

Author Thomas L. Floyd

Year 2009

Title of Article/Chapter Boolean Algebra And Logic Simplification

Title of Journal/Book Digital Fundamentals

Vol/part/pages 173-208

Publisher Pearson Prentice Hall

This Digital Copy has been made under the terms of a CLA licence

which allows you to:

Access and download a copy

Print out a copy

ISBN/ISSN: 9780138146467

- -

B O O LE AN O PER ATIONS AND E XP RESSIONS • 173

4-1 BOOLEAN OPERATIONS AND EXPRESSIONS

Boolean algebra is the mathemat ics o f digita l . ystems. A basic kn owleuge of Boolean
algebra is indispensable to the st Idy anu analysis of logic ci rcuits . III the last chaptcr,
Boolean operati ons and expr ss io l1 s in terms of their re lationship to NOT. AND, OR.
NAND, and R gates we re introduced.

After completing thi s sectio n. you should be able to

• Define variable

• Define literal

• Identify it SUIll te rm

• Evalua tc a sum term

• Idcntify a product term

• Eva luate a product te rlll

• Explain Boolean audition

• Explain Boolean mul tip li cation

Variable, complement. and literal are terms used in Boo lean algebra. A variable is a sym
vas in bol (usually an italic uppercase letter or word) used to repre~ent all ac tion, a condit ion, or
Iy as data, Any single variable can ha e o nl y a lor a 0 value. The complement is the inverse of a
sa con variable and is indic~ted by a bar ove~the variable (overbar).:... -or example. the complement
ling the of the variable A is A. If A = I, then A = O. If A = 0, then A = 1. T he complement of the
first to variable A is read as "not A" or "A bar." Sometimes a prime ~Ylllbol rather th an an over-bar is
ic lIsed to denote the complement of a variabl e; for example, B' indicates the complement of B.
ed A III this book, onl y the overbar is used, A literal is a variable or the complement of a variabl e.

s of Boolean Addition
uits.

Recall from C hapter 3 that Boolean ~lddjtion is equiva le nt to the OR operation and the:oolean
basic rules are illustrated wi th the ir relation to the OR gate as follows: I also

,cts of
o + () = () 0 + 1 = 1 1+ 0=1 I + I = I

ogram- QJ QJ
In Boolean aJgebra, a sum term is a sum of lite ral s. In logic circuits . a sum term is pro

)from duced by an OR ~erati ol l w it~no Al'i.D operatio ns iJ~olved. SOIlIC examples of sum terms
let areA + B, A + B. A + B + C. and A + B + C + D,
lOct A sum term is equa l to I when one or more of the lite rals ill the term are I. A sum term
land is equal to 0 only it' each of the literals is O.
~oss i ble
refore, in
BCD to

COMPUTER NOTE

In a microprocessor, the arithmetic
logic unit (ALU) performs ari thmetic
and Boolea n logic operations on digital
data as directed by program
instructions . Logical operations are
equivalen t to the basic gate operations
that you are fami liar with but deal with
a min imum of 8 bits at a tim e.
Exampl es of Boolean log ic instruct ions
are AND, OR, NOT, and XOR, which are
called mn emonics. An assembly
language program uses the mnemonics
to specify an operation. Another
program called an assembler translates
the mnemonics into a binary cod e that
can be und erstood by the
microprocessor.

The OR operation is the Boolean
form of addition .

EXAM PH 4-1 Determine the values of A, B, C. and D that make the sum term A + B + C + D equal to O.)shown
I. a/u/ion 	 For the sum term to be n, each of the literals in the term mu st be O. Therefore, A = 0,

B = 1 so that B = O. C = 0, and D = 1 So that D = O.

A +B + C +D = O + I + 0 + I = 0 + 0 + 0 +0=0

174 • BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Associam

This law st;
SECTION 4-1 the groupill 1.lfA=O,whatdoesAequal?
CHECKUP

2. Determine the values of A, B, and C that make the sum term A+ B + C equal to O.Answers are at the end of the

chapter. 3. Determine the values of A, B, and C that make the product term ABC equal to 1.

"

4-2 LAWS AND RULES OF BOOLEAN ALGEBRA

As in other areas of mathematics, there are certain well-developed rules and laws that
must be followed in order to properly apply Boolean algebra. The most important of
these are presented in thi s section.

After completing this section, you should be able to

• Apply the commutative laws of addition and multiplication

• Apply the associative laws of addition and multiplication

• Apply the distributive law

• Apply twelve basic rules of Boolean algebra

J:J

The ass

This law st
ing more tl

.Related Problem Determine the values of A and B that make the sum term A + B equal to O.

*Answers are at the end of the chapter.

The AND operation is the Boolean
Corm of multiplication.

Boolean Multiplication

Also recall from Chapter 3 that Boolean multiplication is equivalent to the AND opera
tion and the bas ic rules are illustrated with their relation to the AND gate as follows:

0-0=0 O-j=O j-O=O 1-1=1

tjJtjJtjJtjJ

In Boolean algebra, a product term is the product of literals. In logic circuits, a prod

uct term is produced by an AN!2 operation w~h 12..0 OR operations involved . Some exam
ples of product terms are AB, AB, ABC, and ABCD.

A product term is equal to I only if each of the literals in the term is 1. A product term
is equal to 0 when one or more of the literals are O.

Laws of1

The basic h
the associa
same as in
the number

Commutal

This law st
member, in
the same. F
that it doesl
alent to.")

;=r

T he con~

T his law SI

F igure 4-2

A

8

EXAM PLE 4-2 Determine the values of A, B, C, and D that make the product term ABCD equal to l.

Solution For the product term to be I, each of the literals in the term must be 1. Therefore, A =
1, B = 0 so that B = I , C = 1, and D = 0 so that D = 1.

ABCD = I'
-
0 . 1 . 0

..

= 1 . 1 • 1 . I = 1

Related Problem Determine the values of A and B that make the product term A B equal to 1.

C

J

, opera
's:

, a prod
Ie exaro

uct term

01.

A=

11 to O.

1.

s that
1t of

LAWS AND R ULES OF

Laws of Boolean Algebra

The basic laws of Boolean algebra-the commutative laws for addition and multiplication,
the associath:e laws for addition and multiplication, and the distributive law- are the
same as in ordinary algebra. Each of the laws is illustrated with two or three v3Iiables , but
the number of variables is not limited to this.

Commutative Laws The commutative law ofaddition for two variables is written as

A + B = B +A

This law states that the order in which the variables are ORed makes no difference. Re
member, in Boolean algebra as applied to logic circuits, addition and the OR operation are
the same. Figure 4-1 illustrates the commutative law as applied to the OR gate and shows
that it doesn't matter to which input each variable is applied . (The symbol == means "equiv
alent to.")

FIGURE 4-1

_ 8~8+A
A ---L.../- Application of commutative law of

addition.

The commutative law ofmultiplication for two variables is

AB = BA

This law states that the order in which the variables are ANDed makes no difference.
Figure 4-2 illustrates thi s law as applied to the AND gate.

FIGURE 4- 2
_ 8~BA

Application of commutative law ofII~
multiplication.

Associative Laws The associative law ofaddition is written as follows for three variables:

A + (B + C) = (A + B) + C

This law states that when ORing more than two variables, the result is the same regardless of
tbe grouping of the variables. Figure 4-3 illustrates this law as applied to 2-input OR gates.

II

(A +8)+ C

The associative law ofmultiplication is written as follows for three variables:

ACBC) = CAB)C

This law states that it makes no difference in what order the variables are grouped when A D
ing more than two variables. Figure 4--4 illustrates this law as applied to 2-input AND gates.

A II
AlEC)

11
fi

(AB)e
C C

FIGURE 4-3

Application of associative law of

addition. Open file F04-03 to verify.

Equation 4-4

FIGURE 4-4

Application of associative law of

multiplication. Open file F04-04 to

verify.

BOOLEAN ALGEBRA • 175

Equation 4-1

Equation 4-2

Equation 4-3

176 • B OO LEAN ALG EBRA AND LO GIC SIM PLI FICATION

Equation 4--5

--FI GUR E 4-5

Application of distributive law. Open
file F04-0Sto verify.

TABLE 4-1

Basic rules of Boolean algebra.

FI GUR E 4-6

FI GURE 4- 7

Distributive Law The di stJibutive l aw is written for three variables as follows:

A(B + C) = AB + AC

This law states that ~Ring two or more variables and then ANDi ng the result with a single
variable is equivalent to ANDing the single variable with each of the two or more variables
and then ORing the products. The distributive law also expresses the process of factoring in
which the common variable A is factored out of the product terms, for example, AB + AC =
A(B + C). Figure 4-S illustrLltes the distributive law in terms of gate implementation.

A

8 8

C }--X

X A
A

C

x= A(l l + C) X= AB -! At

Rules of Boolean Algebra

Table 4-1 lis ts 12 basic rules that are useful in manipulating and si mpl ifying Boolean ex
pressions. Ru le ~ I through 9 will be viewed in terms of their application to logic gates.
Rul es 10 through 12 will be derived in terms of the simpler rules and the laws prev iously
discussed.

1. A + O = A 7.

2. A + I = I 8.

3. A' () = O 9.

4. A· I = A 10.

5. ;\ + A = /\ 11.

6. ;\ + A = I 12.

A·A = A

I \ - ; \ = ()

; \ = A

A + AB = 1\
A f fi R = A + H

(A + 8)(1-\ + C) = A + B

A. B. or C (In rr:prcsent a single variab le or a combination of variables.

Rule 1: A + 0 = A A variable ORed with 0 is always eq ual to th e variable. If the input
variahle A is I , the ou tput variable X is I, which is equal to A. If A is 0, the output is 0, which
is also equal to A. Thi s rule is illustrated in Figure 4--6, where the lower input is fixed at O.

A=I =D-.'(= 1 A=0=D- x=oo o

X = A + O=A

Rule 2: A + 1 = 1 A variable ORed with I is always equal to I. A 1 on an input to an
OR gate produces a 1 on lhe output, regardless of the value of the variable on the other
input. Thi" rule is ill u<; trated in Figure 4-7, where the lower input is fixed at I.

A=I =D X=1 A = 0 =D- x= I
I I

X=A+I=I

Rule 3: A·I
an AND gatf
This rule is i

Rule 4: A·
output of tt
are now Is.

Rule 5: A
then 0 + (
puts are tJ-

Rule 6:
then 0 -l

input is

Rule 7
then 0

1 a single
vmiables
'lOring in
+A

on.

Ilean ex
,ic gates .
'eviously

be input
0, which
xed at 0,

Jut to a ll

he other

LAWS AND RULES OF BO OLEAN ALGEBRA • 177

Rule 3: A • 0 = 0 A variable AJ Ded with 0 is always ~qual to O. Any ti me one inp ut to
unAND gate is 0, the outp ut is 0, regardless of the value or the variable on the other input.
This rule is illustrated in f-igurc 8, wher~ the lower input is fi xed at O.

FIGURE 4-8

A=I =L)-- x=o x=oA.:O, =L)-
o n

X=A · ()=()

Rule 4: A • 1 = A A variab le ANDL:d with I is always equal 10 the variable. If A is 0, the
output of the AND gate is O. If A is I, the output of the AND lra te is I because both inputs
are now Is. Th is rule is shown in Figure 4-9, where the lower input is fixed at I.

FIGURE 4- 9
A=O~ 1I= 1=L)-

I~X=() X=I
I

X.",,~ -)=,-\

Rule 5: A + A =A A variable ORed with itse lf is a\w, ys equal to the variable. If A i. 0,
then 0 + 0 = 0; and if A is I, then I + I = I. This is shown in Figure 4-10, where both in
puts are the same variab le.

A=0=D-X=()
A=l

X=1
t\ =n A=J --. -'"

X= 1 +,1= 1

Rule 6: A + A = 1 A va riable ORed with i ~ complement is alwa s equal to I. If A i 0,
thenO + O - O+ I = I.IfAisl,thenl + I = I + 0= 1. See Figure 4-11, where one
input is the complement of the othe r.

FIGURE 4-11
/I=0=D- tI= l=D_ x= 1 _ X=l
A=I A =0

Rule 7: A • A =A A variable ANDed with itsel f is always equal to the variable. If A = 0,
then 0 ' 0 = 0; and if A = I, then 1 . 1 = I. Figure 4-12 illustrates this rule .

FIGURE 4- 12
A=0=L)-- x=() A=I =L)-- X= I
A =0 ·\=1

y =A ' .~ = •. \

178 • 	 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

FIGURE 4-13

FIGURE 4-14

TABLE 4- 2

Ru le 10: A + AB = A. Open file

T04-02 to verify.

Rule 8: A • A= 0 A variable ANDed wi th its complement is always equal to O. Either A
or A will always be 0; and when a 0 is applied to the input of an AND gate, the output will
be 0 also. Figure 4-13 illustrates thi s ru le.

A=l -r\. __ A=U=D
ii=()~X= O -	 X=o

A = I

X=A ' A=()

Rule 9: A = A The double complement of a variable is always equ~l to the variable. !!
you start with the variable A and complement (invert) it once, you get A. If you then take A
and complement (invet1) it, you get A, which is the original variable. This rule is shown in
Figure 4-14 using inverters.

... ~A '" lJ'-.-,. = 	 ~,.:..I\ =oJ'-.-,. =
A = O~A=O A=I ~A=I

A =A

Rule 10: A + AB = A This rule can be proved by applying the distributive law, ruJe 2,
and ru le 4 as follows:

A + AB = A . 1 + AB = A (1 + B) Factoring (distributi ve law)

= A . 1 Rule 2: (l + B) = 1

=A Rule 4 : A . 1 = A

The proof is shown in Table 4-2, whic h shows the truth table and the resulting logic circuit
simplification.

A B AB A + AB

0 () 0 0

() ()0

() 0 :~
1 !

A
straight connectiont equal

Rule 11 : A + As = A + B This rule can be proved as follows :

A + AB 	= (A + AB) + AB Rule 10: A = A + AB

= (AA + AB) + AB Rule 7 : A = AA

= AA + AB + AA + AB Rule 8: adding AA = 0

= (A + A) (A + B) Factoling

= 1 . (A + B) Rule 6: A + A = 1

=A+B Rule 4: drop the 1

The proof is shown in Table 4- 3, which shows the truth table and the resulting logic cir
cuit s implification.

o
o

Rule 12: (j

(A .

The proof i
simplificati

TABLE 4

Rule 12: (A .

o
o
o
o

4-3
DeMor,
importa
matherr
equival l

DEMORGAN'S THEOREMS • 179

TABLE 4- 3 • AS A + A8
Rule 11 : A + AB = A + B. Open

() () () A

0

0 0

I I I
B

() ()

0

L cq uaJ J

Rule 12: (A + B)(A + C) = A + BC This rule can be proved as follows:

(A + B)(A + C) = AA + AC + AB + BC Distributive law

= A + AC + AB + BC Rule 7: AA = A

= A(l + C) + AB + BC Factoring (distributive law)

= A· 1 + AB + BC Rule 2: 1 + C = 1

= A(l + B) + BC Factoring (distributi ve law)

= A . 1 + BC Rule 2: 1 + B = 1

= A + BC Rule 4: A . 1 = A

Theproof is shown in Table 4-4, which shows the truth table and the resulting logic circuit

Either A
Itput will

:triable. If
len take A
shown in

:1W, rule 2,

)gic circuit

file T04-03 to verify.

simplification.

f ABLr '1- 4

Rule 12: (A + B)(A + C) = A + BC Open file T04-04 to verify.

A 8I

0

0

0

0

()

()

I

I

()

0

SECTION 4-2

CHECKUP

C

()

0

I

()

0

I

A + B

()

0

" + C

()

()

(A + 8) (A' + C)

0

0

0

Be

()

()

0

I

()

0

()

equal

A + BC

()

0

0 ~~
1

~~
j

1. Apply the associative law of addition to the expression A + (B + C + D).

2. Apply the distri butive law to the expression A(B + C + D).

4-3 DEMORGAN'S THEOREMS

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an
important part of Boolean algebra. In practical terms, DcMorgan 's theorems provide
mathematical verification of the equivalency of the NAND anclnegative-OR gates and the
equivalency of the NOR and negative-AND gates, which were discussed in Chapter 3.19 logic cir

~

o

180 -;) BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

To apply DeMorgan's theorem, break
the bar over the produd of vari~bles
and (hange the sign from AND to OR.

Equation 4-6

Equation 4-7

flGUR(4 15

Gate equivalencies and the corre·
sponding truth tables that illustrate
DeMorga n's theorems. Notice the
equality of the two output columns
in each table. This shows that the
equivalent ga tes perform the same
logic function.

After completing this section, you should be able to

o State DeMorgan's theorems

• Relate DeMorgan's theorems to the equivalency of the NAND ancl negative-OR
gates and to the equivalency of the NOR and negative-AND gates

• Apply DeMorgan's theorems to the simplification of Boolean expressions

DeMorgan's first theorem is stated as foJ lows:

The complement of a product of vadables is equal to the sum of the complements
of the val"iables.

Stated another way,

The complement of two or more ANDed variables is equivalent to the OR of the
complements of the individual variables.

The formula for expressing thi s theorem fo r two valiables is

XY = X + Y

DeMorgan 's second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements
of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of the
complements of the individual variables.

The formula for expressing this theorem for two variab les is

X + Y = XY

Figure 4-15 shows the gate equivalencies and truth tables fo r Equations 4-6 and 4-7.

x=cY---- 'K =D-- -Xl = X + Y o 0 y y
o

NAND Nega(jve-OR o 1

1 o o

~=D-- X=L)- I 1

0 I

'y X + Y = Y Xl' 0 0

0 0
NOR Negative-AND 0 0 0

() 0

As stated, DeMorgan's theorems also apply to expressions in which there are more than
two variables. The following examples ill ustrate the appl ication of DeMorgan's theorems
to 3-valiable and 4-variable expressions.

Each v;

resent a c(
and Y can
variables,
lowing re

Notice th
which yo

Notice th
again be
gives the

Althougl
Morgan'

Applyi
The foll
algebra

Stcp

Ster

StcI

OR

,Iements

. of the

,Iements

' of the

and 4- 7.

lore than
heorems

EXAMPLE 4-3 Apply D

olution

DEM ORGAN'S THEOREMS • 181

Morgan ' .-; theore lll ~ to the ex pressions XYZ and X Y + Z.

XYZ = x + y + Z

X + y + Z = XYZ

Related Problem Appl DeMorgan's theorem to the express ion X + Y + Z.

EXAM PLE 4-4 Apply DeMorgan's theorem, to the ex press ions WXYZ and W + X + y + Z.

Solution WXYl = VII + X + Y + Z
. --

VII + X + y + Z = WXYZ

Related Pro/JIl'm Apply DcMorgan ' ,. theorem to the expression W X yz.

Each variable in DeMorgan 's theorems as stated in Equations 4-6 and 4-7 can also rep
resent a combinatio n of other variable . . For ex ample, X can be equal to the term AB + C,

and Y can be equal to~ te~ Ai BC So if you can apply OeMorg:lIl's theorem fo r two

va riables as stated by XY = X t Yto the exprcss i ~)n (AB + C)(A + Be), you get the fo l
lowing result:

(AB + CHA + BC) = (A B + C) + (A + 13C)

Notice that in the preceding result you have two terms. AB + C and A BC, to eac h of
which you can agai n apply DeMorgan' s theorem X + Y = XV individua lly, as foll ows:

(AB + C) + (A + BC) = (A S)C + A(BC)

Notice that yo u still have two terms in the express ion to which DcMorgan 's theorem can
again be appli ed. These terms are AB and BC A final application of DeMorgan's theorem
gives the foll owing result:

(AB)C + A(BC) = (A + B) C + A(B + C)

Although this result can be si mplified f urther by the use of Boolean rules and Jaws. De
Morgan's theorems cannot be used any more.

Applying DeMorgan's Theorems

The foll owing procedure illustrates the application of De Morgan's theorems <Jnd Boolean
algebra to the spec ific expression

A + BC + D (E + F)

Step I : 	 Identify the terms to which YOll can apply~)eMorga n 's theare_ms, and think of

each te rm as a single variable. Let A + BC = X and D(E + F) = y.

Step 2: 	 Since X -I Y = X y,

(A + BC) + (D (E + F) = (A + BC)(D(E + F»)

Step 3: 	 Use rule 9 (A = A) to cancel the double bars over the lefr term (tilt ; is not part
of DeMorgan 's theorem).

(A + B)(D(E + F» = (A + BC)(D (E + F»

182 • BOOLEAN ALGEBRA AND l OGIC SIMPLIFICATION

Step 4: Applying DeMorgan's theorem to the second term,

(A + BC)(D(E + F» = (A + BC)(D + (E + »
Step 5: Use rule 9 (A = A) to cancel the double bars over the E + F part of the term.

(A 	+ BC)(D + E + F) = (A + BC)(D + E + F)

The fo llowing three examples will further illustrate how to use DeMorgan's theorems.

EXAMPLE 4-5 Apply DeMorgan's theorems to each of the follow ing expressions:

(a) 	 (A + B + C)D

(b) 	ABC + DEF

(c) AB + CD + EF

\)oluCiOT, (a) Let A ~ B ~ C = X and D = Y. The expression (A + B + C)D is of the form
XY = X + Yand can be rewritten as

(A + B + C) D = A + B + C + D

Next, app ly DeMorgan's theorem to the term A + B + C.

A + B + C + D = ABC + D

(b) 	Let ABC ~~ and DEF = Y. The expression ABC + DEF is of the form
X + Y = XY and can be rewritten as

ABC + DEF = (ABC) (DEF)

Next, apply DeMorgan's theorem to each of the terms ABC and DEF.

(ABC)(DEF) = (A + B + C)(D + E + F)

(c) 	 Let AB = X. CD = ~,~I~d EF = Z. The expression AB + CD + EF is of the
form X + Y + Z = X YZ and can be rewritten as

AB + CD + EF = (AB)(CD)(EF)

Next, apply DeMorgan's theorem to each of the terms AB, CD, and EF.

(AB)(CD)(EF) = (A + B)(C + D)(E + F)

Rel.lled Prabli'm Apply DeMorgan's theorems to the expression ABC + D + E.

EXAMPLE 4-6 Apply DeMorgan's theorems to each expression:

(a) (A + B) + C

(b) (A + B) + CD

So/utiol

(c) (A + B)C D + E + F

=
(a) (A + B) + C = (A + B)C = (A + B)C

(b) (A + B) + CD = (A + B)CD = (AB)(C + D) = AB(C + D)

(c) (A + B)CD + E + F = «A + B)CD)(E + F) = (A B + C + D)EF

Rrlated Problem Apply DeMorgan's theorems to the expression AB(C + D) + E.

EXAM

4-4
Boolea
formed
variou~

After c

• 	 D(

• 	 E\

• 	c.

Boolea

To derive
inputs an,
circuit in

1. 	 T

2. 	 1
tl

. the term.

-rems .

he

BOOLEAN ANALYSIS OF l OGIC CIRCUITS • 183

EX AM PLE 4-7 T he Boolean express ion fo r an excl usive-O R gate is AS + AB. With thi s as a starting
point, use DeMorgan' s theo re ms and any other rul es or laws that are applicable to de
velop an express io n for the exclus ive-NO R gate .

~Olllt/oll Start by comple menting the exclusive-OR ex pression and the n applying DeM organ 's
theorems as fo llows:

AS + AB = (A B)(AB) = (A + S)(A + B) = (A + S)(A + B)

ext, apply the di stributi ve law and rule 8 (A . A = 0).

(A + B)(A + B) = AA AB + AS + BB = AS + AS

Tbe tinal ex pression for the XNOR is liB + AB. Note that thi s expression equals 1
any time both variables are Os or both variables are I s.

Rrlaled Problem Starting with the exp ress ion for a 4-input NAl"\JD gate, use DeMorgan's theorems to
develop an express ion for a 4-inpul negative-OR gate.

SECTION 4-3 1. Apply DeMorgan's theorems to the following expressions:
CHECKUP

(a) ABC + (15 + E) (c) A + B + C + DE

4-4 BOOLEAN ANALYSIS OF lOGIC CIRCUITS

Boolean al gebra provides a concise way to express the operation of a logic circuit

formed by a combination of logic gates so that the output can be determined for

various combinations of input values.

After completing this section, you should be abl e to

• Determ ine the Boolean express ion for a combination of gates

• Evaluate the logic operation of a c ircuit from the Boolean expression

• 	 Construct a truth table

Boolean Expression for a Logic Circuit
To derive the Boolean expression for a given combinational logic circuit, begin at the left-most A combinational logic circuit can be
inputs and work toward the final output, writing the expression for each gate. For the example de.-.criued by a Boolean equation .
circuit in Figure 4-16, the Boolean expression is determined in the following three steps:

I. The expression for the left-most A ND gate with inputs C and D is CD.

2. 	 The output of the left- most A ND gate is one of the inputs to the OR gate and B is

the o ther input. Therefore, the express io n for the OR gate is B + CD.

- -t..._ ./

-------L___' 	

fiGURE 4 - 16C

D A combinational logic circuit show·
ing the develo pment of the Boolea n

8 expression for the output.

184 • BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

A comhin.llionallogic circuit can be
described by a truth table.

3. 	 The output of the OR gate is one of the inputs to the right- most AND gate ancl A is
the other input. Therefore, the express ion for this AND gate is A(B + CD) , which
is the fmal outpu t expression for the entire circuit.

Constructing a Truth Table for a Logic Circuit

Once the Boolean expression for a given logic circuit has been detem1ined, a truth table that
shows the output for all possible values of the input variables can be developed. The procedure
requires that you evaluate the Boolean expression for all possi ble combinations of values for
the input variables. In the case of the circuit in Figure 4-16, there are four input variables
(A, B, C, and D) and therefore sixteen (24 = 16) combinations of values are possible.

Evaluating the Expression To evaluate the expression A(B + CD), first fmd the values
of the vari ables that make the express ion equal to I , using the rules for Boolean addition and
multiplication . In this case, the expression equals I only if A = J and B + CD = I because

A(B + CD) = 1 . 1 = 1

Now determine when the B + CD term equals 1. The term B + CD = 1 if either B = 1 or
CD = I or if both B and CD equal 1 because

B + CD = 1 + 0 = 1

B + CD = 0 + 1 = 1

B + CD = 1 + I

The term CD = 1 only jf C = 1 and D = 1.
To summarize, the expression A(B + CD) = I when A = 1 and B = 1 regard less of the

va lues of C and D or when A = 1 and C = 1 and D = 1 regardless of the value of B. The
expression A(B + CD) = 0 for all other value combinations of the variables.

Putting the Results in Truth Table format The first step is to list the sixteen input
variable combinations of 1s and Os in a binary sequence as shown in Table 4-5. Next, place
a I in the output column for each combination of input variables th at was determined in the
evaluation. Finally, place a 0 in the output co lumn for all other combinatio ns of input vari·
ables. These results are shown in the truth table in Tab le 4-5.

D
0-
C
0-
B
0-
A
0-

TABLE 4-5

Truth table for the logic circuit in
Figu re 4-16.

INPUTS OUTPUTI
A 8 C D A (8 + CD)

() ()0 0 0

0 0 () ()

() () () ()

() 0 0

0 0 () ()

() 0 J ()

0 0 0
() ()

()

()

()

0

() 0

()
4- 5

0 () () Man

0 ex pi

0 0
plcn
th e

0 J an e
0 ancl

cl e\

~. and A is
)), which

table that
procedure
values for
t variables

e.

the values
Idition and
1 because

:r B = I or

Jk,;:, " r the
e of B. The

xteen input
Next, place
ninecl in the
f input va1' i-

SIMP LIF IC ATI O N U SIN G B OO LEAN ALGEBRA • 18 5

EXAMPLE 	4- 8 Use Mullis im to ge nerate tl e tru th table for the logic circuit in Figure 4-16.

Soitlliol 	 Construc t the ci rcuit in M ul tisim and connect the Multisim Logic Convet1er to the

in pu ts and output. as shm n in F ii;ure 4- 17. C lick o n the ~ -+ 1Of1 1conversion
bar, and the truth table appears in the d isplay as shown.

I'rulh luble

0
Q

0
a
D
0
0
1
1
I
1
1

XL Cl

D

AND2

AflC O EF

I
Conv ersions

~

~

00 U 0 0
o 1 0 1

1OT1

1Ol1

1OT1 1AlB

,':',1 8 -+ 'l::,. 1
AlB -. NAND I

002 I 0
00 3 I I
004 0 0
PiH P 1
006 I
00 l I
OD e 0
o0 ~ 	 0
o I 0 I
o 1 1 1
o 12 	 U
oI J 0
01 4 1
o 1 ~ 1

B(\{\le~n exprl!s.~ion

FIGURE 4-17

You can a lso ge nerate the simp li fied Boolean expression from the truth table by

clicki ng on 1Ol1 E!J1 P AIS I.

Related Problem 0 p ' n ulti s illl to create the se tup and clo the conversions shown in this example.

SECTION 4-4 L Rep ace the AND gates with OR gates and the OR gate with an AND gale in Figure
CHECKUP 4-16 and determine the Boolean expression fo r the output.

2. Construct a truth table for the drcuit in Question 1.

4-5 SIMPLIFICATION USING BOOLEAN ALGEBRA

Many times in the application of Boolean a lgebra, you have to reduce a particular
express ion to its simplest form or cbange its form to a more conve nient one to im
plement the ex pression most effic ientl y. The approach take n ill thi s secti o n is to ll se
the bas ic laws . rul es , and theore ms of Boo lean a lgebra to man ipLl lat an d simpli f
an ex press ion. T hi s method depends on a thorough knowledge of Boolean a lgehra
and considerab le pract ice in it s applicat io n. not to mentioll a lilli e ingen ui ty a nd
lleverness.

,

186 • BOOLEAN ALGEBRA AND lOGIC SIMPLIFICATION

After completing this section, you should be able to

• 	 Apply the laws, rules, and theorems of Boolean algebra to simplify general

express ions

A simplified Boolean ex pression lIses the fewest gates possible to implement a given
expression. Examples 4-9 through 4-12 illustrate Boolean simplification.

EXA MPLE 4-9 Using Boolean algebra techniques, simplify lhis expression:

AB + A(B + C) + B(B + C)

SO.!lItion The following is not necessari Iy the only approach.

Step 1: 	 Apply the distributive law to the second and third telms in the expression , as
follows:

AB + AB + AC + BB + Be

Step 2: Apply rule 7 (BB = B) LO the fourth term.

AB + AB + AC + B + BC

Step 3: Apply rule 5 (AB + AB = AB) to the first two terms.

AB + AC + B + BC

Step 4: Apply rule 10 (13 + Be = B) to the last two terms.

AB + AC + B

Step 5: Apply rule 10 (AB + B = B) to the first and third terms.

13 + AC

At this point the expression is simplified as much as possible. Once you gain experi
ence in applying Boolean algebra, you can often combine many individual steps.

Related Proll/em Simplify the Boolean expression AB + A(B + C) + B(B + e).

Simplification means fewer gates for
Ih£' same function.

FJGUR£ 4- 18

Gate circuits for Example 4-9. Open

file F04-18 to verify equivalency.

Figure 4- 18 shows that the simplification process in Example 4-9 has significantly re
duced the number of log ic gates required to implement the express ion. Part (a) shows thaI
five gates are required to implement the expression in its original form ; however, only two EX
gates are needed for the simplified expression, shown in pal1 (b) . It is important to realize
that these two gate circuits are equivalent. That is , for any combination of level s on the A.
B, and C inputs, you get the same output from either circuit.

.1

B +AC
B

(.

(a) 	 (b)
----The~e (wu I:ircui l' ar" ~'1lli\3kl1t.-----'

•

~

~

AB +A(fJ +0 +8W + C)

c

lt a given

n, as

leri

cantly re
hows that
only two
to realize
on the A,

>- 1I +A

SIMPLIFICATION USING BOOLEAN ALGEBRA • 187

EXA MPLE 4-10 Simplify tbe following Boolean expression:

(AB(C + BD) + A'BJC
Note that brackets and parentheses mean the same thing: the term inside is multiplied
(ANDed) with the term outside.

SolutIOn Step 1: Apply the distributive law to the terms within the brackets.

(ABC + ABBD + A B)C

Step 2: Apply rule 8 (BB = 0) to the second term within the parentheses.

(A BC + A . 0 . D + AB)C

Step 3: Apply rule 3 (A . 0 • f) = 0) to the second term within the parentheses.

(ABC + 0 + AB)C

Step 4: Apply rule I (d rop the 0) within the parentheses.

(A BC + AB)C

Step 5: Apply the distributive law.

ABCC + ABC

Step 6: Apply rule 7 (C = C) to the first term.

ABC + ABC

Step 7: actor out Be.

BC(A + A)

Step 8: Apply rule 6 (A A = I).

BC · I

Step 9: Apply rule 4 (drop the I) .

BC

Related Problem Simplify the Boolean expression [AB(C + BD) + AB]CD.

EXAMPLE 4-11 Simplify the following Boolean express ion :

ABC + ABC + ABC + ABC + ABC

a/utiol Step 1: Factor BC oul of the first and last terms.

BC(A + A) + ABC + ABC + ABC

Step 2: Apply rule 6 (A + A = I) to the term in parentheses, and factor AB fro m the
second and last terms.

BC · I + AB(C + C) + ABC

Step 3: Apply rule 4 (drop the I) to the first term and rule 6 (C + C = 1) to the term
in paren theses.

BC + AB . I + ABC

- -

188 • BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Step 4: Apply rule 4 (drop the I) to the second term.

Be + ill +- ABC

Step 5: Factor B from the second and third terms.

BC + B(A + A C)

Step 6 : Apply rule 11 (A + A C = A + C) to the term in parentheses .

BC + S(A + C)

Step 7: Use the distribut ive and commutative laws to get the following expression:

BC + AB + B e

Related Problem Simplify the Boolean expression ABC + ABC + ABC + AB C.

EXAM PlE 4-11 Simplify the following Boo lean expression:

AB + AC + ABC

So/utioll Step 1: Apply DeMorgan 's theorem to the iirst term.

(AB)(AC) + ABC

Step 2: Apply DeMorgan 's theorem to each term in parentheses.

(A + B)(A + C) + ABC

Step 3: Apply the di stributive law to the two terms in parentheses.

AA + AC + AB + B C + ABC

Step 4: Apply rule 7 (A A = A) to the first term, and apply rule 10

[A B + ABC = AR(I + C) = AB] to the third and last terms.

A + A C + AB + B C

Step 5: Apply rule 10 [II + IIC = A(I + C) = X] to the first and second te~m s .

A + AB + B C

Step 6 : Apply rule I () [A + AB = A(1 + Ii) = AJ to the first and second terms.

A +BC

Related Problem Simplify the Boolean ex pres~ i()n AB + AC + AB C.

EX AMPLE 4-13 Use Multisim to perform the logic s implification shown in Figure 4-18.

So/ulioll 	 Step I: C onnect the M 1I1l is i m Logic Converter to the circuit as shown in F igure 4-19.

Step 2: Generate the Lru th tabl e by clicking on =>- -- TOTt I.

Step 3: Generate the simplified Boolean expressio n by clicking on TOTt s ~'P .O.IB I.
Step 4 : Generate the simpliJ ied log ic circllit by c li cki ng on AlB -- ~ I.

All
star
D1a:

mo

Afl

•
•
•

4-6

- -

XLC1

STANDARD FORMS OF BOOLEAN EXPRESSIONS • 189

Ji
(:'Out

0 0
G H

Con v ersions

~ -+ 1OT'1

1OT'1 -+ AI8

s I ~1 P ,0,18

AI8 -+ T01T
,0,18 -+ ~

,0,18 -+ NAr. O

1OT'1 -+

--

-
.'

:C) > AB

5
A A U1

AND2 3

U2 U5

L/'
OR3

-I

AND2

:.0/ ~'~',ur "11'11 rnfiiiJ

0 0 00 c) 0
A. 8 C 0 E F

- - -
I AC +B

(10(1
00 I

0
0

0
0

0
I

0
0 ,':

O D~ 0 I 0 I
00 3 0 I I 1
DD 4 I 0 0 0
OO~ I 0 I I
008 I I 0 I
007 I I I I

.

ABC

FIGUR E 4-19

Related Pmbfen Use Multisim to create the setup and perform the logic s implification illustrated in this
example.

SECTION 4-5 1. Simplify the following Boolean expressions if possible:
CHECKUP (a) A + AB + ABC (b) C4' + B)C + ABC (c) ABC(BD + CDE) + AC

2. Implement each expression in Question 1 as originally stated with the appropriate
logic gates. Then implement the simpl ified expression, and compare the number of
gates.

4-6 STANDARD FORMS OF BOOLEAN EXPRESSIONS

All Boolean expressions , regardless of their form, can be converted into either of two
standard forms: the sum-of-products form or the product-of-sums form. Standardization
makes the evaluation, simplifica tion , and implementation of Boolean expressions much
more systematic and easier.

After completing this section, you should be able to

• Identify a sum-of-products expre, sion

• Determine the domain of a Boolean ex pression

• COllvert any sum-of-products expression to a standard form

19.

l.

190 • BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

An SOP expression can be
lmplrmfllted with anI' OR gate and
two or more AND gates.

<) Evaluate a standard sum-of-products expression in terms of binary values

• Identify a product-of-sums expression

• Convert any product-of-sums expression to a standard form

• Evaluate a standard product-of-sums expression in terms of binary values

• Convert (rom one standard form to the other

The Sum-ot-Products (SOP) Form

A product term was defined in Section 4-1 as a term consisting of the product (Boolean
multiplication) of literals (variables or their complements) . When two or more product
terms are summed by Boolean addition, the resulting expression is a .,urn-or-products
(SOP). Some examples are

AB + ABC

ABC + CDE + BCD

AB + ABC + AC

Also, an SOP ex pression can contain a single-variable term, as in A + ABC + BCD.
Refer to the simplification examples in the las t section, and you will see that each of the
final expressions was either a single product term or in SOP form. In an SOP expression, a
single overbar cannot extend over more than one variable; however, more than one_v~liable
in a term can have an overbar. For example, an SOP expression can have the term ABC but
not ABC.

Domain of a Boolean Expression The domain of a general Boolean expression is
the set of variables contained in the expression in either £omple~ented or uncomple
mented form. For example, the domain of the express i~n AB ~ AB~ is---.!.he set of vari
ables A, B, C and the domain of the expression ABC + CDE + BCD is the set of
variables A , B, C, D , E.

AND/OR Implementation of an SOP Expression Implementing an SOP expression
simply requires ORing the outputs of two or more AND gates. A product term is produced
by an AND operation, and the sum (addition) of two or more product terms is produced
by an OR operation. Therefore , an SOP expression can be implemented by AND-OR
logic in which the outputs of a number (equal to the number of product terms in the
expression) of AND gates connect to the inputs of an OR gate, as shown in Figure 4-20 for
the expression AB + BCD + AC. The output X of the OR gate equals the SOP expression.

FIGURE 4- 20

Implementation of the SOP expres·
sion AB + BCD + AC.

NAND/NAND Implementation of an SOP Expression NAND gates can be used to
implement an SOP expression. By using only NAND gates, an A ND/OR function can be
accomplished , as illustrated in Figure 4-21. T he first level of NAND gates feed into a
NA ND gate that acts as a negative-OR gate. The NAND and negative-OR inversions can
cel and the res ult is effectively an AN D/OR circuit.

A~

B --L-..../

B
C x=All + Bro -"- AC
n
.4 -------r------

C --1 . ~

A

8

B
C
O

II

C

conversi
Any logic
niques. FOI
the distlibt

EXAN

TheStl

So far, y<
all of tt
ABC + 1

notice th
terms of
from the

A sta
each pre
SOP ex]
ered in
Section
verted t

Conve,
that dOl
include
a nonst
6 (A +

Ste]

Ste

http:is---.!.he

(Boolean
: product
products

+ BCD.
:h of the
·ession, a
variable

4BC but

:ssion is
comple
of vari

e set of

pression
roduced
roduced
ND-OR
s in the
~-20 for
ression.

Jsed to
can be
into a

1S can-

STANDARD FORMS OF BOOLEAN EXPRESSIONS • 191

A _---r--..,. 	 FIGURE 4- 2 1

This NAND/NAND implementation is
equivalent to the AND/OR in Figure

B

B
C x = AB + BCD ~ ,Ie 4-20.
D ------/

1\ _ -1""-.....

C ----....-./

Conversion of a General Expression to SOP Form

Any logic expression can be changed into SOP form by applying Boolean algebra tech
niques. For example, the expression A(B + CD) can be converted to SOP form by applying
the distributive law:

A(B + CD) = AB + ACD

EXAMPLE 4-14

~ollJliall

Convert each of the following Boolean expressions to SOP form:

(a) AB + B(CD + EF) (b) (A + B)(B + C + D) (c) (A + B) + C

(a) AB + B(CD + EF) = AB + BCD + BEF l
(b) (A + B)(B + C + D) = AB + AC + AD + BB + BC + BD

(c) (A + B) + C = (A + B)C = (A + B)C = AC + BC

Related Problem Convert ABC + (A + B) (B + C + AB) to sOP form.

The Standard SOP Form
So far, you have seen SOP expressions in which some of the product terms do not contain
~l ~f th~ variaQle~ in the domain of the expression . For example, the expression
ABC + ABD + ABCD has a domain made up of the variables A, B. C, and D. However,
notice that the complete set of varia~es in the domain is not represented in !Ee first two
terms of the expression; that is, D or D is missing from the first term and Cor C is missing
from the second term.

A standatd SOP expression is one in which all J".he vari~~s in the domain appear in
each product term in the expression. For example, ABCD + ABCD + ABC D is a standard
SOP expression. Standard SOP expressions are important in constructing truth tables, cov
ered in Section 4-7, and in the Karnaugh map simplification method, which is covered in
Section 4-8. Any nonstandard SOP expression (referred to simply as SOP) can be con
verted to the standard form using Boolean algebra.

Converting Product Terms to Standard SOP Each product term in an SO P expression
that does not contain all the variables in the domain can be expanded to standard form to
include all variables in the domain and their complements. As stated in the following steps,
a nonsta~dard SOP expression is converted into standard form using Boolean algebra rule
6 (A + A = 1) from Table 4-1: A variable added to its complement equals l.

Step 1: 	 Multiply each nonstandard product tenn by a term made up of the sum of a
missing vmiable and its complement. This results in two product terms. As you
know, you can multiply anything by I without changing its value.

Step 2: 	 Repeat Step I until all resulting product terms contain all variables in the do
main in either complemented or uncomplemented form. In converting a prod
uct term to standard form, the number of product terms is doubled for each
missing variable, as Example 4-15 shows.

- -

192 • BOOLEAN ALGEBRA AND lOGIC SIMPLIFICATION

EXA M PLE 4- 15 	 Convert the following Boolean expression into standard SOP form:

ABC + AB + ABc n

50/lltioll 	 The do~ain of tbi s SOP expression ~A , B. C. D, Take one term at a time~The first
term, ABC, is missing variable D or D, so multiply the first term by D + D as follows:

ABC == ARceD + D) = ABCD + ABCD

In tbis case, two standard product terms are the result.
The second term, IB, is missing variables C or Cand D or D, so first mUltiply the

second term by C + C as follows:

All = AB(C + C) = ABC + ABC

The two resulting terms are missing variabl e D or D, so multiply both terms by D + D
as fol lows:

A B = A lJC + AB C = A BC(D + D) + ABC(D + D)

= ABCD + AlJCD + ABCD + AB C D

In this case, four stan~lrd product terms are the result.
The third term, ABCD, is a lready in standard form. The complete standard SOP

form of the original expression is as follows:

ABC + AB + ABC/) = ABCD + AlJCD + ABCD + ABCD + ABCD + ABCD + ABCD

Related Problem Convert the expression WXY + XYZ + WXY to standard SOP form.

Binary Representation ofa Standard Product Term A standard product term ~ e~131

to I for only one combination of variable values. For example, the product term ABCD is
eq ual to I when A = I , B = 0, C = I , D = 0, as shown below, and is 0 for all other com
binations of values for the va riables.

ABCD = 1 · 0 .] . 0 = I . I . I .] = I

In thi s case, the product term has a binary value of]010 (decimal ten).
Remember, a product term is implemented with an AND gate whose output is J only if

each of its inputs is I. In verters are used to produce the complements of the variab les as re
quired.

An SOP expression is e(Jual to L only if one or more of the product terms in the
expression is equHI to 1.

EXA MPLE 4-16 	 Determine the binary va lues for which the following standard SOP expre ssion is
equal to I:

ABCD + ABCD + ABCD

Su/ution The term ABCD is equal to I when A = I , B = 1, C =], and D = J.

ABCD = J • I . I . J =]

The term fi B CD is eq uaJ to I when A = I , B = 0, C = 0, and D = J.

ABCD = I · 0 · O ·] = I . I .J . 1 = 1

The Prl

A sum te
of literal:
the resull

A POS e:
a POS e:
more tha
have the

Implem
quires A
eration,
Therefo
bel' (equ
of an A
The out

The!

So far
of the

has a
abIes
Dis r

-- - -

,t

JWS:

(he

+ D

BCD

~e~al
BCD is
er com

only if
~s as re-

the

STANDARD FORMS OF BOOLEAN EXPRESSIONS • 193

The term AB e D is equal to I when A = 0, B = 0, C = 0, and D = 0,

A BCD = 0 . 0 . 0 . 0 = I . I . I . I = 1

The SOP expression equals I when any or all of the three product terms is 1.

Re/ale(/ Problem Determine the binary values for which the following SOP expression is equal to I:

XYZ + XYZ + XYZ + XYZ + XYZ

Is this a standard SOP expression?

The Product-of-Sums (POS) Form

A sum term was defined in Section 4-1 as a term consisting of the sum (Boolean addition)
of literals (variables or their complements), When two or more sum terms are multiplied,
the resulting expression is a product-of-sums (POS). Some examples are

(A + B)(A + B + C)

(A + B C)(C + D + E)(B + C + D)

(A + B) (A + B + C) (A + C)

APOS expression can contain a single-variable term, as in A(A + B + C)(B + C + D). In
a POS expression, a s ingle overbar cannot extend over more than one variable; however,
more than one~ari~le i~ a term can have an overbar. For example, a POS expression can
have the term A + B + C but not A + B + c.

Implementation oj a POS Expression Implementing a POS expression simply re
quires ANDing the outputs of two or more OR gates, A sum term is produced by an OR op
eration, and the product of two or more sum terms is produced by an AND operation,
Therefore, a POS expression can be implemented by logic in which the outputs of a num
ber (equal to the number of sum terms in the expression) of OR gates connect to the inputs
of 3n AND gate, as Figure 4-22 shows for the expression (A + B)(B + C + D)(A + C),
The output X of the AND gate equals the POS expression,

rlGURE 4- 21

n - "L-__ Implementation of the pas expres

sion (A + 8)(8 + C + Ol(A + C).B
(' x =(A + (l)(B I- C + D)(A + C)
f)

r

The Standard POS Form

So far, you have seen POS expressions in which some of the sum terms do not contain all
of the variables in the domain of the expression. For example, the expression

(A + B + C)(A + B + D)(A + B + C + D)

has a domain made up of the variables A , B , C, and D. Notice that the complete set of vari
~Jes in the domain is not represented in ~e first two terms of the expression; that is, D or
D is missing from the first term and Core is missing from the second term.

- -

194 • 	 BOOLEAN ALGEBRA AND lOGIC SIMPLIFICATION

A standard POS expression is one in which all the variables in the domain appear in
each sum term in the expression. For example,

(A + B + C + D)(A + B + C + D)(A + B + C + D)

is a standard POS expression. Any nonstandard POS expression (referred to simply as
POS) can be converted to the standard form using Boolean algebra.

Converting a Sum Term to Standard POS Each sum term in a POS expression that
does not contain all the variables in the domain can be expanded to standard form to in
clude all variables in the domain and their complements. As stated in the following steps, a
nons~ndard POS expression is converted into standard form using Boolean algebra rule 8
(A . A = 	 0) from Table 4-\: A variable mUltiplied by its complement equals O.

Step 1: 	 Add to each nonstandard product term a term made up of the product of the
missing variable and its complement. This results in two sum terms. As you
know, you can add 0 to anything without changing its value.

Step 2: 	 Apply rule 12 from Table 4-1: A + BC = (A + B)(A + C)

Step 3: 	 Repeat Step 1 until all resulting sum terms contain all variables in the domain
in either complemented or uncomplemented form.

---~

EXAM PLE 4-17 Convert the following Boolean express ion into standard POS form:

(A + B + C)(B + C + D)(A + B + C + D)

oiution 	 The domai~of this POS ex pression is A, B,S;, D. Take ~e term at a time. The first
term, A + B + C, is missing variable D or D, so add DD and apply rule 12 as follows:

A + B + 	C = A + B + C + DD = (A + B + C + D)(A + B + C + D)

The second term, B + C + D, is missing variable A or A, so add AA and apply rule
12 as follows:

B + C + D = B + C + D + AA = (A + B + C + D)(A + B + C + D)

The third term, A + B + C + D , is already in standard form. The standard POS
form of the original expression is as follows:

(A + B + C)(R + C + V)(A + B + C + D) =

(A + B + C + D)(A + B + C + D) (A + B + C + D)(A + B + C + D)(A + B + C + D)

Related tlmblem Convert the expression (A + B) (B + C) to standard POS form.

Binary Representation of a Standard Sum Term A standard sum term i~ equal to .Q
for only one combination of variable values. For example, the sum term A + B + C + D
is 0 when A = 0, B = 1, C = 0, and D = 1, as shown below, and is 1 for all other combi
nations of values for the variables.

A+B+C+D=O+ I+O+J = O+O+O+O=O

In this case, the sum term has a binary value of 0 I 0 I (dec imalS) . Remember, a sum term
is implemented with an OR gate whose output is 0 only if each of its inputs is O. Inverters
are lISed to produce the complements of the variables as required.

A POS expression is equal to 0 only if one or more of the sum terms in the
expression is equal to O.

EX

Convl

The biJ
in the (
in the:
from s

Ste

Ste

Stf

Using

E

- - -- -

Jpear in

nply as

ion that
n to in
steps, a
a rule 8

t of the
As you

domain

ule

D)

'II to 0
~ + D
ombi

1 term
'erters

STANDARD fORMS O F B OOLEAN EXPRESSIONS • 195

EXAM PLE 4-18 	 Determine the binary values of the variables for which the following standard POS
expression is equal to 0:

(A + B + C + D)(A + B + C + D)(A + B + C + D)

50/utitm The term A + B + C + D is equal to 0 when A = 0, B = 0, C = 0, and D = O.

A+B+C+D=O+O+O+O=O

The term A + B + C + D is equal to 0 when A = 0, B = 1, C = 1, and D = O.

A +B +C+D = 0+1+1+0=0+0+0+0=0

The term A + B + C + D is equal to 0 when A = 1, B = 1, C = 1, and D = 1.

A + B+C+D = 1 + 1 + 1+1=0+0+0+0=0

The POS expression equals 0 when any of the three sum terms equals O.

Relilled Prob/cff, Determine the binary values for which the following POS expression is equal to 0:

ex + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)

Is this a standard POS expression?

Converting Standard SOP to Standard POS

The binary values of the product terms in a given standard SOP expression are not present
in the equivalent standard POS expression. Also, the binary values that are not represented
in the SOP expression are present in the equivalent POS expression. Therefore, to convert
from standard SOP to standard POS , the following steps are taken:

Step 1: Evaluate each product term in the SOP expression. That is, determine the bi
nary numbers that represent the product terms.

Step 2: Determine all of the binary numbers not included in the evaluation in Step I.

Step 3: Write the equivalent sum term for each binary number from Step 2 and express
in POS form.

Using a similar procedure, you can go from POS to SOP.

EXAMPLE 4-19 Convert the following SO P expression to an equivalent POS expression:

ABC + ABC ABC + ABC + ABC

!loll/cion The evaluation is as follows:

000 + 010 + 0 I I + 101 + 111

Since there are three variables in the domain of this expression, there are a total of
eight (23

) possible combinations. The SOP expression contains five of these combi
nations, so the POS must contain the other three which are 001, 100, and 110.
Remember, these are the binary values that make the sum term O. The equivalent
POS expression is

(A + B + C) (A + B + C)(A 	+ B + C)

Related Problem 	 Verify that the SOP and POS expressions in this example are equivalent by substituting
binary values into each.

196 • 	 BOOLEAN ALGEBRA AND lOGIC SIMPLIFICATION

SECTlON 4- 6 1. Identify each of the following expressions as SOP, standard SOP, pas, or standard
CHECKU P pas:

(a) AB + ABD + ACD (b) (A + B + C)(A + B + C)
(c) ABC + ABC (d) (A + C)(A + B)

2. Convert each SOP expression in Question 1 to standard form.

3. Convert each pas expression in Question 1 to standard form.

4- 7 BOOLEAN EXPRESSIONS AND TRUTH TABLES

All standard Boolean expressions can be easily converted into truth table fonnat using
binary values for each term in the expression. The truth table is a common way of pre
senting, in a concise format, the logica l operation of a circuit. Also, standard SOP or
POS expressions can be determined from a truth table. You will find truth tables in
data sheets and other literature related to the operation of digital circuits.

After completing this section, you should be able to

• Convert a standard SOP expression into truth table format

• Convert a standard POS expressioll into truth table format

• Derive a standard expression from a truth table

• Properly interpret truth rable data

Converting SOP Expressions to Truth Table Format

Recall from Sectioll 4-6 that an SOP expression is equal to I only if at least one of the
product terms is equa l to 1. A truth table is simply a list of the possible combinations of
input variable values and the corresponding output values (l or 0). For an expression with
a domain of two variables, there are four different combinations of those variables (22 = 4) .
For an ex pression with a domain of three variables, there are eight different combinations
of those variables (2J = 8). For an expression with a domain of four variables, there are
sixteen different combinations of those variables (24 = 16), and so on.

The first step in constructing a truth table is to list all possible combinations of binary
values of the variables in the expression. Next, convert the SOP expression to standard
form if it is not already. Fi nally, place a 1 in the output column (X) for each binary value
that makes the standard SOP expression a 1 and place a 0 for all the remaining binary val
ues. Thi s procedure is illustrated in Example 4-20.

EXA MP LE 4-20 Develop a truth table for the standard SOP expression ABC + ABC + ABC.

'oll/ticm 	 There are three variables in the domain , so there are eight poss ible combinations of
binary values of the variables as li sted in the left three columns of Table 4-6. The
~i~ary valuc~~at make the product te rms in the expressions equal to 1 are
ABC: 00 I ; AB C: 100; and ABC: I I I. For each of these binary values , place a 1 in
the output column as show n iJl the table. For each of the remaining binary combina
tions , place a 0 in the output co lumn.

Conyer

Recall til
O. To con
nary valt
POS exp
(X) for e
binary v:

EX I

B OOLEA N E XP RESS IONS AND TRUTH TABLES • 19 7

Idard TABLE 4-6
INPUTS

ABC

() () o
o ()

() ()

()

o o
()

()

()

I

n
()

()

0

ABC

AR C

ABC
sing
pre
or

ne of the
lations of
sion with
(22 = 4).
binations
there are

of binary
standard

ary value
inary val

ns of
~be

In
Ibina

He/atel! Problem Create a truth table for the standard SOP l:xpress ion ABC + ABC.

Converting POS Expressions to Truth Table Format
Recall that a POS expression is equal to 0 only if at least one of the sum term s is equal to
O. To construct a truth table from a POS expression, list all the possible combinations of bi
nary values of the variable' just as was do ne for th e SOP expression. Next, convert the
POS expression to standard fo rm if it is not already. Finally, place a 0 in the output column
(X) for each binary value that makes the express ion a 0 and place a I for all the remai ning
binary values. This procedure is illustrated in Example 4-2 1.

EXAMPLE 4-21 Determine the truth table for the following standard POS express ion:

(A + 15 + C) (A + B -r C) (A + B + C) (A + B + C) (A + B + C)

Solution 	 There are three variables in t.he domain ane! the eight possible binary values are li sted
in the lefr three columns of Table 4- 7. T he binary values that make the sum terms in
the expres~()n equal to 0 ar0 + B + C: 000; A I B + C: OJ 0; A + B + C: 011;
A + B + C: 101 ; and A + B + C: I 10. For each of these binary values, place a 0 in
the output column as shown in the tabl e. For each of the remaining binary combina
tion s. place a I in the outp ut column.

TABU 4- 7 INPUTS OUTPUT
ABC X SUM TERM

0 0 0 0 (A + B·. C)

() 0 	 I

0 0 0 (A T B I- C)

0 I 	 0 (A + B + C)

0 0 I

0 0 (A + B + C)

0 0 (A + B + C)

- -

- -

198 • BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

Notice that the truth table in lhi~ example is the same as the one in Example 4-20.
This mean ,~ that the SOP expression in the previous example and the POS expression
in this example are equivalent.

Relatt!d Problem Develop a truth table for the following standard POS expression:

(A + B + C) (A + B + C) (A + B + C)

Determining Standard Expressions from a Truth Table

To determine the s tandard SOP express ion represented by a truth table, list the binary val
ues of the input variables for which the output is I. Convert each binary value to the corre
sponding product term by replacing each 1 with the corresponding variable and each 0
with the corresponding variable complement. For example, the binary value 10 lOis con
verted to a product term as follows:

1010 --) ABCD

If you substitute , you can see that the product term is I:

ABeD = 1 . 0 . I . 0 = 1 • I . 1 . I = I

To determine the standard POS expression represented by a truth table, list the binary
values for which the output is O. Convert each binary value to the corresponding sum term
by replacing each I with the corresponding variable com plement and each 0 with the cor
responding variable. For example, the binary value 100 I is convelted to a sum term as
follows:

100 I --) A + B + C + D

If you substitute, you can see that the sum term is 0:

A+B+C+ D = 1+0+0+1=0+0+0+0=0

......--------------- ------------
EXAMPLE 4-22 	 From the truth table in Table 4-8, determine the standard SOP express ion and the

equivalent standard POS express ion.

TABLE 4-8

INPUTS

ABC

() () o ()

() () ()

() o ()

o I I

o o
() ()

()

A i'
and
kne
sim
BOI

har
niq

fI

•
•
•

•

4- 8

20.
on

lary val
le con'e
1 each 0
) is con

e binary
um term
the cor
term as

oIl/lion

Related Pro/JIem

SECTION 4-7
CHECKUP

THE KARNAUGH MAP • 199

There are four 1 s in the output column and the corresponding binary values are 011 ,
100, 110, and Ill. Convert these binary values to product terms as follows:

011 ~ ABC

100 ~ ABC

110 ~ ABC

III ~ ABC

The resulting standard SOP expression for the output X is

X = ABC + AB C + ABC + ABC

For the P OS expression. the output is 0 for binary values 000, 001, 010, and 101.
Convert these binary values to sum terms as follows:

000 ~ A + B + C

001 ~ A + B + C

010 ~ A + B + C
101 ~ A + B + C

The resulting standard POS expression for the output X is

X = (A + B + C)(A + B + C)(A + B + C)(A + B + C)

By substitution of binary values, show that the SOP and the POS expressions derived

in this example are equivalent: that is. for any binary value each SOP and POS term
should either both be 1 or both be 0, depending on the binary value.

1. 	 If a certain Boolean expression has a domain of five variables, how many binary val
ues will be in its truth table?

2. 	In a certain truth table, the output is a 1 for the binary value 0110. Convert this bi
nary value to the corresponding product term using variables W, X, Y, and Z.

3. 	In a certain truth table, the output is a 0 for the binary value 1100. Convert this bi
nary value to the corresponding sum term using variables W, X, Y, and Z.

4-8 THE KARNAUGH MAP

A Karnaugh map provides a systematic method for simplifying Boolean expressions
and, if properly used , will produce the simplest SOP or POS expression possible,
known as the minimum expression. As you have seen, the effectiveness of algebraic
simplification depends on your familiarity with all the laws, rules, and theorems of
Boolean algebra and on your ability to apply them. The Karnaugh map, on the other
hand. provides a "cookbook" method for simplification. Other simplification tech
niques include the Quine-McClusky method and the Espresso algorithm.

After completing this section, you should be able to

• 	 Construcr a Karnaugh map for three or four variables

• 	 Determine the binary value of each cell in a Karnaugh map

• 	 Determine the standard product term represented by each cell in a Karnaugh map

• 	 Explain cell adjacency and identify adjacent cells

200 • BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

The purpose of a Kam~ ugh map is to
simplify a Boolean expression .

A Karnaugb map is similar to a truth table because it presents all of the possible val
ues of input variables and the resulting output for each va lue. Instead of being organized
into col umns and rows like a truth table, the Kamaugh map is an alTay of cells in which
each cell represents a binary value of the input variables. The cell s are arranged in a way so
that simplification of a given expression is simply a matter of properly grouping the cells.
Karnaugh maps can be used for expressions with two, three, four, and five variables, but
we will discuss only 3-variable and4-variable situations to illustrate the principles. Section
4-10 deals with five variables using a 32-cell Karnaugh map.

The number of cells in a Karnaugh map, as well as the number of rows in a truth table,
is eq ual to the total number of possible input variable combinations. For three variables,
the number of cells is 23 = 8. For fo ur variables, the number of cells is 24 = 16.

The 3-Variable Karnaugh Map

The 3-variable Karnaugh map is an array of e ight ce ll s, as shown in Figure 4-23(a). In this
case, A, B, and C are used for the variables al thou gh other letters could be used. Binary val
ues of A and B are along the left side (notice the sequence) and the values of C are across
the top. The value of a given cell is the binary values of A and B at the left in the same row
combined with the value of C at the top in the same column. For example , the cell in the
upper left corner has a binary va lue of 000 and the cell in the lower right corner has a
binary value of 10 J . Figure 4-23(b) shows the standard product terms th at are represented
by each cell in the Karnaugh map.

FIGURE 4- 23 c c
AS ASA 3-variable Karnaugh map showing

product terms. ~nc AM

AilC ~BC

~C IBC'

A~
-

4&
-

(a) (b)

The 4-Variable Karnaugh Map

The 4-variable Karnaug h map is an alTay of sixteen cells, as shown in Figure 4-24(a). Bi
nary values of A and B are along the left side and the values of C and D are across the top.
T he value of a given cell is the binary values of A and B at the left in the same row com
bined with the binary values of C and D at the top in the same column. For example, the
cell in the upper right corner has a binary value of 00 I 0 and the cell in the lower right cor
ner has a binary value of 10 10. f igure 4-24(b) shows the standard product terms that are
represented by each ce ll in the 4-variable KarnaLlgh map.

Cell Adja[ency

The cells in D Karnaugh map are arranged so that there is on ly a single- variable change be
tween adjacent cells. Adjacency is defined by a si ngle-variabl e change. In the 3-variable
map the 010 cell is adjacent to the 000 cell, the OJ J cell, and the 1J 0 cel l. The 010 cell is
not adj acent to the 00 I ce ll , the III cell , the J 00 cell , or the 101 cell.

Physically, each cell is adjacent to the cells that are immediately next to it on any of its
four sides. A ce ll is not adjacent to the cell s that diagonally touch any of its corners. Also,

Cells that differ by only one variable
are adjacent.

Cells with values that differ by more
than one variable are not adjacent.

the cell s
ce lls in t
umn. Th
ping aro
F igure 4
for adja(

TbeQ
Mini.mi
variab!(

to be 31

The
with 111

mented
The

ular f01

check I
times r
IS prov

Esprl

AlthOl
progra
far fro
fun cti(
crease
abIes
whieh

ble val

ganized
11 which

I way so
1e cells.
)les, but

Section

th table,
lriables,

). In this
wry val

e across

lme row
:11 in the
er has a
resented

.4(a). Bi

l the top.
ow CODl

nple, the
'ight car
l that are

lange be

-variable
10 cell is

any of its
:rs. Also,

CD CO
00 OJ JJ J() ()() 01 II 10AB AB

00 00

OJ 01

)) J I

)0 10

tBI-iJ :iB(f) \II({) \/1('/1

' ,i81 /) IHI fl 1/11 /l \/Jell

.l/J{ /) lilt () \fi(n \lief)

IRI n I IRIO 1{iC[) l(i({I

(a) (b)

the cells in the top row are adjacent to the corresponding cells in the bottom row and the

cells in the outer left column are adjacent to the corresponding cells in the outer right col
umn. This is called "wrap-around" adjacency because you can think of the map as wrap

ping around from top to bottom to f01111 a cylinder or from left to right to form a cylinder.

Figure 4-25 illustrates the cell adjacencies with a 4-variable map, although the same rules

for adjacency apply to Kamaugh maps with any number of cells.

FIGURE 4-25

Adjacent cells on a Karnaugh map
are those that differ by only one
variable. Arrows point between
adjacent cells.

The Quine-McClusky Method

Minimizing Boolean functions using Karnaugh maps is not applicable for more than five
variables and practical only for up to four variables. Also, this method does not lend itself

to be automated in the form of a computer program.
The Quine-McClusky method is more practical for logic simplification of functions

with more than four or five variables. It also has the advantage of being easily imple

mented with a computer or programmable calculator.
The Quine-McClusky method is functionally similar to Karnaugh mapping, but the tab

ular form makes it more efficient for use in computer algorithms. and it also gives a way to
check that the minimal form of a Boolean function has been reached. This method is some
times referred to as the tabulation method. An introduction to the Quine-McClusky method
is provided in Appendix C.

Espresso Algorithm
Although the Quine-McCluskey method is well suited to be implemented in a computer
program and can handle more variables than the Karnaugh map method, the result is still
far from efficient in terms of processing time and memory usage. Adding a variable to the
function will roughly double both of these parameters because the truth table length in
creases exponentially with the number of variables. Functions with a large number of vari
ables have to be minimized with other methods such as the Espresso logic minimizer,
which has become the de facto world standard.

TH E K ARNAUGH MAP • 20 1

FIGURE 4- 24

A 4-variable Karnaugh map.

ZOZ • BOOLEAN ALGEBRA AND LOGIC SIMPLIFI CATION

iog with.Compared to the other methods, Espresso is essentiall y more effic ient in te rms of re
tion in Fi ducing memory usage and computation time by several orders of magnitude. There is es

sentiall y no res tric tio ns to the nu mber of variables , output functions, and prod uct terms of Step 1
a combinational logic funct io n. In ge neral, tens of variables wi th tens of output func tions
can be handled by Espresso.

Step : The Espresso algorithm has been incorporated as a standard logic function minimi za
ti on step in most logic synthesis tools for programmable logic devices. For implementing a
fun ction in multilevel logic, the minimization res ult is optimized by fac torization and
mapped onto the available bas ic logic cell s in the target device, such as an FPGA (Field·
Programmable Gate Array).

SECTION 4-8 1. In a 3-variable Karnaugh map, what is the binary value for the cell in each of the fol·

CHECKUP lowing locations:

(a) upper left corner (b) lower right corner

(c) lower left corner (d) upper right corner

2_ What is the standard product term for each cell in Question 1 for variables X, Y, and Z?

3. Repeat Question 1 for a 4-variable map.

4. Repeat Question 2 for a 4-variable map using variables W, X, Y, and Z. E

4-9 KARNAUGH MAP SO P MINIMIZATION

As stated in the las t section, the Karn augh map is used for simplifying Boolean ex
pressions to their minimum form. A min imi zed SOP expression contains the fe west
possible terms with the fewest possible varia bles per term. Generall y, a minimum SOP
express ion can be implemented with fewer logic gates than a standard expression .

After completing this section, you should be able to

• 	 M ap a standard SOP express ion on a Karnaugh map

• 	 Combine the Is on the map into max imum gro clpS

• 	 Determi ne the minimum product term for each group OJ! th e map

• 	 Combine the minimum product terms to form 8 minimum SOP ex press ion

• 	 Convert a truth table into a Karnaugh map for simplification of the represented
expression

• 	 Use "don ' t care" conditions OJ! a Karn augh map

Mapping a Standard SOP Expression

For an SOP express ion in standard form, a 1 is placed on the Karnaugh map for each
produc t term in the expression. Each I is placedJn a cell correspondi ng to the value of a
product term. For example, for the product term ABC, a 1 goes in the 10 1 cell on a 3-variable
map.

When an SO P expression is co mpletely mapped , there will be a num ber of Is on the
Karnaugh map equal to the number of product terms in the standard SOP expressio n. The
cells that do not have a 1 are the cells for which the expression is O. Usuall y, when work

s of re
'e is es
erms of
.nctions

mmlza
~ntilig a
on and
(Field

~ fol

.d D

t

;OP

)r each
ue of a
rariable

on the
)0. The
1 work-

K ARNAUGH MAP SOP M INIMIZATION • 203

ing with SOP expressions, the Os are left off the map. The following steps and the illustra
tion in Figure 4-26 show the mapping process.

Step 1: 	 Determine the binary value of each product term in the standard SOP expres

sion. After some practice, you can usually do the evaluation of telms mentally.

Step 2: 	 As each product term is evaluated, place a I on the Karnaugh map in the cell

having the same value as the product term.

FIGURE 4-26c --- -
0 J ·IIJI ABC + ·IllAB

000 ()Ol I J() I()(
I 1-

I

I

4.B(
Example of mapping a standard SO P

00
 expression.

01

Jl

10

EXA MPLE 4-23 Map the following standard SOP expression on a Karnaugh map:

ABC + ABC -I- ABC -I- ABC

• o/u/iop Evaluate the expression as shown below. Place a 1 on the 3-variable Karnaugh map in
Figure 4-27 for each standard product term in the expression.

ABC + A BC -I- ABC -I- ABC

001 a I 0 11 0 I I 1

FIGURE 4-27
C

AB

00

0

IfJ

OJ 1 IRC

11 IHe

10 IRe

Related Problem Map the standard SOP expression ABC -I- ABC + AB C on a Karnaugh map.

EXA M Pl E 4-2 4 Map the following standard SOP expression on a Karnaugh map:

ABCD + ABCD -I- ABCD -I- ABCD -I- ABCD + ABCD -I- ABCD

alU/ian Evaluate the expression as shown below. Place a I on the 4-variable Karnaugh map in
Figure 4- 28 for each standard product term in the expression.

ABCD -I- ABCD + ABCD + ABCD + ABCD + A B eD -I- ABCD

00 11 01 00 11 01 1111 1[00 0001 [010

204 • BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

,\BCD CD
A

I; I

I
1--"

I
IA'

I
1

I
~

I \ 1

IBen

\liCO

weD
--I- '\BCD

IRCfllBCD

fiGURE: 4- 28

Related Problem M ap the foll owing standard SO P ex pression Oil a Karnaugh map:

ABeD + ABeD + ABCD + ABCD

Mappin~ a Nonstandard SOP Expression
A Boolean ex pression must first be in s tandard form before you use a Karnau gh map. If an
expression is not in stan dard form , then it must be converted to standard form by the pro
cedure covered in Section 4-6 or by numerical expansion. Since an expression should be
evalua ted before mapping anyway, numerical expansion is probably the most effici ent ap
proach.

Numerical Expansion oj a Nonstandard Product Term Recall that a nonstan dard
product term has one or more missing varia bles. For ~ample , as sume that one of the prod
uct te rm s in a certain 3-variab le SOP express ion is AB. This term can be expanded numer
ically to standard form as follows~First. write the binary value of the two vari ab les and
attach a 0 for the miss ing vari able C : 100. Next, write the binary va lue of the two variables
and attach a I for the miss ing vari~~ C: 10l. The two resu lting binary numbers are the
values of the stand ard SOP terms AB C and ABC.

As anot her exampl e, ass ume that one of the product terms in a 3-va riabl e expression
is B (rem ember that a sing le vari able counts as a prod uct term in an SOP expression).
This term can be ex pan ded numeri cally to standard form as fo llows. Write the binary
val ue of the vari abl e; th e ll attach all poss ibl e values for th e missing va riables A and Cas
follows:

N

010

011

1 I ()

111

EX

E)

The four resulting binary numbers are the values of the standard SOP terms ABC, ABC, ABC,
and ABC.

K AR NAUG H MAP SOP M INIMIZATION • 205

ap. If an
the pro

lOuld be
: ient ap

standard
he prod
I numer
hies and
lariables
s are the

press ion
~ess ion).

:': binary
md Cas

CABC,

EXAM PLE 4-2 5

Sululion

Related fJmblem

EXAMPLE 4-26

-o/IlUon

Map the following SOP xpress ion on a Karnaugh map: A + AB + ABC.

The SOP expression is obviously not in standard 1'orm because each product term does
not have threc variables. The first term is miss ing two variables, the second term is
miss ing one variable. and the third term is standard. First expand the terms numeri
cal1y as follow s:

A + AB + ABC

000 100 LIO

001 101

010

0 11

IVlap each of the resulting binary values hy placi ng a J in the appropriate cell of the 3
variable Karnaugh map in Figure 4-29.

FIGURE 4-29 c
0 I/18

00

01

II

10

I I

I I

I

I I

Map the SOP expression BC .1- A C on a Karnaugh map.

Map the following SOP expressi.on on a Karnaugh map:

B C + AS + ABC + ABCD + AB D + A BCD

The SOP expression is obviously not in standard form because each product term does
!lot have four variables. T he first and second tenns are both miss ing two variables, the
third term is mi ss ing one variable, and the rest of the terms are standard . First expand
the terms hy including all combinations of the missing variables numerically as
follows:

BC + AS + ABC + ABCD + ABCD + ABCD

0000 1000 1100 1010 OOO J 10 11

0001 1001 1101

1000 1010

100 I 10 j I

Map each of the resulting binary values by placing a L in the appropriate cell of
the 4-variable Karnaugh map in Figure 4-30. otice that some of the values in the
expanded expression are redundant.

http:expressi.on

.
,

l

--

206 • BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

FIGURE 4- 30
CD

AB

I I

I I

I I I I

I

,

Reia!ed PmbJem Map the expression A + CD + ACD + ABCD on a Karnaugh map.

EXA MPLE 4-27

C
AB 	 AB

I I

I
I

I I

(a) 	 (b)

Kamaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible terms with the fewest
possible vatiables is cal led minimization. After an SOP expression has been mapped, a min
imum SOP expression is obtained by grouping the Is and determining the minimum SOP ex
press ion from the map. (For simplification of POS expressions, see Appendix B.)

Grouping the 1s You can group I s on the Karnaugh map according to the follow ing
rules by enclosing those adjacent cells containing I s. The goal is to maximize the size of
the groups and to minimize the number of groups.

1. 	 A group must contain either I, 2, 4, 8, or]6 cells, which are all powers of two. In
the case of a 3-variable map. 23 = 8 cells is the maximum group.

2. 	 Each cell in a group must be adjacent to one or more cells in that same group, but
all cells in the group do not have to be adjacent to each other.

3. 	 Always include the largest possible number of] s in a group in accordance with rule 1.

4. 	 Each] on the map must be included in at least one group. The] s already in a group
can be included in another group as long as the overlapping groups include non
common Is.

Group the I s in each of the Karnaugh maps in Figure 4-31.

C CD CD
AB A

I I

I I I

I I

I 1 I

(e) 	 Cd)

FIGURE 4-31

I I

I

I

I I

I

I

1

I I I

I I

AB"

oc

o

Ca)

Determ
re sentinl
g rouped
The foil

SOP ex~

1. (
t

r
r

2. 	 I

3.

II

Ie fewest
j , a min
SOP ex

)llowing
~ size of

' two. In

oup, but

.h rule 1.

a group
Ide non-

K ARNAUGH MAP SOP M INIMIZATION • 207

olutlOn 	 The groupings are shown in Figure 4-32. In some cases, there may be more than one
way to group the I s to form max imum groupings.

WI<I[1 .Iroun 1.ldj"I<:<'nn'
I"\

C C 	 CD

8

IC I

r\
1

I

•.. 	

AB

1

I

1

t 1 i)

(I 1)

00 01]j 10 B
CD

-~ r-
I I

I 1 1

1 I 1

1 IC 1 1)
~

h
00 01 11 \ 100 1AB 	 AB A

00 00 00 OO

0101 01 01

I 1 1111 II

1010 10 10

(a) (b) (c) 	 (eI)

FIGURE 4-32

Related Problem 	 Determine if there are other ways to group the I s in Figure 4-32 to obtain a minimum
number of maximum groupings.

0

Determining the Minimum SOP fxpressionjrom the Map When all the I s rep
resenting the standard product terms in an expression are properly mapped and
grouped, the process of determining the resulting minimum SOP expression begins .
The fo llowing rules are applied to find the minimum product terms and the minimum
SOP expression:

1. 	 Group the cells that have I s. Each group of ce ll s containing 1 s creates one product
term composed of all variab les that occur in only one form (ei ther uncomple
men ted or complemented) within the group. Variables that occur both uncomple
mented and complemented within the group are eliminated. These are called
contradictory variables.

2. 	 Determine the minimum product term for each group.
a. For a 3-variable map:

(1) A I-cell group yields a 3-variable product term
(2) A 2-ce ll group yields a 2-variable product term
(3) A 4-cell group yields a I-variable term
(4) An 8-cell group yields a value of I for the express ion

b. For a 4-variable map:
(1) A I-cell group yields a 4-variable product term
(2) A 2-cell group yields a 3-variable product term
(3) A 4-cell group yields a 2-variable product term
(4) An 8-cell group yields a I-variable term
(5) A l6-ce ll group yields a value of 1 for the express ion

3. 	 When all the minimum product terms are derived from the Karnaugh map, they are
summed to form the minimum SOP expression.

208 • BOOLEAN ALGEBRA AND LOGIC SIMPLIFIC ATION

EXAM PlE 4-18 	 Dete rmine the produc t terms for the Karnaugh Inap in Figure 4-33 and write the
resulting minimum SOP express ion.

FIGURE 4-33
CD

A

I I I

I I I I

~
I I I J

I

"----'
1(0

·Ie

JJ

Solution 	 E liminate vari ables that are in a groupin g in bo th complemented and unco mplemented
forms. In Figure 4-33 , the produc t telEJ for theJl -cell group ~ B because the cell s
within that group conta in bo t~A and AS and C, and D and D, ~hich are e limi nated.
The 4-cell g roup ~lIlt a jn s S , S , D, and D, leav ing the '0ri ables A and C, whic~ form
the produ ct. term A C. The 2-cel2-group conta ins S and S , leaving vari ables A, C, and D
which form th e producr term A CD. Notice how overlapping is used to maximize the
size of the g roups. The resulting minimum SOP expression is the sum of these produc t
terms:

B + AC + A CD

Ile/ated Problem 	 For the Karnaugh map in F ig ure 4- 33, add a 1 in the lower right cell (lOIO) and
determine the resulting SOP ex pression.

EXAMPLE 4-19

\Be nc
('

AB

8 J

,/ /
~

I

IC II

\
1\

\
\fI

(a)

Determine the product te rms for each of tbe Karnaugh maps in Figure 4-34 and write
the res ul ting minimum SOP expression.

a 	 f)·Ie
c CD

I I

1 I I I

(I I)

/ 	 A0AS'\. I I AS

00

ABO I~ I('
11 ,1:\ I(

10

/

--.0:., ~
1 I

I I I

1 1 I

I \ I I I)
'-----/ \

,(81) 	 Be ABC
(b) (e) 	 (d)

fiGURE 4--34

