

Author M. Morris Mano and Charles R Kime

Year 2008

Title of Article/Chapter Binary Subtraction

Title of Journal/Book Logic and Computer Design Fundamentals

Vol/part/pages 173-177

Publisher Pearson Prentice Hall

This Digital Copy has been made under the terms of a CLA licence
which allows you to:

Access and download a copy

Print out a copy

ISBN/ISSN: 0132067110

JHDLS

Bo Ao

utput from one full adder
1 1 carry may appear near
'ough many full adders to
)m a pebble dropped in a
Ider. Figure 4-5 shows the
t ripple carry adder. The
I by SUbscripts in increas
; least significant bit. The
he input carry to the par
,Ie carry adder requires n
: carry of the next-higher
mbersA = 1011 and B =
Irry adder as follows:

:h full adder receives the
:nerates the sum bit for S
is the input carry of the

lponent that can be used
volving arithmetic opera
method would require a
the circuit. By cascading

e to obtain a simple and

4-3 / Binary Subtraction Cl 173

straightforward implementation without directly solving this larger problem. This
is an example of the power of iterative circuits and circuit reuse in design.

4-3 BINARY SUBTRACTION

In Chapter 1, we briefly examined the subtraction of unsigned binary numbers.
Although beginning texts cover only signed-number addition and subtraction, to
the complete exclusion of the unsigned alternative, unsigned-number arithmetic
plays an important role in computation and computer hardware design. It is used
in floating-point units, in signed-magnitude addition and subtraction algorithms,
and in extending the precision of fixed-point numbers. For these reasons, we will
treat unsigned-number addition and subtraction here. We also, however, choose to
treat it first so that we can clearly justify, in terms of hardware cost, that which oth
erwise appears bizarre and often is accepted on faith, namely, the use of comple
ment representations in arithmetic.

In Section 1-3, subtraction is performed by comparing the subtrahend with
the minuend and subtracting the smaller from the larger. The use of a method con
taining this comparison operation results in inefficient and costly circuitry. As an
alternative, we can simply subtract the subtrahend from the minuend. Using the
same numbers as in a subtraction example from Section 1-3, we have

Borrows into: 11100

Minuend: 10011

Subtrahend: -11110

Difference: 10101

Correct Difference: -01011

If no borrow occurs into the most significant position, then we know that the sub
trahend is not larger than the minuend and that the result is positive and correct. If
a borrow does occur into the most significant position, as indicated in blue, then we
know that the subtrahend is larger than the minuend. The result must then be neg
ative, and so we need to correct its magnitude. We can do this by examining the
result of the calculation when a borrow occurs:

Note that the added 2n represents the value of the borrow into the most significant
position. Instead of this result, the desired magnitude is N - M. This can be
obtained by subtracting the preceding formula from 2n :

In the previous example, 100000 - 10101 = 01011, which is the correct magnitude.
In general, the subtraction of two n-digit numbers, M N, in base 2 can be

done as follows:

174 0 CHAPTER 4 I ARITHMETIC FUNCTIONS AND HDLS

1. 	Subtract the subtrahend N from the minuend M.
2. 	If no end borrow occurs, then M 2 N, and the result is nonnegative and

correct.
3. 	If an end borrow occurs, then N > M, and the difference, M - N + 2n, is sub

tracted from 2n, and a minus sign is appended to the result.

Subtraction of a binary number from 2n to obtain an n-digit result is called taking
the 2s complement of the number. So in step 3, we are taking the 2s complement of
the difference M - N + 2n. Use of the 2s complement in subtraction is illustrated
by the following example.

IEXAMPLE 4-1 Unsigned Binary Subtrnction by 2s Complement Subtrn ..

Perform the binary subtraction 01100100 - 10010110. We have

Borrows into: 10011110

Minuend: 01100100

Subtrahend: - 10010110

Initial Result 11001110

The end borrow of 1 implies correction:

28

- Initial Result

Final Result

100000000

- 11001110

00110010 •
To perform subtraction using this method requires a subtractor for the ini

tial subtraction. In addition, when necessary, either the subtractor must be used
a second time to perform the correction, or a separate 2s complementer circuit
must be provided. So, thus far, we require a subtractor, an adder, and possibly a
2s complementer to perform both addition and subtraction. The block diagram
for a 4-bit adder-subtractor using these functional blocks is shown in Figure 4-6.
The inputs are applied to both the adder and the subtractor, so both operations
are performed in parallel. If an end borrow value of 1 occurs in the subtraction,
then the selective 2s complementer receives a value of 1 on its Complement
input. This circuit then takes the 2s complement of the output of the subtractor.
If the end borrow has value of 0, the selective 2s complementer passes the out
put of the subtractor through unchanged. If subtraction is the operation, then a
1 is applied to S of the multiplexer that selects the output of the complementer.
If addition is the operation, then a 0 is applied to S, thereby selecting the output
of the adder.

A

Binary

Subtra

OF]
Bl

As we will see, tI
amount of hardware, w
tractor. This can also hi
sidering the combined
at complements.

Complements

There are two types (
ment, which we saw e:
first is referred to as 1
ment. When the value
referred to as the 2s ~
complements for de
present is in binary I

complements.
Given a numbe

defined as (2n - 1)
1 followed by nOs. 2'
if n = 4, we have 24
of a binary number i
ing binary digits fro

IHDLS 4-3 I Binary Subtraction 0 175

suIt is nonnegative and

nee, M - N + 2n, is sub
result.

git result is called taking
ng the 2s complement of
subtraction is illustrated

lplement Subtract

have

•
a subtract or for the ini
mbtractor must be used
~s complementer circuit
III adder, and possibly a
ion. The block diagram
, is shown in Figure 4-6.
:;tor, so both operations
:curs in the subtraction,
f 1 on its Complement
utput of the subtractor.
~menter passes the out
is the operation, then a
Lt of the complementer.
:by selecting the output

A B

++ H++
Binary adder

Borrow
Binary subtractor

111
Selective

Complement 2's complementer

til l~+t
I I

Subtract/ Add 0 1
S Quadruple 2-to-1

multiplexer

tttt
Result

o FIGURE 4-6
Block Diagram of Binary Adder-Subtractor

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub
tractor. This can also be done using the notion of the complement. So before con
sidering the combined adder-subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r's complement and the second as the (r - l)'s comple
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and Is complements for binary numbers and the lOs and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only Is and 2s
complements.

Given a number N in binary having n digits, the ls complement of N is
defined as (2n - 1) N. 2n is represented by a binary number that consists of a
1 followed by nOs. 2n 1 is a binary number represented by n Is. For example,
if n = 4, we have 24 = (lOOOOh and 24 - 1 = (1111)z. Thus, the Is complement
of a binarv number is obtained by subtracting each digit from 1. When subtract
ing binary digits from 1, we can have either 1 - 0 1 or 1 1 = 0, which

176 0 CHAPTER 4 / ARITHMETIC FUNCTIONS AND HDLS

causes the original bit to change from 0 to 1 or from 1 to 0, respectively. There
fore, the Is complement of a binary number is formed by changing all Is to Os
and all Os to Is-that is, applying the NOT or complement operation to each of
the bits. Following are two numerical examples:

The l's complement of 1011001 is 0100110.

The l's complement of 0001111 is 1110000.

In similar fashion, the 9s complement of a decimal number, the 7's comple
ment of an octal number, and the ISs complement of a hexadecimal number are
obtained by subtracting each digit from 9,7, and F (decimal 15), respectively.

Given an n-digit number N in binary, the 2s complement of N is defined as
2" N for N =1= 0 and 0 for N = O. The reason for the special case of N 0 is that
the result must have n bits, and subtraction of 0 from 2n gives an (n + I)-bit result,
100 ... 0. This special case is achieved by using only an n-bit subtractor or otherwise
dropping the 1 in the extra position. Comparing with the Is complement, we note
that the 2s complement can be obtained by adding 1 to the Is complement, since 2"
- N = {[(2" - 1) - N] + 1}. For example, the 2s complement of binary 101100 is
010011 + 1 = 010100 and is obtained by adding 1 to the Is complement value.
Again, for N = 0, the result of this addition is 0, achieved by ignoring the carry out
of the most significant position of the addition. These concepts hold for other bases
as welL As we will see later, they are very useful in simplifying 2s complement and
subtraction hardware.

Also, the 2s complement can be formed by leaving all least significant Os and
the first 1 unchanged and then replacing Is with Os and Os with Is in all other
higher significant bits. Thus, the 28 complement of 1101100 is 0010100 and is
obtained by leaving the two low-order Os and the first 1 unchanged and then
replacing Is with Os and Os with Is in the other four most significant bits. In other
bases, the first nonzero digit is subtracted from the base r, and the remaining digits
to the left are replaced with r 1 minus their values.

It is also worth mentioning that the complement of the complement restores
the number to its original value. To see this, note that the 2s complement of N is
2" - N, and the complement of the complement is 2" - (2" N) = N, giving back.
the original number.

Subtraction Using 25 Complement

Earlier, we expressed a desire to simplify hardware by sharing adder and subtrac
tor logic. Armed with complements, we are prepared to define a binary subtrac
tion procedure that uses addition and the corresponding complement logic. The
subtraction of two n-digit unsigned numbers, M - N, in binary can be done as
follows:

1. 	Add the 2s complement of the subtrahend N to the minuend M. This per
forms M + (2" - N) M - N + 2".

2. 	If M ~ N, the sum
result M - N.

3. 	If M < N, the sum
(N M), the 2s co
complement of the
-(N - M).

The examples that
that, although we are de
unsigned result for the a
ognize, by the absence 0:

ative number. If the min
separately from the COrTI

IEXAMPLE 4·2 U",;g

Given the two binary n
traction X - Y and Y

2s

Di

Answer:Y

While subtraction
complement, it is little

4-4
 BINARY AI

Using the 2s complem
only the complemente
ment the subtrahend 1
N. These operations c<

28

HDLS

) 0, respectively. There
'y changing all Is to Os
nt operation to each of

lUmber, the 7's comple
exadecimal number are
lallS), respectively.
~ment of N is defined as
:ial case of N = 0 is that
ves an (n + I)-bit result,
t subtractor or otherwise
Is complement, we note
Is complement, since 2n

nent of binary 101100 is
e Is complement value.
Jy ignoring the carry out
epts hold for other bases
ying 2s complement and

llieast significant Os and
I Os with Is in all other
1100 is 0010100 and is
1 unchanged and then
significant bits. In other
and the remaining digits

:he complement restores
l 28 complement of N is
n N) N, giving back ,

iring adder and subtrac
define a binary subtrac
; complement logic. The
binary can be done as

e minuend M. This per

4-4 I Binary Adder-Subtractors 0 177

2. 	If M ~ N, the sum produces an end carry, 2n. Discard the end carry, leaving
resultM N.

3. 	If M < N, the sum does not produce an end carry, since it is equal to 2n

(N - M), the 2s complement of N M. Perform a correction, taking the 2s
complement of the sum and placing a minus sign in front to obtain the result
-(N - M).

The examples that follow further illustrate the foregoing procedure. Note
that, although we are dealing with unsigned numbers, there is no way to get an
unsigned result for the case in step 3. When working with paper and pencil, we rec
ognize, by the absence of the end carry, that the answer must be changed to a neg
ative number. If the minus sign for the result is to be preserved, it must be stored
separately from the corrected n-bit result.

IEXAMPLE 4-2 Unsigned Binary Subtraction by 2, Complement Addition

Given the two binary numbers X = 1010100 and Y = 1000011, perform the sub
traction X Y and Y X using 2s complement operations. We have

X= 1010100

28 complement of Y 0111101

Sum 10010001

Discard end carry 27 =: 10000000

Answer: X - Y = 0010001

Y= 1000011

2s complement of X 0101100

Sum = 1101111

There is no end carry.

Answer: Y - X = -(2s complement of 1101111) = - 0010001. •
While subtraction of unsigned numbers also can be done by means of the Is

complement, it is little used in modern designs, so will not be covered here.

4-4 BINARY AnDER-SUBTRACTORS

Using the 2s complement, we have eliminated the subtraction operation and need
only the complementer and an adder. When performing a subtraction we comple
ment the subtrahend N, and when performing an addition we do not complement
N. These operations can be accomplished by using a selective complementer and

