
Code Carpentry Workshop

Introduction to Introduction to

Dataflow Computing Dataflow Computing

Peter Sanders, July 2015

Computing on FPGAsComputing on FPGAs

Programmable Spectrum

33

Single-Core CPU Multi-Core Several-Cores Dataflow

Intel, AMD
GPU (NVIDIA, AMD)
Tilera, XMOS etc...

Maxeler

Hybrid e.g. AMD Fusion, IBM Cell

Control-flow processors

Dataflow processor
e.g. FPGA

Increasing Parallelism (#cores)

Increasing Core Complexity

Many-Cores

GK110

Control-flow processor (CPU)

44

Main Memory
(RAM)

Execution
(ALU)

Instructions Data

Fetch
Instruction

Fetch
Data

Execute

Time

Store
Data

Von Neumann
Architecture

Modern Control-flow processor (CPU)

55

Main Memory
(RAM)

Execution
(ALU)

Instructions Data

Instruction
Pipeline

DCache ICache

Reordering

Pre-fetch
&

Branch
Prediction

Where silicon is used?

Intel 6-Core X5680 “Westmere”

66

Where silicon is used?

Intel 6-Core X5680 “Westmere”

Dataflow Processor
e.g. FPGA

77

Computation Computation

MaxelerOS

Computation
(Dataflow cores)

Computation
(Dataflow cores)

On chip resources

• Each application has a
different configuration
of dataflow cores

• Dataflow cores are built
out of basic operating
resources on-chip

88

DSP Resource

RAM Resource (20TB/s)

General Logic Resource

99

Control flow Microprocessor (CPU)

1010

Dataflow Engine (DFE) - ‘Spatial Computing’

Acceleration Potential

• Ten times slower clock

• Degrees of Freedom
– Architecture

– Data type

• Massive parallelism
– Bit level

– Pipeline level

– Architecture level

– System level

1111

+100× -10×

Processor
Performance

Dataflow Dataflow

1212

Explaining Control Flow versus Data Flow

• Many specialized workers are more efficient (data flow)

• Experts are expensive and slow (control flow)

Analogy 1: The Ford Production Line

DataflowDataflow ComputingComputing

x

*

+

30

y

public class MyKernel extends Kernel {

 public MyKernel (KernelParameters parameters) {

 super(parameters);

 DFEVar x = io.input(“x", dfeInt(32));

 DFEVar result = x * x + 30;

 io.output("y", result, dfeInt(32));

 }

}

A Dataflow Kernel

1414

x

*

+

30

y

Streaming Data through the Kernel
5 4 3 2 1 0

30

30

0

0

1515

x

*

+

30

y

Streaming Data through the Kernel
5 4 3 2 1 0

30 31

31

1

1

1616

x

*

+

30

y

Streaming Data through the Kernel
5 4 3 2 1 0

30 31 34

34

4

2

1717

x

*

+

30

y

Streaming Data through the Kernel
5 4 3 2 1 0

30 31 34 39

39

9

3

1818

x

*

+

30

y

Streaming Data through the Kernel
5 4 3 2 1 0

30 31 34 39 46

46

16

4

1919

x

*

+

30

y

Streaming Data through the Kernel
5 4 3 2 1 0

30 31 34 39 46 55

55

25

5

2020

x

*

+

30

y

Streaming Data through the Kernel

2121

Total Latency = L

x

*

+

30

y

Pipelining Data through the Kernel

2222

Fanout Latency = L1

Multiply Latency = L2

Add Latency = L3
On FPGAs the shorter the
physical distance between
registers the higher the clock
frequency can be.

L1 + L2 + L3 > L

Add registers into the
Dataflow graph.

x

*

+

30

y

Pipelining Data through the Kernel
5 4 3 2 1 0

0

2323

x

*

+

30

y

Pipelining Data through the Kernel
5 4 3 2 1 0

0

1

2424

x

*

+

30

y

Pipelining Data through the Kernel
5 4 3 2 1 0

30

30

1

2

2525

x

*

+

30

y

Pipelining Data through the Kernel
5 4 3 2 1 0

30 31

31

4

3

2626

x

*

+

30

y

Pipelining Data through the Kernel
5 4 3 2 1 0

34

9

4

2727

30 31 34

x

*

+

30

y

Pipelining Data through the Kernel
5 4 3 2 1 0

30 31 34 39

39

16

5

2828

No registers – low latency

2929

0

1

2

0

1

2

Pipelined – highly parallelised

We need to get oil from our oil well to the refinery
We need to get data from memory to the Processor
Demand for our oil is rising – we need a faster truck!
We need to process faster – we need higher clock frequency!
So we get a truck
We fetch the data in small chunks

Explaining Control Flow Versus Dataflow
Analogy 2: Trucks versus Pipeline

Oil Refinery Oil Well

Processor Memory

Click to advance to next slide

3030

So we splash out on a Ferrari to carry our oil!

Oil Refinery Oil Well

Processor Memory

Click to advance to next slide

Explaining Control Flow Versus Dataflow
Analogy 2: Trucks versus Pipeline

3131

Let’s take the time to build a pipeline
Let’s build a dataflow computer for this application.
Once we starting pumping, it takes a while to fill up...
The latency of the first result can be high...

Oil Refinery Oil Well

Processor Memory

Click to advance to next slide

Explaining Control Flow Versus Dataflow
Analogy 2: Trucks versus Pipeline

3232

Oil Refinery Oil Well

Processor Memory

But then the oil flows constantly.
And we get a result every clock cycle.

Click to advance to next slide

Explaining Control Flow Versus Dataflow
Analogy 2: Trucks versus Pipeline

3333

Using FPGAsUsing FPGAs

• Can’t use FPGA on its own …

– Need interface to Computer & Data

– Need interface to local memory

– Need to design bespoke HW

• FPGAs difficult to program …

– Specialist languages VHDL, Verilog

– Need Electronics training & understand FPGAs

– Simulation only at HW level, modelsim

– Need also to engineer the interfaces

• FPGAs difficult to use …

– Need low level drivers to reconfigure and setup

– Need efficient data transfer techniques
3535

Traditionally FPGA were for specialists

3636

Maxeler solutions

Standard Hardware across
FPGA generations and
vendors.

Development
environment in
extended Java
language, MaxJ, with
fast simulation and
debugging tools.

Runtime library and drivers for
reconfiguration, monitoring and
probing.

>maxtop -r 10.101.101.33

MaxTop Tool 2014.1

Found 2 Maxeler card(s) running MaxelerOS 2014.1

Card 0: Maia (P/N: 4848) S/N: 2487402010013 Mem: 48GB

Card 1: Maia (P/N: 4848) S/N: 2487402010049 Mem: 48GB

Load average: 0.12, 0.02, 0.01

DFE %BUSY MAXFILE HOST PID USER TIME COMMAND

 0 0.0% feda2885... thor.cluster 27947 psanders 00:00:11 async_sessio

 1 0.0% IDLE (r7) - - - - -

DFE HardwareDFE Hardware

3838

Maxeler Data Flow Engines (DFEs)

ISCA

• 28nm process
• 250MHz clock
• Sub 1us latency

• 16K TCP connections

• 28nm process
• 250MHz clock frequency
• 6.25MB SRAM
• 4,000 multipliers

• 700K logic cells
• 3GB/s CPU bandwidth
• 96GB DRAM

MAIA

• Stream to/from Host (PCIe)
• Stream to/from DRAM
• Stream to/from DFE (MaxRing)

• Stream to/from network
• UDP & TCP

Maxeler Hardware Solutions

3939

CPUs plus DFEs
Intel Xeon CPU cores and up to

6 DFEs with 288GB of RAM

DFEs shared over Infiniband
Up to 8 DFEs with 384GB of
RAM and dynamic allocation

of DFEs to CPU servers

Low latency connectivity
Intel Xeon CPUs and 1-2 DFEs
with up to six 10Gbit Ethernet

connections

MaxWorkstation
Desktop development system

MaxCloud
On-demand scalable accelerated
compute resource, hosted in London

MPC-X2000

• 8 dataflow engines
(192-384GB RAM)

• High-speed MaxRing

• Zero-copy RDMA between
CPUs and DFEs over Infiniband

• Dynamic CPU/DFE balancing

4040

STFC

4141

Hartree Centre

SoftwareSoftware

Lines of code

Total Application 1,000,000

Kernel to accelerate 2,000

Software to restructure 20,000

Accelerating Real Applications

• The majority of lines of code in most applications are
unchanged

• CPUs are good for: latency-sensitive, control-intensive, non-
repetitive code

• Dataflow engines are good for: high throughput repetitive
processing on large data volumes

  A system should contain both

4343

Creating custom DFE configurations

4444

St
ar

t

Original
Application

Identify code
for acceleration

and analyze
bottlenecks

Write
MaxCompiler

code
Simulate

Functions
correctly?

Build DFE

Integrate with
CPU code

Meets
performance

goals?

Accelerated
Application

NO

YES YES

NO

Transform app,
architect and

model
performance

• Complete development environment for Maxeler DFE
accelerator platforms

• Write MaxJ code to describe the dataflow graph
– MaxJ is an extension of Java for MaxCompiler

– Execute the Java to generate the DFE image (bitstream)

– Meta-programming. Java does NOT execute when running
final application.

• Compiler generates C API for CPUs to use the DFE
– C API called SLiC

– Basic Static interface – single function
• loads DFE with bitstream

• Sets scalars and streams data in/out

MaxCompiler & MaxIDE

4545

Application Components

SLiC

MaxelerOS

Memory

CPU

DFE

M
e

m
o

ry

PCI Express

Kernels (MaxJ)

(instantiate the

arithmetic structure)

* +

+

Manager (MaxJ)

(arrange the data

orchestration)

Host application (C, Python, Matlab..)

4646

DFE contains a Manager and Kernels

4747

• Globally Asynchronous Locally Synchronous (GALS) architecture.
• Manager has full flow control.
• Manager made from standard blocks.
• Kernels are fully synchronous.
• Kernels runs while data at inputs and space at output, else stalls.

Manager

FIFO

Memory
Controller

PCIe & DMA
Controller

MaxRing
Interface

x

x

+

30

x

Kernel

The required parts to create a DFE

Manager Code CPU Code Kernel Code

4848

for (int i =0; i < DATA_SIZE; i++)
 y[i]= x[i] * x[i] + 30;

Main

Memory

CPU
CPU
Code

Host Code (.c)

Simple Application Example

int*x, *y;

30 iii xxy

4949

PCI

Express

Manager

DFE

Memory

MyManager (.maxj)

x

x

+

30

x

Manager m = new Manager();
Kernel k =
 new MyKernel();

m.setKernel(k);
m.setIO(
 link(“x", CPU),

m.build();

 link(“y", CPU));

MyKernel(DATA_SIZE,
 x, DATA_SIZE*4,
 y, DATA_SIZE*4);

for (int i =0; i < DATA_SIZE; i++)
 y[i]= x[i] * x[i] + 30;

Main

Memory

CPU
CPU
Code

Host Code (.c)

Development Process

SLiC

MaxelerOS

DFEVar x = io.input("x", dfeInt(32));

DFEVar result = x * x + 30;

io.output("y", result, dfeInt(32));

MyKernel (.maxj)

int*x, *y;

y y

x

x

+

30

y

x x

5050

PCI

Express

Manager

DFE

Memory

MyManager (.maxj)

Manager m = new Manager();
Kernel k =
 new MyKernel();

m.setKernel(k);
m.setIO(
 link(“x", CPU),

m.build();

device = max_open_device(maxfile,
 "/dev/maxeler0");

MyKernel(DATA_SIZE,
 x, DATA_SIZE*4);

Main

Memory

CPU
CPU
Code

Host Code (.c)

Development Process

SLiC

MaxelerOS

DFEVar x = io.input("x", dfeInt(32));

DFEVar result = x * x + 30;

io.output("y", result, dfeInt(32));

MyKernel (.maxj)

int*x, *y;

x x

y y

 link(“y", DRAM_LINEAR1D));

x

x

+

30

x

x

x

+

30

y

5151

Data flow graph as
generated by compiler

4866 nodes

Each node represents an
operator in MaxJ code with
area time parameters. Each
line (edge) represents a
DFEVar in MaxJ code.

• MaxCompiler gives detailed latency annotation back
to the programmer

• Evaluate precise effect of code

 on latency

5353

Path Latency Reporting

12.8ns 12.8ns 6.4ns 6.4ns + = 19.2ns (total compute latency) 19.2ns (total compute latency)

• Allows you to see what lines of code are using what
resources and focus optimization

– Separate reports for each kernel and for the manager

5454

Resource Usage Reporting

 LUTs FFs BRAMs DSPs : MyKernel.java

 727 871 1.0 2 : resources used by this file

 0.24% 0.15% 0.09% 0.10% : % of available

 71.41% 61.82% 100.00% 100.00% : % of total used

 94.29% 97.21% 100.00% 100.00% : % of user resources

 :

 : public class MyKernel extends Kernel {

 : public MyKernel (KernelParameters parameters) {

 : super(parameters);

 1 31 0.0 0 : DFEVar p = io.input("p", dfeFloat(8,24));

 2 9 0.0 0 : DFEVar q = io.input("q", dfeUInt(8));

 : DFEVar offset = io.scalarInput("offset", dfeUInt(8));

 8 8 0.0 0 : DFEVar addr = offset + q;

 18 40 1.0 0 : DFEVar v = mem.romMapped("table", addr,

 : dfeFloat(8,24), 256);

 139 145 0.0 2 : p = p * p;

 401 541 0.0 0 : p = p + v;

 : io.output("r", p, dfeFloat(8,24));

 : }

 : }

Example ProjectsExample Projects

5656

Imaging Platform Example: Weather

1U CPU Node

Wall Clock Time: 2 hours
1U Dataflow Node

less than 2 minutes
Problem size: (Longitude) 13,600 Km x (Latitude) 3330 Km

Simulation of baroclinic instability after 500 time steps.

Acceleration of a Meteorological Limited Area Model with Dataflow Engines, D. Oriato,
S. Tilbury (Maxeler), M. Marrocu, G. Pusceddu (CRS4), SAAHPC Conference, May 2012.

Achieved Computational Speedup for the entire
application (not just the kernel) compared to Intel server

RTM with Chevron

VTI 19x and TTI 25x Sparse Matrix

20-40x

Seismic Trace Processing

24x

Lattice Boltzman

Fluid Flow 30x
Conjugate Gradient Opt 26x Credit 32x and Rates 26x

624

624

MaxAcademyMaxAcademy

Maxeler UP

• University program has over 150 university
members

• Membership is free

• Hardware can be bought with discount; software
free

– Low cost Galava DFE

• Possible to access via simulator and cloud

• Shared research among the members.

Maxeler University Program Members

Maxeler University Program Members
150 Universities on 5 continents.

appgallery.maxeler.com
Number of example applications with, in many cases, access to source and docs.

github.com/maxeler/maxpower
Open source project of kernel utilities and functional blocks.

Maxeler Developer Exchange (MDX)
Google group for Q&A amongst developers and Maxeler staff.

Break ?

Questions ?

