

i

About the Tutorial

XML-RPC is the simplest XML-based protocol for exchanging information between

computers across a network. In this tutorial, you will learn what is XML-RPC and

why and how to use it.

Audience

This brief tutorial will be extremely useful for all those who want to learn how to

use XML-RPC to establish connections between computers across a network.

Prerequisites

XML-RPC is very easy to learn and use. You can make good use of this tutorial,

provided you have some exposure to XML vocabulary.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,

copy, distribute or republish any contents or a part of contents of this e-book in

any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial.

If you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

About the Tutorial ... i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. INTRODUCTION ... 1

What is XML-RPC? ... 1

Why XML-RPC? ... 1

XML-RPC Technical Overview .. 2

2. DATA MODEL .. 3

Basic Data Types in XML-RPC .. 3

3. REQUEST FORMAT .. 7

4. RESPONSE FORMAT .. 9

5. FAULT FORMAT ... 11

6. EXAMPLES ... 13

XML-RPC Client ... 13

XML-RPC Server .. 15

7. SUMMARY .. 17

What's Next? .. 17

XML - RPC

1

RPC stands for Remote Procedure Call. As its name indicates, it is a mechanism

to call a procedure or a function available on a remote computer. RPC is a much

older technology than the Web. Effectively, RPC gives developers a mechanism

for defining interfaces that can be called over a network. These interfaces can be

as simple as a single function call or as complex as a large API.

What is XML-RPC?

XML-RPC is among the simplest and most foolproof web service approaches that

makes it easy for computers to call procedures on other computers.

 XML-RPC permits programs to make function or procedure calls across a

network.

 XML-RPC uses the HTTP protocol to pass information from a client

computer to a server computer.

 XML-RPC uses a small XML vocabulary to describe the nature of requests

and responses.

 XML-RPC client specifies a procedure name and parameters in the XML

request, and the server returns either a fault or a response in the XML

response.

 XML-RPC parameters are a simple list of types and content - structs and

arrays are the most complex types available.

 XML-RPC has no notion of objects and no mechanism for including

information that uses other XML vocabulary.

 With XML-RPC and web services, however, the Web becomes a collection

of procedural connections where computers exchange information along

tightly bound paths.

 XML-RPC emerged in early 1998; it was published by UserLand Software

and initially implemented in their Frontier product.

Why XML-RPC?

If you need to integrate multiple computing environments but don't need to

share complex data structures directly, you will find that XML-RPC lets you

establish communications quickly and easily.

1. INTRODUCTION

XML - RPC

2

Even if you work within a single environment, you may find that the RPC

approach makes it easy to connect programs that have different data models or

processing expectations and that it can provide easy access to reusable logic.

 XML-RPC is an excellent tool for establishing a wide variety of connections

between computers.

 XML-RPC offers integrators an opportunity to use a standard vocabulary

and approach for exchanging information.

 XML-RPC's most obvious field of application is connecting different kinds

of environments, allowing Java to talk with Perl, Python, ASP, and so on.

XML-RPC Technical Overview

XML-RPC consists of three relatively small parts:

 XML-RPC data model

A set of types for use in passing parameters, return values, and faults

(error messages).

 XML-RPC request structures

An HTTP POST request containing method and parameter information.

 XML-RPC response structures

An HTTP response that contains return values or fault information.

We will study all these three components in the next three chapters.

XML - RPC

3

The XML-RPC specification defines six basic data types and two compound data

types that represent combinations of types.

Basic Data Types in XML-RPC

Type Value Examples

int or i4 32-bit integers between -

2,147,483,648 and

2,147,483,647.

<int>27</int>

<i4>27</i4>

double 64-bit floating-point

numbers

<double>27.31415</double>

<double>-1.1465</double>

Boolean true (1) or false (0) <boolean>1</boolean>

<boolean>0</boolean>

string ASCII text, though many

implementations support

Unicode

<string>Hello</string>

<string>bonkers! @</string>

dateTime.iso8601 Dates in ISO8601 format:

CCYYMMDDTHH:MM:SS

<dateTime.iso8601>

20021125T02:20:04

</dateTime.iso8601>

<dateTime.iso8601>

20020104T17:27:30

</dateTime.iso8601>

base64 Binary information

encoded as Base 64, as

defined in RFC 2045

<base64>

SGVsbG8sIFdvcmxkIQ==

</base64>

These basic types are always enclosed in value elements. Strings (and only

strings) may be enclosed in a value element but omit the string element. These

basic types may be combined into two more complex types, arrays, and structs.

Arrays represent sequential information, while structs represent name-value

2. DATA MODEL

XML - RPC

4

pairs, much like hashtables, associative arrays, or properties.

Arrays are indicated by the array element, which contains a data element

holding the list of values. Like other data types, the array element must be

enclosed in a value element. For example, the following array contains four

strings:

<value>

 <array>

 <data>

 <value><string>This </string></value>

 <value><string>is </string></value>

 <value><string>an </string></value>

 <value><string>array.</string></value>

 </data>

 </array>

</value>

The following array contains four integers:

<value>

 <array>

 <data>

 <value><int>7</int></value>

 <value><int>1247</int></value>

 <value><int>-91</int></value>

 <value><int>42</int></value>

 </data>

 </array>

</value>

XML - RPC

5

Arrays can also contain mixtures of different types, as shown here:

<value>

 <array>

 <data>

 <value><boolean>1</boolean></value>

 <value><string>Chaotic collection, eh?</string></value>

 <value><int>-91</int></value>

 <value><double>42.14159265</double></value>

 </data>

 </array>

</value>

Creating multidimensional arrays is simple - just add an array inside of an array:

<value>

 <array>

 <data>

 <value>

 <array>

 <data>

 <value><int>10</int></value>

 <value><int>20</int></value>

 <value><int>30</int></value>

 </data>

 </array>

 </value>

 <value>

 <array>

 <data>

 <value><int>15</int></value>

 <value><int>25</int></value>

 <value><int>35</int></value>

 </data>

 </array>

 </value>

XML - RPC

6

 </data>

 </array>

</value>

A simple struct might look like:

<value>

 <struct>

 <member>

 <name>givenName</name>

 <value><string>Joseph</string></value>

 </member>

 <member>

 <name>familyName</name>

 <value><string>DiNardo</string></value>

 </member>

 <member>

 <name>age</name>

 <value><int>27</int></value>

 </member>

 </struct>

</value>

This way you can implement almost all data types supported by any

programming language.

XML - RPC

7

XML-RPC requests are a combination of XML content and HTTP headers. The XML

content uses the data typing structure to pass parameters and contains

additional information identifying which procedure is being called, while the HTTP

headers provide a wrapper for passing the request over the Web.

Each request contains a single XML document, whose root element is a

methodCallelement. Each methodCall element contains a methodName element

and a paramselement. The methodName element identifies the name of the

procedure to be called, while the params element contains a list of parameters

and their values. Each paramselement includes a list of param elements which in

turn contain value elements.

For example, to pass a request to a method called circleArea, which takes a

Doubleparameter (for the radius), the XML-RPC request would look like:

<?xml version="1.0"?>

<methodCall>

 <methodName>circleArea</methodName>

 <params>

 <param>

 <value><double>2.41</double></value>

 </param>

 </params>

</methodCall>

The HTTP headers for these requests will reflect the senders and the content.

The basic template looks as follows:

POST /target HTTP 1.0

User-Agent: Identifier

Host: host.making.request

Content-Type: text/xml

Content-Length: length of request in bytes

3. REQUEST FORMAT

XML - RPC

8

For example, if the circleArea method was available from an XML-RPC server

listening at /xmlrpc, the request might look like:

POST /xmlrpc HTTP 1.0

User-Agent: myXMLRPCClient/1.0

Host: 192.168.124.2

Content-Type: text/xml

Content-Length: 169

Assembled, the entire request would look like:

POST /xmlrpc HTTP 1.0

User-Agent: myXMLRPCClient/1.0

Host: 192.168.124.2

Content-Type: text/xml

Content-Length: 169

<?xml version="1.0"?>

<methodCall>

 <methodName>circleArea</methodName>

 <params>

 <param>

 <value><double>2.41</double></value>

 </param>

 </params>

</methodCall>

It's an ordinary HTTP request with a carefully constructed payload.

XML - RPC

9

Responses are much like requests, with a few extra twists. If the response is

successful – the procedure was found, executed correctly, and returned results –

then the XML-RPC response will look much like a request, except that

the methodCall element is replaced by a methodResponse element and there is

no methodName element:

<?xml version="1.0"?>

<methodResponse>

 <params>

 <param>

 <value><double>18.24668429131</double></value>

 </param>

 </params>

</methodResponse>

 An XML-RPC response can only contain one parameter.

 That parameter may be an array or a struct, so it is possible to return

multiple values.

 It is always required to return a value in response. A "success value" -

perhaps a Boolean set to true (1).

Like requests, responses are packaged in HTTP and have HTTP headers. All XML-

RPC responses use the 200 OK response code, even if a fault is contained in the

message. Headers use a common structure similar to that of requests, and a

typical set of headers might look like:

HTTP/1.1 200 OK

Date: Sat, 06 Oct 2001 23:20:04 GMT

Server: Apache.1.3.12 (Unix)

Connection: close

Content-Type: text/xml

Content-Length: 124

4. RESPONSE FORMAT

XML - RPC

10

 XML-RPC only requires HTTP 1.0 support, but HTTP 1.1 is compatible.

 The Content-Type must be set to text/xml.

 The Content-Length header specifies the length of the response in bytes.

A complete response, with both headers and a response payload, would look

like:

HTTP/1.1 200 OK

Date: Sat, 06 Oct 2001 23:20:04 GMT

Server: Apache.1.3.12 (Unix)

Connection: close

Content-Type: text/xml

Content-Length: 124

<?xml version="1.0"?>

<methodResponse>

 <params>

 <param>

 <value><double>18.24668429131</double></value>

 </param>

 </params>

</methodResponse>

After the response is delivered from the XML-RPC server to the XML-RPC client,

the connection is closed. Follow-up requests need to be sent as separate XML-

RPC connections.

XML - RPC

11

XML-RPC faults are a type of responses. If there was a problem in processing a

XML-RPC request, the methodResponse element will contain a fault element

instead of a params element. The fault element, like the params element, has

only a single value that indicates something went wrong. A fault response might

look like:

<?xml version="1.0"?>

<methodResponse>

 <fault>

 <value><string>No such method!</string></value>

 </fault>

</methodResponse>

A fault will also have an error code. XML-RPC doesn't standardize error codes at

all. You'll need to check the documentation for particular packages to see how

they handle faults.

A fault response could also look like:

<?xml version="1.0"?>

<methodResponse>

 <fault>

 <value>

 <struct>

 <member>

 <name>code</name>

 <value><int>26</int></value>

 </member>

 <member>

 <name>message</name>

 <value><string>No such method!</string></value>

 </member>

 </struct>

5. FAULT FORMAT

XML - RPC

12

 </value>

 </fault>

</methodResponse>

XML - RPC

13

To demonstrate XML-RPC, we're going to create a server that uses Java to

process XML-RPC messages, and we will create a Java client to call procedures

on that server.

The Java side of the conversation uses the Apache XML Project's Apache XML-

RPC, available at http://xml.apache.org/xmlrpc/

Put all the .jar files at appropriate path and let us create one client and one

small XML-RPC server using JAVA.

XML-RPC Client

Let us write an XML-RPC client to call a function called sum function. This

function takes two parameters and returns their sum.

import java.util.*;

import org.apache.xmlrpc.*;

public class JavaClient {

 public static void main (String [] args) {

 try {

 XmlRpcClient server = new XmlRpcClient("http://localhost/RPC2");

 Vector params = new Vector();

 params.addElement(new Integer(17));

 params.addElement(new Integer(13));

 Object result = server.execute("sample.sum", params);

 int sum = ((Integer) result).intValue();

 System.out.println("The sum is: "+ sum);

 } catch (Exception exception) {

6. EXAMPLES

http://xml.apache.org/xmlrpc/

XML - RPC

14

 System.err.println("JavaClient: " + exception);

 }

 }

}

Let us see what has happened in the above example client.

 The Java package org.apache.xmlrpc contains classes for XML-RPC Java

clients and XML-RPC server, e.g., XmlRpcClient.

 The package java.util is necessary for the Vector class.

 The function server.execute(...) sends the request to the server. The

procedure sum(17,13) is called on the server as if it were a local

procedure. The return value of a procedure call is always an Object.

 Here "sample" denotes a handler that is defined in the server.

 Note that all the parameters of the procedure call are always collected in a

Vector.

 The XmlRpcClient class is constructed by specifying the "web address" of

the server machine followed by /RPC2.

o localhost - means the local machine

o You can specify an IP number instead of localhost, e.g.

194.80.215.219

o You can specify a domain name like xyz.dyndns.org

o You can specify a port number along with domain name as

xyz.dyndns.org:8080. The default port is 80

 Note that the result of the remote procedure call is always an Object and

it has to be casted to the appropriate type.

 When problems occur (no connection, etc.), an Exception is thrown and it

has to be caught using catch statement.

Due to the above call, a client sends the following message to the server. Note

that this is handled by server.execute(...) internally and you have nothing to do

with it.

<?xml version="1.0" encoding="ISO-8859-1"?>

<methodCall>

 <methodName>sample.sum</methodName>

 <params>

 <param>

XML - RPC

15

 <value><int>17</int></value>

 </param>

 <param>

 <value><int>13</int></value>

 </param>

 </params>

</methodCall>

XML-RPC Server

Following is the source code of XML-RPC Server written in Java. It makes use of

built-in classes available in org.apache.xmlrpc.*

import org.apache.xmlrpc.*;

public class JavaServer {

 public Integer sum(int x, int y) {

 return new Integer(x+y);

 }

 public static void main (String [] args) {

 try {

 System.out.println("Attempting to start XML-RPC Server...");

 WebServer server = new WebServer(80);

 server.addHandler("sample", new JavaServer());

 server.start();

 System.out.println("Started successfully.");

 System.out.println("Accepting requests. (Halt program to stop.)");

 } catch (Exception exception) {

 System.err.println("JavaServer: " + exception);

 }

 }

}

Let us see what we have done in the above example server.

XML - RPC

16

 The package org.apache.xmlrpc contains the class WebServer for a XML-

RPC Server implementation.

 The procedure sum that is called remotely is implemented as a public

method in a class.

 An instance of the same server class is then associated with a handler

that is accessible by the client.

 The server is initialized by the port number (here: 80).

 When problems occur, an Exception is thrown and has to be caught

using the catch statement.

For the call mentioned in the given example client, the server sends the

following response back to the client:

<?xml version="1.0" encoding="ISO-8859-1"?>

<methodResponse>

 <params>

 <param>

 <value><int>30</int></value>

 </param>

 </params>

</methodResponse>

Now your server is ready, so compile and run it at your prompt as follows:

C:\ora\xmlrpc\java>java JavaServer

Attempting to start XML-RPC Server...

Started successfully.

Accepting requests. (Halt program to stop.)

Now to test the functionality, give a call to this server as follows:

C:\ora\xmlrpc\java>java JavaClient

30

XML - RPC

17

In this tutorial, you have learnt what is XML-RPC and why do we need XML-RPC.

We have discussed about its data model as well as the request and response

message format to be exchanged between the client and the server. We have

given one example to demonstrate how XML-RPC client and server work to

exchange information.

XML-RPC is a very simple concept with a limited set of capabilities. Those

limitations are in many ways the most attractive feature of XML-RPC, as they

substantially reduce the difficulty of implementing the protocol and testing its

interoperability.

While XML-RPC is simple, the creative application of simple tools can create

sophisticated and powerful architectures. In cases where a wide variety of

different systems need to communicate, XML-RPC may be the most appropriate

lowest common denominator.

What's Next?

The next step is to learn WSDL and SOAP.

WSDL

WSDL is an XML-based language for describing Web services and how to access

them.

WSDL describes a web service, along with the message format and protocol

details for the Web service.

If you want to learn more about WSDL, please go through our WSDL tutorial.

SOAP

SOAP is a simple XML-based protocol that allows applications to exchange

information over HTTP.

If you want to learn more about SOAP, please go through our SOAP tutorial.

7. SUMMARY

http://localhost/wsdl/index.htm
http://localhost/soap/index.htm

