Author

Year

Title of Article/Chapter
Title of Journal/Book
Vol/part/pages

Publisher

University of
Bedfordshire

Thomas L. Floyd

2009

Boolean Algebra And Logic Simplification
Digital Fundamentals

173-208

Pearson Prentice Hall

This Digital Copy has been made under the terms of a CLA licence

which allows you to:

Access and download a copy

Print out a copy

ISBN/ISSN: 9780138146467

Learning/| Resources

BooLEAN OPERATIONS AND EXPRESSIONS ¢ 173

4-1 BoOLEAN OPERATIONS AND EXPRESSIONS

Boolean algebra is the mathematics of digital systems. A basic knowledge of Boolean
algebra is indispensable to the study and analysis of logic circuits. In the last chapter,
Boolean operations and expressions in terms of their relationship to NOT. AND, OR,
NAND, and NOR gates were introduced.

After completing this section. you should be able to
¢ Define variable
+ Define literal
+ Identify a sum term
+ Evaluate a sum term
+ Identity a product term
+ Evaluate a product term
+ Explain Boolean addition

+ Explain Boolean multiplication

Variable, complement, and literal are terms used in Boolean algebra. A variable 1s a sym-
bol (usually an italic uppercase letter or word) used to represent an action, a condition, or) .]
N . 5 . . In a microprocessor, the arithmetic
data. Any single variable can have only a [or a 0 value. The complement is the inverse of a

3 T . . logic unit (ALU) performs arithmetic
variable and is indicated by a bar over the variable (overbar). For example. the complement and Boolean logic operations on digital

of the variable A is A. If A = I, then A = 0. It A = 0, then A = . The complement of the data as directed by program
variable A is read as “not A” or “A bar.”” Sometimes a prime symbol rather than an overbar is instructions. Logical operations are
used to denote the complement of a variable: for example, B' indicates the complement of B. equivalent to the basic gate operations

; . . ; . - . that e familiar with but deal with
In this book, only the overbar is used. A liferal is a variable or the complement of a variable. Kominigbbionlion .bu R
a minimum of 8 bits at a time.

s Examples of Boolean logic instructions
Boolean Addition are AND, OR, NOT, and XOR, which are
called mnemonics. An assembly

Recall from Chapter 3 that Boolean addition is equivalent to the OR operation and the fanguage program uses the mnemonics

basic rules are illustrated with their relation to the OR gate as follows: to specify an operation. Another
program calted an assembler translates
0+0=0 O+ 1=1 1+0=1 T+l=1 the mnemonics into a binary code that

‘ can be understood by the
Q' Q‘ @_‘ Q) o

In Boolean algebra, a sum term is a sum of literals. In logic circuits, a suin term 1s pro-
duced by an OR operation with no AND operations involved. Soie examples of sum terms
aeA + B,A+ B.A+B+ CandA +B+C+D.

A sum term is equal to | when one or more of the literals in the term are 1. A sum term The OR operation is the Boolean
is equal to O only if each of the literals is 0. form of addition.

EXAMPLE 4-1 Determine the values of A, B. C, and D that make the sum term A + B+C+D equal to 0.

Selution For the sum term to be 0, each of the literals in the term must be 0. Therefore, A = 0,
B=1sothatB=0.C=0,and D = 1sothat D = 0.

A+B+C+D=0+1+0+1=0+0+0+0=0

174 »

Related Problem”

The AND operation is the Boolean
form of multiplication.

EXAMPLE 4-2

Solution

Related Problem

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Determine the values of A and B that make the sum term A + B equal to 0.

*Answers are at the end of the chapter.

Boolean Multiplication

Also recall from Chapter 3 that Boolean multiplication is equivalent to the AND opera-
tion and the basic rules are illustrated with their relation to the AND gate as follows:

00=0 Ge1=0 i =il Lel=1

Sipvigvigv)

In Boolean algebra, a product term is the product of literals. In logic circuits, a prod-
uct term is produced by an AND operation with no OR operations involved. Some exam-
ples of product terms are AB, AB, ABC, and ABCD.

A product term is equal to 1 only if each of the literals in the term is 1. A product term
is equal to O when one or more of the literals are 0.

Determine the values of A, B, C, and D that make the product term ABCD equal to 1. {

For the product term to be 1, each of the literals in the term must be 1. Therefore, A =
1,B=0sothatB=1,C = 1l,and D = 0sothat D = 1.

ABCD = 1+0-1-0=1+1-1:1=1

Determine the values of A and B that make the product term A B equal to 1. }

e T 1. If A = 0, what does A equal? \
ke 2.D ine the values of A, B, and C th ke th A+ B lto 0
ff:ﬁﬁswmaih}atthleanddfme 2. Determine the values of A, B, an that make the sum term A +_B + Cequal to 0.

i g&aﬁﬁn 3. Determine the values of A, B, and C that make the product term ABC equal to 1.
4-2 LAwWS AND RULES OF BOOLEAN ALGEBRA

As in other areas of mathematics, there are certain well-developed rules and laws that
must be followed in order to properly apply Boolean algebra. The most important of
these are presented in this section.

After completing this section, you should be able to
+ Apply the commutative laws of addition and multiplication
+ Apply the associative laws of addition and multiplication
+ Apply the distributive law

+ Apply twelve basic rules of Boolean algebra

LAaws AND RULES OF BOOLEAN ALGEBRA * 175

Laws of Boolean Algebra

The basic laws of Boolean algebra—the commutative laws for addition and muitiplication,
the associative laws for addition and multiplication, and the distributive law—are the
same as in ordinary algebra. Each of the laws is illustrated with two or three variables, but
the number of variables is not limited to this.

Commutative Laws The commutative law of addition for two variables is written as
A+B=B+A Equation 4-1

This law states that the order in which the variables are ORed makes no difference. Re-
member, in Boolean algebra as applied to logic circuits, addition and the OR operation are
the same. Figure 4-1 illustrates the commutative law as applied to the OR gate and shows
that it doesn’t matter to which input each variable is applied. (The symbol = means “equiv-

alent to.”)
A B ~ FIGURE 4-1 -
. A = 0 B+A application of commutative law of
addition.

The commutative law of multiplication for two variables is
AB = BA Equation 4-2

This law states that the order in which the variables are ANDed makes no difference.
Figure 4-2 illustrates this law as applied to the AND gate.

FIGURE 4-2

4 — B — -
8 D_ AB A }"A Application of commutative law of

multiplication.

Associative Laws The associative law of addition is written as follows for three variables:
A+ B+C)=A+B)+C Equation 4-3

This law states that when ORing more than two variables, the result is the same regardless of
the grouping of the variables. Figure 4-3 illustrates this law as applied to 2-input OR gates.

FIGURE 4-3 -

Application of associative law of
addition. Open file F04-03 to verify.

A+(B+C)

(A+B)+C

The associative law of multiplication is written as follows for three variables:
A(BC) = (AB)C Equation 44

This law states that it makes no difference in what order the variables are grouped when AND-
ing more than two variables. Figure 44 illustrates this law as applied to 2-input AND gates.

-~ T
Sy

I

FIGURE 4-4

A — A
D_A(B(" _ b D—[‘B Application of associative law of
B :)j = D_ ~ multiplication. Open file F04-04 to
BC (AB)(C ;
c gty el verify.

176 ¢ BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Equation 4-5

!‘
FIGURE 4-5 e

Application of distributive law. Open
file F04-05 to verify.

TABLE 4-1

Basic rules of Boolean algehra.

" FIGURE 4-6

FIGURE 4-7

Distributive Law The distributive law is written for three variables as follows:
AB+ C)=AB + AC

This law states that ORing two or more variables and then ANDing the result with a single
variable is equivalent to ANDing the single variable with each of the two or more variables
and then ORing the products. The distributive law also expresses the process of factoring in
which the common variable A is factored out of the product terms, for example, AB + AC =
A(B +). Figure 4-5 illustrates the distributive law in terms of gate implementation.

AB

i
e AC

X=AB+0C) X=AB + AC

Rules of Boolean Algebra

Table 4-1 lists 12 basic rules that are useful in manipulating and simplifying Boolean ex-
pressions. Rules 1 through 9 will be viewed in terms of their application to logic gates.
Rules 10 through 12 will be derived in terms of the simpler rules and the laws previously
discussed.

1. A+0=A4 7. A*A=A

2, A+1=1 8. A-A=0

3 A-0=0 9. A=A

4 A-]1=4 10. A+AB=A

5. A+A=4A 1. A+AB=A+B

6. A+A=1 12. A+BA+CO)=A+BC

A, B, or C can represent a single variable or a combination of variables.

Rule 1: A + 0 = A A variable ORed with O is always equal to the variable. If the input
variable A is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 0, which
is also equal to A. This rule is illustrated in Figure 4-6, where the lower input is fixed at 0.

X=A+0=A

Rule 2: A+ 1 =1 A variable ORed with | is always equal to 1. A 1 on an input to an
OR gate produces a 1 on the output, regardless of the value of the variable on the other
input. This rule is tllustrated in Figure 4-7, where the lower input is fixed at 1.

LAWS AND RULES OF BOOLEAN ALGEBRA

Rule3: A-0 =0 A variable ANDed with 0 is always equal to 0. Any time one input to
an AND gate is 0, the output is 0, regardless of the value of the variable on the other input.
This rule is illustrated in Figure 4-8, where the lower input is fixed at 0.

A=l —3_ A=1(—-:
=0 —X =0
= e

Rule4:A+-1=A A variable ANDed with 1 is always equal to the variable. If A is 0, the
output of the AND gate is 0. If A is 1, the output of the AND gate is I because both inputs
are now 1s. This rule is shown in Figure 4-9, where the lower input is fixed at 1.

A=0— A=l —
X=0 X=1
| — 1 —

Rule 5: A + A=A A variable ORed with itself is always equal to the variable. If A is 0,
then0 +0=0;andifAis 1, then]| + 1 = 1. This is shown in Fligure 4-10, where both in-
puts are the same variable.

Rule 6: A + A =1 A variable ORed with its complement is always equal to 1. If A is 0,
then0 +0 =0+ 1= [.IfAis],thenl + 1 = [+ 0 = 1. See Figure 4-11, where one
input is the complement of the other.

Rule7: A-A =A A variable ANDed with itself is always equal to the variable. If A = 0,

then0+ 0 = 0;and if A = 1, then I -1 = 1. Figure 4-12 illustrates this rule.

a=s— Rl —
Xi=1 X=1
aet— A=1"—"1

* FIGURE 4-8

*

177

FIGURE 3-9

FIGURE 410

FIGURE 4-11

FIGURE 4-12

178 ¢ BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

FIGURE 4-13
FIGURE 4-14

=
TABLE 4-2 =0

Rule 10: A + AB = A. Open file
T04-02 to verify.

Rule 8: A - A=0 A variable ANDed with its complement is always equal to 0. Either A
or A will always be 0; and when a 0 is applied to the input of an AND gate, the output will
be 0 also. Figure 4-13 illustrates this rule.

A="]— A=l —
A= ki)

X=A=A=0

Rule 9:A = A The double complement of a variable is always equal to the variable. If
you start with the variable A and complement (invert) it once, you get A. If you then take A
and complement (invert) it, you get A, which is the original variable. This rule is shown in
Figure 4-14 using inverters.

A= 1 = A=0 =
A:()—{>o——o>—,q=o A=1 A=1

Rule 10: A + AB = A This rule can be proved by applying the distributive law, rule 2,
and rule 4 as follows:
A+AB=A-1+ AB = A(1 + B) Factoring (distributive law)
=A-1 Rule 2: (1 + B) =1
=A Ruled:A-1=A

The proof is shown in Table 4-2, which shows the truth table and the resulting logic circuit
simplification.

A - :
L J straight connection
equal

Rule 11: A + AB=A + B This rule can be proved as follows:

A+ AB = (A + AB) + AB Rule 10: A = A + AB
= (AA + AB) + AB Rule 7: A = AA
= AA + AB + AA + AB Rule 8: adding AA = 0
=(A+A)A + B) Factoring
=1-(A+B) Rule6:A + A = 1
=A+B Rule 4: drop the 1

The proof is shown in Table 4--3, which shows the truth table and the resulting logic cir-
cuit simplification.

DEMORGAN’S THEOREMS +« 179

TABLE 4-3

Rule 11: A + AB = A + B. Open
file T04-03 to verify.

| -
A :D &l
L cqual ——T ¢

ol g e &
oo Y

Rule12: (A + B)(A + C) = A + BC This rule can be proved as follows:

(A+ B)Y(A + C)=AA + AC + AB + BC Distributive law
= A+ AC + AB + BC Rule 7. AA = A
= A(l + C) + AB + BC Factoring (distributive law)

=A-1+ AB + BC Rule2: | + C =1
= A(1 + B) + BC Factoring (distributive law)
=A-1+ BC Rule2: 1+ B =1
= A+ BC Ruled:A-1=A

The proof is shown in Table 44, which shows the truth table and the resulting logic circuit
simplification.

YTABLE 4-4 Wqé
Rule 12: (A + B)(A + C) = A + BC. Open file T04-04 to verify. s

0
A
0 B
0 | 0 | 0 0 0 0
0 1 [1 I I | 1 c
| 0 0 i i I 0 |
| 0 | i 1 i 0 |
| 1 0 | | | 0] A ED_
B
I 1 1 | | 1 | 1 ¢
L equal T

; 1. Apply the associative law of addition to the expression A + (B + C + D).
g 2. Apply the distributive law to the expression A(B + C + D).

43

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an

important part of Boolean algebra. In practical terms, DeMorgan’s theorems provide

mathematical verification of the equivalency of the NAND and negative-OR gates and the
- equivalency of the NOR and negative-AND gates. which were discussed in Chapter 3.

DEMORGAN’S THEOREMS

180 © BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

To apply DeMorgan’s theorem, break
the bar over the product of variables
and change the sign from AND to OR.

Equation 4-6

Equation 4-7

FIGURE 4-15§

Gate equivalencies and the corre-
sponding truth tables that illustrate
DeMorgan’s theorems. Notice the
equality of the two output columns
in each table. This shows that the
equivalent gates perform the same
logic function.

After completing this section, you should be able to
¢ State DeMorgan’s theorems

+ Relate DeMorgan’s theorems to the equivalency of the NAND and negative-OR
gates and to the equivalency of the NOR and negative-AND gates

* Apply DeMorgan’s theorems to the sitaplification of Boolean expressions

DeMorgan’s first theorem is stated as follows:

The complement of a product of variables is equal to the sum of the complements
of the variables.

Stated another way,

The complement of two or more ANDed variables is equivalent to the OR of the
complements of the individual variables.

The formula for expressing this theorem for two variables is
XY=X+Y
DeMorgan’s second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements
of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of the
complements of the individual variables.

The formula for expressing this theorem for two variables is
X+Y=XY

Figuré 4-15 shows the gate equivalencies and truth tables for Equations 4-6 and 4-7.

OUTPUT
XY X+Y
0 0 I !

X——] . X —
 A——) i

NAND Negative-OR

- e X =
t :Do— Xty = ;} XY 0 0 I 1
y y

NOR Negative-AND) 0 0

As stated, DeMorgan’s theorems also apply to expressions in which there are more than
two variables. The following examples illustrate the application of DeMorgan’s theorems
to 3-variable and 4-variable expressions.

DEMORGAN’S THEOREMS ¢

EXAMPLE 4-3 Apply DeMorgan’s theorems to the expressions XYZand X + Y + Z

Solution XYZ=X+Y+Z
X+Y+Z=XYZ
Helated Problem Apply DeMorgan’s theorem to the expression X+Y+Z

EXAMPLE 4-4 Apply DeMorgan’s theorems to the expressions WXYZand W + X + ¥ + Z.

Salution WXYZ=W+X+Y+Z

WH+X+Y+2Z=WXYZ

Related Problem Apply DeMorgan’s theorem (o the expression WX YZ.

Each variable in DeMorgan’s theorems as stated in Equations 4—-6 and 4-7 can also rep-
resent a combination of other variables. For example, X can be equal to the term AB + C,
and ¥ can be equal to the term A + BC. So if you can apply DeMorgan’s theorem for two
variables as stated by XY = X + Yto the expression (AB + C)(A + BC), you get the fol-
lowing result:

(AB + C)(A + BC) = (AB + C) + (A + BO)
Notice that in the preceding result you have two terms. ;\b’_i Cand A + BC, to each of
which you can again apply DeMorgan’s theorem X + ¥ = X Y individually, as fotlows:
(AB + C) + (A + BC) = (AB)C + A(BC)
Notice that you still have two terms in the expression to which DeMorgan’s theorem can

again be applied. These terms are A and BC. A final application of DeMorgan’s theorem
gives the following result:

(ABYC + A(BC) = (A + B)C + A(B + ()
Although this result can be simplified further by the use of Boolean rules and laws, De-
Morgan’s theorems cannot be used any more.

Applying DeMorgan’s Theorems

The following procedure illustrates the application of DeMorgan’s theorems and Boolean
algebra to the specific expression

A+ BC + D(E + F)
Step 1: Identify the terms to which you can apply DeMorgan’s theorems, and think of
each term as a single variable. Let A + BC = X and D(F + F)=vY.
Step 2: Since X + ¥ = XY.

(A + BC) + (D(E + F)) = (A + BC)(D(E + F))

Step 3: Use rule 9 (X A) to cancel the double bars over the left term (tlii 1s not part
of DeMorgan’s theorem).

(A + BOYD(E + F)) = (A + BO(D(E + F))

181

182 =

EXAMPLE 4-5

Solution

Related Problem

EXAMPLE 4-6

Sohution

Related Problem

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Step 4: Applying DeMorgan’s theorem to the second term,

(A + BE)(B(E:T?)) =(A+ BC)D + (E + F))

Step 5: Userule 9 (Z_ = A) to cancel the double bars over the E + F part of the term.

(A+BC)D+E+F)=(A+BC)D+E+F)

The following three examples will further illustrate how to use DeMorgan’s theorems.

Apply DeMorgan’s theorems to each of the following expressions:
@ (A+B+0OD

(b) ABC + DEF

(¢) AB + CD + EF

(a) LetA + B+ C = Xand D = Y. The expression (A + B + C)D is of the form
XY = X + Yand can be rewritten as

(A+B+C)D=A+B+C+D
Next, apply DeMorgan’s theorem to the term A ~ B + C.
A+B+C+D=ABC+D

(b) Let ABC =X and DEF = Y. The expression ABC + DEF is of the form
X + Y = XY and can be rewritten as

ABC + DEF = (ABC)(DEF)
Next, apply DeMorgan’s theorem to each of the terms ABC and DEF.
(ABC)(DEF) = (A+ B + C)(D + E + F)
(¢) Let AB =X .CD = , and EF = Z. The expression m is of the

form X + Y + Z = XYZ and can be rewritten as

AB + CD + EF = (AB)(CD)(EF)
Next, apply DeMorgan’s theorem to each of the terms E, E‘—D-, and EF.
(AB)(CD)(EF) = (A + B)(C + D)(E + F)

Apply DeMorgan’s theorems to the expression ABC + D + E.

Apply DeMorgan’s theorems to each expression:
(@ A+ B)+C
(b) (A + B) + CD

(¢) (A+ B)CD+E+F |

(@ (A+B)+C=(A+B)C=(A+B)C

(b) (A + B) + CD = (A + B)CD = (AB)(C + D) = AB(C + D)

(¢) (A+B)CD+E+F = ((A+BJCD)E+F)=(AB + C + D)EF \

Apply DeMorgan’s theorems to the expression AB(C + D) + E. ‘

BOOLEAN ANALYSIS OF LoGgic CIRCUITS #

EXAMPLE 4-7 The Boolean expression for an exclusive-OR gate is AB + AB. With this as a starting
point, use DeMorgan’s theorems and any other rules or laws that are applicable to de-
velop an expression for the exclusive-NOR gate.

wolution Start by complementing the exclusive-OR expression and then applying DeMorgan’s
theorems as follows:

AB + AB = (ABY(AB) = (A + B)(A + B) = (A + B)(A + B)
Next, apply the distributive law and rule 8 (A - A = 0).
(A+ B)A +B)=AA+ AB+ AB+ BB = AB + AB

The final expression for the XNOR is AB + AB. Note that this expression equals 1
any time both variables are Os or both variables are 1s.

felated Probiem Starting with the expression for a 4-input NAND gate, use DeMorgan’s theorems to
develop an expression for a 4-input negative-OR gate.

{"‘SECTION 4-3 1. Apply DeMorgan’s theorems to the following expressions:
e @ABC+D+BH (O W+BE (©ATB+C+DE

4-4 BooLEAN ANALYSIS OF LoGic CiIRCuUITS

Boolean algebra provides a concise way to express the operation of a logic circuit
formed by a combination of logic gates so that the output can be determined for
various combinations of input values.

After completing this section, you should be able to
+ Determine the Boolean expression for a combination of gates
+ Evaluate the logic operation of a circuit from the Boolean expression

+ Construct a truth table

Boolean Expression for a Logic Circuit

To derive the Boolean expression for a given combinational logic circuit, begin at the left-most A combinational logic circuit can be

inputs and work toward the final output, writing the expression for each gate. For the example described by a Boolean equation.
circuit in Figure 4-16, the Boolean expression is determined in the following three steps:

1. The expression for the left-most AND gate with inputs C and D is CD.

2. The output of the left-most AND gate is one of the inputs to the OR gate and B is
the other input. Therefore, the expression for the OR gate is B + CD.

€ FIGURE 4-16

BI—— | A combinational logic circuit show-
B+CD ing the development of the Boolean
B—— tD—l_ expression for the output.
F—A(B +CD)
§=—

184 + BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

A combinational logic circuit can be
described by a truth table.

3. The output of the OR gate is one of the inputs to the right-most AND gate and A is
the other input. Therefore, the expression for this AND gate is A(B + CD), which
is the final output expression for the entire circuit.

Constructing a Truth Table for a Logic Circuit

Once the Boolean expression for a given logic circuit has been determined, a truth table that
shows the output for all possible values of the input variables can be developed. The procedure
requires that you evaluate the Boolean expression for all possible combinations of values for
the input variables. In the case of the circuit in Figure 4-16, there are four input variables
(A, B, C. and D) and therefore sixteen (2% = 16) combinations of values are possible.

Evaluating the Expression To evaluate the expression A(B + CD), first find the values
of the variables that make the expression equal to 1, using the rules for Boolean addition and
multiplication. In this case, the expression equals | only if A =] and B + CD = | because
AB+CD)=1-1=1

Now determine when the B + CD term equals 1. The term B + CD = | if either B = 1 or
CD = 1 orif both B and CD equal 1 because

B+CD=1+0=1

B+CD=0+1=1

B+CD=1+1=

|
—

Theterm CD = lonlyif C =1 and D = 1.

To summarize, the expression A(B + CD) = | when A = 1 and B = | regardless of the
values of Cand D or when A = 1 and C = | and D = 1 regardless of the value of B. The
expression A(B + CD) = 0 for all other value combinations of the variables.

Putting the Results in Truth Table Format The first step is to list the sixteen input
variable combinations of 1s and Os in a binary sequence as shown in Table 4-5. Next, place
a | in the output column for each combination of input variables that was determined in the
evaluation. Finally, place a O in the output column for all other combinations of input vari-
ables. These results are shown in the truth tabie in Table 4-5.

TR INPUTS OUTPUT
Truth table for the logic circuit in B C A(B + €CD)
Figure 4-16. |

0 0 0 0 0
0 0 0 | (0]
0 0 I 0 0
0 0 | | 0
0 | 0 0 0
0 1 0] 0
0 1 1 0 0
0 | | | 0
1 0 0 0 0
| 0 0 1 0
| 0 | 0 0
| 0] 1 1
1 1 0 0 |
1 \ 0 1 1
1 1 | 0 1
1 l 1 | 1

SIMPLIFICATION UsiNG BOOLEAN ALGEBRA * 185

AMPLE 4-8 Use Multisim to generate the truth table for the logic circuit in Figure 4-16.

Solution Construct the circuit in Multisim and connect the Multisim Logic Converter to the

inputs and output, as shown in Figure 4-17. Click on the = = T conversion
bar, and the truth table appears in the display as shown.

Truth table

B - Loge Converter-XLCY.
& —=a8
| OO0 oo esae@
45 A B C D E F G H n
Comversions
pool o o o 9 g & ‘
pot|] o 0 0 -
po2|l o o6 1 9 0 S=x P isiieeg—
poxl o o 1
posl o v 0 @ i [Toli —= AB
D posl o 1 ot 0 = [
O0— oosl o 1 1o 0 TalE SIPR a —
C por|] o 1 1 1t 0 [
[a! 00 1. 0 00 0 S1E —+ 101 |
opgl 1 0 @ o i
B otol 1 0 Vo 0 BIE -+ G
o 0t 10 11 : |
D2 1 1 0 o
E TRE] BRI = T e AL
o1d] 1 1 10 1 I = ; e
AND2 pis] o+ 1 41 | %
| ACD+AB
Boolean expression
FIGURE 4-17

You can also generate the simplified Boolean expression from the truth table by
clicking on Z81= “5'7 A8

Related Problem Open Multisim to create the setup and do the conversions shown in this example

1.\ Replace the AND gates with OR gates and the OR gate with an AND gate in Figure
4-16 and determine the Boolean expression for the output.

2. Construct a truth table for the circuit in Question 1.

o
B

L'i

45 SIMPLIFICATION USING BOOLEAN ALGEBRA

Many times in the application of Boolean algebra, you have to reduce a particular
_expression to its simplest form or change its form to a more convenient one to im-
plement the expression most efficiently. The approach taken in this section is to use
e basic laws. rules, and theorems of Boolean algebra to manipulate and simplity
expression. This method depends on a thorough knowledge of Boolean algebra
and considerable practice in its application. not to mention a little ingenuity and

186 + BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

After completing this section, you should be able to

+ Apply the laws, rules, and theorems of Boolean algebra to simplify general
expressions

A simplified Boolean expression uses the fewest gates possible to implement a given
expression. Examples 4-9 through 4-12 illustrate Boolean simplification.

I - EXAMPLE 4-9 Using Boolean algebra techniques, simplify this expression:
AB + AB+ C) + B(B+ ()
Solution The following is not necessarily the only approach.

Step 1: Apply the distributive law to the second and third terms in the expression, as
follows:

AB + AB + AC + BB + BC
Step 2: Apply rule 7 (BB = B) to the fourth term.

AB + AB + AC + B + BC
Step 3: Apply rule 5 (AB + AB = AB) to the first two terms.

AB + AC + B + BC
Step 4: Apply rule 10 (B + BC = B) to the last two terms.
AB + AC+ B
Step 5: Apply rule 10 (AB + B = B) to the first and third terms.
B + AC

At this point the expression 1s simplified as much as possible. Once you gain experi-
ence in applying Boolean algebra, you can often combine many individual steps.

Helated Problem Simplify the Boolean expression AB + A(B + C) + B(B + C).

Simplification means fewer gates for Figure 4-18 shows that the simplification process in Example 4-9 has significantly re-
the same function. duced the number of logic gates required to implement the expression. Part (a) shows that
five gates are required to implement the expression in its original form; however, only two
gates are needed for the simplified expression, shown in part (b). [t is important to realize
that these two gate circuits are equivalent. That is, for any combination of levels on the A,
B, and C inputs, you get the same output from either circuit.

FIGURE 4-18 m A }
Gate circuits for Example 4-9. Open

file FO4-18 to verify equivalency.
B
} AB+AB+)+ BB+) B+ AC

;'_D{:}j - 0 2

—— These two circuils are equivalent. — J (©)

(a)

SIMPLIFICATION USING BOOLEAN ALGEBRA *+ 187

EXAMPLE 4-10 Simplify the following Boolean expression:
[AB(C + BD) + AB]C (

Note that brackets and parentheses mean the same thing: the term inside is multiplied
(ANDed) with the term outside.

Solution Step 1: Apply the distributive law to the terms within the brackets.
(ABC + ABBD + AB)C
Step 2: Apply rule 8 (BB = 0) to the second term within the parentheses.
(ABC+A-0-D+ AB)C
Step 3: Apply rule 3 (A+ 0 - D = 0) to the second term within the parentheses.
(ABC + 0 + AB)C
Step 4: Apply rule | (drop the 0) within the parentheses.
(ABC + AB)C
Step 5: Apply the distributive law.
ABCC + ABC
Step 6: Apply rule 7 (CC = C) to the first term. ‘

ABC + ABC
Step 7: Factor out BC.
BC(A + A)
Step 8: Applyrule 6 (A + A = 1).
BC- 1
Step 9: Apply rule 4 (drop the 1).
BC

Related Problem Simplify the Boolean expression [AB(C + BD) + AB]CD.

EXAMPLE 4-11 Simplify the following Boolean expression:
ABC + ABC + ABC + ABC + ABC
Solution Step 1: Factor BC out of the first and last terms.
BC(A + A) + ABC + ABC + ABC

Step 2: Apply rule 6 (A + A = 1) to the term in parentheses, and factor AB from the
second and last terms.

BC-1+AB(C+ C) + ABC

Step 3: Apply rule 4 (drop the 1) to the first term and rule 6 (C + C = 1) to the term
in parentheses.

BC+ AB-1 + ABC

188 + BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Step 4: Apply rule 4 (drop the 1) to the second term.
BC + AB + ABC |
Step 5: Factor B from the second and third terms. l
BC + B(A + AC) |
Step 6: Applyrule 11 (A + AC = A + () to the term in parentheses. l
BC + B(A + ©) \
Step 7: Use the distributive and commutative laws to get the following expression:
BC + AB + BC |
Related Problem Simplify the Boolean expression ABC + ABC + ABC + ABC. ~

EXAMPLE 4-12 Simplity the following Boolean expression: 1
AB + AC + ABC |
Solution Step 1: Apply DeMorgan’s theorem to the first term. ‘
(AB)(AC) + ABC
Step 2: Apply DeMorgan’s theorem (o each term in parentheses.
(& + B)A + ©) + ABC |
Step 3: Apply the distributive law to the two terms in parentheses. ‘
AA +AC + AB+ BC + ABC
Step 4: Apply rule 7 (A A = A) to the first term, and apply rule 10 i
[AB + ABC = AB(1 + C) = AB] to the third and last terms. ‘
A+ AC + AB + BC
Step 5: Apply rule 10 [A + AC = A(1 + C) = A] to the first and second te;ms, ’
A+ AB+ BC
Step 6: Apply rule 10 [Z + AB = A(1 + B) = /_ﬂ to the first and second terms. '
A+ BC |
Related Problem Simplify the Boolean expression AB + AC + ABC. \

EXAMPLE 4-13 Use Multisim to perform the logic simplification shown in Figure 4-18.

Solution Step 1: Connect the Multisim Logic Converter to the circuit as shown in Figure 4-19. ‘
Step 2: Generate the truth table by clicking on == 7olT |,
Step 3: Generate the simplified Boolean expression by clicking on 121t 43" #8 | .
Step 4: Generate the simplified logic circuit by clicking on _#& = = | ‘

STANDARD FORMS OF BOOLEAN EXPRESSIONS ¢ 189

¥LC1 \
Y ——F8 —_—
"~ Logic Converter-XLCY
S |
o o8 @am a8
KB BiD B F B Ul g
Conversions
e s 8 e
003 0 | a | | = —+ 10|t I
oozl o 1 1 1
opd4l 1 0 o0 ? ol -+ AIBI
005
035 : ? é 1 To T SALET AR
007 [1
AB = g0t '
=] . = ‘
aE — NAND
IAC+B ‘
AND2
A B C
1
' 3
o
> |
L—-—’J/
FIGURE 4-19

Related Problem Use Multisim to create the setup and perform the logic simplification illustrated in this

Q example. |

1. Simplify the following Boolean expressions if possible: ‘
@ A+ AB + ABC (b) (A+ B)C+ ABC (0 ABC(BD + CDE) + AC

2. Implement each expression in Question 1 as originally stated with the appropriate
logic gates. Then implement the simplified expression, and compare the number of

gates. ‘

4-6 STANDARD FORMS OF BOOLEAN EXPRESSIONS

All Boolean expressions, regardless of their form, can be converted into either of two
standard forms: the sum-of-products form or the product-of-sums form. Standardization
makes the evaluation, simplification, and implementation of Boolean expressions much
more systematic and easier.

After completing this section, you should be able to
+ Identify a sum-of-products expression
+ Determine the domain of a Boolean expression

+ Convert any sum-of-products expression to a standard form

190 * BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

An SOP expression can be
implemented with one OR gate and
two or more AND gates.,

< Evaluate a standard sum-of-products expression in terms of binary values

L 4

Identify a product-of-sums expression

+ Convert any product-of-sums expression to a standard form

*

Evaluate a standard product-of-sums expression in terms of binary values

*®

Convert from one standard form to the other

The Sum-of-Products (SOP) Form

A product term was defined in Section 4—1 as a term consisting of the product (Boolean
multiplication) of literals (variables or their complements). When two or more product
terms are summed by Boolean addition, the resulting expression is a sum-of-products
(50P). Some examples are

AB + ABC

ABC + CDE + BCD

AB + ABC + AC
Also, an SOP expression can contain a single-variable term, as in A + ABC + BCD.
Refer to the simplification examples in the last section, and you will see that each of the
final expressions was either a single product term or in SOP form. In an SOP expression, a
single overbar cannot extend over more than one variable; however, more than one _vgliable
in a term can have an overbar. For example, an SOP expression can have the term A B C but
not ABC.

Domain of a Boolean Expression The domain of a general Boolean expression is
the set of variables contained in the expression in either complemented or uncomple-
mented form. For example, the domain of the expression AB + AEC;is the set of vari-
ables A, B, C and the domain of the expression ABC + CDE + BCD is the set of
variables A, B, C. D, E.

AND/OR Implementation of an SOP Expression Implementing an SOP expression
simply requires ORing the outputs of two or more AND gates. A product term is produced
by an AND operation, and the sum (addition) of two or more product terms is produced
by an OR operation. Therefore, an SOP expression can be implemented by AND-OR
logic in which the outputs of a number (equal to the number of product terms in the
expression) of AND gates connect to the inputs of an OR gate, as shown in Figure 4-20 for
the expression AB + BCD + AC. The output X of the OR gate equals the SOP expression.

FIGURE 4-20 A -

Implementation of the SOP expres- 7 —
sion AB + BCD -+ AC.

(=1 X=AB+ BCD + A
a —j :
" —

NAND/NAND Implementation of an SOP Expression NAND gates can be used to
implement an SOP expression. By using only NAND gates, an AND/OR function can be
accomplished, as illustrated in Figure 4-21. The first level of NAND gates feed into a
NAND gate that acts as a negative-OR gate. The NAND and negative-OR inversions can-
cel and the result is effectively an AND/OR circuit,

http:is---.!.he

STANDARD FORMS OF BOOLEAN EXPRESSIONS

FIGURE 4-21
This NAND/NAND implementation is
equivalent to the AND/OR in Figure

' — —— X=AB + BCD + AC 4-20.

Conversion of a General Expression to SOP Form

Any logic expression can be changed into SOP form by applying Boolean algebra tech-
niques. For example, the expression A(B + CD) can be converted to SOP form by applying
the distributive law:

A(B + CD) = AB + ACD

EXAMPLE 4-14 Convert each of the following Boolean expressions to SOP form:
(© (A+B)+C

(a) AB + B(CD + EF) (b) (A+ BYB+ C+ D)
Solution (a) AB + B(CD + EF) = AB + BCD + BEF

(b) (A + B)B + C + D) = AB + AC + AD + BB + BC + BD
(© (A+B)+C=(A+B)JC=(A+B)7C=AC + BC

Related Problem Convert ABC + (A + E)(B +C+ AE) to SOP form.

The Standard SOP Form

So far, you have seen SOP expressions in which some of the product terms do not contain
all of the variables in the domain of the expression. For example, the expression
ABC + ABD + ABCD has a domain made up of the variables A, B. C, and D. However,
notice that the complete set of variables in the domain is not represented in the first two
terms of the expression; that is, D or D is missing from the first term and C or C is missing
from the second term.

A standard SOP expression is one in which all the variables in the domain appear in
each product term in the expression. For example, ABCD + ABCD + ABCD is a standard
SOP expression. Standard SOP expressions are important in constructing truth tables, cov-
ered in Section 4-7, and in the Karnaugh map simplification method, which is covered in
Section 4-8. Any nonstandard SOP expression (referred to simply as SOP) can be con-
verted to the standard form using Boolean algebra.

Converting Product Terms to Standard SOP Each product term in an SOP expression
that does not contain all the variables in the domain can be expanded to standard form to
include all variables in the domain and their complements. As stated in the following steps,
anonstandard SOP expression is converted into standard form using Boolean algebra rule
6 (A + A = 1) from Table 4—1: A variable added to its complement equals 1.

Step 1: Multiply each nonstandard product term by a term made up of the sum of a
missing variable and its complement. This results in two product terms. As you
know, you can multiply anything by 1 without changing its value.

Step 2: Repeat Step 1 until all resulting product terms contain all variables in the do-
main in either complemented or uncomplemented form. In converting a prod-
uct term to standard form, the number of product terms is doubled for each
missing variable, as Example 4-15 shows.

v

191

192 ¢ BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

EXAMPLE 4-15 Convert the following Boolean expression into standard SOP form: \
ABC + AB + ABCD |

Solution The domain of this SOP expression is A, B, C. D. Take one term at a time. The first
term, ABC, is missing variable 1) or D, 50 multiply the first term by D + D as follows: ‘

ABC = ABC(D + D) = ABCD + ABCD

In this case, two standard product terms are the result,
The second term, A B, is missing variables C or Cand D or D, so first multiply the
second term by € + C as follows: .

AB = AB(C + C) = ABC + ABC

The two resulting terms are missing variable D or D, so multiply both terms by D + D ‘

as follows: }

AB = ABC + ABC = ABC(D + D) + ABC(D + D) ‘

= ABCD + ABCD + ABCD + ABCD |

In this case, four standard product terms are the result. |
The third term, ABCD. is already in standard torm. The complete standard SOP

form of the original expression is as follows: ‘

ABC + AB + ABCD = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Related Problem Convert the expression WXY + XYZ + WXY to standard SOP form. '
|

Binary Representation of a Standard Product Term A standard product term is equal
to | for only one combination of variable values. For example, the product term ABCD is
equal to | when A =1, B=0,C = |, D = 0, as shown below, and is 0 for all other com-
binations of values for the variables.

ABCD =1+0-1-0=1-1-1-1=1

In this case, the product term has a binary value of 1010 (decimal ten).

Remember, a product term is implemented with an AND gate whose output is | only if
each of its inputs 1s 1. Inverters are used to produce the complements of the variables as re-
quired.

An SOP expression is equal to 1 only if one or more of the product terms in the
expression is equal to 1.

EXAMPLE 4-16 Determine the binary values for which the following standard SOP expression is ‘
equal to 1:

ABCD + ABCD + ABCD
Solution The term ABCD isequal to] whenA=1,B=1,C=l,and D = |.
ABCD =1-1+1:1=1 .
The term ABCD is equalto l whenA = |,B=0.C=0,and D = |. ‘
ABCD=1:0:0-1=1+1-1-1=1 ‘

STANDARD FORMS OF BOOLEAN EXPRESSIONS + 193

The term ABCD isequalto | when A = 0.B=0,C = 0,and D = 0.
ABCD=0:0:0-0=1-1-1-1=1
The SOP expression equals 1 when any or all of the three product terms is 1.
felated Problem Determine the binary values for which the following SOP expression is equal to 1:
XYZ + XYZ + XYZ + XYZ + XVZ

Is this a standard SOP expression?

The Product-of-Sums (POS) Form

A sum term was defined in Section 4-1 as a term consisting of the sum (Boolean addition)
of literals (variables or their complements). When two or more sum terms are multiplied,
the resulting expression is a product-of-sums (POS). Some examples are

(A+ B)YA+ B+ Q)
(A+B+C)(C+D+E)B+ C+D)
(A+ B)YA+ B+ CO)A + O)
A POS expression can contain a single-variable term, as in A(A+ B+ C)(B+ C+ D). In
a POS expression, a single overbar cannot extend over more than one variable; however,

more than one variable in a term can have an overbar. For example, a POS expression can
have the term A + B + CbutnotA ~ B + C.

Implementation of a POS Expression Implementing a POS expression simply re-
quires ANDing the outputs of two or more OR gates. A sum term is produced by an OR op-
eration, and the product of two or more sum terms is produced by an AND operation.
Therefore, a POS expression can be implemented by logic in which the outputs of a num-
ber (equal to the number of sum terms in the expression) of OR gates connect to the inputs
of an AND gate, as Figure 4-22 shows for the expression (A + B)(B + C + D)(A + O).
The output X of the AND gate equals the POS expression.

: < FIGURE 4-22
B D Implementation of the POS expres-

L sion (A + B)(B + C + D)(A +).

B
(} X=(A+B(B+C+D)A+OC)
1)

= !

C

The Standard POS Form

So far, you have seen POS expressions in which some of the sum terms do not contain all
of the variables in the domain of the expression. For example, the expression

(A+B+C)YA+B+DYA+B+C+D)

has a domain made up of the variables A, B, C, and D. Notice that the complete set of vari-
ables in the domain is not represented in the first two terms of the expression; that is, D or
D is missing from the first term and C or C is missing from the second term.

194 <+ BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

EXAMPLE 4-17

A standard POS expression is one in which all the variables in the domain appear in
each sum term in the expression. For example,

A+B+C+D)YA+B+C+D)A+B+C+D)

is a standard POS expression. Any nonstandard POS expression (referred to simply as
POS) can be converted to the standard form using Boolean algebra.

Converting a Sum Term fo Siandard POS Each sum term in a POS expression that
does not contain all the variables in the domain can be expanded to standard form to in-
clude all variables in the domain and their complements. As stated in the following steps, a
nonstandard POS expression is converted into standard form using Boolean algebra rule §
(A + A = 0) from Table 4-1: A vartable multiplied by its complement equals 0.

Step 1: Add to each nonstandard product term a term made up of the product of the
missing variable and its complement. This results in two sum terms. As you
know, you can add O to anything without changing its value.

Step 2: Apply rule 12 from Table 4-1: A + BC = (A + B)(A + O)

Step 3: Repeat Step 1 until all resulting sum terms contain all variables in the domain
in either complemented or uncomplemented form.

Convert the following Boolean expression into standard POS form:
(A+B+C)B+C+D)A+B+C+D)

The domain of this POS expression is A, B, C, D. Take one term at a time. The first
term, A + B + C, is missing variable D or D, so add DD and apply rule 12 as follows:

A+B+C=A+B+C+DD=(A+B+C+D)A+B+C+D)

The second term, B + C + D, is missing variable A or A. 50 add AA and apply rule
12 as follows:

B+C+D=B+C+D+AA=(A+B+C+D)A+B+C+D)

The third term, A + B + C + D, is already in standard form. The standard POS
form of the original expression is as follows:

(A LB CHB+C DA +BEC+D)=

A+B+C+DA+B+C+D)A+B+C+DA+B+C+D)A+B+C+D)

Convert the expression (A + B)(B + C) to standard POS form.

Binary Representation of a Standard Sum Term A standard sum term is equal to 0
for only one combination of variable values. For example, the sum term A + B + C + D
isOwhenA =0,B=1,C=0,and D = 1, as shown below, and is 1 for all other combi-
nations of values for the variables.

A+B+C+D=0+14+0+1=0+0+0+0=0

In this case, the sum term has a binary value of 0101 (decimal 5). Remember, a sum term
is implemented with an OR gate whose output is 0 only if each of its inputs is 0. Inverters
are used to produce the complements of the variables as required.

A POS expression is equal to 0 only if one or more of the sum terms in the
expression is equal to 0.

STANDARD FORMS OF BOOLEAN EXPRESSIONS ¢ 195

EXAMPLE 4-18 Determine the binary values of the variables for which the following standard POS
expression is equal to 0:

(A+B+C+D)A+B+C+D)A+B+C+D)
Solution ThetermA + B+ C + DisequaltoOwhenA =0,B=0,C=0,and D = 0.
A+B+C+D=0+0+0+0=0
ThetermA + B + C + D is equal toO when A =0,B=1,C=1,and D = 0.
A+B+C+D=0+14+14+0=0+0+0+0=0
ThetermA + B + C + Disequal toOwhenA =1,B=1,C=1,and D = 1.
A+B+C+D=1+1+1+1=04+0+0+0=0
The POS expression equals 0 when any of the three sum terms equals O.
Related Problem Determine the binary values for which the following POS expression is equal to 0:
X+ Y+ DX+ Y+ DX+ Y+ DX+ Y+ DX +Y+ 2)

Is this a standard POS expression?

Converting Standard SOP to Standard POS

The binary values of the product terms in a given standard SOP expression are not present
in the equivalent standard POS expression. Also, the binary values that are not represented
in the SOP expression are present in the equivalent POS expression. Therefore, to convert
from standard SOP to standard POS, the following steps are taken:

Step 1: Evaluate each product term in the SOP expression. That is, determine the bi-
nary numbers that represent the product terms.

Step 2: Determine all of the binary numbers not included in the evaluation in Step 1.

Step 3: Write the equivalent sum term for each binary number from Step 2 and express
in POS form.

Using a similar procedure, you can go from POS to SOP.

EXAMPLE 4-19 Convert the following SOP expression to an equivalent POS expression:
ABC + ABC + ABC + ABC + ABC
Solution The evaluation is as follows:
000 + 010 + 011 + 101 + 111

Since there are three variables in the domain of this expression, there are a total of
eight (2*) possible combinations. The SOP expression contains five of these combi-
nations, so the POS must contain the other three which are 001, 100, and 110.
Remember, these are the binary values that make the sum term 0. The equivalent
POS expression is

(A+B+C)YA+B+ C)A+B+0)

Helated Problem Verify that the SOP and POS expressions in this example are equivalent by substituting
binary values into each.

196 ¢ BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

SECTION 4-6
- CHECKUP

— e e T e

1. Identify each of the following expressions as SOP, standard SOP, POS, or standard
POS:

|
(a) AB + ABD + ACD () A+ B+ O@A+B+0 |
(© ABC + ABC (d) (A + O(A + B) I
2. Convert each SOP expression in Question 1 to standard form. ‘
3. Convert each POS expression in Question 1 to standard form. l

4-7 BOOLEAN EXPRESSIONS AND TRUTH TABLES

EXAMPLE 4-20

Solition

All standard Boolean expressions can be easily converted into truth table format using
binary values for each term in the expression. The truth table is a common way of pre-
senting, in a concise format, the logical operation of a circuit. Also, standard SOP or
POS expressions can be determined from a truth table. You will find truth tables in
data sheets and other literature related to the operation of digital circuits.

After completing this section, you should be able to
+ Convert a standard SOP expression into truth table format
¢ Convert a standard POS expression into truth table format

¢ Derive a standard expression from a truth table

&

Properly interpret truth table data

Converting SOP Expressions to Truth Table Format

Recall from Section 4-6 that an SOP expression is equal to | only if at least one of the
product terms is equal to 1. A truth table is simply a list of the possible combinations of
input variable values and the corresponding output values (1 or). For an expression with
a domain of two variables, there are four different combinations of those variables (22 = 4),
For an expression with a domain of three variables, there are eight different combinations
of those variables (2° = 8). For an expression with a domain of four variables, there are
sixteen different combinations of those variables (2* = 16), and so on.

The first step in constructing a truth table is to list all possible combinations of binary
values of the variables in the expression. Next, convert the SOP expression to standard
form if it is not already. Finally, place a | in the output column (X) for each binary value
that makes the standard SOP expression a | and place a 0 for all the remaining binary val-
ues. This procedure is illustrated in Example 4-20.

Develop a truth table for the standard SOP expression ABC + ABC + ABC. \

There are three variables in the domain, so there are eight possible combinations of
binary values of the variables as listed in the left three columns of Table 4-6. The \
binary values that make the product terms in the expressions equal to 1 are

ABC: 001; ABC: 100; and ABC: 111. For each of these binary values, place a 1 in \
the output column as shown in the table. For each of the remaining binary combina-
tions. place a O in the output column.

BooLEAN ExPRESSIONS AND TRUTH TABLES + 197

TABLE 4-6 INPUTS
B :) PRODUCT TERM
0 0 0 0
0 0] 1 ABC
0 l 0 0
0 | | 0
1 0 0 1 ABC
| 0 | 0
I I 0 0
[|] I ABC

Related Problem

Create a truth table for the standard SOP expression ABC + ABC.

Converting POS Expressions to Truth Table Format

Recall that a POS expression is equal to 0 only if at least one of the sum terms is equal to
0. To construct a truth table from a POS expression, list all the possible combinations of bi-
nary values of the variables just as was done for the SOP expression. Next, convert the
POS expression to standard form if it is not already. Finally, place a 0 in the output column
(X) for each binary value that makes the expression a 0 and place a | for all the remaining

binary values. This procedure is illustrated in Example 4-21.

EXAMPLE 4-21

Solution

TABLE 4-7

Determine the truth table for the following standard POS expression:

A+B+C)A+B+C)A+B+C)YA+B+C)A+B+C)

There are three variables in the domain and the cight possible binary values are listed
in the left three columns of Table 4-7. The binary values that make the sum terms in
the expression equal to O are A + B + C: 000: A B+ C:010;A + B + C:011;
A+ B+ C:10l;and A + B + C: 110. For each of these binary values, place a 0 in
the output column as shown in the table. For cach of the remaining binary combina-
tions, place a | in the output column.

INPUTS OuUTPUT

A B C X SUM TERM
0 0 0 0 (A + B+ O
0 0 | 1

0] 0 0 (A+ B+ 0O
0 | 1 0 (A+B+0)
I 0 0 |

I 0 I 0 (A+ B+ C)
I 1 0 0 (A+B+0)
I I 1 n

198 ¢ BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Notice that the truth table in this example is the same as the one in Example 4-20. |
This means that the SOP expression in the previous example and the POS expression
in this example are equivalent.

Related Problem Develop a truth table for the following standard POS expression: l
(A+B+C)A+B+C)A+B+0C)]

Determining Standard Expressions from a Truth Table

To determine the standard SOP expression represented by a truth table, list the binary val-
ues of the input variables for which the output is 1. Convert each binary value to the corre-
sponding product term by replacing each 1 with the corresponding variable and each 0
with the corresponding variable complement. For example, the binary value 1010 is con-
verted to a product term as follows:

1010 —> ABCD
If you substitute, you can see that the product term is 1:
ABCD=1-0-1-0=1-1-1-1=1

To determine the standard POS expression represented by a truth table, list the binary
values for which the output is 0. Convert each binary value to the corresponding sum term
by replacing each 1 with the corresponding variable complement and each 0 with the cor-
responding variable. For example, the binary value 1001 is converted to a sum term as
follows:

100l —> A+ B+ C+D
If you substitute, you can see that the sum term is 0:

A+B+C+D=1+0+0+1=0+0+0+0=0

EXAMPLE 4-22 From the truth table in Table 4-8, determine the standard SOP expression and the
‘ equivalent standard POS expression.

TABLE 4-8

INPUTS OUTPUT
A B C X

0 0 0 0
0 0 1 0
0 | 0 0
0 1 ! I
| 0 0 1
1 0 | 0
| ! 0 1
1 1 L I

THE KARNAUGH Map ¢ 199

olution There are four 1s in the output column and the corresponding binary values are 011,
100, 110, and 111. Convert these binary values to product terms as follows:

011 > ABC
100 —> ABC
110 — ABC
3 =~ ABC

The resulting standard SOP expression for the output X is
X = ABC + ABC + ABC + ABC

For the POS expression, the output is O for binary values 000, 001, 010, and 101.
Convert these binary values to sum terms as follows:

000 — A+B+C
00l — A+B+C ’
pif — A+ B+ C
10l — A+ B+ C
The resulting standard POS expression for the output X 1s
X=A+B+CO)A+B+COA+B+CO)A+B+0)
Helated Froblem By substitution of binary values, show that the SOP and the POS expressions derived

in this example are equivalent; that is, for any binary value each SOP and POS term
should either both be 1 or both be 0, depending on the binary value.

'SECTION 4-7 1. If a certain Boolean expression has a domain of five variables, how many binary val-
CHECKUP ues will be in its truth table?

2. In a certain truth table, the output is a 1 for the binary value 0110. Convert this bi-
nary value to the corresponding product term using variables W, X, Y, and Z.

3. In a certain truth t;ible, the output is a 0 for the binary value 1100. Convert this bi-
niary value to the corresponding sum term using variables W, X, Y, and Z.

4-8 THE KARNAUGH MAP

A Karnaugh map provides a systematic method for simplifying Boolean expressions
and, if properly used, will produce the simplest SOP or POS expression possible,
known as the minimum expression. As you have seen, the effectiveness of algebraic
simplification depends on your familiarity with all the laws, rules, and theorems of
Boolean algebra and on your ability to apply them. The Karnaugh map, on the other
hand, provides a “cookbook’ method for simplification. Other simplification tech-
niques include the Quine-McClusky method and the Espresso algorithm.

After completing this section, you should be able to
+ Construct a Karnaugh map for three or four variables
* Determine the binary value of each cell in a Karnaugh map
+ Determine the standard product term represented by each cell in a Karnaugh map

+ Explain cell adjacency and identify adjacent cells

200 +* BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

The purpose of a Karnaugh map is to
simplify a Boolean expression.

Cells that differ by only one variable
are adjacent.

Cells with values that differ by more
than one variable are not adjacent.

A Karnaugh map is similar to a truth table because it presents all of the possible val-
ues of input variables and the resulting output for each value. Instead of being organized
into columns and rows like a truth table, the Karnaugh map is an array of cells in which
each cell represents a binary value of the input variables. The cells are arranged in a way so
that simplification of a given expression is simply a matter of properly grouping the cells.
Karnaugh maps can be used for expressions with two, three, four, and five variables, but
we will discuss only 3-variable and 4-variable situations to illustrate the principles. Section
4-10 deals with five variables using a 32-cell Karnaugh map.

The number of cells in a Karnaugh map, as well as the number of rows in a truth table,
is equal to the total number of possible input variable combinations. For three variables,
the number of cells is 2* = 8. For four variables, the number of cells is 2% = 16.

The 3-Variable Karnaugh Map

The 3-variable Karnaugh map is an array of eight cells, as shown in Figure 4-23(a). In this
case, A, B, and C are used for the variables although other letters could be used. Binary val-
ues of A and B are along the left side (notice the sequence) and the values of C are across
the top. The value of a given cell is the binary values of A and B at the left in the same row
combined with the value of C at the top in the same column. For example, the cell in the
upper left corner has a binary value of 000 and the cell in the lower right corner has a
binary value of 101. Figure 4-23(b) shows the standard product terms that are represented
by each cell in the Karnaugh map.

FIGURE 4-23 c c
1 y 0 | 0 1
A 3-variable Karnaugh map showing Al as
product terms. 00 00 | ABC | ABI
01 L 0l | ABC | AB
11 F 11 | AB(\BC
10 10 | ABC | ABC

(@) (b)

The 4-Variable Karnaugh Map

The 4-variable Karnaugh map is an array of sixteen cells, as shown in Figure 4-24(a). Bi-
nary values of A and B are along the left side and the values of C and D are across the top.
The value of a given cell is the binary values of A and B at the left in the same row com-
bined with the binary values of C and D at the top in the same column. For example, the
cell in the upper right corner has a binary value of 0010 and the cell in the lower right cor-
ner has a binary value of 1010. Figure 4-24(b) shows the standard product terms that are
represented by each cell in the 4-variable Karnaugh map.

Cell Adjacency

The cells in a Karnaugh map are arranged so that there is only a single-variable change be-
tween adjacent cells. Adjacency is defined by a single-variable change. In the 3-variable
map the 010 cell is adjacent to the 000 cell, the 011 cell, and the 110 cell. The 010 cell is
not adjacent to the 001 cell, the [11 cell, the 100 cell, or the 101 cell.

Physically, each cell 1s adjacent to the cells that are immediately next to it on any of its
four sides. A cell is not adjacent to the cells that diagonally touch any of its corners. Also,

THE KARNAUGH Map ¢+ 201

CcD CD FIGURE 4-24
00 01 [10 apS. 00 0l Il 10 T

e AN A 4-variable Karnaugh map.

00 00

0] 01

11 11)

10 LG)
(a) (b)

the cells in the top row are adjacent to the corresponding cells in the bottom row and the
cells in the outer left column are adjacent to the corresponding cells in the outer right col-
umn. This is called “wrap-around” adjacency because you can think of the map as wrap-
ping around from top to bottom to form a cylinder or from lett to right to form a cylinder.
Figure 4-25 illustrates the cell adjacencies with a 4-variable map, although the same rules
for adjacency apply to Karnaugh maps with any number of cells.

D 7 FIGURE 4-25

AL 0 ,,'UO __,01 L LA L0 Adjacent cells on a Karnaugh map

v e wfw «be <7 are those that differ by only one
(o1 \ , - variable. Arrows point between
e Yo lg el ol ® o adjacent cells.

The Quine-McClusky Method

Minimizing Boolean functions using Karnaugh maps is not applicable for more than five
variables and practical only for up to four variables. Also, this method does not lend itself
to be automated in the form of a computer program.

The Quine-McClusky method is more practical for logic simplification of functions
with more than four or five variables. It also has the advantage of being easily imple-
mented with a computer or programmable calculator.

The Quine-McClusky method is functionally similar to Karnaugh mapping, but the tab-
ular form makes it more efficient for use in computer algorithms, and it also gives a way to
check that the minimal form of a Boolean function has been reached. This method is some-
times referred to as the tabulation method. An introduction to the Quine-McClusky method
is provided in Appendix C.

Espresso Algorithm

Although the Quine-McCluskey method is well suited to be implemented in a computer
program and can handle more variables than the Karnaugh map method, the result is still
far from efficient in terms of processing time and memory usage. Adding a variable to the
function will roughly double both of these parameters because the truth table length in-
creases exponentially with the number of variables. Functions with a large number of vari-
ables have to be minimized with other methods such as the Espresso logic minimizer,
which has become the de facto world standard.

202 + BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Compared to the other methods, Espresso is essentially more efficient in terms of re-
ducing memory usage and computation time by several orders of magnitude. There is es-
sentially no restrictions to the number of variables, output functions, and product terms of
a combinational logic function. In general, tens of variables with tens of output functions
can be handled by Espresso.

The Espresso algorithm has been incorporated as a standard logic function minimiza-
tion step in most logic synthesis tools for programmable logic devices. For implementing a
tunction in multilevel logic, the minimization result is optimized by factorization and
mapped onto the available basic logic cells in the target device, such as an FPGA (Field-
Programmable Gate Array).

SECTION 4-8 1. In a 3-variable Karnaugh map, what is the binary value for the cell in each of the fol-
CHECKUP lowing locations:

(@) upper left corner (b) lower right corner

(©) lower left corner (d) upper right corner

2. What is the standard product term for each cell in Question 1 for variables X, Y, and Z?
3. Repeat Question 1 for a 4-variable map.
4. Repeat Question 2 for a 4-variable map using variables W, X, Y, and Z.

2 |

4-9 KARNAUGH MaAprP SOP MINIMIZATION

As stated in the last section, the Karnaugh map is used for simplifying Boolean ex-
pressions to their minimum form. A minimized SOP expression contains the fewest
possible terms with the fewest possible variables per term. Generally, a minimum SOP
expression can be implemented with fewer logic gates than a standard expression.

After completing this section, you should be able to
+ Map a standard SOP expression on a Karnaugh map
+ Combine the 1s on the map into maximum groups
+ Determine the minimum product term for each group on the map
+ Combine the minimum product terms to form a minimum SOP expression

+ Convert a truth table into a Karnaugh map for simplification of the represented
expression

+ Use “don’t care” conditions on a Karnaugh map

Mapping a Standard SOP Expression

For an SOP expression in standard form, a 1 is placed on the Karnaugh map for each
product term in the expression. Each | is placed in a cell corresponding to the value of a
product term. For example, for the product term ABC, a 1 goes in the 101 cell on a 3-variable
map.

When an SOP expression is completely mapped, there will be a number of 1s on the
Karnaugh map equal to the number of product terms in the standard SOP expression. The
cells that do not have a 1 are the cells for which the expression is 0. Usually, when work-

KARNAUGH MAap SOP MiNIMIZATION * 203

ing with SOP expressions, the Os are left off the map. The following steps and the illustra-
tion in Figure 4-26 show the mapping process.

Step 1: Determine the binary value of each product term in the standard SOP expres-
sion. After some practice, you can usually do the evaluation of terms mentally.

Step 2: As each product term is evaluated, place a 1 on the Karnaugh map in the cell
having the same value as the product term.

c ’ FIGURE 4-26
AB 0 ! \BC + ABC + ABC + AB(s -
i 000 001 110 100 Example of mapping a standard SOP
00| | tep— | . expression.
0l
11 =
10
EXAMPLE 4-23 Map the following standard SOP expression on a Karnaugh map:
ABC + ABC + ABC + ABC
Solution Evaluate the expression as shown below. Place a 1 on the 3-variable Karnaugh map in
Figure 4-27 for each standard product term in the expression.
ABC + ABC + ABC + ABC
001 010 110 111
FIGURE 4-27
C
00 | A
|
01 -~ ——— AR ‘
L1 - | = VB(
10) B
Related Problem Map the standard SOP expression ABC + ABC + ABC on a Karnaugh map.
EXAMPLE 4-24 Map the following standard SOP expression on a Karnaugh map:

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Solution Evaluate the expression as shown below. Place a 1 on the 4-variable Karnaugh map in
Figure 4-28 for each standard product term in the expression.

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
0011 0100 1101 111l 1100 0001 1010

204

e

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Related Problem

ARCD ‘

CD £ 11
AB 00 ol / 10
4 —
00 | | ot——3— ABCD
or | ‘
\Bep =
|1 | | \
- o 4 L
\BCD — { \
10 / \". —t—ABCD
/ |
T T {
\BCD \BCD

FIGURE 4-28

Map the following standard SOP expression on a Karnaugh map:

ABCD + ABCD + ABCD + ABCD l

Mapping a Nonstandard SOP Expression

A Boolean expression must first be in standard form betore you use a Karnaugh map. If an
expression is not in standard form, then it must be converted to standard form by the pro-
cedure covered in Section 4—6 or by numerical expansion. Since an expression should be
evaluated before mapping anyway, numerical expansion is probably the most efficient ap-
proach.

Numerical Expansion of a Nonstandard Product Term Recall that a nonstandard
product term has one or more missing variables. For example, assume that one of the prod-
uct terms in a certain 3-variable SOP expression is AB. This term can be expanded numer-
ically to standard form as follows. First, write the binary value of the two variables and
attach a 0 for the missing variable C: 100. Next, write the binary value of the two variables
and attach a | for the missing variable C: 101. The two resulting binary numbers are the
values of the standard SOP terms ABC and ABC.

As another example, assume that one of the product terms in a 3-variable expression
is B (remember that a single variable counts as a product term in an SOP expression).
This term can be expanded numerically to standard form as follows. Write the binary
value of the variable; then attach all possible values for the missing variables A and C as
follows:

010
011
110
111

The four resulting binary numbers are the values of the standard SOP terms ABC', ABC) ABE,
and ABC.

| EXAMPLE 4-25

Solution

Related Problem

KARNAUGH MAp SOP MINIMIZATION ¢ 205

Map the following SOP expression on a Karnaugh map: A + AB + ABC.

The SOP expression is obviously not in standard form because each product term does ‘
not have three variables. The first term is missing two variables, the second term is
missing one variable, and the third term is standacd. First expand the terms numeri-
cally as follows: \
A +AB + ABC
000 100 110 ‘
001 101
010
(1181

Map each of the resulting binary values by placing a | in the appropriate cell of the 3-
variable Karnaugh map in Figure 4-29. ‘

FIGURE 4-29

ABN_ 0 ! ’

00 | |

0l l |

Map the SOP expression BC + AC on a Karnaugh map. ’

EXAMPLE 4-26

Solution

Map the following SOP expression on a Karnaugh map: '
BC + AB + ABC + ABCD + ABCD + ABCD
The SOP expression is obviously not in standard form because each product term does ‘
not have four variables. The first and second terms are both missing two variables, the
third term is missing one variable, and the rest of the terms are standard. First expand
the terms by including all combinations of the missing variables numerically as ‘
follows:
BC + AB + ABC + ABCD + ABCD + ABCD
0000 1000 1100 1010 0001 1011 |
0001 1001 1101
1000 1010 ‘
1001 1011
Map each of the resulting binary values by placing a 1 in the appropriate cell of

the 4-variable Karnaugh map in Figure 4-30. Notice that some of the values in the ‘
expanded expression are redundant.

http:expressi.on

206 + BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Related Problem

FIGURE 4-30

cD \
AB 00 01 11 10

00 | |

01

TR ‘

Map the expression A + CD + ACD + ABCD on a Karnaugh map.

Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible terms with the fewest
possible variables is called minimization. After an SOP expression has been mapped, a min-
imum SOP expression is obtained by grouping the 1s and determining the minimum SOP ex-
pression from the map. (For simplification of POS expressions, see Appendix B.)

Grouping the 1s You can group s on the Karnaugh map according to the following
rules by enclosing those adjacent cells containing ts. The goal is to maximize the size of
the groups and to minimize the number of groups.

1. A group must contain either 1, 2, 4, §, or 16 cells, which are all powers of two. In
the case of a 3-variable map, 2° = 8 cells is the maximum group.

2. Each cell in a group must be adjacent to one or more cells in that same group, but
all cells in the group do not have to be adjacent to each other.

3. Always include the largest possible number of 1s in a group in accordance with rule 1.

4. Each 1 on the map must be included in at least one group. The 1s already in a group
can be included in another group as long as the overlapping groups include non-
common 1s.

EXAMPLE 4-27

AB 0 ! AB

00

01

11

10

(a) (b)

0l

Group the s in each of the Karnaugh maps in Figure 4-31. l

C cD cD ‘
0 1 AB 00 01 171 10 AB 00 01 1l 10
00 | ! 00 I I 00 | |

01 1 | 01)

1 \

11 11 11 ‘
10 10 | | 10 !

© () o ' ~

FIGURE 4-31

AB
00

01

10

(a)

KARNAUGH MAP SOP MINIMIZATION + 207

Solution The groupings are shown in Figure 4-32. In some cases, there may be more than one
way to group the Is to form maximum groupings.

Wrap-around adjacency Wrap-artund adjacency
! —y

C cD co | ,
" AN /00 o1 11 \10

ﬁl/‘L 00 1 1 00] Wl\ /1—

a
10/) oD EDEITIRNE
Q 1 11 /l\ 11 11 L IJ

10 (l @H 10 CD 10__1/

£
=
o

(b) (c) (d)

FIGURE 4-32

Helated Problem Determine if there are other ways to group the Is in Figure 4-32 to obtain a minimum
number of maximum groupings.

Determining the Minimum SOP Expression from the Map When all the 1s rep-
resenting the standard product terms in an expression are properly mapped and
grouped, the process of determining the resulting minimum SOP expression begins.
The following rules are applied to find the minimum product terms and the minimum
SOP expression:

1. Group the cells that have 1s. Each group of cells containing 1s creates one product
term composed of all variables that occur in only one form (either uncomple-
mented or complemented) within the group. Variables that occur both uncomple-
mented and complemented within the group are eliminated. These are called
contradictory variables.

2. Determine the minimum product term for each group.

a.

b.

For a 3-variable map:

(1) A l-cell group yields a 3-variable product term

(2) A 2-cell group yields a 2-variable product term

(3) A 4-cell group yields a -variable term

(4) An 8-cell group yields a value of 1 for the expression
For a 4-variable map:

(1) A I-cell group yields a 4-variable product term

(2) A 2-cell group yields a 3-variable product term

(3) A 4-cell group yields a 2-variable product term

(4) An 8-cell group yields a 1-variable term

(5) A l6-cell group yields a value of 1 for the expression

3. When all the minimum product terms are derived from the Karnaugh map, they are
summed to form the minimum SOP expression.

208

* BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

EXAMPLE 4-28
resulting minimum SOP expression.

Determine the product terms for the Karnaugh map in Figure 4-33 and write the

Solution

Related Problem

FIGURE 4-33 8
AB 00 01 LT 10 \
00 1 |
b — T
'\
01 | | 1 j
(" D
11 Ll ﬂ | 1 "
7
o] I
\\ -
WD

Eliminate variables that are in a grouping in both complemented and uncomplemented
forms. In Figure 4-33, the product term for the 8-cell group is B because the cells ‘
within that group contain both A and A, C and C. and D and D, which are eliminated.

The 4-cell group contains B, B, D, and D, leaving the variables A and C, which form

the product term AC. The 2-cell group contains B and B. leaving variables A, C, and D .
which form the product term ACD. Notice how overlapping is used to maximize the
size of the groups. The resulting minimum SOP expression is the sum of these product
terms: ‘

B+ AC + ACD

For the Karnaugh map in Figure 4-33. add a 1 in the lower right cell (1010) and
determine the resulting SOP expression. \

EXAMPLE 4-29

Determine the product terms for each of the Karnaugh maps in Figure 4-34 and write
the resulting minimum SOP expression.

.‘..’7:"’) A { AC
G / . c CD cD /
AB 0/ 1 AB 0 [¥ AB 00 / 01 ol 10 AB 00/ 0l I 10
I / F—— ’7
00 @ / 00 @ I 00 |{ 1 I 00| 1 1
A 1 A~ AB
01 | 0l b 0l 1 1)] u o1 |1] ‘ 1
| :
1! 1) 11 m*‘ v I 11 | IJ I
3
10 \ 10 |(1 1\ 10 1 1 0] | \ 1 1
(@D ANG
\.‘ V\\ 3 N \ 7
A\l \BD B(18¢(
(a) (b) (c) (d)

FIGURE 4-34 ’

