
15C h a p t e r

W669

The Java
Collections
Framework

To learn how to use the collection
classes supplied in the Java library

To use iterators to traverse collections

To choose appropriate collections for solving programming problems

To study applications of stacks and queues

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

15.1  An Overview of the Collections
Framework  W670

15.2  Linked Lists  W672

Random Fact 15.1: Standardization W 678

15.3  Sets  W679

Programming Tip 15.1: Use Interface References
to Manipulate Data Structures W 683

15.4  Maps  W684

How To 15.1: Choosing a Collection W 686
Worked Example 15.1: Word Frequency 
Special Topic 15.1: Hash Functions W 688

15.5  Stacks, Queues, and
Priority Queues  W690

15.6  Stack and Queue
Applications  W693

Worked Example 15.2: Simulating a Queue of
Waiting Customers 

Random Fact 15.2: Reverse Polish Notation W 701
Video Example 15.1: Building a Table

of Contents 

W670

If you want to write a program that collects objects (such
as the stamps to the left), you have a number of choices. Of
course, you can use an array list, but computer scientists
have invented other mechanisms that may be better suited
for the task. In this chapter, we introduce the collection
classes and interfaces that the Java library offers. You will
learn how to use the Java collection classes, and how to
choose the most appropriate collection type for a problem.

15.1  An Overview of the Collections Framework
When you need to organize multiple objects in your program, you can place them
into a collection. The ArrayList class that was introduced in Chapter 6 is one of many
collection classes that the standard Java library supplies. In this chapter, you will
learn about the Java collections framework, a hierarchy of interface types and classes
for collecting objects. Each interface type is implemented by one or more classes (see
Figure 1).

At the root of the hierarchy is the Collection interface. That interface has methods
for adding and removing elements, and so on. Table 1 on page W672 shows all the meth-
ods. Because all collections implement this interface, its methods are available for all
collection classes. For example, the size method reports the number of elements in
any collection.

The List interface describes an important category of collections. In Java, a list is a
collection that remembers the order of its elements (see Figure 2). The ArrayList class
implements the List interface. The Java library supplies another class, LinkedList, that
also implements the List interface. Unlike an array list, a linked list allows speedy
insertion and removal of elements in the middle of the list. We will discuss that class
in the next section.

 You use a list whenever you want to retain the order that you established. For
example, on your bookshelf, you may order books by topic. A list is an appropriate
data structure for such a collection because the ordering matters to you.

A collection groups
together elements
and allows them to
be retrieved later.

A list is a collection
that remembers the
order of its elements.

Figure 1  Interfaces and Classes in the Java Collections Framework

‹‹interface››
Map

HashMap TreeMap

‹‹interface››
Collection

HashSet TreeSetStack LinkedList

‹‹interface››
List

‹‹interface››
Queue

‹‹interface››
Set

ArrayList PriorityQueue

15.1 A n Overview of the Collections Framework   W671

However, in many applications, you don’t really care about the order of the ele-
ments in a collection. Consider a mail-order dealer of books. Without customers
browsing the shelves, there is no need to order books by topic. Such a collection
without an intrinsic order is called a set—see Figure 3.

Because a set does not track the order of the elements, it can arrange them in a
way that speeds up the operations of finding, adding, and removing elements. Com-
puter scientists have invented mechanisms for this purpose. The Java library provides
classes that are based on two such mechanisms (called hash tables and binary search
trees). You will learn in this chapter how to choose between them.

Another way of gaining efficiency in a collection is to reduce the number of opera-
tions. A stack remembers the order of its elements, but it does not allow you to insert
elements in every position. You can add and remove elements only at the top—see
Figure 4.

In a queue, you add items to one end (the tail) and remove them from the other end
(the head). For example, you could keep a queue of books, adding required reading at
the tail and taking a book from the head whenever you have time to read another one.
We will discuss stacks and queues in Section 15.5.

Finally, a map manages associations between keys and values. Every key in the
map has an associated value. The map stores the keys, values, and the associations
between them. For an example, consider a library that puts a bar code on each book.

The program used to check books in and out needs to look up the book associated
with each bar code. A map associating bar codes with books can solve this problem—
see Figure 5. We will discuss maps in Section 15.4.

Figure 2  A List of Books Figure 3  A Set of Books Figure 4  A Stack of Books

A set is an unordered
collection of unique
elements.

A map keeps
associations
between key and
value objects.

Figure 5  A Map from Bar Codes to Books

ISBN 978-0-470-10555-9

9 7 8 0 4 7 0 1 0 5 5 5 9

9 0 0 0 0

Values

Keys
ISBN 978-0-470-10554-2

9 7 8 0 4 7 0 1 0 5 5 4 2

9 0 0 0 0
ISBN 978-0-470-50948-1

9 7 8 0 4 7 0 5 0 9 4 8 1

9 0 0 0 0

ISBN 978-0-470-38329-2

9 7 8 0 4 7 0 3 8 3 2 9 2

9 0 0 0 0
ISBN 978-0-471-79191-1

9 7 8 0 4 7 1 7 9 1 9 1 1

9 0 0 0 0

W672  Chapter 15  The Java Collections Framework

Table 1 The Methods of the Collection Interface

Collection<String> coll =
 new ArrayList<String>();

The ArrayList class implements the Collection
interface.

coll = new TreeSet<String>(); The TreeSet class (Section 15.3) also
implements the Collection interface.

int n = coll.size(); Gets the size of the collection. n is now 0.

coll.add("Harry");
coll.add("Sally");

Adds elements to the collection.

String s = coll.toString(); Returns a string with all elements in the
collection. s is now "[Harry, Sally]"

System.out.println(coll); Invokes the toString method and prints
[Harry, Sally].

coll.remove("Harry");
boolean b = coll.remove("Tom");

Removes an element from the collection,
returning false if the element is not present.
b is false.

b = coll.contains("Sally"); Checks whether this collection contains a
given element. b is now true.

for (String s : coll)
{
 System.out.println(s);
}

You can use the “for each” loop with any
collection. This loop prints the elements on
separate lines.

Iterator<String> iter = coll.iterator() You use an iterator for visiting the elements in
the collection (see Section 15.2.3).

1.	 A gradebook application stores a collection of quizzes. Should it use a list or
a set?

2.	 A student information system stores a collection of student records for a
university. Should it use a list or a set?

3.	 Why is a queue of books a better choice than a stack for organizing your
required reading?

4.	 As you can see from Figure 1, the Java collections framework does not consider
a map a collection. Give a reason for this decision.

Practice It	 Now you can try these exercises at the end of the chapter: R15.1, R15.2, R15.3.

15.2  Linked Lists
A linked list is a data structure used for collecting a sequence of objects that allows
efficient addition and removal of elements in the middle of the sequence. In the fol-
lowing sections, you will learn how a linked list manages its elements and how you
can use linked lists in your programs.

O n l i n e E x a m p l e

A sample program
that demonstrates
several collection
classes.

S e l f C h e c k

15.2 L inked Lists   W673

15.2.1  The Structure of Linked Lists

To understand the inefficiency of arrays
and the need for a more efficient data
structure, imagine a program that main-
tains a sequence of employee names. If an
employee leaves the company, the name
must be removed. In an array, the hole
in the sequence needs to be closed up by
moving all objects that come after it. Con-
versely, suppose an employee is added in
the middle of the sequence. Then all names
following the new hire must be moved
toward the end. Moving a large number of
elements can involve a substantial amount
of processing time. A linked list structure
avoids this movement.

A linked list uses a sequence of nodes. A node is an object that stores an element
and references to the neighboring nodes in the sequence (see Figure 6).

When you insert a new node into a linked list, only the neighboring node references
need to be updated (see Figure 7).

The same is true when you remove a node (see Figure 8). What’s the catch? Linked
lists allow speedy insertion and removal, but element access can be slow.

Each node in a linked list is connected to the
neighboring nodes.

A linked list consists
of a number of
nodes, each of which
has a reference to
the next node.

Figure 6 
A Linked List

Tom Diana Harry

Figure 7 
Inserting a
Node into a
Linked List

Tom Diana Harry

Romeo

Figure 8 
Removing a
Node from a
Linked List

Tom Diana Harry

W674  Chapter 15  The Java Collections Framework

For example, suppose you want to locate the fifth element. You must first traverse
the first four. This is a problem if you need to access the elements in arbitrary order.
The term “random access” is used in computer science to describe an access pattern in
which elements are accessed in arbitrary (not necessarily random) order. In contrast,
sequential access visits the elements in sequence.

Of course, if you mostly visit all elements in sequence (for example, to display
or print the elements), the inefficiency of random access is not a problem. You use
linked lists when you are concerned about the efficiency of inserting or removing ele-
ments and you rarely need element access in random order.

15.2.2  The LinkedList Class of the Java Collections
Framework

The Java library provides a LinkedList class in the java.util package. It is a generic
class, just like the ArrayList class. That is, you specify the type of the list elements in
angle brackets, such as LinkedList<String> or LinkedList<Employee>.

Table 2 shows important methods of the LinkedList class. (Remember that the
LinkedList class also inherits the methods of the Collection interface shown in Table 1.)

As you can see from Table 2, there are methods for accessing the beginning and the
end of the list directly. However, to visit the other elements, you need a list iterator.
We discuss iterators next.

Table 2 Working with Linked Lists

LinkedList<String> list = new LinkedList<String>(); An empty list.

list.addLast("Harry"); Adds an element to the end of the list.
Same as add.

list.addFirst("Sally"); Adds an element to the beginning of
the list. list is now [Sally, Harry].

list.getFirst(); Gets the element stored at the
beginning of the list; here "Sally".

list.getLast(); Gets the element stored at the end of
the list; here "Harry".

String removed = list.removeFirst(); Removes the first element of the list
and returns it. removed is "Sally" and
list is [Harry]. Use removeLast to
remove the last element.

ListIterator<String> iter = list.listIterator() Provides an iterator for visiting all list
elements (see Table 3 on page W676).

15.2.3  List Iterators

An iterator encapsulates a position anywhere inside the linked list. Conceptually,
you should think of the iterator as pointing between two elements, just as the cursor

Adding and removing
elements at a given
location in a linked
list is efficient.

Visiting the elements
of a linked list in
sequential order is
efficient, but random
access is not.

15.2 L inked Lists   W675

in a word processor points between two characters (see Figure 9). In the conceptual
view, think of each element as being like a letter in a word processor, and think of the
iterator as being like the blinking cursor between letters.

You obtain a list iterator with the listIterator method of the LinkedList class:

LinkedList<String> employeeNames = . . .;
ListIterator<String> iterator = employeeNames.listIterator();

Note that the iterator class is also a generic type. A ListIterator<String> iterates
through a list of strings; a ListIterator<Book> visits the elements in a LinkedList<Book>.

Initially, the iterator points before the first element. You can move the iterator
position with the next method:

iterator.next();

The next method throws a NoSuchElementException if you are already past the end of
the list. You should always call the iterator’s hasNext method before calling next—it
returns true if there is a next element.

if (iterator.hasNext())
{
 iterator.next();
}

The next method returns the element that the iterator is passing. When you use a
ListIterator<String>, the return type of the next method is String. In general, the return
type of the next method matches the list iterator’s type parameter (which reflects the
type of the elements in the list).

You traverse all elements in a linked list of strings with the following loop:

while (iterator.hasNext())
{
 String name = iterator.next();
 Do something with name
}

As a shorthand, if your loop simply visits all elements of the linked list, you can use
the “for each” loop:

for (String name : employeeNames)
{
 Do something with name
}

Then you don’t have to worry about iterators at all. Behind the scenes, the for loop
uses an iterator to visit all list elements.

You use a list iterator
to access elements
inside a linked list.

A N I M AT I O N
List Iterators

Figure 9  A Conceptual View of the List Iterator

D H R T

D H R T

D J R TH R T

Initial ListIterator position

After calling next

After inserting J

next returns D

W676  Chapter 15  The Java Collections Framework

The nodes of the LinkedList class store two links: one to the next element and one
to the previous one. Such a list is called a doubly-linked list. You can use the previ-
ous and hasPrevious methods of the ListIterator interface to move the iterator position
backward.

The add method adds an object after the iterator, then moves the iterator position
past the new element.

iterator.add("Juliet");

You can visualize insertion to be like typing text in a word processor. Each character
is inserted after the cursor, then the cursor moves past the inserted character (see Fig-
ure 9). Most people never pay much attention to this—you may want to try it out and
watch carefully how your word processor inserts characters.

The remove method removes the object that was returned by the last call to next or
previous. For example, this loop removes all names that fulfill a certain condition:

while (iterator.hasNext())
{
 String name = iterator.next();
 if (condition is fulfilled for name)
 {
 iterator.remove();
 }
}

You have to be careful when calling remove. It can be called only once after calling
next or previous, and you cannot call it immediately after a call to add. If you call the
method improperly, it throws an IllegalStateException.

Table 3 summarizes the methods of the ListIterator interface. The ListIterator
interface extends a more general Iterator interface that is suitable for arbitrary col-
lections, not just lists. The table indicates which methods are specific to list iterators.

Following is a sample program that inserts strings into a list and then iterates
through the list, adding and removing elements. Finally, the entire list is printed. The
comments indicate the iterator position.

Table 3 Methods of the Iterator and ListIterator Interfaces

String s = iter.next(); Assume that iter points to the beginning of the list [Sally] before
calling next. After the call, s is "Sally" and the iterator points to the end.

iter.previous();
iter.set("Juliet");

The set method updates the last element returned by next or previous.
The list is now [Juliet].

iter.hasNext() Returns false because the iterator is at the end of the collection.

if (iter.hasPrevious())
{
 s = iter.previous();
}

hasPrevious returns true because the iterator is not at the beginning of
the list. previous and hasPrevious are ListIterator methods.

iter.add("Diana"); Adds an element before the iterator position (ListIterator only). The
list is now [Diana, Juliet].

iter.next();
iter.remove();

remove removes the last element returned by next or previous. The list is
now [Diana].

15.2 L inked Lists   W677

section_2/ListDemo.java

1 import java.util.LinkedList;
2 import java.util.ListIterator;
3
4 /**
5 This program demonstrates the LinkedList class.
6 */
7 public class ListDemo
8 {
9 public static void main(String[] args)

10 {
11 LinkedList<String> staff = new LinkedList<String>();
12 staff.addLast("Diana");
13 staff.addLast("Harry");
14 staff.addLast("Romeo");
15 staff.addLast("Tom");
16
17 // | in the comments indicates the iterator position
18
19 ListIterator<String> iterator = staff.listIterator(); // |DHRT
20 iterator.next(); // D|HRT
21 iterator.next(); // DH|RT
22
23 // Add more elements after second element
24
25 iterator.add("Juliet"); // DHJ|RT
26 iterator.add("Nina"); // DHJN|RT
27
28 iterator.next(); // DHJNR|T
29
30 // Remove last traversed element
31
32 iterator.remove(); // DHJN|T
33
34 // Print all elements
35
36 System.out.println(staff);
37 System.out.println("Expected: [Diana, Harry, Juliet, Nina, Tom]");
38 }
39 }

Program Run

[Diana, Harry, Juliet, Nina, Tom]
Expected: [Diana, Harry, Juliet, Nina, Tom]

5.	 Do linked lists take more storage space than arrays of the same size?
6.	 Why don’t we need iterators with arrays?
7.	 Suppose the list lst contains elements "A", "B", "C", and "D". Draw the contents of

the list and the iterator position for the following operations:
ListIterator<String> iter = letters.iterator();
iter.next();
iter.next();
iter.remove();
iter.next();
iter.add("E");

S e l f C h e c k

W678  Chapter 15  The Java Collections Framework

iter.next();
iter.add("F");

8.	 Write a loop that removes all strings with length less than four from a linked list
of strings called words.

9.	 Write a loop that prints every second element of a linked list of strings called
words.

Practice It	 Now you can try these exercises at the end of the chapter: R15.4, R15.7, P15.1.

You encounter the
benefits of standard­

ization every day. When you buy a
light bulb, you can be assured that it
fits the socket without having to mea­
sure the socket at home and the light
bulb in the store. In fact, you may have
experienced how painful the lack of
standards can be if you have ever pur­
chased a flashlight with nonstandard
bulbs. Replacement bulbs for such a
flashlight can be difficult and expen­
sive to obtain.

Programmers have a similar desire
for standardization. Consider the impor­
tant goal of platform independence
for Java programs. After you compile a
Java program into class files, you can
execute the class files on any computer
that has a Java virtual machine. For this
to work, the behavior of the virtual
machine has to be strictly defined. If all
virtual machines don’t behave exactly
the same way, then the slogan of “write
once, run anywhere” turns into “write
once, debug everywhere”. In order for
multiple implementors to create com­
patible virtual machines, the virtual
machine needed to be standardized.
That is, someone needed to create a
definition of the virtual machine and its
expected behavior.

Who creates standards? Some of the
most successful standards have been
created by volunteer groups such as
the Internet Engineering Task Force
(IETF) and the World Wide Web Con­
sortium (W3C). The IETF standardizes
protocols used in the Internet, such
as the protocol for exchanging e-mail
messages. The W3C standardizes the
Hypertext Markup Language (HTML),
the format for web pages. These stan­
dards have been instrumental in the
creation of the World Wide Web as an
open platform that is not controlled by
any one company.

Many programming languages,
such as C++ and Scheme, have been
standardized by independent stan­
dards organizations, such as the
American National Standards Institute
(ANSI) and the International Organiza­
tion for Standardization—called ISO
for short (not an acronym; see http://
www.iso.org/iso/about/discover-
iso_isos-name.htm). ANSI and ISO are
associations of industry profession­
als who develop standards for every­
thing from car tires to credit card
shapes to programming languages.

When a company invents a new
technology, it has an interest in its
invention becoming a standard, so that
other vendors produce tools that work
with the invention and thus increase
its likelihood of success. On the other
hand, by handing over the invention
to a standards committee, especially
one that insists on a fair process, the
company may lose control over the
standard. For that reason, Sun Micro­
systems, the inventor of Java, never
agreed to have a third-party organiza­
tion standardize the Java language.
They put in place their own standard­

ization process, involving other com­
panies but refusing to relinquish con­
trol. Another unfortunate but common
tactic is to create a weak standard.
For example, Netscape and Microsoft
chose the European Computer Manu­
facturers Association (ECMA) to stan­
dardize the JavaScript language. ECMA
was willing to settle for something less
than truly useful, standardizing the
behavior of the core language and just
a few of its libraries.

Of course, many important pieces
of technology aren’t standardized at
all. Consider the Windows operating
system. Although Windows is often
called a de-facto standard, it really is
no standard at all. Nobody has ever
attempted to define formally what the
Windows operating system should do.
The behavior changes at the whim of
its vendor. That suits Microsoft just
fine, because it makes it impossible for
a third party to create its own version
of Windows.

As a computer professional, there
will be many times in your career when
you need to make a decision whether
to support a particular standard. Con­
sider a simple example. In this chapter,
you learn about the collection classes
from the standard Java library. How­
ever, many computer scientists dislike
these classes because of their numer­
ous design issues. Should you use the
Java collections in your own code, or
should you implement a better set of
collections? If you do the former, you
have to deal with a design that is less
than optimal. If you do the latter, other
programmers may have a hard time
understanding your code because they
aren’t familiar with your classes.

Random Fact 15.1  Standardization

15.3 S ets   W679

15.3  Sets
As you learned in Section 15.1, a set organizes its values in an order that is optimized
for efficiency, which may not be the order in which you add elements. Inserting and
removing elements is faster with a set than with a list.

In the following sections, you will learn how to choose a set implementation and
how to work with sets.

15.3.1  Choosing a Set Implementation

The Set interface in the standard Java library has the same methods as the Collection
interface, shown in Table 1. However, there is an essential difference between arbi-
trary collections and sets. A set does not admit duplicates. If you add an element to a
set that is already present, the insertion is ignored.

The HashSet and TreeSet classes implement the Set interface. These two classes pro-
vide set implementations based on two different mechanisms, called hash tables and
binary search trees. Both implementations arrange the set elements so that finding,
adding, and removing elements is fast, but they use different strategies.

The basic idea of a hash table is simple. Set elements are grouped into smaller col-
lections of elements that share the same characteristic. You can imagine a hash set of
books as having a group for each color, so that books of the same color are in the same
group. To find whether a book is already present, you just need to check it against
the books in the same color group. Actually, hash tables don’t use colors, but integer
values (called hash codes) that can be computed from the elements.

In order to use a hash table, the elements must have a method to compute those
integer values. This method is called hashCode. The elements must also belong to a class
with a properly defined equals method (see Special Topic 9.7).

Many classes in the standard library implement these methods, for example String,
Integer, Double, Point, Rectangle, Color, and all the collection classes. Therefore, you can
form a HashSet<String>, HashSet<Rectangle>, or even a HashSet<HashSet<Integer>>.

Suppose you want to form a set of elements belonging to a class that you declared,
such as a HashSet<Book>. Then you need to provide hashCode and equals methods for the
class Book. There is one exception to this rule. If all elements are distinct (for example,
if your program never has two Book objects with the same author and title), then you
can simply inherit the hashCode and equals methods of the Object class.

On this shelf, books of the same color are grouped
together. Similarly, in a hash table, objects with the

same hash code are placed in the same group.

The HashSet and
TreeSet classes both
implement the
Set interface.

Set implementations
arrange the elements
so that they can
locate them quickly.

You can form hash
sets holding objects
of type String,
Integer, Double,
Point, Rectangle,
or Color.

W680  Chapter 15  The Java Collections Framework

A tree set keeps its elements in sorted order.

The TreeSet class uses a different strategy for
arranging its elements. Elements are kept in
sorted order. For example, a set of books might
be arranged by height, or alphabetically by
author and title. The elements are not stored in an array—that would make adding
and removing elements too slow. Instead, they are stored in nodes, as in a linked list.
However, the nodes are not arranged in a linear sequence but in a tree shape.

In order to use a TreeSet, it must be possible to compare the elements and determine
which one is “larger”. You can use a TreeSet for classes such as String and Integer that
implement the Comparable interface, which we discussed in Section 9.6.3. (That section
also shows you how you can implement comparison methods for your own classes.)

As a rule of thumb, you should choose a TreeSet if you want to visit the set’s ele-
ments in sorted order. Otherwise choose a HashSet––as long as the hash function is
well chosen, it is a bit more efficient.

When you construct a HashSet or TreeSet, store the reference in a Set<String> vari-
able, either as

Set<String> names = new HashSet<String>();

or
Set<String> names = new TreeSet<String>();

After you construct the collection object, the implementation no longer matters;
only the interface is important.

15.3.2  Working with Sets

Adding and removing set elements are accomplished with the add and remove methods:
names.add("Romeo");
names.remove("Juliet");

As in mathematics, a set collection in Java rejects duplicates. Adding an element has
no effect if the element is already in the set. Similarly, attempting to remove an ele-
ment that isn’t in the set is ignored.

The contains method tests whether an element is contained in the set:
if (names.contains("Juliet")) . . .

Finally, to list all elements in the set, get an iterator. As with list iterators, you use the
next and hasNext methods to step through the set.

Iterator<String> iter = names.iterator();
while (iter.hasNext())
{
 String name = iter.next();
 Do something with name
}

You can form tree
sets for any class that
implements the
Comparable interface,
such as String or
Integer.

Sets don’t have
duplicates. Adding a
duplicate of an
element that is
already present
is ignored.

15.3 S ets   W681

You can also use the “for each” loop instead of explicitly using an iterator:
for (String name : names)
{
 Do something with name
}

A set iterator visits the elements in the order in which the set implementation keeps
them. This is not necessarily the order in which you inserted them. The order of ele-
ments in a hash set seems quite random because the hash code spreads the elements
into different groups. When you visit elements of a tree set, they always appear in
sorted order, even if you inserted them in a different order.

There is an important difference between the Iterator that you obtain from a set
and the ListIterator that a list yields. The ListIterator has an add method to add an ele-
ment at the list iterator position. The Iterator interface has no such method. It makes
no sense to add an element at a particular position in a set, because the set can order
the elements any way it likes. Thus, you always add elements directly to a set, never
to an iterator of the set.

However, you can remove a set element at an iterator position, just as you do with
list iterators.

Also, the Iterator interface has no previous method to go backward through the
elements. Because the elements are not ordered, it is not meaningful to distinguish
between “going forward” and “going backward”.

Table 4 Working with Sets

Set<String> names; Use the interface type for variable declarations.

names = new HashSet<String>(); Use a TreeSet if you need to visit the elements
in sorted order.

names.add("Romeo"); Now names.size() is 1.

names.add("Fred"); Now names.size() is 2.

names.add("Romeo"); names.size() is still 2. You can’t add duplicates.

if (names.contains("Fred")) The contains method checks whether a value is
contained in the set. In this case, the method
returns true.

System.out.println(names); Prints the set in the format [Fred, Romeo]. The
elements need not be shown in the order in
which they were inserted.

for (String name : names)
{
 . . .
}

Use this loop to visit all elements of a set.

names.remove("Romeo"); Now names.size() is 1.

names.remove("Juliet"); It is not an error to remove an element that is
not present. The method call has no effect.

A set iterator visits
the elements in the
order in which the set
implementation
keeps them.

You cannot add an
element to a set at
an iterator position.

W682  Chapter 15  The Java Collections Framework

The following program shows a practical application of sets. It reads in all words
from a dictionary file that contains correctly spelled words and places them in a set.
It then reads all words from a document—here, the book Alice in Wonderland—into
a second set. Finally, it prints all words from that set that are not in the dictionary
set. These are the potential misspellings. (As you can see from the output, we used an
American dictionary, and words with British spelling, such as clamour, are flagged as
potential errors.)

section_3/SpellCheck.java

1 import java.util.HashSet;
2 import java.util.Scanner;
3 import java.util.Set;
4 import java.io.File;
5 import java.io.FileNotFoundException;
6
7 /**
8 This program checks which words in a file are not present in a dictionary.
9 */

10 public class SpellCheck
11 {
12 public static void main(String[] args)
13 throws FileNotFoundException
14 {
15 // Read the dictionary and the document
16
17 Set<String> dictionaryWords = readWords("words");
18 Set<String> documentWords = readWords("alice30.txt");
19
20 // Print all words that are in the document but not the dictionary
21
22 for (String word : documentWords)
23 {
24 if (!dictionaryWords.contains(word))
25 {
26 System.out.println(word);
27 }
28 }
29 }
30
31 /**
32 Reads all words from a file.
33 @param filename the name of the file
34 @return a set with all lowercased words in the file. Here, a
35 word is a sequence of upper- and lowercase letters.
36 */
37 public static Set<String> readWords(String filename)
38 throws FileNotFoundException
39 {
40 Set<String> words = new HashSet<String>();
41 Scanner in = new Scanner(new File(filename));
42 // Use any characters other than a-z or A-Z as delimiters
43 in.useDelimiter("[^a-zA-Z]+");
44 while (in.hasNext())
45 {
46 words.add(in.next().toLowerCase());
47 }

15.3 S ets   W683

48 return words;
49 }
50 }

Program Run

neighbouring
croqueted
pennyworth
dutchess
comfits
xii
dinn
clamour
...

10.	 Arrays and lists remember the order in which you added elements; sets do not.
Why would you want to use a set instead of an array or list?

11.	 Why are set iterators different from list iterators?
12.	 What is wrong with the following test to check whether the Set<String> s con-

tains the elements "Tom", "Diana", and "Harry"?
if (s.toString().equals("[Tom, Diana, Harry]")) . . .

13.	 How can you correctly implement the test of Self Check 12?
14.	 Write a loop that prints all elements that are in both Set<String> s and

Set<String> t.
15.	 Suppose you changed line 40 of the SpellCheck program to use a TreeSet instead of

a HashSet. How would the output change?

Practice It	 Now you can try these exercises at the end of the chapter: P15.7, P15.8, P15.13.

Use Interface References to Manipulate Data Structures

It is considered good style to store a reference to a HashSet or TreeSet in a variable of type Set:

Set<String> words = new HashSet<String>();

This way, you have to change only one line if you decide to use a TreeSet instead.
If a method can operate on arbitrary collections, use the Collection interface type for the

parameter variable:

public static void removeLongWords(Collection<String> words)

In theory, we should make the same recommendation for the List interface, namely to save
ArrayList and LinkedList references in variables of type List. However, the List interface has
get and set methods for random access, even though these methods are very inefficient for
linked lists. You can’t write efficient code if you don’t know whether the methods that you are
calling are efficient or not. This is plainly a serious design error in the standard library, and it
makes the List interface somewhat unattractive.

S e l f C h e c k

Programming Tip 15.1

W684  Chapter 15  The Java Collections Framework

15.4  Maps
A map allows you to associate elements from a key set with elements from a value
collection. You use a map when you want to look up objects by using a key. For exam-
ple, Figure 10 shows a map from the names of people to their favorite colors.

Just as there are two kinds of set implementations, the Java library has two imple-
mentations for the Map interface: HashMap and TreeMap.

After constructing a HashMap or TreeMap, you can store the reference to the map
object in a Map reference:

Map<String, Color> favoriteColors = new HashMap<String, Color>();

Use the put method to add an association:
favoriteColors.put("Juliet", Color.RED);

You can change the value of an existing association, simply by calling put again:
favoriteColors.put("Juliet", Color.BLUE);

The get method returns the value associated with a key.
Color julietsFavoriteColor = favoriteColors.get("Juliet");

If you ask for a key that isn’t associated with any values, then the get method returns
null.

To remove an association, call the remove method with the key:
favoriteColors.remove("Juliet");

Table 5 Working with Maps

Map<String, Integer> scores; Keys are strings, values are Integer
wrappers. Use the interface type for
variable declarations.

scores = new TreeMap<String, Integer>(); Use a HashMap if you don’t need to visit the
keys in sorted order.

scores.put("Harry", 90);
scores.put("Sally", 95);

Adds keys and values to the map.

scores.put("Sally", 100); Modifies the value of an existing key.

int n = scores.get("Sally");
Integer n2 = scores.get("Diana");

Gets the value associated with a key, or null
if the key is not present. n is 100, n2 is null.

System.out.println(scores); Prints scores.toString(), a string of the
form {Harry=90, Sally=100}

for (String key : scores.keySet())
{
 Integer value = scores.get(key);
 . . .
}

Iterates through all map keys and values.

scores.remove("Sally"); Removes the key and value.

The HashMap and
TreeMap classes
both implement
the Map interface.

A N I M AT I O N
Using a Map

15.4 M aps   W685

Figure 10  A Map

Romeo

Adam

Eve

Juliet

ValuesKeys

Sometimes you want to enumerate all keys in a map. The keySet method yields the set
of keys. You can then ask the key set for an iterator and get all keys. From each key,
you can find the associated value with the get method. Thus, the following instruc-
tions print all key/value pairs in a map m:

Set<String> keySet = m.keySet();
for (String key : keySet)
{
 Color value = m.get(key);
 System.out.println(key + "->" + value);
}

This sample program shows a map in action:

section_4/MapDemo.java

1 import java.awt.Color;
2 import java.util.HashMap;
3 import java.util.Map;
4 import java.util.Set;
5
6 /**
7 This program demonstrates a map that maps names to colors.
8 */
9 public class MapDemo

10 {
11 public static void main(String[] args)
12 {
13 Map<String, Color> favoriteColors = new HashMap<String, Color>();
14 favoriteColors.put("Juliet", Color.BLUE);
15 favoriteColors.put("Romeo", Color.GREEN);
16 favoriteColors.put("Adam", Color.RED);
17 favoriteColors.put("Eve", Color.BLUE);
18
19 // Print all keys and values in the map
20
21 Set<String> keySet = favoriteColors.keySet();

To find all keys
and values in a
map, iterate through
the key set and find
the values that
correspond to
the keys.

W686  Chapter 15  The Java Collections Framework

22 for (String key : keySet)
23 {
24 Color value = favoriteColors.get(key);
25 System.out.println(key + " : " + value);
26 }
27 }
28 }

Program Run

Juliet : java.awt.Color[r=0,g=0,b=255]
Adam : java.awt.Color[r=255,g=0,b=0]
Eve : java.awt.Color[r=0,g=0,b=255]
Romeo : java.awt.Color[r=0,g=255,b=0]

16.	 What is the difference between a set and a map?
17.	 Why is the collection of the keys of a map a set and not a list?
18.	 Why is the collection of the values of a map not a set?
19.	 Suppose you want to track how many times each word occurs in a document.

Declare a suitable map variable.
20.	 What is a Map<String, HashSet<String>>? Give a possible use for such a structure.

Practice It	 Now you can try these exercises at the end of the chapter: R15.17, P15.9, P15.14.

Step 1	 Determine how you access the values.

You store values in a collection so that you can later retrieve them. How do you want to access
individual values? You have several choices:
•	 Values are accessed by an integer position. Use an ArrayList.
•	 Values are accessed by a key that is not a part of the object. Use a map.
•	 Values are accessed only at one of the ends. Use a queue (for first-in, first-out access) or a

stack (for last-in, first-out access).
•	 You don’t need to access individual values by position. Refine your choice in Steps 3 and 4.

Step 2	 Determine the element types or key/value types.

For a list or set, determine the type of the elements that you want to store. For example, if you
collect a set of books, then the element type is Book.

S e l f C h e c k

How To 15.1	 Choosing a Collection

Suppose you need to store objects in a collection. You have
now seen a number of different data structures. This How
To reviews how to pick an appropriate collection for your
application.

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

15.4 M aps   W687

Similarly, for a map, determine the types of the keys and the associated values. If you want
to look up books by ID, you can use a Map<Integer, Book> or Map<String, Book>, depending on
your ID type.

Step 3	 Determine whether element or key order matters.

When you visit elements from a collection or keys from a map, do you care about the order in
which they are visited? You have several choices:
•	 Elements or keys must be sorted. Use a TreeSet or TreeMap. Go to Step 6.
•	 Elements must be in the same order in which they were inserted. Your choice is now

narrowed down to a LinkedList or an ArrayList.
•	 It doesn’t matter. As long as you get to visit all elements, you don’t care in which order. If

you chose a map in Step 1, use a HashMap and go to Step 5.

Step 4	 For a collection, determine which operations must be fast.

You have several choices:
•	 Finding elements must be fast. Use a HashSet.
•	 It must be fast to add or remove elements at the beginning, or, provided that you are

already inspecting an element there, another position. Use a LinkedList.
•	 You only insert or remove at the end, or you collect so few elements that you aren’t

concerned about speed. Use an ArrayList.

Step 5	 For hash sets and maps, decide whether you need to implement the hashCode and equals
methods.

•	 If your elements or keys belong to a class that someone else implemented, check whether
the class has its own hashCode and equals methods. If so, you are all set. This is the case for
most classes in the standard Java library, such as String, Integer, Rectangle, and so on.

•	 If not, decide whether you can compare the elements by identity. This is the case if you
never construct two distinct elements with the same contents. In that case, you need not
do anything—the hashCode and equals methods of the Object class are appropriate.

•	 Otherwise, you need to implement your own equals and hashCode methods––see Special
Topics 9.7 and Special Topic 15.1.

Step 6	 If you use a tree, decide whether to supply a comparator.

Look at the class of the set elements or map keys. Does that class implement the Comparable
interface? If so, is the sort order given by the compareTo method the one you want? If yes, then
you don’t need to do anything further. This is the case for many classes in the standard library,
in particular for String and Integer.

If not, then your element class must implement the Comparable interface (Section 9.6.3), or
you must declare a class that implements the Comparator interface (see Special Topic 14.5).

Worked Example 15.1	 Word Frequency

In this Worked Example, we read a text file and print a list of all words in the file in alphabeti-
cal order, together with a count that indicates how often each word occurred in the file.

W688  Chapter 15  The Java Collections Framework

Hash Functions

If you use a hash set or hash map with your own
classes, you may need to implement a hash func-
tion. A hash function is a function that computes
an integer value, the hash code, from an object in
such a way that different objects are likely to yield
different hash codes. Because hashing is so impor
tant, the Object class has a hashCode method. The
call

int h = x.hashCode();

computes the hash code of any object x. If you
want to put objects of a given class into a HashSet
or use the objects as keys in a HashMap, the class
should override this method. The method should
be implemented so that different objects are likely
to have different hash codes.

For example, the String class declares a hash function for
strings that does a good job of producing different integer values
for different strings. Table 6 shows some examples of strings and
their hash codes.

It is possible for two or more distinct objects to have the same
hash code; this is called a collision. For example, the strings "Ugh"
and "VII" happen to have the same hash code, but these collisions
are very rare for strings (see Exercise P15.15).

The hashCode method of the String class combines the charac-
ters of a string into a numerical code. The code isn’t simply the sum of the character values—
that would not scramble the character values enough. Strings that are permutations of another
(such as "eat" and "tea") would all have the same hash code.

Here is the method the standard library uses to compute the hash code for a string:

final int HASH_MULTIPLIER = 31;
int h = 0;
for (int i = 0; i < s.length(); i++)
{
 h = HASH_MULTIPLIER * h + s.charAt(i);
}

For example, the hash code of "eat" is

31 * (31 * 'e' + 'a') + 't' = 100184

Table 6 Sample Strings and Their Hash Codes

String Hash Code

"eat" 100184

"tea" 114704

"Juliet" –2065036585

"Ugh" 84982

"VII" 84982

Special Topic 15.1

A good hash function produces different
hash values for each object so that they
are scattered about in a hash table.

A hash function
computes an integer
value from an object.

A good hash function
minimizes collisions—
identical hash codes for
different objects.

15.4 M aps   W689

The hash code of "tea" is quite different, namely

31 * (31 * 't' + 'e') + 'a' = 114704

(Use the Unicode table from Appendix A to look up the character values: 'a' is 97, 'e' is 101,
and 't' is 116.)

For your own classes, you should make up a hash code that
combines the hash codes of the instance variables in a similar way.
For example, let us declare a hashCode method for the Country class
from Section 9.6.

There are two instance variables: the country name and the
area. First, compute their hash codes. You know how to compute
the hash code of a string. To compute the hash code of a floating-point number, first wrap the
floating-point number into a Double object, and then compute its hash code.

public class Country
{
 public int hashCode()
 {
 int h1 = name.hashCode();
 int h2 = new Double(area).hashCode();
 . . .
 }
}

Then combine the two hash codes:

final int HASH_MULTIPLIER = 29;
int h = HASH_MULTIPLIER * h1 + h2;
return h;

Use a prime number as the hash multiplier—it scrambles the values well.
If you have more than two instance variables, then combine their hash codes as follows:

int h = HASH_MULTIPLIER * h1 + h2;
h = HASH_MULTIPLIER * h + h3;
h = HASH_MULTIPLIER * h + h4;
. . .
return h;

If one of the instance variables is an integer, just use the value as its hash code.
When you supply your own hashCode method for a class, you must also provide a compati-

ble equals method. The equals method is used to differentiate between two objects that happen
to have the same hash code.

The equals and hashCode methods must be compatible with
each other. Two objects that are equal must yield the same hash
code.

You get into trouble if your class declares an equals method but
not a hashCode method. Suppose the Country class declares an equals
method (checking that the name and area are the same), but no hashCode method. Then the
hashCode method is inherited from the Object superclass. That method computes a hash code
from the memory location of the object. Then it is very likely that two objects with the same
contents will have different hash codes, in which case a hash set will store them as two distinct
objects.

However, if you declare neither equals nor hashCode, then there is no problem. The equals
method of the Object class considers two objects equal only if their memory location is the
same. That is, the Object class has compatible equals and hashCode methods. Of course, then the
notion of equality is very restricted: Only identical objects are considered equal. That can be a
perfectly valid notion of equality, depending on your application.

Override hashCode
methods in your own
classes by combining
the hash codes for the
instance variables.

A class’s hashCode
method must be
compatible with its
equals method.O NLINE E x a m p l e

A program that
demonstrates a hash
set with objects of
the Country class.

W690  Chapter 15  The Java Collections Framework

15.5  Stacks, Queues, and Priority Queues
In the following sections, we cover stacks, queues, and priority queues. These data
structures each have a different policy for data removal. Removing an element yields
the most recently added element, the least recently added, or the element with the
highest priority.

15.5.1  Stacks

A stack lets you insert and remove elements only
at one end, traditionally called the top of the stack.
New items can be added to the top of the stack.
Items are removed from the top of the stack as well.
Therefore, they are removed in the order that is
opposite from the order in which they have been
added, called last-in, first-out or LIFO order. For
example, if you add items A, B, and C and then remove
them, you obtain C, B, and A. With stacks, the addi-
tion and removal operations are called push and pop.

Stack<String> s = new Stack<String>();
s.push("A"); s.push("B"); s.push("C");
while (s.size() > 0)
{
 System.out.print(s.pop() + " "); // Prints C B A
}

There are many applications for stacks in computer science. Consider the undo fea-
ture of a word processor. It keeps the issued commands in a stack. When you select
“Undo”, the last command is undone, then the next-to-last, and so on.

Another important example is the run-time stack that a processor or virtual
machine keeps to store the values of variables in nested methods. Whenever a new
method is called, its parameter variables and local variables are pushed onto a stack.
When the method exits, they are popped off again.

You will see other applications in Section 15.6.
The Java library provides a simple Stack class with methods push, pop, and peek—the

latter gets the top element of the stack but does not remove it (see Table 7).

Table 7 Working with Stacks

Stack<Integer> s = new Stack<Integer>(); Constructs an empty stack.

s.push(1);
s.push(2);
s.push(3);

Adds to the top of the stack; s is now [1, 2,
3]. (Following the toString method of the
Stack class, we show the top of the stack at
the end.)

int top = s.pop(); Removes the top of the stack; top is set to 3
and s is now [1, 2].

head = s.peek(); Gets the top of the stack without removing
it; head is set to 2.

The last pancake that has been
added to this stack will be the
first one that is consumed.

A stack is a collection
of elements with
“last-in, first-out”
retrieval.

The Undo key pops
commands off a
stack, so that the last
command is the first
to be undone.

15.5 S tacks, Queues, and Priority Queues   W691

15.5.2  Queues

A queue lets you add items to one end of
the queue (the tail) and remove them from
the other end of the queue (the head).
Queues yield items in a first-in, first-out
or FIFO fashion. Items are removed in
the same order in which they were added.

A typical application is a print queue.
A printer may be accessed by several
applications, perhaps running on differ-
ent computers. If each of the applications
tried to access the printer at the same time,
the printout would be garbled. Instead,
each application places its print data into a file and adds that file to the print queue.
When the printer is done printing one file, it retrieves the next one from the queue.
Therefore, print jobs are printed using the “first-in, first-out” rule, which is a fair
arrangement for users of the shared printer.

The Queue interface in the standard Java library has methods add to add an element
to the tail of the queue, remove to remove the head of the queue, and peek to get the
head element of the queue without removing it (see Table 8).

The LinkedList class implements the Queue interface. Whenever you need a queue,
simply initialize a Queue variable with a LinkedList object:

Queue<String> q = new LinkedList<String>();
q.add("A"); q.add("B"); q.add("C");
while (q.size() > 0) { System.out.print(q.remove() + " "); } // Prints A B C

The standard library provides several queue classes that we do not discuss in this
book. Those classes are intended for work sharing when multiple activities (called
threads) run in parallel.

Table 8 Working with Queues

Queue<Integer> q = new LinkedList<Integer>(); The LinkedList class implements the Queue interface.

q.add(1);
q.add(2);
q.add(3);

Adds to the tail of the queue; q is now [1, 2, 3].

int head = q.remove(); Removes the head of the queue; head is set to 1 and q is [2, 3].

head = q.peek(); Gets the head of the queue without removing it; head is set to 2.

15.5.3  Priority Queues

A priority queue collects elements, each of which has a priority. A typical example
of a priority queue is a collection of work requests, some of which may be more
urgent than others. Unlike a regular queue, the priority queue does not maintain a
first-in, first-out discipline. Instead, elements are retrieved according to their prior-
ity. In other words, new items can be inserted in any order. But whenever an item is
removed, it is the item with the most urgent priority.

To visualize a queue, think of people lining up.

A queue is a
collection of
elements with
“first-in, first-out”
retrieval.

When removing an
element from a
priority queue, the
element with the
most urgent priority
is retrieved.

W692  Chapter 15  The Java Collections Framework

It is customary to give low values to urgent priorities, with priority 1
denoting the most urgent priority. Thus, each removal operation extracts the
minimum element from the queue.

For example, consider this code in which we add objects of a class Work
Order into a priority queue. Each work order has a priority and a description.

PriorityQueue<WorkOrder> q = new PriorityQueue<WorkOrder>();
q.add(new WorkOrder(3, "Shampoo carpets"));
q.add(new WorkOrder(1, "Fix broken sink"));
q.add(new WorkOrder(2, "Order cleaning supplies"));

When calling q.remove() for the first time, the work order with priority 1 is
removed. The next call to q.remove() removes the work order whose priority
is highest among those remaining in the queue—in our example, the work
order with priority 2. If there happen to be two elements with the same pri-
ority, the priority queue will break ties arbitrarily.

Because the priority queue needs to be able to tell which element is the smallest,
the added elements should belong to a class that implements the Comparable interface.
(See Section 9.6.3 for a description of that interface type.)

Table 9 shows the methods of the PriorityQueue class in the standard Java library.

Table 9 Working with Priority Queues

PriorityQueue<Integer> q =
 new PriorityQueue<Integer>();

This priority queue holds Integer objects. In
practice, you would use objects that describe tasks.

q.add(3); q.add(1); q.add(2); Adds values to the priority queue.

int first = q.remove();
int second = q.remove();

Each call to remove removes the lowest priority item:
first is set to 1, second to 2.

int next = q.peek(); Gets the smallest value in the priority queue without
removing it.

21.	 Why would you want to declare a variable as
Queue<String> q = new LinkedList<String>()

instead of simply declaring it as a linked list?
22.	 Why wouldn’t you want to use an array list for implementing a queue?
23.	 What does this code print?

Queue<String> q = new LinkedList<String>();
q.add("A");
q.add("B");
q.add("C");
while (q.size() > 0) { System.out.print(q.remove() + " "); }

24.	 Why wouldn’t you want to use a stack to manage print jobs?
25.	 In the sample code for a priority queue, we used a WorkOrder class. Could we have

used strings instead?
PriorityQueue<String> q = new PriorityQueue<String>();
q.add("3 - Shampoo carpets");
q.add("1 - Fix broken sink");
q.add("2 - Order cleaning supplies");

When you retrieve an item from
a priority queue, you always
get the most urgent one.

O NLINE E x a m p l e

Programs that
demonstrate stacks,
queues, and priority
queues.

S e l f C h e c k

15.6 S tack and Queue Applications   W693

Practice It	 Now you can try these exercises at the end of the chapter: R15.12, P15.3, P15.4.

15.6  Stack and Queue Applications
Stacks and queues are, despite their simplicity, very versatile data structures. In the
following sections, you will see some of their most useful applications.

15.6.1  Balancing Parentheses

In Common Error 2.5, you saw a simple trick for detecting unbalanced parentheses
in an expression such as

-(b * b - (4 * a * c)) / (2 * a)
 1 2 1 0 1 0

Increment a counter when you see a (and decrement it when you see a). The counter
should never be negative, and it should be zero at the end of the expression.

That works for expressions in Java, but in mathematical notation, one can have
more than one kind of parentheses, such as

–{ [b ⋅ b - (4 ⋅ a ⋅ c)] / (2 ⋅ a) }

To see whether such an expression is correctly formed, place the parentheses on a
stack:

When you see an opening parenthesis, push it on the stack.
When you see a closing parenthesis, pop the stack.
If the opening and closing parentheses don’t match
	 The parentheses are unbalanced. Exit.
If at the end the stack is empty
	 The parentheses are balanced.
Else
	 The parentheses are not balanced.

Here is a walkthrough of the sample expression:

Stack Unread expression Comments
Empty -{ [b * b - (4 * a * c)] / (2 * a) }
{ [b * b - (4 * a * c)] / (2 * a) }
{ [b * b - (4 * a * c)] / (2 * a) }
{ [(4 * a * c)] / (2 * a) }
{ [] / (2 * a) } (matches)
{ / (2 * a) } [matches]
{ (2 * a) }
{ } (matches)
Empty No more input { matches }
 The parentheses are balanced

A stack can be used
to check whether
parentheses in an
expression are
balanced.

O NLINE E x a m p l e

A program for
checking balanced
parentheses.

W694  Chapter 15  The Java Collections Framework

15.6.2  Evaluating Reverse Polish Expressions

Consider how you write arithmetic expressions, such as (3 + 4) × 5. The parentheses
are needed so that 3 and 4 are added before multiplying the result by 5.

However, you can eliminate the parentheses if you write the operators after the
numbers, like this: 3 4 + 5 × (see Random Fact 15.2 on page W701). To evaluate this expres-
sion, apply + to 3 and 4, yielding 7, and then simplify 7 5 × to 35. It gets trickier for
complex expressions. For example, 3 4 5 + × means to compute 4 5 + (that is, 9), and
then evaluate 3 9 ×. If we evaluate this expression left-to-right, we need to leave the 3
somewhere while we work on 4 5 +. Where? We put it on a stack. The algorithm for
evaluating reverse Polish expressions is simple:

If you read a number
	 Push it on the stack.
Else if you read an operand
	 Pop two values off the stack.
	 Combine the values with the operand.
	 Push the result back onto the stack.
Else if there is no more input
	 Pop and display the result.

Here is a walkthrough of evaluating the expression 3 4 5 + ×:

Stack Unread expression Comments
Empty 3 4 5 + x
3 4 5 + x Numbers are pushed on the stack
3 4 5 + x
3 4 5 + x
3 9 x Pop 4 and 5, push 4 5 +
27 No more input Pop 3 and 9, push 3 9 x
Empty Pop and display the result, 27

The following program simulates a reverse Polish calculator:

section_6_2/Calculator.java

1 import java.util.Scanner;
2 import java.util.Stack;
3
4 /**
5 This calculator uses the reverse Polish notation.
6 */
7 public class Calculator
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12 Stack<Integer> results = new Stack<Integer>();
13 System.out.println("Enter one number or operator per line, Q to quit. ");
14 boolean done = false;

Use a stack to
evaluate expressions
in reverse Polish
notation.

15.6 S tack and Queue Applications   W695

15 while (!done)
16 {
17 String input = in.nextLine();
18
19 // If the command is an operator, pop the arguments and push the result
20
21 if (input.equals("+"))
22 {
23 results.push(results.pop() + results.pop());
24 }
25 else if (input.equals("-"))
26 {
27 Integer arg2 = results.pop();
28 results.push(results.pop() - arg2);
29 }
30 else if (input.equals("*") || input.equals("x"))
31 {
32 results.push(results.pop() * results.pop());
33 }
34 else if (input.equals("/"))
35 {
36 Integer arg2 = results.pop();
37 results.push(results.pop() / arg2);
38 }
39 else if (input.equals("Q") || input.equals("q"))
40 {
41 done = true;
42 }
43 else
44 {
45 // Not an operator--push the input value
46
47 results.push(Integer.parseInt(input));
48 }
49 System.out.println(results);
50 }
51 }
52 }

15.6.3  Evaluating Algebraic Expressions

In the preceding section, you saw how to evaluate expressions in reverse Polish nota-
tion, using a single stack. If you haven’t found that notation attractive, you will be
glad to know that one can evaluate an expression in the standard algebraic notation
using two stacks—one for numbers and one for operators.

Use two stacks to evaluate algebraic expressions.

Using two stacks,
you can evaluate
expressions in
standard algebraic
notation.

W696  Chapter 15  The Java Collections Framework

First, consider a simple example, the expression 3 + 4. We push the numbers on the
number stack and the operators on the operator stack. Then we pop both numbers
and the operator, combine the numbers with the operator, and push the result.

1 3

3 +2

4
3 +

3

74

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 + 4

+ 4

4

No more input

Comments

Evaluate the top.

The result is 7.

This operation is fundamental to the algorithm. We call it “evaluating the top”.
In algebraic notation, each operator has a precedence. The + and - operators have

the lowest precedence, * and / have a higher (and equal) precedence.
Consider the expression 3 × 4 + 5. Here are the first processing steps:

1 3

3 ×2

4
3 ×

3

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 × 4 + 5

× 4 + 5

4 + 5

+ 5

Comments

Evaluate × before +.

Because × has a higher precedence than +, we are ready to evaluate the top:

4 12

5
12

+

+5

176

Number stack Operator stack

5

No more input

Comments

Evaluate the top.

That is the result.

With the expression, 3 + 4 × 5, we add × to the operator stack because we must first
read the next number; then we can evaluate × and then the +:

1 3

3 +2

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 + 4 × 5

+ 4 × 5

4 + 5

Comments

15.6 S tack and Queue Applications   W697

4
3 +

3

4
3 +

×4

Don’t evaluate + yet.× 5

5

In other words, we keep operators on the stack until they are ready to be evaluated.
Here is the remainder of the computation:

4
5

3 +
×

5

Number stack Operator stack

No more input

Comments

Evaluate the top.

Evaluate top again.

That is the result.

3
20

+
6

237

To see how parentheses are handled, consider the expression 3 × (4 + 5). A (is pushed
on the operator stack. The + is pushed as well. When we encounter the), we know
that we are ready to evaluate the top until the matching (reappears:

1 3

3 ×2

3 ×
(3

4
3 ×

(4

4
3 ×

(
+5

4
5

3 ×
(
+6

9
3 ×

(7

9
3 ×

8

279

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 × (4 + 5)

× (4 + 5)

(4 + 5)

4 + 5)

+ 5)

5)

)

No more input

Comments

Don’t evaluate × yet.

Evaluate the top.

Pop (.

Evaluate top again.

That is the result.

W698  Chapter 15  The Java Collections Framework

Here is the algorithm:

If you read a number
	 Push it on the number stack.
Else if you read a (
	 Push it on the operator stack.
Else if you read an operator op
	 While the top of the stack has a higher precedence than op
		 Evaluate the top.
	 Push op on the operator stack.
Else if you read a)
	 While the top of the stack is not a (
		 Evaluate the top.
	 Pop the (.
Else if there is no more input
	 While the operator stack is not empty
		 Evaluate the top.

At the end, the remaining value on the number stack is the value of the expression.
The algorithm makes use of this helper method that evaluates the topmost opera-

tor with the topmost numbers:

Evaluate the top:
Pop two numbers off the number stack.
Pop an operator off the operator stack.
Combine the numbers with that operator.
Push the result on the number stack.

15.6.4  Backtracking

Suppose you are inside a maze. You need to find the exit.
What should you do when you come to an intersection?
You can continue exploring one of the paths, but you
will want to remember the other ones. If your chosen
path didn’t work, you can go back to one of the other
choices and try again.

Of course, as you go along one path, you may reach
further intersections, and you need to remember your
choice again. Simply use a stack to remember the paths
that still need to be tried. The process of returning to a
choice point and trying another choice is called backtracking. By using a stack, you
return to your more recent choices before you explore the earlier ones.

Figure 11 shows an example. We start at a point in the maze, at position (3, 4).
There are four possible paths. We push them all on a stack 1 . We pop off the topmost
one, traveling north from (3, 4). Following this path leads to position (1, 4). We now
push two choices on the stack, going west or east 2 . Both of them lead to dead ends
3 4 .

Now we pop off the path from (3,4) going east. That too is a dead end 5 . Next is
the path from (3, 4) going south. At (5, 4), it comes to an intersection. Both choices
are pushed on the stack 6 . They both lead to dead ends 7 8 .

Finally, the path from (3, 4) going west leads to an exit 9 .

O n l i n e E x a m p l e

The complete code
for the expression
calculator.

A stack can be used to track
positions in a maze.

Use a stack to
remember choices
you haven’t yet made
so that you can
backtrack to them.

15.6 S tack and Queue Applications   W699

Figure 11  Backtracking Through a Maze

1

2
1 4 →
1 4 ←
3 4 →
3 4 ↓
3 4 ←

3
1 4 ←
3 4 →
3 4 ↓
3 4 ←

4
3 4 →
3 4 ↓
3 4 ←

5
3 4 ↓
3 4 ←

6
5 4 ↓
5 4 ←
3 4 ←

7

8
3 4 ←

9

5 4 ←
3 4 ←

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

3 4 →
3 4 ↑

3 4 ↓
3 4 ←

Using a stack, we have found a path out of the maze. Here is the pseudocode for
our maze-finding algorithm:

Push all paths from the point on which you are standing on a stack.
While the stack is not empty
	 Pop a path from the stack.
	 Follow the path until you reach an exit, intersection, or dead end.
	 If you found an exit
		 Congratulations!
	 Else if you found an intersection
		 Push all paths meeting at the intersection, except the current one, onto the stack.

This algorithm will find an exit from the maze, provided that the maze has no cycles.
If it is possible that you can make a circle and return to a previously visited intersec-
tion along a different sequence of paths, then you need to work harder––see Exercise
P15.25.

W700  Chapter 15  The Java Collections Framework

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

How you implement this algorithm depends on the description of the maze. In
the example code, we use a two-dimensional array of characters, with spaces for cor-
ridors and asterisks for walls, like this:

* * * * * * * *
* *
* * * * * * *
 *
* * * * * * *
* * * *
* * * * * * *
* * * * * * * *

In the example code, a Path object is constructed with a starting position and a direc-
tion (North, East, South, or West). The Maze class has a method that extends a path
until it reaches an intersection or exit, or until it is blocked by a wall, and a method
that computes all paths from an intersection point.

Note that you can use a queue instead of a stack in this algorithm. Then you
explore the earlier alternatives before the later ones. This can work just as well for
finding an answer, but it isn’t very intuitive in the context of exploring a maze—you
would have to imagine being teleported back to the initial intersections rather than
just walking back to the last one.

26.	 What is the value of the reverse Polish notation expression 2 3 4 + 5 × ×?
27.	 Why does the branch for the subtraction operator in the Calculator program not

simply execute
results.push(results.pop() - results.pop());

28.	 In the evaluation of the expression 3 – 4 + 5 with the algorithm of Section 15.6.3,
which operator gets evaluated first?

29.	 In the algorithm of Section 15.6.3, are the operators on the operator stack always
in increasing precedence?

30.	 Consider the following simple maze. Assuming that we start at the marked point
and push paths in the order West, South, East, North, in which order are the let-
tered points visited, using the algorithm of Section 15.6.4?

A B C D

E F G

H I
L M

N

KJ

Practice It	 Now you can try these exercises at the end of the chapter: R15.21, P15.21, P15.22,
P15.25, P15.26.

O n l i n e E x a m p l e

A complete program
demonstrating
backtracking.

S e l f C h e c k

Worked Example 15.2	 Simulating a Queue of Waiting Customers

This Worked Example shows how to use a queue to simulate an
actual queue of waiting customers.

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Chapter Summary  W701

Understand the architecture of the Java collections framework.

•	 A collection groups together elements and allows them to be retrieved later.
•	 A list is a collection that remembers the order of its elements.
•	 A set is an unordered collection of unique elements.
•	 A map keeps associations between key and value objects.

Understand and use linked lists.

•	 A linked list consists of a number of nodes, each of which has a reference to the
next node.

•	 Adding and removing elements at a given position in a linked list is efficient.

In the 1920s, the Pol­
ish mathematician Jan

Łukasiewicz realized that it is possible
to dispense with parentheses in arith­
metic expressions, provided that you
write the operators before their argu­
ments, for example, + 3 4 instead of 3
+ 4. Thirty years later, Australian com­
puter scientist Charles Hamblin noted
that an even better scheme would be

Standard
Notation

Reverse
Polish

Notation

3 + 4 3 4 +

3 + 4 × 5 3 4 5 × +

3 × (4 + 5) 3 4 5 + ×

(3 + 4) × (5 + 6) 3 4 + 5 6 + ×

3 + 4 + 5 3 4 + 5 +

to have the operators follow the oper­
ands. This was termed reverse Polish
notation or RPN.

Reverse Polish notation might look
strange to you, but that is just an acci­
dent of history. Had earlier mathemati­
cians realized its advantages, today’s
schoolchildren might be using it and
not worrying about precedence rules
and parentheses.

In 1972, Hewlett-Packard intro­
duced the HP 35 calculator that used
reverse Polish notation. The calculator
had no keys labeled with parentheses
or an equals symbol. There is just a
key labeled ENTER to push a number
onto a stack. For that reason, Hewlett-
Packard’s marketing department used
to refer to their product as “the calcula­
tors that have no equal”.

Over time, calculator vendors have
adapted to the standard algebraic nota­
tion rather than forcing its users to
learn a new notation. However, those
users who have made the effort to

learn reverse Polish notation tend to
be fanatic proponents, and to this day,
some Hewlett-Packard calculator mod­
els still support it.

The Calculator with No Equal

Random Fact 15.2  Reverse Polish Notation

Video Example 15.1	 Building a Table of Contents

In this Video Example, you will see how to build a table of
contents for a book.

C h a p t e r Su m m a r y

W702  Chapter 15  The Java Collections Framework

•	 Visiting the elements of a linked list in sequential order is efficient, but random
access is not.

•	 You use a list iterator to access elements inside a linked list.

Choose a set implementation and use it to manage sets of values.

•	 The HashSet and TreeSet classes both implement the Set interface.
•	 Set implementations arrange the elements so that they can locate them quickly.
•	 You can form hash sets holding objects of type String,

Integer, Double, Point, Rectangle, or Color.
•	 You can form tree sets for any class that implements the

Comparable interface, such as String or Integer.
•	 Sets don’t have duplicates. Adding a duplicate of an element

that is already present is ignored.
•	 A set iterator visits the elements in the order in which the set

implementation keeps them.
•	 You cannot add an element to a set at an iterator position.

Use maps to model associations between keys and values.

•	 The HashMap and TreeMap classes both implement the Map interface.
•	 To find all keys and values in a map, iterate through the key set and find the values

that correspond to the keys.
•	 A hash function computes an integer value from an object.
•	 A good hash function minimizes collisions—identical hash codes

for different objects.
•	 Override hashCode methods in your own classes by combining the

hash codes for the instance variables.
•	 A class’s hashCode method must be compatible with its equals

method.

Use the Java classes for stacks, queues, and priority queues.

•	 A stack is a collection of elements with “last-in, first-out” retrieval.
•	 A queue is a collection of elements with “first-in, first-out”

retrieval.
•	 When removing an element from a priority queue, the

element with the most urgent priority is retrieved.

Solve programming problems using stacks and queues.

•	 A stack can be used to check whether parentheses in an expression are balanced.
•	 Use a stack to evaluate expressions in reverse Polish notation.
•	 Using two stacks, you can evaluate expressions in standard algebraic notation.
•	 Use a stack to remember choices you haven’t yet made so that you can backtrack

to them.

ISBN 978-0-470-10555-9

9 7 8 0 4 7 0 1 0 5 5 5 9

9 0 0 0 0

Values

Keys
ISBN 978-0-470-10554-2

9 7 8 0 4 7 0 1 0 5 5 4 2

9 0 0 0 0
ISBN 978-0-470-50948-1

9 7 8 0 4 7 0 5 0 9 4 8 1

9 0 0 0 0

ISBN 978-0-470-38329-2

9 7 8 0 4 7 0 3 8 3 2 9 2

9 0 0 0 0
ISBN 978-0-471-79191-1

9 7 8 0 4 7 1 7 9 1 9 1 1

9 0 0 0 0

Review Exercises  W703

•• R15.1	 An invoice contains a collection of purchased items. Should that collection be imple-
mented as a list or set? Explain your answer.

•• R15.2	 Consider a program that manages an appointment calendar. Should it place the
appointments into a list, stack, queue, or priority queue? Explain your answer.

••• R15.3	 One way of implementing a calendar is as a map from date objects to event objects.
However, that only works if there is a single event for a given date. How can you use
another collection type to allow for multiple events on a given date?

• R15.4	 Explain what the following code prints. Draw a picture of the linked list after each
step.

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addFirst("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeFirst());
System.out.println(staff.removeFirst());
System.out.println(staff.removeFirst());

• R15.5	 Explain what the following code prints. Draw a picture of the linked list after each
step.

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addFirst("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeLast());
System.out.println(staff.removeFirst());
System.out.println(staff.removeLast());

java.util.Collection<E>
 add
 contains
 iterator
 remove
 size
java.util.HashMap<K, V>
java.util.HashSet<K, V>
java.util.Iterator<E>
 hasNext
 next
 remove
java.util.LinkedList<E>
 addFirst
 addLast

 getFirst
 getLast
 removeFirst
 removeLast
java.util.List<E>
 listIterator
java.util.ListIterator<E>
 add
 hasPrevious
 previous
 set
java.util.Map<K, V>
 get
 keySet
 put
 remove

java.util.Queue<E>
 peek
java.util.PriorityQueue<E>
 remove
java.util.Set<E>
java.util.Stack<E>
 peek
 pop
 push
java.util.TreeMap<K, V>
java.util.TreeSet<K, V>

S ta n d a r d L i b r a r y I t e m s I n t r o duc e d i n t h i s C h a p t e r

R e v i e w E x e r c i s e s

W704  Chapter 15  The Java Collections Framework

• R15.6	 Explain what the following code prints. Draw a picture of the linked list after each
step.

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addLast("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeLast());
System.out.println(staff.removeFirst());
System.out.println(staff.removeLast());

• R15.7	 Explain what the following code prints. Draw a picture of the linked list and the
iterator position after each step.

LinkedList<String> staff = new LinkedList<String>();
ListIterator<String> iterator = staff.listIterator();
iterator.add("Tom");
iterator.add("Diana");
iterator.add("Harry");
iterator = staff.listIterator();
if (iterator.next().equals("Tom")) { iterator.remove(); }
while (iterator.hasNext()) { System.out.println(iterator.next()); }

• R15.8	 Explain what the following code prints. Draw a picture of the linked list and the
iterator position after each step.

LinkedList<String> staff = new LinkedList<String>();
ListIterator<String> iterator = staff.listIterator();
iterator.add("Tom");
iterator.add("Diana");
iterator.add("Harry");
iterator = staff.listIterator();
iterator.next();
iterator.next();
iterator.add("Romeo");
iterator.next();
iterator.add("Juliet");
iterator = staff.listIterator();
iterator.next();
iterator.remove();
while (iterator.hasNext()) { System.out.println(iterator.next()); }

•• R15.9	 What advantages do linked lists have over arrays? What disadvantages do they have?

•• R15.10	 Suppose you need to organize a collection of telephone numbers for a company
division. There are currently about 6,000 employees, and you know that the phone
switch can handle at most 10,000 phone numbers. You expect several hundred look
ups against the collection every day. Would you use an array list or a linked list to
store the information?

•• R15.11	 Suppose you need to keep a collection of appointments. Would you use a linked list
or an array list of Appointment objects?

• R15.12	 Suppose you write a program that models a card deck. Cards are taken from the
top of the deck and given out to players. As cards are returned to the deck, they are
placed on the bottom of the deck. Would you store the cards in a stack or a queue?

• R15.13	 Suppose the strings "A" . . . "Z" are pushed onto a stack. Then they are popped off the
stack and pushed onto a second stack. Finally, they are all popped off the second
stack and printed. In which order are the strings printed?

Programming Exercises  W705

• R15.14	 What is the difference between a set and a map?

•• R15.15	 The union of two sets A and B is the set of all elements that are contained in A, B, or
both. The intersection is the set of all elements that are contained in A and B. How
can you compute the union and intersection of two sets, using the add and contains
methods, together with an iterator?

•• R15.16	 How can you compute the union and intersection of two sets, using some of the
methods that the java.util.Set interface provides, but without using an iterator?
(Look up the interface in the API documentation.)

• R15.17	 Can a map have two keys with the same value? Two values with the same key?

•• R15.18	 A map can be implemented as a set of (key, value) pairs. Explain.

••• R15.19	 Verify the hash code of the string "Juliet" in Table 6.

••• R15.20	 Verify that the strings "VII" and "Ugh" have the same hash code.

• R15.21	 Consider the algorithm for traversing a maze from Section 15.6.4 Assume that we
start at position A and push in the order West, South, East, and North. In which
order will the lettered locations of the sample maze be visited?

O P

L N

I

Q R

J
H

A
E
B C

G
F
D

K

M

• R15.22	 Repeat Exercise R15.21, using a queue instead of a stack.

•• P15.1	 Write a method
public static void downsize(LinkedList<String> employeeNames, int n)

that removes every nth employee from a linked list.

•• P15.2	 Write a method
public static void reverse(LinkedList<String> strings)

that reverses the entries in a linked list.

•• P15.3	 Use a stack to reverse the words of a sentence. Keep reading words until you have a
word that ends in a period, adding them onto a stack. When you have a word with a
period, pop the words off and print them. Stop when there are no more words in the
input. For example, you should turn the input

Mary had a little lamb. Its fleece was white as snow.

into
Lamb little a had mary. Snow as white was fleece its.

Pay attention to capitalization and the placement of the period.

P r o g r a m m i n g E x e r c i s e s

W706  Chapter 15  The Java Collections Framework

• P15.4	 Your task is to break a number into its individual digits, for example, to turn 1729
into 1, 7, 2, and 9. It is easy to get the last digit of a number n as n % 10. But that gets
the numbers in reverse order. Solve this problem with a stack. Your program should
ask the user for an integer, then print its digits separated by spaces.

•• P15.5	 A homeowner rents out parking spaces in a driveway during special events. The
driveway is a “last-in, first-out” stack. Of course, when a car owner retrieves a
vehicle that wasn’t the last one in, the cars blocking it must temporarily move to
the street so that the requested vehicle can leave. Write a program that models this
behavior, using one stack for the driveway and one stack for the street. Use integers
as license plate numbers. Positive numbers add a car, negative numbers remove a car,
zero stops the simulation. Print out the stack after each operation is complete.

• P15.6	 Implement a to do list. Tasks have a priority between 1 and 9, and a description.
When the user enters the command add priority description, the program adds a new
task. When the user enters next, the program removes and prints the most urgent
task. The quit command quits the program. Use a priority queue in your solution.

• P15.7	 Write a program that reads text from a file and breaks it up into individual words.
Insert the words into a tree set. At the end of the input file, print all words, followed
by the size of the resulting set. This program determines how many unique words a
text file has.

•• P15.8	 Implement the sieve of Eratosthenes: a method for computing
prime numbers, known to the ancient Greeks. This method
will compute all prime numbers up to n. Choose an n.
First insert all numbers from 2 to n into a set. Then erase all
multiples of 2 (except 2); that is, 4, 6, 8, 10, 12, Erase
all multiples of 3; that is, 6, 9, 12, 15, Go up to n . Then
print the set.

•• P15.9	 Write a program that keeps a map in which both keys and
values are strings—the names of students and their course
grades. Prompt the user of the program to add or remove students, to modify grades,
or to print all grades. The printout should be sorted by name and formatted like this:

Carl: B+
Joe: C
Sarah: A

••• P15.10	 Reimplement Exercise P15.9 so that the keys of the map are objects of class Student.
A student should have a first name, a last name, and a unique integer ID. For grade
changes and removals, lookup should be by ID. The printout should be sorted
by last name. If two students have the same last name, then use the first name as a
tie breaker. If the first names are also identical, then use the integer ID. Hint: Use
two maps.

••• P15.11	 Write a class Polynomial that stores a polynomial such as

p x x x x() = + − −5 9 1010 7

as a linked list of terms. A term contains the coefficient and the power of x. For
example, you would store p(x) as

5 10 9 7 1 1 10 0, , , , , , ,() () −() −()

Programming Exercises  W707

Supply methods to add, multiply, and print polynomials. Supply a constructor that
makes a polynomial from a single term. For example, the polynomial p can be
constructed as

Polynomial p = new Polynomial(new Term(-10, 0));
p.add(new Polynomial(new Term(-1, 1)));
p.add(new Polynomial(new Term(9, 7)));
p.add(new Polynomial(new Term(5, 10)));

Then compute p x p x() ()× .
Polynomial q = p.multiply(p);
q.print();

••• P15.12	 Repeat Exercise P15.11, but use a Map<Integer, Double> for the coefficients.

• P15.13	 Insert all words from a large file (such as the novel “War and Peace”, which is avail
able on the Internet) into a hash set and a tree set. Time the results. Which data
structure is faster?

••• P15.14	 Write a program that reads a Java source file and produces an index of all identifiers
in the file. For each identifier, print all lines in which it occurs. For simplicity, we
will consider each string consisting only of letters, numbers, and underscores
an identifer. Declare a Scanner in for reading from the source file and call
in.useDelimiter("[^A-Za-z0-9_]+"). Then each call to next returns an identifier.

•• P15.15	 Try to find two words with the same hash code in a large file. Keep a Map<Integer,
HashSet<String>>. When you read in a word, compute its hash code h and put the
word in the set whose key is h. Then iterate through all keys and print the sets whose
size is > 1.

•• P15.16	 Supply compatible hashCode and equals methods to the Student class described in
Exercise P15.10. Test the hash code by adding Student objects to a hash set.

• P15.17	 Supply compatible hashCode and equals methods to the BankAccount class of Chapter 8.
Test the hashCode method by printing out hash codes and by adding BankAccount
objects to a hash set.

•• P15.18	 A labeled point has x- and y-coordinates and a string label. Provide a class Labeled
Point with a constructor LabeledPoint(int x, int y, String label) and hashCode and
equals methods. Two labeled points are considered the same when they have the
same location and label.

•• P15.19	 Reimplement the LabeledPoint class of the preceding exercise by storing the location
in a java.awt.Point object. Your hashCode and equals methods should call the hashCode
and equals methods of the Point class.

•• P15.20	 Modify the LabeledPoint class of Exercise P15.18 so that it implements the Compa-
rable interface. Sort points first by their x-coordinates. If two points have the same
x-coordinate, sort them by their y-coordinates. If two points have the same x- and
y-coordinates, sort them by their label. Write a tester program that checks all cases
by inserting points into a TreeSet.

• P15.21	 Write a program that checks whether a sequence of HTML tags is properly nested.
For each opening tag, such as <p>, there must be a closing tag </p>. A tag such as <p>
may have other tags inside, for example

<p> <a> </p>

W708  Chapter 15  The Java Collections Framework

The inner tags must be closed before the outer ones. Your program should process a
file containing tags. For simplicity, assume that the tags are separated by spaces, and
that there is no text inside the tags.

• P15.22	 Add a % (remainder) operator to the expression calculator of Section 15.6.3.

•• P15.23	 Add a ̂ (power) operator to the expression calculator of Section 15.6.3. For example,
2 ̂ 3 evaluates to 8. As in mathematics, your power operator should be evaluated
from the right. That is, 2 ̂ 3 ̂ 2 is 2 ̂ (3 ̂ 2), not (2 ̂ 3) ̂ 2. (That’s more useful
because you could get the latter as 2 ̂ (3 × 2).)

••• P15.24	 Modify the expression calculator of Section 15.6.3 to convert an expression into
reverse Polish notation. Hint: Instead of evaluating the top and pushing the result,
append the instructions to a string.

••• P15.25	 Modify the maze solver program of Section 15.6.4 to handle mazes with cycles. Keep
a set of visited intersections. When you have previously seen an intersection, treat it
as a dead end and do not add paths to the stack.

••• P15.26	 In a paint program, a “flood fill” fills all empty pixels of a drawing with a given color,
stopping when it reaches occupied pixels. In this exercise, you will implement a
simple variation of this algorithm, flood-filling a 10 × 10 array of integers that are
initially 0.

Prompt for the starting row and column.
Push the (row, column) pair onto a stack.

You will need to provide a simple Pair class.
Repeat the following operations until the stack is empty.

Pop off the (row, column) pair from the top of the stack.
If it has not yet been filled, fill the corresponding array location with a number 1, 2, 3, and so on

(to show the order in which the square is filled).
Push the coordinates of any unfilled neighbors in the north, east, south, or west direction on the stack.

When you are done, print the entire array.

• P15.27	 Repeat Exercise P15.26, but use a queue instead.

•• P15.28	 Use a stack to enumerate all permutations of a string. Suppose you want to find all
permutations of the string meat.

Push the string +meat on the stack.
While the stack is not empty
	 Pop off the top of the stack.
	 If that string ends in a + (such as tame+)
		 Remove the + and add the string to the list of permutations.
	 Else
		 Remove each letter in turn from the right of the +.
		 Insert it just before the +.
		 Push the resulting string on the stack.

For example, after popping e+mta, you push em+ta, et+ma, and ea+mt.

•• P15.29	 Repeat Exercise P15.28, but use a queue instead.

Programming Exercises  W709

•• Business P15.30	 An airport has only one runway. When it is busy, planes wishing to take off or land
have to wait. Implement a simulation, using two queues, one each for the planes
waiting to take off and land. Landing planes get priority. The user enters commands
takeoff flightSymbol, land flightSymbol, next, and quit. The first two commands place
the flight in the appropriate queue. The next command finishes the current takeoff or
landing and enables the next one, printing the action (takeoff or land) and the flight
symbol.

•• Business P15.31	 Suppose you buy 100 shares of a stock at $12 per share, then another 100 at $10 per
share, and then sell 150 shares at $15. You have to pay taxes on the gain, but exactly
what is the gain? In the United States, the FIFO rule holds: You first sell all shares
of the first batch for a profit of $300, then 50 of the shares from the second batch, for
a profit of $250, yielding a total profit of $550. Write a program that can make these
calculations for arbitrary purchases and sales of shares in a single company. The
user enters commands buy quantity price, sell quantity (which causes the gain to be
displayed), and quit. Hint: Keep a queue of objects of a class Block that contains the
quantity and price of a block of shares.

••• Business P15.32	 Extend Exercise P15.31 to a program that can handle shares of multiple compa-
nies. The user enters commands buy symbol quantity price and sell symbol quantity.
Hint: Keep a Map<String, Queue<Block>> that manages a separate queue for each stock
symbol.

••• Business P15.33	 Consider the problem of finding the least expensive routes to all cities in a network
from a given starting point.

Pierre
Pendleton

Pittsburgh

Phoenix

Pensacola

PrincetonPeoria
Pueblo

3

2

3
8

4 3

4

10

5

5 2

4
5

For example, in this network, the least expensive route from Pendleton to Peoria has
cost 8 (going through Pierre and Pueblo).
The following helper class expresses the distance to another city:

public class DistanceTo implements Comparable<DistanceTo>
{
 private String target;
 private int distance;

W710  Chapter 15  The Java Collections Framework

 public DistanceTo(String city, int dist) { target = city; distance = dist; }
 public String getTarget() { return target; }
 public int getDistance() { return distance; }
 public int compareTo(DistanceTo other) { return distance - other.distance; }
}

All direct connections between cities are stored in a Map<String, TreeSet<DistanceTo>>.
The algorithm now proceeds as follows:

Let from be the starting point.
Add DistanceTo(from, 0) to a priority queue.
Construct a map shortestKnownDistance from city names to distances.
While the priority queue is not empty
	 Get its smallest element.
	 If its target is not a key in shortestKnownDistance
		 Let d be the distance to that target.
		 Put (target, d) into shortestKnownDistance.
		 For all cities c that have a direct connection from target
			 Add DistanceTo(c, d + distance from target to c) to the priority queue.

When the algorithm has finished, shortestKnownDistance contains the shortest distance
from the starting point to all reachable targets.
Your task is to write a program that implements this algorithm. Your program
should read in lines of the form city1 city2 distance. The starting point is the first city
in the first line. Print the shortest distances to all other cities.

A n s w e r s t o S e l f- C h e c k Q u e s t i o n s

1.	 A list is a better choice because the application
will want to retain the order in which the quiz-
zes were given.

2.	 A set is a better choice. There is no intrinsically
useful ordering for the students. For example,
the registrar’s office has little use for a list of all
students by their GPA. By storing them in a
set, adding, removing, and finding students can
be fast.

3.	 With a stack, you would always read the latest
required reading, and you might never get to
the oldest readings.

4.	 A collection stores elements, but a map stores
associations between elements.

5.	 Yes, for two reasons. A linked list needs to
store the neighboring node references, which
are not needed in an array, Moreover, there
is some overhead for storing an object. In a
linked list, each node is a separate object that
incurs this overhead, whereas an array is a
single object.

6.	 We can simply access each array element with
an integer index.

7.	 |ABCD

A|BCD

AB|CD

A|CD

AC|D

ACE|D

ACED|

ACEDF|
8.	 ListIterator<String> iter = words.iterator();

while (iter.hasNext())
{
 String str = iter.next();
 if (str.length() < 4) { iter.remove(); }
}

9.	 ListIterator<String> iter = words.iterator();
while (iter.hasNext())
{
 System.out.println(iter.next());
 if (iter.hasNext())
 {
 iter.next(); // Skip the next element
 }
}

Answers to Self-Check Questions  W711

10.	 Adding and removing elements as well as test-
ing for membership is faster with sets.

11.	 Sets do not have an ordering, so it doesn’t
make sense to add an element at a particular
iterator position, or to traverse a set backward.

12.	 You do not know in which order the set keeps
the elements.

13.	 Here is one possibility:
if (s.size() == 3 && s.contains("Tom")
 && s.contains("Diana")
 && s.contains("Harry"))
 . . .

14.	 for (String str : s)
{
 if (t.contains(str))
 {
 System.out.println(str);
 }
}

15.	 The words would be listed in sorted order.
16.	 A set stores elements. A map stores associa-

tions between keys and values.
17.	 The ordering does not matter, and you cannot

have duplicates.
18.	 Because it might have duplicates.
19.	 Map<String, Integer> wordFrequency;

Note that you cannot use a Map<String, int>
because you cannot use primitive types as type
parameters in Java.

20.	 It associates strings with sets of strings. One
application would be a thesaurus that lists
synonyms for a given word. For example, the
key "improve" might have as its value the set
["ameliorate", "better", "enhance", "enrich",

"perfect", "refine"].

21.	 This way, we can ensure that only queue
operations can be invoked on the q object.

22.	 Depending on whether you consider the 0
position the head or the tail of the queue, you
would either add or remove elements at that
position. Both are expensive operations.

23.	 A B C
24.	 Stacks use a “last-in, first-out” discipline. If

you are the first one to submit a print job and
lots of people add print jobs before the printer
has a chance to deal with your job, they get
their printouts first, and you have to wait until
all other jobs are completed.

25.	 Yes––the smallest string (in lexicographic
ordering) is removed first. In the example,
that is the string starting with 1, then the
string starting with 2, and so on. However, the
scheme breaks down if a priority value exceeds
9. For example, a string "10 - Line up braces"
comes before "2 - Order cleaning supplies" in
lexicographic order.

26.	 70.
27.	 It would then subtract the first argument from

the second. Consider the input 5 3 –. The stack
contains 5 and 3, with the 3 on the top. Then
results.pop() - results.pop() computes 3 – 5.

28.	 The – gets executed first because + doesn’t
have a higher precedence.

29.	 No, because there may be parentheses on
the stack. The parentheses separate groups
of operators, each of which is in increasing
precedence.

30.	 A B E F G D C K J N

