
CIS016-1 - Principles of Programming 2015/2016
Exercise Week 21

This exercise sheet is related to Week 20 and previous lectures, so please consult the lecture
notes when attempting the exercises. In particular, please also download and investigate the
example code and think about event-based programming. Everything you need can be found
on BREO under “Guided Learning → Week 21”.

A classical application of recursion is to traverse a tree. Here we try to implement a simple an-
cestry tree with the goal to print the ancestors of a person. To do so we will first create a suita-
ble class to model a person (Exercise 1) and his/her parents and then use this in a recursive
method to print all ancestors (Exercise 2).

Exercise 1: People and their Moms and Dads

1. Create a class Person that holds a first name and a last name of a person. First and last
name should be given in the constructor. Furthermore, implement access methods get-
FirstName() and getLastName() that return the first and last name, respectively.

2. Extend your Person class so that it can hold the mother and father of a person. Mother

and father are instances of Person as well. Create methods to get and set the father and
the mother of a person, ie.. joe.setMother(anne) would specify that Anne is the mother of
Joe (if joe and anne are instances of Person).

Exercise 2: Ancestors

1. Use the Person class from Exercise 1 to develop an orchestrating class that generates a
small ancestry database comprising a person, his/her parents and grandparents.

Hint: you may take our own ancestry as example or make something up. Create a Per-
son instance for each parent and grandparent. Use setMother() and setFather() to set
up the ancestry relationship; ie. your grandmother is your mother's mother.

2. Extend your Person class with a static and recursive method printAncestors (Person p)
that takes a Person instance p as parameter and prints all known ancestors of this person
(parents, grandparents etc).

Example: printAncestors(joe) should print Joe's name, the name of his parents and the
names of his grandparents, etc. As mentioned printAncestors(...) must be recursive, so
it needs to invoke itself just as you've seen in the lecture. Make sure that you do not cre-
ate an infinite loop and that you handle the condition that p is null (think about what this

means – can we use this to avoid an infinite loop?).

CIS016-1 - Principles of Programming 2015/2016
Exercise Week 21

3. Extend your orchestrating class so that it prints the ancestors of a selected person using
printAncestors(...). Please make sure that you print at least parents and grandparents.
You can use the example you created in (a).

