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Programmable Spectrum 
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Single-Core CPU Multi-Core Several-Cores Dataflow 

Intel, AMD 
GPU (NVIDIA, AMD) 
Tilera, XMOS etc... 

Maxeler 

Hybrid e.g. AMD Fusion, IBM Cell 

Control-flow processors 

Dataflow processor 
e.g. FPGA 

Increasing Parallelism (#cores) 

Increasing Core Complexity 

Many-Cores 
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Control-flow processor (CPU) 
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Modern Control-flow processor (CPU) 
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Where silicon is used? 

Intel 6-Core X5680 “Westmere” 
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Where silicon is used? 

Intel 6-Core X5680 “Westmere” 

 

Dataflow Processor 
e.g. FPGA 
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Computation Computation 

MaxelerOS 

Computation 
(Dataflow cores) 

Computation 
(Dataflow cores) 



On chip resources 

• Each application has a 
different configuration 
of dataflow cores 

• Dataflow cores are built 
out of basic operating 
resources on-chip 
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DSP Resource 

RAM Resource (20TB/s) 

General Logic Resource 
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Control flow Microprocessor (CPU) 
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Dataflow Engine (DFE) - ‘Spatial Computing’ 



Acceleration Potential 

• Ten times slower clock 

 

• Degrees of Freedom 
– Architecture 

– Data type 

• Massive parallelism 
– Bit level 

– Pipeline level 

– Architecture level 

– System level 
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+100× -10× 

Processor 
Performance 

Dataflow Dataflow 
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Explaining Control Flow versus Data Flow  

• Many specialized workers are more efficient (data flow) 

 

• Experts are expensive and slow (control flow) 

 

Analogy 1: The Ford Production Line 



DataflowDataflow  ComputingComputing  
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public class MyKernel extends Kernel { 

 

 public MyKernel (KernelParameters parameters) { 

  super(parameters); 

 

  DFEVar x = io.input(“x", dfeInt(32)); 

 

  DFEVar result = x * x + 30; 

 

  io.output("y", result, dfeInt(32)); 

 } 

} 

A Dataflow Kernel 
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Streaming Data through the Kernel 
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Total Latency = L 
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Pipelining Data through the Kernel 
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Fanout Latency = L1 

Multiply Latency = L2 

Add Latency = L3 
On FPGAs the shorter the 
physical distance between 
registers the higher the clock 
frequency can be. 
 
 

L1 + L2 + L3 > L 

Add registers into the 
Dataflow graph. 
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30  31  34    
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No registers – low latency 
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Pipelined – highly parallelised 



We need to get oil from our oil well to the refinery  
We need to get data from memory to the Processor 
Demand for our oil is rising – we need a faster truck!  
We need to process faster – we need higher clock frequency! 
So we get a truck  
We fetch the data in small chunks 

Explaining Control Flow Versus Dataflow 
Analogy 2: Trucks versus Pipeline 

Oil Refinery Oil Well 

Processor Memory 

Click to advance to next slide 
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So we splash out on a Ferrari to carry our oil! 

Oil Refinery Oil Well 

Processor Memory 

Click to advance to next slide 

Explaining Control Flow Versus Dataflow 
Analogy 2: Trucks versus Pipeline 
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Let’s take the time to build a pipeline  
Let’s build a dataflow computer for this application. 
Once we starting pumping, it takes a while to fill up...  
The latency of the first result can be high... 

Oil Refinery Oil Well 

Processor Memory 

Click to advance to next slide 

Explaining Control Flow Versus Dataflow 
Analogy 2: Trucks versus Pipeline 
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Oil Refinery Oil Well 

Processor Memory 

But then the oil flows constantly.  
And we get a result every clock cycle. 

Click to advance to next slide 

Explaining Control Flow Versus Dataflow 
Analogy 2: Trucks versus Pipeline 

3333  



Using FPGAsUsing FPGAs  



• Can’t use FPGA on its own … 

– Need interface to Computer & Data 

– Need interface to local memory 

– Need to design bespoke HW 

• FPGAs difficult to program … 

– Specialist languages VHDL, Verilog 

– Need Electronics training & understand FPGAs 

– Simulation only at HW level, modelsim 

– Need also to engineer the interfaces 

• FPGAs difficult to use … 

– Need low level drivers to reconfigure and setup 

– Need efficient data transfer techniques 
3535  

Traditionally FPGA were for specialists  
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Maxeler solutions 

Standard Hardware across 
FPGA generations and 
vendors. 

Development 
environment in 
extended Java 
language, MaxJ, with 
fast simulation and 
debugging tools. 

Runtime library and drivers for 
reconfiguration, monitoring and 
probing. 

>maxtop -r 10.101.101.33  

MaxTop Tool 2014.1 

Found 2 Maxeler card(s) running MaxelerOS 2014.1 

Card 0: Maia (P/N: 4848) S/N: 2487402010013 Mem: 48GB 

Card 1: Maia (P/N: 4848) S/N: 2487402010049 Mem: 48GB 

 

Load average: 0.12, 0.02, 0.01 

 

DFE  %BUSY  MAXFILE      HOST         PID    USER       TIME      COMMAND      

 0   0.0%   feda2885...  thor.cluster 27947  psanders   00:00:11  async_sessio 

 1   0.0%   IDLE (r7)    -            -      -          -         -            

 



DFE HardwareDFE Hardware  
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Maxeler Data Flow Engines (DFEs) 

ISCA 

• 28nm process 
• 250MHz clock 
• Sub 1us latency 

• 16K TCP connections 

• 28nm process 
• 250MHz clock frequency 
• 6.25MB SRAM 
• 4,000 multipliers 

• 700K logic cells 
• 3GB/s CPU bandwidth 
• 96GB DRAM 

 

MAIA 

• Stream to/from Host (PCIe) 
• Stream to/from DRAM 
• Stream to/from DFE (MaxRing) 
 

• Stream to/from network 
• UDP & TCP 

 



Maxeler Hardware Solutions 
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CPUs plus DFEs 
Intel Xeon CPU cores and up to 

6 DFEs with 288GB of RAM 

DFEs shared over Infiniband  
Up to 8 DFEs with 384GB of 
RAM and dynamic allocation 

of DFEs to CPU servers 

Low latency connectivity 
Intel Xeon CPUs and 1-2 DFEs 
with up to six 10Gbit Ethernet 

connections 

MaxWorkstation 
Desktop development system 

MaxCloud 
On-demand scalable accelerated  
compute resource, hosted in London 



MPC-X2000 

• 8 dataflow engines 
(192-384GB RAM) 

• High-speed MaxRing 

• Zero-copy RDMA between  
CPUs and DFEs over Infiniband 

• Dynamic CPU/DFE balancing 

4040  



STFC 
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Hartree Centre 



SoftwareSoftware  



Lines of code 

Total Application 1,000,000 

Kernel to accelerate 2,000 

Software to restructure 20,000 

Accelerating Real Applications 

• The majority of lines of code in most applications are 
unchanged 

• CPUs are good for: latency-sensitive, control-intensive, non-
repetitive code  

• Dataflow engines are good for: high throughput repetitive 
processing on large data volumes  

 

    A system should contain both 
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Creating custom DFE configurations 

4444  
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t 
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MaxCompiler 
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correctly? 
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Integrate with 
CPU code 

Meets 
performance 

goals? 

Accelerated 
Application 

NO 

YES YES 

NO 

Transform app, 
architect and 

model 
performance 



• Complete development environment for Maxeler DFE 
accelerator platforms 

• Write MaxJ code to describe the dataflow graph 
– MaxJ is an extension of Java for MaxCompiler 

– Execute the Java to generate the DFE image (bitstream) 

– Meta-programming. Java does NOT execute when running 
final application. 

• Compiler generates C API for CPUs to use the DFE 
– C API called SLiC  

– Basic Static interface – single function 
• loads DFE with bitstream 

• Sets scalars and streams data in/out 

 

MaxCompiler & MaxIDE 
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Application Components 

SLiC 

MaxelerOS 

Memory 

CPU 
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PCI Express 

Kernels (MaxJ) 

(instantiate the 

arithmetic structure) 

* + 

+ 

Manager (MaxJ) 

(arrange the data 

orchestration) 

Host application (C, Python, Matlab..) 

4646  



DFE contains a Manager and Kernels 
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• Globally Asynchronous Locally Synchronous (GALS) architecture. 
• Manager has full flow control. 
• Manager made from standard blocks. 
• Kernels are fully synchronous. 
• Kernels runs while data at inputs and space at output, else stalls. 

Manager 

FIFO 

Memory 
Controller 

PCIe & DMA 
Controller 

MaxRing 
Interface 

x

x

+

30

x

Kernel 



The required parts to create a DFE 

Manager Code CPU Code Kernel Code 
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for (int i =0; i < DATA_SIZE; i++) 
    y[i]= x[i] * x[i] + 30; 

Main 

Memory 

CPU 
CPU 
Code  

Host Code (.c) 

Simple Application Example 

 
 
int*x, *y; 

30 iii xxy
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PCI 

 

 

Express 

Manager 

DFE 

Memory 

MyManager (.maxj) 

x

x

+
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x

Manager m = new Manager(); 
Kernel k =  
     new MyKernel(); 
 
m.setKernel(k); 
m.setIO( 
    link(“x", CPU), 
 
m.build(); 

 
 
 
 
 
 
 
    link(“y", CPU)); 

MyKernel(DATA_SIZE, 
                   x, DATA_SIZE*4, 
                   y, DATA_SIZE*4); 

 
 
 
for (int i =0; i < DATA_SIZE; i++) 
    y[i]= x[i] * x[i] + 30; 

Main 

Memory 

CPU 
CPU 
Code  

Host Code (.c) 

Development Process 

SLiC 

MaxelerOS 

 
 
DFEVar x = io.input("x", dfeInt(32)); 
 
DFEVar result = x * x + 30; 
 
io.output("y", result, dfeInt(32)); 

MyKernel (.maxj) 

 
 
int*x, *y; 
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x 
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PCI 

 

 

Express 

Manager 

DFE 

Memory 

MyManager (.maxj) 

Manager m = new Manager(); 
Kernel k =  
     new MyKernel(); 
 
m.setKernel(k); 
m.setIO( 
    link(“x", CPU), 
 
m.build(); 

 
 
 
 
 
 
 

device = max_open_device(maxfile, 
    "/dev/maxeler0"); 
 
MyKernel( DATA_SIZE, 
                    x, DATA_SIZE*4); 

 
 
 

Main 

Memory 

CPU 
CPU 
Code  

Host Code (.c) 

Development Process 

SLiC 

MaxelerOS 

 
 
DFEVar x = io.input("x", dfeInt(32)); 
 
DFEVar result = x * x + 30; 
 
io.output("y", result, dfeInt(32)); 

MyKernel (.maxj) 

 
int*x, *y; 

 
 
 
 
 
 
 

x x 

y y 

 link(“y", DRAM_LINEAR1D)); 

x
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30 
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Data flow graph as  
generated by compiler  

4866 nodes 

Each node represents an 
operator in MaxJ code with 
area time parameters. Each 
line (edge) represents a 
DFEVar in MaxJ code. 



• MaxCompiler gives detailed latency annotation back 
to the programmer 

 

 

 

 

• Evaluate precise effect of code 

     on latency 
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Path Latency Reporting 

12.8ns 12.8ns 6.4ns 6.4ns + = 19.2ns (total compute latency) 19.2ns (total compute latency) 



• Allows you to see what lines of code are using what 
resources and focus optimization 

– Separate reports for each kernel and for the manager 
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Resource Usage Reporting 

    LUTs     FFs   BRAMs    DSPs : MyKernel.java 

     727     871     1.0       2 : resources used by this file 

   0.24%   0.15%   0.09%   0.10% : % of available 

  71.41%  61.82% 100.00% 100.00% : % of total used 

  94.29%  97.21% 100.00% 100.00% : % of user resources 

                                 : 

                                 : public class MyKernel extends Kernel { 

                                 :   public MyKernel (KernelParameters parameters) { 

                                 :      super(parameters); 

       1      31     0.0       0 :      DFEVar p = io.input("p", dfeFloat(8,24)); 

       2       9     0.0       0 :      DFEVar q = io.input("q", dfeUInt(8)); 

                                 :      DFEVar offset = io.scalarInput("offset", dfeUInt(8)); 

       8       8     0.0       0 :      DFEVar addr = offset + q; 

      18      40     1.0       0 :      DFEVar v = mem.romMapped("table", addr,  

                                 :                              dfeFloat(8,24), 256); 

     139     145     0.0       2 :      p = p * p; 

     401     541     0.0       0 :      p = p + v; 

                                 :      io.output("r", p, dfeFloat(8,24)); 

                                 :   } 

                                 : } 



Example ProjectsExample Projects  
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Imaging Platform Example: Weather 

1U CPU Node 

Wall Clock Time: 2 hours 
1U Dataflow Node 

less than 2 minutes 
Problem size:  (Longitude) 13,600 Km x  (Latitude) 3330 Km 

Simulation of baroclinic instability after 500 time steps. 
 
Acceleration of a Meteorological Limited Area Model with Dataflow Engines, D. Oriato,  
S. Tilbury (Maxeler), M. Marrocu, G. Pusceddu (CRS4), SAAHPC Conference, May 2012.   



Achieved Computational Speedup for the entire  
application (not just the kernel) compared to Intel server 

RTM with Chevron 

VTI 19x and TTI 25x Sparse Matrix 

20-40x 

Seismic Trace Processing 

24x 

Lattice Boltzman 

Fluid Flow 30x 
Conjugate Gradient Opt 26x Credit 32x and Rates 26x 

624 

624 



MaxAcademyMaxAcademy  



Maxeler UP 

• University program has over 150 university 
members 

• Membership is free 

• Hardware can be bought with discount; software 
free 

– Low cost Galava DFE 

• Possible to access via simulator and cloud 

• Shared research among the members. 



Maxeler University Program Members 



Maxeler University Program Members 
150 Universities on 5 continents. 



appgallery.maxeler.com 
Number of example applications with, in many cases, access to source and docs. 



github.com/maxeler/maxpower 
Open source project of kernel utilities and functional blocks. 



Maxeler Developer Exchange (MDX) 
Google group for Q&A amongst developers and Maxeler staff. 



Break ? 

Questions ? 


