
Techniques of Java Programming: Sockets in Java

Manuel Oriol

May 10, 2006

1 Introduction

Sockets are probably one of the features that is most used in current world. As
soon as people want to deal with the network in a program, sockets are used. As
Java is a post-Internet language, sockets have been integrated in the standard
API and their use is very simple. Not that sockets-related classes are located
in the java.net package. In this chapter, we explain how it works in Java
and show examples of sockets. Section 2 gives some background on network.
Section 3 shows how to use and build TCP sockets. Section 4 shows how to use
and build UDP sockets.

2 Network Background

Most traditionally, client-server communication is used as a communication
model. In this model there is a server that answer questions from

When working with the network, there are two main ways of functionning
that need to be understood:

Connected Mode: The connected mode is the most natural way of handling
network communications as it correspond to what people are used to.
Connected mode works by finding a route first and then use it for the rest
of the communication, ensuring that there is no data loss. As founding
examples, telephone works that way and TCP is the Internet protocol for
connected mode.

Disconnected Mode: The disconnected mode is a way of communication for
which there may be information lost and the communication is broad-
casted to the users. As a founding example, television works that way
and UDP is the Internet protocol for disconnected mode.

Traditionally, the code to use sockets had always been a mess due to the high
number of options to be considered. For example, in C creating and binding a
simple socket can be made as shown1 here:

int sockfd, portno, n;
struct sockaddr_in serv_addr;

struct hostent *server;

1Code borrowed from http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

1

char buffer[256];

if (argc < 3) {
fprintf(stderr,"usage %s hostname port\n", argv[0]);
exit(0);

}
portno = atoi(argv[2]);
sockfd = socket(AF_INET, SOCK_STREAM, 0);

if (sockfd < 0)
error("ERROR opening socket");

server = gethostbyname(argv[1]);

if (server == NULL) {
fprintf(stderr,"ERROR, no such host\n");
exit(0);

}
bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;

bcopy((char *)server->h_addr,
(char *)&serv_addr.sin_addr.s_addr,
server->h_length);

serv_addr.sin_port = htons(portno);
if (connect(sockfd,&serv_addr,sizeof(serv_addr)) < 0)

error("ERROR connecting");
printf("Please enter the message: ");

bzero(buffer,256);

Typically, this kind of code is copied each time and slightly modified if
needed. The equivalent code in Java is a little bit different, as shown in Figure 1.

try {
Socket s = new Socket(args[1],Integer.parseInt(args[2]));

}catch (Exception e){

System.out.println(e);
System.exit(0);

}

Figure 1: Opening a TCP socket in Java

Remember that the following ports ranges are defined:

ports 0-1023: system ports (admin rights on Unix) or well-known ports.

ports 1024-49151: registered ports can be used explicitly.

ports 49152-65535: dynamic ports or private ports.

In the following sections we show more precisely how to use diverse sockets
in Java.

3 TCP

As shown in the example, this type of sockets is very simple to build. It relies
on an API that is as complete as possible and still as simple to use as possible.

2

3.1 TCP client sockets

The Socket (see part of the APIs in Table 1) is the default representative of the
implementations for sockets. In the current version of the JDK, Socket should
only be used to build conected-mode sockets.

Table 1: Socket methods

java.net.Socket

Socket() Creates an unconnected socket.
Socket(InetAddress address, Opens a socket with the

int port) given InetAddress.
Socket(InetAddress address, int port, Creates a socket and specifies
InetAddress localAddr, int localPort) the local port.
protected Socket(SocketImpl impl) Opens a socket and provide

a different implementation.
Socket(String host, int port) Opens a socket on the host

with a server listening on port.
Socket(String host, int port, Creates a socket and specifies
InetAddress localAddr, int localPort) the local port.

InputStream getInputStream() Returns an InputStream on
the socket.

int getLocalPort() Returns the local port.
OutputStream getOutputStream() Returns an OutputStream

on this socket.
int getSoTimeout() Gets the timeout fot the socket.
void setSoTimeout(int timeout) Sets the socket timeout to

a value in ms.
String toString() Returns a string representation

of this socket.

Thus opening a TCP socket can be done in several ways, the simplest way
is to bind it at creation time as shown in figure 1.

3.2 Example of Use

As a small example, let consider a program that connects on a port and transmits
to it characters read on the keyboard. It actually is a telnet-like client. Please
note the use of eexceptions and threads.

import java.io.*;
import java.net.*;

public class SocketInteractor extends Thread{
InputStream is;
/**

* Creates an instance with the input stream to
* redirect to the keyboard
*/

public SocketInteractor(InputStream is){
this.is=is;

3

}

/**
* Creates a new Thread and redirect a stream
* on the keyboard

*/
public void run(){
try{

int a;
// reads from the socket and prints on the terminal
// as long as the socket is open.

while(true){
a=is.read();
if (a==-1) throw new Exception("Socket closed.");

System.out.write(a);
}
} catch (Exception E){

System.out.println("socket closed.");
System.exit(0);

}

}
/**
* Prints the usage and exits.
*/

public static void usage(){
System.out.println("Usage: java SocketInteractor host port_number");
System.out.println("connects to a socket and

receive/send information through it");
System.exit(0);

}

public static void main(String[] args) {
OutputStream out=null;
try{

// checks the arguments
if (args.length!=2)
throw new Exception("Bad number of arguments.");

// creates the socket
Socket s=new Socket(args[0],Integer.parseInt(args[1]));
out= s.getOutputStream();

// starts the new thread
(new SocketInteractor(s.getInputStream())).start();

} catch (Exception E){

usage();
}
try{

// reads on the terminal, outputs on the socket
while(true){

out.write(System.in.read());

}
} catch (Exception E){

System.out.println("socket closed.");

System.exit(0);
}

}

}

4

3.3 SSL sockets

Using secure sockets in Java is not much more difficult than to use regular
sockets. The class SSLSocket can be used as the class Socket. Due to the per-
country basis for restriction on cryptography secure sockets are not included in
the SDK but abstract classes and the infrastructure.

3.4 Server Sockets

The class ServerSocket is meant to be used to build server programs on the
TCP protocol.

Table 2: ServerSocket methods

java.net.ServerSocket

ServerSocket() Creates a server socket.
ServerSocket(int port) Opens a server socket on a port.
ServerSocket(int port, int backlog) Opens a server socket (backlog

simultaneous applications)

Socket accept() Accept a new connection.
Returns the socket.

void close() Closes the socket.
int getSoTimeout() Gets the socket’s timeout
void setSoTimeout(int timeout) Sets the socket’s timeout

As an example of use, the following code is meant to be used as a server
program. It is built by replacing the text of the main method from the previous
complete example by:

public static void main(String[] args) {

OutputStream out=null;
ServerSocket servs=null;
try{

// checks the arguments
if (args.length!=1)
throw new Exception("Bad number of arguments.");

// creates the socket
servs=new ServerSocket(Integer.parseInt(args[0]));
Socket s=servs.accept();

System.out.println("Connection accepted from "+
s.getRemoteSocketAddress());
servs.close();

out= s.getOutputStream();

// starts the new thread

(new SocketInteractor(s.getInputStream())).start();
} catch (Exception E){

usage();

}

5

try{

// reads on the terminal, outputs on the socket
while(true){

out.write(System.in.read());

}
} catch (Exception E){

System.out.println("socket closed.");

System.exit(0);
}

}

4 Datagram sockets

By default, UDP sockets are made using DatagramSocket. The idea behind
datagram sockets is that the packets contain the information about

Table 3: Datagram Socket methods

java.net.DatagramSocket

DatagramSocket() Creates a datagram sockets and binds it
to any free UDP port in the system.

DatagramSocket(int port) Creates a datagram socket and binds
to the port.

void receive(DatagramPacket p) Receives a packet.
void send(DatagramPacket p) Sends a packet.

4.1 Example of Use

As an example, we try to send a datagram packet to a given socket. The
datagram includes a test string. The receiver should look like this:

import java.io.*;
import java.net.*;
public class UDPReceiver {

/**
* Prints the usage and exits.
*/
public static void usage(){

System.out.println("Usage: java UDPReceiver port_number\n
this program reads a Datagram received through a UDP socket
bound to specified port.");
System.exit(0);

}
public static void main(String[] args) {

OutputStream out=null;
try{

6

String text="test";
byte[] b = new byte[100];
DatagramPacket dp=new DatagramPacket(b,100);
// checks the arguments
if (args.length!=1) throw new Exception("Bad number of arguments.");
// creates the socket
DatagramSocket s=new DatagramSocket(Integer.parseInt(args[0]));
s.receive(dp);
System.out.println(new String(dp.getData()));

} catch (Exception E){
usage();

}
}

}

The sender could look like this:

import java.io.*;
import java.net.*;
public class UDPTest {

/**
* Prints the usage and exits.
*/
public static void usage(){

System.out.println("Usage: java SocketInteractor local_port host remote_port\n this program
System.exit(0);

}
public static void main(String[] args) {

OutputStream out=null;
try{

String text="test";
// checks the arguments
if (args.length!=3) throw new Exception("Bad number of arguments.");

// creates the socket
DatagramSocket s=new DatagramSocket(Integer.parseInt(args[0]));
s.connect(InetAddress.getByName(args[1]),Integer.parseInt(args[2]));
s.send(new DatagramPacket(text.getBytes(),text.length()));

} catch (Exception E){
usage();

}
}

}

5 Exercise

1. Read the APIs for MulticastSocket and try to use it. As indicated, it is
a DatagramSocket.

7

2. Use the example and code a minimalistic Web server.

3. Use the example and code a minimalisstic FTP client.

4. Try to program a UDP based webserver. What do you think of the ap-
proach? What could be the interest?

8

