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Preface

Purpose of this document

This document covers features of MaxCompiler that allow you to implement loops and cyclic data flow
within a Kernel, including transformation of software loops to pipelined implementations, and optimiza-
tion of pipelined loops using loop unrolling, input transposition and loop tiling. These are key methods
for exploiting application parallelism in MaxCompiler designs.

Each section introduces a new set of features and goes through examples showing their use, where
appropriate.

Document Conventions

When important concepts are introduced for the first time, they appear in bold. Italics are used for
emphasis. Directories and commands are displayed in typewriter font. Variable and function names
are also displayed in typewriter font.

Java methods and classes are shown using the following format:

void optimization.pushPipeliningFactor(double pipelining)

C function prototypes are similar:

void RowSumLoopTile(
int16 t param CFACTOR,
int64 t param length,
const float ∗instream input,
float ∗outstream output);

Actual Java usage is shown without italics:

carried sum <== stream.offset(new sum, -X);

C usage is similarly without italics:

sum[x] += input[count];

Sections of code taken from the source of the examples appear with a border and line numbers:

35 tester .setKernelCycles(X ∗ Y);
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2 The Implicit Outer Loop

1 Introduction

The process of moving from a software implementation to a dataflow Kernel is often driven by the
application’s loop structure. The goal of this tutorial is to explain the various ways that loops in a
software algorithm can be implemented as streaming, pipelined hardware.

We start with some very simple loops to see how they can be implemented in a Kernel and then turn
to some more complex examples which include conditional loops and data dependency between loop
iterations. We will cover a number of important techniques including loop unrolling, loop predication,
input transposition and loop tiling, all of which can be applied to real-world Kernel implementations to
great effect.

2 The Implicit Outer Loop

Consider the following software loop:

for (int count=0; ; count += 1) {

B[count] = A[count] + 1;

}

When we implement this as a dataflow Kernel, the input array A will be streamed into the DFE (for
example from the CPU memory to the DFE). Similarly, the output array B will be streamed out from the
dataflow Kernel to the CPU.

Listing 1 shows the Kernel implementation for this trivial example. Looking at the body of the Kernel,
we can see that there is no loop:

20 // Input
21 DFEVar input = io.input(” input” , dfeUInt(32)) ;
22
23 DFEVar result = input + 1;
24
25 // Output
26 io .output(”output” , result , dfeUInt(32)) ;

The loop in the original software loop is a mechanism for addressing the data in the array. In a
dataflow implementation, the data is streamed into the Kernel from the Manager, so there is no need
for a loop in the Kernel itself: the loop is implicit in the stream.

The Manager controls the streaming of the data from its source, which can be from the CPU directly,
from the LMem on the DFE or via MaxRing from another DFE. In this example, the data access is driven
by the CPU code which triggers the copying of the A array to the DFE, and the copying of the B array
back.

Version 2014.1 Acceleration Tutorial: Loops and Pipelining 3



3 A Loop Counter

Listing 1: A trivial streaming Kernel (IncrementKernel.maxj).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 1 Name: Increment
4 ∗ MaxFile name: Increment
5 ∗ Summary:
6 ∗ Kernel design that increments the input stream and sends the
7 ∗ result to the output stream.
8 ∗/
9 package increment;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
14
15 class IncrementKernel extends Kernel {
16
17 IncrementKernel(KernelParameters parameters) {
18 super(parameters);
19
20 // Input
21 DFEVar input = io.input(” input” , dfeUInt(32)) ;
22
23 DFEVar result = input + 1;
24
25 // Output
26 io .output(”output” , result , dfeUInt(32)) ;
27 }
28 }

3 A Loop Counter

In this similar example, we need a variable count to track the loop control variable:

for (int count=0; ; count += 1) {

output[count] = input[count] + count;

}

Listing 2 shows an implementation for this example. We still have no loop in the body of the Kernel,
but we have added a counter to provide an iteration number for each data value presented on this input:

19 DFEVar input = io.input(” input” , dfeUInt(32)) ;
20
21 DFEVar counter = control.count.simpleCounter(32);
22
23 DFEVar result = input + counter;
24
25 // Output
26 io .output(”output” , result , dfeUInt(32)) ;
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4 A Loop Nest

Listing 2: A Kernel with a counter (SimpleCounterLoopKernel.maxj).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 2 Name: Simple counter
4 ∗ MaxFile name: SimpleCounterLoop
5 ∗ Summary:
6 ∗ A simple kernel that adds the value from a counter to a stream.
7 ∗/
8 package simplecounterloop;
9

10 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
11 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
13
14 class SimpleCounterLoopKernel extends Kernel {
15 SimpleCounterLoopKernel(KernelParameters params) {
16 super(params);
17
18 // Input
19 DFEVar input = io.input(” input” , dfeUInt(32)) ;
20
21 DFEVar counter = control.count.simpleCounter(32);
22
23 DFEVar result = input + counter;
24
25 // Output
26 io .output(”output” , result , dfeUInt(32)) ;
27 }
28 }

4 A Loop Nest

Consider the following software loop nest:

int count = 0;

for (int y=0; y<Y; y++) {

for (int x=0; x<X; x++) {

output[count] = input[count]+(y*100)+x;

count += 1;

}

}

Listing 3 shows a Kernel that implements this design.
The body of the Kernel now includes a counter chain to provide a pair of indices for each data value

presented on this input:

25 // Set up counters for 2D loop
26 CounterChain chain = control.count.makeCounterChain();
27 DFEVar y = chain.addCounter(Y, 1).cast(dfeUInt(32));
28 DFEVar x = chain.addCounter(X, 1).cast(dfeUInt(32));
29
30 DFEVar result = input + (y ∗ 100) + x;

The loop body is executed for every input value. The count variable in the original software source
is implicit in the stream.
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5 Data Dependency

Listing 3: A Kernel with counters to track a 2D loop nest (Simple2dCounterKernel.maxj).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 3 Name: Simple two-dimensional counter
4 ∗ MaxFile name: Simple2dCounter
5 ∗ Summary:
6 ∗ Kernel design that implements a nested loop computation using a counter
7 ∗ chain to provide a pair of indices for each data value presented on the
8 ∗ input .
9 ∗/

10 package simple2dcounter;
11
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.CounterChain;
15 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
16
17 class Simple2dCounterKernel extends Kernel {
18
19 Simple2dCounterKernel(KernelParameters params, int X, int Y) {
20 super(params);
21
22 // Input
23 DFEVar input = io.input(” input” , dfeUInt(32)) ;
24
25 // Set up counters for 2D loop
26 CounterChain chain = control.count.makeCounterChain();
27 DFEVar y = chain.addCounter(Y, 1).cast(dfeUInt(32));
28 DFEVar x = chain.addCounter(X, 1).cast(dfeUInt(32));
29
30 DFEVar result = input + (y ∗ 100) + x;
31
32 // Output
33 io .output(”output” , result , dfeUInt(32)) ;
34 }
35 }

5 Data Dependency

Consider the following software loop nest, which implements a Newton-Raphson reciprocal approxima-
tion for 0.5 < d < 1.0, where four iterations are enough for 32-bit accuracy:

for (count=0; ; count += 1) {

float d = input[count];

float v = 2.9142 - 2*d;

for (iteration=0; iteration < 4; iteration += 1) {

v = v * (2.0 - d * v);

}

output[count] = v;

}

In the trivial loop examples we have looked at so far, each iteration of the loop relied only on the
values in the incoming stream and the loop counters. In this loop, however, each iteration of the loop
depends on the value of v calculated in the previous iteration.
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7 Quantifying pipeline parallelism

Listing 4: Computing a reciprocal using the Newton-Raphson method (ReciprocalKernel.maxj).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 4 Name: Reciprocal
4 ∗ MaxFile name: Reciprocal
5 ∗ Summary:
6 ∗ Kernel design that implements a reciprocal using the Newton-Raphson
7 ∗ method.
8 ∗/
9 package reciprocal;

10
11 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
14
15 class ReciprocalKernel extends Kernel {
16
17 ReciprocalKernel(KernelParameters params) {
18 super(params);
19
20 // Input
21 DFEVar d = io.input(”d”, dfeFloat(8, 24));
22
23 DFEVar v = 2.9142 - 2.0∗d;
24
25 for ( int iteration = 0; iteration < 4; iteration += 1) {
26 v = v∗(2.0 - d∗v);
27 }
28
29 // Output
30 io .output(”output” , v, dfeFloat(8, 24));
31 }
32 }

6 Loop Unrolling

In this case, we can unroll the inner loop and create four copies of the hardware that constitutes its
body. This creates a pipeline where each stage of the pipeline calculates a value of v based on the
value of v from the previous stage of the pipeline. The pipeline still produces one result per tick, but
it takes a number of ticks for the result for a given input to propagate to the output. This is called the
latency of the pipeline.

Listing 4 shows a Kernel implementation of the unrolled loop. To unroll the loop we use a Java loop
to generate the data path at construction time:

25 for ( int iteration = 0; iteration < 4; iteration += 1) {
26 v = v∗(2.0 - d∗v);
27 }

7 Quantifying pipeline parallelism

The resultant Kernel graph is shown in Figure 1. Notice that there is no control element to this graph:
the implementation is purely data path. The values of v passed from stage to stage are labeled in the
graph.

This design uses replicated hardware (for each of the four loop iterations) in order to be able to de-
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7 Quantifying pipeline parallelism

liver one result per tick. Since each iteration itself involves two deeply-pipelined floating-point multiplies
(about 13 ticks each) and one subtract (about 12 ticks each), the total amount of parallelism is quite
large — around (2× 13 + 12)× 4 + 2 = 154-fold. Because there is a dependency between all of the
operations, this is also the pipeline depth of the graph.

In the case of acyclic dataflow graphs like this one, the depth of the pipeline is a concern only from
a resource utilization point of view, provided the number of values to process is much greater than the
pipeline latency. The depth of the pipeline means that the first result has a latency of a number of ticks,
but even a latency of thousands of ticks has no significance in most streaming applications.

In section 11 we consider cyclic graphs, where the pipeline latency becomes a correctness concern.
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Figure 1: Kernel graph for an unrolled Newton-Raphson reciprocal approximation
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8 Predicating a While Loop

8 Predicating a While Loop

Consider now a loop with a while loop inside, such as this example, which finds the rightmost occurrence
of the 10-bit binary sequence 1010010001 (= 0x291) in a 32-bit input, returning -1 if the pattern is not
found:

for (count=0; ; count += 1) {

int d = input[count];

int result = 0;

int found = 0;

while (d != 0 && result < 22 &! found) {

if ((d & 0x3FF) != 0x291)

result = result + 1;

else

found = 1;

d = d >> 1;

}

result = found ? result : -1;

output[count] = result;

}

In software, we want to keep the number of iterations required to a minimum, so we regularly use
while loops or breaks in for loops to jump out of a loop. In our heavily-pipelined dataflow environment,
such dynamic control flow would break our regular pipelines, so we must re-implement such loops in
another way.

In this case we know the while loop can execute at most 32 − 10 = 22 times, so we can avoid
dynamic control flow by replacing it with a for loop. The difficulty is to extract the correct final value for
the result variable. Here is one solution, presented as a software implementation:

for (count=0; ; count += 1) {

int d = input[count];

int result = 0;

int found = 0;

for (int i = 0; i < 22; ++i) {

int condition = (d & 0x3FF) == 0x291;

found = condition ? 1 : found;

result = found ? result : result + 1;

d = d >> 1;

}

result = found ? result : -1;

output[count] = result;

}

The Boolean variable found is set true the first time condition is true. We use this to predicate
subsequent updates to result. The inner loop now always executes for 22 iterations. We can also
remove the test for d being 0 as we cannot shorten the number of iterations. At the end of the loop, we
can set the output to -1 if the pattern has not been found in d.

We can use this idea to generate hardware by unrolling the loop as we did in section 6, as shown
in Listing 5.
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8 Predicating a While Loop

Listing 5: Class for the bit-pattern search Kernel (BitsearchKernel.maxj).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 5 Name: Bitsearch
4 ∗ MaxFile name: Bitsearch
5 ∗ Summary:
6 ∗ Kernel design that which finds the rightmost occurrence of the 10-bit
7 ∗ binary sequence 1010010001 (= 0x291) in a 32-bit input, returning -1 if
8 ∗ the pattern is not found.
9 ∗/

10 package bitsearch;
11
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
15
16 class BitsearchKernel extends Kernel {
17
18 BitsearchKernel(KernelParameters parameters) {
19 super(parameters);
20
21 // Input
22 DFEVar d = io.input(”d”, dfeUInt(32)) ;
23
24 DFEVar result = constant.var(dfeInt(5), 0);
25 DFEVar found = constant.var(dfeBool(), 0);
26
27 for ( int i = 0; i < 22; ++i) {
28 DFEVar condition = ((d & 0x3FF) === 0x291);
29 found = condition ? 1 : found;
30 result = found ? result : result + 1;
31 d = d >> 1;
32 }
33 result = found ? result : -1;
34 // Output
35 io .output(”output” , result .cast( dfeInt (32)) , dfeInt (32)) ;
36 }
37 }

Figure 2 shows the Kernel graph for this implementation. In the body of the Kernel, we generate 22
copies of the body of the loop, with the variable finished passed through the pipeline from stage to
stage, along with the result result:

24 DFEVar result = constant.var(dfeInt(5), 0);
25 DFEVar found = constant.var(dfeBool(), 0);
26
27 for ( int i = 0; i < 22; ++i) {
28 DFEVar condition = ((d & 0x3FF) === 0x291);
29 found = condition ? 1 : found;
30 result = found ? result : result + 1;
31 d = d >> 1;
32 }
33 result = found ? result : -1;

Notice that in this case, we are not just replicating the data path within the loop, but also all of the
control logic for the predication.

A for loop with a break can be treated similarly to a while loop.

Version 2014.1 Acceleration Tutorial: Loops and Pipelining 10



9 Loop Unrolling and Logic Utilization

9 Loop Unrolling and Logic Utilization

Whilst loop unrolling achieves our throughput goal of one datum per tick, it does so at the expense
of logic utilization, where the loop body logic is replicated for every iteration. For a simple loop which
does not need predication, the replicated pipeline stages are working every tick, giving us full pipeline
utilization, but with a predicated loop, each stage may not be utilized fully, or indeed very frequently at
all.

In the original software implementation, the loop was executed the number of times required for
each datum; in the unrolled implementation, we need to unroll the loop to the maximum number of
iterations. If the calculation for a datum passing through the unrolled logic is actually complete before it
has reached the end of the pipeline, it still passes through all of the remaining stages but no computation
is performed on that datum in these stages, meaning that they are not doing anything useful for that
tick.

The percentage of the time that the pipeline stages are utilized depends on the data itself. If the data
infrequently uses some of the later pipeline stages, then the implementation can often be re-factored to
be partially unrolled, such that the average throughput for a real data set is one result per stream tick.
Partial loop unrolling introduces cyclic data flow, which we will cover in the next section.

This can result in (often significantly) improved logic utilization and increased overall throughput on
larger designs (for example with multiple pipelines per DFE). It is important to use realistic data sets
when making trade-offs between logic utilization and performance as an unrepresentative set of data
can lead to a sub-optimal solution.
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9 Loop Unrolling and Logic Utilization
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10 Cyclic Data Flow

10 Cyclic Data Flow

All the loops we have seen so far have resulted in acyclic data-flow graphs i.e. graphs where the data
flows in one direction, from inputs to outputs, with no loops going back up the graph.

A cycle in the data-flow graph arises from a dependence from one iteration to the next: a loop-
carried dependence. Consider this software example:

int count = 0;

for (int y=0; ; y += 1) {

sum[y] = 0.0;

for (int x=0; x<X; x += 1) {

sum[y] = sum[y] + input[count]

count += 1;

}

output[y] = sum[y];

}

This accepts as its input an X × Y array and computes the sum of each row. Figure 3 shows
the array with its dimensions, the direction of the loop variables and the coordinates of the corners for
clarity.

The array data is streamed into the Kernel graph row-by-row. We aim to produce, as output, one
sum value for each row.

The inner loop has a carried dependence due to sum[y]. One option might be to remove the cycle
by fully-unrolling the innermost loop (as described in section 6). However, if X is large or the loop
body complex, this creates a prohibitively large amount of logic: loop unrolling worked well for the loop-
carried dependence in the Newton-Raphson reciprocal iteration in section 6 since just four iterations
were sufficient.

We would like to build a data path that passes the sum[y] back into the adder, creating a cycle
in the graph. A Kernel graph showing how we might consider implementing this design is shown in
Figure 4. The backward edge that we want to create is shown as a dotted red line.

The code intended to generate this design is shown in Listing 6. We use a simple counter x to keep
track of the current position in the row:

31 DFEVar x = control.count.simpleCounter(MathUtils.bitsToRepresent(X), X);

We then create a variable carriedSum that carries the value from the previous iteration:

35 DFEVar carriedSum = scalarType.newInstance(this);

carriedSum is created using newInstance(this), which makes a source-less stream: we will
connect its source shortly.

The loop consists of a head, a body and a foot. The head has a multiplexer that selects the initial
value 0.0 on iteration 0, i.e. at the start of each row, then takes the carried value for subsequent
iterations:

36 DFEVar sum = x === 0 ? 0.0 : carriedSum;

Version 2014.1 Acceleration Tutorial: Loops and Pipelining 13



10 Cyclic Data Flow
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Figure 3: Diagram of an input array for the row-sum application; each cell contains a number, and the
desired output is a sequence of numbers, each being the sum of the numbers in one row of the array

The body computes the new value of the sum:

39 DFEVar newSum = input + sum;

The foot is where we use carriedSum <== X to connect the new sum back to the head. <== is the
connect operator, and x<==y is equivalent to x.connect(y). An offset (stream.offset(newSum,
-1)) refers to the value of newSum from the previous iteration:

42 carriedSum <== stream.offset(newSum, -1); // scheduling fails

Finally, we would like the sum for each row to be written into the output stream. We include a control
parameter here, which enables the output stream just at the end of each row:

48 io .output(”output” , newSum, scalarType, x === (X - 1));

However, when we build this design, the Kernel Compiler complains that the design cannot be
scheduled:

Thu 13:09: ERROR: Found illegal loop with a latency of 12 (>0)!
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10 Cyclic Data Flow
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10 Cyclic Data Flow

Listing 6: Class for the row-wise summation Kernel (RowSumIncorrectKernel.maxj).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 6 Name: Rowsum incorrect
4 ∗ MaxFile name: RowSumIncorrect
5 ∗ Summary:
6 ∗ Incorrect kernel design for the row sum problem.
7 ∗ THIS EXAMPLE DOES NOT BUILD!
8 ∗/
9 package rowsumincorrect;

10
11 import com.maxeler.maxcompiler.v0.utils.MathUtils;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;
15 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
16
17 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18 ∗ IMPORTANT: THIS EXAMPLE DOES NOT BUILD!
19 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
20 class RowSumIncorrectKernel extends Kernel {
21
22 final DFEType scalarType = dfeFloat(8, 24);
23
24 RowSumIncorrectKernel(KernelParameters parameters, int X) {
25 super(parameters);
26
27 // Input
28 DFEVar input = io.input(” input” , scalarType);
29
30 // Set up counter
31 DFEVar x = control.count.simpleCounter(MathUtils.bitsToRepresent(X), X);
32
33 // At the head of the loop, we select whether to take the initial value
34 // or the value that is being carried around the data-flow cycle
35 DFEVar carriedSum = scalarType.newInstance(this);
36 DFEVar sum = x === 0 ? 0.0 : carriedSum;
37
38 // The loop body itself
39 DFEVar newSum = input + sum;
40
41 // At the foot of the loop, we add the backward edge
42 carriedSum <== stream.offset(newSum, -1); // scheduling fails
43
44 // Changing the line above to this would build but produce incorrect results .
45 // carried sum <== stream.offset(new sum, -13);
46
47 // We have a controlled output to deliver the sum at the end of each row
48 io .output(”output” , newSum, scalarType, x === (X - 1));
49 }
50 }
51 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
52 ∗ IMPORTANT: THIS EXAMPLE DOES NOT BUILD!
53 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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11 Pipeline Depth

Understanding the scheduling failure requires attention to details we have previously ignored. MaxCom-
piler creates deep pipelines to get maximum performance, so each of the operations can take multiple
clock ticks to produce an output. Previous examples have required only acyclic Kernel graphs, for which
MaxCompiler can organize the flow of input data automatically to each operating unit at the correct time.
With cyclic dataflow, organizing the data is non-obvious and becomes the designer’s responsibility to a
greater extent. When deciding how far downstream to tap the pipeline, the designer must consider not
only the latency of the intervening stages but the semantic implications.

In our example, the floating-point adder is a multi-stage pipeline. The result is available 12 ticks
after the operation starts, and the multiplexer before the adder has a pipeline depth of 1, so the total
depth for our pipeline is 13. Setting the stream offset to -13 or a more negative number would allow
MaxCompiler to schedule the design successfully. That is, changing the line:

carriedSum <== stream.offset(newSum, -1);

in Listing 6 to:

carriedSum <== stream.offset(newSum, -13);

prevents the error message and allows the build to proceed.
Although modifying the stream offset in this way addresses the issue of latency, two problems

remain:

• Knowing the pipeline depth for this particular example is no help in general, because it will differ in
other applications depending on their particular component latencies, which are not guaranteed.

• More significantly, this change does not give the correct mathematical result.

With regard to the mathematical result, the number arriving on each tick is not added to the cumula-
tive sum of all preceding numbers in the row as it should be, but to the sum of a combination of leftover
pipeline contents and any numbers having arrived at least 13 ticks earlier, which produces incorrect
results. The adder needs to read a new input only when there is a valid cumulative partial sum coming
from the stream offset, which is 13 ticks later. One way to do this is by adding an extra counter to control
the input and output, as explained in section 13.

As for the problem of creating a valid, minimal offset, we can let MaxCompiler choose a sufficient
loop offset automatically instead of attempting to estimate and code it manually.
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12 Autoloop Offsets

An Autoloop Offset is a feature of MaxCompiler that automatically calculates the lowest valid offset for
a cycle in the graph.

12.1 AutoLoop Offset Initialization

To let MaxCompiler choose a stream offset automatically, we must declare a variable of type OffsetExpr
to plug into the stream.offset() method, instead of using a hard-coded constant. Rather than initializing
the variable with a known value, we initialize it using one of these methods:

Stream.OffsetExpr makeOffsetAutoLoop(String name)

Stream.OffsetExpr makeOffsetAutoLoop(String name, int min size, int max size)

Stream.OffsetExpr makeOffsetAutoLoop(String name, OffsetExpr min size, OffsetExpr max size)

The name parameter uniquely identifies the offset expression within the Kernel name space. The
optional minimum and maximum size parameters constrain the value to a preferred range.

These methods instruct MaxCompiler to infer a value for the variable based on how it is used
elsewhere in the code. If the variable is used anywhere in a stream.offset() method to define the
offset of a stream, MaxCompiler tries to infer the minimum positive value for it that allows scheduling
to succeed. If no such value exists, or if none exists within the range specified by the minimum and
maximum parameters, scheduling fails.

W MaxCompiler computes the smallest possible offset value by default, so specifying the minimum
and maximum values is useful only for expressing application-specific scheduling constraints.

12.2 AutoLoop Offset Usage

Normally it is best to use a separate AutoLoop offset for each stream that needs one. If an AutoLoop
offset variable is reused, MaxCompiler has to infer a value constrained by every usage simultaneously:
scheduling may fail unless one size fits all cases, where it might have succeeded if a variety of offsets
had been allowed. Unnecessary minimum and maximum constraints should be avoided for the same
reason.

The value inferred for the AutoLoop offset is always positive, whereas the stream offset for any
backward edge in a graph is negative. The parameter passed to the stream.offset() method in this case
is most typically the negation of an AutoLoop offset variable rather than the variable itself.

W It is easy to forget to negate the Autoloop offset value when passing it to a stream offset:
verifying this should be the first step to troubleshoot scheduling issues.
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12.3 AutoLoop Offset Evaluation

It is often necessary to use an AutoLoop offset value in calculations or comparisons. Expressions of
the form x.getDFEVar(. . . ) with an AutoLoop offset x and one of the following methods are helpful
for this purpose.

DFEVar Stream.OffsetExpr.getDFEVar(KernelLib design)

DFEVar Stream.OffsetExpr.getDFEVar(KernelLib design, DFEType type)

The type parameter is optional if the AutoLoop offset has been defined with a minimum and maximum
size, and required if it has not. When the type parameter is given, it must be of sufficient bit width to
represent the offset. For example, this code takes an AutoLoop offset someAutoLoop to an unsigned
eight bit variable and calls it someDFEVar:

DFEVar someDFEVar = someAutoLoop.getDFEVar(this,dfeUInt(8));

CPU applications or Manager code for calculating mode parameters may also need to have the
value of an AutoLoop offset as an integer type, for example to determine the number of Kernel ticks to
run for.

12.4 AutoLoop Offsets and Stream Offset Parameters

Offset expressions containing AutoLoop offsets may also contain variable stream offset parameters
that are created by the stream.makeOffsetParam() method and assigned by the CPU application,
as described in Section 5.3 of the MaxCompiler Kernel Tutorial. In an offset expression such as a+ n,
where a is an AutoLoop offset and n is an offset parameter, the value MaxCompiler infers for a depends
on the value the CPU application assigns to n. A larger value for n enables a smaller value for a.

If an AutoLoop offset referenced in a call to max get offset auto loop size() depends on a variable
stream offset parameter in this sense, then the CPU application must set it before calling the function.
Enforcement of this condition is not guaranteed by MaxCompiler, but a violation is likely to cause an
incorrect return value.
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Figure 5: Kernel graph for a multi-tick implementation of the row sum problem

13 Multi-tick Implementation

AutoLoop offsets allow us to revisit the Row Sum application example and develop a correct solution.
Figure 5 shows the Kernel graph for this design. The loop coming out of the stream offset is shown as
a heavy red line. The code for the Kernel is shown in Listing 7.

In this example, we have added an extra counter, chained to x. We set this counter to count up to a
value loopLength that is initialized by MaxCompiler to be large enough to schedule the pipeline:

28 OffsetExpr loopLength = stream.makeOffsetAutoLoop(”loopLength”);
29 DFEVar loopLengthVal = loopLength.getDFEVar(this, dfeUInt(8));
30 CounterChain chain = control.count.makeCounterChain();
31 DFEVar x = chain.addCounter(X, 1);
32 DFEVar loopCounter = chain.addCounter(loopLengthVal, 1);

We only read a new input from the input stream once every loopLength ticks:

35 DFEVar input = io.input(” input” , scalarType, loopCounter === (loopLengthVal-1));
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Listing 7: Kernel for a multi-tick implementation of the row sum problem using AutoLoop offsets (Au-
toRowSumKernel.maxj).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 7 Name: Automatic row-sum
4 ∗ MaxFile name: AutoRowSum
5 ∗ Summary:
6 ∗ Kernel design for a multi -cycle implementation of the row sum problem
7 ∗ using auto loop offsets .
8 ∗/
9

10 package autorowsum;
11
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.CounterChain;
15 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Stream.OffsetExpr;
16 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;
17 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
18
19 class AutoRowSumKernel extends Kernel {
20
21 // final DFEType scalarType = dfeUInt(32);
22 final DFEType scalarType = dfeFloat(8, 24);
23
24 AutoRowSumKernel(KernelParameters parameters, int X) {
25 super(parameters);
26
27 // Set up counters for 2D loop
28 OffsetExpr loopLength = stream.makeOffsetAutoLoop(”loopLength”);
29 DFEVar loopLengthVal = loopLength.getDFEVar(this, dfeUInt(8));
30 CounterChain chain = control.count.makeCounterChain();
31 DFEVar x = chain.addCounter(X, 1);
32 DFEVar loopCounter = chain.addCounter(loopLengthVal, 1);
33
34 // Input
35 DFEVar input = io.input(” input” , scalarType, loopCounter === (loopLengthVal-1));
36
37 // The loop body itself
38 // At the head of the loop, we select whether to take the initial value,
39 // or the value that is being carried around the loop cycle
40 DFEVar carriedSum = scalarType.newInstance(this); // sourceless stream
41 DFEVar sum = x === 0 ? 0.0 : carriedSum;
42
43 DFEVar newSum = input + sum;
44
45 DFEVar newSumOffset = stream.offset(newSum, -loopLength);
46
47 // At the foot of the loop, we add the backward edge
48 carriedSum <== newSumOffset;
49
50 // We have a controlled output to deliver the sum at the end of each row
51 io .output(”output” , newSum, scalarType, x === (X - 1) & loopCounter === (loopLengthVal-1));
52 }
53 }

We connect a backward edge to the input of the adder using a stream offset of loopLength:

38 // At the head of the loop, we select whether to take the initial value,
39 // or the value that is being carried around the loop cycle
40 DFEVar carriedSum = scalarType.newInstance(this); // sourceless stream
41 DFEVar sum = x === 0 ? 0.0 : carriedSum;
42
43 DFEVar newSum = input + sum;
44
45 DFEVar newSumOffset = stream.offset(newSum, -loopLength);
46
47 // At the foot of the loop, we add the backward edge
48 carriedSum <== newSumOffset;
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13 Multi-tick Implementation

Finally, the output is only enabled at the end of every row when the output of the adder is valid:

51 io .output(”output” , newSum, scalarType, x === (X - 1) & loopCounter === (loopLengthVal-1));

We do not need to be precise about the actual size of our offset. Correct operation depends only
on outputting the same offset value as we use to loop back to the input of our adder. Clearly, a long
pipeline delay uses extra resources, but if there were a need to increase it (by passing a minimum value
to the makeOffsetAutoLoop() method), doing so would not break the design.

Note that the number of ticks that the Kernel is run for must be multiplied by loopLength. In this
example, it is done in the default mode of the Manager:

37 InterfaceParam length = ei.addParam(”length”, CPUTypes.INT);
38 InterfaceParam lengthInBytes = length ∗ CPUTypes.FLOAT.sizeInBytes();
39 InterfaceParam loopLength = ei.getAutoLoopOffset(”AutoRowSumKernel”, ”loopLength”);
40 ei . ignoreAutoLoopOffset(”AutoRowSumKernel”, ”loopLength”);
41
42 ei .setTicks(”AutoRowSumKernel”, length ∗ loopLength);

This uses the method mode.getAutoLoopOffset, which gets the value of the auto loop offset
and adds a parameter to the mode. In this example, the CPU code does not need to know the value
of the offset, so the method mode.ignoreAutoLoopOffset is used to prevent the offset parameter
appearing in the SLiC API for this .max file.

We now have a multi-tick implementation of the row-sum problem, but we have taken a big perfor-
mance hit: we can now only do an add every loopLength ticks.

Figure 6 shows how the adder pipeline looks over time. To simplify the explanation, the multiplexer-
adder pipeline depth is reduced to 4:

• In the initial state (t=0), the pipeline is uninitialized, so we represent that with question marks.

• In the next tick,(t=1), we put the constant 0 and the first element from the first row, (0,0) into
the adder pipeline.

• In the third, (t=2), fourth, (t=3), and fifth (t=4) ticks, the addition for the constant 0.0 and co-
ordinate (1,0) propagate through the pipeline. Rather than show a partial sum for each stage
of the adder pipeline, we represent these partial sums with the original arguments propagating
through the pipeline. We need to pause the input stream until we can read in another value when
the output from the adder is valid.

• In the sixth tick, (t=5), the result of our first add, sum is now available, so we can read in a new
value from the input stream, element (1,0), and add it to this result.

• This loop continues, doing a new add every 4 ticks, until we hit the end of the line and we can
output a result.

From the gray stages of the adder pipeline in the diagram, it is clear that the adder pipeline is not
used for any useful calculation three quarters of the time. In our real implementation with a pipeline
depth of 13 for the adder and multiplexer, things are even worse, with the adder only doing something
useful 1 in every 13 ticks. To get the maximum performance out of the dataflow engine, we need to put
a new set of operands into the adder pipeline every tick so that we can get a throughput of one (useful)
add per tick.
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Listing 8: CPU code for the row sum Kernel (AutoRowSumCpuCode.c).
9 ∗/

10 #include <stdlib.h>
11 #include <stdint.h>
12
13 #include <MaxSLiCInterface.h>
14 #include ”Maxfiles.h”
15
16 const int X = AutoRowSum X; // image row length (number of columns)
17 const int Y = 64; // image column length (number of rows)
18
19 void generateInputData(float ∗input)
20 {
21 for ( int y = 0; y < Y; ++y)
22 for ( int x = 0; x < X; ++x)
23 input [y ∗ X + x] = (y + x) ;
24 }
25
26 void AutoRowSumCPU(float ∗input, float ∗output)
27 {
28 for ( int y = 0; y < Y; ++y) {
29 output[y] = 0.0;
30 for ( int x = 0; x < X; ++x)
31 output[y] += input[y ∗ X + x ];
32 }
33 }
34
35 int check(float ∗output, float ∗expected)
36 {
37 int status = 0;
38 for ( int i = 0; i < Y; i++) {
39 if (output[ i ] != expected[i ]) {
40 fprintf ( stderr , ”[%d] error , output: %f != expected: %f\n”,
41 i , output[ i ], expected[i ]) ;
42 status = 1;
43 }
44 }
45 return status;
46 }
47
48 int main()
49 {
50 const int size = X ∗ Y;
51 int sizeBytes = size ∗ sizeof(float ) ;
52 float ∗input = malloc(sizeBytes);
53 float ∗output = malloc(sizeBytes);
54 float ∗expected = malloc(sizeBytes);
55
56 generateInputData(input);
57
58 printf ( ”Running DFE.\n”);
59 AutoRowSum(size, input, output);
60
61 AutoRowSumCPU(input, expected);
62
63 int status = check(output, expected);
64 if (status)
65 printf ( ”Test failed .\n”) ;
66 else
67 printf ( ”Test passed OK!\n”);
68
69 return status;
70 }
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14 Loop-carried Dependence Distance

Consider again our row-sum example. Suppose that instead of summing the rows, we wanted to sum
the columns. If our data were in the same order, in sketch form we would want something like this:

for x

sum[x] = 0.0;

for y

for x

sum[x] += input[y*X + x];

for x

output[x] = sum[x];

Here it is flattened into a single, predicated loop nest, ready to be transcribed into a dataflow design:

int count = 0;

for (int y=0; y<Y; y += 1) {

for (int x=0; x<X; x += 1) {

sum[x] = ((y == 0 ) ? 0.0 : sum[x]);

sum[x] += input[count]

count += 1;

if (y == Y-1) {

output[x] = sum[x];

}

}

}

When doing a column sum in this manner, each iteration of the inner loop is not dependent on the
previous iteration of the inner loop (x), as it is in a row sum, but is instead dependent on the previous
iteration of the outer loop (y). This increased dependence distance helps us because we can push a
different sum with each input into the adder pipeline every Kernel tick, as we have plenty of time for the
result to come back round from the adder output (as long as the pipeline depth of our adder is smaller
than the height of the input array Y).

Figure 7 shows how the dependence distance differs. The black arrows show data dependency
and the red arrows show the execution order, or the order in which data is streamed into the Kernel.
With row-wise summation, each iteration depends on the previous one (dependence distance = 1). For
summation column-wise, each iteration depends on a value from X iterations earlier, so the dependence
distance is X.
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15 Input Transposition

Why this helps us with our original row-sum problem may not be immediately obvious, but if we can
transpose the input data such that we receive it column-wise in our Kernel, then we can do a column
sum on the data in the Kernel to give the row-sum result in the output. This means that we can then
get throughput of one add per tick from our Kernel, which is a dramatic improvement on the previous
multi-tick implementation. Figure 8 shows the actual execution order and data dependency that we
have achieved using this transposition.

W Note that in the code and description for this example, the Kernel performs a column sum with
an X and Y swapped over from the X and Y of the original row-sum problem.

The Kernel design is shown in Listing 9. The Kernel graph for this design is shown in Figure 9.
We now have a continuous input, which is going to consume a new value every tick:

24 DFEVar input = io.input(” input” , scalarType);

We have a counter chain that counts the rows (y) using the outer counter and the columns (x) using
the inner counter:

27 CounterChain chain = control.count.makeCounterChain();
28 DFEVar y = chain.addCounter(Y, 1);
29 chain.addCounter(X, 1); // x
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The multiplexer selecting between the sum and 0 is now controlled by the row counter y:

33 DFEVar carriedSum = scalarType.newInstance(this); // sourceless, connected later
34 DFEVar sum = y === 0 ? 0.0 : carriedSum;

The sum is exactly the same as before:

37 DFEVar newSum = input + sum;

The backward edge is connected with an offset of -X, the width of the array:

40 carriedSum <== stream.offset(newSum, -X);

Finally, the output is now controlled by the counter y reaching the end of a column, so we do an add
every tick and get a result at the end of every column:

43 io .output(”output” , newSum, scalarType, y === (Y - 1));

We no longer need to output from the offset as we did in the cyclic implementation previously,
because the immediate output from the adder at the end of each column is correct.

The CPU code for this Kernel (shown in Listing 10 and Listing 11) needs to transpose the input
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Listing 9: Class for the column-wise summation Kernel (ColSumKernel.maxj).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 8 Name: Column sum
4 ∗ MaxFile name: ColSum
5 ∗ Summary:
6 ∗ Kernel design that implements a column wise summation.
7 ∗/
8 package colsum;
9

10 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
11 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.CounterChain;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
15
16 class ColSumKernel extends Kernel {
17
18 final DFEType scalarType = dfeFloat(8,24);
19
20 ColSumKernel(KernelParameters parameters, int X, int Y) {
21 super(parameters);
22
23 // Input
24 DFEVar input = io.input(” input” , scalarType);
25
26 // Set up counters for 2D loop
27 CounterChain chain = control.count.makeCounterChain();
28 DFEVar y = chain.addCounter(Y, 1);
29 chain.addCounter(X, 1); // x
30
31 // At the head of the loop, we select whether to take the initial value,
32 // or the value that is being carried around the data flow cycle
33 DFEVar carriedSum = scalarType.newInstance(this); // sourceless, connected later
34 DFEVar sum = y === 0 ? 0.0 : carriedSum;
35
36 // The loop body itself
37 DFEVar newSum = input + sum;
38
39 // At the foot of the loop, we add the backward edge
40 carriedSum <== stream.offset(newSum, -X);
41
42 // We have a controlled output to deliver the sum at the end of each column
43 io .output(”output” , newSum, scalarType, y === (Y - 1));
44 }
45 }

stream:

28 // Transpose the inputs
29 for ( int i = 0; i < X; ++i)
30 for ( int j = 0; j < Y; ++j)
31 inputTransposed[j + Y ∗ i ] = input [ j ∗ X + i ];

This transposition works with an array that does not have equal X and Y dimensions, as long as the
number of rows is larger than the pipeline depth of the adder.

Note that the dimensions for X and Y passed to the Kernel in the Manager need to be swapped to
match the transposed inputs:

25 Kernel kernel = new ColSumKernel(manager.makeKernelParameters(), Y, X);
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Listing 10: CPU code for the column-wise summation Kernel (ColSumCpuCode.c part 1).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 8 Name: Column sum
4 ∗ MaxFile name: ColSum
5 ∗ Summary:
6 ∗ CPU code for the column-wise summation design. Ensures inputs are
7 ∗ transposed to match the order they are consumed in by the kernel.
8 ∗/
9 #include <stdlib.h>

10 #include <stdint.h>
11
12 #include <MaxSLiCInterface.h>
13 #include ”Maxfiles.h”
14
15 const int X = ColSum X; // image row length (number of columns)
16 const int Y = ColSum Y; // image column length (number of rows)
17
18 void generateInputData( float ∗inputTransposed)
19 {
20 const int size = X ∗ Y;
21 int sizeBytes = size ∗ sizeof(float ) ;
22 float ∗input = malloc(sizeBytes);
23
24 for ( int y = 0; y < Y; ++y)
25 for ( int x = 0; x < X; ++x)
26 input [y ∗ X + x] = (y + x) ;
27
28 // Transpose the inputs
29 for ( int i = 0; i < X; ++i)
30 for ( int j = 0; j < Y; ++j)
31 inputTransposed[j + Y ∗ i ] = input [ j ∗ X + i ];
32 free( input) ;
33 }
34
35 void ColSumCPU(float ∗input, float ∗output)
36 {
37 for ( int y = 0; y < Y; ++y) {
38 output[y] = 0.0;
39 for ( int x = 0; x < X; ++x) {
40 output[y] += input[x ∗ Y + y ];
41 }
42 }
43 }
44
45 int check(float ∗output, float ∗expected)
46 {
47 int status = 0;
48 for ( int i = 0; i < Y; i++) {
49 if (output[ i ] != expected[i ]) {
50 fprintf ( stderr , ”[%d] error , output: %f != expected: %f\n”,
51 i , output[ i ], expected[i ]) ;
52 status = 1;
53 }
54 }
55 return status;
56 }

W
In the case of our example, we don’t need to transpose the output as the column results come
out in the correct order: in some applications, it may be necessary to transpose the output as
well as the input.
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Listing 11: CPU code for the column-wise summation Kernel (ColSumCpuCode.c part 2).
57 int main()
58 {
59 const int size = X ∗ Y;
60 int dataSizeBytes = size ∗ sizeof(float) ;
61 float ∗input = malloc(dataSizeBytes);
62 float ∗output = malloc(dataSizeBytes);
63 float ∗expected = malloc(dataSizeBytes);
64
65 generateInputData(input);
66
67 printf ( ”Running DFE.\n”);
68 ColSum(size, input, output) ;
69
70 ColSumCPU(input, expected);
71
72 int status = check(output, expected);
73 if (status)
74 printf ( ”Test failed .\n”) ;
75 else
76 printf ( ”Test passed OK!\n”);
77
78 return status;
79 }

The Kernel need only be run for X * Y ticks as we now have a throughput of one add per tick.
Figure 10 shows the now fully-utilized adder pipeline (again with a pipeline depth of 4 to make the

diagram simpler) and the offset buffer which loops back to the input of the adder. Note that the length
of the offset buffer is 4 less than that the offset X set in the code as 4 elements are balanced with the
pipeline depth of the adder.
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Figure 10: Fully-used pipeline in the transposed column implementation of the row-sum
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16 Loop Tiling

Loop tiling is a general technique for transforming a loop nest to operate on blocks of the iteration
space at a time. We will use loop tiling to gain control over the dependence distance, so that we can
match it precisely to the pipeline depth - and so avoid unnecessary buffering. This use of tiling is
sometimes referred to as C-Slow retiming in the hardware community1.

In section 15, we transposed the input for our complete array. For small arrays, this is feasible,
but for larger arrays this creates a large amount of buffering logic (as we can see from Figure 10),
which can make very inefficient use of valuable resources in the DFE or potentially make the design
unfeasibly large. We will use loop tiling to split the transposition into smaller blocks which will maintain
our throughput of one add per tick, but reduce our logic utilization.

16.1 Overview of Loop Tiling

The basic idea is of loop tiling is:

• The cycle in our data flow graph has at least C pipeline stages in it (13, due mainly to the floating-
point adder, in our case)

• The value being calculated at each stage can depend on the output of the same stage from C
ticks earlier

• Each of these stages is an opportunity to do one summation

• So, we need C different, independent summations to fill each pipeline stage in the tick in the
data-flow graph

• We reorder the inputs to arrive in transposed blocks of C rows

• The resulting implementation will now have a throughput of one calculation per tick

We present the idea here in terms of a loop nest transformation. We are going to split the loop nest
into blocks of C iterations, then interchange the loops to create the dependence distance we need.

Consider the original row-summation loop again:

int count = 0;

for (int y=0; ; y += 1) {

sum[y] = 0.0;

for (int x=0; x<X; x += 1) {

sum[y] = sum[y] + input[count];

count += 1;

}

output[y] = sum[y];

}

1A useful overview can be found in http://brass.cs.berkeley.edu/documents/Cslow_Retiming_Virtex.pdf.
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16 Loop Tiling

First we strip-mine the outermost loop, which means splitting it into chunks of size C:

int count = 0;

for (int yy=0; ; yy += C) {

for (int y=yy; y < yy+C; y += 1) {

sum[y] = 0.0;

for (int x=0; x<X; x += 1) {

sum[y] = sum[y] + input[count]

count += 1;

}

output[y] = sum[y];

}

}

Now we want to do a loop interchange, but the y loop has three statements, of which one is a loop.
We can fix this by shifting these extra statements into the innermost loop, predicating them as we did in
section 8 so that they implement the same behavior:

int count = 0;

for (int yy=0; ; yy += C) {

for (int y=yy; y < yy+C; y += 1) {

for (int x=0; x<X; x += 1) {

if (x == 0) sum[y] = 0.0;

sum[y] = sum[y] + input[count]

count += 1;

if (x == X-1) output[y] = sum[y];

}

}

}

Now we can interchange the inner two loops:

int count = 0;

for (int yy=0; ; yy += C) {

for (int x=0; x<X; x += 1) {

for (int y=yy; y < yy+C; y += 1) {

if (x == 0) sum[y] = 0.0;

sum[y] = sum[y] + input[count]

count += 1;

if (x == X-1) output[y] = sum[y];

}

}

}

Figure 11 shows the execution order and data dependency of this method, with the input broken up
into groups of rows of height C. In this case, C is 4 to make the diagram clearer.

With this execution order, input is consumed in a sequence of C × M chunks, each of which is
processed column-wise in turn.
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Figure 11: Execution order and data dependence for loop-tiled row-sum, with C of 4

16.2 Loop-Tiled Implementation of the Row-Sum

Example 9 shows a loop-tiled implementation of the row-sum problem we saw previously. The Kernel
code for this implementation is shown in Listing 12 and the corresponding Kernel graph in Figure 12.

We have a continuous input as before:

26 DFEVar input = io.input(” input” , scalarType);

C is a compile-time Java constant defined as a divisor of the X dimension in the Manager:

22 RowSumLoopTileKernel(KernelParameters parameters, int X, int C) {
23 super(parameters);

The counter chain is set up with the y and x dimensions reversed. The inner yy counter counts up
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Listing 12: Class for the row-sum kernel (RowSumLoopTileKernel.maxj).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 9 Name: Row-sum loop tile
4 ∗ MaxFile name: RowSumLoopTile
5 ∗ Summary:
6 ∗ Kernel design for a loop- tiled implementation of the row sum problem
7 ∗ using auto loop offsets and distance measurement.
8 ∗/
9

10 package rowsumlooptile;
11
12 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
14 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.CounterChain;
15 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;
16 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
17
18 class RowSumLoopTileKernel extends Kernel {
19
20 final DFEType scalarType = dfeFloat(8, 24);
21
22 RowSumLoopTileKernel(KernelParameters parameters, int X, int C) {
23 super(parameters);
24
25 // Input
26 DFEVar input = io.input(” input” , scalarType);
27
28 CounterChain chain = control.count.makeCounterChain();
29 DFEVar x = chain.addCounter(X, 1);
30 // Set up counter for innermost, y loop, except we count 0..C
31 // instead of yy ..yy+C
32 chain.addCounter(C, 1); // yy
33
34 // At the head of the loop, we select whether to take the initial value,
35 // or the value that is being carried around the data flow cycle
36 DFEVar CarriedSum = scalarType.newInstance(this); // sourceless, connected later
37 DFEVar sum = x === 0 ? 0.0 : CarriedSum;
38
39 // The loop body itself
40 DFEVar NewSum = input + sum;
41
42 // At the foot of the loop, we add the backward edge
43 CarriedSum <== stream.offset(NewSum, -C); //
44
45 // We have a controlled output to deliver the sum at the end of each row
46 io .output(”output” , NewSum, scalarType, x === (X - 1));
47 }
48 }

to C:

28 CounterChain chain = control.count.makeCounterChain();
29 DFEVar x = chain.addCounter(X, 1);
30 // Set up counter for innermost, y loop, except we count 0..C
31 // instead of yy ..yy+C
32 chain.addCounter(C, 1); // yy
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Figure 12: Kernel graph for loop-tiled row-sum

The multiplexer and adder are implemented in exactly the same way as before:

36 DFEVar CarriedSum = scalarType.newInstance(this); // sourceless, connected later
37 DFEVar sum = x === 0 ? 0.0 : CarriedSum;
38
39 // The loop body itself
40 DFEVar NewSum = input + sum;

The backward edge is now offset by the C:

43 CarriedSum <== stream.offset(NewSum, -C); //

The offset expression is defined as the sum of an AutoLoop offset and a variable stream offset
parameter:

43 CarriedSum <== stream.offset(NewSum, -C); //

Finally, the sum for each row is output when x reaches X - 1:

46 io .output(”output” , NewSum, scalarType, x === (X - 1));

One complicating factor is that the loop-tiled version consumes its input in a different order - so the
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CPU code (Listing 13 and Listing 14) applies a corresponding reordering to the input sequence:

32 // Transpose the inputs
33 int count = 0;
34 for ( int yy = 0; yy < Y; yy += C) {
35 for ( int x = 0; x < X; ++x) {
36 for ( int y = yy; y < yy + C; ++y) {
37 inputTransposed[count] = input[y ∗ X + x ];
38 count++;
39 }
40 }
41 }

The C factor is passed to the CPU code using a .max file constant:

20 const int C = RowSumLoopTile CFactor; // C Factor used in the DFE

Figure 13 shows a pipeline depth of 4 for clarity, with a value of C also of 4, so that there is no
buffering required: the output of the adder loops straight back to the input.
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Figure 13: Fully-used pipeline in the loop-tiled implementation of the row-sum
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Listing 13: CPU Code for the loop-tiled row-sum (RowSumLoopTileCpuCode.c - part 1).
1 /∗∗
2 ∗ Document: Acceleration Tutorial - Loops and Pipelining (maxcompiler-loops.pdf)
3 ∗ Example: 9 Name: Row-sum loop tile
4 ∗ MaxFile name: RowSumLoopTile
5 ∗ Summary:
6 ∗ CPU code for a loop-tiled implementation of the row sum problem.
7 ∗ Determines the variable offset by carrying out the necessary arithmetic
8 ∗ on integer values derived from the AutoLoop offset. Ensures inputs are
9 ∗ transposed to match the order they are consumed in by the kernel.

10 ∗/
11
12 #include <stdlib.h>
13 #include <stdint.h>
14
15 #include ”Maxfiles.h”
16 #include <MaxSLiCInterface.h>
17
18 const int X = RowSumLoopTile X; // image row length (number of columns)
19 const int Y = RowSumLoopTile Y; // image column height (number of rows)
20 const int C = RowSumLoopTile CFactor; // C Factor used in the DFE
21
22 void generateInputData(float ∗inputTransposed)
23 {
24 const int size = X ∗ Y;
25 int sizeBytes = size ∗ sizeof(float ) ;
26 float ∗input = malloc(sizeBytes);
27
28 for ( int y = 0; y < Y; ++y)
29 for ( int x = 0; x < X; ++x)
30 input [y ∗ X + x] = (y + x) ;
31
32 // Transpose the inputs
33 int count = 0;
34 for ( int yy = 0; yy < Y; yy += C) {
35 for ( int x = 0; x < X; ++x) {
36 for ( int y = yy; y < yy + C; ++y) {
37 inputTransposed[count] = input[y ∗ X + x ];
38 count++;
39 }
40 }
41 }
42
43 free( input) ;
44 }
45
46 void RowSumLoopTileCPU(float ∗input, float ∗output)
47 {
48 int count = 0;
49 for ( int yy=0; count < X∗Y; yy += C) {
50 for ( int x=0; x<X; x += 1) {
51 for ( int y=yy; y < yy+C; y += 1) {
52 if (x == 0) {
53 output[y] = 0.0;
54 }
55 output[y] = output[y] + input [count];
56 count++;
57 }
58 }
59 }
60 }
61
62 int check(float ∗output, float ∗expected)
63 {
64 int status = 0;
65 for ( int i = 0; i < Y; i++) {
66 if (output[ i ] != expected[i ]) {
67 fprintf ( stderr , ”[%d] error , output: %f != expected: %f\n”,
68 i , output[ i ], expected[i ]) ;
69 status = 1;
70 }
71 }
72 return status;
73 }
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Listing 14: CPU Code for the loop-tiled row-sum (RowSumLoopTileCpuCode.c - part 2).
74 int main()
75 {
76 const int size = X ∗ Y;
77 int sizeBytes = size ∗ sizeof(float ) ;
78 float ∗input = malloc(sizeBytes);
79 float ∗output = malloc(sizeBytes);
80 float ∗expected = malloc(sizeBytes);
81
82 generateInputData(input);
83
84 printf ( ”Running DFE.\n”);
85 RowSumLoopTile(size, input, output);
86
87 RowSumLoopTileCPU(input, expected);
88
89 int status = check(output, expected);
90 if (status)
91 printf ( ”Test failed .\n”) ;
92 else
93 printf ( ”Test passed OK!\n”);
94
95 return status;
96 }
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17 Reducing Latency

As we have seen, MaxCompiler is geared towards producing highly-pipelined streaming designs, which
offer the highest performance. Deeply-pipelined designs do, in general, use significant storage (flip-
flop) resources, however, to reach higher clock speeds. In some circumstances, reducing the latency
of operations can help reduce the resources required to implement a design or increase its throughput.

17.1 Pipelining Factor

The latency of operations in a Kernel graph can be reduced by using optimization directives. These are
available via static methods in the optimization field:

void optimization.pushPipeliningFactor(double pipelining)
double optimization.peekPipeliningFactor()
void optimization.popPipeliningFactor()

MaxCompiler attempts to reduce the latency of operations between calls of pushPipeliningFactor
and popPipeliningFactor. The pipelining argument for pushPipeliningFactor is a double

value between 0.0 and 1.0, where 1.0 suggests no reduction in latency and 0.0 suggests the largest
possible reduction in latency (potentially to 0 ticks). MaxCompiler does not guarantee that either
any reduction is performed or that an absolute value of pipelining produces a particular latency:
pushPipeliningFactor is a just suggestion to the compiler.

17.2 Fixed Point versus Floating Point

Consider again our original attempt at implementing the row-sum problem in section 10, where we
tried to use an offset of -1. If we change the incoming data type to fixed-point, then an add takes a
single tick (again, we can determine this from the MaxCompiler graph output). In order to reset the
accumulator for each row with a 0, we need to multiplex in a 0 with the output of the adder, which
gives a combined latency of 2 ticks for the multiplex-accumulate with fixed-point data. We can use
pushPipeliningFactor(0) to reduce the latency of the multiplexer to 0 ticks:

34 optimization.pushPipeliningFactor(0);
35 DFEVar sum = x === 0 ? 0.0 : carriedSum;
36 optimization.popPipeliningFactor();

This gives us a single-tick accumulator and restores our throughput of 1 addition per tick, without
having to apply loop-unrolling or loop-tiling.

In this case, the logic required for a two-input multiplexer is minimal, so there is little impact on
clock speed. For more significant latency reductions, for example on wider multiplexers or arithmetic
operations, reducing the latency results in a reduced clock speed, but with the benefit of reduced
resource utilization.

18 Conclusion

This tutorial has focused on optimizing a pipelined loop using loop unrolling, input transposition and
loop tiling. These are key methods for exploiting application parallelism in MaxCompiler designs. The
next stages in improving performance are replicating a single pipeline and optimizing data types.
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