
1

Fall Semester 2010

cs 341 Distributed Information Systems

Chapter 10: Message-oriented Middleware

H. Schuldt

Overview
10.1 Asynchronous procedure and method calls / service invocations

– Lose coupling of applications

10.2 Queued Transactions
– Decoupling of client/server transactionsp g /

HS 2010 10-2Distributed Information Systems (cs 341) – Message-oriented Middleware

2

10.1 Asynchronous Procedure and Method Calls
• So far, we have only considered synchronous procedure, method and/or

service calls:
– Client starts a (remote) call
– This is being processed; in the meanwhile, the client has to wait
– After return of the result, the execution of the client program continues

• Well suited for the tight integration of different components into distributed
applications / transactions

• Disadvantage of this approach
– Requires tight coupling of all components

• Client is blocked as long as a potentially long-running procedure or
method call (which might even be propagated further along several
layers) is being processed

– When a component fails, this might have severe consequences on the
overall system

• Several clients then have to wait for the execution of a method/
procedure/service

– Not suited at all for mobile components or for components which are
temporarily not available

HS 2010 10-3Distributed Information Systems (cs 341) – Message-oriented Middleware

Message-Oriented Middleware (MOM) …
• Asynchronous procedure, method and/or

service calls are based on the exchange of
messages between components
– These contain both data as well as the

specification of the procedure, method,
or service that is to be called

Client

execute A

Enqueue

or service that is to be called
• MOM: Message-Oriented Middleware

– Infrastructure for sending/receiving
messages

– MOM provides APIs, clients do not have
to care about the actual message
transfer

– Queue for temporarily storing messages

Application
Service

A
queue

Application
Service

Dequeue

Enqueue

execute B

p y g g
• Supports asynchronous

communication, even when senders
or receivers are temporarily not
available

• No direct connection required

B

DBMSA

DBA

queue

DBMSB

DBB

Dequeue

HS 2010 10-4Distributed Information Systems (cs 341) – Message-oriented Middleware

3

… Message-Oriented Middleware (MOM)
Different variants of MOM
• Transaction support

– Without transaction support: MOM does not provide any guarantee that
services that have been called asynchronously will actually by executed
(e.g., in the case of non-persistent queues, messages can get lost when

h)crashes occur)
– Queued Transactions: secure exchange of messages between persistent

queues of senders and receivers (see Section 10.2)

• Type of connection
– Point-to-point: sender addresses recipient explicitly (1:1 communication)
– Publish/Subscribe: sender does not know the recipient(s) of its messages

(1:n communication possible)

• Further aspects
– Load Balancing: choose a server (out of a server pool) to which a message

is delivered in order to be processed. This uses load information of all servers
– Priority: special treatment of „important“ messages by appropriate insertion

in a queue based on their priority (priority queues)

HS 2010 10-5Distributed Information Systems (cs 341) – Message-oriented Middleware

MOM: Types of Connection …
• Point-to-Point connection (PTP)

– Client sends message to a certain queue
– Queue is part of the runtime environment; it distributes the message

according to the address specification of the client (which means that the
sender needs to be aware of the receiver)

Clients Server

HS 2010 10-6Distributed Information Systems (cs 341) – Message-oriented Middleware

4

… MOM: Types of Connection
• Publish-and-Subscribe (Pub/Sub)

– Even stronger decoupling of senders and receivers
– Provides a powerful abstraction for building distributed applications
– Participants are decoupled

• in space: no need to be connected or even know each other (recipients p (p
are anonymous)

• in flow: no need to be synchronized
• in time: no need to be up at the same time

– Good solution for highly dynamic, decentralized systems
• Event-based communication between components
• Example: coordinate complex workflows on top of distributed components

– Applications: Stock information delivery, auctions, …
– Pub/sub comes with a variety of names, for instance: notification service,

data distribution service, continuous queries

HS 2010 10-7Distributed Information Systems (cs 341) – Message-oriented Middleware

Publish/Subscribe
• Basic architecture

– Core component: Publish/Subscribe middleware (broker)
– Receivers must register their interest beforehand with the broker

(subscription)
– The producer publishes messages or events. Those are automatically

delivered to the recipients (which have declared their interest beforehand)
– Thus, the sender does not take care of the addresses of all recipients,

i.e., the sender just publishes events but does not have to wait for answers

Publisher SubscriberPublish/Subscribe
Middleware

HS 2010 10-8Distributed Information Systems (cs 341) – Message-oriented Middleware

5

Basic Interaction Model

publishers
subscribers

“IBM”
IBM 3 11

notification
service IBM: +3 11 S1

S2

S3
“Swiss”
“Nestlé”

“Swiss”

IBM: +3,11

Swiss: -0,42

Nestlé: -1 89

S1: IBM
S2: Swiss
S3: Swiss
S3: Nestlé

IBM: +3,11

IBM: -0,01

Swiss: -0,42

Nestlé: -1,89

IBM: -0,01

Swiss: -0 42

subscription

Nestlé: -1,89

message/event notification

Swiss: -0,42

HS 2010 10-9Distributed Information Systems (cs 341) – Message-oriented Middleware

Variants of Publish/Subscribe Interactions (1)
• Pub/sub interactions differ in several ways
• The most obvious is in the way, messages or events are being described

and handled
– Topics-based
– Type-based
– Content-based

HS 2010 10-10Distributed Information Systems (cs 341) – Message-oriented Middleware

6

Topics-based Publish/Subscribe
• Basic requirement: fixed vocabulary for the description of messages/events
• Usually, this is done by using a (hierarchical) name space

– But: this renders the approach to be quite inflexible (limited expressiveness)
– Realization: per topic, there is either a dedicated channel, a queue or (in an

object-oriented implementation) a dedicated interface
Subscriber

Publisher

Subscriber

BS.politics

Publish/Subscribe
Broker

BS.sports.FCB
BS.sports

HS 2010 10-11Distributed Information Systems (cs 341) – Message-oriented Middleware

Type-based Publish/Subscribe
• Very similar to topics-based pub/sub

– Notifications (messages or events) are objects
– Type is the discriminating attribute, i.e., subscribers register for a

particular message or event type

HS 2010 10-12Distributed Information Systems (cs 341) – Message-oriented Middleware

7

Content-based Publish/Subscribe …
• Messages (events) are self-contained
• Subscriptions are generic queries SQL-like on the event schema

(“continuous queries”)
• More flexible and general approach since no common vocabulary is needed

anymore (but: semantic information, ontologies, etc.)
– Much more difficult to implement efficiently Subscriber

Publisher

Subscriber

confidential reports

Publish/Subscribe
Broker

Wikileaks made its initial
reputation by publishing
material as diverse as
documents about toxic
dumping in Africa, proto-
cols from Guantánamo
Bay, e-mail messages
from Sarah Palin’s per-
sonal account and 9/11
pager messages. When it
published tens of thou-
sands of confidential
reports …

p

whistleblowing

HS 2010 10-13Distributed Information Systems (cs 341) – Message-oriented Middleware

… Content-based Publish/Subscribe
General model:
• Subscriptions and events defined over an n-dimensional event space

– Example: StockName = “Swiss” ⁄ change < -3.5
• A subscription is a conjunction of constraints
• Depending on the range of an event dimension, subscriptions can even include p g g , p

range constraints

event subscriptiond2

d1

HS 2010 10-14Distributed Information Systems (cs 341) – Message-oriented Middleware

8

Variants of Publish/Subscribe Interactions (2)
Pub/sub systems also differ in terms of their topologies (architectures)

• Decentralized approach: Peer-to-peer (see Chapter 7)
– Message/event is published via broadcast mechanisms (channel = group;

exploited for group communication)
– Each potential receiver has to filter incoming messages and pick the ones

(s)he is interested in
– Large communication overhead

• Centralized broker
– Bus architecture, e.g., the CORBA Event Service
– Hub-and-Spoke: Publish/Subscribe broker & (persistent) queues

(’)(e.g., IBM’s MQSeries)

HS 2010 10-15Distributed Information Systems (cs 341) – Message-oriented Middleware

Example: Bus Architecture

Event Broker

App App

Event Broker

event event

...
...

• Subscriptions
• Queues
• Filters
• Log

App

App ORB App

App

Publishers Adapters SubscribersAdapters

g
• Business rules
• Routers
• Load-balancing

HS 2010 10-16Distributed Information Systems (cs 341) – Message-oriented Middleware

9

Variants of Publish/Subscribe Interactions (3)
Pub/sub systems differ in the way they filter information
• Globally, by the broker

– Allows to specify certain filter predicates when subscribing
(e.g., specify ranges)

– Broker checks these predicates before a message is forwarded to the
recipient

• Locally, by the recipients
– Messages are distributed (according to topic or content). Additional filters

have to be applied by the receiver
– This is automatically the case in a decentralized environment

Pub/sub systems differ in the way they distribute messages
h d b• Push: automatic distribution

• Pull: recipient has to explicitly check whether there are entries in the queue
(some kind of inbox) whether entries are there

HS 2010 10-17Distributed Information Systems (cs 341) – Message-oriented Middleware

Variants of Publish/Subscribe Interactions (4)
Pub/sub systems differ in the way they handle persistence of messages
• Non-persistent queues

– Events ware published and immediately forwarded to their subscribers.
If some subscribers are not online then, these messages will be lost
(for them)

– Only messages are sent which have been published after the subscription
• Persistent Queues

– Publish/Subscribe broker persistently stores events/messages
– Subscribers can even make use of archived information at the time they

submit their subscription
– In many products, persistence/non-persistence is a property of the message

(i.e., the publisher can determine, whether or not a message is to be stored
persistently)persistently)

Pub/sub systems differ in terms of transaction support
• Non-transactional transfer vs. queued transactions

HS 2010 10-18Distributed Information Systems (cs 341) – Message-oriented Middleware

10

Variants of Publish/Subscribe Interactions (5)
Pub/sub systems differ in terms of the numbers of recipients of messages
• Events/messages are made available to all subscribers

(according to topic or content)
– This is the general case in pub/sub interactions

• Events are sent only to one subscriber (although there could be much more)
– For instance when choosing a recipient based on its load

goal: load balancing (e.g., queues in TP-Monitors)

HS 2010 10-19Distributed Information Systems (cs 341) – Message-oriented Middleware

MOM: Meet the Players …
• MOM is not completely orthogonal to the infrastructure components we have

discussed before …
… but is –more or less well hidden– available in all systems

• TP-Monitors: usually support asynchronous calls
– Example: TP-Monitor : transactional Message Queues are dedicated

components of the system
• Possibility to invoke asynchronous calls: tpacall() and to collect the

results of asynchronous calls: tpgetrply()

• Internally, queues are used for load balancing purposes
(even for synchronous calls)

• CORBA: Event Service and Notification Service (both are part of the Common• CORBA: Event Service and Notification Service (both are part of the Common
Object Services defined in the CORBA standard)
– Support Publish/Subscribe interactions
– Asynchronous method calls, usually without persistent queues

HS 2010 10-20Distributed Information Systems (cs 341) – Message-oriented Middleware

11

… MOM: Meet the Players
• Object Transaction Monitors (OTMs): Messages are, together with „Transactions“

and „Objects“, central parts of all Object Transaction Monitors

– COM+: in addition to COM/DCOM and the MS Transaction Server (MTS),
also MS Message Queues (MSMQ) is part of the COM+ package

– EJB: support by Java Message Services (JMS) – Message-driven Beanspp y g () g

• They are linked with a queue or a topic

• Message-driven Beans have to have a method onMessage. There, the
reaction to incoming messages has to be coded (i.e., they wait for JMS
messages which activate the onMessage)

• Both point-to-point and publish/subscribe interactions between client and
server objects possible. The specification which of them is to be used and
the specification of a concrete queue or topic, respectively, will be done
during deployment

• Additionally: MOM functionality is implemented as separate software packages,
e.g., IBM MQSeries (together with workflow management support)

HS 2010 10-21Distributed Information Systems (cs 341) – Message-oriented Middleware

10.2 Queued Transactions

ServerClients

• Goal: messages or requests are persistently stored
(persistent Queues) and therefore survive system crashes(p Q) y

• Several clients can concurrently access the queue
– Enqueue: insertion into queue

• Analogously, several servers can concurrently access the queue
– Dequeue: take messages out of the queue

HS 2010 10-22Distributed Information Systems (cs 341) – Message-oriented Middleware

12

Guaranteed Execution …
• The persistent storage of transactions solely prohibits that messages will go

lost in case of crashes of the queue
• What happens when server failures occur while asynchronous requests are

being processed?
– In the synchronous case, this is not a problem since it leads to an abort

f th ll t tiof the overall transaction
– In the synchronous case, the enqueue or dequeue, respectively, of

requests has to be atomic. This means it has to be implemented by short
but nevertheless distributed transactions between client and queue and
between server and queue

• Guaranteed execution (exactly once) by implementing asynchronous client/server
calls as sequence of three independent transactions (Queued Transactions)
1. Client generated message, inserts it into the queue, and commits
2. Server dequeues messages, processes the request, enqueues

the reply to the reply queue, and commits
3. Client dequeues the reply from the reply queue and commits

HS 2010 10-23Distributed Information Systems (cs 341) – Message-oriented Middleware

… Guaranteed Execution

ServerClients

Request Queue

Reply Queue

• Transaction 1: Insert into Queue

• Transaction 2: Dequeue Request

• Transaction 3: Dequeue Response

HS 2010 10-24Distributed Information Systems (cs 341) – Message-oriented Middleware

13

Queued Transactions: Recovery
With queued transactions, client and server failures can be solved
• Server failures

– Abort of transaction 2 leaves request in the request queue
– Request can be processed by another server or by the same server

after it is recovered

• Client failures
– Start of the request processing can be checked any time via the contents

of the request queue and the reply queue
– Prerequisite: each request has a unique ID, the request queue maintains

the highest ID of accepted requests per client, IDmax(C)
– After recovery: client checks, whether the request is in one of both queues

(if this is the case then: wait in request queue or get reply out of reply(if this is the case, then: wait –in request queue– or get reply –out of reply
queue). Otherwise:

• If ID > IDmax(C): re-send request
• If ID § IDmax(C): wait, since request is currently being processed

HS 2010 10-25Distributed Information Systems (cs 341) – Message-oriented Middleware

Further Reading
[Bal 05] R. Baldoni: The Publish/Subscribe Communication Paradigm and its

Application to Mobile Systems. MINEMA Summer School, Klagenfurt,
Austria. July 2005

[BN 09] P. Bernstein, E. Newcomer: Principles of Transaction Processing,
2nd edition Morgan Kaufman Publishers, 2009g ,

HS 2010 10-26Distributed Information Systems (cs 341) – Message-oriented Middleware

