
MaxCompiler
Kernel Numerics Tutorial

Version 2014.1

Contents

Contents 1

Preface 2

1 Floating-Point Data Types 4
1.1 Floating Point Overview . 4

1.1.1 Range of a Floating-Point Number . 4
1.1.2 Special Values . 5
1.1.3 Exponent Bias . 5

1.2 MaxCompiler IEEE Floating-Point Compliance . 5
1.3 Allowable Mantissa and Exponent Sizes . 6
1.4 Floating-Point Utilities . 6
1.5 Casting Floating-Point Streams . 6

2 Fixed-Point Data Types 8
2.1 Fixed Point Overview . 8
2.2 Offset Fixed Point . 8
2.3 Inferring Offsets via Maximum Values . 10
2.4 Rounding Modes . 10

3 Numeric Exceptions 11
3.1 Floating-Point Exceptions . 11
3.2 Fixed-Point Exceptions . 12
3.3 Numeric Exception Behavior . 14
3.4 Enabling Numeric Exceptions . 14
3.5 Reading Numeric Exception Data . 16
3.6 Mapping Numeric Exceptions to the Kernel Source . 18
3.7 Conditionally Enabling Numeric Exceptions . 22

1

Contents

Preface

Purpose of this document

This document covers features of MaxCompiler that allow you to optimize numerics within a Kernel,
including numeric exceptions (such as overflow). Numeric exceptions allow you to see which numeric
exceptions occurred for which operations.

The first two sections offer an overview of floating-point and fixed-point data types in MaxCom-
piler.

Each section introduces a new set of features and goes through examples showing their use, where
appropriate.

Document Conventions

When important concepts are introduced for the first time, they appear in bold. Italics are used for
emphasis. Directories and commands are displayed in typewriter font. Variable and function names
are also displayed in typewriter font.

Java methods and classes are shown using the following format:

void debug.pushEnableNumericExceptions(boolean enable);

C function prototypes are similar:

int max numeric ex enabled(max maxfile t ∗maxfile, const char ∗design name)

Actual Java usage is shown without italics:

debug.simPrintf(result .hasAnyDoubt(), ”cycle %d, result = %d?\n”, cnt, result) ;

C usage is similarly without italics:

max show numeric ex masked(device, ”MovingAverageExceptionsKernel”, 0, stdout, 1);

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 2

Contents

Sections of code taken from the source of the examples appear with a border and line numbers:

24
25 // Control
26 DFEVar cnt = control.count.simpleCounter(32, N);
27
28 DFEVar sel nl = cnt > 0;
29 DFEVar sel nu = cnt < N-1;
30
31 DFEVar sel m = sel nl & sel nu;
32
33 DFEVar prev = sel nl ? x prev : 0;
34 DFEVar next = sel nu ? x next : 0;
35
36 DFEVar divisor = sel m ? constant.var(dfeInt(8), 3) : 2;
37
38 // Calculation
39 debug.pushEnableNumericExceptions(true);
40
41 DFEVar sum = prev+x+next;
42 DFEVar result = sum/divisor;
43
44 debug.popEnableNumericExceptions();
45
46 // Output
47 io .output(”y” , result , result .getType());
48 }
49 }

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 3

1 Floating-Point Data Types

1 Floating-Point Data Types

MaxCompiler supports floating-point data streams both in IEEE 754 standard formats (half-, single- and
double-precision) and with user-specified sizes of mantissa and exponent.

A floating-point type is parameterized with mantissa and exponent bit-widths in MaxCompiler using
dfeFloat:

DFEFloat dfeFloat(int exponent bits, int mantissa bits)

1.1 Floating Point Overview

Floating-point representation allows a wider range of numbers to be represented than integer or fixed-
point representation. Floating point uses a fixed number of bits to represent an approximation of the
number (the mantissa) which is scaled by an exponent.

Floating-point numbers are normalized such that the most significant bit of the mantissa is 1 (i.e.
1 <= mantissa < 2). This allows an optimization where the most significant bit of the mantissa is not
stored: it is implicit. This spare bit is then used to represent the sign of the number.

Consider a 32-bit floating-point number with a 24-bit mantissa (m) and an 8-bit exponent (e). This
would be declared as dfeFloat(8, 24) in MaxCompiler. The storage required for the mantissa is
actually 23 bits, leaving one bit for the sign (s), as shown in Figure 1.

Mantissa (m)Sign
Bit (s)

23-Bits

Exponent (e)

8-Bits

Figure 1: 32-bit Floating-point number.

The equation for working out the real number that this represents is:

x = (−1)s ×m× 2e

1.1.1 Range of a Floating-Point Number

The range of a floating point number in MaxCompiler is between ±1 × 2−
2N

2
−2 and approximately

±2× 2
2N

2
−1, where N is the number of bits in the exponent. For single precision (dfeFloat(8,24)),

this is between ±1× 2−126 and approximately ±2× 2127.

W Note that the maximum exponent is +127 and the minimum -126 as two values are reserved
for special values.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 4

1 Floating-Point Data Types

1.1.2 Special Values

Certain values of the exponent and mantissa represent special values (shown in Table 1). These values
are the same for all bit-widths of exponent and mantissa.

Value Exponent Mantissa

±0 All zeroes 0
NaN (Not a Number) All ones Non-zero
±infinity All ones 0

Table 1: Special Values for floating-point numbers.

1.1.3 Exponent Bias

The exponent is biased, which means it is offset from its actual value when stored. For single precision
(dfeFloat(8,24)) the bias is +127. This needs to be subtracted from the stored value when working
out the number represented in floating point. So, for a single-precision number with an exponent of
-100, this is stored as 27. For double precision (dfeFloat(11,53)), the bias is +1023.

The general equation for calculating the bias is:

2N−1 − 1

Where N is the number of bits in the exponent.

1.2 MaxCompiler IEEE Floating-Point Compliance

When there are 8 exponent bits and 24 mantissa bits in a floating-point type in MaxCompiler, the
floating-point format is equivalent to IEEE 754 single-precision. Similarly, for an exponent of 11 bits and
mantissa 53 bits the type is in IEEE 754 double-precision format.

MaxCompiler floating-point numbers vary from the IEEE standard in the following ways:

• No support for denormalized numbers. Results that would have been denormalized are set to an
appropriately signed zero.

– To increase the dynamic range in MaxCompiler, you can increase the width of the exponent.

– If slight variations between results from a CPU implementation and a MaxCompiler imple-
mentation are to be avoided, we recommend that the software model either disables denor-
malized numbers in the CPU (if possible) or checks for denormalized numbers and explicitly
rounds to zero.

• Only the default rounding mode, round to nearest (RoundingMode.TONEAREVEN in MaxCom-
piler), is supported.

• All NaNs are treated as Quiet-NaNs: no exceptions are raised. The only exception to this rule
is as an input to a floating-point to fixed-point conversion, when an exception is raised (see
section 3).

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 5

1 Floating-Point Data Types

1.3 Allowable Mantissa and Exponent Sizes

The valid range for the number of bits of the exponent (exponent bits) is between 4 and 16 inclusive.
The valid range for the number of bits of the mantissa (mantissa bits) depends on the exponent

width. The minimum mantissa size is always 4, including the implicit bit due to normalization, and the
maximum is determined by Table 2.

Exponent Width Max. Mantissa Size

4 5
5 13
6 29
7 61

8 - 16 64

Table 2: Allowable Exponent and Mantissa size combinations.

W All mantissa widths in Table 2 include the implicit bit due to normalization.

1.4 Floating-Point Utilities

MaxCompiler provides a number of utility methods for querying and manipulating floating-point types.
The getMantissaBits method returns the number of bits for the mantissa in a floating-point

stream type:

int DFEFloat.getMantissaBits()

W getMantissaBits() returns the width of the mantissa as declared, including the implicit bit
e.g. 24 for a floating point number declared as dfeFloat(8,24).

getExponentBits returns the number of bits for the exponent:

int DFEFloat.getExponentBits()

The method getExponentBias() is available to get the bias of the exponent (see subsubsec-
tion 1.1.3):

int DFEFloat.getExponentBias()

1.5 Casting Floating-Point Streams

Casting from DFERawBits to and from floating point is free. However, casting to a different Kernel type,
for example between DFEFix and DFEFloat, can be expensive in terms of resource usage, so should
be used judiciously.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 6

1 Floating-Point Data Types

A numeric exception is raised if a cast from a floating-point stream causes overflow or underflow.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 7

2 Fixed-Point Data Types

2 Fixed-Point Data Types

An important task in the optimization of many MaxCompiler designs is conversion from using floating-
point data to using fixed-point data. Many applications do not require either the full dynamic range or
the precision of a floating-point representation. This is especially true for applications where the inputs
are of limited precision in the first place.

MaxCompiler has built-in fixed-point types with various modes of rounding and scaling.

2.1 Fixed Point Overview

In an integer, the binary point is implicitly to the right of the least significant bit of the binary word. In
fixed-point representation, the position of the binary point is moved to leftwards, so some bits are used
to represent fractional values, as shown in Figure 2.

Integer Bits Fraction Bits

Binary Point

Figure 2: Fixed point number

In this example of 8 integer bits and 8 fractional bits, in two’s-complement mode, the largest possible
value is 127 + 255/256 = 127.99609375, the smallest possible value is −128 and each fractional bit
represents a 1/256 = 0.00390625.

2.2 Offset Fixed Point

In MaxCompiler, fixed-point types are described using an offset of the binary point. A negative offset
moves the binary point to the left through the binary word from immediately to the right of the least
significant bit. A positive offset moves the binary point to the right.

A negative offset greater than the width of the word leads to a smaller range of fractions represented
with greater precision. A positive offset allows us to represent a larger range of integer values losing
the precision of the lower bits, so we can only represent integers divisible by 2offset.

A number of examples of offsets on a 16-bit binary word are shown in Figure 3.
An offset fixed-point type is declared using dfeFixOffset:

DFEFix dfeFixOffset(int num bits, int offset , SignMode sign mode)

where num bits is the total number of bits in the word, and offset is the position of the offset
relative to the least significant bit in the binary word (negative to the left, positive to the right). sign mode

can be one of SignMode.TWOSCOMPLEMENT or SignMode.UNSIGNED.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 8

2 Fixed-Point Data Types

Binary Point

8 Integer Bits

Offset: -8

8 Fraction Bits

(a) -8: 8 integer bits and 8 fractional bits representing (128 > x >= −128)

Binary Point

16 Fraction Bits

Offset: -16

(b) -16: All fraction bits (0.5 > x >= −0.5)

Binary Point

16 Fraction Bits

Offset: -20

(c) -20: All fractions bits (0.03125 > x >= −0.03125)

Binary Point

16 Integer Bits

Offset: 0

(d) 0: Integer Equivalent (128 > x >= −128)

Binary Point

16 Integer Bits

Offset: 4

(e) 4: Integers that are multiples of 16

Figure 3: Different offsets on a 16-bit word in two’s-complement mode

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 9

2 Fixed-Point Data Types

2.3 Inferring Offsets via Maximum Values

As well as allowing the fixed-point offset to be expressed explicitly, MaxCompiler can infer the offset
from a maximum value. This is the recommended method for creating fixed-point types.

The maximum value can be passed in as either a long or double value:

DFEFix dfeFixMax(int num bits, long max, SignMode sign mode)
DFEFix dfeFixMax(int num bits, double max, SignMode sign mode)

For example, passing in a maximum of 127.0 in two’s-complement mode returns a fixed-point type
with an offset of -8:

DFEType fixedType = dfeFixMax(16, 127.0, SignMode.TWOSCOMPLEMENT);

2.4 Rounding Modes

There are three rounding modes available for fixed-point numbers in MaxCompiler: truncation, round-
to-nearest and round-to-nearest-even.

These modes can be pushed and popped with in a Kernel to apply to the operations by a call to
push and pop:

void pushRoundingMode(RoundingMode mode)
void popRoundingMode()

The rounding modes are defined in the RoundingMode enum:

public enum RoundingMode {
TRUNCATE,
TONEAR,
TONEAREVEN;

}

The default rounding mode for fixed-point, and therefore integer, arithmetic in MaxCompiler is
Round-to-Nearest.

W This can result in different answers to a CPU, where results are truncated for integer arithmetic.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 10

3 Numeric Exceptions

3 Numeric Exceptions

Arithmetic operations in Kernel designs have the capability of raising numeric exceptions. Enabling
numeric exceptions is helpful during the design process to debug any numerical issues and can be
used in a production application to detect run-time data errors. Numeric exceptions require extra logic
on the Data Flow Engine, so are disabled by default.

Numeric exceptions are raised in similar circumstances to a CPU, but the Kernel always continues
processing, raising a flag to indicate that a numeric exception has occurred. For floating-point numbers,
the type of numeric exceptions that can be raised closely follow the IEEE 754 standard. For fixed-point
numbers, overflow and divide-by-zero exceptions can be raised.

3.1 Floating-Point Exceptions

MaxCompiler supports four of the five floating-point exceptions specified in the IEEE 754 standard. A
brief explanation of each numeric exception type follows:

Overflow The result is larger than the maximum value that the chosen representation can contain.

Underflow The result is smaller than the minimum normalized value that the chosen representation
can contain but greater than zero.

W
Because denormalized numbers are not supported in MaxCompiler, any result that would
result in a denormalized number is set to an appropriately signed zero and an underflow
exception is signaled.

Divide-by-0 Division operation with a divisor of zero and a finite non-zero dividend.

Invalid Operation A real value cannot be returned (e.g.
√
−1).

W Because MaxCompiler treats all NaNs as quiet NaNs, no Invalid Operation exceptions
are raised on any operation on a signaling NaN.

Inexact Not supported. This exception is raised if the result of an operation cannot be exactly rep-
resented, i.e. the result is rounded. Because most floating-point operations produce rounded
results most of the time, the inexact exception is not usually considered to be an error.

Table 3 shows the floating-point operations and the types of numeric exception that they can raise.
subsection 3.4 shows how to enable these numeric exceptions for each operation.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 11

3 Numeric Exceptions

Operation Operator OFlow UFlow Div0 InvOp Notes

ADD + X X
SUB - X X
MUL * X X X
DIV / X X X X 1

ACCUMULATOR makeAccumulator X X
CAST FROM FIX 2

CAST FROM FLOAT X X 3

SQRT sqrt X X

1 0/0 raises an Invalid Operation exception instead of a Divide-by-Zero
exception.

2 Fixed-to-float casts cannot overflow or underflow.
3 Applies to both float-to-float and float-to-fixed.

Table 3: Floating-point operations and the exceptions they can raise.

3.2 Fixed-Point Exceptions

MaxCompiler supports two exceptions for fixed-point operations:

Overflow The result is larger than the maximum value that the chosen representation can contain.

Divide-by-Zero Division operation with a divisor of zero.

Table 4 shows the fixed-point operations and the types of numeric exception that they can raise.
subsection 3.4 shows how to enable these numeric exceptions for each operation.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 12

3 Numeric Exceptions

Operation Operator OFlow Div0 Notes

ADD + X
SUB - X
MUL * X
DIV / X X 1

NEG - X 2

ACCUMULATOR makeAccumulator X
SHIFT LEFT << X
CAST FROM FIX X 3

1 Division of a non-zero dividend by a zero divider
raises a Divide-by-Zero exception. This is different
behavior from floating point, where a Invalid Opera-
tion exception may be raised (see Table 3).

2 Only in the specific circumstance of negating the
maximum negative value (e.g. -128 in a signed 8-
bit integer).

3 Applies to fixed-to-fixed only.

Table 4: Fixed-point operations and the exceptions they
can raise.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 13

3 Numeric Exceptions

-32 -1632 64 32

?

32

y

/

3

x

-1 +1

+

+

-16

16

64

80

27

32

27

(a) Tick 1

-32 -1632 64 32

? -43

32

y

/

3

x

-1 +1

+

+

32

96

32

-128

-43

64

Overflow
Exception
Raised

27

(b) Tick 2

-32 -1632 64 32

? 21-43

32

y

/

3

x

-1 +1

+

+

64

96

-32

64

21

32

Overflow
Exception
Still Registered

27

(c) Tick 3

Figure 4: 3 Kernel ticks of the moving average filter showing an overflow exception being raised for 8-bit
signed integer data.

3.3 Numeric Exception Behavior

The Kernel records which numeric exceptions have been raised for each operation during the Kernel
execution using a separate flag for each numeric exception type. Once a numeric exception of a partic-
ular type has been raised for an operation, that flag can only be cleared when the device is reset and
the Kernel restarted.

Example 1 performs a 3-tap moving average of an input stream using 8-bit signed integer data. The
Kernel source code is shown in Listing 1.

Figure 5 shows the Kernel graph for Example 1 over multiple ticks (with the boundary conditions
removed for clarity). Once an overflow exception has been raised in tick 2, the overflow exception flag
stays set until the Kernel is reset.

3.4 Enabling Numeric Exceptions

Numeric exceptions can be enabled for all or just part of a Kernel design. Two methods on the debug

property of the Kernel class are available to enable and disable all numeric exceptions:

void debug.pushEnableNumericExceptions(boolean enable);
void debug.popEnableNumericExceptions();

Numeric exceptions are enabled for parts of the Kernel between calls to
pushEnabledExceptions(true) and popEnabledExceptions(). The calls to push and pop the
enabling of numeric exceptions behave as a stack during the compilation of the Kernel, which enables
fine-grained control of the individual operations to have numeric exceptions enabled.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 14

3 Numeric Exceptions

Exceptions for stream type Notes

EnableExceptionTypes.DFE FIX DFE FLOAT Both fixed point and floating point
EnableExceptionTypes.DFE FIX Fixed point only
EnableExceptionTypes.DFE FLOAT Floating point only

Table 5: Exceptions for fixed-point and floating-point types.

Operation Notes

EnableExceptionOps.ADD

EnableExceptionOps.SUB

EnableExceptionOps.MUL

EnableExceptionOps.DIV

EnableExceptionOps.NEG (Arithmetic negation) Fixed point only
EnableExceptionOps.ACCUMULATOR

EnableExceptionOps.CAST FROM FIX Produces fixed-point exceptions for fix-to-fix casts
and cannot produce exceptions for fix-to-float oper-
ations

EnableExceptionOps.CAST FROM FLOAT Only produces floating-point exceptions
EnableExceptionOps.SHIFT LEFT Fixed point only
EnableExceptionOps.SQRT Floating point only
EnableExceptionOps.ALL All the above operations

Table 6: Operations that can raise exceptions.

In Example 1, numeric exceptions are enabled for the section of code that does the calculation:

39 debug.pushEnableNumericExceptions(true);
40
41 DFEVar sum = prev+x+next;
42 DFEVar result = sum/divisor;
43
44 debug.popEnableNumericExceptions();

You can also enable and disable exceptions for specific data types and operations:

void debug.pushEnableNumericExceptions(boolean enable, EnableExceptionTypes type, EnableExceptionOps... ops)

This version of the method takes an EnableExceptionTypes enumeration instance to specify
for which stream data type to disable the exceptions: floating-point, fixed-point or both (see Table 5).
The varargs argument takes a list of one or more EnableExceptionOps enumeration instances, the
possible values for which are shown in Table 6

These calls to push and pop the enabling of exceptions for certain data types and operations be-
have as a stack during compilation, with each push overriding the setting for all of the data types and
operations that it specifies. The exceptions that these operations can raise are shown in Table 3 and
Table 4.

W Enabling numeric exceptions for a section of code is a compile-time option that determines
whether the logic for numeric exceptions is built into the final design.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 15

3 Numeric Exceptions

For example, the following code enables all numeric exceptions in line 4, then disables exceptions
for the cast from floating point in line 9:

1 DFEVar x = io.input(”x” , dfeFloat(8,24)) ;
2
3 // Enable all numeric exceptions
4 debug.pushEnableNumericExceptions(true);
5
6 DFEVar y = x∗x;
7
8 // Disable numeric exceptions for float -to- fix casts
9 debug.pushEnableNumericExceptions(false,EnableExceptionTypes.DFE FIX DFE FLOAT,EnableExceptionOps.CAST FROM FLOAT);

10
11 y = y.cast(dfeOffsetFix(24,8,SignMode.TWOSCOMPLEMENT));
12
13 debug.popEnableNumericExceptions();
14 debug.popEnableNumericExceptions();

Any overflows from the cast on line 11 from floating point to fixed point are therefore ignored.

3.5 Reading Numeric Exception Data

Each operation that has exceptions enabled, keeps a record of which exceptions were raised during
the execution of the Kernel. The Kernel can be instructed, via a run-time configuration setting, to save
this information into a file for analysis. For the rest of this document, we refer to this file as the ”binary
cache” file.

To capture exceptions raised, additional settings must be included in the $SLIC CONF environment
setting. If you are a bash user, these are (without line breaks):

[user@machine] $ expor t SLIC CONF=$SLIC CONF ; default maxdebug mode =2;
default maxdebug name=MyAction

For a csh user, these are:

[user@machine] $ setenv SLIC CONF $SLIC CONF ; default maxdebug mode =2;
default maxdebug name=MyAction

The default maxdebug mode setting enables the collection of the debug data, including excep-
tions data; and the default maxdebug name setting defines part of the generated name of the binary
cache file that is created. The complete name of the binary cache file is formed by the concatenation
of ”maxdebug ”, the default maxdebug name environment setting, a time-stamp, and a device id, for
example:

maxdebug MyAction .2012 -10 -15 15 -04 -46. dev0.1831731826237

This long name is necessary to ensure that data from multiple runs on multiple DFEs is not overwritten.
For simplicity in the examples used hereafter in this document, we assume that we have renamed this
binary cache file to a shorter name:

[user@machine] $ mv
maxdebug MyAction .2012 -10 -15 15 -04 -46. dev0.1831731826237
maxdebug MyAction . out

Incidentally, the binary cache file also contains debug information, and can be queried using MaxDe-
bug with its ”-f” option.

The MaxQueryExceptions utility is used to read the binary cache file and report on exceptions.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 16

3 Numeric Exceptions

[user@machine] $ maxQueryExceptions -h
Usage : maxQueryExceptions [op t ions]
where :

-b , - - b i n f i l e <maxdebugfi le> ∗∗∗ MANDATORY ARGUMENT ∗∗∗
s p e c i f i e s the b inary f i l e which i s w r i t t e n when maxdebug i s enabled
i n the SLiC ac t ions ; t h i s conta ins the raw values o f any numer ical
except ions .

-m, - - max f i l e <maxf i le> ∗∗∗ MANDATORY ARGUMENT ∗∗∗
s p e c i f i e s the max f i l e con ta in ing the design .

Inpu t op t ions :
-k , - - ke rne l <kernelname>[,<kernelname2>[,<kernelname3 > . . .]]

name of kernel , or l i s t o f kernels , to be quer ied .
I f not spec i f i ed , a l l ke rne ls i n the design are quer ied .

-x , - - excludemask <db g f i l e >[,<dbg f i l e2 >[,<dbg f i l e3 > . . .]]
se t one or more b inary maxdebug f i l e s to use f o r masking the
except ions r e g i s t e r . These b inary f i l e s must have a l l been
generated from the same maxf i le , so t h a t t h e i r except ions r e g i s t e r s
have the same size , address , and node ID assoc ia t i ons as the
t a r g e t b ina ry f i l e s p e c i f i e d w i th the ’ - b ’ argument .
I f more than one exclude f i l e i s suppl ied , the e f f e c t i s cumulat ive ,
and the b i t - masks f o r each kerne l are OR- ed toge ther . Except ions
corresponding to set b i t s i n the exclude -mask w i l l not be p r i n t e d .

Output op t ions :
- i , - - i d <nodeid>[,<nodeid2>[,<nodeid3 > . . .]]

show node d e t a i l s f o r l i s t o f node IDs .

-d , - -dump
output i n ”dump” format ; the numer ica l except ions are p r i n t e d out
as EXCEPTION VALUE macros .

-s , - -show
output i n ” show ” format ; the numer ica l except ions are p r i n t e d out
i n t a b u l a r form .

-n , - - nodeinfo
show node d e t a i l s where except ion occurred .

-c , - - count
get count o f the number o f set b i t s i n the except ions r e g i s t e r .
Any exclude - masks supp l ied are app l ied before the b i t s are counted .

-g , - - getmask
get contents o f numer ica l except ions as a b i t -mask s t r i n g ;
Any exclude - masks supp l ied are app l ied beforehand .

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 17

3 Numeric Exceptions

Three arguments are mandatory:

• the maxfile used to build the design;

• the binary cache file created as described above; and

• one of the output options, to select how any exceptions are presented. More than one output
option can be used: the different format outputs are listed one after another.

After running the example, we run the maxQueryExceptions utility from a command prompt, using
the binary cache file created, and the location of the .max file:

[user@machine] $ maxQueryExceptions - s -b maxdebug MyAction . out
-m RunRules / S imu la t ion / max f i l es / MovingAverageExceptionsHostSim .max

The ”maxQueryExceptions -s” output option produces a table of results, such as:

node ID except ions kerne l
-

13 DIV Kernel1
55 OVR Kernel1
13 DIV Kernel2
55 OVR Kernel2

Example 1 streams data through the moving-average Kernel, and then queries the binary cache file
for any exceptions.

The output for this example is shown in Listing 2, and the corresponding maxQueryExceptions

output is shown in Listing 3. On line 4 of Listing 2, we can see that the third output value is -43, when
the correct answer is 43 (using the default round-to-nearest rounding mode). Line 3 of Listing 3 shows
that an overflow (OVR) has occurred at node ID 36 (node IDs are covered in subsection 3.6).

The exceptions in a binary cache file can be used to mask the exceptions in a binary cache file from
another run using the same .max file, and this allows differences in exceptions from separate runs to
be seen more easily.

[user@machine] $ maxQueryExceptions - s -b maxdebug MyAction . out
-m RunRules / S imu la t ion / max f i l es / MovingAverageExceptionsHostSim .max
-x maxdebug MyAct ion or ig inal . out

3.6 Mapping Numeric Exceptions to the Kernel Source

The output of maxQueryExceptions displays the exceptions by node ID (see line 1 of Listing 3), which
is the ID of the operation in the Kernel graph. For anything but a small example, the node ID alone
makes it difficult to work out which operation in the Kernel produced the numeric exception.

The output option ”-n” of maxQueryExceptions lists the node IDs along with their stack trace from
the Kernel compilation, which shows the line in the source code that created the node in the graph, as
shown in Listing 4.

Line 10 shows the line from the Kernel source that created this operation. Line 6 shows the type
of operation that this node performs, which is useful when there are multiple nodes instantiated from a
single line of code. In this case, a NodeCondTriAdd operation means that MaxCompiler has created a
three-input add block for the line:

41 DFEVar sum = prev+x+next;

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 18

3 Numeric Exceptions

From this information, we conclude that it is this add operation that has overflowed the 8-bit signed
integer data storage.

W
When debugging numeric exceptions in a complex expression, breaking the expression into
multiple expressions over many lines can simplify debugging because the stack trace for each
node ID then refers to a different line in the source code.

W
There is not a one-to-one mapping between operations declared in the Java source code and
nodes in the graph output, due to transformations and optimizations performed by MaxCom-
piler. For example, breaking a=x+y+z into multiple expressions may still result in a single
tri-input adder.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 19

3 Numeric Exceptions

Listing 1: Moving average Kernel with numeric exceptions enabled (MovingAverageExceptionsKer-
nel.maxj).
1 /∗∗
2 ∗ Document: Kernel Numerics Tutorial (maxcompiler-kernel-numerics.pdf)>
3 ∗ Chapter: 3 Example: 1 Name: Moving Average Exceptions
4 ∗ MaxFile name: MovingAverageExceptions
5 ∗ Summary:
6 ∗ A kernel that calculates a moving average and tracks numeric exceptions.
7 ∗/
8 package movingaverageexceptions;
9

10 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
11 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
13
14 public class MovingAverageExceptionsKernel extends Kernel {
15 public MovingAverageExceptionsKernel(KernelParameters parameters, int N) {
16 super(parameters);
17
18 // Input
19 DFEVar x = io.input(”x” , dfeInt (8)) ;
20
21 // Data
22 DFEVar x prev = stream.offset(x, -1);
23 DFEVar x next = stream.offset(x, 1);
24
25 // Control
26 DFEVar cnt = control.count.simpleCounter(32, N);
27
28 DFEVar sel nl = cnt > 0;
29 DFEVar sel nu = cnt < N-1;
30
31 DFEVar sel m = sel nl & sel nu;
32
33 DFEVar prev = sel nl ? x prev : 0;
34 DFEVar next = sel nu ? x next : 0;
35
36 DFEVar divisor = sel m ? constant.var(dfeInt(8), 3) : 2;
37
38 // Calculation
39 debug.pushEnableNumericExceptions(true);
40
41 DFEVar sum = prev+x+next;
42 DFEVar result = sum/divisor;
43
44 debug.popEnableNumericExceptions();
45
46 // Output
47 io .output(”y” , result , result .getType());
48 }
49 }

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 20

3 Numeric Exceptions

Listing 2: Standard output for Example 1.

1 Running DFE

2 8

3 27

4 -43

5 21

6 11

7 5

8 11

9 -5

10 0

11 27

12 -43

13 21

14 11

15 5

16 11

17 0

Listing 3: Numeric exception output for Example 1.

1 # node ID exceptions kernel

2 # ------- ---------- ------

3 44 OVR MovingAverageExceptionsKernel

Listing 4: maxQueryExceptions output for Example 1.

1 [user@machine]$ maxQueryExceptions -n -b maxdebug_MyAction.out

2 -m RunRules/Simulation/maxfiles/MovingAverageExceptionsHostSim.max

3
4 node ID: 44

5 design: MovingAverageExceptionsKernel

6 type: NodeCondTriAdd

7 value: 3 +/0

8 stack trace:

9 com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar.add(DFEVar.

java:775)

10 movingaverageexceptions.MovingAverageExceptionsKernel.<init>(

MovingAverageExceptionsKernel.maxj:41)

11 movingaverageexceptions.MovingAverageExceptionsManager.main(

MovingAverageExceptionsManager.maxj:18)

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 21

3 Numeric Exceptions

3.7 Conditionally Enabling Numeric Exceptions

You can suppress numeric exceptions for particular operations in the Kernel based on a run-time con-
dition. A Boolean stream is used to enable (1) or disable (0) numeric exceptions. This can help get
meaningful exception data out of a design when various parts of the Kernel are active at different times.

The methods pushNumericExceptionCondition and popNumericExceptionCondition de-
limit the section of the Kernel where numeric exceptions are to be enabled when the Boolean stream
argument condition to pushNumericExceptionCondition is true:

void debug.pushNumericExceptionCondition(DFEVar condition)
void debug.popNumericExceptionCondition()

These calls to push and pop the conditional enabling of numeric exceptions for sections of the Kernel
behave as a stack during compilation, with each condition stream being ANDed with the previously
pushed streams for the subsequent section of code, up to the corresponding pop.

Example 2 shows conditional numeric exceptions in use. The full Kernel source is shown in Listing 5.
The Kernel takes two 8-bit signed integer streams as input either adds or subtracts them, according

to the following pseudo-code:

if ((x >= 0 and y <= 0) or (x < 0 and y > 0))
result = x + y

else
result = x - y

In a streaming implementation, both the add and the subtract are performed every Kernel tick and
the result selected from on or the other depending on the condition. The operator for which the result
is discarded, however, can still produce a numeric exception, which we want to suppress as it has no
bearing on the correctness of our output.

We first enable numeric exceptions:

24 debug.pushEnableNumericExceptions(true);

We then calculate the condition for whether we want to perform an add or a subtract:

26 DFEVar doAdd = ((x >= 0) & (y <= 0)) | ((x < 0) & (y > 0));

Numeric exceptions are then conditionally disabled for the inactive operator using the condition
stream:

28 debug.pushNumericExceptionCondition(doAdd);
29 DFEVar add=x+y;
30 debug.popNumericExceptionCondition();
31 debug.pushNumericExceptionCondition(˜doAdd);
32 DFEVar sub=x-y;
33 debug.popNumericExceptionCondition();

Finally, the same condition is used to select the output of the add or the subtract:

35 DFEVar result = doAdd ? add : sub;
36
37 debug.popEnableNumericExceptions();

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 22

3 Numeric Exceptions

100

10

res

x

+

y

-

≥0 ≤0

&

or

<0 >0

&

mux
01

not

100

-66 10

0

90

1

0

90

Exceptions
Disabled

Exceptions
Enabled

(a) Tick 1

100

20

res

x

+

y

-

≥0 ≤0

&

or

<0 >0

&

mux
01

not

100

20 -76

1

-80

0

1

-80

Exceptions
Disabled

Exceptions
Enabled

(b) Tick 2

Figure 5: 2 Kernel ticks of Example 2 showing conditional numeric exceptions being used for 8-bit
signed integer data.

W
Conditionally disabling numeric exceptions in the Kernel stops the exceptions from being
recorded at certain times: this is different to simply masking the display of numeric exceptions
in the CPU code using max show numeric ex masked.

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 23

3 Numeric Exceptions

Listing 5: Moving average Kernel showing condtional numeric exceptions (ConditionalExceptionsKer-
nel.maxj).
1 /∗∗
2 ∗ Document: Kernel Numerics Tutorial (maxcompiler-kernel-numerics.pdf)>
3 ∗ Chapter: 3 Example: 2 Name: Conditional Exceptions
4 ∗ MaxFile name: ConditionalExceptions
5 ∗ Summary:
6 ∗ A kernel that calculates the element-wise difference between the
7 ∗ modulus of the two inputs. Results can be both positive and negative.
8 ∗/
9 package conditionalexceptions;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
14
15 public class ConditionalExceptionsKernel extends Kernel {
16 public ConditionalExceptionsKernel(KernelParameters parameters, int N) {
17 super(parameters);
18
19 // Input
20 DFEVar x = io.input(”x” , dfeInt (8)) ;
21 DFEVar y = io.input(”y” , dfeInt (8)) ;
22
23 // Calculation
24 debug.pushEnableNumericExceptions(true);
25
26 DFEVar doAdd = ((x >= 0) & (y <= 0)) | ((x < 0) & (y > 0));
27
28 debug.pushNumericExceptionCondition(doAdd);
29 DFEVar add=x+y;
30 debug.popNumericExceptionCondition();
31 debug.pushNumericExceptionCondition(˜doAdd);
32 DFEVar sub=x-y;
33 debug.popNumericExceptionCondition();
34
35 DFEVar result = doAdd ? add : sub;
36
37 debug.popEnableNumericExceptions();
38
39 // Output
40 io .output(” result ” , result , result .getType());
41 }
42 }

Version 2014.1 MaxCompiler: Kernel Numerics Tutorial 24

	Contents
	Preface
	1 Floating-Point Data Types
	1.1 Floating Point Overview
	1.1.1 Range of a Floating-Point Number
	1.1.2 Special Values
	1.1.3 Exponent Bias

	1.2 MaxCompiler IEEE Floating-Point Compliance
	1.3 Allowable Mantissa and Exponent Sizes
	1.4 Floating-Point Utilities
	1.5 Casting Floating-Point Streams

	2 Fixed-Point Data Types
	2.1 Fixed Point Overview
	2.2 Offset Fixed Point
	2.3 Inferring Offsets via Maximum Values
	2.4 Rounding Modes

	3 Numeric Exceptions
	3.1 Floating-Point Exceptions
	3.2 Fixed-Point Exceptions
	3.3 Numeric Exception Behavior
	3.4 Enabling Numeric Exceptions
	3.5 Reading Numeric Exception Data
	3.6 Mapping Numeric Exceptions to the Kernel Source
	3.7 Conditionally Enabling Numeric Exceptions

