
ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-1

Chapter 13:
Remote Method Invocation (RMI)

1) Introduction.. 13-2

2) RMI Architecture... 13-3

3) The Remote Interface .. 13-4

4) The Remote Object .. 13-5

5) Writing the Server ... 13-6

6) The RMI Compiler .. 13-8

7) Writing the Client .. 13-9

8) Remote Method Arguments and Return Values... 13-10

9) Dynamic Loading of Stub Classes .. 13-11

10) Remote RMI Client Example.. 13-12

11) Running the Remote RMI Client Example ... 13-20

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-2

Introduction

• The Remote Method Invocation (RMI) model represents a
distributed object application.

 RMI allows an object inside a JVM (a client) to invoke a method
on an object running on a remote JVM (a server) and have the
results returned to the client.

• Therefore, RMI implies a client and a server.

• The server application typically creates an object and
makes it accessible remotely.

 Therefore, the object is referred to as a remote object.

 The server registers the object that is available to clients.

• One of the ways this can be accomplished is through a
naming facility provided as part of the JDK, which is called
the rmiregistry.

• The server uses the registry to bind an arbitrary name to a
remote object.

• A client application receives a reference to the object on
the server and then invokes methods on it.

 The client looks up the name in the registry and obtains a
reference to an object that is able to interface with the remote
object.

• The reference is referred to as a remote object reference.

 Most importantly, a method invocation on a remote object has
the same syntax as a method invocation on a local object.

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-3

RMI Architecture

• The interface that the client and server objects use to
interact with each other is provided through
stubs/skeleton, remote reference, and transport layers.

 Stubs and skeletons are Java objects that act as proxies to the
client and server, respectively.

• All the network-related code is placed in the stub and
skeleton, so that the client and server will not have to deal
with the network and sockets in their code.

 The remote reference layer handles the creation of and
management of remote objects.

 The transport layer is the protocol that sends remote object
requests across the network.

• A simple diagram showing the above relationships is
shown below.

Stub

Client

Transport Layer

Remote Reference Layer

Skeleton

Server

Transport Layer

Remote Reference Layer

Network Connection

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-4

The Remote Interface

• The server's job is to accept requests from a client,
perform some service, and then send the results back to
the client.

 The server must specify an interface that defines the methods
available to clients as a service.

• This remote interface defines the client view of the remote
object.

• The remote interface is always written to extend the
java.rmi.Remote interface.

 Remote is a "marker" interface that identifies interfaces whose
methods may be invoked from a non-local virtual machine.

CalendarTask.java

1. package examples.rmi;
2. import java.rmi.Remote;
3. import java.rmi.RemoteException;
4. import java.util.Calendar;
5. public interface CalendarTask extends Remote {
6. Calendar getDate() throws RemoteException;
7. }

• In the example above, getDate() is a remote method of
the remote interface CalendarTask.

 All methods defined in the remote interface are required to state
that they throw a RemoteException.

• A RemoteException represents communication-related
exceptions that may occur during the execution of a remote
method call.

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-5

The Remote Object

• An implementation of the CalendarTask interface is
shown below.

 The implementation is referred to as the remote object.

 The implementation class extends UnicastRemoteObject to
link into the RMI system.

• This is not a requirement. A class that does not extend
UnicastRemoteObject may use its exportObject()
method to be linked into RMI.

 When a class extends UnicastRemoteObject, it must
provide a constructor declaring that it may throw a
RemoteException object.

• When this constructor calls super(), it activates code in
UnicastRemoteObject, which performs the RMI linking
and remote object initialization.

CalendarImpl.java

1. package examples.rmi;
2. import java.rmi.RemoteException;
3. import java.rmi.server.UnicastRemoteObject;
4. import java.util.Calendar;
5.
6. public class CalendarImpl extends UnicastRemoteObject
7. implements CalendarTask {
8.
9. private int counter = 1;
10.
11. public CalendarImpl() throws RemoteException {}
12.
13. public Calendar getDate() throws RemoteException{
14. System.out.print("Method called on server:");
15. System.out.println("counter = " + counter++);
16. return Calendar.getInstance();
17. }
18. }

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-6

Writing the Server

• The server creates the remote object, registers it under
some arbitrary name, then waits for remote requests.

 The java.rmi.registry.LocateRegistry class allows
the RMI registry service (provided as part of the JVM) to be
started within the code by calling its createRegistry
method.

• This could have also been achieved by typing the following
at a command prompt: rmiregistry.

• The default port for RMI is 1099.

 The java.rmi.registry.Registry class provides two
methods for binding objects to the registry.

• Naming.bind("ArbitraryName", remoteObj);
throws an Exception if an object is already bound under the
"ArbitrayName. "

• Naming.rebind ("ArbitraryName", remoteObj);
binds the object under the "ArbitraryName" if it does not
exist or overwrites the object that is bound.

• The example on the following page acts as a server that
creates a CalendarImpl object and makes it available to
clients by binding it under a name of "TheCalendar. "

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-7

Writing the Server
CalendarServer.java

1. package examples.rmi;
2. import java.rmi.Naming;
3. import java.rmi.registry.LocateRegistry;
4.
5. public class CalendarServer {
6.
7. public static void main(String args[]) {
8. System.out.println("Starting server...");
9. // Start RMI registry service and bind
10. // object to the registry
11. try {
12. LocateRegistry.createRegistry(1099);
13. Naming.rebind("TheCalendar",
14. new CalendarImpl());
15. } catch (Exception e) {
16. e.printStackTrace();
17. System.exit(1);
18. }
19. System.out.println("Server ready");
20. }
21. }

• If both the client and the server are running Java SE 5 or
higher, no additional work is needed on the server side.

 Simply compile the CalendarTask, CalendarImpl, and
CalendarServer, and the server can then be started.

 The reason for this is the introduction in Java SE 5 of dynamic
generation of stub classes.

• Java SE 5 adds support for the dynamic generation of stub
classes at runtime, eliminating the need to use the RMI stub
compiler, rmic, to pre-generate stub classes for remote
objects.

• Note that rmic must still be used to pre-generate stub
classes for remote objects that need to support clients
running on earlier versions.

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-8

The RMI Compiler

• If RMI is being used with a version of Java prior to Java
SE 5, a stub must be generated on the server-side and
made available to the client.

 The RMI compiler (rmic) is a tool used to create any
necessary stubs and/or skeletons to support the remote object.

• Skelton(s) have been optional since Java SE 1.2.

 The rmic compiler is passed to the compiled version of the
remote object and generates a stub class from it as shown
below.

rmic -keep -d %CLASSES% examples.rmi.CalendarImpl

• The "-keep" is optional and is being used so that, in

addition to the generated .class files, the .java files will
be retained so that they can be viewed if desired.

• The result of running the rmic command above is a file
named CalendarImpl_Stub.class.

• Since the "-keep" option was used, there is also a file
named CalendarImpl_Stub.java.

 The CalendarImpl_Stub class generated is a client-side
component and as such, must exist on the client's classpath in
order for client code to successfully communicate with the
server.

• If the stub class is not available locally to the client, it must
be loaded dynamically over the network.

• Keep in mind that this is only necessary if a version of Java
prior to Java SE 5 is being used.

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-9

Writing the Client

• An RMI client is a program that accesses the services
provided by a remote object.

 The java.rmi.registry.LocateRegistry class allows
the RMI registry service to be located by a client by its
getRegistry method.

• The java.rmi.registry.Registry class provides a
lookup method that takes the "ArbitraryName" the
remote object was bound to by the server.

• Once the client obtains a reference to a remote object, it
invokes methods as if the object were local.

CalendarClient.java

1. package examples.rmi;
2.
3. import java.rmi.registry.*;
4. import java.util.Calendar;
5.
6. public class CalendarClient {
7.
8. public static void main(String args[]) {
9. Calendar c = null;
10. CalendarTask remoteObj;
11. String host = "localhost";
12. if(args.length == 1)
13. host = args[0];
14. try {
15. Registry r =
16. LocateRegistry.getRegistry(host, 1099);
17. Object o = r.lookup("TheCalendar");
18. remoteObj = (CalendarTask) o;
19. c = remoteObj.getDate();
20. } catch (Exception e) {
21. e.printStackTrace();
22. }
23. System.out.printf("%tc", c);
24. }
25. }

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-10

Remote Method Arguments and Return Values

• The arguments to a remote method must be
Serializable.

 They must be primitive types or objects that implement the
Serializable interface.

 The same restriction applies to return values.

• The RMI stub/skeleton layer decides how to send
arguments and return values over the network.

 If the object is Serializable but not Remote:

• the object is serialized and streamed in byte format; and
• the receiver de-serializes the bytes into a copy of the original

object.

 If the object is a Remote object:

• a remote reference for the object is marshaled and sent to
the remote process; and

• this reference is received and converted into a stub for the
original object.

 If the argument or return value is not serializable, a
java.rmi.MarshalException is thrown.

• The key difference between remote and non-remote
objects is that Remote objects are sent by reference,
while non-remote objects (and primitive types) are sent by
copy.

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-11

Dynamic Loading of Stub Classes

• If the client stub class is not available in the local
CLASSPATH, it must be loaded dynamically over the
network.

 This is a typical scenario when the client and server are not
running on the same machine.

 We will illustrate downloading of stub classes via a web server.

• When the RMI run-time system marshals a remote object
stub, it encodes a URL in the byte stream to tell the
process on the other end of the stream where to look for
the class file for the marshaled object.

 This URL is obtained from a system property called
java.rmi.server.codebase.

• We will set this property on the command line to point to a
directory within the web server’s document base.

 Note that in order for a Java runtime system to be able to load
classes remotely, it has to have a security manager installed
that will allow the remote load.

• There is one provided by the
java.rmi.RMISecurityManager class.

 The final issue is that the default Java security policy does not
allow all the networking operations required to load a class from
a remote host.

• An RMI client that needs to load classes remotely must have
a policy file granting the necessary permissions.

• The name of the policy file can be specified on the command
line by setting the java.security.policy property.

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-12

Remote RMI Client Example

• The RMI application shown below illustrates dynamic
loading of stub classes.

 It also shows an example of a Remote object used as a method
argument.

 Following the source code are detailed instructions on how to
run the Client and Server.

• We begin with the remote interface.

Account.java

1. package examples.rmi;
2.
3. import java.rmi.*;
4.
5. public interface Account extends Remote {
6. public String getName() throws RemoteException;
7.
8. public double getBalance()
9. throws RemoteException;
10.
11. public void withdraw(double amt)
12. throws RemoteException;
13.
14. public void deposit(double amt)
15. throws RemoteException;
16.
17. public void transfer(double amt, Account src)
18. throws RemoteException;
19. }

• The implementation of the remote interface is shown on
the next page.

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-13

Remote RMI Client Example
AccountImpl.java

1. package examples.rmi;
2.
3. import java.rmi.server.*;
4. import java.rmi.*;
5.
6. public class AccountImpl extends UnicastRemoteObject
7. implements Account {
8. private double balance = 0.0;
9. private String name = "";
10.
11. public AccountImpl(String aName)
12. throws RemoteException {
13. name = aName;
14. }
15.
16. public String getName() throws RemoteException {
17. return name;
18. }
19.
20. public double getBalance()
21. throws RemoteException {
22. return balance;
23. }
24.
25. public void withdraw(double amt)
26. throws RemoteException {
27. if (amt > balance)
28. throw new RemoteException();
29. balance -= amt;
30. }
31.
32. public void deposit(double amt)
33. throws RemoteException {
34. balance += amt;
35. }
36.
37. public void transfer(double amt, Account src)
38. throws RemoteException {
39. src.withdraw(amt);
40. this.deposit(amt);
41. }
42. }

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-14

Remote RMI Client Example

• The Server is shown below with the following features.

 The compiling of the stub class for the client is done using
Runtime.exec().

• The exec method allows the JVM to run an external process
(in this case the rmi compiler - rmic).

 The server creates and starts the registry service.

AccountServer.java

1. package examples.rmi;
2.
3. import java.io.IOException;
4. import java.net.InetAddress;
5. import java.rmi.registry.*;
6.
7. public class AccountServer {
8. private static String buildCommandLine(){
9. String jcp = "java.class.path";
10. StringBuffer sb = new StringBuffer();
11. sb.append('"');
12. sb.append(System.getProperty(jcp));
13. sb.append('"');
14. String classpath = sb.toString();
15. sb.setLength(0);
16. sb.append("rmic -d ").append(classpath);
17. sb.append(" -classpath ").append(classpath);
18. sb.append(" examples.rmi.AccountImpl");
19. System.out.println(sb.toString());
20. return sb.toString();
21. }
22. public static void main(String args[]) {
23. // execute rmic as an external process
24. Process p = null;
25. try {
26. String command = buildCommandLine();
27. p = Runtime.getRuntime().exec(command);
28. p.waitFor(); // wait for completion
29. } catch (Exception e1) {
30. e1.printStackTrace();
31. }

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-15

Remote RMI Client Example
AccountServer.java - continued

32.
33. try {
34. String key = "java.rmi.server.codebase";
35. InetAddress server =
36. InetAddress.getLocalHost();
37. String address = server.getHostAddress();
38. String value =
39. "http://" + address + ":8080/";
40. System.setProperty(key, value);
41. //Start the StubServer
42. Thread t = new StubServer();
43. t.start();
44. // Create registry service
45. Registry reg =
46. LocateRegistry.createRegistry(1099);
47. // Create some Accounts
48. AccountImpl acct1 =
49. new AccountImpl("Alan");
50. AccountImpl acct2 =
51. new AccountImpl("Dave");
52.
53. // Register with the naming registry.
54. reg.rebind("Alan", acct1);
55. reg.rebind("Dave", acct2);
56.
57. System.out.println("Accts registered");
58. } catch (Exception e) {
59. e.printStackTrace();
60. }
61. }
62. }

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-16

Remote RMI Client Example

• Although a web server such as Tomcat, WebLogic, or
WebSphere could be used to host the stub class
necessary for dynamic loading of the stub class, the file
below is a simple web server based on the code from the
Networking chapter of this course.

StubServer.java

1. package examples.rmi;
2.
3. import java.io.*;
4. import java.net.*;
5.
6. public class StubServer extends Thread {
7.
8. static byte[] hdrNotFound =
9. "HTTP/1.0 404 Not Found\n\n".getBytes();
10. static byte[] notFound =
11. "<html>Resource Not Found</html>".getBytes();
12. static byte[] hdrOK =
13. "HTTP/1.0 200 OK\n\n".getBytes();
14. static byte[] testResponse =
15. "<html>Server operational</html>".getBytes();
16.
17. public void run() {
18. ServerSocket theServer = null;
19. Socket clientSocket;
20. // Attempt to start the server
21. try {
22. theServer = new ServerSocket(8080);
23. while (true) {
24. clientSocket = theServer.accept();
25. handleClient(clientSocket);
26. }
27. } catch (IOException ioe) {
28. ioe.printStackTrace();
29. System.exit(1);
30. }
31. }
32.

 Continued on following page

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-17

Remote RMI Client Example
StubServer.java - continued

33. private void handleClient(Socket cSocket) {
34. OutputStream toClient = null;
35. BufferedReader fromClient = null;
36. try {
37. // Get Input and Output
38. fromClient = new BufferedReader(
39. new InputStreamReader(cSocket
40. .getInputStream()));
41. toClient = cSocket.getOutputStream();
42. // read from Client
43. String theLine = fromClient.readLine();
44. String request = theLine.split(" ")[1];
45. System.out.println("StubServer Request:"
46. + theLine);
47. if (request.equals("/")) {
48. toClient.write(hdrOK);
49. toClient.write(testResponse);
50. } else {
51. processStub(request, toClient);
52. }
53.
54. fromClient.close();
55. toClient.close();
56. cSocket.close();
57. } catch (IOException ioe) {
58. String msg = "Connection lost";
59. System.out.println(msg);
60. }
61. }

 Continued on following page

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-18

Remote RMI Client Example
StubServer.java - continued

62. private void processStub(String req,
63. OutputStream toClient){
64. InputStream is =
65. this.getClass().getResourceAsStream(req);
66.
67. byte[] bufferedStub = null;
68. try {
69. if (is != null) {
70. int size = is.available();
71. bufferedStub = new byte[size];
72. is.read(bufferedStub);
73. is.close();
74. toClient.write(hdrOK);
75. toClient.write(bufferedStub);
76. } else {
77. toClient.write(hdrNotFound);
78. toClient.write(notFound);
79. }
80. } catch (IOException e) {
81. e.printStackTrace();
82. }
83. }
84. }

• Finally, the client code is shown below.

AccountClient.java

1. package examples.rmi;
2.
3. import java.net.URL;
4. import java.rmi.*;
5. import java.rmi.registry.*;
6.
7. public class AccountClient {
8. public static void main(String args[]) {
9. String host = "localhost";
10. if (args.length > 0) { host = args[0]; }
11. try {
12. String key = "java.security.policy";
13. Class c = AccountClient.class;
14. URL u =c.getResource("policy.client");

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-19

Remote RMI Client Example
AccountClient.java - continued

15. String value = u.getPath();
16. System.setProperty(key, value);
17. System.setSecurityManager(
18. new RMISecurityManager());
19. Registry r =
20. LocateRegistry.getRegistry(host, 1099);
21. // Lookup Account objects
22. Account act1 =
23. (Account) r.lookup("Alan");
24. Account act2 =
25. (Account) r.lookup("Dave");
26.
27. showBalance(act1);
28. showBalance(act2);
29.
30. // Make some deposits
31. act1.deposit(200);
32. act2.deposit(100);
33.
34. // Show results
35. System.out.println("Deposit 200 & 100");
36. showBalance(act1);
37. showBalance(act2);
38.
39. // Do a transfer
40. act2.transfer(10, act1);
41.
42. // Show results
43. System.out.println("Transfer 10");
44. showBalance(act1);
45. showBalance(act2);
46. } catch (Exception e){ e.printStackTrace(); }
47. }
48.
49. public static void showBalance(Account acct)
50. throws RemoteException {
51. System.out.println("Balance for " +
52. acct.getName() + " is " +
53. acct.getBalance());
54. }
55. }

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-20

Running the Remote RMI Client Example

• Running the AccountServer will accomplish the
following.

 It generates the AccountImpl_Stub needed by the client so
that it can be dynamically loaded by the client.

 It starts the StubServer so that the AccountImpl_Stub is
available via the java.rmi.server.codebase property.

 It starts the rmi registry to bind the remote Account objects.

• Running the AccountClient will accomplish the
following.

 It installs the RMISecurityManager.

 It utilizes the policy file named policy.client to allow the
JVM to load a class from a remote URL.

 If the Stub class is not available on the client's classpath when
the lookup is performed, the client will automatically retrieve the
necessary stub from the servers codebase.

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-21

Exercises

1. Build and test an implementation for a MathServices
interface with remote methods as shown below.

public double sqroot (double value);
public double square(double value);

 Begin with MathServices.java in the starters directory.

Evaluation
Copy

Evaluation
Copy

ADVANCED JAVA PROGRAMMING CHAPTER 13: REMOTE METHOD INVOCATION (RMI)

©2009 /training/etc Inc. REPRODUCTION OF THESE MATERIALS IS PROHIBITED.
13-22

This Page Intentionally Left Blank

Evaluation
Copy

Evaluation
Copy

	Advanced Java Programming
	Course Info
	Course Objectives
	Table of Contents

	Chapter 1: Review of Java Fundamentals
	The Java Environment
	Data Types
	The String Class
	The StringBuffer Class
	Arrays
	Passing Data Types to a Method
	Constructors and Initialization
	Inheritance
	Abstract Classes
	Interfaces
	Static Data, Methods, and Blocks
	Wrapper Classes
	I/O

	Chapter 2: Packaging and Distributing a Java Application
	Packages
	Managing Source and Class Files
	The javadoc Utility
	Documenting Classes and Interfaces
	Documenting Fields
	Documenting Constructors and Methods
	Running the javadoc Utility
	jar Files
	The Manifest File
	Bundling and Using Jar-Packaged Resources

	Chapter 3: Miscellaneous Enhancements
	Enhanced for Loop
	Autoboxing and Auto-Unboxing
	Static Imports
	varArgs
	Typesafe Enums
	Formatted Strings
	Format Specifier Syntax
	Format Specifier Conversions
	Format Specifier Flags
	Formatted Integers Example
	Formatted Floating Points Example
	Formatted Strings Example
	Formatted Dates Example
	Complex Formatted Example

	Chapter 4: Assertions
	Introduction
	Assertion Syntax
	Compiling with Assertions
	Enabling and Disabling Assertions
	Assertion Usage

	Chapter 5: Regular Expressions
	Regular Expressions
	String Literals
	Character Classes
	Quantifiers
	Capturing Groups and Backreferences
	Boundary Matchers
	Pattern and Matcher

	Chapter 6: The Java Collection Classes
	Introduction
	The Arrays Class
	Searching and Sorting Arrays of Primitives
	Sorting Arrays of Objects
	The Comparable and Comparator Interfaces
	Sorting - Using Comparable
	Sorting - Using Comparator
	Collections
	Lists and Sets
	Iterators
	Lists and Iterators Example
	Maps
	Maps and Iterators Example
	The Collections Class
	Rules of Thumb

	Chapter 7: Generics
	Introduction
	Defining Simple Generics
	Generics and Subtyping
	Wildcards
	Bounded Wildcards
	Generic Methods

	Chapter 8: Advanced I/O
	Introduction
	Basic File I/O Example
	Buffered I/O
	The Console Class
	Object Serialization
	Serialization Issues
	Compressed Files
	Zip File Example
	Writing Your Own I/O Classes
	Property Files
	The Preferences Class

	Chapter 9: Enhanced I/O
	Introduction
	Channels
	Buffers
	Typed Buffers
	Direct Buffers

	Chapter 10: Logging API
	Introduction
	Loggers
	Logger Levels
	Logger Handlers
	Specifying Handlers and Formatters
	Configuring Handlers
	LogManager

	Chapter 11: Networking
	Networking Fundamentals
	The Client/Server Model
	InetAddress
	URLs
	Sockets
	A Time-of-Day Client
	Writing Servers
	Client/Server Example

	Chapter 12: Threads and Concurrency
	Review of Fundamentals
	Creating Threads by Extending Thread
	Creating Threads by Implementing Runnable
	Advantages of Using Threads
	Daemon Threads
	Thread States
	Thread Problems
	Synchronization
	Performance Issues

	Chapter 13: Remote Method Invocation (RMI)
	Introduction
	RMI Architecture
	The Remote Interface
	The Remote Object
	Writing the Server
	The RMI Compiler
	Writing the Client
	Remote Method Arguments and Return Values
	Dynamic Loading of Stub Classes
	Remote RMI Client Example
	Running the Remote RMI Client Example

	Chapter 14: Java Database Connectivity (JDBC)
	Introduction
	Relational Databases
	Structured Query Language
	A Sample Program
	Transactions
	Meta Data

