
A Fresh Graduate’s Guide to Software Development Tools and Technologies

Chapter

 Service Oriented

Architecture

CHAPTER AUTHORS

Goh Chun Lin

Koh Eng Tat Desmond

Naing Tayza Htoon

Nguyen Van Thuat

10

Software Development Tools and Technologies

2

Ch10: Service Oriented Architecture

3

CONTENTS

1 Introduction to Enterprise Systems .. 5

1.1 Current demands of enterprise systems ... 6

1.2 Technologies ... 6

1.3 Future trends of enterprise systems ... 6

2 Service Oriented Architecture ... 7

2.1 Challenges in enterprise systems ... 7

2.1.1 Isolating business logic ... 7

2.1.2 Interoperability .. 8

2.1.3 Software silos .. 8

2.1.4 Redundancies .. 8

2.2 Service oriented architecture defined .. 8

2.2.1 Motivating example .. 9

2.2.2 SOA to the rescue .. 10

2.2.3 Types of services ... 11

2.2.4 Service composition .. 11

2.3 Web Services .. 12

2.3.1 Hypertext transfer protocol [HTTP] .. 12

2.3.2 Extensible Markup Language [XML] ... 12

2.3.3 Web Services Description Language [WSDL] ... 12

2.3.4 SOAP ... 12

2.4 SOA benefits ... 13

2.4.1 Ability to build business applications faster and more easily.. 13

2.4.2 Easier maintenance / update... 13

2.4.3 Business agility and extensibility ... 13

2.4.4 Lower total cost of ownership... 13

3 SOA Implementation in Java EE 6 ... 14

3.1 JAX-WS and related specifications .. 14

3.2 XML binding in Java ... 14

3.3 Consuming Web Services using JAX-WS ... 16

3.4 Creating Web Services using JAX-WS... 17

4 SOA Implementation in .NET 4 Windows Communication Foundation (WCF) 20

4.1 Why WCF? ... 20

4.2 WCF concepts ... 21

4.2.1 Endpoint ... 21

4.2.2 Addresses ... 21

Software Development Tools and Technologies

4

4.2.3 Contracts .. 22

4.2.4 Binding .. 24

4.3 What else WCF supports? ... 24

4.3.1 Dynamic discovery ... 24

4.3.2 Multiple endpoints ... 26

4.3.3 Deployment options .. 26

5 Data Services .. 27

5.1 Benefits of Data as a Service .. 27

5.2 Open Data Protocol .. 28

5.2.1 OData Data Format... 28

5.2.2 Data querying ... 29

5.3 WCF data service .. 29

5.3.1 WCF metadata .. 29

5.3.2 WCF architecture .. 29

6 Conclusion ... 31

7 Bibliography ... 31

Ch10: Service Oriented Architecture

5

1 INTRODUCTION TO ENTERPRISE SYSTEMS

An example of enterprise systems is an Enterprise Resource Planning (ERP) system used in
many large organizations.

Given that enterprise systems are often large-scale, there are many critical requirements in a typical

enterprise system:

Availability

The system is supposed to be up and ready at any given point in time. Sometimes, there could be
a sudden increase in user demands. If the system cannot handle the load, it will result in a
system downtime and can impact the company’s business performance. Hence, availability of
enterprise system is critical because the system is supposed to be supporting 24x7 services.

Scalability

Globalization was driven by the development of technology and because of globalization,
technology marches forward. The way that businesses are handled and operated is changing too.
Hence, globalization has actually caused the rapid growth and dramatic changes in many
organizations. Enterprise systems thus must have a flexible architecture, which can reply to the
fast changes that often happen in the organizations. The systems need to have the scalability
feature in order to adopt the new changes happening in the organizations.

Performance

Organizations and enterprises invested heavily in their enterprise systems which are meant to
improve their business workflow, data control, client management as well as customer
responsiveness. The expenditure in enterprise systems grows and eventually turns into a
significant part of the total business cost. This has led to the fact that the shareholders and
managers care very much about the performance of enterprise systems used in their
organizations.

Security

Security is always one of the most important requirements in enterprise systems. The systems
have to be secured in order to ensure the continued system availability and data confidentiality.

Manageability

A large percentage of enterprise systems fail mostly because of their high complexity which
leads to the fact that the systems are not easy to be controlled and managed. In this case, the
Enterprise Systems Management (ESM) specialists have to monitor the system operations as
well as the performance in order to track down the source of problems and then pinpoint and
fix the problems in the underlying layers.

Data Integrity

One of the primary design considerations for the enterprise systems is data integrity. Data
integrity means that data in the systems should not be lost or corrupted.

Definition of Enterprise Systems (ES)

“Enterprise systems feature a set of integrated software modules and a central database that
enables data to be shared by many different business processes and functional areas
throughout the enterprise.”

- Essentials of Management Information (8th edition)

Software Development Tools and Technologies

6

Interoperability

Interoperability is the ability of enterprise system (or any general IT system) to use information
and functionality of another system. One of the examples will then be data exchange between
two systems. Interoperability is a key to building enterprise systems with mixed services. It
helps in achieving improved efficiency of the system operations. Hence, enterprise systems are
required to be interoperable so that they can collaborate with other systems.

1.1 Current demands of enterprise systems

Enterprise systems are important in today’s business world. For example, For example, ERP
applications support organizations in their day-to-day operations such as order management,
client management, finance, manufacturing, and logistics.

The IT systems used in organizations are required to adapt rapidly to the changing environment
in the organizations. As an efficient and effective solution to that, enterprise systems receive
high demands from the industry.

In addition, in the job market, there is an emerging engineering discipline known as Enterprise
System Engineering (ESE). The main focus of ESE is to apply the engineering principles and
methodologies to the design and management of the enterprise systems. Also, enterprise system
engineers are required when the entire system has high complexity due to its scale, some
uncontrollable interdependencies and other uncertainties. Other tasks that an enterprise
system engineer needs to perform will be, for example, infrastructure design, security design,
server consolidation as well as the deployment of the system. Hence, the understanding of
underlying architecture and platform available for building enterprise systems, which will be
introduced in the later part of this chapter, is critical. Thus, IT experts with related knowledge
and skill sets are what big organizations are always looking for.

1.2 Technologies

Two of the technologies commonly used for implementing enterprise systems are Java
Enterprise Edition (Java EE) and .NET. Hence, in the remaining sections, we will be focusing on
Java EE and .NET.

Java EE, currently in version 6, is an extension to Java Standard Edition (Java SE). It provides
additional APIs which are not available in Java SE. The APIs are mainly for the development of
Java enterprise applications.

In addition, .NET will also be used as the platform to illustrate the ideas of web services
implementation. There is an API from .NET which is known as Windows Communication
Foundation (WCF) will be the focus.

1.3 Future trends of enterprise systems

The development and maintenance of enterprise systems currently have several issues and
challenges. For example, enterprise systems are traditionally deployed on-premise because the
enterprise wants to have control over the whole system and data and those corporate data
should be stored internally. However, this requires the enterprise to either buy the necessary
hardware, such as servers, themselves or to pay the hosting service. This is usually costly and
the whole deployment process is not trivial as well.

Hence, in the recent years, more and more businesses, especially those who cannot afford big IT
infrastructure or hardware, have chosen virtualization and cloud as their solutions to have cost-
effective enterprise systems.

Virtualization is the creation of a virtual version of hardware, platforms, devices, and so on.
Because of the virtualization, utility computing is possible. Computer processing power can be
seen as a utility which the enterprises can pay only when they use it.

Ch10: Service Oriented Architecture

7

In order to reduce the costs of enterprise system development, startups and small businesses
also move their systems to the cloud. This actually allows them to have a shorter time and faster
speed on rolling out new services because they do not need to worry problems, such as
hardware maintenance, network resources scaling, which can now be easily configured on the
cloud. Also, since most of the enterprise data and resources are on the cloud, resource sharing is
much easier and more efficient as compared to the past when the data is stored internally.

2 SERVICE ORIENTED ARCHITECTURE

Most ES follows an architectural style called Service Oriented Architecture (SOA). For example,
several of the largest IT companies in the world such as IBM, Oracle, HP, SAP and Microsoft use
SOA in their ES solutions offered to clients.

2.1 Challenges in enterprise systems

First, let us look at some of the challenges SOA tries to overcome.

2.1.1 Isolating business logic

In building business applications for large organization, it is often complex and involves a huge
amount business logic. Business logic simply refers to business rules that are most likely
imposed by non-IT folks within the organizations. For instance, in a purchase order system, a
business rule might be that purchases that exceed a certain pre-determined amount need to be
manually approved by the finance manager before being dispatched down the line. To IT folks
building the purchase order system, not only they have to have to incorporate these business
rules, which can be thought of as ‘human aspect’ of how to do things, they also have to be
concerned about “computer logic”, things like “checking if the database connection is available”.

The biggest problem in programming is often it is very difficult to keep the business logic
separated from the so-called “computer logic” as mentioned above. What makes matter worse is
that these non-IT folks can change the business logic any time, without understanding how a
small change could result in possibly disproportionate amount of work required by the IT folks
to implement the change. In the next section, we will see that in Service Oriented Architecture,
implementing business changes logic is no big deal.

Separation of Concerns

“Separation of concerns and is a software engineering best practice that should be applied in the
design of all technology systems intended for business users. Unfortunately, this best practice
has been observed more in theory than in practice. If you discuss this issue with software
engineers, you may hear many excuses. The separation of concerns is often ignored simply
because it takes effort to abide by it, and the costs of ignoring it are all in the future — in other
words, too often, “quick and dirty” wins out over “slow and sure.” Creating a reusable
architecture takes discipline. And discipline inevitably takes more time than you’d ever expect
to establish itself. Management may need to be educated. The upfront costs of establishing and
requiring discipline pay manifold dividends over time.”

-Service Oriented Architecture for Dummies

Software Development Tools and Technologies

8

2.1.2 Interoperability

As we can see in the beginning of the section, just as interoperability is a requirement of an
enterprise system, it is also a challenge at the same time. The ideal scenario is that there is
homogeneity in the systems used across the organizations. Again that is simply hard or not even
possible. Even if it is, in the context of the business world, the company might acquire another
company that uses a totally different IT system altogether. The result is that additional work has
to be done to allow interoperability. This can yet introduce another problem associated with the
reluctance to migrate or upgrade existing system. Having invested effort and resources to allow
interoperability, migrating to a new system might pose challenges if it is not compatible with
existing system.

2.1.3 Software silos

In the physical world, a silo is a robust structure meant to hold and contain things to prevent
what is outside from getting in and what is inside from getting out. The problem is that many
applications and IT systems end up becoming such silos. The term usually refers to systems that
cannot communicate with other related third party systems. Information flow is usually vertical.
As the business expands or business requirements change, the end result is that there are a
cluster of siloed systems that cannot cooperate or work with one another.

2.1.4 Redundancies

A problem that is common to many large companies is that there are many similar yet slightly
different applications that are used throughout the organization. Each department usually
comes out with its own version of software components rather than coordinate with other
departments to see if component reuse is possible. The latter turns out to take too much effort
as such it usually involves chores such as going through rounds of inter-departmental meetings
to determine the common functionalities amongst the different systems and what or what not to
be included in the system.

While companies might have policies or guidelines for such scenarios, often when deadlines are
tight, or due to budget issues, it is often more convenient to build the application the
department needs rather than coordinate across divisions. The problem can surface again when
one company acquires another and realise that they too have similar applications with the
similar functionality.

Another issue with such redundancies is the increased effort and complexity to maintain such
applications. Any change in business policy will probably render these applications obsolete. All
updates will then have to be propagated through these instances of the application. Again in the
context of enterprise systems, where the problem is magnified, this translates to higher cost of
IT costs and inefficiencies, something that is not desirable.

2.2 Service oriented architecture defined

While there is no standard or official definition for SOA, we found that IBM’s definition of SOA
(given below) an adequate one in the context of this section:

Service Oriented Architecture (SOA) is a business-centric IT architectural approach that supports
integrating your business as linked, repeatable business tasks, or services.

It is important to note that SOA is not a product but is an architectural style.

Ch10: Service Oriented Architecture

9

2.2.1 Motivating example

Consider a catalogue application that is able to retrieve product information from a database.
This application might be used by a department that need to keep updated about the latest
products and pricing offered by the company. Furthermore, as it is a multinational organization,
the database might reside in a different country. Hence local currency conversion also needs to
be performed based on where the application is run. A typical design of such application is
shown in Figure 1.

Location
Product

Access

Currency

Converter

Real-time

Financial

Data

Database/

Catalog









Figure 1: Typical design of a catalogue application

This design has to deal with the following challenges:

Interoperability

The application has to get real-time financial data to perform local currency conversion as well
as interface with a database server to retrieve product information. As the two systems are
probably different, the developer has to take care of interfacing.

Redundancies

The interfacing component required might have already been developed by other divisions of
the company, probably even in other country. However, chances are that it will be unknown to
the current developer and the same work is duplicated. Another hurdle in sharing components
is that different departments across the organization might not be using similar technology in
developing their application and hence increased the difficulty in component reuse.

Isolating Business Logic

In the example of accessing the database, the developer needs to know the database schema,
what table to query, how to construct the SQL query etc., the usual chore that distracts the
developer from the real work of implementing the application and business logic. Consequently,
when the database schema changed, the application breaks and the data access component need
to be updated accordingly. The updated component will have to go through unit testing,
integration testing etc. before it is deployed. Again these chores are duplicated across the
organization. In general, the typical architecture of a non-SOA system will similar to Figure 2.

Software Development Tools and Technologies

10

Application Code

Business Objects

A
p

p
lic

at
io

n

Data /

Persistence

Figure 2: Typical architecture of a non-SOA system

2.2.2 SOA to the rescue

With SOA, the business logic is decomposed into well-defined and reusable services which will
be exposed for everyone to use. Now all the application has to do is to consume them. As such,
the architecture will be transformed into something similar to Figure 3. Now the application
code is reduced greatly. Furthermore, it is no longer needs to traverse complex objects
hierarchy and the developer no longer needs to understand details of domain-specific logic.

Application Code

Business Objects

A
p

p
lic

at
io

n

Data /

Persistence

Services

Figure 3: Improved architecture of system with SOA

SOA exposes business functionalities as services to be consumed by applications so that
developers have fewer things to worry about. The services are in fact a form of abstraction, and
we are familiar with the benefits that come with abstraction. For comparison, our application
introduced earlier might now have the following design shown in Figure 4 Figure 4if SOA is
adopted.

Application

Location
Product

Access

Currency

Converter

Figure 4: Improved design with SOA

Having introduced the notion of services, let us look at different types of services.

Ch10: Service Oriented Architecture

11

2.2.3 Types of services

There are several types of services used in SOA systems.

 Business services
 Entity services
 Functional services
 Utility services

Business services

Business service can be defined as the logical encapsulation of business functions. It has to be
relevant to the business of the organization is running. An easy way to determine whether a
service is a business service is to ask whether the service can be created without the
consultation of business managers. If not, the service isn’t probably a business service.

Another desirable feature of a business service is that it should have as little dependencies as
possible so that it can be reused easily throughout the organization. This reusability means that
there is consistency. In addition, any change in business policy can be propagated throughout
the organization much more easily.

While the concept of reusability might already be familiar in the world of software engineering,
in SOA the level of reuse is different. The concept of reusability in SOA refers to reusable high-
level business services rather than reusable low-level components.

In view of the above discussion, it is indeed by no means easy to identify appropriate business
services in a SOA. It involves both the IT and business departments to do that. Nevertheless, it is
an important step as defining business services is important to building a strategic SOA.

Business services are not the only services in SOA. A typical service model might include Entity
Services, Task/Functional Services and Utility/Process Services.

Entity services

An entity service usually represents business entities (e.g. Employee, Customer, Product,
Invoice etc.). Such entity service usually expose CRUD (create, read, update, delete) operations.

Functional services

Functional services do not represent business-related tasks or functions. Rather it usually can
be represented in a sequence diagram. In other words, it is usually a technology-oriented
service and not a business oriented one. Task services can be thought of as controller of
composition of services and hence its reusability is usually lower.

Utility services

Utility services offers common and reusable services that are usually not business centric. They
might include event logging, notifications exception handling etc.

2.2.4 Service composition

A key concept in SOA is service composition. This refers to putting together several different
services to create a new service. In that sense, services in an SOA environment can be thought of
as building blocks. Service composition can only be achieved if services have a narrowly defined
scope i.e. they do just ‘one thing’. Again this is related to the idea of reusability.

Software Development Tools and Technologies

12

2.3 Web Services

Web service is a realization of SOA. It is important to note that the SOA is an architectural model
that is independent of any technology platform and Web Services the most popular SOA
implementation. As the name implies, web services offers services over the web. This is not
surprising as the choice of the Internet it already connects many different systems from all over
the world. In this section, we will give a brief description to web services and introduce various
web service terminologies.

2.3.1 Hypertext transfer protocol [HTTP]

As mentioned earlier, HTTP is a widely accepted standard that is implemented in many systems
and operating systems. Hence it is able to address the issue of interoperability. By building web
services on HTTP, all the computers that are able connect to the internet can become potential
consumers of web services. Furthermore, by using the HTTPS protocol, web service
communication can be secured.

2.3.2 Extensible Markup Language [XML]

Having decided on the protocol to communicate over, we need to decide on the language used to
communicate. XML was chosen as it is a platform-independent language that can be understood
by different systems.

2.3.3 Web Services Description Language [WSDL]

In programming languages, in order to call a function, one needs to know the method signature.
In web services, WSDL is analogous to such method signatures. A WSDL document is written in
XML, so any web service consumer can understand it and invoke the service. WSDL typically
includes where the service is located, the functions/methods available for invocation,
parameters and its data type as well as the format of the response.

The XML above shows a possible excerpt of a WSDL document which defines a ConversionRate
method that requires two parameters, namely FromCurrency and ToCurrency of type Currency.

2.3.4 SOAP

The next step after knowing the method signature is to invoke it. In web services, it is
accomplished through SOAP messages. SOAP traditionally stands for Simple Object Access
Protocol. However, from SOAP 1.2 onwards, the acronym is dropped as the name does not really
represent what SOAP is. A SOAP message again is written in XML and sent to the web service
over HTTP for web service consumption. The web service consumer or client will be able to
construct the correct SOAP messages solely based on the WSDL document. Similarly, the
response will also be in SOAP format. An excerpt of a SOAP message is given below.

<s:element name="ConversionRate">...

 <s:element name="FromCurrency" type="tns:Currency" />

 <s:element name="ToCurrency" type="tns:Currency" />

</s:element>

Ch10: Service Oriented Architecture

13

2.4 SOA benefits

Having a brief understanding on the basics of an SOA approach of building enterprise system,
we will now list out some of the advantages of SOA.

2.4.1 Ability to build business applications faster and more easily

This is based on the assumption that the business services have been identified correctly. As
such all business applications have to do is just to consume the correct services. The application
code will be lesser, and the developer has fewer things to know and worry about as many of the
plumbing now happens behind the scenes. Lesser code also means easier testing, and the
application development process gets shortened.

2.4.2 Easier maintenance / update

This benefit follows easily from the previous one. Less code is easier to maintain. Moreover, as
consumers of web services, it will not be affected by changes in implementation of web services.
Say for example if a new database is added to the data, the web service will just include
information from the new database in its response without the developer having to do a single
thing. At a higher level, if a business process is modified, the equivalent business service can be
recomposed to adapt to the changes. In addition, the change will be consistent throughout the
organization.

2.4.3 Business agility and extensibility

Bearing in mind in an enterprise context, business environment is rapidly changing. How fast an
enterprise system is able to react to these changes has important consequences to an
organization. Service composition plays an important part in this aspect. The agility of
enterprise system is demonstrated say when the requirements of a composite service changes,
all that needs to be done is to replace relevant constituent services in order to update the
composite service. Extensibility comes in when a totally new business service needs to be
implemented, all that needs to be done is to assemble relevant services that already exists.

2.4.4 Lower total cost of ownership

All the benefits above translate to lower cost of ownership of IT infrastructure. This logically
follows from reusability of services. Not only the service is reused, the IT infrastructure
supporting these services is also being reused. Another cost savings comes from the fact that the
shorter time-to-market of business applications also translates to better returns on the
investment of IT infrastructure.

<soap:Body>

 <ConversionRate xmlns="http://www.webserviceX.NET/">

 <FromCurrency>USD</FromCurrency>

 <ToCurrency>SGD</ToCurrency>

 </ConversionRate>

</soap:Body>

Software Development Tools and Technologies

14

3 SOA IMPLEMENTATION IN JAVA EE 6

In section 2, we have discussed the principle of Service Oriented Architecture and the benefits it
brings forward to the enterprise environment as well as the role web services play in the
architecture. In this section, we will cover how web services can be realized using Java, one of
the most widely-used enterprise technologies. There are several web services implementation
in Java technology such as Axis2 and CFX from Apache, Spring Web Services, JBossWS and
Glassfish Metro. However, we will only discuss Metro, a reference implementation of Java EE
web services technologies.

Metro web services stack is fully supported in Glassfish server which is also a reference
implementation of Java EE specifications. It mainly consists of two components: Java API for
XML-based Web Services (JAX-WS) and Java API for RESTful Web Services (JAX-RS). Our
emphasis will be on the former rather than the latter whose data exchange could be JSON, XML
or any other data exchange protocol and whose operations are mainly in the form of HTTP
methods such as GET, PUT, POST, or DELETE.

3.1 JAX-WS and related specifications

JAX-WS is designed specifically for SOAP-based web services in which data exchange is in the
form of XML. Partial implementation of the stack can also be found in Java Standard Edition
(Java SE) with the utilities to consume and deploy web services. Other important specifications
for web services are also described below. All of these APIs provide necessary tools for the
developers to consume and publish web services without worrying about the technologies
underneath – SOAP, XML, HTTP and WSDL.

Java API for XML-based Web Services [JAX-WS] JAX-WS is a set of APIs that enables us to
consume and create web services using Java programming language. It deals with all the
processing required to send and receive SOAP messages either at the consumer or at the
provider end by hiding the complexities of the underlying protocols. It also handles generating
WSDL and parsing SOAP messages at the lower level leaving consumers and providers focus
more on business logic as Java classes at the higher level.

Java API for XML bindings [JAXB] This API is responsible for mapping between XML and Java
objects/classes. It is closely coupled with JAX-WS though it can be used independently to handle
XML. As web services exchange XML messages between service providers and consumers via
SOAP requests and responses, the API ensures that these XML documents are correctly mapped
to Java objects/classes so that developers can make use of them without having to worry about
the underlying XML.

Web Services meta-data These are the specifications that simplify the development of web
services in Java. Through the annotations, they handle mapping between WSDL and Java classes
in the definition and development of web services.

SOAP with attachments API for Java [SAAJ] SAAJ provides a standard way to send XML
documents using Java. As the name suggests, it enables us to send attachments as part of SOAP
messages according to the specifications. Besides, it is an API for handling these messages at a
much lower level. Typically, we can use the API to create the messages without having to deal
with the underlying XML directly and also extract information from response messages even
though it requires more effort from the part of the developer.

3.2 XML binding in Java

Web services are described by documents in WSDL which is written in XML and data is
exchanged between service consumers and providers via SOAP messages which are also in XML.
However, we deal with Java classes and objects at higher level and thus web services require

Ch10: Service Oriented Architecture

15

binding or mapping between these two different models and this is what JAXB provides for us.
Its operations can be divided into two different types.

First, JAXB facilitates conversion between XML schemas, described by the standard XML Schema
Definitions (XSD), and Java classes. For example, web services are written in Java classes that
need to be described in WSDL documents. In this case, the XML binding API is responsible for
generating XSD schema from the Java classes. On the other hand, service consumers need to
consume to web services by subscribing to WSDL documents. If service consumers are Java
clients, it produces Java interfaces and classes from WSDL documents that can readily be used in
our applications. The figure below sums up this process that often happens during development.

Figure 5: XML binding in Java

JAXB is also involved in conversion between XML documents and Java objects and vice versa
during runtime. At some point in time, either at service consumer or service provider end, it is
sometimes necessary to pass Java objects as we often do in normal Java applications. In this case,
the Java object at one end is transformed into the corresponding XML document by the API to be
carried over via SOAP messages and when it reaches the other end, it is converted back to the
Java object which can be used as a normal Java object. This whole process is called marshalling
and un-marshalling XML documents.

Figure 6: Marshalling and un-marshalling XML document from/to Java objects

Following is the table with some of the default bindings. You can override the default mappings
by a custom binding declaration which is beyond the scope of this section.

Software Development Tools and Technologies

16

XML Schema Type Java Data Type

xsd:string java.lang.String

xsd:positiveInteger java.math.BigInteger

xsd:int int

xsd:long long

xsd:short short

xsd:decimal java.math.BigDecimal

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

For example, the following class in Java is converted into a corresponding XML schema.

3.3 Consuming Web Services using JAX-WS

Consuming web services in Java is relatively straightforward. If you are using IDEs like
NetBeans and Eclipse, you just need to add the web service you want to subscribe to your
project. This is as easy as entering the URL of the WSDL document in appropriate settings. The
IDE will automatically generate the proxy classes – called artifacts which are client-support

public class Currency {

 private String currencyCode;

 private String country;

 private double conversionRateWithSGD;

 public Currency() {}

 public Currency(StringcurrencyCode, String country, double
conversionRateWithSGD) {

 setCurrencyCode(currencyCode);

 setCountry(country);

 setConversionRateWithSGD(conversionRateWithSGD);

 }

 ... getter and setter methods here ...

}

Ch10: Service Oriented Architecture

17

code – in a package or folder and all you have to do is to make use of them in your application
logic. NetBeans, in particular, generates code templates also via simple drag-and-drop operation
by the user.

Yet behind the scenes, these IDEs are using utility called "wsimport" which is shipped together
with Java SE. Following is the usage of wsimport utility.

 C:\>wsimport –p somepackage http://www.somewebservice.com/service?wsdl

Running wsimport in command-line (Windows) assuming that your machine already has a JDK,
you will see that in your current directory a folder by the name of somepackage is created that
contains the artifacts or proxy classes with the package structure somepackage. We suggest you
use the IDE approach to accelerate your development.

3.4 Creating Web Services using JAX-WS

Before going to the discussion of creating and publishing web services, let's look at structure of

a typical WSDL document.

Element Function

types Type defined using XML schema

message Messages used by web service

portType /

interface

Operations supported by web

service

binding Protocols used by web service

<definitions>

 <types> … </types>

 <message> … </message>

 <message> … </message>

 .

 <portType> … </portType>

 <binding> … </binding>

 <service> … </service>

</definitions>

<xs:complexType name="currency">

 <xs:sequence>

 <xs:element name="conversionRateWithSGD" type="xs:double"></xs:element>

 <xs:element name="country" type="xs:string" minOccurs="0"></xs:element>

 <xs:element name="currencyCode" type="xs:string" minOccurs="0"></xs:element>

 </xs:sequence>

</xs:complexType>

http://www.somewebservice.com/service?wsdl

Software Development Tools and Technologies

18

service Collection of endpoints

(combination of binding and URI)

As you can see, a WSDL document is a representation of a web service that has a set of
operations governed by the bindings (in our case, SOAP) and that is accessible at an endpoint
represented by an URI. JAX-WS uses annotations to turn a normal Java class into a web service
which is to be published with the help of an endpoint class.

Service endpoints

To turn a regular Java class into a web service, all we need is the annotation: @webservice. Yet
there are a few other requirements. For a class to be a web service, it

 Must not be final or abstract.
 Must be defined as public.
 Must have a default public constructor.
 Must not define the finalize() method.
 Must be a stateless object and should not have client-specific states across method calls.

Once your service is compiled, it cannot publish itself at an endpoint. It needs another class
called endpoint publisher class as shown below.

The endpoint publisher class needs two parameters. The first is the publication URL at which
your web service can be accessed and the second is an instance of your service class. Here, when
you run the endpoint class, it publishes an instance of SomeService at your local machine. You
can test your deployed service by checking its WSDL document at
http://127.0.0.1:9999/someservice?wsdl.

Annotations

You can use more annotations to customize your web service. For example, web service
operations follow Java naming conventions by default but you can change them as shown below.

import javax.xml.ws.Endpoint;

public class SomePublisher {

 public static void main(String [] args) {

 Endpoint.publish("http://127.0.0.1:9999/someservice", new SomeService());

 }

}

@WebService (name="AnnotatedCCServiceDocument",

serviceName="RevisedCCServiceDocument")

public class CCServiceDocumentAnnotated {

 private HashMap<String, Currency> currencies

= new HashMap<String, Currency>();

 public CCServiceDocumentAnnotated(){

 currencies.put("SGD", new Currency("SGD", "Singapore", 1));

 currencies.put("USD", new Currency("USD", "United States", 1.28));

 }

Ch10: Service Oriented Architecture

19

The annotation @WebMethod mainly used to rename the web service operations. It has
another use as well. All the public methods of a service class are described in the WSDL
document by default. You can use @WebMethod(exclude = true) annotation to prevent this
from happening. Other useful annotations are @WebResult that is used to change the return
result of an operation, @WebParam that is used for changing the names of parameters,
@OneWay that is used for indicating that the operation has no return values and hence the
invocation can be optimized.

Deployment in servers

The endpoint publisher approach described earlier is mainly useful for development and light
production. In real-world scenarios, web services are deployed in Java EE servers such as
Glassfish, WebLogic and WebSphere. There are two modes of deployment. The first is to
package the web service in a web archive (.war) file and deploy it in a servlet container and let a
servlet run as an endpoint. The second is to package the web service inside an enterprise
archive file (.ear) and deployed it an EJB container (EJB endpoint). You can use IDEs such as
NetBeans to directly deploy it in GlassFish server. Assuming your Glassfish server is bundled
with NetBeans, the approach requires just a few clicks. You can also use tools like ant and
maven for deployment but discussion of these tools together with EJB way is beyond the scope
of this section. In general, developing and experimenting with web services using servers have
the following benefits:

 Production-level experience – you may rather want to test your web services in servers
that will give you some measures.

 Inspection of WSDL plus testing WebMethods – it is as simple as clicking on the options
in your server's console.

 Interface with other enterprise components such as EJBs – EJBs are mainly for business
logic and you can develop a servlet-endpoint web service that makes use of EJBs.

 Administrative support such as logging – many Java EE servers provides features such
as dumping HTTP traffic which you can inspect and look for SOAP messages exchanged
between your web service and consumers.

 Publishing web services as part of web applications

 @WebMethod(operationName="conversion_rate")

 public double getConversionRate(@WebParam(name="from")

Currency from, @WebParam(name="to") Currency to){

 return from.getConversionRateWithSGD()/to.getConversionRateWithSGD();

 }

}

Software Development Tools and Technologies

20

4 SOA IMPLEMENTATION IN .NET 4 WINDOWS COMMUNICATION FOUNDATION (WCF)

Microsoft introduced WCF as a part of .NET framework to help developers to create, consume
services for .NET applications.

4.1 Why WCF?

Before discussing about WCF, it might be useful to discuss about pre-existing technologies and
understand how are not able to meet the requirement of interoperability.

In the early time, remote communication amongst systems was possible through
communication technologies such as Distributed Component Object Model (DCOM) or Common
Object Request Broker Architecture (CORBA). DCOM is a set of concepts and program interfaces
in which client program objects can request services from server program objects on other
computer in a network. DCOM is an extension which is added to COM to solve COM’s
interoperability problem by introducing:

Marshalling: serialize and de-serialize the arguments and return value of methods calls.

Distributed garbage collection: Ensuring that references held by clients interfaces are released
in case of termination (program closed or internet connection is lost).

With DCOM interface, functions of remote objects could be invoked remotely although the job is
quite tedious because developers still need to handle manual work. For example, they must
manually release reference of the remote object in the case of disconnection or application
termination.

Although DCOM partially solves the interoperability problem, since DCOM is heavily dependent
on the COM, only technologies that support COM could communicate with each other. This
raised a big issue in intercommunication amongst systems which lie on different software
technologies. Another drawback of DCOM is that it could not support communication over
internet. DCOM relies on a proprietary binary protocol that not all object models support, which
hinders interoperability across platforms. In addition, DCOM communicates over range of ports
that are typically blocked by firewalls. In terms of design, development and deployment, DCOM
is not suitable for a huge enterprise system.

.NET Remoting which was released in version 1.0 of .NET Framework eliminates the difficulties
of DCOM by supporting different transport protocol formats and communication protocols. This
allows .NET Remoting to be adaptable to the network environment. However, .NET only
facilitates communication amongst systems lying on .NET framework and client still needs to
make RPC for communication. This high coupling does not allow two systems running on
different platform to interoperate. A remote object extends System.MarshalByRefObject and a
client can make a call through a proxy object to invoke methods of this object remotely. This
object is only known to systems running on the same environment (.NET environment). Hence,
this technology was superseded by WCF, which is a part of .NET Framework 3.0

WCF is created with the mission to allow seamless communication between systems running on
different platforms. WCF is much more flexible than its counterpart .NET Remoting because it
allows different system running on different platforms to interoperate. WCF defines a set of
industrial standards about service interactions, type conversions, marshalling and different
method of service bindings for interoperability purpose. Not only allow communication through
traditional SOAP based messages, WCF also defines a very platform specific binary protocol that
allows communication with much better performance amongst .NET applications. Besides fully
compliant with WS-* standards, WCF also offers features that are required for any enterprise
systems such as security, reliability and transactions.

Ch10: Service Oriented Architecture

21

Some of the readers will wonder what happen to the systems that were built on pre-
existing .NET technologies such as ASP.NET Web Services (ASMX), .NET Remoting, Enterprise
Services, Web Service Enhancement or Microsoft Message Queuing. Are these systems able to
communicate and interact with systems built on WCF? The information below gives readers a
general idea of how well WCF supports backward compatibility and how much effort
developers need to achieve compatibility.

ASMX application will be able to interact directly with WCF applications because the basic
structure of the two technologies is similar. Both supports SOAP standard for sending and
receiving messages. However, some advanced features of ASMX will not be able to port over
WCF. We will not discuss this issue in this book chapter.

.NET Remoting: The mechanism of .NET Remoting and WCF is totally different. One is based on
remote call (invoke function of remote objects) and the other based on SOAP. Therefore, it
would not be surprising that these 2 technologies are not compatible.

Enterprise services: Developers need to make minimal efforts so that system using enterprise
services can interact with systems using WCF. What they need to do is defining the interface
that the services expose and the rest will be taken care by the framework. The effort put is as
little as effort required making ASMX compatible with WCF applications.

Web service enhancements: Applications using WSE 1.0 and WSE 2.0 are not compatible with
WCF. However, WSE 3.0 onwards can have direct communication with WCF. The effort required
is also very minimal.

Microsoft Message Queue: Applications developed with WCF can interact with applications
using message queue because WCF’s queuing functions are based on MSMQ.

The above is not the only advantage and benefit WCF provide. Last but not least, WCF also
explicitly supports for RESTful communication using POX, RSS and ATOM. However, discussion
on these formats is beyond the scope of this book chapter. That’s enough for the introduction.
Now, let’s start the journey of exploring WCF.

4.2 WCF concepts

For readers to have better understanding, we will go
through some important concepts and terminologies used
in WCF.

4.2.1 Endpoint

 Service is exposed through endpoints. Endpoint is the
combination of 3 aspects that lie between service
providers and service consumers: address tells the client
where the service is, contract is what the client can do
with the service or in another words, what the service
offers to the client and binding is how the client can
consume the service. We will go into details of these 3
aspects.

4.2.2 Addresses

In WCF, every service is associated with a unique address that tells clients where the service is
hosted. The address provides two important elements: the location of the service and the
transport protocol (transport schema) used to communicate with the service. Addresses always
have the following format:

[Transport]:// [machine or domain][:optional port]/path

Binding

Contract

Address

Figure 7: Three important components in
WCF

Software Development Tools and Technologies

22

Here are a few sample addresses.

https://localhost:8080/Secureservice

net.p2p://localhost:8080/service

Protocols supported in WCF:

TCP addresses use net.tcp for the transport, and typically include a port number. When a port
number is not specified, the TCP address defaults to port 808. It is possible for two TCP
addresses to share a port. TCP enables messages to be exchanged in binary format, hence
enhances the performance.

HTTP addresses use HTTP for transport, and can also use HTTPS for secure transport. When a
port number is unspecified, it defaults to 80. Similar to TCP addresses, two HTTP addresses
from the same host can share a port, even on the same machine.

IPC (Inter-Process Communication) addresses use net.pipe for transport, to indicate the use of
the Windows named piped mechanism. In WCF, services that use named pipes can only accept
calls from the same machine. Consequently, you must specify either the explicit local machine
name or local host for the machine name, followed by a unique string for the pipe name. Only
one named pipe could be open on a machine, and therefore it is not possible for two named pipe
addresses to share a pipe name on the same machine. Name piped protocol is optimized for
inter process communication; therefore, if client and service provider are running on the same
machine, IPC protocol would be preferred over others.

MSMQ (Microsoft Message Queue) addresses use net.msmq for transport, to indicate the use of
Microsoft Message Queue. MSMQ is a protocol that often used in distributed communication
environment. Clients do not need to be online all the time but still can queue their service
request for consumption later when they go online.

Peer network address use net.p2p for transport, to indicate the use of the Windows peer
network transport. Using peer networks is beyond the scope of this book chapter.

Although protocols are in wide range of choice, suitable protocol must be carefully chosen to fit
service consumer’s need.

4.2.3 Contracts

In WCF, all services expose contracts. The contract is a platform-neutral and standard way of
describing what the service does. WCF defines four types of contracts

Data contracts define which data types are passed to and from the service. WCF defines
implicitly contracts for built-in types such as int and string, but you can easily define explicitly
opt-in data contracts for custom types. For example

Ch10: Service Oriented Architecture

23

This code fragment shows a simple C# class with special annotations [DataContract] and
[DataMember] above each attribute of the class. These annotations actually tell WCF that these
attributes are exchangeable though web services. Note that WCF allows flexibility in annotating
class members. Members without [DataMember] annotations will not be exchangeable through
the service.

Service contracts describe which operations the client can perform on the service. For example

The above code fragment is nothing else but a very simple interface with some declared
operations. But please notice the [ServiceContract] and [OperationContract] annotations. The
operations with [OperationContract] annotation are “invokable” remotely by service clients.
Similarly to data contract, method without [OperationContract] will not be invoke-able by
service consumers.

Fault contracts define which errors are raised by the service, and how the service handles and
propagates error to its clients.

using System.Runtime.Serialization;

namespace ServiceDemo

{

 [DataContract]

 public class Name

{

 [DataMember]

 public string Id;

 [DataMember]

 public string FirstName;

 [DataMember]

 public string LastName;

}

}

using System.ServiceModel;

namespace ServiceDemo

{

 [ServiceContract]

 public interface INameService

{

 [OperationContract]

 void AddName(Name name);

 [OperationContract]

 List<Name> GetNames();

 [OperationContract]

 void RemoveName(string id);

}

}

Software Development Tools and Technologies

24

Message contracts allow the service to interact directly with message. Message contracts can be
typed or un-typed, and are useful in interoperability cases and when there is an existing
message format you have to comply with. As a WCF developer, you should use message
contracts only rarely.

4.2.4 Binding

Binding simply tells clients how to consume service. In previous section, we discussed about the
contracts. Readers may ask how these data contracts can be exchanged between clients and the
service provider. That’s how the binding fits in the scenario. Binding is actually a collection of
binding elements that define how message could be exchange over the service. Some but not
limited to binding elements are message encoding, transport protocol, or security options.
Knowing what binding method service provider used, clients would be able to communicate
with it.

WCF provides a wide range of binding methods. Each binding method is used with different
purpose. The binding methods starting with WS-* are web service compliant. It means that they
are used for open system interoperability. The binding started with Net, as you can guess, are
binding methods that allow WCF applications able to talk to existing applications running on
pre-existing .NET technologies.

Binding name Transport Message

Encoding

Security

Mode

Reliability

BasicHttpBinding HTTP Text None Not

Supported

WSHttpBinding HTTP Text Message Disabled

WSDualHttpBinding HTTP Text Message Enabled

WSFederationHttpBinding HTTP Text Message Disabled

NetTcpBinding TCP Binary Transport Disabled

NetPeerTcpBinding P2P Binary Transport Not

Suppported

NetNamedPipesBinding Named pipes Binary Transport Not

Supported

NetMsmqBinding MSMQ Binary Message Not

Supported

MsmqIntegrationBinding MSMQ Use pre-WCF

serialization

format

Transport Not

Supported

CustomBinding Customized Customized Customized Customized

4.3 What else WCF supports?

4.3.1 Dynamic discovery

In the case of disaster, a machine that hosts a particular service goes down that may cause the
service interruption. A business would be drastically affected if the supporting system could not

Ch10: Service Oriented Architecture

25

ensure 100% uptime. Therefore, a concept of dynamic discovery is introduced in WCF 4.0. This
is a set of APIs that allows clients to dynamically discover and bind to a particular service.
Figure 8: Dynamic discovery feature in WCF visualizes the concept of dynamic discovery.

Figure 8: Dynamic discovery feature in WCF

The client sends a broadcast probe message to ask who is hosting the INameService. If a
particular endpoint exposes INameService, it will send client a probe match message. The client
will choose from the list of replies an endpoint and binds to it. With this feature, client does not
necessarily bind to a fixed address defined by the developer. The code below actually illustrates
the idea of dynamic discovery.

Notice that BasicHttpBinding is used. The above code will be meaningless if service clients do
not know what binding method a particular endpoint uses. Therefore, in the discovery API also
allows clients to automatically resolve the binding method used by the endpoint. The sample
code below shows how binding method can be resolved:

DiscoveryClient discoveryClient = new DiscoveryClient("udpDiscoveryEndpoint");

FindCriteria findCriteria = new FindCriteria(typeof(INameService));

FindResponse findResponse = discoveryClient.Find(findCriteria);

if (findResponse.Endpoints.Count > 0)

{

 EndpointAddress address = findResponse.Endpoints[0].Address;

 ChannelFactory<INameServiceChannel> factory

= new ChannelFactory<INameServiceChannel>(

 new BasicHttpBinding(), address);

 INameServiceChannel client = new factory.CreateChannel();

 //<Client code here>

 client.Close();

 factory.Close();

}

Who host INameService?

Software Development Tools and Technologies

26

4.3.2 Multiple endpoints

With the mission to interoperate as many system running on different platforms as possible,
WCF allows a service could be exposed through different endpoints. Each endpoint is configured
to serve a particular type of client.

Figure 9: Multiple endpoints features in WCF

Configuring a service to be exposed through different endpoints is extremely easy. Firstly, you
as a service provider need to understand which platform your system needs to support. Are
clients running on Java platform or using message queue or ASP.NET web services? Knowing
this is critically important because different technologies will use different binding methods.
The service configuration with GUI is a very handy tool to achieve this task.

4.3.3 Deployment options

WCF service class cannot exist in a void. Every WCF service must be hosted in Windows process
called host process. A single host process can host multiple services, and the same service type
can be hosted in multiple service type can be hosted in multiple host processes. Hosting a WCF

DiscoveryClient discoveryClient = new DiscoveryClient(new

UdpDiscoveryEndpoint());

FindCriteria findCriteria =

FindCriteria.CreateMetadataExchangeEndpointCriteria();

FindResponse findResponse = discoveryClient.Find(findCriteria);

if (findResponse.Endpoints.Count > 0)

{

 var endpoints = MetadataResolver.Resolve (typeof(INameService),

 findResponse.Endpoints[0].Address);

 foreach(ServiceEndpoint endpoint in endpoints)

 {

 Console.Writeline (“Endpoint address : “ + endpoint.Address +

“\tBinding method: ” + endpoint.Binding.Name);

 }

}

Ch10: Service Oriented Architecture

27

is never that simple. It can be hosted on IIS, hosted as a windows service or even self hosting
(hosting in an application).

Hosting on IIS

The main advantage of hosting a service in IIS web server is that the host process is launched
automatically upon the first client request, and you rely on IIS to manage the life cycle of the
host process. Of course hosting services on IIS will reduce the workload for developers because
developers can rely on IIS to manage process, idle shutdown, and health monitoring. The main
disadvantage of IIS hosting is that you can use only use HTTP. With IIS5, you are further
restricted to having all services use the same port number.

Hosting as a Windows service

The advantage of this hosting option is that the developers do not need to care about life cycle
and states of the service. Everything will be handled by the Service Control Manager (SCM). SCM
provides a GUI for service administrator to start, stop and even set dependency for the service.
This hosting is supported by all windows version and does not require any extra software
installation.

Hosting using Windows Activation Service (WAS)

WAS is part of IIS7, but can be installed and configured separately. To use the WAS for hosting
your WCF service, you need to supply a .svc file, just as with IIS. The main difference between IIS
and WAS is that WAS is not limited to HTTP and can be used with any of the available WCF
transport, ports, and queues. WAS offers many advantages over self-hosting, including
application pooling, recycling, idle time management, identity management.

Self hosting

Self-hosting is the name for the technique used when the developer is responsible for providing
and managing the life cycle of the host process. Service is hosted inside a managed application.
Since no endpoint is explicitly assigned, the WCF runtime will create one endpoint per base
address for each service contract implemented by the service.

5 DATA SERVICES

In the earlier sections, we have been focusing on web services. Consuming web services can be
thought invoking methods or functions over the web. These methods usually encapsulate logic
and therefore provide abstraction from its implementation. In this section, we will be looking at
data as a service. In a nutshell, data service provides data as ‘it is’, without any sophisticated
logic that will be performed on the data. Data service provides abstraction at the data access
layer. It is to be noted that one can also build a web service that consumes data service. The data
service will provide relevant data, and the web service will contain logic that acts on the data.

5.1 Benefits of Data as a Service

Compared to web service, a data service consumer has full control and therefore more flexibility
on how to operate on data in data-intensive applications. The developer no longer needs to be
restricted by logic provided by available web services.

Other benefits are similar to web services such as independence from data storage
implementation and interoperability.

Software Development Tools and Technologies

28

5.2 Open Data Protocol

Just as web services are based on a set of standards (for interoperability), there are standards
for data services as well. In the rest of the section, we will be focusing on Open Data Protocol
(OData). OData is a set of standards that allow data consumers and get data in a standardized
way (interoperability on consumer end). Publisher of data services will have to conform to
OData to expose their data as a service regardless of how their data store or databases are
implemented (interoperability on provider end). OData is based on an open standard and more
information regarding the protocol is available at http://www.odata.org.

OData is also relevant to enterprise systems. Examples of enterprise systems that are beginning
to use or have adopted OData include Microsoft Sharepoint, IBM WebSphere and SAP.

5.2.1 OData Data Format

There is some similarity between OData and Web Service. Namely, both of them use HTTP
protocol and exchange data in XML format (it is to be noted that OData provides JSON
communication as well). Figure 10 shows the XML returned by eBay data services at
http://ebayodata.cloudapp.net/.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<service xml:base="http://ebayodata.cloudapp.net/" ...>

 <workspace>

 <atom:title>Default</atom:title>

 <collection href="Bidders">

 <atom:title>Bidders</atom:title>

 </collection>

 <collection href="Categories">

 <atom:title>Categories</atom:title>

 </collection>

 <collection href="Items">

 <atom:title>Items</atom:title>

 </collection>

 <collection href="Users">

 <atom:title>Users</atom:title>

 </collection>

 ...

 </workspace>

</service>

Figure 10: OData feed (partial)

One can see the collections listed in the XML in Figure X. A collection is analogous to tables in a
database. In this case we have collections with names Bidders, Categories, Items etc. To browse
the collections, we simply follow the href links. For example, we can browse to
http://ebayodata.cloudapp.net/Users to browse to the Users collection.

If one browse to previous link to Users collection, a HTTP 403 Forbidden status will be returned.
This brings us to another aspect of exposing data service, namely access control and rights.
Depending on user credentials, selected subset of data can be exposed to different users.

http://www.odata.org/
http://ebayodata.cloudapp.net/
http://ebayodata.cloudapp.net/Users

Ch10: Service Oriented Architecture

29

5.2.2 Data querying

Another powerful feature of OData is data querying. This makes sense because we would want
to be selective of the data that is returned. OData query supports predicates, projections as well
as aggregation in querying data which is similar to SQL. For example the following URL:

http://ebayodata.cloudapp.net/Items?$filter=CurrentPrice lt
200&country=SG&search='monitor'

returns a XML feed of listings matching the search term ‘monitor’ with price lesser than $200.

Below are some of the more common Uri operations supported by OData. An extensive
documentation of the URI query operations supported is available at
http://www.odata.org/developers/protocols/uri-conventions.

$orderby For sorting

$top For retrieving first N data

$skip For excluding first N entries in data

$filter For selecting entries satisfying
certain predicate expressions

$expand Eagerly load details of sub-entries in
data

$format For specifying return format (Atom,
XML, JSON)

$select For projecting specified fields

$inlinecount For counting entries

5.3 WCF data service

WCF Data Service is Microsoft’s implementation of OData. It is previously called ADO.NET Data
Services. It allows developer to expose data from sources such as databases (or objects) as
OData.

5.3.1 WCF metadata

The WSDL equivalent of web service in OData is called metadata. For instance, one can browse
to http://ebayodata.cloudapp.net/$metadata to view the metadata of the eBay data service. It is
to be noted that references between collections (similar to references in relational database)
can be captured in the metadata as well.

5.3.2 WCF architecture

The architecture of WCF Data Service is listed in Figure 11. It can be seen the flexibility in the
kind of data source that can be exposed as a data service. This includes .NET Common Language
Runtime (CLR) objects, Microsoft SQL Server or even 3rd party data source. Example of 3rd party
provider includes MySQL, where an official support for Entity Framework was introduced in
MySQL Connector for .NET from 6.0 onwards.

http://ebayodata.cloudapp.net/Items?$filter=CurrentPrice%20lt%20200&country=SG&search='monitor'
http://ebayodata.cloudapp.net/Items?$filter=CurrentPrice%20lt%20200&country=SG&search='monitor'
http://www.odata.org/developers/protocols/uri-conventions
http://ebayodata.cloudapp.net/$metadata

Software Development Tools and Technologies

30

Figure 11: WCF Architecture

For a tutorial on how to expose data as a data service, you can visit
http://sites.google.com/site/cs4217jan2011team1/tutorials.

http://sites.google.com/site/cs4217jan2011team1/tutorials

Ch10: Service Oriented Architecture

31

6 CONCLUSION

As enterprise systems tend to become more and more complex, system designers must ensure
the scalability of the systems and how they communicate with each other. This task requires
more and more effort both in terms of business functionalities and regarding the technologies
chosen. Using SOA approach will reduce the difficulty to a certain level. Generally in SOA,
systems expose functionalities for other systems to consume without knowing the complex logic
behind. As a matter of fact, those consumers, in turn, could be service providers as well. Hence,
service oriented architecture is an excellent option to scale the systems. Since more and more
systems such as SAP are moving towards SOA, we believe that SOA is creating a new trend
today. Being conceived and developed a long time ago, however, only until now, SOA proves its
important role as the backbone of enterprise systems and an essential building block in cloud
computing, which is now deemed as a promising technology in the future.

7 BIBLIOGRAPHY

Amit Bahree, Dennis Mulder, Shawn Cicoria, Chris Peiris, Nishith Pathak. Pro WCF: Practical
Microsoft SOA Implementation [Paperback]. Apress, 2007.

Chappell, David. Introducing Windows Communication Foundation in .NET Framework 4. March,
2010. http://msdn.microsoft.com/library/ee958158.aspx (accessed 9 March, 2011).

Corporation, Oracle. The Java EE 5 Tutorial. n.d.
http://download.oracle.com/javaee/5/tutorial/doc/bnazq.html (accessed 10 March,
2011).

Eichengreen, Barry. One Economy, Ready or Not: Thomas Friedman's Jaunt Through Globalization.
May/June, 1999. http://www.foreignaffairs.com/articles/55017/barry-
eichengreen/one-economy-ready-or-not-thomas-friedman-s-jaunt-through-globaliz
(accessed 6 March, 2011).

Erl, Thomas. SOA Principles of Service Design. Prentice Hall, 2007.

Goncalves, Antonio. Beginning Java(TM) EE 6 with GlassFish(TM) 3: From Novice to Professional.
Apress, Inc., 2009.

Hewitt, Eben. Java SOA Cookbook. O’Reilly Media, 2009.

Jane Laudon, Kenneth Laudon. Essentials of Management Information Systems. Prentice Hall,
2007.

Judith Hurwitz, Robin Bloor, Carol Baroudi, Marcia Kaufman. Service Oriented Architecture for
Dummies. Wiley Publishing, Inc., 2007.

Kalin, Martin. Java Web Services: Up and Running. O'Reilly Media, Inc., 2009.

Klein, Scott. Professional WCF Programming: .NET Development with the Windows
Communication Foundation. John Wiley & Sons, 2007.

