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straightforward implementation without directly solving this larger problem. This 
is an example of the power of iterative circuits and circuit reuse in design. 

4-3 BINARY SUBTRACTION 

In Chapter 1, we briefly examined the subtraction of unsigned binary numbers. 
Although beginning texts cover only signed-number addition and subtraction, to 
the complete exclusion of the unsigned alternative, unsigned-number arithmetic 
plays an important role in computation and computer hardware design. It is used 
in floating-point units, in signed-magnitude addition and subtraction algorithms, 
and in extending the precision of fixed-point numbers. For these reasons, we will 
treat unsigned-number addition and subtraction here. We also, however, choose to 
treat it first so that we can clearly justify, in terms of hardware cost, that which oth
erwise appears bizarre and often is accepted on faith, namely, the use of comple
ment representations in arithmetic. 

In Section 1-3, subtraction is performed by comparing the subtrahend with 
the minuend and subtracting the smaller from the larger. The use of a method con
taining this comparison operation results in inefficient and costly circuitry. As an 
alternative, we can simply subtract the subtrahend from the minuend. Using the 
same numbers as in a subtraction example from Section 1-3, we have 

Borrows into: 11100 

Minuend: 10011 

Subtrahend: -11110 

Difference: 10101 

Correct Difference: -01011 

If no borrow occurs into the most significant position, then we know that the sub
trahend is not larger than the minuend and that the result is positive and correct. If 
a borrow does occur into the most significant position, as indicated in blue, then we 
know that the subtrahend is larger than the minuend. The result must then be neg
ative, and so we need to correct its magnitude. We can do this by examining the 
result of the calculation when a borrow occurs: 

Note that the added 2n represents the value of the borrow into the most significant 
position. Instead of this result, the desired magnitude is N - M. This can be 
obtained by subtracting the preceding formula from 2n : 

In the previous example, 100000 - 10101 = 01011, which is the correct magnitude. 
In general, the subtraction of two n-digit numbers, M N, in base 2 can be 

done as follows: 
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1. 	Subtract the subtrahend N from the minuend M. 
2. 	If no end borrow occurs, then M 2 N, and the result is nonnegative and 

correct. 
3. 	If an end borrow occurs, then N > M, and the difference, M - N + 2n, is sub

tracted from 2n, and a minus sign is appended to the result. 

Subtraction of a binary number from 2n to obtain an n-digit result is called taking 
the 2s complement of the number. So in step 3, we are taking the 2s complement of 
the difference M - N + 2n. Use of the 2s complement in subtraction is illustrated 
by the following example. 

IEXAMPLE 4-1 Unsigned Binary Subtrnction by 2s Complement Subtrn .. 

Perform the binary subtraction 01100100 - 10010110. We have 

Borrows into: 10011110 

Minuend: 01100100 

Subtrahend: - 10010110 

Initial Result 11001110 

The end borrow of 1 implies correction: 

28 

- Initial Result 

Final Result 

100000000 

- 11001110 

00110010 • 
To perform subtraction using this method requires a subtractor for the ini

tial subtraction. In addition, when necessary, either the subtractor must be used 
a second time to perform the correction, or a separate 2s complementer circuit 
must be provided. So, thus far, we require a subtractor, an adder, and possibly a 
2s complementer to perform both addition and subtraction. The block diagram 
for a 4-bit adder-subtractor using these functional blocks is shown in Figure 4-6. 
The inputs are applied to both the adder and the subtractor, so both operations 
are performed in parallel. If an end borrow value of 1 occurs in the subtraction, 
then the selective 2s complementer receives a value of 1 on its Complement 
input. This circuit then takes the 2s complement of the output of the subtractor. 
If the end borrow has value of 0, the selective 2s complementer passes the out
put of the subtractor through unchanged. If subtraction is the operation, then a 
1 is applied to S of the multiplexer that selects the output of the complementer. 
If addition is the operation, then a 0 is applied to S, thereby selecting the output 
of the adder. 
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o FIGURE 4-6 
Block Diagram of Binary Adder-Subtractor 

As we will see, this circuit is more complex than necessary. To reduce the 
amount of hardware, we would like to share logic between the adder and the sub
tractor. This can also be done using the notion of the complement. So before con
sidering the combined adder-subtractor further, we will take a more careful look 
at complements. 

Complements 

There are two types of complements for each base-r system: the radix comple
ment, which we saw earlier for base 2, and the diminished radix complement. The 
first is referred to as the r's complement and the second as the (r - l)'s comple
ment. When the value of the base r is substituted in the names, the two types are 
referred to as the 2s and Is complements for binary numbers and the lOs and 9s 
complements for decimal numbers, respectively. Since our interest for the 
present is in binary numbers and operations, we will deal with only Is and 2s 
complements. 

Given a number N in binary having n digits, the ls complement of N is 
defined as (2n - 1) N. 2n is represented by a binary number that consists of a 
1 followed by nOs. 2n 1 is a binary number represented by n Is. For example, 
if n = 4, we have 24 = (lOOOOh and 24 - 1 = (1111)z. Thus, the Is complement 
of a binarv number is obtained by subtracting each digit from 1. When subtract
ing binary digits from 1, we can have either 1 - 0 1 or 1 1 = 0, which 
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causes the original bit to change from 0 to 1 or from 1 to 0, respectively. There
fore, the Is complement of a binary number is formed by changing all Is to Os 
and all Os to Is-that is, applying the NOT or complement operation to each of 
the bits. Following are two numerical examples: 

The l's complement of 1011001 is 0100110. 

The l's complement of 0001111 is 1110000. 

In similar fashion, the 9s complement of a decimal number, the 7's comple
ment of an octal number, and the ISs complement of a hexadecimal number are 
obtained by subtracting each digit from 9,7, and F (decimal 15), respectively. 

Given an n-digit number N in binary, the 2s complement of N is defined as 
2" N for N =1= 0 and 0 for N = O. The reason for the special case of N 0 is that 
the result must have n bits, and subtraction of 0 from 2n gives an (n + I)-bit result, 
100 ... 0. This special case is achieved by using only an n-bit subtractor or otherwise 
dropping the 1 in the extra position. Comparing with the Is complement, we note 
that the 2s complement can be obtained by adding 1 to the Is complement, since 2" 
- N = {[(2" - 1) - N] + 1}. For example, the 2s complement of binary 101100 is 
010011 + 1 = 010100 and is obtained by adding 1 to the Is complement value. 
Again, for N = 0, the result of this addition is 0, achieved by ignoring the carry out 
of the most significant position of the addition. These concepts hold for other bases 
as welL As we will see later, they are very useful in simplifying 2s complement and 
subtraction hardware. 

Also, the 2s complement can be formed by leaving all least significant Os and 
the first 1 unchanged and then replacing Is with Os and Os with Is in all other 
higher significant bits. Thus, the 28 complement of 1101100 is 0010100 and is 
obtained by leaving the two low-order Os and the first 1 unchanged and then 
replacing Is with Os and Os with Is in the other four most significant bits. In other 
bases, the first nonzero digit is subtracted from the base r, and the remaining digits 
to the left are replaced with r 1 minus their values. 

It is also worth mentioning that the complement of the complement restores 
the number to its original value. To see this, note that the 2s complement of N is 
2" - N, and the complement of the complement is 2" - (2" N) = N, giving back. 
the original number. 

Subtraction Using 25 Complement 

Earlier, we expressed a desire to simplify hardware by sharing adder and subtrac
tor logic. Armed with complements, we are prepared to define a binary subtrac
tion procedure that uses addition and the corresponding complement logic. The 
subtraction of two n-digit unsigned numbers, M - N, in binary can be done as 
follows: 

1. 	Add the 2s complement of the subtrahend N to the minuend M. This per
forms M + (2" - N) M - N + 2". 

2. 	If M ~ N, the sum 
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2. 	If M ~ N, the sum produces an end carry, 2n. Discard the end carry, leaving 
resultM N. 

3. 	If M < N, the sum does not produce an end carry, since it is equal to 2n 

(N - M), the 2s complement of N M. Perform a correction, taking the 2s 
complement of the sum and placing a minus sign in front to obtain the result 
-(N - M). 

The examples that follow further illustrate the foregoing procedure. Note 
that, although we are dealing with unsigned numbers, there is no way to get an 
unsigned result for the case in step 3. When working with paper and pencil, we rec
ognize, by the absence of the end carry, that the answer must be changed to a neg
ative number. If the minus sign for the result is to be preserved, it must be stored 
separately from the corrected n-bit result. 

IEXAMPLE 4-2 Unsigned Binary Subtraction by 2, Complement Addition 

Given the two binary numbers X = 1010100 and Y = 1000011, perform the sub
traction X Y and Y X using 2s complement operations. We have 

X= 1010100 

28 complement of Y 0111101 

Sum 10010001 

Discard end carry 27 =: 10000000 

Answer: X - Y = 0010001 

Y= 1000011 

2s complement of X 0101100 

Sum = 1101111 

There is no end carry. 

Answer: Y - X = -(2s complement of 1101111) = - 0010001. • 
While subtraction of unsigned numbers also can be done by means of the Is 

complement, it is little used in modern designs, so will not be covered here. 

4-4 BINARY AnDER-SUBTRACTORS 

Using the 2s complement, we have eliminated the subtraction operation and need 
only the complementer and an adder. When performing a subtraction we comple
ment the subtrahend N, and when performing an addition we do not complement 
N. These operations can be accomplished by using a selective complementer and 


