
18 remote deployment w it h RMI

Distributed
Computing

Being remote doesn't have to be a bad thing. Sure, things areeasieT when

all the parts of your application are in one place, in one heap, with one JVM to rule them all. But

that's not always possible. Or desirable. What If your application handles powerful computations,

but the end-users are on a wimpy little Java-enabled device? What if your app needs data

from a database, but for security reasons, only code on your server can access the database?

ImagIne a big e-commerce back-end, that has to run within a transaction-management system?

Sometimes, part of your app must run on a server, while another part (usually a client) must

run on a different machine. In this chapter, we'll learn to use Java'samazingly sImple Remote

Method Invocation (RMI) technology. We'll also take a quick peek at Servlets, Enterprise Java

Beans (EJB) ,and JInl, and look at the ways In wh Ich EJB and JInl depend on RMI.We'll end the

book by writi ng one of the coolest thi ng s you can make In Java,a universal servicebrowser.

th is is a new chapter 807

how many heaps?

100% Local

..
RMlapp

Combination

Method calls are always betweeK
two objects OK the sattte heap.
So far in this book, every method we've invoked has been on
an object running in the same virtual machine as the caller.
In other words, the calling object and the callee (the object
we're invoking the method on) live on the same heap.

class Foo {

void go ()

Bar b = new Bar();

b.doStuff() j

public static void main (String [] args) (

Faa f = new Foa()j

f .go () ;

In the code above, we know that the Foo instance
referenced byfand the Bar object referenced by bare
both on the same heap, run by the sameJVM. Remember,
the jVM is responsible for stuffing bits into the reference
variable that represent how togetto an object on theheap.
TheJVM always knows where each object is, and how La

get to it. But the JVM Can know about references on only
its own heap! You can 't, for example, have aJVM running
on one machine knowing about the heap space ofaJVM
running on a differentmachine. In fact, aJVM running on
one machine can't know anything about a differentjVM
running on the samemachine. It makes no difference if
theJVMs are on the same or different physical machines;
it matters only that the twoJVMs are, well, two different
invocations of the JVM.

608 chapte r 18

In most applications, when one object
calls a method on another, both objects
are on the same heap. In other words,
both are running within the same JVM.

remote deployment with RMI

What ifyou wattt to ittvoke 8 'Method Ott
att object rutttthtg Ott another tH8chitte?

JVMI
Big

__'--'- ~ r ---'

CJ~r.=a~~~..::::15
L-' '--- I CJ l-J C-.l L-J L..J L--o;

'I - -" l ..\l · U

Little

Imagine two computers...

We know how to get information from one machine to another
with Sockets and I/O. We open a Socket connection to another
machine, and get an Ourputfitream and write some data to it.

But what if we actually want to call a method on something running
in another machine... anotherJVM? Of course we could always build
our own protocol, and when you send data to a ServerSocket the
server could parse it, figure out what you meant, do the work, and
send back the result on another stream. What a paia, though. Think
how much nicer it would be to just get a reference to the object on ~ ~t.1 lovtS

the other machine, and call a method. yO-.lC"hl, ~I.. ...~n 'b\C)
t.o t.... I»'t.n "V'

~ t.O\t.~abo'f\S~......

~

Big has something Little wants.

C~ute-l0~er.

Little wants to send some data to Big, so that Big can do the

heavy ~ruting.

Little wants simply to call a method...

double doCalcUsingDatahase(CalcNumbers numbers)

and get Lack the result.

But how can Little get a relerence to an object on Big?

you are here' 609

two objects, two heaps

Object AI rut,.1i.,g 0., Little, wa.,ts to call
a tttethod 0., Object ~ ru.,.,it1g Ot1 Jig.
The question is, how do we get an object on one machine
(which means a different heap/]VM) to call a method on
another machine?

doCalcUsingDatabase.O
~~~

return value

~
- -~ e-..,,~-.- ...... '- ..

-.11 _'--

, -,

Jut you can't do that.
Well, not directly anyway. You can't get a reference to
something on another heap. Ifyou say:

Dog d = ???

Whatever d is referencing must be in the same heap space as
the code running the statement,

But imagine you want to design something that will use
Sockets and I/O to communicate your intention (a method
invocation on an object running on another machine), yet
still feel as though you were making a local method call.

In other words. you want to cause a method invocation on a
remote object (i.e., an object in a heap somewhere else) J but
with code that lets you pretend that you're invoking a method
on a local object. The ease ofa plain old everyday method
call, but the power of remote method invocation. That's our
goal.

That's what RM1 (Remote Method Invocation) gives you!

But let 's step back and imagine how you would design R.i\1I if
you were doing it yourself. Understanding what you'd have to
build yourself will help you learn how RMl works .

610 chapter 18



A design for remote method calls

Create four things: server, client,
server helper, client helper

• Create client and server apps. The server app is the
remote service that has an object with the method
that the client wants to invoke.

remote deployment with RMI

Client heap

Server heap

Create client and server 'helpers'. They'll handle 011
the low-level networking and I/O details so your client
ond service can pretend like they're in the same heap.

you are he re> 611



client and server helpers

fhe role of the 'helpers"
The 'helpers' are the objects that actually do the communicating.
They make it possible for the client to ad as though its calling a
method on a local object. In fact, it is. The client calls a method on
the client helper, as if the clienthelper were the actual service. The client
helper is a frrorjfor theReal Thing.

In other words, the client object thinks it's calling a method on
the remote service, because the client helper is pretendingto be
th e service objeel. Pretendingto be the thingwith the met/wd the client
wants 10 call!

But the client helper isn't really the remote service. Although the
client helper ruts like it (because it has the same method that the
service is advertising), the client helper doesn't have any of the
actual method logic the client is expecting. Instead, the client
helper contacts the server, transfers information about the method
call (e.g., name of the method, arguments, etc .) , and waits for a
return from the server.

On the server side, the service helper receives the request from
the client helper (through a Socket connection), unpacks the
information about the call, and then invokes the real method on
the real service object. So to the service object, the call is local. It's
coming from the service helper, not a remote client.

The service helper gets the return value from the service. packs it
up, and ships it back (over a Socket's output stream) to the client
helper. The client helper unpacks the information and returns the
value to the client object.

612 chapte r 18

Your client object gets to
act llke it's making remote
method calls. But what
it's r!!llY doing is calling
methods on aheap-local
'proxY object that handles
all the low-level details of
Sockets and streams.

Server heap



remote deployment with RMI

How the method call happens

• Client object calls doBigThingO on the client helper object

Se~r heap

• Client helper packages up information about the call
(arguments, method name,etc.) and ships it over the
network to the service helper .

Client heap I
"client wonts to call a method"

Server heap

• Service helper unpacks the information from the client helper,
finds out which method to call (and on which object) and
invokes the real method on the real service ob]ect.- -

Client heap I
"client wants to coli a method"

you are here ~ 613



RMI helper objects

Java RMI gives you the cliet1t at1d
service helper objects!
In Java, RMJ builds the client and service helper
objects for you, and it even knows how to make the
client helper look like the Real Service. In other
words. RMI knows how to give the client helper
object the same methods you want to call on the
remote service.

Plus, RMI provides all the runtime infrastructure to
make it work, including a lookup service so that the
client can find and get the client helper (the proxy
for the Real Service).

With RMI. you don 't write any of the networking
or I/O code yourself. The client gets to call remote
methods (i.e. the ones the Real Service has) just
like normal method calls on objects running in the
client's own 10ca1JVM.

Almost.

There is one difference between RMI calls and local
(normal) method calls. Remember that even though
to the client it looks like the method call is local,
the client helper sends the method call across the
network. So there is networking and I/O. And what
do we know about networking and I/O methods?

They're risky!

They throw exceptions allover the place.

So, the client does have to acknowledge the risk. The
client has to acknowledge that when it calls a remote
method. even though to the client it's just a local call
to the proxy/helper object, the call ultimaJely involves
Sockets and streams. The client's original call is local,
but the pro"]' turns it into a remote call. A remote call

JUSt means a method that's invoked on an object on
another JVM. HQ11J the information about that call
gets transferred from oneJVM to another depends
on the protocol used by the helper objects.

With RMI. you have a choice of protocols: JRMP or
IIOP,JRMP is RMJ's 'native' protocol, the one made
just for Java-ta-Java remote calls . nop, on the other
hand. is the protocol for CORBA (Common Object
Request Broker Architecture), and lets you make
remote calls on things which aren't necessarily Java
objects. CORBA is usually much more painful than
RMI, because if you don't have Java on both ends,
there's an awful lot of translation and conversion that
has to happen.

But thankfully, all we care about isJava-to-Java, so
we're sticking with plain old. remarkably easyRMl.

In RMI, the client helper is a 'stub'
and the server helper is a 'skeleton'.

614 chapter 18

Client heap.. Server heap



Making the Remote Service
This is an overview of the five steps for making the remote
service (that runs on the server). Don't worry, each step is
explained in detail over the next few pages.

Step one:
Make a Remote Interface

The remote interface defines the methods
that a client can call remotely. It's what
the client will use as the polymorphic class
type for your service. Both the Stub and
actual service will implement this!

Step two:
Make a Remote Implementation
This is the class that does the Real Work.
It has the real implementation of the
remote methods defined in the remote
interface. It's the object that the client

~~~~~~.

remote deployment with RMI

Server D!!

Step three:
Generate the stubs and skeletons using rmic
These are the client and server 'helpers' .
You don't have to create these classes or ever
look at the source code that generates them.
It's all handled automatically when you
run the rmic tool that ships with yourJava
development kit,

MyRemotelmpl_Stub.class

101101
Jtl 1...10'
e " II
bOt. HI
001 Ol

Step four:

Start the RMI registry (rmiregistry)
The nniregistry is Jike the white pages of a
phone book. It 's where the user goes to gel
the proxy (the client stubv'helper object).

MyRemotelmpLSkel.class

Step five:

Start the remote service
You have to get the service object up and running.
Your service implementation class instantiates an
instance of the service and registers it with the RMI
registry. Registering it makes the service available for
clients.

you are he re . 615

a remote interface

Declare that all methods throw a RemoteException
The remote interface is the one the client uses as the polymorphic type
for the service. In other words, the client invokes methods on something
that implements the remote interface. That something is the stub, of
course, and since the stub is doing networking and I/O, all kinds of Bad
Things can happen. The client has to acknowledge the risks by handling
or declaring the remote exceptions. If the methods in an interface
declare exceptions, any code calling methods on a reference of that type
(the interface type) must handle or declare the exceptions.

t , ~ . . ' av,H'",i
import java. rmi . * ;~th~ R~",oh '"n;c;Y ate'S ,,,J '

Step one: Make a Remote Interface

Extend java.rmLRemote
Remote is a 'marker ' interface, which means it has no methods. It has
special meaning for RMI, though, so you must follow this rule. Notice
that we say 'extends' here. One interface is allowed to extend another
interface.

public interface MyRemote

public interface MyRemote extends Remote {
public String sayHello() throws

}

MyRemote.java

Be sure arguments and return values are primitives or Serializable
Arguments and return values of a remote method must be either primitive
or Serializable, Think about it. Any argument to a remote method has to
be packaged up and shipped across the network, and that's done through
Serialization. Same thing with return values. If you use primitives, Strings,
and the majority of types in the API (including arrays and collections),
you'll be fine. If you are passing around your own types ,just be sure that
you make your classes implement Serializable.

public sayHello() throws RemoteException;

"'- This r-et;...rn vc1/~e is ~onna be shirred
over ~he wire +\'"0'" the serve\" batk to
the ~"ent, so it lrIl.tSt be Se\"ializable.
That s how ar~s and \"et~rn valf.tt:s ad:;
ratka~ed ~r and Sent , J

remote deployment with RMI

MyRemotelmpl.java

Step two: Make a Remote Implementation

• Implement the Remote interface

Your service has to implement the remote interface-the one
with the methods your client is going to call.

public class MyRemoteImpl extends UnicastRemoteObject
public String sayHello() {~

return "Server says, 'Hey'''; Th~ t~n-riler will n-ake SlAre that
} rIA lie In-r1en-el'lteo all the n-ethods
/ / more code in class t~.om the intel-fate '/OIA ir..r1er..el'lt. Il'I

} IS tase, there s ol'lly Ohe.

1
~";i _--- 0

{

• Extend UnicastRemoteObject

In order to work as a remote service object, your object needs some
functionality related to 'being remote'. The simplest way is to extend
UnicastRemoteObject (from the java.rmi.server package) and let that
class (your superclass) do the work for you.

public class MyRemoteImpl implements MyRemote {

• Write a no-arg constructor that declares a RemoteException

Your new superclass, UnicastRemoteObject, has one little problem-its
constructor throws a RemoteException. The only way to deal with this is
to declare a constructor for your remote implementation,just so that you
have a place to declare the RemoteException. Remember, when a class is
instantiated, its superclass constructor is always called. If your superclass
constructor throws an exception, you have no choice but to declare that L thO 'l'l
y'our constructor also throws an exception. ,/o\A dOl'l't halle to yv-".al'l~ I:i ~
- 1 t toY- YoIA JV-S" l'Ie..~
Publ i c U.rRemoteImpl () the t.01'lS rv.t., ~hat "OIAr slAfert.lass

6"6:t wa" to det. are"I L ,

t.~trv.t.tor throws al'l euefvOTI.

• Register the service with the RMI registry

Now that you've got a remote service, you have to make it available to
remote clients. You do this by instantiating it and putting it into the RMI
registry (which must be running or this line of code fails). When you
register the implementation object, the RMI system actually puts the stub in
the registry, since that's what the client really needs. Register your service
using the static rebind() method ofthejava.rmi.Naming class. . M",e (that t.I\el'ts tal' ~t
try (q\ve ~o\Ar serv.lt.et~ ~\str~) al'd re~\ster It

Remote service = new RemoteI 1 () ; ~ \otnit.R~IIl'Ire~\:t:;. W'hel'l ~o\A b.\"dthe the
wltn e . t. RMI sways t.he serv,u o'r

~ .,- servit.e obJe~_, Lhe stlAb \l' the re~istr~·
'---'" stlAb al'd flA';> "

you are here. 617

Step three: generate stubs and skeletons

G) Run rmic on the remote implementation class
(not the remote: Interface)

The rrnic tool, that comes with the java software
development kit, takes a service implementation and
creates two new classes. the stub and the skeleton.
It uses a naming convention that is the name of
your remote implementation, with either _Stub or

_Skeleton added to the end . There are other options
with rmic, including not generating skeletons,
seeing what the source code for these classes looked
like, and even using llOP as the protocol. The way
we're doing it here is the way you'll usually do it.
The classes will land in the current directory (i.e.
whatever you did a cd to). Remember, rmicmust
be able to see your implementation class, so you'll
probably run rmic from the directory where your
remote implementation is. (We're deliberately not
using packages here, to make it simpler. In the Real
World, you'll need to account for package directory
structures and fully-qualified names).

Step four: run rmiregistry

MyRemotelmpl_Stub.class

lClnO).
10 liO I
o U 6
001 \ 0
OO~ 0)

MyRemotelmpCSkel.class

(1) Bring up a terminal and start the rmlre:gistry.
Be sure you start it from a directory that has access
to your classes. The simplest way is to start it from
your 'classes' directory.

Step five: start the service

CD Bring up another terminal and start your service
This might be from a main 0 method in your remote
implementation class. or from a separate launcher class.
In this simple example. we put the starter code in the
implementation class, in a main method that instantiates
the object and registers it with RMl registry.

618 chapter 18

remote deployment with RMI

Complete code for the server side

The Remote interface:

The Remote service (the implementation):

public MyReIDoteImpl () throws RemoteException { I
<c>

public static void main (String[] args) (

try (
MyRemote service = new MyR8moteImpl();~

Naming.rebind("Remote Hella H
I service);

catch (Exception ex) { ~ M.ike the rt....oU ob· t I , I

ex.printStacltTrace () ; 'r"'irt4ish-y'd· 1., :Je~"1.~e" b"'d it to -the
J _I"~ Ult S'td{;H':. N· b

J\d"'t yOIA l-e9;su ..- it:. lA"d . t ... '''?,.....e i"dO. The
"ted to look it. "d · 1., t"r r~ he 1I<1"'e tliel'lts '011/1

--r tr. Ule r"" re9'shy

you ar e here ~ 619

getting the stub

How does the client getthe stub~?
The client has coget the stub object, since that's the thing the
client will call methods on. And that's where the RMI registry
comes in. The client does a 'lookup', like going to the white pages
ofa phone book, and essentially says, "Here's a name, and I'd like
the stub that goes with that name."

loolcllpO is a statit l\'ltihod o-t
the Na",i~ tlass

\t
~Remote) Naming.lookup("rmi://127.0.0 .1/Remote

l' ~
\ '1011 hil'lt to t..ut it. to tht 'f0\l.'" host. l\il",e 0'" /P

i"u...tate, siYlle t.he loolc'-r addytsS ~oes heye
...ethod ret.'-Yl'I$ t'ffe Objett..

Bello");

• Client does Q lookup on the RMI registry
Naminq.lookup("rm1://127.0.0.1/Ramot:8 Bello");

• RMI registry returns the stub object
(as the return value of the lookup method) and RMI
deserializes the stub automatically, You MUST have
the stub class (that rmic generated for you) on the
client or the stub won 't be deserialized,

• Client Invokes Q method on the stub, as
though the stub IS the real service

620 chapter 18

Server

remote deployment wit h RMI

How does the client get the stub class?
Now we get to the interesting question. Somehow, someway, the
client must have the stub class (that you generated earlier using
rmic) at the time the client does the lookup, or else the stub won 't
be deserialized on the client and the whole thing blows up. In a
simple system, you can simply hand-deliver th e stub class to the
client.

There 's a much cooler way, though, although it's beyond the
scope of this book. Butjust in case you're interested, the cooler
way is called "dynamic class downloading". With dynamic class
downloading, a stub obj ect (or really any Serialized object) is
'stamped' with a URL that tells the RMI system on the client
where to find the class file for that object. Then, in th e process of
deserializing an object, ifRMI can't find the class locally, it uses
that URL to do an HTTP Get to retrieve the class file. So you 'd
need a simple Web server to serve up class files, and you'd also
need to change some security parameters on the client. There are
a few other tricky issues with dynamic class downloading, but that's
the overview.

Complete client code

I~ The Na... ih9 dass (.f .
. . *. < re...ire3ist r look c: ~01n9 the

import Java.rnu.. , J'ava . Y lop) IS'n t he
·r ..., patkage

public class MyRemoteClient {
public static void main (String[] args)

new MyRemoteClient() .go();

J. t ht V't~isty~ as~'/Yt
public void go () \t t.o.,.,es Ol/.t ' t ~«~tt t ht t.as

r: O'oy:.t.t, so don
try { \I-

MyRemote service = (MyRemote) Naming .lookup(~rmi://127.0.0.1/Remote Hello");

String s = service . sayHello () ; Y d 1-. 7 '\ L-
010 nee "Ule IP address a c1 t.he "artie ~ed VI

It or hosw...e VI I L ' d Lhe stV'vit.tSystem.out.println(s); \ ~Vld V'CUly\ ~

catch (Exception ex) { It looks j lASt like a I
ex. printStackTrace (); tall! (E'lt.tept it 19'" ~r old "'cthod

Re...oteE'lt.teptio~1AS at now/edse the

you are here ; 621

RMI class files

Je sure each lMachhte has the class
files it "eeds.
The top three things programmers do wrong with RMI are:

1) Forget to start rmiregistry before starting remote service
(when you register the service using Nammg.rebindt), the
nniregistry must be running!)

2) Forget to make arguments and return types serializable
(you won't know until runtime; this is not something the
compiler will detect.)

3) Forget to give the stub class to the client.

lQt~OI

l~ H.I) I
6 11 0
OGt L~

"'" .t

MyR9mote.class

MyRemotelmpLStub.class

SeYVer "eeds both the stub a..a Skeld:.o"
dasses, as ""ell as the seYviu a.-t:I the
l"C"'otL i"u,-tau. It. MeaS the st.Lt'o tlass
~t.alAU rC"'-t'"bcr, the st.",b is s",bst.i+'"iea
to\" the veal service, wh(l\ the veal w-vice
is bOWla +.0 the RMIc5isttY·

MyRemotelmpl,class

MyRemotelmpl_Skel.class

10UIn
10 UO'
o 11 0
0CI110
00\ 01

MyRemotelmpLStub.class

llUJln,
lIilUO""l
o U CI
O<Il1G1
0(111011

lOU01.,
to HoO 1.
~ 1\ I)

~~l 10
UtOl

,gclient

Cllentclass

Do,,'t +cn-5tt, tilt zhe..+'
uses the i"te~~att to tall
Methods <»> the st.",b. Tnt
clie"t JVM "eeas the si",b
tla~, b~ the tliO'lt "eveY
rete",s to the shb class
i.- toae. Tbe tlit"t. always
v.ses the ve...o{:e i"ktate,
as thou5h the l"t"'ote
iPlttrk.lte WERE. t.he
atb.al yC"'oU: objttt.

622 chapter 18

remote deployment with RMI

1.
~n yoor penCil

W:~$J~
Look at the sequence of events below, and 2.
place them in the order in which they
occur in a JavaRMI application.

3.

6.

s.

4.

7.

ate service (remote
implementation) isinstantiated

on the stub
The clIent does a looku
the RMI Registry

The client gets Ihe slub from
-The--SlU-b-se-n-;ds-:th~e::--:m::e:;\h;;:od~ Ihe RMI regIstry

call to theserver The diem invokes 8'm

The RMI registry Issta

,---- IUUR POINTS~

• An object on one heap cannot geta normal Java
reference 10 an object on adifferent heap (which means
running on adifferent NM)

• Java Remote Method Invocation (RMI) makes it seem like
you're calting a method on a remote object (l.e. an object
ina different JVM), but you aren't

• When a client calls a method on a remote object, the
client is really calling amethod on a proxy of the remote
object. The proxy is called a 'stub'.

• A stub isa client helper object that takes care of the low
level networking details (sockets, streams, serialization,
etc) bypackaging and sending method calls to the
server.

• To build a remote service (in other words, an object that
a remote client can ultimately call methods on), you must
start with a remote Interface.

• Aremote Inlerface must extend the java.rml.Remote
Interface. and allmethods must declare
RemoteException.

• Your remote service implements your remote Interface.

• Your remote service should extend UnicastRemoleObject.
(Technically there are other ways 10 create a remote ob
ject, but extending UnicaslRemoteObject is the simplest).

• Your remote service class must have a constructor,
and the constructor must declare a RemoleException
(because the superclass constructor declares one).

• Your remote service must beinstantiated, and the object
registered with the RMI registry.

• To register a remote service, use the static
Naming.rebind('Service Name", servicelnstance);

• The RMI registry must be running on the same machine
asthe remote service, before you try 10 register a remote
object with the RMI registry.

• The client looks up your remote service using the static
Naming.lookup{'rmi:/IMyHostNameJServiceName");

• Almost everything related to RMI can throw a
RemoteException (checked bythe compiler). This
Includes registering orlooking upa service In the relgstry,
and a/lremote method calls from the client tothe stub.

you are here. 623

usesfor RMI

Yeah, but who really uses RMI?

I use it
for serious B-to-B,
e-commerce back
ends, running on J2EE

technology. I

624 chapter 18

remote deployment w ith RMI

100% Local Combination 100% Remote

What about Servlets1
Servlets are Java programs that run on (and with) an HTfP web server. When a dient uses a
web browser to interact with a web page, a request is sent back to the web server. If the request
needs the help of a Java servler, the web server runs (or calls, if the servlet is already running)
the servlet code. Servlet code is simply code that runs on the server, to do work as a result of
whatever the client requests (for example, save information to a text file or database on the
server). If you're familiar with eGl scripts written in Perl, you know exactly what we're talking
about. Web developers use CGJ scripts or servlets to do everything from sending user-submitted
info to a database, to running a web-site's discussion board.

And evenserolets can use RMI/

By far, the most common use ofJ2EE technology is to mix servlets and EJBs together, where
servlets are the client of the EJB. And in that case, theserulet is using RJ1IlI to talk to theEJBs.
(Although the way you use RM1 with EJB is a little different from the process wejust looked at.)

Web Browser
(client) -client requests RegisterServlet"

1 Client fills out a registration form and clicks 'submit',
The HTTP server (i.e. web server) gets the request, sees that
it's for a servlet, and sends the request to the servlet,

Web Server

Servlet (Java code) runs, adds data to the database,
composes a web page (with custom info) and sends it back to
the client where it·displays in the browser.

Web Server

................
Web Browser

(client) "client requests Register5ervlet"

"heres a confirmation page"........
conflnn.html

you are here. 625

very simple servlet

Step for making and running a servlet

G) Find out where your servlets need to be placed.
For these examples, we'll assume that you already have a web server
up and running, and that it's already configured to support servlets,
The most important thing is to find out exactly where your servlet
class files have to be placed in order for your server to 'see' them. If
you have a web site hosted by an ISP, the hosting service can tell you
where to put your servlets.just as they'll tell you where to place your
eGI scripts.

Web Sel"Ver

® Get the servlets.jar and add It to your c10sspath
Servlets aren't part of the standardJava libraries; you need
the servlets classes packaged into the servlets.jar file. You can
download the servlets classes fromjava.sun.com, or you can get
them from yourJava-enabled web server (like Apache Tomcat, at
the apache.org site). Without these classes, you won't be able to
compile your servlets.

servlals.Jar

® Write a servlet closs by extending HttpServlet
A servlet isjust aJava class that extends HttpServlet (from the
javax.servlet.http package). There are other types ofservlers you
can make, but most of the time we care only about HttpServlet.

public class MyServletA extends Htt:pServlet { ... }

UUOt;
16 U~ I
o U 0
Cl61 1C1
Ql)l OI

MyServletA.cJass

~
MyPage,html

@ WrIte an HTML page that invokes your servlet

When the user clicks a link that references your servlet, the web
server will find the servlet and invoke the appropriate method
depending on the HITP command (GET, POST. etc.)

This is the most amazing servlet.

~-.

Web Server

~. \"
~l 1-, "

~
- .J I'" '-- - .' :

' I, :1·.·. " ,. :',- -
,I •.

I ;;, -:::-,'

@ Make your servlet and HTML page Qvallable to your server

This is completely dependent on your web server (and more specifi
cally, on which version ofJava Servlets that you're using). Your ISP
may simply tell you to drop it into a "Servlets" d irectory on your
web site. But if you're using, say, the latest version ofTomcat. you'll
have a lot more work to do to get the servlet (and web page) into
the right location. (We just happen to have a book on this too .)

626 chapter 18

servlets and JSP

• Servlets are Java classes that run entirely on
(and/or within) an HTIP(web) server.

• Servlets are useful for running code on the
server as a result ofclient interaction witha
web page. For example, if aclient submits
information inaweb page form, the servlet can
process the information, add it toadatabase,
and send back acustomized, confirmation
response page.

• To compile a servlet, you need the servlet
packages which are in the servlets.jar file. The
servlet classes are not part ofthe Java standard
libraries, so you need todownload the servlets.
jarfrom java.sun.com orget them from a servlet-
capable web server. (Note: the Servlet library
is included with the Java 2Enterprise Edition
(J2EE))

• To run aservlet, you must have aweb server
capable ofrunning servlets, such as the Tomcat
server from apache.org.

• Your servlet must be placed ina location that's
specific toyour particular web server, so you'll
need to find that out before you trytorun your
servlets. If you have aweb site hosted byan ISP
that supports servlets, the ISP will tell you which
directory toplace your servlets in.

• Atypical servlet extends HttpServlet and
overrides one ormore servlet methods, such as
doGetO ordoPostO.

• The web server starts the servlet and calls the
appropriate method (doGetO, etc.) based on the
client's request.

• The servlet can send back a response by getting
a PrintWriter output stream from the response
parameter ofthe doGetO method.

• The servlet 'writes' out an HTML page, complete
with tags).

628 chapte r 18

Dtherel&rH ? "
ume ~uestl9ns

Q.: What's a JSP, and how does it relate to servlets7

A: JSPstands for Java Server Pages. In the end, the web server
turns a JSP into a servlet, but the difference between a servlet and
a JSPis what YOU (the developer) actually create.With a servlet,
you write a Java classthat contains HTML in the output statements
(if you're sending back an HTML page to the client). But with a
JSP, it's the opposite-you write an HTML page that contains Java
code!

This gives you the ability to have dynamic web pages where you
write the page as a normal HTML page, except you embed Java
code (and other tags that"trigger" Java code at runtime) that
gets processed at runtime. In other words, part of the page is
customized at runtime when the Java code runs .

The main benefit of JSPover regular servlets is that it's just a lot
easier to write the HTML part of a servlet as a JSPpage than to
write HTML in the torturous print out statements in the servlet's
response. Imagine a reasonably complex HTML page, and now
imagine formatting it within println statements. Yikes!

But for many applications, it isn't necessary to use JSPs because
the servlet doesn't need to send a dynamic response, or the
HTML is simple enough not to be such a big pain. And, there are
still many web servers out there that support servlets but do not
support JSPs, so you're stuck.

Another benefit of JSPs is that you can separate the work by
having the Java developers write the servlets and the web page
developers write the JSPs. That's the promised benefit, anyway.
In reality, there's still a Java learning curve (and a tag learning
curve) for anyone writing a JSP, so to think that an HTML web page
designer can bang out JSPs is not realist ic. Well, not without tools.
But that's the good news-authoring tools are starting to appear,
that help web page des igners create JSPs without writing the
code from scratch.

Q.: Is this all you're gonna say about servlets? After such a
huge thing on RMI7

A: Yes. RMI is part of the Java language, and all the classes for
RMI are in the standard libraries. Servlets and JSPs are not part of
the Java language; they're considered standard extensions. You
can run RMI on any modern JVM, but Servlets and JSPs require a
properly configured web server with a servlet "container': This is
our way of saying, "it's beyond the scope of this book." But you can
read much more in the lovely HeadFirst Servlets& JSp'

Just for fUt1, lets tMake the Phrase-O-Matic
work as aservlet
Now that we told you that we won't
say any more about servlets, we can't
resist servletizing (yes, we am verbify
it) the Phrase--O-Matic from chapter 1.
A servlet is stilljustJava. AndJava code
can call Java code from other classes.
So a servlet is free to call a method on
the Phrase-O-Matic. All you have to do
is drop the Phrase-O-Matic class into
the same directory as your servlet, and
you 're in business. (The Phrase-O
Matie code is on the next page) .

import java .io.* ;

import javax.servlet .- ;
import javax.servlet .http .*;

remote deployment with RMI

Try my
new web-enabled

phrase-o-matic and you'll
be a slick talker just like
the boss or those guys in

marketing.

public class KathyServlet extends BttpServlet {
public void doGet (HttpServletRequest request, BttpServletResponse response)

throws ServletException, IOException

String title = "PhraseOMatic has generated the following phras8. H
;

response. setcontentType ("text/html") ;
PrintWriter out = respons8.getWriter();

I -l. t4\\ ",~od1 QI'\
out.printl.n(\\<HTML><HEAD><'l'ITLE>"); r: r \/OUI(SfY"'~ td\'l I \1' II

~
~ee. T I tho t4u 'fleve U 1\'1;)

out .println ("PhraseOmatioH
) ; ano1:.hey t.\a~ \'I I!> () '~cKi cJ the

ou t .p rint l n ("</TITLEX/HEAD><BOD'l>") ; t,\\e s-laBt. ",a\t.eP'nya.!>l '" ..,.t, a e}
out .println("<B1>" + title + " </ 8 1>") ; P~ya1(OMdtiC. tlau (()f'I the ne Y ~
out.prlntln("<P>" + Phr&seOMatic.makePhrass());
out.println(~<Pxahref=\"KathyServlet\ ">make another phrase</p>H);
out.println ("</BODY></BTML>") ;

out. close () ;

you are here ~ 629

Phrase-O-Matic code

Phrase-O-Matic code, servlet-friet1dly
This is a slightly different version from the code in chapter one. In the
original, we ran the entire thing in a mainO method, and we had to rerun
the program each time to generate a new phrase at the command-line. In this
version, the code simply returns a String (with the phrase) when you invoke
the static makePhrase 0 method. That way,you can call the method from any
other code and get back a String with the randomly-composed phrase.

Please note that these long String[] array assignments are a victim ofword
processing here-don't type in the hyphens! Just keep on typing and let your
code editor do the wrapping. And whatever you do, don't hit the return key in
the middle of a String (i.e. something between double quotes).

public class PhraseOMatic {
public static String makePhrase()

II make three sets of words to choose from
String[] wordListOne = {"24/7","multi-Tier","30,OOO foot","B-to-B","win-win","front

end", "web-based" ,"pervasive" , "smart", "six-sigma","critical-path", "dynamic"};

String[] wordListTwo = {"empowered", "sticky", "valued-added", "oriented", "centric",
"distributed", "clustered", "branded","outside-the-box", "positioned", "networked", "fo
cused", "leveraged", "aligned", "targeted", "shared", "cooperative", "accelerated"};

String[] wordListThree = {"process", "tipping point", "solution", "architecture",
"core competency", "strategy", "mindshare", "portal", "space", "vision", "paradigm", "mis
sion"};

II find out how many words are in each list
int oneLength = wordListOne.length;
int twoLength = wordListTwo.length;
int threeLength wordListThree.length;

II generate
int randl
int rand2
int rand3 =

three
(int)
(int)
(int)

random numbers, to pull random words from each list
(Math.randomO * oneLength);
(Math .randomO * twoLength);
(Math.randomO * threeLength);

II now build a phrase
String phrase = wordListOne[randl] + " " + wordListTwo[rand2] + " " +

wordListThree[rand3] ;

II now return it
return ("What we need is a " + phrase);

630 ch apter 18

RMI is great for writing and running remote services. But
you wouldn't run something like an Amazon or eBay on RMI
alone. For a large, deadly serious, enterprise application, you
need something more. You need something that can handle
transactions, heavy concurrency issues (like a gazillion
people are hitting your server at once to buy those organic
dog kibbles), security (not just anyone should hit your
payroll database), and data management. For that, you need
an enterprise applil;atUm server.

In java, that means a java 2 Enterprise Edition 02EE) server.
AJ2EE server includes both a web server and an Enterprise
JavaBeans(EJB) server, so that you can deploy an application
that includes both servlets and EJBs. Like servlets, EJE is
way beyond the scope of this book, and there's no way to
show "just a little" EJE example with code, but we wiU take
a quick look at how it works. (For a much more detailed
treatment ofEJE, we can recommend the lively Head First
EJB certification study guide.)

remote deployment with RMI

An EJB server adds abunch
ofservices that you don't get
with straight RMI. Things
like transactions, security.
concurrency. database
management. and networ"king.

An EJB server steps into the
middle ofan RMI call and
layers in all ofthe services.

EJ'B server:.-_---\-,--
.- '.

This is only a small paM of the E,JBpicture.!

you are here ~ 831

a little J InI

For our final trick... a little Jini
We love jini. We think]ini is pretty much the best thing in Java. IfE]B is RMI
on steroids (with a bunch of managers), Jini is RMI with wings. PureJava bliss.
Like the EJB material, we can't get into any of the Jini details here, but if you
know RMI, you're three-quarters of the way there. In terms of technology,
anyway, In terms of mindset, it's time to make a big leap. No, it's time to fl>'.

Jini uses RMI (although other protocols can be involved), but gives you a few
key features including:

Adaptive discovery

Self-healing networks

With RMT, remember, the client has to know the
name and location of the remote service. The
client code for the lookup includes the IP address or
hostnarne of the remote service (because that's where
the RMI registry is running) and the logical name the
service was registered under.

But withjini, the client has to know only one thing: the
interface implemented by the service! Tha t 's it.

So how do you find things? The trick revolves aroundjini lookup
services. jini lookup services are far more powerfuJ and flexible than
the RMI registry. For one thing,jini lookup services announce themselves to the
network, automatically. When a lookup service comes online, it sends a message (using IP
multicast) out to the network saying, "I'm here, if anyone's interested."

But that's not all. Let's say you (a client) come online after the lookup service has already
announced itself, you can send a message to the entire network saying, "Are there any
lookup services out there?"

Except that you're not really interested in the lookup service itself-you're interested in
the services that are registered with the lookup service. Things like RMI remote services,
other serializable java objects, and even devices such as printers, cameras, and coffee
makers.

And here's where it gets even more fun: when a service comes online, it will dynamically
discover (and register itself with) any Jini lookup services on the network. When the
service registers with the lookup service, the service sends a serialized object to be placed
in the lookup service. That serialized object can be a stub to an RMT remote service, a
driver for a networked device, or even the whole service itself that (once you get it from
the lookup service) runs locally on your machine. And instead of registering by name, the
service registers by the interfacei: implements.

Once you (the client) have a reference to a lookup service, you can say to that lookup
service, "Hey, do you have anything that implements Scienuficf'alculator?" At that point,
the lookup service will check its list of registered interfaces. and assuming it finds a
match, says back to you, "Yes I do have something that implements that interface. Here's
the serialized object the ScientificCalculator service registered with me."

632 chapter 18

remote deployment with RMI

Adaptive discovery i" actio"

@) Jini lookupservice is launched somewhere on the network, and
announces itself using IP multicast.

•

machIne on the network
somewhere ...

An already-running Jini service on
another machineasks to be registered
with this newly-announced lookup
service . It registers by capability,
rather than by name. In other words,
it registers as the service interlace it
implements. It sends a serialized object
to be placed in the lookupservice.

machine on the network
somewhere...

another machine on the network

Register
me os something
that implements

ScientificCaJculator. Here's a
serialized object that represents

my service . Send it to
anybody who asks...

another machine on the network

you are here . 633

adaptive discovery in Jini

Adaptive discovery itt actio", co"thtued...

another machine on the network

® A client on the network wants
something that implements the
ScientificColculator interface. It has
no idea where (or if) that thing exists,
so it asks the lookupservice.

machine on the network
somewhere...

another machine
on the network

@ The lookupservice responds, since it does have something
registered as a ScientificCalculator interface.

machine on the network
somewhere ...

634 ch apter 18

another machine on the network

remote deployment with RMI

A Jini Service has asked to register with the lookup service. The lookup
service responds with a "leese". The newly-registered service must keep
renewing the lease, or the lookup service assumes the service has gone
offline. The lookup service wants always to present an accurate picture
to the rest of the network about which services are available.

Self...healit1Q t1etwork it1 actio"

e

machine on the network
somewhere .. ,

another machine
on the network

another machine on the network

® The service goes off line (somebody shuts it down), so it fails to
renew its lease with the lookup service. The lookup service drops it.

machine on the network
somewhere...

another machine on the network

you are here ~ 635

universal service project

Fhtal Project: the Ut1iversal Service browser
We're going to make something that isn't jini-enabled, but quite easily could be.
It will give you the flavor and feeling ofJini, but using straight RMI. In fact the
main difference between our application and aJini application is how the service is
discovered. Instead of the Jini lookup service, which automatically announces itself and
lives anywhere on the network, we're using the RMI registry which must be on the same
machine as the remote service, and which does not announce itself automatically.

And instead of our service registering itself automatically with the lookup service, we
have to register it in the RMl registry (using Naming.rebind()).

But once the client has found the service in the RMI registry, the rest of the application
is almost identical to the way we'd do it inJini. (The main thing missing is the kasethat
would let us have a self-healing network ifany of the services go down .)

The universal service browser is like a specialized web browser, except instead of HTML
pages, the service browser downloads and displays interactiveJava GUIs that we're
calling uniuersal services.

RMIBrowser Choose a ~Ite k'f'ol'l\ the
list The RMI TC"'oU: W"\IiU
has a ~~\IiteList.O
...cthod -th.it ~N:Js batK this
list. o-t SCT\litcs.

WheJI +.hc \!Sa' ~Ieth OYIC,

-the tl,eJIt. asks .f0\'" the
ad;\oIG1 scrvitc cDil.eRolli,,~
Da'l0fneWccKJ e+.tJ to
be ~t batlt. ~'f'0ft\ the RMI
yt"'oU: W"\/itc.

636 chapter 18

How it works:

CI ient starts up and
does a lookup on the
RMI registry for
the service called

"Service.Server", and
gets back the stub.

Service Browser
(client)

remote deployment w ith RMI

Server

Client calls getServiceListO on the stub. The ServiceServer
returns an array of services

ServIce Browser
(client) - "getServiceListO·

-

"OK, here's an array of services"

• Client displays the list of services in a GUI

Service Browser
(client)

Server
~==

Server

you are here. 631

universal service browser

How it works, continued...

•User selects from the list, so client calls the get5erviceO
method on the remote service. The remote service returns a
serialized object that is an actual service that will run inside
the client browser.

'getService(selectedSl/ct

'OK, here 's the service-

Server

• Client calls the getGuiPanelO on the serialized service object it
just got from the remote service. The GUI for that service is
displayed inside the browser, and the user can interact with it
locally. At this point , we don't need the remote service unless/until
the user decides to select another service.

Service Browser
(client)

638 chapter 18

remote deployment with RMI

The classes and interfaces:

interface Servlce.Server Implements Remote
A regular old RMI remote interlace for the remote service (the
remote service has the method for getting the service list and
returning a selected service).

Servlc9Server

gelServicesUslO
gelServlceO

• class ServlceServerImpl Implements 5ervlceServer
The actual RMI remote service (extends UnicastRemoteObject).
Its job is to instantiate and store a/l the services (the things
that will be shipped to the client), and reg ister the server itself
(ServiceServerImpJ) with the RMI registry.

ServlceServerlmpl

gelServicesListO
gelServiceO

3' class ServlceBrowser
The client. It builds a very simple GUI, does a lookup in the RMI
registry to get the Service5erver stub, then calls a remote method on
it to get the list of services to display in the GUI list .

ServlceBrowser

mainO

MlnlMuslcServlce

gelGulPanelO

S&lVlce

~

" .' ... , ., . .
" I ", . .

, I I, , ., , ., , ., , ., , ., , ., , .
/ I

getGuiPaneJO

..r------...

: DiceServlce

.... gelGulPanelO.,,
..,

,,

DayOfTheWeekServlce

gelGuiPanelO

class Dic£5ervice implements Service
Got dice? If not , but you need some, use this service to roll anywhere
from 1 to 6 virtual dice. for you.

class MlnlMusicService implements Service
Remember that fabulous little 'music video' program from the first
GUI Code Kitchen? We've turned it into a service, and you can play it r----'-----~
over and over and ove.r until your roommates finally leave.

Interface Service
This is the key to everything. This very simple interface has just one
method, getGuiPanelO . Every service thot gets shipped over to the
client must implement this interface. This is what makes the whole thing
UNIVERSAL! By implementing this int e rface , a service can come over
even though the client has no ideo what the actual class (or classes)
are that make up that service. All the client knows is that whatever
comes over, it implements the Service interface, so it MUST hove a
getGuiPanelO method.
The client gets a serialized object as a result of calling
getService(selectedSvc) on the Service5erver stub, and all the client
says to that object is, "r don't know who or what you are, but I DO
know that you implement the Service interface, so I know I can call
getGuiPanelO on you. And s ince getGuiPanelO returns a JPanel , rll just
slap it into the browser GUI and start interacting with itl

• class DayOfTheWukSuviu Implements Suvlce
Were you born on a Friday? Type in your birthday and find out .

you are here. 639

universal service code

interface ServiceServer (the remote interface)

import java.rmi.*;

public interface ServiceServer extends Remote (

Object [] getServiceList () throws RemoteException;

Service getService(Object serviceKey) throws RemoteException;

public interface Service extends Serializable {
public JPanel getGuiPanel();

640 chapter 18

remote deployment with RN

ass ServiceServerlmpl (the remote Implementation)

java.rm.i.*;
java.util.*;
java. rm.i. server. • ; \ RM\ 'l"'f\tl'l\tn~bOt'l

A\"\O'I'",a

public class ServiceServerImpl extends UnicastRemoteObject implements ServiceServer

BashMap serviceList;

public ServiceServerImpl () throws RemoteException I
setUpServices() ;

. 'b aliu tht ad:.u.al)
~1..d.D'r i~ taIled, '~I . M~itS~:r.il{,t., dt..

V/'h(.Yt the t. . CDit.tStY~iU) M,nI
private void setUpServices () (. _"\ ~e.YV~t.es

...nIV(;,'~
serviceList = new BashMap();
service.List.put("Dice Rolling Service", new DiceService();
servlceList. put ("Day of the Week Service" I new DayOfTheWHkService ()) ;
serviceLlst.put("Visual Music Service", new MiniMusicService()); .u

~
L\..6 KyVit.e.~ (the. at~~I\..K"""1

MaKe. V'" t t\olc.'" ''''1v> v>c.r
o'oy:tb) a~ flo' sh"',,,~ I\ile (-to'!"

~as\olMa~J WIth a
the. 'KC'/).

public Object£] getServiceList () { Client. t.alts .1, . .

S tern t . tl ('" te") "UlJS In oraet- f.o Q....L /• .L f'
ys .. ou . ~rl.n. n an r6ltlO; display in the bro ;)Cl: a Ib~ O't s~viles f.o

return servJ..ceLJ..st.keySet() ,toArray(); ~ d r wsa- (s.o t.he lI.S~ tan ~1.1.)
h iln array o-t f. e Ob' t e... l; one We

~ il'lSiae) by "'dkin9 a!:rrd ~:f .(eva. th~h ii: has S&-il'l~s
j .. the lf~lhN!ap. We ,'Y JlI.St the i(EYS t.h~f. a"e

I f. J W<»It lCha ~n ~lt."~1 C' - •
LAn eLl; he diePlt asks .for ;1 b . -.. ~.,.v'te objai

l; y l.dJlln~ gef.StrvileO.

public static void main (Strinq[] arqa) {
tty {

Naminq.rebind("ServiceServer", new Servic:eServerImpl(»:
catch(Exception ex) (

ex,printStackTraoe() ;
}

Syst&m.out.println("Ramote sarvice is running");

you are here . 64

ServlceBrowser code

class ServlceBrowser (the client)

import java.awt.·i
import javax. swing. * i

~rt java.rmi.*i
import java.awt .event.*;

public class SarviceBrowsar

JPanel mainPanel;
JComboBox serviceList;
ServlceServer server;

public void buildGUI () (
JFrame frame = new JFrame(~RMI BrowserH

) ;

mainPanel D new JPanel();
frame .geteontentPane () . add (BorderLayout.CEN'rEll, mainPanel); .~ lQOku.\,'

-e'nis Method o~s -e'n~ \~~iteL.irtO .

~j.ot[] ••~i~~.M;:dd:'~:~::::~~t;~_~
servlceList = new JCombo80x (services) ; JCorr-bo~ (the \~~. n~ cJ eat'n thi~ ',,, the oYTd'1'

Mav-e disylcl'1cl\'le Sh,~

fr8llMi. getcontentpane () . add (BorderLayout.NOR'l'B, serviceList);

serviceList.addActionListener(new MyListL1stener(»;

frame.setSize(SOO,500) ;
frama.setVisible(true) ;

642 chapter 18

remote deployment with RMI

Object[] getServicesList() {
Object obj = null;
Object[] services = null ;

try {

obj = Naming .lookup(~rmi://127 .0.0.1/ServiceServer");

)

catch(Exception ex) {
ex .printStackTrace() ;

} ~
server = (ServiceServer) obj; Cast the stlAb to th

so that we tall tall e~".o~e illtertate type
~e ervlteListO Oil it '

try {

services = server.getServiceList() ; ~ __

catch(Exception ex) {
ex.printStackTrace() ;

return services;

~d:.set'viteLis·W ~ives lAS the at't'ay 0+ Objetts,
-Chat we display in the JCoMboBo'/C. tOt' Hie lASet' to
selett tt'OI'l\.

}

class MyListListener implements ActionListener {
public void actionPerformed(ActionEvent ev) {

public static void main(String[] args)
new ServiceBrowser() .buildGUI();

you are here. 643

DiceService code

class DiceService (a universal service, implements Service)

e e e lUIl l flD'Vrltt

Dlullolll"9_. - -~

fT.1Wl
'=

SH-

JLabel label;
JComboBox numOfDice;

public JPanel getGuiPanel() (
JPanel panel = new JPanel () ;
JButton button = new JButton("Roll 'em!");
String[] choices = {"I", "2", "3", "4", "5 H

} ;

numOfDice = new JComboBox(ohoices) ;
label = new JLabel ("dice values here");
button.addActionListener(new Rol1EmListener(»;

panel. add (numOfDice) ; ftt:r' th .
panel. add (button) ; St:r:i: i f..t:C»Il'",POl"idl'rt ",tthod! nt: ",eihod 0+ tht:
panel. add (label) ; thil S~i~t: : a~e--;_ v'e 07It: t.he dibrt's 901\1Id ~II whtrl
return panel;a t ·.1' SZ}tua and loaded. yrAJ, u" do whdie

l\ In tne ~t:u:jlliPa"eJO eihod I vty y04l.
JPal'u~" $(I it bioi/as tht: at.t.:~1 d" J as II~n~ ~s you retur" a

- Ilt-ro,~ '-JUt.
public class RollEmListenar implements ActionListener {

publiC! void aotionPerfo:rmed(ActionEvent ev) {
/ I roll the dice
String diceOutput = "";
String selection = (String) numOfDice . get5electedItem () :
int numOfDiceToRoll = Integer.parselnt(selection) ;
for (int i = 0; i < numOfDiceToRoll; i++) (

int r = (int) ((Math. random () * 6) + 1);
diceoutput += (" " + r);

public class DiceService implements Service (

import javax.swing.·;
import java.awt.event.*;
import java.io.*;

)

label. setText (diceOUtput) ;

~arpen your penCil
Think about waysto improve the DiceService.One
suggestion:using what you learnedIn the GUI chapters,
makethe dice 9raphicaI.Use a rectangle, and draw the
appropriate number of circles on eachone,correspondIng
to the roll for that particular die.

1---1• •
644 chapter 18

remote deployment with RMI

class MlnlMusicService (a universal service, implements Service)

1'i.~.o.!~6~~=~"'~-~~==;:~~w................

import j avax . sound.midi ... ;
import java.io.*;
import javax.sving.*;
illlport java.art.*;
illlport java.awt.event .*;

public clau MiniMusicService implements Service { I /'t..\\ °rt
-n... ~.,.\iLt,~ ",rth06. L __ 6

MyDrawPanel myPanel; r In<.. d'sola'ol il D~~ a"
does's '\ I . lot (..,httr(
t.h ,h·a\Oli,,~ ~'f"'I' tu.a\\~

public JPanel getGuiPanel () (e ta~lt.S ..,tIl C\l~

JPanel mainPanEll = new JPanel () ; thC "'~\.edJ
myPanel = new MyDrawPanel () ; ~ ya," .
JButton playltButton = new JButton("Play itN

) ;

playItButton.addActionLiatener(ne. PlayItLlstener());
mainPanel.lldd(myPanel) ;
mainPanel.lldd(playItButton);
return mainPanel;

publio class PlayItListener implements ActionLiatener
publie void actionPerfo~(ActionEventev) (

try (

Sequencer sequencer = MidiSystam. qetSequencer () ;
sequencer.open();

sequencer.addControllerEventLiatener(myPanel, new lnt[] (127»);
Sequence seq = new sequence (Sequence. PPQ, 4);
Track track = s&q.creataTrack() ;

for (lnt i = 0; i < 100; i+= 4) {

lnt rNum = (int) «(Math.random() * 50) + 1);
if (rNum < 39) (II so now only do it if num <38 (15\ of the time)

track.add(makeEvent(144,l,rNum,lOO,l») ;
track.add(makeEvent(116,l,121,O,i));
track.add(makeEvent(128,l,rNum,lOO,1 + 2»;

)

II end loop

sequencer .aetSequence(seq);
sequencer.start();
sequencer.setTampoInBPM(220) ;

catch (Exception ex) (ax.printstackTrace();}

} 1/ close actionperfor=ed
) II close inner class

you are here. 645

MiniMuslcServlce code

class MiniMusicService, continued••.

public MidiEvent makeEvent(int comel, int chan, int one, int two, int tick) {
MidiEvent event = null;

try (
ShortMessage a = new ShortMessage();
a.setMessage(comel, chan, one, two);
event = new MidiEvent(a, tick);

}catch(Exception e) { }
return event;

class MyDrawPanel extends JPanel implements ControllerEventListener

II only if we got an event do we want to paint
boolean mag = false;

public void controlChange(ShortMessage event) {
msg = true;
repaint 0 ;

public Dimension getPreferredSize()
return new Dimension(300,300);

public void paintComponent(Graphics g) {
if (msg) {

Graphics2D g2 = (Graphics2D) g;

int r = (int) (Math.random() * 250);
int gr = (int) (Math.random() * 250);
int b = (int) (Math.random() * 250);

g.setColor(new Color(r,gr,b»;

int ht = (int) «Math.random() * 120) + 10);
int width = (int) «Math.random() * 120) + 10);

= (int) «Math.randomO * 40) + 10);
(int) «Math.random() * 40) + 10);

int x
int y =

g .fillRect(x,y,ht, width);
mag = false;

} II close if
} II close method

} II close inner class
II close class

remote deployment with RMI

class DayOfTheWeekService (a universal service, Implements Service)

import javax.swing .-;
import java .awt .event .·;
import java .awt .* ;
import java.lo.·;
import java.util.* ;
import java. text . • :

public class DayOfTheWeekServicEl implements Service (

,.e 9:"
D.rroln...... s-w.. ~

-.. , ~I...

0., I F .~~..,
.... j l OOI I

JLabel output:Labe1 ;
JComboBox month;
JTextFleld day;
J'l'extField year;

public. JPanel qetGuiPanel () (
JPanel panel "" new JPanel () ;
JButton button"" new JButton(~Do it!");
button.addAetionListener(new DoltListener(»;
outputLabel. "" new .JLabel ("date appearll he.ra") ;
DateFormatsymbols dataStuff = new DateFonaatsymbols () ;
month = new JComboBox(dateStuff.g8tMOnthll{»;
day"" new JTextField(8);
year ;: new J'l'extField (8) :
JPanel inputpanel ;: new JPanel (new Gr iciLayout (3 ,2)) ;
inputPane1.add(new JLabel ("Month") ;
inputpanel .add(month);
inputPanel . add (new JLabel ("Day")) ;
inputPanel.add(day);
inputPanel. add {new JLabel ("Year"» ;
inputPanel.ac1d(year) ;
panel. add (inputpanel) :
panel .add(button);
panel.add(outputLabel);
return panel;

public class DoItLlstener implements A.ctionLilltener J O\l "etd Cle....i"dev
public void aotionPerformed(ActionEvent &V) (R ~O" to t'hayUY 10 -\:.t:'1~~t.t,,~ ""o'r\t.~

int monthNum == month.getselectedIndexO; ; h "",,'olY a",d d6
H t. ho""e"' lY,

lnt dayNum • Integer .paraeInt (day. qatTextO); n\ ~e is t\'~"'t\~ ~\; ~\ass- Aho. the
int yearNum :: Integer. parselnt (year. getTaxt ()) ; \) 11 u.st. it. lASt> the Ca IoU 1 tt.i~'1 a fott.ern
Calendar 0 • Calendar. qetInst&nce () ; et.4\tDa~f~t \~d \"~,,t ",,-l:.,
c •set (Calendar. MONTH J monthN\DJl): f ~""'f~ t,nt dw t"''''' f
c. set (Calendar. DAY_OF_MONTH I dayNum); CIf

c. set (Calendar. YEAR, yearNum):
Date date :: c. qetTime () ;
String dayOfWeelt ;: (new SimplaDataFor:JUt ("EEEE N

)) • format (date) :
outputLabel . setText (dayOfW&elt) ;

you are here ~ 647

the end... sort of

Congratulations!
You made it to the end.

Of course, there's stili the two appendices.
And the Index.
And then there's the web site•••
There's no escape, really.

648 hapter 18

