

Software Engineering

 Competence Center

TUTORIAL

© Copyright Software Engineering Competence Center 2013

A Quick Introduction to SOA

Mahmoud Mohamed AbdAllah
Senior R&D Engineer-SECC

mmabdallah@itida.gov.eg

Waseim Hashem Mahjoub
Senior R&D Engineer-SECC

mailto:mmabdallah@itida.gov.eg

 A Quick Introduction to SOA | Tutorial Page 2

Abstract

 Achieving business agility and easing the integration of legacy systems are main

goals for software development in various business organizations. Business

agility is the ability to change the business process quickly in response to the

change in the business environment, such as adding a new service to the

organization portfolio. One way to achieve this in a fast, yet cost effective way is

to adopt the Service Oriented Architecture (SOA) approach. SOA is an

architecture methodology that views the system as set of services. The service is

a software component that implements a reasonable amount of work. Each

service is loosely coupled to increase its scalability and reusability. So, whenever

a business need emerges and requires adding new functionality to the system,

the development team in the organization can develop a service that fulfill that

need, and rapidly integrates it in the current system without the need to change

the overall architecture of the system.

The aim of this tutorial is to introduce SOA and its benefits, and provide a brief

overview about the popular implementations of SOA and the concept of Web

Services.

Keywords: SOA, Service Oriented Architecture, Design Principles, ESB,

Enterprise Service Bus, Web Service, SOAP, WSDL, UDDI

 A Quick Introduction to SOA | Tutorial Page 3

Table of Contents

1. Introduction 4

2. What is SOA? 5

2.1. SOA components 5

2.2. Example 6

2.3. Design Principles of SOA 7

2.4. Benefits of SOA 13

3. Enterprise Service Bus (ESB) 14

3.1. ESB 14

4. Web Services Approach 16

4.1. Web Service Architecture 16

4.2. Web service properties 17

4.3. Web services standards 17

5. Case study 20

6. Summary 22

7. References 22

8. Abbreviations 23

 A Quick Introduction to SOA | Tutorial Page 4

1. Introduction

A Service Oriented Architecture (SOA) is a design approach for building business

applications as a set of loosely coupled black box components orchestrated to

deliver a well-defined level of service by linking together business processes [1].

As it is clear from the definition, SOA is an architectural concept which means

that it is applied during the early design phase of the development lifecycle. As

any software concept, SOA is not suitable for all types of IT applications. For

example SOA is not suitable for real-time applications.

When using the SOA approach, business applications are viewed as set of black

box components in order to increase the level of abstraction, and hence, ease the

reuse of these components. The interaction between these components is

simple; such that one component sends a request to another one, and the latter

replies back with the requested data or action.

The previous components are combined into subsystems that interface with

each other or with the end user in order to deliver services of a particular

business value, such as check for duplicate products or calculate effects of

change which is higher level business functions for the organization.

 A Quick Introduction to SOA | Tutorial Page 5

2. What is SOA?

2.1. SOA components

Figure 1 depicts the main components of a typical SOA-based solution.

Figure 1.Main components of a typical SOA system

 In the following, we briefly define each of the components shown in Figure 1

 Enterprise Service BUS (ESB): It is defined as a set of software

components that manage the message routing and transmission from one

software component to another. It is also responsible for translating the

transfer protocol in case of using different transfer protocols in the

communicating software components.

 SOA Registry: It keeps information about each service functionality and

location.

 Service Broker: It is responsible for connecting the requester of the

service to the provider of the service with the help of the SOA Registry

and SOA Service Manager. Instead of hard coding the address of the

service, the requester will communicate with the broker, and then the

broker will make the connection between the requester and the provider

according to the settled rules.

 SOA Service Manager: It ensures the quality of the services in the SOA

architecture.

 Business Process Orchestration Manager: Set of tools to help the system

to connect:

 people to people

 people to processes

 processes to processes

 A Quick Introduction to SOA | Tutorial Page 6

2.2. Example

Customer Data Marketing Managment Banking

Finance

Application

Order

Application

CRM

Application

Server

Servers

Workstation

New

Functionality

Figure 2. System design using the conventional design approach

To demonstrate the idea of using SOA, we consider the following simple

example. The conventional design approach is first explained, then the SOA-

based design approach is discussed. Company X is working in the field of

insurance. It owns a legacy system (Figure 2) that enables company

employees to view and edit customer data and calculate various rates

according to the customer requests. Due to company expansion and business

need for offering new services to the customers, the IT department must add

a new functionality to the System. Accordingly, The IT development team has

upgraded the system and found that they should retest the whole system to

make sure that’s the original functionalities are still functioning normally.

In this case, the development team will need to retest both the old and the

new added functionalities.

If the company has have used the SOA approach , the development team

would have viewed the system as set of services including the old

functionalities and the new proposed functionality, as shown in Figure 3.

 A Quick Introduction to SOA | Tutorial Page 7

Customer Data Marketing Managment Banking

Finance

Application

Order

Application

CRM

Application

Server

Servers

Workstation

ESB

New

Functionality

Figure 3. System design using the SOA approach

As shown in the figure, the system uses ESB, service registry, and the legacy

system is wrapped up with communication interface in order to connect to

the ESB. Now, the new service can be developed and linked to the ESB

without the need to know the internals of the legacy system. Also, a set of

reusable data services is developed in order to access the data servers and

make the CRUD functions. These services will be used by the old system as

well as any new developed services.

In this new design, testing can be done on the new services and the interface

part only of the old components.

2.3. Design Principles of SOA

The core of the SOA approach is to have various units of solution logic

represented and exposed as services. This necessitates the development of

practices and standards in order to help software developers to identify

designs and design services..

SOA design principles are generalized, accepted industry practices for

providing rules and guidelines that determine exactly how solution logic

should be decomposed and shaped into software services. So, the consistent

application of service-orientation design principles leads to the creation of

services with functional contexts that are agnostic to any business process or

application. These agnostic services are therefore capable of participating in

multiple service compositions achieving the ultimate goal of SOA [4].

 A Quick Introduction to SOA | Tutorial Page 8

The service-orientation paradigm advocates the following nine distinct

design principles, each of which supports fundamental design characteristics

that form the target solution logic as service oriented[5].

The following is a brief description of each principle accompanied with an

illustrating figure [3]:

 Principle 1: Standardized service contract

All service description, purpose, communication protocol, and message

format should be documented in a service contract. In order to make all

clients understand this contract, it should be written in a standard-based

service description format as demonstrated in Figure 4.

Figure 4. Standardized Service Contract Principle

 Principle 2: Loose coupling

Loose coupling emphasizes that services should be designed to have

minimal dependencies on each other by achieving logical separation of

concerns. The services shouldn’t be tightly- coupled as demonstrated in

Figure 5. Different layers of loose coupling should be achieved while

designing services, starting from the service contract, ending with service

implementation. For example, when the service provider is changed or

removed, this will require changing the service consumer. So, it is better

to keep these dependencies to minimum in order to reduce the required

changes when an upgrade in the system is needed.

 A Quick Introduction to SOA | Tutorial Page 9

Figure 5. Loose Coupling Principle

 Principle 3: Service abstraction

Services encapsulate the logic they provide from the outside world

avoiding the proliferation of unnecessary service information internal

implementation, technology, logic, and function away from users of the

services as shown in Figure 6. This helps greatly in developing applications

without the need to review, and analyze unimportant details about the

system.

Figure 6. Service Abstraction Principle

 Principle 4: Service reusability

Reusability implies that the solution logic is divided into services with the

intent of maximizing reuse. The services must contain and express

agnostic logic and can be positioned as reusable enterprise resources.

Service reusability represents a design principle that should be

considered during service design as well as an imperative goal of SOA.

Figure 7 illustrates the idea of service reuse by comparing the design of

two applications required to provide the same functionality at the present

time. But reusability requires special consideration to balance the

required developing effort and time with the benefits to be achieved in

 A Quick Introduction to SOA | Tutorial Page 10

the future. For example, separating a service like calculate taxes as stand-

alone service and reusing it in the application will add a clear overhead in

the time needed for the service design and development. However, on the

other hand, when the rules and regulations of taxes changes over time, the

only place that requires upgrade is the “calculate taxes” service.

Figure 7. Service Reusability Principle

 Principle 5: Service autonomy

This principle ensures that the service benefit is acquired only by the

service implementation, and thus, no service is controlled by another

service as demonstrated in Figure 8. Two primary benefits are achieved

when applying service autonomy; system reliability and behavior

predictability.

Figure 8. Service Autonomy Principle

 A Quick Introduction to SOA | Tutorial Page 11

 Principle 6: Service statelessness

In distributed architectures, it is important to keep track of the

interactions history between the server and client parts of the system.

However, to make the architecture scalable (i.e. can reliably support large

number of requests), it is a good practice to follow the Service

Statelessness principle.

Service statelessness suggests differing state information as much as

possible in order to minimize resource consumption. As shown in Figure 9,

service statelessness encourages incorporating state management

deferral approach within service designs so as to keep services in a

stateless condition wherever appropriate. For example, this can be done

using a separate component which keeps track of the states of the services

(e.g. storing session data in a database)

Figure 9. Service Statelessness Principle

 Principle 7: Service discoverability

Applications should learn about the services of the system in a systematic

way. This service discoverability principle implies two requirements: (1)

service contracts are equipped with appropriate metadata, and (2) a

service registry exists in order to store the service description records as

shown in Figure 10.

 A Quick Introduction to SOA | Tutorial Page 12

Figure 10. Service Discoverability Principle

 Principle 8: Service composability

Services are designed as reusable units that can be reconfigured easily to

reflect new requirements and business processes, and thus, can be used in

different applications. This principle affects directly the business agility.

So any application will be composed of any number of services as shown

in Figure 11.

Figure 11. Service Composability Principle

 Principle 9: Service interoperability

In many real applications, it is possible that the service consumer runs on

a different platform other than that of the service provider. In this case, it

will be difficult for them to interact unless they both agree on the same

standard for interaction. Service interoperability necessitates the usage of

standards that allow diverse subscribers to use the service. Thus, a special

care should be given to the used transport protocols and message formats

 A Quick Introduction to SOA | Tutorial Page 13

while designing the services to enable various types of clients (e.g. web

browsers, desktop front-end ,etc.) to use these services as shown in

Figure 12.

Figure 12. Service Interoperability Principle

2.4. Benefits of SOA

The increasing complexity of business processes and systems coupled with the

rapid changes in market needs and business requirements; and agility, flexibility,

and business automation have became vital for enterprises to survive [4]. SOA is

a strong candidate paradigm for the realization of the agility, flexibility, and

automation of the business processes that span large distributed systems. It is an

approach that can support systems to remain scalable and flexible while

growing. Companies that need customizable solutions or use IT for competitive

value, companies seeking to leverage IT capabilities for business advantage,

these are companies that should care about SOA. The SOA supports the

realization of these strategic goals ,that enables business and IT to collaborate in

order to achieve:

 Greater flexibility in strategic applications

 Faster time to value from IT

 Modernized strategic applications

 Lower the lifetime cost of applications or infrastructure

 Reuse as a goal to bring products or capabilities to the market faster

SOA provides the potential to elevate the responsiveness and cost-effectiveness

of IT through a design paradigm that emphasizes the realization of strategic

goals and benefits. Figure 13 presents SOA benefits at technical and business

dimensions.

 A Quick Introduction to SOA | Tutorial Page 14

Figure 13. SOA Benefits at Technical and Business Dimensions

3. Enterprise Service Bus (ESB)

3.1. ESB

Enterprise service bus (ESB) represents the core infrastructure of any SOA

implementation. Enterprises commonly deploy diverse applications, platforms,

and business processes communicating to each other using incompatible data

formats and communications protocols. Accordingly, ESB simplifies the

complexity of integration by providing a single, standards-based infrastructure

into which applications can be plugged as demonstrated in Figure 14. Once

plugged into the ESB, an application or service has access to the entire

infrastructure services like data transformation, transport mediation and others

provided by the ESB. Moreover, the application can access any other application

that are also plugged into the ESB. For instance, one could plug a billing system

based on JMS into an ESB and use the ESBs transport mediation features to

expose the billing system over the Web using SOAP/HTTP. You could also route

internal purchase orders directly into the billing system by plugging the

Purchase Order system into the ESB [5].

 A Quick Introduction to SOA | Tutorial Page 15

.

Figure 14. ESB Infrastructure

To run SOA in practice, one need a way for calling services. ESB is mainly a group

of applications that provides various intermediation services for the enterprise

applications to be able to call and talk to each other. The service provided by

each ESB varies from one to another depending on the complexity, scalability,

and the cost of the final solution. Commonly, the following are the main services

and functionalities that are provided by an ESB:

 Data transformation: Applications are using different data formats and

message structures to represent real world concepts. Thus, ESB comes as

an intermediary that translates from one format to another supporting

different formats and message structures allows greater flexibility and

scalability for the target solution.

 Transport mediation: Various transportation protocols are used in

enterprise applications, and hence, integrating such applications requires

efficient mediation between various transportation protocols.

 Intelligent routing: In order to achieve achieving scalable self-functioning

solution, the system must have the capability to route messages based on

their contents and priorities, while achieving load balancing between

several service providers. This feature requires the ESB to have some

semantic understanding of at least some parts of the services.

 Security: only authorized and authenticated service users for a certain

service are capable for consuming that service. Also, messages that

contain sensitive information may need to be encrypted at runtime.

 A Quick Introduction to SOA | Tutorial Page 16

In addition to the previous main features, ESBs usually provide add-on services,

such as: real-time monitoring, logging, service management, hot deployment,

service replications, and testing services.

4. Web Services Approach

Web services are one of the common used approaches to realize the concept of

SOA. One definition of web services is [8]: “A self-contained, modular

applications that can be described, published, located, and invoked over a

network”.

Web services can execute different sized business functions e.g., simple data

requests or wrapping legacy system to make them network enabled. It can also

call other web services to achieve certain business function. These web services

will be called by the frontend application in order to achieve specific functions to

the user.

4.1. Web Service Architecture

 Figure 15 demonstrates the architecture of a solution based on web service

approach.

Figure 15. Web service generic architecture

 The main components shown in Figure 16 are as follow:

 Service provider: is the component that implements the web service and

informs its existence to other requester by publishing its interface and

access information in the service registry.

 A Quick Introduction to SOA | Tutorial Page 17

 Service broker (registry): is responsible for the availability of both

interface and implementation access information for the Web service to

any service requester.

 Service requester: searches the service within the service broker to find

its service provider then connect to the latter using specific

communication protocol.

4.2. Web service properties

The key properties that characterize the web services could be summarized as

follow:

 Standardization: Web services depend on mature and well known

standards.

 Exposure: Web services depend on well known standard like SOAP,

WSDL, and UDDI, which allow them to make use of the existing

infrastructure to be invoked across the Web.

 Modularity: Web service functionality can be implemented using smaller

web services in order to increase their reusability of the web services.

 Interoperability: The service provider and the service requester could be

developed using different languages on different machines. They can also

run on different platforms.

4.3. Web services standards

The following are the core standards in implementing web services. Other

standards exist that address web service security, web service management and

others.

 SOAP: (Simple Object Access Protocol) is the standard format for the

messages between the web service architecture components. As shown in

Figure 17, it is based on XML (Extensible Markup Language), and it is

independent of programming languages.

 A Quick Introduction to SOA | Tutorial Page 18

Figure 17. SOAP message format

 WSDL: Web Services Description Language is also based on XML and it

describes the implementation of a service. It is used by both the service

provider and the service requester. The service provider specifies the

operations that he provides and the parameters and data types of these

operations. The WSDL document includes the information about the

location of the web service and message format. An example of a WSDL

document in shown in Figure 18.

Figure 18. WSDL document format

 UDDI: Is a web service, like yellow pages, that can be used to register the

description about the web services and make it available for other service

requesters to discover. For example, If the industry published an UDDI

 A Quick Introduction to SOA | Tutorial Page 19

standard for flight rate checking and reservation, airlines could register

their services into an UDDI directory. Travel agencies could then search

the UDDI directory to find the airline's reservation interfaces. When the

interface is found, the travel agency can communicate with the service

immediately because it uses a well-defined reservation interface.

Table 1 summarizes the core standards of web services.

Table 1.Web service core standards

 SOAP WSDL UDDI

Stands for Simple Object Access
Protocol

Web Services
Description Language

Universal Description,
Discovery and
Integration

Usage a format for
sending/receiving
messages

Describe and locate
web services

a directory for storing
information about
web services

Language XML XML WSDL

 Application Transfer Protocol:

The components in the web service architecture make use of the

following protocols to send messages to one another:

o Hypertext Transfer Protocol (HTTP)

o Simple Mail Transfer Protocol (SMTP)

o File Transfer Protocol (FTP)

o Blocks Extensible Exchange Protocol (BEEP)

 A Quick Introduction to SOA | Tutorial Page 20

Figure 19.Sample request/response session

The body of the requester message will be something like this:

 <m:GetPrice>
 <m:item>Apples</m:item>
 </m:GetPrice>

And the provider will fill XML-message with the reply as the following:

 <m:GetPriceRsponse>
 <m:price>1.90</m:price>
 </m:GetPriceRsponse>

5. Case study

This case study is practiced in [9] and is used here to demonstrate the usage of the SOA

approach. A company provides financial services like retirement savings plans, discount

brokerage services, retirement services, estate planning, wealth management, securities

execution and clearance, and life insurance and much more.

The company employees utilizes several desktop application to serve the clients like

making financial transaction, inquiring accounts and funds, resource management and

relationship management.

The previous scenario caused the following problems in the company:

 A Quick Introduction to SOA | Tutorial Page 21

 The client data is fragmented

 Gathering the data together while servicing the client was inefficient

 Each application implemented its method of implementation

Which increase the time and cost to change the organization business process.

So the company decided to develop a single application interface linked to a centralized

client data storage to overcome the above mentioned problems.

In 2002, the company started by forming a development team to begin a pilot

project to proof the idea of using services to support application. The result was

20 Java services that were used by 3 different applications (web services).

Also a great experience was acquired on how to migrate from the previous

tightly coupled applications to the loose coupled web services.

In2004, the company began to develop new application for company employees

depending on the experience they gain from the pilot project. The application

has the following feature:

o Single user interface for all users

o Centralized data source

o Several subsystems to support related set of functionality based upon

.Net framework

o Uses XML/HTTP web services to connect to data source and to the

subsystems

Later, in 2005: there were 200 unique services that supported both mainframe

and distributed applications throughout the organization.

In order to implement such a huge project, there must be rules to be followed by the

organization IT team. In particular, the following governance processes more adopted:

 Defining the web service or business service using WSDL format in a document

that defines:

o service name

o request document

o response document

o SOAP fault codes and messages

o visibility for designers-developers-testers

o Operational definition

 Defining standards to be used by each developer:

o Logging

o Authentication

o Authorization

o SOAP headers

o Errors for SOAP fault

 A Quick Introduction to SOA | Tutorial Page 22

o business specific XML

o logical access to the physical databases

 Creating centralized repository to store any metadata about each service like

request and response documents, WSDL references, database tables that were

accessed, producing project, application dependencies, etc.

o This helps analysts to find the current version of services in the system

o Data engineer can quickly find the information about the services that

access certain column in the database in order to do impact analysis for

changes in the database.

o also this repository is integrated to the management tools to help release

manager to produce reports for release meeting

6. Summary

This tutorial briefly introduced the basic concepts of SOA and its components. It

also provided a brief introduction about web services as one of the widely used

approaches to implement SOA. A sample case study is outlined to help clarify the

concepts and benefits of adopting the SOA approach.

7. References

[1] Service Oriented Architecture For Dummies, 2nd IBMLimited Edition

[2] OASIS Reference Model for Service Oriented Architecture 1.0

[3] http://www.omg.org/technology/readingroom/SOA.htm

[4] James Bean, "SOA and Web Services Interface Design: Principles, Techniques,

and Standards", 1st edition, Morgan Kaufmann publications, 2009.

[5] Thomas Erl, "SOA Principles of Service Design", 1st edition, Prentice Hall

publications, 2007.

[6] Michael Rosen, Boris Lublinsky, Kevin T. Smith, and Marc J. Balcer, "Applied

SOA: Service-Oriented Architecture and Design Strategies", 1st edition, Wiley

publications, 2008.

[7] Rick Robinson, "The role of the Enterprise Service Bus", IBM developer Works,

2004.

[8] Web Services Handbook for WebSphere Application Server 6.1

[9] A. Coppola, S. Li,” A CASE STUDY OF SERVICE ORIENTED

ARCHITECTURE IMPLEMENTATION AND GOVERNANCE”, Proceedings

of the 39th Annual Meeting of the Decision Sciences Institute, November 22-25,

2008,pp 5041-5046.

http://www.omg.org/technology/readingroom/SOA.htm

 A Quick Introduction to SOA | Tutorial Page 23

8. Abbreviations

SOA Service Oriented Architecture

ESB Enterprise Service Bus

CRUD create, read, update and delete

SOAP Simple Object Access Protocol

WSDL Web Services Description Language

UDDI Universal Description, Discovery and Integration

HTTP Hypertext Transfer Protocol

SMTP Simple Mail Transfer Protocol

FTP File Transfer Protocol

BEEP Blocks Extensible Exchange Protocol

