', $row['price'], $row['sale_price']) . '
 Availability: ' . get_stock_status($row['stock'])

➥. '</p>
 <p><a href="/cart.php?sku=' . $row['sku'] . '&action=add"

➥class="button">Add to Cart</p></div>';

You should notice that this code is similar to that in list_products.html, at
least in terms of how the product’s image, description, price, availability,
and Add to Cart buttons are generated. One difference is that the name for
each product also reflects the category that the product is in. And by adding
an id attribute to each <H3> tag, with a value of the product’s SKU, the
links from the home page to a specific product on this page will work.

6. Complete the while loop and the PHP code:

} ?>

7. Complete the HTML:

</div></div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div>
➥</div>
<!-- box end -->

8. Save the file and test it in your Web browser.

You can test the sales listing page in two ways: by clicking the SALES link at
the top of the page or by clicking a sale item on the home page.

tip

For an ongoing discussion

of ways to extend this proj-

ect, see my support forum

or blog, both linked from

www.DMCInsights.com/ecom/.

www.DMCInsights.com/ecom/

9 BUILDING A
SHOPPING
CART

In the previous chapter, an online catalog of products was developed, com-
plete with buttons for adding items to the customer’s shopping cart. Now
it’s time to implement the cart itself. A good shopping cart shows customers
exactly what they have in their basket and provides ways to remove items,
update the quantities, and to check out. For this Web site, there’s also a “wish-
list” feature, allowing the customer to save cart items for later.

The bulk of this chapter will focus on writing the shopping cart and wish-list
features. First, though, new stored procedures are required. The chapter ends
with various ways to factor in shipping as well as a discussion of other addi-
tions you could add to this process.

DEFINING THE
PROCEDURES
Because this site uses an MVC approach, the chapter begins by looking at the
model aspect of the project, which is to say the database. Eight stored proce-
dures will be defi ned in this chapter: four for the shopping cart and four for the
wish list. Only two of the queries involved come close to being as complex as
those in Chapter 8, “Creating a Catalog,” although the procedures themselves
will use a bit more logic than the ones you’ve already seen. Because the carts
and wish_lists tables have the exact same structure and because they’ll be
used identically, I’ll just explain the stored procedures for the cart. To create
the corresponding procedures for the wish list feature, you’ll just need to
replace every occurrence of “cart” with “wish_list.”

BUILDING A SHOPPING CART 231

Adding Products
The add_to_cart() stored procedure will be invoked when the customer
requests that a product be added to their shopping cart. The procedure needs
to take four pieces of information—a unique user ID, the product type (coffee
or other), the product ID, and the quantity being added. As an extra bit of logic,
the procedure should add the product to the cart if it doesn’t already exist
there but add more quantity of the product if it is already in the cart. Here is
the stored procedure, and I’ll explain its logic afterward:

DELIMITER $$
CREATE PROCEDURE add_to_cart (uid CHAR(32), type VARCHAR(6), pid
➥MEDIUMINT, qty TINYINT)
BEGIN
 DECLARE cid INT;
 SELECT id INTO cid FROM carts WHERE user_session_id=uid AND

➥product_type=type AND product_id=pid;
 IF cid > 0 THEN
 UPDATE carts SET quantity=quantity+qty, date_modified=NOW()

➥WHERE id=cid;
 ELSE
 INSERT INTO carts (user_session_id, product_type, product_id,

➥quantity) VALUES (uid, type, pid, qty);
 END IF;
END$$
DELIMITER ;

First, in keeping with how stored procedures are created, the delimiter is
immediately changed to the combination of two dollar signs together. Next,
the procedure’s signature is created, which is to say the combination of its
name and arguments. The first argument is the user’s session ID, which will be
exactly 32 characters long. Next is the product type, which will be either five or
six characters long (other or coffee). The last two arguments are the product’s
ID and the quantity being added.

To incorporate the logic that checks if the product is already in the cart, an
internal variable is necessary. You can create one using DECLARE, followed
by the variable’s name and its MySQL data type. The variable named cid is
 created, short for cart ID.

Next, a SELECT query checks the carts table for the submitted product. If the
product is already represented in the table, then its id value will be assigned
to the cid variable, thanks to the SELECT…INTO syntax.

tip

See Chapter 8 for instructions

on creating stored procedures in

your database.

tip

You can download all the SQL

and files for this project from

www.DMCInsights.com/ecom/.

tip

The delimiter just needs to be

changed to something other

than a semicolon.

note

Variables must be declared

immediately after the BEGIN

statement.

www.DMCInsights.com/ecom/

232 CHAPTER 9

After the SELECT query, an IF-ELSE conditional will run either an UPDATE or
an INSERT query, depending upon the value of cid. If it’s greater than zero, then
the product is already in the table, and the submitted quantity should be added
to the existing quantity. Otherwise, a new record is inserted. The date_modified
column is updated to the current moment only for an UPDATE query.

Removing Products
The stored procedure for removing products from the cart is the simplest of
the four procedures. It requires three of the four arguments that add_to_cart()
uses (obviously no quantity needs to be indicated when removing something).
The procedure just runs a DELETE query:

DELIMITER $$
CREATE PROCEDURE remove_from_cart (uid CHAR(32), type VARCHAR(6),
➥pid MEDIUMINT)
BEGIN
 DELETE FROM carts WHERE user_session_id=uid AND product_type=type

➥AND product_id=pid;
END$$
DELIMITER ;

Updating the Cart
The stored procedure for updating the shopping cart will be invoked after
the user clicks the update button on the shopping cart page (Figure 9.1). The
procedure takes the same four arguments as add_to_cart(), but doesn’t have
to confirm that the product already exists in the database (unless the user did
something tricky, the product has to exist in order to show up in the cart form).
However, if the user enters zero for the quantity of the item, the procedure
should go ahead and remove that from the cart. Rather than write the removal

Figure 9.1

tip

The arguments passed to a

stored procedure can be used

internally in queries as if the

queries were prepared state-

ments, meaning that strings

need not be quoted.

tip

The site offers two ways to

remove items from the cart:

clicking a link and entering

zero for the quantity.

BUILDING A SHOPPING CART 233

functionality into this procedure, the procedure will just invoke the already
defined remove_from_cart() procedure if the quantity is zero.

DELIMITER $$
CREATE PROCEDURE update_cart (uid CHAR(32), type VARCHAR(6), pid
➥MEDIUMINT, qty TINYINT)
BEGIN
 IF qty > 0 THEN
 UPDATE carts SET quantity=qty, date_modified=NOW() WHERE

➥user_session_id=uid AND product_type=type AND product_id=pid;
 ELSEIF qty = 0 THEN
 CALL remove_from_cart (uid, type, pid);
 END IF;
END$$
DELIMITER ;

Fetching the Cart’s Contents
The fourth and final stored procedure (for the shopping cart, that is) runs a
SELECT query to retrieve all the contents of the cart. How tricky this SELECT
query is depends upon how much information you want to display, but at its
base, the query looks a lot like the sales-related queries from Chapter 8. The
query is a UNION of two SELECT statements: the first a JOIN across four tables
and the second a JOIN across five. In the procedure, I’ve written out the query
over multiple lines for clarity. This procedure only needs the user’s session ID
as an argument.

DELIMITER $$
CREATE PROCEDURE get_shopping_cart_contents (uid CHAR(32))
BEGIN
 SELECT CONCAT("O", ncp.id) AS sku, c.quantity, ncc.category,
ncp.name, ncp.price, ncp.stock, sales.price AS sale_price
FROM carts AS c
INNER JOIN non_coffee_products AS ncp ON c.product_id=ncp.id
INNER JOIN non_coffee_categories AS ncc ON ncc.id=ncp.non_coffee_
➥category_id
LEFT OUTER JOIN sales ON
(sales.product_id=ncp.id AND sales.product_type='other' AND
((NOW() BETWEEN sales.start_date AND sales.end_date) OR (NOW() >
➥sales.start_date AND sales.end_date IS NULL)))
WHERE c.product_type="other" AND c.user_session_id=uid
 UNION (continues on next page)

tip

Whenever the quantity of an

item in the carts or wish_lists

table changes (without the

product being removed), the

item’s date_modified value is

updated, too.

234 CHAPTER 9

 SELECT CONCAT("C", sc.id), c.quantity, gc.category,
CONCAT_WS(" - ", s.size, sc.caf_decaf, sc.ground_whole), sc.price,
sc.stock, sales.price
FROM carts AS c
INNER JOIN specific_coffees AS sc ON c.product_id=sc.id
INNER JOIN sizes AS s ON s.id=sc.size_id
INNER JOIN general_coffees AS gc ON gc.id=sc.general_coffee_id
LEFT OUTER JOIN sales ON
(sales.product_id=sc.id AND sales.product_type='coffee' AND
((NOW() BETWEEN sales.start_date AND sales.end_date) OR (NOW() >
➥sales.start_date AND sales.end_date IS NULL)))
WHERE c.product_type="coffee" AND c.user_session_id=uid;
END$$
DELIMITER ;

Figure 9.2 shows the result of calling this procedure. You’ll notice that the
query returns the default price (under the heading price), the quantity in stock,
and the sale price, if any. This information will be needed later.

Figure 9.2

DEFINING THE HELPER
FUNCTIONS
Before getting into the shopping cart itself, there are two helper functions
that will be useful to this chapter’s code. The first function takes two possible
prices—the regular and the sale price—and returns the appropriate price for
the product:

function get_just_price($regular, $sales) {
 if ((0 < $sales) && ($sales < $regular)) {
 return number_format($sales, 2);
 } else {
 return number_format($regular, 2);
 }
}

BUILDING A SHOPPING CART 235

This is similar to the get_price() function already defined in Chapter 8, but just
returns the numeric price (get_price() returned the price within some context).

The second function will parse a SKU, which is to say convert a value like
C12 into coffee and 12, accordingly. This conversion will often be necessary,
because the database uses each product’s type and ID number individually.
The function for parsing the SKU takes one argument—the SKU itself—and
returns an array containing two elements:

function parse_sku($sku) {

 // Grab the first character:
 $type_abbr = substr($sku, 0, 1);

 // Grab the remaining characters:
 $pid = substr($sku, 1);

 // Validate the type:
 if ($type_abbr == 'C') {
 $sp_type = 'coffee';
 } elseif ($type_abbr == 'O') {
 $sp_type = 'other';
 } else {
 $sp_type = NULL;
 }

 // Validate the product ID:
 $pid = (filter_var($pid, FILTER_VALIDATE_INT, array('min_range' => 1)))

➥? $pid : NULL;

 // Return the values:
 return array($sp_type, $pid);

} // End of parse_sku() function.

The two uses of substr() breaks the SKU into its parts. Next, the product type
is validated based upon the first character in the SKU, which must be either C,
for coffee, or O, for other. If neither is the case, the $sp_type variable is
assigned the value NULL.

The remaining characters must be an integer greater than 1. The filter_var()
function can test for that. If the value is an integer greater than 1, the value is
assigned to $pid. Otherwise, the value NULL will be assigned.

236 CHAPTER 9

Finally, both values are returned as an array. Because this function returns an
array, you must use the list() function when calling it:

list($type, $id) = parse_sku($sku);

The list() function assigns to the variables—$type and $id—the values
returned by the code on the right side of the equation.

The most appropriate place to define these two functions is within the already
existing product_functions.inc.php script, found in the includes directory. Go
ahead and do that before proceeding.

MAKING A SHOPPING
CART
After defining the stored procedures and the helper functions, three files must
be created:

■ cart.php will do all the work (it’s the controller).

■ cart.html is the view file for the cart.

■ emptycart.html is the view file if there’s nothing in the cart.

Let’s create these files now, starting with the PHP script.

Creating the PHP Script
As in Chapter 8, thanks to the use of stored procedures and included HTML
files, the PHP script itself becomes surprisingly short and quite tidy. The entire
cart.php is only 50 lines of code, including comments and blank lines! Most of
the script is logic that invokes the correct stored procedure based on how the
script is accessed.

1. Create a new PHP script in your text editor or IDE to be named cart.php and
stored in the Web root directory.

2. Include the configuration file:

<?php
require ('./includes/config.inc.php');

3. Check for, or create, a user session ID:

if (isset($_COOKIE['SESSION'])) {
 $uid = $_COOKIE['SESSION'];

BUILDING A SHOPPING CART 237

} else {
 $uid = md5(uniqid('biped',true));
}

This site only needs one cookie to handle the cart and wish-list functionality.
The cookie’s name is SESSION. Even though it’s not a real PHP session, the
name is indicative of how the cookie is used, and should the user check the
cookies a site sends, this particular cookie will have an air of familiarity to it.

If the cookie does exist, its value is assigned to the $uid variable. If the
cookie does not exist, a new session ID must be created. That’s done by
using a combination of uniqid() and md5().

4. Send the cookie:

setcookie('SESSION', $uid, time()+(60*60*24*30));

Whether the user is returning to this page, or just coming here for the first
time, a cookie will be sent. For new users, this is obviously necessary. For
returning visitors, this call will update an existing cookie, so that it lasts
longer. The cookie is set to expire in 30 days from now.

5. Include the header file:

$page_title = 'Coffee - Your Shopping Cart';
include ('./includes/header.html');

6. Require the database connection and the functions file:

require (MYSQL);
include ('./includes/product_functions.inc.php');

7. If there’s a SKU value in the URL, break it down into its parts:

if (isset($_GET['sku'])) {
 list($sp_type, $pid) = parse_sku($_GET['sku']);
}

By calling the user-defined parse_sku() function, the SKU, which might be
present in the URL, is turned into its two components: the type and ID.

8. Check for a product to be added to the cart:

if (isset ($sp_type, $pid, $_GET['action']) && ($_GET['action'] ==
➥'add')) {
 $r = mysqli_query($dbc, "CALL add_to_cart('$uid', '$sp_type',

➥$pid, 1)");

The logic for this script is a longish IF-ELSEIF conditional that checks for the
various possible ways in which this script would be accessed. The first way
a user might get to this page is by clicking an Add to Cart link, which will

tip

The md5() function returns a

string exactly 32 characters long.

note

Cookies must be sent prior to

anything being sent to the Web

browser.

tip

The isset() function can be used

to validate that multiple vari-

ables are set in one function call.

238 CHAPTER 9

have a URL like http://hostname/cart.php?sku=C8&action=add. In that
case, the SKU would be broken down into $sp_type and $pid values, and
$_GET['action'] would equal add.

If all these conditions are true, the add_to_cart() stored procedure is
called, passing along the user’s session ID, the type of product, the prod-
uct ID, and a quantity of 1.

9. Check for a product to be removed from the cart:

} elseif (isset ($sp_type, $pid, $_GET['action']) && ($_GET['action'] ==
➥'remove')) {
 $r = mysqli_query($dbc, "CALL remove_from_cart('$uid', '$sp_type',

➥$pid)");

The isset() conditional is the same as that for adding products, but if
$_GET['action'] equals remove, the remove_from_cart() stored proce-
dure will be called. This will be the case when the user clicks the Remove
from Cart link (see Figure 9.1).

10. Check for a product to be moved into the cart:

} elseif (isset ($sp_type, $pid, $_GET['action'], $_GET['qty']) &&
➥($_GET['action'] == 'move')) {
 $qty = (filter_var($_GET['qty'], FILTER_VALIDATE_INT,

➥array('min_range' => 1))) ? $_GET['qty'] : 1;
 $r = mysqli_query($dbc, "CALL add_to_cart('$uid', '$sp_type',

➥$pid, $qty)");
 $r = mysqli_query($dbc, "CALL remove_from_wish_list('$uid',

➥'$sp_type', $pid)");

The customer has the option of moving items back and forth between
their cart and their wish list. If something is in the wish list and gets
moved to the cart, the program’s response should be similar to adding a
product to the cart directly, with two differences. First, the quantities will
be transferred over, too: If the customer has three of something in their
wish list, all three will be added to the cart. Second, when this transfer
occurs, the item should be removed from the wish list.

To make all this happen, the conditional checks that $_GET['qty'] is set
and that $_GET['action'] equals move. The quantity value is then vali-
dated to be an integer greater than 1.

For every stored procedure call in this script, the results are assigned
to the $r variable, even though only one of the procedure’s results will
actually be used (the procedure that returns the cart’s contents). Still, I’m
leaving these assignations in place for your own debugging purposes.

tip

If you want to allow customers

to add multiples of a product

to the cart at one time, you just

need to validate the quantity

(passed in the URL) and use

that as the final argument in the

add_to_cart() call.

http://hostname/cart.php?sku=C8&action=add

BUILDING A SHOPPING CART 239

If you have problems with the script, you could include the following line
of code after a procedure call:

if (!$r) echo mysqli_error($dbc);

11. Check for a form submission:

} elseif (isset($_POST['quantity'])) {

All the previous conditions apply to GET requests, but this page can be
invoked using a POST request, too. This will happen when the user sub-
mits the cart form in order to update the quantities.

12. Loop through each item:

foreach ($_POST['quantity'] as $sku => $qty) {
 list($sp_type, $pid) = parse_sku($sku);
 if (isset($sp_type, $pid)) {
 $qty = (filter_var($qty, FILTER_VALIDATE_INT, array('min_range'

➥=> 0))) ? $qty : 1;
 $r = mysqli_query($dbc, "CALL update_cart('$uid', '$sp_type',

➥$pid, $qty)");
 }
}

$_POST['quantity'] will be an array of elements, in the format
SKU => quantity. For each element in $_POST['quantity'], the corre-
sponding product in the cart must be updated. To do that, first the SKU
is parsed and validated. Then the quantity is validated. If it’s an integer
greater than or equal to zero (because the customer can enter a quantity
of zero to remove an item), that value will be used. If, for whatever reason,
the customer enters an invalid quantity for a product, the value 1 will be
used instead. Finally, the update_cart() stored procedure is executed,
passing along the proper values.

13. Complete the primary conditional and retrieve the cart’s contents:

}// End of main IF.
$r = mysqli_query($dbc, "CALL get_shopping_cart_contents('$uid')");

Regardless of what action just took place, the cart’s current contents will
be displayed.

14. Include the appropriate view:

if (mysqli_num_rows($r) > 0) {
 include ('./views/cart.html');
} else { // Empty cart!
 include ('./views/emptycart.html');
}

240 CHAPTER 9

15. Complete the page:

include ('./includes/footer.html');

16. Save the file.

Creating the Views
The shopping cart uses two view files: one for displaying products and one
indicating an empty cart. The latter one, named emptycart.html, is simple
(Figure 9.3):

Figure 9.3

<!-- box begin -->
<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div class="inner">
<h2>Your Shopping Cart</h2>
<p>Your shopping cart is currently empty.</p>
</div></div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div></div>
<!-- box end -->

The second view file is more complicated, naturally. It must display every item
retrieved by the stored procedure—every product in the cart—but it must do
so as an HTML form so that the user can update the quantities. Secondarily,
each product should have its own links for removing the product from the cart
or for moving it to the wish list. Finally, subtotals and an order total should
be calculated and displayed (Figure 9.4 shows the initial version of the view;
Figure 9.1 shows how it will be updated later).

1. Create a new HTML file in your text editor or IDE to be named cart.html and
stored in the views directory.

2. Begin the HTML box and the header:

<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div class=
➥"inner">
<h2>Your Shopping Cart</h2>
 <p>Please use this form to update your shopping cart. You may change

note

Both view files go in the views

directory, of course.

Figure 9.4

BUILDING A SHOPPING CART 241

➥the quantities, move items to your wish list for future purchasing, or
➥remove items entirely. The shipping and handling cost is based upon
➥the order total. When you are ready to complete your purchase, please
➥click Checkout to be taken to a secure page for processing.</p>

For the instructions on the cart page, you’ll need to strike a balance
between being informative and not being too busy. Remember that the
primary purpose of the cart page is to get the customer to check out!

3. Begin the form:

<form action="/cart.php" method="POST">

The form is submitted back to cart.php and uses the POST method. The
action value starts with a slash to indicate that cart.php is in the Web root
directory. The slash isn’t absolutely required for the cart.php script, but is
required with many other links and references used by the site, so it’s here
for consistency.

4. Begin the table:

<table border="0" cellspacing="8" cellpadding="6">
 <tr>
 <th align="center">Item</th>
 <th align="center">Quantity</th>
 <th align="right">Price</th>
 <th align="right">Subtotal</th>
 <th align="center">Options</th>
 </tr>

In an old-school way, I’m using a standard HTML table to display the cart’s
contents. There are five columns in the table.

5. Begin a PHP block:

<?php
$total = 0;

Within the PHP block, the total variable is initialized to zero, so that a
proper order total can be calculated.

6. Fetch each item:

while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
 $price = get_just_price($row['price'], $row['sale_price']);
 $subtotal = $price * $row['quantity'];

Within the loop, the item’s price is first determined by passing the regular
and sale prices to the get_just_price() function. Then a subtotal is calcu-
lated by multiplying the price times the quantity in the cart.

tip

For security purposes, the price

is always coming from the data-

base; it’s not possible for the

customer to manipulate it.

242 CHAPTER 9

7. Print a table row:

echo '<tr>
 <td>' . $row['category'] . '::' . $row['name'] . '</td>
 <td align="center"><input type="text" name="quantity[' .

➥$row['sku'] . ']" value="' . $row['quantity'] . '" size="2" /></td>
 <td align="right">$' . $price . '</td>
 <td align="right">$' . number_format($subtotal, 2) . '</td>
 <td align="right"><a href="/wishlist.php?sku=' . $row['sku'] .

➥'&action=move&qty=' . $row['quantity'] .'">Move to Wish List
➥

➥Remove from Cart</td>

</tr>
';

For each item, a table row is generated. The first column is the displayed
name of the product. For the name, the cart shows a combination of the
product’s category and its specific name, as on the sales page. In the
second column, the quantity is displayed. So that this value is editable, it’s
displayed within a text input. The name for each input will be quantity[sku],
so that both the SKU and the new quantity will be available when the form
is submitted (Figure 9.5).

Figure 9.5

The third and fourth columns are the price and subtotal. In the fifth column
are two links. The first is to move the item to the wish list. That link passes
to wishlist.php, the SKU, the current quantity, and an action value of move.
The second link is back to this page for removing the product.

8. Add an error message if the product is not sufficiently stocked:

if ($row['stock'] < $row['quantity']) {
 echo '<tr class="error"><td colspan="5" align="center">There are

➥only ' . $row['stock'] . ' left in stock of the ' . $row['name'] . '. Please
➥update the quantity, remove the item entirely, or move it to your
➥wish list.</td></tr>';

}

If the user has more of an item in their cart than is currently in stock, they
need to be notified of the problem (Figure 9.6). At this point in the process,
the customer is told exactly how many are left and asked to remedy the

BUILDING A SHOPPING CART 243

issue themselves. In the next chapter, an insufficiently stocked item will
be dropped from the order automatically.

Figure 9.6

9. Add the subtotal to the total and complete the loop:

 $total += $subtotal;
} // End of WHILE loop.

10. Add the total to the table and complete the PHP block:

echo '<tr>
 <td colspan="3" align="right">Total</td>
 <td align="right">$' . number_format($total, 2) . '</td>
 <td> </td>
</tr>
';
?>

11. Complete the table and create two buttons:

</table>
<p align="center"><input type="submit" value=
➥"Update Quantities" class="button" /></form></p>

➥<p align="center"><a href="https://<?php echo BASE_URL; ?>
➥"checkout.php?session=<?php echo $uid; ?> class="button">
➥Checkout</p></div>

The first button is used to submit this form (to update the quantities).
The second button is to start the checkout process. That link goes to
checkout.php, but via an https connection. To generate that link’s value,
the BASE_URL constant is required. Notice, as well, that the user’s ses-
sion ID is being passed along in the URL, so that checkout.php can use it.
You’ll see why this is necessary in the next chapter.

12. Complete the page:

</div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div>
➥</div>
<!-- box end -->

13. Save the file and test the shopping cart in your Web browser.

Now you should be able to test everything except for the interactions with the
wish list. You can add products, update quantities, and remove items.

note

The checkout process must

begin on a secure page for the

customer to feel safe (and to

actually be safe)!

244 CHAPTER 9

MAKING A WISH LIST
Just as the stored procedures for managing the wish list are virtually the
same as those for managing the shopping cart, the PHP script and HTML
files involved here will be extraordinarily similar to the ones just written.
The chapter will post all three files in entirety, but for a full description of
any of the code or logic, review the previous several pages.

Creating the PHP Script
The wishlist.php script, stored in the Web root directory, is exactly like
cart.php except:

■ Its page title is different.

■ The wish list versions of the stored procedures are called.

■ Different HTML files are used for the views.

■ There’s no conditional checking for adding an item.

Really, aside from this last difference, you can almost do a search and replace
to create this script using a copy of cart.php. As for this last item, as written,
items are added to the wish list by moving them from the cart.

<?php // wishlist.php
require ('./includes/config.inc.php');
if (isset($_COOKIE['SESSION'])) {
 $uid = $_COOKIE['SESSION'];
} else {
 $uid = md5(uniqid('biped',true));
}
setcookie('SESSION', $uid, time()+(60*60*24*30));
$page_title = 'Coffee - Your Wish List';
include ('./includes/header.html');
require (MYSQL);
include ('./includes/product_functions.inc.php');
if (isset($_GET['sku'])) {
 list($sp_type, $pid) = parse_sku($_GET['sku']);
}
if (isset ($sp_type, $pid, $_GET['action']) && ($_GET['action'] == 'remove')
➥) {
 $r = mysqli_query($dbc, "CALL remove_from_wish_list('$uid',

➥'$sp_type', $pid)");
} elseif (isset ($sp_type, $pid, $_GET['action'], $_GET['qty']) &&
➥($_GET['action'] == 'move')) {

BUILDING A SHOPPING CART 245

 $qty = (filter_var($_GET['qty'], FILTER_VALIDATE_INT, array('min_range'
➥=> 1))) ? $_GET['qty'] : 1;

 $r = mysqli_query($dbc, "CALL add_to_wish_list('$uid', '$sp_type',
➥$pid, $qty)");

 $r = mysqli_query($dbc, "CALL remove_from_cart('$uid', '$sp_type',
➥$pid)");

} elseif (isset($_POST['quantity'])) {
 foreach ($_POST['quantity'] as $sku => $qty) {
 list($sp_type, $pid) = parse_sku($sku);
 if (isset($sp_type, $pid)) {
 $qty = (filter_var($qty, FILTER_VALIDATE_INT, array('min_range'

➥=> 0))) ? $qty : 1;
 $r = mysqli_query($dbc, "CALL update_wish_list('$uid',

➥'$sp_type', $pid, $qty)");
 }
 }
}
$r = mysqli_query($dbc, "CALL get_wish_list_contents('$uid')");
if (mysqli_num_rows($r) > 0) {
 include ('./views/wishlist.html');
} else {
 include ('./views/emptylist.html');
}
include ('./includes/footer.html');
?>

Creating the Views
The emptylist.html view is used when the customer’s wish list is empty
 (Figure 9.7).

Figure 9.7

<!-- box begin -->
<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div class="inner">
<h2>Your Wish List</h2>
<p>Your wish list is currently empty.</p> (continues on next page)

note

Of course, the two view files go

in the views directory.

246 CHAPTER 9

</div></div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div></div>
<!-- box end -->

The wishlist.html view file displays the wish list in an HTML table. As with the
shopping cart, the wish list contents can be altered in a couple of ways:

■ Their quantities can be changed.

■ Items can be moved to the shopping cart.

■ Items can be removed from the wish list.

Unlike the shopping cart page, the wish list does not display an order total
or a link to checkout (Figure 9.8). Also, instead of indicating that insufficient
quantity of a product is in stock, the wish list will indicate those items that are
running low, in the hopes of inducing the customer to purchase the items now
(Figure 9.9).

Figure 9.8 Figure 9.9

<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div class="inner">
<h2>Your Wish List</h2>
<p>Please use this form to update your wish list. You may change the
➥quantities, move items to your cart for purchasing, or remove items
➥entirely.</p>
<form action="/wishlist.php" method="POST">
<table border="0" cellspacing="8" cellpadding="6">
 <tr>
 <th align="center">Item</th>
 <th align="center">Quantity</th>
 <th align="right">Price</th>
 <th align="right">Subtotal</th>
 <th align="center">Options</th>
 </tr>

BUILDING A SHOPPING CART 247

<?php
while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
 $price = get_just_price($row['price'], $row['sale_price']);
 $subtotal = $price * $row['quantity'];
 echo '<tr>
 <td>' . $row['category'] . '::' . $row['name'] . '</td>
 <td align="center"><input type="text" name="quantity[' .

➥$row['sku'] . ']" value="' . $row['quantity'] . '" size="2" /></td>
 <td align="right">$' . number_format($price, 2) . '</td>
 <td align="right">$' . number_format($subtotal, 2) . '</td>
 <td align="right"><a href="/cart.php?sku=' . $row['sku'] .

➥'&action=move&qty=' . $row['quantity'] .'">Move to Cart

➥
➥Remove from Wish List</td>

 </tr>
 ';
 // Check the stock status:
 if (($row['stock'] > 0) && ($row['stock'] < 10)) {
 echo '<tr class="error"><td colspan="5" align="center">There are

➥only ' . $row['stock'] . ' left in stock of the ' . $row['name'] . '.</td>
➥</tr>';

 }
} // End of WHILE loop.
?> </table><p align="center"><input type="submit" value="Update

➥Quantities" class="button" /></form></p></div>
 </div></div><div class="left-bot-corner"><div class=

➥"right-bot-corner"><div class="border-bot"></div></div>
➥</div></div>

<!-- box end -->

CALCULATING SHIPPING
A nice feature worth adding to the shopping cart is an indication of how much
the shipping will be. For many customers, the shipping and handling charges
are a significant factor when deciding whether or not to make an online pur-
chase. The shipping cost may be a fixed price or be based upon:

■ The total weight of the order

■ The distance between the origination and destination

■ The physical size of the order (for example, large furniture costs extra)

■ The total amount of the sale

248 CHAPTER 9

This site will use this last criterion.

The first step is to define a function that will calculate the shipping using a
formula. As an example, let’s say that shipping starts with a base rate, which
covers the simple fact that some employee has to be paid to assemble and
box the order. Added to that should be an amount that’s partly based on the
amount of the order: Presumably, as the order total increases, more items are
being shipped, but at the same time the site is making more money. Therefore,
the bulk of the shipping cost will be proportional to the order total, and that
proportion will decrease for larger orders. Here, then, is the function:

function get_shipping($total = 0) {
 // Set the base handling charges:
 $shipping = 3;
 // Rate is based upon the total:
 if ($total < 10) {
 $rate = .25;
 } elseif ($total < 20) {
 $rate = .20;
 } elseif ($total < 50) {
 $rate = .18;
 } elseif ($total < 100) {
 $rate = .16;
 } else {
 $rate = .15;
 }
 // Calculate the shipping total:
 $shipping = $shipping + ($total * $rate);
 // Return the shipping total:
 return number_format($shipping, 2);
} // End of get_shipping() function.

Logically, this function should be defined in the product_functions.inc.php
script so that it’s available to multiple scripts (such as cart.php and
checkout.php, which will be written in the next chapter).

To use this function in cart.php (the wish list does not display a total), add this
code before displaying the total (Figure 9.10):

$shipping = get_shipping($total);
$total += $shipping;
echo '<tr>

BUILDING A SHOPPING CART 249

 <td colspan="3" align="right">Shipping & Handling
➥</td>

 <td align="right">$' . $shipping . '</td>
 <td> </td>
</tr>
';

Figure 9.10

10 CHECKING
OUT

The next step in the evolution of the Coffee site is to incorporate the payment
processing system that will allow customers to complete their order. For this
project, I’ve chosen Authorize.net as the payment processor. The fi rst several
pages of the chapter talk about Authorize.net and walk you through setting
up a test account there. Once you have a test account, you can write the entire
checkout process.

There are four parts to the checkout process:

1. Take and validate the shipping information.

2. Take and validate the billing information.

3. Process the payment.

4. Wrap it up (send an email, create a receipt, and so on).

This chapter probably has the most complicated code of any in the book. But
this chapter also conveys the information that many readers need the most, so
ample space is dedicated to explaining the code as thoroughly as possible.

CHECKING OUT 251

ABOUT AUTHORIZE.NET
Authorize.net is perhaps the largest payment gateway out there and was
most certainly one of the first available for e-commerce. How Authorize.net
functions is different than PayPal, used in Chapter 6, “Using PayPal.” PayPal
fetches monies from customers’ credit cards (or PayPal accounts) and deposits
those amounts into your PayPal account (which you can later move to a bank
account). By comparison, Authorize.net coordinates with several networked
systems to transfer funds from credit cards to your merchant bank account.
Authorize.net is an agent in the process, a true payment gateway, and when
the transaction is completed, the money will automatically be transferred to
your bank account. For this reason, you must have a merchant bank account
(with an actual bank) that supports the Authorize.net system.

Authorize.net accepts all major credit cards and offers:

■ Advanced fraud detection

■ PCI DSS compliance

■ Support for recurring payments

■ International transactions

■ An online virtual terminal

■ Customer information management

■ eCheck acceptance

■ Multiple administrators with different permissions

■ Good documentation and support

Authorize.net provides what they call the Merchant Interface, where you can
configure your account, manage transactions, view statements, generate
reports, and so forth. This chapter will mention the Merchant Interface a few
times, but keep in mind that the Merchant Interface is how a site administrator
manages an Authorize.net account, it’s not how the site itself communicates
with the payment system.

As with PayPal and many other payment systems, there are multiple ways you
can use Authorize.net: Simple Checkout, Server Integration Method (SIM), and
Advanced Integration Method (AIM). When using the first two, the customer
will be taken to the Authorize.net Web site, similar to the PayPal example in
Chapter 6. In this chapter, the Advanced Integration Method will be demon-
strated instead.

tip

To test Authorize.net, you

don’t need an actual merchant

account.

tip

Authorize.net has a Verified

Merchant Seal image that you

can display on your Web site to

imply your site’s credibility.

tip

AIM is the Authorize.net

 recommended system, but

requires programming and

Web security skills.

252 CHAPTER 10

To communicate with the Authorize.net service using PHP, a POST request will
need to be made over SSL. Instead of the customer sending a form of data to
Authorize.net, PHP will do that behind the scenes. This requires using libcurl,
the cURL library (http://curl.haxx.se). cURL, if you’re not familiar with it, is a
command-line utility for performing network communications. The standalone
application may already exist on your own computer and most likely on your
server. libcurl is a cURL library that can be integrated into other software, such
as PHP. If your version of PHP is installed with libcurl, scripts can use the curl_*
functions to perform the communications. To confirm support for libcurl, run a
phpinfo() script (Figure 10.1).

Figure 10.1

If your PHP installation does not support libcurl, you can have PHP invoke the
command-line cURL application via the exec() function:

exec('curl <arguments>', $response);

The response of the cURL request will be stored in the $response variable,
after the execution is complete. You’ll need to look online for how to use the
command-line cURL directly.

Because this site uses cURL, you may be able to test the entire system on your
development server (for example, your own computer). This differs from the
Knowledge is Power example (developed in Part Two, “Selling Virtual Prod-
ucts”), which had to be online, because PayPal needs to communicate directly
with the e-commerce Web site.

CREATING A TEST
ACCOUNT
There are two ways you can create an account for testing the Authorize.net
system. First, if you create a real Authorize.net account, associated with your
business and tied to your merchant bank account, that account will initially
be in a testing mode. Once you’ve finished testing the account, you only need
to go into the Merchant Interface to take the account live. The second option is
to create a true test account: an account with limited functionality that cannot

tip

It’s not 100 percent clear what

cURL stands for, except for the

“URL” part (Uniform Resource

Locator).

tip

If you know you’ll be using

Authorize.net for a real project,

go ahead and create a real

account with Authorize.net now.

http://curl.haxx.se

CHECKING OUT 253

be later turned into an actual account. This is the route taken in the next series
of steps.

1. Go to http://developer.authorize.net/testaccount/.

2. Fill out the simple form (Figure 10.2) and click Submit.

For this chapter, you’ll need to select the Card Not Present (CNP) account
type (as opposed to in-person commercial transactions, where the card is
present). Also select the Advanced Integration Method (AIM) check box.

3. Check your email.

You’ll receive an email with the basic information you’ll need to continue.
You’ll be provided with the login values for accessing the Merchant Inter-
face. And the email will contain the API login ID and transaction-key values
used by the Web site to communicate with Authorize.net.

PREPARING THE SITE
Before implementing the actual checkout.php script (the first in the checkout
process), there’s some background work to do. This includes creating the
required stored procedures (for every database query), creating a modified
HTML template, and defining one helper function. Let’s look at the template
first, because it’s the simplest task to complete.

The New HTML Template
At car dealerships, customers are able to roam around the lot and look at all
the pretty, shiny vehicles. They can look at this one, then that one, and then
compare those with another. But when it comes time to buy, the dealership
locks the customer in a room with a salesperson whose job it is to close the
sale without any distractions. With an e-commerce site, you want to pretty
much do the same thing…

At first, the customer should be free to roam about the site, eyeing the prod-
ucts, and enjoying the “window shopping” opportunity. The online catalog,
developed in Chapter 8, “Creating a Catalog,” has this approach: It’s designed
so that it’s easy for the customer to get around, look at products, and put
them into his or her cart. But the checkout process should be different: The
sole purpose is to get the customer to complete the sale. Toward that end,
the HTML template needs to be changed for this process, discouraging the cus-
tomer from doing anything but completing the sale. Specifically, the template
should remove the shopping-related links so that the customer stays on track

Figure 10.2

tip

Do not attempt to change the

password of a test account,

because multiple test users

share the same credentials.

tip

A different template is also a

visual cue to the customer that

they are in “purchase” mode

instead of “browsing” mode.

http://developer.authorize.net/testaccount/

254 CHAPTER 10

(Figure 10.3). Still, the customer shouldn’t be trapped in the checkout process
(car dealerships don’t literally lock the door), so the less obvious links at the
top of the page are still required.

Figure 10.3

The entire checkout process will require an SSL connection. This means that
any links in the template to non-checkout pages need to be absolute, to a
non-SSL version (that is, to http://whatever).

1. Make a copy of header.html to be named checkout_header.html and
stored in the includes directory.

2. Remove the big shopping links by deleting this code:

<ul class="nav">
 Coffee
 Goodies
 Sales
 Wish List
 Cart

3. Change the remaining links to index.php, cart.php, contact.php, and
sitemap.php so that they use HTTP instead of HTTPS.

For example, the code should be:

http://<?php echo BASE_URL; ?>/index.php

These other links, as originally defined, were relative. On an HTTPS page,
such links would take the customer to an HTTPS version of the shop-
ping pages, which isn’t necessary (and could adversely affect the server’s
 performance).

4. Save the file.

tip

All of the book’s code

can be downloaded from

www.DMCInsights.com/ecom/.

www.DMCInsights.com/ecom/
http://<?phpechoBASE_URL;?>/index.php

CHECKING OUT 255

When viewing the pages that use this new header, the user can still return to
the shopping part of the site, but it’s not obvious, which is a good thing. If you
want to be more generous, you could create an overt Return to Shopping link
somewhere (just make sure it’s an absolute reference using HTTP). Also, the
footer does not need to be changed.

The Helper Function
For the checkout process, one helper function will be defined. Because this
process involves a couple of forms (for taking the shipping and billing informa-
tion), a function for creating and managing form inputs will be quite useful. In
Chapter 4, “User Accounts,” the create_form_input() function was defined.
That function creates a form element, handles any existing values, and indi-
cates errors when appropriate. That version of the function created only text,
password, and textarea inputs. It also looked for existing element values only
in the $_POST array. This site will use a new version of that function, generating
both text inputs and select menus. The function also needs to be able to find
existing values in $_SESSION, not just $_POST. A third alteration is that the
function will allow for extra HTML to be added to inputs. You’ll see why shortly.

1. Create a new PHP script in your text editor or IDE to be named
form_functions.inc.php and stored in the includes directory.

As in Part Two of the book, this script will only define a single function, but
the file’s name will still be plural, in case more functions are added later.

2. Begin defining the function:

function create_form_input($name, $type, $errors, $values = 'POST',
➥$extras = '') {

The function takes five arguments, two of which are optional. The first argu-
ment is the name for the element. The second is its type (for example, text or
select). The third is an array in which any errors would be stored. These three
arguments are the same as in the book’s previous version of this function.

The fourth argument is the name of the array where existing values are
to be found, for the purpose of making the form sticky. For the checkout
process, the value will be either POST or SESSION. In theory, you could
pass the array itself—$_POST, $_SESSION (even $_GET or $_COOKIE, if
you wanted)—to the function, just as the $errors array is passed. But since
these arrays are global in scope, they’ll be available to the function without
being sent along as a second copy.

The fifth argument is for passing extra HTML. This chapter will provide one
value for this argument: autocomplete="off". You’ll see why and how later
in the chapter.

tip

Just as the checkout process

should minimize links that take

the customer elsewhere, it

should maximize those links and

buttons that move the process

onward.

256 CHAPTER 10

3. Look for and process any existing value:

$value = false;
if ($values == 'SESSION') {
 if (isset($_SESSION[$name])) $value = $_SESSION[$name];
} elseif ($values == 'POST') {
 if (isset($_POST[$name])) $value = $_POST[$name];
 if ($value && get_magic_quotes_gpc()) $value = stripslashes($value);
}

First, the $value variable is set to false, thereby assuming that no value
exists. A conditional then checks in which array an existing value could be
found. In each case, any existing value is assigned to $value. Since posted
values could be affected by Magic Quotes, stripslashes() is applied to
those values, but only if Magic Quotes is enabled.

4. Determine what kind of element to create:

if (($type == 'text') || ($type == 'password')) {

This version of the function will be used only to create text and select ele-
ments, but I’m leaving the password type in (as in the original version of
this function), because it’s defined in the same way as text inputs.

5. Create the text input:

echo '<input type="' . $type . '" name="' . $name . '" id="' . $name . '"';
if ($value) echo ' value="' . htmlspecialchars($value) . '"';
if (!empty($extras)) echo " $extras";
if (array_key_exists($name, $errors)) {
 echo 'class="error" />
' . $errors[$name]

➥. '';
} else {
 echo ' />';
}

All this code is the same as that explained in Chapter 4, save for two differ-
ences. First, if the $extras variable is not empty, its value is added to the
input. As you’ll see, this will allow the site to disable autocomplete for the
credit card number field. This will be explained in more detail a bit later.

The second change is that a break is added after the input and before the
error message itself, should one exist. This change is necessary because
of the template in use, which makes a mess of the form if errors are placed
immediately beside form elements.

6. Check for the select type:

} elseif ($type == 'select') {

CHECKING OUT 257

The previous incarnation of this function didn’t handle <SELECT> menus,
but this one will (four will be required by the checkout process).

7. If a states menu is being created, define the data source:

if (($name == 'state') || ($name == 'cc_state')) {
 $data = array('AL' => 'Alabama', 'AK' => 'Alaska', 'AZ' => 'Arizona',

➥'AR' => 'Arkansas', 'CA' => 'California', 'CO' => 'Colorado', 'CT' =>
➥'Connecticut', 'DE' => 'Delaware', 'FL' => 'Florida', 'GA' =>
➥'Georgia', 'HI' => 'Hawaii', 'ID' => 'Idaho', 'IL' => 'Illinois', 'IN'
➥=> 'Indiana', 'IA' => 'Iowa', 'KS' => 'Kansas', 'KY' => 'Kentucky',
➥'LA' => 'Louisiana', 'ME' => 'Maine', 'MD' => 'Maryland', 'MA'
➥=> 'Massachusetts', 'MI' => 'Michigan', 'MN' => 'Minnesota', 'MS'
➥=> 'Mississippi', 'MO' => 'Missouri', 'MT' => 'Montana', 'NE' =>
➥'Nebraska', 'NV' => 'Nevada', 'NH' => 'New Hampshire', 'NJ' =>
➥'New Jersey', 'NM' => 'New Mexico', 'NY' => 'New York', 'NC' =>
➥'North Carolina', 'ND' => 'North Dakota', 'OH' => 'Ohio', 'OK' =>
➥'Oklahoma', 'OR' => 'Oregon', 'PA' => 'Pennsylvania', 'RI' =>
➥'Rhode Island', 'SC' => 'South Carolina', 'SD' => 'South Dakota',
➥'TN' => 'Tennessee', 'TX' => 'Texas', 'UT' => 'Utah', 'VT' =>
➥'Vermont', 'VA' => 'Virginia', 'WA' => 'Washington', 'WV' => 'West
➥Virginia', 'WI' => 'Wisconsin', 'WY' => 'Wyoming');

The only difference among the four select menus used in this chapter will
be their names and their data sources. For each menu, a different data
source is defined as the $data array. Two menus, named state and cc_state,
will use this list of US states.

8. If an expiration month menu is being created, define that data source:

} elseif ($name == 'cc_exp_month') {
 $data = array(1 => 'January', 'February', 'March', 'April', 'May', 'June',

➥'July', 'August', 'September', 'October', 'November', 'December');

For the credit card’s expiration month, a select menu will display the month
name but use the numbers 1 through 12 as the values.

9. If an expiration year menu is being created, define that data source:

} elseif ($name == 'cc_exp_year') {
 $data = array();
 $start = date('Y');
 for ($i = $start; $i <= $start + 5; $i++) {
 $data[$i] = $i;
 }
} // End of $name IF-ELSEIF.

tip

If the server’s time zone is not set

in PHP, you’ll need to set it using

date_default_timezone_set()

prior to calling any date-related

function.

258 CHAPTER 10

For the credit card’s expiration year, a list of years will be presented. This
list will always start with the current year and then display five more from
there. The combination of the date() function, to return the current year,
and a foreach loop will populate the array.

10. Create the opening <SELECT> tag:

echo '<select name="' . $name . '"';

11. Add the error class, if applicable, and close the opening tag:

if (array_key_exists($name, $errors)) echo ' class="error"';
echo '>';

If an error exists for this element, the error class is added to the opening
tag. The effect will be the element outlined in red (in accordance with the
definition of the error class in the CSS file).

12. Create each option:

foreach ($data as $k => $v) {
 echo "<option value=\"$k\"";
 if ($value == $k) echo ' selected="selected"';
 echo ">$v</option>\n";
} // End of FOREACH.

A foreach loop iterates through the data source, creating an <OPTION>
tag for each element. If there is an existing value, that will be selected as
well (Figure 10.4).

Figure 10.4

13. Complete the tag:

echo '</select>';

14. Add an error message, if one exists:

if (array_key_exists($name, $errors)) {
 echo '
' . $errors[$name] . '';
}

The error message is displayed on the line after the menu.

15. Complete the function:

 } // End of primary IF-ELSE.
} // End of the create_form_input() function.

16. Save the file.

CHECKING OUT 259

Creating the Procedures
This chapter requires five new stored procedures. Each one applies to an
important part of the checkout process:

■ The customer

■ The shopping cart

■ The order

■ The order’s contents

■ The payment transaction

Three of these are simple, one is not too complicated, and one is, well, compli-
cated. Let’s look at the easy ones first.

CLEARING THE SHOPPING CART

After the customer has completed a purchase, the shopping cart needs to be
emptied of its contents. That stored procedure is short and simple:

DELIMITER $$
CREATE PROCEDURE clear_cart (uid CHAR(32))
BEGIN
 DELETE FROM carts WHERE user_session_id=uid;
END$$
DELIMITER ;

This procedure takes one argument: the customer’s cart session ID. The proce-
dure then runs a DELETE query on the carts table.

ADDING TRANSACTIONS

The transactions table stores a record of every call to the payment gateway:
what order the transaction was tied to and what the response was. All this
information will also be available through the Merchant Interface, but it’d be
nice to have it on this server as well: When it comes to databases, it’s always
better to store more information. There’s nothing of a sensitive nature in the
transaction data (that is, no billing information), so storing it does not consti-
tute a security risk.

The transactions table has nine columns: id, order_id, type, amount,
response_code, response_reason, transaction_id, response, and
date_created. Most of these columns, and their values, will be explained later
in the chapter when the payment response is covered in detail. But for now,

tip

All the book’s SQL commands

can be downloaded from

www.DMCInsights.com/ecom/.

tip

Chapter 8 provides instructions

on using the command-line

mysql client or the browser-

based phpMyAdmin to create

stored procedures.

tip

If you’re looking for a good

third-party tool for MySQL

development, check out Toad

(www.quest.com). It’s available

free for Windows.

tip

As a reminder, the lines that

change the delimiter aren’t part

of the stored procedure itself,

but are necessary in order to use

semicolons within the definition.

www.DMCInsights.com/ecom/
www.quest.com

260 CHAPTER 10

seven of these values need to be provided when the procedure is called. Here
is that definition:

DELIMITER $$
CREATE PROCEDURE add_transaction (oid INT, trans_type VARCHAR(18),
➥amt DECIMAL(7,2), rc TINYINT, rrc TINYTEXT, tid BIGINT, r TEXT)
BEGIN
 INSERT INTO transactions VALUES (NULL, oid, trans_type, amt, rc, rrc,

➥tid, r, NOW());
END$$
DELIMITER ;

ADDING CUSTOMERS

The stored procedure for adding a customer isn’t that complicated, but it uses
a new stored procedure concept: outbound arguments (new in that they have
not been discussed previously in this book). Stored procedures can be written
to take arguments, just like a function in PHP. By default, all procedure argu-
ments are inbound, meaning that values are assigned to the arguments when
the procedure is called. You can also create outbound arguments. Outbound
arguments are assigned values within the procedure itself, not when the
procedure is called. The values assigned within the procedure can then be
available outside of the procedure, after it has been called.

As a practical example of how outbound arguments might be used, take this
next stored procedure, which inserts a record into the customers table. The
rest of the checkout process will need the new record’s ID value, so using an
outbound argument is appropriate. Here is the procedure’s definition:

DELIMITER $$
CREATE PROCEDURE add_customer (e VARCHAR(80), f VARCHAR(20),
➥l VARCHAR(40), a1 VARCHAR(80), a2 VARCHAR(80), c VARCHAR(60),
➥s CHAR(2), z MEDIUMINT, p INT, OUT cid INT)
BEGIN
 INSERT INTO customers VALUES (NULL, e, f, l, a1, a2, c, s, z, p, NOW());
 SELECT LAST_INSERT_ID() INTO cid;
END$$
DELIMITER ;

The first nine arguments are typical inbound ones. They represent the cus-
tomer’s email address, first name, last name, street address, additional street
address, city, state, zip code, and phone. The argument names are cryptic, but
they aren’t referenced more than once within the procedure and, more impor-

note

The argument names used

in a stored procedure should

not be the same as any table’s

column names or as any MySQL

keyword.

tip

Since the default parameter

type is inbound, the IN keyword

declaring them as such is

optional.

CHECKING OUT 261

tantly, they don’t conflict with the table’s actual column names this way. These
nine arguments are used as the values for the INSERT query.

The tenth argument, cid, is defined as outbound, thanks to the OUT keyword.
The last thing the procedure does is call the LAST_INSERT_ID() function,
which returns the primary key value for the previously run INSERT. This value
is selected and assigned to cid.

RETRIEVING ORDER CONTENTS

After the order has been completed, many site pages will need to retrieve the
details of an order. For example, the PHP script that generates a receipt will
need to fetch those order details, as will an administrative script. Doing so only
requires the order ID, which can then be used to query the order_contents table.
The order_contents table stores the number of items purchased, the quantity,
and the price. By performing a JOIN from this table to the various product-
related tables, similar to the JOINs in the get_shopping_cart_contents() pro-
cedure, each product’s descriptive name can also be retrieved. The query also
joins in the orders table, so that it may select the order total and shipping cost.

DELIMITER $$
CREATE PROCEDURE get_order_contents (oid INT)
BEGIN
 SELECT oc.quantity, oc.price_per, (oc.quantity*oc.price_per) AS subtotal,
ncc.category, ncp.name, o.total, o.shipping
FROM order_contents AS oc
INNER JOIN non_coffee_products AS ncp ON oc.product_id=ncp.id
INNER JOIN non_coffee_categories AS ncc
ON ncc.id=ncp.non_coffee_category_id
INNER JOIN orders AS o ON oc.order_id=o.id
WHERE oc.product_type="other" AND oc.order_id=oid
 UNION
 SELECT oc.quantity, oc.price_per, (oc.quantity*oc.price_per),
gc.category, CONCAT_WS(" - ", s.size, sc.caf_decaf, sc.ground_whole),
➥o.total, o.shipping
FROM order_contents AS oc
INNER JOIN specific_coffees AS sc ON oc.product_id=sc.id
INNER JOIN sizes AS s ON s.id=sc.size_id
INNER JOIN general_coffees AS gc ON gc.id=sc.general_coffee_id
INNER JOIN orders AS o ON oc.order_id=o.id
WHERE oc.product_type="coffee" AND oc.order_id=oid;
END$$
DELIMITER ;

tip

Stored procedures can also have

INOUT arguments, which can

be used for both inbound and

outbound purposes.

tip

Because the

get_order_contents()

procedure will be used to

 confirm to the customer what

they just purchased, the query

does not retrieve any of the

customer data.

tip

To fetch the order total and ship-

ping cost, it must be selected

as part of each returned row, or

a second SELECT query would

be required and the procedure’s

results would be that much

harder to handle.

262 CHAPTER 10

Figure 10.5 shows the result of executing this procedure.

Figure 10.5

ADDING ORDERS

The final stored procedure for this chapter is perhaps the most complicated
one in the book. At its core, the procedure needs to add a new order to the
database. This involves populating both the orders and order_contents tables.
Let’s look at the queries and the process separately, before revealing the com-
plete procedure definition.

Adding records to the orders table is easy: The INSERT just requires the cus-
tomer ID, the total, the shipping cost (which is also part of the total), the last
four digits of the credit card number (for the customer’s reference), and the
date of the order. That query is:

INSERT INTO orders (customer_id, shipping, credit_card_number,
➥order_date) VALUES (cid, ship, cc, NOW());

For now, let’s ignore the total column, as that value is unknown without adding
up all the items in the order.

Next, the order ID will be required to populate the order_contents table, so
that information will need to be selected into a variable:

SELECT LAST_INSERT_ID() INTO oid;

This is exactly how the customer ID value is retrieved in the add_customer()
stored procedure.

The order_contents table is going to store the order ID, the product type
(coffee or other), the product ID, the quantity, and the price being paid for
each. The interesting thing is that all this information is readily available to
the add_order() procedure without it being passed as arguments. And that’s
where things get complicated…

The order ID was just created, so that’s not a problem. The product type,
product ID, and quantity can come from the carts table, assuming that this

CHECKING OUT 263

procedure can access the user’s cart ID. But to determine the price to be
paid, factoring in sale prices, requires a JOIN across carts, sales, and either
non_coffee_products or specific_coffees. Because this last JOIN is across one
of two tables, a UNION is required, just like the get_shopping_cart_contents()
procedure uses.

Fetching the product’s information and the correct price for just non-coffee
products requires this SELECT statement (Figure 10.6):

SELECT c.product_type, c.product_id, c.quantity,
IFNULL(sales.price, ncp.price)
FROM carts AS c
INNER JOIN non_coffee_products AS ncp ON c.product_id=ncp.id
LEFT OUTER JOIN sales ON (sales.product_id=ncp.id AND
➥sales.product_type='other' AND
((NOW() BETWEEN sales.start_date AND sales.end_date) OR (NOW() >
➥sales.start_date AND sales.end_date IS NULL)))
WHERE c.product_type="other" AND c.user_session_id=<user_cart_id>

Figure 10.6

For the price, the query uses the IFNULL() construct, which selects
the first value if it’s not NULL and the second value if it is. Thus,
IFNULL(sales.price, ncp.price) will select sales.price if it exists, and
select ncp.price otherwise. You can confirm this by also selecting the
two prices, too (Figure 10.7).

Figure 10.7

264 CHAPTER 10

Now that you (hopefully) understand how the SELECT query works, con-
sider that the SELECT query can be used immediately as the values for an
INSERT query, thanks to the INSERT…SELECT construct. The INSERT for
order_contents is:

INSERT INTO order_contents (order_id, product_type, product_id, quantity,
➥price_per) VALUES (...

Putting together the INSERT and SELECT queries, the entire query becomes:

INSERT INTO order_contents (order_id, product_type, product_id, quantity,
➥price_per)
SELECT oid, c.product_type, c.product_id, c.quantity,
IFNULL(sales.price, ncp.price)
FROM carts AS c
INNER JOIN non_coffee_products AS ncp ON c.product_id=ncp.id
LEFT OUTER JOIN sales ON (sales.product_id=ncp.id AND
➥sales.product_type='other' AND
((NOW() BETWEEN sales.start_date AND sales.end_date) OR (NOW() >
➥sales.start_date AND sales.end_date IS NULL)))
WHERE c.product_type="other" AND c.user_session_id=<user_cart_id>
UNION
SELECT oid,…

By adding the selection of the oid variable, that value can be inserted into
order_contents at the same time.

Moving on in the procedure, the last step is to update the orders table for the
order total. The total can be determined by running an aggregating query on
order_contents for the current order:

SELECT SUM(quantity*price_per) INTO subtotal FROM order_contents
➥WHERE order_id=oid;

And now the orders table can be updated:

UPDATE orders SET total = (subtotal + ship) WHERE id=oid;

Finally, the order total will be necessary outside of the procedure (as part
of the payment processing). To make that possible, the total should also be
assigned to an outbound argument:

SELECT (subtotal + ship) INTO total;

CHECKING OUT 265

The complete stored procedure is therefore:

DELIMITER $$
CREATE PROCEDURE add_order (cid INT, uid CHAR(32), ship DECIMAL(5,2),
➥cc MEDIUMINT, OUT total DECIMAL(7,2), OUT oid INT)
BEGIN
 DECLARE subtotal DECIMAL(7,2);
 INSERT INTO orders (customer_id, shipping, credit_card_number,

➥order_date) VALUES (cid, ship, cc, NOW());
 SELECT LAST_INSERT_ID() INTO oid;
 INSERT INTO order_contents (order_id, product_type, product_id,

➥quantity, price_per) SELECT oid, c.product_type, c.product_id,
➥c.quantity, IFNULL(sales.price, ncp.price) FROM carts AS c INNER JOIN
➥non_coffee_products AS ncp ON c.product_id=ncp.id LEFT OUTER JOIN
➥sales ON (sales.product_id=ncp.id AND sales.product_type='other'
➥AND ((NOW() BETWEEN sales.start_date AND sales.end_date)
➥OR (NOW() > sales.start_date AND sales.end_date IS NULL))) WHERE
➥c.product_type="other" AND c.user_session_id=uid UNION SELECT
➥oid, c.product_type, c.product_id, c.quantity, IFNULL(sales.price,
➥sc.price) FROM carts AS c INNER JOIN specific_coffees AS sc ON
➥c.product_id=sc.id LEFT OUTER JOIN sales ON (sales.product_id=sc.id
➥AND sales.product_type='coffee' AND ((NOW() BETWEEN
➥sales.start_date AND sales.end_date) OR (NOW() > sales.start_date
➥AND sales.end_date IS NULL))) WHERE c.product_type="coffee" AND
➥c.user_session_id=uid;

 SELECT SUM(quantity*price_per) INTO subtotal FROM order_contents
➥WHERE order_id=oid;

 UPDATE orders SET total = (subtotal + ship) WHERE id=oid;
 SELECT (subtotal + ship) INTO total;
END$$
DELIMITER ;

The procedure takes the customer ID, the customer’s cart ID, the ship-
ping amount, and the credit card number (the last four digits) as inbound
arguments. There are two outbound arguments: total and oid. Within a
BEGIN block, a local variable named subtotal is defined. Next, the record
is added to the orders table, and the just-created ID is selected and
assigned to oid. After that, the order_contents table is populated, using the
INSERT…SELECT UNION SELECT query.

The last three lines calculate the subtotal of the order, update the total column
in the orders table, and assign the total order value to the total variable.

note

Remember that variables in

stored procedures do not use a

dollar sign like PHP variables.

266 CHAPTER 10

STORED PROCEDURES REVISITED

The modestly complex add_order() stored procedure dem-

onstrates the security and performance benefi ts that can be

had by using stored procedures. The procedure takes just

four arguments—the customer ID, the customer’s cart ses-

sion ID, the shipping total, and the credit card representa-

tion—and does a lot of work with that little information. The

procedure could even be cut down to just two inbound argu-

ments if the shipping were to be calculated by a database-

stored function and the credit card numbers were omitted

(they’ll be stored in the transactions table anyway). From a

performance standpoint, there’s very little information that

PHP needs to send to the database, and, more critically,

the PHP script only needs to execute a single query—the

procedure call itself. Since query executions are one of the

most demanding things a PHP script does, limiting those

can have a huge performance gain. (Although that burden is

therefore moved to the database server.)

From a security standpoint, much of the key information—

like the price a product is sold for—never leaves the data-

base, making it that much harder to be manipulated. And

no PHP script directly accesses any of the database tables,

adding a layer of obfuscation.

I should add that you might logically use transactions in this

stored procedure, which stored procedures do support. By

using transactions, every query would have to work properly

or else the entire process would be reverted. Such an

approach prevents an incomplete order from being recorded.

Still, I opted not to use transactions, because they would

further complicate an already complicated process.

TAKING THE SHIPPING
INFORMATION
Once the customer is fi nished shopping and is ready to purchase items, he or
she will click a button on the shopping cart page that will go to checkout.php
(over HTTPS). This page needs to:

1. Take the customer’s shipping information.

2. Validate the provided data.

3. If valid, store the data and send the customer on to the next step in the
checkout process.

4. If invalid, redisplay the form with errors.

In terms of displaying and validating the form, checkout.php behaves like
register.php from Chapter 4. But there are some additional considerations
that make this script more complicated than that one. Let’s fi rst defi ne the
PHP script, then the two view fi les it uses.

CHECKING OUT 267

Creating the PHP Script
The PHP script should be accessed at least twice: originally as a GET request,
at which point the form should be loaded, and as a POST request, when the
form is submitted. The latter action demands about 100 lines of validation,
which is the bulk of the script.

Unlike the shopping area of the Web site, the checkout process will use PHP
sessions. This is necessary because multiple scripts will all need access to
some of the same information. By default, PHP will store the session identi-
fier in a cookie. You might not be aware of this, but with respect to cookies,
http://www.example.com and https://www.example.com are separate
realms, meaning that a cookie sent over HTTP is available only to pages
accessed via HTTP (and the same goes for HTTPS). I mention this now, because
the sessions used by the checkout process will not be available on the shop-
ping side of the site, and the cookie used on the shopping side of the site is
not available in the checkout process.

1. Create a new PHP script in your text editor or IDE to be named
checkout.php and stored in the Web root directory.

2. Include the configuration file:

<?php
require ('./includes/config.inc.php');

3. Check for the user’s cart ID, available in the URL:

if ($_SERVER['REQUEST_METHOD'] == 'GET') {
 if (isset($_GET['session'])) {
 $uid = $_GET['session'];

In order to access the customer’s shopping cart, this script needs the
user’s shopping cart session ID, stored in a cookie in the user’s browser.
However, that cookie was sent over HTTP, meaning that it’s not available to
checkout.php, because this script is being accessed via HTTPS. The remedy
is to pass the cookie value to this script when the user clicks the checkout
button on cart.php. This script first confirms that a session value was passed
along in the URL. If so, it’s assigned to the $uid variable for later use.

4. Use the cart ID as the session ID, and begin the session:

session_id($uid);
session_start();

The shopping part of the site purposefully does not use sessions (in order
to give longevity to the customer’s cart and wish list), but the checkout
process will. For continuity, and because the shopping cart ID will be

tip

The .htaccess modifications in

Chapter 7, “Second Site: Struc-

ture and Design,” ensure that

checkout.php is accessible only

over HTTPS.

tip

When the user returns to the

shopping side of the site, the

wish list and cart cookie will

still be usable, even after check-

ing out.

http://www.example.com
https://www.example.com

268 CHAPTER 10

required by the checkout process, the user’s existing cart ID will be used as
the session ID. This can be arranged by providing a session ID value to the
session_id() function prior to calling session_start().

The net result will be two cookies in the user’s browser: SESSION, sent
over HTTP, and PHP_SESSION_ID, sent over HTTPS. Both will have the
same value.

5. If no session value was present in the URL (for a GET request), redirect the
user:

} else {
 $location = 'http://' . BASE_URL . 'cart.php';
 header("Location: $location");
 exit();
}

There’s no point in checking out if there’s nothing to purchase. And without
a cart session ID, there will be nothing to purchase! In that case, the cus-
tomer is redirected back to cart.php, over HTTP. That page will display the
checkout button only if the cart is not empty.

6. If the request method isn’t GET, start the session and retrieve the session ID:

} else { // POST request.
 session_start();
 $uid = session_id();
}

This else clause will apply when the customer submits the form for valida-
tion. In that case, the session needs to be started. The session ID would
have already been set the first time this script was accessed, so that value
can be retrieved (by calling session_id() with no arguments) to be used
later in this script.

7. Include the database connection and create an array for validation errors:

require (MYSQL);
$shipping_errors = array();

8. If the form was submitted, validate the first and last names:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 if (preg_match ('/^[A-Z \'.-]{2,20}$/i', $_POST['first_name'])) {
 $fn= addslashes($_POST['first_name']);
 } else {
 $shipping_errors['first_name'] = 'Please enter your first name!';
 }

CHECKING OUT 269

 if (preg_match ('/^[A-Z \'.-]{2,40}$/i', $_POST['last_name'])) {
 $ln = addslashes($_POST['last_name']);
 } else {
 $shipping_errors['last_name'] = 'Please enter your last name!';
 }

The validation routines for the customer’s first and last names match those
from register.php in Chapter 4. To make the values safe to use in the stored
procedure call, each value is run through addslashes().

If there’s a chance that Magic Quotes may be enabled on your server, you’ll
also need to apply stripslashes() prior to validation:

if (get_magic_quotes_gpc()) {
 $_POST['first_name'] = stripslashes($_POST['first_name']);
 // Repeat for other variables that could be affected.
}

If Magic Quotes is enabled, a valid last name, such as O'Toole,
will become O\'Toole, which won’t pass the regular expression
test. But when the stored procedure is invoked, the query will be
CALL add_customer('$fn', '$ln', . . .), so addslashes() must be applied
to the query data to prevent the apostrophe in O'Toole from breaking
that procedure call: CALL add_customer('Peter', 'O'Toole', . . .)

9. Validate the street addresses:

if (preg_match ('/^[A-Z0-9 \',.#-]{2,80}$/i', $_POST['address1'])) {
 $a1 = addslashes($_POST['address1']);
} else {
 $shipping_errors['address1'] = 'Please enter your street address!';
}
if (empty($_POST['address2'])) {
 $a2 = NULL;
} elseif (preg_match ('/^[A-Z0-9 \',.#-]{2,80}$/i', $_POST['address2'])) {
 $a2 = addslashes($_POST['address2']);
} else {
 $shipping_errors['address2'] = 'Please enter your street address!';
}

Addresses are trickier to validate because they can contain many characters
besides alphanumeric ones. The regular expression pattern allows for any
letter, any number, a space, an apostrophe, a comma, a period, the number
sign, and a dash.

The second street address (for longer addresses) is optional, so it’s only
validated if it’s not empty.

tip

As a formality, you could add

isset() to each validation

conditional, as in

if (isset($_POST['var'])

&& preg_match(…

270 CHAPTER 10

10. Validate the city:

if (preg_match ('/^[A-Z \'.-]{2,60}$/i', $_POST['city'])) {
 $c = addslashes($_POST['city']);
} else {
 $shipping_errors['city'] = 'Please enter your city!';
}

11. Validate the state:

if (preg_match ('/^[A-Z]{2}$/', $_POST['state'])) {
 $s = $_POST['state'];
} else {
 $shipping_errors['state'] = 'Please enter your state!';
}

There’s no need to apply either stripslashes(), with Magic Quotes
enabled, or addslashes() to this variable, because a valid value can con-
tain exactly two capital letters.

12. Validate the zip code:

if (preg_match ('/^(\d{5}$)|(^\d{5}-\d{4})$/', $_POST['zip'])) {
 $z = $_POST['zip'];
} else {
 $shipping_errors['zip'] = 'Please enter your zip code!';
}

The zip code can be in either the five digit or five plus four format (12345
or 12345-6789).

13. Validate the phone number:

$phone = str_replace(array(' ', '-', '(', ')'), '', $_POST['phone']);
if (preg_match ('/^[0-9]{10}$/', $phone)) {
 $p = $phone;
} else {
 $shipping_errors['phone'] = 'Please enter your phone number!';
}

The phone number must be exactly ten digits long, which is easy to check.
But as users commonly enter phone numbers with and without spaces,
hyphens, and parentheses, any of those characters that may be present
are first removed via str_replace(). Its first argument is an array of values
to find—space, hyphen, opening parenthesis, closing parenthesis; its
second argument is the replacement value (here, an empty string).

tip

All address and phone number

validation routines would need

to be altered if the site is serving

non-U.S. customers.

tip

The str_replace() function

is a faster alternative to

preg_replace(), usable when

fancy pattern matching isn’t

required.

CHECKING OUT 271

14. Validate the email address:

if (filter_var($_POST['email'], FILTER_VALIDATE_EMAIL)) {
 $e = $_POST['email'];
 $_SESSION['email'] = $_POST['email'];
} else {
 $shipping_errors['email'] = 'Please enter a valid email address!';
}

Thanks to the filter_var() function, this is the most straightforward of all
these validation routines. If your PHP installation does not support the
Filter extension, you can search online for the Perl-Compatible Regular
Expression (PCRE) pattern to use instead.

Unlike every other variable, the customer’s email address will be stored
automatically in the session so that a receipt can be sent to the customer
once the order has gone through.

15. Store the data in the session if the shipping information matches the
 billing:

if (isset($_POST['use']) && ($_POST['use'] == 'Y')) {
 $_SESSION['shipping_for_billing'] = true;
 $_SESSION['cc_first_name'] = $_POST['first_name'];
 $_SESSION['cc_last_name'] = $_POST['last_name'];
 $_SESSION['cc_address'] = $_POST['address1'] . ' '

➥. $_POST['address2'];
 $_SESSION['cc_city'] = $_POST['city'];
 $_SESSION['cc_state'] = $_POST['state'];
 $_SESSION['cc_zip'] = $_POST['zip'];
}

The checkout form will present the customer with a check box to select if
they want the shipping information to be used as the billing address, too
(Figure 10.8). In that case, the customer’s name and address need to be
stored in the session for use in the next PHP script. Also, a value is stored
in the session indicating this choice.

Authorize.net takes the customer’s street address as a single item, so the
two potential street addresses are concatenated together in the session.

Figure 10.8

note

Fraudulent credit card charges

often use different shipping and

billing addresses. If your site

allows for this, make sure your

payment gateway has stringent

fraud-protection tools.

272 CHAPTER 10

16. If no errors occurred, add the user to the database:

if (empty($shipping_errors)) {
 $r = mysqli_query($dbc, "CALL add_customer('$e', '$fn', '$ln', '$a1',

➥'$a2', '$c', '$s', $z, $p, @cid)");

To add the customer to the database, the add_customer() stored proce-
dure is invoked. The first nine arguments are the PHP variables assigned
during the validation process. The tenth is a MySQL user-defined variable.
This will match up with the outbound parameter in the stored procedure,
to be further explained in the next step.

17. If the procedure worked, retrieve the customer ID:

if ($r) {
 $r = mysqli_query($dbc, 'SELECT @cid');
 if (mysqli_num_rows($r) == 1) {
 list($_SESSION['customer_id']) = mysqli_fetch_array($r);

To get the customer ID generated by the stored procedure, a second
query must select @cid. This query is run, then the results of the query
are fetched into $_SESSION['customer_id']. If you find this concept to be
confusing, it may help to think about this in MySQL terms, as if the proce-
dure were being called from the command-line mysql client (Figure 10.9),
not a PHP script…

Figure 10.9

The first query itself is a call to a MySQL stored procedure. When the
query is executed, a reference to a user-defined variable—@cid—is
created. This is a variable that exists within MySQL, but outside of the
stored procedure (variables in MySQL outside of stored procedures begin
with @). Within the stored procedure, a value is assigned to the internal
variable cid, as explained earlier in the chapter. This variable is associ-
ated with @cid, thanks to the procedure call and the outbound argument.
When the procedure call is complete, @cid still exists (because it’s outside
of the procedure), but will now have a value. But @cid only exists within
the MySQL world; to get it to a PHP script, it must be selected and fetched.

CHECKING OUT 273

18. Redirect the customer to the billing page:

$location = 'https://' . BASE_URL . 'billing.php';
header("Location: $location");
exit();

At this point, the customer can be sent to billing.php where the billing
information will be requested and processed.

19. If there was a problem, indicate an error:

 }
}
trigger_error('Your order could not be processed due to a system error.
➥We apologize for the inconvenience.');

The two closing brackets complete the two query-related conditionals. If
the customer got to this point in the script, it means that they did every-
thing right but the system is not working. In that case, you should log the
error, email the administrator—pretty much panic—but let the customer
know that a problem occurred through no fault of their own. The site’s
support team or administrator would be able to contact the customer
immediately, as both the customer’s email address and phone number
would be stored in the error log.

20. Complete the $shipping_errors and request method conditionals:

 } // Errors occurred IF.
} // End of REQUEST_METHOD IF.

This concludes the end of the form validation process. The rest of the
script will apply to the initial GET request. It will also apply should there
be errors in the form data after the POST request.

21. Include the header file:

$page_title = 'Coffee - Checkout - Your Shipping Information';
include ('./includes/checkout_header.html');

Note that this script includes the new checkout_header.html file, not the
original header.html.

22. Retrieve the shopping cart contents:

$r = mysqli_query($dbc, "CALL get_shopping_cart_contents('$uid')");

The customer’s shopping cart ID is necessary at this point in order
to retrieve and later display what the customer is purchasing. This is
the same stored procedure used by cart.php in Chapter 9, “Building
a Shopping Cart.”

274 CHAPTER 10

23. Complete the script:

if (mysqli_num_rows($r) > 0) {
 include ('./views/checkout.html');
} else { // Empty cart!
 include ('./views/emptycart.html');
}

If the stored procedure returned some records, then the checkout.html
view file will be included (this will be a new file). If the stored procedure did
not return any records, the emptycart.html file will be included instead. It
was defined in Chapter 9. Its inclusion means that the customer will not be
able to continue the checkout process, which is entirely appropriate.

24. Finish the page:

include ('./includes/footer.html');
?>

The checkout process scripts include the standard footer.

25. Save the file.

Creating the View Files
The checkout.php script uses three view files:

■ checkout.html

■ checkout_cart.html

■ emptycart.html

The first file is included if there are products in the shopping cart. The sec-
ond file is included by the first (which is why there’s no reference to it in
checkout.php). The third has already been defined.

Let’s write checkout_cart.html first.

CREATING CHECKOUT_CART.HTML

The checkout_cart.html view file displays the contents of the cart—what the
customer is actually about to purchase (Figure 10.10). It’s defined as its own
script so that it can be used by both of the first two steps of the checkout
process. Unlike the cart.html view file, this one doesn’t allow the customer
to update the quantities, remove items, or move items to the wish list. More
importantly, this script needs to watch out for situations in which the customer

CHECKING OUT 275

is attempting to purchase an item that is insufficiently stocked. In such cases,
the original shopping cart page recommends that the customer update the
quantity of the item or move it to their wish list (see Figure 9.6). This script will
forcibly move the item to the wish list if it’s still in the cart but can’t be fulfilled.

Figure 10.10

1. Create a new HTML page in your text editor or IDE to be named
checkout_cart.html and stored in the views directory.

2. Begin the HTML box and the cart table:

<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div class=
➥"inner">
 <h2>Your Shopping Cart</h2>
 <table border="0" cellspacing="8" cellpadding="6"

➥width="100%">
 <tr>
 <th align="center">Item</th>
 <th align="center">Quantity</th>
 <th align="right">Price</th>
 <th align="right">Subtotal</th>
 </tr>

3. Begin a PHP block and include the product functions file:

<?php
include ('./includes/product_functions.inc.php');

The product_functions.inc.php script was begun in Chapter 8 and
expanded in Chapter 9. It defines a couple of necessary functions for
 displaying the shopping cart.

4. Initialize a variable to represent the order total:

$total = 0;

276 CHAPTER 10

5. Create an array for identifying problematic items:

$remove = array();

With the site as written, it’s possible that the customer is still trying to
purchase items that aren’t available. There are a couple of ways you can
handle this. First, you could remove those items from the cart and place
them in the wish list, as this page will do. Alternatively, you could allow
the sale to go through with the thinking that the item would be available
relatively soon. The risk of such a policy depends upon what’s being sold
and how readily it’s available. This site will not actually charge a customer’s
card until a product ships, so allowing an order to go through that may not
be fulfilled at that moment is not fraudulent.

In any case, the $remove array will be used to store insufficiently stocked
products found in the customer’s cart so that they can later be removed.

6. Fetch each product:

while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {

7. If the quantity of the item in the cart is greater than the stock on hand,
make a note of the item:

if ($row['stock'] < $row['quantity']) {
 echo '<tr class="error"><td colspan="4" align="center">There are

➥only ' . $row['stock'] . ' left in stock of the ' . $row['name'] . '. This
➥item has been removed from your cart and placed in your wish list.
➥</td></tr>';

 $remove[$row['sku']] = $row['quantity'];

If the store does not have enough of an item in stock to cover the number in
the cart, a message is added to the table indicating the problem to the cus-
tomer (Figure 10.11). Then, the problematic item is added to the $remove
array, using the syntax SKU => quantity.

Figure 10.11

tip

You could also write logic

that will sell a partial order:

If the customer wants four of

something and only three are

available, sell three and move

one to the wish list. Or the site

could ask the customer how they

want the item to be handled.

CHECKING OUT 277

8. If the stock is fine, display the item:

} else {
 $price = get_just_price($row['price'], $row['sale_price']);
 $subtotal = $price * $row['quantity'];
 echo '<tr><td>' . $row['category'] . '::' . $row['name'] . '</td>
 <td align="center">' . $row['quantity'] . '</td>
 <td align="right">$' . $price . '</td>
 <td align="right">$' . number_format($subtotal, 2) . '</td>
 </tr>
 ';
 $total += $subtotal;
}

This code is similar to that in cart.html, except for the particulars of each
table row: The quantity is not alterable and there are no links to remove or
move the item.

9. Complete the loop and add the shipping:

} // End of WHILE loop.
$shipping = get_shipping($total);
$total += $shipping;
echo '<tr>
 <td colspan="2"> </td><th align="right">Shipping &

➥Handling</th>
 <td align="right">$' . $shipping . '</td>
</tr>
';

Again, this code is largely similar to that in cart.html. Figures 10.9 and
10.10 show the result.

10. Add the shipping to the session:

$_SESSION['shipping'] = $shipping;

The shipping cost is calculated by the get_shipping() function, defined in
product_functions.inc.php. Because the shipping amount will be needed
by the next PHP script, it’s now stored in the session (at this point the
order itself has been finalized, so the shipping can be finalized, too).

278 CHAPTER 10

11. Display the total:

echo '<tr>
 <td colspan="2"> </td><th align="right">Total</th>
 <td align="right">$' . number_format($total, 2) . '</td>
 <td> </td>
</tr>
';

12. If the $remove array isn’t empty, remove the problematic items:

if (!empty($remove)) {
 mysqli_next_result($dbc);
 foreach ($remove as $sku => $qty) {
 list($sp_type, $pid) = parse_sku($sku);
 $r = mysqli_multi_query($dbc, "CALL add_to_wish_list('$uid',

➥'$sp_type', $pid, $qty);CALL remove_from_cart('$uid',
➥'$sp_type', $pid)");

 }
}

If the $remove array isn’t empty, then at least one product in the cus-
tomer’s cart needs to be moved to their wish list. You can accomplish
that by parsing the SKU, then calling the add_to_wish_list() and
remove_from_cart() stored procedures for each item. That’s what the
foreach loop accomplishes.

But first, the get_shopping_cart_contents() stored procedure, like any
procedure that runs a SELECT query, returns two sets of results: the
SELECT results and results indicating the success of running the proce-
dure. These latter results must be addressed before calling another stored
procedure. The invocation of the mysqli_next_result() function will take
care of that. It clears this secondary result set.

To execute the two stored procedures, the mysqli_multi_query() function
is used instead of two executions of mysqli_query(). This function, as its
name implies, allows more than one query to be executed with a single
database call.

13. Complete the page:

?></table>
</div></div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div>
➥</div>
<!-- box end -->

14. Save the file.

tip

If, when using stored proce-

dures, you see a “commands

out of sync” error message, it

means that stored procedure

results exist that have not been

retrieved.

CHECKING OUT 279

CREATING CHECKOUT.HTML

The checkout.html view file is included by checkout.php. It must include
checkout_cart.html and then display the form for obtaining the customer’s
shipping information (Figure 10.12).

Figure 10.12

1. Create a new HTML page in your text editor or IDE to be named
checkout.html and stored in the views directory.

2. Add the progress indicator:

<div align="center">
➥</div>
<br clear="all" />

To make the checkout process clear to the customer, and where they are
in that process, a progress indicator or progress tracker will be used (see
Figure 10.3).

3. Include the checkout_cart.html view:

<?php include ('./views/checkout_cart.html'); ?>

This includes the script just created. The file reference is relative
to checkout.php, which is including this checkout.html view file
(which is why the code is ./views/checkout_cart.html instead of just
checkout_cart.html).

280 CHAPTER 10

4. Begin the HTML box and the form:

<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div class=
➥"inner">
<h2>Your Shipping Information</h2>
<p>Please enter your shipping information. On the next page, you'll be
➥able to enter your billing information and complete the order. Please
➥check the first box if your shipping and billing addresses are the same.
➥* Indicates a required field. </p>
<form action="/checkout.php" method="POST">

Before the form are some simple instructions to the customer. Then the
form is begun, which will be submitted to checkout.php.

5. Include the form functions:

<?php include ('./includes/form_functions.inc.php'); ?>

The form_functions.inc.php script defines the create_form_input() func-
tion written earlier in the chapter. The function will be used repeatedly by
this form.

6. Create the Use Same Address for Billing check box:

<fieldset>
 <div class="field"><label for="use">Use Same Address
➥for Billing?</label>
<input type="checkbox"
➥name="use" value="Y" id="use" <?php if (isset($_POST['use']))
➥echo 'checked="checked" ';?>/></div>

If the customer selects this check box, they won’t need to enter their
address on the next page because their shipping address will be stored in
the session. To make the check box sticky, a PHP conditional is added within
the input.

7. Create the first name input:

<div class="field"><label for="first_name">First Name
➥*</label>
<?php
➥create_form_input('first_name', 'text', $shipping_errors); ?></div>

The <DIV> is used by the template to style form elements. Then comes the
label, along with an indication that this is a required field. After a break,
the create_form_input() function is called, creating a text box with a name
of first_name. The $shipping_errors array is passed to the function. When
the page is first loaded, $shipping_errors will be empty (it’s initialized in
checkout.php); if an error occurs, the error will be stored in it.

CHECKING OUT 281

8. Create the last name, addresses, and city inputs:

<div class="field"><label for="last_name">Last Name
➥*</label>
<?php
➥create_form_input('last_name', 'text', $shipping_errors); ?></div>
<div class="field"><label for="address1">Street Address
➥*</label>
<?php
➥create_form_input('address1', 'text', $shipping_errors); ?></div>
<div class="field"><label for="address2">Street Address,
➥Continued</label>
<?php create_form_input(
➥'address2', 'text', $shipping_errors); ?></div>
<div class="field"><label for="city">City
➥*</label>

➥<?php create_form_input('city', 'text', $shipping_errors); ?></div>

These four inputs are repetitions of the first name input, except that the
second address field is not required.

9. Create the state select menu:

<div class="field"><label for="state">State
➥* </label>

➥<?php create_form_input('state', 'select', $shipping_errors); ?></div>

To create the select menu using the create_form_input() function, the
second argument just needs to be select. The data used in the menu is
based upon the element’s name.

10. Create the zip code, phone number, and email address inputs:

<div class="field"><label for="zip">Zip Code
➥*</label>

➥<?php create_form_input('zip', 'text', $shipping_errors); ?></div>
<div class="field"><label for="phone">Phone Number
➥*</label>

➥<?php create_form_input('phone', 'text', $shipping_errors); ?></div>
<div class="field"><label for="email">Email Address
➥*</label>

➥<?php create_form_input('email', 'text', $shipping_errors); ?></div>

11. Complete the form:

 <br clear="all" />
<div align="center"><input type="submit" value="Continue onto
➥Billing" class="button" /></fieldset></form></div>

As mentioned earlier, this button, which continues the checkout process,
needs to be impossible to miss.

282 CHAPTER 10

12. Complete the page:

</div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div>
➥</div>
<!-- box end -->

13. Save the fi le.

Now you can test the checkout.php process. If you fi ll out the form incorrectly,
it will be displayed again (Figure 10.13). If you fi ll it out correctly, you’ll be sent
to billing.php, which will be written next.

TAKING THE BILLING
INFORMATION
After the customer has properly provided her or his shipping information,
the site will ask for the customer’s billing information. When accepting credit
cards to be processed by Authorize.net, the billing information equates to their
credit card data plus the billing address. This is the most sensitive information
requested and handled by any script in the entire book. This is therefore the
most complex and important script in the book (well, coupled with the next
two). The entire billing process is refl ected in Figure 10.14.

OK?

form

Yes

No

GET request

POST
request

<script
 var a=
 var xl
 if(xls

billing.php

validation

Authorize.net
process

payment

1

2
3

OK? Yes

No

final.php

4

Figure 10.14

To make this script easier to comprehend, let’s look at it piecemeal: the GET
part (that displays the order contents and the form), the POST part (that vali-
dates the form data), and the payment processing part.

Figure 10.13

CHECKING OUT 283

Creating the Basic PHP Script
To start, the basic PHP script will address all of the GET functionality. It’s rather
similar to checkout.php and really short (without all the form validation and
billing processing stuff).

1. Create a new PHP script in your text editor or IDE to be named billing.php
and stored in the Web root directory.

2. Include the configuration file:

<?php
require ('./includes/config.inc.php');

3. Begin the session and retrieve the session ID:

session_start();
$uid = session_id();

This page will be able to access the same session data as checkout.php,
because both pages are being accessed over HTTPS. The session ID needs
to be assigned to the $uid variable so that it can be used many times over
in this page (to access the user’s cart).

4. Redirect invalid users:

if (!isset($_SESSION['customer_id'])) {
 $location = 'https://' . BASE_URL . 'checkout.php';
 header("Location: $location");
 exit();
}

If $_SESSION['customer_id'] is not set, the user hasn’t come to this page
via checkout.php, meaning their order can’t be completed. In that case, the
customer is redirected back to the checkout page to begin again.

5. Require the database connection and create an array for storing errors:

require (MYSQL);
$billing_errors = array();

6. Include the header file:

$page_title = 'Coffee - Checkout - Your Billing Information';
include ('./includes/checkout_header.html');

Again, the newer, custom checkout_header.html file is included, not the
older header.html.

7. Get the shopping cart contents:

$r = mysqli_query($dbc, "CALL get_shopping_cart_contents('$uid')");

284 CHAPTER 10

8. Include the view files:

if (mysqli_num_rows($r) > 0) {
 if (isset($_SESSION['shipping_for_billing']) &&

➥($_SERVER['REQUEST_METHOD'] != 'POST')) {
 $values = 'SESSION';
 } else {
 $values = 'POST';
 }
 include ('./views/billing.html');
} else { // Empty cart!
 include ('./views/emptycart.html');
}

You’ve seen most of this code several times over by now, the one difference
being the conditional that checks for the $_SESSION['shipping_for_billing']
element. This conditional is necessary because the HTML form in the view
file could be prepopulated with values in two situations.

In the first case, the customer selected the check box (on checkout.php)
to use their shipping information as their billing information. If so, the val-
ues already stored in $_SESSION should be used for the form elements.

The second situation in which there will be values to display in the form
is when the customer submitted the form but errors occurred. If so, the
values should come from $_POST. Note that even if the user opted to use
the same information for shipping and billing, once they’ve submitted the
form, only the posted values will count. This way, if the customer altered
any of the prepopulated values, the changes will be reflected when the
form is redisplayed. Still, if the customer did not alter the original session-
based values, those same values will be used again after any errors.

9. Complete the page:

include ('./includes/footer.html');
?>

10. Save the file.

Creating the View File
The next step is to create the billing.html view file. Like checkout.html, this
script should include checkout_cart.html (to display the cart), and then create
an HTML form, primarily using the create_form_input() function (Figure 10.15).

CHECKING OUT 285

Figure 10.15

1. Create a new HTML page in your text editor or IDE to be named billing.html
and stored in the views directory.

2. Add the progress indicator:

<div align="center">
➥</div>
<br clear="all" />

The progress indicator for this page uses a different image showing that
this is the second step in the process (I’d include a figure, but the changes
are too subtle in black and white).

3. Include the checkout_cart.html view:

<?php include ('./views/checkout_cart.html'); ?>

This is the same view file included by checkout.html.

4. Begin the HTML box and the form:

<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div class=
➥"inner">
 <h2>Your Billing Information</h2>
 <p>Please enter your billing information below. Then click the button

➥to complete your order. For your security, we will not store your
➥billing information in any way. We accept Visa, MasterCard, American
➥Express, and Discover.</p>

<form action="/billing.php" method="POST">

286 CHAPTER 10

Again, there are some simple instructions, plus an indication that their data
will be safe. The instructions also indicate what card types are accepted.
You may choose to make this more prominent or use images to represent
the accepted cards.

The form gets submitted back to billing.php.

5. Include the form function file:

<?php include ('./includes/form_functions.inc.php'); ?>

6. Create the credit card number input:

 <div class="field"><label for="cc_number">Card Number
➥</label>
<?php create_form_input('cc_number',
➥'text', $billing_errors, 'POST', 'autocomplete="off"'); ?></div>

The element for taking the customer’s credit card number is just a text
input. The potential existing value for this input can come only from POST,
because the credit card number will never be stored in the session.

The input uses the extra HTML autocomplete="off", which is a necessary
security measure. If you don’t use this attribute, and the user’s browser is
set to remember their form data, then the browser will record the user’s
credit card number in plain text on the customer’s computer. That’s not good.
(It may still happen because of less diligent e-commerce sites, though.)

7. Create the expiration date elements:

<div class="field"><label for="exp_date">Expiration Date
➥</label>
<?php create_form_input('cc_exp_month',
➥'select', $billing_errors); ?><?php create_form_input('cc_exp_year',
➥'select', $billing_errors); ?></div>

The expiration date is generated using two select menus. The first is the
expiration month and the second is the year. Because the fourth argument
to the create_form_input() function—for indicating where existing values
come from—is not provided, the default ($_POST) will be used.

8. Create the Card Verification Value (CVV) input:

<div class="field"><label for="cc_cvv">CVV
➥</label>
<?php create_form_input('cc_cvv', 'text',
➥$billing_errors, 'POST', 'autocomplete="off"'); ?></div>

The CVV code is an extra security measure used to limit fraud. What the
customer should enter here are three digits on the back of Visa, Master-
Card, and Discover cards or the four digits on the front of American Express
cards. This is an extremely sensitive piece of information, so like the card

note

You don’t actually have to ask

the customer what type of

card they’re using, because

the card number is indicative

of the card type.

tip

The acronyms CVV, CCV, CVC,

and CVVC all refer to the Card

Security Code (CSC).

note

Merchants are not allowed to

store CVV numbers.

CHECKING OUT 287

number input, the autocomplete="off" code will be added to the input
HTML. And, as with the card number, the value can only come from $_POST.

9. Create the first and last name inputs:

<fieldset>
<div class="field"><label for="cc_first_name">First Name
➥</label>
<?php create_form_input('cc_first_name',
➥'text', $billing_errors, $values); ?></div>
<div class="field"><label for="cc_last_name">Last Name
➥</label>
<?php create_form_input('cc_last_name',
➥'text', $billing_errors, $values); ?></div>

The rest of this form is largely like the shipping form, except that each
input is prefaced with cc_. An important addition is that each call to
create_form_input() includes the fourth argument. The fourth argument
indicates where an existing value should exist: in $_SESSION or $_POST.
The value of the $values variable will have been determined in the
billing.php script (as you’ve already seen).

10. Create the address input:

 <div class="field"><label for="address">Street
➥Address</label>
<?php create_form_input(
➥'cc_address', 'text', $billing_errors, $values); ?></div>

 <div class="field"><label for="city">City
➥</label>
<?php create_form_input('cc_city', 'text',
➥$billing_errors, $values); ?></div>

 <div class="field"><label for="state">State
➥</label>
<?php create_form_input('cc_state', 'select',
➥$billing_errors, $values); ?></div>

 <div class="field"><label for="zip">Zip Code
➥</label>
<?php create_form_input('cc_zip', 'text',
➥$billing_errors, $values); ?></div>

These are just like the inputs on the shipping information form, plus the
additional fourth argument indicating the source of the value. If the cus-
tomer selected the Use Shipping for Billing check box, these inputs will be
prepopulated with data from the session the first time the page is loaded.
If the form is redisplayed, the values will come from $_POST.

There is only one street address field, though, because Authorize.net is
set up to accept only a single street address.

tip

You could add a little help

button next to the CVV input

that creates a pop-up window

indicating where the customer

can find their CVV number.

288 CHAPTER 10

11. Complete the form:

 <br clear="all" />
<div align="center"> <input type="submit" value="Place Order"
➥class="button" /></div></fieldset></form>

12. Complete the page:

<div>By clicking this button, your order will be completed and your
➥credit card will be charged.</div>
</div></div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div>
➥</div>
<!-- box end -->

The instructions make it clear that the act of clicking the button completes
the order.

13. Save the file.

Now you can load the billing page in your Web browser, although submitting
the form will have no effect.

Validating the Form Data
Now that the shell of the script has been written, as has the view file for creat-
ing the form, it’s time to add the code that processes the form data. This is
largely like the validation in checkout.php, with additional validation of the
credit card data. Needless to say, it’s very important that you treat that credit
card data with the utmost security. For example, you might think it is safe to
store such information in the session, even temporarily:

$_SESSION['cc_number'] = $_POST['cc_number'];

But that one, seemingly harmless line just stored the customer’s credit card
number in a plain text file, in a publicly available directory on the server! Con-
versely, the way this script is written, all the ultimately sensitive information will
exist only on the server (in memory) for the time it takes this script to execute.

1. Open billing.php in your text editor or IDE, if it is not already.

2. After creating the $billing_errors array, but before including the header file,
check for the form submission:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

Again, if Magic Quotes might be enabled on your server, you’ll need to add
code applying stripslashes() to some of the variables at this point:

CHECKING OUT 289

if (get_magic_quotes_gpc()) {
 $_POST['cc_first_name'] = stripslashes($_POST['cc_first_name']);
 // Repeat for other variables that could be affected.
}

3. Validate the first and last names:

if (preg_match ('/^[A-Z \'.-]{2,20}$/i', $_POST['cc_first_name'])) {
 $cc_first_name = $_POST['cc_first_name'];
} else {
 $billing_errors['cc_first_name'] = 'Please enter your first name!';
}
if (preg_match ('/^[A-Z \'.-]{2,40}$/i', $_POST['cc_last_name'])) {
 $cc_last_name = $_POST['cc_last_name'];
} else {
 $billing_errors['cc_last_name'] = 'Please enter your last name!';
}

These regular expressions are the same as those used in checkout.php.
Unlike in the checkout.php script, addslashes() does not need to be applied
to any values, because no strings will be used in any stored procedure calls.

4. Remove any spaces or dashes from the credit card number:

$cc_number = str_replace(array(' ', '-'), '', $_POST[cc_number]);

As with the phone number in checkout.php, the first step in validating
the credit card number is to remove any spaces or numbers from the sub-
mitted credit card number. This allows the customer to enter the number
however they prefer.

5. Validate the card number against allowed types:

if (!preg_match ('/^4[0-9]{12}(?:[0-9]{3})?$/', $cc_number) // Visa
&& !preg_match ('/^5[1-5][0-9]{14}$/', $cc_number) // MasterCard
&& !preg_match ('/^3[47][0-9]{13}$/', $cc_number) // American Express
&& !preg_match ('/^6(?:011|5[0-9]{2})[0-9]{12}$/', $cc_number) //
➥Discover
) {
 $billing_errors['cc_number'] = 'Please enter your credit card number!';
}

All credit card numbers adhere to a specific formula, based upon the type
of credit card. For example, all Visa cards start with 4 and are either 13 or
16 characters long. All American Express cards start with either 34 or 37 but
must be exactly 15 characters long. These four patterns can confirm that
the supplied credit card number matches an allowed pattern. By checking

tip

You may want to add to the

form an indicator as to how

the credit card number can

be entered (for example,

####).

290 CHAPTER 10

that the number follows an acceptable format, the script won’t attempt to
process clearly unacceptable credit cards.

Note that nothing else is done with the card number at this point; however,
an error message is created if the number doesn’t match one of the four
patterns.

6. Validate the expiration date:

if (($_POST['cc_exp_month'] < 1 || $_POST['cc_exp_month'] > 12)) {
 $billing_errors['cc_exp_month'] = 'Please enter your expiration

➥month!';
}
if ($_POST['cc_exp_year'] < date('Y')) {
 $billing_errors['cc_exp_year'] = 'Please enter your expiration year!';
}

There are two parts to the expiration date: the month and the year. The
month must be between 1 and 12 and the year cannot be before the cur-
rent year.

As an added check, you could confirm that if the expiration year is the cur-
rent year, the expiration month is not before the current month (meaning
that the card hasn’t already expired).

7. Validate the CVV:

if (preg_match ('/^[0-9]{3,4}$/', $_POST['cc_cvv'])) {
 $cc_ccv = $_POST['cc_cvv'];
} else {
 $billing_errors['cc_cvv'] = 'Please enter your CVV!';
}

The CVV will be either three or four digits long.

8. Validate the street address:

if (preg_match ('/^[A-Z0-9 \',.#-]{2,160}$/i', $_POST['cc_address'])) {
 $cc_address = $_POST['cc_address'];
} else {
 $shipping_errors['cc_address'] = 'Please enter your street address!';
}

Since the billing form uses a single street address, the maximum length is
doubled from those in the shipping form.

9. Validate the city, state, and zip code:

if (preg_match ('/^[A-Z \'.-]{2,60}$/i', $_POST['cc_city'])) {
 $cc_city = $_POST['cc_city'];

CHECKING OUT 291

} else {
 $billing_errors['cc_city'] = 'Please enter your city!';
}
if (preg_match ('/^[A-Z]{2}$/', $_POST['cc_state'])) {
 $cc_state = $_POST['cc_state'];
} else {
 $billing_errors['cc_state'] = 'Please enter your state!';
}
if (preg_match ('/^(\d{5}$)|(^\d{5}-\d{4})$/', $_POST['cc_zip'])) {
 $cc_zip = $_POST['cc_zip'];
} else {
 $billing_errors['cc_zip'] = 'Please enter your zip code!';
}

10. If no errors occurred, convert the expiration date to the correct format:

if (empty($billing_errors)) {
 $cc_exp = sprintf('%02d%d', $_POST['cc_exp_month'],

➥$_POST['cc_exp_year']);

Authorize.net can accept the expiration date in many different formats:
MMYY, MM-YY, MMYYYY, MM/YYYY, and so on; this site will submit it as
MMYYYY. The year will already be four digits long, but the month could
be either one or two digits. To turn the month into a two-digit value, the
sprintf() function can be used. Its first argument is the formatting pat-
tern: %02d%d. The %02d will format an integer as two digits, adding
extra zeros as necessary. The subsequent %d just represents an integer
without any additional formatting. The second and third arguments in this
sprintf() call are the values to be used for the two placeholders. The end
result will be values like 012011 or 102011.

11. Check for an existing order ID in the session:

if (isset($_SESSION['order_id'])) {
 $order_id = $_SESSION['order_id'];
 $order_total = $_SESSION['order_total'];

The next bit of code needs to create a new order ID, which is to say a
new set of records in the orders and order_contents tables. However, the
billing form could be submitted more than once, so the script shouldn’t
automatically call the associated stored procedure to do that.

For example, if the payment gateway said there was a problem with the
provided credit card, the customer would correct that information (in the
form) and resubmit the form. In such a case, the site should not create
a second, duplicate order. To prevent that from happening, the script will

292 CHAPTER 10

look in the session for a previously stored order ID. If one is found, the
previously stored ID and total will be assigned to local variables, to be
used by the payment process.

12. If there is no existing order ID, get the last four digits of the credit card
number:

} else { // Create a new order record:
 $cc_last_four = substr($cc_number, -4);

The site will store, in the orders table, the last four digits of the credit card
number used, which is a safe and general practice. By doing so, there is a
reference as to what card was used without storing the actual credit card
number (which would be bad).

13. Store the order:

$r = mysqli_query($dbc, "CALL add_order({$_SESSION['customer_id']},
➥'$uid', {$_SESSION['shipping']}, $cc_last_four, @total, @oid)");

If all the user-supplied data is valid, the script needs to store the order infor-
mation in the orders table. By doing so prior to calling the payment gateway,
the order’s ID number can be sent along as part of the payment gateway
transaction. More importantly, the add_order() procedure calculates the
order total, which is required for the payment gateway request as well.

Even though the complete order will now be stored in the database—prior
to authorizing the payment—the site will not treat this order as success-
ful, because, as you’ll see in the next chapter, the success of an order also
depends upon the transaction record found in the transactions table.

14. Retrieve the total and order ID:

if ($r) {
 $r = mysqli_query($dbc, 'SELECT @total, @oid');
 if (mysqli_num_rows($r) == 1) {
 list($order_total, $order_id) = mysqli_fetch_array($r);
 // Process the payment!

To retrieve the order total and ID, select those two user-defined MySQL
variables. This is similar to how the customer ID was selected after calling
the add_customer() procedure.

15. Store the order ID and total in the session:

$_SESSION['order_total'] = $order_total;
$_SESSION['order_id'] = $order_id;

Should the billing form be submitted a second time, the conditional
defined in Step 11 will be true now.

note

The code that invokes the

add_order() stored procedure

will be executed only once, no

matter how many times the bill-

ing form has to be resubmitted.

CHECKING OUT 293

16. If the order ID and total could not be retrieved, trigger an error:

} else { // Could not retrieve the order ID and total.
 unset($cc_number, $cc_cvv);
 trigger_error('Your order could not be processed due to a system

➥error. We apologize for the inconvenience.');
}

As with the checkout.php script, if the PHP code gets to the trigger_error()
point, it means that the customer did everything right but the system
failed. That is really one of the worst things that could happen (and really
shouldn’t on a live, tested site). I’ve only included the trigger_error() call,
but you should make sure that something significant—like emailing the
administrator—happens in this case so that the problem gets fixed imme-
diately. Fortunately, the customer’s contact information—name, phone
number, and email address—are stored in the session, making them avail-
able to any error logging that trigger_error() does.

On that note, because the error-handling function, as defined, records
every variable that existed at the time of the error, the customer’s credit
card number and CVV value would be sent in an unsecured email or
stored in a plain text log file. Such an occurrence would be a terrible secu-
rity violation and a failure to abide by PCI DSS standards. To prevent this,
before triggering the error, those two variables are deleted.

17. If the add_order() procedure failed, trigger an error:

} else { // The add_order() procedure failed.
 unset($cc_number, $cc_cvv);
 trigger_error('Your order could not be processed due to a system

➥error. We apologize for the inconvenience.');
}

This is a replication of the code in Step 16, applicable if the add_order()
procedure call does not return a positive result.

18. Complete the form-handling conditionals:

 } // End of isset($_SESSION['order_id']) IF-ELSE.
 } // Errors occurred IF.
} // End of REQUEST_METHOD IF.

19. Save the file.

Now you can test the billing.php script as long as you purposefully create
errors (because the payment-processing aspect hasn’t been defined yet).

note

The error-handling function will

send an email when an error

occurs on a live site.

note

Think about what might happen

to any customer-supplied data

should an error occur at any

point in the checkout process!

tip

For these errors, you would want

to also indicate to the customer

what will happen next: The

customer shouldn’t resubmit

the order, they’ll be contacted

shortly, and so forth.

294 CHAPTER 10

PROCESSING CREDIT
CARDS
The next step in the checkout sequence is to actually process the payment
(this is number 3 in Figure 10.14). To do so, the customer information, payment
data, and order specifics need to be sent to the payment gateway, and the
returned response needs to be confirmed. With the Authorize.net system, this
really isn’t that difficult. The site just needs to establish the right settings and
use libcurl to contact Authorize.net.

I’ve broken the gateway communication into two scripts: one that establishes
the particulars to be sent to Authorize.net for a new order and another script
that performs the actual communication. I separated the functionality this way
because the administrative pages will also communicate with Authorize.net,
passing along slightly different information. After completing Chapter 11, “Site
Administration,” there will be two setup scripts and one process script:

■ gateway_setup.php establishes new order parameters.

■ gateway_setup_admin.php establishes existing order parameters.

■ gateway_process.php establishes common parameters and performs the
request.

After defining two of these here, billing.php will need to be updated to use them.

Creating gateway_setup.php
The payment gateway needs to receive a large number of name=value pairs in
each request. These pairs communicate to the gateway everything required to
process the transaction:

■ The site’s merchant information

■ The customer’s billing information

■ The order information

■ How data should be returned

■ And more

Each payment gateway differs as to what information needs to be transferred
and under what naming scheme. For Authorize.net, each name begins with x_.

The easiest way to start this process is to create an array, which will later be
turned into the name=value pairs. The gateway_setup.php should create the

CHECKING OUT 295

array and populate it with all the information particular to the customer com-
pleting a new order. Here is that script, in its entirety:

gateway_setup.php:
 1 <?php
 2 // Create an array for the information:
 3 $data = array();
 4
 5 // Transaction type:
 6 $data['x_type'] = 'AUTH_ONLY';
 7
 8 // Billing info:
 9 $data['x_card_num'] = $cc_number;
 10 $data['x_exp_date'] = $cc_exp;
 11 $data['x_card_code'] = $cc_cvv;
 12 $data['x_first_name'] = $cc_first_name;
 13 $data['x_last_name'] = $cc_last_name;
 14 $data['x_address'] = $cc_address;
 15 $data['x_state'] = $cc_state;
 16 $data['x_city'] = $cc_city;
 17 $data['x_zip'] = $cc_zip;

First, an empty array is created. Next, the transaction type is set as AUTH_
ONLY. This means that the request will authorize that funds be reserved for
this merchant from this customer. Later, after taking steps in the administra-
tion area, a capture request will be made, at which point Authorize.net will
actually charge the card and transfer the funds. To immediately charge the
card, the transaction type would be AUTH_CAPTURE.

Next, the customer’s billing information is assigned. This includes the credit
card number, the expiration date, the CVV code, the customer’s name,
and their address. All of these values come from local variables found in
billing.php.

This is all that needs to be transmitted particular to an original order. The
merchant information, the order total, order ID, and the customer ID will all be
added in the next script.

Because the payment-processing scripts will contain sensitive information (the
next one will especially), I recommend storing it outside the Web root directory,
if at all possible. If not, place gateway_setup.php in the includes directory, but
prevent that directory from being accessible over the Internet. See Chapter 7
for instructions.

note

When the customer is charged

for their order is a policy deci-

sion that each business will

need to make.

note

Different card companies will

reserve authorized funds for dif-

ferent lengths of time, anywhere

from three days to some months.

note

The PHP script does not have the

closing PHP tag, because this file

will be included by billing.php.

296 CHAPTER 10

Defining gateway_process.php
The gateway_process.php script needs to do several things:

■ Add to the $data array information that’s common to all transactions

■ Convert the $data array to a string

■ Perform the request

■ Convert the request response into an array

This code isn’t that complicated, but let’s walk through it step by step just to
be safe.

1. Create a new PHP script in your text editor or IDE to be named
gateway_process.php and stored in the same location as
gateway_setup.php.

Again, it’d be best to store this outside the Web root directory. If that’s not
possible, place it in the most secure location you can.

2. Define the access URL:

<?php
if ($live) {
 define ('GATEWAY_API_URL', 'https://secure.authorize.net/gateway/

➥transact.dll');
} else {
 define ('GATEWAY_API_URL', 'https://test.authorize.net/gateway/

➥transact.dll');
}

As with most payment gateways, Authorize.net uses different URLs for live
and testing purposes. Based upon the value of $live set in the configura-
tion file, the correct URL is assigned to a constant.

3. Define your Authorize.net merchant information:

$data['x_login'] = '75sqQ96qHEP8';
$data['x_tran_key'] = '7r83Sb4HUd58Tz5p';

These two pieces of information uniquely identify you to the Authorize.net
system. You should use the values emailed to you by Authorize.net in
your code.

4. Define the Advanced Integration Method values:

$data['x_version'] = '3.1';
$data['x_delim_data'] = 'TRUE';
$data['x_delim_char'] = '|';
$data['x_relay_response'] = 'FALSE';

tip

Authorize.net also allows you

to use the live URL for tests

when using a real account in

testing mode.

tip

Your login ID and transaction key

must be kept safe. Having this

information, hackers could credit

their cards from your account.

CHECKING OUT 297

These four items are required when using the Advanced Integration Method
(AIM). The first indicates the version of AIM in use. The second says that the
returned response data should be delimited. The third dictates the delimit-
ing character to be used (here, the pipe). The relay_response is used by
Authorize.net’s SIM system, so it should be set to false for AIM connections
(this is Authorize.net’s recommendation).

5. Indicate the transaction method:

$data['x_method'] = 'CC';

A method value of CC means this is a credit card transaction. An alternative
is ECHECK.

6. Add the order information:

$data['x_amount'] = $order_total;
$data['x_invoice_num'] = $order_id;
$data['x_cust_id'] = $customer_id;

The amount value is obviously one of the most important. The invoice
number and customer ID values aren’t required, but by providing them, that
information will be stored in the Authorize.net system, making it easy to
look up information there, relative to orders on this site.

For each of these values, variables created in billing.php will be used. In
Chapter 11, this same script will be invoked, but these three values will
come from variables defined in an administrative script.

7. Convert the data to a series of name=value pairs:

$post_string = '';
foreach($data as $k => $v) {
 $post_string .= "$k=" . urlencode($v) . "&";
}
$post_string = rtrim($post_string, '& ');

Using a foreach loop, each element in $data will be turned into the format
name=value. Each value is URL-encoded, to make it safe to use in a
request, and each name=value pair is separated by an ampersand. The
final ampersand is chopped off as a last step. The result will be a string like:

x_type=AUTH_ONLY&x_card_num=4556510523894&x_exp_date=
➥062010&x_card_code=890&x_first_name=Larry&x_last_name=
➥Ullman&x_address=100+Main+Street+Apt+2B&x_state=NH
➥&x_city=Anytown&x_zip=65894&x_login=75sqQ96qHEP8
➥&x_tran_key=7r83Sb4HUd58Tz5p&x_version=3.1&x_delim_data=
➥TRUE&x_delim_char=%7C&x_relay_response=FALSE&x_method=
➥CC&x_amount=309.82&x_invoice_num=21&x_cust_id=27

298 CHAPTER 10

8. Set up the cURL request:

$request = curl_init(GATEWAY_API_URL);
curl_setopt($request, CURLOPT_HEADER, 0);
curl_setopt($request, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($request, CURLOPT_POSTFIELDS, $post_string);
curl_setopt($request, CURLOPT_SSL_VERIFYPEER, FALSE);

The first line initializes a cURL request, providing it with the URL to be
communicated with. The second line says that header information should
be omitted from the response (only the data is necessary). The third line,
setting CURLOPT_RETURNTRANSFER to 1, confirms that actual data
should be returned as a response. On the fourth line, the $post_string
data is added as CURLOPT_POSTFIELDS.

On the last line, the option of verifying the SSL connection of the server is
disabled. By doing so, you’re improving the odds of the connection going
through. If you don’t include this line and cURL hiccups at the validity of
the gateway’s certificate, the request will fail. This doesn’t mean the trans-
action won’t be secure, it’s just more likely to succeed.

9. Execute the cURL request:

$response = curl_exec($request);
curl_close ($request);

10. Convert the response into an array:

$response_array = explode($data["x_delim_char"], $post_response);

The cURL response will be returned as a long string of data. To make it
easier to use, it can be converted to an array by exploding the string on
the delimiting character (previously set to be the pipe).

11. Save the file.

Again, no closing PHP tag is used.

Examining the Server Response
Before updating the billing script to use the gateway scripts, let’s take a quick
look at the Authorize.net response. When using AIM, the server response will
be a long string of data in the format of (the actual delimiter will be whatever
you choose):

1|1|1|This transaction has been approved.|iJUUAm|Y|2390|. . .

After applying the explode() function to this response, the string will be broken
into an array. The first 68 elements in that array are reserved for Authorize.net’s
purposes; most will not have values. Table 10.1 lists many of these.

tip

For the full list of cURL options,

see www.php.net/curl_setopt.

note

Because arrays are indexed

beginning at zero, Table 10.1

starts listing the fields at zero.

www.php.net/curl_setopt

CHECKING OUT 299

Table 10.1 Some Authorize.net Response Fields

Field Name

0 Response Code

1 Response Subcode

2 Response Reason Code

3 Response Reason Text

4 Authorization Code

5 AVS Response

6 Transaction ID

7 Invoice Number

8 Description

9 Amount

10 Method

11 Transaction Type

12 Customer ID

13–31 Customer Information

38 CCV/CVV Response Code

50 Last Four Digits of Card

51 Card Type

The full breakdown is available in the Authorize.net manual. The most impor-
tant of these is really the response code. The possible values are:

■ Approved

■ Declined

■ Error

■ Held for Review

In short, if the first element returned by the response has a value of 1, the pay-
ment was authorized. If it’s not 1, then a problem occurred. The specific type
of problem will be reflected by the response reason code and the response
reason text. Again, the Authorize.net AIM manual and online documentation
lists all the possible codes and messages.

300 CHAPTER 10

Updating billing.php
Now that the two payment-related scripts have been written, they should
be incorporated into billing.php. By including the two scripts, the payment
transaction will be processed. After that, the transaction should be recorded
in the database and the script should respond accordingly (item number 4 in
Figure 10.14).

1. Open billing.php in your text editor or IDE, if it is not already.

2. After the isset($_SESSION['order_id']) IF-ELSE, check that the order ID
and total are set:

if (isset($order_id, $order_total)) {

The IF-ELSE conditional that should precede this line creates these two
variables either by retrieving them from the session or by executing the
stored procedure. As long as both variables exist, the payment request can
be processed.

3. Assign the customer ID value to a variable:

$customer_id = $_SESSION['customer_id'];

The customer ID is currently stored in the session, but
gateway_process.php expects it to be in a variable named $customer_id.
(I wrote it this way because the administrative script that also uses
gateway_process.php won’t have the customer ID in a session.)

4. Include the two scripts:

require_once(BASE_URI . 'gateway_setup.php');
require_once(BASE_URI . 'gateway_process.php');

The scripts must be included in this order. The first establishes the $data
array and populates it with some information for this particular kind of
transaction. The second script adds more information to $data and then
contacts Authorize.net.

You’ll need to change the references to the scripts so that the paths are
accurate for your setup.

5. Add addslashes to two of the text fields:

$reason = addslashes($response_array[3]);
$response = addslashes($response);

The reason text and the full response could have problematic characters
(namely, the single quotation mark), so addslashes() needs to be applied
before using these values in the stored procedure.

CHECKING OUT 301

6. Record the transaction in the database:

$r = mysqli_query($dbc, "CALL add_transaction($order_id,
➥'{$data['x_type']}', $response_array[9], $response_array[0], '$reason',
➥$response_array[6], '$response')");

To record the transaction in the database, call the add_transaction()
stored procedure. Its first argument is the order ID. The second is the
transaction type. The third is the amount involved, which can be found in
$response_array[9] (or $order_total). The fourth argument is the response
code. This is the value 1, 2, 3, or 4 and is the first element in the parsed
$response_array. The next argument is the transaction ID. This is a value
returned by Authorize.net that reflects this transaction in their system. Finally,
the entire cURL response, as a string, is stored in the table. Admittedly, this
response contains all this other information, but in a less accessible way.

7. If the transaction was a success, store the response code in the session:

if ($response_array[0] == 1) {
 $_SESSION['response_code'] = $response_array[0];

This value will be required by the last script in the process.

8. Redirect the user:

$location = 'https://' . BASE_URL . 'final.php';
header("Location: $location");
exit();

The final.php script is the last page in the checkout process. It should
indicate the success to the customer, send an email, create a receipt, and
so on.

9. If the transaction was not a success, respond accordingly:

} else {
 if ($response_array[0] == 2) { // Declined
 $message = $response_array[3] . 'Please fix the error or try another

➥card.';
 } elseif ($response_array[0] == 3) { // Error
 $message = $response_array[3] . ' Please fix the error or try

➥another card.';
 } elseif ($response_array[0] == 4) { // Held for review
 $message = "The transaction is being held for review. You

➥will be contacted ASAP about your order. We apologize for any
➥inconvenience.";

 }
}

302 CHAPTER 10

For each possible response, numbered 2 through 4, a message is created.
In the first two cases, the message includes the textual reason from the
response. Some example reasons are:

■ The credit card number is invalid.

■ The credit card has expired.

■ The merchant does not accept this type of credit card.

In any of these cases, the billing form will be shown again (because the
user is not being redirected).

10. Complete the isset($order_id, $order_total) conditional:

} // End of isset($order_id, $order_total) IF.

This line should come just before the curly bracket that closes the
if (empty($billing_errors)) { conditional.

11. Save the file.

Lastly, billing.html needs to be updated to display a message if it exists. To do
so, add this code after the instructions but before the form is begun:

<?php if (isset($message)) echo "<p class=\"error\">$message</p>"; ?>

Figure 10.16 shows how this might look.

Figure 10.16

COMPLETING THE ORDER
The final.php script is the last page in the checkout process. It should be
accessed only after a completed sale. In terms of the database, the script
should clear the carts table, since now those items have been purchased.
In terms of the customer, the script should:

■ Indicate completion of the order

■ Offer a receipt

■ Send an email confirmation

■ Tell the customer what will happen next

CHECKING OUT 303

This last item is important: Just because the customer has already given you
money doesn’t mean they couldn’t use a little extra reassurance about that
decision. The site should provide a sense of when the order will be processed
and even ship, if possible.

You could also use the final.php script to take user feedback, attempt to sell
other products, and so forth.

Let’s start with the PHP script, and then create the view file. The code for gen-
erating an HTML email receipt will be created separately.

Creating the PHP Script
The PHP script is the simplest of those in this chapter, but let’s still walk
through it explicitly.

1. Create a new PHP script in your text editor or IDE to be named final.php and
stored in the Web root directory.

2. Include the configuration file:

<?php
require ('./includes/config.inc.php');

3. Begin the session and get the session ID:

session_start();
$uid = session_id();

This code is the same as in billing.php.

4. Validate that the page is being accessed appropriately:

if (!isset($_SESSION['customer_id'])) {
 $location = 'https://' . BASE_URL . 'checkout.php';
 header("Location: $location");
 exit();
} elseif (!isset($_SESSION['response_code']) ||
➥($_SESSION['response_code'] != 1)) {
 $location = 'https://' . BASE_URL . 'billing.php';
 header("Location: $location");
 exit();
}

The first conditional is the same as in billing.php and implies that the user
attempted to skip the checkout.php page. If so, the customer is redi-
rected back to it. The second conditional implies that the user skipped the
billing.php page and redirects the browser there.

304 CHAPTER 10

5. Require the database connection:

require (MYSQL);

6. Clear the shopping cart:

$r = mysqli_query($dbc, "CALL clear_cart('$uid')");

Now that the order has been completed, the contents of the user’s
shopping cart should be cleared. This is accomplished by calling the
clear_cart() stored procedure.

7. Include the script that will send the email:

include('./includes/email_receipt.php');

The email_receipt.php script isn’t that complicated, but is verbose enough
that it merits standing on its own. It will be created in just a few pages.

8. Include the header file:

$page_title = 'Coffee - Checkout - Your Order is Complete';
include ('./includes/checkout_header.html');

9. Include the view:

include('./views/final.html');

10. Clear the session:

$_SESSION = array();
session_destroy();

Clearing the session prevents a second immediate order by the same
customer from conflicting with the order just submitted. That may not be a
common occurrence, but without this code, if the customer does go back
and purchase something else, the existing order ID will be erroneously
used.

11. Complete the page:

include ('./includes/footer.html');
?>

12. Save the file.

Creating the View File
The view file can be as simple or as complex as you want it to be, just ensure that
it’s appreciative and communicative. For final.html, stored in the views directory,
a couple of messages are printed, providing the customer with the order ID and
total, along with an indication of what will happen next (Figure 10.17).

tip

You may want to add to the final

checkout page an obvious link

back to the shopping area.

CHECKING OUT 305

Figure 10.17

<!-- box begin -->
<div class="box alt"><div class="left-top-corner"><div class=
➥"right-top-corner"><div class="border-top"></div></div></div>
➥<div class="border-left"><div class="border-right"><div class="inner">
 <h2>Your Order is Complete</h2>
 <p>Thank you for your order (#<?php echo $_SESSION['order_id']; ?>).

➥Please use this order number in any correspondence with us.</p>
 <p>A charge of $<?php echo $_SESSION['order_total']; ?> will appear

➥on your credit card when the order ships. All orders are processed on the
➥next business day. You will be contacted in case of any delays.</p>

 <p>An email confirmation has been sent to your email address.
➥Click here to create a printable receipt of
➥your order.</p>

</div></div></div><div class="left-bot-corner"><div class=
➥"right-bot-corner"><div class="border-bot"></div></div></div>
➥</div><!-- box end -->

In the view, a link exists to receipt.php, which is not actually created in this
book. Such a file would be just a combination of the order information and
the shopping cart information, without any extra HTML, images, and so forth
(in fact, you could use the checkout_cart.html view as part of it). In short, the
receipt would look much like the HTML email, which you’ll design next.

Note that if you want to create the receipt page, that PHP script will need
access to the order ID. This is a bit tricky, as that value will be cleared out of
the session in final.php. The solution would be to pass the order ID along in
the link to receipt.php. However, you wouldn’t want to pass along just the
order ID, as in receipt.php?oid=X, because the user could easily change the
value of X to view other orders. One workaround would be to pass two pieces
of information, such as the order ID and the total. The receipt.php script would
display the order information only if both received values match those in the
database.

306 CHAPTER 10

TESTING THE SITE
With all the code written, you can fully test the site. You could use your own
information—including credit card data—to test the payment gateway,
but that’s not the best of ideas. Here are syntactically valid, test credit card
 numbers:

■ 370000000000002, American Express

■ 6011000000000012, Discover

■ 5555555555554444, MasterCard

■ 4007000000027, Visa

Those numbers will work, regardless of the address and CVV values used with
them. If you want to make them fail, one option is to use an expiration date in
the past.

Authorize.net has its own method for triggering specific responses. If you use
the faux-Visa number 4222222222222, the amount value can trigger a specific
error response. For example, the response reason code of 6 means the credit
card number is invalid. If you process a test transaction using that Visa number
and an amount of 6.00, the returned response will be that the transaction was
declined because of an invalid credit card number.

Because the amount used in the payment process is not an editable, dynamic
value (which, for security purposes, is for the best), you’ll have to manually
alter the gateway_process.php script accordingly:

$data['x_amount'] = 6.00;

You also need to add this parameter:

$data['x_test_request'] = 'TRUE';

You should know that when you use the x_test_request setting, the returned
transaction ID will always be zero. This is not a mistake.

tip

In January, the site won’t accept

an expiration date in the past

because the year would have to

be the previous year, which isn’t

an option.

CHECKING OUT 307

GOING LIVE
Once you’re happy with the site and it’s time to go live, here’s all you need
to do...

1. Make sure you have an actual Authorize.net account, associated with your
merchant bank.

2. Use your actual Authorize.net login ID and transaction key in the
gateway_process.php script.

3. Set the site to live in the configuration file:

$live = true;

By changing the value of the $live variable, the site will hide all errors and
use the live Authorize.net URL. If you still want to see the errors (for the last
round of testing, Step 4), keep $live set to false in the configuration file but
set $live equal to true at the top of gateway_process.php.

4. Test the site a couple more times, just to be safe.

Unless you go into the Merchant Interface to change your account mode,
even a real Authorize.net account begins in test mode. So this round of
tests just confirms that your account information is working with the live
Authorize.net URL.

5. Use the Merchant Interface to take your account live.

A. Log in to the Merchant Interface at https://account.authorize.net.

B. Click Account in the main toolbar.

C. Click General Security Settings > Test Mode.

D. Click Turn Test Off.

6. Run one or two real transactions, as an extra precaution.

You can test the site by purchasing something inexpensive, just to be
safe. Then you can go into the Merchant Interface and quickly void
the trans action. (You can easily find the transaction under Search >
Unsettled Transactions.)

tip

Authorize.net, like all pay-

ment gateways, completes the

processing of all transactions at

a particular time each day.

https://account.authorize.net

11 SITE
ADMINISTRATION

The last requirement of the Coffee site is the ability to administer it. As a book
has limited pages, there’s not enough room to discuss and develop every
administrative feature, but this chapter will walk through the most important
and complex ones.

The site administration pertains to three categories of information:

■ Products

■ Sales

■ Orders

For each of these, the chapter will present one or more scripts to view and
manipulate the respective data, such as adding new products, defi ning sales,
increasing inventory, viewing orders, and so on.

The administrative pages will use neither the MVC approach nor the stored
procedures that the public side does. Instead of using stored procedures, the
chapter will use prepared statements (when appropriate), providing you with a
different approach for working securely with a database. Without using stored
procedures, the MVC design will be undermined, and because the administra-
tive side won’t have the performance and maintenance demands of the public
side, it makes sense to use a single, complete PHP script for each task.

SITE ADMINISTRATION 309

The administration pages will also use the jQuery (www.jquery.com) JavaScript
framework, which may be new to you. You’ll see it integrated into the site in a
couple of practical, but simple, ways.

SETTING UP THE SERVER
At this point, after all the work completed in the preceding four chapters,
there’s actually not much server setup to be performed. The administrative site
can use the same configuration file and database connection file as the public
side. It can also use the same CSS, footer, and images.

The most important setup involved is the creation of an HTML header appropri-
ate for what the administrator will need to do. Also, a few lines of code have to
be added to the create_form_input() function. Before that, though, I want to
restate the need for folder-based authentication.

Requiring Authentication
Unlike the Knowledge is Power example in which administrators use the same
integrated login system as the customers, the Coffee site has all the administra-
tive scripts within their own directory. Since the administrative pages will allow
access to some customer information—name, address, email address, and
phone number (but no billing data), it’s imperative that the administrative direc-
tory is secure. To start, give the directory a unique name, or, better yet, put the
administrative files in a subdomain such as http://admin.example.com (again,
using a more original value in lieu of admin).

Second, the admin pages should be available only via HTTPS. Chapter 7,
 “Second Site: Structure and Design,” walks through a mod_rewrite definition
(for the Apache Web server) that can enforce this constraint.

Third, the administrative directory must be password protected. Chapter 7
also talks about how you might use a host-provided control panel for perform-
ing this task. By protecting the directory, users will be prompted for a user-
name and password when they attempt to access any of the administrative
directory’s content (see Figure 7.8).

tip

Even if you wanted the extra

security of having the adminis-

trator connect to the database

as a MySQL user with differ-

ent privileges, that can still be

accomplished using only a single

PHP connection script.

www.jquery.com
http://admin.example.com

310 CHAPTER 11

Creating a Template
Naturally, the administrative pages will use a different template than the public
side, as there are different scripts with different purposes. The admin template
is just a modified version of the public template (Figure 11.1). It features:

Figure 11.1

■ Different primary links

■ Drop-down suckerfish menus

■ No background image behind the content

■ A wider area for the content

Almost all these changes can be made by creating a new header file (you’ll see
the new, full header code shortly).

The primary links represent the three main content areas—products, sales,
and orders, plus customers (although no customer-related script will be cre-
ated in this chapter). The products link will reveal sublinks when the mouse
hovers over it, using an approach known as suckerfish (if you search online for
the term, you’ll find thousands of results). Figure 11.2 shows the effect.

Figure 11.2

SITE ADMINISTRATION 311

To remove the background image behind the content, you need to override
the CSS for the #content <DIV>. Otherwise, the admin pages can use the
same CSS as the public ones.

To make a larger usable content area, the template needs to drop the following
two <DIV> tags from the public template:

<div class="container">
 <div class="inside">

CREATING THE HEADER

Along with the features of the template just discussed (which are primarily
implemented in the header), the header file will also begin the session (ses-
sions will be used in a few spots as a convenience) and include the jQuery
libraries. Here’s the complete administrative header:

admin/includes/header.html
 1 <?php session_start(); ?><!DOCTYPE html PUBLIC "-//W3C//DTD

➥XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1
➥-strict.dtd">

 2 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
➥lang="en">

 3 <head>
 4 <title><?php // Use a default page title if one wasn't provided. . .
 5 if (isset($page_title)) {
 6 echo $page_title;
 7 } else {
 8 echo 'Coffee - Administration';
 9 }
 10 ?></title>
 11 <meta http-equiv="Content-Type" content="text/html;

➥charset=utf-8" />
 12 <link href="/css/style.css" rel="stylesheet" type="text/css" />
 13 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/

➥jquery.min.js" type="text/javascript" charset="utf-8"></script>
 14 <style type="text/css" media="screen">
 15 #content { background: #fff; width:100%; padding:20px 100px

➥30px 0px; }
 16 #header .nav li ul a { color:#ffe7be; text-decoration:none;

➥text-transform:none; font-size: .75em; }
 17 </style> (continues on next page)

tip

As a reminder, all the

code is available from

www.DMCInsights.com/ecom/.

www.DMCInsights.com/ecom/

312 CHAPTER 11

 18 <!--[if lt IE 7]>
 19 <script type="text/javascript" src="/js/ie_png.js"></script>
 20 <script type="text/javascript">
 21 ie_png.fix('.png, .logo h1, .box .left-top-corner, .box

➥.right-top-corner, .box .left-bot-corner, .box .right-bot-corner,
➥.box .border-left, .box .border-right, .box .border-top, .box
➥.border-bot, .box .inner, .special dd, #contacts-form input,
➥#contacts-form textarea');

 22 </script>
 23 <![endif]-->
 24 </head>
 25 <body id="page1">
 26 <!-- header -->
 27 <div id="header">
 28 <div class="container">
 29 <div class="wrapper">
 30 <div class="logo"><h1>Coffee

➥Wouldn't you love a cup right now?</h1></div>
 31 </div>
 32 <ul class="nav">
 33 <!-- MENU -->
 34 <li class="first">Products
 35 Sales
 36 Orders
 37 Customers
 38 <!-- END MENU -->
 39
 40 </div>
 41 </div>
 42 <!-- content -->
 43 <div id="content">
 44 <div class="container">

As you can see in the highlighted code, the session is begun as the first step.

Then, in the document’s head, the jQuery library is included via the Google API,
which means the site doesn’t need its own version of the library.

After the site’s primary CSS file (from the public directory) is included, the
#content and #header .nav li ul a formatting is overwritten. The latter change
will make the cascading (suckerfish) menu items smaller.

tip

By using the Google-hosted

jQuery library, the page may load

faster, if the user’s browser has

previously cached that same

jQuery resource.

SITE ADMINISTRATION 313

CREATING THE FOOTER

The footer file simply needs to complete the template.

admin/includes/footer.html
 1 </div>
 2 <!-- footer -->
 3 <div id="footer"> <div class="container"><div class="indent">
 4 <div class="fleft"> © - Clever Coffee, Inc.</div>
 5 <div class="fright">Site designed by: <a href="http://

➥www.templates.com">Templates.com</div>
 6 </div> </div> </div>
 7 </body>
 8 </html>

CREATING THE HOME PAGE

Right now, there’s nothing for the home page to do, because all the key
functionality is in other scripts. Create index.php, stored in the administrative
directory, with some filler text:

admin/index.php
 1 <?php
 2 require ('../includes/config.inc.php');
 3 $page_title = 'Coffee - Administration';
 4 include ('./includes/header.html');
 5 ?>
 6 <p>Filler Text</p>
 7 <?php include ('./includes/footer.html'); ?>

Using Superfish
The suckerfish style of cascading menus has been around for years and has
become one of the de facto navigation approaches for today’s Web sites. All
suckerfish menus are based upon a group of nested, unordered lists that get
dynamically converted into cascading menus. There are a number of tools avail-
able for creating suckerfish menus, but because the administrative pages will
already use jQuery in some other places, I’ve turned to a jQuery-based plug-in
called Superfish (http://users.tpg.com.au/j_birch/plugins/superfish/) here.

http://users.tpg.com.au/j_birch/plugins/super.sh/

314 CHAPTER 11

1. Download the latest version of Superfish.

2. Expand the downloaded file.

The download will be a ZIP file.

3. Copy the hoverIntent.js and superfish.js scripts from the Superfish down-
load’s js directory to the site’s js directory.

The hoverIntent.js library isn’t technically part of Superfish, but Superfish
can use it for a better menu experience. For consistency, all the JavaScript
for the entire site is being placed within the public js folder.

4. Copy the superfish.css file from the Superfish download’s css directory to
the site’s css directory.

This CSS file styles the Superfish menu. Again, all CSS goes into the public
css directory.

5. Open header.html in your text editor or IDE, if it is not already.

6. Change the menu options to:

<ul class="nav sf-menu">
 <!-- MENU -->
 <li class="first">Products
 Add Coffee Products

➥
 Add Non-Coffee

➥Products
 Add Inventory

 Sales
 Orders
 Customers
 <!-- END MENU -->

There are two key changes here. First, before the closing tag for the
products link, another unordered list is added. This list contains links to
three pages. Second, an additional class of sf-menu (short for suckerfish
menu) is added to the parent unordered list.

7. After including the site’s primary CSS file, include the Superfish CSS file:

<link href="/css/superfish.css" rel="stylesheet" type="text/css" />

tip

Unless otherwise specified,

every file discussed in this

chapter goes within the

 administrative directory.

tip

To apply multiple CSS classes to

a single element, separate the

class names with a space.

SITE ADMINISTRATION 315

Again, the reference to the CSS file assumes it will be found in the
Web root directory/css folder.

8. After including the jQuery library, include the hoverIntent and Superfish
JavaScript files:

<script src="/js/hoverIntent.js" type="text/javascript"
➥charset="utf-8"></script>
<script src="/js/superfish.js" type="text/javascript"
➥charset="utf-8"></script>

Make sure you include the scripts in this order.

9. In a separate script block, apply Superfish:

<script type="text/javascript">
 $(function() {
 $('ul.sf-menu').superfish({
 autoArrows: false,
 speed: 'fast'
 });
 });
</script>

This code enables the Superfish menu. The very basic JavaScript being
executed is just $();. This is magic jQuery speak for “when the document
is ready, do the following.” The code to be executed when the docu-
ment is ready is defined in an anonymous function (a function without
a name). Within the function, the unordered list with a class of sf-menu
is selected. To that selection, the superfish() method is applied. Two
attribute-value pairs are passed to the superfish() method: one dis-
abling arrows that indicate submenus exist; the other sets the Superfish
speed to fast.

10. Save the file and test it in your Web browser.

Updating create_form_input()
The create_form_input() function, first defined in Part Two, “Selling Virtual
Products,” then redefined in Chapter 10, “Checking Out,” will be used in the
administrative pages, too. As currently defined, the function works well for
the public side, creating the text inputs and different select menus used
by the checkout process. The administrative pages will have some forms that
also require textareas, so that functionality needs to be added to the function.

tip

The us.sf-menu code actually

selects every unordered list

with a class of sf-menu, but the

template has only one.

tip

If the Superfish menu doesn’t

work for you, use a JavaScript

debugging tool, such as Firebug

for the Firefox browser, to see

what might be wrong.

316 CHAPTER 11

As written in Chapter 10, the structure of the function is:

if (($type == 'text') | | ($type == 'password')) {
 // Lots of code.
} elseif ($type == 'select') {
 // Lots more code.
} // End of primary IF-ELSEIF.

To support textareas, the following code needs to be added before the closing
IF-ELSEIF curly bracket:

} elseif ($type == 'textarea') {
 // Display the error first:
 if (array_key_exists($name, $errors)) echo ' '

➥. $errors[$name] . '';
 // Start creating the textarea:
 echo '<textarea name="' . $name . '" id="' . $name . '" rows="5"

➥cols="75"';
 // Add the error class, if applicable:
 if (array_key_exists($name, $errors)) {
 echo ' class="error">';
 } else {
 echo '>';
 }
 // Add the value to the textarea:
 if ($value) echo $value;
 // Complete the textarea:
 echo '</textarea>';

For an explanation of this code beyond the inline comments, see Chapter 4,
“User Accounts.”

ADDING PRODUCTS
The e-commerce site sells two types of products: coffee and other (aka,
goodies). The two products are treated differently in the database and in the
catalog, so the administrative scripts for adding each will differ, too.

Adding Non-Coffee Products
Non-coffee products—books, mugs, and so on—are represented as records in
the non_coffee_products table. For each item, there is a non_coffee_category_id
(a reference to the values in the non_coffee_categorties table), a name,

tip

This chapter does not include

scripts for adding general coffee

or goodie types, although each

would be easy to create. Turn to

the book’s supporting Web site

if you need help implementing

either.

SITE ADMINISTRATION 317

a description, an image, a price, and the quantity in stock (Figure 11.3). Han-
dling most of these values is straightforward, although the file upload is a bit
tricky, requiring code similar to that used for working with PDFs in Chapter 5,
“Managing Site Content.”

Figure 11.3

1. Create a new PHP script in your text editor or IDE to be named
add_other_products.php and stored in the administrative directory.

2. Include the configuration file, the header, and the database connection:

<?php
require ('../includes/config.inc.php');
$page_title = 'Add a Goodie';
include ('./includes/header.html');
require(MYSQL);

3. Define an array for storing errors:

$add_product_errors = array();

4. Check for a form submission:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

5. Validate the product’s category:

if (!isset($_POST['category']) | | !filter_var($_POST['category'],
➥FILTER_VALIDATE_INT, array('min_range' => 1))) {
 $add_product_errors['category'] = 'Please select a category!';
}

tip

A page for creating new non-

coffee categories would be a

slimmed-down version of the

add_other_products.php script,

taking just a category name,

description, and an image file.

318 CHAPTER 11

The product’s category value should come from a select menu. It needs to
be an integer with a value of at least 1. If those criteria are not met, an error
is added to the errors array. Unlike validation routines seen elsewhere in
the book, nothing else is done with the validated value at this point.

6. Validate the price and quantity in stock:

if (empty($_POST['price']) | | !filter_var($_POST['price'],
➥FILTER_VALIDATE_FLOAT) | | ($_POST['price'] <= 0)) {
 $add_product_errors['price'] = 'Please enter a valid price!';
}
if (empty($_POST['stock']) | | !filter_var($_POST['stock'],
➥FILTER_VALIDATE_INT, array('min_range' => 1))) {
 $add_product_errors['stock'] = 'Please enter the quantity in stock!';
}

The price must not be empty and must be a float (a decimal) that’s not
less than or equal to zero. The quantity in stock must be an integer
greater than or equal to 1. You could change the min_range to zero if you
wanted to allow the administrator to add products whose inventory will
be increased later.

7. Validate the name and description:

if (empty($_POST['name'])) {
 $add_product_errors['name'] = 'Please enter the name!';
}
if (empty($_POST['description'])) {
 $add_product_errors['description'] = 'Please enter the description!';
}

These two values cannot be empty.

8. Begin validating the image:

if (is_uploaded_file ($_FILES['image']['tmp_name']) &&
➥($_FILES['image']['error'] == UPLOAD_ERR_OK)) {
 $file = $_FILES['image'];
 $size = ROUND($file['size']/1024);
 if ($size > 512) {
 $add_product_errors['image'] = 'The uploaded file was too large.';
 }

This code is similar to that used in Chapter 5 to validate uploaded PDF files.
The image’s maximum size is 512 KB.

tip

Using prepared statements for

database queries changes the

way query values will be treated,

as you’ll see in Step 12.

tip

Because the images on the site

are relatively small, the maxi-

mum size could reasonably be

restricted to less than 100 KB.

SITE ADMINISTRATION 319

9. Validate the file’s type:

$allowed_mime = array ('image/gif', 'image/pjpeg', 'image/jpeg',
➥'image/JPG', 'image/X-PNG', 'image/PNG', 'image/png',
➥'image/x-png');
$allowed_extensions = array ('.jpg', '.gif', '.png', 'jpeg');
$image_info = getimagesize($file['tmp_name']);
$ext = substr($file['name'], -4);
if ((!in_array($file['type'], $allowed_mime))
| | (!in_array($image_info['mime'], $allowed_mime))
| | (!in_array($ext, $allowed_extensions))
) {
 $add_product_errors['image'] = 'The uploaded file was not of the

➥proper type.';
}

Again, this is similar to the process for uploading PDFs. First, an array of
allowed MIME types is defined. Then an array of allowed extensions is
defined. Third, the getimagesize() function is invoked, which can be used
as a good server-based confirmation of an image’s properties. Fourth, the
last four characters in the uploaded file’s name are retrieved, in order to
be compared against the allowed extensions.

The code then creates an error if any of three conditions are false. The first
is that the browser-supplied MIME type is appropriate. The second is that
the server-supplied MIME type (from the getimagesize() function call) is
acceptable. The third is that the file’s extension is on the approved list.

10. Move the file to its final destination:

if (!array_key_exists('image', $add_product_errors)) {
 $new_name= (string) sha1($file['name'] . uniqid('',true));
 $new_name .= ((substr($ext, 0, 1) != '.') ? ".{$ext}" : $ext);
 $dest = "../products/$new_name";
 if (move_uploaded_file($file['tmp_name'], $dest)) {
 $_SESSION['image']['new_name'] = $new_name;
 $_SESSION['image']['file_name'] = $file['name'];
 echo '<h4>The file has been uploaded!</h4>';
 } else {
 trigger_error('The file could not be moved.');
 unlink ($file['tmp_name']);
 }
} // End of array_key_exists() IF.

320 CHAPTER 11

If no image-related error exists, a new name for the image is created,
starting with the application of SHA1() to the combination of the file’s cur-
rent name and a unique ID. This will generate a 40-character-long random
name. Then the existing extension is appended. Finally, the file is moved
to its final resting place, within the Web root directory/products folder.

The image’s new name and its original file name are both stored in the
session for use later.

11. If a file upload error occurred, determine what it was:

} elseif (!isset($_SESSION['image'])) {
 switch ($_FILES['image']['error']) {
 case 1:
 case 2:
 $add_product_errors['image'] = 'The uploaded file was too

➥large.';
 break;
 case 3:
 $add_product_errors['image'] = 'The file was only partially

➥uploaded.';
 break;
 case 6:
 case 7:
 case 8:
 $add_product_errors['image'] = 'The file could not be

➥uploaded due to a system error.';
 break;
 case 4:
 default:
 $add_product_errors['image'] = 'No file was uploaded.';
 break;
 } // End of SWITCH.
} // End of $_FILES IF-ELSEIF-ELSE.

Yet again, this is all similar to that in the PDF upload script. First, the
switch will be checked only if there’s no file already represented in the
session. This is necessary because it’s possible that the administrator
uploaded an image correctly the first time, but had another error in the
form. In that case, when the administrator resubmits the form, the existing
image upload should be used.

SITE ADMINISTRATION 321

12. If there were no errors, add the record to the database:

if (empty($add_product_errors)) {
 $q = 'INSERT INTO non_coffee_products (non_coffee_category_id,

➥name, description, image, price, stock) VALUES (?, ?, ?, ?, ?, ?)';
 $stmt = mysqli_prepare($dbc, $q);
 mysqli_stmt_bind_param($stmt, 'isssdi', $_POST['category'],

➥$name, $desc, $_SESSION['image']['new_name'], $_POST['price'],
➥$_POST['stock']);

 $name = strip_tags($_POST['name']);
 $desc = strip_tags($_POST['description']);
 mysqli_stmt_execute($stmt);

As explained in Chapter 7, to use prepared statements, the first step
is to define the query, using placeholders (the question marks) in lieu
of actual values. Then the statement is prepared. Next, the placehold-
ers are bound, by type, to PHP variables. The second argument to the
mysqli_stmt_bind_param() function indicates that the first placeholder
is an integer, the next three are strings, the fifth is a decimal, and the last
is another integer.

Four of the values to be used in the query come from $_POST and
$_SESSION directly. The other two values will come from local variables,
after the strip_tags() function is applied.

If you have problems when executing this script, you can use the following
line (after preparing the statement) to see what the problem is:

if (!$stmt) echo mysqli_stmt_error($stmt);

13. If the query created a new record, print a message and perform some
cleanup:

if (mysqli_stmt_affected_rows($stmt) == 1) {
 echo '<h4>The product has been added!</h4>';
 $_POST = array();
 $_FILES = array();
 unset($file, $_SESSION['image']);

If one row was affected, a message will be printed, and the variables will
be reset (because the form will be shown again, and it shouldn’t display
the previous values).

322 CHAPTER 11

14. If there was a problem, trigger an error:

} else {
 trigger_error('The product could not be added due to a system error.

➥We apologize for any inconvenience.');
 unlink ($dest);
}

When a problem occurs, because of a database or query error, a message
is displayed to the administrator and the uploaded file is removed (to
prevent deadwood from cluttering the products directory).

15. Complete the errors array and request method conditionals:

 } // End of $errors IF.
} else { // Clear out the session on a GET request:
 unset($_SESSION['image']);
} // End of the submission IF.

The final unsetting of the session variable would apply if the administrator
uploaded a file, but incompletely filled out the form, and then, for some
reason, clicked the link in the header to return to this page, thereby start-
ing the process anew.

16. Include the form functions script:

require ('../includes/form_functions.inc.php');

The create_form_input() function is defined in this script, in the public
includes folder, so it must be included here.

17. Begin the form:

?><h3>Add a Non-Coffee Product (a "Goodie")</h3>
<form enctype="multipart/form-data" action=
➥"add_other_products.php" method="post" accept-charset="utf-8">
 <input type="hidden" name="MAX_FILE_SIZE" value="524288" />
 <fieldset><legend>Fill out the form to add a non-coffee product to
the catalog. All fields are required.</legend>

In order to handle the file upload, the form must use the enctype attribute,
and it should include the MAX_FILE_SIZE hidden input (which recom-
mends a maximum upload file size to the browser). That value is in bytes.

18. Create the category menu:

<div class="field"><label for="category">Category
➥</label>
<select name="category"<?php
➥if (array_key_exists('category', $add_product_errors)) echo '
➥class="error"'; ?>>

SITE ADMINISTRATION 323

 <option>Select One</option>
 <?php
 $q = 'SELECT id, category FROM non_coffee_categories ORDER BY

➥category ASC';
 $r = mysqli_query ($dbc, $q);
 while ($row = mysqli_fetch_array ($r, MYSQLI_NUM)) {
 echo "<option value=\"$row[0]\"";
 if (isset($_POST['category']) && ($_POST['category'] ==

➥$row[0])) echo ' selected="selected"';
 echo ">$row[1]</option>\n";
 }
 ?>
 </select><?php if (array_key_exists('category',

➥$add_product_errors)) echo ' '
➥. $add_product_errors['category'] . ''; ?></div>

I choose not to have the create_form_input() function generate this select
menu, because the menu’s options require a database query (unlike the
menus currently created by that function). Therefore, all the error-handling
code has to be inline. Other than that, this code should be pretty straight-
forward by now.

19. Create the name, price, and stock elements:

<div class="field"><label for="name">Name
➥</label>
<?php create_form_input('name', 'text',
➥$add_product_errors); ?></div>
<div class="field"><label for="price">Price
➥</label>
<?php create_form_input('price', 'text',
➥$add_product_errors); ?><small>Without the dollar sign.</small>
➥</div>
<div class="field"><label for="stock">Initial Quantity in
➥Stock</label>
<?php create_form_input('stock',
➥'text', $add_product_errors); ?></div>

These are all basic text inputs.

20. Create the description element:

<div class="field"><label for="description">Description
➥</label>
<?php create_form_input('description',
➥'textarea', $add_product_errors); ?></div>

The description is a textarea.

324 CHAPTER 11

21. Begin the image file input:

<div class="field"><label for="image">Image
➥</label>
<?php
if (array_key_exists('image', $add_product_errors)) {
 echo '' . $add_product_errors['image']

➥. '
<input type="file" name="image"
➥class="error" />';

If an image-related error exists, the error message is first displayed, then
the file input is created, with an assigned error class.

22. Complete the image file input:

} else {
 echo '<input type="file" name="image" />';
 if (isset($_SESSION['image'])) {
 echo "
Currently '{$_SESSION['image']['file_name']}'";
 }
} // end of errors IF-ELSE.
?></div>

If no image-related error exists, then the file input has no additional class.
If a value exists in $_SESSION['image'], the already uploaded file’s name
is indicated to the administrator.

23. Complete the form:

 <br clear="all" />
 <div class="field"><input type="submit" value="Add This Product"

➥class="button" /></div>
 </fieldset>
</form>

24. Complete the PHP page:

<?php include ('./includes/footer.html'); ?>

25. Save the file and test it in your Web browser.

The script does not restrict the uploaded image to a given size, nor
does it resize the image to the proper dimensions (96 pixels wide by
76 pixels tall), so it’s up to the administrator to use an image that’s sized
 appropriately.

Any errors in using the form will be reflected inline (Figure 11.4).

tip

For more explanation of the

image file input’s code, see how

PDFs are handled in Chapter 5.

tip

You can have PHP resize images;

it just requires external libraries

and a bit more code.

SITE ADMINISTRATION 325

Figure 11.4

Adding Coffee Products
For non-coffee products, each product a customer might purchase is associ-
ated with a particular non-coffee category. For coffee products, each specific
product is associated with a particular type of coffee: Dark Roast, Kona, Origi-
nal Blend, and so on. For each coffee type, there can be a number of specific
products available: Given five initial size options, there are already 20 possible
combinations of sizes, ground beans versus whole, and caffeinated versus
decaffeinated. Therefore, the fastest way for the administrator to add specific
coffee products is to present multiple options as part of one form (Figure 11.5).

Figure 11.5

Unlike the add_other_products.php script, this form will not use the
create_form_input() function or perform any error reporting. The form

326 CHAPTER 11

is easy enough to use that errors shouldn’t be a problem, and the
method of generating the form in this script is different enough that
using create_form_input() would overly complicate matters.

1. Create a new PHP script in your text editor or IDE to be named
add_specific_coffees.php and stored in the administrative directory.

2. Include the configuration file, the header, and the database connection:

<?php
require ('../includes/config.inc.php');
$page_title = 'Add Specific Coffees';
include ('./includes/header.html');
require(MYSQL);

3. Identify how many records might be created at once:

$count = 10;

The $count variable is the basis for how many specific coffee products can
be created with each use of the page. Changing this number will alter the
number of form rows generated in the table.

4. Check for a form submission:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

5. Check for a category:

if (isset($_POST['category']) && filter_var($_POST['category'],
➥FILTER_VALIDATE_INT, array('min_range' => 1))) {

If the administrator did not select a coffee category (using the select menu
at the top of the form), there’s no need to continue, so that value is vali-
dated first. The category should be an integer greater than or equal to 1.

6. Define the query and prepare the statement:

$q = 'INSERT INTO specific_coffees (general_coffee_id, size_id,
➥caf_decaf, ground_whole, price, stock) VALUES (?, ?, ?, ?, ?, ?)';
$stmt = mysqli_prepare($dbc, $q);

This script, which will execute the same query up to $count times (using
different values for each execution), is an excellent place to use prepared
statements. The query needs to be prepared only once, its usage can be
cached by the database, and the only thing that needs to be transmitted to
MySQL for each query execution are the actual values (as opposed to the
whole query).

SITE ADMINISTRATION 327

7. Bind the variables:

mysqli_stmt_bind_param($stmt, 'iissdi', $_POST['category'], $size,
➥$caf_decaf, $ground_whole, $price, $stock);

Six values need to be present in variables when the query is executed.
The first two—the category and size values—will be integers, as will the
last one (the quantity in stock). The third and fourth values—caffeinated/
decaffeinated and ground/whole beans—will be strings. The fifth value,
the price, will be a decimal. The first of these values will be the same for
each query, and will come from $_POST['category']. The rest of the values
will be determined within a foreach loop.

8. Begin looping through the submitted values:

$affected = 0;
for ($i = 1; $i <= $count; $i++) {

A for loop needs to run through $count iterations, matching the number
of items that may be submitted. Prior to that, the $affected variable is
initialized to zero. It will be used to track the total number of affected rows
by all the executed queries.

9. Validate the required values:

if (filter_var($_POST['stock'][$i], FILTER_VALIDATE_INT,
➥array('min_range' => 1))
&& filter_var($_POST['price'][$i], FILTER_VALIDATE_FLOAT)
&& ($_POST['price'][$i] > 0)) {

The initial quantity in stock and the item’s price will be entered by the
administrator into text inputs (see Figure 11.5). For each product submis-
sion, both values are validated using the Filter extension, ensuring that
the stock value is an integer greater than or equal to 1 and that the price is
greater than zero.

10. Assign the values to variables:

$size = $_POST['size'][$i];
$caf_decaf = $_POST['caf_decaf'][$i];
$ground_whole = $_POST['ground_whole'][$i];
$price = $_POST['price'][$i];
$stock = $_POST['stock'][$i];

To use the values in the query, each needs to be assigned to a variable
identified in the binding call (in Step 7).

328 CHAPTER 11

11. Execute the query:

mysqli_stmt_execute($stmt);
$affected += mysqli_stmt_affected_rows($stmt);

First the query is executed, and then the number of affected rows is added
to the existing count.

12. Complete the control structures and print the number of affected rows:

 } // End of IF.
} // End of FOREACH.
echo "<h4>$affected Product(s) Were Created!</h4>";

The script just ignores any incomplete submissions, rather than generate
errors. By using this approach, the administrator isn’t told that a problem
exists simply because they only added six new items instead of the full
ten (or whatever value $count has).

13. Complete the form submission conditionals:

 } else {
 echo '<p class="error">Please select a category.</p>';
 }
} // End of the submission IF.

The else clause applies if no category was selected.

14. Begin defining the form:

?><h3>Add Specific Coffees</h3>
<form action="add_specific_coffees.php" method="post"
➥accept-charset="utf-8">
 <fieldset><legend>Fill out the form to add specific coffee products

➥to the site.</legend>

15. Create the category select menu:

<div class="field"><label for="category">General Coffee
➥Type</label>

 <select name="category"><option>Select One</option>
 <?php
 $q = 'SELECT id, category FROM general_coffees ORDER BY category

➥ASC';
 $r = mysqli_query ($dbc, $q);
 while ($row = mysqli_fetch_array ($r, MYSQLI_NUM)) {
 echo "<option value=\"$row[0]\">$row[1]</option>\n";
 }
 ?>
 </select></div>

SITE ADMINISTRATION 329

The list of coffee categories will be derived from a database query. As this
is a static query—it will never change, there’s no need to use prepared
statements.

16. Define a table:

<table border="0" width="100%" cellspacing="5" cellpadding="5">
 <thead>
 <tr>
 <th align="right">Size</th>
 <th align="right">Ground/Whole</th>
 <th align="right">Caf./Decaf.</th>
 <th align="center">Price</th>
 <th align="center">Quantity in Stock</th>
 </tr>
 </thead>
 <tbody>

The form for adding specific products uses table rows to present a series
of form elements: one for each possible product quality.

17. Determine the size options:

<?php
$q = 'SELECT id, size FROM sizes ORDER BY id ASC';
$r = mysqli_query ($dbc, $q);
$sizes = '';
while ($row = mysqli_fetch_array ($r, MYSQLI_NUM)) {
 $sizes .= "<option value=\"$row[0]\">$row[1]</option>\n";
}

Each of the $count number of form elements will contain three select
menus. Since the values for these menus will be the same for each
row, it’s best to define those menu options once, rather than query the
database for each generated menu. To start, the $sizes variable will be
assigned a series of <OPTION> tags (as a string of HTML), based upon
the values retrieved from the sizes table.

18. Determine the grind and caffeine options:

$grinds = '<option value="ground">Ground</option>
➥<option value="whole">Whole</option>';
$caf_decaf = '<option value="caf">Caffeinated</option>
➥<option value="decaf">Decaffeinated</option>';

Both of these qualities have two possible options. Again, just the
<OPTION> tags are defined. The <SELECT> tags will be given unique
names for each row.

330 CHAPTER 11

19. Create one table row of form elements for each number in $count:

for ($i = 1; $i <= $count; $i++) {
 echo '<tr>
 <td align="right"><select name="size[' . $i . ']">' . $sizes . '

➥</select></td>
 <td align="right"><select name="ground_whole[' . $i . ']">' .

➥$grinds . '</select></td>
 <td align="right"><select name="caf_decaf[' . $i . ']">' .

➥$caf_decaf . '</select></td>
 <td align="center"><input type="text" name="price[' . $i . ']"

➥id="price[]" class="small" /></td>
 <td align="center"><input type="text" name="stock[' . $i . ']"

➥id="stock[]" class="small" /></td>
 </tr>';
}

Each table row contains five columns, each of which contains a form ele-
ment. The name of each form element is an array, using the current count
number as its index. The result will be an array named $_POST['size'],
indexed from 1 to $count, another named $_POST['ground_whole'],
indexed from 1 to $count, and so on.

20. Complete the PHP block and the table:

?></tbody>
</table>

21. Complete the form:

 <div class="field"><input type="submit" value="Add These
➥Products" class="button" /></div>

 </fieldset>
</form>

22. Complete the page:

<?php include ('./includes/footer.html'); ?>

23. Save the file and test it in your Web browser (Figure 11.6).

Figure 11.6

tip

The two text inputs in this form

have class="small" attributes.

Thanks to the CSS, this makes

them not quite so wide as a

standard input.

SITE ADMINISTRATION 331

ADDING INVENTORY
In an e-commerce site that sells physical products, inventory management
is an important feature. As you’ll see later in this chapter, the inventory of an
item is reduced when the item ships (you could alternatively choose to reduce
the quantity on hand when the item sells). There needs to be a way to increase
the inventory, too.

As I imagine it, the administrator might daily or weekly review the sales and
the current inventory, then order more quantities of products to replenish the
business’s stock. When that shipment arrives, the added inventory needs to be
reflected on the site.

To accomplish this, the administrator will be presented with a list of every
product available for sale. Each will have a text input wherein the administrator
enters the number just received (Figure 11.7).

Figure 11.7

1. Create a new PHP script in your text editor or IDE to be named
add_inventory.php and stored in the administrative directory.

2. Include the configuration file, the header, and the database connection:

<?php
require ('../includes/config.inc.php');
$page_title = 'Add Inventory';
include ('./includes/header.html');
require (MYSQL);

3. Check for a form submission:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 if (isset($_POST['add']) && is_array($_POST['add'])) {
 require ('../includes/product_functions.inc.php');

This script’s form will submit an array of values in $_POST['add']. The only
initial validation is that $_POST['add'] is set and that it is an array. If so,
the product_functions.inc.php (from the Web root’s includes directory) is

332 CHAPTER 11

required, as the script will need to use the parse_sku() function defined
therein.

4. Define two queries:

$q1 = 'UPDATE specific_coffees SET stock=stock+? WHERE id=?';
$q2 = 'UPDATE non_coffee_products SET stock=stock+? WHERE id=?';

This script will execute two different UPDATE queries: one to update the
stock values in the specific_coffees table and another to update the stock
values in the non_coffee_products table. Each is assigned to a separate
variable here. The placeholders in each represent the number to be added
to the inventory and the ID value (that is, which product is being updated).

5. Prepare the statements:

$stmt1 = mysqli_prepare($dbc, $q1);
$stmt2 = mysqli_prepare($dbc, $q2);

Each query is prepared separately, assigning the results to different
 variables.

6. Bind the variables:

mysqli_stmt_bind_param($stmt1, 'ii', $qty, $id);
mysqli_stmt_bind_param($stmt2, 'ii', $qty, $id);

For each statement, variables are bound to the parameters. The same vari-
ables are bound to each query, although for each submitted value, only one
of the two queries will be executed.

7. Loop through each submitted value:

$affected = 0;
foreach ($_POST['add'] as $sku => $qty) {

First, a variable is initialized at zero, in order to count the number of
affected rows. Then a foreach loop will go through the $_POST['add']
array. For each item in that array, the index is assigned to $sku and the
value to $qty. This is the same $qty variable that’s been bound to the
prepared statements.

8. Validate the quantity to be added:

if (filter_var($qty, FILTER_VALIDATE_INT, array('min_range' => 1))) {

The first requirement is that the number of items being added is an inte-
ger greater than or equal to 1.

9. Parse the SKU:

list($type, $id) = parse_sku($sku);

SITE ADMINISTRATION 333

The parse_sku() function will turn a value such as C23 into a type of
coffee and an ID of 23, necessary for the queries. This $id variable has
already been bound to the prepared statements.

10. Execute the correct prepared statement based upon the type:

if ($type == 'coffee') {
 mysqli_stmt_execute($stmt1);
 $affected += mysqli_stmt_affected_rows($stmt1);
} elseif ($type == 'other') {
 mysqli_stmt_execute($stmt2);
 $affected += mysqli_stmt_affected_rows($stmt1);
}

If the current item’s type equals coffee, the first prepared statement will
be executed, updating a record in the specific_coffees tables. If the type
equals other, the second prepared statement will be executed, updating a
record in the non_coffee_products table. The number of affected rows is
added to the existing count in both cases.

11. Complete the quantity validation IF and the foreach loop. Print the results:

 } // End of IF.
} // End of FOREACH.
echo "<h4>$affected Items(s) Were Updated!</h4>";

12. Complete the form submission conditionals:

 } // End of $_POST['add'] IF.
} // End of the submission IF.

13. Begin the form:

?><h3>Add Inventory</h3>
<form action="add_inventory.php" method="post"
➥accept-charset="utf-8">
 <fieldset><legend>Indicate how many additional quantity of each

➥product should be added to the inventory.</legend>

14. Create a table:

<table border="0" width="100%" cellspacing="4" cellpadding="4">
 <thead>
 <tr>
 <th align="right">Item</th>
 <th align="right">Normal Price</th>
 <th align="right">Quantity in Stock</th>
 <th align="center">Add</th> (continues on next page)

334 CHAPTER 11

 </tr>
 </thead>
 <tbody>

The table will list the current products. For each product, the table shows
the item’s name, its normal price (as an additional point of reference), the
current quantity in stock, and an input for adding more.

15. Fetch every product:

<?php
$q = '(SELECT CONCAT("O", ncp.id) AS sku, ncc.category, ncp.name,
➥ncp.price, ncp.stock FROM non_coffee_products AS ncp INNER JOIN
➥non_coffee_categories AS ncc ON ncc.id=ncp.non_coffee_category_id
➥ORDER BY category, name) UNION (SELECT CONCAT("C", sc.id),
➥gc.category, CONCAT_WS(" - ", s.size, sc.caf_decaf, sc.ground_whole),
➥sc.price, sc.stock FROM specific_coffees AS sc INNER JOIN sizes AS
➥s ON s.id=sc.size_id INNER JOIN general_coffees AS gc ON
➥gc.id=sc.general_coffee_id ORDER BY sc.general_coffee_id, sc.size,
➥sc.caf_decaf, sc.ground_whole)';
$r = mysqli_query ($dbc, $q);

The query is a UNION of two SELECT queries, retrieving every product
from the non_coffee_products and specific_coffees tables. The query
returns each item’s SKU, category and name, price, and current stock.

16. Create a table row for each product:

while ($row = mysqli_fetch_array ($r, MYSQLI_ASSOC)) {
 echo '<tr>
 <td align="right">' . $row['category'] . '::' . $row['name'] . '</td>
 <td align="center">' . $row['price'] .'</td>
 <td align="center">' . $row['stock'] .'</td>
 <td align="center"><input type="text" name="add[' . $row['sku'] .

➥']" id="add[' . $row['sku'] . ']" size="5" class="small" /></td>
 </tr>';
}

The first three columns in the row print literal values. The fourth column is
a text input, whose name will be add[SKU].

17. Complete the PHP block and the table:

?> </tbody></table>

tip

This query is rather similar to

the UNION queries used on the

public side of the site. See those

chapters for detailed explana-

tions of the SQL.

SITE ADMINISTRATION 335

18. Complete the form:

 <div class="field"><input type="submit" value="Add The
➥Inventory" class="button" /></div>

 </fieldset>
</form>

19. Complete the page:

<?php include ('./includes/footer.html'); ?>

20. Save the file and test it in your Web browser (Figure 11.8).

CREATING SALES
The site allows the administrator to put any product on sale, for a defi-
nite or indefinite amount of time. From the perspective of the database,
all that’s required is the insertion of a new record into the sales table. To
manage this process, the create_sales.php script will function much like
add_inventory.php, except that instead of indicating additional quantities of
each product, the administrator indicates the sale price, the start date, and,
optionally, the end date for each product the site sells (Figure 11.9).

Figure 11.9

To make the dates both easier to enter and to reliably guarantee they are in
the proper format, the dates will be entered using jQuery’s Datepicker plug-in
(Figure 11.10), part of the jQuery User Interface (jQuery UI, www.jqueryui.com).

Figure 11.10

tip

The updated quantity should be

reflected when the page reloads.

Figure 11.8

www.jqueryui.com

336 CHAPTER 11

1. Create a new PHP script in your text editor or IDE to be named
create_sales.php and stored in the administrative directory.

2. Include the configuration file, the header, and the database connection:

<?php
require ('../includes/config.inc.php');
$page_title = 'Create Sales';
include ('./includes/header.html');
require (MYSQL);

3. Check for a form submission:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

4. Confirm that the three required variables exist:

if (isset($_POST['sale_price'], $_POST['start_date'],
➥$_POST['end_date'])) {

The form will post back to this page three arrays, representing prices, start
dates, and end dates.

5. Require the product functions:

require ('../includes/product_functions.inc.php');

Again, as with the add inventory page, the parse_sku() user-defined func-
tion will be required.

6. Prepare the query to be run:

$q = 'INSERT INTO sales (product_type, product_id, price, start_date,
➥end_date) VALUES (?, ?, ?, ?, ?)';
$stmt = mysqli_prepare($dbc, $q);
mysqli_stmt_bind_param($stmt, 'sidss', $type, $id, $price, $start_date,
➥$end_date);

The query inserts into the sales table a record consisting of the product’s
type, ID, sale price, start date, and end date. Three of these values, includ-
ing the two dates, will technically be strings. The product ID will be an
integer, and the price will be a decimal.

7. Loop through each submitted value:

$affected = 0;
foreach ($_POST['sale_price'] as $sku => $price) {

The script should receive three arrays: $_POST['sale_price'],
$_POST['start_date'], and $_POST['end_date']. It doesn’t matter which
array the code loops through, but price is a logical selection. Each array is
indexed using the product’s SKU.

SITE ADMINISTRATION 337

The $price variable has already been bound to the query, so that its value
will be used when the query is executed.

8. Validate the price and start date:

if (filter_var($price, FILTER_VALIDATE_FLOAT)
&& ($price > 0)
&& (!empty($_POST['start_date'][$sku]))
){

The new sale price must be a decimal (aka, a float) greater than zero. The
starting date is checked that it’s not empty.

9. Parse the SKU:

list($type, $id) = parse_sku($sku);

I’m sounding like a broken record here but…the parse_sku() function is
invoked here because it is in the add inventory page, creating the $type
and $id variables in the process. These same variables have already been
bound to the prepared statement.

10. Associate the dates with variables:

$start_date = $_POST['start_date'][$sku];
$end_date = (empty($_POST['end_date'][$sku])) ? NULL :
➥$_POST['end_date'][$sku];

The starting date is available in the $_POST['start_date'] array. For
the current iteration of the foreach loop, the specific date to use is in
$_POST['start_date'][$sku]. The end date is optional, so if the associ-
ated $_POST value is empty, NULL is assigned to the $end_date variable.
Otherwise, the administrator-provided value will be used.

11. Execute the query:

mysqli_stmt_execute($stmt);
$affected += mysqli_stmt_affected_rows($stmt);

12. Complete the price and start date validation, plus the foreach loop:

 } // End of price/date validation IF.
} // End of FOREACH loop.

13. Indicate the results and complete the form submission conditionals:

 echo "<h4>$affected Sales Were Created!</h4>";
 } // $_POST variables aren't set.
} // End of the submission IF.
?>

tip

A stricter validation would check

that the starting date and ending

date (if provided) are valid. You

could also confirm that the start

date is not before today, and

that the end date is after the

start date.

338 CHAPTER 11

14. Begin the form:

<h3>Create Sales</h3>
<p>To mark an item as being on sale, indicate the sale price, the date
➥the sale starts, and the date the sale ends. You may leave the end date
➥blank, thereby creating an open-ended sale. Only the currently
➥stocked products are listed below!</p>
<form action="create_sales.php" method="post"
➥accept-charset="utf-8">
 <fieldset>

This form begins with some instructions, because the use of the dates
could be confusing.

15. Begin a table:

<table border="0" width="100%" cellspacing="2" cellpadding="2">
 <thead>
 <tr>
 <th align="right">Item</th>
 <th align="right">Normal Price</th>
 <th align="right">Quantity in Stock</th>
 <th align="center">Sale Price</th>
 <th align="right">Start Date</th>
 <th align="right">End Date</th>
 </tr>
 </thead>
 <tbody>

16. Retrieve every product that’s currently in stock:

<?php
$q = '(SELECT CONCAT("O", ncp.id) AS sku, ncc.category, ncp.name,
➥ncp.price, ncp.stock FROM non_coffee_products AS ncp INNER JOIN
➥non_coffee_categories AS ncc ON ncc.id=ncp.non_coffee_category_id
➥WHERE ncp.stock > 0 ORDER BY category, name) UNION (SELECT
➥CONCAT("C", sc.id), gc.category, CONCAT_WS(" - ", s.size,
➥sc.caf_decaf, sc.ground_whole), sc.price, sc.stock FROM
➥specific_coffees AS sc INNER JOIN sizes AS s ON s.id=sc.size_id
➥INNER JOIN general_coffees AS gc ON gc.id=sc.general_coffee_id
➥WHERE sc.stock > 0 ORDER BY sc.general_coffee_id, sc.size,
➥sc.caf_decaf, sc.ground_whole)';
$r = mysqli_query ($dbc, $q);

SITE ADMINISTRATION 339

This UNION query is essentially the same as that on the add inventory
page, with the addition of a WHERE table.stock > 0 clause. The thinking
there is that the administrator would want to create sales only for prod-
ucts currently in stock.

17. Print each item as its own row:

while ($row = mysqli_fetch_array ($r, MYSQLI_ASSOC)) {
 echo '<tr>
 <td align="center">' . $row['category'] . '::' . $row['name'] . '</td>
 <td align="center">' . $row['price'] .'</td>
 <td align="center">' . $row['stock'] .'</td>
 <td align="center"><input type="text" name="sale_price[' .

➥$row['sku'] . ']" id="sale_price[' . $row['sku'] . ']" class="small"
/></td>
 <td align="center"><input type="text" name="start_date[' .

➥$row['sku'] . ']" id="start_date[' . $row['sku'] . ']"
➥class="calendar" /></td>

 <td align="center"><input type="text" name="end_date[' .
➥$row['sku'] . ']" id="end_date[' . $row['sku'] . ']" class="calendar"
➥/></td>

 </tr>';
}

The first three columns display values returned by the query. The last
three columns each define a text input. The name of each input is an array,
using the product’s SKU as its index. The two date inputs have an addi-
tional class attribute, with a value of calendar. This will be used to apply
the jQuery Datepicker to these inputs.

18. Complete the table and the form:

?> </tbody></table>
 <div class="field"><input type="submit" value="Add These Sales"

➥class="button" /></div>
 </fieldset>
</form>

19. Include the UI-Lightness theme CSS file and the jQuery UI library:

<link href="/css/ui-lightness/jquery-ui-1.8.4.custom.css"
➥rel="stylesheet" type="text/css" />
<script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.5/
➥jquery-ui.min.js" type="text/javascript" charset="utf-8"></script>

340 CHAPTER 11

The jQuery Datepicker tool is going to use one of jQuery’s User Interface
themes for its formatting. You can download the corresponding CSS file
from www.jqueryui.com (or find it among the downloaded files from this
book’s corresponding Web site). The jQuery UI library will be accessed
through the Google API.

20. Turn the two date columns into Datepickers:

<script type="text/javascript">
 $(function() {
 $(".calendar").datepicker({dateFormat: "yy-mm-dd",

➥minDate:0});
 });
</script>

To repeat what’s already been said, the $(); syntax in jQuery is a way of
executing some JavaScript once the page has been loaded. The specific
code to be executed is placed within an anonymous function.

The anonymous function selects every element on the page that has a
class of calendar. To that selection, the datepicker() method is invoked,
thereby converting them into Datepickers. Passed to the datepicker()
method are two properties. The first, dateFormat: "yy-mm-dd", indicates
the format that the selected date should be in. This format matches what
is usable in the database queries. The second property, minDate:0, indi-
cates that the earliest date that can be selected is the current date (zero
days from now).

21. Complete the page:

<?php include ('./includes/footer.html'); ?>

22. Save the file and test it in your Web browser.

VIEWING ORDERS
The scripts to this point affect the product catalog and what the customer
can purchase. Once customers have completed their orders, the administra-
tor needs a way to view and handle those orders. This will be a three-step
process:

■ Viewing every order

■ Viewing the particulars of a single order

■ Processing an order

tip

There are many other

jQuery UI themes available

(see www.jqueryui.com), or

you can roll your own.

www.jqueryui.com
www.jqueryui.com

SITE ADMINISTRATION 341

The processing part is when the business will actually get its money. Chapter
10 authorized payment for an order. Once the order has been reviewed and
processed, using the following scripts, the payment will be captured (that is,
transferred).

To understand how the orders are represented in the database, you may want
to review the checkout process, specifically billing.php, before looking at
these scripts. You will notice that the database may reflect orders that have
not been finalized (that is, orders for which payment wasn’t processed). The
corresponding administrative system can indicate to the administrator if funds
could not be captured for an order, but as an extra precaution, nonfinalized
orders won’t be listed by this next script.

Listing Every Order
The PHP script for listing every order is short and simple: The only thing
complicated about it is the query it runs (as can often be the case).
Figure 11.11 shows what it looks like.

Figure 11.11

1. Create a new PHP script in your text editor or IDE to be named
view_orders.php and stored in the administrative directory.

2. Include the configuration file, the header, and the database connection:

<?php
require ('../includes/config.inc.php');
$page_title = 'View All Orders';
include ('./includes/header.html');
require (MYSQL);

3. Create a table:

echo '<h3>View Orders</h3><table border="0" width="100%"
➥cellspacing="4" cellpadding="4">
<thead>
 <tr>
 <th align="center">Order ID</th> (continues on next page)

note

This script is named

view_orders.php (with an

“s” after “order”). The next

script will be the singular

view_order.php.

342 CHAPTER 11

 <th align="center">Total</th>
 <th align="right">Customer Name</th>
 <th align="right">City</th>
 <th align="center">State</th>
 <th align="center">Zip</th>
 <th align="center">Left to Ship</th>
 </tr></thead>
<tbody>';

The HTML table reflects the information to be displayed about each order.
This includes the order ID, the order total, the customer’s name, city, state,
zip code, and a count of how many items are left to be shipped in this order.
This count will act as an indicator of which orders have been completed and
which have not.

4. Define and execute the query:

$q = 'SELECT o.id, total, c.id AS cid, CONCAT(last_name, ", ", first_name)
➥AS name, city, state, zip, COUNT(oc.id) AS items FROM orders AS o LEFT
➥OUTER JOIN order_contents AS oc ON (oc.order_id=o.id AND
➥oc.ship_date IS NULL) JOIN customers AS c ON (o.customer_id = c.id)
➥JOIN transactions AS t ON (t.order_id=o.id AND t.response_code=1)
➥GROUP BY o.id DESC';

The query needs to join the orders, order_contents, customers, and
transactions tables. To retrieve the count of items left to ship in an order,
the query uses a LEFT OUTER JOIN between orders and order_contents
where the order ID matches, but the ship_date is NULL. The effect of this
condition is that only order_content records without ship dates will be
matched to orders. This is strictly for the purpose of indicating nonfulfilled
orders; viewing any particular order will show the complete contents,
whether they have shipped or not.

Only orders that have a corresponding transaction response code of 1, indi-
cating a successful request of the payment gateway, will be returned.

The orders are listed starting with the newest.

5. Print each record in the table:

while ($row = mysqli_fetch_array ($r, MYSQLI_ASSOC)) {
 echo '<tr>
 <td align="center">' .

➥$row['id'] . '</td>
 <td align="center">$' . $row['total'] .'</td>

SITE ADMINISTRATION 343

 <td align="right"><a href="view_customer.php?cid=' . $row['cid'] .
➥'">' . $row['name'] .'</td>
<td align="right">' . $row['city'] . '</td>

 <td align="center">' . $row['state'] .'</td>
 <td align="center">' . $row['zip'] .'</td>
 <td align="center">' . $row['items'] .'</td>
 </tr>';
}

The order ID is linked to the view_order.php script (to be written next),
passing along the order ID in the URL. The customer ID is linked to the
view_customer.php script, passing along the customer ID in the URL. That
script is not actually written in this book.

6. Complete the table:

echo '</tbody></table>';

7. Complete the page:

include ('./includes/footer.html');
?>

8. Save the fi le and test it in your Web browser.

You’ll have to have some orders in the database in order for the results to
be meaningful.

PAGINATION AND TABLE SORTING

The view_orders.php script purposefully does not include pagination or a way for

the administrator to sort by column (that is, by the customer’s last name or zip code).

Both of these features, and many, many more, can easily be added to the page by

using one of the available table plug-ins for jQuery. I’ve used, for example, Datatables

(www.datatables.net) before, with great success. See the Datatables Web site, or the

book’s corresponding site, for how it might be integrated into view_orders.php.

www.datatables.net

344 CHAPTER 11

Viewing One Order
The view_order.php script receives the order ID in the URL and displays all the
order’s details (Figure 11.12). The administrator can then click a button to mark
the order as shipped. At that point, the order cycle will be complete.

Figure 11.12

To start this process, the next series of steps will explain how to display the
order’s contents.

1. Create a new PHP script in your text editor or IDE to be named
view_order.php and stored in the administrative directory.

2. Include the configuration file and the header:

<?php
require ('../includes/config.inc.php');
$page_title = 'View An Order';
include ('./includes/header.html');

3. Validate the order ID:

$order_id = false;
if (isset($_GET['oid']) && (filter_var($_GET['oid'], FILTER_VALIDATE_INT,
➥array('min_range' => 1)))) {
 $order_id = $_GET['oid'];
 $_SESSION['order_id'] = $order_id;
} elseif (isset($_SESSION['order_id']) && (filter_var($_SESSION[
➥'order_id'], FILTER_VALIDATE_INT, array('min_range' => 1)))) {
 $order_id = $_SESSION['order_id'];
}

The script can’t function at all if it does not have access to a valid order ID
(an integer greater than or equal to 1). The first time this page is accessed,

SITE ADMINISTRATION 345

it should receive an order ID in the URL (from the link on view_orders.php).
If that’s the case, the local $order_id variable is created for use in a query
later in the script, and the order ID is stored in the session for use when the
page is submitted back to itself.

If the order ID is not in the URL but is in the session, that order ID value
is assigned to a local variable and will be used by the page instead. This
would be the case when the administrator clicks the Ship This Order button.

4. Stop the page if the $order_id is not valid:

if (!$order_id) {
 echo '<h3>Error!</h3><p>This page has been accessed in error.</p>';
 include ('./includes/footer.html');
 exit();
}

If the page does not have a valid order ID, there’s no point in continuing. An
error will be printed, the footer included, and the script terminated.

5. Require the database connection:

require(MYSQL);

6. Define and execute the query:

$q = 'SELECT total, shipping, credit_card_number, DATE_FORMAT(
➥order_date, "%a %b %e, %Y at %h:%i%p") AS od, email,
➥CONCAT(last_name, ", ", first_name) AS name, CONCAT_WS(" ",
➥address1, address2, city, state, zip) AS address, phone, customer_id,
➥CONCAT_WS(" - ", ncc.category, ncp.name) AS item, ncp.stock,
➥quantity, price_per, DATE_FORMAT(ship_date, "%b %e, %Y") AS sd
➥FROM orders AS o INNER JOIN customers AS c ON (o.customer_id = c.id)
➥INNER JOIN order_contents AS oc ON (oc.order_id = o.id) INNER JOIN
➥non_coffee_products AS ncp ON (oc.product_id = ncp.id AND
➥oc.product_type="other") INNER JOIN non_coffee_categories AS ncc
➥ON (ncc.id = ncp.non_coffee_category_id) WHERE o.id=' . $order_id . '
UNION
SELECT total, shipping, credit_card_number, DATE_FORMAT(
➥order_date, "%a %b %e, %Y at %l:%i%p"), email,
➥CONCAT(last_name, ", ", first_name), CONCAT_WS(" ", address1,
➥address2, city, state, zip), phone, customer_id, CONCAT_WS(" - ",
➥gc.category, s.size, sc.caf_decaf, sc.ground_whole) AS item, sc.stock,
➥quantity, price_per, DATE_FORMAT(ship_date, "%b %e, %Y") FROM
➥orders AS o INNER JOIN customers AS c ON (o.customer_id = c.id)
➥INNER JOIN order_contents AS oc ON (oc.order_id = o.id) INNER
 (continues on next page)

346 CHAPTER 11

➥JOIN specific_coffees AS sc ON (oc.product_id = sc.id AND
➥oc.product_type="coffee") INNER JOIN sizes AS s ON (s.id=sc.size_id)
➥INNER JOIN general_coffees AS gc ON (gc.id=sc.general_coffee_id)
➥WHERE o.id=' . $order_id;
$r = mysqli_query($dbc, $q);

This query is similar to those in Chapter 9, “Building a Shopping Cart,”
in that it requires a UNION of two SELECT statements. Unlike that chap-
ter’s queries, this query must also join in the customers, orders, and
order_contents tables. Figure 11.13 shows the result of running this query.

Figure 11.13

7. If rows were returned, start a form:

if (mysqli_num_rows($r) > 0) {
 echo '<h3>View an Order</h3>
 <form action="view_order.php" method="post" accept-charset=

➥"utf-8">
 <fieldset>';

The form posts back to this same page and only contains, as written,
a submit button.

8. Fetch the first returned row and display the general information:

$row = mysqli_fetch_array($r, MYSQLI_ASSOC);
 echo "<p>Order ID: $order_id

➥Total: \${$row['total']}
Shipping
➥: \${$row['shipping']}
Order Date
➥: {$row['od']}
Customer Name
➥: {$row['name']}
Customer Address
➥: {$row['address']}
Customer Email
➥: {$row['email']}
Customer Phone
➥: {$row['phone']}
Credit Card Number
➥Used: *{$row['credit_card_number']}</p>";

The query will return the general order and customer information once for
each item in the order (see Figure 11.13). To display the general information
only once, and first, the first returned row is immediately fetched, outside
of any loop. You’ll see how and why this works shortly.

tip

As a fraud-prevention technique,

you could retrieve the billing

address from the payment

transaction and compare it to

the shipping address, looking for

suspicious differences.

SITE ADMINISTRATION 347

9. Create the table:

echo '<table border="0" width="100%" cellspacing="2"
➥cellpadding="2">
 <thead>
 <tr>
 <th align="center">Item</th>
 <th align="right">Price Paid</th>
 <th align="center">Quantity in Stock</th>
 <th align="center">Quantity Ordered</th>
 <th align="center">Ship?</th>
 </tr>
 </thead>
 <tbody>';

The table lists the ordered items, along with the price paid, the quantity
currently in stock, the quantity ordered, and when the item has shipped,
if applicable.

10. Create a flag variable to track if the order has already shipped:

$shipped = true;

The administrator is going to be given the option of processing the pay-
ment for this order only if it hasn’t already shipped. The assumption will
be that it has, and later code will change this setting if that’s not the case.

11. Print each item:

do {
 echo '<tr>
 <th align="left">' . $row['item'] . '</thd>
 <th align="right">' . $row['price_per'] . '</thd>
 <th align="center">' . $row['stock'] . '</thd>
 <th align="center">' . $row['quantity'] . '</thd>
 <th align="center">' . $row['sd'] . '</td>
 </tr>';

Because one row has already been fetched, the less common do…while
loop will be used to navigate the remaining query results. This construct
performs some actions first and checks the conditional last, thereby guar-
anteeing that the code within the loop will be executed at least one time.
Within the loop, each value is displayed within a table row.

12. Update the shipping status:

if (!$row['sd']) $shipped = false;

348 CHAPTER 11

If $row['sd'] is NULL (for any item in the order), then the entire order has
not been shipped yet, and the flag variable should indicate such.

13. Complete the loop and the table:

} while ($row = mysqli_fetch_array($r));

echo '</tbody></table>';

After the contents of the loop are executed, the condition is checked. The
specific condition is the fetching of another array from the query results. If
another array can be found, the loop will be repeated again.

14. If the order hasn’t entirely shipped, create the submit button:

if (!$shipped) {
 echo '<div class="field"><p class="error">Note that actual

➥payments will be collected once you click this button!</p>
➥<input type="submit" value="Ship This Order " class="button" />
➥</div>';

}

For orders that have completely shipped, no submit button will exist
(Figure 11.14).

Figure 11.14

15. Complete the form:

echo '</fieldset>
</form>';

16. Complete the mysqli_num_rows() conditional:

} else { // No records returned!
 echo '<h3>Error!</h3><p>This page has been accessed in error.

➥</p>';

SITE ADMINISTRATION 349

 include ('./includes/footer.html');
 exit();
}

This else clause applies if no records were returned by the query.

17. Complete the page:

include ('./includes/footer.html');
?>

18. Save the file and test it in your Web browser.

At this point, clicking the submit button will have no effect, however.

SHIPPING ORDERS
To complete the view_order.php script, the functionality for processing com-
pleted orders has to be integrated. This entire process involves:

1. Requesting actual payment for the order

2. Recording the payment request transaction in the database

3. Updating the order_contents table

4. Updating the catalog inventory

5. Reporting upon the results

Although there are many steps, the code itself isn’t that complicated, largely
thanks to the work that’s already been done for the public side of the site.
First, though, a script for setting up the payment gateway for administrative
purposes must be defined.

Creating gateway_setup_admin.php
In Chapter 10’s billing.php, payments are processed by including two files. The
first, gateway_setup.php, creates an array of values particular to the public
side of the site. This includes, for example, the customer’s billing information.
Since a payment has already been authorized, the administrative setup script
only needs to identify the transaction ID associated with the prior authoriza-
tion and use a payment request type of PRIOR_AUTH_CAPTURE. Here, then, is
the complete gateway_setup_admin.php, which should be stored in a secure
location (such as the same place you used for gateway_setup.php):

350 CHAPTER 11

gateway_setup_admin.php
 1 <?php
 2 // Create an array for the information:
 3 $data = array();
 4 $data['x_trans_id'] = $trans_id;
 5 $data['x_type'] = 'PRIOR_AUTH_CAPTURE';

The second script in the payment request process, gateway_process.php,
defines values required by both customer and administrator requests, and
then performs the actual communication with the payment gateway. In that
script, three values are assigned on the fly:

$data['x_amount'] = $order_total;
$data['x_invoice_num'] = $order_id;
$data['x_cust_id'] = $customer_id;

The code for assigning these values needs to be written into view_order.php,
just as it was within billing.php.

Updating view_order.php
The code for processing the payment capture is about 70 lines long, well
spaced, and with comments. You can place it all within an includable file,
or just add it to view_order.php, as in these next steps.

1. Open view_order.php in your text editor or IDE, if it is not already.

2. After including the database connection, check for a form submission:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

3. Retrieve the customer ID, order total, and transaction ID:

$q = "SELECT customer_id, total, transaction_id FROM orders AS o JOIN
➥transactions AS t ON (o.id=t.order_id AND t.type='AUTH_ONLY' AND
➥t.response_code=1) WHERE o.id=$order_id";
$r = mysqli_query($dbc, $q);

At this point in the script, $order_id has already been validated to be an
integer greater than or equal to 1, meaning it’s safe to use in a query (you
could use prepared statements, if you’d rather). The query selects three
pieces of information from the orders and transactions tables. Each order
can be represented in the transactions table multiple times, but only once
in an AUTH_ONLY status. And the order is only valid if the response_code
equals 1, meaning that the authorization request worked.

SITE ADMINISTRATION 351

4. If one row was returned, get the selected values:

if (mysqli_num_rows($r) == 1) {
 list($customer_id, $order_total, $trans_id) =

➥mysqli_fetch_array($r, MYSQL_NUM);

The important thing to note here is that these three variable names
exactly match those expected by the gateway_setup_admin.php and
gateway_process.php scripts.

5. Check for a positive order total:

if ($order_total > 0) {

As a safety check, only positive payment requests will ever be made.

6. Process the payment request:

require_once(BASE_URI . 'private/gateway_setup_admin.php');
require_once(BASE_URI . 'private/gateway_process.php');

Because these two scripts define all the requisite functionality, including
them is all this page needs to do in order to make the payment request.

7. Record the transaction results:

$reason = addslashes($response_array[3]);
$response = addslashes($response);
$r = mysqli_query($dbc, "CALL add_transaction($order_id,
➥'{$data['x_type']}', $response_array[9], $response_array[0], '$reason',
➥$response_array[6], '$response')");

This code is exactly like that in billing.php.

8. If the request was successful, create a message:

if ($response_array[0] == 1) {
 $message = 'The payment has been made. You may now ship the

➥order.';

As explained in Chapter 10, if the first element of the returned response has
a value of 1, the request succeeded. If so, a message is assigned to a vari-
able for use later in the script.

9. Update the order_contents table:

$q = "UPDATE order_contents SET ship_date=NOW() WHERE
➥order_id=$order_id";
$r = mysqli_query($dbc, $q);

To reflect that the order has shipped (or can be shipped now), the
order_contents table needs to be updated for every row with the current
order ID.

tip

The order total (or x_amount

in the payment process) is only

required if less than the original,

authorized amount. It is best

to be thorough and include it,

though.

352 CHAPTER 11

10. Update the site’s inventory:

$q = 'UPDATE specific_coffees AS sc, order_contents AS oc SET
➥sc.stock=sc.stock-oc.quantity WHERE sc.id=oc.product_id AND
➥oc.product_type="coffee" AND oc.order_id=' . $order_id;
$r = mysqli_query($dbc, $q);
$q = 'UPDATE non_coffee_products AS ncp, order_contents AS oc SET
➥ncp.stock=ncp.stock-oc.quantity WHERE ncp.id=oc.product_id AND
➥oc.product_type="other" AND oc.order_id=' . $order_id;
$r = mysqli_query($dbc, $q);

Now that the items in the order have officially been purchased and can
head out the door, the site’s inventory needs to reflect the sold items.
This means that for every item in the order_contents table (for the
current order), the corresponding records in the specific_coffees and
non_coffee_products tables have to be updated.

MySQL actually allows you to perform a JOIN on an UPDATE query; two
such queries can update the entire inventory, no matter how many records
are present in the order_contents table. Each query may make more
sense if viewed as a standard SELECT JOIN:

SELECT sc.stock, oc.quantity FROM specific_coffees AS sc,
➥order_contents AS oc WHERE sc.id=oc.product_id AND
➥oc.product_type="coffee" and oc.order_id=X

Instead of selecting the two values—stock and quantity—in matching
rows, the one value is used to update the value in the other.

11. If the payment request didn’t succeed, create an error:

} else {
 $error = "The payment could not be processed because: $response_

➥array[3]";
} // End of payment response IF-ELSE.

As in Chapter 10, $response_array[3] contains a textual description of the
problem. This will be safe to reveal to the administrator.

12. Complete the order total IF-ELSE:

} else { // Invalid order total!
 $error = "The order total (\$$order_total) is invalid.";
} // End of $order_total IF-ELSE.

If the order total was not a positive number, that message is assigned to
an error variable, along with the actual total.

tip

The comma between the table

names in the queries is equiva-

lent to the word JOIN.

SITE ADMINISTRATION 353

13. If no matching order was found, indicate that:

} else { // No matching order!
 $error = 'No matching order could be found.';
} // End of transaction ID IF-ELSE.

14. Report any messages or errors:

echo '<h3>Order Shipping Results</h3>';
if (isset($message)) echo "<p>$message</p>";
if (isset($error)) echo "<p class=\"error\">$error</p>";

Figures 11.15 and 11.16 show these lines in action.

Figure 11.15

Figure 11.16

15. Complete the form submission IF:

} // End of the submission IF.

16. Save the page and test it in your Web browser.

note

You’ll need to use relatively

recent orders to test this pro-

cess, because the authorization

for older orders may have since

been revoked.

INDEX

NUMBERS
128-bit security, explained, 39
256-bit security, explained, 39
127.0.0.1, connecting to MySQL from, 36

SYMBOLS
` (backticks), using with SQL commands, 51
^ (caret), using with mod_rewrite, 176
, (comma), using between table names, 352
{ } (curly brackets), using with conditionals, 65
$ (dollar) sign

omission from variables, 265
using with mod_rewrite, 177

| | (double pipe), using in PHP conditionals, 211
() (parentheses)

using, 70
using with mod_rewrite, 176
using with stored procedures, 189

+ (plus) sign, using with mod_rewrite, 176
? (question mark), using with mod_rewrite, 176
" (quotation marks), using in forms, 74
; (semicolon), ending stored procedure queries with, 198
/ (slash), using with mod_rewrite, 176
[] (square brackets), using with mod_rewrite, 176

A
access control measures, implementing, 31
access privileges system, using in MySQL, 36
add_customer() stored procedure, 272
add_inventory.php script, creating, 331
add_order() procedure

failure of, 293
features of, 266
invoking for credit cards, 292

add_other_products.php script, creating, 317
add_pdf.php script, creating, 123
add_specific_coffees.php script, creating, 326
add_to_cart() stored procedure, creating, 231–232
addresses, validating for shipping, 269
administration directories. See also directories

naming, 53
password protecting, 173–174

administration pages
creating footer for, 313
creating header for, 311–312

creating home page for, 313
creating template for, 310–313
placing in subdomain, 172
primary links, 310
removing background images from, 311
requiring authentication, 309
suckerfish approach, 310, 313
updating create_form_input(), 315–316
use of jQuery with, 309

administrative scripts
adding coffee products, 325–330
adding non-coffee products, 316–325

administrator user, creating, 37
administrators

creating, 106–107
including in Knowledge is Power site, 50

AIM (Advanced Integration Method), 296–298
allow rules, checking, 174–175
ALTER privileges, limiting in MySQL, 37
ALTER ROUTINE syntax, using with stored procedures,

221–222
American Express cards

number format for, 289
testing numbers for, 306

anti-virus software, using, 31–33
Apache

DocumentRoot directive, 34
using mod_rewrite feature, 175–177
Web site, xv

ApacheBench Web site, 22
APC (Alternative PHP Cache), 23
APD (Advanced PHP Debugger), 24
array of pages, creating for HTML template, 65
attacks

blind, 45
brute force, 42–43
CSRF (Cross-Site Request Forgery), 44–46
DoS (Denial of Service), 42
LFI (Local File Inclusion), 44
Malicious File Execution, 44
RFI (Remote File Inclusion), 44
session fixation, 105
SQL Injection, 43
supplying problematic data, 35
XSS (Cross-Site Scripting), 41–42

AUTH_ONLY status, using with orders, 350
authentication, requiring, 309

INDEX 355

Authorize.net payment gateway. See also checkout process;
PayPal accounts

Advanced Integration Method values, 296–297
defining merchant information, 296
explode() function, 298
features of, 15, 251–252
response code, 299
response fields, 299
testing, 252–253
testing accounts in, 296

B
background images, removing from admin pages, 311
backticks (`), using with SQL commands, 51
backtrace information, adding for config file, 59
benchmarks, running on Web servers, 22–23
billing address, verifying, 16
billing information. See also checkout process

GET part of script for, 282
POST part of script for, 282
validating form data, 288–293

$billing_errors array, creating, 288–289
billing.html page

adding progress indicator to, 285
creating, 285–288

billing.php script
creating, 283–284
creating view file for, 284–288
error-handling function, 293
failure of add_order() procedure, 293
reaching trigger_error() point, 293
updating, 300–302

binding variables, 327, 332
blind attack, example of, 45
bound value types, using with prepared statements, 187
browse.php script

creating, 204–206, 210–212
list_coffees.html file, 212
list_products.html file, 212
noproducts.html file, 212
versus shop.php script, 210

browser
creating user interface in, 7
redirecting, 79–81

brute force attacks, 42–43
business goals

achieving, 3–4
listing, 4

C
caching, applying, 23
CAPTCHA system, integrating, 45
Card Security Code (CSC), 286
Card Verification Value (CVV), 16
cardholder data, protecting, 31–32
caret (^), using with mod_rewrite, 176
cart page versus wish list, 246
cart.html file, creating, 240–243
cart.php script, creating, 236–240
carts

adding products to, 231–232, 237–238
beginning checkout process for, 243
calculating shipping, 247–249
clearing, 259
creating PHP script for, 236–240
creating views for, 240–243
displaying contents of, 274–278
emptylist.html view, 245–247
fetching contents of, 233–234
helper functions for, 234–236
making, 236
model aspect of, 230
moving products into, 238
MVC approach for, 230
removing products from, 232, 238
retrieving contents of, 273
stored procedures, 230–234
updating, 232–233
using DELIMITER with, 231–234

catalog
creating “no products” view, 216–217
creating stored procedures, 201–204
highlighting sales, 224–229
indicating availability, 217–219
populating tables using SQL, 193–196
preparing database for, 192–193
showing sale prices, 219–224
using stored procedure queries, 196–201

categories
creating view files for, 206–209
fetching information for, 213
shopping by, 204–209

category.php script
creating, 115–118
list() function, 117

CCV acronym, 286
certificates

expense of, 40
multiple domain, 40
purchasing, 39
single domain, 40

356 INDEX

code
documenting, 21
organizing, 21
profiling, 24
security of, 21

code blocks, defining, 188–191
coffee products. See also non-coffee products; products

adding to administrative scripts, 325–330
selecting, 196–198, 220

Coffee site
applying password protection, 173–174
carts table, 168
checking allow rules, 174–175
checking deny rules, 174–175
config file, 180–181
connecting to database, 179–180
customer tables, 167–169
customizing server behavior, 173–178
database design, 166–172
emailing customers, 168–169
enforcing SSL, 178
error handler, 181
features of, 162
focus on purchases, 164
footer.html, 184–185
general_coffees table, 166
header.html, 182–184
heightened security, 165
helper files, 179–181
HTML template, 182–185
implementing MVC (Model-View-Controller), 164–165
improving security of, 185
versus Knowledge is Power site, 164–165, 172, 309
non_coffee_categories table, 166
orders table, 167–168
product tables, 166–167
products directory, 172–173
products sold on, 163
protecting directories, 174–175
protecting directory contents, 173
rewriting public URLs, 175
sales table, 167
server organization, 172–173
specific_coffee table, 167
specific_coffees table, 166–167
SQL commands for, 169–171
transactions table, 168
use of InnoDB storage engine, 172
use of stored procedures, 165
user_session_id, 168
using mod_rewrite feature, 175–177
using regular expressions on, 176
view files, 181

certificates (continued)
using with SSL, 38–39
warnings about, 40
warranties for failure of, 39–40

change requests, handling, 5
checkout process. See also Authorize.net payment

gateway; billing information; payment gateways;
shipping information

add_customer() stored procedure, 272
adding customers, 260–261
adding orders, 262–265
adding transactions, 259–261
Authorize.net payment gateway, 251–252
beginning for carts, 243
clearing shopping cart, 259
creating HTML template for, 253–255
creating test accounts, 252–253
fetching order total, 261
fetching shipping cost, 261
filter_var() function, 271
helper function for, 255–258
indicating errors in, 273
parts of, 250
retrieving order contents, 261–262
SSL connection required for, 254
stored procedures for, 259–265
validating cities, 270
validating email address, 271
validating phone numbers, 270
validating states, 270
validating street addresses, 269
validating zip codes, 270

checkout_cart.html view file, 274–278
checkout_header.html file, creating, 254
checkout.html view file

adding progress indicator, 279
creating, 279–282

checkout.php page
accessing over HTTPS, 267
adding shipping, 277
checkout_cart.html view file, 274–278
checkout.html view file, 279–282
creating PHP script for, 267–274
displaying totals, 278
features of, 266
reaching trigger_error() point, 273
view files for, 274

cities, validating in shipping process, 270
CKEditor WYSIWYG editor, 112
classes, applying to pages dynamically, 65
clients, signing contracts with, 4–5
“closed-loop” confirmation process, 90
cloud hosting, 11

INDEX 357

credit-card processing
completing orders, 302–305
examining server response, 298–299
final.php script, 302–304
gateway_process.php script, 296–298
gateway_setup.php script, 294–295
managing $data array, 296
payment gateway, 294–295
setting up cURL request, 298

Cross-Site Scripting (XSS) attacks, preventing, 41–42
CSC (Card Security Code), 286
CSRF (Cross-Site Request Forgery) attack, 44–46
CSS classes

applying with Superfish, 314
class="small" attributes, 330

css directory, contents of, 53
cURL library, libcurl, 252
cURL options, listing, 298
cURL request, setting up for credit cards, 298
curl_* functions, using with Authorize.net, 252
curly brackets ({ }), using with conditionals, 65
customers

adding to checkout process, 260–261
emailing, 168–169
versus purchases, 164
storing information about, 50

CVC acronym, 286
CVV (Card Verification Value), 16
CVV acronym, 286–287, 290

D
data, making safe for use in queries, 55–56
data, storing, 41
$data array, managing for credit cards, 296
database connection, requiring for order, 345
database design, 19–20

of Knowledge is Power site, 49–52
database tables. See tables
databases

accessing, 193–194
confirming contents of, 196
connecting to, 55–57
creating, 51–52
defining constants for, 55, 58
deleting test prefix for, 36
establishing character set for connection, 55
placing functionality in, 37
preparing for catalogs, 192–193
replicating, 20
saving excess information in, 50
security of, 36–38
storing passwords in, 50
using Magic Quotes with, 56

views directory, 173
wish_lists table, 168

coffees list, creating, 215–216
comma (,), using between table names, 352
command line, accessing servers from, 193
“commands out of sync” error, 278
conditionals

using curly brackets ({ }) with, 65
writing for form inputs, 75

config file
adding backtrace information for, 59
applying error handler for, 61
creating error message for, 59–60
creating for Knowledge is Power site, 57–61
defining error-handling function for, 59
starting session for, 58

config.inc.php script
creating, 57
described, 53

connection, requiring for order, 345
content

creating category.php script, 115–118
creating page.php script, 118–121
displaying, 115–121
types of, 107
validating, 108–109

contracts, signing with clients, 4–5
Controller in MVC, defined, 164
cookie data, validating, 41
cookies

sending over HTTP, 267
using with carts, 237

Cracklib PECL extension, 86
CREATE privileges, limiting in MySQL, 37
CREATE PROCEDURE command, 189
CREATE TABLE commands, using in Knowledge is Power

site, 51
create_form_input() function, 83, 315–316
credit card charges, fraud associated with, 271
credit card information, storing, 31–32
credit card number input

creating for billing, 286
formulas for, 289
invoking add_order() procedure, 292
specifying entry of, 289
validating, 289
validating city, state, zip code, 290–291
validating CVV, 290
validating expiration date, 290–291
validating street addresses, 290

credit card numbers, testing, 306
credit cards, handling securely, 6–7

358 INDEX

ENUM column, using in Knowledge is Power site, 50
error handler, applying for config file, 61
error levels, E_ALL | E_STRICT, 35
error message, creating for config file, 59–60
error_log() function, using with config file, 59
error-handling function

for billing.php script, 293
defining for config file, 59

error.html view file
versus nonproducts.html view, 216–217
using with categories, 207

errors, logging, 59
escape_data() function, using, 56
European Union, legal requirements in, 5
exec() function

avoiding, 36
using, 44

F
FCKEditor WYSIWYG editor, 112
Federal Trade Commission (FTC), 5
file extensions

.html, 54

.inc.php, 54

.php, 54
FILE privileges, limiting in MySQL, 37
Filter functions, using, 41
filter_var() function

using in checkout process, 271
using with carts, 235

final.php script
creating for credit cards, 302–304
creating view file for, 304–305
final.html file, 304–305
link to receipt.php script, 305

Firebug Web site, xvi
Firefox Web browser, xvi
firewall, using, 31–33
flag variable

creating for products list, 212
using with single order, 347

Flash, using, 7
folders, keeping safe, 174–175
footer, creating for HTML template, 66–70
footer.html file, 53, 184–185
fopen(), calling, 44
form inputs

adding error class, 76
adding error message to, 74
adding red border to, 74
adding sizes to, 73
adding value for input, 75

Datatables Web site, 343
date_default_timezone_set() function, 257
Datepicker plug-in, using in JQuery, 335, 340
dates, storing in Knowledge is Power site, 50
debugging tools, xvi
decrypting data. See SSL (Secure Sockets Layer)
DELETE permissions, assigning in MySQL, 37, 179
DELETE query, using with products in carts, 232
DELIMITER, using with cart, 231–234
delimiters, changing, 259
Denial of Service (DoS) attacks, 42–43
deny rules, checking, 174–175
development process

database design, 19–20
going live, 24
HTML design, 18–19
improving, 25
maintenance, 24–25
phases of, 17
programming, 21–22
site planning, 18
testing, 22–24

development tools, 20
dictionary attack, 78
directories. See also administration directories

limiting, 34
protecting, 174–175
Web root, 35

directory contents, protecting, 173
Discover cards, testing numbers for, 306
display_errors, disabling, 35–36
<DIV> tags, managing, 206–207, 214
DocumentRoot directive, using with Apache, 34
dollar ($) sign

omission from variables, 265
using with mod_rewrite, 177

DoS (Denial of Service) attacks, 42–43
double pipe (| |), using in PHP conditionals, 211
DROP privileges, limiting in MySQL, 37

E
E-ALL | E_STRICT error level, using, 35
echo statement, using with products, 218
e-commerce

alternatives, 8
defined, 3, 13

e-commerce sites. See Coffee site; Knowledge is Power site
email address, validating in checkout process, 271
emptycart.html view, creating for carts, 240
emptylist.html view, using with carts, 245–247
encrypting data. See SSL (Secure Sockets Layer)
encryption, levels of, 39

INDEX 359

help, getting, xv
helper files, using with Coffee site, 179–181
helper functions. See also functions executing code

benefits of, 73
for cart, 234–236
creating form inputs, 73–77
protecting passwords, 77–79
redirecting browser, 79–81

home page
creating, 70–71
creating for admin page, 313
creating view file for, 226–227
require and include, 70–71

home.html view
creating, 226
location of, 225

hosting plans. See also shared hosts
cloud computing, 11
colo (dedicated or colocation), 10–11
control, 9–10
features, 9
free, 10
performance, 9–10
price, 9
recommendation, 12
shared, 10
VPS (Virtual Private Server), 10–12

.htaccessfile, creating or modifying, 174–175
HTML, allowing in user content, 42
HTML design

incorporating in sites, 63
mocking up, 18–19

.html extension, requesting pages with, 54
HTML template

choosing design for, 61
for Coffee site, 182–185
creating array of pages, 65
creating footer, 66–70
creating header, 63–66
creating home page, 70–71
login form, 62
organizing content into categories, 62

htmlspecialchars() function, 74
HTTPS, accessing checkout.php over, 267

I
IDEs (Integrated Development Environments)

Aptana Studio, xvi
Dreamweaver, xvi

if-else clause
using to define page title, 64
using with footer, 68

adding value to textarea, 77
checking for errors, 76
checking input type, 75–76
completing function, 77
completing textarea, 77
creating, 73–77
creating input, 75
defining function for, 75
displaying error, 76
quotation marks (") used in, 74
saving file for, 77

form_functions.inc.php script
creating, 75, 255
described, 53
including, 83

forms
for logging into sites, 91–95
making sticky, 73
preventing use by bots, 45

fraud prevention, 16, 271, 346
FTC (Federal Trade Commission), 5
FULLTEXT indexes, support for, 20
functions executing code, avoiding, 36. See also helper

functions

G
\G, ending stored procedure queries with, 198
gateway_process.php script, 296–298, 350
gateway_setup_admin.php script, 349–350
gateway_setup.php script, 294–295
general_coffees table, populating, 194–195
GET functionality, using with billing, 282–283
global variables, making available, 35
GoDaddy Web site, 39
going live, 24
GRANT privileges, limiting in MySQL, 37
grouping, making, 176

H
hackers, bad data supplied by, 44
hash_algos() function, 78
hash_hmac() function, 78–79
hashes

creating for passwords, 77–78
storing in databases, 78
storing passwords as, 50

hashing algorithms, 78
header, creating for HTML template, 63–66
header box, adding for products, 213
header.html file, 53, 182–184
“headers already sent” errors, preventing, 56

360 INDEX

jQuery
Datepicker plug-in, 335, 340
Superfish plug-in, 313–315
table plug-ins, 343
using with admin pages, 309
Web site, xv

K
keys, using in Knowledge is Power site, 52
Kilo theme, using for HTML template, 61
Knowledge is Power site

adding records, 50
administrators, 50
categories table, 49
versus Coffee site, 164–165, 172, 309
config file, 57–61
connecting to database for, 55–57
content field on HTML page, 49
creating form inputs, 73–77
css directory, 53
database design, 49–52
date_expire column, 50
description field on HTML page, 49
ENUM column in, 50
features of, 48–49
folders in Web root directory, 52–53
HTML categories, 49
HTML content, 49
HTML pages, 49
includes directory, 53–54
indexes in, 52
integrating PayPal, 136
keys in, 52
managing passwords, 96–103
members, 50
mysql.inc.php script, 53
NOT NULL columns, 52
orders table, 50
pages table, 49
payment transactions, 50
pdfs table, 49–50
products on, 49
protecting passwords, 77–79
redirecting browser, 79–81
robots.txt file, 54
server organization, 52–54
storing customer information, 50
storing PayPal transactions, 50
storing PDFs for paid subscribers, 53
testing for PayPal, 149–150
title field on HTML page, 49
transaction_id, 50–51

IF-ELSE conditional, using with cart, 232
IF-ELSE order total, 352
IF-ELSEIF conditional, using with carts, 237–238
IFNULL() construct, using in checkout process, 263
IN keyword, using in checkout process, 260
include(), calling, 44
include and require, using with home page, 70–71
include_once(), using in browser redirection, 81
includes, naming, 53
includes directory

documents for, 53
restricting access to, 54
using in Knowledge is Power site, 53

.inc.php extension, requesting pages with, 54
indexes

using in databases, 19
using in Knowledge is Power site, 52

index.php script
base files in, 225
using to highlight sales, 225

information, protecting, 40–41
information security policy, maintaining, 31
INNER JOIN, using to fetch cart’s contents, 233–234
inner join, using with sale prices, 220
InnoDB storage engine, 20, 172
INOUT arguments, using with stored procedures, 261
INSERT permissions, assigning in MySQL, 37, 179
INSERT query, variations in, 186
Internet sales, taxing, 5–6
inventory

adding, 331–335
updating, 352

IPN (Instant Payment Notification)
enabling, 151
triggering for PayPal transactions, 150
updating registration script for, 151–152
updating thanks script, 157–158

IPN script
calling strcmp(), 155
creating, 153–157

IPN transactions, writing to text files, 154
ipn.php script, 151, 160
isset() function

adding to validation conditional, 269
using with carts, 237

J
JavaScript, 7, 113
JOIN. See also SELECT JOIN

using to fetch cart’s contents, 233–234
using to select coffee products, 198
using with sale prices, 220

INDEX 361

MVC (Model-View-Controller)
described, 21
implementing, 164–165
model aspect of, 164, 230

my_error_handler() function, completing, 61
MyISAM storage engine, 20
MySQL

access privileges system, 36
catching detrimental queries in, 19
configuration files, 20
connecting to, 36
development tool, 259
performance considerations, 20
prepared statements, 185–188
stored procedures, 188–191
support for storage engines, 20

mysql command-line client, using to populate tables, 193
MySQL database application, Web site, xv
MySQL server

getting data to and from, 37
mysqld process, 38

MySQL tables, creating in memory, 20
MySQL users

assigning permissions to, 37
creating, 37

mysql.inc.php script
creating, 55
described, 53
using with Coffee site, 179–180

N
*nix abbreviation, use of, 36
non_coffee_categories table, populating, 194
non_coffee_products table, populating, 195
non-coffee products. See also coffee products; products

adding to administrative scripts, 316–325
selecting, 198

noproducts.html view
creating, 216–217
versus error.html, 216–217

normalization of databases, 19
NOT NULL columns, using in Knowledge is Power site, 52
NULL value, using with products, 220
numeric values, forcing to be numbers, 43

O
object-oriented approach, using, 21–22
_once variants, using with require and include, 71
opcode cache, applying, 23
open_basedir setting, using, 34, 44
“or,” including in PHP conditionals, 211

types of users, 50
user accounts, 72
users table, 50

L
laws, national versus international, 4–6
LEFT OUTER JOIN, using to fetch cart’s contents, 233
legal issues

international laws, 4–6
national laws, 4–6
PCI compliance, 6–7

LFI (Local File Inclusion) attacks, 44
libcurl cURL library, using with Authorize.net, 252
LIMIT clause, using with queries, 186
list() function, using with carts, 236
list_categories.html view file, using with categories,

208–209
list_coffees.html view

creating, 215–216
updating, 224

list_products.html, updating, 223–224
list_sales.html script, creating, 228–229
Local Value versus Master Value, 34
localhost, connecting to MySQL from, 36
logging errors, 59
logging into sites

creating forms, 94–95
processing forms, 91–94

logging out of sites, 95–96
login form, including in HTML template, 62
login process, implementing SSL for, 104
login_form.inc.php script, creating, 53, 94
login.inc.php script

creating, 91
described, 53

--log-long-format option, using in MySQL, 20
logout.php page, 95–96
--log-slow-queries option, using in MySQL, 19

M
Magic Quotes, using with databases, 56
Malicious File Execution, attempting, 44
malicious PHP code, protecting against, 34
MAMP Web site, xvi
Master Value versus Local Value, 34
MasterCard, testing numbers for, 306
md5() function, using with cart, 237
MD5 hashing algorithm, 78
members, including in Knowledge is Power site, 50
mod_rewrite feature, using, 175–177
money, making and intending to take, xiii

362 INDEX

testing, 306
use of virtual terminals, 16
using, 15

payment processors, 14
payment providers, selecting, 16–17
payment systems

micro-payments, 17
PCI compliance of, 16

payment transactions, storing, 50
payments, recurring, 6
PayPal

Add to Cart button, 139
automated billings, 139
Buy Now button, 139
buyer accounts, 142
changing thank you message, 145
creating cancel.php page, 148
creating Custom Payment Pages, 160
creating customer account, 141–143
creating Customer Service Message, 160
creating IPN script, 153–157
creating merchant account, 141–143
creating personal account, 141–143
creating test accounts, 141–143
creating thanks.php page, 146–148
currency conversions, 138
Donate button, 139
enabling IPN, 151
features of, 137
going live with, 159–160
going to cancel page, 148
integrating into fake PayPal, 145
IPN (Instant Payment Notification), 150
micropayments rates, 138
My preapproved payments section, 139
payment buttons, 139
Pro payment solution, 138
recording passwords for test accounts, 142
recurring payments, 139
Sandbox Test Site, 139
Selling Preferences banner, 160
Standard payment solution, 138
Subscribe button, 139
Test Accounts link, 141
testing site for, 149–150
updating registration page, 145–146
updating registration script for IPN, 151

PayPal accounts. See also Authorize.net payment gateway
making deposits into, 251
renewing, 158–159

PayPal button, adding to Web sites, 143–145
PayPal experience, customizing, 160

Order Allow,Deny command, 174–175
order contents, retrieving, 261–262
order total, fetching in checkout process, 261
orders

adding to checkout process, 262–265
gateway_process.php script, 350
gateway_setup_admin.php script, 349–350
listing, 341–343
requiring database connection for, 345
shipping, 349–353
updating view_order.php script, 350–353
viewing, 344–349

osCommerce package, 8
outer join, using with sale prices, 220

P
page content

creating category.php script, 115–118
creating page.php script, 118–121
displaying, 115–121
types of, 107
validating, 108–109

page title, defining in HTML template, 64
page.php script, creating, 118–121
pages

adding WYSIWYG editor for, 112–115
applying classes to dynamically, 65
creating array of, 65
creating scripts for, 108–112
loading quickly, 113

parentheses (())
using, 70
using with mod_rewrite, 176
using with stored procedures, 189

parse_sku() function, 332–333, 337
password protection, applying to Coffee site, 173–174
passwords

changing, 100–103
creating hashes for, 77–78
discovering, 77
increasing security of, 98
protecting, 77–79
recovering, 97–100
representing, 77
storing as hashes in databases, 50
storing in encrypted format, 77
testing strength of, 86

payment gateways. See also checkout process
creating for credit cards, 294–295
fraud prevention feature, 16
going live, 307

INDEX 363

using to create stored procedures, 191
using to populate tables, 193

physical products, types of, 163. See also products
planning sites, 18
plus (+) sign, using with mod_rewrite, 176
preg_replace() versus str_replace() function, 270
prepared statements

bound value types, 187
prevention of SQL Injection attacks, 187
using, 43
using for database queries, 318, 321
using with Coffee site, 185–188

prices of products
displaying, 222–223
protecting for carts, 241

PRIOR_AUTH_CAPTURE payment request type, 349
privileges, assigning in MySQL, 37
procedural approach, using, 21–22
PROCESS privileges, limiting in MySQL, 37
product categories, PHP script for, 204
product tables, using in Coffee site, 166–167
product types, goodies and coffee, 205
product_functions.inc.php script

creating, 217–219
updating, 222–223

products. See also coffee products; non-coffee products;
physical products

adding to cart, 231–232
adding to carts, 237–238
creating PHP script for, 210–212
creating view files for, 212–216
displaying prices of, 222–223
indicating availability of, 217–219
moving into carts, 238
removing from cart, 232
removing from carts, 238
selling variations of, 166
types sold, 316

products list, creating, 212–214
programming

organizing code, 21
version-control software, 21

progress indicator
adding to billing.html page, 285
adding to checkout.html view file, 279

protecting. See also security; vulnerability management
program

information, 40–41
users, 41–42
Web sites, 42–46

proxy scripts, using, 53
purchases versus customers, focusing on, 164

PayPal Sandbox
logging into, 149
registering at, 140–141

PayPal transactions
fees for, 138
funds received from, 137
payment solutions, 138
storing, 50
triggering IPN for, 150

PayPal Web site, 14
PCI compliance

explained, 6–7
of payment systems, 16
requirements for, 31

PCRE (Perl-Compatible Regular Expressions), 85
PDF content, displaying, 130–134
PDFs

adding, 121
creating PHP script for, 123–130
renaming uploaded files, 125
setting up server for, 122–123
storing for paid subscribers, 53
_tmp files, 130
types of permissions for, 122
using open directories, 122–123

pdfs directory, creating, 123
PDF’s type, validating, 125
pdfs.php page, creating, 130–132
PECL (PHP Extension Community Library), 41
performance testing, 22–23
Perl-Compatible Regular Expressions (PCRE), 85
permissions

considering for MySQL users, 37
DELETE, 179
INSERT, 179
SELECT, 179
UPDATE, 179

phone numbers, validating in shipping process, 270
PHP

changing running of, 34
configuring for security, 34–36
Filter functions, 41
seeing current settings for, 34

PHP conditionals, including “or” in, 211
PHP documentation, obtaining, 21
PHP scripting language Web site, xv
PHP settings, changing, 34
phpinfo() script

invoking, 34
protecting, 34

php.ini configuration file, editing, 34
phpMyAdmin tool

using, 51–52

364 INDEX

require and include, using with home page, 70–71
requirements, xv–xvi
require(MYSQL);, 345
RFI (Remote File Inclusion) attacks, 44
robots.txt file, accessing, 54

S
safe_mode directive, deprecation of, 35
sale prices

returning for products, 223
updating list_coffees.html, 224
updating list_products.html, 223–224
updating product_functions.inc.php, 222–223
updating stored procedure for, 220–222

sales
associating dates with variables, 337
creating, 335–340
creating home page for, 225–227
creating view file for, 226–227
retrieving products in stock, 337

sales page
creating PHP script for, 227–228
creating view file for, 228–229

sales table, populating, 196
sales.php script, creating, 227–228
scalability, defined, 164
search-engine rankings, improving, 175
secure network, building and maintaining, 31
Secure Sockets Layer (SSL)

described, 29
enabling on server, 178
enforcing in Coffee site, 178
implementing, 104
process of, 38
using, 38–39

security. See also protecting; server security; SSL (Secure
Sockets Layer); vulnerability management program

128-bit, 39
256-bit, 39
car analogy, 27–28
cleanliness analogy, 29–30
of code, 21
cost of, 28
of databases, 36–38
goals of, 28
improving for user accounts, 104–105
insecurity of, 27
levels of, 28
measurement of, 27
qualities of, 30
of shared hosts, 29
of Web servers, 34–36

Q
queries. See also SQL queries; stored procedure queries

catching detrimental type of, 19
executing repeatedly, 186

question mark (?), using with mod_rewrite, 176
quotation marks ("), using in forms, 74

R
receipt.php script, link to final.php, 305
records, reflecting addition of, 50
redirection function, creating, 79–81
register_globals

deprecation of, 35
disabling, 44

register.php script
bulk of, 84
creating, 82
changing thank you message in, 145

registration form
adding user to database, 87
checking for email address, 86–87
checking for first name, 85
checking for last name, 85
checking for password, 86–87
checking for submission, 85
checking for username, 85–87
completing conditionals, 90
confirming registered items, 89–90
creating, 83–84
creating array for storing errors, 84–85
creating errors, 88–89
determining user’s type, 87
inputs for, 83
passwords, 84
processing, 84–90
regular expressions, 85–86
saving and testing script, 90
shell, 82
thanking customers, 88
username, 84
validating names, 85

registration page, creating, 82
registration process, implementing SSL for, 104
registration script, downloading, 82
regular expressions

size restrictions in, 85
using on Coffee site, 176

RELOAD privileges, limiting in MySQL, 37
remove_from_cart() procedure, creating, 232–233
renew.php page, creating for PayPal, 158–159
require(), calling, 44

INDEX 365

retrieving contents of, 273
stored procedures, 230–234
updating, 232–233
using DELIMITER with, 231–234

SHUTDOWN privileges, limiting in MySQL, 37
site administration. See administration pages
site planning, 18
sites. See Coffee site; Knowledge is Power site; Web sites
sizes table

ascending size order in, 198
populating, 194

--skip-name-resolve option, using with MySQL, 36
--skip-networking option, using with MySQL, 36
SKUs (Stock-Keeping Units)

parsing, 235, 332–333, 337
using with products, 163

slash (/), using with mod_rewrite, 176
specific_coffees table, populating, 195–196
SQL (Structured Query Language), using to populate tables,

193–196
SQL commands

for Coffee site, 169–171
downloading, 51–52, 194, 259
using backticks (`) in, 51

SQL Injection attacks, 43, 187
SQL queries, executing, 190. See also queries
square brackets ([]), using with mod_rewrite, 176
SSL (Secure Sockets Layer). See also security

described, 29
enabling on server, 178
enforcing in Coffee site, 178
implementing, 104
process of, 38
using, 38–39

SSL connection, using, 78
states, validating in shipping process, 270
storage engine, considering in databases, 20
stored procedure queries, 196–201. See also queries

ending with \G, 198
returning as vertical lists, 198
selecting coffee products, 196–198
selecting non-coffee products, 198

stored procedures
add_order(), 266
add_to_cart(), 231–232
argument names used in, 260
benefits of, 188–189
calling for categories, 205–206
for checkout process, 259–265
CODE section, 190
“commands out of sync” error, 278
creating, 189, 191
creating signature for, 231

security violations, legal considerations, 6
SELECT JOIN, using with orders, 352. See also JOIN
SELECT permissions, assigning in MySQL, 37, 179
SELECT

using to fetch cart’s contents, 233–234
using with cart, 231–232
using with coffee products, 196–198
using with non-coffee products, 198

select_products() procedure, queries for, 220–221
semicolon (;), ending stored procedure queries with, 198
server data, protecting, 41
server organization, for Knowledge is Power site, 52–54
server security, hosting implications, 33–34. See also security
servers. See also Web servers

accessing from command line, 193
setting time zones for, 257

session data, storing, 105
session fixation attack, 105
session IDs, storing, 104
sessions, wiping out, 95–96
sessions directory, changing, 41
setcookie() parameters, matching for cookie, 96
SHA256 security, 79
shared hosts. See also hosting plans

changing session directory for, 36
security of, 29, 33
using, 36

shipping, adding to session, 277
shipping cost

calculating for carts, 247–249
fetching in checkout process, 261

shipping products, legal considerations, 5–6
shop.php script

versus browse.php, 210
creating for categories, 204–206
error.html view file, 204–206
list_categories.html view file, 204, 208

shopping carts
adding products to, 231–232, 237–238
beginning checkout process for, 243
calculating shipping, 247–249
clearing, 259
creating PHP script for, 236–240
creating views for, 240–243
displaying contents of, 274–278
emptylist.html view, 245–247
fetching contents of, 233–234
helper functions for, 234–236
making, 236
model aspect of, 230
moving products into, 238
MVC approach for, 230
removing products from, 232, 238

366 INDEX

Toad MySQL development tool, 259
traffic to sites, increasing, 3–4
transaction_id information, recording, 50–51
transactions, adding to checkout process, 259–261
trigger_error() point, reaching, 273, 293

U
UNION

using to fetch cart’s contents, 233–234
using with sales, 339

unique identifiers, providing to administrators, 31–32
unit testing, 22
United Kingdom, legal requirements in, 5
Unix, abbreviation for, 36
UPDATE permissions, assigning in MySQL, 37, 179
URL data, validating, 41
URLs, representing spaces in, 176
user account system, strength of, 86
user accounts

activating, 90
improving security of, 104–105
protecting, 42

user interface, creating in browser, 7
users, protecting, 41–42
user-supplied data, validating, 41

V
validating

content, 108
cookie data, 41
data to prevent attacks, 43
user-supplied data, 41

variables, binding, 327, 332
VeriSign Web site, 39
version-control software, 21
View in MVC, defined, 164
view_order.php script

creating, 344–349
updating, 350–353

view_orders.php script, creating, 341–343
view_pdf.php, creating, 132–134
views, creating for carts, 240–243
Visa cards

number format for, 289
testing numbers for, 306

VPS (Virtual Private Server), using, 10–11
vulnerability management program, maintaining, 31. See also

protecting; security

stored procedures (continued)
executing, 190–191
executing SQL queries, 190
fetching cart’s contents, 233–234
performance benefits, 266
remove_from_cart(), 232–233
removing products from cart, 232
for sale prices, 220–222
security benefits, 188–189, 266
updating carts, 232–233
using ALTER ROUTINE syntax with, 221–222
using in Coffee site, 165, 188–191
using parentheses with arguments, 189
variables in, 265

str_replace() versus preg_replace() function, 270
street addresses, validating for shipping, 269
stripslashes(), applying for billing, 288–289
striptags() function, applying, 42
Structured Query Language (SQL), using to populate tables,

193–196
styles.css file, 53
substr() breaks, using with SKUs, 235
suckerfish approach, 310, 313
Superfish plug-in

applying CSS classes, 314
selecting unordered lists, 315
using with admin page, 313–315

system() function, avoiding, 36

T
table plug-ins, 343
table type, considering in databases, 20
tables

creating in databases, 51–52
populating using SQL, 193–196

taxing Internet sales, 5–6
template, creating for admin pages, 310–313
Templates.com, 182
test account, creating for checkout process, 252–253
test prefix, deleting for databases, 36
test-driven development, 22
testing Web sites, 22–24
TextMate text editor, xvi
thanks.php script

creating for PayPal, 146–148
updating for IPN, 157–158

Thawte Web site, 39
time zone, setting for servers, 257
TinyMCE WYSIWYG editor, using, 112–115

INDEX 367

PCI DSS compliance, 6–7
PECL (PHP Extension Community Library), 41
PHP documentation, 21
PHP scripting language, xv
protecting, 42–46
Templates.com, 182
TextMate text editor, xvi
Thawte, 39
TinyMCE WYSYWIG editor, 112
Toad MySQL development tool, 259
VeriSign, 39
WYSIWYG editors, 112
Xdebug, 24
Zenart e-commerce package, 8

Web technologies, choosing, 7–8
WHERE clause

using to select coffee products, 198
using with sales, 339

while loop, using with categories, 208–209
wish list

versus cart page, 246
creating PHP script for, 244–245
creating views for, 245–247

wishlist.php script, creating, 244–245
WYSIWYG editor, integrating for pages, 112–115

X
XAMPP Web site, xvi
Xdebug Web site, 24
XSS (Cross-Site Scripting) attacks, preventing, 41–42

Z
Zenart e-commerce package, 8
zip codes, validating in shipping process, 270

W
Web browser, Firefox, xvi
Web hosts

finding, 12–13
options, 9–11

Web pages. See pages
Web root directory

explained, 35
organizing, 52–53

Web servers. See also servers
configuring for security, 34–36
MAMP, xvi
running benchmarks on, 22–23
XAMPP, xvi

Web sites
Apache Web server, xv
ApacheBench, 22
APC (Alternative PHP Cache), 23
APD (Advanced PHP Debugger), 24
Aptana Studio IDE, xvi
Authorize.net, 15
certificates, 40
cURL options, 298
Datatables, 343
Dreamweaver IDE, xvi
Filter functions, 41
Firebug debugging tools, xvi
FTC (Federal Trade Commission), 5
GoDaddy, 39
jQuery framework, xv
jQuery table plug-ins, 343
jQuery’s Datepicker plug-in, 335
Kilo theme for HTML template, 61
maintaining, 24–25
MySQL database application, xv
osCommerce, 8
PayPal, 14

WATCH
READ

CREATE
Meet Creative Edge.
A new resource of unlimited

books, videos and tutorials for

creatives from the world’s

leading experts.

Creative Edge is your one

stop for inspiration, answers to

technical questions and ways to

stay at the top of your game so

you can focus on what you do

best—being creative.

All for only $24.99 per month

for access—any day any time

you need it.

peachpit.com/creativeedge

Managing Site Content    1

SuggeSted alterationS
The goal of this book is to teach sound e-commerce code and methodologies.
In thinking of the two sites I’d use to achieve that goal, I tried to come up with
examples that best portray the breadth of what e-commerce can be. Being who
I am, however, I also dreamt up about three dozen other ideas for each one
that actually made it into the book. Rather than discard good brainstorming,
I thought I’d finish this chapter with some suggestions as to how this particular
example could be expanded. While none of these ideas will be fully developed
in the text, you’ll see more than enough, in terms of MySQL and PHP, to realize
them yourself, should you choose.

Logging History
One addition you could add to the site would be to log all the pages people
visit. You’d need to create a history table, defined as:

CREATE TABLE history (
`id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
`user_id` INT UNSIGNED NOT NULL,
`type` ENUM('page', 'pdf'),
`page_id` MEDIUMINT UNSIGNED DEFAULT NULL,
`pdf_id` SMALLINT UNSIGNED DEFAULT NULL,
`date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (`id`),
KEY (`page_id`, `type`),
KEY (`pdf_id`, `type`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

The page.php script would add a new record to this table every time the page
is loaded (by an active user):

INSERT INTO history (user_id, type, page_id) VALUES ($_SESSION['user_id'],
➥'page', $_GET['id'])

The view_pdf.php page would do the same thing, but change the type to pdf
and use the id value from the pdfs table for the pdf_id.

The history table would then be able to provide the user with a history of
every page and PDF they’ve seen. This table would provide the administrator
with indications of the most popular pages. That information could also be
used on the public side, perhaps to display the 10 most popular articles on the
home page (Figure 5.19). Here’s the JOIN query that would return the 10 most
frequently viewed pages:

tip

Some of these ideas may also

be partially developed in the

downloadable scripts from

www.DMCInsights.com/ecom/.

Figure 5.19

5

Managing Site
Content

www.DMCInsights.com/ecom/

2    Chapter 5

SELECT COUNT(history.id) AS num, pages.id, pages.title FROM pages,
➥history WHERE pages.id=history.page_id AND history.type='page'
➥GROUP BY (history.page_id) ORDER BY num DESC LIMIT 10

Making Notes
Another added service would be allowing users to make notes on pages.
The table would be:

CREATE TABLE notes (
`id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
`user_id` INT UNSIGNED NOT NULL,
`page_id` MEDIUMINT UNSIGNED NOT NULL,
`note` TINYTEXT NOT NULL,
`date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (`id`),
UNIQUE (`user_id`, `page_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

Next you add a form on each page containing just a textarea. When the form
is submitted, the information is stored in that table. On the user’s viewing
history page, you could easily indicate those pages for which the user has left
notes (by performing a left outer join from the pages to the notes table). On
a specific content page, you could easily retrieve the notes a user previously
made on its content.

Recording Favorites
To make the site easier to use, especially as you create more content, users
might appreciate being able to bookmark their favorite content. To do that for
the HTML pages is simple. First, create a table defined like so:

CREATE TABLE favorite_pages (
`user_id` INT UNSIGNED NOT NULL,
`page_id` MEDIUMINT UNSIGNED NOT NULL,
`date_created` TIMESTAMP NOT NULL,
PRIMARY KEY (`user_id`, `page_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

This is a junction table, used to manage the many-to-many relationship
between users and pages. It has only three columns and the first two together
constitute the primary key (that is, it’s a compound primary key). Each favorite
for each user will represent one record in this table.

tip

You could decide whether each

time a user visits the same

page should be reflected in the

history table or not.

Managing Site Content    3

Next, create an image displayed with the content that, when clicked, passes the
page ID along in the URL. On the add_to_favorites.php page, you’d store the
user’s ID from the session and the page ID from the URL in the favorites table.

You could then create a favorites.php page, linked through the Manage
Account section for logged-in users, which displays all the favorites. It would
need to perform a JOIN to get the favorite content. Or you could mark the
user’s favorites next to each item in a history page.

On each content page, you could add a check to see if the page is already in
the user’s favorites. If it is, you would display text and an image indicating
such, and perhaps clicking the link would remove it from the user’s favorites
by sending the page ID along to remove_from_favorites.php.

Here’s what the HTML for adding and removing favorites might look like
(Figure 5.20):

echo '<p>
➥<img src="/images/heart_48.png" border="0" width="48"
➥height="48" />

➥<img src="/images/cross_48.png" border="0" width="48"
➥height="48" /></p>';

Making a note of favorite PDFs requires a bit more thought. You can’t easily add
links to the PDF itself, so you’d have to put the Add to Favorites link somewhere
else, like on the page that lists all the PDFs. This means the user would have to
read the PDF, then go back to that page to flag it. As for storing favorite PDFs in
the database, you could create a favorite_pdfs table, just like favorite_pages,
or create a favorites table that stores both, like the history example.

Rating Content
Continuing on this same theme, users could indicate a rating on each page.
You would store this in a table like:

CREATE TABLE page_ratings(
`user_id` INT UNSIGNED NOT NULL,
`page_id` MEDIUMINT UNSIGNED NOT NULL,
`rating` TINYINT UNSIGNED NOT NULL,
`date_created` TIMESTAMP NOT NULL,
PRIMARY KEY (`user_id`, `page_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

tip

An even better addition would

be to use Ajax to submit the

user’s favorites indication to the

server behind the scenes.

Figure 5.20

tip

The images used in this example

are freely available at www.

wefunction.com/2008/07/

function-free-icon-set/.

www.wefunction.com/2008/07/function-free-icon-set/
www.wefunction.com/2008/07/function-free-icon-set/
www.wefunction.com/2008/07/function-free-icon-set/

4    Chapter 5

Unlike with the history table, where you may want to record every time every
user visited a page, you would only want each user to be able to rank a page
once. You can accomplish that using this query:

INSERT INTO page_ratings (user_id, page_id, rating) VALUES
➥($_SESSION['user_id'], $_POST['id'] , $_POST['rating'])

The rating would be an integer, from say 1 to 5. The easiest way to submit the
rating would be to use a drop-down menu and the form would post the rating
back to page.php. The page.php script would then need an extra block at the
top of the script that checks for a POST request and adds the record to the
database if all the data successfully passes the validation tests.

The ratings could then be displayed to the user on their favorites and history
pages. The ratings could also be used by the administrator to see the best
reviewed content, which again might be turned into a listing on the home page
(Figure 5.21):

SELECT ROUND(AVG(rating),1) AS average, pages.id, pages.title FROM
➥pages, page_ratings WHERE pages.id=page_ratings.page_id GROUP BY
➥(page_ratings.page_id) ORDER BY average DESC LIMIT 10

Again, this could also be done for the PDFs, but the logic would need to be
added to the pdfs.php script.

Making Recommendations
Implementing a recommendations system is a fantastic way to encourage
people to use your site and increase your business. Whether it’s something
like Netflix that recommends titles based upon your body of ratings and view-
ing history, or Amazon that recommends related and alternative products to
those you’re looking at, are in your cart, or were just purchased, there’s a lot
you can do with recommendations. The logic with a recommendations system
may take some effort, though.

One implementation would have the administrator making the recommen-
dations: For each page, the administrator could use a drop-down menu
(which allows for multiple selections) to associate related content. The
recommendations table would store for each page an ID of other recom-
mended pages. If you wanted to allow for recommendations across content
types, that would require a more complex table structure.

An alternative way to implement a recommendation system would be to base
recommendations on user rankings. For example, if user Alice gave page 1 five
stars and page 2 four stars, and user Bob gave page 2 four stars, Bob might

tip

An even better addition would

be to use Ajax to submit the

user’s rating to the server behind

the scenes and immediately

update the page to reflect the

rating.

Figure 5.21

tip

If you want some concrete SQL

and PHP to start implement-

ing a recommendation system,

contact me through my support

forum (www.DMCInsights.com/

phorum/).

www.DMCInsights.com/phorum/
www.DMCInsights.com/phorum/

Managing Site Content    5

really like page 1, as well. Such a recommendation system could be more
accurate than the administrator-created one, but relies on lots of sound logic
and filtering. The more accurately you can equate Bob’s tastes to other user’s
tastes, the better you can make recommendations.

Placing HTML Content in 
Multiple Categories
Just like a blog can file posts under multiple categories (and multiple tags), you
may decide that some of your HTML content should be listed in multiple catego-
ries, too. That would result in a many-to-many relationship between the pages
and the categories tables, so you would have to take the category_id out of the
pages table and use a junction table instead. That table would be defined as:

CREATE TABLE pages_categories (
`page_id` MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT,
`category_id` SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`page_id`, `category_id`)
)

You wouldn’t need to change the footer, which links to every category, but the
category.php page would have to perform a join across pages_categories
and pages:

SELECT id, title, description FROM pages, pages_categories WHERE
➥pages.id=pages_categories.page_id AND pages_categories.category_id='
➥. $_GET['id'] . ' ORDER BY date_created DESC

The add_page.php script would need to allow for multiple categories to be
selected:

<select name="category[]" multiple="multiple" size="5"
➥<?php if (array_key_exists('category', $add_page_errors))
➥echo ' class="error"'; ?>>

The logic to make the categories sticky would have to be changed as
$_POST['category'] is now an array:

if (isset($_POST['category']) && (in_array($row[0], $_POST['category']))
➥echo ' selected="selected"';

Then, the handling part of the script would have to validate that
$_POST['category'] has a count() greater than zero. And after the record was
added to the pages table, you would insert one record into pages_categories
for each selected category.

Creating a Catalog    1

Potential alterations
This chapter covers everything you need to know to implement a real-world
e-commerce product catalog that has a decent amount of complexity. As
always, there are many other ways you could present the catalog, other
features you could implement, and other stylistic choices you could make. I’ll
highlight a few of those here; no doubt you can come up with several others
on your own.

Paginating Results
One feature I have not incorporated into this site is pagination: making a list
of items appear in smaller groupings—like 10 to 20 at a time—over multiple
pages. For starters, the page for listing every coffee product does so using
a single drop-down menu, so no pagination is required there. As for the
 non-coffee products, the site would have to get fairly large for it to require
pagination. But should you want to add that feature, it’s quite simple to imple-
ment. If you don’t already know how, I discuss the concept in detail in my
book, PHP and MySQL: Visual QuickStart Guide (Peachpit Press), or you can
simply ask how in my support forums (www.DMCInsights.com/phorum/).

With the Coffee site, there’s one complication to using pagination: the pretty
URLs. If you’re using mod_rewrite, you’ll need to modify the .htaccess rules so
that it recognizes and handles the pagination variables that get passed along
in the URL.

Highlighting New Products
You may want to highlight new products to make the site look fresh and busy.
You might do so by:

n Showing the most recent three or four products on the home page

n Displaying the most recent three or four products in a given category on the
shop.php page

n Creating a separate “New Items” page that lists every product added within
the past X days or weeks

The paradigm for implementing any of these has already been created: It’s
essentially the same code and queries as used to display sale items, just with-
out using the sales table and ordering the results by the creation dates.

www.DMCInsights.com/phorum/

2    ChaPter 8

Directly Linking to Product Categories
One reasonable complaint about this site’s design is that, except for the sale
items, the customer must click through two pages to get to actual products
they can purchase (first the shop page, then browse). An easy fix would be to
change the navigation so that it allows for direct access to the categories.

To do this, you’d convert the main navigation menu into a nested unordered
list. You’d use PHP to generate the sublists, but the desired HTML would be:

<ul class="nav">
 Coffee

 Dark Roast
 Kona
 Original

➥Blend

 Goodies
 Sales
 Wish List
 Cart

What you see for the specific coffee types would need to be applied to the
categories of goodies, too. You would then apply a combination of CSS
and/or JavaScript so that the sublists are only shown when the user mouses
over the primary links. That specific code can be found by searching online for
 “Suckerfish Menu,” although you’ll need to tweak the offered CSS so it fits in
with the design of the template.

Adding Multiple Coffees or 
Quantities at Once
It’s not a big deal, but the site as written will let the customer add only a single
quantity of a single product to their cart at a time. As for the quantities, the
customer will be able to easily update that in the cart itself. But if you wanted
to allow for entering a quantity, you would have to turn the products listing
into a form, as in the coffee listing, and add a <SELECT> menu or text box
for the quantity (Figure 8.20). Most importantly, the form must also store the
product’s SKU in a hidden input:

tip

This technique is known as a

Suckerfish Menu, and is quickly

demonstrated in Chapter 11.

Creating a Catalog    3

Figure 8.20

echo '<form action="/cart.php" method="get">
<input type="hidden" name="action" value="add" />
<input type="hidden" name="sku" value="' . $row['sku'] . '" />
<h3>' . $row['name'] . '</h3>
<div class="img-box">
 <p><img alt="' . $row['name'] . '" src="/products/' . $row['image']

➥. '" />' . $row['description'] . '
' .
 get_price($type, $row['price'], $row['sale_price']) .
 'Availability: ' . get_stock_status($row['stock']) . '</p>
 <select name="qty"><option>1</option><option>2</option></select>
 <input type="submit" value="Add to Cart" class="button" />
</div></form>';

With the specific coffees, there are other ways you could go about presenting
them. You could list the specific coffees as a <SELECT> menu that allows mul-
tiple selections. Here’s what you would have in list_coffees.html (Figure 8.21):

<select name="sku[]" multiple="multiple" size="5">

Figure 8.21

Note that I’ve changed the name of the item from sku to sku[], so that an array
of products will be sent to cart.php.

If you wanted, you could instead list the coffees as a series of check boxes or
with a corresponding series of text boxes, into which the user enters the quan-
tity desired. In either of these two cases, you would still have to use sku[] as the
name for every form element.

As you’ll see in the next chapter, you’d need to modify cart.php to handle an
incoming array, if you were to apply any of these three modifications to how the
coffee products are listed. If you were to add a quantity option to coffee or non-
coffee products, that would need to be factored in an updated cart.php, too.

4    ChaPter 8

Larger Images
Depending upon what your e-commerce site is selling, you may want to imple-
ment a feature so that the site supports product images in multiple sizes. This
wasn’t really necessary in this example—a large picture of coffee beans is no
more likely to bag a sale.

At the very least, a site may want its product images to be available in three sizes:

n Thumbnail, for use in places like the home page in this example

n Regular, for use on product listing pages

n Large, which would appear above the page when the user clicks one of the
smaller images

The administrative interface could be designed to handle three image sizes in
one of two ways. First, it could be up to the administrator to provide all three
images in set sizes. Second, the administrator could submit one large image,
which the PHP script would then dynamically resize to create the smaller ver-
sions. The latter would be preferable, although this requires quite a bit more
PHP code and support for the GD image manipulation library.

Second, you’ll need to decide how to represent the various images on the
server. You could use the same filename for each but store them in three sepa-
rate folders: /products, /products/thumbs/, and /products/large. You could
then use PHP to confirm the existence of the product image in a given size,
before attempting to use that image in the HTML.

Alternatively, you could create a separate images table in the database:

CREATE TABLE `images` (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
product_type ENUM('coffee', 'other'),
product_id SMALLINT UNSIGNED NOT NULL,
image VARCHAR(45) NOT NULL,
image_type ENUM('thumb', 'regular', 'large', 'alternative'),
PRIMARY KEY (id),
KEY product (product_type, product_id),
KEY (image_type)
);

tip

You can also manipulate images

in PHP by making system calls to

the ImageMagick library, if your

server supports it.

tip

Another option is to store

images in BLOB columns in

the database itself. There are

arguments for and against this

practice, though.

Creating a Catalog    5

The table would have a many-to-many relationship with both the
non_coffee_products and specific_coffees tables (just like the sales table).
For each image type that exists for a given product, a new record would be
created in this table. The structure also allows for the submission of alternative
images, such as the same shirt in a different color or a view of a product from
another perspective. Of course, by adding this table, you’ll need to update the
select_products() stored procedure so that it performs a JOIN across images,
too. And you’d likely want to create a new product function that generates the
HTML for showing images based upon what images exist for that product.

tip

Thanks to the MVC design, many

features can be added by updat-

ing the model (the stored proce-

dure) and the view (the HTML)

without touching the base PHP

script (the controller).

Building a Shopping Cart    1

potential alterationS
As with several other chapters in this book, this one concludes with some
variations on what you can do with this chapter’s content. None of these
alterations are obligatory or necessarily better than what’s already been done,
just worth considering.

Making Recommendations
Part of a good shopping cart, at least prior to the customer completing the
sale, is recommending other products to purchase. Generously said, recom-
mendations offer an additional benefit to the customer, because they truly
may be interested in other items and appreciate those items being brought to
their attention. Cynically, it could mean more money for the business.

There are two broad types of recommendations:

n Upselling: recommending similar products that are better and more
 expensive

n Cross-selling: recommending related products that the customer might
want in addition

Upselling in this particular site is simple: If a customer has a one-pound bag of
coffee in their cart, recommend the two-pound bag. Or if your site sells audio
visual equipment, upselling might be recommending other models (like a
receiver or DVD player) by the same manufacturer.

Cross-selling has a larger potential—not everything can be upsold—but
requires more thought. When a site doesn’t have that many products or that
large of an order history, you can implement recommendations by creating a
system whereby the administrator makes associations among products. If the
site sells a lot of stuff, this might become impractical, so if you have a number
of orders in the system, you can create automatic recommendations based on
what other customers have purchased. The premise, and the underlying code,
is simple: If a customer has, say, a bag of Kona coffee in their cart, recom-
mended products would be those things that other customers purchased in
addition to Kona coffee. You could even define the strength of a recommenda-
tion based on how often it is purchased along with the original product.

2    Chapter 9

Creating Add to Wish List Links
A simple change you could make to the site would be to include Add to Wish
List links beside products, just like the Add to Cart links. With the wishlist.php
script as written, you would just need to create an “add” action conditional,
like the one in cart.php.

Shipping Alternatives
Shipping, like the choice of payment processor itself, is such a big topic that I
could arguably dedicate an entire chapter to the myriad of ways to handle this
part of an order. The simplest, but clearly not the best, way to handle shipping
is to not charge anything additional at all: Just factor enough profit into each
item sold to cover the expense. The site that does this will run the risk of losing
business to other sites that overtly charge less for the same item, even though
those sites will later add in shipping charges. Also, this approach would not
allow for different shipping options (such as the speed of delivery) or easy
adjustments to the cost of shipping as they change over time.

The second simplest way to calculate shipping is implemented here: a propor-
tional amount dictated by the order total. This approach is easy to manage,
easy to change, and reasonable, both for the business and for the customer.

To calculate shipping based on the weight of the order, you’d need to modify
the database so that the weight of items is recorded along with the other prod-
uct details. Depending on what you’re selling, you’d be best off representing all
weights in the same unit: grams, kilograms, ounces, pounds, what have you.
The shopping cart would then need to retrieve the weight for each product,
generate a weight total, and then calculate the shipping using the total weight.

On a similar note, you could create an additional shipping cost representative
column in the database. This could be a column added to the specific products
tables (non_coffee_products and specific_coffees, accordingly), in which case
there would expect to be a lot of NULL values, which is not ideal. Alternatively,
you could create a new table that represents each product that has an addi-
tional shipping cost as one row:

CREATE TABLE `extra_shipping` (
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `product_type` ENUM('coffee','other') NOT NULL,
 `product_id` MEDIUMINT UNSIGNED NOT NULL,
 `extra_charge` DECIMAL(4,2) UNSIGNED NOT NULL,

Building a Shopping Cart    3

 `date_created` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `date_modified` TIMESTAMP NOT NULL DEFAULT '0000-00-00 00:00:00',
 PRIMARY KEY (`id`),
 KEY `product_type` (`product_type`,`product_id`),
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

Unfortunately, this would mean another table joined into many of the SELECT
queries.

The most complicated way of calculating shipping is based on the distance
(and possibly the weight or size as well). To pull this off, you’d need the cus-
tomer’s postal code and, for international orders, country. You would then tie
into the system developed by your shipping company of choice. For example,
UPS and FedEx both have Application Programming Interfaces (APIs) available
through which you can get exact prices on shipping based upon the distance,
the weight, the size, and the delivery speed. These APIs work quite similarly
to the payment gateway API. For more information, see the documentation for
the shipping company of your choosing.

Improving the Cart Display
The success of the site will depend, in some small part, on the user’s reaction
to the shopping cart. If it’s nice and inviting and makes the customer comfort-
able, they’re more likely to complete the sale. With that in mind, you may
want to put some effort into improving that interface. For example, you should
probably consider creating links from the products in the cart to the product’s
image and description in the site. Customers often like being able to revisit
what they’re buying.

Second, you could add messages to the cart page to indicate the result of the
latest action. The message could range from something as simple as “The cart
has been updated.” to something more specific like “Mugs::Red Dragon has
been removed from your shopping cart.” To do this, the HTML view file will
need to check for and display a message:

if ($message) echo $message;

Then the PHP script would assign a value to $message for each action. If you
want to refer to specific products by name, you’d also need to create a stored
procedure that retrieved the product information for a given product type
and ID. Such a procedure could then be called after an INSERT, UPDATE, or
DELETE query is executed.

4    Chapter 9

Tweaking the Database
The foundation of the Web site is the database, so I’d be remiss not to mention
alternatives there. To start, the system as written will create a lot of flotsam:
wish list and shopping cart items never to be purchased. You would likely want
to create a PHP (or command-line) script that routinely rids the database of old
stuff. A record is old if its modification date is more than, say, six months old or
if its creation date is more than six months old and its modification date is still
0000-00-00 00:00:00, meaning the record had never been updated.

Second, if you’re using the stored procedures and like how they work, you
should probably read up on how to handle errors in stored procedures. While
not hard to do, the topic is large and technical enough that I had to omit it from
the book, lest I took away from the more important points.

Finally, you could get much better performance from the database by taking
advantage of VIEW tables. A VIEW table is a memorized SELECT query that
you can run other queries on as if it were a real table. The syntax for creating
a VIEW is:

CREATE VIEW view_name AS <SELECT QUERY>

As an example, the UNION used in the procedures for retrieving every shop-
ping cart or wish list item is quite demanding. You could create a VIEW that
performs all the JOINs, effectively replacing the product_type and product_id
values from the database tables with the actual information you want to
display in the Web browser. The view would also store the associated user
session ID values.

CREATE VIEW cart_view AS
SELECT user_session_id, CONCAT("O", ncp.id) AS sku, c.quantity,
➥ncc.category, ncp.name, ncp.price, ncp.stock, sales.price AS sale_price
➥FROM carts AS c INNER JOIN non_coffee_products AS ncp ON
➥c.product_id=ncp.id INNER JOIN non_coffee_categories AS ncc ON
➥ncc.id=ncp.non_coffee_category_id LEFT OUTER JOIN sales ON (
➥sales.product_id=ncp.id AND sales.product_type='other' AND ((NOW()
➥BETWEEN sales.start_date AND sales.end_date) OR (NOW() >
➥sales.start_date AND sales.end_date IS NULL))) WHERE
➥c.product_type="other" UNION SELECT user_session_id,
➥CONCAT("C", sc.id), c.quantity, gc.category, CONCAT_WS(" - ", s.size,
➥sc.caf_decaf, sc.ground_whole), sc.price, sc.stock, sales.price FROM
➥carts AS c INNER JOIN specific_coffees AS sc ON c.product_id=sc.id
➥INNER JOIN sizes AS s ON s.id=sc.size_id INNER JOIN general_coffees

tip

On *nix systems, cron can be

used to execute a PHP script

automatically at periodic inter-

vals. Such a script can be used

to perform maintenance.

Building a Shopping Cart    5

➥AS gc ON gc.id=sc.general_coffee_id LEFT OUTER JOIN sales ON
➥(sales.product_id=sc.id AND sales.product_type='coffee' AND ((NOW()
➥BETWEEN sales.start_date AND sales.end_date) OR (NOW() >
➥sales.start_date AND sales.end_date IS NULL))) WHERE
➥c.product_type="coffee";

To be clear, the SELECT…UNION…SELECT query is the same as the one
in the get_shopping_cart_contents() stored procedure, except that the
user_session_id value is now part of the selection, instead of part of the
WHERE condition. Figure 9.11 shows two SELECT queries run on this VIEW
table, with the latter automatically reflecting changes in the carts table (due to
customer actions).

Figure 9.11

Once this view is defined, the get_shopping_cart_contents() query would
only need to do a SELECT on this one table, with a single condition: matching
the user’s session ID:

SELECT * FROM cart_views WHERE user_session_id=uid;

tip

VIEW tables were added to

MySQL in version 5.0.

CheCking Out    1

emailing ReCeipts
The final.php script includes email_receipt.php, whose role it is to email a
receipt to the customer. Because a lot of information could be in this receipt
(itemizing multiple products), sending an HTML receipt is a logical choice.
Considering that some people like HTML email and others don’t, the profes-
sional solution is to send an email that’s viewable in either HTML (Figure 10.18)
or plain text format (Figure 10.19). That’s what email_receipt.php will do.

Figure 10.18 Figure 10.19

In theory, you can create a multipart email (one that’s readable in both
formats) by just creating the proper body and headers that adhere to the
email standard. In my experience, that’s much, much easier said than done.
A better solution is to use a third-party library that will guarantee accurate
and reliable results. For email_receipt.php, let’s turn to the Zend Framework
(http://framework.zend.com).

Installing the Zend Framework
The Zend Framework is created and supported by key PHP developers and has
a module for just about anything you’ll want to do with PHP. The framework
is thoroughly documented and well established. One of the best features of
the framework is that you can use pieces of it as needed, without having to
embrace or incorporate the entire library. In other words, a site like this one
can use just Zend_Mail without the entire site being Zend Framework-based.
To use the Zend Framework on the site, you’ll need to grab a copy of it first.

1. Go to http://framework.zend.com.

2. Click Downloads > Latest Release.

3. On the Latest Release page, download the minimal version.

tip

Authorize.net can send out

confirmation emails, too, but

you cannot control the format

as easily.

tip

You can also use the PEAR

Mail_Mime class to send out

HTML email.

tip

If you do a lot of PHP develop-

ment, you ought to be familiar

with the Zend Framework, even if

you don’t routinely use it.

http://framework.zend.com
http://framework.zend.com

2    ChapteR 10

The framework can be downloaded directly or by registering with Zend.com
first. It’s up to you which route you choose. The minimal version is an
alternative to the full version and includes only the core modules, such
as Zend_Mail.

4. Expand the downloaded file.

Depending upon the version you downloaded in Step 3, you’ll either have a
.zip or a .tar.gz archive that needs to be expanded.

5. From the expanded framework folder, copy the entire library directory to
your Web site’s root directory.

You won’t actually need the entire Zend Framework library for this site, but
there’s no harm in copying it all over.

Creating the PHP Script
The email_receipt.php page has to send out an email available in two ver-
sions: plain text and HTML. This means the script needs to create two separate
email bodies.

1. Create a new PHP script in your text editor or IDE to be named
email_receipt.php and stored in the includes directory:

<?php

2. Begin the plain text version of the body:

$body_plain = "Thank you for your order. Your order number is
➥{$_SESSION['order_id']}. All orders are processed on the next business
➥day. You will be contacted in case of any delays.\n\n";

The plain text version starts by thanking the customer, indicating the order
number, and stating what’s to be expected next.

3. Begin the HTML version of the body:

$body_html = '<html><head><style type="text/css" media="all">
 body {font-family:Tahoma, Geneva, sans-serif; font-size:100%; line-

➥height:.875em; color:#70635b;}
</style></head><body>
<p>Thank you for your order. Your order number is ' . $_SESSION[
➥'order_id'] . '. All orders are processed on the next business day. You will
➥be contacted in case of any delays.</p>
<table border="0" cellspacing="8" cellpadding="6">
 <tr>
 <th align="center">Item</th> (continues on next page)

CheCking Out    3

 <th align="center">Quantity</th>
 <th align="right">Price</th>
 <th align="right">Subtotal</th>
 </tr>';

The HTML version of the body starts with the beginning HTML code: To
create an HTML email, you create an entire HTML page, as if it were to be
viewed in a Web browser. You can even include CSS as you would in a stan-
dard HTML page.

The body then begins with the same message as in Step 2, plus the start of
a table definition.

4. Retrieve the order contents:

$r = mysqli_query($dbc, "CALL get_order_contents({$_SESSION[
➥'order_id']})");
while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {

The get_order_contents() stored procedure returns the details—what
products, and in what quantities and at what price—associated with a
given order number. The procedure does not return anything regarding the
customer, which is fine in this situation.

5. Add each item to both versions of the body:

$body_plain .= "{$row['category']}::{$row['name']} ({$row['quantity']})
➥@ \${$row['price_per']} each: $" . $row['subtotal'] . "\n";
$body_html .= '<tr><td>' . $row['category'] . '::' . $row['name'] . '</td>
 <td align="center">' . $row['quantity'] . '</td>
 <td align="right">$' . $row['price_per'] . '</td>
 <td align="right">$' . $row['subtotal'] . '</td>
</tr>
';

For the plain text version, the item’s name, quantity, price, and subtotal is
listed on a single line. For the HTML version, a table row is created listing
the same information.

6. Store the shipping and order total for later use:

$shipping = $row['shipping'];
$total = $row['total'];

After the loop has completed—after every item has been added to the
email—the cost of shipping and the total should be appended to the email
body. In order to make those values available after the execution of the
loop, they’re assigned to other variables here.

4    ChapteR 10

  7. Complete the loop and clear the next results:

} // End of WHILE loop.
mysqli_next_result($dbc);

Because the get_order_contents() stored procedure performs a SELECT
query, an extra set of results will be returned. These results should be
addressed so that other stored procedures that run (by final.php, if appli-
cable) won’t cause problems. As explained earlier in the chapter, invoking
the mysqli_next_result() function will mitigate the potential complication.

  8. Add the shipping:

$body_plain .= "Shipping & Handling: \$$shipping\n";
$body_html .= '<tr>
 <td colspan="2"> </td><th align="right">Shipping &

➥Handling</th>
 <td align="right">$' . $shipping . '</td>
</tr>
';

For the plain text version, the ampersand can be used. I’m also using
double quotation marks in assigning plain text values, because I want to
conclude most lines with a newline (\n). The \$$shipping construct prints
a literal dollar sign (the first dollar sign is escaped), followed by the value
of $shipping. If you tried to use $$shipping instead, you’d create a vari-
able variable, and PHP would try to insert the value of, say, $11.24, which
wouldn’t work.

For the HTML version, another table row is added. To create the HTML,
single quotes are used so as not to conflict with all the double quotes
around the attributes. The ampersand has to be represented by the entity
version in HTML.

  9. Add the total:

$body_plain .= "Total: \$$total\n";
$body_html .= '<tr>
 <td colspan="2"> </td><th align="right">Total</th>
 <td align="right">$' . $total . '</td>
</tr>
';

10. Complete the HTML body:

$body_html .= '</table></body></html>';

CheCking Out    5

At this point, both email bodies have been generated and the email can
be created and sent.

11. Add the library folder to the include path:

set_include_path('./library/');

The Zend_Mail class may need to include other Zend classes, so the entire
Zend library folder needs to be added to PHP’s include path. The path
value here is relative to final.php, which includes email_receipt.php.

12. Include the Zend_Mail class:

include ('Zend/Mail.php');

13. Create a Zend_Mail object:

$mail = new Zend_Mail();

This line creates a variable named $mail, which will be an object of type
Zend_Mail. The rest of the code will use this object.

14. Set the from and to parameters:

$mail->setFrom('admin@example.com');
$mail->addTo($_SESSION['email']);

The from address should be something appropriate for the site. The to
address is the customer’s email, stored in the session on checkout.php.
The addTo() method is used to add recipients to the email.

15. Set the email subject:

$mail->setSubject("Order #{$_SESSION['order_id']} at the Coffee
➥Site");

The subject includes the order ID.

16. Set the plain and HTML bodies:

$mail->setBodyText($body_plain);
$mail->setBodyHtml($body_html);

17. Send the email:

$mail->send();

18. Save the file.

tip

This is a good example how

object-oriented programming

(OOP) allows you to use existing

class definitions without know-

ing much about OOP yourself.

tip

Using Zend_Mail, you can send

a single email to as many recipi-

ents as you want, and you can

also use Cc and Bcc.

tip

The Zend Framework manual has

more on Zend_Mail, including

how to use a specific SMTP

server to send the message.

6    ChapteR 10

FOR YOuR
COnsideRatiOn
Even though this chapter presents the checkout process in as streamlined,
yet comprehensive, a way as possible, the content still required more than 50
pages and there are any number of variations you could implement. Let’s look
at a few of the most logical alterations and additions you could make.

Top-Notch Customer Service
One of the best general things you could add would be several obvious ways
to contact the site’s administrator or support team. This could be done using
a combination of a contact form, a help menu, an FAQ page, or a direct phone
number. Make it easy and as immediate as possible, for the customer to get
help and answers to their questions.

Checking Order Status Online
Even though customers don’t have a true account with the site (that is, the
ability to log in and log out), it’d be nice if they could check the status of an
order. To do that, you could create a form where customers supply their email
address and order number, easily found on the original receipt (shown in the
Web browser) or the confirmation email.

When the form is submitted, the page would just confirm that the
email address matches the order number. You could modify the
get_order_contents() procedure so that it also returns the shipping status
(the date each item shipped), thereby revealing this information to the cus-
tomer online.

You could also add a comments field to the orders table, wherein the admin-
istrator could make notes regarding the order as a whole for the customer
to see. Another comments field could be added to order_contents for notes
particular to a given product.

Improving the Security
The security measures taken in this site are fairly tight, and I can recommend
using the code and functionality in good conscience. Because all form data
is thoroughly validated using regular expressions, most of the functionality
remains within the database, and the payment request is made behind the
scenes, it’s fairly secure.

CheCking Out    7

Outside the Web site itself, one recommendation I would make, which
Authorize.net also suggests, is that you change your Authorize.net identifying
information regularly. This includes the user account password (used to access
the Merchant Interface), the login ID, and the transaction key. These values can
all easily be changed (in the Merchant Interface). After you change the login ID
and transaction ID, only two lines in gateway_process.php need to be updated
to account for the changes.

Preventing Duplicate Orders
The billing.php script can take a few moments to execute, once the form
is submitted, because it has to send a request to the gateway and await a
response. This extra delay can fool customers into thinking their form was
not submitted, causing them to perhaps click the submit button again to
“correct” the problem. With the site as written, this won’t actually create two
orders because the gateway will reject duplicate submissions within a default
time period of two minutes. Still, it’d be better to avoid this potential problem
entirely. And it’d be better to give an indication to the customer that their
order is being processed and that a delay is to be expected. Although this is a
valuable approach, I omitted it from the billing.php script because it requires
JavaScript, and I didn’t want to further confuse an already complex system.

When it comes to JavaScript, you can either create your own code or use a
framework. I’m comfortable with either approach, but frameworks are so easy
to use that I recommend that route for beginners. My current favorite frame-
work of choice (and the favorite of many) is jQuery (www.jquery.com). I like it
because it has excellent browser support, is easy to use, and degrades nicely.
To update the billing form to use jQuery…

1. At the end of billing.html, add:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.4.2/
➥jquery.min.js" type="text/javascript" charset="utf-8"></script>

This line will load the jQuery library from Google’s API system. There’s a
potential performance benefit in using the Google-provided version of
the jQuery library instead of adding a copy to the site: If the customer has
visited another site that also used this same jQuery library from Google, the
user’s browser won’t have to download the library again, thereby improving
how quickly your page loads.

2. Add a <SCRIPT> block:

<script type="text/javascript" charset="utf-8">
</script>

tip

Regardless of what payment

gateway you use, change the

password frequently!

tip

You can adjust the Authorize.net

duplicate-order time window by

setting x_duplicate_window to

some value in seconds.

tip

Loading JavaScript near the end

of the page can help the page to

load faster in the Web browser.

www.jquery.com

8    ChapteR 10

You cannot load an external JavaScript file and execute some JavaScript
code using the same <SCRIPT> block, so the JavaScript code that does the
work will go within these two tags.

3. Within the <SCRIPT> block, add:

$('#billing_form').submit(function(){
});

This is jQuery magic. The $('#billing_form') part is a way of selecting an
element on the page, specifically the element with an ID value of billing_
form. The .submit() says that when the selected element is submitted, the
inline function should be executed. That function’s code comes next.

4. Within the curly brackets added in Step 3, disable the submit button:

$('#billing_form').submit(function(){
 $('input[type=submit]', this).attr('disabled', 'disabled');
});

The $('input[type=submit]', this) part selects all inputs found within the
#billing_form element (represented by the special keyword this) whose
type is submit. The .attr('disabled', 'disabled') code adds the disabled
attribute to the selected element (the submit input), with a value of dis-
abled. In sum, when the form is submitted, JavaScript will dynamically turn
the submit button’s HTML into:

<input type="submit" value="Place Order" class="button"
➥disabled="disabled" />

5. On the next line, still within the <SCRIPT> block but after the }); just cre-
ated, add:

$('#submit_div').html('<p class="button">Processing...</p>');

You may be picking up on this already: $('#submit_div') selects the ele-
ment on the page with an ID value of submitDiv. The .html() method,
applied to that selection, can be used to assign new HTML to the element.
The specific HTML to be assigned is the <P> tag. The effect of this line will
be the replacement of the submit button with this message (Figure 10.20).

Figure 10.20

tip

Alternatively, the submit button

can be selected by giving it

a unique ID and referring to

$('#submit_id_value').

tip

I chose to format the processing

message using the same button

class, because it’s prominent,

but you’d likely want to use a

style that looks distinctly differ-

ent from the original button.

CheCking Out    9

6. Add an ID attribute to the form with a value of billing_form:

<form action="/billing.php" method="POST" id="billing_form">

7. Add an ID attribute to the DIV that contains the submit button with a value
of submit_div:

<div align="center" id="submit_div">

8. Save the file.

9. Test the file in your Web browser.

If you already had the billing.php page open, you’ll need to reload the page
to enable the JavaScript.

Improved Gateway Communications
The gateway_setup.php and gateway_process.php scripts are the heart of
this e-commerce site: requesting monies from the customer and transferring
them to the business. With that in mind, you may want to add to what these
scripts do.

As a precaution, you could add checks to the gateway_process.php script so
that it validates the required information prior to attempting the cURL request.
The problem, as I’ve mentioned before, with one file including another, is that
there are often assumptions made as to what variables are available and what
did or did not happen. Rather than rely upon those assumptions, actual valida-
tion would be preferred.

Authorize.net also lets you send along your own custom fields as part of the
transaction. A custom field is simply any piece of data with a name not already
reserved by the Authorize.net system (essentially, this means anything not
named x_something). If there is more information you’d like to be associated
with the order, you can pass that along. Those custom values will be in the
returned response (they aren’t stored in the Authorize.net system) and can
appear on the email receipt that Authorize.net sends to the customer (if you
choose that option). But never use custom fields for sensitive information.

Finally, Authorize.net can take line items as part of the transaction. This
would be useful if you had Authorize.net send out the email receipts. See the
 Authorize.net AIM manual for instructions or other possible values.

tip

Debugging JavaScript can be

really tedious for the novice. If

you have problems, look online

for answers or post a question in

my support forums.

Site AdminiStrAtion    1

AlterAtionS And
AdditionS
This chapter concludes the same way as many others: with suggested altera-
tions and additions that could be applied specifically to the administration
pages. Of course, the largest recommendation would be the creation of scripts
to update products and to add or update the categories. Over time, I’ll develop
and post some of these to the book’s corresponding Web site.

Home Page Additions
The home page as written does literally nothing. What you might put there
depends upon the site and, frankly, what the administrator would want to see
on that page. Information that might logically be displayed includes the ten
most recent orders or any product whose inventory is running low.

To do the former, just recreate the view_orders.php script, but have the
query return only ten (or so) records. To do the latter, run a UNION query that
retrieves every product whose stock value is less than whatever number is
appropriate (say, 5 or 10, depending upon the site’s activity level).

Viewing Customers
Because the site does not require that customers register, the order is the
most important and atomic record stored in the database. For this reason,
browsing by or searching for specific customers becomes less useful (for
example, the same customer, if active, might be represented multiple times
on the site). If you wanted to create the ability to find customers, you could
easily apply the view_orders.php and view_order.php functionality to
view_customers.php and view_customer.php pages.

Partial Payments
The Authorize.net payment gateway, like many others, supports the captur-
ing of partial payments. For example, a customer might make an order that
totals $100. The site could easily be modified so that part of the order could
be shipped at a time, and the corresponding part of the payment would be
captured at that time.

tip

A bigger change you could make

to the site would be to give cus-

tomers the option of registering

and logging in.

2    ChApter 11

To do this in terms of the view_order.php script, you would need to cre-
ate check boxes for each item so that the administrator can indicate which
should be shipped. Logically, you could place each check box in the Shipped?
column, in cases where no ship date exists. Each check box should use the
order_contents table ID as its value.

When the view_order.php form is submitted back to the page, the script would
need to use all the selected order_contents IDs to create an order total. You
would also need to decide when the shipping charge would be captured. The
easy solution would be to charge it in entirety the first time a partial order is
shipped, then not charge it at all on subsequent shipments.

After processing the payment, the ship_date in the order_contents table
would have to be set to NOW( ) for only those selected items. The same would
be applied to the inventory updates.

The more complicated alterations would be in how the payments are
requested. Instead of providing a transaction ID, partial payments use
an x_split_tender_id. For the first partial payment, the split tender ID is
returned by Authorize.net. This would need to be stored in the database
and then provided as part of subsequent partial payments (which means
the database would need to be restructured some). Partial payments
also need to be enabled in the Merchant Interface or by passing along an
x_allow_partial_auth value of true.

Viewing Incomplete Orders
The site as written may record some incomplete orders in the database. This
would occur if the customer got all the way to the point of submitting the
billing.php form, but failed to use a valid payment method (and never re-
submitted the form). The administrator should not see such orders in the same
way as orders that have been approved (that is, the administrator shouldn’t
ship out orders for which payment hasn’t been authorized), but being aware of
such incomplete orders would be beneficial.

For example, a high number of incomplete orders might be an indication of a
logistical problem with the site or the payment-request process. The adminis-
trator may also want to follow up with customers who did not complete their
order, as a customer service (and sales) technique. To list incomplete orders,
use a query similar to that in view_orders.php, but check for a response code
that’s not 1.

tip

The Authorize.net Advanced

Integration Method (AIM)

manual covers partial payments

in more detail.

	Contents
	Introduction
	What is E-Commerce?
	About This Book
	Technologies Used
	Getting Help

	What You’ll Need
	Some Fundamental Skills
	A Web Server
	And a Bit More

	PART ONE: FUNDAMENTALS
	Chapter 1: Getting Started
	Identifying Your Business Goals
	Researching Legal Issues
	Choosing Web Technologies
	Selecting a Web Host
	Using a Payment System
	The Development Process

	Chapter 2: Security Fundamentals
	Security Theory
	PCI Requirements
	Server Security
	Secure Transactions
	Common Vulnerabilities

	PART TWO: SELLING VIRTUAL PRODUCTS
	Chapter 3: First Site: Structure and Design
	Database Design
	Server Organization
	Connecting to the Database
	The Config File
	The HTML Template

	Chapter 4: User Accounts
	Defining Helper Functions
	Registration
	Logging In
	Logging Out
	Managing Passwords
	Improving the Security

	Chapter 5: Managing Site Content
	Creating an Administrator
	Adding Pages
	Displaying Page Content
	Adding PDFs
	Displaying PDF Content

	Chapter 6: Using PayPal
	About PayPal
	Testing PayPal
	Integrating PayPal
	Testing the Site
	Using IPN
	Renewing Accounts
	Going Live

	PART THREE: SELLING PHYSICAL PRODUCTS
	Chapter 7: Second Site: Structure and Design
	About the Site
	Database Design
	Server Setup
	Helper Files
	The HTML Template
	Newer MySQL Features

	Chapter 8: Creating a Catalog
	Preparing the Database
	Shopping by Category
	Listing Products
	Indicating Availability
	Showing Sale Prices
	Highlighting Sales

	Chapter 9: Building a Shopping Cart
	Defining the Procedures
	Defining the Helper Functions
	Making a Shopping Cart
	Making a Wish List
	Calculating Shipping

	Chapter 10: Checking Out
	About Authorize.net
	Creating a Test Account
	Preparing the Site
	Taking the Shipping Information
	Taking the Billing Information
	Processing Credit Cards
	Completing the Order
	Testing the Site
	Going Live

	Chapter 11: Site Administration
	Setting Up the Server
	Adding Products
	Adding Inventory
	Creating Sales
	Viewing Orders
	Shipping Orders

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

