
MaxGenFD
Tutorial

Version 2014.1

Contents

Contents 1

Preface 4

1 Introduction to MaxGenFD 5
1.1 MaxGen . 5
1.2 MaxGenFD . 5
1.3 MaxGenFD Programming Model . 5
1.4 FDKernel . 6
1.5 FDKernel Configuration . 6
1.6 Runtime . 7
1.7 MaxGenFD capabilities . 7

1.7.1 Optimized stencil generation . 7
1.7.2 Parallelism . 8
1.7.3 Domain Decomposition . 8
1.7.4 Debugging . 9

2 Getting Started 10
2.1 MaxIDE . 10
2.2 A Basic Example . 10
2.3 The FDKernel . 10
2.4 Configuring the Kernel . 14
2.5 Configuring a Manager . 15
2.6 Integrating with the Software . 19

2.6.1 Setting up the Accelerator Cards . 19
2.6.2 Executing the Timesteps . 22

2.7 Running the Simulator . 23
2.8 Output Wavefields . 24

3 Convolution 28
3.1 Stencils . 28

3.1.1 Fixed 1D Stencils . 28
3.1.2 Variable 1D Stencils . 29
3.1.3 Cube Stencils . 30

3.2 Performing the Convolution . 30
3.3 Roll-on/Roll-off . 32

3.3.1 Symmetric Roll-on/Roll-off . 32
3.3.2 Asymmetric Roll-on/Roll-off . 33

3.4 Halos . 34

4 Earth Models 36
4.1 Stream Inputs . 36
4.2 Setting Earth Model Types . 36
4.3 Setting the Earth Model from the Host . 36
4.4 Derived Earth Model Parameters . 38

1

Contents

5 Host Inputs and Outputs 41
5.1 Injecting Data into the FDKernel . 41
5.2 Reading Data from the FDKernel . 43
5.3 Hollow Cube Host IO . 44
5.4 Scalar inputs . 47

5.4.1 Scalar Input Example . 47

6 Boundaries 49
6.1 Boundary Masks . 49
6.2 Simple Sponge . 49

7 Optimizing Data Types 52
7.1 Specifying Types in the FDKernel . 52

7.1.1 Storage Types . 52
7.1.2 Compute Types . 52

7.2 Compression . 54
7.2.1 Earth Model Compression . 54
7.2.2 Wavefield Compression . 55

7.3 Floating-Point FDKernels . 55
7.4 Fixed-Point FDKernels . 56
7.5 Intermediate Type . 58

7.5.1 Guard Bits Mode . 58
7.6 Coefficient Types . 58
7.7 Convolution Types . 58
7.8 Fixed-Point Scaling . 59

7.8.1 Absolute Maximum Values . 59
7.8.2 Relative Magnitudes . 59
7.8.3 Convolution Output Scaling . 60
7.8.4 Additional Scale Factor . 61

8 Performance Optimization 62
8.1 Multiple Processing Pipelines . 62
8.2 Clock Frequency . 62
8.3 Block Size . 63
8.4 Interleaving wavefields . 64
8.5 Multi-Chip Implementations . 65

9 Advanced Earth Model Usage 66
9.1 Enabling Earth Model Compression . 66
9.2 Handling Earth Models in the Host Code . 67

9.2.1 Loading an Earth Model . 67
9.2.2 Loading an existing Earth Model . 67
9.2.3 Closing an Earth Model . 67
9.2.4 Saving an Earth Model . 68
9.2.5 Using Part of an Earth Model . 68
9.2.6 Tile Size . 69

9.3 Setting Data in an Earth Model . 69
9.3.1 Using the Default Compression Mode . 69

9.4 Specifying a Table Compression Scheme . 69

Version 2014.1 MaxGenFD: Tutorial 2

Contents

9.4.1 Loading Compressed Data into an Earth Model 70
9.4.2 Implementing Your Own Table Compression Scheme 71

Version 2014.1 MaxGenFD: Tutorial 3

Contents

Preface

Purpose of this document

This tutorial is designed to show the reader how to use all of the main features of MaxGenFD in real-
world seismic applications.

This document can be read independently, though some terminology and concepts used here are
introduced in the Dataflow Programming with MaxCompiler tutorial.

Document Conventions

When important concepts are introduced for the first time, they will appear in bold. Italics are used for
emphasis. Directories and commands are displayed in typewriter font. Variable and function names
are displayed in typewriter font.

MaxJ methods and classes are shown using the following format:

FDVar convolve(FDVar toConvolve, ConvolveAxes axes, Stencil stencil)

C function prototypes are similar:

int maxlib run(maxlib context context);

Actual MaxJ usage is shown without italics:

FDVar laplacian = convolve(p, ConvolveAxes.XYZ, stencil);

C usage is similarly without italics:

maxlib stream earthmodel from lmem(maxlib, vel array);

Sections of code taken from the source of the examples appear with a border and line numbers:

1 package ex1 simple;
2
3 import com.maxeler.maxgen.fd.ConvolveAxes;
4 import com.maxeler.maxgen.fd.FDKernel;
5 import com.maxeler.maxgen.fd.FDKernelParameters;
6 import com.maxeler.maxgen.fd.FDVar;
7 import com.maxeler.maxgen.fd.stencils.Stencil;
8
9 public class SimpleFDKernel extends FDKernel {

10
11 private final int stencilSize = 13;
12 private final Stencil stencil = fixedStencil (- stencilSize /2, stencilSize /2, new double[][] {
13 { -0.00003006253006249946f, 0.0005194805194800871f, -0.004464285714282842f, 0.02645502645501459f,

-0.133928571428538f, 0.857142857142776f, -1.49138888888878f, 0.857142857142776f, -0.133928571428538f,
0.02645502645501459f, -0.004464285714282842f, 0.0005194805194800871f, -0.00003006253006249946f }

14 }, 8.0) ;

Version 2014.1 MaxGenFD: Tutorial 4

1 Introduction to MaxGenFD

1 Introduction to MaxGenFD

MaxCompiler provides a general-purpose programming system for Maxeler hardware accelerators.
MaxGen introduces an application-domain-specific layer to enable rapid development and deployment
of accelerators.

1.1 MaxGen

MaxGen is implemented as a layer on top of MaxCompiler, so the user retains the full programming
power of MaxCompiler, while pre-defined constructs and libraries implement the details of the domain-
specific application. MaxGen allows users to very quickly write accelerated applications with a minimum
of effort, with automatic generation of a highly-optimized, parallel, multi-DFE implementation.

1.2 MaxGenFD

A number of important seismic applications such as Forward Modeling, Reverse Time Migration and
Waveform Inversion have 3D finite difference at their computational core: MaxGenFD addresses these
algorithm domains. This document focuses on such seismic applications, though there are many other
applications of finite difference methods and therefore MaxGenFD.

MaxGenFD handles the complexities facing any finite difference implementation such as managing
very large data sets, boundary conditions and domain decomposition across multiple compute elements
with halo exchange. In addition, the compiler minimizes the need for the geoscience programmer to
perform DFE-specific optimizations such as customizing data-types and generating optimized stencil
descriptions.

The diagram in Figure 1 shows the interaction of MaxGenFD and MaxCompiler when creating finite
difference designs.

MaxGenFD has a MaxCompiler element that provides a domain-specific MaxCompiler interface
producing both a Manager and a Kernel. On the software side, MaxGenFD provides a MaxGenFD
MaxLib, which is a domain-specific library abstracting the software-accelerator communications pro-
vided by SLiC.

1.3 MaxGenFD Programming Model

In a typical software finite difference application, the code loops through many timesteps of a core
kernel that performs wave propagation. Broadly, the computation in the kernel can be broken down into
derivative calculations (convolving one or more of the input wavefields with a stencil operator), wave
equation (computing the next wavefield state based on the input wavefields and the derivatives), and
boundary conditions. Convolution with the finite difference stencil usually dominates both operation
count and computation time.

Figure 2 shows the architecture of a MaxGenFD-accelerated application compared to a software-
only implementation. In the pure software implementation, the CPU executes the kernel computation
and the compute node’s main memory contains the wavefield and earth model data. When using
MaxGenFD, the core kernel of code, including the critical convolutions, has been reimplemented as a
specialized finite difference Kernel (FDKernel) and is now running on the DFE. The FDKernel behaves
as a function with some number of wavefield inputs, some number of earth model inputs, and some
number of wavefield outputs. Wavefields and earth models are now stored (possibly in compressed
form) in the LMem memory on a Maxeler DFE. In addition, the FDKernel can have some number of

Version 2014.1 MaxGenFD: Tutorial 5

1 Introduction to MaxGenFD

MaxCompiler

Manager

MaxelerOS

DFESW

User Input

Output

Standard Software
Compiler, Linker

DFE Build
or

Simulation

Kernel Compiler

Finite
Difference

Kernel
(.maxj)

CPU
Application

(.c, .f)

DFE
Configuration

(.max)

Dataflow
Application

(executable)

MaxGenFD

MaxGenFD
MaxLib

SliC Interface

FDKernel
Configuration

(.maxj)

Figure 1: Layered architecture of MaxGenFD on top of MaxCompiler.

host inputs and outputs that can be used to receive stimulus data from the CPU and to return output
data to the CPU during the execution of a timestep.

To accelerate an application using MaxGenFD, the user splits the application into three components:

• FDKernel (written in MaxJ)

• FDKernel configuration (written in MaxJ)

• Runtime (written in C, C++ or FORTRAN), which includes the parts of the application code that
will remain in software.

1.4 FDKernel

The FDKernel is a mathematical description of a specialized function that, given appropriate input data,
performs some part of a finite difference calculation (usually a timestep, or part of a timestep).

1.5 FDKernel Configuration

The FDKernel configuration sets the performance options for the FDKernel, such as types, compres-
sion and number of pipelines, at DFE configuration compile time. This allows a single mathematical

Version 2014.1 MaxGenFD: Tutorial 6

1 Introduction to MaxGenFD

Compute NodeCompute Node

SoftwareSoftware

CPU

Run-time code
Loops over
timesteps

M
em

ory

Stimulus

loop
 ...
 convolve
 …
 convolve
 …
 convolve

Wave-
field

Earth
Model

(a) Software implementation

Compute NodeCompute Node

SoftwareSoftware

CPU

Run-time code
Loops over
timesteps

M
em

ory

Stimulus

loop
 ...
 Execute
 FDKernel
 …
 Execute
 FDKernel

Wave-
field

Earth
Model

DFEDFE

MaxGenFD Kernel

Wave-
field

Earth
Model

M
em

ory

(b) Accelerated implementation

Figure 2: Software and accelerated finite difference implementations. In the accelerated implementa-
tion, the earth model and wavefields are stored in the LMem of the DFE(s).

FDKernel description to be used to generate multiple DFE configurations with different performance
characteristics.

1.6 Runtime

The runtime integrates the accelerated kernel into a complete software application. The runtime code
drives the FDKernel and decides what input data to provide to the FDKernel at any point in time. The
runtime can also set scalar input values for the FDKernel to configure specific functionality, for example
to set different boundary conditions for different surfaces of the problem domain.

By partitioning the application in this way, functionality that is fixed (e.g. the shape of the finite dif-
ference stencil) is hard-coded into the DFE configuration and highly optimized, however parts that need
to change on a timestep-to-timestep basis (e.g. which input wavefields should be read) are configured
in software.

1.7 MaxGenFD capabilities

MaxGenFD kernels provide automatic support for a variety of constructs that you may need when
accelerating finite difference applications.

1.7.1 Optimized stencil generation

As well as coding the finite difference stencil operators directly (using *, +, etc operators), you can
opt to describe your finite difference stencil in a more abstract form and then apply it to input streams
as a single operation. This enables MaxGenFD to generate highly optimized hardware for the stencil
operator.

You can also easily describe different stencils to be used at the edges of the domain to provide
“roll-on/roll-off” conditions: MaxGenFD will automatically apply these stencils at the appropriate points
at edges of the domain.

Version 2014.1 MaxGenFD: Tutorial 7

1 Introduction to MaxGenFD

MaxRing DFE
Interconnect

Figure 3: Accelerated finite difference with 3D domain decomposed over multiple DFEs connected via
a MaxRing interconnect.

1.7.2 Parallelism

FDKernel descriptions are inherently multi-pipe, providing both parallelism within a single computa-
tional pipeline and the instantiation of multiple computational pipelines running in parallel. The FDKer-
nel description is the same regardless of the level of parallelization: you can specify the number of
computational pipelines that are created during the DFE build process.

1.7.3 Domain Decomposition

A large domain can be decomposed into multiple blocks running either on a single DFE or across
multiple MaxCards. The MaxCards can communicate via direct MaxRing or the CPU. Figure 3 shows a
3D domain decomposed into four blocks, with each block mapped to a different DFE.

The halos for each of the blocks of the domain are automatically exchanged between the blocks
over the MaxRing or through the CPU , giving maximum computational throughput in each of the blocks
with no added complexity for the user.

Version 2014.1 MaxGenFD: Tutorial 8

1 Introduction to MaxGenFD

1.7.4 Debugging

DFE simulation allows you to simulate FDKernels quickly to verify their functionality and to tune the
results. Using a simulated system, the same host software code can be run against small problem
sizes for many timesteps purely in simulation (e.g. 64x64x64 domains) before building a real DFE
configuration.

Once the behavior has been verified, then the design can be compiled into a DFE configuration
and run with a large domain. On a DFE, debugging facilities are still available in the form of numeric
exceptions (detecting overflow, underflow, divide by zero and invalid operations) and MaxDebug, a
graphical tool for debugging data flow scheduling in the complete accelerated system.

Version 2014.1 MaxGenFD: Tutorial 9

2 Getting Started

2 Getting Started

In this section, we show all the development tasks needed to create a MaxGenFD application, following
a simple example as we go (Example 1). We use floating point in this example for simplicity: we will
revisit this example in section 7 to add fixed-point optimizations.

2.1 MaxIDE

This tutorial assumes that you have setup MaxIDE and imported the MaxGenFD tutorial examples. For
more information on how to setup MaxIDE see section 4 of the MaxCompiler tutorial. The MaxCompiler
tutorial can be found in the docs folder inside the directory that MaxCompiler was installed to. The
MAXCOMPILERDIR environment variable points to MaxCompiler’s installation directory.

2.2 A Basic Example

To introduce MaxGenFD, we consider an example of an Acoustic Forward Modeling code. We model
an isotropic medium with variable velocity, described by the equation:

∂2p

∂t2
= v2∇2p+ s(t)

We use an absorbing “sponge” region at the edges of the domain to reduce the effect of reflections.
A finite difference implementation of this equation can be described in pseudo-code as in Listing 1,
where X, Y and Z are the dimensions of the domain, prev, curr and next are the previous, current
and next wavefields, source is a source wavelet and vv is a velocity-squared earth model.

Listing 1: Pseudo-code for an Acoustic Forward Modeling implementation.

for timestep = 1 to timestep_max:

for i = 0 to X*Y*Z-1:

laplacian := convolve(curr[i], stencil)

next[i] := 2 * curr[i] - prev[i] + vv[i] * laplacian

next[i] := next[i] + source[i]

apply_boundary_sponge(curr, next)

swap_buffer_pointers(prev, curr, next)

2.3 The FDKernel

In our example, the timestep is implemented as an FDKernel using MaxGenFD. Figure 4 shows how
the FDKernel executes each timestep. The current wavefield (pt) is read from the DFE’s LMem memory
into the FDKernel and convolved. The wave equation uses the results of the convolution, the current
and previous wavefields (pt and pt−1) and the earth model (read from the DFE’s LMem). The source
wavelet (streamed from the CPU) is then added for the current timestep (st). The result (pt+1) is written
back to the DFE’s LMem.

Although this diagram has been shown with three wavefield buffers for simplicity (previous, current
and next), it is preferable to use only two buffers, writing the results from a timestep directly into the
previous wavefield buffer: we use this more efficient implementation in our example.

Version 2014.1 MaxGenFD: Tutorial 10

2 Getting Started

ServerServer DFEDFE

CPU

Run-time code
Loops over time-steps

of computation

M
em

ory

MaxGenFD Kernel
Implements propagatorWave Equation

Current
Wavefield

(w
t
)

Stimulus
Data

(s
t
)

Previous
Wavefield

(w
t-1

)

Earth
Models

Next
Wavefield

(w
t+1

)

Stencil Convolution

Add Stimulus

loop
 ...
 convolve
 …
 convolve
 …
 convolve
 ...

Figure 4: Acoustic Forward Modeling example Kernel showing inputs and outputs of the convolution
and wave equation on each time step.

The source code for our FDKernel is shown in Listing 2. SimpleFDKernel is a MaxJ class that
extends the MaxGenFD base class FDKernel.

Stencils are created as linear stencils that can then be applied in one or more dimensions. If the
stencil contains symmetry, then this will automatically be optimized to reduce the number of multiplica-
tion operations that need to be performed on the DFE.

In our Acoustic Forward Modeling example, we declare a 13-element stencil, starting at location -6

and ending at +6 relative to the central point (0). We expect the result from our convolution to be no
larger than 8 times the input, so we pass this as the final argument to the stencil creation method to
enable MaxGenFD to optimize the arithmetic and data types:

17 private final int stencilSize = 13;
18 private final Stencil stencil = fixedStencil (
19 - stencilSize / 2,
20 stencilSize / 2,
21 new double[] { -0.00003006253006249946f, 0.0005194805194800871f,
22 -0.004464285714282842f, 0.02645502645501459f,
23 -0.133928571428538f, 0.857142857142776f, -1.49138888888878f,
24 0.857142857142776f, -0.133928571428538f, 0.02645502645501459f,
25 -0.004464285714282842f, 0.0005194805194800871f,
26 -0.00003006253006249946f },
27 8.0) ;

MaxGenFD introduces the stream reference FDVar, which is automatically parallel and allows the
FDKernel to specify the processing algorithm without being type-specific: the actual Kernel type for the
stream is set in a separate configuration object.

MaxGenFD leverages the streaming computation model of MaxCompiler, so all of our inputs to and
outputs from the Kernel are streams. We do not specify where streams should get their data explicitly:
we declare our streams using input and output types (e.g. wavefield, earth model, host input), which
allows MaxGenFD to connect the streams appropriately.

The inputs for the wavefields are read from input streams curr w for the current wavefield and

Version 2014.1 MaxGenFD: Tutorial 11

2 Getting Started

Listing 2: Acoustic Forward Modeling Kernel (SimpleFDKernel.maxj).
1 /∗∗
2 ∗ Document: MaxGenFD Tutorial (maxgenfd-tutorial.pdf)
3 ∗ Example: 1 Name: Simple FD
4 ∗ MaxFile name: SimpleFD
5 ∗ Summary:
6 ∗ An FDkernel that will apply our stencil .
7 ∗/
8 package simplefd;
9

10 import com.maxeler.maxgen.fd.ConvolveAxes;
11 import com.maxeler.maxgen.fd.FDKernel;
12 import com.maxeler.maxgen.fd.FDKernelParameters;
13 import com.maxeler.maxgen.fd.FDVar;
14 import com.maxeler.maxgen.fd.stencils.Stencil;
15
16 class SimpleFDKernel extends FDKernel {
17 private final int stencilSize = 13;
18 private final Stencil stencil = fixedStencil (
19 - stencilSize / 2,
20 stencilSize / 2,
21 new double[] { -0.00003006253006249946f, 0.0005194805194800871f,
22 -0.004464285714282842f, 0.02645502645501459f,
23 -0.133928571428538f, 0.857142857142776f, -1.49138888888878f,
24 0.857142857142776f, -0.133928571428538f, 0.02645502645501459f,
25 -0.004464285714282842f, 0.0005194805194800871f,
26 -0.00003006253006249946f },
27 8.0) ;
28
29
30 SimpleFDKernel(FDKernelParameters parameters) {
31 super(parameters);
32 FDVar curr = io.waveFieldInput(”currW”, 1.0, stencilSize / 2); // Current wavefield
33
34 FDVar prev = io.waveFieldInput(”prevW”, 1.0, 0); // Previous wavefield
35 FDVar dvv = io.earthModelInput(”dvv”, 1 / 4.0, 0); // Earth model
36 FDVar source = io.hostInput(”source”, 1.0, 0); // Stimulus data
37 FDVar sponge = boundaries.sponge(50); // Sponge
38
39 prev = prev ∗ sponge; // Sponge previous wavefield
40
41 FDVar laplacian = convolve(curr, ConvolveAxes.XYZ, stencil);
42 FDVar result = curr ∗ 2 - prev + dvv ∗ laplacian + source;
43
44 result = result ∗ sponge; // Sponge result
45
46 io .hostOutput(”receiver” , result) ; // Receiver output to host
47 io .waveFieldOutput(”nextW”, result); // Wavefield output
48 }
49 }

prev w for the previous wavefield:

32 FDVar curr = io.waveFieldInput(”currW”, 1.0, stencilSize / 2); // Current wavefield
33
34 FDVar prev = io.waveFieldInput(”prevW”, 1.0, 0); // Previous wavefield

The two input wavefields are specified with a string name of the input ("curr w" and "prev w"), rel-
ative magnitude (1.0, used for optimization purposes, see subsubsection 7.8.2) and halo size (stencilSize/2
and 0, see subsection 3.4 for more detail) as their arguments.

Version 2014.1 MaxGenFD: Tutorial 12

2 Getting Started

The earth model is read from an input stream that comes from the local LMem on the DFE:

35 FDVar dvv = io.earthModelInput(”dvv”, 1 / 4.0, 0); // Earth model

The earth model input is declared with a string name ("dvv"), the absolute maximum value in the
earth model (1/4.0, used for optimization, see subsubsection 7.8.1) and halo size (0).

The state of the source wavelet for the current timestep is streamed over from the CPU:

36 FDVar source = io.hostInput(”source”, 1.0, 0); // Stimulus data

The source wavelet also has a magnitude relative to the other inputs (1.0, see subsubsection 7.8.2
for more detail on relative magnitudes) and halo size specified (0).

A stream of sponge coefficients is created using MaxGenFD’s boundary conditions library. A 50-pt
absorbing “sponge” region is generated by the call to boundaries.sponge as a multiplicand that is
multiplied with the two wavefields. The values for the sponge and the edges of the domain to which it
should be applied are set in the host software code.

37 FDVar sponge = boundaries.sponge(50); // Sponge
38
39 prev = prev ∗ sponge; // Sponge previous wavefield

Because the FDKernel description is a streaming program, all points in the problem domain are
multiplied by the sponge value, even if they are in the interior of the domain, but the boundary library
will set the sponge coefficient to 1.0 when outside the absorbing region.

Notice that the way the sponge is applied is subtly different to the software pseudo-code (Listing 1)
for two reasons:

• Performing the sponging before the wave equation update requires writing out only one wavefield
to LMem for result each execution step instead of two output wavefields, one for curr and one
for prev, using half as much of the available memory bandwidth.

• Applying the sponge to result before writing out to the LMem in the current execution step
rather than sponging curr in the next execution step means that the two sponging operations
take place much closer together in the schedule for the FDKernel. Sponging curr and next

before the wave equation means that more buffering is necessary as the two uses of the sponge
are either side of the convolution operation, which has significant buffering associated with it.

At this point, all of the input streams are set up, so we can implement the calculation.
In our Acoustic Forward Modeling example, we apply our linear stencil to all three dimensions of the

current wavefield to perform a Laplacian transformation. This is done with a single call to the convolve

method:

41 FDVar laplacian = convolve(curr, ConvolveAxes.XYZ, stencil);

curr is the wavefield to convolve, ConvolveAxes.XYZ indicates that we want to perform the con-
volution in all three axes and stencil is the stencil to use for the convolution.

Version 2014.1 MaxGenFD: Tutorial 13

2 Getting Started

The output from the convolution, laplacian, is used in the update to the wave equation and the
source wavelet is added:

42 FDVar result = curr ∗ 2 - prev + dvv ∗ laplacian + source;

The resultant wavefield has the sponge applied to it in this execution step:

44 result = result ∗ sponge; // Sponge result

We can read back some or all of the data using an output back to the CPU:

46 io .hostOutput(”receiver” , result) ; // Receiver output to host

Exactly how much data, from where in the domain it should be taken and how often we want to read
it can be specified at run time in the CPU code.

Finally, the resultant wavefield for this timestep is written to an output stream which writes to
"next w":

47 io .waveFieldOutput(”nextW”, result); // Wavefield output

2.4 Configuring the Kernel

With no specification of data types within the FDKernel in MaxGenFD, all optimization is performed via
a configuration object, shown in Listing 3.

The configuration object should be fully set up at the beginning of the build process and then passed
to the Manager. Attempting to change the configuration object from within the FDKernel will result in an
error from MaxGenFD.

We create the configuration object with engine parameters which store user configuration settings
and the basic type that we will use in the FDKernel, in this case floating point:

21 // Use floating point
22 FDConfig config = new FDConfig(engineParameters, DefaultType.FLOAT);

We set the number of parallel processing pipelines we want to use, in our case 1:

24 config. setParallelPipelines (1) ;

The number of pipelines we can build into a single DFE depends mainly on the size of the stencil
and the data types in use. In this design we are using floating point which requires more resources per
pipeline than fixed point. We use just one pipeline here to accelerate the building of DFE configurations.

In order to make best use of the available memory bandwidth, we enable compression on wavefields
and our earth model:

26 config.setWavefieldStorageType(StorageType.float8 24);
27 config.setEarthModelStorageType(”dvv”, StorageType.compressedTable(10));

We use 16-bit compression for our wavefields (see subsubsection 7.2.2) and table compression for
our earth model (see subsubsection 7.2.1).

We can set the types for each stage of the computation. For our simple implementation of Acous-
tic Forward Modeling, we use single-precision floating point throughout the FDKernel by declaring a

Version 2014.1 MaxGenFD: Tutorial 14

2 Getting Started

Listing 3: Acoustic Forward Modeling configuration object (SimpleFDConfig.maxj).
1 /∗∗
2 ∗ Document: MaxGenFD Tutorial (maxgenfd-tutorial.pdf)
3 ∗ Example: 1 Name: Simple FD
4 ∗ MaxFile name: SimpleFD
5 ∗ Summary:
6 ∗ Configuration settings for the model.
7 ∗/
8
9 package simplefd;

10
11 import com.maxeler.maxcompiler.v2.build.EngineParameters;
12 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEFloat;
13 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFETypeFactory;
14 import com.maxeler.maxgen.fd.ComputeType;
15 import com.maxeler.maxgen.fd.FDConfig;
16 import com.maxeler.maxgen.fd.FDConfig.DefaultType;
17 import com.maxeler.maxgen.fd.StorageType;
18
19 class SimpleFDConfig {
20 static FDConfig config(EngineParameters engineParameters) {
21 // Use floating point
22 FDConfig config = new FDConfig(engineParameters, DefaultType.FLOAT);
23
24 config. setParallelPipelines (1) ;
25
26 config.setWavefieldStorageType(StorageType.float8 24);
27 config.setEarthModelStorageType(”dvv”, StorageType.compressedTable(10));
28
29 // Set our floating point type for all calculations
30 config.setWavefieldComputeType(ComputeType.float8 24);
31 // IEEE single-precision floating point
32 DFEFloat t = DFETypeFactory.dfeFloat(8, 24);
33 config.setCoefficientType(t) ;
34 config.setEarthModelComputeType(”dvv”, t);
35
36 return config;
37 }
38 }

MaxCompiler floating point type and passing it to methods that set type options on the FDKernel:

29 // Set our floating point type for all calculations
30 config.setWavefieldComputeType(ComputeType.float8 24);
31 // IEEE single-precision floating point
32 DFEFloat t = DFETypeFactory.dfeFloat(8, 24);
33 config.setCoefficientType(t) ;
34 config.setEarthModelComputeType(”dvv”, t);

2.5 Configuring a Manager

After designing the Kernel, we need to configure a Manager that will connect our Kernel to the outside
world and build our design for either a DFE (real or simulated).

SimpleFDManager.maxj presents the MaxJ code for the Manager that will build the DFE configu-
ration implementing our simple Kernel. We specify a main() method to run the build process, in which

Version 2014.1 MaxGenFD: Tutorial 15

2 Getting Started

we pass a FDConfig to a FDManager on which we call the build() method:

18 public static void main(String[] args) {
19
20 EngineParameters params = new EngineParameters(args);
21 FDConfig config = SimpleFDConfig.config(params);
22
23 FDManager m = new FDManager(config);
24 SimpleFDKernel k = new SimpleFDKernel(m.makeKernelParameters());
25
26 m.setKernel(k);
27
28 m.build() ;
29 }
30 }

The constructor of the FDManager takes the engine parameters as a parameter These specify, among
other things, the DFE model to target during the build. Do not modify these directly. Instead edit the
RunRule you are using in MaxIDE. MaxIDE will pass the necessary parameters to EngineParameters

automatically.
To start a build right-click on one of the Run Rules and select Build from the menu. Be aware that

the DFE Run Rule will take much longer to build than the Simulation Run Rule.
Listing 4 shows example console output from building the DFE Run Rule. The result of the build

process is the file Simple.max in the results sub-directory of the build path (line 42 in Listing 4).

Version 2014.1 MaxGenFD: Tutorial 16

2 Getting Started

Listing 4: Simplified DFE Build Output (SimpleFDHWBuilderOutput.txt).

1 Fri 18:21: Build location: /disk/builds/SimpleFD_VECTIS_DFE

2 Fri 18:21: Detailed build log available in "_build.log"

3 Fri 18:21: MaxGenFD version: 2014.1

4 Fri 18:21: Instantiating kernel "FDKernel"

5 Fri 18:21:

6 Fri 18:21: Compiling kernel "FDKernel"

7 Fri 18:22: Generating input files (VHDL, netlists, CoreGen)

8 Fri 18:26: Running back-end build (12 phases)

9 Fri 18:26: (1/12) - Prepare MaxFile Data (GenerateMaxFileDataFile)

10 Fri 18:26: (2/12) - Synthesize DFE Modules (XST)

11 Fri 18:34: (3/12) - Link DFE Modules (NGCBuild)

12 Fri 18:36: (4/12) - Prepare for Resource Analysis (EDIF2MxruBuildPass)

13 Fri 18:37: (5/12) - Generate Preliminary Annotated Source Code (Prel..

14 Fri 18:37: (6/12) - Report Resource Usage (XilinxPreliminaryResource..

15 Fri 18:37:

16 Fri 18:37: PRELIMINARY RESOURCE USAGE

17 Fri 18:37: Logic utilization: 111165 / 297600 (37.35%)

18 Fri 18:37: LUTs: 65557 / 297600 (22.03%)

19 Fri 18:37: Primary FFs: 90716 / 297600 (30.48%)

20 Fri 18:37: Multipliers (25x18): 25 / 2016 (1.24%)

21 Fri 18:37: DSP blocks: 25 / 2016 (1.24%)

22 Fri 18:37: Block memory (BRAM18): 523 / 2128 (24.58%)

23 Fri 18:37:

24 Fri 18:37: (7/12) - Prepare for Placement (NGDBuild)

25 Fri 18:41: (8/12) - Place and Route DFE (XilinxMPPR)

26 Fri 18:41: Executing MPPR with 1 cost tables and 1 threads.

27 Fri 18:41: MPPR: Starting 1 cost table

28 Fri 19:32: MPPR: Cost table 1 met timing with score 0 (best score 0)

29 Fri 19:32: (9/12) - Prepare for Resource Analysis (XDLBuild)

30 Fri 19:34: (10/12) - Generate Resource Report (XilinxResourceUsageBu..

31 Fri 19:34: (11/12) - Generate Annotated Source Code (XilinxResourceA..

32 Fri 19:34: (12/12) - Generate MaxFile (GenerateMaxFileXilinx)

33 Fri 19:45:

34 Fri 19:45: FINAL RESOURCE USAGE

35 Fri 19:45: Logic utilization: 90310 / 297600 (30.35%)

36 Fri 19:45: LUTs: 63904 / 297600 (21.47%)

37 Fri 19:45: Primary FFs: 74847 / 297600 (25.15%)

38 Fri 19:45: Secondary FFs: 14003 / 297600 (4.71%)

39 Fri 19:45: Multipliers (25x18): 25 / 2016 (1.24%)

40 Fri 19:45: DSP blocks: 25 / 2016 (1.24%)

41 Fri 19:45: Block memory (BRAM18): 524 / 2128 (24.62%)

42 Fri 19:45:

43 Fri 19:45: MaxFile: /disk/builds/SimpleFD_VECTIS_DFE/results/SimpleFD.max (

MD5Sum: 221551c1414e39c49e7356b7641143fd)

Version 2014.1 MaxGenFD: Tutorial 17

2 Getting Started

Loop for
each

timestep

Set up earth model and initial
wavefield data on CPU

Load earth model and
wavefields onto DFEs

End
Loop

Close DFEs

Set up FDKernel for next timestep

Set source wavelet input from
CPU

Set wavefield inputs from
LMem

Set earth model input from
LMem

Set receiver output
from DFE

Set wavefield output to LMem

Exceute Timestep

Swap wavefield buffers

Figure 5: CPU code execution flow for the Acoustic Forward Modeling Example.

Version 2014.1 MaxGenFD: Tutorial 18

2 Getting Started

2.6 Integrating with the Software

Figure 5 shows the flow of execution of the CPU code for the Acoustic Forward Modeling Example.
Firstly, the earth model and initial wavefields are set up on the DFE. These are then transferred to the
DFE.

For each timestep, the CPU sets up the computation it would like the DFE to perform. The software
selects whether the source wavelet should be added and generates its current state, which wavefields
should be streamed to the inputs of the FDKernel and which earth model to stream in. It also sets up
where the output stream should be written and whether or not to stream out the receiver plane.

Once the set-up is complete, the CPU instructs the FDKernel to run the computation. The source
wavelet is streamed from the host for each timestep if required. The specified wavefield inputs and earth
models are streamed into the FDKernel from the LMem. The output from the calculation is streamed
back into the LMem and the receiver is read back if required. At the end of each timestep, the wavefield
buffers are swapped.

The host code has been split into two sections for convenient display in this document.

2.6.1 Setting up the Accelerator Cards

The first section, shown in Listing 5, declares constants and variables that are used throughout the
design and sets up the accelerator cards.

We first declare the size of the domain we are using:

22 const int nx = maxlib is simulation () ? 66 : 676;
23 const int ny = maxlib is simulation () ? 66 : 676;
24 const int nz = maxlib is simulation () ? 66 : 240;
25 int n = nx ∗ ny ∗ nz;

We use a smaller domain when using the simulated system (see subsection 2.7) as executing the
FDKernel in the simulator is much slower than executing in real hardware.

We declare the boundary sponge to be 50-points wide, with an active area of all 50 points in real
hardware but only 10-points in simulation when we have a much smaller domain:

28 const int spongeWidth = 50; // Width of the sponge in points
29 const int spongeActiveWidth = maxlib is simulation() ? 10 : 50; // Width of the sponge in use
30 // Bit mask for the sides of the domain to sponge (all sides except z=0)
31 const int spongeMask = MAXLIB BOUNDARY ALL ˆ MAXLIB BOUNDARY Z0;

We also declare our pointers for storing data in memory:

39 float ∗dvv; // Velocity earth model
40 float ∗zeroWavefield; // Empty wavefield to initialize simulation
41 float ∗receiver; // Receiver
42 float source[3 ∗ 3 ∗ 3]; // Source stimulus
43 float ∗sponge; // Sponge

The first step in setting up the accelerator cards is to initialize the MaxLib with the dimensions of the
3D domain:

47 maxlib context maxlib = maxlib open(nx, ny, nz); // Initialise maxlib with dimensions of domain
48 maxlib print status (maxlib);

We also print out the properties of the MaxLib so that we can check that everything is as we expect.
This gives the output:

Version 2014.1 MaxGenFD: Tutorial 19

2 Getting Started

MaxGenFD simulation run status

==============================

Version: 2014.1

Data flow engine: Vectis (MAX3424A)

Device topology: [X 0 X]

Performance: 1 pipe @ 100 MHz

Computation type: floating-point

Problem size: 66 x 66 x 66 (f x m x s)

Block size: 96 x 96 (f x m)

Tile size: 8 x 6 (f x m)

Wavefield tracking support: no

IDFE swap support: no

MaxRing swap support: no

PCIe swap support: no

ECC enabled: no

Global parameters:

MAX_DEVICES = 8

• Version: The version of MaxGenFD that is loaded.

• Data flow engine: The DFE model in use.

• Device topology: This shows the halo exchange topology of the cards that MaxGenFD has
opened.

This contains one or more devices. Each device is of the format [? N ?] where N is the device
number and ? represents the type of link to the next card.

? can be one of:

– X: No link

– I: IDFE link (MAX2 only)

– R: MaxRing link

– P: CPU (PCI Express) link

For example:

– [X 0 I] [I 1 P] [P 2 I] [I 3 X]: Two MAX2 cards connected by a CPU link.

– [X 0 I] [I 1 R] [R 2 I] [I 3 X]: Two MAX2 cards connected by a MaxRing link.

• Perfomance: Configuration parameters relevant to the speed of computation performed by the
DFE.

• Computation type: Either fixed-point or floating point.

• Problem size: The dimensions of the domain.

• Block size: The size of the block that the DFE will process (see subsection 8.3).

• Tile size: The size of the tile used by MaxGenFD (see subsubsection 9.2.6).

Version 2014.1 MaxGenFD: Tutorial 20

2 Getting Started

• Wavefield tracking support: Whether this .max file supports the wavefield tracking opti-
mization or not.

• IDFE swap support, MaxRing swap support, PCIe swap support: Whether these halo
swap features are enabled in the .max file.

• ECC enabled: Whether ECC error checking is enabled on the data into and out of LMem.

• Global parameters

– MAX DEVICES: The maximum number of DFEs that MaxGenFD will open.

W Note that all of the functions that you call in the MaxGenFD MaxLib are automatically applied
across all of the DFEs in the system.

We next set up our earth model using a function that we have defined elsewhere. This is the
same function as we would use for a software implementation of the application. The earth model is
compressed into a new block of memory according to the compression model that was specified in the
FDConfig object:

50 dvv = create 2layer earth model vel(nx, ny, nz); // Set up earth model
51 preprocess earth model dvv(dvv, nx, ny, nz, deltaDistance, deltaTime);
52
53 maxlib earthmodel em = maxlib earthmodel create in memory(nx, ny, nz);
54
55 printf (”Compressing earth model\n”);
56 maxlib earthmodel set data(em, ”dvv”, dvv);
57 free(dvv); // We don’t need the original earth model any more

We call functions to allocate LMem on the DFEs to hold the wavefields and earth model:

59 // Allocate memory on the MaxCard for the wavefields and earth model
60 maxlib lmem array dfeCurrArray = maxlib lmem alloc wavefield(maxlib);
61 maxlib lmem array dfePrevArray = maxlib lmem alloc wavefield(maxlib);
62 maxlib lmem array dfeEarthmodels = maxlib lmem alloc earthmodel(maxlib);

The contents for these arrays are then copied over from the host to the DFEs. The appropriate
sections of the 3D volume will be copied to the LMem of each DFE opened.

68 printf (”Loading curr wavefield to DFE\n”);
69 maxlib lmem load wavefield(maxlib, dfeCurrArray, zeroWavefield);
70 printf (”Loading prev wavefield to DFE\n”);
71 maxlib lmem load wavefield(maxlib, dfePrevArray, zeroWavefield);
72 printf (”Loading earth model to DFE\n”);
73 maxlib lmem load earthmodel(maxlib, dfeEarthmodels, em);
74 maxlib earthmodel release(em);

We create values for our sponge array using a function defined elsewhere. Again, this is the same
function as we would use for defining the sponge boundary condition in a software implementation. We
set the number of active points in the sponge in our function: the remaining points will be set to 1.0 so
that no sponging will be performed to this area of the wavefield.

Version 2014.1 MaxGenFD: Tutorial 21

2 Getting Started

We need to tell the DFE, using a bit mask (sponge mask), to which sides of the 3D domain it
should apply the sponge (covered in subsection 6.1). The last step of setting up the sponge is to copy
the values to the DFEs:

76 maxlib set scalar flag (maxlib, ”absorb”, spongeMask); // Set bit mask
77 sponge = create simple sponge(spongeWidth, spongeActiveWidth); // Create sponge
78 printf (”Loading sponge to DFE\n”);
79 for (int i = 0; i < spongeWidth; i++) // Set the sponge on the MaxCard
80 maxlib set mapped memory f(maxlib, ”sponge”, i, sponge[i]);

The final set-up step is to allocate memory on the host for the receiver which will have data written
into it from the DFEs.

82 receiver = malloc(ny ∗ nz ∗ sizeof(float)) ; // Allocate memory for receiver plane

2.6.2 Executing the Timesteps

With all the data now set up on both the CPU and the DFEs, we can start the computation. We iterate
through each of the timesteps, injecting the source if necessary, setting the input and output wavefield
locations and reading out the receiver data when required. The code for this section is shown in Listing 6

The source wavelet is created for each timestep using another function that we have defined else-
where. Again, this function is the same as we would use for a software implementation of the appli-
cation. The source wavelet array is copied across to the DFEs. As the source wavelet is only a small
volume in the whole 3D domain, the source is specified in its own small 3D volume and transferred to
the DFEs with its position within the larger domain. This minimizes the amount of data that must be
transferred to the DFEs each timestep.

94 if (time <= 2.0f / fpeak)
95 gen source(source, time, fpeak); // Generate source wavelet
96
97 float∗ data = (time <= 2.0f / fpeak) ? source : NULL;
98 maxlib stream region from host(
99 maxlib,

100 ”source”,
101 data,
102 sourceX −1,
103 sourceY −1,
104 sourceZ −1,
105 sourceX + 2,
106 sourceY + 2,
107 sourceZ + 2);

In our case the center of the source wavelet is the mid-point in a 3x3x3 array, which we use to
anti-alias the source into a 3D cube, so we pass the start and end points of the source wavelet volume
such that the center of the cube is at the point (source x, source y, source z).

Each timestep, we must specify the wavefields and earth model that should be streamed from LMem
into the FDKernel and where the output wavefield should be written to:

109 // Set up inputs and output arrays for this timestep
110 maxlib stream from lmem(maxlib, ”currW”, dfeCurrArray);
111 maxlib stream from lmem(maxlib, ”prevW”, dfePrevArray);
112 maxlib stream earthmodel from lmem(maxlib, dfeEarthmodels);
113 maxlib stream to lmem(maxlib, ”nextW”, dfePrevArray);

Every few timesteps, we want read back the current status of the receiver section of the wavefield

Version 2014.1 MaxGenFD: Tutorial 22

2 Getting Started

to see the progress of the simulation. In our case, we are reading a vertical plane from the middle of the
domain which slices through the center of the source stimulus, so we specify the plane each timestep:

116 data = (iteration % iterationsPerFrame == 0) ? receiver : NULL;
117 maxlib stream region to host(
118 maxlib,
119 ”receiver” ,
120 data,
121 sourceX,
122 0,
123 0,
124 sourceX + 1,
125 ny,
126 nz);

Calling maxlib run executes the timestep, which will return once all of the computation and data
transfer to and from the DFEs has completed:

128 // Run timestep
129 maxlib run(maxlib);

The final task at the end of each timestep is to swap our wavefield buffer pointers such that the
output wavefield becomes the input to the next timestep:

137 // Swap wavefield buffers
138 maxlib lmem array tmpArray = dfeCurrArray;
139 dfeCurrArray = dfePrevArray;
140 dfePrevArray = tmpArray;

This simply swaps the pointers to the data buffers in the LMem on the DFE: no data copying is
performed by either the CPU or the DFE.

2.7 Running the Simulator

The same CPU code is used to communicate with both a real DFE and a simulated DFE. The simulated
system runs as a separate process that the host code communicates with as if it were a real DFE. The
simulated system has the advantages of much faster build times and greater visibility into the design
via watch nodes for debugging.

To build and run the FDKernel for simulation, right-click on the Simulation Run Rule and select Run.

Version 2014.1 MaxGenFD: Tutorial 23

2 Getting Started

2.8 Output Wavefields

The simple earth model used has two layers: the first with a velocity of 1500 m/s to a depth of 800
meters (40 points) and the second with a velocity of 4482 m/s for the rest of the volume. Figure 6 shows
2 slices of the wavefield output overlaid onto a 3D representation of the two-layer earth model.

x

z

y

Source wavelet

Water

Rock

(a) Domain at 0.5s.

x

z

y
Water

Rock

(b) Domain at 1.5s.

Figure 6: 3D domain showing receiver slices and earth model boundary.

Figure 7 shows images of the output of the example for the receiver plane at four different timesteps.

Version 2014.1 MaxGenFD: Tutorial 24

2 Getting Started

Listing 5: Acoustic Forward Modeling Host Code - set up (SimpleFDCpuCode.c).
1 /∗∗
2 ∗ Document: MaxGenFD Tutorial (maxgenfd-tutorial.pdf)
3 ∗ Example: 1 Name: Simple FD
4 ∗ MaxFile name: SimpleFD
5 ∗ Summary:
6 ∗ Configures settings for the sponge and number of iterations. Creates
7 ∗ some initial data which is loaded to LMem. The simulation is then
8 ∗ computed for a fixed number of iterations .
9 ∗/

10
11 #include <stdlib.h>
12 #include <stdio.h>
13 #include <math.h>
14 #include ”maxlibfd.h”
15 #include ” file utils .h”
16 #include ”data gen.h”
17
18 int main()
19 {
20
21 // printf (”IS SIM: %d”, SimpleFD IS SIMULATION);
22 const int nx = maxlib is simulation () ? 66 : 676;
23 const int ny = maxlib is simulation () ? 66 : 676;
24 const int nz = maxlib is simulation () ? 66 : 240;
25 int n = nx ∗ ny ∗ nz;
26 const int sourceX = nx / 2, sourceY = ny / 2, sourceZ = 7; // Source coordinates
27
28 const int spongeWidth = 50; // Width of the sponge in points
29 const int spongeActiveWidth = maxlib is simulation() ? 10 : 50; // Width of the sponge in use
30 // Bit mask for the sides of the domain to sponge (all sides except z=0)
31 const int spongeMask = MAXLIB BOUNDARY ALL ˆ MAXLIB BOUNDARY Z0;
32
33 const int numIterations = maxlib is simulation () ? 128 : 2000;
34 const int iterationsPerFrame = maxlib is simulation () ? 1 : 50;
35 const float deltaDistance = 20.0f; // Delta distance in metres
36 const float deltaTime = 0.002f; // Delta time in seconds
37 const float fpeak = 5; // Peak frequency of source wavelet
38
39 float ∗dvv; // Velocity earth model
40 float ∗zeroWavefield; // Empty wavefield to initialize simulation
41 float ∗receiver; // Receiver
42 float source[3 ∗ 3 ∗ 3]; // Source stimulus
43 float ∗sponge; // Sponge
44
45 const char ∗outputFilename = ”output”;
46
47 maxlib context maxlib = maxlib open(nx, ny, nz); // Initialise maxlib with dimensions of domain
48 maxlib print status (maxlib);
49
50 dvv = create 2layer earth model vel(nx, ny, nz); // Set up earth model
51 preprocess earth model dvv(dvv, nx, ny, nz, deltaDistance, deltaTime);
52
53 maxlib earthmodel em = maxlib earthmodel create in memory(nx, ny, nz);
54
55 printf (”Compressing earth model\n”);
56 maxlib earthmodel set data(em, ”dvv”, dvv);
57 free(dvv); // We don’t need the original earth model any more
58
59 // Allocate memory on the MaxCard for the wavefields and earth model
60 maxlib lmem array dfeCurrArray = maxlib lmem alloc wavefield(maxlib);
61 maxlib lmem array dfePrevArray = maxlib lmem alloc wavefield(maxlib);
62 maxlib lmem array dfeEarthmodels = maxlib lmem alloc earthmodel(maxlib);
63
64 zeroWavefield = malloc(n ∗ sizeof(float)) ;

Version 2014.1 MaxGenFD: Tutorial 25

2 Getting Started

Listing 6: Acoustic Forward Modeling Host Code - execution of timesteps (SimpleFDCpuCode.c).
66 zeroWavefield[i] = 0.0f ;
67
68 printf (”Loading curr wavefield to DFE\n”);
69 maxlib lmem load wavefield(maxlib, dfeCurrArray, zeroWavefield);
70 printf (”Loading prev wavefield to DFE\n”);
71 maxlib lmem load wavefield(maxlib, dfePrevArray, zeroWavefield);
72 printf (”Loading earth model to DFE\n”);
73 maxlib lmem load earthmodel(maxlib, dfeEarthmodels, em);
74 maxlib earthmodel release(em);
75
76 maxlib set scalar flag (maxlib, ”absorb”, spongeMask); // Set bit mask
77 sponge = create simple sponge(spongeWidth, spongeActiveWidth); // Create sponge
78 printf (”Loading sponge to DFE\n”);
79 for (int i = 0; i < spongeWidth; i++) // Set the sponge on the MaxCard
80 maxlib set mapped memory f(maxlib, ”sponge”, i, sponge[i]);
81
82 receiver = malloc(ny ∗ nz ∗ sizeof(float)) ; // Allocate memory for receiver plane
83 FILE∗ output = fopen(outputFilename, ”w”); // Output file for the receiver
84 // Create a header file for the output file
85 if (create header file (outputFilename, nz, ny, 1, ”Y”, ”Z”, ”Time”))
86 exit (1) ;
87
88 // Execute timesteps
89 for (int iteration = 0; iteration < numIterations; iteration ++) {
90 printf (” Iteration %d / %d\n”, iteration , numIterations);
91
92 float time = iteration ∗ deltaTime;
93
94 if (time <= 2.0f / fpeak)
95 gen source(source, time, fpeak); // Generate source wavelet
96
97 float∗ data = (time <= 2.0f / fpeak) ? source : NULL;
98 maxlib stream region from host(
99 maxlib,

100 ”source”,
101 data,
102 sourceX −1,
103 sourceY −1,
104 sourceZ −1,
105 sourceX + 2,
106 sourceY + 2,
107 sourceZ + 2);
108
109 // Set up inputs and output arrays for this timestep
110 maxlib stream from lmem(maxlib, ”currW”, dfeCurrArray);
111 maxlib stream from lmem(maxlib, ”prevW”, dfePrevArray);
112 maxlib stream earthmodel from lmem(maxlib, dfeEarthmodels);
113 maxlib stream to lmem(maxlib, ”nextW”, dfePrevArray);
114
115 // Read back the receiver every iterationsPerFrame iterations
116 data = (iteration % iterationsPerFrame == 0) ? receiver : NULL;
117 maxlib stream region to host(
118 maxlib,
119 ”receiver” ,
120 data,
121 sourceX,
122 0,
123 0,
124 sourceX + 1,
125 ny,
126 nz);
127
128 // Run timestep
129 maxlib run(maxlib);
130
131 // Write out the receiver data to the output file
132 if (iteration % iterationsPerFrame == 0) {

Version 2014.1 MaxGenFD: Tutorial 26

2 Getting Started

(a) t=0.5s

(b) t=1.0s

(c) t=1.5s

(d) t=2.0s

Figure 7: Output from using MaxGenFD for Acoustic Forward Modeling through a simple earth model.

Version 2014.1 MaxGenFD: Tutorial 27

3 Convolution

3 Convolution

The core of any MaxGenFD application is the convolution operation. In a software implementation, the
convolution is where most of the CPU time is spent in a finite difference application. The convolution op-
eration is also where the bulk of the resources of a MaxGenFD design are used. MaxGenFD allows the
convolution operation to be defined very succinctly and is one of the key areas where MaxGenFD raises
the level of abstraction over both a MaxCompiler implementation and most software implementations.

3.1 Stencils

MaxGenFD supports three types of stencil: fixed 1D stencils, variable 1D stencils and cube stencils.

x

z

y

-1

-2

-3

1

2

3

-1-2
-3

-1

-2

-3

3
2

1

1
2

3

(a) 7-point 1D stencil applied in three dimensions
to implement a star stencil around the central point
(in blue).

x

z

y
-1

0

1

-1 0
1

-1

0

1

(b) 3x3x3 cube stencil around the central point (in
blue).

Figure 8: 1D and cube stencils.

3.1.1 Fixed 1D Stencils

Fixed 1D stencils are stencils with coefficients fixed at build-time that can be applied in one or more
dimensions. If the stencil contains symmetry, then this will automatically be optimized to reduce the
number of multiplication operations that need to be performed on the DFE.

A fixed 1D stencil is created using the fixedStencil method on the FDKernel and is stored in a
Stencil object:

Stencil fixedStencil (int min, int max, double[] coeffs, double outputScale)

The first two integer arguments, min and max, specify the start and end positions of the stencil
relative to the central point at position 0. The third argument is the coefficient values themselves,
specified as an array of double-precision floating-point values.

outputScale is a scale factor that describes the expected approximate maximum relative magni-
tude of the output values from this stencil in terms of the input values. This should be a positive value

Version 2014.1 MaxGenFD: Tutorial 28

3 Convolution

but can be greater than or less than 1. For example, a scale of 1.0 means that the output number range
is similar to the input number range, 2.0 means the output is twice as large, 0.5 means it is half as
large. This is used by MaxGenFD to optimize the data types and arithmetic used in the FDKernel (only
applies to fixed-point FDKernels: see subsection 7.8 for more detail on fixed-point scaling).

W If you are uncertain what scale factor would be appropriate to use, specifying 0.0 will cause
MaxGenFD to use a safe conservative value.

In our Acoustic Forward Modeling example, we declare a 13-element array, starting at location -6

and ending at +6 relative to the central point (0). We expect the result of our convolution operation to
be no larger than 8 times the input:

17 private final int stencilSize = 13;
18 private final Stencil stencil = fixedStencil (
19 - stencilSize / 2,
20 stencilSize / 2,
21 new double[] { -0.00003006253006249946f, 0.0005194805194800871f,
22 -0.004464285714282842f, 0.02645502645501459f,
23 -0.133928571428538f, 0.857142857142776f, -1.49138888888878f,
24 0.857142857142776f, -0.133928571428538f, 0.02645502645501459f,
25 -0.004464285714282842f, 0.0005194805194800871f,
26 -0.00003006253006249946f },
27 8.0) ;

3.1.2 Variable 1D Stencils

A variable 1D stencil is applied in the same way as a fixed 1D stencil, but in this case the coefficients
can be changed at run-time. This can be used, for example, to have different coefficients at different
points in the domain.

The declaration of a variable 1D stencil is similar to a fixed 1D stencil:

Stencil variableStencil (int min, int max, double outputScale, FDVar... coefficients)

The coefficients are made up of an FDVar stream for each coefficient, where the number of streams
is equal to the size of the stencil (though of course the same stream may be supplied, possibly negated,
to different coefficients). These can be passed in as an array of FDVars. These can be fed from, for
example, a mapped ROM or scalar inputs, or can be calculated in the FDKernel itself.

W MaxGenFD cannot apply the same level of optimization to variable stencils as to fixed stencils,
so fixed stencils are recommended wherever possible.

Version 2014.1 MaxGenFD: Tutorial 29

3 Convolution

3.1.3 Cube Stencils

A cube stencil provides a coefficient for every point in a cubic volume (fixed at build-time). The range of
the stencil is specified by the start and end positions of the stencil relative to the central point at position
0 for each dimension:

Stencil cubeStencil(int minX, int maxX, int minY, int maxY, int minZ, int maxZ, double[][][] coeffs, double outputScale)

The coefficients are provided via a 3D Java array, where the dimensions are in the order ([z][y][x]),
as shown in the example in Listing 7.

Listing 7: Definition of a cube stencil.
double [][][] coeffs = new double[][][]
{
{
{ 1, 2, 3 }, // z0 y0
{ 4, 5, 6 }, // z0 y1
{ 7, 8, 9 } // z0 y2

},
{
{ 10, 11, 12 }, // z1 y0
{ 13, 14, 15 }, // z1 y1
{ 16, 17, 18 } // z1 y2

},
{
{ 19, 20, 21 }, // z2 y0
{ 22, 23, 24 }, // z2 y1
{ 25, 26, 27 } // z2 y2

},
};
Stencil myStencil = cubeStencil(-1, 1, -1, 1, -1, 1, coeffs, 27.0);

3.2 Performing the Convolution

The convolution is achieved using a single call to the convolve method, which takes a stream to
convolve (toConvolve), the axes about which to perform the convolution (axes) and the stencil as
arguments:

FDVar convolve(FDVar toConvolve, ConvolveAxes axes, Stencil stencil)

The axes argument is an item from the enumerated type ConvolveAxes, which is used to specify
that the stencil should be applied to one (X, Y or Z), two (XY) or three axes (XYZ).

W Note that a cube stencil must be applied to all three dimensions simultaneously using
ConvolveAxes.XYZ.

The output of the convolution is another stream of data.
In our Acoustic Forward Modeling example, we apply our stencil in all three dimensions to give our

result laplacian (in blue):

41 FDVar laplacian = convolve(curr, ConvolveAxes.XYZ, stencil);

Version 2014.1 MaxGenFD: Tutorial 30

3 Convolution

The output of the convolution is then used in the update of the wave equation:

42 FDVar result = curr ∗ 2 - prev + dvv ∗ laplacian + source;

The call to the convolve method is mathematically equivalent to the hand-written MaxCompiler code
shown in Listing 8.

Listing 8: Manual implementation of convolution of 1D coefficients in 3 dimensions.
// Stream for our convolution output
FDVar laplacian = constant.fdvar(0.0);

// Convolve in x
for (int dx = -6; dx <= 6; dx++)

laplacian += stream.offset(curr, dx, 0, 0) ∗ coeffs[dx+6];

// Convolve in y
for (int dy = -6; dy <= 6; dy++)

laplacian += stream.offset(curr, 0, dy, 0) ∗ coeffs[dy+6];

// Convolve in z
for (int dz = -6; dz <= 6; dz++)

laplacian += stream.offset(curr, 0, 0, dz) ∗ coeffs[dz+6];

// Check we are not in the boundary where we don’t have enough data
FDVar is edge = domain.getX() > 5 & domain.getY() > 5 & domain.getZ() > 5
& domain.getXD() > 5 & domain.getXD() > 5 & domain.getZD() > 5;

// Output the convolution result if we are not in the boundary, otherwise 0
laplacian = is edge ? laplacian : constant.fdvar(0.0);

W
In Listing 8, we make use of domain.getX, domain.getY and domain.getZ to give us FDVar
streams for the distance of the current point in the wavefield from the start of the domain in each
dimension and domain.getXD, domain.getYD and domain.getZD for the distance from the
end of the domain. domain.getNX, domain.getNY and domain.getNZ can be used to get
the dimensions of the domain as set by the host software.

The convolve method, however, automatically performs a number of optimizations that are tedious
to perform by hand.

W
If you intend to apply a stencil in three dimensions, it is more efficient to do so on all 3 dimen-
sions in a single call to convolve, rather than three successive 1-D convolutions, because the
stencil can be optimized across the dimensions. This can reduce the number of multiplies in a
convolution by at least a factor of three.

Version 2014.1 MaxGenFD: Tutorial 31

3 Convolution

3.3 Roll-on/Roll-off

With an n-point stencil, a layer of floor(n/2) points around each edge of the domain cannot be con-
volved because there is insufficient wavefield data for one or more axes of the stencil. This is shown in
2D in Figure 9a. For each of these points, the convolution will automatically output 0.

To make better use of the available data, MaxGenFD allows the declaration of an array stencils to
provide “roll-on” and “roll-off” at the edges of the domain. This allows modeling up to the edge of the
domain by switching to smaller and smaller stencils as we approach the edge of the domain. Figure 9b
shows the application of multiple stencils to provide roll-on/roll-off.

(a) A single stencil. (b) Symmetrical roll-on/roll-off stencils.

Figure 9: Stencils applied to a 2D domain in 1 dimension. Inputs for which no valid output can be
calculated are in blue.

W Roll-on/roll-off is not available for cube stencils.

W Automatic roll-on/roll-off is not available for variable 1D stencils as you must implement the
coefficients yourself.

3.3.1 Symmetric Roll-on/Roll-off

A variant of fixedStencil takes a two-dimensional floor(n/2) + 1 by n array of coefficients as its
coeffs argument:

Stencil fixedStencil (int min, int max, double[][] coeffs, double outputScale)

Each element in the first dimension of coeffs is a stencil, where coeffs[0] is the stencil for use
when not in the roll-on/roll-off area and coeffs[1] to coeffs[floor(n/2)] are the roll-on/roll-off
stencils as the wavefield approaches the boundary. For each stencil in the array, MaxGenFD will check
that there are the correct number of zeros at each side of the supplied array and produce an error if not.

Version 2014.1 MaxGenFD: Tutorial 32

3 Convolution

An example declaration of the multiple stencils for roll-on/roll-off shown in Figure 9b is shown below:

double[][] coeffs = new double[][]
{
{ a2, a1, a0, a1, a2},
{0.0, b1, b0, b1, 0.0},
{0.0, 0.0, c0, 0.0, 0.0}

};
Stencil stencil = fixedStencil (-2, 2, coeffs, 1.0) ;

The choice of whether to use roll-on/roll-off is a trade-off between the value of fully utilizing the
points in the domain versus the computational complexity of working out the roll-on roll-off conditions.

3.3.2 Asymmetric Roll-on/Roll-off

A further 1D fixed stencil variant, asymmetricStencil, creates a 1D fixed stencil with asymmetric
roll-on/roll-off:

Stencil asymmetricStencil(int min, int max, double[][] coeffsRollOn, double[] coeffsInterior , double[][] coeffsRollOff , double
outputScale)

coeffsInterior is an array of coefficients specifying the stencil when not in the roll-on/roll-off
area. coeffsRollOn is a two dimensional array specifying stencils to apply in the roll-on condition
(when the coordinate is close to zero) and coeffsRollOff specifies the stencils for the roll-off condition
(when the coordinate is close to the maximum).

The stencil range is specified by the min and max indexes that should be accessed relative to the
current position. For example, consider this 4-point asymmetric stencil with a range from -2 to +1:

double rollOn [][] = { { 0.0, a, b, c }, { 0.0, 0.0, b, c } };
double rollOff [][] = { { d, e, f , 0.0 } };
double interior [] = { p, q, r , s };

Stencil s = asymmetricStencil(-2, 1, rollOn, interior , rollOff , 0.0) ;

Because there are 2 points of roll-on and only 1 of roll-off, the roll-on array is larger than the roll-off
array. Over a problem size of 6 points (x = 0 to x = 5), this stencil will take the following values:

Stencil Index
x -2 -1 0 +1
0 0.0 0.0 b c
1 0.0 a b c
2 p q r s
3 p q r s
4 p q r s
5 d e f 0.0

Version 2014.1 MaxGenFD: Tutorial 33

3 Convolution

3.4 Halos

When the domain is decomposed into multiple blocks, a convolution operation on one block will require
inputs from one or more neighboring blocks for points on the boundary of the current block. The number
of points that are required from adjacent blocks is the halo of the operator.

Figure 10a shows the halo for a 1D stencil applied in two dimensions and Figure 10b shows a cube
stencil applied to a 16 by 16 2D slice from a larger domain. The area labeled “external halo” shows the
points that are required from the adjacent block for the convolution performed in this block and the area
labeled “internal halo” shows the points that are required from this block by adjacent blocks.

For a cube stencil, points from all of the immediately neighboring blocks are required, including
diagonally neighboring blocks. For a convolution with a star stencil, the points from the diagonally
neighboring blocks are not required, though in MaxGenFD these points are in fact exchanged to de-
crease the complexity, and thus increase performance, of the hardware.

When a domain is decomposed across multiple DFEs in a system, halos must be exchanged be-
tween DFEs at the boundaries of adjacent sub-domains. MaxGenFD automatically divides the domain
between the available DFEs in the system and exchanges the halos between these engines: the only
interaction required of the user is defining the halo size in the FDKernel.

An FDKernel processes the sub-domain allocated to it by the CPU in multiple blocks, so the halo
size is also important within a single DFE for the FDKernel to correctly read in external halos when
processing each block.

Every convolution applied to a stream in the same axis in an FDKernel increases the halo required
for the stream by the operator halo. For example, an 11-point operator convolved once gives a 5-point
halo; chaining another convolution in the same FDKernel gives a 10-point halo.

W Note that declaring a halo size that is too small can lead to strange errors that are difficult to
debug.

Version 2014.1 MaxGenFD: Tutorial 34

3 Convolution

(a) 1D stencil applied in two dimensions.

(b) Cube stencil.

Figure 10: A 16 by 16 2D slice from a larger domain showing the internal and external halos.

Version 2014.1 MaxGenFD: Tutorial 35

4 Earth Models

4 Earth Models

MaxGenFD allows the user to specify multiple earth model parameters, representing different properties
of the domain, for example velocity and density. Each earth model parameter has a value for every point
in the domain.

4.1 Stream Inputs

An earth model parameter input is declared as an FDVar stream input in the FDKernel:

FDVar io.earthModelInput(String name, double max, int halo)

The first argument is the name for the input stream that will be used in the host software. max is
the maximum value that the earth model parameter contains (this only affects fixed-point FDKernels).
The halo argument defines the number of points from the earth model parameter that will be required
from beyond the edge of the sub-domain allocated to this device when the domain is decomposed over
multiple devices (this need only be non-zero if the earth model parameter forms part of an input to a
convolution operation).

The earth model parameter can be used as a normal stream:

35 FDVar dvv = io.earthModelInput(”dvv”, 1 / 4.0, 0); // Earth model

42 FDVar result = curr ∗ 2 - prev + dvv ∗ laplacian + source;

4.2 Setting Earth Model Types

In the FDConfig object for the FDKernel, the storage type for the earth model parameter needs to be
set. This is set with a StorageType object (see section 7 for more information on storage types).

void setEarthModelStorageType(String name, StorageType type)

If a compressed storage type is used, then the computation type for the earth model must be set in
order for MaxGenFD to know how to expand the compressed values correctly:

void setEarthModelComputeType(String name, HWFloat type)

4.3 Setting the Earth Model from the Host

The earth model values are initially loaded in host memory and then transferred to the accelerator card.
Earth models are managed on the host via a maxlib earthmodel instance.

An instance of this structure can be created using maxlib earthmodel create:

maxlib earthmodel maxlib earthmodel create in memory(int nx, int ny, int nz);

section 9 deals with more complex management of earth models for large domains.
The earth model parameters must first be loaded into host memory as an array of floating-point

values. This array of data can then be added to the maxlib earthmodel instance using
maxlib earthmodel set data:

maxlib earthmodel set data(maxlib earthmodel em, const char ∗field name, const float ∗data);

Version 2014.1 MaxGenFD: Tutorial 36

4 Earth Models

This call will compress the earth model data to the required format for the earth model parameter.
For example, to load the earth model data for the velocity earth model parameter called dvv in the

FDKernel for Example 1, we create a floating point array in memory (dvv) and then set this as the data
for the single earth model parameter "dvv":

50 dvv = create 2layer earth model vel(nx, ny, nz); // Set up earth model
51 preprocess earth model dvv(dvv, nx, ny, nz, deltaDistance, deltaTime);
52
53 maxlib earthmodel em = maxlib earthmodel create in memory(nx, ny, nz);
54
55 printf (”Compressing earth model\n”);
56 maxlib earthmodel set data(em, ”dvv”, dvv);
57 free(dvv); // We don’t need the original earth model any more

If we have two earth models, one for velocity and one for density, then we would write something
like this:

float ∗vel = malloc(nx∗ny∗nz ∗ sizeof(float));
float ∗den = malloc(nx∗ny∗nz ∗ sizeof(float));
load earth model vel(nx, ny, nz, vel) ;
load earth model den(nx, ny, nz, den);

maxlib earthmodel em = maxlib earthmodel create in memory(nx, ny, nz);
maxlib earthmodel set data(em, ”dvv”, vel);
maxlib earthmodel set data(em, ”den”, den);

The storage space in LMem for the earth model must be allocated on the DFE using a maxlib lmem array

handle, as in our example:

62 maxlib lmem array dfeEarthmodels = maxlib lmem alloc earthmodel(maxlib);

Using this handle, earth model data can then be loaded into the DFE. This is done with a call to
maxlib lmem load earthmodel, for example:

72 printf (”Loading earth model to DFE\n”);
73 maxlib lmem load earthmodel(maxlib, dfeEarthmodels, em);

The earth model is no longer required in the host memory, so we can release it:

74 maxlib earthmodel release(em);

At this point, all the data is now setup on the card. For each timestep, we need to instruct the
FDKernel to stream the earth model parameters into the input streams. This is done using a call to

Version 2014.1 MaxGenFD: Tutorial 37

4 Earth Models

maxlib stream earthmodel from lmem, for example:

112 maxlib stream earthmodel from lmem(maxlib, dfeEarthmodels);
113 maxlib stream to lmem(maxlib, ”nextW”, dfePrevArray);
114
115 // Read back the receiver every iterationsPerFrame iterations
116 data = (iteration % iterationsPerFrame == 0) ? receiver : NULL;
117 maxlib stream region to host(
118 maxlib,
119 ”receiver” ,
120 data,
121 sourceX,
122 0,
123 0,
124 sourceX + 1,
125 ny,
126 nz);
127
128 // Run timestep
129 maxlib run(maxlib);
130
131 // Write out the receiver data to the output file
132 if (iteration % iterationsPerFrame == 0) {
133 fwrite (receiver , sizeof(float) , ny ∗ nz, output) ;
134 fflush (output) ;
135 }
136
137 // Swap wavefield buffers
138 maxlib lmem array tmpArray = dfeCurrArray;
139 dfeCurrArray = dfePrevArray;
140 dfePrevArray = tmpArray;
141 }
142
143 // Clean up
144 fclose(output) ;
145 maxlib close(maxlib);
146 return 0;
147 }

4.4 Derived Earth Model Parameters

An earth model parameter may be used in one or more mathematical functions in the FDKernel. Storing
the earth model parameter in memory and then calculating the mathematical functions in the DFE in
each pipeline may use a significant number of resources.

MaxGenFD provides expressions for common mathematical functions on earth model parameters
that can be used in the FDKernel. These expressions, rather than building logic in the Kernel to calculate
these functions, build a look-up table to hold pre-calculated values. These values are calculated by the
CPU automatically from the floating-point values supplied at run-time and loaded into the DFE. We refer
to these look-up tables containing the pre-calculated values as “derived” earth model parameters.

The expressions are specified in the FDKernel using objects of class FDExpr. We first declare a
primitive earth model parameter, which is the earth model parameter from which the derived model will
be calculated, using the method makeEarthModelPrimitive:

FDExpr makeEarthModelPrimitive(String name)

A primitive earth model parameter will never actually be transferred over to the DFE: only its deriva-
tives will be transferred.

FDExpr objects can be manipulated via the overloaded operators +, -, * and / and via a library of
common transcendental functions (see Table 1).

Version 2014.1 MaxGenFD: Tutorial 38

4 Earth Models

We can specify our derivatives using an extended version of the earthModelInput method with
an extra argument for the mathematical expression:

FDVar earthModelInput(String name, double max, int halo, FDExpr value)

W Note that derived earth model parameters only save resources with table-compression enabled.

Function Description

sin(FDExpr x) Sine of x
sinh(FDExpr x) Hyperbolic sine of x
asin(FDExpr x) Arc sine of x
cos(FDExpr x) Cosine of x
cosh(FDExpr x) Hyperbolic cosine of x
acos(FDExpr x) Arc cosine of x
tan(FDExpr x) Tangent of x
tanh(FDExpr x) Hyperbolic tangent of x
atan(FDExpr x) Arc tangent of x
atan2(FDExpr x, FDExpr y)

Arc tangent of y/x, using the signs of the arguments to
compute the quadrant of the return value

atan2(double x, FDExpr y)

atan2(FDExpr x, double y)

ceil(FDExpr x) Returns the smallest integer not less than x

floor(FDExpr x) Returns the largest integer not greater than x

log(FDExpr x) Natural logarithm (to base e) of x
log10(FDExpr x) Common logarithm (to base 10) of x
sqrt(FDExpr x) Square root of x
pow(double x, FDExpr y)

x to the power ypow(FDExpr x, double y)

pow(FDExpr x, FDExpr y)

mod(FDExpr x, FDExpr y) Returns the remainder of x/y
exp(FDExpr x) Returns e raised to the power x
sqrt(FDExpr x) Square root of x

Table 1: Transcendental functions available on FDExpr objects.

Version 2014.1 MaxGenFD: Tutorial 39

4 Earth Models

To see how derived earth model parameters are used, consider the example of “tilt”, where we have
an earth model parameter theta (θ), to which we apply three different functions, sin(2θ), sin2 θ and
cos2 θ.

To do this, we first create the earth model primitive as “theta”:

FDExpr theta = io.makeEarthModelPrimitive(”theta”);

We then create the three functions of theta as earth model inputs using io.earthModelInput with
an FDExpr argument:

FDVar sin 2 theta = io.earthModelInput(”sin 2 theta”, 1.0, 0, FDExpr.sin(2∗theta));
FDVar sin sq theta = io.earthModelInput(”sin sq theta”, 1.0, 0, FDExpr.sin(theta)∗FDExpr.sin(theta));
FDVar cos sq theta = io .earthModelInput(”cos sq theta”, 1.0, 0, FDExpr.cos(theta)∗FDExpr.cos(theta));

The FDVars can be used as normal in the FDKernel, just as any other earth model parameter.
If we are using table compression on our earth model (see subsubsection 7.2.1 for more details

on table compression of earth models), we only need to specify the storage type for the earth model
parameter primitive. For example:

config.setEarthModelStorageType(”theta”, StorageType.compressedTable(5));

In this table-compressed case, the same index into the table will be used for all of the derived
earth model parameters, reducing both the LMem storage requirement and the number of independent
streams.

We specify the earth model compute types for each of the derived earth model parameters in our
configuration object:

HWFloat t = HWTypeFactory.hwFloat(8, 24);
config.setEarthModelComputeType(”sin 2 theta”, t);
config.setEarthModelComputeType(”sin sq theta”, t);
config.setEarthModelComputeType(”cos sq theta”, t);

Each of the derived earth model parameters can have a different compute type, if required, in fixed-
point FDKernels:

config.setEarthModelComputeType(”sin 2 theta”, 22); // 22-bit fixed -point data
config.setEarthModelComputeType(”sin sq theta”, 18); // 18-bit fixed -point data
config.setEarthModelComputeType(”cos sq theta”, 18); // 18-bit fixed -point data

Version 2014.1 MaxGenFD: Tutorial 40

5 Host Inputs and Outputs

5 Host Inputs and Outputs

This section introduces host inputs and outputs to the FDKernel, which provide efficient methods for
injecting and reading back data. These host inputs and outputs do not need to be set every timestep:
they can be enabled only when required. For example, a source wavelet may only be injected for a
short period of time at the beginning of a simulation and a receiver plane may only be read every few
timesteps.

We could send a complete wavefield of data every timestep with our wavelet at the center, but this
would send a vast amount of redundant data. Reading back the complete wavefield is also an inefficient
way of inspecting the data, especially as we are most likely to look only at a few slices of the wavefield.

5.1 Injecting Data into the FDKernel

A host input differs from a wavefield input in two important ways:

• It is injected directly into the Kernel during a timestep, rather than being copied into LMem to be
streamed into the Kernel during the timestep.

• It is possible to inject a sub-volume of the domain, ensuring that copying the data to the card over
the PCI Express bus does not slow down the processing of the timestep.

We specify a host input in the FDKernel source using the method io.hostInput:

FDVar io.hostInput(String name, double relMax, int halo)

The argument relMax defines the maximum value that the input contains relative to other inputs.
This is discussed in detail in section 7: for now we will just use 1.0, as relMax has no effect for floating
point numbers.

The halo argument defines the size of the halo for the input. A halo is required wherever an input is
used as part of an input to a convolution as the FDKernel will require the input for the points surrounding
the current point to generate the all of the inputs to the convolution.

A host input sub-volume forms a cuboid. The bounds of this cuboid are specified in the host software
by providing a start coordinate (inclusive) and end coordinate (exclusive) of the sub-volume. These start
and end values are the same as the values that we would use in a software loop to iterate through the
sub-volume.

Figure 11 shows a host input sub-volume of a larger domain with the start and end coordinates of
the sub-volume.

The function to stream in this cuboid specifies these coordinates:

void maxlib stream region from host (maxlib context context, const char ∗input, const void ∗data, int x start , int y start , int
z start , int x end, int y end, int z end)

Supplying a NULL pointer as the data argument disables the host input for the current timestep.

W A host input can only have one input region from the host per timestep.

The FDKernel will automatically set the output of the input stream to 0 when the current position in
the 3D domain being calculated in the FDKernel is outside the specified sub-volume for the input: this
allows the stream to be added to another stream without having to check whether the input is currently

Version 2014.1 MaxGenFD: Tutorial 41

5 Host Inputs and Outputs

(x_start,
y_start,
z_start)

z

x

y

(x_end,
y_end,
z_end)

Figure 11: Sub-volume of the domain for a host input showing start and end coordinates.

inside the sub-volume. If the input stream is not to be added to another stream, for example if it is to
replace a region of a wavefield input (see subsection 5.3), then there is a method to detect whether a
stream is currently within its active region:

FDVar isHostInputActive(String name)

name is the name of the host input stream. This method returns a Boolean stream which will be set
to 1 if the current point is within the sub-volume and 0 if not.

In our Acoustic Forward Modeling example, we create a host input in the FDKernel called source

with no halo (as our source will be applied after the convolution). We provide a relative maximum
of 1.0, but this does not apply to our floating-point FDKernel (see section 7 for more details on this
optimization).

36 FDVar source = io.hostInput(”source”, 1.0, 0); // Stimulus data

Version 2014.1 MaxGenFD: Tutorial 42

5 Host Inputs and Outputs

In the corresponding host code, we generate the source wavelet, a cube with a side of 3 points, for
each timestep and then stream it into the FDKernel:

94 if (time <= 2.0f / fpeak)
95 gen source(source, time, fpeak); // Generate source wavelet
96
97 float∗ data = (time <= 2.0f / fpeak) ? source : NULL;
98 maxlib stream region from host(
99 maxlib,

100 ”source”,
101 data,
102 sourceX −1,
103 sourceY −1,
104 sourceZ −1,
105 sourceX + 2,
106 sourceY + 2,
107 sourceZ + 2);

In our case the center of the source wavelet is the mid-point in our 3x3x3 array, so we pass the start
and end points of the source wavelet volume such that the center of the cube is at the point (source x,
source y, source z).

A NULL pointer is used to disable the host input once the source wavelet is complete.

5.2 Reading Data from the FDKernel

We can also read back sub-volumes of the wavefields from the FDKernel: this is much more efficient,
especially in large domains, than streaming out the whole wavefield to the host and then only reading
the volumes of interest.

The output is declared in the FDKernel with a name to be referenced in the host software and the
output stream to which to connect the host output:

void io.hostOutput(String name, FDVar out)

The location and dimensions of the volume to be read are set in the host software in the same
manner as a host input, with start and end coordinates:

maxlib stream region to host (maxlib context context, const char ∗output, void ∗data, int x start , int y start , int z start , int
x end, int y end, int z end)

Supplying a NULL pointer as the data argument disables the host output.
We can read out any cuboid that we like: the commonest shape to read out is a plane, which is a

cuboid with one dimension of only 1 point.
Figure 12 shows the start and end coordinates for an output plane.
In our Acoustic Forward Modeling example, we create a host output to read back the output of the

wave equation from the result stream:

46 io .hostOutput(”receiver” , result) ; // Receiver output to host

In the host software, we specify the receiver to be a plane with a constant value in the x-dimension,

Version 2014.1 MaxGenFD: Tutorial 43

5 Host Inputs and Outputs

(x_start,
y_start,
z_start)

z

x
y

(x_end,
y_end,
z_end)

Figure 12: Sub-volume of the domain for a host output showing start and end coordinates.

slicing through the center of the source wavelet:

116 data = (iteration % iterationsPerFrame == 0) ? receiver : NULL;
117 maxlib stream region to host(
118 maxlib,
119 ”receiver” ,
120 data,
121 sourceX,
122 0,
123 0,
124 sourceX + 1,
125 ny,
126 nz);

A NULL pointer is used to disable the host output so that we only read the receiver plane every few
timesteps.

5.3 Hollow Cube Host IO

For some purposes, such as injecting and reading back boundaries for an RTM simulation, a cuboid
host input or output is inadequate. For such purposes, hollow cubes can be streamed in and out of the
FDKernel.

A host input or output declared in the FDKernel can be used to transfer either a solid or hollow cube:
this is specified by the host code each execution step.

W A host input or output can stream only one region, hollow or solid, per execution step.

A hollow cube is specified by an inner and outer cube. The inner and outer cubes are defined using

Version 2014.1 MaxGenFD: Tutorial 44

5 Host Inputs and Outputs

two maxlib regions, a C struct that specifies start and end coordinates for a cube:

typedef struct {
int x start , x end;
int y start , y end;
int z start , z end;

} maxlib region;

z

y

x

Inner Cube
(x_start,
y_start,
z_start)

Inner Cube
(x_end,
y_end,
z_end)

Outer Cube
(x_end,
y_end,
z_end)

Outer Cube
(x_start,
y_start,
z_start)

Figure 13: Hollow cube for a host input showing start and end coordinates for the inner and outer cubes.

Figure 13 shows a hollow cube with the start and end coordinates of the inner and outer cubes.
To determine the correct amount of memory to allocate to store a hollow cube, we can call

maxlib hollow cube size with the inner and outer cube regions, which will return the number of
bytes to allocate:

size t maxlib hollow cube size(maxlib context context, const char∗ input name, const maxlib region inner cube, const maxlib region
outer cube);

Version 2014.1 MaxGenFD: Tutorial 45

5 Host Inputs and Outputs

The two regions are then used to stream a host input or output in a similar manner to solid cuboid
inputs and outputs:

void maxlib stream hollow cube from host(maxlib context context, const char∗ input name, const void∗ data, const maxlib region
inner cube, const maxlib region outer cube);

void maxlib stream hollow cube to host(maxlib context context, const char∗ output name, void∗ data, const maxlib region
inner cube, const maxlib region outer cube);

The data argument is a void pointer to the data for the hollow cube input or output. The layout in
memory for this data is an optimally packed format for MaxGenFD to use internally.

By default, the data is streamed as single-precision floating-point values to and from the FPGA and
automatically converted into the representation used within the FDKernel. Utility functions are provided
in the maxlib to read from and write to a hollow cube using floating-point values:

float maxlib get hollow cube value(void∗ hollow cube data, maxlib region inner cube, maxlib region outer cube, int x, int y, int z) ;

void maxlib set hollow cube value(void∗ hollow cube data, maxlib region inner cube, maxlib region outer cube, int x, int y, int z,
float value);

Streaming the hollow cube out in the internal representation (possibly storing it) and then streaming
it back into the FDKernel again, for example in an RTM implementation, is often more efficient than
converting it into floating-point data and back again. The automatic floating-point conversion can be
disabled for a host input or output in the configuration object using the method setHostDataFormat():

void setHostDataFormat(String name, HostDataFormat format)

format can be one of HostDataFormat.FLOATING POINT or HostDataFormat.INTERNAL.

Version 2014.1 MaxGenFD: Tutorial 46

5 Host Inputs and Outputs

5.4 Scalar inputs

A scalar input to an FDKernel is used to transfer single operands between the host application and
the FDKernel. These can be used either to control the computation or as values in the computation
itself. When used for computation purposes, the value will be appropriately scaled for additions and
subtractions, but not scaled for multiplications and divisions.

A scalar input is declared in the FDKernel using one of:

FDVar io.scalarInput(String name, double absMax, double relMax)

This takes both an absolute maximum value and a value relative to the other inputs to the FDKernel.
The type of the input is specified in the configuration object, using the appropriate method for floating

or fixed point data:

void setScalarInputType(String name, HWFloat type)
void setScalarInputType(String name, int numBits)

For passing flags to control computation in the FDKernel, a scalar flag input is also available:

HWVar io.scalarFlagInput(String name)

To set the scalar input from the host code, there are two functions provided, one for integer flag
values and one for floating point values:

void maxlib set scalar flag (maxlib context context, const char ∗name, uint64 t value)
void maxlib set scalar (maxlib context context, const char ∗name, double value)

5.4.1 Scalar Input Example

As an example, we will modify our existing Acoustic Forward Modeling code from Example 1. Our new
implementation is Example 2. In our original Example 1, we have a scaled velocity squared (

(
v×dt
dd

)2
)

as our earth model. We can modify this to pass in a value for dt2/dd2 to the FDKernel as a scalar input
to be able to vary the delta time and delta distance for our simulation. We also now need to pass in the
square of the velocity as our earth model.

Our earth model input is now velocity squared (vel sq):

37 FDVar vel sq = io.earthModelInput(”velSq”, 10000 ∗ 10000, 0); // Earth model

We specify our scalar input in the FDKernel:

39 FDVar dttd = io.scalarInput(”dttd ” , 5e-9, 1.0) ;

In the configuration object, we specify the type of our scalar input to be our single-precision floating-
point type:

31 // IEEE single-precision floating point
32 DFEFloat t = DFETypeFactory.dfeFloat(8, 24);

36 config.setScalarInputType(”dttd” , t) ;

Version 2014.1 MaxGenFD: Tutorial 47

5 Host Inputs and Outputs

In our host code, we load in the square of the velocity as our earth model:

51 velSq = create 2layer earth model vel(nx, ny, nz); // Set up earth model
52 // Calculate the square of the earth model
53 for (size t i = 0; i < n; i++) {
54 velSq[i] = velSq[i] ∗ velSq[i];
55 }
56
57 maxlib earthmodel em = maxlib earthmodel create in memory(nx, ny, nz);
58
59 printf (”Compressing earth model\n”);
60 maxlib earthmodel set data(em, ”velSq”, velSq);

Now we can vary delta distance and delta time for our simulation by passing in dt2/d2 via our scalar
input:

98 maxlib set scalar(maxlib, ”dttd ” , deltaTime ∗ deltaTime
99 / (deltaDistance ∗ deltaDistance));

W A scalar input must be set before every timestep.

Version 2014.1 MaxGenFD: Tutorial 48

6 Boundaries

6 Boundaries

The simulation domain cannot extend infinitely, so we are left with discrete boundaries to our finite
domain. These boundaries will affect the simulation results by giving unwanted reflections that would
not occur in the the real world. We therefore need to compensate for these conditions somehow at the
boundaries of the domain.

MaxGenFD provides a library of boundary functions that can be easily configured and applied to
the edges of the domain. By default, an FDKernel does not have any boundary conditions enabled, so
the behavior of the boundary depends on the initial state of the wavefields. In our Acoustic Forward
Modeling example, we initialize our wavefields to zero, which means that the boundary behaves like a
Dirichlet boundary i.e. a perfect reflector.

6.1 Boundary Masks

The sides of the domain that should be processed by a sponge or boundary conditions are set in the
host code via bit masks. Each item in the first column of Table 2 is the name of a #define in maxlib.h.
These can be ORed together to select multiple sides.

#define Value Surface

MAXLIB BOUNDARY X0 0x1 x=0
MAXLIB BOUNDARY XN 0x2 x=nx
MAXLIB BOUNDARY Y0 0x4 y=0
MAXLIB BOUNDARY YN 0x8 y=ny
MAXLIB BOUNDARY Z0 0x10 z=0
MAXLIB BOUNDARY ZN 0x20 z=nz
MAXLIB BOUNDARY ALL 0x3f All surfaces

Table 2: #defines representing domain boundaries for boundary condition and sponge bit-masks.

The masks are set in the host code via scalar inputs.

6.2 Simple Sponge

A sponge applies a simple damping coefficient to waves once they enter a damping region (typically
20-60 points) at the edge of the domain. This is an implementation of the sponge described by Charles
Cerjan et al.

Figure 14 shows a comparison of the Acoustic Forward Modeling example with and without spong-
ing as a wave approaches the edges of the domain.

The sponge is an FDVar stream created using a method on the boundaries property of the FD-
Kernel:

FDVar boundaries.sponge(int spongeSize)

The size of the sponge is the number of points from the edge of the domain to which it will be
applied, in all three dimensions.

The values that make up the sponge are coefficients that will be multiplied with a wavefield. The
sponge is applied to the entire wavefield, with the value for the sponge being set to 1.0 when the
current point in the domain is not in the boundary area.

Version 2014.1 MaxGenFD: Tutorial 49

6 Boundaries

In our example, we sponge the previous wavefield before the wave equation:

37 FDVar sponge = boundaries.sponge(50); // Sponge
38
39 prev = prev ∗ sponge; // Sponge previous wavefield

And sponge the result afterward, before it is written out to DRAM:

44 result = result ∗ sponge; // Sponge result

The boundary mask is set in the host code via a scalar flag input with the name ‘‘sponge’’. In
our Acoustic Forward Modeling example, we set the bit mask to apply the sponge to all sides apart from
the top of the domain as there is a real reflective surface there: the surface of the water.

30 // Bit mask for the sides of the domain to sponge (all sides except z=0)
31 const int spongeMask = MAXLIB BOUNDARY ALL ˆ MAXLIB BOUNDARY Z0;

76 maxlib set scalar flag (maxlib, ”absorb”, spongeMask); // Set bit mask

W Current wavefield and previous wavefield must be sponged when using the simple sponge.

Smaller sponge regions than the size specified in the FDKernel can be configured at run-time by
setting the sponge coefficients nearer to spongeSize-1 to 1.0.

The coefficients for the sponge are set in the host code via writes to a mapped ROM called
"sponge", as in our Acoustic Forward Modeling example:

77 sponge = create simple sponge(spongeWidth, spongeActiveWidth); // Create sponge
78 printf (”Loading sponge to DFE\n”);
79 for (int i = 0; i < spongeWidth; i++) // Set the sponge on the MaxCard
80 maxlib set mapped memory f(maxlib, ”sponge”, i, sponge[i]);

This ROM must always be fully populated, and the maximum value for a sponge coefficient is
1.0. The sponge coefficients are applied with index 0 as the point closest to the edge, and index
spongeSize-1 as the point nearest the interior.

The ‘‘sponge’’ mapped ROM is actually made up of three ROMs, one for each dimension,
which are all written to with the same data when “sponge” is written to. For more specific control,
you can set different sponge conditions at different boundaries using different coefficients in X, Y and
Z by setting the three mapped ROMs called ‘‘boundaryspongeX’’, ‘‘boundaryspongeY’’ and
‘‘boundaryspongeZ’’. All three tables need to be set with the full set of spongeSize coefficients.

Version 2014.1 MaxGenFD: Tutorial 50

6 Boundaries

With Sponging Without Sponging

t=1.9s

t=2.0s

t=2.1s

t=2.2s

t=3.1s

Figure 14: Output from MaxGenFD comparing the same simulation with (left) and without (right) the
simple sponge being applied.

Version 2014.1 MaxGenFD: Tutorial 51

7 Optimizing Data Types

7 Optimizing Data Types

We can use different data sizes at each stage within the FDKernel to minimize memory space utilization,
make the most efficient use of available memory bandwidth and minimize design area, while maximizing
data precision. The data types are all set in the configuration object for the FDKernel.

To extract the best performance out of a DFE, Maxeler recommends the use of fixed-point data
types in an FDKernel. Fixed-point calculations generally take far fewer resources and can be run at
much higher clock rates. Equivalent or better precision than floating-point precision can be achieved
using fixed-point data types.

In this section, we take our existing floating-point Acoustic Forward Modeling implementation and
convert it to make use of fixed point.

7.1 Specifying Types in the FDKernel

We explicitly declare whether an FDKernel will use fixed-point or floating-point data when constructing
the FDConfig object. In our Acoustic Forward Modeling example, we specify a floating-point FDKernel:

21 // Use floating point
22 FDConfig config = new FDConfig(engineParameters, DefaultType.FLOAT);

In MaxGenFD, we specify two different sets of types: storage types and compute types.
Figure 15 shows our Acoustic Forward Modeling example FDKernel with the storage and compute

types annotated for the different data sources and streams. The arrows at the input and output of
streams to the DFE show conversion and compression being implemented automatically.

7.1.1 Storage Types

Storage types specify how wavefield and earth model data should be stored in LMem on the DFE.
Storage types can be compressed types.

The storage types available are limited to a subset of the computation types to ensure efficient
use of the LMem space and bandwidth by packing into 16, 24 or 32 bit locations. All wavefields use
the same storage type, whereas each earth model can use a different storage type depending on the
precision to which the different earth model parameters are known:

void setWavefieldStorageType(StorageType type)
void setEarthModelStorageType(String name, StorageType type)

The available storage types are summarized in Table 3.

7.1.2 Compute Types

Compute types specify the types of the data streams in the FDKernel (and coefficient storage as this is
internal to the DFE). The wavefield compute type is used for all wavefield inputs to the FDKernel (after
decompression or conversion from the storage type) and host inputs. Different compute types can also
be set for coefficients (stencils, sponge coefficients), scalar inputs and earth models.

Any operation within the FDKernel, except for the special case of the convolution operation, will
produce a result of an intermediate type. In a floating-point FDKernel, this is the same as the wavefield
compute type. In a fixed-point FDKernel, this is a type with the same width as the wavefield compute
type but scaled to hold a larger maximum value.

Version 2014.1 MaxGenFD: Tutorial 52

7 Optimizing Data Types

Sponge

Stencil

Current
Wavefield

(p
t
)

Previous
Wavefield

(p
t
)

Earth
Model

Wave
Equation

Convolution

Stimulus
Data
(s

t
)

LMem

From CPU
intermediate

intermediate*scale

intermediate

intermediate

intermediate

wavefield
storage

wavefield
storage

earth model
storage

wavefield
storage

coefficient

floating point

earth
model
compute

coefficient

coefficient

*

wavefield
compute

*

+

wavefield
compute

wavefield
compute

DFE

Figure 15: Acoustic Forward Modeling example FDKernel showing the data storage and compute types
at different stages of the computation.

A convolution operation produces an output type that is its input type scaled by the scale factor
specified in the stencil (see subsubsection 7.8.3).

In the case of compressed storage types, the type to which data should be expanded is specified
by the wavefield compute type and earth model compute type.

The available methods each have two versions, one specific to floating point and one specific to
fixed point:

void setWavefieldComputeType(ComputeType type)

void setEarthModelComputeType(String name, HWFloat type)
void setEarthModelComputeType(String name, int numBits)

void setScalarInputType(String name, HWFloat type)
void setScalarInputType(String name, int numBits)

For table compression on earth models, the data type stored in the look-up table will be the earth
model compute type.

Coefficients and earth models retain their specified compute type on input to calculations: they are

Version 2014.1 MaxGenFD: Tutorial 53

7 Optimizing Data Types

Storage Type Description

StorageType.float6 10 16-bit floating-point type with 6-bit exponent and 10-bit
mantissa

StorageType.float7 17 24-bit floating-point type with 7-bit exponent and 17-bit
mantissa

StorageType.float8 24 32-bit floating-point type with 8-bit exponent and 24-bit
mantissa

StorageType.fixed16 16-bit fixed-point type
StorageType.fixed24 24-bit fixed-point type
StorageType.fixed32 32-bit fixed-point type
StorageType.compressed16 16-bit compressed type (floating-point or fixed-point de-

pending on default type). Compressed floating-point types
are not supported on MAX4.

StorageType.compressedTable

(int numBits)

numBits-bit table-compressed type quantized to 2numBits

values (floating-point or fixed-point depending on default
type)

Table 3: Available storage types for earth models and wavefields.

not expanded to the wavefield compute type before computation takes place, which allows more optimal
implementation of arithmetic operations.

The convolution operation is a special case for a fixed-point FDKernel as precision can be set
differently for each stage of the operation (see subsection 7.7).

7.2 Compression

Wavefields and earth models have a value for every point in the domain, which can lead to very large
memory requirements for storing the data on the accelerator cards. With a number of earth models and
wavefields, this can lead to difficulty in packing all this data into the available storage.

To optimize use of memory space and bandwidth, MaxGenFD can add compression and decom-
pression function blocks for earth models and wavefields at the beginning and end of the FDKernel
computation pipeline. On-chip compression and decompression have no run-time cost, provided there
is sufficient silicon area available, and earth models and wavefields can be automatically compressed
and decompressed on the fly, which increases the amount of memory bandwidth available by the com-
pression factor. MaxGenFD provides a number of in-built compression schemes that have been verified
for use in seismic modeling and migration applications.

Compression of wavefields and earth models is enabled in the configuration object for the FDKernel.

7.2.1 Earth Model Compression

Earth model compression is enabled per earth model by setting the storage type:

void setEarthModelStorageType(String name, StorageType type)

Earth model compression is covered in more detail in section 9.

Version 2014.1 MaxGenFD: Tutorial 54

7 Optimizing Data Types

7.2.2 Wavefield Compression

Wavefield compression is set for all wavefields via one method call to setWavefieldStorageType.

void setWavefieldStorageType(StorageType type)

Wavefields are automatically decompressed after reading from the LMem and results are automat-
ically compressed before writing back to the LMem. Wavefields written from the host to the LMem of
the card are compressed automatically by the DFE before being written into the LMem.

The recommended compression scheme for wavefields is 16-bit compression. This scheme com-
presses fixed-point and floating-point types to an average 16-bits of storage per datum with minimum
precision loss. The compression scheme is block-based, so loses less precision than a simple trunca-
tion of the original data.

The storage type to use is StorageType.compressed16. Wavefields will be expanded to the
wavefield compute type in the DFE when they are read from the LMem.

7.3 Floating-Point FDKernels

MaxGenFD allows the use of the configurable floating-point types available in MaxCompiler. Creating
a floating-point FDKernel is a useful way to quickly get an FDKernel written and functionally debugged
before optimizing with fixed-point types.

For all floating-point operations, the output type of the operation is the same as the input type of the
operation, so in Figure 15, the intermediate type in a floating-point implementation is the same as the
wavefield compute type.

W See the MaxCompiler Tutorial for more details on the allowable combinations of exponent and
mantissa for floating-point types.

When we specify a floating-point FDKernel, the FDKernel defaults to a floating-point data type with
a mantissa of 17 bits and an exponent of 7 bits (HWTypeFactory.hwFloat(7, 17)) for the wavefield
compute and storage types.

Version 2014.1 MaxGenFD: Tutorial 55

7 Optimizing Data Types

In our Acoustic Forward Modeling example, we can change the code to support compressed storage
types by setting the following lines in SimpleFDConfig.maxj.

config.setWavefieldStorageType(StorageType.compressed16);
config.setEarthModelStorageType(”dvv”, StorageType.compressedTable(10));

In our Acoustic Forward Modeling example, we declare an HWFloat type of
HWTypeFactory.hwFloat(8, 24) and specify this type as the wavefield type, coefficient type and
compute type for our earth model:

29 // Set our floating point type for all calculations
30 config.setWavefieldComputeType(ComputeType.float8 24);
31 // IEEE single-precision floating point
32 DFEFloat t = DFETypeFactory.dfeFloat(8, 24);
33 config.setCoefficientType(t) ;
34 config.setEarthModelComputeType(”dvv”, t);

W
MaxGenFD only supports arithmetic operations on two floating-point streams where the expo-
nent and mantissa of the two streams are the same. It is therefore recommended to use the
same floating-point type throughout an FDKernel.

7.4 Fixed-Point FDKernels

In our Acoustic Forward Modeling Example 1, we used single-precision floating point for all of our data
(except for the compression on storage of wavefields and earth models). To get the best performance
out of an FDKernel, however, we need to convert our design to use fixed-point data, which is done in
Example 3. The configuration object for this is shown in Listing 9.

Conversion from floating point to fixed point for data transferred to the card, and transformation back
again on transfer of data back from the card, is performed automatically. The earth model is converted
to fixed point on the host before being transferred to the accelerator card. For wavefields and host
inputs, all conversion to and from fixed point is performed on the accelerator card.

In MaxGenFD, fixed-point data types are specified by the total number of bits for the data word.
MaxGenFD infers the position of the binary point in two ways:

• Statically within the FDKernel, from the absolute magnitude, relative magnitudes and scale factors
specified in the FDKernel (see subsection 7.8). This allows the maximum precision to be kept for
the number of bits in the word for each operation within the FDKernel.

• Dynamically between executions of the FDKernel, from the magnitude of the data in host inputs
(e.g. source stimulus) and wavefields for each timestep. The scale factor of the wavefields stored
in LMem is also tracked over time. This allows the maximum utilization over time of the number
of bits available by moving the binary point as the magnitude of the host inputs and wavefields
changes.

W
Note that if you wish to debug the FDKernel using MaxCompiler watches, the data at any point
in the FDKernel may be scaled, so care must be taken in inferring any absolute value for the
data.

Version 2014.1 MaxGenFD: Tutorial 56

7 Optimizing Data Types

Listing 9: Fixed point FDConfig object for our Acoustic Forward Modeling example (FixedPointFDKer-
nel.maxj).
1 /∗∗
2 ∗ Document: MaxGenFD Tutorial (maxgenfd-tutorial.pdf)
3 ∗ Example: 3 Name: Fixedpoint FD
4 ∗ MaxFile name: FixedPointFD
5 ∗ Summary:
6 ∗ Configuration settings for the model running with 8 pipes
7 ∗ at a frequency of 100Mhz.
8 ∗/
9

10 package fixedpointfd;
11
12 import com.maxeler.maxcompiler.v2.build.EngineParameters;
13 import com.maxeler.maxgen.fd.ComputeType;
14 import com.maxeler.maxgen.fd.FDConfig;
15 import com.maxeler.maxgen.fd.FDConfig.DefaultType;
16 import com.maxeler.maxgen.fd.StorageType;
17
18 class FixedPointFDConfig {
19 static FDConfig config(EngineParameters engineParameters) {
20 // Use fixed point
21 FDConfig config = new FDConfig(engineParameters, DefaultType.FIXED);
22
23 config.setMaxBlockSize(192, 144);
24
25 config.setClockFrequency(100); // This can go up to 150Mhz but requires
26 // a long build time
27
28 config. setParallelPipelines (8) ;
29
30 // Enable compression for wavefields and earth model
31 config.setWavefieldStorageType(StorageType.compressed16);
32 config.setEarthModelStorageType(”dvv”, StorageType.compressedTable(10));
33
34 // Set our fixed point type for all calculations
35 config.setWavefieldComputeType(ComputeType.fix24);
36 config.setCoefficientType(18);
37 config.setEarthModelComputeType(”dvv”, 18);
38 config.setConvolveTypes(25, 48);
39
40 return config;
41 }
42 }

W Fixed-point and floating-point types cannot be mixed in a single FDKernel, unless explicitly
implemented using MaxCompiler features.

In our Acoustic Forward Modeling example, we now set the wavefield compute type to 24-bit fixed
point, the coefficient type to 18-bit fixed-point and the earth model compute type to 18-bit fixed-point:

34 // Set our fixed point type for all calculations
35 config.setWavefieldComputeType(ComputeType.fix24);
36 config.setCoefficientType(18);
37 config.setEarthModelComputeType(”dvv”, 18);
38 config.setConvolveTypes(25, 48);

Version 2014.1 MaxGenFD: Tutorial 57

7 Optimizing Data Types

7.5 Intermediate Type

Intermediate results from computations in the FDKernel will automatically be given an intermediate type
by MaxGenFD that is estimated to prevent overflow and minimize underflow. Setting the appropriate
maximum values for inputs and scale factors for stencils will help optimize these intermediate types.

If a significant number of operations are carried out in a chain, some precision loss may occur
because types propagate conservatively and thus numbers may grow more bits on the most significant
bit than are required to hold results that practically occur. This can be addressed one of two methods:

• Manually applying casts at specified points to change the type to something more efficient at
representing the actual values

• Switching some parts of the computation into an alternative type propagation mode using guard
bits.

7.5.1 Guard Bits Mode

This mode can be enabled and disabled around a region of computation in an FDKernel by calling
pushGuardedOpModes() and popGuardedOpModes():

void pushGuardedOpModes(int guard bits);
void popGuardedOpModes();

The number of guard bits guard bits represents the number of bits by which the intermediate type
is able to represent numbers larger than the wavefield compute type, for example 3 guard bits means
that the computation will be able to represent values 8 times larger than the wavefield compute type.
By fixing the number of guard bits around a region of the computation where large growth in values is
not expected, the precision of the computation can be increased.

7.6 Coefficient Types

The important factor in determining the size for coefficient types is the precision to which the coefficients
are known. As the data is scaled automatically according to the magnitude of the coefficients, only the
number of bits needs to be specified.

void setCoefficientType(HWFloat type)
void setCoefficientType(int numBits)

Where a coefficient is used in a calculation, such as a convolution, sponge or wave equation,
the input type of the coefficient to the calculation is the same as the coefficient type: the data is not
transformed to the wavefield compute type before computation.

7.7 Convolution Types

The convolution operation has an extra option available for specifying the maximum fixed point width at
two different stages of computation:

• Stage 1 of the convolution is the initial adds/subtracts of symmetrical/antisymmetrical terms and
the input to the coefficient multiplier.

• Stage 2 is the output from the multiplier and the accumulation of the convolution output.

Version 2014.1 MaxGenFD: Tutorial 58

7 Optimizing Data Types

The default values are 25 for the first stage and 48 for the second stage. These sizes map directly
onto the sizes supported by the dedicated DSP blocks in the DFE.

The values are set using the method setConvolveTypes:

void setConvolveTypes(int limit stage1bits, int limit stage2bits)

7.8 Fixed-Point Scaling

The use of fixed-point types can be further optimized by supplying information about the data itself. This
meta-data is supplied in the FDKernel.

There are three types of meta-data that can be provided: absolute maximum values for inputs,
relative magnitudes of inputs and scale factors for stencils. These three pieces of meta-data are used
to move the position of the binary point in the fixed-point word at different stages of the computation in
the FDKernel.

W Note that setting any of these scaling options incorrectly may lead to data overflowing the fixed-
point word, leading to incorrect results.

7.8.1 Absolute Maximum Values

Scalar inputs and earth model inputs can have absolute maximum values specified. This is the maxi-
mum value that will written into these streams. The fixed point word will be scaled to fit the maximum
value with as much precision remaining in the lower bits as possible.

HWVar io.scalarInput(String name, double absMax, double relMax)
FDVar io.earthModelInput(String name, double max, int halo)
FDVar io.earthModelInput(String name, double max, int halo, FDExpr value)

In our Acoustic Forward Modeling example, we specify an absolute maximum of 1/4 for the velocity
earth model derivative:

36 FDVar dvv = io.earthModelInput(”dvv”, 1 / 4.0, 0); // Earth model

7.8.2 Relative Magnitudes

For host inputs (for example our source wavelet) and wavefield inputs, the size relative to each other
can be set using the relMax argument.

If one input is set to have a relMax of 1.0 and another is to have a relMax of 2.0, this means that
the second input contains values up to a maximum of the twice the size of the first input.

HWVar io.scalarInput(String name, double absMax, double relMax)
FDVar io.hostInput(String name, double relMax, int halo)
FDVar io.waveFieldInput(String name, double relMax, int halo)

Version 2014.1 MaxGenFD: Tutorial 59

7 Optimizing Data Types

For example, in the following code, wavefield input b contains values up to twice the size of host
input a and wavefield input c contains values up the half the size of host input a:

FDVar a = io.hostInput(”a”, 1.0, 0);
FDVar b = io.waveFieldInput(”b”, 2.0, 6);
FDVar c = io.waveFieldInput(”c”, 0.5, 6);

Relative magnitudes are commonly used where a timestep is split over multiple executions of an
FDKernel.

W Scalar inputs have an absolute maximum that is used for multiplication and division operations
and a relative maximum that is used for addition and subtraction operations.

7.8.3 Convolution Output Scaling

Stencils have an argument outputScale which specifies the size the output of a convolution with this
stencil relative to the input. For example, an outputScale of 3.0 means that the output is up to three
times the size of the input of a convolution performed with this stencil.

Stencil fixedStencil (int min, int max, double[] coeffs, double outputScale)
Stencil cubeStencil(int minX, int maxX, int minY, int maxY, int minZ, int maxZ, double[][][] coeffs, double outputScale)
Stencil variableStencil (int min, int max, double outputScale, FDVar... coefficients)

W
If you do not have enough data to choose a scale factor, or are concerned about overflow
errors, you can specify a scale of 0.0 to have MaxGenFD automatically choose a conservative
value that may not provide maximum precision but will guarantee prevention of overflow.

In our Acoustic Forward Modeling example, we specify a scale factor of 8.0 for the stencil:

18 private final int stencilSize = 13;
19 private final Stencil stencil = fixedStencil (
20 - stencilSize / 2,
21 stencilSize / 2,
22 new double[] { -0.00003006253006249946f, 0.0005194805194800871f,
23 -0.004464285714282842f, 0.02645502645501459f,
24 -0.133928571428538f, 0.857142857142776f, -1.49138888888878f,
25 0.857142857142776f, -0.133928571428538f, 0.02645502645501459f,
26 -0.004464285714282842f, 0.0005194805194800871f,
27 -0.00003006253006249946f },
28 8.0) ;

The worst-case scale factor (which cannot be exceeded regardless of the input values) can be
calculated as the sum of the absolute values of the coefficients in the stencil. A scale factor for more
aggressive optimization can be calculated by recording the maximum input array and corresponding
output value of the convolution for a number of timesteps of the simulation with some real data.

W Using a more precise scale factor can give greater precision through the FDKernel, but care
must be taken to verify that this scale factor is correct for the input used in a simulation.

Version 2014.1 MaxGenFD: Tutorial 60

7 Optimizing Data Types

7.8.4 Additional Scale Factor

It is also possible to explicitly set an additional scale factor for the FDKernel in the host code:

void maxlib set scale factor (maxlib context context, float scale factor)

This additional scale factor is applied in addition to the automatic dynamic scaling between timesteps
and the scaling within the FDKernel. This can be useful for debugging an application if overflow or un-
derflow is suspected as the cause for errors.

W It is not recommended to set the additional scale factor in a production application as it makes
inefficient use of the fixed-point data word in the FDKernel.

Version 2014.1 MaxGenFD: Tutorial 61

8 Performance Optimization

8 Performance Optimization

The performance of an FDKernel can be further improved by adjusting various parameters and enabling
features via the configuration object.

8.1 Multiple Processing Pipelines

The definition of an FDKernel does not specify the number of parallel pipelines, or pipes, in a design: this
is specified in the configuration object. A key method for increasing the performance of a MaxGenFD
implementation is to increase the number of pipes.

The number of pipes is set using the method setParallelPipelines:

void setParallelPipelines (int numPipes)

Each pipe generates another copy of the arithmetic logic and some of the buffering logic, so this has
an impact on the size of the design. There is therefore a maximum number of a given FDKernel pipe
that can be implemented in a DFE. The reports generated by MaxGenFD can be useful for estimating
how many pipes may fit in the device, but a full build is required to verify that the design will fit and meet
timing constraints.

In Example 3, we can run 8 parallel pipelines with our fixed-point implementation of the Acoustic
Forward Modeling code:

28 config. setParallelPipelines (8) ;

W Note that an implementation with many pipes may take a long time to build, so using a single
(or small number) of pipes is recommended for debugging purposes.

8.2 Clock Frequency

The clock frequency for the FDKernel can be set in the configuration object:

void setClockFrequency(int mhz)

Whether the design will meet the constraints for this clock frequency depends on a number of
factors, including the data types in use and the size of the design. Determining the maximum clock
frequency of a design is an iterative process involving setting a target clock speed, building the design
to see if the constraints were met and then either increasing or lowering the clock speed accordingly.

In Example 3, we set the clock speed to 100 MHz:

25 config.setClockFrequency(100); // This can go up to 150Mhz but requires
26 // a long build time

W Note that setting a high clock speed may result in a long build time, so using a lower clock
speed is recommended for debugging purposes.

Version 2014.1 MaxGenFD: Tutorial 62

8 Performance Optimization

8.3 Block Size

An FDKernel operates on blocks of data at a time from the sub-domain that is allocated to it. The size
of block on which the FDKernel operates affects the number of memory components within the FPGA
that the FDKernel uses.

Better performance is gained from the FDKernel if it can use more memory components. If the block
size is small, then a relatively large amount of processing time for the block is spent in the halo area,
which slows down the process. The efficiency of the MaxGenFD implementation is directly proportional
to the number of points not in the halo area. Figure 16 shows shows the efficiency with two different
block sizes with a 5-point stencil.

5­point star
stencil applied
to this block

5­point star stencil
applied to an
adjacent block

(a) 20x20 Block Size: 64% efficiency (b) 12x12 Block Size: 44.5% efficiency

Corners are
always
exchanged in
MaxGenFD

Figure 16: Efficiency for different block sizes.

W Note that the corner points are always exchanged in MaxGenFD, even for star stencils, for
efficiency reasons.

The general equation for the efficiency for a block, for an n-point stencil, a stencil overlap of s and
a block size of X by Y , is:

(X − 2s)× (Y − 2s)× 100

X × Y
The stencil overlap for a symmetric n-point stencil is floor(n/2), or the largest integer less than or

equal to n/2.
MaxGenFD uses a default maximum size of block (96x96) which is conservative to ensure that there

is sufficient block RAM available, but this size can be tweaked.

Version 2014.1 MaxGenFD: Tutorial 63

8 Performance Optimization

The method used to do this is setMaxBlockSize which takes two arguments, blockWidth which
applies to the width in the fast dimension and blockHeight which applies to the height in the medium
dimension:

void setMaxBlockSize(int blockWidth, int blockHeight)

These numbers are suggestions to MaxGenFD rather than absolute values, as the underlying block
size is constrained by rules that change depending on data types, device and even board model. This
means that the process of determining the optimum values for maximizing performance of an FDKernel
on a given device is an iterative one that involves setting some values and seeing the block RAM usage
reported after the build process is complete.

In Example 3, we set a more efficient block size for our Acoustic Forward Modeling code:

23 config.setMaxBlockSize(192, 144);

With the stencil size of 13 and the block size of 192 by 144, we have an efficiency of 86% instead
of 77% with the default block size of 96 by 96.

8.4 Interleaving wavefields

Where wavefields are always read from and written to at the same time, which commonly occurs when
there are two wavefields representing the state for a timestep in an anisotropic mode, more efficient use
of device resources can be made by interleaving the wavefields. This reduces two fully independent
streams stored in two separate blocks in the LMem into two streams that share much of their control
logic with the data stored interleaved in one block of LMem twice the size.

Interleaved wavefields are grouped together in the configuration object with a call to
setStoreWavefieldsInterleaved with a string argument for the group name and then a list of string
names for the wavefields to interleave:

void setStoreWavefieldsInterleaved(String groupName, String... names)

For example, if we were to create two wavefields called "wave a" and "wave b", we would inter-
leave them in a group called "mywaves" like so:

FDConfig config = new FDConfig(DefaultType.FIXED);
config.setStoreWavefieldsInterleaved(”mywaves”, ”wave a”, ”wave b”);

In the host code, storage on the accelerator card is allocated for all of the interleaved wavefields
in a group via maxlib lmem alloc packed wavefield, which takes an additional argument of the
number of wavefields that will be packed into that group:

maxlib lmem array maxlib lmem alloc packed wavefield(maxlib context context, int n packed)

Wavefields are transferred to the card using the same function as for normal wavefields,
maxlib lmem load array, except that a list of pointers to wavefield data is passed in. For example,
to load our two interleaved wavefields "wave a" and "wave b", we would write:

float ∗wave a;
float ∗wave b;

maxlib lmem array mywaves array = maxlib lmem alloc packed wavefield(maxlib, 2);
maxlib lmem load wavefield(maxlib, mywaves array, wave a, wave b);

Version 2014.1 MaxGenFD: Tutorial 64

8 Performance Optimization

Finally, to stream the interleaved wavefields in a timestep, we reference the group name in the host
rather than the individual streams, for example:

maxlib stream from lmem(maxlib, ”mywaves”, mywaves array);

W Interleaving wavefields uses the same amount of space in the LMem.

8.5 Multi-Chip Implementations

MaxGenFD will automatically decompose a domain into sub-domains and distribute these sub-domains
to a number of accelerator cards in a system. MaxGenFD will automatically split the domain over all the
devices that it finds and transfer halo data over MaxRing (a direct high-speed cable connection between
Maxeler accelerator cards) or PCI Express between execution steps (see subsection 3.4 for more detail
on halos). MaxGenFD will favor MaxRing transfers over PCI Express as this method offers higher
performance. In order for MaxGenFD to perform this distribution, the FDKernel must have MaxRing,
PCI Express Swap or both enabled.

MaxRing halo swap is enabled for all halos through a single method call in the configuration object:

void setMaxRingEnabled(boolean enabled)

MaxRing swap is disabled by default.
PCI Express Swap is enabled on a per output basis. Every output that feeds an input in the next

execution step must have PCI Express Swap enabled:

void setPCIeSwapOutput(String outputName)

MaxGenFD will automatically transfer the halo data when all of the correct outputs have PCI Express
Swap enabled.

PCI Express Swap is disabled by default on all output streams.
MaxGenFD will automatically try to use up to 8 devices, but the upper limit can be set lower than this

in the host code at run-time, using a call to maxlib set global parameter to set "MAX DEVICES",
for example:

maxlib set global parameter(”MAX DEVICES”, 4);

W "MAX DEVICES" must be set before maxlib open is called.

The first device ID to use can be set via another parameter, "FIRST DEVICE", for example to ignore
the first two devices (which we may want to reserve for another application, for example) we would add:

maxlib set global parameter(”FIRST DEVICE”, 2);

Version 2014.1 MaxGenFD: Tutorial 65

9 Advanced Earth Model Usage

9 Advanced Earth Model Usage

In real-world applications, earth models may be very large. This leads to two problems:

• Fitting the required earth model region into the LMem on the DFE.

• Loading and manipulating an earth model that may be much larger than the available memory on
the host.

MaxGenFD provides earth model compression to solve the first issue and an earth model API for
the CPU code to solve the second.

9.1 Enabling Earth Model Compression

Earth model compression is enabled per earth model by setting the storage type:

void setEarthModelStorageType(String name, StorageType type)

The recommended compression scheme for earth models is table compression, in which the earth
model is quantized to a number of values. A lookup table is created and each point in the earth model
is assigned the value of the table index of the entry that is closest to its real value.

You can create a table-compressed storage type by specifying the size of the lookup table:

StorageType StorageType.compressedTable(int numBits)

The number of entries in the table is 2numBits, so 10 bits will produce a table with 1024 entries.
This means that the word size for each compressed value will be 10 bits, rather than the size of the
original data type. For example, the compression ratio for a 32-bit fixed point type to a 1024-element
(10-bit) table-compressed storage type is around 3:1.

The actual type of the data in the table is set to any floating-point or fixed-point type by setting the
earth model compute type:

void setEarthModelComputeType(String name, HWFloat type)
void setEarthModelComputeType(String name, int numBits)

This is the type of the data in the lookup table and is the type of the stream that we get back via
io.earthModelInput.

The earth models are initially compressed on the host before writing to the LMem on the DFE; the
models are automatically decompressed when they are streamed out of the LMem.

W
You should choose the table size based on the precision of the parameter that you want to
represent, for example velocity needs to be represented quite precisely (8-10 bits) whereas
some other quantities, for example anisotropy parameters, are known much less accurately
and may only require 2-6 bits.

Version 2014.1 MaxGenFD: Tutorial 66

9 Advanced Earth Model Usage

9.2 Handling Earth Models in the Host Code

The MaxGenFD earth model API allows you to:

• Work with a subregion of a large earth model

• Reduce execution time by saving a compressed earth model for reuse across multiple shots.

9.2.1 Loading an Earth Model

There are two methods of working with earth models:

• In memory, if you have enough on the local machine.

• On disk, if you have a large earth model that is too big for the memory in the local machine.

Earth models are managed in the host code using a maxlib earthmodel instance.
A maxlib earthmodel instance can be either in memory or file-backed, depending on how it is created
or loaded.

An earth model is created in memory by calling the following function with the required dimensions:

maxlib earthmodel maxlib earthmodel create in memory(int nx, int ny, int nz);

A new file-backed earth model can be created using the following function, where filename is the
name of the file to be created:

maxlib earthmodel maxlib earthmodel create file backed(int nx, int ny, int nz, const char ∗filename);

9.2.2 Loading an existing Earth Model

An existing MaxGenFD earth model that has been saved to file can be loaded using:

maxlib earthmodel maxlib earthmodel file load(const char ∗filename);

W Loading an existing earth model from file creates a file-backed instance of
maxlib earthmodel which uses this file.

9.2.3 Closing an Earth Model

When an earth model is no longer needed, it should be closed using maxlib earthmodel release:

void maxlib earthmodel release(maxlib earthmodel em);

maxlib earthmodel release checks the maxlib earthmodel instance em to see if any other
maxlib earthmodel instances reference the same memory (if the earth model is stored in memory)
or file (if the earth model is file-backed).

For an earth model in memory, if em is the only instance that references that memory, the memory
is released and em is deleted. Otherwise em is deleted without releasing the memory.

For a file-backed earth model, if em is the only instance that references that file, all data is flushed
to the file, the file is closed and em is deleted. Otherwise em is deleted without closing the file.

Version 2014.1 MaxGenFD: Tutorial 67

9 Advanced Earth Model Usage

9.2.4 Saving an Earth Model

If the maxlib earthmodel instance that you wish to save is file-backed, then calling
maxlib earthmodel release ensures that all data is flushed to the file and closes it.

Alternatively, to save an earth model stored in memory or to create a copy of a file-backed earth
model, you can call maxlib earthmodel file save:

void maxlib earthmodel file save(maxlib earthmodel em, const char ∗filename);

W If the earth model is incomplete, then MaxGenFD will report an error when you try to save it.

9.2.5 Using Part of an Earth Model

To load the subregion of an earth model, there are functions for extracting a subregion from an
maxlib earthmodel instance.

Regions are defined using the maxlib region C struct, which defines the start (inclusive) and
end (exclusive) coordinates for a 3D region:

typedef struct {
int x start , x end;
int y start , y end;
int z start , z end;

} maxlib region;

A maxlib region can be created using a function:

maxlib region maxlib region create(int x start , int y start , int z start , int x end, int y end, int z end);

maxlib earthmodel get subregion returns a new maxlib earthmodel instance that is a ref-
erence to the existing region in the em argument:

maxlib earthmodel maxlib earthmodel get subregion(maxlib earthmodel em, maxlib region sub region);

For example, in the following code sub em is a file-backed instance of maxlib earthmodel that is
backed by the same file as big em ("myEarthModelFile") and refers to the subregion sub region

within that file:

maxlib earthmodel big em = maxlib earthmodel file load(”myEarthModelFile”);
maxlib region sub region = maxlib region create(0, 32, 0, 32, 0, 32);
maxlib earthmodel sub em = maxlib earthmodel get subregion(big em, sub region);

An alternative function returns a new maxlib earthmodel instance that has a copy in memory of
the region in the em argument:

maxlib earthmodel maxlib earthmodel copy subregion into memory(maxlib earthmodel em, maxlib region sub region);

Version 2014.1 MaxGenFD: Tutorial 68

9 Advanced Earth Model Usage

For example, in the following code sub em is an instance of maxlib earthmodel that has a copy
in memory of the subregion sub region from the file "myEarthModelFile":

maxlib earthmodel big em = maxlib earthmodel file load(”myEarthModelFile”);
maxlib region sub region = maxlib region create(0, 32, 0, 32, 0, 32);
maxlib earthmodel sub em = maxlib earthmodel copy subregion into memory(big em, sub region);

9.2.6 Tile Size

It is not possible to work with arbitrary subregions of an earth model: you can only select subregions
that align to tile boundaries. A tile is a small region of data within the domain that is treated as a single
unit by MaxGenFD. You can only access subregions that are aligned with tiles i.e. nx%tile size = 0.

You can determine the tile size in each dimension by calling maxlib earthmodel get tile size:

void maxlib earthmodel get tile size(maxlib earthmodel em, int∗ tile size x , int∗ tile size y , int∗ tile size z) ;

9.3 Setting Data in an Earth Model

To either set uncompressed earth model data or use the default compression scheme, a single function
call for each parameter can be used. To use an alternative or custom compression scheme for table-
compressed earth model parameters, the table contents must be calculated and then the table values
and indices must be set.

9.3.1 Using the Default Compression Mode

Data is set for each parameter in an earth model using single-precision floating-point data: this data
is automatically converted to the storage type specified in the FDConfig object for that earth model
parameter. If the earth model storage type is specified as table compressed, then the data will be
compressed using the default maxlib table compress uniform compression scheme (see subsec-
tion 9.4).

The data can be set either from memory or from file:

void maxlib earthmodel set data(maxlib earthmodel em, const char ∗param name, const float ∗data);
void maxlib earthmodel set data from file(maxlib earthmodel em, const char ∗param name, const char ∗filename);

The param name argument is the name of the parameter in the earth model to set.

9.4 Specifying a Table Compression Scheme

Three compression schemes are implemented in MaxGenFD:

• Uniform (default)

• Fast Uniform (faster than default uniform, but less accurate)

• Adaptive (slowest but most accurate)

Version 2014.1 MaxGenFD: Tutorial 69

9 Advanced Earth Model Usage

These three schemes are implemented by function calls to perform the compression:

void maxlib table compress uniform(const float ∗data, size t data len, float ∗table values, size t table len , uint16 t ∗table indices
) ;

void maxlib table compress uniform fast(const float ∗data, size t data len, float ∗table values, size t table len , uint16 t ∗
table indices) ;

void maxlib table compress adaptive(const float ∗data, size t data len, float ∗table values, size t table len , uint16 t ∗
table indices) ;

All of these functions have the same arguments:

• data is an array of floating-point data representing the earth model parameter. This data must
be at least data len elements long.

• data len is the number of elements in the data array. This should be the number of points in
the earth model.

• table values is an array that will contain the lookup table values. table values must be at
least table len elements long.

• table len is the number of elements in the lookup table.

• table indices is an array of integers that will contain the table indices representing the com-
pressed earth model parameter. table indices must be at least data len elements long.

The maxlib earthmodel get table size function is provided, which returns the number of ele-
ments in the lookup table for a given earth model parameter:

size t maxlib earthmodel get table size(maxlib earthmodel em, const char ∗param name);

9.4.1 Loading Compressed Data into an Earth Model

The contents of the lookup table and the indices to store in DRAM to represent the compressed earth
model parameter are written separately into the earth model.

maxlib earthmodel set table values sets the values in the lookup table for the named param-
eter:

void maxlib earthmodel set table values(maxlib earthmodel em, const char ∗param name, const float ∗table values);

The floating point values in table values are automatically converted into the earth model com-
pute type specified in the FDConfig object.

maxlib earthmodel set table indices sets the indices into the table that represent the com-
pressed earth model parameter in DRAM:

void maxlib earthmodel set table indices(maxlib earthmodel em, const char ∗param name, const uint16 t ∗table indices);

Version 2014.1 MaxGenFD: Tutorial 70

9 Advanced Earth Model Usage

9.4.2 Implementing Your Own Table Compression Scheme

You can implement your own table compression scheme that suits your application’s requirements.
Your table compression scheme must produce an array of table values to fill the lookup table and

an array of indices that will replace the values for the earth model parameter in LMem.
The table values array must be of single-precision floating-point data and have the correct number

of elements for the lookup table for the target earth model parameter. The size of the lookup table for
each earth model parameter can be retrieved using maxlib earthmodel get table size:

size t maxlib earthmodel get table size(maxlib earthmodel em, const char ∗param name);

The array of indices must be of uint16 t data and have the same number of elements as the target
maxlib earthmodel instance. The value of each element in the array must be greater than zero and
less than the size of the lookup table.

Implement your own function and then call set maxlib earthmodel set table values and
maxlib earthmodel set table indices to set the data in the earth model.

Version 2014.1 MaxGenFD: Tutorial 71

	Contents
	Preface
	1 Introduction to MaxGenFD
	1.1 MaxGen
	1.2 MaxGenFD
	1.3 MaxGenFD Programming Model
	1.4 FDKernel
	1.5 FDKernel Configuration
	1.6 Runtime
	1.7 MaxGenFD capabilities
	1.7.1 Optimized stencil generation
	1.7.2 Parallelism
	1.7.3 Domain Decomposition
	1.7.4 Debugging

	2 Getting Started
	2.1 MaxIDE
	2.2 A Basic Example
	2.3 The FDKernel
	2.4 Configuring the Kernel
	2.5 Configuring a Manager
	2.6 Integrating with the Software
	2.6.1 Setting up the Accelerator Cards
	2.6.2 Executing the Timesteps

	2.7 Running the Simulator
	2.8 Output Wavefields

	3 Convolution
	3.1 Stencils
	3.1.1 Fixed 1D Stencils
	3.1.2 Variable 1D Stencils
	3.1.3 Cube Stencils

	3.2 Performing the Convolution
	3.3 Roll-on/Roll-off
	3.3.1 Symmetric Roll-on/Roll-off
	3.3.2 Asymmetric Roll-on/Roll-off

	3.4 Halos

	4 Earth Models
	4.1 Stream Inputs
	4.2 Setting Earth Model Types
	4.3 Setting the Earth Model from the Host
	4.4 Derived Earth Model Parameters

	5 Host Inputs and Outputs
	5.1 Injecting Data into the FDKernel
	5.2 Reading Data from the FDKernel
	5.3 Hollow Cube Host IO
	5.4 Scalar inputs
	5.4.1 Scalar Input Example

	6 Boundaries
	6.1 Boundary Masks
	6.2 Simple Sponge

	7 Optimizing Data Types
	7.1 Specifying Types in the FDKernel
	7.1.1 Storage Types
	7.1.2 Compute Types

	7.2 Compression
	7.2.1 Earth Model Compression
	7.2.2 Wavefield Compression

	7.3 Floating-Point FDKernels
	7.4 Fixed-Point FDKernels
	7.5 Intermediate Type
	7.5.1 Guard Bits Mode

	7.6 Coefficient Types
	7.7 Convolution Types
	7.8 Fixed-Point Scaling
	7.8.1 Absolute Maximum Values
	7.8.2 Relative Magnitudes
	7.8.3 Convolution Output Scaling
	7.8.4 Additional Scale Factor

	8 Performance Optimization
	8.1 Multiple Processing Pipelines
	8.2 Clock Frequency
	8.3 Block Size
	8.4 Interleaving wavefields
	8.5 Multi-Chip Implementations

	9 Advanced Earth Model Usage
	9.1 Enabling Earth Model Compression
	9.2 Handling Earth Models in the Host Code
	9.2.1 Loading an Earth Model
	9.2.2 Loading an existing Earth Model
	9.2.3 Closing an Earth Model
	9.2.4 Saving an Earth Model
	9.2.5 Using Part of an Earth Model
	9.2.6 Tile Size

	9.3 Setting Data in an Earth Model
	9.3.1 Using the Default Compression Mode

	9.4 Specifying a Table Compression Scheme
	9.4.1 Loading Compressed Data into an Earth Model
	9.4.2 Implementing Your Own Table Compression Scheme

