

How to Tango with Django 1.9
A beginners guide to Python/Django

Leif Azzopardi and David Maxwell

This book is for sale at http://leanpub.com/tangowithdjango19

This version was published on 2016-08-04

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 Leif Azzopardi and David Maxwell

http://leanpub.com/tangowithdjango19
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Leif Azzopardi and David Maxwell by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I’m now ready to Tango with Django 1.9 @tangowithdjango

The suggested hashtag for this book is #tangowithdjango.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#tangowithdjango

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20now%20ready%20to%20Tango%20with%20Django%201.9%20@tangowithdjango
https://twitter.com/search?q=%23tangowithdjango
https://twitter.com/search?q=%23tangowithdjango

CONTENTS

Contents

1. Overview . 1
1.1 Why Work with this Book? . 1
1.2 What You will Learn . 2
1.3 Technologies and Services . 3
1.4 Rango: Initial Design and Specification . 4
1.5 Summary . 10

2. Getting Ready to Tango . 12
2.1 Python . 12
2.2 The Python Package Manager . 13
2.3 Virtual Environments . 14
2.4 Integrated Development Environment . 14
2.5 Code Repository . 15

3. Django Basics . 16
3.1 Testing Your Setup . 16
3.2 Creating Your Django Project . 17
3.3 Creating a Django Application . 20
3.4 Creating a View . 22
3.5 Mapping URLs . 23
3.6 Basic Workflows . 25

4. Templates and Static Media . 27
4.1 Using Templates . 27
4.2 Serving Static Media . 32
4.3 Basic Workflow . 38

5. Models and Databases . 40
5.1 Rango’s Requirements . 40
5.2 Telling Django about Your Database . 41
5.3 Creating Models . 42
5.4 Creating and Migrating the Database . 44
5.5 Django Models and the Shell . 46
5.6 Configuring the Admin Interface . 47

www.tangowithdjango.com

CONTENTS

5.7 Creating a Population Script . 50
5.8 Workflow: Model Setup . 55

6. Automated Testing . 59
6.1 Running Tests . 59
6.2 Coverage Testing . 63

7. Deploying Your Project . 66
7.1 Creating a PythonAnywhere Account . 66
7.2 The PythonAnywhere Web Interface . 66
7.3 Creating a Virtual Environment . 68
7.4 Setting up Your Web Application . 71
7.5 Log Files . 75

8. Final Thoughts . 76

9. Setting up your System . 77
9.1 Installing the Software . 77
9.2 Virtual Environments . 82
9.3 Exercises . 84

10. A Crash Course in UNIX-based Commands . 85
10.1 Using the Terminal . 85
10.2 Core Commands . 89

11. Virtual Environments . 91

12. A Git Crash Course . 93
12.1 Why Use Version Control? . 93
12.2 How Git Works . 94
12.3 Setting up Git . 95
12.4 Basic Commands and Workflow . 98
12.5 Recovering from Mistakes . 105

www.tangowithdjango.com

Overview 1

1. Overview
The aim of this book is to provide you with a practical guide to web development using Django
1.9. and Python. The book is designed primarily for students, providing a walkthrough of the steps
involved in getting your first web applications up and running, as well as deploying them to a web
server.

This book seeks to complement the official Django Tutorials andmany of the other excellent tutorials
available online. By putting everything together in one place, this book fills in many of the gaps in
the official Django documentation providing an example-based design driven approach to learning
the Django framework. Furthermore, this book provides an introduction to many of the aspects
required to master web application development.

1.1 Why Work with this Book?

This book will save you time. On many occasions we’ve seen clever students get stuck, spending
hours trying to fight with Django and other aspects of web development. More often than not, the
problem was usually because a key piece of information was not provided, or something was not
made clear. While the occasional blip might set you back 10-15 minutes, sometimes they can take
hours to resolve. We’ve tried to remove as many of these hurdles as possible. This will mean you
can get on with developing your application instead of stumbling along.

This book will lower the learning curve.Web application frameworks can save you a lot of hassle
and lot of time. Well, that is if you know how to use them in the first place! Often the learning curve
is steep. This book tries to get you going - and going fast by explaining how all the pieces fit together.

This book will improve your workflow. Using web application frameworks requires you to pick
up and run with a particular design pattern - so you only have to fill in certain pieces in certain
places. After working with many students, we heard lots of complaints about using web application
frameworks - specifically about how they take control away from them (i.e. inversion of control).
To help you, we’ve created a number of workflows to focus your development process so that you
can regain that sense of control and build your web application in a disciplined manner.

This book is not designed to be read. Whatever you do, do not read this book! It is a hands-on
guide to building web applications in Django. Reading is not doing. To increase the value you gain
from this experience, go through and develop the application. When you code up the application, do
not just cut and paste the code. Type it in, think about what it does, then read the explanations we
have provided to describe what is going on. If you still do not understand, then check out the Django
documentation, go to Stack Overflow or other helpful websites and fill in this gap in your knowledge.
If you think it is worth mentioning, please get in touch with us so that we can improve the book -
we already have a number of contributors and we will happily acknowledge your contribution!

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/tutorial01/
http://stackoverflow.com/questions/tagged/django

Overview 2

1.2 What You will Learn

In this book, we will be taking an exampled-based approach. The book will show you how to design
a web application called Rango (see the Design Brief below). Along the way, we’ll show you how to
perform the following key tasks.

• How to setup your development environment - including how to use the terminal, your
virtual environment, the pip installer, how to work with Git, and more.

• Setup a Django project and create a basic Django application.
• Configure the Django project to serve static media and other media files.
• Work with Django’s Model-View-Template design pattern.
• Create database models and use the object relational mapping (ORM) functionality provided
by Django.

• Create forms that can utilise your database models to create dynamically generated web-
pages.

• Use the user authentication services provided by Django.
• Incorporate external services into your Django application.
• Include Cascading Styling Sheets (CSS) and JavaScript within a web application.
• Apply CSS to give your application a professional look and feel.
• Work with cookies and sessions with Django.
• Include more advanced functionality like AJAX into your application.
• Deploy your application to a web server using PythonAnywhere.

At the end of each chapter, we have included a number of exercises designed to push you harder
and to see if you can apply what you have learned. The later chapters of the book provide a number
of open development exercises along with coded solutions and explanations.

Exercises will be clearly delineated like this!
In each chapter we have added a number of exercises to test your knowledge and skill.

You will need to complete these exercises as the subsequent chapters are dependent on them.

Don’t worry if you get stuck, though. If you want to, you can check out our solutions to
all the exercises on our GitHub repository.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Object-relational_mapping
https://github.com/leifos/tango_with_django_19

Overview 3

1.3 Technologies and Services

Through the course of this book, we will used various technologies and external services including:

• Python
• Pip package manager
• Django
• Git
• GitHub
• HTML
• CSS
• JavaScript
• JQuery
• Twitter Bootstrap
• Bing Search API via Azure Datamarket
• PythonAnywhere

We’ve selected these technologies and services as they are either fundamental to web development,
and/or enable us to provide examples on how to integrate your web application with CSS toolkits
like Twitter Bootstrap, external services like those provided by Microsoft Azure and deploy your
application quickly and easily with PythonAnywhere.

www.tangowithdjango.com

http://www.python.org/
http://www.pip-installer.org/
https://www.djangoproject.com/
http://git-scm.com/
https://github.com/
http://www.w3.org/html/
http://www.w3.org/Style/CSS/
https://www.javascript.com/
http://jquery.com/
http://getbootstrap.com/
http://datamarket.azure.com/
https://www.pythonanywhere.com/

Overview 4

1.4 Rango: Initial Design and Specification

As previously mentioned, the focus of this book will be to develop an application called Rango.
As we develop this application, it will cover the core components that need to be developed when
building any web application.

To see a fully-functional version of the application, you can visit the How to Tango with Django
website.

Design Brief

Your client would like you to create a website called Rango that lets users browse through user-
defined categories to access various web pages. In Spanish, the word rango is used to mean “a league
ranked by quality” or “a position in a social hierarchy”.

• For the main page of the Rango website, your client would like visitors to be able to see:
– the five most viewed pages;
– the five most viewed (or rango’ed) categories; and
– some way for visitors to browse or search through categories.

• When a user views a category page, your client would like Rango to display:
– the category name, the number of visits, the number of likes, along with the list of
associated pages in that category (showing the page’s title, and linking to its URL); and

– some search functionality (via Bing’s Search API) to find other pages that can be linked
to this category.

• For a particular category, the client would like: the name of the category to be recorded; the
number of times each category page has been visited; and how many users have clicked a
“like” button (i.e. the page gets rango’ed, and voted up the social hierarchy).

• Each category should be accessible via a readable URL - for example, /rango/books-about-
django/.

• Only registered users will be able to search and add pages to categories. Visitors to the site
should therefore only be able to register for an account.

At first glance, the specified application to develop seems reasonably straightforward. In essence, it
is just a list of categories which link to pages, right? However, there are a number of complexities
and challenges that need to be addressed. First, let’s try and build up a better picture of what needs
to be developed by laying down some high-level designs.

www.tangowithdjango.com

http://www.tangowithdjango.com/
http://www.tangowithdjango.com/
https://www.vocabulary.com/dictionary/es/rango

Overview 5

Exercises
Before going any further, think about these specifications and draw up the following design
artefacts.

• An N-Tier or System Architecture diagram.
• Wireframes of the main and category pages.
• A series of URL mappings for the application.
• An Entity-Relationship (ER) diagram to describe the data model that we’ll be
implementing.

It’s good practice for you to try these exercises out before moving on to examine how we
went about creating all of the above.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

Overview 6

N-Tier Architecture

The high-level architecture for most web applications is a 3-Tier architecture. Rango will be a variant
on this architecture as it interfaces with an external service.

Overview of the 3-tier system architecture for our Rango application.

Since we are building a web application with Django, we will use the following technologies for the
following tiers.

• The client will be a Web browser (such as Chrome, Firefox, and Safari) which will render
HTML/CSS pages.

• Themiddlewarewill be a Django application, and will be dispatched through Django’s built-
in development Web server while we develop.

• The database will be the Python-based SQLite3 Database engine.
• The search API will be the Bing Search API.

For the most part, this book will focus on developing the middleware. It should however be quite
evident from the system architecture diagram that we will have to interface with all the other
components.

Wireframes

Wireframes are great way to provide clients with some idea of what the application should look like
when complete. They save a lot of time, and can vary from hand drawn sketches to exact mockups
depending on the tools that you have at your disposal. For our Rango application, we’d like to make
the index page of the site look like the screenshot below. Our category page is also shown below.

www.tangowithdjango.com

Overview 7

The index page with the categories bar on the left, also showing the top five pages and top five categories.

www.tangowithdjango.com

Overview 8

The category page showing the pages in the category (along with the number of views). Below, a search for
Python has been conducted, with the results shown underneath.

Pages and URL Mappings

From the specification, we have already identified two pages that our application will present to the
user at different points in time. To access each page we will need to describe URL mappings. Think
of a URL mapping as the text a user will have to enter into a browser’s address bar to reach the
given page. The basic URL mappings for Rango are shown below.

• /rango/ will point to the main (or index) page.

www.tangowithdjango.com

Overview 9

• /rango/about/ will point to the about page.
• /rango/category/<category_name>/ will point to the category page for <category_name>,
where the category might be:

– games;
– python-recipes; or
– code-and-compilers.

As we build our application, we will probably need to create other URL mappings. However, the
ones listed above will get us started and give us an idea of the different pages.

As we progress through the book, we will flesh out how to construct these pages using the Django
framework and use its Model-View-Template design pattern. However, now that we have a gist of
the URL mappings and what the pages are going to look like, we need to define the data model that
will house the data for our Web application.

Entity-Relationship Diagram

Given the specification, it should be clear that we have at least two entities: a category and a page.
It should also be clear that a category can house many pages. We can formulate the following ER
Diagram to describe this simple data model.

The Entity Relationship Diagram of Rango’s two main entities.

Note that this specification is rather vague. A single page could in theory exist in one or more
categories. Working with this assumption, we could model the relationship between categories and
pages as a many-to-many relationship. This approach however introduces a number of complexities,
so we will make the simplifying assumption that one category contains many pages, but one page
is assigned to one category. This does not preclude that the same page can be assigned to different
categories - but the page would have to be entered twice, which is not ideal.

Take Note!
It’s good practice to note down any working assumptions you make, just like the one-to-
many relationship assumption we assume above. You never know when they may come
back to bite you later on! By noting them down, this means you can communicate it with
your development team and make sure that the assumption is sensible and that they are
happy to proceed under such an assumption.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/
https://en.wikipedia.org/wiki/Many-to-many_(data_model)

Overview 10

With this assumption, we then produce a series of tables that describe each entity in more detail.
The tables contain information on what fields are contained within each entity. We use Django
ModelField types to define the type of each field (i.e. IntegerField, CharField, URLField or
ForeignKey). Note that in Django primary keys are implicit such that Django adds an id to each
Model, but we will talk more about that later in the Models and Database chapter.

Category Model

Field Type

name CharField

views IntegerField

likes IntegerField

Page Model

Field Type

category ForeignKey

title CharField

url URLField

views IntegerField

We will also have model for the User so that they can register and login. We have not shown it
here, but shall introduce it later in the book when we discuss User Authentication. In the following
chapters will we see how to instantiate these models in Django and how to use Django’s ORM to
connect to the database.

1.5 Summary

These high level design and specifications will serve as a useful reference point when building our
Web application. While we will be focusing on using specific technologies, these steps are common
to most database driven websites. It’s a good idea to become familiar with reading and producing
such specifications and designs, which warrants another book on the topic. Here we will be focusing
on using Django and the related technologies to implement this specification.

www.tangowithdjango.com

Overview 11

Cut and Paste Coding
As you progress through the tutorial, you’ll most likely be tempted to cut and paste the code
from the book to your code editor. However, it is better to type in the code. We know
that this is a hassle, but it will help you to remember the process better and the commands
that you will be using later on.

Furthermore, cutting and pasting Python code is asking for trouble. Whitespace can end up
being interpreted as spaces, tabs or a mixture of spaces and tabs. This will lead to all sorts
of weird errors, and not necessarily indent errors. If you do cut and paste code be wary of
this. Pay particular attention to this if you’re using Python 3 - inconsistent use of tabs and
spaces in your code’s indentation will lead to a TabError.

Most code editors will show the whitespace and whether it is tabs or spaces. If so, turn it
on and save yourself a lot of confusion.

www.tangowithdjango.com

Getting Ready to Tango 12

2. Getting Ready to Tango
Before we get down to coding, it’s really important that we get our development environment setup
so that you can Tango with Django! You’ll need to ensure that you have all the necessary components
installed on your computer. This chapter outlines the five key components that you need to be aware
of, setup and use. These are listed below.

• Working with the terminal or Command Prompt.
• Python and your Python installation.
• The Python Package Manager pip and virtual environments.
• Your Integrated Development Environment (IDE), if you choose to use one.
• A Version Control System (VCS), Git.

If you already have Python 2.7/3.5 and Django 1.9 installed on your computer, and are familiar with
the technologies mentioned, then you can skip straight to the Django Basics chapter. Otherwise,
we below provide an overview of the different components and why they are important. We also
provide a series of pointers on how to setup the various components.

Your Development Environment
Setting up your development environment is pretty tedious and often frustrating. It’s not
something that you’d do everyday. Below, we have put together the list of core technologies
you need to get started and pointers on how to install them.

From experience, we can also say that it’s a good idea when setting your development
environment up to note down the steps you took. You’ll need them again one day - whether
because you have purchased a new computer, or you have been asked to help someone else
set their computer up! Taking a note of everything you do will save you time and effort in
the future. Don’t just think short term!

2.1 Python

To work with Tango with Django, we require you to have installed on your computer a copy of the
Python programming language. Any version from the 2.7 family - with a minimum of 2.7.5 - or
version 3.4+will work fine. If you’re not sure how to install Python and would like some assistance,
have a look at the chapter dealing with installing components.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Terminal_emulator
https://en.wikipedia.org/wiki/Cmd.exe

Getting Ready to Tango 13

Not sure how to use Python?
If you haven’t used Python before - or you simply wish to brush up on your skills - then
we highly recommend that you check out and work through one or more of the following
guides:

• Learn Python in 10 Minutes by Stavros;
• The Official Python Tutorial;
• Think Python: How to Think like a Computer Scientist by Allen B. Downey; or
• Learn to Program by Jennifer Campbell and Paul Gries.

2.2 The Python Package Manager

Pip is the python package manager. The package manager allows you install various libraries for the
Python programming language to enhance its functionality.

A package manager, whether for Python, your operating system or some other environment, is
a software tool that automates the process of installing, upgrading, configuring and removing
packages - that is, a package of software which you can use on your computer. This is opposed
to downloading, installing and maintaining software manually. Maintaining Python packages can
be difficult - with other packages are dependencies of the package you are attempting to install, to
maintaining system paths - pip should handle this all for you.

Try and run pip with the command $ pip. If the command is not found, you’ll need to install pip
itself - check out the system setup chapter for more information. You should also ensure that the
following packages are installed on your system. Run the following commands to install Django and
pillow (an image manipulation library for Python).

$ pip install -U django==1.9.5

$ pip install pillow

www.tangowithdjango.com

http://www.korokithakis.net/tutorials/python/
http://docs.python.org/2/tutorial/
http://www.greenteapress.com/thinkpython/
https://www.coursera.org/course/programming1
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Advanced_Packaging_Tool
https://docs.npmjs.com/cli/install
https://python-pillow.org/

Getting Ready to Tango 14

Problems Installing pillow?
When installing Pillow, you may receive an error stating that the installation failed due to
a lack of JPEG support. This error is shown as the following:

ValueError: jpeg is required unless explicitly disabled using

--disable-jpeg, aborting

If you receive this error, try installing Pillow without JPEG support enabled, with the
following command.

pip install pillow --global-option="build_ext"

--global-option="--disable-jpeg"

While you obviously will have a lack of support for handling JPEG images, Pillow should
then install without problem. Getting Pillow installed is enough for you to get started with
this tutorial. For further information, check out the Pillow documentation.

2.3 Virtual Environments

We’re almost all set to go! However, before we continue, it’s worth pointing out that while this setup
is fine to begin with, there are some drawbacks. What if you had another Python application that
requires a different version to run, or you wanted to switch to the new version of Django, but still
wanted to maintain your Django 1.9 project?

The solution to this is to use virtual environments. Virtual environments allowmultiple installations
of Python and their relevant packages to exist in harmony. This is the generally accepted approach
to configuring a Python setup nowadays.

Setting up a virtual environment is not necessarily but it is highly recommended. The virtual
environment chapter details how to setup, create and use virtual environments.

2.4 Integrated Development Environment

While not absolutely necessary, a good Python-based IDE can be very helpful to you during the
development process. Several exist, with perhaps PyCharm by JetBrains and PyDev (a plugin of the
Eclipse IDE) standing out as popular choices. The PythonWiki provides an up-to-date list of Python
IDEs.

Research which one is right for you, and be aware that some may require you to purchase a licence.
Ideally, you’ll want to select an IDE that supports integration with Django.

www.tangowithdjango.com

http://pillow.readthedocs.io/en/3.2.x/installation.html
http://simononsoftware.com/virtualenv-tutorial/
http://www.jetbrains.com/pycharm/
http://www.eclipse.org/downloads/
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Getting Ready to Tango 15

We use PyCharm as it supports virtual environments and Django integration - though you will have
to configure the IDE accordingly. We don’t cover that here - although JetBrains do provide a guide
on setting PyCharm up. PyCharm is also available for students - and JetBrains provides a graduate
discount, too.

2.5 Code Repository

We should also point out that when you develop code, you should always house your code within
a version-controlled repository such as SVN or GIT. We won’t be explaining this right now, so that
we can get stuck into developing an application in Django. We have however written a chapter
providing a crash course on GIT for your reference which you can refer to later on. We highly
recommend that you set up a Git repository for your own projects. Doing so will could save
you from disaster, as we can no doubt tell you.

Exercises
To get comfortable with your environment, try out the following exercises.

• Install Python 2.7.5+/3.4+ and Pip.
• Play aroundwith your CLI and create a directory called code, which we use to create
our projects in.

• Setup your Virtual Environment (optional)
• Install the Django and Pillow packages
• Setup an account on a Git Repository site like: GitHub, BitBucket, etc if you haven’t
already done so.

• Download and setup an Integrated Development Environment like PyCharm

As previously stated, we’ve made the code for the book and application available on our
GitHub repository.

• If you spot any errors or problem, please let us know by making a change request
on GitHub.

• If you have any problems with the exercises, you can check out the repository to see
how we completed them.

www.tangowithdjango.com

https://www.jetbrains.com/help/pycharm/2016.1/creating-and-running-your-first-django-project.html
https://www.jetbrains.com/help/pycharm/2016.1/creating-and-running-your-first-django-project.html
https://www.jetbrains.com/student/
http://subversion.tigris.org/
http://git-scm.com/
https://www.jetbrains.com/pycharm/
https://github.com/leifos/tango_with_django_19/

Django Basics 16

3. Django Basics
Let’s get started with Django! In this chapter, we’ll be giving you an overview of the creation process.
You’ll be setting up a new project and a new Web application. By the end of this chapter, you will
have a simple Django powered website up and running!

3.1 Testing Your Setup

Let’s start by checking that your Python and Django installations are correct for this tutorial. To do
this, open a new terminal window and issue the following command, which tells you what Python
version you have:

$ python --version

The response should be something like 2.7.11 or 3.5.1, but any 2.7.5+ or 3.4+ versions of Python
should work fine. If you need to upgrade or install Python go to the chapter on setting up your
system.

If you are using a virtual environment, then ensure that you have activated it - if you don’t remember
how go back to our chapter on virtual environments.

After verifying your Python installation, check your Django installation. In your terminal window,
run the Python interpreter by issuing the following command.

$ python

Python 2.7.10 (default, Jul 14 2015, 19:46:27)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

At the prompt, enter the following commands:

>>> import django

>>> django.get_version()

'1.9.5'

>>> exit()

www.tangowithdjango.com

Django Basics 17

All going well you should see the correct version of Django, and then can use exit() to leave
the Python interpreter. If import django fails to import, then check that you are in your virtual
environment, and check what packages are installed with pip list at the terminal window.

If you have problems with installing the packages or have a different version installed, go to System
Setup chapter or consult the Django Documentation on Installing Django.

Prompts
In this book, there’s two things you should look out for when we include code snippets.

Snippets beginning with a dollar sign ($) indicates that the remainder of the following line
is a terminal or Command Prompt command.

Whenever you see >>>, the following is a command that should be entered into the
interactive Python interpreter. This is launched by issuing $ python. See what we did
there? You can also exit the Python interpreter by entering >>> quit().

3.2 Creating Your Django Project

To create a new Django Project, go to your workspace directory, and issue the following command:

$ django-admin.py startproject tango_with_django_project

If you don’t have a workspace directory, then create one, so that you can house your Django projects
and other code projects within this directory. We will refer to your workspace directory in the code
as <workspace>. You will have to substitute in the path to your workspace directory, for example:
/Users/leifos/Code/ or /Users/maxwelld90/Workspace/.

Running Windows?
OnWindows, youmay have to use the full path to the django-admin.py script, for example:

python c:\python27\scripts\django-admin.py

startproject tango_with_django_project

as suggested on StackOverflow.

This command will invoke the django-admin.py script, which will set up a new Django project
called tango_with_django_project for you. Typically, we append _project to the end of our Django
project directories so we know exactly what they contain - but the naming convention is entirely
up to you.

You’ll now notice within your workspace is a directory set to the name of your new project, tango_-
with_django_project. Within this newly created directory, you should see two items:

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/install/
http://stackoverflow.com/questions/8112630/cant-create-django-project-using-command-prompt

Django Basics 18

• another directory with the same name as your project, tango_with_django_project; and
• a Python script called manage.py.

For the purposes of this tutorial, we call this nested directory called tango_with_django_project

the project configuration directory. Within this directory, you will find four Python scripts. We will
discuss these scripts in detail later on, but for now you should see:

• __init__.py, a blank Python script whose presence indicates to the Python interpreter that
the directory is a Python package;

• settings.py, the place to store all of your Django project’s settings;
• urls.py, a Python script to store URL patterns for your project; and
• wsgi.py, a Python script used to help run your development server and deploy your project
to a production environment.

In the project directory, you will see there is a file called manage.py. We will be calling this script
time and time again as we develop our project. It provides you with a series of commands you can
run to maintain your Django project. For example, manage.py allows you to run the built-in Django
development server, test your application and run various database commands. We will be using the
script for virtually every Django command we want to run.

The Django Admin Script
For Further Information on Django admin script, see the Django documentation for more
details about the Admin and Manage scripts.

If you run python manage.py help you can see the list of commands available for you to
run.

You can try using the manage.py script now, by issuing the following command.

$ python manage.py runserver

Executing this command will launch Python, and instruct Django to initiate its lightweight
development server. You should see the output in your terminal window similar to the example
shown below:

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/django-admin/#django-admin-py-and-manage-py

Django Basics 19

$ python manage.py runserver

Performing system checks...

System check identified no issues (0 silenced).

You have unapplied migrations; your app may

not work properly until they are applied.

Run 'python manage.py migrate' to apply them.

April 10, 2016 - 11:07:24

Django version 1.9.5, using settings 'tango_with_django_project.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

In the output you can see a number of things. First, there are no issues that stop the application from
running. Second, however, you will notice that a warning is raised, i.e. unapplied migrations. We
will talk about this in more detail when we setup our database, but for now we can ignore it. Third,
and most importantly, you can see that a URL has been specified: http://127.0.0.1:8000/, which
is the address of the Django development webserver.

Now open up your Web browser and enter the URL http://127.0.0.1:8000/. You should see a
webpage similar to the one shown in below.

A screenshot of the initial Django page you will see when running the development server for the first time.

www.tangowithdjango.com

http://127.0.0.1:8000/

Django Basics 20

You can stop the development server at anytime by pushing CTRL + C in your terminal or Command
Prompt window. If you wish to run the development server on a different port, or allow users from
other machines to access it, you can do so by supplying optional arguments. Consider the following
command:

$ python manage.py runserver <your_machines_ip_address>:5555

Executing this command will force the development server to respond to incoming requests on TCP
port 5555. You will need to replace <your_machines_ip_address> with your computer’s IP address
or 127.0.0.1.

Don’t know your IP Address?
If you use 0.0.0.0, Django figures out what your IP address is. Go ahead and try:

python manage.py runserver 0.0.0.0:5555

When setting ports, it is unlikely that you will be able to use TCP port 80 or 8080 as these are
traditionally reserved for HTTP traffic. Also, any port below 1024 is considered to be privileged by
your operating system.

While you won’t be using the lightweight development server to deploy your application, it’s nice to
be able to demo your application on another machine in your network. Running the server with your
machine’s IP address will enable others to enter in http://<your_machines_ip_address>:<port>/

and view your Web application. Of course, this will depend on how your network is configured.
There may be proxy servers or firewalls in the way which would need to be configured before
this would work. Check with the administrator of the network you are using if you can’t view the
development server remotely.

3.3 Creating a Django Application

A Django project is a collection of configurations and applications that together make up a given
Web application or website. One of the intended outcomes of using this approach is to promote good
software engineering practices. By developing a series of small applications, the idea is that you can
theoretically drop an existing application into a different Django project and have it working with
minimal effort.

A Django application exists to perform a particular task. You need to create specific applications that
are responsible for providing your site with particular kinds of functionality. For example, we could
imagine that a project might consist of several applications including a polling app, a registration
app, and a specific content related app. In another project, we may wish to re-use the polling and
registration apps, and so can include them in other projects. We will talk about this later. For now
we are going to create the application for the Rango app.

To do this, from within your Django project directory (e.g. <workspace>/tango_with_django_-
project), run the following command.

www.tangowithdjango.com

http://www.w3.org/Daemon/User/Installation/PrivilegedPorts.html

Django Basics 21

$ python manage.py startapp rango

The startapp command creates a new directory within your project’s root. Unsurprisingly, this
directory is called rango - and contained within it are another five Python scripts:

• another __init__.py, serving the exact same purpose as discussed previously;
• admin.py, where you can register your models so that you can benefit from some Django
machinery which creates an admin interface for you;

• apps.py, that provides a place for any application specific configuration;
• models.py, a place to store your application’s data models - where you specify the entities
and relationships between data;

• tests.py, where you can store a series of functions to test your application’s code;
• views.py, where you can store a series of functions that handle requests and return responses;
and

• migrations directory, which stores database specific information related to your models.

views.py and models.py are the two files you will use for any given application, and form part of
the main architectural design pattern employed by Django, i.e. the Model-View-Template pattern.
You can check out the official Django documentation to see how models, views and templates relate
to each other in more detail.

Before you can get started with creating your ownmodels and views, you must first tell your Django
project about your new application’s existence. To do this, you need to modify the settings.py file,
contained within your project’s configuration directory. Open the file and find the INSTALLED_APPS
tuple. Add the rango application to the end of the tuple, which should then look like the following
example.

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'rango',

]

Verify that Django picked up your new application by running the development server again. If you
can start the server without errors, your application was picked up and you will be ready to proceed
to the next step.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/overview/

Django Basics 22

startappMagic
When creating a new app with the python manage.py startapp command, Django may
add the new app’s name to your settings.py INSTALLED_APPS list automatically for you.
It’s nevertheless good practice to check everything is setup correctly before you proceed.

3.4 Creating a View

With our Rango application created, let’s now create a simple view. For our first view, let’s just send
some simple text back to the client - we won’t concern ourselves about using models or templates
just yet.

In your favourite IDE, open the file views.py, located within your newly created rango application
directory. Remove the comment # Create your views here. so that you now have a blank file.

You can now add in the following code.

from django.http import HttpResponse

def index(request):

return HttpResponse("Rango says hey there partner!")

Breaking down the three lines of code, we observe the following points about creating this simple
view.

• We first import the HttpResponse object from the django.http module.
• Each view exists within the views.py file as a series of individual functions. In this instance,
we only created one view - called index.

• Each view takes in at least one argument - a HttpRequest object, which also lives in the
django.http module. Convention dictates that this is named request, but you can rename
this to whatever you want if you so desire.

• Each view must return a HttpResponse object. A simple HttpResponse object takes a string
parameter representing the content of the page we wish to send to the client requesting the
view.

With the view created, you’re only part of the way to allowing a user to access it. For a user to see
your view, you must map a Uniform Resource Locator (URL) to the view.

To create an initial mapping, open urls.py located in your project directory and add the following
lines of code to the urlpatterns:

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/request-response/#django.http.HttpResponse
https://docs.djangoproject.com/en/1.9/ref/request-response/#django.http.HttpRequest
http://en.wikipedia.org/wiki/Uniform_resource_locator

Django Basics 23

from rango import views

urlpatterns = [

url(r'^$', views.index, name='index'),

url(r'^admin/', admin.site.urls),

]

This maps the basic URL to the index view in the rango application. Run the development server
(e.g. python manage.py runserver) and visit http://127.0.0.1:8000 or whatever address your
development server is running on. You’ll then see the rendered output of the index view.

3.5 Mapping URLs

Rather than directly mapping URLs from the project to the application, we can make our application
more modular (and thus re-usable) by changing how we route the incoming URL to a view. To do
this, we first need to modify the project’s urls.py and have it point to the application to handle any
specific rango application requests. Then, we need to specify how rango deals with such requests.

First, open the project’s urls.py file which is located inside your project configuration directory. As
a relative path from your workspace directory, this would be the file <workspace>/tango_with_-

django_project/tango_with_django_project/urls.py. Update the urlpatterns list as shown in
the example below.

from django.conf.urls import url

from django.contrib import admin

from django.conf.urls import include

from rango import views

urlpatterns = [

url(r'^$', views.index, name='index'),

url(r'^rango/', include('rango.urls')),

above maps any URLs starting

with rango/ to be handled by

the rango application

url(r'^admin/', admin.site.urls),

]

You will see that the urlpatterns is a Python list, which is expected by the Django framework. The
added mapping looks for URL strings that match the patterns ˆrango/. When a match is made the
remainder of the url string is then passed onto and handled by rango.urls through the use of the
include() function from within django.conf.urls.

www.tangowithdjango.com

Django Basics 24

Think of this as a chain that processes the URL string - as illustrated in the URL chain figure. In
this chain, the domain is stripped out and the remainder of the URL string (rango/) is passed on to
tango_with_django project, where it finds a match and strips away rango/, leaving and empty
string to be passed on to the application rango.

Consequently, we need to create a new file called urls.py in the rango application directory, to
handle the remaining URL string (and map the empty string to the index view):

from django.conf.urls import url

from rango import views

urlpatterns = [

url(r'^$', views.index, name='index'),

]

This code imports the relevant Django machinery for URL mappings and the views module from
rango. This allows us to call the function url and point to the index view for the mapping in
urlpatterns.

The URL mapping we have created calls Django’s url() function, where the first parameter is the
regular expression ˆ$, which matches to an empty string. Any URL string supplied by the user that
matches this pattern means that the view views.index() would be invoked by Django. You might
be thinking that matching a blank URL is pretty pointless - what use would it serve? Remember that
when the URL pattern matching takes place, only a portion of the original URL string is considered.
This is because our the project will first process the original URL string (i.e. rango/) and strip away
the rango/ part, passing on an empty string to the rango application to handle.

The next parameter passed to the url() function is the index view, which will handle the incoming
requests, followed by the optional parameter, name that is set to a string 'index'. By naming our
URL mappings we can employ reverse URL matching later on. That is we can reference the URL
mapping by name rather than by the URL. Later we will explain how to use this when creating
templates. But do check out the Official Django documentation on this topic for more information.

Now, restart the Django development server and visit http://127.0.0.1:8000/rango/. If all went
well, you should see the text Rango says hey there partner!. It should look just like the screenshot
shown below.

An illustration of a URL, represented as a chain, showing how different parts of the URL following the domain
are the responsibility of different url.py files.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/http/urls/#naming-url-patterns

Django Basics 25

A screenshot of a Web browser displaying our first Django powered webpage. Hello, Rango!

Within each application, you will create a number of URL mappings. The initial mapping is quite
simple, but as we progress through the tutorial we will create more sophisticated, parameterised
URL mappings.

It’s also important to have a good understanding of how URLs are handled in Django. So, if you
are still a bit confused or would like to know more, check out the official Django documentation on
URLs for further details and further examples.

Note on Regular Expressions
Django URL patterns use regular expressions to perform the matching. It is worthwhile
familiarising yourself on how to use regular expressions in Python. The official Python
documentation contains a useful guide on regular expressions, while regexcheatsheet.com
provides a neat summary of regular expressions.

If you are using version control, now is a good time to commit the changes you have made to your
workspace. Refer to the chapter providing a crash course onGit if you can’t remember the commands
and steps involved in doing this.

3.6 Basic Workflows

What you’ve just learnt in this chapter can be succinctly summarised into a list of actions. Here, we
provide these lists for the two distinct tasks you have performed. You can use this section for a quick
reference if you need to remind yourself about particular actions later on.

Creating a new Django Project

1. To create the project run, python django-admin.py startproject <name>, where <name> is
the name of the project you wish to create.

Creating a new Django application

1. To create a new application, run $ python manage.py startapp <appname>, where <app-

name> is the name of the application you wish to create.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/http/urls/
https://docs.djangoproject.com/en/1.9/topics/http/urls/
http://en.wikipedia.org/wiki/Regular_expression
http://docs.python.org/2/howto/regex.html
http://regexcheatsheet.com/

Django Basics 26

2. Tell your Django project about the new application by adding it to the INSTALLED_APPS tuple
in your project’s settings.py file.

3. In your project urls.py file, add a mapping to the application.
4. In your application’s directory, create a urls.py file to direct incoming URL strings to views.
5. In your application’s view.py, create the required views ensuring that they return a HttpRe-

sponse object.

Exercises
Now that you have got Django and your new app up and running, give the following
exercises a go to reinforce what you’ve learnt. Getting to this stage is a significant landmark
in working with Django. Creating views and mapping URLs to views is the first step
towards developing more complex and usable Web applications.

• Revise the procedure and make sure you follow how the URLs are mapped to views.
• Now create a new view called aboutwhich returns the following: Rango says here

is the about page.

• Now map the this view to /rango/about/. For this step, you’ll only need to edit the
urls.py of the rango application.

• Revise the HttpResponse in the index view to include a link to the about page.
• In the HttpResponse in the about view include a link back to the main page.
• If you haven’t done so already, it is a good point to go off an complete part one of
the official Django Tutorial.

Hints
If you’re struggling to get the exercises done, the following hints will hopefully provide
you with some inspiration on how to progress.

• Your index view should be updated to include a link to the about view.
Keep it simple for now - something like Rango says: Hello world!
 About will suffice. We’ll be going back later to improve
the presentation of these pages.

• The regular expression to match about/ is r'ˆabout/' - this will be handy when
thinking about your URL pattern.

• The HTML to link back to the index page is Index. The
link uses the same structure as the link to the about page shown above.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/tutorial01/

Templates and Static Media 27

4. Templates and Static Media
In this chapter, we’ll be introducing the Django template engine, as well as showing how to serve
static media files which can be integrated within your app’s webpages.

4.1 Using Templates

Up until this point, you have plugged a few things together to create a Django powered webpage.
This is coupled to a view, which is in turn coupled with a series of URL mappings. Here we will
delve into how to combine templates into the mix.

The layout from page to page within a website is often the same. Whether you see a common header
or footer on a website’s pages, the repetition of page layouts aids users with navigation, promotes
organisation of the website and reinforces a sense of continuity. Django provides templates to make
it easier for developers to achieve this design goal, as well as separating application logic (codewithin
your views) from presentational concerns (look and feel of your app). In this chapter, you’ll create
a basic template which will be used to create a HTML page. This template will then be dispatched
via a Django view. In the chapter concerning databases and models, we will take this a step further
by using templates in conjunction with models to dispatch dynamically generated data.

Summary: What is a Template?
In the world of Django, think of a template as the scaffolding that is required to build
a complete HTML webpage. A template contains the static parts of a webpage (that is,
parts that never change), complete with special syntax (or template tags) which can be
overridden and replaced with dynamic content that your Django app’s views can replace
to produce a final HTML response.

Configuring the Templates Directory

To get templates up and running with your Django app, you’ll need to create a directory in which
template files are stored.

In your Django project’s directory (e.g. <workspace>/tango_with_django_project/), create a new
directory called templates. Within the new templates directory, create another directory called
rango. This means that the path <workspace>/tango_with_django_project/templates/rango/

will be the location in which we will store templates associated with our rango application.

www.tangowithdjango.com

http://www.techrepublic.com/blog/web-designer/effective-design-principles-for-web-designers-repetition/
https://docs.djangoproject.com/en/1.9/ref/templates/

Templates and Static Media 28

Keep your Templates Organised
It’s good practice to separate out your templates into subdirectories for each app you have.
This is whywe’ve created a rango directory within our templates directory. If you package
your app up to distribute to other developers, it’ll be much easier to know which templates
belong to which app!

To tell the Django project where templates will be stored, open your project’s settings.py file. Next,
locate the TEMPLATES data structure. By default, when you create a new Django 1.9 project, it will
look like the following.

TEMPLATES = [

{

'BACKEND': 'django.template.backends.django.DjangoTemplates',

'DIRS': [],

'APP_DIRS': True,

'OPTIONS': {

'context_processors': [

'django.template.context_processors.debug',

'django.template.context_processors.request',

'django.contrib.auth.context_processors.auth',

'django.contrib.messages.context_processors.messages',

],

},

},

]

What we need to do to tell Django where our templates are stored is modify the DIRS list, and is set
to an empty list by default. Change the dictionary key/value pair to look like the following.

'DIRS': ['<workspace>/tango_with_django_project/templates']

Note that you are required to use absolute paths to locate the templates directory. If you are
collaborating with team members or working on different computers, then this will become a
problem. You’ll have different usernames and different drive structures, meaning the paths to the
<workspace> directory will be different. One solution would be to the path for each different
configuration, for example:

www.tangowithdjango.com

Templates and Static Media 29

'DIRS': ['/Users/leifos/templates',

'/Users/maxwelld90/templates',

'/Users/clueless_noob/templates',]

However, there are a number of problems with this. First you have to add in the path for each setting,
each time. Second, if you are running the app on different operating systems the black slashes have
to be constructed differently (see the warning below).

Don’t hard code Paths!
The road to Hell is paved with hard coded paths. Hard-coding paths is a software
engineering anti-pattern, and will make your project less portable - meaning that when
you run it on another computer, it probably won’t work!

Dynamic Paths

A better solution is to make use of built-in Python functions to work out the path of your templates
directory automatically. This way, an absolute path can be obtained regardless of where you place
your Django project’s code. This in turn means that your project becomes more portable.

At the top of your settings.py file, there is a variable called BASE_DIR. This variable stores the path
to the directory in which your project’s settings.pymodule is contained. This is obtained by using
the special Python __file__ attribute, which is set to the absolute path of your settings module.
The call to os.path.dirname() then provides the reference to the absolute path of the directory
containing the settings.py module. Calling os.path.dirname() again removes another layer, so
that BASE_DIR contains <workspace>/tango_with_django_project/. You can see this process in
action, if you are curious, by adding the following lines to your settings.py file.

print(__file__)

print(os.path.dirname(__file__))

print(os.path.dirname(os.path.dirname(__file__)))

Having access to the value of BASE_DIR makes it easy for you to reference other aspects of your
Django project. As such, we can now create a new variable called TEMPLATE_DIR that will reference
your new templates directory. We can make use of the os.path.join() function to join up multiple
paths, leading to a variable definition like the example below.

TEMPLATE_DIR = os.path.join(BASE_DIR, 'templates')

Here we make use of os.path.join() to mash together the BASE_DIR variable and 'templates',
which would yield <workspace>/tango_with_django_project/templates/. This means we can
then use our new TEMPLATE_DIR variable to replace the hard coded path we defined earlier in
TEMPLATES. Update the DIRS key/value pairing to look like the following.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Hard_coding
http://sourcemaking.com/antipatterns
http://sourcemaking.com/antipatterns
http://en.wikipedia.org/wiki/Software_portability
http://stackoverflow.com/a/9271479

Templates and Static Media 30

'DIRS': [TEMPLATE_DIR,]

Why TEMPLATE_DIR?
You’ve created a new variable called TEMPLATE_DIR at the top of your settings.py file
because it’s easier to access should you ever need to change it. For more complex Django
projects, the DIRS list allows you to specify more than one template directory - but for this
book, one location is sufficient to get everything working.

Concatenating Paths
When concatenating system paths together, always use os.path.join(). Using this
built-in function ensures that the correct path separators are used. On a UNIX operating
system (or derivative of), forward slashes (/) would be used to separate directories, whereas
a Windows operating system would use backward slashes (\). If you manually append
slashes to paths, you may end up with path errors when attempting to run your code on a
different operating system, thus reducing your project’s portability.

Adding a Template

With your template directory and path now set up, create a file called index.html and place it in
the templates/rango/ directory. Within this new file, add the following HTML code.

<!DOCTYPE html>

<html>

<head>

<title>Rango</title>

</head>

<body>

<h1>Rango says...</h1>

<div>

hey there partner!

{{ boldmessage }}

</div>

<div>

About

</div>

</body>

</html>

www.tangowithdjango.com

Templates and Static Media 31

From this HTML code, it should be clear that a simple HTML page is going to be generated that
greets a user with a hello world message. You might also notice some non-HTML in the form of {{
boldmessage }}. This is a Django template variable. We can set values to these variables so they are
replaced with whatever we want when the template is rendered. We’ll get to that in a moment.

To use this template, we need to reconfigure the index() view that we created earlier. Instead of
dispatching a simple response, we will change the view to dispatch our template.

In rango/views.py, check to see if the following import statement exists at the top of the file. If it
is not present, add it.

from django.shortcuts import render

You can then update the index() view function as follows. Check out the inline commentary to see
what each line does.

def index(request):

Construct a dictionary to pass to the template engine as its context.

Note the key boldmessage is the same as {{ boldmessage }} in the template!

context_dict = {'boldmessage': "Crunchy, creamy, cookie, candy, cupcake!"}

Return a rendered response to send to the client.

We make use of the shortcut function to make our lives easier.

Note that the first parameter is the template we wish to use.

return render(request, 'rango/index.html', context=context_dict)

First, we construct a dictionary of key/value pairs that we want to use within the template. Then,
we call the render() helper function. This function takes as input the user’s request, the template
filename, and the context dictionary. The render() function will take this data and mash it together
with the template to produce a complete HTML page. This is then returned and dispatched to the
user’s web browser.

What is the Template Context?
When a template file is loaded with the Django templating system, a template context is
created. In simple terms, a template context is essentially a Python dictionary that maps
template variable names with Python variables. In the template we created earlier, we
included a template variable name called boldmessage. In our updated index(request)

view example, the string Crunchy, creamy, cookie, candy, cupcake! is mapped to
template variable boldmessage. The string Crunchy, creamy, cookie, candy, cupcake!

therefore replaces any instance of {{ boldmessage }} within the template.

Now that you have updated the view to employ the use of your template, start the Django
development server and visit http://127.0.0.1:8000/rango/. You should see your simple HTML
template rendered, just like the example screenshot shown below.

www.tangowithdjango.com

Templates and Static Media 32

If you don’t, read the error message presented to see what the problem is, and then double check
all the changes that you have made. One of the most common issues people have with templates is
that the path is set incorrectly in settings.py. Sometimes it’s worth adding a print statement to
settings.py to report the BASE_DIR and TEMPLATE_DIR to make sure everything is correct.

This example demonstrates how to use templates within your views. However, we have only touched
upon a fraction of the functionality provided by the Django templating engine.Wewill use templates
in more sophisticated ways as you progress through this book. In the meantime, you can find out
more about templates from the official Django documentation.

What you should see when your first template is working correctly. Note the bold text - Crunchy, creamy,

cookie, candy, cupcake! - which originates from the view, but is rendered in the template.

4.2 Serving Static Media

While you’ve got templates working, your Rango app is admittedly looking a bit plain right now -
there’s no styling or imagery. We can add references to other files in our HTML template such as
Cascading Style Sheets (CSS), JavaScript and images to improve the show. These are called static
files, because they are not generated dynamically by a Web server; they are simply sent as is to a
client’s Web browser. This section shows you how to set Django up to serve static files, and shows
you how to include an image within your simple template.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/templates/
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/JavaScript

Templates and Static Media 33

Configuring the Static Media Directory

To start, you will need to set up a directory in which static media files are stored. In your project
directory (e.g. <workspace>/tango_with_django_project/), create a new directory called static

and a new directory called images inside static. Check that the new static directory is at the
same level as the templates directory you created earlier in this chapter.

Next, place an image inside the images directory. As shown in below, we chose a picture of the
chameleon Rango - a fitting mascot, if ever there was one.

Rango the chameleon within our static/images media directory.

Just like the templates directory we created earlier, we need to tell Django about our new static

directory. To do this, we once again need to edit our project’s settings.pymodule. Within this file,
we need to add a new variable pointing to our static directory, and a data structure that Django
can parse to work out where our new directory is.

First of all, create a variable called STATIC_DIR at the top of settings.py, preferably underneath
BASE_DIR and TEMPLATES_DIR to keep your paths all in the same place. STATIC_DIR should make use
of the same os.path.join trick - but point to static this time around, just as shown below.

STATIC_DIR = os.path.join(BASE_DIR, 'static')

This will provide an absolute path to the location <workspace>/tango_with_django_project/stat-
ic/. Once this variable has been created, we then need to create a new data structure called

www.tangowithdjango.com

http://www.imdb.com/title/tt1192628/
http://www.imdb.com/title/tt1192628/

Templates and Static Media 34

STATICFILES_DIRS. This is essentially a list of paths with which Django can expect to find static
files that can be served. By default, this list does not exist - check it doesn’t before you create it. If
you define it twice, you can start to confuse Django - and yourself.

For this book, we’re only going to be using one location to store our project’s static files - the path
defined in STATIC_DIR. As such, we can simply set up STATICFILES_DIRS with the following.

STATICFILES_DIRS = [STATIC_DIR,]

Keep settings.py Tidy!
It’s in your best interests to keep your settings.py module tidy and in good order. Don’t
just put things in random places; keep it organised. Keep your DIRS variables at the top
of the module so they are easy to find, and place STATICFILES_DIRS in the portion of the
module responsible for static media (close to the bottom). When you come back to edit the
file later, it’ll be easier for you or other collaborators to find the necessary variables.

Finally, check that the STATIC_URL variable is defined within your settings.py module. If it is not,
then define it as shown below. Note that this variable by default in Django 1.9 appears close to the
end of the module, so you may have to scroll down to find it.

STATIC_URL = '/static/'

With everything required now entered, what does it all mean? Put simply, the first two variables
STATIC_DIR and STATICFILES_DIRS refers to the locations on your computer where static files are
stored. The final variable STATIC_URL then allows us to specify the URL with which static files can
be accessed when we run our Django development server. For example, with STATIC_URL set to
/static/, we would be able to access static content at http://127.0.0.1:8000/static/. Think of
the first two variables as server-side locations, and the third variable as the location with which
clients can access static content.

Test your Configuration
As a small exercise, test to see if everything is working correctly. Try and view the
rango.jpg image in your browser when the Django development server is running. If your
STATIC_URL is set to /static/ and rango.jpg can be found at images/rango.jpg, what is
the URL you enter into your Web browser’s window?

Don’t proceed until you are sure your configuration is working!

www.tangowithdjango.com

Templates and Static Media 35

Don’t Forget the Slashes!
When setting STATIC_URL, check that you end the URL you specify with a forward slash
(e.g. /static/, not /static). As per the official Django documentation, not doing so
can open you up to a world of pain. The extra slash at the end ensures that the root
of the URL (e.g. /static/) is separated from the static content you want to serve (e.g.
images/rango.jpg).

Serving Static Content
While using the Django development server to serve your static media files is fine for a
development environment, it’s highly unsuitable for a production environment. The official
Django documentation on deployment provides further information about deploying static
files in a production environment. We’ll look at this issue in more detail however when we
deploy Rango.

Static Media Files and Templates

Now that you have your Django project set up to handle static files, you can now make use of these
files within your templates to improve their appearance and add additional functionality.

To demonstrate how to include static files, open up the index.html templates you created earlier,
located in the <workspace>/templates/rango/ directory. Modify the HTML source code as follows.
The two lines that we add are shown with a HTML comment next to them for easy identification.

<!DOCTYPE html>

{% load staticfiles %} <!-- New line -->

<html>

<head>

<title>Rango</title>

</head>

<body>

<h1>Rango says...</h1>

<div>

hey there partner!

{{ boldmessage }}

</div>

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/settings/#std:setting-STATIC_URL
https://docs.djangoproject.com/en/1.9/howto/static-files/deployment/
https://docs.djangoproject.com/en/1.9/howto/static-files/deployment/

Templates and Static Media 36

<div>

About

<img src="{% static "images/rango.jpg" %}"

alt="Picture of Rango" /> <!-- New line -->

</div>

</body>

</html>

The first new line added (i.e. {% load staticfiles %}) informs Django’s template engine that we
will be using static files with the template. This then enables us to access the media in the static
directories via the use of the static template tag. This indicates to Django that we wish to show the
image located in the static media directory called images/rango.jpg. Template tags are denoted by
curly brackets (e.g. {% % }), and calling static will combine the URL specified in STATIC_URL with
images/rango.jpg to yield /static/images/rango.jpg. The HTML generated as a result would be:

If for some reason the image cannot be loaded, it is always a good idea to specify an alternative text
tagline. This is what the alt attribute provides inside the img tag.

With these minor changes in place, start the Django development server once more and navigate to
http://127.0.0.1:8000/rango. If everything has been done correctly, you will see a Webpage that
looks similar to the screenshot shown below.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/templates/builtins/

Templates and Static Media 37

Our first Rango template, complete with a picture of Rango the chameleon.

Templates and <!DOCTYPE>

When creating the HTML templates, always ensure that the DOCTYPE declaration appears
on the fist line. If you put the {% load staticfiles %} first then whitespace is added
before the DOCTYPE declaration which can lead to your HTML code to fail validation.

www.tangowithdjango.com

http://www.w3schools.com/tags/tag_doctype.asp
https://validator.w3.org/

Templates and Static Media 38

Loading other Static Files
The {% static %} template tag call can be used whenever you wish to reference static
files within a template. The code example below demonstrates how you could include
JavaScript, CSS and images into your templates with correct HTML markup.

<!DOCTYPE html>

{% load staticfiles %}

<html>

<head>

<title>Rango</title>

<!-- CSS -->

<link rel="stylesheet" href="{% static "css/base.css" %}" />

<!-- JavaScript -->

<script src="{% static "js/jquery.js" %}"></script>

</head>

<body>

<!-- Image -->

</body>

</html>

Static files you reference will obviously need to be present within your static directory.
If a requested file is not present or you have referenced it incorrectly, the console output
provided by Django’s development server will show a HTTP 404 error. Try referencing a
non-existent file and see what happens. Looking at the output snippet below, notice how
the last entry’s HTTP status code is 404.

[10/Apr/2016 15:12:48] "GET /rango/ HTTP/1.1" 200 374

[10/Apr/2016 15:12:48] "GET /static/images/rango.jpg HTTP/1.1" 304 0

[10/Apr/2016 15:12:52] "GET /static/images/not-here.jpg HTTP/1.1" 404 0

For further information about including static media you can read through the official
Django documentation on working with static files in templates.

4.3 Basic Workflow

With the chapter complete, you should now know how to setup and create templates, use templates
within your views, setup and use the Django development server to serve static media files, and

www.tangowithdjango.com

https://en.wikipedia.org/wiki/HTTP_404
https://docs.djangoproject.com/en/1.9/howto/static-files/#staticfiles-in-templates

Templates and Static Media 39

include images within your templates. We’ve covered quite a lot!

Creating a template and integrating it within a Django view is a key concept for you to understand.
It takes several steps, but will become second nature to you after a few attempts.

1. First, create the template you wish to use and save it within the templates directory you
specified in your project’s settings.py module. You may wish to use Django template
variables (e.g. {{ variable_name }}) or template tags within your template. You’ll be able
to replace these with whatever you like within the corresponding view.

2. Find or create a new view within an application’s views.py file.
3. Add your view specific logic (if you have any) to the view. For example, this may involve

extracting data from a database and storing it within a list.
4. Within the view, construct a dictionary object which you can pass to the template engine as

part of the template’s context .
5. Make use of the render() helper function to generate the rendered response. Ensure you

reference the request, then the template file, followed by the context dictionary.
6. If you haven’t already done so, map the view to a URL by modifying your project’s urls.py

file and the application specific urls.py file if you have one.

The steps involved for getting a static media file onto one of your pages is another important process
you should be familiar with. Check out the steps below on how to do this.

1. Take the static media file you wish to use and place it within your project’s static directory.
This is the directory you specify in your project’s STATICFILES_DIRS list within settings.py.

2. Add a reference to the static media file to a template. For example, an image would be inserted
into an HTML page through the use of the tag.

3. Remember to use the {% load staticfiles %} and {% static "<filename>" %} commands
within the template to access the static files. Replace <filename>with the path to the image or
resource you wish to reference.Whenever you wish to refer to a static file, use the static
template tag!

Exercises
Give the following exercises a go to reinforce what you’ve learnt from this chapter.

• Convert the about page to use a template aswell, using a template called about.html.
• Within the new about.html template, add a picture stored within your project’s
static files.

• On the about page, include a line that says, This tutorial has been put together

by <your-name>.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/templates/builtins/

Models and Databases 40

5. Models and Databases
When you think of databases, you will usually think of the Structured Query Language (SQL), the
common means with which we query the database for the data we require. With Django, querying
an underlying database - which can store all sorts of data, such as your website’s user details -
is taken care of by the object relational mapper (ORM). In essence, data stored within a database
table can be encapsulated within a model. A model is a Python object that describes your database
table’s data. Instead of directly working on the database via SQL, you only need to manipulate the
corresponding Python model object.

This chapter walks you through the basics of data management with Django and its ORM. You’ll
find it’s incredibly easy to add, modify and delete data within your app’s underlying database, and
how straightforward it is to get data from the database to the Web browsers of your users.

5.1 Rango’s Requirements

Before we get started, let’s go over the data requirements for the Rango app that we are developing.
Full requirements for the application are provided in detail earlier on, but to refresh your memory,
let’s quickly summarise our client’s requirements.

• Rango is a essentially a web page directory - a site containing links to other websites.
• There are a number of different webpage categories with each category housing a number of
links. We assumed in the overview chapter that this is a one-to-many relationship. Check out
the Entity Relationship diagram below.

• A category has a name, a number of visits, and a number of likes.
• A page refers to a category, has a title, URL and a number of views.

The Entity Relationship Diagram of Rango’s two main entities.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Object-relational_mapping

Models and Databases 41

5.2 Telling Django about Your Database

Before we can create any models, we need to set up our database with Django. In Django 1.9, a
DATABASES variable is automatically created in your settings.py module when you set up a new
project. It’ll look similar to the following example.

DATABASES = {

'default': {

'ENGINE': 'django.db.backends.sqlite3',

'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),

}

}

We can pretty much leave this as is for our Rango app. You can see a default database that is
powered by a lightweight database engine, SQLite (see the ENGINE option). The NAME entry for this
database is the path to the database file, which is by default db.sqlite3 in the root of your Django
project.

Git Top Tip
If you are using Git, you might be tempted to add and commit the database file. This is not
a good idea because if you are working on your app with other people, they are likely to
change the database and this will cause endless conflicts.

Instead, add db.sqlite3 to your .gitignore file so that it won’t be added when you git

commit and git push. You can also do this for other files like *.pyc and machine specific
files.

Using other Database Engines
TheDjango database framework has been created to cater for a variety of different database
backends, such as PostgresSQL, MySQL and Microsoft’s SQL Server. For other database
engines, other keys like USER, PASSWORD, HOST and PORT exist for you to configure the
database with Django.

While we don’t cover how to use other database engines in this book, there are guides
online which show you how to do this. A good starting point is the official Django
documentation.

Note that SQLite is sufficient for demonstrating the functionality of the Django ORM.
When you find your app has become viral and has accumulated thousands of users, you
may want to consider switching the database backend to something more robust.

www.tangowithdjango.com

https://www.sqlite.org/
http://www.postgresql.org/
https://www.mysql.com/
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://docs.djangoproject.com/en/1.9/ref/databases/#storage-engines
https://docs.djangoproject.com/en/1.9/ref/databases/#storage-engines
http://www.sqlite.org/whentouse.html

Models and Databases 42

5.3 Creating Models

With your database configured in settings.py, let’s create the two initial data models for the Rango
application. Models for a Django app are stored in the respective models.pymodule. This means that
for Rango, models are stored within rango/models.py.

For the models themselves, we will create two classes - one class representing each model. Both
must inherit from the Model base class, django.db.models.Model. The two Python classes will be
the definitions for models representing categories and pages. Define the Category and Page model
as follows.

class Category(models.Model):

name = models.CharField(max_length=128, unique=True)

def __str__(self): # For Python 2, use __unicode__ too

return self.name

class Page(models.Model):

category = models.ForeignKey(Category)

title = models.CharField(max_length=128)

url = models.URLField()

views = models.IntegerField(default=0)

def __str__(self): # For Python 2, use __unicode__ too

return self.title

Check import Statements
At the top of the models.py module, you should see from django.db import models. If
you don’t see it, add it in.

__str__() or __unicode__()?
The __str__() and __unicode__() methods in Python generate a string representation of
the class (similar to the toString()method in Java). In Python 2.x, strings are represented
in ASCII format in the __str__() method. If you want Unicode support, then you need to
also implement the __unicode__() method.

In Python 3.x, strings are Unicode by default - so you only need to implement the __str__()
method.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://docs.python.org/2/howto/unicode.html

Models and Databases 43

When you define a model, you need to specify the list of fields and their associated types, along
with any required or optional parameters. By default, all models have an auto-increment integer x
field called id which is automatically assigned and acts a primary key.

Django provides a comprehensive series of built-in field types. Some of the most commonly used
are detailed below.

• CharField, a field for storing character data (e.g. strings). Specify max_length to provide a
maximum number o characters the field can store.

• URLField, much like a CharField, but designed for storing resource URLs. You may also
specify a max_length parameter.

• IntegerField, which stores integers.
• DateField, which stores a Python datetime.date object.

Other Field Types
Check out the Django documentation on model fields for a full listing of the Django field
types you can use, along with details on the required and optional parameters that each
has.

For each field, you can specify the unique attribute. If set to True, only one instance of a particular
value in that field may exist throughout the entire database model. For example, take a look at our
Category model defined above. The field name has been set to unique - thus every category name
must be unique. This means that you can use the field like a primary key.

You can also specify additional attributes for each field, such as stating a default value with the
syntax default='value', and whether the value for a field can be blank (or NULL) (null=True) or
not (null=False).

Django provides three mechanisms to related models in the database, which are:

• ForeignKey, a field type that allows us to create a one-to-many relationship;
• OneToOneField, a field type that allows us to define a strict one-to-one relationship; and
• ManyToManyField, a field type which allows us to define a many-to-many relationship.

From our model examples above, the field category in model Page is of type ForeignKey. This
allows us to create a one-to-many relationship with model/table Category, which is specified as an
argument to the field’s constructor.

Finally, it is good practice to implement the __str__() and/or __unicode__() methods. Without
this method implemented when you go to print the object, it will show as <Category: Category

object>. This isn’t very useful when debugging or accessing the object - instead the code above will
print, for example, <Category: Python> for the Python category. It is also helpful when we go to
use the Admin Interface because Django will display the string representation of the object.

www.tangowithdjango.com

https://docs.djangoproject.com/es/1.9/ref/models/fields/#model-field-types
https://docs.djangoproject.com/es/1.9/ref/models/fields/#model-field-types
https://en.wikipedia.org/wiki/Nullable_type
https://en.wikipedia.org/wiki/One-to-many_(data_model)
https://en.wikipedia.org/wiki/One-to-one_(data_model)
https://en.wikipedia.org/wiki/Many-to-many_(data_model)

Models and Databases 44

5.4 Creating and Migrating the Database

With our models defined in models.py, we can now let Django work its magic and create the tables
in the underlying database. Django provides what is called a migration tool to help us set up and
update the database to reflect any changes to your models. For example, if you were to add a new
field then you can use the migration tools to update the database.

Setting up

First of all, the database must be initialised. This means creating it and all the associated tables
within it so that data can then be stored within it. To do this, you must open a terminal or command
prompt, and navigate to your project’s root directory - where manage.py is stored. Run the following
command.

$ python manage.py migrate

Operations to perform:

Apply all migrations: admin, contenttypes, auth, sessions

Running migrations:

Rendering model states... DONE

Applying contenttypes.0001_initial... OK

Applying auth.0001_initial... OK

Applying admin.0001_initial... OK

Applying admin.0002_logentry_remove_auto_add... OK

Applying contenttypes.0002_remove_content_type_name... OK

Applying auth.0002_alter_permission_name_max_length... OK

Applying auth.0003_alter_user_email_max_length... OK

Applying auth.0004_alter_user_username_opts... OK

Applying auth.0005_alter_user_last_login_null... OK

Applying auth.0006_require_contenttypes_0002... OK

Applying auth.0007_alter_validators_add_error_messages... OK

Applying sessions.0001_initial... OK

All apps that are installed in your Django project (check INSTALLED_APPS in settings.py) will
update their database representations with this command. After this command is issued, you should
then see a db.sqlite3 file in your Django project’s root.

Next, create a superuser to manage the database. Run the following command.

$ python manage.py createsuperuser

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Data_migration

Models and Databases 45

The superuser accountwill be used to access the Django admin interface, used later on in this chapter.
Enter a username for the account, e-mail address and provide a password when prompted. Once
completed, the script should finish successfully. Make sure you take a note of the username and
password for your superuser account.

Creating and Updating Models/Tables

Whenever you make changes to your app’s models, you need to register the changes via the
makemigrations command in manage.py. Specifying the rango app as our target, we then issue
the following command from our Django project’s root directory.

$ python manage.py makemigrations rango

Migrations for 'rango':

0001_initial.py:

- Create model Category

- Create model Page

Upon the completion of this command, check the rango/migrations directory to see that a Python
script has been created. It’s called 0001_initial.py, which contains all the necessary details to
create your database schema at that particular migration.

Checking the Underlying SQL
If you want to check out the underlying SQL that the Django ORM issues to the database
engine for a given migration, you can issue the following command.

$ python manage.py sqlmigrate rango 0001

In this example, rango is the name of your app, and 0001 is the migration you wish to view
the SQL code for. Doing this allows you to get a better understanding of what exactly is
going on at the database layer, such as what tables are created. You may find for complex
database schemas including a many-to-many relationship that additional tables are created
for you.

After you have created migrations for your app, you need to commit them to the database. Do so
by once again issuing the migrate command.

www.tangowithdjango.com

Models and Databases 46

$ python manage.py migrate

Operations to perform:

Apply all migrations: admin, rango, contenttypes, auth, sessions

Running migrations:

Rendering model states... DONE

Applying rango.0001_initial... OK

This output confirms that the database tables have been created in your database, and you are good
to go.

However, you may have noticed that our Category model is currently lacking some fields that
were specified in Rango’s requirements. Don’t worry about this, as these will be added in later,
allowing you to go through the migration process again.

5.5 Django Models and the Shell

Before we turn our attention to demonstrating the Django admin interface, it’s worth noting that you
can interact with Django models directly from the Django shell - a very useful tool for debugging
purposes. We’ll demonstrate how to create a Category instance using this method.

To access the shell, we need to call manage.py from within your Django project’s root directory once
more. Run the following command.

$ python manage.py shell

This will start an instance of the Python interpreter and load in your project’s settings for you.
You can then interact with the models, with the following terminal session demonstrating this
functionality. Check out the inline commentary that we added to see what each command achieves.

Import the Category model from the Rango application

>>> from rango.models import Category

Show all the current categories

>>> print(Category.objects.all())

[] # Returns an empty list (no categories have been defined!)

Create a new category object, and save it to the database.

>>> c = Category(name="Test")

>>> c.save()

Now list all the category objects stored once more.

>>> print(Category.objects.all())

[<Category: test>] # We now have a category called 'Test' saved in the database!

www.tangowithdjango.com

Models and Databases 47

Quit the Django shell.

>>> quit()

In the example, we first import the model that we want to manipulate. We then print out all the
existing categories. As our underlying Category table is empty, an empty list is returned. Then we
create and save a Category, before printing out all the categories again. This second print then
shows the new Category just added. Note the name, Test appears in the second print - this is your
__str__() or __unicode__() method at work!

Complete the Official Tutorial
The example above is only a very basic taster on database related activities you can perform
in the Django shell. If you have not done so already, it’s now a good time to complete part
two of the official Django Tutorial to learn more about interacting with models. Also check
out the official Django documentation on the list of available commands for working with
models.

5.6 Configuring the Admin Interface

One of the eye-catching features of Django is the built-in, Web-based administrative interface that
allows you to browse and edit data represented as model instances (from the corresponding database
tables).

Setting everything up is relatively straightforward. In your project’s settings.py module, you will
notice that one of the preinstalled apps (within the INSTALLED_APPS list) is django.contrib.admin.
Furthermore, there is a urlpattern that matches admin/ within your project’s urls.py module.

By default, things are pretty much ready to go. Start the Django development server in the usual
way with the following command.

$ python manage.py runserver

Navigate your Web browser to http://127.0.0.1:8000/admin/. You are then presented with a
login prompt. Using the username and password you created previously with the python manage.py

createsuperuser command, login. You are then presented with an interface looking similar to the
one shown below.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/tutorial02/
https://docs.djangoproject.com/en/1.9/intro/tutorial02/
https://docs.djangoproject.com/en/1.9/ref/django-admin/#available-commands

Models and Databases 48

The Django admin interface, sans Rango models.

While this looks good, we are missing the Category and Pagemodels that were defined for the Rango
app. To include these models, we need to give Rango some help.

To do this, open the file rango/admin.py. With an include statement already present, modify the
module so that you register each class you want to include. The example below registers both the
Category and Page class to the admin interface.

from django.contrib import admin

from rango.models import Category, Page

admin.site.register(Category)

admin.site.register(Page)

Adding further classes which may be created in the future is as simple as adding another call to the
admin.site.register() method.

With these changes saved, restart the Django development server and revisit the admin interface at
http://127.0.0.1:8000/admin/. You will now see the Category and Pagemodels, as shown below.

www.tangowithdjango.com

Models and Databases 49

The Django admin interface, complete with Rango models.

Try clicking the Categorys link within the Rango section. From here, you should see the test

category that we created earlier via the Django shell.

Experiment with the Admin Interface
You’ll be using the admin interface quite a bit to verify data is stored correctly as you
develop the Rango app. Experiment with it, and see how it all works. The interface is self-
explanatory and straightforward to understand.

Delete the test category that was previously created. We’ll be populating the database
shortly with more example data.

User Management
The Django admin interface is your port of call for user management, through the
Authentication and Authorisation section. Here, you can create, modify and delete user
accounts, all with varying privilege levels.

www.tangowithdjango.com

Models and Databases 50

Plural vs. Singular Spellings
Note the typo within the admin interface (Categorys, not Categories). This typo can
be fixed by adding a nested Meta class into your model definitions with the verbose_-

name_plural attribute. Check out a modified version of the Category model below for an
example, and Django’s official documentation on models for more information about what
can be stored within the Meta class.

class Category(models.Model):

name = models.CharField(max_length=128, unique=True)

class Meta:

verbose_name_plural = 'categories'

def __str__(self):

return self.name

Expanding admin.py

It should be noted that the example admin.py module for your Rango app is the most
simple, functional example available. However you can customise the Admin interface in
a number of ways. Check out the official Django documentation on the admin interface
for more information if you’re interested.

5.7 Creating a Population Script

Entering test data into your database tends to be a hassle. Many developers will add in some bogus
test data by randomly hitting keys, just like wTFzm8j3z7. Rather than do this, it is better to write
a script so that you and your collaborators works from the same tests data. Furthermore, this
approach would guarantee that you have useful and pseudo realistic data rather than random junk.
It’s therefore good practice to create what we call a population script for your app. This script is
designed to automatically populate your database with test data for you

To create a population script for Rango, start by creating a new Python module within your Django
project’s root directory (e.g. <workspace>/tango_with_django_project/). Create the populate_-

rango.py file and add the following code.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/db/models/#meta-options
https://docs.djangoproject.com/en/1.9/ref/contrib/admin/

Models and Databases 51

1 import os

2 os.environ.setdefault('DJANGO_SETTINGS_MODULE',

3 'tango_with_django_project.settings')

4

5 import django

6 django.setup()

7 from rango.models import Category, Page

8

9 def populate():

10 # First, we will create lists of dictionaries containing the pages

11 # we want to add into each category.

12 # Then we will create a dictionary of dictionaries for our categories.

13 # This might seem a little bit confusing, but it allows us to iterate

14 # through each data structure, and add the data to our models.

15

16 python_pages = [

17 {"title": "Official Python Tutorial",

18 "url":"http://docs.python.org/2/tutorial/"},

19 {"title":"How to Think like a Computer Scientist",

20 "url":"http://www.greenteapress.com/thinkpython/"},

21 {"title":"Learn Python in 10 Minutes",

22 "url":"http://www.korokithakis.net/tutorials/python/"}]

23

24 django_pages = [

25 {"title":"Official Django Tutorial",

26 "url":"https://docs.djangoproject.com/en/1.9/intro/tutorial01/"},

27 {"title":"Django Rocks",

28 "url":"http://www.djangorocks.com/"},

29 {"title":"How to Tango with Django",

30 "url":"http://www.tangowithdjango.com/"}]

31

32 other_pages = [

33 {"title":"Bottle",

34 "url":"http://bottlepy.org/docs/dev/"},

35 {"title":"Flask",

36 "url":"http://flask.pocoo.org"}]

37

38 cats = {"Python": {"pages": python_pages},

39 "Django": {"pages": django_pages},

40 "Other Frameworks": {"pages": other_pages} }

41

42 # If you want to add more catergories or pages,

www.tangowithdjango.com

Models and Databases 52

43 # add them to the dictionaries above.

44

45 # The code below goes through the cats dictionary, then adds each category,

46 # and then adds all the associated pages for that category.

47 # if you are using Python 2.x then use cats.iteritems() see

48 # http://docs.quantifiedcode.com/python-anti-patterns/readability/

49 # for more information about how to iterate over a dictionary properly.

50

51 for cat, cat_data in cats.items():

52 c = add_cat(cat)

53 for p in cat_data["pages"]:

54 add_page(c, p["title"], p["url"])

55

56 # Print out the categories we have added.

57 for c in Category.objects.all():

58 for p in Page.objects.filter(category=c):

59 print("- {0} - {1}".format(str(c), str(p)))

60

61 def add_page(cat, title, url, views=0):

62 p = Page.objects.get_or_create(category=cat, title=title)[0]

63 p.url=url

64 p.views=views

65 p.save()

66 return p

67

68 def add_cat(name):

69 c = Category.objects.get_or_create(name=name)[0]

70 c.save()

71 return c

72

73 # Start execution here!

74 if __name__ == '__main__':

75 print("Starting Rango population script...")

76 populate()

Understand this Code!
To reiterate what we wrote earlier, don’t simply copy, paste and leave. Add the code to
your new module, and then step through line by line to work out what is going on. It’ll
help with your understanding.

Below we have provided explanations - hopefully you’ll learn something new!

www.tangowithdjango.com

Models and Databases 53

While this looks like a lot of code, what is going on is essentially a series of function calls to two small
functions, add_page() and add_cat() defined towards the end of the module. Reading through the
code, we find that execution starts at the bottom of the module - look at lines 75 and 76. This is
because above this point, we define functions, these are not executed unless we call them. When the
interpreter hits if __name__ == '__main__', we call the populate() function.

What does __name__ == '__main__' Represent?
The __name__ == '__main__' trick is a useful one that allows a Python module to act as
either a reusable module or a standalone Python script. Consider a reusable module as
one that can be imported into other modules (e.g. through an import statement), while
a standalone Python script would be executed from a terminal/Command Prompt by
entering python module.py.

Code within a conditional if __name__ == '__main__' statement will therefore only be
executed when the module is run as a standalone Python script. Importing the module will
not run this code; any classes or functions will however be fully accessible to you.

Importing Models
When importing Django models, make sure you have imported your project’s settings
by importing django and setting the environment variable DJANGO_SETTINGS_MODULE

to be your project’s setting file, as demonstrated in lines 1 to 6 above. You then call
django.setup() to import your Django project’s settings.

If you don’t do this crucial step, an exception will be raised when you attempt to import
your models as the necessary infrastructure has not yet been initialised. This is why
we import Category and Page after the settings have been loaded on line 8.

The for loop occupying lines 51-54 is responsible for the calling the add_cat() and add_page()

functions repeatedly. These functions are in turn responsible for the creation of new categories
and pages. populate() keeps tabs on categories that are created. As an example, a reference to a
new category is stored in local variable c - check line 52 above. This is done as a Page requires
a Category reference. After add_cat() and add_page() are called in populate(), the function
concludes by looping through all new Category and associated Page objects, displaying their names
on the terminal.

www.tangowithdjango.com

http://stackoverflow.com/a/419185

Models and Databases 54

Creating Model Instances
Wemake use of the convenience get_or_create()method for creating model instances in
the population script above. As we don’t want to create duplicates of the same entry, we can
use get_or_create() to check if the entry exists in the database for us. If it doesn’t exist,
the method creates it. It does, then a reference to the specific model instance is returned.

This helper method can remove a lot of repetitive code for us. Rather than doing this
laborious check ourselves, we can make use of code that does exactly this for us.

The get_or_create() method returns a tuple of (object, created). The first element
object is a reference to the model instance that the get_or_create() method creates if
the database entry was not found. The entry is created using the parameters you pass to
the method - just like category, title, url and views in the example above. If the entry
already exists in the database, the method simply returns the model instance corresponding
to the entry. created is a boolean value; True is returned if get_or_create() had to create
a model instance.

This explanation therefore means that the [0] at the end of our call to the get_or_create()
returns the object reference only. Like most other programming language data structures,
Python tuples use zero-based numbering.

You can check out the official Django documentation for more information on the handy
get_or_create() method.

When saved, you can then run your new populations script by changing the present working
directory in a terminal to the Django project’s root. It’s then a simple case of executing the command
$ python populate_rango.py. You should then see output similar to that shown below.

$ python populate_rango.py

Starting Rango population script...

- Python - Official Python Tutorial

- Python - How to Think like a Computer Scientist

- Python - Learn Python in 10 Minutes

- Django - Official Django Tutorial

- Django - Django Rocks

- Django - How to Tango with Django

- Other Frameworks - Bottle

- Other Frameworks - Flask

Next, verify that the population script actually populated the database. Restart the Django develop-
ment server, navigate to the admin interface (at http://127.0.0.1:8000/admin/) and check that
you have some new categories and pages. Do you see all the pages if you click Pages, like in the
figure shown below?

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Zero-based_numbering
https://docs.djangoproject.com/en/1.9/ref/models/querysets/#get-or-create

Models and Databases 55

The Django admin interface, showing the Page model populated with the new population script. Success!

While creating a population script may take time, you will save yourself time in the long run. When
deploying your app elsewhere, running the population script after setting everything up means you
can start demonstrating your app straight away. You’ll also find it very handy when it comes to unit
testing your code.

5.8 Workflow: Model Setup

Now that we’ve covered the core principles of dealing with Django’s ORM, now is a good time to
summarise the processes involved in setting everything up. We’ve split the core tasks into separate
sections for you. Check this section out when you need to quickly refresh your mind of the different
steps.

Setting up your Database

With a new Django project, you should first tell Django about the database you intend to use (i.e.
configure DATABASES in settings.py). You can also register any models in the admin.py module of
your app to make them accessible via the admin interface.

www.tangowithdjango.com

Models and Databases 56

Adding a Model

The workflow for adding models can be broken down into five steps.

1. First, create your new model(s) in your Django application’s models.py file.
2. Update admin.py to include and register your new model(s).
3. Perform the migration $ python manage.py makemigrations.
4. Apply the changes $ python manage.py migrate. This will create the necessary infrastruc-

ture within the database for your new model(s).
5. Create/edit your population script for your new model(s).

Invariably, there will be times when you will have to delete your database. When this happens, run
the following commands from the manage.py module.

1. migrate your database - this will set everything up in the new database. Ensure that your app
is listed in the migrations that are committed. If it is not, run the makemigrations <appname>

command, where <appname> is the name of your app.
2. Create a new administrative account with the createsuperuser command.

Exercises
Now that you’ve completed this chapter, try out these exercises to reinforce and practice
what you have learnt. Once again, note that the following chapters will have expected
you to have completed these exercises!

• Update the Category model to include the additional attributes views and likes

where the default values for each are both zero (0).
• Make the migrations for your app, then migrate your database to commit the
changes.

• Update your population script so that the Python category has 128 views and 64

likes, the Django category has 64 views and 32 likes, and the Other Frameworks

category has 32 views and 16 likes.
• Delete and recreate your database, populating it with your updated population
script.

• Complete parts two and seven of the official Django tutorial. These sections will
reinforce what you’ve learnt on handling databases in Django, and show you
additional techniques to customising the Django admin interface.

• Customise the admin interface. Change it in such a way so that when you view the
Page model, the table displays the category, the name of the page and the url - just
like in the screenshot shown below.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/tutorial02/
https://docs.djangoproject.com/en/1.9/intro/tutorial07/

Models and Databases 57

The updated admin interface Page view, complete with columns for category and URL.

Exercise Hints
If you require some help or inspiration to get these exercises done, these hints will hopefully
help you out.

• Modify the Category model by adding in the fields, view and likes as
IntegerFields.

• Modify the add_cat function in the populate.py script, to take the views and likes.
Once you get the Category c, then you can update the number of views with
c.views, and similarly with likes. Don’t forget to save() the instance!

• To customise the admin interface, you will need to edit rango/admin.py and create
a PageAdmin class that inherits from admin.ModelAdmin.

• Within your new PageAdmin class, add list_display = ('title', 'category',

'url').
• Finally, register the PageAdmin class withDjango’s admin interface. You shouldmod-
ify the line admin.site.register(Page). Change it to admin.site.register(Page,
PageAdmin) in Rango’s admin.py file.

www.tangowithdjango.com

Models and Databases 58

Tests
We have written a few tests to check if you have completed the exercises. To check your
work so far, download the tests.py script from our GitHub repository, and save it within
your rango app directory.

To run the tests, issue the following command in the terminal or Command Prompt.

$ python manage.py test rango

If you are interested in learning about automated testing, now is a good time to check out
the chapter on testing. The chapter runs through some of the basics on testing that can
perform in Django.

www.tangowithdjango.com

https://github.com/leifos/tango_with_django_19/blob/master/code/tango_with_django_project/rango/tests.py
https://github.com/leifos/tango_with_django_19/

Automated Testing 59

6. Automated Testing
It is good practice to get into the habit of writing and developing tests. A lot of software engineering
is about writing and developing tests and test suites in order to ensure the software is robust. Of
course, most of the time, we are too busy trying to build things to bother about making sure that
they work. Or too arrogant to believe it would fail.

According to the Django Tutorial, there are numerous reasons why you should include tests:

• Test will save you time: a change in a complex system can cause failures in unpredictable
places.

• Tests dont just identify problems, they prevent them: tests showwhere the code is not meeting
expectations.

• Test make your code more attractive: “Code without tests is broken by design”, Jacob Kaplan-
Moss, One of Django’s original developers.

• Tests help teams work together: they make sure your team doesn’t inadvertently break your
code.

According to the [Python Guide] (http://docs.python-guide.org/en/latest/writing/tests/), there are a
number of general rules you should try to follow when writing tests. Below are some main rules:

• Tests should focus on one small bit of functionality
• Tests should have a clear purpose
• Tests should be independent.
• Run your tests, before you code, and before your commit and push your code.
• Even better create a hook that tests code on push.
• Use long and descriptive names for tests.

Testing in Django
Currently this chapter provides the very basics of testing and follows a similar format to
the Django Tutorial, with some additional notes. We hope to expand this further in the
future.

6.1 Running Tests

In built in Django is machinery to test the applications built. You can do this by issuing the following
command:

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.7/intro/tutorial05/
https://docs.djangoproject.com/en/1.9/intro/tutorial05/

Automated Testing 60

$ python manage.py test rango

Creating test database for alias 'default'...

--

Ran 0 tests in 0.000s

OK

Destroying test database for alias 'default'...

This will run through the tests associated with the rango application. At the moment, nothing
much happens. That is because you may have noticed the file rango/tests.py only contains an
import statement. Every time you create an application, Django automatically creates such a file to
encourage you to write tests.

From this output, you might also notice that a database called default is referred to. When you run
tests, a temporary database is constructed, which your tests can populate, and perform operations
on. This way your testing is performed independently of your live database.

Testing the models in Rango

Ok, lets create a test. In the Category model, we want to ensure that views are either zero or positive,
because the number of views, let’s say, can never be less than zero. To create a test for this we can
put the following code into rango/tests.py:

from django.test import TestCase

from rango.models import Category

class CategoryMethodTests(TestCase):

def test_ensure_views_are_positive(self):

"""

ensure_views_are_positive should results True for categories

where views are zero or positive

"""

cat = Category(name='test',views=-1, likes=0)

cat.save()

self.assertEqual((cat.views >= 0), True)

The first thing you should notice, if you have not written tests before, is that we have to inherit
from TestCase. The naming over the method in the class also follows a convention, all tests start
with test_ and they also contain some type of assertion, which is the test. Here we are checking if
the values are equal, with the assertEqual method, but other types of assertions are also possible.

www.tangowithdjango.com

Automated Testing 61

See the Python Documentation on unit tests, https://docs.python.org/2/library/unittest.html for
other commands (i.e. assertItemsEqual, assertListEqual, assertDictEqual, etc). Django’s testing
machinery is derived from Python’s but also provides a number of other asserts and specific test
cases.

Now lets run test:

1 $ python manage.py test rango

2

3

4 Creating test database for alias 'default'...

5 F

6 ==

7 FAIL: test_ensure_views_are_positive (rango.tests.CategoryMethodTests)

8 --

9 Traceback (most recent call last):

10 File "/Users/leif/Code/tango_with_django_project_19/rango/tests.py",

11 line 12, in test_ensure_views_are_positive

12 self.assertEqual((cat.views>=0), True)

13 AssertionError: False != True

14

15 --

16 Ran 1 test in 0.001s

17

18 FAILED (failures=1)

As we can see this test fails. This is because the model does not check whether the value is less than
zero or not. Since we really want to ensure that the values are non-zero, we will need to update the
model, to ensure that this requirement is fulfilled. Do this now by adding some code to the Category
models, save() method, that checks the value of views, and updates it accordingly.

Once you have updated your model, you can now re-run the test, and see if your code now passes
it. If not, try again.

Let’s try adding another test, that ensures an appropriate slug line is created i.e. one with dashes,
and in lowercase. Add the following code to rango/tests.py:

www.tangowithdjango.com

https://docs.python.org/2/library/unittest.html

Automated Testing 62

1 def test_slug_line_creation(self):

2 """

3 slug_line_creation checks to make sure that when we add a category an appropria\

4 te slug line is created

5 i.e. "Random Category String" -> "random-category-string"

6 """

7 cat = cat('Random Category String')

8 cat.save()

9 self.assertEqual(cat.slug, 'random-category-string')

Does your code still work?

Testing Views

So far we have written tests that focus on ensuring the integrity of the data housed in the models.
Django also provides testingmechanisms to test views. It does this with a mock client, that internally
makes a calls a Django view via the url. In the test you have access to the response (including the
html) and the context dictionary.

Let’s create a test that checks that when the index page loads, it displays the message that There
are no categories present, when the Category model is empty.

from django.core.urlresolvers import reverse

class IndexViewTests(TestCase):

def test_index_view_with_no_categories(self):

"""

If no questions exist, an appropriate message should be displayed.

"""

response = self.client.get(reverse('index'))

self.assertEqual(response.status_code, 200)

self.assertContains(response, "There are no categories present.")

self.assertQuerysetEqual(response.context['categories'], [])

First of all, the django TestCase has access to a client object, which can make requests. Here, it
uses the helper function reverse to look up the url of the index page. Then it tries to get that page,
where the response is stored. The test then checks a number of things: did the page load ok? Does
the response, i.e. the html contain the phrase “There are no categories present.”, and does the context
dictionary contain an empty categories list. Recall that when you run tests, a new database is created,
which by default is not populated.

Let’s now check the resulting view when categories are present. First add a helper method.

www.tangowithdjango.com

Automated Testing 63

from rango.models import Category

def add_cat(name, views, likes):

c = Category.objects.get_or_create(name=name)[0]

c.views = views

c.likes = likes

c.save()

return c

Then add another method to the class IndexViewTests(TestCase):

def test_index_view_with_categories(self):

"""

If no questions exist, an appropriate message should be displayed.

"""

add_cat('test',1,1)

add_cat('temp',1,1)

add_cat('tmp',1,1)

add_cat('tmp test temp',1,1)

response = self.client.get(reverse('index'))

self.assertEqual(response.status_code, 200)

self.assertContains(response, "tmp test temp")

num_cats =len(response.context['categories'])

self.assertEqual(num_cats , 4)

In this test, we populate the database with four categories, and then check if the page loads, if it
contains the text tmp test temp and if the number of categories is equal to 4.

Testing the Rendered Page

It is also possible to perform tests that load up the application and programmatically interact with
the DOM elements on the HTML pages by using either Django’s test client and/or Selenium, which
is are “in-browser” frameworks to test the way the HTML is rendered in a browser.

6.2 Coverage Testing

Code coverage measures how much of your code base has been tested, and how much of your code
has been put through its paces via tests. You can install a package called coverage via with pip

install coverage which automatically analyses how much code coverage you have. Once you
have coverage installed, run the following command:

www.tangowithdjango.com

Automated Testing 64

$ coverage run --source='.' manage.py test rango

This will run through all the tests and collect the coverage data for the rango application. To see the
coverage report you need to then type:

$ coverage report

Name Stmts Miss Cover

--

manage 6 0 100%

populate 33 33 0%

rango/__init__ 0 0 100%

rango/admin 7 0 100%

rango/forms 35 35 0%

rango/migrations/0001_initial 5 0 100%

rango/migrations/0002_auto_20141015_1024 5 0 100%

rango/migrations/0003_category_slug 5 0 100%

rango/migrations/0004_auto_20141015_1046 5 0 100%

rango/migrations/0005_userprofile 6 0 100%

rango/migrations/__init__ 0 0 100%

rango/models 28 3 89%

rango/tests 12 0 100%

rango/urls 12 12 0%

rango/views 110 110 0%

tango_with_django_project/__init__ 0 0 100%

tango_with_django_project/settings 28 0 100%

tango_with_django_project/urls 9 9 0%

tango_with_django_project/wsgi 4 4 0%

--

TOTAL 310 206 34%

We can see from the above report that critical parts of the code have not been tested, ie. rango/views.
For more details about using the package coverage visit: http://nedbatchelder.com/code/coverage/

www.tangowithdjango.com

http://nedbatchelder.com/code/coverage/

Automated Testing 65

Exercises
Lets say that we want to extend the Page to include two additional fields, last_visit and
first_visit which will be of type timedate.

• Update the model to include these two fields
• Update the add page functionality, and the goto functionality.
• Add in a test to ensure the last visit or first visit is not in the future
• Add in a test to ensure that the last visit equal to or after the first visit.
• Run through Part Five of the official Django Tutorial to learn more about testing.
• Check out the tutorial on test driven development by Harry Percival.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/tutorial05/
http://www.tdd-django-tutorial.com/

Deploying Your Project 66

7. Deploying Your Project
This chapter provides a step-by-step guide on how to deploy your Django applications. We’ll be
looking at deploying applications on PythonAnywhere, an online IDE and web hosting service. The
service provides in-browser access to the server-based Python and Bash command line interfaces,
meaning you can interact with PythonAnywhere’s servers just like you would with a regular
terminal instance on your own computer. Currently, PythonAnywhere are offering a free account
which sets you up with an adequate amount of storage space and CPU time to get a Django
application up and running.

Go Git It!
You can do this chapter independently, assuming you have some working knowledge of
Git. If you don’t, refer to the chapter on using Git).

7.1 Creating a PythonAnywhere Account

First, sign up for a Beginner PythonAnywhere account. If your application takes off and becomes
popular, you can always upgrade your account at a later stage to gain more storage space and CPU
time along with a number of other benefits - such as hosting specific domains and SSH abilities, for
example.

Once your account has been created, you will have your own little slice of the World Wide Web at
http://<username>.pythonanywhere.com, where <username> is your PythonAnywhere username.
It is from this URL that your hosted application will be available.

7.2 The PythonAnywhere Web Interface

The PythonAnywhere web interface contains a dashboard which in turn provides a series of tabs
allowing you to manage your application. The tabs as illustrated in the figure below include:

• a consoles tab, allowing you to create and interact with Python and Bash console instances;
• a files tab, which allows you to upload to and organise files within your disk quota;
• a web tab, allowing you to configure settings for your hosted web application;
• a schedule tab, allowing you to setup tasks to be executed at particular times; and
• a databases tab, which allows you to configure aMySQL instance for your applications should
you require it.

www.tangowithdjango.com

https://www.pythonanywhere.com/?affiliate_id=000116e3
https://www.pythonanywhere.com/?affiliate_id=000116e3

Deploying Your Project 67

Of the five tabs provided, we’ll be working primarily with the consoles and web tabs. The
PythonAnywhere Wiki provides a series of detailed explanations on how to use the other tabs.

The PythonAnywhere dashboard, showing the Consoles tab.

www.tangowithdjango.com

https://www.pythonanywhere.com/wiki/

Deploying Your Project 68

7.3 Creating a Virtual Environment

As part of a its standard default Bash environment, PythonAnywhere comes with Python 2.7.6 and
a number of pre-installed Python Packages (including Django 1.3.7 and Django-Registration 0.8).
Since we are using a different setup, we need to select a particular Python version and setup a
virtual environment for our application.

First, open a Bash console from the PythonAnywhere Consoles tab by clicking the Bash link. When
the terminal is ready for you to use, enter the following commands.

$ mkvirtualenv --python=<python-version> rango

If you’ve coded up the tutorial using Python 3.x, then change <python-version> to either python3.4
or python3.5. If your are using Python 2.7.x, then change <python-version> to python2.7. The
command you enter creates a new virtual environment called rango using the version of Python
that you specified. For example, below is the output for when we created a Python 2.7 virtual
environment.

13:38 ~ $ mkvirtualenv --python=python2.7 rango

Running virtualenv with interpreter /usr/bin/python2.7

New python executable in /home/rangodemo/.virtualenvs/rango/bin/python2.7

Also creating executable in /home/rangodemo/.virtualenvs/rango/bin/python

Installing setuptools, pip, wheel...done.

virtualenvwrapper creating /home/rangodemo/.virtualenvs/.../predeactivate

virtualenvwrapper creating /home/rangodemo/.virtualenvs/.../postdeactivate

virtualenvwrapper creating /home/rangodemo/.virtualenvs/.../preactivate

virtualenvwrapper creating /home/rangodemo/.virtualenvs/.../postactivate

virtualenvwrapper creating /home/rangodemo/.virtualenvs/.../get_env_details

Note in the example above, the PythonAnywhere username used is rangodemo - this will be replaced
with your own username. The process of creating the virtual environment will take a little while to
complete, after which you will be presented with a slightly different prompt.

(rango)13:40 ~ $

Note the inclusion of (rango) compared to the previous command prompt. This signifies that the
rango virtual environment has been activated, so any package installations will be done within that
virtual environment, leaving the wider system setup alone. If you issue the command ls -la, you
will see that a directory called .virtualenvs has been created. This is the directory in which all
of your virtual environments and associated packages will be stored. To confirm the setup, issue
the command which pip. This will print the location in which the active pip binary is located -
hopefully within .virtualenvs and rango, as shown in the example below.

www.tangowithdjango.com

Deploying Your Project 69

/home/<username>/.virtualenvs/test/bin/pip

To see what packages are already installed, enter pip list. Now we can customise the virtual
environment by installing the required packages for our Rango application. Install all the required
packages, by issuing the following commands.

$ pip install -U django==1.9.5

$ pip install pillow

$ pip install django-registration-redux

$ pip install django-bootstrap-toolkit

Alternatively, you could use pip freeze > requirements.txt to save your current development
environment, and then on PythonAnywhere, run pip install -r requirements.txt to install all
the packages in one go.

Waiting for the Bits to Download
Installing all theses packages may take some time, so you can relax, call a friend, or tweet
about our tutorial @tangowithdjango!

Once installed, check if Django has been installed with the command which django-admin.py. You
should receive output similar to the following example.

/home/<username>/.virtualenvs/rango/bin/django-admin.py

Virtual Environments on PythonAnywhere
PythonAnywhere also provides instructions on how to setup virtual environments. Check
out their Wiki documentation for more information.

Virtual Environment Switching

Moving between virtual environments can be done pretty easily. For this to work, you need to make
sure that virtualenvwrapper.sh has been loaded by running source virtualenvwrapper.sh.

Rather than doing this each time you open up a console, you can add it to your .bashrc profile which
is located in your home directory. Doing so will ensure the command is executed automatically for
you every time you start a new Bash console instance. Any Bash consoles active will need to be
closed for the changes to take effect.

With this done, you can then launch into a pre-existing virtual environment with the workon

command. To load up the rango environment, enter:

www.tangowithdjango.com

https://help.pythonanywhere.com/pages/VirtualEnvForNewerDjango
https://help.pythonanywhere.com/pages/VirtualEnvForNewerDjango

Deploying Your Project 70

16:48 ~ $ workon rango

where rango can be replaced with the name of the virtual environment you wish to use. Your prompt
should then change to indicate you are working within a virtual environment.

(rango) 16:49 ~ $

You can then leave the virtual environment using the deactivate command. Your prompt should
then be missing the (rango) prefix, with an example shown below.

(rango) 16:49 ~ $ deactivate

16:51 ~ $

Cloning your Git Repository

Now that your virtual environment for Rango is all setup, you can now clone your Git repository to
obtain a copy of your project’s files. Clone your repository by issuing the following command from
your home directory:

$ git clone https://<USERNAME>:<PASSWORD>@github.com/<OWNER>/<REPO_NAME>.git

where you replace - <USERNAME> with your GitHub username; - <PASSWORD> with your GitHub
password; - <OWNER> with the username of the person who owns the repository; and - <REPO_NAME>
with the name of your project’s repository.

If you haven’t put your code in a Git repository, you can clone the version we have made, by issuing
the following command:

16:54 ~ $ git clone https://github.com/leifos/tango_with_django_19.git

Setting Up the Database

With your files cloned, you must then prepare your database. We’ll be using the populate_rango.py
module that we created earlier in the book. As we’ll be running the module, you must ensure that
you are using the rango virtual environment (i.e. you see (rango) as part of your prompt - if not,
invoke workon rango). From your home directory, move into the tango_with_django_19 directory,
then to the code directory. Finally, cd into the tango_with_django_project directory - the directory
with manage.py in it. Now issue the following commands.

www.tangowithdjango.com

Deploying Your Project 71

(rango) 16:55 ~/tango_with_django $ python manage.py makemigrations rango

(rango) 16:55 ~/tango_with_django $ python manage.py migrate

(rango) 16:56 ~/tango_with_django $ python populate_rango.py

(rango) 16:57 ~/tango_with_django $ python manage.py createsuperuser

As discussed earlier in the book, the first command creates the migrations for the rango app, then
the migrate command creates the SQLlite3 database. Once the database is created, the database can
be populated and a superuser created.

7.4 Setting up Your Web Application

Now that the database is setup, we need to configure the PythonAnywhere NGINX Web server to
serve up your application. Within PythonAnywhere’s Web interface, navigate to your dashboard
and click on theWeb tab. On the left of the page that appears, click Add a new web app.

A popup box will then appear. Follow the instructions on-screen, and when the time comes, select
the manual configuration option and complete the wizard. Make sure you select the same Python
version as the one you selected earlier.

In a new tab or window in your Web browser, go visit your PythonAnywhere subdomain at the
address http://<username>.pythonanywhere.com. You should be presented with the default Hello,
World! webpage, as shown below. This is because the WSGI script is currently serving up this page,
and not your Django application. This is what we need to change next.

The default PythonAnywhere hello world webpage.

www.tangowithdjango.com

https://www.nginx.com/resources/wiki/

Deploying Your Project 72

Configure the Virtual Environment

To set the virtual environment for your app, navigate to the Web tab in PythonAnywhere’s
dashboard. From there, scroll all the way down under you see the heading Virtualenv.

Enter in the path to your virtual environment. Assuming you created a virtual environment called
rango the path would be:

/home/<username>/.virtualenvs/rango

You can start a console to check if it is successful.

Now in the Code section, you can set the path to your web applications source code.

/home/<username>/<path-to>/tango_with_django_project/

If you have checked out code from our GitHub account, then the path will be something like:

/home/<username>/tango_with_django_19/code/tango_with_django_project/

Configuring the WSGI Script

The Web Server Gateway Interface, a.k.a.WSGI provides a simple and universal interface between
Web servers and Web applications. PythonAnywhere uses WSGI to bridge the server-application
link and map incoming requests to your subdomain to your web application.

To configure the WSGI script, navigate to theWeb tab in PythonAnywhere’s dashboard. From there,
click the Web tab. Under the Code heading you can see a link to the WSGI configuration file in the
Code section: e.g. /var/www/<username>_pythonanywhere_com_wsgi.py

The good people at PythonAnywhere have set up a sample WSGI file for us with several possible
configurations. For your Web application, you’ll need to configure the Django section of the file.
The example below demonstrates a possible configuration for you application.

import os

import sys

ADD YOUR PROJECT TO THE PYTHONPATH FOR THE PYTHON INSTANCE

path = '/home/<username>/<path-to>/tango_with_django_project/'

if path not in sys.path:

sys.path.append(path)

IMPORTANTLY GO TO THE PROJECT DIR

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Web_Server_Gateway_Interface

Deploying Your Project 73

os.chdir(path)

TELL DJANGO WHERE YOUR SETTINGS MODULE IS LOCATED

os.environ.setdefault('DJANGO_SETTINGS_MODULE',

'tango_with_django_project.settings')

IMPORT THE DJANGO SETUP

import django

django.setup()

IMPORT THE DJANGO WSGI HANDLER TO TAKE CARE OF REQUESTS

import django.core.handlers.wsgi

application = django.core.handlers.wsgi.WSGIHandler()

Ensure that you replace <username> with your PythonAnywhere username, and update any other
path settings to suit your application. You should also remove all other code from the WSGI
configuration script to ensure no conflicts take place.

The script adds your project’s directory to the PYTHONPATH for the Python instance that runs your
web application. This allows Python to access your project’s modules. If you have additional paths to
add, you can easily insert them here. You can then specify the location of your project’s settings.py
module. The final step is to include the Django WSGI handler and invoke it for your application.

When you have completed the WSGI configuration, click the Save button at the top-right of the
webpage. Navigate back to the Web tab within the PythonAnywhere dashboard, and click the
Reload button at the top of the page. When the application is reloaded, you can then revisit your
PythonAnywhere subdomain at http://<username>.pythonanywhere.com. Hopefully, if all went
well, you should see your application up and running. If not, check through your scripts and paths
carefully. Double check your paths by actually visiting the directories, and use pwd to confirm the
path.

Bad Gateway Errors??
During testing, we noted that you can sometimes receive HTTP 502 - Bad Gateway errors
instead of your application. Try reloading your application again, and thenwaiting a longer.
If the problem persists, try reloading again. If the problem still persists, check out your log
files to see if any accesses/errors are occurring, before contacting the PythonAnywhere
support.

Assigning Static Paths

We’re almost there. One issue which we still have to address is to sort out paths for our application.
Doing so will allow PythonAnywhere’s servers to serve your static content, for example From the

www.tangowithdjango.com

Deploying Your Project 74

PythonAnywhere dashboard, click theWeb tab and choose the subdomain hosting your application
from the list on the left.

Underneath the Static files header, perform the following.

Click the Enter path text. Set this to (all on one line):

/home/<username>/.virtualenvs/rango/lib/<python-version>/site-packages/django/

contrib/admin/static/admin

where <username> should be replaced with your PythonAnywhere username. <python-version>
should also be replaced with 2.7, 3.4, etc., depending on which Python version you selected. You
may also need to change rango if this is not the name of your application’s virtual environment.
Remember to hit return to confirm the path. Then click Enter URL and enter /static/admin,
followed by hitting return.

Repeat the two steps above for the URL /static/ and path /home/<username>/<path-to>/tango_-

with_django_project/static, with the path setting pointing to the static directory of your Web
application.

With these changes saved, reload your web application by clicking the Reload button at the top of the
page. Don’t forget about potential HTTP 502 - Bad Gateway errors, as discussed previously. Setting
the static folders means that when you visit the admin interface, it has the predefined Django style
sheets, and that you can access images and scripts. Reload your Web application, and you should
now notice that your images are present.

Bing API Key

Add your Bing API key to bing.key to enable the search functionality in Rango.

Turning off DEBUGMode

When you application is ready to go, it’s a good idea to instruct Django that your application is now
hosted on a production server. To do this, open your project’s settings.py file and change DEBUG =

True to DEBUG = False. This disables Django’s debug mode, and removes explicit error messages.

Changing the value of DEBUG also means you should set the ALLOWED_HOSTS property. Failing to
perform this step will make Django return HTTP 400 Bad Request errors. Alter ALLOWED_HOSTS so
that it includes your PythonAnywhere subdomain like in the example below.

ALLOWED_HOSTS = ['<username>.pythonanywhere.com']

Again, ensure <username> is changed to your PythonAnywhere username. Once complete, save the
file and reload the application via the PythonAnywhere Web interface.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/settings/#debug

Deploying Your Project 75

7.5 Log Files

Deploying your Web application to an online environment introduces another layer of complexity.
It is likely that you will encounter new and bizarre errors due to unsuspecting problems. When
facing such errors, vital clues may be found in one of the three log files that the Web server on
PythonAnywhere creates.

Log files can be viewed via the PythonAnywhere web interface by clicking on the Web tab, or by
viewing the files in /var/log/ within a Bash console instance. The files provided are:

• access.log, which provides a log of requests made to your subdomain;
• error.log, which logs any error messages produced by your web application; and
• server.log, providing log details for the UNIX processes running your application.

Note that the names for each log file are prepended with your subdomain. For example, access.log
will have the name <username>.pythonanywhere.com.access.log.

When debugging, you may find it useful to delete or move the log files so that you don’t have to
scroll through a huge list of previous attempts. If the files are moved or deleted, they will be recreated
automatically when a new request or error arises.

Exercises
Congratulations, you’ve successfully deployed Rango!

• Tweet a link of your application to @tangowithdjango.
• E-mail us to let us know, and let us know your thoughts on the book.

www.tangowithdjango.com

https://twitter.com/tangowithdjango

Final Thoughts 76

8. Final Thoughts
In this book, we have gone through the process of web development from specification to
deployment. Along the way we have shown how to use the Django framework to construct the
models, views and templates associated with a web application. We have also demonstrated how
toolkits and services like Bootstrap, JQuery, Bing Search, PythonAnywhere, etc can be integrated
within an application. However, the road doesn’t stop here.While, as we have only painted the broad
brush strokes of a web application - as you have probably noticed there are lots of improvements
that could be made to Rango - and these finer details often take a lot more time to complete as you
polish the application. By developing your application on a firm base and good setup you will be
able to construct up to 80% of your site very rapidly and get a working demo online.

In future versions of this book we intend to provide some more details on various aspects of the
framework, along with covering the basics of some of the other fundamental technologies associated
with web development. If you have any suggestions or comments about how to improve the book
please get in touch.

Please report any bugs, problems, etc, or submit change requests via GitHub: https://github.com/
leifos/tango_with_django_19/

www.tangowithdjango.com

https://github.com/leifos/tango_with_django_19/
https://github.com/leifos/tango_with_django_19/

Setting up your System 77

9. Setting up your System
9.1 Installing the Software

Now that you have a decent understanding of how to interact with the terminal, you can begin to
install the software required for this tutorial.

Installing Python

So, how do you go about installing Python 2.7/3.0 on your computer? You may already have Python
installed on your computer - and if you are using a Linux distribution or OS X, you will definitely
have it installed. Some of your operating system’s functionality is implemented in Python, hence
the need for an interpreter!

Unfortunately, nearly all modern operating systems utilise a version of Python that is older than
what we require for this tutorial. There’s many different ways in which you can install Python,
and many of them are sadly rather tricky to accomplish. We demonstrate the most commonly used
approaches, and provide links to additional reading for more information.

warning

This section will detail how to run Python 2.7.5 alongside your current Python
installation. It is regarded as poor practice to remove your operating system’s default
Python installation and replace it with a newer version. Doing so could render aspects
of your operating system’s functionality broken!

Apple OS X

The most simple way to get Python 2.7.5 installed on your Mac is to download and run the simple
installer provided on the official Python website. You can download the installer by visiting the
webpage at http://www.python.org/getit/releases/2.7.5/.

warning

Ensure that you download the .dmg file that is relevant to your particular OS X
installation!

1. Once you have downloaded the .dmg file, double-click it in the Finder.
2. The file mounts as a separate disk and a new Finder window is presented to you.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Yellowdog_Updater,_Modified
http://www.python.org/getit/releases/2.7.5/

Setting up your System 78

3. Double-click the file Python.mpkg. This will start the Python installer.
4. Continue through the various screens to the point where you are ready to install the software.

You may have to provide your password to confirm that you wish to install the software.
5. Upon completion, close the installer and eject the Python disk. You can now delete the

downloaded .dmg file.

You should now have an updated version of Python installed, ready for Django! Easy, huh?

Linux Distributions

Unfortunately, there aremany different ways inwhich you can download, install and run an updated
version of Python on your Linux distribution. To make matters worse, methodologies vary from
distribution to distribution. For example, the instructions for installing Python on Fedora may differ
from those to install it on an Ubuntu installation.

However, not all hope is lost. An awesome tool (or a Python environment manager) called
pythonbrew can help us address this difficulty. It provides an easy way to install and manage
different versions of Python, meaning you can leave your operating system’s default Python
installation alone. Hurrah!

Taken from the instructions provided from the pythonbrew GitHub page and this Stack Overflow
question and answer page, the following steps will install Python 2.7.5 on your Linux distribution.

1. Open a new terminal instance.
2. Run the command curl -kL http://xrl.us/pythonbrewinstall | bash. This will down-

load the installer and run it within your terminal for you. This installs pythonbrew into the
directory ∼/.pythonbrew. Remember, the tilde (∼) represents your home directory!

3. You then need to edit the file∼/.bashrc. In a text editor (such as gedit, nano, vi or emacs), add
the following to a new line at the end of ∼/.bashrc: [[-s $HOME/.pythonbrew/etc/bashrc

]] && source $HOME/.pythonbrew/etc/bashrc

4. Once you have saved the updated ∼/.bashrc file, close your terminal and open a new one.
This allows the changes you make to take effect.

5. Run the command pythonbrew install 2.7.5 to install Python 2.7.5.
6. You then have to switch Python 2.7.5 to the active Python installation. Do this by running the

command pythonbrew switch 2.7.5.
7. Python 2.7.5 should now be installed and ready to go.

note

Directories and files beginning with a period or dot can be considered the equivalent of
hidden files in Windows. Dot files are not normally visible to directory-browsing tools,
and are commonly used for configuration files. You can use the ls command to view
hidden files by adding the -a switch to the end of the command, giving the command
ls -a.

www.tangowithdjango.com

http://fedoraproject.org/
http://www.ubuntu.com/
https://github.com/utahta/pythonbrew
https://github.com/utahta/pythonbrew
http://stackoverflow.com/questions/5233536/python-2-7-on-ubuntu
http://stackoverflow.com/questions/5233536/python-2-7-on-ubuntu
http://en.wikipedia.org/wiki/Dot-file

Setting up your System 79

Windows

By default, Microsoft Windows comes with no installations of Python. This means that you do not
have to worry about leaving existing versions be; installing from scratch should work just fine. You
can download a 64-bit or 32-bit version of Python from the official Python website. If you aren’t
sure which one to download, you can determine if your computer is 32-bit or 64-bit by looking at
the instructions provided on the Microsoft website.

1. When the installer is downloaded, open the file from the location to which you downloaded
it.

2. Follow the on-screen prompts to install Python.
3. Close the installer once completed, and delete the downloaded file.

Once the installer is complete, you should have a working version of Python ready to go. By default,
Python 2.7.5 is installed to the folder C:\Python27. We recommend that you leave the path as it is.

Upon the completion of the installation, open a Command Prompt and enter the command python.
If you see the Python prompt, installation was successful. However, in certain circumstances, the
installer may not set your Windows installation’s PATH environment variable correctly. This will
result in the python command not being found. UnderWindows 7, you can rectify this by performing
the following:

1. Click the Start button, right click My Computer and select Properties.
2. Click the Advanced tab.
3. Click the Environment Variables button.
4. In the System variables list, find the variable called Path, click it, then click the Edit button.
5. At the end of the line, enter ;C:\python27;C:\python27\scripts. Don’t forget the semicolon

- and certainly do not add a space.
6. Click OK to save your changes in each window.
7. Close any Command Prompt instances, open a new instance, and try run the python command

again.

This should get your Python installation fully working. Windows XP, has slightly different
instructions, and so do Windows 8 installationsthis.

Setting Up the PYTHONPATH

With Python now installed, we now need to check that the installation was successful. To do this, we
need to check that the PYTHONPATH environment variable is setup correctly. PYTHONPATH provides the
Python interpreter with the location of additional Python packages and modules which add extra
functionality to the base Python installation. Without a correctly set PYTHONPATH, we’ll be unable to
install and use Django!

www.tangowithdjango.com

http://www.python.org/download/
http://windows.microsoft.com/en-gb/windows7/32-bit-and-64-bit-windows-frequently-asked-questions
http://www.computerhope.com/issues/ch000549.htm
http://www.computerhope.com/issues/ch000549.htm
http://stackoverflow.com/a/14224786
http://en.wikipedia.org/wiki/Environment_variable
http://stackoverflow.com/questions/7948494/whats-the-difference-between-a-python-module-and-a-python-package

Setting up your System 80

First, let’s verify that our PYTHONPATH variable exists. Depending on the installation technique that
you chose, this may or may not have been done for you. To do this on your UNIX-based operating
system, issue the following command in a terminal.

1 $ echo $PYTHONPATH

On a Windows-based machine, open a Command Prompt and issue the following.

1 $ echo %PYTHONPATH%

If all works, you should then see output that looks something similar to the example below. On a
Windows-based machine, you will obviously see a Windows path, most likely originating from the
C drive.

1 /opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-p\

2 ackages:

This is the path to your Python installation’s site-packages directory, where additional Python
packages and modules are stored. If you see a path, you can continue to the next part of this tutorial.
If you however do not see anything, you’ll need to do a little bit of detective work to find out the path.
On aWindows installation, this should be a trivial exercise: site-packages is located within the lib
folder of your Python installation directory. For example, if you installed Python to C:\Python27,
site-packages will be at C:\Python27\Lib\site-packages\.

UNIX-based operating systems however require a little bit of detective work to discover the path of
your site-packages installation. To do this, launch the Python interpreter. The following terminal
session demonstrates the commands you should issue.

1 $ python

2

3 Python 2.7.5 (v2.7.5:ab05e7dd2788, May 13 2013, 13:18:45)

4 [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

5 Type "help", "copyright", "credits" or "license" for more information.

6

7 >>> import site

8 >>> print site.getsitepackages()[0]

9

10 '/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages'

11

12 >>> quit()

www.tangowithdjango.com

Setting up your System 81

Calling site.getsitepackages() returns a list of paths that point to additional Python package and
module stores. The first typically returns the path to your site-packages directory - changing the
list index position may be required depending on your installation. If you receive an error stating
that getsitepackages() is not present within the site module, verify you’re running the correct
version of Python. Version 2.7.5 should include this function. Previous versions of the language do
not include this function.

The string which is shown as a result of executing print site.getsitepackages()[0] is the path
to your installation’s site-packages directory. Taking the path, we now need to add it to your
configuration. On a UNIX-based or UNIX-derived operating system, edit your .bashrc file once
more, adding the following to the bottom of the file.

1 export PYTHONPATH=$PYTHONPATH:<PATH_TO_SITE-PACKAGES>

Replace <PATH_TO_SITE-PACKAGES> with the path to your site-packages directory. Save the file,
and quit and reopen any instances of your terminal.

On aWindows-based computer, youmust follow the instructions shown in Section requirements-in-
stall-python-windows to bring up the environment variables settings dialog. Add a PYTHONPATH vari-
ablewith the value being set to your site-packages folder, which is typically C:\Python27\Lib\site-
packages\.

Using Setuptools and Pip

Installing and setting up your development environment is a really important part of any project.
While it is possible to install Python Packages such as Django separately, this can lead to numerous
problems and hassles later on. For example, how would you share your setup with another
developer? How would you set up the same environment on your new machine? How would you
upgrade to the latest version of the package? Using a package manager removes much of the hassle
involved in setting up and configuring your environment. It will also ensure that the package you
install is the correct for the version of Python you are using, along with installing any other packages
that are dependent upon the one you want to install.

In this book, we will be using Pip. Pip is a user-friendly wrapper over the Setuptools Python package
manager. Because Pip depends on Setuptools, we are required to ensure that both are installed on
your computer.

To start, we should download Setuptools from the official Python package website. You can
download the package in a compressed .tar.gz file. Using your favourite file extracting program,
extract the files. They should all appear in a directory called setuptools-1.1.6 - where 1.1.6

represents the Setuptools version number. From a terminal instance, you can then change into the
directory and execute the script ez_setup.py as shown below.

www.tangowithdjango.com

https://pypi.python.org/pypi/setuptools/1.1.6

Setting up your System 82

1 $ cd setuptools-1.1.6

2 $ sudo python ez_setup.py

In the example above, we also use sudo to allow the changes to become system-wide. The second
command should install Setuptools for you. To verify that the installation was successful, you should
be able to see output similar to that shown below.

1 Finished processing dependencies for setuptools==1.1.6

Of course, 1.1.6 is substituted with the version of Setuptools you are installing. If this line can be
seen, you can move onto installing Pip. This is a trivial process, and can be completed with one
simple command. From your terminal instance, enter the following.

1 $ sudo easy_install pip

This command should download and install Pip, again with system-wide access. You should see the
following output, verifying Pip has been successfully installed.

1 Finished processing dependencies for pip

Upon seeing this output, you should be able to launch Pip from your terminal. To do so, just type
pip. Instead of an unrecognised command error, you should be presented with a list of commands
and switches that Pip accepts. If you see this, you’re ready to move on!

note

WithWindows-based computers, follow the same basic process. Youwon’t need to enter
the sudo command, however.

9.2 Virtual Environments

We’re almost all set to go! However, before we continue, it’s worth pointing out that while this setup
is fine to begin with, there are some drawbacks. What if you had another Python application that
requires a different version to run? Or you wanted to switch to the new version of Django, but still
wanted to maintain your Django 1.7 project?

The solution to this is to use virtual environments. Virtual environments allowmultiple installations
of Python and their relevant packages to exist in harmony. This is the generally accepted approach
to configuring a Python setup nowadays.

They are pretty easy to setup, once you have pip installed, and you know the right commands. You
need to install a couple of additional packages.

www.tangowithdjango.com

http://simononsoftware.com/virtualenv-tutorial/

Setting up your System 83

1 $ pip install virtualenv

2 $ pip install virtualenvwrapper

The first package provides you with the infrastructure to create a virtual environment. See a non-
magical introduction to Pip and Virtualenv for Python Beginners by Jamie Matthews for details
about using virtualenv. However, using just virtualenv alone is rather complex. The second package
provides a wrapper to the functionality in the virtualenv package and makes life a lot easier.

If you are using a linux/unix based OS, then to use the wrapper you need to call the following shell
script from your command line: :

1 $ source virtualenvwrapper.sh

It is a good idea to add this to your bash/profile script. So you dont have to run it each and every
time you want to use virtualenvironments.

However, if you are using windows, then install the virtualenvwrapper-win package:

1 $ pip install virtualenvwrapper-win

Now you should be all set to create a virtual environment:

1 $ mkvirtualenv rango

You can list the virtual environments created with lsvirtualenv, and you can activate a virtual
environment as follows:

1 $ workon rango

2 (rango)$

Your prompt with change and the current virtual environment will be displayed, i.e. rango. Now
within this environment you will be able to install all the packages you like, without interferring
with your standard or other environements. Try pip list to see you dont have Django or Pillow
installed in your virtual environment. You can now install them with pip so that they exist in your
virtual environment.

Later on when we go to deploy the application, we will go through a similar process see Chapter
Deploying your Application<virtual-environment> and set up a virtual environment on PythonAny-
where.

www.tangowithdjango.com

http://dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
http://dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
https://pypi.python.org/pypi/virtualenvwrapper-win

Setting up your System 84

Code Repository

We should also point out that when you develop code, you should always house your code within
a version-controlled repository such as SVN or GIT. We won’t be going through this right now so
that we can get stuck into developing an application in Django. We have however provided a crash
course on GIT <git-crash-course>. We highly recommend that you set up a GIT repository for your
own projects. Doing so could save you from disaster.

9.3 Exercises

To get comfortable with your environment, try out the following exercises.

• Install Python 2.7.5+ and Pip.
• Play around with your CLI and create a directory called code, which we use to create our
projects in.

• Install the Django and Pillow packages.
• Setup your Virtual Environment
• Setup your account on GitHub
• Download and setup a Integrated Development Environemnt (like PyCharm) -

We have made the code for the book and application that you build available on GitHub, see Tango With Django Book and Rango Application . –
If you spot any errors or problem with the book, you can make a change request!

– If you have any problems with the exercises, you can check out the repository and
see how we completed them.

IDE

Installing Git

Setup Git - the Git crash course expects a small section in this chapter detailing what you have to
do to install git. Perhaps move the Windows information bit in the setting up Git part to here.

www.tangowithdjango.com

http://subversion.tigris.org/
http://git-scm.com/
https://github.com/leifos/tango_with_django_book
https://github.com/leifos/tango_with_django

A Crash Course in UNIX-based Commands 85

10. A Crash Course in UNIX-based
Commands

Depending on your computing background, you may or may not have encountered a UNIX based
system, or a derivative of. This small crash course focuses on getting you up to speed with the
terminal, an application in which you issue commands for the computer to execute. This differs from
a point-and-click Graphical User Interface (GUI), the kind of interface that has made computing so
much more accessible. A terminal based interface may be more complex to use, but the benefits of
using such an interface include getting things done quicker, and more accurately, too.

Not for Windows!
Note that we’re focusing on the Bash shell, a shell for UNIX-based operating systems and
their derivatives, including OS X and Linux distributions. If you’re a Windows user, you
can use the Windows Command Prompt or Windows PowerShell. Users of Windows 10
will also be able to issue Bash commands directly to the Command Prompt. You could also
experiment by installing Cygwin to bring Bash commands to Windows.

10.1 Using the Terminal

UNIX based operating systems and derivatives - such as OS X and Linux distributions - all use
a similar looking terminal application, typically using the Bash shell. All possess a core set of
commands which allow you to navigate through your computer’s filesystem and launch programs
- all without the need for any graphical interface.

Upon launching a new terminal instance, you’ll be typically presented with something resembling
the following.

sibu:~ david$

What you see is the prompt, and indicates when the system is waiting to execute your every
command. The prompt you see varies depending on the operating system you are using, but all look
generally very similar. In the example above, there are three key pieces of information to observe:

• your username and computer name (username of david and computer name of sibu);
• your present working directory (the tilde, or ∼); and

www.tangowithdjango.com

http://www.ai.uga.edu/mc/winforunix.html
https://msdn.microsoft.com/en-us/powershell/mt173057.aspx
http://www.pcworld.com/article/3050473/windows/heres-how-windows-10s-ubuntu-based-bash-shell-will-actually-work.html
https://www.cygwin.com/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

A Crash Course in UNIX-based Commands 86

• the privilege of your user account (the dollar sign, or $).

What is a Directory?
Above, we refer to your present working directory. But what exactly is a directory? If you
have used a Windows computer up until now, you’ll probably know a directory as a folder.
The concept of a folder is analogous to a directory - it is a cataloguing structure which can
contain references to other files and directories.

The dollar sign ($) typically indicates that the user is a standard user account. Conversely, a hash
symbol (#) may be used to signify the user logged in has root privileges. Whatever symbol is present
is used to signify that the computer is awaiting your input.

Prompts can Differ
The information presented by the prompt on your computer may differ from the example
shown above. For example, some prompts may display the current date and time, or any
other information. It all depends how your computer is set up.

When you are using the terminal, it is important to know where you are in the file system. To find
out where you are, you can issue the command pwd. This will display your PresentWorking Directory
(hence pwd). For example, check the example terminal interactions below.

Last login: Wed Mar 23 15:01:39 2016

sibu:~ david$ pwd

/users/grad/david

sibu:~ david$

You can see that the present working directory in this example is /users/grad/david.

You’ll also note that the prompt indicates that the present working directory is a tilde∼. The tilde is
used a special symbol which represents your home directory. The base directory in any UNIX based
file system is the root directory. The path of the root directory is denoted by a single forward slash
(/). As folders (or directories) are separated in UNIX paths with a /, a single / denotes the root!

If you are not in your home directory, you can Change Directory (cd) by issuing the following
command:

sibu:/ david$ cd ~

sibu:~ david$

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Superuser

A Crash Course in UNIX-based Commands 87

Note how the present working directory switches from / to ∼ upon issuing the cd ∼ command.

Path Shortcuts
UNIX shells have a number of different shorthand ways for you to move around your
computer’s filesystem. You’ve already seen that a forward slash (/) represents the root
directory, and the tilde (∼) represents your home directory in which you store all your
personal files. However, there are a fewmore special characters you can use tomove around
your filesystem in conjunction with the cd command.

• Issuing cd ∼ will always return you to your home directory. On some UNIX or
UNIX derivatives, simply issuing cd will return you to your home directory, too.

• Issuing cd ..will move your present working directory up one level of the filesys-
tem hierarchy. For example, if you are currently in /users/grad/david/code/,
issuing cd .. will move you to /users/grad/david/.

• Issuing cd - will move you to the previous directory you were working in.
Your shell remembers where you were, so if you were in /var/tmp/ and moved
to /users/grad/david/, issuing cd - will move you straight back to /var/tmp/.
This command obviously only works if you’ve move around at least once in a given
terminal session.

Now, let’s create a directory within the home directory called code. To do this, you can use theMake
Directory command, called mkdir.

sibu:~ david$ mkdir code

sibu:~ david$

There’s no confirmation that the command succeeded. We can check that the code directory was
created by changing the present working directory with the cd command.

sibu:~ david$ cd code

sibu:code david$

Issuing a subsequent pwd command to confirm our present working directory yields /users/grad/-
david/code - our home directory, with code appended to the end. You can also see from the prompt
in the example above that the present working directory changes from ∼ to code.

Change Back
Now issue the command to change back to your home directory. What command do you
enter?

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Root_directory
https://en.wikipedia.org/wiki/Root_directory

A Crash Course in UNIX-based Commands 88

From your home directory, let’s now try out another command to see what files and directories
exist. This new command is called ls, shorthand for list. Issuing ls in your home directory will
yield something similar to the following.

sibu:~ david$ ls

code

This shows us that there’s something present our home directory called code, as we would expect.
We can obtain more detailed information by adding a l switch to the end of the ls command - with
l standing for list.

sibu:~ david$ ls -l

drwxr-xr-x 2 david grad 68 2 Apr 11:07 code

This provides us with additional information, such as the modification date (2 Apr 11:07), who the
file belongs to (user david of group grad), the size of the entry (68 bytes), and the file permissions
(drwxr-xr-x). While we don’t go into file permissions here, the key thing to note is the d at the start
of the string which denotes the entry is a directory. If we then add some files to our home directory
and reissue the ls -l command, we then can observe differences in the way files are displayed as
opposed to directories.

sibu:~ david$ ls -l

drwxr-xr-x 2 david grad 68 2 Apr 11:07 code

-rw-r--r--@ 1 david grad 303844 1 Apr 16:16 document.pdf

-rw-r--r-- 1 david grad 14 2 Apr 11:14 readme.md

One final useful switch to the ls command is the a switch, which displays all files and directories.
This is useful because some directories and files can be hidden by the operating system to keep things
looking tidy. Issuing the command yields more files and directories!

sibu:~ david$ ls -la

-rw-r--r-- 1 david grad 463 20 Feb 19:58 .profile

drwxr-xr-x 16 david grad 544 25 Mar 11:39 .virtualenvs

drwxr-xr-x 2 david grad 68 2 Apr 11:07 code

-rw-r--r--@ 1 david grad 303844 1 Apr 16:16 document.pdf

-rw-r--r-- 1 david grad 14 2 Apr 11:14 readme.md

This command shows a hidden directory .virtualenvs and a hidden file .profile. Note that hidden
files on a UNIX based computer (or derivative) start with a period (.). There’s no special hidden file
attribute you can apply, unlike on Windows computers.

www.tangowithdjango.com

A Crash Course in UNIX-based Commands 89

Combining ls Switches
You may have noticed that we combined the l and a switches in the above ls example to
force the command to output a list displaying all hidden files. This is a valid command -
and there are even more switches you can use to customise the output of ls.

Creating files is also easy to do, straight from the terminal. The touch command creates a new, blank
file. If we wish to create a file called new.txt, issue touch new.txt. If we then list our directory, we
then see the file added.

sibu:~ david$ ls -l

drwxr-xr-x 2 david grad 68 2 Apr 11:07 code

-rw-r--r--@ 1 david grad 303844 1 Apr 16:16 document.pdf

-rw-r--r-- 1 david grad 0 2 Apr 11:35 new.txt

-rw-r--r-- 1 david grad 14 2 Apr 11:14 readme.md

Note the filesize of new.txt - it is zero bytes, indicating an empty file. We can start editing the
file using one of the many available text editors that are available for use directly from a terminal,
such as nano or vi. While we don’t cover how to use these editors here, you can have a look online
for a simple how-to tutorial. We suggest starting with nano - while there are not as many features
available compared to other editors, using nano is much simpler.

10.2 Core Commands

In the short tutorial above, you’ve covered a few of the core commands such as pwd, ls and cd. There
are however a few more standard UNIX commands that you should familiarise yourself with before
you start working for real. These are listed below for your reference, with most of them focusing
upon file management. The list comes with an explanation of each, and an example of how to use
them.

• pwd: As explained previously, this command displays your present working directory to the
terminal. The full path of where you are presently is displayed.

• ls: Displays a list of files in the current working directory to the terminal.
• cd: In conjunction with a path, allows you to change your present working directory. For
example, the command cd /users/grad/david/ changes the current working directory to
/users/grad/david/. You can also move up a directory level without having to provide the
absolute path by using two dots, e.g. cd ...

• cp: Copies files and/or directories. You must provide the source and the target. For example,
to make a copy of the file input.py in the same directory, you could issue the command cp

input.py input_backup.py.

www.tangowithdjango.com

http://man7.org/linux/man-pages/man1/ls.1.html
http://www.nano-editor.org/
http://en.wikipedia.org/wiki/Vi
http://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
http://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
http://www.uvsc.edu/disted/decourses/dgm/2120/IN/steinja/lessons/06/06_04.html

A Crash Course in UNIX-based Commands 90

• mv: Moves files/directories. Like cp, you must provide the source and target. This command
is also used to rename files. For example, to rename numbers.txt to letters.txt, issue
the command mv numbers.txt letters.txt. To move a file to a different directory, you
would supply either an absolute or relative path as part of the target - like mv numbers.txt

/home/david/numbers.txt.
• mkdir: Creates a directory in your current working directory. You need to supply a name
for the new directory after the mkdir command. For example, if your current working
directory was /home/david/ and you ran mkdir music, you would then have a directory
/home/david/music/. You will need to then cd into the newly created directory to access
it.

• rm: Shorthand for remove, this command removes or deletes filesfrom your filesystem. You
must supply the filename(s) you wish to remove. Upon issuing a rm command, you will be
prompted if you wish to delete the file(s) selected. You can also remove directories using the
recursive switch. Be careful with this command - recovering deleted files is very difficult, if
not impossible!

• rmdir: An alternative command to remove directories from your filesystem. Provide a
directory that you wish to remove. Again, be careful: you will not be prompted to confirm
your intentions.

• sudo: A program which allows you to run commands with the security privileges of another
user. Typically, the program is used to run other programs as root - the superuser of any
UNIX-based or UNIX-derived operating system.

There’s More!
This is only a brief list of commands. Check out Ubuntu’s documentation on Using the
Terminal for a more detailed overview, or the Cheat Sheet by FOSSwire for a quick, handy
reference guide. Like anything else, the more you practice, the more comfortable you will
feel working with the terminal.

www.tangowithdjango.com

http://www.computerhope.com/issues/ch000798.htm
http://www.computerhope.com/issues/ch000798.htm
http://en.wikipedia.org/wiki/Superuser
https://help.ubuntu.com/community/UsingTheTerminal
https://help.ubuntu.com/community/UsingTheTerminal
http://fosswire.com/post/2007/08/unixlinux-command-cheat-sheet/

Virtual Environments 91

11. Virtual Environments
Virtual environments allow multiple installations of Python and their relevant packages to exist in
harmony. This is the generally accepted approach to configuring a Python setup nowadays.

They are pretty easy to setup. Assuming you have pip installed, you can install the following
packages:

$ pip install virtualenv

$ pip install virtualenvwrapper

The first package provides you with the infrastructure to create a virtual environment. See a non-
magical introduction to Pip and Virtualenv for Python Beginners by Jamie Matthews for details
about using virtualenv. However, using just virtualenv alone is rather complex. The second package
provides a wrapper to the functionality in the virtualenv package and makes life a lot easier. The
wrapper provides a series of extensions by Doug Hellman to the original virtualenv tool, making
it easier for us to create, delete and use virtual environments.

If you are using a linux/unix based OS, then to use the wrapper you need to call the following shell
script from your command line:

$ source virtualenvwrapper.sh

It is a good idea to add this to your bash/profile script. So you dont have to run it each and every
time you want to use virtual environments. However, if you are using windows, then install the
virtualenvwrapper-win package:

$ pip install virtualenvwrapper-win

Now you should be all set to create a virtual environment:

$ mkvirtualenv rango

You can list the virtual environments created with lsvirtualenv, and you can activate a virtual
environment as follows:

www.tangowithdjango.com

http://dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
http://dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
http://doughellmann.com/
https://pypi.python.org/pypi/virtualenvwrapper-win

Virtual Environments 92

$ workon rango

(rango)$

Your prompt with change and the current virtual environment will be displayed, i.e. rango. Now
within this environment you will be able to install all the packages you like, without interferring
with your standard or other environments. Try pip list to see you dont have Django or Pillow
installed in your virtual environment. You can now install them with pip so that they exist in your
virtual environment.

In our chapter on deployment, we will go through a similar process when deploying your application
to PythonAnywhere.

www.tangowithdjango.com

https://www.pythonanywhere.com/?affiliate_id=000116e3

A Git Crash Course 93

12. A Git Crash Course
We strongly recommend that you spend some time familiarising yourself with a version control
system for your application’s codebase. This chapter provides you with a crash course in how to
use Git, one of the many version control systems available. Originally developed by Linus Torvalds,
Git is today one of the most popular version control systems in use, and is used by open-source and
closed-source projects alike.

This tutorial demonstrates at a high level how Git works, explains the basic commands that you
can use, and provides an explanation of Git’s workflow. By the end of this chapter, you’ll be able to
make contributions to a Git repository, enabling you to work solo, or in a team.

12.1 Why Use Version Control?

As your software engineering skills develop, you will find that you are able to plan and implement
solutions to ever more complex problems. As a rule of thumb, the larger the problem specification,
the more code you have to write. The more code you write, the greater the emphasis you should put
on software engineering practices. Such practices include the use of design patterns and the DRY
(Don’t Repeat Yourself) principle.

Think about your experiences with programming thus far. Have you ever found yourself in any of
these scenarios?

• Made a mistake to code, realised it was a mistake and wanted to go back?
• Lost code (through a faulty drive), or had a backup that was too old?
• Had to maintain multiple versions of a product (perhaps for different organisations)?
• Wanted to see the difference between two (or more) versions of your codebase?
• Wanted to show that a particular change broke of fixed a piece of code?
• Wanted to submit a change (patch) to someone else’s code?
• Wanted to see how much work is being done (where it was done, when it was done, or who
did it)?

Using a version control system makes your life easier in all of the above cases. While using version
control systems at the beginning may seem like a hassle it will pay off later - so it’s good to get into
the habit now!

We missed one final (and important) argument for using version control. With ever more complex
problems to solve, your software projects will undoubtedly contain a large number of files containing
source code. It’ll also be likely that you aren’t working alone on the project; your project will probably
have more than one contributor. In this scenario, it can become difficult to avoid conflicts when
working on files.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Version_control
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities#Popularity

A Git Crash Course 94

12.2 How Git Works

Essentially, Git comprises of four separate storage locations: your workspace, the local index, the
local repository and the remote repository. As the name may suggest, the remote repository is
stored on some remote server, and is the only location stored on a computer other than your own.
This means that there are two copies of the repository - your local copy, and the remote copy. Having
two copies is one of the main selling points of Git over other version control systems. You can make
changes to your local repository when youmay not have Internet access, and then apply any changes
to the remote repository at a later stage. Only once changes are made to the remote repository can
other contributors see your changes.

What is a Repository?
We keep repeating the word repository, but what do we actually mean by that? When
considering version control, a repository is a data structure which contains metadata (a set
of data that describes other data, hence meta) concerning the files which you are storing
within the version control system. The kind of metadata that is stored can include aspects
such as the historical changes that have taken place within a given file, so that you have a
record of all changes that take place.

If you want to learn more about the metadata stored by Git, there is a technical tutorial
available for you to read through.

For now though, let’s provide an overview of each of the different aspects of the Git system. We’ll
recap some of the things we’ve already mentioned just to make sure it makes sense to you.

• As already explained, the remote repository is the copy of your project’s repository stored
on some remote server. This is particularly important for Git projects that have more than one
contributor - you require a central place to store all the work that your teammembers produce.
You could set up a Git server on a computer with Internet access and a properly configured
firewall (check out this Git server tutorial, for example), or simply use one of many services
providing free Git repositories. One of themost widely used services available today isGitHub.
In fact, this book has a Git repository on GitHub!

• The local repository is a copy of the remote repository stored on your computer (locally).
This is the repository to which you make all your additions, changes and deletions. When
you reach a particular milestone, you can then push all your local changes to the remote
repository. From there, you can instruct your team members to retrieve your changes. This
concept is known as pulling from the remote repository. We’ll subsequently explain pushing
and pulling in a bit more detail.

• The local index is technically part of the local repository. The local index stores a list of files
that you want to be managed with version control. This is explained in more detail later in
this chapter. You can have a look here to see a discussion on what exactly a Git index contains.

www.tangowithdjango.com

http://www.sbf5.com/~cduan/technical/git/git-1.shtml
http://www.sbf5.com/~cduan/technical/git/git-1.shtml
http://www.seifeet.com/2012/11/centos-63-configuring-git-server.html
https://github.com/
https://github.com/leifos/tango_with_django_19
http://stackoverflow.com/questions/4084921/what-does-the-git-index-exactly-contains

A Git Crash Course 95

• The final aspect of Git is your workspace. Think of this folder or directory as the place
on your computer where you make changes to your version controlled files. From within
your workspace, you can add new files or modify or remove previously existing ones. From
there, you then instruct Git to update the repositories to reflect the changes you make in your
workspace. This is important - don’t modify code inside the local repository - you only ever
edit files in your workspace.

Next, we’ll be looking at how to get your Git workspace set up and ready to go. We’ll also discuss
the basic workflow you should use when using Git.

12.3 Setting up Git

We assume that you’ve got Git installed with the software to go. One easy way to test the software
out is to simply issue git to your terminal or Command Prompt. If you don’t see a command not

found error, you’re good to go. Otherwise, have a look at how to install Git to your system.

Using Git on Windows
Like Python, Git doesn’t come as part of a standard Windows installation. However,
Windows implementations of the version control system can be downloaded and installed.
You can download the official Windows Git client from the Git website. The installer
provides the git command line program, which we use in this crash course. You can also
download a program called TortoiseGit, a graphical extension to the Windows Explorer
shell. The program provides a really nice right-click Git context menu for files. This makes
version control really easy to use. You can download TortoiseGit for free. Although we do
not cover how to use TortoiseGit in this crash course, many tutorials exist online for it.
Check this tutorial if you are interested in using it.

We recommend however that you stick to the command line program. We’ll be using the
commands in this crash course. Furthermore, if you switch to a UNIX/Linux development
environment at a later stage, you’ll be glad you know the commands!

Setting up your Git workspace is a straightforward process. Once everything is set up, you will
begin to make sense of the directory structure that Git uses. Assume that you have signed up for
a new account on GitHub and created a new repository on the service for your project. With your
remote repository setup, follow these steps to get your local repository and workspace setup on your
computer. We’ll assume you will be working from your <workspace> directory.

1. Open a terminal and navigate to your home directory (e.g. $ cd ∼).
2. Clone the remote repository - or in other words, make a copy of it. Check out how to do this

below.
3. Navigate into the newly created directory. That’s your workspace in which you can add files

to be version controlled!

www.tangowithdjango.com

http://git-scm.com/download/win
https://code.google.com/p/tortoisegit/
http://robertgreiner.com/2010/02/getting-started-with-git-and-tortoisegit-on-windows/
https://github.com/
https://help.github.com/articles/create-a-repo

A Git Crash Course 96

How to Clone a Remote Repository

Cloning your repository is a straightforward process with the git clone command. Supplement
this command with the URL of your remote repository - and if required, authentication details, too.
The URL of your repository varies depending on the provider you use. If you are unsure of the URL
to enter, it may be worth querying it with your search engine or asking someone in the know.

For GitHub, try the following command, replacing the parts below as appropriate:

$ git clone https://<USER>:<PASS>@github.com/<OWNER>/<REPO_NAME>.git <workspace>

where you replace

• <USER> with your GitHub username;
• <PASS> with your GitHub password;
• <OWNER> with the username of the person who owns the repository;
• <REPO_NAME> with the name of your project’s repository; and
• <workspace>with the name for your workspace directory. This is optional; leaving this option
out will simply create a directory with the same name as the repository.

If all is successful, you’ll see some text like the example shown below.

$ git clone https://github.com/leifos/tango_with_django_19

Cloning into 'tango_with_django_19'...

remote: Counting objects: 18964, done.

remote: Total 18964 (delta 0), reused 0 (delta 0), pack-reused 18964

Receiving objects: 100% (18964/18964), 99.69 MiB | 3.51 MiB/s, done.

Resolving deltas: 100% (13400/13400), done.

Checking connectivity... done.

If the output lines end with done, everything should have worked. Check your filesystem to see if
the directory has been created.

Not using GitHub?
There are many websites that provide Git repositories - some free, some paid. While this
chapter uses GitHub, you are free to usewhatever service youwish. Other providers include
Atlassian Bitbucket and Unfuddle. You will of course have to change the URL from which
you clone your repository if you use a service other than GitHub.

www.tangowithdjango.com

https://bitbucket.org/
https://unfuddle.com/

A Git Crash Course 97

The Directory Structure

Once you have cloned your remote repository onto your local computer, navigate into the directory
with your terminal, Command Prompt or GUI file browser. If you have cloned an empty repository
the workspace directory should appear empty. This directory is therefore your blank workspace with
which you can begin to add your project’s files.

However, the directory isn’t blank at all! On closer inspection, you will notice a hidden directory
called .git. Stored within this directory are both the local repository and local index. Do not alter
the contents of the .git directory.Doing so could damage your Git setup and break version control
functionality. Your newly created workspace therefore actually contains within it the local repository
and index.

Final Tweaks

With your workspace setup, now would be a good time to make some final tweaks. Here, we discuss
two cool features you can try which could make your life (and your team members’) a little bit
easier.

When using your Git repository as part of a team, any changes you make will be associated with
the username you use to access your remote Git repository. However, you can also specify your full
name and e-mail address to be included with changes that are made by you on the remote repository.
Simply open a Command Prompt or terminal and navigate to your workspace. From there, issue two
commands: one to tell Git your full name, and the other to tell Git your e-mail address.

$ git config user.name "John Doe"

$ git config user.email "johndoe123@me.com"

Obviously, replace the example name and e-mail address with your own - unless your name actually
is John Doe.

Git also provides you with the capability to stop - or ignore - particular files from being added
to version control. For example, you may not wish a file containing unique keys to access web
services from being added to version control. If the file were to be added to the remote repository,
anyone could theoretically access the file by cloning the repository. With Git, files can be ignored
by including them in the .gitignore file, which resides in the root of <workspace>. When adding
files to version control, Git parses this file. If a file that is being added to version control is listed
within .gitignore, the file is ignored. Each line of .gitignore should be a separate file entry.

Check out the following example of a .gitignore file:

1 `config/api_keys.py`

2 `*.pyc`

www.tangowithdjango.com

A Git Crash Course 98

In this example file, there are two entries - one on each line. The first entry prompts Git to ignore
the file api_keys.py residing within the config directory of your repository. The second entry then
prompts Git to ignore all instance of files with a .pyc extension, or compiled Python files. This is a
really nice feature: you can use wildcards to make generic entries if you need to!

.gitignore - What else should I ignore?
There are many kinds of files you could safely ignore from being committed and pushed
to your Git repositories. Examples include temporary files, databases (that can easily
be recreated) and operating system-specific files. Operating system-specific files include
configurations for the appearance of the directory when viewed in a given file browser.
Windows computers create thumbs.db files, while OS X creates .DS_Store files.

When you create a new repository on GitHub, the service can offer to create a .gitignore
file based upon the languages you will use in your project, which can save you some time
setting everything up.

12.4 Basic Commands and Workflow

With your repository cloned and ready to go on your local computer, you’re ready to get to grips
with the Git workflow. This section shows you the basic Git workflow - and the associated Git
commands you can issue.

www.tangowithdjango.com

A Git Crash Course 99

We have provided a pictorial representation of the basic Git workflow as shown above. Match each
of the numbers in the black circles to the numbered descriptions below to read more about each
stage. Refer to this diagram whenever you’re unsure about the next step you should take - it’s
very useful!

1. Starting Off

Before you can start work on your project, you must prepare Git. If you haven’t yet sorted out your
project’s Git workspace, you’ll need to clone your repository to set it up.

If you’ve already cloned your repository, it’s good practice to get into the habit of updating your
local copy by using the git pull command. This pulls the latest changes from the remote repository
onto your computer. By doing this, you’ll be working from the same page as your team members.
This will reduce the possibility of conflicting versions of files, which really does make your life a bit
of a nightmare.

To perform a git pull, first navigate to your <workspace> directory within your Command Prompt
or terminal, then issue git pull. Check out the snippet below from a Bash terminal to see exactly
what you need to do, and what output you should expect to see.

www.tangowithdjango.com

A Git Crash Course 100

$ cd <workspace>

$ git pull

remote: Counting objects: 3, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (3/3), done.

From https://github.com/someuser/somerepository

86a0b3b..a7cec3d master -> origin/master

Updating 86a0b3b..a7cec3d

Fast-forward

README.md | 1 +

1 file changed, 1 insertion(+)

create mode 100644 README.md

This example shows that a README.md file has been updated or created from the latest pull.

Getting an Error?
If you receive fatal: Not a git repository (or any of the parent directories):

.git, you’re not in the correct directory. You need cd to your workspace directory - the
one in which you cloned your repository to. A majority of Git commands only work when
you’re in a Git repository.

Pull before you Push!
Always git pull on your local copy of your repository before you begin work. Always!

2. Doing Some Work!

Once your workspace has been cloned or updated with the latest changes, it’s time for you to get
some work done! Within your workspace directory, you can take existing files and modify them.
You can delete them too, or add new files to be version controlled.

When you modify your repository in any way, you need to keep Git up-to-date of any changes.
Doing so allows Git to update your local index. The list of files stored within the local index are then
used to perform your next commit, which we’ll be discussing in the next step. To keep Git informed,
there are several Git commands which let you update the local index. Three of the commands are
near-identical to those that were discussed in the Unix Crash Course (e.g. cp, mv), with the addition
of a git prefix.

www.tangowithdjango.com

A Git Crash Course 101

• The first command git add allows you to request Git to add a particular file to the next
commit for you. A common newcomer mistake is to assume that git add is used for adding
new files to your repository only - this is not the case. You must tell Git what modified files
you wish to commit, too. The command is invoked by typing git add <filename>, where
<filename> is the name of the file you wish to add to your next commit. Multiple files and
directories can be added with the command git add . - but be careful with this.

• git mv performs the same function as the Unix mv command - it moves files. The only
difference between the two is that git mv updates the local index for you before moving
the file. Specify the filename with the syntax git mv <current_filename> <new_filename>.
For example, with this command you can move files to a different directory within your
repository. This will be reflected in your next commit. The command is also used to rename
files - from the old filename to the new.

• git cp allows you to make a copy of a file or directory while adding references to the new
files into the local index for you. The syntax is the same as git mv above where the filename
or directory name is specified thus: git cp <current_filename> <copied_filename>.

• The command git rm adds a file or directory delete request into the local index. While the git
rm command does not delete the file straight away, the requested file or directory is removed
from your filesystem and the Git repository upon the next commit. The syntax is similar to the
git add command, where a filename can be specified thus: git rm <filename>. Note that you
can add a large number of requests to your local index in one go, rather than removing each
file manually. For example, git rm -rf media/ creates delete requests in your local index
for the media/ directory. The r switch enables Git to recursively remove each file within the
media/ directory, while f allows Git to forcibly remove the files. Check out the Wikipedia
page on the rm command for more information.

Lots of changes between commits can make things pretty confusing. You may easily forget what
files you’ve already instructed Git to remove, for example. Fortunately, you can run the git status

command to see a list of files which have been modified from your current working directory, but
haven’t been added to the local index for processing. Check out typical output from the command
below to get a taste of what you can see.

Working with .gitignore

If you have set up your .gitignore file correctly, you’ll notice that files matching those
specified within the .gitignore file are…ignored when you git add them. This is the
intended behaviour - these files are not supposed to be committed to version control! If
you however do need a file to be included that is in .gitignore, you can force Git to
include it if necessary with the git add -f <filename> command.

www.tangowithdjango.com

http://stackoverflow.com/a/16969786
http://en.wikipedia.org/wiki/Rm_(Unix)#Options
http://en.wikipedia.org/wiki/Rm_(Unix)#Options

A Git Crash Course 102

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: chapter-unix.md

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: chapter-git.md

From this example above, we can see that the file chapter-unix.md has been added to the latest
commit, and will therefore be updated in the next git push. The file chapter-git.md has been
updated, but git add hasn’t been run on the file, so the changes won’t be applied to the repository.

Checking Status
For further information on the git status command, check out the official Git documen-
tation.

3. Committing your Changes

We’vementioned committing several times in the previous step - but what does it mean? Committing
is when you save changes - which are listed in the local index - that you have made within your
workspace. The more often you commit, the greater the number of opportunities you’ll have to
revert back to an older version of your code if things go wrong. Make sure you commit often, but
don’t commit an incomplete or broken version of a particular module or function. There’s a lot of
discussion as to when the ideal time to commit is. Have a look at this Stack Overflow page for
the opinions of several developers. It does however make sense to commit only when everything is
working. If you find you need to roll back to a previous commit only to find nothing works, you
won’t be too happy.

To commit, you issue the git commit command. Any changes to existing files that you have indexed
will be saved to version control at this point. Additionally, any files that you’ve requested to be
copied, removed, moved or added to version control via the local index will be undertaken at this
point. When you commit, you are updating the HEAD of your local repository.

Commit Requirements
In order to successfully commit, you need to modify at least one file in your repository and
instruct Git to commit it, through the git add command. See the previous step for more
information on how to do this.

www.tangowithdjango.com

http://git-scm.com/docs/git-status
http://git-scm.com/docs/git-status
http://stackoverflow.com/questions/1480723/dvcs-how-often-and-when-to-commit-changes
http://stackoverflow.com/questions/2304087/what-is-git-head-exactly

A Git Crash Course 103

As part of a commit, it’s incredibly useful to your future self and others to explain why you
committed when you did. You can supply an optional message with your commit if you wish to
do so. Instead of simply issuing git commit, run the following amended command.

$ git commit -m "Updated helpers.py to include a Unicode conversion function, st\

r_to_unicode()."

From the example above, you can see that using the -m switch followed by a string provides you with
the opportunity to append a message to your commit. Be as explicit as you can, but don’t write too
much. People want to see at a glance what you did, and do not want to be bored or confused with a
long essay. At the same time, don’t be too vague. Simply specifying Updated helpers.py may tell
a developer what file you modified, but they will require further investigation to see exactly what
you changed.

Sensible Commits
Although frequent commits may be a good thing, you will want to ensure that what you
have written actuallyworks before you commit. This may sound silly, but it’s an incredibly
easy thing to not think about. To reiterate, committing code which doesn’t actually work
can be infuriating to your teammembers if they then rollback to a version of your project’s
codebase which is broken!

4. Synchronising your Repository

Important when Collaborating
Synchronising your local repository before making changes is crucial to ensure you
minimise the chance for conflicts occurring. Make sure you get into the habit of doing
a pull before you push.

After you’ve committed your local repository and committed your changes, you’re just about ready
to send your commit(s) to the remote repository by pushing your changes. However, what if someone
within your group pushes their changes before you do? This means your local repository will be out
of sync with the remote repository, meaning that any git push command that you issue will fail.

It’s therefore always a good idea to check whether changes have beenmade on the remote repository
before updating it. Running a git pull command will pull down any changes from the remote
repository, and attempt to place them within your local repository. If no changes have been made,
you’re clear to push your changes. If changes have been made and cannot be easily rectified, you’ll
need to do a little bit more work.

www.tangowithdjango.com

A Git Crash Course 104

In scenarios such as this, you have the option to merge changes from the remote repository.
After running the git pull command, a text editor will appear in which you can add a comment
explaining why the merge is necessary. Upon saving the text document, Git will merge the changes
from the remote repository to your local repository.

Editing Merge Logs
If you do see a text editor on your Mac or Linux installation, it’s probably the vi text
editor. If you’ve never used vi before, check out this helpful page containing a list of basic
commands on the Colorado State University Computer Science Department website. If
you don’t like vi, you can change the default text editor that Git calls upon. Windows
installations most likely will bring up Notepad.

5. Pushing your Commit(s)

Pushing is the phrase used by Git to describe the sending of any changes in your local repository
to the remote repository. This is the way in which your changes become available to your other
team members, who can then retrieve them by running the git pull command in their respective
local workspaces. The git push command isn’t invoked as often as committing - you require one or
more commits to perform a push. You could aim for one push per day, when a particular feature is
completed, or at the request of a team member who is after your updated code.

To push your changes, the simplest command to run is:

$ git push origin master

As explained on this Stack Overflow question and answer page this command instructs the git

push command to push your local master branch (where your changes are saved) to the origin (the
remote server from which you originally cloned). If you are using a more complex setup involving
branching and merging, alter master to the name of the branch you wish to push.

Important Push?
If your git push is particularly important, you can also alert other team members to the
fact they should really update their local repositories by pulling your changes. You can
do this through a pull request. Issue one after pushing your latest changes by invoking
the command git request-pull master, where master is your branch name (this is the
default value). If you are using a service such as GitHub, the web interface allows you to
generate requests without the need to enter the command. Check out the official GitHub
website’s tutorial for more information.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Vi
http://www.cs.colostate.edu/helpdocs/vi.html
http://www.cs.colostate.edu/helpdocs/vi.html
http://git-scm.com/book/en/Customizing-Git-Git-Configuration#Basic-Client-Configuration
http://stackoverflow.com/questions/7311995/what-is-git-push-origin-master-help-with-gits-refs-heads-and-remotes
http://git-scm.com/book/en/Git-Branching-Basic-Branching-and-Merging
https://help.github.com/articles/using-pull-requests
https://help.github.com/articles/using-pull-requests

A Git Crash Course 105

12.5 Recovering from Mistakes

This section presents a solution to a coder’s worst nightmare: what if you find that your code no
longer works? Perhaps a refactoring went terribly wrong, or something was changed by another
team member without discussion. Whatever the reason, using a form of version control always
gives you a last resort: rolling back to a previous commit. This section details how to do just that.
We follow the information given from this Stack Overflow question and answer page.

Changes may be Lost!
You should be aware that this guide will rollback your workspace to a previous iteration.
Any uncommitted changes that you have made will be lost, with a very slim chance of
recovery! Be wary. If you are having a problem with only one file, you could always view
the different versions of the files for comparison. Have a look at this Stack Overflow page
to see how to do that.

Rolling back your workspace to a previous commit involves two steps: determining which commit
to roll back to, an performing the rollback. To determine what commit to rollback to, you can make
use of the git log command. Issuing this command within your workspace directory will provide
a list of recent commits that you made, your name and the date at which you made the commit.
Additionally, the message that is stored with each commit is displayed. This is where it is highly
beneficial to supply commit messages that provide enough information to explain what is going on.
Check out the following output from a git log invocation below to see for yourself.

commit 88f41317640a2b62c2c63ca8d755feb9f17cf16e <- Commit hash

Author: John Doe <someaddress@domain.com> <- Author

Date: Mon Jul 8 19:56:21 2013 +0100 <- Date/time

Nearly finished initial version of the requirements chapter <- Message

commit f910b7d557bf09783b43647f02dd6519fa593b9f

Author: John Doe <someaddress@domain.com>

Date: Wed Jul 3 11:35:01 2013 +0100

Added in the Git figures to the requirements chapter.

commit c97bb329259ee392767b87cfe7750ce3712a8bdf

Author: John Doe <someaddress@domain.com>

Date: Tue Jul 2 10:45:29 2013 +0100

Added initial copy of Sphinx documentation and tutorial code.

commit 2952efa9a24dbf16a7f32679315473b66e3ae6ad

Author: John Doe <someaddress@domain.com>

Date: Mon Jul 1 03:56:53 2013 -0700

Initial commit

From this list, you can choose a commit to rollback to. For the selected commit, you must take the
commit hash - the long string of letters and numbers. To demonstrate, the top (or HEAD) commit hash

www.tangowithdjango.com

http://stackoverflow.com/questions/2007662/rollback-to-an-old-commit-using-git
http://stackoverflow.com/a/3338145

A Git Crash Course 106

in the example output above is 88f41317640a2b62c2c63ca8d755feb9f17cf16e. You can select this
in your terminal and copy it to your computer’s clipboard.

With your commit hash selected, you can now rollback your workspace to the previous revision.
You can do this with the git checkout command. The following example command would rollback
to the commit with hash 88f41317640a2b62c2c63ca8d755feb9f17cf16e.

$ git checkout 88f41317640a2b62c2c63ca8d755feb9f17cf16e .

Make sure that you run this command from the root of your workspace, and do not forget to include
the dot at the end of the command! The dot indicates that you want to apply the changes to the entire
workspace directory tree. After this has completed, you should then immediately commit with a
message indicating that you performed a rollback. Push your changes and alert your collaborators -
perhaps with a pull request. From there, you can start to recover from the mistake by putting your
head down and getting on with your project.

Exercises
If you haven’t undertaken what we’ve been discussing in this chapter already, you should
go through everything now to ensure your Git repository is ready to go. To try everything
out, you can create a new file README.md in the root of your <workspace> directory. The
file will be used by GitHub to provide information on your project’s GitHub homepage.

• Create the file, and write some introductory text to your project.
• Add the file to the local index upon completion of writing, and commit your changes.
• Push the new file to the remote repository and observe the changes on the GitHub
website.

Once you have completed these basic steps, you can then go back and edit the readme file
some more. Add, commit and push - and then try to revert to the initial version to see if it
all works as expected.

There’s More!
There are other more advanced features of Git that we have not covered in this chapter.
Examples include branching and merging, which are useful for projects with different
release versions, for example. There are many fantastic tutorials available online if you
are interested in taking you super-awesome version control skills a step further. For more
details about such features take a look at this tutorial on getting started with Git, the Git
Guide or Learning about Git Branching.

However, if you’re only using this chapter as a simple guide to getting to grips with Git,
everything that we’ve covered should be enough. Good luck!

www.tangowithdjango.com

https://help.github.com/articles/github-flavored-markdown
http://veerasundar.com/blog/2011/06/git-tutorial-getting-started/
http://rogerdudler.github.io/git-guide/
http://rogerdudler.github.io/git-guide/
http://pcottle.github.io/learnGitBranching/

	Table of Contents
	Overview
	Why Work with this Book?
	What You will Learn
	Technologies and Services
	Rango: Initial Design and Specification
	Summary

	Getting Ready to Tango
	Python
	The Python Package Manager
	Virtual Environments
	Integrated Development Environment
	Code Repository

	Django Basics
	Testing Your Setup
	Creating Your Django Project
	Creating a Django Application
	Creating a View
	Mapping URLs
	Basic Workflows

	Templates and Static Media
	Using Templates
	Serving Static Media
	Basic Workflow

	Models and Databases
	Rango's Requirements
	Telling Django about Your Database
	Creating Models
	Creating and Migrating the Database
	Django Models and the Shell
	Configuring the Admin Interface
	Creating a Population Script
	Workflow: Model Setup

	Automated Testing
	Running Tests
	Coverage Testing

	Deploying Your Project
	Creating a PythonAnywhere Account
	The PythonAnywhere Web Interface
	Creating a Virtual Environment
	Setting up Your Web Application
	Log Files

	Final Thoughts
	Setting up your System
	Installing the Software
	Virtual Environments
	Exercises

	A Crash Course in UNIX-based Commands
	Using the Terminal
	Core Commands

	Virtual Environments
	A Git Crash Course
	Why Use Version Control?
	How Git Works
	Setting up Git
	Basic Commands and Workflow
	Recovering from Mistakes

