
6C h a p t e r

249

arrays and 
array L ists 

to collect elements using arrays  
and array lists

to use the enhanced for loop for traversing arrays and array lists

to learn common algorithms for processing arrays and array lists

to work with two-dimensional arrays

C h a p t e r  G o a L s

C h a p t e r  C o n t e n t s

6.1  ArrAys  250

Syntax 6.1: arrays 251
Common Error 6.1: Bounds errors 255
Common Error 6.2: Uninitialized arrays 255
Programming Tip 6.1: Use arrays for sequences 

of related items 256
Random Fact 6.1: an early internet Worm 256

6.2  The enhAnced for Loop  257

Syntax 6.2: the enhanced for Loop 258

6.3  common ArrAy ALgoriThms  258

Common Error 6.3: Underestimating the size 
of a data set 267

Special Topic 6.1: sorting with the Java Library 267
Special Topic 6.2: Binary search 267

6.4  Using ArrAys wiTh meThods  268

Special Topic 6.3: Methods with a Variable 
number of parameters 272

6.5  probLem soLving: AdApTing 
ALgoriThms  272

Programming Tip 6.2: reading exception 
reports 274

How To 6.1: Working with arrays 275
Worked Example 6.1: rolling the dice 

6.6  probLem soLving: discovering 
ALgoriThms by mAnipULATing 
physicAL objecTs  279

Video Example 6.1: removing duplicates from 
an array 

6.7  Two-dimensionAL ArrAys  282

Syntax 6.3: two-dimensional array 
declaration 283

Worked Example 6.2: a World population table 
Special Topic 6.4: two-dimensional arrays with 

Variable row Lengths 288
Special Topic 6.5: Multidimensional arrays 289

6.8  ArrAy LisTs  289

Syntax 6.4: array Lists 290
Common Error 6.4: Length and size 299
Special Topic 6.6: the diamond syntax 

in Java 7 299
Video Example 6.2: Game of Life 



250

in many programs, you need to collect large numbers of 
values. in Java, you use the array and array list constructs 
for this purpose. arrays have a more concise syntax, 
whereas array lists can automatically grow to any desired 
size. in this chapter, you will learn about arrays, array lists, 
and common algorithms for processing them.

6.1 arrays
We start this chapter by introducing the array data type. Arrays are the fundamental 
mechanism in Java for collecting multiple values. In the following sections, you will 
learn how to declare arrays and how to access array elements. 

6.1.1 declaring and Using arrays

Suppose you write a program that reads a sequence of values and prints out the 
sequence, marking the largest value, like this:

32
54
67.5
29
35
80
115 <= largest value 
44.5
100
65

You do not know which value to mark as the largest one until you have seen them all. 
After all, the last value might be the largest one. Therefore, the program must first 
store all values before it can print them. 

Could you simply store each value in a separate variable? If you know that there 
are ten values, then you could store the values in ten variables value1, value2, value3, …, 
value10. However, such a sequence of vari ables is not very practical to use. You would 
have to write quite a bit of code ten times, once for each of the variables. In Java, an 
array is a much better choice for storing a sequence of values of the same type. 

Here we create an array that can hold ten values of type double:
new double[10]

The number of elements (here, 10) is called the length of the array.
The new operator constructs the array. You will want to store the array in a variable 

so that you can access it later. 
The type of an array variable is the type of the element to be stored, followed by []. 

In this example, the type is double[], because the element type is double.
Here is the declaration of an array variable of type double[] (see Figure 1):
double[] values; 1

When you declare an array variable, it is not yet initialized. You need to initialize the 
variable with the array:

double[] values = new double[10]; 2

an array collects a 
sequence of values of 
the same type.



6.1 arrays  251

figure 1  an array of size 10

1

Declare the array variable

values =

2 double[]

0
0

0
0
0
0

0
0
0
0

values =

3 double[]

35
0

0
0
0
0

0
0
0
0

values =
[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
Initialize it with an array Access an array element

Now values is initialized with an array of 10 numbers. By default, each number in the 
array is 0. 

When you declare an array, you can specify the initial values. For example,
double[] moreValues = { 32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65 };

When you supply initial values, you don’t use the new operator. The compiler deter-
mines the length of the array by counting the initial values.

To access a value in an array, you specify which “slot” you want to use. That is 
done with the [] operator:

values[4] = 35; 3

Now the number 4 slot of values is filled with 35 (see Figure 1). This “slot number” is 
called an index. Each slot in an array contains an element. 

Because values is an array of double values, each element values[i] can be used like 
any variable of type dou ble. For example, you can display the element with index 4 
with the following command:

System.out.println(values[4]);

individual elements 
in an array are 
accessed by an 
integer index i, using 
the notation 
array[i].

an array element  
can be used like  
any variable.

syntax 6.1 arrays

  double[] values = new double[10];

  double[] moreValues = { 32, 54, 67.5, 29, 35 };

Type of array variable

List of initial values 

Name of array variable

Use brackets to access an element.

values[i] = 0;

The index must be ≥ 0 and < the length of the array.
        See page 255.

Length
Element 
type

To construct an array:  new typeName[length]

To access an element:  arrayReference[index]

Syntax



252 Chapter 6  arrays and array Lists 

Before continuing, we must take care of an 
important detail of Java arrays. If you look 
carefully at Figure 1, you will find that the 
fifth element was filled when we changed 
values[4]. In Java, the elements of arrays 
are numbered starting at 0. That is, the 
legal elements for the values array are

values[0], the first element
values[1], the second element
values[2], the third element
values[3], the fourth element
values[4], the fifth element
. . .
values[9], the tenth element 

In other words, the declaration 
double[] values = new double[10];

creates an array with ten elements. In this array, an index can be any integer ranging 
from 0 to 9.

You have to be careful that the index stays within the valid range. Trying to access 
an element that does not exist in the array is a serious error. For example, if values has 
ten elements, you are not allowed to access values[20]. Attempting to access an ele-
ment whose index is not within the valid index range is called a bounds error. The 
com piler does not catch this type of error. When a bounds error occurs at run time, it 
causes a run-time excep tion. 

Here is a very common bounds error:
double[] values = new double[10];
values[10] = value;

There is no values[10] in an array with ten elements—the index can range from 0 to 9.
To avoid bounds errors, you will want to know how many elements are in an array. 

The expression values.length yields the length of the values array. Note that there are 
no parentheses following length. 

table 1  declaring arrays

int[] numbers = new int[10]; An array of ten integers. All elements are 
initialized with zero.

final int LENGTH = 10;
int[] numbers = new int[LENGTH];

It is a good idea to use a named constant 
instead of a “magic number”.

int length = in.nextInt();
double[] data = new double[length];

The length need not be a constant.

int[] squares = { 0, 1, 4, 9, 16 }; An array of five integers, with initial values.

String[] friends = { "Emily", "Bob", "Cindy" }; An array of three strings.

double[] data = new int[10]; error: You cannot initialize a double[] 
variable with an array of type int[].

Like a mailbox that is identified by a box  
number, an array element is identified by 
an index.

an array index must 
be at least zero and 
less than the size of 
the array.

a bounds error, 
which occurs if you 
supply an invalid 
array index, can 
cause your program 
to terminate.



6.1 arrays  253

The following code ensures that you only access the array when the index variable 
i is within the legal bounds:

if (0 <= i && i < values.length) { values[i] = value; }

Arrays suffer from a significant limitation: their length is fixed. If you start out with 
an array of 10 ele ments and later decide that you need to add additional elements, 
then you need to make a new array and copy all elements of the existing array into the 
new array. We will discuss this process in detail in Section 6.3.9. 

To visit all elements of an array, use a variable for the index. Suppose values has ten 
elements and the inte ger variable i is set to 0, 1, 2, and so on, up to 9. Then the expres-
sion values[i] yields each element in turn. For example, this loop displays all elements 
in the values array.

for (int i = 0; i < 10; i++)
{
   System.out.println(values[i]);
}

Note that in the loop condition the index is less than 10 because there is no element 
corresponding to values[10]. 

6.1.2 array references

If you look closely at Figure 1, you will note that the variable values does not store 
any numbers. Instead, the array is stored elsewhere and the values variable holds a 
reference to the array. (The reference denotes the location of the array in memory.) 
When you access the elements in an array, you need not be concerned about the fact 
that Java uses array references. This only becomes important when copying array 
refer ences. 

When you copy an array variable into another, both variables refer to the same 
array (see Figure 2).

int[] scores = { 10, 9, 7, 4, 5 };
int[] values = scores; // Copying array reference 

You can modify the array through either of the variables:
scores[3] = 10;
System.out.println(values[3]); // Prints 10

Section 6.3.9 shows how you can make a copy of the contents of the array. 

Use the expression 
array.length to find 
the number of 
elements in an array.

an array reference 
specifies the location 
of an array. Copying 
the reference yields a 
second reference to 
the same array.

figure 2   
two array Variables referencing the same array

int[]
scores =

values =
10
9
7
4
5



254 Chapter 6  arrays and array Lists 

6.1.3 partially Filled arrays

An array cannot change size at run time. This is a problem when you don’t know in 
advance how many elements you need. In that situation, you must come up with a 
good guess on the maximum number of elements that you need to store. For exam-
ple, we may decide that we sometimes want to store more than ten elements, but 
never more than 100:

final int LENGTH = 100;
double[] values = new double[LENGTH]; 

In a typical program run, only a part of the array will be occupied by actual elements. 
We call such an array a partially filled array. You must keep a companion variable 
that counts how many elements are actually used. In Figure 3 we call the companion 
variable currentSize. 

The following loop collects inputs and fills up the values array:

int currentSize = 0;
Scanner in = new Scanner(System.in);
while (in.hasNextDouble())
{
   if (currentSize < values.length)
   {
      values[currentSize] = in.nextDouble();
      currentSize++;
   }
}

At the end of this loop, currentSize contains the actual number of elements in the 
array. Note that you have to stop accepting inputs if the currentSize companion vari-
able reaches the array length. 

To process the gathered array elements, you again use the companion variable, not 
the array length. This loop prints the partially filled array:

for (int i = 0; i < currentSize; i++)
{
   System.out.println(values[i]);

}

With a partially filled 
array, you need to 
remember how many 
elements are filled.

With a partially filled 
array, keep a 
companion variable 
for the current size.

o n L i n e  e x A m p L e

a program 
demonstrating array 
operations.

figure 3  a partially Filled array

double[]values =

29
67.5
54
32

values.length

...Not currently used

currentSize



6.1 arrays  255

1.  Declare an array of integers containing the first five prime numbers.
2.  Assume the array primes has been initialized as described in Self Check 1. What 

does it contain after executing the following loop?
for (int i = 0; i < 2; i++)
{
   primes[4 - i] = primes[i];
}

3.  Assume the array primes has been initialized as described in Self Check 1. What 
does it contain after executing the following loop?
for (int i = 0; i < 5; i++)
{
   primes[i]++;
}

4.  Given the declaration
int[] values = new int[10];

write statements to put the integer 10 into the elements of the array values with 
the lowest and the highest valid index.

5.  Declare an array called words that can hold ten elements of type String.
6.  Declare an array containing two strings, "Yes", and "No". 
7.  Can you produce the output on page 250 without storing the inputs in an array, 

by using an algorithm similar to the algorithm for finding the maximum in 
Section 4.7.5? 

practice it  Now you can try these exercises at the end of the chapter: R6.1, R6.2, R6.6, P6.1.

bounds errors

Perhaps the most common error in using arrays is accessing a nonexistent element.

double[] values = new double[10];
values[10] = 5.4;
   // Error—values has 10 elements, and the index can range from 0 to 9

If your program accesses an array through an out-of-bounds index, there is no compiler error 
message. Instead, the program will generate an exception at run time. 

Uninitialized Arrays

A common error is to allocate an array variable, but not an actual array. 

double[] values;
values[0] = 29.95; // Error—values not initialized 

The Java compiler will catch this error. The remedy is to initialize the variable with an array: 

double[] values = new double[10];

s e L f   c h e c k

Common error 6.1 

Common error 6.2 



256 Chapter 6  arrays and array Lists 

Use Arrays for sequences of related items

Arrays are intended for storing sequences of values with the same meaning. For example, an 
array of test scores makes perfect sense:

int[] scores = new int[NUMBER_OF_SCORES];

But an array 

int[] personalData = new int[3];

that holds a person’s age, bank balance, and shoe size in positions 0, 1, and 2 is bad design. 
It would be tedious for the programmer to remember which of these data values is stored in 
which array location. In this situation, it is far better to use three separate variables. 

   

programming tip 6.1 

in november 1988, 
robert Morris, a stu-

dent at Cornell University, launched a 
so-called virus program that infected 
about 6,000 computers connected to 
the internet across the United states. 
tens of thousands of computer users 
were unable to read their e-mail or oth-
erwise use their computers. all major 
universities and many high-tech com-
panies were affected. (the internet was 
much smaller then than it is now.)

the particular kind of virus used in 
this attack is called a worm. the worm 
program crawled from one computer 
on the internet to the next. the worm 
would attempt to connect to finger, 
a program in the UniX operating sys-
tem for finding information on a user 
who has an account on a particular 
com puter on the network. Like many 
pro grams in UniX, finger was written 
in the C language. in order to store 
the user name, the finger program 
allo cated an array of 512 characters, 
under the assumption that nobody 
would ever provide such a long input. 
Unfortunately, C does not check that 
an array index is less than the length 
of the array. if you write into an array 
using an index that is too large, you 
simply overwrite memory locations 
that belong to some other objects. in 
some versions of the finger program, 
the programmer had been lazy and had 
not checked whether the array holding 
the input characters was large enough 

to hold the input. so the worm pro-
gram purposefully filled the 512-char-
acter array with 536 bytes. the excess 
24 bytes would overwrite a return 
address, which the attacker knew was 
stored just after the array. When that 
method was fin ished, it didn’t return 
to its caller but to code supplied by the 
worm (see the figure, a “Buffer over-
run” attack). that code ran under the 
same super-user privileges as finger, 
allowing the worm to gain entry into 
the remote system. had the program-
mer who wrote finger been more 
conscien tious, this particular attack 
would not be possible. 

in Java, as in C, all programmers 
must be very careful not to overrun 
array boundaries. however, in Java, 
this error causes a run-time exception, 
and it never corrupts memory outside 
the array. this is one of the safety fea-
tures of Java.

one may well speculate what would 
possess the virus author to spend 
many weeks to plan the antiso cial act 
of breaking into thousands of comput-
ers and disabling them. it appears that 
the break-in was fully intended by the 
author, but the dis abling of the com-
puters was a bug, caused by continu-
ous reinfection. Morris was sentenced 
to 3 years pro bation, 400 hours of com-
munity ser vice, and a $10,000 fine. 

in recent years, computer attacks 
have intensified and the motives 
have become more sinister. instead 

of dis abling computers, viruses often 
steal financial data or use the attacked 
computers for sending spam e-mail. 
sadly, many of these attacks continue 
to be possible because of poorly writ-
ten programs that are susceptible to 
buffer overrun errors. 

Return address

Buffer for input
(512 bytes)

1 Before the attack

2 After the attack

Return address

Overrun buffer
(536 bytes)

Malicious 
code

A “Buffer Overrun” Attack

Random Fact 6.1 an early internet Worm



6.2 the enhanced for Loop  257

6.2 the enhanced for Loop
Often, you need to visit all elements of an array. The enhanced for loop makes this 
process particularly easy to program.

Here is how you use the enhanced for loop to total up all elements in an array 
named values:

double[] values = . . .;
double total = 0; 
for (double element : values)
{
   total = total + element;
}

The loop body is executed for each element in the array values. At the beginning of 
each loop iteration, the next element is assigned to the variable element. Then the loop 
body is executed. You should read this loop as “for each element in values”. 

This loop is equivalent to the following for loop and an explicit index variable: 
for (int i = 0; i < values.length; i++)
{ 
   double element = values[i]; 
   total = total + element;
}

Note an important difference between the enhanced for loop and the basic for loop. 
In the enhanced for loop, the element variable is assigned values[0], values[1], and so 
on. In the basic for loop, the index variable i is assigned 0, 1, and so on.  

Keep in mind that the enhanced for loop has a very specific purpose: getting the 
elements of a collection, from the beginning to the end. It is not suitable for all array 
algorithms. In particular, the enhanced for loop does not allow you to modify the 
contents of an array. The following loop does not fill an array with zeroes:

for (double element : values)
{
   element = 0; // ERROR: this assignment does not modify array elements
}   

When the loop is executed, the variable element is set to values[0]. Then element is set to 
0, then to values[1], then to 0, and so on. The values array is not modified. The remedy 
is simple: Use a basic for loop: 

for (int i = 0; i < values.length; i++)
{
   values[i] = 0; // OK
} 

The enhanced for loop is a convenient mechanism for 
traversing all elements in a collection.

you can use the 
enhanced for loop 
to visit all elements 
of an array.

Use the enhanced  
for loop if you do 
not need the index 
values in the  
loop body. 

o n L i n e  e x A m p L e

an program that 
demonstrates the 
enhanced for loop.



258 Chapter 6  arrays and array Lists 

8.  What does this enhanced for loop do? 

syntax 6.2 the enhanced for Loop

for (double element : values)
{
   sum = sum + element;
}

An array

These statements 
are executed for each 

element.

This variable is set in each loop iteration.
It is only defined inside the loop.

The variable 
contains an element, 

not an index.

for (typeName variable : collection)
{
   statements
}

Syntax

int counter = 0;
for (double element : values) 
{
   if (element == 0) { counter++; }
}

9.  Write an enhanced for loop that prints all elements in the array values.
10.  Write an enhanced for loop that multiplies all elements in a double[] array named 

factors, accumulating the result in a variable named product.
11.  Why is the enhanced for loop not an appropriate shortcut for the following basic 

for loop?
for (int i = 0; i < values.length; i++) { values[i] = i * i; }

practice it  Now you can try these exercises at the end of the chapter: R6.7, R6.8, R6.9.

6.3 Common array algorithms
In the following sections, we discuss some of the most common algorithms for work-
ing with arrays. If you use a partially filled array, remember to replace values.length 
with the companion variable that repre sents the current size of the array.

6.3.1 Filling

This loop fills an array with squares (0, 1, 4, 9, 16, ...). Note that the element with 
index 0 contains 02, the element with index 1 contains 12, and so on.

for (int i = 0; i < values.length; i++)
{
   values[i] = i * i;
}

s e L f   c h e c k



6.3 Common array algorithms  259

6.3.2 sum and average Value

You have already encountered this algorithm in Section 4.7.1. When the values are 
located in an array, the code looks much simpler: 

double total = 0;
for (double element : values)
{
   total = total + element;
}

double average = 0;
if (values.length > 0) { average = total / values.length; }

6.3.3 Maximum and Minimum

Use the algorithm from Section 4.7.5 that keeps a variable for the largest element 
already encountered. Here is the implementation of that algorithm for an array:

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
   if (values[i] > largest)
   {
      largest = values[i];
   }
}

Note that the loop starts at 1 because we initialize largest with values[0]. 
To compute the smallest element, reverse the comparison.
These algorithms require that the array contain at least one element. 

6.3.4 element separators

When you display the elements of an array, you usually want to separate them, often 
with commas or vertical lines, like this:

32 | 54 | 67.5 | 29 | 35

Note that there is one fewer separator than there are numbers. Print the separator 
before each element in the sequence except the initial one (with index 0) like this:

for (int i = 0; i < values.length; i++)
{
   if (i > 0) 
   { 
      System.out.print(" | "); 
   }
   System.out.print(values[i]); 
}

If you want comma separators, you can use the Arrays.toString method. The 
 expression 

Arrays.toString(values)

returns a string describing the contents of the array values in the form
[32, 54, 67.5, 29, 35]

When separating 
elements, don’t place 
a separator before 
the first element.

To print five  
elements, you need 
four separators.



260 Chapter 6  arrays and array Lists 

The elements are surrounded by a pair of brackets and separated by commas. This 
method can be convenient for debugging:

System.out.println("values=" + Arrays.toString(values));

6.3.5 Linear search

You often need to search for the position of a specific element in an array so that you 
can replace or remove it. Visit all elements until you have found a match or you have 
come to the end of the array. Here we search for the position of the first element in an 
array that is equal to 100:

int searchedValue = 100;
int pos = 0;
boolean found = false;
while (pos < values.length && !found)
{
   if (values[pos] == searchedValue)
   {
      found = true;
   } 
   else 
   {
      pos++;
   }
}
if (found) { System.out.println("Found at position: " + pos); }
else { System.out.println("Not found"); }

This algorithm is called linear search or sequential search because you inspect the 
elements in sequence. If the array is sorted, you can use the more efficient binary 
search algorithm—see Special Topic 6.2 on page 267. 

6.3.6 removing an element

Suppose you want to remove the element with index pos from the array values. As 
explained in Section 6.1.3, you need a companion variable for tracking the number of 
elements in the array. In this example, we use a companion variable called currentSize.

If the elements in the array are not in any particular order, simply overwrite the 
element to be removed with the last element of the array, then decrement the current-
Size variable. (See Figure 4.)

To search for a  
specific element,  
visit the elements  
and stop when you 
encounter the match.

a linear search 
inspects elements in 
sequence until a 
match is found.

figure 4   
removing an element in an Unordered array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

Decrement after 
moving element

currentSize

32
54

67.5
29

34.5
80
115
44.5
100
65

figure 5   
removing an element in an ordered array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

1
2
3
4
5

Decrement after 
moving elements

32
54

67.5
29
80
115
44.5
100
65
65



6.3 Common array algorithms  261

values[pos] = values[currentSize - 1];
currentSize--;

The situation is more complex if the order of the elements matters. Then you must 
move all elements fol lowing the element to be removed to a lower index, and then 
decrement the variable holding the size of the array. (See Figure 5.) 

for (int i = pos + 1; i < currentSize; i++)
{ 
   values[i - 1] = values[i]; 
}
currentSize--;

6.3.7 inserting an element

In this section, you will see how to insert an element into an array. Note that you 
need a companion vari able for tracking the array size, as explained in Section 6.1.3.

If the order of the elements does not matter, you can simply insert new elements at 
the end, incrementing the variable tracking the size. 

if (currentSize < values.length)
{
   currentSize++;
   values[currentSize - 1] = newElement;
}

It is more work to insert an element at a particular position in the middle of an array. 
First, move all ele ments after the insertion location to a higher index. Then insert the 
new element (see Figure 7). 

Note the order of the movement: When you remove an element, you first move 
the next element to a lower index, then the one after that, until you finally get to the 
end of the array. When you insert an ele ment, you start at the end of the array, move 
that element to a higher index, then move the one before that, and so on until you 
finally get to the insertion location. 

if (currentSize < values.length)
{
   currentSize++;
   for (int i = currentSize - 1; i > pos; i--)
   {
      values[i] = values[i - 1];
   }
   values[pos] = newElement;
}

A N I M AT I O N
Removing from  

an Array

A N I M AT I O N
Inserting into  

an Array

Before inserting an 
element, move 
elements to the end 
of the array starting 
with the last one.

figure 6   
inserting an element in an Unordered array

[0]

[1]

[2]
...

[currentSize - 1]

Incremented before
inserting element

Insert new element here
currentSize

32
54

67.5
29

34.5
80
115
44.5
100

figure 7   
inserting an element in an ordered array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

5
4
3
2
1

Incremented before
moving elements

Insert new element here

32
54

67.5
29

34.5
34.5
80
115
44.5
100



262 Chapter 6  arrays and array Lists 

6.3.8 swapping elements

You often need to swap elements of an array. For example, 
you can sort an array by repeatedly swapping elements 
that are not in order.

Consider the task of swapping the elements at posi-
tions i and j of an array values. We’d like to set values[i] 
to values[j]. But that overwrites the value that is currently 
stored in values[i], so we want to save that first:

double temp = values[i];
values[i] = values[j];

Now we can set values[j] to the saved value.
values[j] = temp;

Figure 8 shows the process.

To swap two elements, you 
need a temporary variable. 

Use a temporary 
variable when 
swapping two 
elements.

figure 8  swapping array elements

[0]

[1]

[2]

[3]

[4]

[i]

[j]

34.5
29

67.5
54
32

1

[i]

 

[j]

34.5
29

67.5
54
32

2

temp = 54

[i]

 

[j]

34.5
29

67.5
29
32

3

temp = 54

[i]

 

[j]

34.5
54

67.5
29
32

4

temp = 54

Values to be swapped
values =

values =

values =

values =



6.3 Common array algorithms  263

6.3.9 Copying arrays

Array variables do not themselves hold array elements. They hold a reference to the 
actual array. If you copy the reference, you get another reference to the same array 
(see Figure 9):

double[] values = new double[6];
. . .  // Fill array
double[] prices = values; 1

If you want to make a true copy of an array, call the Arrays.copyOf method (as shown 
in Figure 9).

double[] prices = Arrays.copyOf(values, values.length); 2

The call Arrays.copyOf(values, n) allocates an array of length n, copies the first n elements 
of values (or the entire values array if n > values.length) into it, and returns the new array. 

In order to use the Arrays class, you need to add the following statement to the top of 
your program: 

import java.util.Arrays;

Another use for Arrays.copyOf is to grow an array that has run out of space. The fol-
lowing statements have the effect of doubling the length of an array (see Figure 10):

double[] newValues = Arrays.copyOf(values, 2 * values.length); 1
values = newValues; 2

The copyOf method was added in Java 6. If you use Java 5, replace
double[] newValues = Arrays.copyOf(values, n)

with

Use the Arrays.
copyOf method to 
copy the elements of 
an array into a  
new array.

figure 9  Copying an array reference versus Copying an array

1 2

double[]
values =

prices =
32
54

67.5
29
35

47.5

double[]values =

double[]prices =

32
54

67.5
29
35

47.5

32
54

67.5
29
35

47.5

After the assignment prices = values After calling Arrays.copyOf



264 Chapter 6  arrays and array Lists 

figure 10  Growing an array

double[] double[]values =

double[]newValues =

values =

double[]newValues =

1 2

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

Move elements to a larger array Store the reference to the larger array in values

double[] newValues = new double[n];
for (int i = 0; i < n && i < values.length; i++) 
{ 
   newValues[i] = values[i]; 
}

6.3.10 reading input

If you know how many inputs the user will supply, it is simple to place them into an 
array:

double[] inputs = new double[NUMBER_OF_INPUTS];
for (i = 0; i < inputs.length; i++)
{
   inputs[i] = in.nextDouble();
}

However, this technique does not work if you need to read a sequence of arbitrary 
length. In that case, add the inputs to an array until the end of the input has been 
reached. 

int currentSize = 0;
while (in.hasNextDouble() && currentSize < inputs.length)
{ 
   inputs[currentSize] = in.nextDouble();
   currentSize++;
}



6.3 Common array algorithms  265

Now inputs is a partially filled array, and the companion variable currentSize is set to 
the number of inputs.

However, this loop silently throws away inputs that don’t fit into the array. A bet-
ter approach is to grow the array to hold all inputs. 

double[] inputs = new double[INITIAL_SIZE];
int currentSize = 0;
while (in.hasNextDouble())
{ 
   // Grow the array if it has been completely filled
   if (currentSize >= inputs.length)
   {
      inputs = Arrays.copyOf(inputs, 2 * inputs.length); // Grow the inputs array
   }

   inputs[currentSize] = in.nextDouble();
   currentSize++;
}

When you are done, you can discard any excess (unfilled) elements: 
inputs = Arrays.copyOf(inputs, currentSize);

The following program puts these algorithms to work, solving the task that we set our-
selves at the begin ning of this chapter: to mark the largest value in an input sequence. 

section_3/LargestinArray.java

1 import java.util.Scanner;
2 
3 /**
4    This program reads a sequence of values and prints them, marking the largest value.
5 */
6 public class LargestInArray
7 {
8    public static void main(String[] args)
9    { 

10       final int LENGTH = 100;
11       double[] values = new double[LENGTH];
12       int currentSize = 0;
13 
14       // Read inputs
15 
16       System.out.println("Please enter values, Q to quit:");
17       Scanner in = new Scanner(System.in);
18       while (in.hasNextDouble() && currentSize < values.length)
19       { 
20          values[currentSize] = in.nextDouble();
21          currentSize++;
22       }
23 
24       // Find the largest value
25 
26       double largest = values[0];
27       for (int i = 1; i < currentSize; i++)
28       {
29          if (values[i] > largest)
30          {
31             largest = values[i];
32          }
33       }



266 Chapter 6  arrays and array Lists 

34 
35       // Print all values, marking the largest
36 
37       for (int i = 0; i < currentSize; i++)
38       { 
39          System.out.print(values[i]);
40          if (values[i] == largest) 
41          {
42             System.out.print(" <== largest value");
43          }
44          System.out.println();
45       }
46    }
47 }

program run

Please enter values, Q to quit:
34.5 80 115 44.5 Q
34.5
80
115 <== largest value
44.5

12.  Given these inputs, what is the output of the LargestInArray program?
20 10 20 Q

13.  Write a loop that counts how many elements in an array are equal to zero.
14.  Consider the algorithm to find the largest element in an array. Why don’t we 

initialize largest and i with zero, like this?
double largest = 0;
for (int i = 0; i < values.length; i++)
{
   if (values[i] > largest)
   {
      largest = values[i];
   }
}

15.  When printing separators, we skipped the separator before the initial element. 
Rewrite the loop so that the separator is printed after each element, except for 
the last element.

16.  What is wrong with these statements for printing an array with separators?
System.out.print(values[0]);
for (int i = 1; i < values.length; i++)
{
   System.out.print(", " + values[i]); 
}

17.  When finding the position of a match, we used a while loop, not a for loop. What 
is wrong with using this loop instead?
for (pos = 0; pos < values.length && !found; pos++)
{
   if (values[pos] > 100)
   {
      found = true;
   } 

s e L f   c h e c k



6.3 Common array algorithms  267

}

18.  When inserting an element into an array, we moved the elements with larger 
index values, starting at the end of the array. Why is it wrong to start at the inser-
tion location, like this?
for (int i = pos; i < currentSize - 1; i++)
{ 
   values[i + 1] = values[i]; 
}

practice it  Now you can try these exercises at the end of the chapter: R6.17, R6.20, P6.15.

Underestimating the size of a data set

Programmers commonly underestimate the amount of input data that a user will pour into an 
unsuspecting program. Suppose you write a program to search for text in a file. You store each 
line in a string, and keep an array of strings. How big do you make the array? Surely nobody 
is going to challenge your program with an input that is more than 100 lines. Really? It is very 
easy to feed in the entire text of Alice in Wonderland or War and Peace (which are avail able on 
the Internet). All of a sudden, your program has to deal with tens or hundreds of thousands of 
lines. You either need to allow for large inputs or politely reject the excess input. 

sorting with the java Library

Sorting an array efficiently is not an easy task. You will 
learn in Chapter 14 how to implement efficient sorting 
algorithms. Fortunately, the Java library provides an effi-
cient sort method. 

To sort an array values, call

Arrays.sort(values);

If the array is partially filled, call

Arrays.sort(values, 0, currentSize);

binary search

When an array is sorted, there is a much faster search algorithm than the linear search of Sec-
tion 6.3.5. 

Consider the following sorted array values. 

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

We would like to see whether the number 15 is in the array. Let’s narrow our search by finding 
whether the number is in the first or second half of the array. The last point in the first half of 
the values array, values[3], is 9, which is smaller than the number we are looking for. Hence, 
we should look in the second half of the array for a match, that is, in the sequence:

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

Common error 6.3 

special topic 6.1 

special topic 6.2 



268 Chapter 6  arrays and array Lists 

Now the last element of the first half of this sequence is 17; hence, the number must be located 
in the sequence: 

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

The last element of the first half of this very short sequence is 12, which is smaller than the 
number that we are searching, so we must look in the second half: 

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

We still don’t have a match because 15 ≠ 17, and we cannot divide the subsequence further. If 
we wanted to insert 15 into the sequence, we would need to insert it just before values[5]. 

This search process is called a binary search, because we cut the size of the search in half in 
each step. That cut ting in half works only because we know that the array is sorted. Here is an 
implementation in Java:

boolean found = false;
int low = 0;
int high = values.length - 1;
int pos = 0;
while (low <= high && !found)
{
   pos = (low + high) / 2; // Midpoint of the subsequence
   if (values[pos] == searchedNumber) { found = true; }
   else if (values[pos] < searchedNumber) { low = pos + 1; } // Look in second half
   else { high = pos - 1; } // Look in first half
}
if (found) { System.out.println("Found at position " + pos); }
else { System.out.println("Not found. Insert before position " + pos); }

6.4 Using arrays with Methods
In this section, we will explore how to write methods that process arrays. 

When you define a method with an array argument, you provide a parameter vari-
able for the array. For example, the following method computes the sum of an array 
of floating-point numbers:

public static double sum(double[] values)
{ 
   double total = 0;
   for (double element : values)
   {
      total = total + element;
   }
   return total;
}

This method visits the array elements, but it does not modify them. It is also possible 
to modify the ele ments of an array. The following method multiplies all elements of 
an array by a given factor:

public static void multiply(double[] values, double factor)
{
   for (int i = 0; i < values.length; i++)
   {

arrays can occur as 
method arguments 
and return values. 



6.4 Using arrays with Methods  269

      values[i] = values[i] * factor;
   }
}

Figure 11 traces the method call 
multiply(scores, 10);

Note these steps:

• The parameter variables values and factor are created. 1

• The parameter variables are initialized with the arguments that are passed in the 
call. In our case, values is set to scores and factor is set to 10. Note that values and 
scores are references to the same array. 2   

• The method multiplies all array elements by 10. 3

• The method returns. Its parameter variables are removed. However, scores still 
refers to the array with the modified elements. 4   

figure 11   
trace of Call to  
the multiply Method

scores =2

values =

factor = 10

Initializing method parameter variables

double[]

35
29

67.5
54
32

scores =1

values =

factor =

Method call

double[]

35
29

67.5
54
32

scores =3

values =

factor = 10

About to return to the caller

double[]

350
290
675
540
320

scores =4

After method call

double[]

350
290
675
540
320



270 Chapter 6  arrays and array Lists 

A method can return an array. Simply build up the result in the method and return it. 
In this example, the squares method returns an array of squares from 02 up to (n – 1)2:

public static int[] squares(int n)
{ 
   int[] result = new int[n];
   for (int i = 0; i < n; i++)
   {
      result[i] = i * i;
   }
   return result;
}

The following example program reads values from standard input, multiplies them 
by 10, and prints the result in reverse order. The program uses three methods:

• The readInputs method returns an array, using the algorithm of Section 6.3.10.
• The multiply method has an array argument. It modifies the array elements.
• The printReversed method also has an array argument, but it does not modify the 

array elements.

section_4/reverse.java

1 import java.util.Scanner;
2 
3 /**
4    This program reads, scales, and reverses a sequence of numbers.
5 */
6 public class Reverse
7 {
8     public static void main(String[] args)
9     {

10        double[] numbers = readInputs(5);
11        multiply(numbers, 10);
12        printReversed(numbers);
13     }
14 
15     /**
16        Reads a sequence of floating-point numbers.
17        @param numberOfInputs the number of inputs to read
18        @return an array containing the input values
19     */
20     public static double[] readInputs(int numberOfInputs)
21     {
22       System.out.println("Enter " + numberOfInputs + " numbers: ");
23       Scanner in = new Scanner(System.in);
24       double[] inputs = new double[numberOfInputs];
25       for (int i = 0; i < inputs.length; i++)
26       {
27          inputs[i] = in.nextDouble();
28       }
29       return inputs;
30    }
31 
32     /**
33        Multiplies all elements of an array by a factor.
34        @param values an array
35        @param factor the value with which element is multiplied
36     */



6.4 Using arrays with Methods  271

37     public static void multiply(double[] values, double factor)  
38     {  
39        for (int i = 0; i < values.length; i++)  
40        {
41           values[i] = values[i] * factor;
42        }
43     }
44  
45    /**
46       Prints an array in reverse order.
47       @param values an array of numbers
48       @return an array that contains the elements of values in reverse order
49    */
50     public static void printReversed(double[] values)
51     {
52        // Traverse the array in reverse order, starting with the last element
53        for (int i = values.length - 1; i >= 0; i--)
54        {
55           System.out.print(values[i] + " ");
56        }
57        System.out.println();
58     }
59 }

program run

Enter 5 numbers:
12 25 20 0 10
100.0 0.0 200.0 250.0 120.0

19.  How do you call the squares method to compute the first five squares and store 
the result in an array numbers?

20.  Write a method fill that fills all elements of an array of integers with a given 
value. For example, the call fill(scores, 10) should fill all elements of the array 
scores with the value 10.

21.  Describe the purpose of the following method:
public static int[] mystery(int length, int n)
{
   int[] result = new int[length];
   for (int i = 0; i < result.length; i++) 
   { 
      result[i] = (int) (n * Math.random()); 
   }
   return result;
}

22.  Consider the following method that reverses an array:
public static int[] reverse(int[] values)
{
   int[] result = new int[values.length];
   for (int i = 0; i < values.length; i++)
   {
      result[i] = values[values.length - 1 - i];
   }
   return result;
}

s e L f   c h e c k



272 Chapter 6  arrays and array Lists 

Suppose the reverse method is called with an array scores that contains the 
numbers 1, 4, and 9. What is the contents of scores after the method call? 

23.  Provide a trace diagram of the reverse method when called with an array that 
contains the values 1, 4, and 9. 

practice it  Now you can try these exercises at the end of the chapter: R6.25, P6.6, P6.7.

methods with a variable number of parameters

Starting with Java version 5.0, it is possible to declare methods that receive a variable number 
of parameters. For example, we can write a sum method that can compute the sum of any num-
ber of arguments:

int a = sum(1, 3); // Sets a to 4
int b = sum(1, 7, 2, 9); // Sets b to 19

The modified sum method must be declared as

public static void sum(int... values)

The ... symbol indicates that the method can receive any number of int arguments. The values 
parameter variable is actually an int[] array that contains all arguments that were passed to the 
method. The method implementation traverses the values array and processes the elements:

public void sum(int... values)
{
   int total = 0;
   for (int i = 0; i < values.length; i++) // values is an int[]
   {
      total = total + values[i];
   }
   return total;
}

6.5 problem solving: adapting algorithms
In Section 6.3, you were introduced to a number of fundamental array algorithms. 
These algorithms form the building blocks for many programs that process arrays. 
In general, it is a good problem-solving strat egy to have a repertoire of fundamental 
algorithms that you can combine and adapt.

Consider this example problem: You are given the quiz scores of a student. You are 
to compute the final quiz score, which is the sum of all scores after dropping the low-
est one. For example, if the scores are

8  7  8.5  9.5  7  4  10

then the final score is 50.
We do not have a ready-made algorithm for this situation. Instead, consider which 

algorithms may be related. These include:

• Calculating the sum (Section 6.3.2)
• Finding the minimum value (Section 6.3.3)
• Removing an element (Section 6.3.6)

special topic 6.3 

By combining 
fundamental 
algorithms, you can 
solve complex 
programming tasks.



6.5 problem solving: adapting algorithms  273

We can formulate a plan of attack that combines these algorithms:

Find the minimum.
Remove it from the array.
Calculate the sum.

Let’s try it out with our example. The minimum of

8

[0]

7

[1]

8.5

[2]

9.5

[3]

7

[4]

4

[5]

10

[6]

is 4. How do we remove it? 
Now we have a problem. The removal algorithm in Section 6.3.6 locates the ele-

ment to be removed by using the position of the element, not the value. 
But we have another algorithm for that:

• Linear search (Section 6.3.5)

We need to fix our plan of attack:

Find the minimum value.
Find its position.
Remove that position from the array.
Calculate the sum.

Will it work? Let’s continue with our example.
We found a minimum value of 4. Linear search tells us that the value 4 occurs at 

position 5. 

8

[0]

7

[1]

8.5

[2]

9.5

[3]

7

[4]

4

[5]

10

[6]

We remove it:

8

[0]

7

[1]

8.5

[2]

9.5

[3] [4]

7

[5]

10

Finally, we compute the sum: 8 + 7 + 8.5 + 9.5 + 7 + 10 = 50.
This walkthrough demonstrates that our strategy works. 
Can we do better? It seems a bit inefficient to find the minimum and then make 

another pass through the array to obtain its position. 
We can adapt the algorithm for finding the minimum to yield the position of the 

minimum. Here is the original algorithm:
double smallest = values[0];
for (int i = 1; i < values.length; i++)
{
   if (values[i] < smallest)
   {
      smallest = values[i];
   }
}

When we find the smallest value, we also want to update the position:
   if (values[i] < smallest)
   {
      smallest = values[i];
      smallestPosition = i;
   }

you should be 
familiar with the 
implementation of 
fundamental 
algorithms so that 
you can adapt them.



274 Chapter 6  arrays and array Lists 

In fact, then there is no reason to keep track of the smallest value any longer. It is sim-
ply val ues[smallestPosition]. With this insight, we can adapt the algorithm as follows:

int smallestPosition = 0;
for (int i = 1; i < values.length; i++)
{
   if (values[i] < values[smallestPosition])
   {
      smallestPosition = i;
   }
}

With this adaptation, our problem is solved with the following strategy:

Find the position of the minimum.
Remove it from the array.
Calculate the sum.

The next section shows you a technique for discovering a new algorithm when none 
of the fundamen tal algorithms can be adapted to a task.

24.  Section 6.3.6 has two algorithms for removing an element. Which of the two 
should be used to solve the task described in this section?

25.  It isn’t actually necessary to remove the minimum in order to compute the total 
score. Describe an alternative.

26.  How can you print the number of positive and negative values in a given array, 
using one or more of the algorithms in Section 4.7?

27.  How can you print all positive values in an array, separated by commas? 
28.  Consider the following algorithm for collecting all matches in an array:

int matchesSize = 0;
for (int i = 0; i < values.length; i++)
{ 
   if (values[i] fulfills the condition)
   {
      matches[matchesSize] = values[i]; 
      matchesSize++;
   }
}

How can this algorithm help you with Self Check 27?

practice it  Now you can try these exercises at the end of the chapter: R6.26, R6.27.

reading exception reports 

You will sometimes have programs that terminate, reporting an “exception”, such as 

Exception in thread “main” java.lang.ArrayIndexOutOfBoundsException: 10
   at Homework1.processValues(Homework1.java:14)
   at Homework1.main(Homework1.java:36)

Quite a few students give up at that point, saying “it didn’t work”, or “my program died”, 
with out reading the error message. Admittedly, the format of the exception report is not very 
friendly. But, with some practice, it is easy to decipher it. 

o n L i n e  e x A m p L e

a program that 
computes the final 
score using the 
adapted algorithm 
for finding the 
minimum.

s e L f   c h e c k

programming tip 6.2 



6.5 problem solving: adapting algorithms  275

There are two pieces of useful information: 

1.  The name of the exception, such as ArrayIndexOutOfBoundsException 
2.  The stack trace, that is, the method calls that led to the exception, such as 

Homework1.java:14 and Homework1.java:36 in our example.

The name of the exception is always in the first line of the report, and it ends in Exception. 
If you get an ArrayIndex OutOfBoundsException, then there was a problem with an invalid array 
index. That is useful informa tion. 

To determine the line number of the offending code, look at the file names and line num-
bers. The first line of the stack trace is the method that actually generated the exception. The 
last line of the stack trace is a line in main. In our example, the exception was caused by line 14 
of Homework1.java. Open up the file, go to that line, and look at it! Also look at the name of the 
exception. In most cases, these two pieces of information will make it completely obvious 
what went wrong, and you can easily fix your error.

Sometimes, the exception was thrown by a method that is in the standard library. Here is a 
typical example:

Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index
      out of range: -4
   at java.lang.String.substring(String.java:1444)
   at Homework2.main(Homework2.java:29)

The exception happened in the substring method of the String class, but the real culprit is the 
first method in a file that you wrote. In this example, that is Homework2.main, and you should 
look at line 29 of Homework2.java. 

step 1  Decompose your task into steps.

You will usually want to break down your task into multiple steps, such as
• Reading the data into an array.
• Processing the data in one or more steps.
• Displaying the results.
When deciding how to process the data, you should be familiar with the array algorithms in 
Section 6.3. Most processing tasks can be solved by using one or more of these algorithms.

hoW to 6.1 working with Arrays

In many data processing situations, you 
need to process a sequence of values. This 
How To walks you through the steps for 
storing input values in an array and carrying 
out computations with the array elements.

Consider again the problem from Sec-
tion 6.5: A final quiz score is computed by 
adding all the scores, except for the lowest 
one. For example, if the scores are

8  7  8.5  9.5  7  5  10

then the final score is 50.



276 Chapter 6  arrays and array Lists 

In our sample problem, we will want to read the data. Then we will remove the minimum 
and compute the total. For example, if the input is 8 7 8.5 9.5 7 5 10, we will remove the mini-
mum of 5, yielding 8 7 8.5 9.5 7 10. The sum of those values is the final score of 50.

Thus, we have identified three steps:

Read inputs.
Remove the minimum.
Calculate the sum.

step 2  Determine which algorithm(s) you need.

Sometimes, a step corresponds to exactly one of the basic array algorithms in Section 6.3. That 
is the case with calcu lating the sum (Section 6.3.2) and reading the inputs (Section 6.3.10). At 
other times, you need to combine several algorithms. To remove the minimum value, you can 
find the minimum value (Section 6.3.3), find its position (Section 6.3.5), and remove the ele-
ment at that position (Section 6.3.6). 

We have now refined our plan as follows:

Read inputs.
Find the minimum.
Find its position.
Remove the minimum.
Calculate the sum.

This plan will work—see Section 6.5. But here is an alternate approach. It is easy to compute 
the sum and subtract the minimum. Then we don’t have to find its position. The revised plan is

Read inputs.
Find the minimum.
Calculate the sum.
Subtract the minimum.

step 3  Use methods to structure the program.

Even though it may be possible to put all steps into the main method, this is rarely a good idea. 
It is better to make each processing step into a separate method. In our example, we will imple-
ment three methods:
• readInputs 
• sum 
• minimum 
The main method simply calls these methods:

double[] scores = readInputs();
double total = sum(scores) - minimum(scores);
System.out.println("Final score: " + total);

step 4  Assemble and test the program.

Place your methods into a class. Review your code and check that you handle both normal 
and exceptional situa tions. What happens with an empty array? One that contains a single ele-
ment? When no match is found? When there are multiple matches? Consider these boundary 
conditions and make sure that your program works correctly. 

In our example, it is impossible to compute the minimum if the array is empty. In that case, 
we should terminate the program with an error message before attempting to call the minimum 
method. 



6.5 problem solving: adapting algorithms  277

What if the minimum value occurs more than once? That means that a student had more 
than one test with the same low score. We subtract only one of the occurrences of that low 
score, and that is the desired behavior.

The following table shows test cases and their expected output:  

test Case expected output Comment

8 7 8.5 9.5 7 5 10 50 See Step 1.

8 7 7 9 24 Only one instance of the low score should be removed.

8 0 After removing the low score, no score remains.

(no inputs) error That is not a legal input.

Here’s the complete program (how_to_1/Scores.java):

import java.util.Arrays;
import java.util.Scanner;

/**
   This program computes a final score for a series of quiz scores: the sum after dropping 
   the lowest score. The program uses arrays.
*/
public class Scores
{
   public static void main(String[] args)
   {
      double[] scores = readInputs();
      if (scores.length == 0)
      {
         System.out.println("At least one score is required.");
      }
      else
      {
         double total = sum(scores) - minimum(scores);
         System.out.println("Final score: " + total);
      }
   }

   /**
      Reads a sequence of floating-point numbers.
      @return an array containing the numbers
   */
   public static double[] readInputs()
   {
      // Read the input values into an array

      final int INITIAL_SIZE = 10;
      double[] inputs = new double[INITIAL_SIZE];
      System.out.println("Please enter values, Q to quit:");
      Scanner in = new Scanner(System.in);
      int currentSize = 0;
      while (in.hasNextDouble())
      { 
         // Grow the array if it has been completely filled



278 Chapter 6  arrays and array Lists 

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

         if (currentSize >= inputs.length)
         {
            inputs = Arrays.copyOf(inputs, 2 * inputs.length);
         }
         inputs[currentSize] = in.nextDouble();
         currentSize++;
      }

      return Arrays.copyOf(inputs, currentSize);
   }
   
   /**
      Computes the sum of the values in an array.
      @param values an array
      @return the sum of the values in values
   */
   public static double sum(double[] values)
   {
      double total = 0;
      for (double element : values)
      {
         total = total + element;
      }
      return total;
   }
      
   /**
      Gets the minimum value from an array.
      @param values an array of size >= 1
      @return the smallest element of values
   */
   public static double minimum(double[] values)
   {
      double smallest = values[0];
      for (int i = 1; i < values.length; i++)
      {
         if (values[i] < smallest)
         {
            smallest = values[i];
         }
      }
      return smallest;
   }
}

Worked eXaMpLe 6.1 rolling the dice

This Worked Example shows how to analyze a set of die 
tosses to see whether the die is “fair”.



6.6 problem solving: discovering algorithms by Manipulating physical objects  279

6.6 problem solving: discovering algorithms by 
Manipulating physical objects

In Section 6.5, you saw how to solve a problem by combining and adapting 
known algorithms. But what do you do when none of the standard algorithms 
is sufficient for your task? In this section, you will learn a technique for dis-
covering algorithms by manipulating physical objects.

Consider the following task: You are given an array whose size is an even 
number, and you are to switch the first and the second half. For example, if the 
array contains the eight numbers

9 13 21 4 11 7 1 3

then you should change it to

9 13 21 411 7 1 3

Many students find it quite challenging to come up with an algorithm. They may 
know that a loop is required, and they may realize that elements should be inserted 
(Section 6.3.7) or swapped (Section 6.3.8), but they do not have sufficient intuition to 
draw diagrams, describe an algorithm, or write down pseudocode.

One useful technique for discovering an algorithm is to manipulate physical 
objects. Start by lining up some objects to denote an array. Coins, playing cards, or 
small toys are good choices.

Here we arrange eight coins:

Now let’s step back and see what we can do to change the order of the coins.
We can remove a coin (Section 6.3.6): 

We can insert a coin (Section 6.3.7): 

Manipulating physical objects  
can give you ideas for  
discovering algorithms.

Use a sequence of 
coins, playing cards, 
or toys to visualize 
an array of values.

Visualizing the  
removal of an  
array element 

Visualizing the  
insertion of an  
array element



280 Chapter 6  arrays and array Lists 

Or we can swap two coins (Section 6.3.8). 

Go ahead—line up some coins and try out these three operations right now so that 
you get a feel for them.

Now how does that help us with our problem, switching the first and the second 
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as 
Java programmers, we will say that we swap the coins in positions 0 and 4: 

Next, we swap the coins in positions 1 and 5: 

 

Two more swaps, and we are done: 

 

Visualizing the  
swapping of  
two coins



6.6 problem solving: discovering algorithms by Manipulating physical objects  281

Now an algorithm is becoming apparent:

i = 0
j = ... (we’ll think about that in a minute)
While (don’t know yet)
 Swap elements at positions i and j
 i++
 j++

Where does the variable j start? When we have eight coins, the coin at position zero is 
moved to position 4. In general, it is moved to the middle of the array, or to position 
size / 2.

And how many iterations do we make? We need to swap all coins in the first half. 
That is, we need to swap size / 2 coins. The pseudocode is

i = 0
j = size / 2
While (i < size / 2)
 Swap elements at positions i and j
 i++
 j++

It is a good idea to make a walkthrough of the pseudocode (see Section 4.2). You can 
use paper clips to denote the positions of the variables i and j. If the walkthrough is 
suc cessful, then we know that there was no “off-by-one” error in the pseudocode. 
Self Check 29 asks you to carry out the walkthrough, and Exercise P6.8 asks you to 
translate the pseudocode to Java. Exercise R6.28 suggests a different algorithm for 
switching the two halves of an array, by repeatedly removing and inserting coins.

Many people find that the manipulation of physical objects is less intimidating 
than drawing diagrams or mentally envisioning algorithms. Give it a try when you 
need to design a new algorithm!

29.  Walk through the algorithm that we developed in this section, using two paper 
clips to indicate the positions for i and j. Explain why there are no bounds errors 
in the pseudocode.

30.  Take out some coins and simulate the following pseudocode, using two paper 
clips to indicate the positions for i and j.

i = 0
j = size - 1
While (i < j)
 Swap elements at positions i and j
 i++
 j--

What does the algorithm do?
31.  Consider the task of rearranging all elements in an array so that the even num-

bers come first. Other wise, the order doesn’t matter. For example, the array
1 4 14 2 1 3 5 6 23 

could be rearranged to
4 2 14 6 1 5 3 23 1

o n L i n e  e x A m p L e

a program that 
implements the 
algorithm that 
switches the first 
and second halves 
of an array.

you can use paper 
clips as position 
markers or counters.

s e L f   c h e c k



282 Chapter 6  arrays and array Lists 

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Using coins and paperclips, discover an algorithm that solves this task by 
swapping elements, then describe it in pseudocode.

32.  Discover an algorithm for the task of Self Check 31 that uses removal and 
insertion of elements instead of swapping.

33.  Consider the algorithm in Section 4.7.4 that finds the 
largest element in a sequence of inputs—not the largest 
element in an array. Why is this algorithm better visual-
ized by picking playing cards from a deck rather than 
arranging toy soldiers in a sequence? 

practice it  Now you can try these exercises at the end of the chapter: R6.28, R6.29, P6.8.

6.7 two-dimensional arrays
It often happens that you want to store 
collections of values that have a two-
dimensional layout. Such data sets com-
monly occur in financial and scientific 
applications. An arrangement consisting 
of rows and columns of values is called a 
two-dimensional array, or a matrix.

Let’s explore how to store the example 
data shown in Figure 12: the medal counts 
of the figure skating competitions at the 
2010 Winter Olympics.

Gold silver Bronze

Canada 1 0 1
China 1 1 0
Germany 0 0 1
Korea 1 0 0
Japan 0 1 1
Russia 0 1 1
United States 1 1 0

figure 12  Figure skating Medal Counts

Video eXaMpLe 6.1 removing duplicates from an Array

In this Video Example, we will discover an algorithm for removing duplicates from an array.



6.7 two-dimensional arrays  283

6.7.1 declaring two-dimensional arrays

In Java, you obtain a two-dimensional array by supplying the number of rows and 
columns. For exam ple, new int[7][3] is an array with seven rows and three columns. 
You store a reference to such an array in a variable of type int[][]. Here is a complete 
declaration of a two-dimensional array, suitable for holding our medal count data: 

final int COUNTRIES = 7;
final int MEDALS = 3;
int[][] counts = new int[COUNTRIES][MEDALS];

Alternatively, you can declare and initialize the array by grouping each row: 
int[][] counts = 
   { 
      { 1, 0, 1 },
      { 1, 1, 0 }, 
      { 0, 0, 1 }, 
      { 1, 0, 0 }, 
      { 0, 1, 1 }, 
      { 0, 1, 1 },
      { 1, 1, 0 }
   }; 

As with one-dimensional arrays, you cannot change the size of a two-dimensional 
array once it has been declared. 

6.7.2 

syntax 6.3 two-dimensional array declaration

int[][] data = { 
                 { 16, 3, 2, 13 },
                 { 5, 10, 11, 8 },
                 { 9, 6, 7, 12 },
                 { 4, 15, 14, 1 },
               };

Name
List of initial values 

double[][] tableEntries = new double[7][3];

Name Element type
Number of rows

Numberof columns

All values are initialized with 0.

accessing elements

To access a particular element in the two-dimensional array, you need to specify two 
index values in sep arate brackets to select the row and column, respectively (see Fig-
ure 13):

int medalCount = counts[3][1];

Use a two-
dimensional array to 
store tabular data.

individual elements 
in a two-dimensional 
array are accessed by 
using two index 
values, array[i][j].



284 Chapter 6  arrays and array Lists 

To access all elements in a two-dimensional array, you use two nested loops. For 
example, the following loop prints all elements of counts:

for (int i = 0; i < COUNTRIES; i++)
{
   // Process the ith row
   for (int j = 0; j < MEDALS; j++)
   {
      // Process the jth column in the ith row
      System.out.printf("%8d", counts[i][j]);
   }
   System.out.println(); // Start a new line at the end of the row
} 

6.7.3 Locating neighboring elements

Some programs that work with two-dimensional arrays need to locate the elements 
that are adjacent to an element. This task is particularly common in games. Figure 14 
shows how to compute the index values of the neighbors of an element. 

For example, the neighbors of counts[3][1] to the left and right are counts[3][0] and 
counts[3][2]. The neighbors to the top and bottom are counts[2][1] and counts[4][1].

You need to be careful about computing neighbors at the boundary of the array. 
For example, counts[0][1] has no neighbor to the top. Consider the task of computing 
the sum of the neighbors to the top and bottom of the element count[i][j]. You need 
to check whether the element is located at the top or bottom of the array:

int total = 0;
if (i > 0) { total = total + counts[i - 1][j]; }
if (i < ROWS - 1) { total = total + counts[i + 1][j]; }

figure 13   
accessing an element in a  
two-dimensional array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[0][1][2]

counts[3][1]

Column index

R
ow

 in
de

x

figure 14   
neighboring Locations in a  
two-dimensional array

[i - 1][j - 1] [i - 1][j] [i - 1][j + 1]

[i][j - 1] [i][j] [i][j + 1]

[i + 1][j - 1] [i + 1][j] [i + 1][j + 1]



6.7 two-dimensional arrays  285

6.7.4 Computing row and Column totals

A common task is to compute row or column totals. In our example, the row totals 
give us the total num ber of medals won by a particular country.

Finding the right index values is a bit tricky, and it is a good idea to make a quick 
sketch. To compute the total of row i, we need to visit the following elements:

[i][0] [i][1] [i][2]row i

0 MEDALS - 1

As you can see, we need to compute the sum of counts[i][j], where j ranges from 0 to 
MEDALS - 1. The fol lowing loop computes the total:

int total = 0;
for (int j = 0; j < MEDALS; j++)
{
   total = total + counts[i][j];
} 

Computing column totals is similar. Form the sum of counts[i][j], where i ranges 
from 0 to COUNTRIES - 1. 

int total = 0;
for (int i = 0; i < COUNTRIES; i++)
{
   total = total + counts[i][j];

}

[0][j]

[1][j]

[2][j]

[3][j]

[4][j]

[5][j]

[6][j]

column j

COUNTRIES - 1

0

A N I M AT I O N
Tracing a Nested  

Loop in a 2D Array



286 Chapter 6  arrays and array Lists 

6.7.5 two-dimensional array parameters

When you pass a two-dimensional array to a method, you will want to recover the 
dimensions of the array. If values is a two-dimensional array, then

• values.length is the number of rows.
• values[0].length is the number of columns. (See Special Topic 6.4 for an explana-

tion of this expression.)

For example, the following method computes the sum of all elements in a two-
dimensional array:

public static int sum(int[][] values)
{
   int total = 0;
   for (int i = 0; i < values.length; i++)   
   {
      for (int j = 0; j < values[0].length; j++)
      {
         total = total + values[i][j];
      }
   }
   return total;
}

Working with two-dimensional arrays is illustrated in the following program. The 
program prints out the medal counts and the row totals. 

section_7/medals.java

1 /**
2    This program prints a table of medal winner counts with row totals.
3 */
4 public class Medals
5 {
6    public static void main(String[] args)
7    {
8       final int COUNTRIES = 7;
9       final int MEDALS = 3;

10 
11       String[] countries = 
12          { 
13             "Canada",
14             "China",
15             "Germany",
16             "Korea",
17             "Japan",
18             "Russia",
19             "United States" 
20          };
21       
22       int[][] counts = 
23          { 
24             { 1, 0, 1 },
25             { 1, 1, 0 }, 
26             { 0, 0, 1 }, 
27             { 1, 0, 0 }, 
28             { 0, 1, 1 }, 
29             { 0, 1, 1 },
30             { 1, 1, 0 }



6.7 two-dimensional arrays  287

31          }; 
32       
33       System.out.println("        Country    Gold  Silver  Bronze   Total");
34 
35       // Print countries, counts, and row totals
36       for (int i = 0; i < COUNTRIES; i++)
37       {
38          // Process the ith row
39          System.out.printf("%15s", countries[i]);
40 
41          int total = 0; 
42 
43          // Print each row element and update the row total
44          for (int j = 0; j < MEDALS; j++)
45          {
46             System.out.printf("%8d", counts[i][j]);
47             total = total + counts[i][j];
48          }
49          
50          // Display the row total and print a new line
51          System.out.printf("%8d\n", total);
52       }
53    }
54 }

program run

      Country    Gold  Silver  Bronze   Total
       Canada       1       0       1       2
        China       1       1       0       2
      Germany       0       0       1       1
        Korea       1       0       0       1
        Japan       0       1       1       2
       Russia       0       1       1       2
United States       1       1       0       2

34.  What results do you get if you total the columns in our sample data?
35.  Consider an 8 × 8 array for a board game:

int[][] board = new int[8][8];

Using two nested loops, initialize the board so that zeroes and ones alternate, as 
on a checkerboard:
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
. . .
1 0 1 0 1 0 1 0

Hint: Check whether i + j is even.
36.  Declare a two-dimensional array for representing a tic-tac-toe board. The board 

has three rows and columns and contains strings "x", "o", and " ".
37.  Write an assignment statement to place an "x" in the upper-right corner of the 

tic-tac-toe board in Self Check 36.
38.  Which elements are on the diagonal joining the upper-left and the lower-right 

corners of the tic-tac-toe board in Self Check 36?

s e L f   c h e c k



288 Chapter 6  arrays and array Lists 

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

practice it  Now you can try these exercises at the end of the chapter: R6.30, P6.18, P6.19.

Two-dimensional Arrays with variable row Lengths

When you declare a two-dimensional array with the command 

int[][] a = new int[3][3];

then you get a 3 × 3 matrix that can store 9 elements: 

a[0][0] a[0][1] a[0][2]
a[1][0] a[1][1] a[1][2]
a[2][0] a[2][1] a[2][2]

In this matrix, all rows have the same length. 
In Java it is possible to declare arrays in which the row length varies. For example, you can 

store an array that has a triangular shape, such as: 

b[0][0]
b[1][0] b[1][1]
b[2][0] b[2][1] b[2][2]

To allocate such an array, you must work harder. First, you allocate space to hold three rows. 
Indicate that you will manually set each row by leaving the second array index empty: 

double[][] b = new double[3][];

Then allocate each row separately (see Figure 15):

for (int i = 0; i < b.length; i++)
{
   b[i] = new double[i + 1];
}

You can access each array element as b[i][j]. The expression b[i] selects the ith row, and the 
[j] operator selects the jth element in that row. 

Worked eXaMpLe 6.2 A world population Table

This Worked Example shows how to print world population data in a table with row and col-
umn headers, and with totals for each of the data columns.

special topic 6.4 

figure 15  a triangular array

double[]b =

[0]

[1]

[2]

[3]

double[] [0]

double[] [0] [1]

double[] [0] [1] [2]

double[] [0] [1] [2] [3]



6.8 array Lists  289

Note that the number of rows is b.length, and the length of the ith row is b[i].length. For 
example, the following pair of loops prints a ragged array:

for (int i = 0; i < b.length; i++)
{
   for (int j = 0; j < b[i].length; j++)
   {
      System.out.print(b[i][j]);
   }
   System.out.println();
}

Alternatively, you can use two enhanced for loops:

for (double[] row : b)
{
   for (double element : row)
   {
      System.out.print(element);
   }
   System.out.println();
}

Naturally, such “ragged” arrays are not very common. 
Java implements plain two-dimensional arrays in exactly the same way as ragged arrays: 

as arrays of one-dimen sional arrays. The expression new int[3][3] automatically allocates an 
array of three rows, and three arrays for the rows’ contents. 

multidimensional Arrays

You can declare arrays with more than two dimensions. For example, here is a three-dimen-
sional array:

int[][][] rubiksCube = new int[3][3][3];

Each array element is specified by three index values:

rubiksCube[i][j][k]

6.8 array Lists
When you write a program that collects inputs, you 
don’t always know how many inputs you will have. 
In such a situation, an array list offers two significant 
advantages:

• Array lists can grow and shrink as needed.
• The ArrayList class supplies methods for common 

tasks, such as inserting and removing elements.

In the following sections, you will learn how to work 
with array lists.

An array list expands to hold as many elements as needed.

special topic 6.5 

an array list stores  
a sequence of  
values whose  
size can change.



290 Chapter 6  arrays and array Lists 

6.8.1 

syntax 6.4 array Lists

ArrayList<String> friends = new ArrayList<String>();

The index must be ≥ 0 and < friends.size().

An array list object of size 0

Use the 
get and set methods 
to access an element.

friends.add("Cindy");
String name = friends.get(i);
friends.set(i, "Harry");

Variable type Variable name

The add method 
appends an element to the array list, 

increasing its size.

To construct an array list:  new ArrayList<typeName>()

To access an element:  arraylistReference.get(index)
 arraylistReference.set(index, value)

Syntax

declaring and Using array Lists

The following statement declares an array list of strings:
ArrayList<String> names = new ArrayList<String>();

The ArrayList class is contained in the java.util package. In order to use array lists in 
your program, you need to use the statement import java.util.ArrayList. 

The type ArrayList<String> denotes an array list of String elements. The angle 
brackets around the String type tell you that String is a type parameter. You can 
replace String with any other class and get a differ ent array list type. For that reason, 
ArrayList is called a generic class. However, you cannot use primitive types as type 
parameters—there is no ArrayList<int> or ArrayList<double>. Section 6.8.5 shows how 
you can collect numbers in an array list.  

It is a common error to forget the initialization:
ArrayList<String> names;
names.add("Harry"); // Error—names not initialized 

Here is the proper initialization: 
ArrayList<String> names = new ArrayList<String>();

Note the () after new ArrayList<String> on the right-hand side of the initialization. It 
indicates that the con structor of the ArrayList<String> class is being called. We will 
discuss constructors in Chapter 8. 

the ArrayList class 
is a generic class: 
ArrayList<Type> 
collects elements of 
the specified type.

figure 16  adding an element with add

1 Before add 2 After add

2

ArrayList<String>

names =

"Bob"
"Emily"

3

Size increased

New element 
added at end

ArrayList<String>

names =

"Cindy"
"Bob"

"Emily"



6.8 array Lists  291

When the ArrayList<String> is first constructed, it has size 0. You use the add method 
to add an element to the end of the array list. 

names.add("Emily"); // Now names has size 1 and element "Emily"
names.add("Bob"); // Now names has size 2 and elements "Emily", "Bob"
names.add("Cindy"); // names has size 3 and elements "Emily", "Bob", and "Cindy"

The size increases after each call to add (see Figure 16). The size method yields the 
current size of the array list. 

To obtain an array list element, use the get method, not the [] operator. As with 
arrays, index values start at 0. For example, names.get(2) retrieves the name with index 
2, the third element in the array list:

String name = names.get(2); 

As with arrays, it is an error to access a nonexistent element. A very common bounds 
error is to use the following: 

int i = names.size();
name = names.get(i);  // Error 

The last valid index is names.size() - 1.
To set an array list element to a new value, use the set method. 
names.set(2, "Carolyn");

This call sets position 2 of the names array list to "Carolyn", overwriting whatever value 
was there before. 

The set method overwrites existing values. It is different from the add method, 
which adds a new ele ment to the array list.

You can insert an element in the middle of an array list. For example, the call names.
add(1, "Ann") adds a new element at position 1 and moves all elements with index 1 or 
larger by one position. After each call to the add method, the size of the array list 
increases by 1 (see Figure 17).

Use the size method 
to obtain the current 
size of an array list.

Use the get and set 
methods to access an 
array list element at a 
given index.

An array list has 
methods for adding 
and removing ele
ments in the middle.

figure 17   
adding and  
removing  
elements in the  
Middle of an  
array List

1 Before add
ArrayList<String>names =

"Carolyn"
"Bob"

"Emily"

2 After names.add(1, "Ann")
ArrayList<String>

names =

"Carolyn"
"Bob"

"Emily"
"Ann" Moved from index 1 to 2

New element 
added at index 1

Moved from index 2 to 3

3 After names.remove(1)
ArrayList<String>

names =

"Carolyn"
"Bob"

"Emily" Moved from index 2 to 1

Moved from index 3 to 2



292 Chapter 6  arrays and array Lists 

 Conversely, the remove method removes the element at a given position, moves all 
elements after the removed element down by one position, and reduces the size of the 
array list by 1. Part 3 of Figure 17 illustrates the result of names.remove(1). 

With an array list, it is very easy to get a quick printout. Simply pass the array list 
to the println method:

System.out.println(names); // Prints [Emily, Bob, Carolyn] 

6.8.2 Using the enhanced for Loop with array Lists

You can use the enhanced for loop to visit all elements of an array list. For example, 
the following loop prints all names: 

ArrayList<String> names = . . . ;
for (String name : names)
{
   System.out.println(name);
}

This loop is equivalent to the following basic for loop: 
for (int i = 0; i < names.size(); i++)
{
   String name = names.get(i);
   System.out.println(name);
}

table 2  Working with array Lists

ArrayList<String> names = new ArrayList<String>(); Constructs an empty array list that can 
hold strings.

names.add("Ann");
names.add("Cindy");

Adds elements to the end. 

System.out.println(names); Prints [Ann, Cindy].

names.add(1, "Bob"); Inserts an element at index 1.  
names is now [Ann, Bob, Cindy].

names.remove(0); Removes the element at index 0.  
names is now [Bob, Cindy].

names.set(0, "Bill"); Replaces an element with a different value. 
names is now [Bill, Cindy].

String name = names.get(i); Gets an element. 

String last = names.get(names.size() - 1); Gets the last element.

ArrayList<Integer> squares = new ArrayList<Integer>();
for (int i = 0; i < 10; i++)
{
   squares.add(i * i);
}

Constructs an array list holding the first 
ten squares.

Use the add and 
remove methods to 
add and remove 
array list elements.



6.8 array Lists  293

6.8.3 Copying array Lists

As with arrays, you need to remember that array list variables hold references. Copy-
ing the reference yields two references to the same array list (see Figure 18). 

ArrayList<String> friends = names;
friends.add("Harry");

Now both names and friends reference the same array list to which the string "Harry" 
was added.

If you want to make a copy of an array list, construct the copy and pass the original 
list into the con structor:

ArrayList<String> newNames = new ArrayList<String>(names);

6.8.4 array Lists and Methods

Like arrays, array lists can be method arguments and return values. Here is an exam-
ple: a method that receives a list of strings and returns the reversed list.

public static ArrayList<String> reverse(ArrayList<String> names)
{
   // Allocate a list to hold the method result
   ArrayList<String> result = new ArrayList<String>();

   // Traverse the names list in reverse order, starting with the last element
   for (int i = names.size() - 1; i >= 0; i--)
   {
      // Add each name to the result
      result.add(names.get(i));
   }
   return result;
}

If this method is called with an array list containing the names Emily, Bob, Cindy, it 
returns a new array list with the names Cindy, Bob, Emily.

6.8.5  Wrappers and auto-boxing

In Java, you cannot directly insert primitive type values—numbers, characters, or 
boolean values—into array lists. For example, you cannot form an ArrayList<double>. 
Instead, you must use one of the wrapper classes shown in the following table.  

figure 18  Copying an array List reference

ArrayList<String>

"Emily"
"Bob"

"Carolyn"
"Harry"

names =

friends =

to collect numbers in 
array lists, you must 
use wrapper classes.



294 Chapter 6  arrays and array Lists 

primitive type Wrapper Class

byte Byte 

boolean Boolean 

char Character 

double Double 

float Float 

int Integer 

long Long 

short Short 

For example, to collect double values in an array list, you use an ArrayList<Double>. 
Note that the wrapper class names start with uppercase letters, and that two of them 
differ from the names of the corresponding primitive type: Integer and Character. 

Conversion between primitive types and the corresponding wrapper classes is 
automatic. This process is called auto-boxing (even though auto-wrapping would 
have been more consistent).

For example, if you assign a double value to a Double variable, the number is auto-
matically “put into a box” (see Figure 19).

 Double wrapper = 29.95; 

Conversely, wrapper values are automatically “unboxed” to primitive types. 
double x = wrapper;

Because boxing and unboxing is automatic, you don’t need to think about it. Simply 
remember to use the wrapper type when you declare array lists of numbers. From 
then on, use the primitive type and rely on auto-boxing.

ArrayList<Double> values = new ArrayList<Double>();
values.add(29.95);
double x = values.get(0); 

Like truffles that must be in a wrapper to be sold, 
a number must be placed in a wrapper to be stored in an array list.

figure 19  a Wrapper Class Variable

wrapper =

value =

Double

29.95



6.8 array Lists  295

6.8.6  Using array algorithms with array Lists

The array algorithms in Section 6.3 can be converted to array lists simply by using the 
array list methods instead of the array syntax (see Table 3 on page 297). For example, this 
code snippet finds the largest element in an array:

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
   if (values[i] > largest)
   {
      largest = values[i];
   }
}

Here is the same algorithm, now using an array list:
double largest = values.get(0);
for (int i = 1; i < values.size(); i++)
{
   if (values.get(i) > largest)
   {
      largest = values.get(i);
   }
}

6.8.7  storing input Values in an array List

When you collect an unknown number of inputs, array lists are much easier to use 
than arrays. Simply read inputs and add them to an array list:

ArrayList<Double> inputs = new ArrayList<Double>();
while (in.hasNextDouble())
{
   inputs.add(in.nextDouble());

}

6.8.8 removing Matches

It is easy to remove elements from an array list, by calling the remove method. A com-
mon processing task is to remove all elements that match a particular condition. Sup-
pose, for example, that we want to remove all strings of length < 4 from an array list.

Of course, you traverse the array list and look for matching elements:
ArrayList<String> words = ...;
for (int i = 0; i < words.size(); i++)
{
   String word = words.get(i);
   if (word.length() < 4)
   {
      Remove the element at index i.
   }
}

But there is a subtle problem. After you remove the element, the for loop increments 
i, skipping past the next element. 



296 Chapter 6  arrays and array Lists 

 Consider this concrete example, where words contains the strings "Welcome", "to", 
"the", "island!". When i is 1, we remove the word "to" at index 1. Then i is incre-
mented to 2, and the word "the", which is now at position 1, is never examined.

 i words 
 0 "Welcome", "to", "the", "island"
 1 "Welcome", "the", "island"
 2 

We should not increment the index when removing a word. The appropriate pseudo-
code is

If the element at index i matches the condition
 Remove the element.
Else
 Increment i.

Because we don’t always increment the index, a for loop is not appropriate for this 
algorithm. Instead, use a while loop:

int i = 0;
while (i < words.size())
{
   String word = words.get(i);
   if (word.length() < 4)
   {
      words.remove(i);
   }
   else
   {
      i++;
   }
}

6.8.9 Choosing Between array Lists and arrays

For most programming tasks, array lists are easier to use than arrays. Array lists can 
grow and shrink. On the other hand, arrays have a nicer syntax for element access and 
initialization. 

Which of the two should you choose? Here are some recommendations.

• If the size of a collection never changes, use an array.

• If you collect a long sequence of primitive type values and you are concerned 
about efficiency, use an array.

• Otherwise, use an array list.

The following program shows how to mark the largest value in a sequence of values. 
This program uses an array list. Note how the program is an improvement over the 
array version on page 265. This program can process input sequences of arbitrary length.

o n L i n e  e x A m p L e

a version of the 
Scores program 
using an array list.



6.8 array Lists  297

table 3  Comparing array and array List operations

operation arrays array Lists

Get an element. x = values[4]; x = values.get(4)

Replace an element. values[4] = 35; values.set(4, 35);

Number of elements. values.length values.size()

Number of filled elements. currentSize 
(companion variable, see 
Section 6.1.3)

values.size()

Remove an element. See Section 6.3.6 values.remove(4);

Add an element, growing 
the collection.

See Section 6.3.7 values.add(35);

Initializing a collection. int[] values = { 1, 4, 9 }; No initializer list syntax; 
call add three times.

section_8/LargestinArrayList.java

1 import java.util.ArrayList;
2 import java.util.Scanner;
3 
4 /**
5    This program reads a sequence of values and prints them, marking the largest value.
6 */
7 public class LargestInArrayList
8 {
9    public static void main(String[] args)

10    { 
11       ArrayList<Double> values = new ArrayList<Double>();
12 
13       // Read inputs
14 
15       System.out.println("Please enter values, Q to quit:");
16       Scanner in = new Scanner(System.in);
17       while (in.hasNextDouble())
18       { 
19          values.add(in.nextDouble());
20       }
21 
22       // Find the largest value
23 
24       double largest = values.get(0);
25       for (int i = 1; i < values.size(); i++)
26       {
27          if (values.get(i) > largest)
28          {
29             largest = values.get(i);
30          }
31       }
32 
33       // Print all values, marking the largest
34 



298 Chapter 6  arrays and array Lists 

35       for (double element : values)
36       { 
37          System.out.print(element);
38          if (element == largest) 
39          {
40             System.out.print(" <== largest value");
41          }
42          System.out.println();
43       }
44    }
45 }

program run

Please enter values, Q to quit:
35 80 115 44.5 Q
35
80
115 <== largest value
44.5

39.  Declare an array list primes of integers that contains the first five prime numbers 
(2, 3, 5, 7, and 11).

40.  Given the array list primes declared in Self Check 39, write a loop to print its ele-
ments in reverse order, starting with the last element.

41.  What does the array list names contain after the following statements?
ArrayList<String> names = new ArrayList<String>;
names.add("Bob");
names.add(0, "Ann");
names.remove(1);
names.add("Cal");

42.  What is wrong with this code snippet?
ArrayList<String> names;
names.add(Bob);

43.  Consider this method that appends the elements of one array list to another. 
public static void append(ArrayList<String> target, ArrayList<String> source)
{
   for (int i = 0; i < source.size(); i++) 
   { 
      target.add(source.get(i)); 
   }
}

What are the contents of names1 and names2 after these statements?
ArrayList<String> names1 = new ArrayList<String>();
names1.add("Emily");
names1.add("Bob");
names1.add("Cindy");
ArrayList<String> names2 = new ArrayList<String>();
names2.add("Dave");
append(names1, names2);

44.  Suppose you want to store the names of the weekdays. Should you use an array 
list or an array of seven strings?

s e L f   c h e c k



 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

6.8 array Lists  299

45.  The section_8 directory of your source code contains an alternate implementa-
tion of the problem solution in How To 6.1 on page 275. Compare the array and 
array list implementations. What is the primary advantage of the latter?

practice it  Now you can try these exercises at the end of the chapter: R6.10, R6.34, P6.21, 
P6.23.

Length and size

Unfortunately, the Java syntax for determining the number of elements in an array, an array 
list, and a string is not at all consistent. 

data type number of elements

Array a.length 

Array list a.size() 

String a.length() 

It is a common error to confuse these. You just have to remember the correct syntax for every 
data type.  

The diamond syntax in java 7

Java 7 introduces a convenient syntax enhancement for declaring array lists and other generic 
classes. In a statement that declares and constructs an array list, you need not repeat the type 
parameter in the constructor. That is, you can write

ArrayList<String> names = new ArrayList<>();

instead of

ArrayList<String> names = new ArrayList<String>();

This shortcut is called the “diamond syntax” because the empty brackets <> look like a dia-
mond shape. 

Common error 6.4 

special topic 6.6 

Video eXaMpLe 6.2 game of Life

Conway’s Game of Life simulates the growth of a population, 
using only two simple rules. This Video Example shows you how 
to implement this famous “game”.



300 Chapter 6  arrays and array Lists 

Use arrays for collecting values.

• An array collects a sequence of values of the same type.
• Individual elements in an array are accessed by an integer index i, using the 

notation array[i].
• An array element can be used like any variable.
• An array index must be at least zero and less than the size of the array.
• A bounds error, which occurs if you supply an invalid array index, can cause your 

program to terminate.
• Use the expression array.length to find the number of elements in an 

array.
• An array reference specifies the location of an array. Copying the 

reference yields a second reference to the same array.
• With a partially filled array, keep a companion variable for the 

current size.

know when to use the enhanced for loop.

• You can use the enhanced for loop to visit all elements of an array.
• Use the enhanced for loop if you do not need the index values in the loop body.

know and use common array algorithms.

•  When separating elements, don’t place a separator before the first element. 
• A linear search inspects elements in sequence until a match is found.
• Before inserting an element, move elements to the end of the array starting with 

the last one.

• Use a temporary variable when swapping two elements.
• Use the Arrays.copyOf method to copy the elements of an array into a new array.

implement methods that process arrays.

• Arrays can occur as method arguments and return values.

combine and adapt algorithms for solving a programming problem.

• By combining fundamental algorithms, you can solve complex programming 
tasks.

• You should be familiar with the implementation of fundamental algorithms so 
that you can adapt them.

discover algorithms by manipulating physical objects.

• Use a sequence of coins, playing cards, or toys to visualize an array of values.
• You can use paper clips as position markers or counters.

C h a p t e r  s U M M a r y



review exercises 301

Use two-dimensional arrays for data that is arranged in rows and columns.

• Use a two-dimensional array to store tabular data.
• Individual elements in a two-dimensional array are 

accessed by using two index values, array[i][j].

Use array lists for managing collections whose size can change.

• An array list stores a sequence of values whose size can change.
• The ArrayList class is a generic class: ArrayList<Type> collects elements of the 

specified type.
• Use the size method to obtain the current size of an array list.
• Use the get and set methods to access an array list element 

at a given index.
• Use the add and remove methods to add and remove array 

list elements.
• To collect numbers in array lists, you must use wrapper 

classes.

•• r6.1  Write code that fills an array values with each set of numbers below.
a. 1 2 3 4 5 6 7 8 9 10
b. 0 2 4 6 8 10 12 14 16 18 20
c. 1 4 9 16 25 36 49 64 81 100
d. 0 0 0 0 0 0 0 0 0 0
e. 1 4 9 16 9 7 4 9 11 
f.  0 1 0  1  0  1  0  1  0  1
g. 0  1  2  3  4  0  1  2  3  4

java.lang.Boolean
java.lang.Double
java.lang.Integer
java.util.Arrays
   copyOf
   toString

java.util.ArrayList<E>
   add
   get
   remove
   set
   size

s ta n d a r d  L i B r a r y  i t e M s  i n t r o d U C e d  i n  t h i s  C h a p t e r

r e V i e W  e X e r C i s e s



302 Chapter 6  arrays and array Lists 

•• r6.2  Consider the following array:

int[] a = { 1, 2, 3, 4, 5, 4, 3, 2, 1, 0 };

What is the value of total after the following loops complete?
a. int total = 0;  

for (int i = 0; i < 10; i++) { total = total + a[i]; }

b. int total = 0;  
for (int i = 0; i < 10; i = i + 2) { total = total + a[i]; }

c. int total = 0;  
for (int i = 1; i < 10; i = i + 2) { total = total + a[i]; }

d. int total = 0;  
for (int i = 2; i <= 10; i++) { total = total + a[i]; }

e. int total = 0;  
for (int i = 1; i < 10; i = 2 * i) { total = total + a[i]; }

f.  int total = 0;  
for (int i = 9; i >= 0; i--) { total = total + a[i]; }

g. int total = 0;  
for (int i = 9; i >= 0; i = i - 2) { total = total + a[i]; }

h. int total = 0;  
for (int i = 0; i < 10; i++) { total = a[i] - total; }

•• r6.3  Consider the following array:

int[] a = { 1, 2, 3, 4, 5, 4, 3, 2, 1, 0 };

What are the contents of the array a after the following loops complete?
a. for (int i = 1; i < 10; i++) { a[i] = a[i - 1]; } 
b. for (int i = 9; i > 0; i--) { a[i] = a[i - 1]; } 
c. for (int i = 0; i < 9; i++) { a[i] = a[i + 1]; } 
d. for (int i = 8; i >= 0; i--) { a[i] = a[i + 1]; } 
e. for (int i = 1; i < 10; i++) { a[i] = a[i] + a[i - 1]; } 
f.  for (int i = 1; i < 10; i = i + 2) { a[i] = 0; } 
g. for (int i = 0; i < 5; i++) { a[i + 5] = a[i]; } 
h. for (int i = 1; i < 5; i++) { a[i] = a[9 - i]; } 

••• r6.4  Write a loop that fills an array values with ten random numbers between 1 and 100. 
Write code for two nested loops that fill values with ten different random numbers 
between 1 and 100.

•• r6.5  Write Java code for a loop that simultaneously computes both the maximum and 
minimum of an array.

• r6.6  What is wrong with each of the following code segments?
a. int[] values = new int[10]; 

for (int i = 1; i <= 10; i++)  
{ 
   values[i] = i * i;  
}

b. int[] values; 
for (int i = 0; i < values.length; i++) 
{ 
   values[i] = i * i; 
}



review exercises 303

•• r6.7  Write enhanced for loops for the following tasks.
a. Printing all elements of an array in a single row, separated by spaces.
b. Computing the product of all elements in an array.
c. Counting how many elements in an array are negative.

•• r6.8  Rewrite the following loops without using the enhanced for loop construct. Here, 
values is an array of floating-point numbers.

a. for (double x : values) { total = total + x; }
b. for (double x : values) { if (x == target) { return true; } }
c. int i = 0; 

for (double x : values) { values[i] = 2 * x; i++; }

•• r6.9  Rewrite the following loops, using the enhanced for loop construct. Here, values is 
an array of floating-point numbers.

a. for (int i = 0; i < values.length; i++) { total = total + values[i]; }
b. for (int i = 1; i < values.length; i++) { total = total + values[i]; }
c. for (int i = 0; i < values.length; i++) 

{ 
   if (values[i] == target) { return i; } 
}

• r6.10  What is wrong with each of the following code segments?
a. ArrayList<int> values = new ArrayList<int>();
b. ArrayList<Integer> values = new ArrayList();
c. ArrayList<Integer> values = new ArrayList<Integer>;
d. ArrayList<Integer> values = new ArrayList<Integer>(); 

for (int i = 1; i <= 10; i++) 
{ 
   values.set(i - 1, i * i); 
}

e. ArrayList<Integer> values; 
for (int i = 1; i <= 10; i++) 
{ 
   values.add(i * i);  
}

• r6.11  What is an index of an array? What are the legal index values? What is a bounds 
error?

• r6.12  Write a program that contains a bounds error. Run the program. What happens on 
your computer?

• r6.13  Write a loop that reads ten numbers and a second loop that displays them in the 
opposite order from which they were entered.

• r6.14  Trace the flow of the linear search loop in Section 6.3.5, where values contains the 
elements 80 90 100 120 110. Show two columns, for pos and found. Repeat the trace 
when values contains 80 90 100 70.

• r6.15  Trace both mechanisms for removing an element described in Section 6.3.6. Use an 
array values with elements 110 90 100 120 80, and remove the element at index 2. 



304 Chapter 6  arrays and array Lists 

•• r6.16  For the operations on partially filled arrays below, provide the header of a method. 
Do not implement the methods.

a. Sort the elements in decreasing order.
b. Print all elements, separated by a given string.
c. Count how many elements are less than a given value.
d. Remove all elements that are less than a given value.
e. Place all elements that are less than a given value in another array.

• r6.17  Trace the flow of the loop in Section 6.3.4 with the given example. Show two col-
umns, one with the value of i and one with the output. 

• r6.18  Consider the following loop for collecting all elements that match a condition; in 
this case, that the element is larger than 100.

ArrayList<Double> matches = new ArrayList<Double>();
for (double element : values)
{
   if (element > 100)
   {
      matches.add(element);
   }
}

Trace the flow of the loop, where values contains the elements 110 90 100 120 80. 
Show two columns, for element and matches. 

• r6.19  Trace the flow of the loop in Section 6.3.5, where values contains the elements 80 
90 100 120 110. Show two columns, for pos and found. Repeat the trace when values 
contains the elements 80 90 120 70.

•• r6.20  Trace the algorithm for removing an element described in Section 6.3.6. Use an array 
values with elements 110 90 100 120 80, and remove the element at index 2. 

•• r6.21  Give pseudocode for an algorithm that rotates the elements of an array by one posi-
tion, moving the initial element to the end of the array, like this:

3 5 7 11 13 2

2 3 5 7 11 13

•• r6.22  Give pseudocode for an algorithm that removes all negative values from an array, 
preserving the order of the remaining elements.

•• r6.23  Suppose values is a sorted array of integers. Give pseudocode that describes how 
a new value can be inserted in its proper position so that the resulting array stays 
sorted.

••• r6.24  A run is a sequence of adjacent repeated values. Give pseudocode for computing the 
length of the longest run in an array. For example, the longest run in the array with 
elements

1 2 5 5 3 1 2 4 3 2 2 2 2 3 6 5 5 6 3 1

has length 4.



review exercises 305

••• r6.25  What is wrong with the following method that aims to fill an array with random 
numbers?

public static void fillWithRandomNumbers(double[] values)
{
   double[] numbers = new double[values.length];
   for (int i = 0; i < numbers.length; i++) 
   { 
      numbers[i] = Math.random(); 
   }
   values = numbers;
}

•• r6.26  You are given two arrays denoting x- and y-coordinates of a set of 
points in the plane. For plotting the point set, we need to know the 
x- and y-coordinates of the smallest rectangle containing the 
points.
How can you obtain these values from the fundamental algorithms 
in Section 6.3?

• r6.27  Solve the problem described in Section 6.5 by sorting the array first. How do you 
need to modify the algorithm for computing the total?

•• r6.28  Solve the task described in Section 6.6 using an algorithm that removes and inserts 
elements instead of switching them. Write the pseudocode for the algorithm, assum-
ing that methods for removal and insertion exist. Act out the algorithm with a 
sequence of coins and explain why it is less efficient than the swapping algorithm 
developed in Section 6.6.

•• r6.29  Develop an algorithm for finding the most frequently occurring value in an array of 
numbers. Use a sequence of coins. Place paper clips below each coin that count how 
many other coins of the same value are in the sequence. Give the pseudocode for an 
algorithm that yields the correct answer, and describe how using the coins and paper 
clips helped you find the algorithm.

•• r6.30  Write Java statements for performing the following tasks with an array declared as 

int[][] values = new int[ROWS][COLUMNS];

• Fill all entries with 0.
• Fill elements alternately with 0s and 1s in a checkerboard pattern.
• Fill only the elements at the top and bottom row with zeroes.
• Compute the sum of all elements.
• Print the array in tabular form.

•• r6.31  Write pseudocode for an algorithm that fills the first and last column as well as the 
first and last row of a two-dimensional array of integers with –1.

• r6.32  Section 6.8.8 shows that you must be careful about updating the index value when 
you remove elements from an array list. Show how you can avoid this problem by 
traversing the array list backwards.

y

x



306 Chapter 6  arrays and array Lists 

•• r6.33  True or false?
a. All elements of an array are of the same type.
b. Arrays cannot contain strings as elements.
c. Two-dimensional arrays always have the same number of rows and columns.
d. Elements of different columns in a two-dimensional array can have  

different types.
e. A method cannot return a two-dimensional array.
f.  A method cannot change the length of an array argument.
g. A method cannot change the number of columns of an argument that is a 

two-dimensional array.

•• r6.34  How do you perform the following tasks with array lists in Java?
a. Test that two array lists contain the same elements in the same order.
b. Copy one array list to another. 
c. Fill an array list with zeroes, overwriting all elements in it.
d. Remove all elements from an array list. 

• r6.35  True or false?
a. All elements of an array list are of the same type.
b. Array list index values must be integers.
c. Array lists cannot contain strings as elements.
d. Array lists can change their size, getting larger or smaller.
e. A method cannot return an array list.
f.  A method cannot change the size of an array list argument.

•• p6.1  Write a program that initializes an array with ten random integers and then prints 
four lines of output, containing

• Every element at an even index.
• Every even element.
• All elements in reverse order.
• Only the first and last element.

•• p6.2  Write array methods that carry out the following tasks for an array of integers. For 
each method, provide a test program. 

a. Swap the first and last elements in the array.
b. Shift all elements by one to the right and move the last element into the first  

position. For example, 1 4 9 16 25 would be transformed into 25 1 4 9 16.
c. Replace all even elements with 0.
d. Replace each element except the first and last by the larger of its two neighbors.

p r o G r a M M i n G  e X e r C i s e s



programming exercises 307

e. Remove the middle element if the array length is odd, or the middle two 
elements if the length is even.

f.  Move all even elements to the front, otherwise preserving the order of the 
elements.

g. Return the second-largest element in the array.
h. Return true if the array is currently sorted in increasing order.
i.  Return true if the array contains two adjacent duplicate elements.
j.  Return true if the array contains duplicate elements (which need not be 

adjacent).

• p6.3  Modify the LargestInArray.java program in Section 6.3 to mark both the smallest and 
the largest elements.

•• p6.4  Write a method sumWithoutSmallest that computes the sum of an array of values, 
except for the smallest one, in a single loop. In the loop, update the sum and the 
smallest value. After the loop, return the difference.

• p6.5  Write a method public static void removeMin that removes the minimum value from a 
partially filled array without calling other methods. 

•• p6.6  Compute the alternating sum of all elements in an array. For example, if your pro-
gram reads the input

1 4 9 16 9 7 4 9 11
then it computes

1 – 4 + 9 – 16 + 9 – 7 + 4 – 9 + 11 = –2

• p6.7  Write a method that reverses the sequence of elements in an array. For example, if 
you call the method with the array 

1 4 9 16 9 7 4 9 11
then the array is changed to

11 9 4 7 9 16 9 4 1

• p6.8  Write a method that implements the algorithm developed in Section 6.6.

•• p6.9  Write a method
public static boolean equals(int[] a, int[] b)

that checks whether two arrays have the same elements in the same order.

•• p6.10  Write a method
public static boolean sameSet(int[] a, int[] b)

that checks whether two arrays have the same elements in some order, ignoring 
duplicates. For example, the two arrays

1 4 9 16 9 7 4 9 11
and

11 11 7 9 16 4 1
would be considered identical. You will probably need one or more helper methods.



308 Chapter 6  arrays and array Lists 

••• p6.11  Write a method
public static boolean sameElements(int[] a, int[] b)

that checks whether two arrays have the same elements in some order, with the same 
multiplicities. For example,

1 4 9 16 9 7 4 9 11
and

11 1 4 9 16 9 7 4 9
would be considered identical, but

1 4 9 16 9 7 4 9 11
and

11 11 7 9 16 4 1 4 9

would not. You will probably need one or more helper methods.

•• p6.12  A run is a sequence of adjacent repeated values. Write a program that generates a 
sequence of 20 random die tosses in an array and that prints the die values, marking 
the runs by including them in parentheses, like this: 

1 2 (5 5) 3 1 2 4 3 (2 2 2 2) 3 6 (5 5) 6 3 1

Use the following pseudocode:

Set a boolean variable inRun to false.
For each valid index i in the array
 If inRun
  If values[i] is different from the preceding value
   Print ).
   inRun = false.
 If not inRun
  If values[i] is the same as the following value
   Print (.
   inRun = true.
 Print values[i].
If inRun, print ).

•• p6.13  Write a program that generates a sequence of 20 random die tosses in an array and 
that prints the die values, marking only the longest run, like this:

1 2 5 5 3 1 2 4 3 (2 2 2 2) 3 6 5 5 6 3 1

If there is more than one run of maximum length, mark the first one.

•• p6.14  Write a program that generates a sequence of 20 random values between 0 and 99 in 
an array, prints the sequence, sorts it, and prints the sorted sequence. Use the sort 
method from the standard Java library.

••• p6.15  Write a program that produces ten random permutations of the numbers 1 to 10. To 
generate a random permutation, you need to fill an array with the numbers 1 to 10 
so that no two entries of the array have the same contents. You could do it by brute 
force, by generating random values until you have a value that is not yet in the array. 
But that is inefficient. Instead, follow this algorithm.



programming exercises 309

Make a second array and fill it with the numbers 1 to 10. 
Repeat 10 times
 Pick a random element from the second array.
 Remove it and append it to the permutation array.

•• p6.16  It is a well-researched fact that men in a restroom generally prefer to maximize 
their distance from already occupied stalls, by occupying the middle of the longest 
sequence of unoccupied places. 
For example, consider the situation where ten stalls are empty.

_ _ _ _ _ _ _ _ _ _

The first visitor will occupy a middle position: 

_ _ _ _ _ X _ _ _ _

The next visitor will be in the middle of the empty area at the left. 

_ _ X _ _ X _ _ _ _

Write a program that reads the number of stalls and then prints out diagrams in the 
format given above when the stalls become filled, one at a time. Hint: Use an array of 
boolean values to indicate whether a stall is occupied.

••• p6.17  In this assignment, you will model the game of Bulgarian Solitaire. The game starts 
with 45 cards. (They need not be playing cards. Unmarked index cards work just as 
well.) Randomly divide them into some number of piles of random size. For exam-
ple, you might start with piles of size 20, 5, 1, 9, and 10. In each round, you take one 
card from each pile, forming a new pile with these cards. For example, the sample 
starting configuration would be transformed into piles of size 19, 4, 8, 9, and 5. The 
solitaire is over when the piles have size 1, 2, 3, 4, 5, 6, 7, 8, and 9, in some order. (It 
can be shown that you always end up with such a configuration.)
In your program, produce a random starting configuration and print it. Then keep 
applying the soli taire step and print the result. Stop when the solitaire final configu-
ration is reached. 

••• p6.18  Magic squares. An n × n matrix that is filled with the numbers 1, 2, 3, . . ., n2 is a 
magic square if the sum of the elements in each row, in each column, and in the two 
diagonals is the same value. 

4 15 14 1

9 6 7 12

5 10 11 8

16 3 2 13

Write a program that reads in 16 values from the keyboard and tests whether they 
form a magic square when put into a 4 × 4 array. You need to test two features:

1. Does each of the numbers 1, 2, ..., 16 occur in the user input?

2. When the numbers are put into a square, are the sums of the rows, columns, 
and diagonals equal to each other?



310 Chapter 6  arrays and array Lists 

••• p6.19  Implement the following algorithm to construct magic n × n squares; it works only if 
n is odd. 

Set row = n - 1, column = n / 2. 
For k = 1 ... n * n
 Place k at [row][column].
 Increment row and column.
 If the row or column is n, replace it with 0.
 If the element at [row][column] has already been filled 
  Set row and column to their previous values.
  Decrement row.

Here is the 5 × 5 square that you get if you follow this method:

17 24 1 8

23 5 7 14

4 6 13 20

10 12 19 21

15

16

22

3

11 18 25 2 9

Write a program whose input is the number n and whose output is the magic square 
of order n if n is odd.

•• p6.20  Write a method that computes the average of the neighbors of a two-dimensional 
array element in the eight directions shown in Figure 14.

public static double neighborAverage(int[][] values, int row, int column)

However, if the element is located at the boundary of the array, only include the 
neighbors that are in the array. For example, if row and column are both 0, there are 
only three neighbors.

•• p6.21  Write a program that reads a sequence of input values and displays a bar chart of the 
values, using asterisks, like this:

**********************
****************************************
****************************
**************************
**************

You may assume that all values are positive. First figure out the maximum value. 
That value’s bar should be drawn with 40 asterisks. Shorter bars should use propor-
tionally fewer asterisks. 

••• p6.22  Improve the program of Exercise P6.21 to work correctly when the data set contains 
nega tive values.

•• p6.23  Improve the program of Exercise P6.21 by adding captions for each bar. Prompt the 
user for the captions and data values. The output should look like this:

      Egypt **********************
     France ****************************************
      Japan ****************************
    Uruguay **************************
Switzerland **************



programming exercises 311

•• p6.24  A theater seating chart is implemented as a two-dimensional array of ticket prices, 
like this: 

10 10 10 10 10 10 10 10 10 10 
10 10 10 10 10 10 10 10 10 10 
10 10 10 10 10 10 10 10 10 10 
10 10 20 20 20 20 20 20 10 10 
10 10 20 20 20 20 20 20 10 10 
10 10 20 20 20 20 20 20 10 10 
20 20 30 30 40 40 30 30 20 20 
20 30 30 40 50 50 40 30 30 20
30 40 50 50 50 50 50 50 40 30

Write a program that prompts users to 
pick either a seat or a price. Mark sold 
seats by changing the price to 0. When 
a user specifies a seat, make sure it is 
available. When a user specifies a price, 
find any seat with that price. 

••• p6.25  Write a program that plays tic-tac-toe. The tic-tac-toe 
game is played on a 3 × 3 grid as in the photo at right. The 
game is played by two players, who take turns. The first 
player marks moves with a circle, the second with a cross. 
The player who has formed a horizontal, vertical, or diag-
onal sequence of three marks wins. Your program should 
draw the game board, ask the user for the coordinates of 
the next mark, change the players after every successful 
move, and pronounce the winner.

• p6.26  Write a method
public static ArrayList<Integer> append(ArrayList<Integer> a, ArrayList<Integer> b)

that appends one array list after another. For example, if a is

1 4 9 16
and b is

9 7 4 9 11
then append returns the array list

1 4 9 16 9 7 4 9 11

•• p6.27  Write a method
public static ArrayList<Integer> merge(ArrayList<Integer> a, ArrayList<Integer> b)

that merges two array lists, alternating elements from both array lists. If one array 
list is shorter than the other, then alternate as long as you can and then append the 
remaining elements from the longer array list. For example, if a is

1 4 9 16
and b is

9 7 4 9 11
then merge returns the array list

1 9 4 7 9 4 16 9 11



312 Chapter 6  arrays and array Lists 

•• p6.28  Write a method
public static ArrayList<Integer> mergeSorted(ArrayList<Integer> a,  
   ArrayList<Integer> b)

that merges two sorted array lists, producing a new sorted array list. Keep an index 
into each array list, indicating how much of it has been processed already. Each time, 
append the smallest unprocessed element from either array list, then advance the 
index. For example, if a is

1 4 9 16
and b is

4 7 9 9 11

then mergeSorted returns the array list

1 4 4 7 9 9 9 11 16

•• business p6.29  A pet shop wants to give a discount to its 
clients if they buy one or more pets and 
at least five other items. The discount is 
equal to 20 percent of the cost of the other 
items, but not the pets.
Implement a method

public static void discount(double[] prices, boolean[] isPet, int nItems)

The method receives information about a particular sale. For the ith item, prices[i] is 
the price before any discount, and isPet[i] is true if the item is a pet.
Write a program that prompts a cashier to enter each price and then a Y for a pet or N 
for another item. Use a price of –1 as a sentinel. Save the inputs in an array. Call the 
method that you implemented, and display the discount.

•• business p6.30  A supermarket wants to reward its best customer of each day, showing the custom-
er’s name on a screen in the supermarket. For that purpose, the customer’s purchase 
amount is stored in an ArrayList<Double> and the customer’s name is stored in a cor-
responding ArrayList<String>.
Implement a method

public static String nameOfBestCustomer(ArrayList<Double> sales, 
      ArrayList<String> customers)

that returns the name of the customer with the largest sale.
Write a program that prompts the cashier to enter all prices and names, adds them to 
two array lists, calls the method that you implemented, and displays the result. Use a 
price of 0 as a sentinel.

••• business p6.31  Improve the program of Exercise P6.30 so that it displays the top customers, that 
is, the topN customers with the largest sales, where topN is a value that the user of the 
program supplies.
Implement a method

public static ArrayList<String> nameOfBestCustomers(ArrayList<Double> sales, 
   ArrayList<String> customers, int topN)

If there were fewer than topN customers, include all of them.



Programming Exercises 313

•• Science P6.32 Sounds can be represented by an array of “sample 
val ues” that describe the intensity of the sound at a 
point in time. The program ch06/sound/SoundEffect.
java reads a sound file (in WAV format), calls a 
method process for processing the sample values, and 
saves the sound file. Your task is to implement the 
process method by introducing an echo. For each 
sound value, add the value from 0.2 seconds ago. 
Scale the result so that no value is larger than 32767. 

••• Science P6.33 You are given a two-dimensional array of values that give the height of a terrain at 
different points in a square. Write a method

public static void floodMap(double[][] heights, double waterLevel)

that prints out a flood map, showing which of the points in the terrain would be 
flooded if the water level was the given value. In the flood map, print a * for each 
flooded point and a space for each point that is not flooded.
Here is a sample map:

* * * *         * *
* * * * *     * * *
* * * *         * *
* * *         * * *
* * * *    *  * * *
* * * * * * * * * *
* *     * * *  
*       * * * *   *
                * *
              * * *

Then write a program that reads one hundred terrain height values and shows how 
the terrain gets flooded when the water level increases in ten steps from the lowest 
point in the terrain to the highest.

•• Science P6.34 Sample values from an experiment often need to be smoothed out. One simple 
approach is to replace each value in an array with the average of the value and its 
two neighboring values (or one neighboring value if it is at either end of the array). 
Implement a method

public static void smooth(double[] values, int size)

that carries out this operation. You should not create another array in your solution.

•• Science P6.35 Modify the ch06/animation/BlockAnimation.java program to show an animated sine 
wave. In the ith frame, shift the sine wave by i degrees. 

••• Science P6.36 Write a program that models the movement of an object 
with mass m that is attached to an oscillating spring. 
When a spring is displaced from its equilibrium posi-
tion by an amount x, Hooke’s law states that the restor-
ing force is

F = –kx
where k is a constant that depends on the spring. (Use 
10 N̸m for this simulation.)
Start with a given displacement x (say, 0.5 meter). Set 
the initial velocity v to 0. Compute the acceleration a 

x

F

Unstretched 
spring



314 Chapter 6  arrays and array Lists 

from Newton’s law (F = ma) and Hooke’s law, using a mass of 1 kg. Use a small time 
interval Δt = 0.01 second. Update the velocity––it changes by aΔt. Update the 
displacement––it changes by vΔt. 
Every ten iterations, plot the spring displacement as a bar, where 1 pixel represents 
1 cm. Use the technique in Special Topic 4.3 for creating an image.

•• graphics p6.37  Using the technique of Special Topic 4.3, generate the image of a checkerboard. 

• graphics p6.38  Using the technique of Special Topic 4.3, generate the image of a sine wave. Draw a 
line of pixels for every five degrees.

a n s W e r s  t o  s e L F - C h e C k  Q U e s t i o n s

1.  int[] primes = { 2, 3, 5, 7, 11 }; 
2.  2, 3, 5, 3, 2 
3.  3, 4, 6, 8, 12 
4.  values[0] = 10; 

values[9] = 10;    

or better:    values[values.length - 1] = 10; 

5.  String[] words = new String[10]; 
6.  String[] words = { "Yes", "No" }; 
7.  No. Because you don’t store the values, you 

need to print them when you read them. But 

you don’t know where to add the <= until you 
have seen all values.

8.  It counts how many elements of values are 
zero.

9.  for (double x : values) 
{ 
   System.out.println(x); 
} 

10.  double product = 1; 
for (double f : factors) 
{ 
   product = product * f; 



answers to self-Check Questions 315

}

11.  The loop writes a value into values[i]. The 
enhanced for loop does not have the index 
variable i.

12.  20 <== largest value 
10
20 <== largest value

13.  int count = 0; 
for (double x : values)
{
   if (x == 0) { count++; }
}

14.  If all elements of values are negative, then the 
result is incorrectly computed as 0.

15.  for (int i = 0; i < values.length; i++) 
{
   System.out.print(values[i]);
   if (i < values.length - 1) 
   {
      System.out.print(" | "); 
   } 
}

Now you know why we set up the loop the 
other way.

16.  If the array has no elements, then the program 
terminates with an exception. 

17.  If there is a match, then pos is incremented 
before the loop exits.

18.  This loop sets all elements to values[pos].
19.  int[] numbers = squares(5); 
20.  public static void fill(int[] values, int value) 

{
   for (int i = 0; i < values.length; i++) 
   {
      values[i] = value; }
   }

21.  The method returns an array whose length is 
given in the first argument. The array is filled 
with random integers between 0 and n - 1.

22.  The contents of scores is unchanged. The 
reverse method returns a new array with the 
reversed numbers.

23. 

24.  Use the first algorithm. The order of elements 
does not matter when computing the sum.

25.  Find the minimum value.
Calculate the sum.
Subtract the minimum value.

26.  Use the algorithm for counting matches 
(Section 4.7.2) twice, once for counting the 
positive values and once for counting the 
negative values.

27.  You need to modify the algorithm in 
Section 6.3.4.
boolean first = true;
for (int i = 0; i < values.length; i++)
{ 
   if (values[i] > 0))
   {
      if (first) { first = false; } 
      else { System.out.print(", "); }
   }
   System.out.print(values[i]);
}

Note that you can no longer use i > 0 as the 
criterion for printing a separator.

28.  Use the algorithm to collect all positive ele-
ments in an array, then use the algorithm in 
Section 6.3.4 to print the array of matches.

29.  The paperclip for i assumes positions 0, 1, 2, 
3. When i is incremented to 4, the con dition 
i < size / 2 becomes false, and the loop ends. 
Similarly, the paperclip for j assumes positions 
4, 5, 6, 7, which are the valid positions for the 
second half of the array. 

30.  It reverses the elements in the array.
31.  Here is one solution. The basic idea is to move 

all odd elements to the end. Put one paper clip 
at the beginning of the array and one at the 
end. If the element at the first paper clip is odd, 
swap it with the one at the other paper clip and 
move that paper clip to the left. Otherwise, 
move the first paper clip to the right. Stop 
when the two paper clips meet. Here is the 
pseudocode:

i = 0
j = size - 1

 values result i
 [1, 4, 9] [0, 0, 0] 0
  [9, 0, 0] 1
  [9, 4, 0] 2
  [9, 4, 1] 



316 Chapter 6  arrays and array Lists 

While (i < j)
 If (a[i] is odd)
  Swap elements at positions i and j.
  j--
 Else
  i++

32.  Here is one solution. The idea is to remove 
all odd elements and move them to the end. 
The trick is to know when to stop. Nothing is 
gained by moving odd elements into the area 
that already contains moved elements, so we 
want to mark that area with another paper clip. 

i = 0
moved = size
While (i < moved)
 If (a[i] is odd) 
  Remove the element at position i and add it  

  at the end.
  moved--

33.  When you read inputs, you get to see values 
one at a time, and you can’t peek ahead. Pick-
ing cards one at a time from a deck of cards 
simulates this process better than looking at a 
sequence of items, all of which are revealed. 

34.  You get the total number of gold, silver, and 
bronze medals in the competition. In our 
example, there are four of each.

35.  for (int i = 0; i < 8; i++) 
{
   for (int j = 0; j < 8; j++)
   {
      board[i][j] = (i + j) % 2;
   }
}

36.  String[][] board = new String[3][3]; 
37.  board[0][2] = "x"; 
38.  board[0][0], board[1][1], board[2][2] 
39.  ArrayList<Integer> primes = 

   new ArrayList<Integer>(); 
primes.add(2);
primes.add(3);
primes.add(5);
primes.add(7);
primes.add(11);

40.  for (int i = primes.size() - 1; i >= 0; i--) 
{
   System.out.println(primes.get(i));
}

41.  "Ann", "Cal" 
42.  The names variable has not been initialized. 
43.  names1 contains “Emily”, “Bob”, “Cindy”, 

“Dave”; names2 contains “Dave”
44.  Because the number of weekdays doesn’t 

change, there is no disadvantage to using an 
array, and it is easier to initialize:
String[] weekdayNames = { "Monday", "Tuesday", 
   "Wednesday", "Thursday", “Friday”,  
   "Saturday", "Sunday" };

45.  Reading inputs into an array list is much easier.


