
Dataflow Programming for Networking

Version 2014.1

Dataflow Programming for Networking. Copyright c© Maxeler Technologies.

Version 2014.1
May 19, 2014

Contact Information

Sales/general information: info@maxeler.com

US Office

Maxeler Technologies Inc
Pacific Business Center
2225 E. Bayshore Road
Palo Alto, CA 94303, USA.
Tel: +1 (650) 320-1614

UK Office

Maxeler Technologies Ltd
1 Down Place
London W6 9JH, UK.
Tel: +44 (0) 208 762 6196

All rights reserved. The software described in this document is furnished under a license agreement.
The software may be used or copied only under the terms of the license agreement. No part of this
document may be reproduced or transmitted in any form by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the written
permission of the copyright holder.

Maxeler Technolgies and the Maxeler Technologies logo are registered trademarks of Maxeler Tech-
nologies, Inc. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

r41970

Preface iv

1 Network Programming Overview 1
1.1 Maxeler Networking Technology . 2

1.1.1 Hardware . 2
1.1.2 Software . 3

1.2 Advantages of combining the dataflow model of computation with networking 4
1.2.1 CPU Model . 4
1.2.2 Dataflow Model . 6
1.2.3 Stream Formats for Network Data . 7

1.3 MaxCompiler Design Flow . 7
1.4 Identifying Critical Paths for Dataflow Engine Implementation 7

1.4.1 Designing Kernels . 9
1.4.2 Configuring a Manager . 9
1.4.3 Compiling . 10
1.4.4 Integrating with the CPU Application . 10
1.4.5 Simulating . 10
1.4.6 Building for DFEs . 11

1.5 A Look at Framed Kernels . 11
1.5.1 Framed Kernel Basics . 11
1.5.2 Network Streams . 11
1.5.3 Framed Kernel Example: Field Swap . 12
1.5.4 Field Swap Kernel . 13
1.5.5 Field Swap Manager . 13

2 Getting Started 17
2.1 Launching MaxIDE . 17
2.2 Importing the Examples . 17
2.3 Building and Running the Examples in MaxIDE . 18
2.4 Configuring Simulation for Networking . 18
2.5 Building and Running the Examples outside MaxIDE 18

3 Framed Kernels 21
3.1 Introduction . 22

3.1.1 Field Concepts . 22
3.1.2 Timing Conventions . 22
3.1.3 Visualizing a Framed Kernel . 22

3.2 Field Accumulator Example . 24
3.3 Frame Format . 27

3.3.1 Fixed Length Fields . 27
3.3.2 Variable Length Fields . 27

3.4 Stream Format . 28
3.5 IOs . 30

3.5.1 Input Streams . 30
3.5.2 Output Streams . 30

3.6 Advanced Features . 31
3.6.1 Controlled Inputs and Outputs . 31
3.6.2 Persistent State . 32

Dataflow Programming for Networking i

3.6.3 Granularity . 33

4 IP Connectivity 35
4.1 The Role of SLiC . 35
4.2 General SLiC Setup . 36
4.3 Network Layer Setup . 39

5 UDP Packet Processing 41
5.1 One-to-one mode UDP streams . 42

5.1.1 One-to-one transmit format . 42
5.1.2 One-to-one receive format . 42

5.2 One-to-many Mode UDP Streams . 43
5.2.1 One-to-many Transmit Format . 43
5.2.2 One-to-many Receive Format . 43

5.3 UDP CPU API Summary . 43
5.3.1 Socket Management . 44
5.3.2 Receiving . 47
5.3.3 Sending . 47
5.3.4 Multicast . 47

6 TCP Segment Processing 49
6.1 TCP Stream Format . 49
6.2 Field Accumulator Adaptions for TCP . 50
6.3 CPU API for TCP . 53

6.3.1 Creating a Socket . 53
6.3.2 Starting an Outward Connection . 53
6.3.3 Accepting an Inward Connection . 54
6.3.4 Closing a Connection . 54
6.3.5 Interrogating a Connection . 55
6.3.6 Monitoring Connections . 56

7 Network Managers 59
7.1 Network Streams . 59

7.1.1 UDP Streams . 60
7.1.2 TCP Streams . 60
7.1.3 Ethernet Streams . 61

7.2 Key-Value Example . 61
7.2.1 Kernels . 61
7.2.2 Manager . 64
7.2.3 CPU Application . 66

8 Ethernet Frame Processing 71
8.1 Receiving Streams . 71
8.2 Transmitting Streams . 72
8.3 Time Stamped Packet Capture Example . 72

ii Dataflow Programming for Networking

9 Advanced Network Configuration 77
9.1 IP Routing . 77
9.2 IP Multicast . 78
9.3 ARP . 79

10 Low-Latency PCIe Interface 81
10.1 Interfaces . 81

10.1.1 Overview . 82
10.1.2 Initialization Functions . 82
10.1.3 Reading Functions . 83
10.1.4 Writing Functions . 84

10.2 Low Latency Interface Example . 85
10.2.1 DFE Code . 85
10.2.2 CPU Application . 86

10.3 Deadlock Avoidance . 87
10.3.1 Deadlock from Deterministic Interleaving . 87
10.3.2 Deadlock from Partial Transfers . 88

SLiC API Index 89

MaxJ API Index 90

Dataflow Programming for Networking iii

iv Dataflow Programming for Networking

Preface

High performance network applications pose special challenges for developers, beyond the usual de-
mands of high performance computing. Success is measured not only by the speed of calculations
but by the ability to deliver results reliably with minimal latency and jitter with consistently high levels
of throughput. As market competition has continued to necessitate pushing the envelope, the dataflow
computing model supported by Maxeler platforms has become the method of choice for many network
applications.

The Maxeler tool chain alleviates some of the inherent complexity of dataflow application develop-
ment by decoupling the code for the computational building blocks (Kernels) from that which specifies
the interconnections among them (Managers). In addition, support for ubiquitous protocols such as
TCP and UDP allow developers to focus on higher-level functionality. These aspects of the applica-
tion are expressed in MaxJ, whereas other functions outside the critical path such as initialization and
logging are implemented in C or C++ code running on the CPU.

This document serves as a companion volume to Multiscale Dataflow Programming. Some over-
lap in subject matter allows this document to be self-contained for the purpose of working with network
applications. For other aspects of high performance scientific or numerical computing please consult
both volumes.

Dataflow Programming for Networking v

Document Conventions

When important concepts are introduced for the first time, they will appear in bold.
Italics are used for emphasis.
Directories and commands are displayed in typewriter font.
Variable and function names are displayed in typewriter font.
MaxJ methods and classes are shown using the following format:

DFEVar mem.romMapped(String name, DFEVar addr, DFEType type, double... data)

C function prototypes are similar:

max engine t∗ max load(max maxfile t∗ maxfile, const char∗ engine id pattern);

Actual MaxJ usage is shown without italics:

io .output(”output” , myRom, dfeUInt(32));

C usage is similarly without italics:

engine = max load(maxfile, engine id pattern);

Sections of code taken from the source of the examples appear with a border and line numbers:

1 package chap01 gettingstarted.ex1 passthrough;
2 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
3 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
4 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
5
6 public class PassThroughKernel extends Kernel {
7 protected PassThroughKernel(KernelParameters parameters) {
8 super(parameters);
9

10 // Input
11 DFEVar x = io.input(”x” , dfeUInt(32)) ;
12 // Output
13 io .output(”y” , x, dfeUInt(32)) ;
14 }
15 }

vi Dataflow Programming for Networking

1
Network Programming Overview

Traditional system architectures involving Network Interface Cards (NICs) added into CPU systems
put hard lower bounds on latency, and introduce a large amount of variability (jitter) into a network
application’s performance.

Putting the entire critical path of an application into a Dataflow Engine (DFE) allows programmers
to take advantage of ultra-fine-grained and pipelined parallelism, enabling different data to undergo
different operations at the same time, much like an assembly line in a factory.

As opposed to a traditional time-slicing CPU architecture, dedicated channels directly connecting
the processing to the network guarantee that data moves at the right time and rate. Data is not delayed
by unnecessary transfers through main memory for processing by a software protocol stack, nor by
waiting for service from operating system interrupt handlers.

Despite the big gains from the Dataflow approach, conventional programming languages and tech-
nologies are also employed on Maxeler Dataflow platforms, making them a productive alternative for
critical environments using existing skill sets. The remainder of this chapter summarizes the key con-
cepts and performance benefits available when developing network applications.

Dataflow Programming for Networking 1

1.1 Maxeler Networking Technology

Memory

CPU

CPU interconnect

Manager

Memory

network
interface

network

Dataflow Engine

network
interface

protocol
handlers

Kernels 10G Ethernet

 SLiC

 MaxelerOS

CPU
Application

Figure 1: Maxeler network infrastructure

1.1 Maxeler Networking Technology

Figure 1 shows the architecture of a network application when implemented on a DFE, including:

• A conventional CPU is still present, but now has a DFE, which is directly connected to the network.

• Data can follow a path from the network, through the DFE, and back to the network without
involving the CPU at all.

• The Manager within the DFE is customized with a combination of user-defined computational
Kernels and automatically generated protocol handling blocks that interface directly with fast
networking hardware.

The ideal case is where the entirety of the application’s critical-path can be contained in the DFE,
using the CPU for “housekeeping” tasks. Although a moderate volume of network data can be trans-
ferred between the DFE and the CPU over the CPU interconnect channel, this transfer takes time and
risks becoming a bottleneck to the overall application, especially once the vagaries of CPU scheduling
is taken into account.

1.1.1 Hardware

DFE hardware is designed to allow high speed computation and networking.

• Memory The DFE includes up to 48 GB of on-board memory accessible independently of the
CPU main memory by a high-bandwidth bus.

• Network interfaces There are two high-performance network interfaces per DFE, each having
an industry standard SFP+ port capable of 10 Gb/s transfer rates.

2 Dataflow Programming for Networking

1 NETWORK PROGRAMMING OVERVIEW

MaxIDE

Manager Compiler

MaxelerOS

HWSW
SLiC

User Input

Output

Compiler, Linker
Hardware Build

or
Simulation

Manager
Configuration

(.java)

Kernel Compiler

Dataflow
Kernel(s)

(.java)

CPU
Application
(.c, .c++)

Dataflow
Engine

Configuration
(.max)

Accelerated
Application

(executable)

Figure 2: Maxeler software component interactions

1.1.2 Software

Maxeler provides a set of tools including MaxCompiler, presenting an agile environment for network
application developers. Figure 2 shows some of the development tools provided by Maxeler and how
they interact to build an accelerated application.

• SLiC is a C-language library usable by applications written in C, C++, and other languages, that
enables them to communicate with a DFE, and to control its network interfaces as necessary to
manage connections and addresses.

• MaxelerOS is used internally by MaxCompiler to provide the link between the CPU and the
dataflow engines of an accelerated application. MaxelerOS runs on every node with a Maxeler
dataflow system, providing drivers for the dataflow engines and IP cores facilitating the commu-
nication between the CPU and dataflow engines.

• MaxCompiler compiles a design for the Kernels and Managers that determine the function of a
DFE.

• MaxIDE is an integrated development environment based on the open source Eclipse platform,
with additional features supporting MaxCompiler.

• MaxCompilerSim (Detailed in Figure 3) facilitates debugging during development by creating a
simulated network environment.

Specific features of the compiler and the simulator relevant to network application development are
elaborated briefly below.

Dataflow Programming for Networking 3

1.2 Advantages of combining the dataflow model of computation with networking

simulated
network
interface

 SLiC

 MaxelerOS

tap0 tap1

App

Linux

 Simulated DFE running on the CPU

tester

Memory Simulated
Memory

simulated
network
interface

Kernels

Manager
CPU

Protocol handlers

Figure 3: the simulated network created by MaxCompilerSim, with point-to-point connections from the
Linux TAP devices to the network interfaces on the simulated DFE (cf. Figure 1)

Framed Kernels In network applications, Framed Kernels are a enhanced Kernel used to process
data frames arriving at unpredictable times with various sizes and formats. In the MaxJ source code for
a Framed Kernel, a frame appears as a structure with an assortment of fields that are easily accessible.

Framed Kernels insulate the developer from the details of unpacking and marshalling data in stan-
dard protocol formats without compromising on performance. Highly optimized protocol handling is
handled by the manager to allow communication with other hosts.

Network simulation When simulating a DFE, MaxCompilerSim works in conjunction with the stan-
dard Linux TAP/TUN facility to create a simulated network. The simulated network has a point-to-point
connection between a Linux TAP device and a network interface on the simulated DFE, similar to a
crossover cable between two physical Ethernet ports, as shown in Figure 3. When the application and
the simulated DFE are running, any process designed to test the application can run on the same CPU
and interact with it as a remote peer would, with traffic automatically routed via the TAP devices.

1.2 Advantages of combining the dataflow model of computation with networking

Differences between the CPU model and the dataflow model of computation have significant implica-
tions for performance and efficiency in network applications. These are summarized in this section from
a developer’s point of view in reference to Maxeler platforms.

1.2.1 CPU Model

When implementing a software application for a CPU, the developer typically writes in a high level
programming language that is compiled into a list of instructions. The instructions control the operation

4 Dataflow Programming for Networking

1 NETWORK PROGRAMMING OVERVIEW

Memory

CPU

Function
Unit

Instructions

Data/Instructions

Data

.c

Compiler

Memory
Controller

Network Interface
card

network

Figure 4: Reuse of functional units over time in a CPU

Dataflow Programming for Networking 5

1.2 Advantages of combining the dataflow model of computation with networking

.java

MaxCompiler

protocol
handler

protocol
handler

Dataflow
Core

Dataflow
Core

protocol
handler

Dataflow
Core

Dataflow
Core

Dataflow
Core

Dataflow
Core

protocol
handler

network

network
interface

network
interface

Figure 5: Graph of dedicated functions in a dataflow implementation

of functional units within the CPU. These functional units form a fixed architecture to be reused over
time, and are the only available means of performing any calculations or transformations on the data. At
any given time, the great majority of the data is stored idly in memory, while the CPU operates on one
individual item. Transfers between the CPU and memory are required for each operation on an item of
data (whether contemporaneously or amortized).

Access to the network in the CPU model is through a network interface card whose sole function
is to transfer raw data between the network and memory, invariably with further intervention by the
operating system required in software. This organization is depicted in Figure 4.

1.2.2 Dataflow Model

Maxeler platforms implement a dataflow model of computation. Computations are described struc-
turally (computing in space) rather than being described by a sequence of processor instructions (com-
puting in time).

In this model of computation, a high level language is used to generate a graph of operations. Each
node in the graph executes a specific function on incoming data and outputs the result, which becomes
the input to another node in the graph. The data flows from the network to the graph and back to the
network, without needing to be written to memory. An example of this organization is shown in Figure 5.

The edges connecting the nodes in a dataflow graph and carrying data between them are appro-
priately called streams. Because the hardware implementation of a stream is often no more than a
simple point-to-point bus, multiple streams are easily configured to carry data concurrently between
functional units, with the bus widths customized to fit the data they carry. Throughput is not necessarily

6 Dataflow Programming for Networking

1 NETWORK PROGRAMMING OVERVIEW

data (64 bits)

mod (3 bits)

socket (8 bits)eof sof

checksum_bad

bit 0 bit 77

Figure 6: A stream format for incoming UDP data

constrained by the limitation to a single overburdened channel between the CPU and memory, as in the
case of a CPU architecture.

1.2.3 Stream Formats for Network Data

In network applications, the specification of streams is not always trivial. Data arrives in frames is
varying length, but must be transferred within the DFE over fixed-width streams. This is achieved
by splitting the frame up into fixed-width words (according to the size of the stream). Each word is
then accompanied with some metadata, such as address information, length, checksum validity, and
Start-Of-Frame (SOF) and End-Of-Frame (EOF) markers.

MaxCompiler defines stream formats for several widely used network protocols. An example of a
pre-defined stream format is shown in Figure 6. This format is specific to UDP traffic received from the
network. Although the payload data field in the stream is of a fixed size, data of any convenient size or
format is transparently marshalled on behalf of applications using the Framed Kernel interface.

1.3 MaxCompiler Design Flow

Figure 7 shows the design flow for implementing a dataflow application using MaxCompiler. This section
describes the main stages in detail.

1.4 Identifying Critical Paths for Dataflow Engine Implementation

The first step in accelerating any application is to analyze the application source code to identify the
parts that should be implemented in a dataflow engine. This choice is driven by the need to minimize
the latency, or the turnaround time for a transaction between the application and a remote peer across
the network.

• Critical path operations As noted in subsection 1.1, the latency is most improved by ensuring
that the critical path is implemented entirely within the DFE. Consequently, accelerating a net-
work application entails identifying the minimal sequence of steps needed to dispatch a correct
response, and implementing those in terms of Kernels or other DFE components. If supplemen-
tary data or tables are needed to complete a transaction, for example, it is best to locate those in
the on-board memory rather than the CPU main memory or file system.

• Non-critical path operations An application may be required to perform certain operations that
are necessary and important, yet not an absolute prerequisite to the completion of any pending
transaction. Examples include maintaining security logs or legal records. These operations be-
long off the DFE and on the CPU, preferably with only infrequent co-ordination between them

Dataflow Programming for Networking 7

1.4 Identifying Critical Paths for Dataflow Engine Implementation

start

Identify
Critical path

Design Kernels
and configure

Manager

Integrate with
CPU code

Simulate

Functions
Correctly?

Build for
DFE

Meets
Performance

Goals?

end
Accelerated
application

original
application

no

yes

yes

no

Figure 7: Flowchart of the design methodology

8 Dataflow Programming for Networking

1 NETWORK PROGRAMMING OVERVIEW

via the CPU interconnect. Any application also requires some amount of setup and initialization,
all of which should be performed by the CPU to optimize run-time performance (for example,
by building efficient storage retrieval data structures to be loaded in advance into the on-board
memory if needed).

After the critical path and non-critical path operations are identified and implemented accordingly,
some scope may remain for accelerating the application further by turning to more traditional areas of
improvement. Dataflow engines outperform software implementations most significantly when perform-
ing the same operation repeatedly on many data items, for example, when computing an inner loop.
Small areas of code that account for large shares of CPU time, whether network related or not, are
suitable candidates for a DFE implementation.

1.4.1 Designing Kernels

To create Kernel designs, MaxCompiler includes the Maxeler Kernel Compiler. The Maxeler Kernel
Compiler is a high-level programming system for creating high-performance logic and arithmetic circuits.
Leveraging the power of the MaxJ language, it enables complex and parameterized Kernel designs to
be mapped to application-specific circuit implementations.

The Kernel Compiler itself is implemented as a MaxJ library. To create a Kernel design, the de-
veloper writes MaxJ programs that make calls using the Kernel Compiler API. Although computations
are expressed by making calls to a library, arithmetic operations are often expressed in a similar style
to that of C or other standard languages, because the Kernel Compiler API uses operator overloading
where applicable. (This feature is a MaxJ extension to the standard MaxJ language.)

An advantage of interfacing with the Kernel Compiler through a MaxJ library is that the full program-
ming power of MaxJ can be deployed to customize a design. For example, by using standard MaxJ
constructs such as if-statements and for-loops, developers can control the way a design is built to
make optimal use of resources. Different dataflow implementations can be built from a common Kernel
code base optimized for different operating scenarios. Because the Kernel design can be expressed in
terms of MaxJ classes and procedures, MaxCompiler programs support extensive code reuse across
different applications.

1.4.2 Configuring a Manager

Kernels are integrated into a design and connected to data channels outside the DFE by a Manager.
Similarly to the Kernel Compiler, the Manager Compiler is accessed through a MaxJ API.

MaxCompiler offers a choice of Managers that can be parameterized, some for general purpose ap-
plications and others for more specific needs. Among these, the Standard Manager and the Network
Manager are most relevant to network applications.

• The Standard Manager provides for a single Kernel with some implied streams connecting it to
the CPU and/or the network interfaces and memories. It is suitable for rapid deployment of simple
network applications.

• The Network Manager supports any number of Kernels as well as other more advanced features
such as state machines. More general internal DFE topologies are possible than in the Standard
Manager. The Network Manager is suitable for complex network application development.

When the MaxJ code for Kernels and the configuration of a Manager are combined, they form a
complete MaxJ program. The execution of this program results in the generation of a dataflow engine
configuration file (with a .max suffix) as shown in Figure 2.

Dataflow Programming for Networking 9

1.4 Identifying Critical Paths for Dataflow Engine Implementation

1.4.3 Compiling

Due to the Kernel Compiler (and other elements of MaxCompiler) being accessed as a MaxJ library,
there are several different stages of compilation:

1. The first stage is MaxJ Compilation of the Kernel and Manager source code, with normal MaxJ
syntax checking, etc.. The successful result of this stage is one or more MaxJ .class files.

2. The next stages of compilation take place at MaxJ run-time, when the MaxJ code in the compiled
.class files is executed. This process encapsulates the following further compilation steps:

(a) Graph construction: In this stage, a graph is constructed in memory based on the calls
made by the Kernel and Manager code using the Kernel Compiler API.

(b) Kernel compilation: After all the code to describe a design has been executed, the Kernel
Compiler takes the generated graph, optimizes it, and converts it either to a simulation
model, or a format suitable for generating a dataflow engine.

(c) Back end compilation: For a hardware build, at this point third-party vendor tools are called
automatically by MaxCompiler to compile the design further into a chip configuration.

1.4.4 Integrating with the CPU Application

SLiC and the application are linked against the .max file generated by MaxCompiler by a standard
software compiler suite such as gcc. MaxelerOS is then able to automate the configuration of dataflow
engines and to provide the communications between the CPU software and the DFE implementation.

To work together with the DFE, the CPU application requires modifications such as the following
from its original form.

• At a minimum, SLiC library function calls are added for configuring, starting, and stopping the
DFE.

• Some of these function calls are concerned with initializing network ports and addresses, and
replace any standard operating system socket API functions used in the original version.

• Critical-path business logic taken over by the DFE in the accelerated version is removed from the
CPU code.

• If any data is to be transferred between the CPU and the DFE through the CPU interconnect chan-
nel, SLiC function calls for initializing and communicating by named streams are added. These
modifications might replace parts of the original version where pointers or arrays are passed as
parameters to functions formerly implemented in the CPU code.

1.4.5 Simulating

Network applications can be developed rapidly by being built and tested in simulation. The simulator
supports a virtual network in software with point-to-point connections between the network interfaces
on the simulated DFE and the system TAP devices, as shown in Figure 3, so that a process running on
the same CPU as the application can test it by playing the role of a remote peer.

Simulation offers the advantage of visibility into the execution of a Kernel that is not available in a
hardware implementation. A further advantage of simulation is a much shorter build time than for a
hardware implementation.

Simulation can confirm functional correctness but not performance properties. Because the simu-
lation of a design runs much more slowly than a real implementation, hardware should be used later in
the development cycle to test the design with realistic network traffic.

10 Dataflow Programming for Networking

1 NETWORK PROGRAMMING OVERVIEW

1.4.6 Building for DFEs

Executing a hardware Manager generates a DFE configuration file with a .max suffix. This file contains
both data used to configure the DFE and metadata used by software to communicate with this specific
DFE configuration. The build process can take many hours for a complex design, so simulation is
recommended for early verification of the design.

1.5 A Look at Framed Kernels

As noted previously, the basic units of computational activity in Maxeler accelerated applications are
known as Kernels. A Kernel expresses functionality on the level of mathematical operations (e.g., ad-
dition and multiplication), control elements (e.g., counters and multiplexers), and stream IO operations.
This description is mapped to interconnected dataflow cores by MaxCompiler, which a DFE implements.

While many robust techniques and methodologies for implementing mathematical algorithms with
Kernels can be found in the companion to this document, Multiscale Dataflow Programming with
MaxCompiler, this section focuses on a more immediate problem for network applications: efficient
and effective network processing.

MaxCompiler provides built-in support for standard communications protocols (Ethernet, TCP, and
UDP), with associated libraries describing the stream formats associated with them (subsubsection 1.2.3).
However, these features by themselves do not address the issue of conveniently transporting user-
defined data types by these standard protocols, as almost any non-trivial network application requires.
Potential programming complexities include:

• packing and unpacking variable sized data for transport by fixed-width DFE links

• buffering frames over multiple cycles because a decision depends on the last field to be received

• acquiring expertise on low-level implementation details such as metadata field semantics

These issues are addressed by Framed Kernels.

1.5.1 Framed Kernel Basics

In a Framed Kernel, network data is considered as a stream of “frames”. Frames are typically received
on a Kernel input stream, processed in a suitable way and transmitted through a Kernel output stream.
Each frame consists of a fixed set of fields. Fields have familiar types, such as floating point or integer
numbers and may be fixed or variable size.

The order of the fields in a frame as well as their type and name is typically application-dependent
and defined by the developer as a “frame format” which can be associated with Kernel input or output
streams.

A frame format may describe frames whose total size exceeds the width of the carrier stream. In
this case, sufficiently small segments of the frame are streamed sequentially and MaxCompiler auto-
matically manages the marshalling and unmarshalling of the segments.

1.5.2 Network Streams

Frame formats can be defined independently of any network protocols. Only when associating a frame
format with a Kernel input or output stream the developer specifies a network protocol by selecting
a pre-defined “framed link type”. MaxCompiler currently offers a choice UDP, TCP or raw Ethernet
framed link types. section 5, section 6 and section 8, respectively, describe the framed link types in
greater detail.

Dataflow Programming for Networking 11

1.5 A Look at Framed Kernels

a b ...
Field
Swap
Kernel

...a b b a b a

incoming frames outgoing frames

Figure 8: A stream of data in a user-defined frame format has its fields interchanged by a nearly
protocol-agnostic field swapping Kernel.

Framed Kernel Interface

Network

FieldSwap
Kernel

Network Interface
SFP1

UDP

TCP
IP

Ethernet

Figure 9: The field swap Manager connects the Kernel input and output directly to the UDP streams of
network interface “SFP1”. DFE Link format conversions are handled by MaxCompiler automatically.

Choosing a framed link type for a stream implies that a UDP stream, for example, can be connected
to a network interface in the Manager, allowing remote Kernels to exchange data with hosts using
standard network infrastructure.

Depending on the application and network protocol used, some protocol-specific handling may be
needed. For example, UDP packets originating from multiple possible peers contain a “socket” field
to distinguish among them. The Framed Kernel interface supports methods for manipulating such
protocol-specific metadata.

1.5.3 Framed Kernel Example: Field Swap

A very simple example of something that can be done by a Framed Kernel is shown in Figure 8. This
Framed Kernel takes in frames that have two fields. For each frame received on the input, the Framed
Kernel transmits a frame on the output that has the same fields, but in the opposite order. A similar
technique might be used in an application such as an echo server that works by swapping the source
and destination address fields in every packet.

Although the field swap Kernel operates for the most part on a user-defined frame format, the
framed data is actually tunneled through UDP. Figure 9 shows the field swap Manager which connects
the Kernel’s input and output UDP streams directly to a network interface. The conversions between the
user-defined frame format, the UDP framed link type and Ethernet frames is handled by MaxCompiler
automatically.

The following two sections explain the implementation of the field swap Kernel and Manager in
greater detail. For in-depth information Framed Kernels please refer to Chapter 3.

12 Dataflow Programming for Networking

1 NETWORK PROGRAMMING OVERVIEW

1.5.4 Field Swap Kernel

Swapping two fields in a Framed Kernel is very simple and the bulk of the work can be done just by
these lines.

32 frameOut[”field a”] <== frameIn[”field b”];
33 frameOut[”field b”] <== frameIn[”field a”];

The <== is read as the connection operator. This code says that input field b is connected to output
field a and vice versa.

To make this formulation possible, a frame format with the two fields field a and field b is
declared as shown.

13 private static class TestFrameFormat extends FrameFormat {
14 public TestFrameFormat() {
15 super(ByteOrder.LITTLE ENDIAN);
16
17 addField(” field a ” , dfeUInt(32)) ;
18 addField(” field b ” , dfeUInt(32)) ;
19 }
20 }

An input stream carrying data of this format is declared like this.

25 TestFrameFormat testFrameFormat = new TestFrameFormat();
26
27 FrameData<TestFrameFormat> frameIn =
28 io . frameInput(”frameIn”, testFrameFormat, new UDPOneToOneRXType());

Because the underlying protocol is UDP, the stream contains a “socket” field, as noted above. The
socket field is not automatically set by the framed interface, so it is done explicitly. In this example, the
destination socket is set to the same as the source socket, which provides for the modified frames to be
routed back to their sender. Socket numbers are associated with UDP streams in the CPU code which
is omitted here for brevity.

Finally, the following lines declare and connect an output stream that is able to transmit data any
time the input is fully available.

37 io . frameOutput(”frameOut”, frameOut);

The complete listing of the Kernel source code is shown in Listing 1. The Manager code for this example
is explained in more detail in the next section.

1.5.5 Field Swap Manager

The only task left to do is to connect the field swap Kernel to a network interface, in order to allow it
to communicate with remote peer. The code for this is shown in Listing 2. The Standard Manager is
sufficient for the field swap design, because it has only a single Kernel, which is set by these lines.

15 Kernel k = new FieldSwapKernel(m.makeKernelParameters(”fieldSwapKernel”));
16 m.setKernel(k);

The UDP streams connecting the Kernel to the network interface depicted in Figure 9 are declared as
follows.

18 m.setIO(link(”frameIn”, UDP(NetworkConnection.CH2 SFP1, UDPConnectionMode.OneToOne)),
19 link (”frameOut”, UDP(NetworkConnection.CH2 SFP1, UDPConnectionMode.OneToOne)));

Dataflow Programming for Networking 13

1.5 A Look at Framed Kernels

Listing 1: Field swap example Kernel (FieldSwapKernel.maxj)
1 package fieldswap;
2
3 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
4 import com.maxeler.networking.v1.framed kernels.ByteOrder;
5 import com.maxeler.networking.v1.framed kernels.FrameData;
6 import com.maxeler.networking.v1.framed kernels.FrameFormat;
7 import com.maxeler.networking.v1.framed kernels.FramedKernel;
8 import com.maxeler.networking.v1.kernel types.UDPOneToOneRXType;
9 import com.maxeler.networking.v1.kernel types.UDPOneToOneTXType;

10
11 public class FieldSwapKernel extends FramedKernel {
12
13 private static class TestFrameFormat extends FrameFormat {
14 public TestFrameFormat() {
15 super(ByteOrder.LITTLE ENDIAN);
16
17 addField(” field a ” , dfeUInt(32)) ;
18 addField(” field b ” , dfeUInt(32)) ;
19 }
20 }
21
22 FieldSwapKernel(KernelParameters parameters) {
23 super(parameters);
24
25 TestFrameFormat testFrameFormat = new TestFrameFormat();
26
27 FrameData<TestFrameFormat> frameIn =
28 io . frameInput(”frameIn”, testFrameFormat, new UDPOneToOneRXType());
29 FrameData<TestFrameFormat> frameOut =
30 new FrameData<TestFrameFormat>(this, testFrameFormat, new UDPOneToOneTXType());
31
32 frameOut[”field a”] <== frameIn[”field b”];
33 frameOut[”field b”] <== frameIn[”field a”];
34 frameOut. linkfield [UDPOneToOneTXType.SOCKET] <==
35 frameIn. linkfield [UDPOneToOneRXType.SOCKET];
36
37 io . frameOutput(”frameOut”, frameOut);
38 }
39 }

The CH2 SFP1 parameter identifies the physical hardware connection used by this application. The
names in quotes match the names of the Kernel input and output streams.

14 Dataflow Programming for Networking

1 NETWORK PROGRAMMING OVERVIEW

Listing 2: Field swap example Manager (FieldSwapManager.maxj)
1 package fieldswap;
2
3 import static com.maxeler.maxcompiler.v2.managers.standard.Manager.UDP;
4 import static com.maxeler.maxcompiler.v2.managers.standard.Manager.link;
5
6 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
7 import com.maxeler.maxcompiler.v2.managers.standard.Manager;
8 import com.maxeler.maxcompiler.v2.managers.standard.Manager.NetworkConnection;
9 import com.maxeler.maxcompiler.v2.managers.standard.Manager.UDPConnectionMode;

10
11 public class FieldSwapManager {
12 public static void main(String[] args) {
13 Manager m = new Manager(new FieldSwapEngineParameters(args));
14
15 Kernel k = new FieldSwapKernel(m.makeKernelParameters(”fieldSwapKernel”));
16 m.setKernel(k);
17
18 m.setIO(link(”frameIn”, UDP(NetworkConnection.CH2 SFP1, UDPConnectionMode.OneToOne)),
19 link (”frameOut”, UDP(NetworkConnection.CH2 SFP1, UDPConnectionMode.OneToOne)));
20 m.build() ;
21 }
22 }

Dataflow Programming for Networking 15

1.5 A Look at Framed Kernels

16 Dataflow Programming for Networking

2
Getting Started

This chapter demonstrates how to use MaxIDE to import and run the Field swap application from sub-
subsection 1.5.3 and other networking examples provided with MaxCompiler.

2.1 Launching MaxIDE

To launch MaxIDE, enter the command maxide at a command prompt. The MaxIDE welcome page
should appear on the screen. If the welcome screen does not appear (for example because it has been
disabled in a previous MaxIDE session), you can return to the welcome page by clicking on the Help
menu at the top and selecting the Welcome option.

2.2 Importing the Examples

Clicking “Auto-import MaxCompiler tutorial projects” on the welcome page brings up the import wiz-
ard dialog box. The wizard allows you to import the project source code of any MaxCompiler tutorial
example or exercise into MaxIDE. To import the field swap example from subsubsection 1.5.3, select
“maxcompiler-network-tutorial”, “examples” and “network chap01 example1” and click Finish.

When the import is complete, MaxIDE switches to the MaxCompiler Project perspective and the
field swap example appears in the Project Explorer.

Dataflow Programming for Networking 17

2.3 Building and Running the Examples in MaxIDE

2.3 Building and Running the Examples in MaxIDE

The newly imported example project consists of CPU Code, Engine Code and Run Rules which can be
accessed by expanding the project hierarchy in the Project Explorer.

To build and run the field swap example in simulation, expand the Run Rules item, right-click on
Simulation and select the Run option. After compilation has finished, the example should execute
automatically and write its outputs to the MaxIDE console.

Building a project and running it on a DFE is done in a similar way using the DFE Run Rule.
Note however that the arguments to the CPU application very likely require adjustment to your specific
network setup.

2.4 Configuring Simulation for Networking

The networking examples provided with MaxCompiler can usually be run directly without the need for
further configuration. However, the DFE network simulation must be configured manually when creating
new networking projects from scratch or if the default settings provided with the examples conflict with
the local network configuration.

As pointed out subsubsection 1.1.2, the simulation uses Linux TAP devices to act as local network
interfaces with a point-to-point connection to one of the simulated DFE network interfaces (SFP1 or
SFP2). CPU applications can connect to the simulated DFE through the TAP devices using regular
BSD sockets. The hardware equivalent of this setup would be connecting a local NIC to one of the
DFE’s network interfaces using a crossover cable.

Although the TAP devices are created automatically by the MaxCompiler DFE simulator, they must
be enabled by the user by setting an IP address and network mask for each required TAP device. Which
TAP devices must be enabled is determined by the network interfaces used in the DFE design.

To set the IP address and netmask for a TAP device, double-click the Simulation Run Rule in the
Project Explorer. A dialog with Run Rule settings should appear on the screen as shown in Figure 10.
Tick the “Enable SFP1” or “Enable SFP2” box and enter the desired IP address and network mask.

8
The IP addresses specified in the Simulation Run Rule settings apply to the local TAP devices
only. To assign IP addresses to the DFE network interfaces, use the CPU API described in
subsection 4.3.

Note that the IP address must be chosen to reside on a different subnet from any other real or
virtual active connections. It is not possible to enable direct communication between the two simulated
DFE network interfaces by specifying IP addresses on the same subnet for the TAP devices.

The Run Rule settings dialog also allows the specification of an optional PCAP file name for each
TAP device. If a file name is supplied, all network traffic on the respective TAP device will be written to
the file automatically by the DFE simulator. An application such as Wireshark can be used to read and
debug the captured network traffic.

2.5 Building and Running the Examples outside MaxIDE

Although highly recommended, MaxIDE is not required for running the MaxCompiler networking ex-
amples. The source code for any project imported into MaxIDE is accessible in a directory under
your designated MaxIDE workspace directory (typically $HOME/workspace). Project directory hierar-
chies are organized and named identically to the hierarchy of headings in the Project Explorer panel

18 Dataflow Programming for Networking

2 GETTING STARTED

Figure 10: Screen shot of the Simulation Run Rule settings

(without spaces). Hence, under each project subdirectory, there are sub-directories named CPUCode,
EngineCode, and RunRules.

• The CPUCode directory contains C or C++ source files and header files for the project.

• The EngineCode directory contains a src subdirectory and possibly a bin subdirectory.

– The bin subdirectory stores compiled MaxJ class files, if any.

– The src subdirectory has exactly one subdirectory named after the project. This subdirec-
tory contains MaxJ source code files.

• The RunRules directory contains a subdirectory named DFE a subdirectory named Simulation,
each containing automatically generated configuration files and Makefiles.

To build a project outside of MaxIDE for a DFE or simulation, navigate to the corresponding DFE or
Simulation directory of the project hierarchy, and invoke the make utility using one of the automatically
generated Makefiles with an optional target.

• make – with no target builds either a simulation model or a DFE configuration .max file for the
application without running it.

• make startsim – starts a simulator if invoked from the Simulation directory and there is no
simulator already running, but has no effect if invoked in the DFE directory or when a simulator is
already running.

• make run – builds the application if necessary, and then runs it either in a DFE or in simulation,
depending on the directory.

Dataflow Programming for Networking 19

2.5 Building and Running the Examples outside MaxIDE

– For DFE runs, DFE hardware is needed.

– For simulation runs, an already running simulator started by make startsim is needed.

• make stopsim – invoked from the DFE directory has no effect. From the Simulation directory,
it either stops a simulator if one is running, or causes an error if not.

• make runsim – is equivalent to make startsim run stopsim

20 Dataflow Programming for Networking

3
Framed Kernels

Network protocols enable interoperability between applications on a wide range of hosts and across
a wide range of networks. This requires a rigid set of interfaces and a simple way to communicate
both data and metadata to the network and remote host(s). To this end, small chunks of data known
as “frames” or “packets” are combined with “headers” from the different network layers before being
transmitted.

These headers typically have a fixed or semi-fixed set of “fields” at well-known offsets from the start
of the header. This may also extend to user data as well, which may have a fixed or variable length.

The combination of in-band control, fixed-position fields, variable length fields and unpredictable
arrival time presents unique challenges to an otherwise static Dataflow model. MaxCompiler provides
Framed Kernels which greatly simplify dealing with data frames of varying length, and dealing with
fields in an intuitive way, regardless of the size of the underlying DFE link.

A Framed Kernel employs input and output streams that may be viewed as generalizations of the
streams used in ordinary Kernels, in that they carry words of variable widths apparently in constant
time.

This chapter provides the information you need to get started with Framed Kernels. After a short
introduction we present the field accumulator example Kernel which subsequently will be used in the
remaining sections to illustrate the features of a Framed Kernel.

Dataflow Programming for Networking 21

3.1 Introduction

3.1 Introduction

The Framed Kernel API is available by extending the FramedKernel class rather than the usual Kernel
class. It allows the programmer to create framed inputs and outputs using user-defined formats with
the FrameFormat class, and DFE link formats with the FramedLinkType class.

A Framed Kernel “runs” when a Frame is available on inputs that are “reading”. Once running, each
input and output will process either zero or one Frame(s) depending on the state of their control inputs.

Between frames, all stateful elements of the Framed Kernel (except memory elements, such as
mem.rom, mem.ram) are reset. This behavior can be changed on request to maintain state between
frames.

3.1.1 Field Concepts

Fields can either be fixed length or variable length. A fixed length field can be any basic (unstructured)
MaxCompiler type. All fixed-length fields will be presented co-incident at the start of the frame.

Variable length fields have an “underlying type”, and a granularity. These fields will be presented
over a number of cycles in the Kernel.

The frame format can be designed independently of the network communication protocol used for
carrying the frames. The same format can be carried by UDP, TCP, or even raw Ethernet depending
only on parameterization. MaxCompiler automatically generates hardware using pre-defined DFE link
formats for each of these protocols.

3.1.2 Timing Conventions

A crucial benefit of the Framed Kernel API is the timing of fields being presented.

• For Framed Kernels, time passes in discrete ticks. When a frame is transmitted to a Framed
Kernel, all of its fixed length fields are instantly available on the first tick. The first element of each
variable length field is also available on the first tick.

• Subsequent elements of variable length fields, if any, are delivered in subsequent tick, with no
more than one tick needed for each element.

These timing properties apply to frames of any size and format with any number of fields. It may
happen that a large frame takes longer to transmit than a small one in real time, but this difference is
dealt with by MaxCompiler. It’s common that a field is too long to be carried in one piece on a physical
DFE link. In this case, the field is automatically split across words.

3.1.3 Visualizing a Framed Kernel

The timing model presented by the Framed Kernel API is depicted informally in Figure 11. The figure
represents a situation in which incoming frames with fields a, b, and c are transformed to outgoing
frames with fields d and e by some unspecified computation. All fields have a fixed length.

The physical DFE links carrying the frames are 64 bits wide, but the frames are longer. The incoming
link delivers field a and part of field b in the first word, with the rest of field b and field c in the second
word. The outgoing link carries field d and part of field e first, and the rest of field e second. None
of these data partitioning operations is explicitly represented in the Kernel source code. The Kernel is
written as if fields a, b, and c are all available simultaneously as mathematical operands, and as if d and
e can be transmitted in parallel.

22 Dataflow Programming for Networking

3 FRAMED KERNELS

 Field e

Field a

Field c

64 bits

Field a Field b Field c

Field d Field e

Field d

64 bits

synchronization
framed output

framed input

Kernel

transmitted
sequentially

accessible
In parallel

Field b

Field b

transmitted
sequentially

Field e

1st input bus word

2nd input bus word

1st output bus word

2nd output bus word

Figure 11: How data carried in pieces by a fixed width link gets together inside a Framed Kernel

Dataflow Programming for Networking 23

3.2 Field Accumulator Example

3.2 Field Accumulator Example

Before looking at Framed Kernels in more detail we first introduce the field accumulator application
which will be used as an example throughout the following sections.

The field accumulator receives frames containing a variable number of integer fields (“items”) via
UDP. An additional “numItems” field indicates the actual number of items contained in the frame.

For each received frame, the Kernel calculates the sum of all items contained in that frame as well
as the total sum of all items received so far. The two sums are then transmitted back to the receiver. To
simplify the Kernel logic we assume that frames always contain an even number of items.

Network

Network Interface
SFP1

UDP

TCP
IP

UDP

Ethernet

Field
Accumulator

Kernel

CPU

DFE

PCIe

Figure 12: Block diagram of the field accumulator application

Figure 12 depicts a block diagram of the field accumulator application. Only the Kernel shown in
listing Listing 3 and the Manager shown in listing Listing 4 are written by the developer. A network
interface is generated automatically by MaxCompiler. The Manager effectively connects the Kernel to a
bi-directional UDP stream provided by the network interface.

The CPU does not participate in the steady state operation of the application and does not feature
in the Manager code. However, it invokes the API calls needed to launch and terminate the application,
including the source and destination of the UDP stream. This is further explained in section 4 and
section 5.

In order to form a self-contained example, the field accumulator CPU code also connects to the local
DFE via a conventional BSD socket, sends input datagrams to the DFE and receives output datagrams
generated by the DFE. Note that in practice, the DFE would usually communicate to a remote host and
not to the local host like in our example.

24 Dataflow Programming for Networking

3 FRAMED KERNELS

Listing 3: Field accumulator example Kernel (FieldAccumulatorKernel.maxj)
1 package fieldaccumulator;
2
3 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
4 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.Accumulator.Params;
5 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.Reductions;
6 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
7 import com.maxeler.networking.v1.framed kernels.ByteOrder;
8 import com.maxeler.networking.v1.framed kernels.FrameData;
9 import com.maxeler.networking.v1.framed kernels.FrameFormat;

10 import com.maxeler.networking.v1.framed kernels.FramedKernel;
11 import com.maxeler.networking.v1.kernel types.UDPOneToOneRXType;
12 import com.maxeler.networking.v1.kernel types.UDPOneToOneTXType;
13
14 public class FieldAccumulatorKernel extends FramedKernel {
15 static class DataIn extends FrameFormat {
16 DataIn() {
17 super(ByteOrder.LITTLE ENDIAN);
18 addField(”numItems”, dfeUInt(8));
19 addVariableLengthField(”items”, dfeUInt(8) , 1, 255, 2);
20 }
21 }
22
23 static class DataOut extends FrameFormat {
24 DataOut() {
25 super(ByteOrder.LITTLE ENDIAN);
26 addField(”totalItems ” , dfeUInt(32)) ;
27 addField(”sum”, dfeUInt(32));
28 }
29 }
30
31 FieldAccumulatorKernel(KernelParameters parameters) {
32 super(parameters);
33
34 FrameData<DataIn> frameIn = io.frameInput(”frameIn”, new DataIn(), new UDPOneToOneRXType());
35
36 frameIn.setSizeForVariableField(”items”, frameIn[”numItems”]);
37
38 DFEVar cycleCount = control.count.simpleCounter(8);
39 DFEVar beyondLastItem = cycleCount > ((frameIn[”numItems”] - 1) >> 1);
40
41 DFEVar currentSum = frameIn.getAsVector(”items”)[0].cast(dfeUInt(32)) + frameIn.getAsVector(”items”)[1].cast(dfeUInt(32));
42
43 Params sumAccParams =
44 Reductions.accumulator.makeAccumulatorConfig(dfeUInt(32)).withEnable(˜beyondLastItem);
45
46 DFEVar sum = Reductions.accumulator.makeAccumulator(currentSum, sumAccParams);
47
48 Params itemsAccParams =
49 Reductions.accumulator.makeAccumulatorConfig(dfeUInt(32)).withEnable(cycleCount === 0);
50
51 pushResetBetweenFrames(false);
52 DFEVar totalItems = Reductions.accumulator.makeAccumulator(
53 frameIn[”numItems”].cast(dfeUInt(32)),
54 itemsAccParams);
55 popResetBetweenFrames();
56
57 FrameData<DataOut> frameOut = new FrameData<DataOut>(this, new DataOut(), new UDPOneToOneTXType());
58
59 frameOut[”sum”] <== sum;
60 frameOut[”totalItems”] <== totalItems;
61 frameOut. linkfield [UDPOneToOneTXType.SOCKET] <==
62 frameIn. linkfield [UDPOneToOneRXType.SOCKET];
63
64 io . frameOutput(”frameOut”, frameOut, constant.var(true), beyondLastItem);
65 }
66 }

Dataflow Programming for Networking 25

3.2 Field Accumulator Example

Listing 4: Field accumulator example Manager (FieldAccumulatorManager.maxj)
1 package fieldaccumulator;
2
3 import static com.maxeler.maxcompiler.v2.managers.standard.Manager.UDP;
4 import static com.maxeler.maxcompiler.v2.managers.standard.Manager.link;
5
6 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
7 import com.maxeler.maxcompiler.v2.managers.standard.Manager;
8 import com.maxeler.maxcompiler.v2.managers.standard.Manager.NetworkConnection;
9 import com.maxeler.maxcompiler.v2.managers.standard.Manager.UDPConnectionMode;

10
11 public class FieldAccumulatorManager {
12 public static void main(String[] args) {
13 Manager m = new Manager(new FieldAccumulatorEngineParameters(args));
14
15 Kernel k = new FieldAccumulatorKernel(m.makeKernelParameters(”fieldAccumulatorKernel”));
16 m.setKernel(k);
17
18 m.setIO(link(”frameIn”, UDP(NetworkConnection.CH2 SFP1, UDPConnectionMode.OneToOne)),
19 link (”frameOut”, UDP(NetworkConnection.CH2 SFP1, UDPConnectionMode.OneToOne)));
20 m.build() ;
21 }
22 }

26 Dataflow Programming for Networking

3 FRAMED KERNELS

3.3 Frame Format

A flexible style of data description enables Framed Kernel streams to cater for many applications. The
data structure is described as a sequence of arbitrarily many fields using the FramedFormat class.
Each field is specified by a string name and a type, the type determining the size and format of the field.

The field accumulator Kernel uses two FramedFormats. DataIn describes the input frames re-
ceived from a remote peer consisting of a fixed length integer field numItems and a variable length
integer field items:

15 static class DataIn extends FrameFormat {
16 DataIn() {
17 super(ByteOrder.LITTLE ENDIAN);
18 addField(”numItems”, dfeUInt(8));
19 addVariableLengthField(”items”, dfeUInt(8) , 1, 255, 2);
20 }
21 }

DataOut specifies the output frames that are transmitted back to the remote peer and contains the
two fixed length integer fields totalItems and sum:

23 static class DataOut extends FrameFormat {
24 DataOut() {
25 super(ByteOrder.LITTLE ENDIAN);
26 addField(”totalItems ” , dfeUInt(32)) ;
27 addField(”sum”, dfeUInt(32));
28 }
29 }

The characteristics of fixed and variable length fields are further described in the next two sections.

3.3.1 Fixed Length Fields

The following method is used for defining the fixed length fields in a frame format:

void addField(String name, DFEType type)

This method is invoked once for each field, from within the constructor method of a class that
extends the FrameFormat class, as shown by the field accumulator code in the previous section.

The first field declared is the first to be transmitted on the stream, and the rest follow in order.

W To design your application for compatibility with an existing protocol message format, list the
fields in the order the protocol requires.

3.3.2 Variable Length Fields

For more general types of data, the following method expresses a field of variable length, for example
a character string or a sequence of numbers.

void addVariableLengthField(String name, DFEType type, int minElements, int maxElements)

The minElements and maxElements parameters are the minimum and maximum numbers of elements
ever allowed in a field of this type. They must be non-negative, and should be no more general than
necessary due to hardware resource overheads incurred.

Dataflow Programming for Networking 27

3.4 Stream Format

The addVariableLengthField method is invoked similarly to addField (subsubsection 3.3.1),
as part of a sequence within the constructor of a class extending FrameFormat. Fixed and variable
length fields may be freely mixed.

Note that our field accumulator example uses an advanced version of addVariableLengthField
with an additional parameter to specify a field access granularity. The concept of granularities is further
explained in subsubsection 3.6.3.

The specification of a variable length field is not complete without further information. Although the
minimum and maximum possible lengths are known, the actual length of a given field at run time also
needs to be communicated somehow. The following method helps in this regard:

void setSizeForVariableField(String fieldName, DFEVar numElements)

This method is called from the Kernel and associates a hardware variable containing a length with a
variable length field. The variable must be an integer type of sufficient width to represent the number of
elements. In the field accumulator example this variable is derived from the fixed length field numItems:

36 frameIn.setSizeForVariableField(”items”, frameIn[”numItems”]);

In theory the variable could be calculated in any way at all by a Kernel, subject only to the constraint
that it contain the actual correct number of elements in the field.

The setSizeForVariableField method is applicable to objects of type FrameData<T>, where T
is a class extending FrameFormat (e.g., DataIn in our example). A useful idiom for defining the length
of a field as another field in the same frame is the following,

f .setSizeForVariableField(”items”, f [”numItems”]);

where f is an object instantiated previously by one of these methods

FrameData<T> f = io.frameInput(· · ·);
FrameData<T> f = new FrameData<T> (· · ·);

which are explained in subsection 3.5. The field specifying the length must appear before the related
variable length field in the frame. Note the usage of square brackets and a field identifier to retrieve a
DFEVar for a field in a frame.

3.4 Stream Format

As we have seen in the previous section, frame formats purely define the structure of user data without
committing to an underlying network protocol and any associated metadata. Only when instantiating
network streams by creating frame IOs (see subsection 3.5) are the frame formats tied to a stream
format by specifying protocol-dependent DFE Link type.

Link types define the metadata fields carried by a stream alongside the user data. While some of
these fields need to be handled explicitly by the developer (see the sections listed in Table 1), Framed
Kernels automatically interpret the control metadata needed to transmit variable-length network packets
over a fixed-width stream. For this purpose each packet is split across multiple fixed width words that
can go through a stream, along with control metadata to signal the beginning and end of a packet.

28 Dataflow Programming for Networking

3 FRAMED KERNELS

Protocol Type Specification

TCP TCPType subsection 6.1

UDP UDPOneToManyRXType subsubsection 5.2.2
UDPOneToManyTXType subsubsection 5.2.1
UDPOneToOneRXType subsubsection 5.1.2
UDPOneToOneTXType subsubsection 5.1.1

Ethernet EthernetRXType subsection 8.1
EthernetTXType subsection 8.2

Table 1: The choice of a DFE link type to carry framed data is orthogonal to the format.

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

first
word

next nine words
last
word

...

0

data

eof

sof

mod

Figure 13: Control metadata in the sequence of 11 words needed for an 84 byte packet

The following fields are common to all MaxCompiler network streams and are handled automatically by
Framed Kernels:

• data contains eight bytes of payload data, unless EOF is true, in which case it may contain fewer
than eight but at least one byte. If it contains fewer than eight bytes, they should be located
contiguously starting from bit position zero. The data field never contains data from more than
one packet.

• mod is ignored when EOF is false. When EOF is true, mod contains the number of bytes of
payload data in the data field unless there are eight bytes, in which case mod contains zero.

• EOF is true only when the data field contains the last byte of the current packet.

• SOF is true only when the data field contains the first bytes of the current packet.

Figure 13 shows an example of a variable length packet transmitted over a fixed-width stream using
the control metadata fields introduced above. A packet of 84 bytes takes 11 cycles to be transmitted,

Dataflow Programming for Networking 29

3.5 IOs

with eight bytes of frame data transmitted on each of the first ten cycles, and four on the eleventh. In
the first word, SOF is 1, EOF is 0. In the next nine words, SOF is 0 and EOF is 0. In the eleventh
word, SOF is 0, EOF is 1 and mod is 4. The last four bytes in the data field of the eleventh word are
unoccupied.

3.5 IOs

The following two sections show how to instantiate network streams carrying framed data. Different
conventions apply to input and output streams.

3.5.1 Input Streams

This method instantiates a stream to carry frames of the given format.

public FrameData<FrameFormatT> io.frameInput(
String name,
FrameFormatT type,
FramedLinkType linkType)

The name parameter is the name used by the Manager or CPU code to refer to the stream if necessary.
The type parameter is an instance of a class extending FrameFormat, and the link type is an instance
of one of those listed in Table 1. In our example we use the following line to add an input called “frameIn”
carrying frames in the DataIn format over UDP:

34 FrameData<DataIn> frameIn = io.frameInput(”frameIn”, new DataIn(), new UDPOneToOneRXType());

The io.frameInput() method returns a FrameData object which is used to access the frames
received on the input. Individual fields can be retrieved through the index operator []. In the field
accumulator example we use the numItems field and a cycle counter to keep track of whether we are
beyond the last item in a frame:

38 DFEVar cycleCount = control.count.simpleCounter(8);
39 DFEVar beyondLastItem = cycleCount > ((frameIn[”numItems”] - 1) >> 1);

3.5.2 Output Streams

For output streams, the following method is used to transmit a frame on the stream of the given name.

public void io.frameOutput(
String name,
FrameData<FrameFormatT> frameData

As for frame input streams, the name parameter is the name used by the Manager or CPU code to
identify the output stream.

The parameter dataOut is a FrameData instance parameterized with a user-defined FrameFormat.
In our field accumulator example we use DataOut from subsection 3.3 as the frame format and UDP
as the underlying DFE link type (see Table 1) when instantiating the output FrameData:

57 FrameData<DataOut> frameOut = new FrameData<DataOut>(this, new DataOut(), new UDPOneToOneTXType());

This is an example of usage of the FrameData constructor

public FrameData(FramedKernel kernel, FrameFormatT frameFormat, FramedLinkType framedLinkType)

30 Dataflow Programming for Networking

3 FRAMED KERNELS

The following lines from the field accumulator Kernel show how to assign values to the fields in
frameOut (i.e., an instance of the FrameData class):

59 frameOut[”sum”] <== sum;
60 frameOut[”totalItems”] <== totalItems;

That is, a field is identified by the index operator [] and the field name in quotes, and assigned the
value of an expression using the connection operator <==.

DFE Link format specific metadata is accessible in the same way through the linkfield member
of FrameData. Our field accumulator example uses linkfield to set the destination UDP socket to be
the same as the source socket, which effectively transmits the Kernel output back to the remote peer:

61 frameOut. linkfield [UDPOneToOneTXType.SOCKET] <==
62 frameIn. linkfield [UDPOneToOneRXType.SOCKET];

3.6 Advanced Features

Several additional features described in this section can make Framed Kernels more convenient or
efficient in some applications. These include controlled inputs and outputs, persistent state capabilities,
and adjustable granularity for variable length fields.

3.6.1 Controlled Inputs and Outputs

Controlled inputs are used when a Kernel needs to do some work between frames that precludes
accepting a new frame on every tick. By disabling the input, the Kernel may continue running while
receipt of the next incoming frame, if any, is postponed.

A controlled input requires a Boolean DFEVar to enable or disable it, and another Boolean DFEVar
to indicate whether the enabling variable should be heeded or ignored. The frameInput method
mentioned in subsubsection 3.5.1 lets you declare a controlled input by passing these variables as two
optional parameters.

public FrameData<FrameFormatT> io.frameInput(
String name,
FrameFormatT type,
FramedLinkType linkType,
DFEVar enableDecision,
DFEVar enableDecisionReady)

The enableDecision parameter is used to enable or disable data flowing through the input.
enableDecision is only sampled when the enableDecisionReady parameter is set to true and
ignored otherwise. Note that enableDecisionReady must be set to true for every frame eventually
and once set, changing it has no further effect.

W
The enableDecisionReady parameter should not be used for permanently disabling a stream,
because doing so could stall the Kernel. See subsubsection 3.6.1 for recommendations regard-
ing controlled outputs.

Table 2 shows an example where an input is enabled in tick 4. enableDecision is ignored in all
ticks but tick 4, when enableDecisionReady is asserted. Similarly, in the example in Table 3 an input
is disabled in tick 6.

Dataflow Programming for Networking 31

3.6 Advanced Features

Tick 0 1 2 3 4 5 6 7 8 9

enableDecision x x x x 1 x x x x x

enableDecisionReady 0 0 0 0 1 0 0 0 0 0

Table 2: An input is enabled in tick 4.

Tick 0 1 2 3 4 5 6 7 8 9

enableDecision x x x x x x 0 x x x

enableDecisionReady 0 0 0 0 0 0 1 0 0 0

Table 3: An input is disabled in tick 6.

Controlled outputs are useful when an output is to be produced on some ticks but not all. A con-
trolled output is created by using the enableDecision and enableDecisionReady optional parame-
ters in the frameOutput method as shown below.

public <FrameFormatT extends FrameFormat> void io.frameOutput(
String name,
FrameData<FrameFormatT> frameData,
DFEVar enableDecision,
DFEVar enableDecisionReady)

The enableDecision and enableDecisionReady parameters are interpreted the same way as
for controlled inputs.

In our field accumulator example we add an output as follows, indicating that the frame is ready to
be sent when we have processed the last data item:

64 io . frameOutput(”frameOut”, frameOut, constant.var(true), beyondLastItem);

3.6.2 Persistent State

Normally a Framed Kernel maintains no persistent state between frames, but this behavior can be
overridden by bracketing the declarations of persistent variables with these method invocations.

void pushResetBetweenFrames(boolean enableReset)
void popResetBetweenFrames()

The enableReset parameter specifies whether the state should be reset between frames. If it is false,
then variables retain their states between frames.

32 Dataflow Programming for Networking

3 FRAMED KERNELS

In our field accumulator example we want to ensure that the accumulator used to sum up the total
number of items received retains its value across frames. This is done as follows:

48 Params itemsAccParams =
49 Reductions.accumulator.makeAccumulatorConfig(dfeUInt(32)).withEnable(cycleCount === 0);
50
51 pushResetBetweenFrames(false);
52 DFEVar totalItems = Reductions.accumulator.makeAccumulator(
53 frameIn[”numItems”].cast(dfeUInt(32)),
54 itemsAccParams);
55 popResetBetweenFrames();

3.6.3 Granularity

Normally each element of a variable length field in a frame takes one tick to be received. When the
elements are small, it may save time to receive more than one of them in each tick. The number of
elements to receive in each tick can be specified by the optional accessGranularity parameter to
the FrameFormat addVariableLengthField method:

void addVariableLengthField(String name, DFEType type, int minElements, int maxElements, int accessGranularity)

When a granularity greater than one is chosen, the additional field elements are accessible through
the following method of the FrameData class:

DFEVector<DFEVar> getAsVector(String fieldName)

The size of the returned DFEVector is equal to the granularity. However, in the last tick of a frame,
the DFEVector will not be completely filled if the number of field elements in the frame is not divisible
by the chosen granularity.

As shown in subsection 3.3, the field accumulator Kernel uses a granularity of two for the items

field:

15 static class DataIn extends FrameFormat {
16 DataIn() {
17 super(ByteOrder.LITTLE ENDIAN);
18 addField(”numItems”, dfeUInt(8));
19 addVariableLengthField(”items”, dfeUInt(8) , 1, 255, 2);
20 }
21 }

Consequently, we need to build the sum two items on each tick which we pass to an accumulator.
The accumulator keeps track of the sum of items in the current frame and is automatically reset between
frames:

41 DFEVar currentSum = frameIn.getAsVector(”items”)[0].cast(dfeUInt(32)) + frameIn.getAsVector(”items”)[1].cast(dfeUInt(32));
42
43 Params sumAccParams =
44 Reductions.accumulator.makeAccumulatorConfig(dfeUInt(32)).withEnable(˜beyondLastItem);
45
46 DFEVar sum = Reductions.accumulator.makeAccumulator(currentSum, sumAccParams);

Dataflow Programming for Networking 33

3.6 Advanced Features

34 Dataflow Programming for Networking

4
IP Connectivity

This chapter shows how a DFE is integrated into a networking CPU application with the aid of the SLiC
API. The field accumulator example from subsection 3.2 is used to illustrate the steps required to set
up a DFE and perform basic network layer configuration. Configuring the network layer is a prerequisite
for connecting a DFE to a remote peer which is explained in section 5 for UDP and section 6 for TCP.

4.1 The Role of SLiC

After creating a Kernel and Manager configuration using MaxCompiler, the next step in the develop-
ment of a networking dataflow implementation is integrating the CPU application with SLiC. SLiC is
the C API for running the DFE and configuring various aspects of it, including the Maxeler networking
infrastructure. The steps a CPU networking application will typically need to perform are:

• Open a connection to a DFE or simulated system.

• Configure the dataflow engine.

• Set up the networking infrastructure and connecting to one or several remote peers. Once the
network connections are established, the CPU will often not participate in the steady state oper-
ation of the DFE in order to maximize performance.

Dataflow Programming for Networking 35

4.2 General SLiC Setup

• After the application-specific operations on the DFE are completed, close any previously estab-
lished network connections and the DFE.

In the next two sections we will look at how the CPU code for the field accumulator example from
subsection 3.2 performs the steps listed above. The full CPU code is shown in Listing 9 and Listing 10.

W In networking applications, engines are implicitly reset when they are allocated. Subsequently,
SLiC actions do not automatically reset engines when they are executed.

4.2 General SLiC Setup

The field accumulator example first loads the .max file created by the build process using the following
line:

79 max file t ∗maxfile = FieldAccumulatorUDPChap04 init();

Next, we call max load() to open and configure the dataflow engine:

80 max engine t ∗ engine = max load(maxfile, ”∗”);

In our example, the argument “*” of will direct max load() to return the appropriate hardware or simu-
lation engine name for the profile currently used to run the application.

We are now ready to configure the Maxeler networking infrastructure and start the actual application-
specific processing. The configuration of the network layer components is explained in the following
section.

Once the field accumulator is done processing, we simply close the dataflow engine and free up the
resources used by the .max file:

102 max unload(engine);
103 max file free (maxfile) ;

36 Dataflow Programming for Networking

4 IP CONNECTIVITY

Listing 5: TCP Field accumulator example CPU code (FieldAccumulatorCpuCode.c)
1 #define GNU SOURCE
2
3 #include <unistd.h>
4 #include <stdio.h>
5 #include <string.h>
6 #include <sys/socket.h>
7 #include <netinet/in.h>
8
9 #include <MaxSLiCInterface.h>

10 #include ”FieldAccumulatorUDPChap04.h”
11
12
13 typedef struct {
14 uint32 t total items ;
15 uint32 t sum;
16 } attribute ((packed)) frame t;
17
18
19 static int create cpu udp socket(struct in addr ∗ local ip , struct in addr ∗remote ip, int port) {
20 int sock = socket(AF INET, SOCK DGRAM, 0);
21
22 struct sockaddr in cpu;
23 memset(&cpu, 0, sizeof(cpu));
24 cpu.sin family = AF INET;
25 cpu.sin port = htons(port) ;
26
27 cpu.sin addr = ∗ local ip ;
28 bind(sock, (struct sockaddr ∗)&cpu, sizeof(cpu));
29
30 cpu.sin addr = ∗remote ip;
31 connect(sock, (const struct sockaddr∗) &cpu, sizeof(cpu));
32
33 return sock;
34 }
35
36
37 static void exchangeItems(int sock, const uint8 t∗ items, uint8 t num items) {
38 static uint32 t total items = 0;
39
40 uint8 t data to send[1 + UINT8 MAX];
41 data to send[0] = num items;
42 memcpy(data to send + 1, items, num items);
43
44 send(sock, &data to send, num items + 1, 0);
45
46 frame t data received;
47
48 recv(sock, &data received, sizeof(data received), 0);
49
50 printf (”Received: total items = %u, sum = %u\n”, data received.total items, data received.sum);
51
52 total items += num items;
53
54 uint32 t sum = 0;
55 for (int i = 0; i < num items; i++)
56 sum += items[i];
57
58 if (data received. total items != total items || data received.sum != sum) {
59 printf (”Error! Expected: total items = %u, sum = %u\n”, total items, sum);
60 exit (1) ;
61 }
62 }

Dataflow Programming for Networking 37

4.2 General SLiC Setup

Listing 6: TCP Field accumulator example CPU code (FieldAccumulatorCpuCode.c)
65 int main(int argc, char ∗argv[]) {
66 if (argc != 4) {
67 printf (”Usage: %s <dfe ip> <cpu ip> <netmask>\n”, argv[0]);
68 return 1;
69 }
70
71 struct in addr dfe ip ;
72 inet aton(argv [1], &dfe ip) ;
73 struct in addr cpu ip;
74 inet aton(argv [2], &cpu ip);
75 struct in addr netmask;
76 inet aton(argv [3], &netmask);
77 const int port = 5007;
78
79 max file t ∗maxfile = FieldAccumulatorUDPChap04 init();
80 max engine t ∗ engine = max load(maxfile, ”∗”);
81
82 max ip config(engine, MAX NET CONNECTION CH2 SFP1, &dfe ip, &netmask);
83 max udp socket t ∗dfe socket = max udp create socket(engine, ”udp ch2 sfp1”);
84 max udp bind(dfe socket, port);
85 max udp connect(dfe socket, &cpu ip, port);
86
87 int cpu socket = create cpu udp socket(&cpu ip, &dfe ip, port) ;
88
89 uint8 t items1[] = { 2, 5, 8, 1 };
90 exchangeItems(cpu socket, items1, sizeof(items1));
91
92 uint8 t items2[] = { 50, 2 };
93 exchangeItems(cpu socket, items2, sizeof(items2));
94
95 uint8 t items3[] = { 1, 2, 3, 4, 5, 6 };
96 exchangeItems(cpu socket, items3, sizeof(items3));
97
98 close(cpu socket);
99

100 max udp close(dfe socket);
101
102 max unload(engine);
103 max file free (maxfile) ;
104
105 return 0;
106 }

38 Dataflow Programming for Networking

4 IP CONNECTIVITY

4.3 Network Layer Setup

For many applications it is sufficient to just call max ip config() to perform the minimally required
network layer setup.

void max ip config(
max engine t ∗engine,
max net connection t connection,
const struct in addr ∗ip,
const struct in addr ∗netmask);

This function associates a physical network connection of the DFE with an IP address and network
mask and brings up the Maxeler networking infrastructure. It must be called prior to using any other
networking-related parts of the SLiC API. Like many other functions performing networking-related
configuration, max ip config() may only be called once, during the setup phase of an application.

82 max ip config(engine, MAX NET CONNECTION CH2 SFP1, &dfe ip, &netmask);

The basic network layer setup shown in this section is common to all networking applications, in-
dependent of whether their kernels use UDP, TCP or raw Ethernet as a DFE link type. All link type
specific parts of the SLiC API are introduced in section 5 for UDP, section 6 for TCP and section 8 for
raw Ethernet. Advanced network layer options which might be required by specialized applications are
introduced in section 9.

Dataflow Programming for Networking 39

4.3 Network Layer Setup

40 Dataflow Programming for Networking

5
UDP Packet Processing

This chapter introduces UDP processing concepts and techniques in the context of the Maxeler network
infrastructure. The first part of the chapter shows details on the different UDP stream formats available
in MaxCompiler. Only stream fields requiring manual handling by the developer are discussed here. An
overview of the automatically handled fields common to all MaxCompiler network streams is provided
in subsection 3.4.

The UDP infrastructure offers two distinct types of streams supporting different use cases:

• One-to-one streams exchange all UDP packets with the same remote peer. The remote peer is
set by the CPU code during initialization. One-to-one streams allow for simpler DFE designs but
offer less flexibility.

• One-to-many streams can exchange UDP packets with any remote peer. The remote peer is
dynamically set by the DFE for each UDP packet. One-to-many streams offer greater flexibility
but may require more complex DFE designs.

The second part of this chapter shows how to configure UDP streams from the CPU via the SLiC
API, using the field accumulator application introduced in subsection 3.2 as an example.

Dataflow Programming for Networking 41

5.1 One-to-one mode UDP streams

Field Offset (bits) Width (bits)

data 0 64
mod 64 3
eof 67 1
sof 68 1
socket 69 8

Table 4: UDP one-to-one mode transmit stream format

Field Offset (bits) Width (bits)

data 0 64
mod 64 3
eof 67 1
sof 68 1
checksum bad 69 1
socket 70 8

Table 5: UDP one-to-one mode receive stream format

5.1 One-to-one mode UDP streams

In one-to-one mode, all outgoing UDP packets are sent to and received from the same remote peer
set by the CPU code. Applications using this mode do not specify destination addresses in the data
streams, because the remote peer’s address parameters are stored as constants when the application
initiates the communication.

5.1.1 One-to-one transmit format

The format used by streams carrying UDP data in the direction toward the network in one-to-one mode
is shown in Table 4 (MaxJ class UDPOneToOneTXType). Applications transmitting data on a stream in
this format must set the following metadata field:

• socket is a number between 0 and 15 identifying the socket from which the packet is sent to the
remote peer. Applications can obtain the socket number for any open connection through an API
call (subsubsection 5.3.1). The socket number must only be specified at the start of a packet,
when SOF is true. It is ignored at all other times. Specifying an invalid socket number causes the
packet not to be transmitted. It needs to be specified only at the start per packet, when SOF is
true. It is ignored at all other times.

5.1.2 One-to-one receive format

The format used by streams carrying UDP data in the direction from the network in one-to-one mode is
shown in Table 5 (MaxJ class UDPOneToOneRXType). Most of the fields are similar to the transmit format
described in subsubsection 5.1.1, but there is an additional checksum field. Applications receiving data
from one of these streams should interpret the fields as follows.

• checksum bad is true only if the current packet is found to contain an error based on the check-
sum, and manual checksum verification is enabled. If automatic checksum verification is used

42 Dataflow Programming for Networking

5 UDP PACKET PROCESSING

Field Offset (bits) Width (bits)

data 0 64
mod 64 3
eof 67 1
sof 68 1
dst mac 69 48
dst ip 117 32
dst port 149 16
socket 165 8

Table 6: UDP one-to-many mode transmit stream format

(the default), this field is always false as bad packets are dropped before reaching the Kernel.
The checksum bad field is defined whenever EOF is true.

• socket contains a number between 0 and 15 identifying the socket on which the packet was
received, which is useful if the local application is communicating with the remote peer on more
than one port. Applications can obtain the socket number for any open connection through an
CPU API call (subsubsection 5.3.1). Although the socket number may vary between packets, it is
always the same throughout any given packet.

5.2 One-to-many Mode UDP Streams

In the one-to-many mode, UDP streams carry similar information to the one-to-one mode streams, and
also include the destination address parameters for the remote peer. The one-to-many mode stream
formats are described in greater detail below.

5.2.1 One-to-many Transmit Format

The format used for multi-mode UDP streams carrying data outward to the network is depicted in Table 6
(MaxJ class UDPOneToManyTXType). The socket field has identical semantics to its counterpart in
subsubsection 5.1.1. The destination address fields are for the MAC address, IP address and port of
the remote peer to which the packet is sent and must be specified in network byte order.

Although the address fields can differ between packets, they are constant within each packet.
Therefore, the sender need not specify them except during the first word of each packet, when SOF is
true. They are ignored when SOF is false.

5.2.2 One-to-many Receive Format

The format used for streams carrying incoming UDP traffic from the network in one-to-many mode is
depicted in Table 7 (MaxJ class UDPOneToManyRXType). The checksum bad and socket fields have
identical interpretations to their counterparts in subsubsection 5.1.2. The source address fields are
similar to those of subsubsection 5.2.1, except that they are always valid (not just during SOF).

5.3 UDP CPU API Summary

The API functions sufficient for most applications using UDP are listed in this section for reference. Note
that all sockets needed by an application during its entire run must be created before any are used. This

Dataflow Programming for Networking 43

5.3 UDP CPU API Summary

Field Offset (bits) Width (bits)

data 0 64
mod 64 3
eof 67 1
sof 68 1
src mac 69 48
src ip 117 32
src port 149 16
checksum bad 165 1
socket 166 8

Table 7: UDP one-to-many mode receive stream format

limitation is necessary because certain initialization functions performed automatically when a socket is
first used are not exposed by the API.

In the following sections, some of the fundamental API functions are illustrated by the field accumu-
lator example from subsection 3.2. We have seen in section 4 how the basic SLiC and network layer
setup is performed. What remains to be done is the configuration of the single UDP one-to-one stream
used in the example. The CPU code for the field accumulator is shown in Listing 9 and Listing 10.

5.3.1 Socket Management

A data structure known as a socket is used to track the state of the UDP protocol handling hardware. A
reference to a socket in the form of a pointer of type max udp socket t* is needed for most API calls.
A pointer of this type can be generated by the following function, which also performs some hardware
initialization.

max udp socket t∗ max udp create socket (max engine t ∗engine, const char ∗stream name)

The engine parameter is an engine handle returned by a prior call to max load, and the stream pa-
rameter is the name of the relevant UDP stream specified in the Manager.

Getting a socket number When a socket is created by the function above, a socket number is as-
signed to it automatically. The socket number appears in the socket field of every stream word passing
through the connection, as shown in Table 4 through Table 7, in case it is needed by the application to
distinguish among multiple connections carried by the same stream. To obtain the number assigned to
a given socket, use this function.

uint16 t max udp get socket number (max udp socket t∗ udp socket)

The socket number returned by max udp get socket can be passed to a Kernel, for example, using a
scalar input.

Setting a socket number As an alternative to letting the socket number be chosen by the run time
system, a socket can be created with a socket number between 0 and 15 using the following function.

max udp socket t∗ max udp create socket with number (
max engine t∗ engine,
const char∗ stream name,
uint16 t socket number)

44 Dataflow Programming for Networking

5 UDP PACKET PROCESSING

Listing 7: UDP Field accumulator example CPU code (FieldAccumulatorCpuCode.c)
1 #define GNU SOURCE
2
3 #include <string.h>
4 #include <unistd.h>
5 #include <stdio.h>
6 #include <sys/socket.h>
7 #include <netinet/in.h>
8
9 #include <MaxSLiCInterface.h>

10 #include ”FieldAccumulatorUDPChap05.h”
11
12
13 typedef struct {
14 uint32 t total items ;
15 uint32 t sum;
16 } attribute ((packed)) frame t;
17
18
19 static int create cpu udp socket(struct in addr ∗ local ip , struct in addr ∗remote ip, int port) {
20 int sock = socket(AF INET, SOCK DGRAM, 0);
21
22 struct sockaddr in cpu;
23 memset(&cpu, 0, sizeof(cpu));
24 cpu.sin family = AF INET;
25 cpu.sin port = htons(port) ;
26
27 cpu.sin addr = ∗ local ip ;
28 bind(sock, (struct sockaddr ∗)&cpu, sizeof(cpu));
29
30 cpu.sin addr = ∗remote ip;
31 connect(sock, (const struct sockaddr∗) &cpu, sizeof(cpu));
32
33 return sock;
34 }
35
36
37 static void exchangeItems(int sock, const uint8 t∗ items, uint8 t num items) {
38 static uint32 t total items = 0;
39
40 uint8 t data to send[1 + UINT8 MAX];
41 data to send[0] = num items;
42 memcpy(data to send + 1, items, num items);
43
44 send(sock, &data to send, num items + 1, 0);
45
46 frame t data received;
47
48 recv(sock, &data received, sizeof(data received), 0);
49
50 printf (”Received: total items = %u, sum = %u\n”, data received.total items, data received.sum);
51
52 total items += num items;
53
54 uint32 t sum = 0;
55 for (int i = 0; i < num items; i++)
56 sum += items[i];
57
58 if (data received. total items != total items || data received.sum != sum) {
59 printf (”Error! Expected: total items = %u, sum = %u\n”, total items, sum);
60 exit (1) ;
61 }
62 }

Dataflow Programming for Networking 45

5.3 UDP CPU API Summary

Listing 8: UDP Field accumulator example CPU code (FieldAccumulatorCpuCode.c)
65 int main(int argc, char ∗argv[]) {
66 if (argc != 4) {
67 printf (”Usage: %s <dfe ip> <cpu ip> <netmask>\n”, argv[0]);
68 return 1;
69 }
70
71 struct in addr dfe ip ;
72 inet aton(argv [1], &dfe ip) ;
73 struct in addr cpu ip;
74 inet aton(argv [2], &cpu ip);
75 struct in addr netmask;
76 inet aton(argv [3], &netmask);
77 const int port = 5007;
78
79 max file t ∗maxfile = FieldAccumulatorUDPChap05 init();
80 max engine t ∗ engine = max load(maxfile, ”∗”);
81
82 max ip config(engine, MAX NET CONNECTION CH2 SFP1, &dfe ip, &netmask);
83
84 max udp socket t ∗dfe socket = max udp create socket(engine, ”udp ch2 sfp1”);
85 max udp bind(dfe socket, port);
86 max udp connect(dfe socket, &cpu ip, port);
87
88 int cpu socket = create cpu udp socket(&cpu ip, &dfe ip, port) ;
89
90 uint8 t items1[] = { 2, 5, 8, 1 };
91 exchangeItems(cpu socket, items1, sizeof(items1));
92
93 uint8 t items2[] = { 50, 2 };
94 exchangeItems(cpu socket, items2, sizeof(items2));
95
96 uint8 t items3[] = { 1, 2, 3, 4, 5, 6 };
97 exchangeItems(cpu socket, items3, sizeof(items3));
98
99 close(cpu socket);

100
101 max udp close(dfe socket);
102
103 max unload(engine);
104 max file free (maxfile) ;
105
106 return 0;
107 }

46 Dataflow Programming for Networking

5 UDP PACKET PROCESSING

Closing a socket The following function stops a socket from receiving or transmitting.

max udp socket t∗ max udp close (max udp socket t∗ socket)

It is good practice to close a socket before terminating the application to avoid possible issues with
spurious transmissions.

In the field accumulator example, a socket is created for the UDP stream on network connection
SFP1, identified by the automatically generated stream name "udp ch2 sfp1":

84 max udp socket t ∗dfe socket = max udp create socket(engine, ”udp ch2 sfp1”);

After processing all data but before closing the dataflow engine, the socket is closed again:

101 max udp close(dfe socket);

5.3.2 Receiving

After all necessary sockets have been created, the following function can be called to enable a socket
to receive packets sent to the specified port.

void max udp bind (max udp socket t∗ socket, uint16 t local port)

Note that no local IP address can be specified here and the address previously set by max ip config

(see section 4) will be used.
The field accumulator example binds its socket to a user-supplied local port:

85 max udp bind(dfe socket, port);

5.3.3 Sending

If a UDP stream is initialized in one-to-many mode in the Manager, the destination addresses for outgo-
ing packets are set in the Kernel code. However, one-to-one mode configurations require the following
function call to set the constant destination address for all packets.

void max udp connect (max udp socket t∗ socket, const struct in addr ∗remote ip, uint16 t remote port)

This function should be called only after all sockets have been created.
In the field accumulator example, which uses a one-to-one stream, we connect the DFE back to the

node running the CPU code:

86 max udp connect(dfe socket, &cpu ip, port);

5.3.4 Multicast

The multicast feature of UDP is supported by the following functions. Calling this function enables a
socket to receive packets sent to the IP address and port given by the parameters.

void max udp bind ip (max udp socket t∗ socket, const struct in addr∗ local ip, uint16 t local port)

The IP address passed to max udp bind ip must be that of an existing multicast group previously
joined by a call to max ip multicast join group (section 9).

Dataflow Programming for Networking 47

5.3 UDP CPU API Summary

The following function can be used to define the time to live for outgoing packets.

void max udp set ttl (max udp socket t ∗socket, uint8 t ttl)

The ttl parameter specifies the number hops an outgoing packet may take before being automatically
dropped.

48 Dataflow Programming for Networking

6
TCP Segment Processing

This chapter introduces TCP processing concepts and techniques in the context of the Maxeler network
infrastructure. Following a summary of the TCP stream format, this chapter shows how to configure
TCP streams from the CPU via the SLiC API, using a version of the field accumulator application from
subsection 3.2 adapted to TCP as an example.

6.1 TCP Stream Format

TCP data is conveyed in blocks of arbitrary size known as segments. While the data is conventionally
described as being a continuous stream, in practice MaxCompiler DFE designs process the data in
segments, treating each segment as a Framed Kernel frame. In general, the segment sizes are deter-
mined automatically by the networking hardware with no relation to the meaning of the information they
contain.

The TCP stream format is shown in Table 8 (MaxJ class TCPType). Note that unlike UDP, TCP
uses the same format for transmitting and receiving streams. Fields requiring manual handling by the
developer are further explained below. An overview of the automatically handled fields common to all
MaxCompiler network streams is provided in subsection 3.4.

• The socket field contains a socket number ranging from 0 to 63 that identifies the TCP connection
associated with the data, which is useful if an application needs to communicate concurrently with

Dataflow Programming for Networking 49

6.2 Field Accumulator Adaptions for TCP

Field Offset (bits) Width (bits)

data 0 64
socket 64 8
mod 72 3
eof 75 1
sof 76 1

Table 8: TCP stream format

multiple peers and multiplex the traffic from all of them over a single stream. Applications can use
a CPU API function (subsubsection 6.3.5) to obtain the socket number for any open connection.
Although the socket number may vary between segments, it is always the same throughout any
given segment. For transmitting streams the socket number therefore only needs to be set at the
start of the segment, when SOF is true. For receiving streams, the socket number is valid during
the whole segment.

6.2 Field Accumulator Adaptions for TCP

The original field accumulator example as introduced in subsection 3.2 uses UDP as an underlying
protocol. Only very few modifications to the Kernel and Manager are necessary to switch to TCP.

In the Kernel we change the framed link type of the input and output to TCP as follows:

33 FrameData<DataIn> frameIn = io.frameInput(”frameIn”, new DataIn(), new TCPType());

56 FrameData<DataOut> frameOut = new FrameData<DataOut>(this, new DataOut(), new TCPType());
57
58 frameOut[”sum”] <== sum;
59 frameOut[”totalItems”] <== totalItems;
60 frameOut. linkfield [TCPType.SOCKET] <==
61 frameIn. linkfield [TCPType.SOCKET];

The new Manager configuration simply connects the Kernel IO to the TCP stream on SFP1:

17 m.setIO(link(”frameIn”, TCP(NetworkConnection.CH2 SFP1)),
18 link (”frameOut”, TCP(NetworkConnection.CH2 SFP1)));

The TCP stream can now be configured from the CPU as explained in the following sections. List-
ing 9 and Listing 10 show the TCP field accumulator CPU code. Note that general structure still closely
resembles the original UDP version, although different SLiC API calls are used for the TCP configura-
tion.

50 Dataflow Programming for Networking

6 TCP SEGMENT PROCESSING

Listing 9: TCP Field accumulator example CPU code (FieldAccumulatorCpuCode.c)
1 #define GNU SOURCE
2
3 #include <string.h>
4 #include <unistd.h>
5 #include <stdio.h>
6 #include <sys/socket.h>
7 #include <netinet/in.h>
8 #include <netinet/tcp.h>
9

10 #include <MaxSLiCInterface.h>
11 #include ”FieldAccumulatorTCP.h”
12
13
14 typedef struct {
15 uint32 t total items ;
16 uint32 t sum;
17 } attribute ((packed)) frame t;
18
19
20 static int create cpu tcp socket(struct in addr ∗remote ip, int port) {
21 int sock = socket(AF INET, SOCK STREAM, 0);
22
23 int state = 1;
24 setsockopt(sock, IPPROTO TCP, TCP NODELAY, &state, sizeof(state));
25
26 struct sockaddr in cpu;
27 memset(&cpu, 0, sizeof(cpu));
28 cpu.sin family = AF INET;
29 cpu.sin port = htons(port) ;
30 cpu.sin addr = ∗remote ip;
31
32 connect(sock, (const struct sockaddr∗) &cpu, sizeof(cpu));
33
34 return sock;
35 }
36
37
38 static void exchangeItems(int sock, const uint8 t∗ items, uint8 t num items) {
39 static uint32 t total items = 0;
40
41 uint8 t data to send[1 + UINT8 MAX];
42 data to send[0] = num items;
43 memcpy(data to send + 1, items, num items);
44
45 send(sock, &data to send, num items + 1, 0);
46 frame t data received;
47
48 recv(sock, &data received, sizeof(data received), 0);
49
50 printf (”Received: total items = %u, sum = %u\n”, data received.total items, data received.sum);
51
52 total items += num items;
53
54 uint32 t sum = 0;
55 for (int i = 0; i < num items; i++)
56 sum += items[i];
57
58 if (data received. total items != total items || data received.sum != sum) {
59 printf (”Error! Expected: total items = %u, sum = %u\n”, total items, sum);
60 exit (1) ;
61 }
62 }

Dataflow Programming for Networking 51

6.2 Field Accumulator Adaptions for TCP

Listing 10: TCP Field accumulator example CPU code (FieldAccumulatorCpuCode.c)
65 int main(int argc, char ∗argv[]) {
66 if (argc != 4) {
67 printf (”Usage: %s <dfe ip> <cpu ip> <netmask>\n”, argv[0]);
68 return 1;
69 }
70
71 struct in addr dfe ip ;
72 inet aton(argv [1], &dfe ip) ;
73 struct in addr cpu ip;
74 inet aton(argv [2], &cpu ip);
75 struct in addr netmask;
76 inet aton(argv [3], &netmask);
77 const int port = 5007;
78
79 max file t ∗maxfile = FieldAccumulatorTCP init();
80 max engine t ∗engine = max load(maxfile, ”∗”);
81
82 max ip config(engine, MAX NET CONNECTION CH2 SFP1, &dfe ip, &netmask);
83
84 max tcp socket t ∗dfe socket = max tcp create socket(engine, ”tcp ch2 sfp1”);
85 max tcp listen(dfe socket, port) ;
86 max tcp await state(dfe socket, MAX TCP STATE LISTEN, NULL);
87
88 int cpu socket = create cpu tcp socket(&dfe ip, port) ;
89
90 uint8 t items1[] = { 2, 5, 8, 1 };
91 exchangeItems(cpu socket, items1, sizeof(items1));
92
93 uint8 t items2[] = { 50, 2 };
94 exchangeItems(cpu socket, items2, sizeof(items2));
95
96 uint8 t items3[] = { 1, 2, 3, 4, 5, 6 };
97 exchangeItems(cpu socket, items3, sizeof(items3));
98
99 close(cpu socket);

100
101 max tcp close(dfe socket);
102
103 max unload(engine);
104 max file free (maxfile) ;
105
106 return 0;
107 }

52 Dataflow Programming for Networking

6 TCP SEGMENT PROCESSING

6.3 CPU API for TCP

An overview of functions generally sufficient to deploy an application using TCP successfully is provided
in this section for reference. Some are illustrated by the field accumulator example. Although the API is
designed for similarity with standard socket programming conventions for the most part, there are some
notable differences.

• Functions are non-blocking unless otherwise stated.

• All sockets needed during the entire run of the application must be created before any of them is
used.

Details are given below.

6.3.1 Creating a Socket

The current state and configuration of the TCP processing hardware are tracked in software by a data
structure known as a socket and referenced by a pointer of type max tcp socket t. The following
blocking function performs some initialization on the hardware the first time it is called, and returns a
reference to a socket.

max tcp socket t∗ max tcp create socket (max engine t ∗engine, const char ∗stream name)

The parameters have these interpretations.

• engine identifies the DFE to use, and is given by a prior call to max load().

• stream name is a name of the relevant TCP stream specified in the Manager code.

In the field accumulator example, a socket is created for the TCP stream on network connection
SFP1, identified by the automatically generated stream name "tcp ch2 sfp1":

84 max tcp socket t ∗dfe socket = max tcp create socket(engine, ”tcp ch2 sfp1”);

6.3.2 Starting an Outward Connection

Starting a TCP connection is a prerequisite for transferring data on it. The following function starts a
TCP connection, such as a client might connect to a server, using a previously created socket given by
the tcp parameter. The other parameters have the usual interpretations, namely the IP address and
the port number on the remote peer.

void max tcp connect (max tcp socket t ∗tcp, const struct in addr ∗remote ip, uint16 t remote port)

After this connection is made, Kernels and state machines can send to it by including the associated
socket number in outgoing TCP streams as shown in Table 8. This socket number can be ascertained
by max tcp get socket number as explained in subsubsection 6.3.5 and passed from the CPU to a
Kernel as a scalar input.

Another alternative that avoids the scalar input is to use a hard coded socket number in both the
CPU code and the Kernel. In this case the following blocking function is appropriate.

max tcp socket t∗ max tcp create socket with number (max engine t ∗engine, const char ∗stream name, uint16 t socket number)

The socket number parameter should be a number in the range 0 to 63.

Dataflow Programming for Networking 53

6.3 CPU API for TCP

6.3.3 Accepting an Inward Connection

The max tcp listen function allows a connection to be made by a remote peer, typically as a server
would accept a connection from a client.

void max tcp listen (max tcp socket t ∗socket, uint16 t local port)

The socket parameter is an existing socket for the dataflow engine accepting the connection. The
local port parameter is the port number the remote peer must specify to establish the connection
and ensure that TCP traffic is routed to it.

Applications that accept multiple connections on the same port should call this function once for
each possible connection (up to a maximum of 64) with a different socket parameter for each call.

8 This method of enabling multiple incoming connections to the same port is specific to MaxCom-
piler and differs considerably from standard BSD socket programming conventions.

The field accumulator example accepts inward connections on the previously created socket and
uses a user-specified local port:

85 max tcp listen(dfe socket, port) ;

Note that because max tcp listen call is non-blocking, the socket may not be in the listening state
yet when the function returns. subsubsection 6.3.6 shows how an application can wait for certain TCP
state changes to occur.

6.3.4 Closing a Connection

The following functions close a connection previously opened by max tcp connect (for example, as
a client closing a connection to a server) or previously accepted by max tcp listen. Closing a con-
nection disables the exchange of further data through it, although the socket may be reused for other
connections.

void max tcp close(max tcp socket t ∗socket)

void max tcp close advanced (max tcp socket t ∗socket, max tcp close mode t close mode)

The socket parameter identifies the socket to be closed. The close mode is an enumerated type with
these possible values and interpretations.

• MAX TCP CLOSE GRACEFUL - Close the connection with standard handshaking acknowledgments
in both directions (default).

• MAX TCP CLOSE ABORT RESET - Close the connection in a way that informs the remote peer of
an anomalous condition and requests no further acknowledgment.

• MAX TCP CLOSE ABORT NO RESET - Close the connection abruptly without any advice to the peer.

Aborting a connection by either of the last two modes may cause some data to be lost. Any data
received from the network but not yet processed by the DFE is lost when a connection is aborted.

54 Dataflow Programming for Networking

6 TCP SEGMENT PROCESSING

The field accumulator example closes its socket using the basic max tcp close function, after all
data has been processed but before closing the dataflow engine:

101 max tcp close(dfe socket);

6.3.5 Interrogating a Connection

The blocking max tcp status function can be used to ascertain the status of a connection given the
socket.

void max tcp status (max tcp socket t ∗socket, max tcp connection status t ∗status)

The max tcp status function modifies a max tcp connection status t structure of this form.

typedef struct {
max tcp connection state t state;
uint32 t input sequence;
uint32 t output sequence;
uint32 t window space left;
struct in addr remote ip;
uint16 t remote port;
struct ether addr remote mac;

} max tcp connection status t

The state is an enumerated type with one of the values explained below. The names follow standard
TCP state name conventions, except for MAX TCP STATE CLOSED DATA PENDING, which is specific to
MaxCompiler.

• When a socket is first created by max tcp create, it is in MAX TCP STATE CLOSED. It returns to
this state after the application calls max tcp close on it, or when the remote peer breaks the
connection.

• When a closed connection is opened for listening, it enters MAX TCP STATE LISTEN, and remains
that way unless a remote peer connects to the port.

• A connection enters MAX TCP STATE ESTABLISHED when a remote peer connects to a listening
port, or when a connection started by the local system with max tcp connect is accepted by a
remote peer.

• MAX TCP STATE CLOSE WAIT is a normally transient state that occurs between the time the local
application closes a connection and the remote peer acknowledges that the connection is closed.
A connection could persist in this state if the remote peer becomes unreachable.

• MAX TCP STATE CLOSED DATA PENDING is a state in which a connection has been closed but
the DFE contains some data not yet read by the application. A correct application should always
read the remaining data in this case.

One example of how to use this information is in a server with many clients connecting intermittently.
Each time a connection is closed by a client, the server detects the closure and changes the connection
back to the LISTEN state by calling max tcp listen.

Another item of useful information that can be queried about a socket is its socket number. This
number is embedded as the connection field in each word transmitted via the socket through a stream,
as shown in Table 8, so that Kernels can distinguish among multiple connections on the same stream.
The socket number for any previously created socket is returned by the following blocking function.

Dataflow Programming for Networking 55

6.3 CPU API for TCP

uint16 t max tcp get socket number(max tcp socket t ∗socket)

6.3.6 Monitoring Connections

The max tcp select function can detect a change in the state of a connection so that the application
can take appropriate action. When called, it blocks until a change occurs on any of a specified set of
sockets or a timeout is reached. When returning, it reports the changed sockets in an array. If any
changes to sockets in the set occur between calls or before the first call, they are reported immediately
as of the next call. This function also modifies the timeout parameter to reflect the time remaining if it
returns before the time limit expires.

void max tcp select(
uint16 t num sockets,
max tcp socket t ∗sockets[],
uint64 t ∗num changed sockets,
max tcp socket t ∗changed sockets[],
struct timeval ∗timeout);

The parameters have these interpretations.

• num sockets is the number of sockets in the sockets array.

• The sockets parameter is an array of sockets whose status is to be monitored, initialized by the
caller.

• timeout is a pointer to a standard timeval structure as defined in sys/time.h indicating the
length of time to wait for a change in status, or one of these special values:

– If timeout is zero, max tcp select returns immediately, in effect polling the dataflow en-
gine.

– If timeout is a NULL pointer, max tcp select waits indefinitely.

If the state changes before the time limit is reached, *timeout is modified to store the time
remaining.

• changed sockets is the address of an array wherein the function returns the sockets whose
states have changed. An array of sufficient size should be allocated in advance by the caller.

• num changed sockets is the number of sockets in the array referenced by changed sockets.

The max tcp select function is meant to be used in combination with max tcp status (sub-
subsection 6.3.5), because state changes are uninformative in themselves unless the current state is
known. A typical application might execute a main loop wherein it repeatedly suspends itself by calling
max tcp select, and calls max tcp status whenever it wakes up, so as to determine the nature of
the state change and act on it.

Another way of monitoring a socket is by the following function, which blocks until a socket reaches
a specified state or a timeout is reached.

int max tcp await state (max tcp socket t ∗socket, max tcp connection state t state, struct timeval ∗timeout)

The max tcp await state function monitors only a single socket given by the socket parameter.

• If the timeout parameter is NULL, the state of the socket is necessarily that of the state param-
eter when max tcp await state returns.

56 Dataflow Programming for Networking

6 TCP SEGMENT PROCESSING

• If the timeout parameter is not NULL, the state might not be reached.

– The function returns zero if the state is reached, and non-zero if the state is not reached.

– The timeout parameter is modified to reflect the time remaining.

The field accumulator example waits without a timeout for its socket to reach the listening state
using the following line:

86 max tcp await state(dfe socket, MAX TCP STATE LISTEN, NULL);

Dataflow Programming for Networking 57

6.3 CPU API for TCP

58 Dataflow Programming for Networking

7
Network Managers

Examples in previous chapters have used the Standard Manager API, whose simplicity is suited for
rapid deployment of basic network applications. However, advanced users may prefer the Network
Manager API as an alternative to the Standard Manager for more specific control over some aspects of
the design.

The main difference between the Standard Manager API and the Network Manager API is that the
Network Manager allows more general patterns of interconnection among multiple Manager blocks.
Blocks in a Network Manager are connected by named streams to inputs or outputs on other blocks
explicitly chosen by the designer.

Network Managers are an extension of the Custom Managers used in non-networking DFE designs
and share many of their features. For a general introduction to Custom Managers please refer to the
MaxCompiler Manager tutorial. The CPU API for networking DFE designs remains the same no matter
whether a design was created using a Network Manager or a Standard Manager.

An example application illustrating the Network Manager networking features is shown at the end
of this chapter in subsection 7.2.

7.1 Network Streams

Manager blocks such as Kernels and State Machines are connected to the network through protocol-
specific bi-directional streams. The attributes common to all streams are a string name used to identify

Dataflow Programming for Networking 59

7.1 Network Streams

the stream in the CPU code and the physical network connection (SFP1 or SFP2) through which the
stream communicates to remote peers.

MaxCompiler currently supports the network stream classes UDPStream, TCPStream and EthernetStream,
which are explained in the following sections along with any protocol-specific configuration options.

As all network streams are bi-directional, they provide methods to retrieve their receiving and trans-
mitting ends (getReceiveStream() and getTransmitStream()), which can be connected directly
to Manager block inputs and outputs, respectively. This is shown in the following code using an UDP
stream as an example:

UDPStream udp stream = ...;
DFELink receive = udp stream.getReceiveStream();
DFELink transmit = udp stream.getTransmitStream();

Note that it is possible to leave either the receiving or the transmitting end unconnected but not both.

7.1.1 UDP Streams

A UDP stream is added to a Network Manager using the following call:

UDPStream addUDPStream(
String name,
NetworkConnection connection,
UDPConnectionMode connection mode,
UDPChecksumMode receive checksum mode);

The name and connection parameters are interpreted according to subsection 7.1. connection mode

specifies whether to create a one-to-one or one-to-many UDP stream (see section 5) and receive checksum mode

decides how to handle incoming packets with an incorrect UDP checksum.
Packets with an incorrect UDP checksum can be dropped automatically on receipt by the Max-

Compiler networking infrastructure (DropBadFrames) or flagged as incorrect (FlagOnEOF) using the
checksum bad stream field (see subsubsection 5.1.2). Checksum processing can also be disabled
completely by supplying Disabled as an argument.

7.1.2 TCP Streams

To create a TCP stream, it is sufficient to specify a stream name and network connection as explained
in subsection 7.1:

TCPStream addTCPStream(
String name,
NetworkConnection connection);

Further TCP options are available through the NetwokManager.network config object. The TCP
window sized can be controlled with the following methods of NetworkManager.network config:

void setTCPReceiveWindowSize(
NetworkConnection connection,
int size in kilobytes) ;

void setTCPTransmitWindowSize(
NetworkConnection connection,
int size in kilobytes) ;

Note that the window sizes are specified per network connection and not per TCP stream.

60 Dataflow Programming for Networking

7 NETWORK MANAGERS

7.1.3 Ethernet Streams

The following method creates an Ethernet stream:

EthernetStream addEthernetStream(
String name,
NetworkConnection connection,
EthernetChecksumMode receive checksum mode);

The name and connection parameters have the same interpretation as above. receive checksum mode

is equivalent to the corresponding parameter to UDP streams (subsubsection 7.1.1), with the only dif-
ference that checksum verification cannot be disabled for Ethernet streams.

7.2 Key-Value Example

We now introduce a new example to illustrate the Network Manager features explained above. The
key-value application consists of two Kernels, one after the other. The preprocessor Kernel receives
frames through a UDP stream on SFP1, each packet containing key and a value field. It forwards the
value of packets whose key matches certain criteria to the adder Kernel. For each value the adder
Kernel receives it reads another value from sent from the CPU code via PCIe, adds the two values and
sends the result over a TCP stream on SFP1. Figure 14 shows the design of the key-value example.

Network

Network Interface
SFP1

UDP

TCP
IP

UDP

Ethernet

Preprocessor
Kernel

CPU

DFE

PCIe

Adder
Kernel

PCIe

Figure 14: Block diagram of the key-value example

Similar to previous examples, the CPU code for the key-value application sets up the DFE, estab-
lishes the connections for the network streams and exchanges data with the DFE via BSD sockets.
Additional data for the adder Kernel is transferred to the DFE via a PCIe stream.

7.2.1 Kernels

The following paragraphs provide a summary of the two Kernels used in the key-value example. For a
full introduction to Framed Kernels please refer to section 3.

Dataflow Programming for Networking 61

7.2 Key-Value Example

Preprocessor Kernel The preprocessor Kernel defines different frame formats for incoming and out-
going frames. Incoming frames consist of a key and an integer value field, outgoing frames only carry
a floating point value:

14 private static class KeyValFormat extends FrameFormat {
15 public KeyValFormat() {
16 super(ByteOrder.LITTLE ENDIAN);
17 addField(”key”, dfeUInt(8)) ;
18 addField(”value”, dfeInt (32)) ;
19 }
20 }
21
22 public static class ValFormat extends FrameFormat {
23 public ValFormat() {
24 super(ByteOrder.LITTLE ENDIAN);
25 addField(”value”, dfeFloat(8, 24));
26 }
27 }

An input and a FrameData instance for the output is instantiated using the two frame formats. The
value field of the incoming frame is cast to a floating point number and assigned to the value field of the
outgoing frame. As the output of the preprocessor Kernel is passed on to another Kernel rather than to
a network interface, we use the SimpleFramedLinkType Link format when instantiating the output:

32 FrameData<KeyValFormat> keyValIn =
33 io . frameInput(”keyValIn”, new KeyValFormat(), new UDPOneToOneRXType());
34
35 FrameData<ValFormat> valOut =
36 new FrameData<ValFormat>(this, new ValFormat(), new SimpleFramedLinkType());
37
38 valOut[”value”] <== keyValIn[”value”].cast(valOut[”value”]. getType());

The Kernel’s output is only enabled if the key is equal to the character “X”:

40 DFEVar enable = keyValIn[”key”] === ’X’;
41
42 io . frameOutput(
43 ”valOut”,
44 valOut,
45 enable,
46 keyValIn. isStart ()) ;

The full source code for the preprocessor Kernel is shown in Listing 11

Adder Kernel The adder Kernel reuses the output frame format of the preprocessor kernel to instan-
tiate an input and a FrameData instance for the output:

18 ValFormat valFormat = new ValFormat();
19 FrameData<ValFormat> valIn =
20 io . frameInput(”valIn ” , valFormat, new SimpleFramedLinkType());
21
22 FrameData<ValFormat> valOut =
23 new FrameData<ValFormat>(this, valFormat, new TCPType());

Additionally, a regular Kernel input is created to receive values directly from the CPU:

25 io .pushInputRegistering(false);
26 DFEVar cpu value = io.input(”cpuValIn”, dfeFloat(8, 24), valIn . isStart ()) ;

Note that input registering must be disabled when mixing framed and regular inputs.
Output frames are generated by setting their value field to the sum of the values received through

62 Dataflow Programming for Networking

7 NETWORK MANAGERS

Listing 11: Preprocessor Kernel (PreprocessorKernel.maxj)
1 package keyval;
2
3 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
4 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
5 import com.maxeler.networking.v1.framed kernels.ByteOrder;
6 import com.maxeler.networking.v1.framed kernels.FrameData;
7 import com.maxeler.networking.v1.framed kernels.FrameFormat;
8 import com.maxeler.networking.v1.framed kernels.FramedKernel;
9 import com.maxeler.networking.v1.kernel types.SimpleFramedLinkType;

10 import com.maxeler.networking.v1.kernel types.UDPOneToOneRXType;
11
12 public class PreprocessorKernel extends FramedKernel {
13
14 private static class KeyValFormat extends FrameFormat {
15 public KeyValFormat() {
16 super(ByteOrder.LITTLE ENDIAN);
17 addField(”key”, dfeUInt(8)) ;
18 addField(”value”, dfeInt (32)) ;
19 }
20 }
21
22 public static class ValFormat extends FrameFormat {
23 public ValFormat() {
24 super(ByteOrder.LITTLE ENDIAN);
25 addField(”value”, dfeFloat(8, 24));
26 }
27 }
28
29 PreprocessorKernel(KernelParameters parameters) {
30 super(parameters);
31
32 FrameData<KeyValFormat> keyValIn =
33 io . frameInput(”keyValIn”, new KeyValFormat(), new UDPOneToOneRXType());
34
35 FrameData<ValFormat> valOut =
36 new FrameData<ValFormat>(this, new ValFormat(), new SimpleFramedLinkType());
37
38 valOut[”value”] <== keyValIn[”value”].cast(valOut[”value”]. getType());
39
40 DFEVar enable = keyValIn[”key”] === ’X’;
41
42 io . frameOutput(
43 ”valOut”,
44 valOut,
45 enable,
46 keyValIn. isStart ()) ;
47 }
48 }

the framed input and the regular input. The TCP socket for the outgoing frame is assumed to be always
0 (this is set up by the CPU code explained below):

28 valOut[”value”] <== valIn[”value”] + cpu value;
29 valOut. linkfield [TCPType.SOCKET] <==
30 constant.var(valOut. linkfield [TCPType.SOCKET].getType(), 0);
31
32 io . frameOutput(”valOut”, valOut);

See Listing 12 for the full source code of the adder Kernel.

Dataflow Programming for Networking 63

7.2 Key-Value Example

Listing 12: Adder Kernel (AdderKernel.maxj)
1 package keyval;
2
3 import keyval.PreprocessorKernel.ValFormat;
4
5 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
6 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
7 import com.maxeler.networking.v1.framed kernels.FrameData;
8 import com.maxeler.networking.v1.framed kernels.FramedKernel;
9 import com.maxeler.networking.v1.kernel types.SimpleFramedLinkType;

10 import com.maxeler.networking.v1.kernel types.TCPType;
11
12
13 public class AdderKernel extends FramedKernel {
14
15 AdderKernel(KernelParameters parameters) {
16 super(parameters);
17
18 ValFormat valFormat = new ValFormat();
19 FrameData<ValFormat> valIn =
20 io . frameInput(”valIn ” , valFormat, new SimpleFramedLinkType());
21
22 FrameData<ValFormat> valOut =
23 new FrameData<ValFormat>(this, valFormat, new TCPType());
24
25 io .pushInputRegistering(false);
26 DFEVar cpu value = io.input(”cpuValIn”, dfeFloat(8, 24), valIn . isStart ()) ;
27
28 valOut[”value”] <== valIn[”value”] + cpu value;
29 valOut. linkfield [TCPType.SOCKET] <==
30 constant.var(valOut. linkfield [TCPType.SOCKET].getType(), 0);
31
32 io . frameOutput(”valOut”, valOut);
33 }
34 }

7.2.2 Manager

The Manager instantiates Kernel blocks for the preprocessor and adder kernels explained above:

15 KernelBlock preprocessor = addKernel(new PreprocessorKernel(makeKernelParameters(”Preprocessor”)));
16 KernelBlock adder = addKernel(new AdderKernel(makeKernelParameters(”Adder”)));

The output of the preprocessor Kernel is then connected to the “valIn” output of the adder Kernel:

18 adder.getInput(”valIn ”) <== preprocessor.getOutput(”valOut”);

A newly created stream from the CPU is connected to the adder Kernel’s remaining “cpuValue” input:

20 adder.getInput(”cpuValIn”) <== addStreamFromCPU(”cpuValue”);

Finally we create a one-to-one UDP stream and a TCP stream on SFP1. The received UDP packets

64 Dataflow Programming for Networking

7 NETWORK MANAGERS

Listing 13: Key-Value Manager (KeyValManager.maxj)
1 package keyval;
2
3 import com.maxeler.maxcompiler.v2.managers.custom.blocks.KernelBlock;
4 import com.maxeler.networking.v1.managers.NetworkManager;
5 import com.maxeler.networking.v1.managers.netlib.Max3NetworkConnection;
6 import com.maxeler.networking.v1.managers.netlib.TCPStream;
7 import com.maxeler.networking.v1.managers.netlib.UDPChecksumMode;
8 import com.maxeler.networking.v1.managers.netlib.UDPConnectionMode;
9 import com.maxeler.networking.v1.managers.netlib.UDPStream;

10
11 public class KeyValManager extends NetworkManager {
12 public KeyValManager(String[] args) {
13 super(new KeyValEngineParameters(args));
14
15 KernelBlock preprocessor = addKernel(new PreprocessorKernel(makeKernelParameters(”Preprocessor”)));
16 KernelBlock adder = addKernel(new AdderKernel(makeKernelParameters(”Adder”)));
17
18 adder.getInput(”valIn ”) <== preprocessor.getOutput(”valOut”);
19
20 adder.getInput(”cpuValIn”) <== addStreamFromCPU(”cpuValue”);
21
22 UDPStream udpStream = addUDPStream(
23 ”udp ch2 sfp1”,
24 Max3NetworkConnection.CH2 SFP1,
25 UDPConnectionMode.OneToOne,
26 UDPChecksumMode.DropBadFrames);
27
28 preprocessor.getInput(”keyValIn”) <== udpStream.getReceiveStream();
29
30 TCPStream tcpStream = addTCPStream(
31 ”tcp ch2 sfp1”,
32 Max3NetworkConnection.CH2 SFP1);
33
34 tcpStream.getTransmitStream() <== adder.getOutput(”valOut”);
35 }
36
37 public static void main(String[] args) {
38 KeyValManager m = new KeyValManager(args);
39 m.build() ;
40 }
41 }

are directed to the preprocessor Kernel and frames produces by adder Kernel are sent over TCP:

22 UDPStream udpStream = addUDPStream(
23 ”udp ch2 sfp1”,
24 Max3NetworkConnection.CH2 SFP1,
25 UDPConnectionMode.OneToOne,
26 UDPChecksumMode.DropBadFrames);
27
28 preprocessor.getInput(”keyValIn”) <== udpStream.getReceiveStream();
29
30 TCPStream tcpStream = addTCPStream(
31 ”tcp ch2 sfp1”,
32 Max3NetworkConnection.CH2 SFP1);
33
34 tcpStream.getTransmitStream() <== adder.getOutput(”valOut”);

Listing 13 shows the full Manager source code.

Dataflow Programming for Networking 65

7.2 Key-Value Example

7.2.3 CPU Application

The CPU application performs the basic DFE configuration as explained in section 4. It then creates a
UDP and a listening TCP socket on the DFE and waits for the TCP socket to reach the listening state:

117 max ip config(engine, MAX NET CONNECTION CH2 SFP1, &dfe ip, &netmask);
118 max udp socket t ∗dfe udp socket = max udp create socket(engine, ”udp ch2 sfp1”);
119 max udp bind(dfe udp socket, udp port);
120 max udp connect(dfe udp socket, &cpu ip, udp port);
121
122 max tcp socket t ∗dfe tcp socket = max tcp create socket with number(engine, ”tcp ch2 sfp1”, 0);
123 max tcp listen(dfe tcp socket , tcp port) ;
124 max tcp await state(dfe tcp socket, MAX TCP STATE LISTEN, NULL);

Note that the TCP socket number is explicitly set to 0, according to the assumption made in the adder
Kernel.

Once the TCP socket has reached the listening state the CPU code establishes a UDP and TCP
connection to the DFE using BSD sockets and configures a PCIe stream. Data is then sent to the DFE
via the UDP connection and the PCIe stream and received through the TCP connection. This is shown
in full CPU source code in Listing 14, Listing 15 and Listing 16.

After all data has been transferred, the DFE sockets are closed:

131 max udp close(dfe udp socket);
132 max tcp close(dfe tcp socket);

66 Dataflow Programming for Networking

7 NETWORK MANAGERS

Listing 14: Key-Value CPU code (KeyValCpuCode.c)
1 #define GNU SOURCE
2
3 #include <sys/socket.h>
4 #include <netinet/in.h>
5 #include <arpa/inet.h>
6 #include <errno.h>
7 #include <string.h>
8 #include <stdlib.h>
9 #include <stdio.h>

10 #include <linux/if.h>
11 #include <linux/if ether .h>
12 #include <netinet/ether.h>
13 #include <netinet/tcp.h>
14 #include <sys/ioctl.h>
15 #include <stdbool.h>
16
17 #include <MaxSLiCInterface.h>
18 #include ”KeyVal.h”
19
20
21 typedef struct key val s {
22 uint8 t key;
23 int32 t value;
24 } attribute ((packed)) key val t ;
25
26 static int create cpu udp socket(struct in addr ∗ local ip , struct in addr ∗remote ip, int port) {
27 int sock = socket(AF INET, SOCK DGRAM, 0);
28
29 struct sockaddr in cpu;
30 memset(&cpu, 0, sizeof(cpu));
31 cpu.sin family = AF INET;
32 cpu.sin port = htons(port) ;
33
34 cpu.sin addr = ∗ local ip ;
35 bind(sock, (struct sockaddr ∗)&cpu, sizeof(cpu));
36
37 cpu.sin addr = ∗remote ip;
38 connect(sock, (const struct sockaddr∗) &cpu, sizeof(cpu));
39
40 return sock;
41 }
42
43 static int create cpu tcp socket(struct in addr ∗remote ip, int port) {
44 int sock = socket(AF INET, SOCK STREAM, 0);
45
46 int state = 1;
47 setsockopt(sock, IPPROTO TCP, TCP NODELAY, &state, sizeof(state));
48
49 struct sockaddr in cpu;
50 memset(&cpu, 0, sizeof(cpu));
51 cpu.sin family = AF INET;
52 cpu.sin port = htons(port) ;
53 cpu.sin addr = ∗remote ip;
54
55 connect(sock, (const struct sockaddr∗) &cpu, sizeof(cpu));
56
57 return sock;
58 }

Dataflow Programming for Networking 67

7.2 Key-Value Example

Listing 15: Key-Value CPU code (KeyValCpuCode.c)
60 void exchangeFrames(max file t ∗maxfile, max engine t ∗engine, int udp sock, int tcp sock) {
61 const int num frames = 64;
62 key val t key val in ;
63 float val out ;
64
65 float ∗val in = malloc(sizeof(∗val in) ∗ (num frames / 2));
66 for (int j = 0; j < num frames / 2; j++)
67 val in [j] = j ∗ 10;
68
69 max actions t ∗actions = max actions init (maxfile, NULL);
70 max queue input(actions, ”cpuValue”, val in, sizeof(∗val in) ∗ (num frames/2));
71 max run t ∗run = max run nonblock(engine, actions);
72
73 for (int j = 0; j < num frames; j++) {
74 key val in .key = j % 2 == 0 ? ’X’ : ’Y’;
75 key val in .value = j ;
76
77 send(udp sock, &key val in, sizeof(key val t) , 0);
78 printf (”Sent: key = %c value = %d ”, key val in .key, key val in .value);
79
80 if (key val in .key != ’X’) {
81 printf (”\n”);
82 continue;
83 }
84
85 recv(tcp sock, &val out, sizeof(float) , 0);
86 printf (”Received: value = %f\n”, val out) ;
87
88 if (val out != key val in .value + val in [j / 2]) {
89 printf (”Error!\n”) ;
90 exit (1) ;
91 }
92 }
93
94 max wait(run);
95 max actions free(actions);
96 free(val in) ;
97 }

68 Dataflow Programming for Networking

7 NETWORK MANAGERS

Listing 16: Key-Value CPU code (KeyValCpuCode.c)
99 int main(int argc, char ∗argv[]) {

100 if (argc != 4) {
101 printf (”Usage: %s <dfe ip> <cpu ip> <netmask>\n”, argv[0]);
102 return 1;
103 }
104
105 struct in addr dfe ip ;
106 inet aton(argv [1], &dfe ip) ;
107 struct in addr cpu ip;
108 inet aton(argv [2], &cpu ip);
109 struct in addr netmask;
110 inet aton(argv [3], &netmask);
111 const int udp port = 5007;
112 const int tcp port = 5008;
113
114 max file t ∗maxfile = KeyVal init () ;
115 max engine t ∗ engine = max load(maxfile, ”∗”);
116
117 max ip config(engine, MAX NET CONNECTION CH2 SFP1, &dfe ip, &netmask);
118 max udp socket t ∗dfe udp socket = max udp create socket(engine, ”udp ch2 sfp1”);
119 max udp bind(dfe udp socket, udp port);
120 max udp connect(dfe udp socket, &cpu ip, udp port);
121
122 max tcp socket t ∗dfe tcp socket = max tcp create socket with number(engine, ”tcp ch2 sfp1”, 0);
123 max tcp listen(dfe tcp socket , tcp port) ;
124 max tcp await state(dfe tcp socket, MAX TCP STATE LISTEN, NULL);
125
126 int cpu udp socket = create cpu udp socket(&cpu ip, &dfe ip, udp port);
127 int cpu tcp socket = create cpu tcp socket(&dfe ip, tcp port) ;
128
129 exchangeFrames(maxfile, engine, cpu udp socket, cpu tcp socket);
130
131 max udp close(dfe udp socket);
132 max tcp close(dfe tcp socket);
133
134 max unload(engine);
135 max file free (maxfile) ;
136
137 return 0;
138 }

Dataflow Programming for Networking 69

7.2 Key-Value Example

70 Dataflow Programming for Networking

8
Ethernet Frame Processing

This chapter summarizes MaxCompiler features pertaining to raw Ethernet frame processing. Ethernet
frame processing is normally implicit in higher level protocols such as TCP or UDP, but raw Ethernet
handling might be of interest For low level network traffic analysis applications, or where it is desirable
to implement other higher layer protocols. Support for Ethernet frame processing by MaxCompiler
includes stream format definitions and compiler generated Ethernet protocol handling hardware. These
features are documented in this section and demonstrated in a time stamping application.

8.1 Receiving Streams

A stream for carrying Ethernet frames received from the network has the format shown in Table 9 (MaxJ
class EthernetRXType). Fields requiring manual handling by the developer are further explained be-
low. An overview of the automatically handled fields common to all MaxCompiler network streams is
provided in subsection 3.4.

Note however that when using Ethernet streams, the data field is used to carry both the Ethernet
header and payload. The standard Ethernet header fields (destination MAC, source MAC and Ether-
type) must be handled manually by the developer. All other parts of the Ethernet frame, including the
Frame Check Sequence, are handled implicitly by MaxCompiler and therefore not accessible.

• checksum bad is true only if the current frame is found to contain an error based on the check-
sum, and manual checksum verification is enabled. If automatic checksum verification is used

Dataflow Programming for Networking 71

8.2 Transmitting Streams

Field Offset (bits) Width (bits)

data 0 64
eof 64 1
sof 65 1
mod 66 3
checksum bad 69 1

Table 9: Ethernet receive stream format

Field Offset (bits) Width (bits)

data 0 64
eof 64 1
sof 65 1
mod 66 3

Table 10: Ethernet transmit stream format

(the default), this field is always false as bad frames are dropped before reaching the Kernel. The
checksum bad field is defined whenever EOF is true.

8.2 Transmitting Streams

The format for streams carrying Ethernet traffic outward to the network is depicted in Table 10 (MaxJ
class EthernetTXType). This format is similar to that of receiving streams but lacks a checksum bit.
The remaining metadata fields have similar interpretations, and the application from which the stream
originates is responsible for ensuring that they are defined consistently with the specification described
in subsection 8.1.

8.3 Time Stamped Packet Capture Example

The network diagnostic tool depicted in Figure 15 captures Ethernet packets from the network, notes
the arrival time of each one, and logs them in a file for further analysis.

This application exemplifies a simple case of Ethernet frame processing. The time stamp block
receives Ethernet frames from the Ethernet block by way of a stream using the format described in
subsection 8.1. It increments a counter on every cycle, and attaches that count to each word passed
to the CPU through another stream connected to the PCIe bus. The time stamp block is written by the
designer, and the Ethernet block is a standard component generated automatically by MaxCompiler.

Time
stampnetwork CPU

Ethernet
block

DFE

Figure 15: Time stamping application

72 Dataflow Programming for Networking

8 ETHERNET FRAME PROCESSING

Listing 17: State Machine code for the time stamp example
1 package stamp;
2
3 import com.maxeler.maxcompiler.v2.managers.DFEManager;
4 import com.maxeler.maxcompiler.v2.statemachine.DFEsmStateValue;
5 import com.maxeler.maxcompiler.v2.statemachine.manager.ManagerStateMachine;
6 import com.maxeler.maxcompiler.v2.statemachine.manager.DFEsmPushInput;
7 import com.maxeler.maxcompiler.v2.statemachine.manager.DFEsmPushOutput;
8
9 public class StampStateMachine extends ManagerStateMachine {

10
11 private final DFEsmStateValue counter = state.value(dfeUInt(48), 0);
12
13 private final DFEsmPushInput input = io.pushInput(”eth to sm”, dfeUInt(70), 1);
14 private final DFEsmPushOutput output = io.pushOutput(”stamped eth frm sm”, dfeUInt(128), 1);
15
16 public StampStateMachine(DFEManager owner) {
17 super(owner);
18 }
19
20 @Override
21 protected void nextState() {
22 counter.next <== counter + 1;
23 }
24
25 @Override
26 protected void outputFunction() {
27 output <== constant.value(dfeUInt(10), 0) # counter # input;
28 output. valid <== input.valid;
29 input . stall <== output.stall ;
30 }
31 }

Time stamping state machine In order to update the count continually without ever stalling, the time
stamp block shown Figure 15 is implemented as a Manager state machine rather than a Kernel. State
machine programming is explained fully in the MaxCompiler State Machine Tutorial document, but
this example requires only a basic understanding of state machines.

The source code is shown in Listing 17 for the time stamping state machine. The state consists
only of the counter variable. The control signals are passed through in both directions. The output is
made by concatenating the input with the count and some padding using the # operator.

Manager The Network Manager interface is used to instantiate the time stamping state machine as
shown in the following line:

13 StateMachineBlock stateMachine = addStateMachine(”stamp state machine”, new StampStateMachine(this));

What remains to be done is connecting an Ethernet stream from SFP1 to the state machine input and
routing the state machine output to the CPU via the PCIe bus:

15 EthernetStream eth stream = addEthernetStream(
16 ”eth ch2 sfp1”,
17 Max3NetworkConnection.CH2 SFP1,
18 EthernetChecksumMode.DropBadFrames);
19
20 stateMachine.getInput(”eth to sm”) <== eth stream.getReceiveStream();
21 addStreamToCPU(”data out”) <== stateMachine.getOutput(”stamped eth frm sm”);

Dataflow Programming for Networking 73

8.3 Time Stamped Packet Capture Example

CPU code The application running on the CPU that processes the time stamps sent by the state
machine interprets them as a sequence of structures in this form (cf. Table 9).

18 typedef struct {
19 uint64 t data;
20 uint8 t eof : 1;
21 uint8 t sof : 1;
22 uint8 t mod : 3;
23 uint8 t cs bad : 1;
24 uint64 t count : 48;
25 uint16 t unused : 10;
26 } attribute ((packed)) eth stream t;

To record the time stamps in a file, the application converts a sequence of stream words in this form
to a sequence of frames. The file format for the frames follows the convention used by utilities such as
tcpdump and wireshark, sometimes known as pcap format.1 Files in pcap format have a header at
the beginning of the file and a header at the beginning of each frame. The header at the beginning of
the file has this form:

28 typedef struct pcap hdr s {
29 uint32 t magic number; // magic number
30 uint16 t version major; // major version number
31 uint16 t version minor; // minor version number
32 int32 t thiszone; // GMT to local correction
33 uint32 t sigfigs ; // accuracy of timestamps
34 uint32 t snaplen; // max length of captured packets, in octets
35 uint32 t network; // data link type
36 } attribute ((packed)) pcap hdr t;

The fields in this header are filled with constant values that are not data dependent. The header at the
beginning of each frame has this form:

38 typedef struct pcaprec hdr s {
39 uint32 t ts sec; // timestamp seconds
40 uint32 t ts usec; // timestamp microseconds
41 uint32 t incl len ; // number of octets of packet saved in file
42 uint32 t orig len ; // actual length of packet
43 } attribute ((packed)) pcaprec hdr t;

The fields in this header must be calculated by the application.
This calculation is straightforward. Each time a word is read from the stream, its SOF and EOF bits

are inspected, and the Data field is written to a buffer whose index is advanced by 8 in each case unless
EOF is true, when it is advanced by the number of bytes remaining in the word. The starting count is
noted when SOF is true. When EOF is true, the packet header fields are calculated and written to a file

1http://wiki.wireshark.org/Development/LibpcapFileFormat

74 Dataflow Programming for Networking

http://wiki.wireshark.org/Development/LibpcapFileFormat

8 ETHERNET FRAME PROCESSING

followed by the buffer contents.

72 int length = 8;
73 if (stream word−>eof && stream word−>mod != 0)
74 length = stream word−>mod;
75 memcpy (&(frame[∗frame index]), &(stream word−>data), length);
76 ∗frame index += length;
77 if (stream word−>sof)
78 ∗starting count = stream word−>count;
79 if (!(stream word−>eof))
80 return;
81 latency = ldiv (∗starting count , FREQUENCY);
82 packet header.orig len = ∗frame index;
83 packet header.incl len = ∗frame index;
84 packet header.ts sec = starting time + latency.quot;
85 packet header.ts usec = (1000000 ∗ latency.rem) / FREQUENCY;
86 fwrite ((void ∗)&packet header, sizeof packet header, 1, log file) ;
87 fwrite ((void ∗) frame, ∗frame index, 1, log file) ;
88 fflush (log file) ;

The time stamp is determined by the starting count, the frequency of the counter, and the starting time
of the application.

The main loop of this application uses the low latency interface described in section 10:

123 while(reads < TOTAL READS)
124 {
125 if (max llstream read (incoming llstream, 1, &stream word) > 0)
126 {
127 accumulate frame (log file , stream word, frame buffer, &frame index, starting time , &starting count) ;
128 max llstream read discard (incoming llstream, 1);
129 reads++;
130 }
131 else
132 continue;
133 }

For performance reasons, a real network application should always use the low latency interface rather
than interrupt driven synchronization.

Dataflow Programming for Networking 75

8.3 Time Stamped Packet Capture Example

76 Dataflow Programming for Networking

9
Advanced Network Configuration

This chapter summarizes advanced MaxCompiler features pertaining to the network and data link layer,
which include IP routing management and ARP functions.

Most of the functions presented here take an engine and connection as their first two parameters.
These parameters have the same interpretation as in the previous chapters and are not discussed any
further.

9.1 IP Routing

SLiC supports IP routing and maintains a routing table. Initially, it only contains an entry for the directly
connected network (as inferred from the IP address and network mask passed to max ip config(),
see subsection 4.3). Without further setup, this allows the DFE to communicate with peers on the local
network only.

To enable communication with peers on remote networks a further IP routing information must be
provided. A default gateway can be set using the following function:

void max ip route set default gw(
max engine t ∗engine,
max net connection t connection,
const struct in addr ∗gateway);

Dataflow Programming for Networking 77

9.2 IP Multicast

The gateway parameter specifies the IP address of a gateway on the local network. The gate-
way will receive traffic from the DFE that is not destined for the local network and for which no spe-
cific route was found in the routing table. Only one default route can be set at a time. Calling
max ip route set default gw() multiple times therefore overrides the previous setting.

Specific routes can be added to the routing table using the following function:

void max ip route add(
max engine t ∗engine,
max net connection t connection,
const struct in addr ∗destination,
const struct in addr ∗netmask,
const struct in addr ∗gateway);

Similarly to max ip route set default gw() this function takes a gateway parameter but also
requires a destination IP address and a corresponding network mask. Depending on the network mask,
the destination may either refer to a network or a specific host (i.e network mask 255.255.255.255). The
gateway address 0.0.0.0 has a special interpretation and is used to specify that the destination resides
on the local network.

Note that the routing table may only contain one entry for each destination and network mask pair
at a time. Routing table entries can be removed or retrieved with the following two functions:

void max ip route remove(
max engine t ∗engine,
max net connection t connection,
const struct in addr ∗destination,
const struct in addr ∗netmask);

int max ip route get(
max engine t ∗engine,
max net connection t connection,
const struct in addr ∗destination,
const struct in addr ∗netmask,
struct in addr ∗gateway);

For both functions, destination and netmask should refer to a route previously added using
max ip route add(). The gateway output parameter to max ip route get() receives the current
gateway address of the specified route.

9.2 IP Multicast

MaxCompiler provides support for IP multicast. IP packets sent to the IP address associated with a
multicast group are receivable concurrently by every member of the group. The first function is for
joining a group, and the second is for leaving a group.

void max ip multicast join group (
max engine t ∗engine,
max net connection t connection,
const struct in addr ∗multicast ip)

void max ip multicast leave group (
max engine t ∗engine,
max net connection t connection,
const struct in addr ∗multicast ip)

The multicast ip parameter is the IP address associated with the group. Every network connection
is implicitly a member of the All Hosts group, (224.0.0.1). Attempting to leave the All Hosts group has

78 Dataflow Programming for Networking

9 ADVANCED NETWORK CONFIGURATION

no effect.

9.3 ARP

ARP tables associate IP addresses with physical MAC addresses for peers on the local network, and
are necessary for most network applications. SLiC maintains an ARP table for use by the DFE. This
table is separate from the ARP table maintained by the operating system (if any).

It is not necessary to manipulate the ARP table explicitly in applications that use UDP or TCP
protocols (section 6 and section 5) because use of those protocols initializes the ARP table as a side
effect. However, some applications may require direct access to the ARP table, for instance to add
static entries to the table.

Entries can be added to the ARP table through the following function:

void max arp add entry(
max engine t ∗engine,
max net connection t connection,
const struct in addr ∗ip,
const struct ether addr ∗mac)

The ip and mac parameters are the IP address and MAC address of the host on the local network to
be added to the ARP table. The entry will be marked as static and therefore remain in the table until
explicitly removed.

The following two functions are used to remove or retrieve entries from the ARP table:

void max arp remove entry(
max engine t ∗engine,
max net connection t connection,
const struct in addr ∗ip)

int max arp get entry(
max engine t ∗engine,
max net connection t connection,
const struct in addr ∗ip,
struct ether addr ∗mac)

Here, the ip parameter identifies a host already present in the ARP table. The mac output parameter
to max arp get entry() receives the MAC address currently associated with the specified host.

Dataflow Programming for Networking 79

9.3 ARP

80 Dataflow Programming for Networking

10
Low-Latency PCIe Interface

The usual way of communicating between the CPU and the DFE for applications that are not optimized
for latency involves the use of hardware interrupts to signal the completion of a transfer. However,
interrupts can be inappropriate for low-latency applications because an interrupt generated for each
transfer requires a context switch during which the application is suspended while the operating system
handles the interrupt. If data transfers are short and frequent, the time it is suspended can become an
appreciable fraction of the application’s total run time. More critically, it can contribute significantly to
the total latency of each operation.

The low-latency interface documented in this chapter saves the time that would otherwise be wasted
on these context switches by not using interrupts. This feature is useful when it is important to mini-
mize the time taken to respond to the transfer of data, as it normally is for high-performance network
applications.

10.1 Interfaces

The API is designed to allow data transfers to happen concurrently with other processing by the CPU
application and Manager blocks, and to do so as efficiently as possible without exposing unnecessary
details to the application developer. Kernels, state machines, and Managers may be written entirely
without regard for whether this API is in use. It affects only the CPU code, as described in the remainder
of this section.

Dataflow Programming for Networking 81

10.1 Interfaces

10.1.1 Overview

Because the API affects only the CPU code, this document discusses the transfers from the point
of view of the CPU. Hence, transferring data from the DFE to the CPU is identified as reading, and
transferring it from the CPU to the DFE is identified as writing.

The CPU application allocates a buffer of adequate size to hold the data in transit for each PCIe
stream when using this interface. A separate buffer is needed for each stream, and a given stream can
be used only for reading or writing, not both.

Data is transferred in blocks of a fixed size configured at run-time by the developer. Each time a
block is queued for transfer, it occupies a slot in the buffer. The slot is released for reuse after the
transfer is complete.

The application uses non-blocking API calls to access the buffer, while the hardware independently
and concurrently transfers data between the buffer and the DFE.

Users familiar with the concept of a ring buffer may find it helpful to understand the implementation
in those terms, but this understanding is not a prerequisite for using the API.

10.1.2 Initialization Functions

An application using this interface starts as usual by calling functions such as max load.

8 Applications should not call max set pcie streams timeout when using the low-latency
PCIe interface, because its effect is unspecified in this context.

Setting up Following the usual initialization, the application calls this function once for each stream:

max llstream t ∗max llstream setup(
max engine t ∗engine, const char ∗stream name, size t num slots, const size t slot size, void ∗buffer) ;

The max llstream setup function returns a pointer of type max llstream t, which points to a
data structure used internally by the API to track certain information about the state of the stream. The
parameters have these interpretations:

• engine is an engine handle obtained by a prior call to max load, referring to a DFE used by the
application.

• stream name is the name of the low-latency stream.

• slot size is the size in bytes of each unit of data to be read or written atomically. It must be a
multiple of 16 ranging from 16 to 4096.

• num slots is the size of the buffer in units of slot size bytes. It may be at most 512. (The
buffer size in bytes is therefore slot size * num slots.)

• buffer points to an area of memory aligned on a 16 byte boundary and previously allocated by
the application. Its size must suffice to store num slots units of data, each of slot size bytes.
This area is used for temporary storage of data in transit.

82 Dataflow Programming for Networking

10 LOW-LATENCY PCIE INTERFACE

Freeing a stream When a stream is no longer required, the CPU code should release the resources
associated with it by calling this function:

void max llstream release(max llstream t ∗stream);

The stream parameter is one that has been returned by a previous call to max llstream setup.
This function does not free the buffer passed to max llstream setup, which should be explicitly
freed separately. It also does not free the stream whose stream handle was previously passed to
max llstream setup, which should be freed afterwards by calling max destroy pcie streams or
max close pcie stream.

Size considerations As far as possible, the sizes should be chosen by the developer with a view to
performance and correctness.

• Smaller slot sizes allow more frequent transfers and hence lower latency, but perhaps incur a
penalty in throughput due to fixed overheads per transfer.

• Larger numbers of slots improve throughput by allowing either the CPU or the DFE to continue
working productively while the other party is temporarily too busy to communicate.

• A further constraint on the sizes derives from the requirement that no slot may straddle a 4096
byte memory address boundary when the buffer is considered as a contiguous array of slots.

A sufficient condition to satisfy the last constraint (albeit stronger than necessary in some cases) is to
align the buffer on a slot size boundary and make the slot size a divisor of 4096.

W The function posix memalign from the standard C library (stdlib) is useful for allocating
memory on specifically aligned boundaries.

For example, if a slot size of 256 is chosen, it satisfies the requirements of being a multiple of 16
and a divisor of 4096, and guarantees that no slot straddles a 4096 byte boundary if the alignment is
also chosen to be 256, as in this code:

posix memalign ((void ∗) &buffer, 256, 256 ∗ NUM SLOTS)

The possible slot sizes suitable for this technique are 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096.

10.1.3 Reading Functions

Reading (i.e., transferring data from the DFE to the CPU) involves two steps. First, the application
requests a number of slots of data from the stream, and later it releases the slots for reuse.

Requesting new data Requesting the data is done by this function:

size t max llstream read(max llstream t ∗stream, size t max slots, void ∗∗slots);

The function always returns immediately, without blocking the application, whether or not any data is
available to be read.

• The return value is the number of slots found to contain new data read from the DFE, which may
be any number ranging from zero to the max slots parameter.

Dataflow Programming for Networking 83

10.1 Interfaces

• If the return value is non-zero, the pointer whose address is passed via the slots parameter
is modified to point to an array of that number of slots containing the newly read data. (For
performance reasons, this array resides within the buffer passed to max llstream setup rather
than the dynamic storage heap, but is accessed by normal C-style pointer dereferences.)

• The stream parameter is given by a prior call to max llstream setup, wherein the slot size

parameter determines the size of the slots in the array.

After calling max llstream read and getting a non-zero result, the application can access the data
read from the DFE by way of the pointer slots and process it as needed.

Releasing used slots When the data is no longer needed, the application should release the slots
by calling the following function:

max llstream read discard(max llstream t ∗stream, size t num slots)

The storage referenced by the slots parameter to max llstream read is implicitly reclaimed even
though no reference to it is passed explicitly to this function. Because the array actually resides within
the buffer passed to max llstream setup, it should not be deallocated any other way.

The num slots parameter to max llstream read discard is the number of slots being released,
which may range from 1 to the number returned by max llstream read. If num slots is less than
the maximum, then only num slots slots starting from the beginning of the array are released, and
the remaining ones can still be used by the application until they are released by subsequent calls to
max llstream read discard. On subsequent calls, num slots should not exceed the number of
slots remaining to be released.

8 All outstanding slots for a stream being read must be released before any more are requested.

10.1.4 Writing Functions

Writing (i.e., transferring data from the CPU to the DFE) also requires two steps. First the application
requests a number of empty slots for it to fill with data bound for the stream, and secondly it requests
their dispatch to the stream. The latter step implicitly releases the slots for reuse when the writing is
complete.

Requesting empty slots The function to request empty slots for writing is as follows.

size t max llstream write acquire(max llstream t ∗stream, size t max slots, void ∗∗slots);

The max slots parameter contains the number of slots requested, and the slots parameter contains
the address of a pointer that is modified to point to an array of empty slots if the call is successful. The
return value is a number ranging from zero to max slots, which gives the size of the array in slots. A
return value of zero may indicate that the CPU is writing too frequently for the DFE to keep up.

After a successful call to max llstream write acquire, the application should fill the slots refer-
enced by the slots parameter with new data to be written to the DFE. The writing does not take place
until the next step is performed.

84 Dataflow Programming for Networking

10 LOW-LATENCY PCIE INTERFACE

Listing 18: Manager connecting the Kernel to the CPU with two streams (LowLatencyManager.maxj).
1 package lowlatency;
2
3 import static com.maxeler.maxcompiler.v2.managers.standard.Manager.CPU;
4 import static com.maxeler.maxcompiler.v2.managers.standard.Manager.link;
5
6 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
7 import com.maxeler.maxcompiler.v2.managers.standard.Manager;
8
9 public class LowLatencyManager {

10 public static void main(String args[]) {
11 Manager m = new Manager(new LowLatencyEngineParameters(args));
12 Kernel k = new LowLatencyKernel(m.makeKernelParameters(”LowLatencyKernel”));
13
14 m.setKernel(k);
15 m.setIO(link(”cpu to dfe stream”, CPU),link(”dfe to cpu stream”, CPU));
16 m.build() ;
17 }
18 }

Writing new data The following function calls for new data in the slots acquired by the previous
function to be written to the DFE.

void max llstream write(max llstream t ∗stream, size t num slots);

• The stream parameter is obtained from a prior call to max llstream setup.

• The num slots parameter ranges from 1 to the number previously returned by the relevant call
to max llstream write acquire.

If the value passed as num slots is less than the number returned by max llstream write acquire

previously, only the first num slots slots starting from the beginning of the array are written, and one or
more subsequent calls to max llstream write are needed to write the rest. In the subsequent calls,
the num slots parameter should not exceed the number of slots remaining to be written.

The storage associated with the slots used for writing is implicitly released when they are written.
No other way of deallocating them should be attempted.

8 All acquired slots from a stream being written must be released before any more are acquired.

10.2 Low Latency Interface Example

Example 1 demonstrates the low latency interface by transferring buffers full of random data to an DFE,
transferring them back again, and comparing the results to the originals. The cycle is repeated several
times to confirm proper operation.

10.2.1 DFE Code

The Manager used in this example specifies two PCIe streams, one in each direction, connecting the
Kernel to the CPU, and is shown in Listing 18.

Dataflow Programming for Networking 85

10.2 Low Latency Interface Example

Listing 19: Loopback Kernel used for demonstrating low latency interface operation (LowLatencyKer-
nel.maxj).
1 package lowlatency;
2
3 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
4 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
5 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
6
7 public class LowLatencyKernel extends Kernel {
8 public LowLatencyKernel(KernelParameters parameters) {
9 super(parameters);

10
11 DFEVar StreamIn = io.input(”cpu to dfe stream”, dfeUInt(8));
12 DFEVar StreamOut = StreamIn;
13 io .output(”dfe to cpu stream”, StreamOut, dfeUInt(8));
14 }
15 }

The simple loopback Kernel shown in Listing 19 is used. This Kernel copies an input data stream
with a width of one byte to the output without modifying it. Note that as far as the Kernel is concerned,
the streams are read and written the same way as they would be if the low latency interface were not
being used.

8 The low latency interface is not compatible with MAX2 board models.

10.2.2 CPU Application

The CPU code initializes the stream to carry data from the DFE to the CPU like this.

38 posix memalign ((void ∗) &read buffer, SLOT SIZE, SLOT SIZE ∗ NUM SLOTS);
39 read llstream = max llstream setup (engine, ”dfe to cpu stream”, NUM SLOTS, SLOT SIZE, read buffer);

The stream in the other direction is initialized similarly.

40 posix memalign ((void ∗) &write buffer, SLOT SIZE, SLOT SIZE ∗ NUM SLOTS);
41 write llstream = max llstream setup (engine, ”cpu to dfe stream”, NUM SLOTS, SLOT SIZE, write buffer);

The main loop of the application proceeds as shown in Listing 20. Note that this loop polls both streams
and performs a read or write whenever conditions allow it. The effect is that reading and writing are
interleaved non-deterministically.

A run-time analysis of this example would exhibit an initial transient phase during which a surplus of
data originating from the CPU accumulates in the write buffer while relatively few transfers from the DFE
to the CPU take place, followed by a steady state in which transfers take place at approximately equal
rates in both directions, but not always in strict alternation. Hence there is very little if any waiting time
required by either the CPU application or the DFE. This efficient use of time and memory resources
makes a design in this style a suitable choice for deployment in many low latency applications.

86 Dataflow Programming for Networking

10 LOW-LATENCY PCIE INTERFACE

Listing 20: main loop of the low latency API example (LowLatencyCpuCode.c)
44 completed reads = 0;
45 completed writes = 0;
46 uint8 t generated data[TOTAL TRANSFERS][SLOT SIZE];
47 while(completed reads < TOTAL TRANSFERS)
48 {
49 if (completed writes < TOTAL TRANSFERS)
50 {
51 // generate more data
52
53 if (max llstream write acquire(write llstream,1,& write ptr))
54 {
55 for (j = 0; j < SLOT SIZE; j++)
56 generated data[completed writes][j] = rand() & 0xFF;
57 memcpy (write ptr, generated data[completed writes], SLOT SIZE);
58 max llstream write (write llstream ,1) ;
59 completed writes++;
60 printf (”Wrote %d/%d\n”, completed writes, TOTAL TRANSFERS);
61 }
62 }
63 if (max llstream read(read llstream,1,&read ptr))
64 {
65 // check data integrity
66
67 if (memcmp(read ptr, generated data[completed reads], SLOT SIZE))
68 status = 1;
69 max llstream read discard(read llstream,1);
70 completed reads++;
71 printf (”Read: %d/%d\n”, completed reads, TOTAL TRANSFERS);
72 }
73 }

10.3 Deadlock Avoidance

When code is allowed to execute non-deterministically as in the previous example, it is important for the
developer to be mindful of the possibility of deadlock. This section discusses the relevant implications
to the low latency PCIe interface.

10.3.1 Deadlock from Deterministic Interleaving

Rather than reading and writing non-deterministically as in the example, a simpler way of accelerating
a sequential application that operates on blocks of data would be to transfer each block to the DFE for
processing, and then transfer it back to the CPU. The original version of the application might express
the relevant operation as a function or subroutine call, which it would seem natural to replace by a
function that encapsulates the exchange of data with the DFE. However, this approach will probably fail
due to deadlock.

Kernels and other Manager blocks contain pipelines designed for highly concurrent operation. As
such, they are generally not expected to empty out until processing terminates. By waiting for a block
of data to be returned after sending just one, the application effectively deprives the pipeline of input,
resulting in a stall. A stalled pipeline neither sends nor receives. Although the pipeline may contain
some results that are finished being computed, they will not be transferred back to the CPU until the
pipeline is restarted by being fed more input data, so the application will wait forever.

Dataflow Programming for Networking 87

10.3 Deadlock Avoidance

8 To avoid deadlock, a CPU application should allow reading and writing to be interleaved non-
deterministically.

It is theoretically possible but not recommended to arrange the interleaving deterministically if the
pipeline depth is known. The CPU application could wait for the expected amount of data less that
which is necessary to fill the pipeline. However, this coding style would impair maintenance because
the pipeline depth can be affected in non-obvious ways by minor changes to the source code, or by
future changes to the compiler.

10.3.2 Deadlock from Partial Transfers

Data is transferred by this interface only in multiples of the slot size. If a Kernel transfers less data to
the PCIe bus than needed to fill a whole slot, the hardware waits indefinitely until it transfers enough
to fill the rest of the slot. If a Kernel reaches the end of its run and transfers less than the amount
needed to fill the last slot, the CPU code will poll forever because max llstream read will never return
a non-zero value. This cause of deadlock can be prevented in applications where the number of bytes
to be transferred is known in advance.

8 To avoid deadlock, the total number of bytes transferred should be a multiple of the slot size.

If unpredictable transfer sizes make the guideline above difficult to follow, padding the data up to the
slot size is a valid alternative. This solution requires CPU applications and Kernels to agree on a rule
for indicating the amount of useful data in a slot. An unsigned integer at the end of each slot indicating
its length is a good choice. Another choice is to append a pattern to the data that is known never to
appear within it, which signals the beginning of the pad.

88 Dataflow Programming for Networking

SLiC API Index

max arp add entry, 79
max arp get entry, 79
max arp remove entry, 79

max ip config, 39
max ip multicast join group, 78
max ip multicast leave group, 78
max ip route add, 78
max ip route get, 78
max ip route remove, 78
max ip route set default gw, 77

max llstream read, 83
max llstream read discard, 84
max llstream release, 83
max llstream setup, 82
max llstream write, 85
max llstream write acquire, 84

max tcp await state, 56
max tcp close, 54
max tcp connect, 53
max tcp create socket, 53
max tcp create socket with number, 53
max tcp get socket number, 56
max tcp listen, 54
max tcp select, 56
max tcp status, 55

max udp bind, 47
max udp bind ip, 47
max udp close, 47
max udp connect, 47
max udp create socket, 44
max udp create socket with number, 47
max udp get socket number, 44
max udp set ttl, 48

Dataflow Programming for Networking 89

MaxJ API Index

EthernetRXType, 71
EthernetStream.getReceiveStream, 60
EthernetStream.getTransmitStream, 60
EthernetTXType, 72

FrameData.getAsVector, 33
FrameData.linkfield, 31
FrameData.setSizeForVariableField, 28
FramedKernel.popResetBetweenFrames, 32
FramedKernel.pushResetBetweenFrames, 32
FrameFormat.addField, 27
FrameFormat.addVariableLengthField, 27, 33
FrameIO.frameInput, 30, 31
FrameIO.frameOutput, 30, 32

NetworkConfig.setTCPReceiveWindowSize, 60
NetworkConfig.setTCPTransmitWindowSize, 60
NetworkManager.addEthernetStream, 61
NetworkManager.addTCPStream, 60
NetworkManager.addUDPStream, 60

SimpleFramedLinkType, 62

TCPStream.getReceiveStream, 60
TCPStream.getTransmitStream, 60
TCPType, 49

UDPOneToManyRXType, 43
UDPOneToManyTXType, 43
UDPOneToOneRXType, 42
UDPOneToOneTXType, 42
UDPStream.getReceiveStream, 60
UDPStream.getTransmitStream, 60

90 Dataflow Programming for Networking

	Contents
	Preface
	1 Network Programming Overview
	1.1 Maxeler Networking Technology
	1.1.1 Hardware
	1.1.2 Software

	1.2 Advantages of combining the dataflow model of computation with networking
	1.2.1 CPU Model
	1.2.2 Dataflow Model
	1.2.3 Stream Formats for Network Data

	1.3 MaxCompiler Design Flow
	1.4 Identifying Critical Paths for Dataflow Engine Implementation
	1.4.1 Designing Kernels
	1.4.2 Configuring a Manager
	1.4.3 Compiling
	1.4.4 Integrating with the CPU Application
	1.4.5 Simulating
	1.4.6 Building for DFEs

	1.5 A Look at Framed Kernels
	1.5.1 Framed Kernel Basics
	1.5.2 Network Streams
	1.5.3 Framed Kernel Example: Field Swap
	1.5.4 Field Swap Kernel
	1.5.5 Field Swap Manager

	2 Getting Started
	2.1 Launching MaxIDE
	2.2 Importing the Examples
	2.3 Building and Running the Examples in MaxIDE
	2.4 Configuring Simulation for Networking
	2.5 Building and Running the Examples outside MaxIDE

	3 Framed Kernels
	3.1 Introduction
	3.1.1 Field Concepts
	3.1.2 Timing Conventions
	3.1.3 Visualizing a Framed Kernel

	3.2 Field Accumulator Example
	3.3 Frame Format
	3.3.1 Fixed Length Fields
	3.3.2 Variable Length Fields

	3.4 Stream Format
	3.5 IOs
	3.5.1 Input Streams
	3.5.2 Output Streams

	3.6 Advanced Features
	3.6.1 Controlled Inputs and Outputs
	3.6.2 Persistent State
	3.6.3 Granularity

	4 IP Connectivity
	4.1 The Role of SLiC
	4.2 General SLiC Setup
	4.3 Network Layer Setup

	5 UDP Packet Processing
	5.1 One-to-one mode UDP streams
	5.1.1 One-to-one transmit format
	5.1.2 One-to-one receive format

	5.2 One-to-many Mode UDP Streams
	5.2.1 One-to-many Transmit Format
	5.2.2 One-to-many Receive Format

	5.3 UDP CPU API Summary
	5.3.1 Socket Management
	5.3.2 Receiving
	5.3.3 Sending
	5.3.4 Multicast

	6 TCP Segment Processing
	6.1 TCP Stream Format
	6.2 Field Accumulator Adaptions for TCP
	6.3 CPU API for TCP
	6.3.1 Creating a Socket
	6.3.2 Starting an Outward Connection
	6.3.3 Accepting an Inward Connection
	6.3.4 Closing a Connection
	6.3.5 Interrogating a Connection
	6.3.6 Monitoring Connections

	7 Network Managers
	7.1 Network Streams
	7.1.1 UDP Streams
	7.1.2 TCP Streams
	7.1.3 Ethernet Streams

	7.2 Key-Value Example
	7.2.1 Kernels
	7.2.2 Manager
	7.2.3 CPU Application

	8 Ethernet Frame Processing
	8.1 Receiving Streams
	8.2 Transmitting Streams
	8.3 Time Stamped Packet Capture Example

	9 Advanced Network Configuration
	9.1 IP Routing
	9.2 IP Multicast
	9.3 ARP

	10 Low-Latency PCIe Interface
	10.1 Interfaces
	10.1.1 Overview
	10.1.2 Initialization Functions
	10.1.3 Reading Functions
	10.1.4 Writing Functions

	10.2 Low Latency Interface Example
	10.2.1 DFE Code
	10.2.2 CPU Application

	10.3 Deadlock Avoidance
	10.3.1 Deadlock from Deterministic Interleaving
	10.3.2 Deadlock from Partial Transfers

	SLiC API Index
	MaxJ API Index

