
Web Services Essentials

 25

Part II: XML-RPC

Chapter 2 - XML-RPC Essentials

Web Services Essentials

 26

Chapter 2. XML-RPC Essentials

XML-RPC provides an XML- and HTTP-based mechanism for making method or
function calls across a network. XML-RPC offers a very simple, but frequently useful, set
of tools for connecting disparate systems and for publishing machine-readable
information. This chapter provides a complete overview of XML-RPC, covering the
following topics:

• An introduction to the main concepts and history of XML-RPC
• An exploration of XML-RPC usage scenarios, examining its use in glue code and

information publishing
• A technical overview of XML-RPC, including a detailed explanation of XML-RPC

data types, requests, and responses
• An example demonstrating the use of XML-RPC to connect programs written in

Java and Perl

2.1 XML-RPC Overview

XML-RPC permits programs to make function or procedure calls across a network. XML-
RPC uses the HTTP protocol to pass information from a client computer to a server
computer, describing the nature of requests and responses with a small XML vocabulary.
Clients specify a procedure name and parameters in the XML request, and the server
returns either a fault or a response in the XML response. XML-RPC parameters are a
simple list of types and content - structs and arrays are the most complex types available.
XML-RPC has no notion of objects and no mechanism for including information that uses
other XML vocabularies. Despite those limitations, it has proven capable of a wide variety
of tasks.

XML-RPC emerged in early 1998; it was published by UserLand Software and initially
implemented in their Frontier product. It has remained largely stable since then.[1] The
XML-RPC specification is available at http://www.xmlrpc.com/spec, and a list of
implementations (55 at this writing, in a wide variety of languages) is available at
http://www.xmlrpc.com/directory/1568/.

[1] For additional information on the early history of XML-RPC, explaining the roles of UserLand
and Microsoft, see http://davenet.userland.com/1999/01/29/microsoftXmlRpc. The "snapshot of the
spec we were working on with Microsoft" became XML-RPC, while the rest of the spec went on to
become SOAP.

2.2 Why XML-RPC?

In a programming universe seemingly obsessed with objects, XML-RPC may seem too
limited for many applications. While XML-RPC certainly has limitations, its inherent
simplicity gives it some significant advantages when developers need to integrate systems
of very different types. XML-RPC's selection of data types is relatively small, but
provides enough granularity that developers can express information in forms any
programming language can use.

Web Services Essentials

 27

XML-RPC is used in two main areas, which overlap at times. Systems integrators and
programmers building distributed systems often use XML-RPC as glue code, connecting
disparate parts inside a private network. By using XML-RPC, developers can focus on the
interfaces between systems, not the protocol used to connect those interfaces. Developers
building public services can also use XML-RPC, defining an interface and implementing it
in the language of their choice. Once that service is published to the Web, any XML-RPC-
capable client can connect to that service, and developers can create their own applications
that use that service.

2.2.1 Scenario 1: Glue Code with XML-RPC

As distributed systems have become more and more common (by design or by accident),
developers have had to address integration problems more and more frequently. Systems
that originally ran their own show have to work with other systems as organizations try to
rationalize their information management and reduce duplication. This often means that
Unix systems need to speak with Windows, which needs to speak with Linux, which needs
to speak with mainframes. A lot of programmers have spent a lot of time building custom
protocols and formats to let different systems speak to each other.

Instead of creating custom systems that need extensive testing, documentation, and
debugging, developers can use XML-RPC to connect programs running on different
systems and environments. Using this approach, developers can use existing APIs and add
connections to those APIs as necessary. Some problems can be solved with a single
procedure, while others require more complex interactions, but the overall approach is
much like developing any other set of interfaces. In glue code situations, the distinction
between client and server isn't especially significant - the terms only identify the program
making the request and the program responding. The same program may have both client
and server implementations, allowing it to use XML-RPC for both incoming and outgoing
requests.

2.2.2 Scenario 2: Publishing Services with XML-RPC

XML-RPC can be used to publish information to the world, providing a computer-readable
interface to information. The infrastructure for this use of XML-RPC is much like
traditional web publishing to humans, with pretty much the same security and architecture
issues, but it allows information recipients to be any kind of client that understands the
XML-RPC interface. As in web publishing, XML-RPC publishing means that developers
have control over the server, but not necessarily the client.

The O'Reilly Network's Meerkat headline syndicator, for example, presents both a human-
readable interface (at http://meerkat.oreillynet.com) and an XML-RPC interface
(documented at http://www.oreillynet.com/pub/a/rss/2000/11/14/meerkat_xmlrpc.html) to
the world. Casual readers can use the forms-based interface to query the headlines, while
developers who need to present the headline information in other forms can use XML-
RPC. This makes it easy to separate content from presentation while still working in a
Web-centric environment.

Web Services Essentials

 28

2.3 XML-RPC Technical Overview

XML-RPC consists of three relatively small parts:

XML-RPC data model

A set of types for use in passing parameters, return values, and faults (error
messages)

XML-RPC request structures

An HTTP POST request containing method and parameter information

XML-RPC response structures

An HTTP response that contains return values or fault information

The data structures are used by both the request and response structures. The combination
of the three parts defines a complete Remote Procedure Call.

It's entirely possible to use XML-RPC without getting into the
markup details presented later in this chapter. Even if you plan to
stay above the details, however, you probably should read the
following sections to understand the nature of the information you'll
be passing across the network.

2.3.1 XML-RPC Data Model

The XML-RPC specification defines six basic data types and two compound data types
that represent combinations of types. While this is a much more restricted set of types than
many programming languages provide, it's enough to represent many kinds of information,
and it seems to have hit the lowest common denominator for many kinds of program-to-
program communications.

All of the basic types are represented by simple XML elements whose content provides the
value. For example, to define a string whose value is "Hello World!", you'd write:

<string>Hello World!</string>

For more information on how Base 64 encoding works, see section
6.8 of RFC 2045, "Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies", available at
http://www.ietf.org/rfc/rfc2045.txt. Base 64 is not considered an
efficient encoding format, but it does simplify the enclosure of binary
information within XML documents. For best results, use it
sparingly.

Web Services Essentials

 29

The basic types for XML-RPC are listed in Table 2-1.

Table 2-1. Basic data types in XML-RPC

Type Value Examples

int or i4
32-bit integers between -
2,147,483,648 and
2,147,483,647.

<int>27</int>
<i4>27</i4>

double 64-bit floating-point numbers <double>27.31415</double>
<double>-1.1465</double>

Boolean true (1) or false (0) <boolean>1</boolean>
<boolean>0</boolean>

string ASCII text, though many
implementations support Unicode

<string>Hello</string>
<string>bonkers! @</string>

dateTime.iso8601 Dates in ISO8601 format:
CCYYMMDDTHH:MM:SS

<dateTime.iso8601>20021125T02:20:04
 </dateTime.iso8601>
<dateTime.iso8601>20020104T17:27:30
 </dateTime.iso8601>

base64 Binary information encoded as
Base 64, as defined in RFC 2045

<base64>SGVsbG8sIFdvcmxkIQ==
 </base64>

These basic types are always enclosed in value elements. Strings (and only strings) may
be enclosed in a value element but omit the string element. These basic types may be
combined into two more complex types, arrays and structs. Arrays represent sequential
information, while structs represent name-value pairs, much like hashtables, associative
arrays, or properties.

Arrays are indicated by the array element, which contains a data element holding the list
of values. Like other data types, the array element must be enclosed in a value element.
For example, the following array contains four strings:

<value>
 <array>
 <data>
 <value><string>This </string></value>
 <value><string>is </string></value>
 <value><string>an </string></value>
 <value><string>array.</string></value>
 </data>
 </array>
</value>

The following array contains four integers:

<value>
 <array>
 <data>
 <value><int>7</int></value>
 <value><int>1247</int></value>
 <value><int>-91</int></value>
 <value><int>42</int></value>
 </data>
 </array>
</value>

Web Services Essentials

 30

Arrays can also contain mixtures of different types, as shown here:

<value>
 <array>
 <data>
 <value><boolean>1</boolean></value>
 <value><string>Chaotic collection, eh?</string></value>
 <value><int>-91</int></value>
 <value><double>42.14159265</double></value>
 </data>
 </array>
</value>

Creating multidimensional arrays is simple - just add an array inside of an array:

<value>
 <array>
 <data>
 <value>
 <array>
 <data>
 <value><int>10</int></value>
 <value><int>20</int></value>
 <value><int>30</int></value>
 </data>
 </array>
 </value>
 <value>
 <array>
 <data>
 <value><int>15</int></value>
 <value><int>25</int></value>
 <value><int>35</int></value>
 </data>
 </array>
 </value>
 </data>
 </array>
</value>

It's a lot of markup, but for the most part, XML-RPC developers won't have to deal with
this markup directly.

XML-RPC won't do anything to guarantee that arrays have a
consistent number or type of values. You'll need to make sure that
you write code that consistently generates the right number and type
of output values if consistency is necessary for your application.

Structs contain unordered content, identified by name. Names are strings, though you
don't have to enclose them in string elements. Each struct element contains a list of
member elements. Member elements each contain one name element and one value element.
The order of members is not considered important. While the specification doesn't require
names to be unique, you'll probably want to make sure they are unique for consistency.

Web Services Essentials

 31

A simple struct might look like:

<value>
 <struct>
 <member>
 <name>givenName</name>
 <value><string>Joseph</string></value>
 </member>
 <member>
 <name>familyName</name>
 <value><string>DiNardo</string></value>
 </member>
 <member>
 <name>age</name>
 <value><int>27</int></value>
 </member>
 </struct>
</value>

Structs can also contain other structs, or even arrays. For example, this struct contains a
string, a struct, and an array:

<value>
 <struct>
 <member>
 <name>name</name>
 <value><string>a</string></value>
 </member>
 <member>
 <name>attributes</name>
 <value><struct>
 <member>
 <name>href</name>
 <value><string>http://example.com</string></value>
 </member>
 <member>
 <name>target</name>
 <value><string>_top</string></value>
 </member>
 </struct></value>
 </member>
 <member>
 <name>contents</name>
 <value><array>
 <data>
 <value><string>This </string></value>
 <value><string>is </string></value>
 <value><string>an example.</string></value>
 </data>
 </array></value>
 </member>
 </struct>
</value>

Arrays can also contain structs. You can, in some cases, use these complex types to
represent object structures, but at some point you may find it easier to use SOAP for that
kind of complex transfer.

Web Services Essentials

 32

2.3.2 XML-RPC Request Structure

XML-RPC requests are a combination of XML content and HTTP headers. The XML
content uses the data typing structure to pass parameters and contains additional
information identifying which procedure is being called, while the HTTP headers provide
a wrapper for passing the request over the Web.

Each request contains a single XML document, whose root element is a methodCall
element. Each methodCall element contains a methodName element and a params element.
The methodName element identifies the name of the procedure to be called, while the params
element contains a list of parameters and their values. Each params element includes a list
of param elements which in turn contain value elements.

For example, to pass a request to a method called circleArea , which takes a Double
parameter (for the radius), the XML-RPC request would look like:

<?xml version="1.0"?>
<methodCall>
 <methodName>circleArea</methodName>
 <params>
 <param>
 <value><double>2.41</double></value>
 </param>
 </params>
</methodCall>

To pass a set of arrays to a sortArray procedure, the request might look like:

<?xml version="1.0"?>
<methodCall>
 <methodName>sortArray</methodName>
 <params>
 <param>
 <value>
 <array>
 <data>
 <value><int>10</int></value>
 <value><int>20</int></value>
 <value><int>30</int></value>
 </data>
 </array>
 </value>
 </param>
 <param>
 <value>
 <array>
 <data>
 <value><string>A</string></value>
 <value><string>C</string></value>
 <value><string>B</string></value>
 </data>
 </array>
 </value>
 </param>
 </params>
</methodCall>

Web Services Essentials

 33

The HTTP headers for these requests will reflect the senders and the content. The basic
template looks like:

POST /target HTTP 1.0
User-Agent: Identifier
Host: host.making.request
Content-Type: text/xml
Content-Length: length of request in bytes

The information in italics may change from client to client or from request to request. For
example, if the circleArea method were available from an XML-RPC server listening at
/xmlrpc, the request might look like:

POST /xmlrpc HTTP 1.0
User-Agent: myXMLRPCClient/1.0
Host: 192.168.124.2
Content-Type: text/xml
Content-Length: 169

Assembled, the entire request would look like:

POST /xmlrpc HTTP 1.0
User-Agent: myXMLRPCClient/1.0
Host: 192.168.124.2
Content-Type: text/xml
Content-Length: 169

<?xml version="1.0"?>
<methodCall>
 <methodName>circleArea</methodName>
 <params>
 <param>
 <value><double>2.41</double></value>
 </param>
 </params>
</methodCall>

It's an ordinary HTTP request, with a carefully constructed payload.

2.3.3 XML-RPC Response Structure

Responses are much like requests, with a few extra twists. If the response is successful -
the procedure was found, executed correctly, and returned results - then the XML-RPC
response will look much like a request, except that the methodCall element is replaced by a
methodResponse element and there is no methodName element:

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><double>18.24668429131</double></value>
 </param>
 </params>
</methodResponse>

Web Services Essentials

 34

The User-Agent header will typically reflect the XML-RPC library
used to assemble the request, not the particular program making the
call. This is a bit of a change from the browser world, where
"browser sniffing" using that header expects to identify the particular
program - say, Opera 6.0 for Linux - making the request.

An XML-RPC response can only contain one parameter, despite the use of the enclosing
params element. That parameter, may, of course, be an array or a struct, so it is possible to
return multiple values. Even if your method isn't designed to return a value (void methods
in C, C++, or Java, for instance) you still have to return something. A "success value" -
perhaps a boolean set to true (1) - is a typical approach to getting around this limitation.

If there was a problem in processing the XML-RPC request, the methodResponse element
will contain a fault element instead of a params element. The fault element, like the
params element, has only a single value. Instead of containing a response to the request,
however, that value indicates that something went wrong. A fault response might look
like:

<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value><string>No such method!</string></value>
 </fault>
</methodResponse>

The response could also look like:

<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value>
 <struct>
 <member>
 <name>code</name>
 <value><int>26</int>
 </member>
 <member>
 <name>message</name>
 <value><string>No such method!</string></value>
 </member>
 </struct>
 </value>
 </fault>
</methodResponse>

XML-RPC doesn't standardize error codes at all. You'll need to check the documentation
for particular packages to see how they handle faults.

Like requests, responses are packaged in HTTP and have HTTP headers. All XML-RPC
responses use the 200 OK response code, even if a fault is contained in the message.
Headers use a common structure similar to that of requests, and a typical set of headers
might look like:

Web Services Essentials

 35

HTTP/1.1 200 OK
Date: Sat, 06 Oct 2001 23:20:04 GMT
Server: Apache.1.3.12 (Unix)
Connection: close
Content-Type: text/xml
Content-Length: 124

XML-RPC only requires HTTP 1.0 support, but HTTP 1.1 is compatible. The Server
header indicates the kind of web server used to process requests for the XML-RPC
implementation. The header may or may not reflect the XML-RPC server implementation
that processed this particular request. The Content-Type must be set to text/xml ; the
Content-Length header specifies the length of the response in bytes. A complete response,
with both headers and a response payload, would look like:

HTTP/1.1 200 OK
Date: Sat, 06 Oct 2001 23:20:04 GMT
Server: Apache.1.3.12 (Unix)
Connection: close
Content-Type: text/xml
Content-Length: 124

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><double>18.24668429131</double></value>
 </param>
 </params>
</methodResponse>

After the response is delivered from the XML-RPC server to the XML-RPC client, the
connection is closed. Follow-up requests need to be sent as separate XML-RPC
connections.

2.4 Developing with XML-RPC

Using XML-RPC in your applications generally means adding an XML-RPC library and
making some of your function calls through that library. Creating functions that will work
smoothly with XML-RPC requires writing code that uses only the basic types XML-RPC
supports. Otherwise, there is very little fundamental need to change your coding style.
Adding XML-RPC support may require writing some wrapper code that connects your
code with the library, but this generally isn't very difficult.

As XML-RPC becomes more and more widespread, some
environments are building in XML-RPC. UserLand Frontier has
done that for years, while the Perl and Python communities are
discussing similar integration.

To demonstrate XML-RPC, we're going to create a server that uses Java to process XML-
RPC messages, and Java and Perl clients to call procedures on that server. Although this
demonstration is simple, it illustrates the connections needed to establish communications
between programs using XML-RPC.

Web Services Essentials

 36

The Java side of the conversation uses the Apache XML Project's Apache XML-RPC,
available at http://xml.apache.org/xmlrpc/. The Apache package includes a few key pieces
that make integrating XML-RPC with Java easier:

• An automated registration process for adding methods to the XML-RPC server
• A built-in server that only speaks XML-RPC, reducing the need to create full-

blown servlets
• A client package that makes calling remote methods fairly simple

This demonstration will use a procedure registered with the built-in server of the Apache
package and a client for testing the procedure.

For much more information about the Apache XML-RPC package,
including data type details and information about creating servlets for
XML-RPC processing, see Chapter 3 of Programming Web Services
with XML-RPC (O'Reilly), by Simon St.Laurent, Edd Dumbill, and
Joe Johnston, available online at
http://www.oreilly.com/catalog/progxmlrpc/chapter/ch03.html.

The procedure that we'll test returns the area of a circle and is defined in a class called
AreaHandler , as shown in Example 2-1.

Example 2-1. A simple Java procedure

package com.ecerami.xmlrpc;

public class AreaHandler {

 public double circleArea(double radius) {
 double value=(radius*radius*Math.PI);
 return value;
 }
}

The circleArea method of the AreaHandler class takes a double value representing the
radius, and returns a double value representing the area of a circle that has that radius.
There's nothing in the AreaHandler class that is specific to XML-RPC at all.

Making the circleArea method available via XML-RPC requires two steps. The method
must be registered with the XML-RPC package, and some kind of server must make the
package accessible via HTTP. The AreaServer class shown in Example 2-2 performs both
these steps.

Example 2-2. Setting up a Java XML-RPC server

package com.ecerami.xmlrpc;

import java.io.IOException;
import org.apache.xmlrpc.WebServer;
import org.apache.xmlrpc.XmlRpc;

public class AreaServer {

 public static void main(String[] args) {

Web Services Essentials

 37

 if (args.length < 1) {
 System.out.println("Usage: java AreaServer [port]");
 System.exit(-1);
 }

 try {
 startServer(args);
 } catch (IOException e) {
 System.out.println("Could not start server: " +
 e.getMessage());
 }
 }

 public static void startServer(String[] args) throws IOException {
 // Start the server, using built-in version
 System.out.println("Attempting to start XML-RPC Server...");
 WebServer server = new WebServer(Integer.parseInt(args[0]));

 System.out.println("Started successfully.");

 // Register our handler class as area
 server.addHandler("area", new AreaHandler());
 System.out.println("Registered AreaHandler class to area.");

 System.out.println("Now accepting requests. (Halt program to stop.)");

 }
}

The main method checks that there is an argument on the command line specifying on
which port to run the server. The method then passes that information to startServer ,
which starts the built-in server. Once the server is started (it begins running when created),
the program calls the addHandler method to register an instance of the AreaHandler class
under the name area. The org.apache.xmlrpc.XmlRpc class deals with all of the method
signature details, making it possible to start an XML-RPC service in about two lines of
critical code. To fire up the server, just execute com.ecerami.xmlrpc.AreaServer from the
command line, specifying a port.

C:\ora\xmlrpc\java>java com.ecerami.xmlrpc.AreaServer 8899
Attempting to start XML-RPC Server...
Started successfully.
Registered AreaHandler class to area.
Now accepting requests. (Halt program to stop.)

The AreaClient class shown in Example 2-3 tests the AreaServer , once started, from the
command line. The AreaClient class also uses the XML-RPC library and only needs to
use a few lines of code (in the areaCircle method) to make the actual call.

Example 2-3. A Java client to test the XML-RPC server

package com.ecerami.xmlrpc;

import java.io.IOException;
import java.util.Vector;
import org.apache.xmlrpc.XmlRpc;
import org.apache.xmlrpc.XmlRpcClient;
import org.apache.xmlrpc.XmlRpcException;

public class AreaClient {

 public static void main(String args[]) {
 if (args.length < 1) {

Web Services Essentials

 38

 System.out.println(
 "Usage: java AreaClient [radius]");
 System.exit(-1);
 }
 AreaClient client = new AreaClient();
 double radius = Double.parseDouble(args[0]);

 try {
 double area = client.areaCircle(radius);
 // Report the results
 System.out.println("The area of the circle would be: " + area);

 } catch (IOException e) {
 System.out.println("IO Exception: " + e.getMessage());
 } catch (XmlRpcException e) {
 System.out.println("Exception within XML-RPC: " + e.getMessage());
 }
 }

 public double areaCircle (double radius)
 throws IOException, XmlRpcException {

 // Create the client, identifying the server
 XmlRpcClient client =
 new XmlRpcClient("http://localhost:8899/");

 // Create the request parameters using user input
 Vector params = new Vector();
 params.addElement(new Double (radius));

 // Issue a request
 Object result = client.execute("area.circleArea", params);

 String resultStr = result.toString();
 double area = Double.parseDouble(resultStr);
 return area;
 }
}

The main method parses the command line and reports results to the user, but the
areaCircle method handles all of the interaction with the XML-RPC service. Unlike the
server, which runs continuously, the client runs once in order to get a particular result. The
same request may be reused or modified, but each request is a separate event. For this
application, we just need to make one request, using the value from the command line as
an argument. The client constructor takes a URL as an argument, identifying which server
it should contact with requests.

Making requests also requires additional setup work that wasn't necessary in creating the
server. While the server could rely on method signatures to figure out which parameters
went to which methods, the client doesn't have any such information. The Apache
implementation takes arguments in a Vector object, which requires using the Java wrapper
classes (like the Double object for double primitives) around the arguments. Once that
Vector has been constructed, it is fed to the execute method along with the name of the
procedure being called. In this case, the name of the method is area.circleArea ,
reflecting that the AreaHandler class was registered on the server with the name area and
that it contains a method called circleArea.

When the execute method is called, the client makes an XML-RPC request to the server
specified in its constructor. The request calls the method identified by the first argument,

Web Services Essentials

 39

area.circleArea in this case, and passes the contents of the second argument as
parameters. This produces the following HTTP response.

POST / HTTP/1.1
Content-Length: 175
Content-Type: text/xml
User-Agent: Java1.3.0
Host: localhost:8899
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall><methodName>area.circleArea</methodName>
<params>
<param><value><double>3.0</double></value></param>
</params>
</methodCall>

The server responds with a methodResponse , which the execute function reports as an
Object. Although the XML-RPC response will provide type information about that Object
, and the underlying content will conform to that type, Object is as specific a type as the
execute function can generally return while still conforming to Java's strong type-
checking.

The result of all this work looks pretty simple:

C:\ora\xmlrpc\java>java com.ecerami.xmlrpc.AreaClient 3
The area of the circle would be: 28.274333882308138

C:\ora\xmlrpc\java>java com.ecerami.xmlrpc.AreaClient 4
The area of the circle would be: 50.26548245743669

Using XML-RPC to connect Java programs to Java programs isn't especially exciting,
however. It certainly works - and it can be a great convenience when the only public
access to a Java method is through XML-RPC - but much of XML-RPC's potential lies in
connecting other environments. To demonstrate that this works with a broader array of
environments, we'll create a Perl client that calls the same function.

The Perl client will use the Frontier::RPC module, an implementation of XML-RPC
created by Ken MacLeod. (When MacLeod created this library, XML-RPC was primarily
a part of UserLand Frontier.) The client component of the Frontier::RPC module is called
Frontier::Client.

Frontier::RPC and all of the modules it uses are available from CPAN
at http://www.cpan.org.

The logic for the Perl version of the XML-RPC call is much like that of the Java version,
except that Perl's flexibility allows us to skip packaging parameters into a vector. The
program shown in Example 2-4 accepts a radius value from the command line, creates a
new XML-RPC connection, and passes the radius value as a double to the
area.circleArea method. Then the program prints the result.

Web Services Essentials

 40

Example 2-4. An XML-RPC client in Perl

use Frontier::Client;

$radius=@ARGV[0];

print "for radius: ", $radius, "\n";

my $client=Frontier::Client->new(url=>"http://127.0.0.1:8899");

print " The area of the circle would be: ", $client->call('area.circleArea',
 Frontier::RPC2::Double->new($radius)), "\n";

The trickiest part of the procedure call is the casting that needs to be done to ensure that
the number is interpreted as a double. Without Frontier::RPC2::Double->new($radius) ,
the Frontier::RPC module will interpret the radius as a string or an integer unless it has a
decimal value. Frontier::RPC provides a set of modules that performs this work on Perl
values in order to map Perl's loosely typed values to the explicit typing required by XML-
RPC. When used on the command line, the Perl procedure call produces results much like
those of the Java client:

C:\ora\xmlrpc\perl>perl circle.pl 3
for radius: 3
The area of the circle would be: 28.274333882308138

C:\ora\xmlrpc\perl>perl circle.pl 4
for radius: 4
The area of the circle would be: 50.26548245743669

For more information on both the Java and Perl implementations of
XML-RPC, as well as implementations in Python, PHP, and Active
Server Pages, see Programming Web Services with XML-RPC
(O'Reilly).

2.5 Beyond Simple Calls

XML-RPC is a very simple concept with a limited set of capabilities. Those limitations are
in many ways the most attractive feature of XML-RPC, as they substantially reduce the
difficulty of implementing the protocol and testing its interoperability. While XML-RPC
is simple, the creative application of simple tools can create sophisticated and powerful
architectures. In cases where a wide variety of different systems need to communicate,
XML-RPC may be the most appropriate lowest common denominator.

Some use cases only require basic functionality, like the library-style functionality
described earlier. XML-RPC can support much richer development than these examples
show, using combinations of arrays and structs to pass complex sets of information. While
calculating the area of a circle may not be very exciting, working with matrices or
processing sets of strings may be more immediately worthwhile. XML-RPC itself doesn't
provide support for state management, but applications can use parameters to sustain
conversations beyond a single request-response cycle, much as web developers use
cookies to keep track of extended conversations.

Web Services Essentials

 41

Servers may be able to use XML-RPC to deliver information requested by clients,
providing a window on a large collection of information. The O'Reilly Network's Meerkat
uses XML-RPC this way, letting clients specify the information they need to receive
through XML-RPC procedures. XML-RPC can also be very useful in cases where a client
needs to deliver information to a server, both for logging-style operations and operations
where the client needs to set properties on a server program. The richness of the interface
is up to the developer, but the possibilities are definitely there.

