
Boolean Algebra and Circuit Design 
 
This article presents an extended example of a typical problem you may encounter in a digital design 
class. For practical reasons, many problems tend to have four variables, because less than four 
variables presents a rather trivial problem and more than four variables makes it harder to use the 
traditional Karnaugh map technique to simplify an equation (although you can use Karnaugh maps 
with up to six variables). 
 

The Problem 
 
Typically, a problem is given in words. In this case, we wish to design a circuit that receives a 4-bit 
input representing the integers 0 to 15 and that outputs a signal F, that is true if the input represents a 
prime number and is false otherwise. A prime number is defined as a number that can be divided only 
by itself and 1. By definition, the numbers 0 and 1 are not prime. 
 

a. Draw a truth table to represent this problem 
b. Write down a Boolean equation for F directly from the minterms of the truth table 
c. Draw a Karnaugh map to represent this problem from the truth table 
d. Derive a simplified expression for F using the Karnaugh map 
e. Derive a simplified expression for F using Boolean algebra 
f. Draw a logic circuit to implement your solution using AND, OR and NOT gates 
g. Draw a logic circuit to implement your solution using NAND gates only 
h. Draw a logic circuit to implement your solution using NOR gates only 
i. Suppose that inputs representing integers 0, 1, 3, 14, 15 could never occur. Design a 

simplified expression for F in this case taking advantage of these don’t care conditions.  
j. The simplified output from the Karnaugh map is obtained as a sum of products form. Convert 

this sum of products form into the corresponding product of sums form. 
 
Part a. 
 
The prime numbers in the range 0 to 15 are 3, 5, 7, 11, 13. We will represents the 4 bits by D,C,B,A  
(D is the most-significant bit). We write D,C,B,A in this order because in positional notation, the most 
significant digit is on the left. 
 
The truth table below gives al 2

4
 = 16 possible combinations of the four variables representing the 

integers 0 to 15. We have marked primes with a tick and hap put a 1 to output column to indicate that 
the output is true if the corresponding input is applied. There are five 1s because there are five 
integers that are prime. 
 
The Truth Table 
 

D C B A Number Prime? F 

0 0 0 0 0  0 

0 0 0 1 1  0 

0 0 1 0 2  0 

0 0 1 1 3  1 

0 1 0 0 4  0 

0 1 0 1 5  1 

0 1 1 0 6  0 

0 1 1 1 7  1 

1 0 0 0 8  0 

1 0 0 1 9  0 

1 0 1 0 10  0 

1 0 1 1 11  1 

1 1 0 0 12  0 

1 1 0 1 13  1 

1 1 1 0 14  0 

1 1 1 1 15  0 
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Part b.  
 
Obtaining a logical expression 
 
Each of the terms in the truth table is called a minterm and contains each of the four variables in 

either its true or complemented form. For example, DCBA is a minterm, whereas DBA is not a 
minterm because it contains only three of the four variables. 
 
In this case there are five minterms 
 

 
 
The output is true if any of the minterms are true; that is, the output is the Boolean OR of the 
minterms. Consequently, 
 

 
 
 
Part c.  
 
Generating a Karnaugh Map 
 
We now draw a Karnaugh map for this system. We will step through the creation of a Karnaugh map 
step-by-step. Note that this part does not attempt to teach Karnaugh map fundamentals; it helps 
revise the topic. 
 
Figure 1 illustrates the structure of a 4-variable Karnaugh map. Each of the 16 squares contains a 
term with four variables, each of which is either in its true form or its complimented form. What is 
important to note is that adjacent squares (horizontally adjacent or vertically adjacent) differ by one 
variable only. Each square in the 4-variable Karnaugh map corresponds to one line of the truth table. 
 
Note the sequence along the rows and columns: it’s 00, 01, 11, 10 and not 00, 01, 10, 11 as you 
might expect. Remember that only one variable changes between adjacent rows and columns. 
 
Figure 1 The 4-variable Karnaugh map 
 

 
 
 
Figure 2 illustrates the situation after we have plotted the minterms from the truth table. I have 
included the number of each square (i.e., the corresponding line in the truth table) in blue in the upper 
right hand corner in order to make the placing of the minterms clear. Generally, most students don’t 
write in minterm numbers in this way (but it can sometimes be a big help). 
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Figure 2 Plotting the minterms 
 

 
 
Traditionally, the minterms of a Karnaugh map are represented by a 1. All the other squares contain a 
0. However, we do not write down the zeroes because they are ‘understood’. Omitting the 0s makes 
reading the diagram much easier.  
 
Figure 3 shows the Karnaugh map with 1s representing the lines in the truth table with a 1 in the F 
column. It’s the same as figure 2 except that we haven’t written down minterms. 
 
Figure 3 The Karnaugh map corresponding to the Truth Table 
 

 
 
The key to solving a Karnaugh map problem is to regroup all the 1s. Sometimes this is not always 
possible and you can’t rearrange the 1s. If that happens, the Boolean equation cannot be simplified 
further. 
 
The 1s in a Karnaugh map must be grouped into twos, fours or eights (you can have 16 in a group but 
that would correspond to F = 1; that is, the function is always true). The groups must be a vertical line 
or a horizontal line, or a square, or a rectangle. Note that the Karnaugh map is topologically a torus 
(doughnut) so that the upper and lower edges are adjacent as are the left and right edges. This 
means that a minterm on the bottom row is adjacent to a minterm on the top row vertically above it. All 
the fours corners of a Karnaugh map are adjacent. 
 
Each 1 on the Karnaugh map MUST be in a group, but it may be shared by several groups; that is, 
the same element (minterm) may be part of several groupings. 
 
In this case, we can regroup the 1s as figure 4 demonstrates. There are three groups of two 1s; two 
groups are horizontal and one vertical. Note that one horizontal group (in blue) shares the two edges 

(because these are actually adjacent). One minterm,  is in two groups. 
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Figure 4 Forming groups of 1s 
 

 
 
We can now write down a simplified expression for F. We ask what variables are common to each 
group and then sum the three groups. For example, the blue group contains the common elements B 
= 1, A = 1, C = 0. Note that D is not in this group because it is 0 in the left hand element and 1 in the 
right hand element. 
 
Figure 5 shows the same Karnaugh maps but with the larger groups relabelled.  
 
Figure 5 Labelling the groups of minterms 
 

 
 
Part d. 
 
Generating a Simplified Expression for F 
 
Finally, we can write down the simplified equation for F as: 
 

 
 
As you can see, this is a simpler expression than the original sum of five minterms obtained from the 
truth table. 
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Part e 
 
Using Boolean Algebra to Simplify and Expression 
 
Now we need to simplify the original expression, the sum of minterms from the truth table, using 
Boolean algebra. To do this, we use the rules of Boolean algebra until we cannot simplify the 
expression further. Doing this takes practice and it is rather difficult to tell whether you have a 
simplified expression or not. You have to practice solving Boolean equations until you become 
proficient. With a Karnaugh map, the solution is clear because you either can or cannot form bigger 
groups or fewer groups. Note that neither Karnaugh maps nor Boolean algebra may lead to a unique 
solution. Sometime it is possible to express a Boolean equation on more than one way.  
 

 
 
We can treat this as conventional algebra and factor the groups; for example, 
 

 
 

Since , we can rewrite the expression as 
 

 
 
We can perform another re-grouping of terms to get 
 

 
 
Proceeding as before we get: 
 

 
 
Next we re-group again 
 

 
 

 
 

by Boolean algebra 
 
Further simplification is not possible. 
 
By the way, suppose we compare this with the simplified function from the Karnaugh map; that is 
 

by Karnaugh map simplification 
 
Confusingly, these two expressions are not the same but they are logically equivalent. This is 
because the same Boolean function can sometimes be represented in more than one way (as we 
pointed out earlier). 
 
Suppose we plot this simplified function on a Karnaugh map. We get the system described by Figure 
6. You can see that the 1s on Figure 6 are in exactly the same place as those of Figure 5. The 
difference is in the way in which the groups are formed. In both cases we have formed the smallest 
number of large groups. Consequently, both results are correct and equally valid. 
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Figure 6 The Karnaugh map corresponding to  
 

 
 
 
 
Part f. 
 
Designing a Logic Circuit 
 
To create a circuit using AND, OR and NOT gates. We use NOT gates to perform inversion, AND 
gates for multiplication and OR gates for addition. As in conventional algebra, the multiplication has a 

higher priority than addition so that XY + PQ must be done as (XY) + (PQ) and not X(Y + P)Q. 
Figure 7 illustrates a circuit using AND, OR and NOT gates. 
 
 
Figure 7 Implementing the simplified function with AND, OR and NOT gates 
 

 
 
 
 
 

0 0 0 1 1 1 1 0

0 0

0 1

1 1

1 0

D C

B A

1 1 1

1 1

C B A 

C B A 

D B A 

AND

C.B.A

D.C.A

C.B.A

A

B

C

NOT

D

ORAND

AND

B

D

C

F = CBA + DCA + CBA

NOTES:
The logic level is the same everywhere along a wire
Wires that cross are not connected
A dot indicates that two wires are connected

eX
Pert

 P
DF

Tria
l

http://www.docudesk.com/deskpdf/pdf-studio/buy-pdf-editor-x-now


Converting and expression in a sum of products form (SoP) is very easy. The SoP form consists of a 
group of product (AND) terms that are summed (ORed); for example;  
 

 is a sum of products form. Only three levels of gates are required (the term 
level describes the maximum number of gates a signal must travel through from input to output). The 
first level of gates are the NOT gates used to invert any variables. The second level is the AND gates 
used to form the product terms, and the final level is the OR gate used to sum the product terms. 
 
 
 
Part g 
 
Constructing the circuit with NAND gates only 
 
It is possible to construct any logic circuit from NAND gates only (or NOR gates only) because de 
Morgan’s theorem provides a means or translating product terms into sum terms, and vice versa. 

Consider P = QRS 
 
If we invert this expression twice, we get 
 

 
 
Remember that if we complement an expression twice, its value does not change. However, AND 
terms and changes to OR terms and individual elements are complemented. 
 
In our example we can write: 
 

 
 
We can now apply deMorgan’s theorem to get: 
 

 
 
Note how we have converted the sum expression into a product expression. Now we are left with only 
product expressions and inversions. 
 

The transfer function of a 2-input NAND gate is NOT(P AND Q). If we make Q = R we get 

 

 
 
Consequently, we can use a NAND gate as a simple inverter.  
 
We can now start constructing the circuit. First note that the entire expression is inverted and we have 
three terms ANDed. This means that we must use a 3-input NAND gate. Each of the three terms is, 
itself, a NAND expression. Finally, negated single terms can be generates with a 2-input NAND gate 
acting as an inverted. Figure 8 illustrates a circuit using NAND gates only. 
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Figure 8 Implementing the simplified function with NAND gates only 
 

 
 
 
 
Part h 
 
Constructing a Circuit with NOR Gates Only 
 
Designing a circuit with NOR gates only uses the same basic techniques as designing a circuit with 
NAND gates only; that is, the application of deMorgan’s theorem. The only different between NOR 
gate design and NAND gate design is that the former must eliminate product terms and the latter 
must eliminate sum terms. 
 
Let’s return to the original expression.  
 

F = CBA + DCA + CBA = CBA + DCA + CBA 
 
Note that the output is just a negated NOR expression. We can do the negation with a 2-input NOR. 

We are just left with the product terms, CBA, DCA, and CBA. We can use deMorgan’s theorem 
again; consider the first term. 
 

CBA = CBA = C + B + A  =  C + B + A 
 
Finally, we can construct the NOR-only circuit of figure 10. 
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Figure 10 A NOR Gate Only Circuit 
 

 
 
 
Part i 
 
Don’t Care Conditions 
 
Sometimes certain input conditions cannot occur; for example, these conditions may represent 
physically impossible states or choices that are not available. Consequently, if such conditions cannot 
occur, it does not matter whether we choose those conditions to make the output 0 or 1. However, we 
can choose the output to be 0 or 1 according to which value helps generate the simplest solution. 
 
Consider figure 11 where we’ve plotted the don’t care conditions 0,1,2, 3,14,15 in yellow circles. 
 
Figure 11 Don’t Care Conditions 
 

 
 
 
If you examine Figure 11 you will find that we can take one of the don’t care conditions (i.e., the input 
that represents 15) and create the new groups of Figure 12. 
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Figure 12 Choosing Don’t Care Conditions to Simplify the Karnaugh Map 
 

 
 
In this case the simplified Karnaugh map gives 
 
F = C.A + B.A 
 
This is a considerably simpler expression than the one we originally obtained and can be used to 
build a less expensive logic circuit with fewer gates (in this case just two 2-input AND gates and a one 
2-input OR gate). However, you should appreciate that using don’t care conditions is potentially 
dangerous because if the impossible input did occur (due to a circuit fault or misuse by the operator), 
the output would be incorrect. 
 
Part j 
 
Converting Sums of Products into Product of Sums Forms 
 
Converting between SoP and PoS forms invariably means converting AND operations into OR 
operations and vice versa. The only way of doing this is to use deMorgan’s theorem. 
 
Consider the original simplified expression for F 
 

F = CBA + DCA + CBA 
 
We can invert this expression twice as the complement of a complement is the original value; that is 
 

F = CBA + DCA + CBA 
 
 

F = CBA  DCA  CBA 
 
We have applied deMorgan’s law using the inner negation to remove the OR operators. Now let’s 
apply deMorgan’s law a second time to remove the inner negation. 
 
F = (C + B + A).(D + C + A).(C + B + A) 
 
We now have the required product of sums form for F. 
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