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4-1 BOOLEAN OPERATIONS AND EXPRESSIONS 

Boolean algebra is the mathemat ics o f digita l . ystems. A basic kn owleuge of Boolean 
algebra is indispensable to the st Idy anu analysis of logic ci rcuits . III the last chaptcr, 
Boolean operati ons and expr ss io l1 s in terms of their re lationship to NOT. AND, OR. 
NAND, and R gates we re introduced. 

After completing thi s sectio n. you should be able to 

• Define variable 

• Define literal 

• Identify it SUIll te rm 

• Evalua tc a sum term 

• Idcntify a product term 

• Eva luate a product te rlll 

• Explain Boolean audition 

• Explain Boolean mul tip li cation 

Variable, complement. and literal are terms used in Boo lean algebra. A variable is a sym
vas in bol (usually an italic uppercase letter or word) used to repre~ent all ac tion, a condit ion, or 
Iy as data, Any single variable can ha e o nl y a lor a 0 value. The complement is the inverse of a 
sa con variable and is indic~ted by a bar ove~the variable (overbar).:... -or example. the complement
ling the of the variable A is A. If A = I, then A = O. If A = 0, then A = 1. T he complement of the 
first to variable A is read as "not A" or "A bar." Sometimes a prime ~Ylllbol rather th an an over-bar is 
ic lIsed to denote the complement of a variabl e; for example, B' indicates the complement of B. 
ed A III this book, onl y the overbar is used, A literal is a variable or the complement of a variabl e. 

s of Boolean Addition 
uits. 

Recall from C hapter 3 that Boolean ~lddjtion is equiva le nt to the OR operation and the:oolean 
basic rules are illustrated wi th the ir relation to the OR gate as follows: I also 

,cts of 
o + () = () 0 + 1 = 1 1+ 0=1 I + I = I 

ogram- QJ QJ 
In Boolean aJgebra, a sum term is a sum of lite ral s. In logic circuits . a sum term is pro

)from duced by an OR ~erati ol l w it~no Al'i.D operatio ns iJ~olved. SOIlIC examples of sum terms 
let areA + B, A + B. A + B + C. and A + B + C + D, 
lOct A sum term is equa l to I when one or more of the lite rals ill the term are I. A sum term 
land is equal to 0 only it' each of the literals is O. 
~oss i ble 
refore, in 
BCD to 

COMPUTER NOTE 

In a microprocessor, the arithmetic 
logic unit (ALU) performs ari thmetic 
and Boolea n logic operations on digital 
data as directed by program 
instructions . Logical operations are 
equivalen t to the basic gate operations 
that you are fami liar with but deal with 
a min imum of 8 bits at a tim e. 
Exampl es of Boolean log ic instruct ions 
are AND, OR, NOT, and XOR, which are 
called mn emonics. An assembly 
language program uses the mnemonics 
to specify an operation. Another 
program called an assembler translates 
the mnemonics into a binary cod e that 
can be und erstood by the 
microprocessor. 

The OR operation is the Boolean 
form of addition . 

EXAM PH 4-1 Determine the values of A, B, C. and D that make the sum term A + B + C + D equal to O.)shown 
I. a/u/ion 	 For the sum term to be n, each of the literals in the term mu st be O. Therefore, A = 0, 

B = 1 so that B = O. C = 0, and D = 1 So that D = O. 

A +B + C +D = O + I + 0 + I = 0 + 0 + 0 +0=0 
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Associam 

This law st; 
SECTION 4-1 the groupill 1.lfA=O,whatdoesAequal?
CHECKUP 

2. Determine the values of A, B, and C that make the sum term A+ B + C equal to O.Answers are at the end of the 

chapter. 3. Determine the values of A, B, and C that make the product term ABC equal to 1. 


" 

4-2 LAWS AND RULES OF BOOLEAN ALGEBRA 

As in other areas of mathematics, there are certain well-developed rules and laws that 
must be followed in order to properly apply Boolean algebra. The most important of 
these are presented in thi s section. 

After completing this section, you should be able to 

• Apply the commutative laws of addition and multiplication 

• Apply the associative laws of addition and multiplication 

• Apply the distributive law 

• Apply twelve basic rules of Boolean algebra 

J:J 

The ass 

This law st 
ing more tl 

.Related Problem Determine the values of A and B that make the sum term A + B equal to O. 

*Answers are at the end of the chapter. 

The AND operation is the Boolean 
Corm of multiplication. 

Boolean Multiplication 

Also recall from Chapter 3 that Boolean multiplication is equivalent to the AND opera
tion and the bas ic rules are illustrated with their relation to the AND gate as follows: 

0-0=0 O-j=O j-O=O 1-1=1 

tjJtjJtjJtjJ 

In Boolean algebra, a product term is the product of literals. In logic circuits, a prod

uct term is produced by an AN!2 operation w~h 12..0 OR operations involved . Some exam
ples of product terms are AB, AB, ABC, and ABCD. 

A product term is equal to I only if each of the literals in the term is 1. A product term 
is equal to 0 when one or more of the literals are O. 

Laws of1 

The basic h 
the associa 
same as in 
the number 

Commutal 

This law st 
member, in 
the same. F 
that it doesl 
alent to.") 

;=r 

T he con~ 

T his law SI 


F igure 4-2 


A 

8 

EXAM PLE 4-2 Determine the values of A, B, C, and D that make the product term ABCD equal to l. 

Solution For the product term to be I, each of the literals in the term must be 1. Therefore, A = 
1, B = 0 so that B = I , C = 1, and D = 0 so that D = 1. 

ABCD = I' 
-
0 . 1 . 0 

.. 

= 1 . 1 • 1 . I = 1 

Related Problem Determine the values of A and B that make the product term A B equal to 1. 

C 



J 

, opera
's: 

, a prod
Ie exaro

uct term 

01. 

A= 

11 to O. 

1. 

s that 
1t of 

LAWS AND R ULES OF 

Laws of Boolean Algebra 

The basic laws of Boolean algebra-the commutative laws for addition and multiplication, 
the associath:e laws for addition and multiplication, and the distributive law- are the 
same as in ordinary algebra. Each of the laws is illustrated with two or three v3Iiables , but 
the number of variables is not limited to this. 

Commutative Laws The commutative law ofaddition for two variables is written as 

A + B = B +A 

This law states that the order in which the variables are ORed makes no difference. Re 
member, in Boolean algebra as applied to logic circuits, addition and the OR operation are 
the same. Figure 4-1 illustrates the commutative law as applied to the OR gate and shows 
that it doesn't matter to which input each variable is applied . (The symbol == means "equiv
alent to.") 

FIGURE 4-1 

_ 8~8+A 
A ---L.../- Application of commutative law of 

addition. 

The commutative law ofmultiplication for two variables is 


AB = BA 


This law states that the order in which the variables are ANDed makes no difference. 
Figure 4-2 illustrates thi s law as applied to the AND gate. 

FIGURE 4- 2 
_ 8~BA 

Application of commutative law ofII~ 
multiplication. 

Associative Laws The associative law ofaddition is written as follows for three variables: 

A + (B + C) = (A + B ) + C 

This law states that when ORing more than two variables, the result is the same regardless of 
tbe grouping of the variables. Figure 4-3 illustrates this law as applied to 2-input OR gates. 

II 

(A +8)+ C 

The associative law ofmultiplication is written as follows for three variables: 

ACBC) = CAB )C 

This law states that it makes no difference in what order the variables are grouped when A D
ing more than two variables. Figure 4--4 illustrates this law as applied to 2-input AND gates. 

A II 
AlEC) 

11 
fi 

(AB)e 
C C 

FIGURE 4-3 

Application of associative law of 

addition. Open file F04-03 to verify. 

Equation 4-4 

FIGURE 4-4 

Application of associative law of 

multiplication. Open file F04-04 to 

verify. 
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Equation 4-1 

Equation 4-2 

Equation 4-3 



176 • B OO LEAN ALG EBRA AND LO GIC SIM PLI FICATION 

Equation 4--5 

--FI GUR E 4-5 

Application of distributive law. Open 
file F04-0Sto verify. 

TABLE 4-1 

Basic rules of Boolean algebra. 

FI GUR E 4-6 

FI GURE 4- 7 

Distributive Law The di stJibutive l aw is written for three variables as follows: 

A(B + C) = AB + AC 

This law states that ~Ring two or more variables and then ANDi ng the result with a single 
variable is equivalent to ANDing the single variable with each of the two or more variables 
and then ORing the products. The distributive law also expresses the process of factoring in 
which the common variable A is factored out of the product terms, for example, AB + AC = 
A(B + C). Figure 4-S illustrLltes the distributive law in terms of gate implementation. 

A 

8 8 


C  }--X 

X A 
A 

C 

x= A(l l + C) X= AB -! At 

Rules of Boolean Algebra 

Table 4-1 lis ts 12 basic rules that are useful in manipulating and si mpl ifying Boolean ex
pressions. Ru le ~ I through 9 will be viewed in terms of their application to logic gates. 
Rul es 10 through 12 will be derived in terms of the simpler rules and the laws prev iously 
discussed. 

1. A + O = A 7. 

2. A + I = I 8. 

3. A' () = O 9. 

4. A· I = A 10. 

5. ;\ + A = /\ 11. 

6. ;\ + A = I 12. 

A·A = A 

I \ - ; \ = () 

; \ = A 

A + AB = 1\ 
A f fi R = A + H 

(A + 8 )(1-\ + C) = A + B 

A. B. or C (In rr:prcsent a single variab le or a combination of variables. 

Rule 1: A + 0 = A A variable ORed with 0 is always eq ual to th e variable. If the input 
variahle A is I , the ou tput variable X is I, which is equal to A. If A is 0, the output is 0, which 
is also equal to A. Thi s rule is illustrated in Figure 4--6, where the lower input is fixed at O. 

A=I =D-.'(= 1 A=0=D- x=oo o 

X = A + O=A 

Rule 2: A + 1 = 1 A variable ORed with I is always equal to I. A 1 on an input to an 
OR gate produces a 1 on lhe output, regardless of the value of the variable on the other 
input. Thi" rule is ill u<; trated in Figure 4-7, where the lower input is fixed at I. 

A=I =D X=1 A = 0 =D- x= I
I I 

X=A+I=I 

Rule 3: A·I 
an AND gatf 
This rule is i 

Rule 4: A· 
output of tt
are now Is. 

Rule 5: A 
then 0 + ( 
puts are tJ-

Rule 6: 
then 0 -l

input is 

Rule 7 
then 0 



1 a single 
vmiables 
'lOring in 
+A 

on. 

Ilean ex
,ic gates . 
'eviously 

be input 
0, which 
xed at 0, 

Jut to a ll 

he other 
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Rule 3: A • 0 = 0 A variable AJ Ded with 0 is always ~qual to O. Any ti me one inp ut to 
unAND gate is 0, the outp ut is 0, regardless of the value or the variable on the other input. 
This rule is illustrated in f-igurc 8, wher~ the lower input is fi xed at O. 

FIGURE 4-8

A=I =L)-- x=o x=oA.:O, =L)-
o n 

X=A · ()=() 

Rule 4: A • 1 = A A variab le ANDL:d with I is always equal 10 the variable. If A is 0, the 
output of the AND gate is O. If A is I, the output of the AND lra te is I because both inputs 
are now Is. Th is rule is shown in Figure 4-9, where the lower input is fixed at I. 

FIGURE 4- 9 
A=O~ 1I= 1=L)-

I~X=() X=I 
I 

X.",,~ - )=,-\ 

Rule 5: A + A =A A variable ORed with itse lf is a\w, ys equal to the variable. If A i. 0, 
then 0 + 0 = 0; and if A is I, then I + I = I. This is shown in Figure 4-10, where both in
puts are the same variab le. 

A=0=D-X=() 
A=l 

X=1 
t\ =n A=J --. -'" 

X= 1 +,1= 1 

Rule 6: A + A = 1 A va riable ORed with i ~ complement is alwa s equal to I. If A i 0, 
thenO + O - O+ I = I.IfAisl,thenl + I = I + 0= 1. See Figure 4-11, where one 
input is the complement of the othe r. 

FIGURE 4-11 
/I=0=D- tI= l=D_ x= 1 _ X=l 
A=I A =0 

Rule 7: A • A =A A variable ANDed with itsel f is always equal to the variable. If A = 0, 
then 0 ' 0 = 0; and if A = I, then 1 . 1 = I. Figure 4-12 illustrates this rule . 

FIGURE 4- 12 
A=0=L)-- x=() A=I =L)-- X= I 
A =0 ·\=1 

y =A ' .~ = •. \ 
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FIGURE 4-13 

FIGURE 4-14 

TABLE 4- 2 

Ru le 10: A + AB = A. Open file 

T04-02 to verify. 

Rule 8: A • A= 0 A variable ANDed wi th its complement is always equal to O. Either A 
or A will always be 0; and when a 0 is applied to the input of an AND gate, the output will 
be 0 also. Figure 4-13 illustrates thi s ru le. 

A=l -r\. __ A=U=D
ii=()~X= O -	 X=o 

A = I 

X=A ' A=() 

Rule 9: A = A The double complement of a variable is always equ~l to the variable. !! 
you start with the variable A and complement (invert) it once, you get A. If you then take A 
and complement (invet1) it, you get A, which is the original variable. This rule is shown in 
Figure 4-14 using inverters. 

... ~A '" lJ'-.-,. = 	 ~,.:..I\ =oJ'-.-,. = 
A = O~A=O A=I ~A=I 

A =A 

Rule 10: A + AB = A This rule can be proved by applying the distributive law, ruJe 2, 
and ru le 4 as follows: 

A + AB = A . 1 + AB = A ( 1 + B) Factoring (distributi ve law) 

= A . 1 Rule 2: (l + B) = 1 

=A Rule 4 : A . 1 = A 

The proof is shown in Table 4-2, whic h shows the truth table and the resulting logic circuit 
simplification. 

A B AB A + AB 

0 () 0 0 

() ()0 

() 0 :~ 
1 ! 

A 
straight connectiont equal 

Rule 11 : A + As = A + B This rule can be proved as follows : 

A + AB 	= (A + AB) + AB Rule 10: A = A + AB 

= (AA + AB ) + AB Rule 7 : A = AA 

= AA + AB + AA + AB Rule 8: adding AA = 0 

= (A + A) (A + B) Factoling 

= 1 . (A + B) Rule 6: A + A = 1 

=A+B Rule 4: drop the 1 

The proof is shown in Table 4- 3, which shows the truth table and the resulting logic cir
cuit s implification. 

o 
o 

Rule 12: (j 

(A . 

The proof i 
simplificati 

TABLE 4

Rule 12: (A . 

o 
o 
o 
o 

4-3 
DeMor, 
importa 
matherr 
equival l 



DEMORGAN'S THEOREMS • 179 

TABLE 4- 3 • AS A + A8 
Rule 11 : A + AB = A + B. Open 

() () () A 


0 


0 0 

I I I 
B

() () 


0 


L cq uaJ J 

Rule 12: (A + B)(A + C) = A + BC This rule can be proved as follows: 

(A + B)(A + C) = AA + AC + AB + BC Distributive law 

= A + AC + AB + BC Rule 7: AA = A 

= A(l + C) + AB + BC Factoring (distributive law) 

= A· 1 + AB + BC Rule 2: 1 + C = 1 

= A(l + B) + BC Factoring (distributi ve law) 

= A . 1 + BC Rule 2: 1 + B = 1 

= A + BC Rule 4: A . 1 = A 

Theproof is shown in Table 4-4, which shows the truth table and the resulting logic circuit 

Either A 
Itput will 

:triable. If 
len take A 
shown in 

:1W, rule 2, 

)gic circuit 

file T04-03 to verify. 

simplification. 

f ABLr '1- 4 

Rule 12: (A + B)(A + C) = A + BC Open file T04-04 to verify. 

A 8I 

0 

0 

0 

0 

() 

() 

I 


I 


() 

0 

SECTION 4-2 

CHECKUP 

C 

() 

0 

I 

() 

0 

I 

A + B 

() 

0 

" + C 

() 

() 

(A + 8) (A' + C) 

0 

0 

0 

Be 

() 

() 

0 

I 

() 

0 

() 

equal 

A + BC 

() 

0 

0 ~~ 
1 

~~ 
j 

1. Apply the associative law of addition to the expression A + (B + C + D). 

2. Apply the distri butive law to the expression A(B + C + D). 

4-3 DEMORGAN'S THEOREMS 

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an 
important part of Boolean algebra. In practical terms, DcMorgan 's theorems provide 
mathematical verification of the equivalency of the NAND anclnegative-OR gates and the 
equivalency of the NOR and negative-AND gates, which were discussed in Chapter 3.19 logic cir 



~ 
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To apply DeMorgan's theorem, break 
the bar over the produd of vari~bles 
and (hange the sign from AND to OR. 

Equation 4-6 

Equation 4-7 

flGUR( 4 15 

Gate equivalencies and the corre· 
sponding truth tables that illustrate 
DeMorga n's theorems. Notice the 
equality of the two output columns 
in each table. This shows that the 
equivalent ga tes perform the same 
logic function. 

After completing this section, you should be able to 

o State DeMorgan's theorems 

• Relate DeMorgan's theorems to the equivalency of the NAND ancl negative-OR 
gates and to the equivalency of the NOR and negative-AND gates 

• Apply DeMorgan's theorems to the simplification of Boolean expressions 

DeMorgan's first theorem is stated as foJ lows: 

The complement of a product of vadables is equal to the sum of the complements 
of the val"iables. 

Stated another way, 

The complement of two or more ANDed variables is equivalent to the OR of the 
complements of the individual variables. 

The formula for expressing thi s theorem fo r two valiables is 

XY = X + Y 

DeMorgan 's second theorem is stated as follows: 

The complement of a sum of variables is equal to the product of the complements 
of the variables. 

Stated another way, 

The complement of two or more ORed variables is equivalent to the AND of the 
complements of the individual variables. 

The formula for expressing this theorem for two variab les is 

X + Y = XY 

Figure 4-15 shows the gate equivalencies and truth tables fo r Equations 4-6 and 4-7. 

x=cY---- 'K =D-- -Xl = X + Y o 0 y y 
o 

NAND Nega(jve-OR o 1 

1 o o 

~=D-- X=L)-  I 1 

0 I 

'y X + Y = Y Xl' 0 0 

0 0 
NOR Negative-AND 0 0 0 

() 0 

As stated, DeMorgan's theorems also apply to expressions in which there are more than 
two variables. The following examples ill ustrate the appl ication of DeMorgan's theorems 
to 3-valiable and 4-variable expressions. 

Each v; 

resent a c( 
and Y can 
variables, 
lowing re 

Notice th 
which yo 

Notice th 
again be 
gives the 

Althougl 
Morgan' 

Applyi 
The foll 
algebra 

Stcp 

Ster 

StcI 
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EXAMPLE 4-3 Apply D 
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Morgan ' .-; theore lll ~ to the ex pressions XYZ and X Y + Z. 

XYZ = x + y + Z 

X + y + Z = XYZ 

Related Problem Appl DeMorgan's theorem to the express ion X + Y + Z. 

EXAM PLE 4-4 Apply DeMorgan's theorem, to the ex press ions WXYZ and W + X + y + Z. 

Solution WXYl = VII + X + Y + Z 
. -- 

VII + X + y + Z = WXYZ 

Related Pro/JIl'm Apply DcMorgan ' ,. theorem to the expression W X yz. 

Each variable in DeMorgan 's theorems as stated in Equations 4-6 and 4-7 can also rep
resent a combinatio n of other variable . . For ex ample, X can be equal to the term AB + C, 

and Y can be equal to~ te~ Ai BC So if you can apply OeMorg:lIl's theorem fo r two 

va riables as stated by XY = X t Yto the exprcss i ~)n (AB + C)(A + Be), you get the fo l
lowing result: 

(AB + CHA + BC) = (A B + C ) + (A + 13C) 

Notice that in the preceding result you have two terms. AB + C and A BC, to eac h of 
which you can agai n apply DeMorgan' s theorem X + Y = XV individua lly, as foll ows: 

(AB + C ) + (A + BC ) = (A S)C + A( BC ) 

Notice that yo u still have two terms in the express ion to which DcMorgan 's theorem can 
again be appli ed. These terms are AB and BC A final application of DeMorgan's theorem 
gives the foll owing result: 

(AB )C + A(BC) = (A + B) C + A( B + C ) 

Although this result can be si mplified f urther by the use of Boolean rules and Jaws. De 
Morgan's theorems cannot be used any more. 

Applying DeMorgan's Theorems 

The foll owing procedure illustrates the application of De Morgan's theorems <Jnd Boolean 
algebra to the spec ific expression 

A + BC + D (E + F) 

Step I : 	 Identify the terms to which YOll can apply~)eMorga n 's theare_ms, and think of 

each te rm as a single variable. Let A + BC = X and D( E + F) = y. 

Step 2: 	 Since X -I Y = X y, 

(A + BC) + (D ( E + F) = (A + BC )(D( E + F») 

Step 3: 	 Use rule 9 (A = A) to cancel the double bars over the lefr term (tilt ; is not part 
of DeMorgan 's theorem). 

(A + B )(D(E + F» = (A + BC )( D (E + F» 
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Step 4: Applying DeMorgan's theorem to the second term, 

(A + BC)(D(E + F» = (A + BC)(D + (E + » 
Step 5: Use rule 9 (A = A) to cancel the double bars over the E + F part of the term. 

(A 	+ BC)(D + E + F) = (A + BC)(D + E + F) 

The fo llowing three examples will further illustrate how to use DeMorgan's theorems. 

EXAMPLE 4-5 Apply DeMorgan's theorems to each of the follow ing expressions: 

(a) 	 (A + B + C)D 

(b) 	ABC + DEF 

(c) AB + CD + EF 

\)oluCiOT, (a) Let A ~ B ~ C = X and D = Y. The expression (A + B + C)D is of the form 
XY = X + Yand can be rewritten as 

(A + B + C) D = A + B + C + D 

Next, app ly DeMorgan's theorem to the term A + B + C. 

A + B + C + D = ABC + D 

(b) 	Let ABC ~~ and DEF = Y. The expression ABC + DEF is of the form 
X + Y = XY and can be rewritten as 

ABC + DEF = (ABC) (DEF) 

Next, apply DeMorgan's theorem to each of the terms ABC and DEF. 

(ABC)(DEF) = (A + B + C)(D + E + F) 

(c) 	 Let AB = X. CD = ~,~I~d EF = Z. The expression AB + CD + EF is of the 
form X + Y + Z = X YZ and can be rewritten as 

AB + CD + EF = (AB)(CD)(EF) 

Next, apply DeMorgan's theorem to each of the terms AB, CD, and EF. 

(AB)(CD)(EF) = (A + B)(C + D)(E + F) 

Rel.lled Prabli'm Apply DeMorgan's theorems to the expression ABC + D + E. 

EXAMPLE 4-6 Apply DeMorgan's theorems to each expression: 

(a) (A + B) + C 

(b) (A + B) + CD 

So/utiol 

(c) (A + B)C D + E + F 

= 
(a) (A + B) + C = (A + B)C = (A + B)C 

(b) (A + B) + CD = (A + B)CD = (AB)(C + D ) = AB(C + D) 

(c) (A + B)CD + E + F = «A + B)CD )(E + F ) = (A B + C + D)EF 

Rrlated Problem Apply DeMorgan's theorems to the expression AB( C + D ) + E. 

EXAM 

4-4 
Boolea 
formed 
variou~ 

After c 

• 	 D( 

• 	 E\ 

• 	c. 

Boolea 

To derive 
inputs an, 
circuit in 

1. 	 T 

2. 	 1 
tl 
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EX AM PLE 4-7 T he Boolean express ion fo r an excl usive-O R gate is AS + AB. With thi s as a starting 
point, use DeMorgan' s theo re ms and any other rul es or laws that are applicable to de 
velop an express io n for the exclus ive-NO R gate . 

~Olllt/oll Start by comple menting the exclusive-OR ex pression and the n applying DeM organ 's 
theorems as fo llows: 

AS + AB = (A B )(AB) = (A + S)(A + B) = (A + S )(A + B) 

ext, apply the di stributi ve law and rule 8 (A . A = 0). 

(A + B)(A + B ) = AA AB + AS + BB = AS + AS 

Tbe tinal ex pression for the XNOR is liB + AB. Note that thi s expression equals 1 
any time both variables are Os or both variables are I s. 

Rrlaled Problem Starting with the exp ress ion for a 4-input NAl"\JD gate, use DeMorgan's theorems to 
develop an express ion for a 4-inpul negative-OR gate. 

SECTION 4-3 1. Apply DeMorgan's theorems to the following expressions: 
CHECKUP 

(a) ABC + (15 + E) (c) A + B + C + DE 

4-4 BOOLEAN ANALYSIS OF lOGIC CIRCUITS 

Boolean al gebra provides a concise way to express the operation of a logic circuit 

formed by a combination of logic gates so that the output can be determined for 

various combinations of input values. 


After completing this section, you should be abl e to 

• Determ ine the Boolean express ion for a combination of gates 

• Evaluate the logic operation of a c ircuit from the Boolean expression 

• 	 Construct a truth table 

Boolean Expression for a Logic Circuit 
To derive the Boolean expression for a given combinational logic circuit, begin at the left-most A combinational logic circuit can be 
inputs and work toward the final output, writing the expression for each gate. For the example de.-.criued by a Boolean equation . 
circuit in Figure 4-16, the Boolean expression is determined in the following three steps: 

I. The expression for the left-most A ND gate with inputs C and D is CD. 

2. 	 The output of the left- most A ND gate is one of the inputs to the OR gate and B is 

the o ther input. Therefore, the express io n for the OR gate is B + CD. 


- -t..._ ./ 

-------L___' 	

fiGURE 4 - 16C 

D A combinational logic circuit show· 
ing the develo pment of the Boolea n 

8 expression for the output. 
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A comhin.llionallogic circuit can be 
described by a truth table. 

3. 	 The output of the OR gate is one of the inputs to the right- most AND gate ancl A is 
the other input. Therefore, the express ion for this AND gate is A(B + CD) , which 
is the fmal outpu t expression for the entire circuit. 

Constructing a Truth Table for a Logic Circuit 

Once the Boolean expression for a given logic circuit has been detem1ined, a truth table that 
shows the output for all possible values of the input variables can be developed. The procedure 
requires that you evaluate the Boolean expression for all possi ble combinations of values for 
the input variables. In the case of the circuit in Figure 4-16, there are four input variables 
(A, B, C, and D) and therefore sixteen (24 = 16) combinations of values are possible. 

Evaluating the Expression To evaluate the expression A(B + CD), first fmd the values 
of the vari ables that make the express ion equal to I , using the rules for Boolean addition and 
multiplication . In this case, the expression equals I only if A = J and B + CD = I because 

A(B + CD) = 1 . 1 = 1 

Now determine when the B + CD term equals 1. The term B + CD = 1 if either B = 1 or 
CD = I or if both B and CD equal 1 because 

B + CD = 1 + 0 = 1 

B + CD = 0 + 1 = 1 

B + CD = 1 + I 

The term CD = 1 only jf C = 1 and D = 1. 
To summarize, the expression A(B + CD) = I when A = 1 and B = 1 regard less of the 

va lues of C and D or when A = 1 and C = 1 and D = 1 regardless of the value of B. The 
expression A(B + CD) = 0 for all other value combinations of the variables. 

Putting the Results in Truth Table format The first step is to list the sixteen input 
variable combinations of 1s and Os in a binary sequence as shown in Table 4-5. Next, place 
a I in the output column for each combination of input variables th at was determined in the 
evaluation. Finally, place a 0 in the output co lumn for all other combinatio ns of input vari· 
ables. These results are shown in the truth table in Tab le 4-5. 

D 
0-
C 
0-
B 
0-
A 
0-

TABLE 4-5 

Truth table for the logic circuit in 
Figu re 4-16. 

INPUTS OUTPUTI 
A 8 C D A (8 + CD) 

() ()0 0 0 

0 0 () () 

() () () () 

() 0 0 

0 0 () () 

() 0 J () 

0 0 0 
() () 

() 

() 

() 

0 

() 0 

() 
4- 5 

0 () () Man 

0 ex pi 

0 0 
plcn 
th e 

0 J an e 
0 ancl 

cl e\ 
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EXAMPLE 	4- 8 Use Mullis im to ge nerate tl e tru th table for the logic circuit in Figure 4-16. 

Soitlliol 	 Construc t the ci rcuit in M ul tisim and connect the Multisim Logic Convet1er to the 

in pu ts and output. as shm n in F ii;ure 4- 17. C lick o n the ~ -+ 1Of1 1conversion 
bar, and the truth table appears in the d isplay as shown. 

I'rulh luble 

0 
Q 

0 
a 
D 
0 
0 
1 
1 
I 
1 
1 

XL Cl 

D 

AND2 

AflC O EF 

I 
Conv ersions 

~ 

~ 

00 U 0 0 
o 1 0 1 

1OT1 

1Ol1 

1OT1 1AlB 

,':',1 8 -+ 'l::,. 1 
AlB -. NAND I 

002 I 0 
00 3 I I 
004 0 0 
PiH P 1 
006 I 
00 l I 
OD e 0 
o0 ~ 	 0 
o I 0 I 
o 1 1 1 
o 12 	 U 
oI J 0 
01 4 1 
o 1 ~ 1 

B(\{\le~n exprl!s.~ion 

FIGURE 4-17 

You can a lso ge nerate the simp li fied Boolean expression from the truth table by 

clicki ng on 1Ol1 E!J1 P AIS I. 

Related Problem 0 p ' n ulti s illl to create the se tup and clo the conversions shown in this example. 

SECTION 4-4 L Rep ace the AND gates with OR gates and the OR gate with an AND gale in Figure 
CHECKUP 4-16 and determine the Boolean expression fo r the output. 

2. Construct a truth table for the drcuit in Question 1. 

4-5 SIMPLIFICATION USING BOOLEAN ALGEBRA 

Many times in the application of Boolean a lgebra, you have to reduce a particular 
express ion to its simplest form or cbange its form to a more conve nient one to im
plement the ex pression most effic ientl y. The approach take n ill thi s secti o n is to ll se 
the bas ic laws . rul es , and theore ms of Boo lean a lgebra to man ipLl lat an d simpli f 
an ex press ion. T hi s method depends on a thorough knowledge of Boolean a lgehra 
and considerab le pract ice in it s applicat io n. not to mentioll a lilli e ingen ui ty a nd 
lleverness. 
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After completing this section, you should be able to 

• 	 Apply the laws, rules, and theorems of Boolean algebra to simplify general 

express ions 


A simplified Boolean ex pression lIses the fewest gates possible to implement a given 
expression. Examples 4-9 through 4-12 illustrate Boolean simplification. 

EXA MPLE 4-9 Using Boolean algebra techniques, simplify lhis expression: 

AB + A(B + C) + B(B + C) 

SO.!lItion The following is not necessari Iy the only approach. 

Step 1: 	 Apply the distributive law to the second and third telms in the expression , as 
follows: 

AB + AB + AC + BB + Be 

Step 2: Apply rule 7 (BB = B) LO the fourth term. 

AB + AB + AC + B + BC 

Step 3: Apply rule 5 (AB + AB = AB) to the first two terms. 

AB + AC + B + BC 

Step 4: Apply rule 10 (13 + Be = B) to the last two terms. 

AB + AC + B 

Step 5: Apply rule 10 (AB + B = B) to the first and third terms. 

13 + AC 

At this point the expression is simplified as much as possible. Once you gain experi
ence in applying Boolean algebra, you can often combine many individual steps. 

Related Proll/em Simplify the Boolean expression AB + A(B + C) + B(B + e). 

Simplification means fewer gates for 
Ih£' same function. 

FJGUR£ 4- 18 

Gate circuits for Example 4-9. Open 

file F04-18 to verify equivalency. 

Figure 4- 18 shows that the simplification process in Example 4-9 has significantly re
duced the number of log ic gates required to implement the express ion. Part (a) shows thaI 
five gates are required to implement the expression in its original form ; however, only two EX 
gates are needed for the simplified expression, shown in pal1 (b) . It is important to realize 
that these two gate circuits are equivalent. That is , for any combination of level s on the A. 
B, and C inputs, you get the same output from either circuit. 

.1 

B +AC 
B 

(. 

(a) 	 (b) 
----The~e (wu I:ircui l' ar" ~'1lli\3kl1t.-----' 

• 

~ 

~ 

AB +A(fJ +0 +8W + C) 
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EXA MPLE 4-10 Simplify tbe following Boolean expression: 

(AB(C + BD) + A'BJC 
Note that brackets and parentheses mean the same thing: the term inside is multiplied 
(ANDed) with the term outside. 

SolutIOn Step 1: Apply the distributive law to the terms within the brackets. 

(ABC + ABBD + A B)C 

Step 2: Apply rule 8 (BB = 0) to the second term within the parentheses. 

(A BC + A . 0 . D + AB)C 

Step 3: Apply rule 3 (A . 0 • f) = 0) to the second term within the parentheses. 

(ABC + 0 + AB)C 

Step 4: Apply rule I (d rop the 0) within the parentheses. 

(A BC + AB)C 

Step 5: Apply the distributive law. 

ABCC + ABC 

Step 6: Apply rule 7 ( C = C) to the first term. 

ABC + ABC 

Step 7: actor out Be. 

BC(A + A) 

Step 8: Apply rule 6 (A A = I ). 

BC · I 

Step 9: Apply rule 4 (drop the I) . 

BC 

Related Problem Simplify the Boolean expression [AB( C + BD) + AB]CD. 

EXAMPLE 4-11 Simplify the following Boolean express ion : 

ABC + ABC + ABC + ABC + ABC 

a/utiol Step 1: Factor BC oul of the first and last terms. 

BC(A + A) + ABC + ABC + ABC 

Step 2: Apply rule 6 (A + A = I ) to the term in parentheses, and factor AB fro m the 
second and last terms. 

BC · I + AB(C + C) + ABC 

Step 3: Apply rule 4 (drop the I) to the first term and rule 6 (C + C = 1) to the term 
in paren theses. 

BC + AB . I + ABC 
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Step 4: Apply rule 4 (drop the I) to the second term. 

Be + ill +- ABC 

Step 5: Factor B from the second and third terms. 

BC + B(A + A C ) 

Step 6 : Apply rule 11 (A + A C = A + C) to the term in parentheses . 

BC + S(A + C ) 

Step 7: Use the distribut ive and commutative laws to get the following expression: 

BC + AB + B e 

Related Problem Simplify the Boolean expression ABC + ABC + ABC + AB C. 

EXAM PlE 4-11 Simplify the following Boo lean expression: 

AB + AC + ABC 

So/utioll Step 1: Apply DeMorgan 's theorem to the iirst term. 

(AB )(AC) + ABC 

Step 2: Apply DeMorgan 's theorem to each term in parentheses. 

(A + B )(A + C) + ABC 

Step 3: Apply the di stributive law to the two terms in parentheses. 

AA + AC + AB + B C + ABC 

Step 4: Apply rule 7 (A A = A) to the first term, and apply rule 10 

[A B + ABC = AR( I + C) = AB] to the third and last terms. 

A + A C + AB + B C 

Step 5: Apply rule 10 [II + IIC = A( I + C) = X] to the first and second te~m s . 

A + AB + B C 

Step 6 : Apply rule I () [A + AB = A( 1 + Ii) = AJ to the first and second terms. 

A +BC 

Related Problem Simplify the Boolean ex pres~ i()n AB + AC + AB C. 

EX AMPLE 4-13 Use Multisim to perform the logic s implification shown in Figure 4-18. 

So/ulioll 	 Step I: C onnect the M 1I1l is i m Logic Converter to the circuit as shown in F igure 4-19. 

Step 2: Generate the Lru th tabl e by clicking on =>- -- TOTt I. 

Step 3: Generate the simplified Boolean expressio n by clicking on TOTt s ~'P .O.IB I. 
Step 4 : Generate the simpliJ ied log ic circllit by c li cki ng on AlB -- ~ I. 

All 
star 
D1a: 

mo 

Afl 

• 
• 
• 

4-6 
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FIGUR E 4-19 

Related Pmbfen Use Multisim to create the setup and perform the logic s implification illustrated in this 
example. 

SECTION 4-5 1. Simplify the following Boolean expressions if possible: 
CHECKUP (a) A + AB + ABC (b) C4' + B)C + ABC (c) ABC(BD + CDE) + AC 

2. Implement each expression in Question 1 as originally stated with the appropriate 
logic gates. Then implement the simpl ified expression, and compare the number of 
gates. 

4-6 STANDARD FORMS OF BOOLEAN EXPRESSIONS 

All Boolean expressions , regardless of their form, can be converted into either of two 
standard forms: the sum-of-products form or the product-of-sums form. Standardization 
makes the evaluation, simplifica tion , and implementation of Boolean expressions much 
more systematic and easier. 

After completing this section, you should be able to 

• Identify a sum-of-products expre, sion 

• Determine the domain of a Boolean ex pression 

• COllvert any sum-of-products expression to a standard form 

19. 

l. 
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An SOP expression can be 
lmplrmfllted with anI' OR gate and 
two or more AND gates. 

<) Evaluate a standard sum-of-products expression in terms of binary values 

• Identify a product-of-sums expression 

• Convert any product-of-sums expression to a standard form 

• Evaluate a standard product-of-sums expression in terms of binary values 

• Convert (rom one standard form to the other 

The Sum-ot-Products (SOP) Form 

A product term was defined in Section 4-1 as a term consisting of the product (Boolean 
multiplication) of literals (variables or their complements) . When two or more product 
terms are summed by Boolean addition, the resulting expression is a .,urn-or-products 
(SOP). Some examples are 

AB + ABC 

ABC + CDE + BCD 

AB + ABC + AC 

Also, an SOP ex pression can contain a single-variable term, as in A + ABC + BCD. 
Refer to the simplification examples in the las t section, and you will see that each of the 
final expressions was either a single product term or in SOP form. In an SOP expression, a 
single overbar cannot extend over more than one variable; however, more than one_v~liable 
in a term can have an overbar. For example, an SOP expression can have the term ABC but 
not ABC. 

Domain of a Boolean Expression The domain of a general Boolean expression is 
the set of variables contained in the expression in either £omple~ented or uncomple
mented form. For example, the domain of the express i~n AB ~ AB~ is---.!.he set of vari
ables A, B, C and the domain of the expression ABC + CDE + BCD is the set of 
variables A , B, C, D , E. 

AND/OR Implementation of an SOP Expression Implementing an SOP expression 
simply requires ORing the outputs of two or more AND gates. A product term is produced 
by an AND operation, and the sum (addition) of two or more product terms is produced 
by an OR operation. Therefore , an SOP expression can be implemented by AND-OR 
logic in which the outputs of a number (equal to the number of product terms in the 
expression) of AND gates connect to the inputs of an OR gate, as shown in Figure 4-20 for 
the expression AB + BCD + AC. The output X of the OR gate equals the SOP expression. 

FIGURE 4- 20 

Implementation of the SOP expres· 
sion AB + BCD + AC. 

NAND/NAND Implementation of an SOP Expression NAND gates can be used to 
implement an SOP expression. By using only NAND gates, an A ND/OR function can be 
accomplished , as illustrated in Figure 4-21. T he first level of NAND gates feed into a 
NA ND gate that acts as a negative-OR gate. The NAND and negative-OR inversions can
cel and the res ult is effectively an AN D/OR circuit. 
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A _---r--..,. 	 FIGURE 4- 2 1 

This NAND/NAND implementation is 
equivalent to the AND/OR in Figure 

B 

B 
C x = AB + BCD ~ ,Ie 4-20. 
D ------/ 

1\ _ -1""-..... 

C ----....-./ 

Conversion of a General Expression to SOP Form 

Any logic expression can be changed into SOP form by applying Boolean algebra tech
niques. For example, the expression A(B + CD) can be converted to SOP form by applying 
the distributive law: 

A(B + CD) = AB + ACD 

EXAMPLE 4-14 

~ollJliall 

Convert each of the following Boolean expressions to SOP form: 

(a) AB + B(CD + EF) (b) (A + B)(B + C + D) (c) (A + B) + C 

(a) AB + B(CD + EF) = AB + BCD + BEF l 
(b) (A + B)(B + C + D) = AB + AC + AD + BB + BC + BD 

(c) (A + B) + C = (A + B)C = (A + B)C = AC + BC 

Related Problem Convert ABC + (A + B) (B + C + AB) to sOP form. 

The Standard SOP Form 
So far, you have seen SOP expressions in which some of the product terms do not contain 
~l ~f th~ variaQle~ in the domain of the expression . For example, the expression 
ABC + ABD + ABCD has a domain made up of the variables A, B. C, and D. However, 
notice that the complete set of varia~es in the domain is not represented in !Ee first two 
terms of the expression; that is, D or D is missing from the first term and Cor C is missing 
from the second term. 

A standatd SOP expression is one in which all J".he vari~~s in the domain appear in 
each product term in the expression. For example, ABCD + ABCD + ABC D is a standard 
SOP expression. Standard SOP expressions are important in constructing truth tables, cov
ered in Section 4-7, and in the Karnaugh map simplification method, which is covered in 
Section 4-8. Any nonstandard SOP expression (referred to simply as SOP) can be con
verted to the standard form using Boolean algebra. 

Converting Product Terms to Standard SOP Each product term in an SO P expression 
that does not contain all the variables in the domain can be expanded to standard form to 
include all variables in the domain and their complements. As stated in the following steps, 
a nonsta~dard SOP expression is converted into standard form using Boolean algebra rule 
6 (A + A = 1) from Table 4-1: A variable added to its complement equals l. 

Step 1: 	 Multiply each nonstandard product tenn by a term made up of the sum of a 
missing vmiable and its complement. This results in two product terms. As you 
know, you can multiply anything by I without changing its value. 

Step 2: 	 Repeat Step I until all resulting product terms contain all variables in the do
main in either complemented or uncomplemented form. In converting a prod
uct term to standard form, the number of product terms is doubled for each 
missing variable, as Example 4-15 shows. 
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EXA M PLE 4- 15 	 Convert the following Boolean expression into standard SOP form: 

ABC + AB + ABc n 

50/lltioll 	 The do~ain of tbi s SOP expression ~A , B. C. D, Take one term at a time~The first 
term, ABC, is missing variable D or D, so multiply the first term by D + D as follows: 

ABC == ARceD + D) = ABCD + ABCD 

In tbis case, two standard product terms are the result. 
The second term, IB, is missing variables C or Cand D or D, so first mUltiply the 

second term by C + C as follows: 

All = AB( C + C) = ABC + ABC 

The two resulting terms are missing variabl e D or D, so multiply both terms by D + D 
as fol lows: 

A B = A lJC + AB C = A BC( D + D) + ABC(D + D ) 

= ABCD + AlJCD + ABCD + AB C D 

In this case, four stan~lrd product terms are the result. 
The third term, ABCD, is a lready in standard form. The complete standard SOP 

form of the original expression is as follows: 

ABC + AB + ABC/) = ABCD + AlJCD + ABCD + ABCD + ABCD + ABCD + ABCD 

Related Problem Convert the expression WXY + XYZ + WXY to standard SOP form. 

Binary Representation ofa Standard Product Term A standard product term ~ e~131 

to I for only one combination of variable values. For example, the product term ABCD is 
eq ual to I when A = I , B = 0, C = I , D = 0, as shown below, and is 0 for all other com
binations of values for the va riables. 

ABCD = 1 · 0 . ] . 0 = I . I . I . ] = I 

In thi s case, the product term has a binary value of ]010 (decimal ten). 
Remember, a product term is implemented with an AND gate whose output is J only if 

each of its inputs is I. In verters are used to produce the complements of the variab les as re
quired. 

An SOP expression is e(Jual to L only if one or more of the product terms in the 
expression is equHI to 1. 

EXA MPLE 4-16 	 Determine the binary va lues for which the following standard SOP expre ssion is 
equal to I: 

ABCD + ABCD + ABCD 

Su/ution The term ABCD is equal to I when A = I , B = 1, C = ], and D = J. 

ABCD = J • I . I . J = ] 

The term fi B CD is eq uaJ to I when A = I , B = 0, C = 0, and D = J. 

ABCD = I · 0 · O · ] = I . I .J . 1 = 1 
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The term AB e D is equal to I when A = 0, B = 0, C = 0, and D = 0, 

A BCD = 0 . 0 . 0 . 0 = I . I . I . I = 1 

The SOP expression equals I when any or all of the three product terms is 1. 

Re/ale(/ Problem Determine the binary values for which the following SOP expression is equal to I: 

XYZ + XYZ + XYZ + XYZ + XYZ 

Is this a standard SOP expression? 

The Product-of-Sums (POS) Form 

A sum term was defined in Section 4-1 as a term consisting of the sum (Boolean addition) 
of literals (variables or their complements), When two or more sum terms are multiplied, 
the resulting expression is a product-of-sums (POS). Some examples are 

(A + B)(A + B + C) 


(A + B C)(C + D + E)(B + C + D) 


(A + B) (A + B + C) (A + C) 


APOS expression can contain a single-variable term, as in A(A + B + C)(B + C + D). In 
a POS expression, a s ingle overbar cannot extend over more than one variable; however, 
more than one~ari~le i~ a term can have an overbar. For example, a POS expression can 
have the term A + B + C but not A + B + c. 

Implementation oj a POS Expression Implementing a POS expression simply re
quires ANDing the outputs of two or more OR gates, A sum term is produced by an OR op
eration, and the product of two or more sum terms is produced by an AND operation, 
Therefore, a POS expression can be implemented by logic in which the outputs of a num
ber (equal to the number of sum terms in the expression) of OR gates connect to the inputs 
of 3n AND gate, as Figure 4-22 shows for the expression (A + B)(B + C + D)(A + C), 
The output X of the AND gate equals the POS expression, 

rlGURE 4- 21 

n - "L-__ Implementation of the pas expres

sion (A + 8)(8 + C + Ol(A + C).B 
(' x =(A + (l)(B I- C + D)(A + C) 
f) 

r 

The Standard POS Form 

So far, you have seen POS expressions in which some of the sum terms do not contain all 
of the variables in the domain of the expression. For example, the expression 

(A + B + C)(A + B + D)(A + B + C + D) 

has a domain made up of the variables A , B , C, and D. Notice that the complete set of vari
~Jes in the domain is not represented in ~e first two terms of the expression; that is, D or 
D is missing from the first term and Core is missing from the second term. 
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A standard POS expression is one in which all the variables in the domain appear in 
each sum term in the expression. For example, 

(A + B + C + D)(A + B + C + D )(A + B + C + D) 

is a standard POS expression. Any nonstandard POS expression (referred to simply as 
POS) can be converted to the standard form using Boolean algebra. 

Converting a Sum Term to Standard POS Each sum term in a POS expression that 
does not contain all the variables in the domain can be expanded to standard form to in
clude all variables in the domain and their complements. As stated in the following steps, a 
nons~ndard POS expression is converted into standard form using Boolean algebra rule 8 
(A . A = 	 0) from Table 4-\: A variable mUltiplied by its complement equals O. 

Step 1: 	 Add to each nonstandard product term a term made up of the product of the 
missing variable and its complement. This results in two sum terms. As you 
know, you can add 0 to anything without changing its value. 

Step 2: 	 Apply rule 12 from Table 4-1: A + BC = (A + B)(A + C) 

Step 3: 	 Repeat Step 1 until all resulting sum terms contain all variables in the domain 
in either complemented or uncomplemented form. 

-------------------------------------------------------------------------------------------------~ 

EXAM PLE 4-17 Convert the following Boolean express ion into standard POS form: 

(A + B + C )(B + C + D)(A + B + C + D) 

oiution 	 The domai~of this POS ex pression is A, B,S;, D. Take ~e term at a time. The first 
term, A + B + C, is missing variable D or D, so add DD and apply rule 12 as follows: 

A + B + 	C = A + B + C + DD = (A + B + C + D)(A + B + C + D) 

The second term, B + C + D, is missing variable A or A, so add AA and apply rule 
12 as follows: 

B + C + D = B + C + D + AA = (A + B + C + D)(A + B + C + D) 

The third term, A + B + C + D , is already in standard form. The standard POS 
form of the original expression is as follows: 

(A + B + C)(R + C + V)(A + B + C + D) = 

(A + B + C + D)(A + B + C + D) (A + B + C + D)(A + B + C + D)(A + B + C + D) 

Related tlmblem Convert the expression (A + B) (B + C) to standard POS form. 

Binary Representation of a Standard Sum Term A standard sum term i~ equal to .Q 
for only one combination of variable values. For example, the sum term A + B + C + D 
is 0 when A = 0, B = 1, C = 0, and D = 1, as shown below, and is 1 for all other combi
nations of values for the variables. 

A+B+C+D=O+ I+O+J = O+O+O+O=O 

In this case, the sum term has a binary value of 0 I 0 I (dec imalS) . Remember, a sum term 
is implemented with an OR gate whose output is 0 only if each of its inputs is O. Inverters 
are lISed to produce the complements of the variables as required. 

A POS expression is equal to 0 only if one or more of the sum terms in the 
expression is equal to O. 
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EXAM PLE 4-18 	 Determine the binary values of the variables for which the following standard POS 
expression is equal to 0: 

(A + B + C + D)(A + B + C + D)(A + B + C + D) 

50/utitm The term A + B + C + D is equal to 0 when A = 0, B = 0, C = 0, and D = O. 

A+B+C+D=O+O+O+O=O 

The term A + B + C + D is equal to 0 when A = 0, B = 1, C = 1, and D = O. 

A +B +C+D = 0+1+1+0=0+0+0+0=0 

The term A + B + C + D is equal to 0 when A = 1, B = 1, C = 1, and D = 1. 

A + B+C+D = 1 + 1 + 1+1=0+0+0+0=0 

The POS expression equals 0 when any of the three sum terms equals O. 

Relilled Prob/cff, Determine the binary values for which the following POS expression is equal to 0: 

ex + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z) 

Is this a standard POS expression? 

Converting Standard SOP to Standard POS 

The binary values of the product terms in a given standard SOP expression are not present 
in the equivalent standard POS expression. Also, the binary values that are not represented 
in the SOP expression are present in the equivalent POS expression. Therefore, to convert 
from standard SOP to standard POS , the following steps are taken: 

Step 1: Evaluate each product term in the SOP expression. That is, determine the bi
nary numbers that represent the product terms. 

Step 2: Determine all of the binary numbers not included in the evaluation in Step I. 

Step 3: Write the equivalent sum term for each binary number from Step 2 and express 
in POS form. 

Using a similar procedure, you can go from POS to SOP. 

EXAMPLE 4-19 Convert the following SO P expression to an equivalent POS expression: 

ABC + ABC ABC + ABC + ABC 

!loll/cion The evaluation is as follows: 

000 + 010 + 0 I I + 101 + 111 

Since there are three variables in the domain of this expression, there are a total of 
eight (23

) possible combinations. The SOP expression contains five of these combi
nations, so the POS must contain the other three which are 001, 100, and 110. 
Remember, these are the binary values that make the sum term O. The equivalent 
POS expression is 

(A + B + C) (A + B + C)(A 	+ B + C) 

Related Problem 	 Verify that the SOP and POS expressions in this example are equivalent by substituting 
binary values into each. 



196 • 	 BOOLEAN ALGEBRA AND lOGIC SIMPLIFICATION 

SECTlON 4- 6 1. Identify each of the following expressions as SOP, standard SOP, pas, or standard 
CHECKU P pas: 

(a) AB + ABD + ACD (b) (A + B + C)(A + B + C) 
(c) ABC + ABC (d) (A + C)(A + B) 

2. Convert each SOP expression in Question 1 to standard form. 

3. Convert each pas expression in Question 1 to standard form. 

4- 7 BOOLEAN EXPRESSIONS AND TRUTH TABLES 


All standard Boolean expressions can be easily converted into truth table fonnat using 
binary values for each term in the expression. The truth table is a common way of pre
senting, in a concise format, the logica l operation of a circuit. Also, standard SOP or 
POS expressions can be determined from a truth table. You will find truth tables in 
data sheets and other literature related to the operation of digital circuits. 

After completing this section, you should be able to 

• Convert a standard SOP expression into truth table format 

• Convert a standard POS expressioll into truth table format 

• Derive a standard expression from a truth table 

• Properly interpret truth rable data 

Converting SOP Expressions to Truth Table Format 

Recall from Sectioll 4-6 that an SOP expression is equal to I only if at least one of the 
product terms is equa l to 1. A truth table is simply a list of the possible combinations of 
input variable values and the corresponding output values (l or 0). For an expression with 
a domain of two variables, there are four different combinations of those variables (22 = 4) . 
For an ex pression with a domain of three variables, there are eight different combinations 
of those variables (2J = 8). For an expression with a domain of four variables, there are 
sixteen different combinations of those variables (24 = 16), and so on. 

The first step in constructing a truth table is to list all possible combinations of binary 
values of the variables in the expression. Next, convert the SOP expression to standard 
form if it is not already. Fi nally, place a 1 in the output column (X) for each binary value 
that makes the standard SOP expression a 1 and place a 0 for all the remaining binary val
ues. Thi s procedure is illustrated in Example 4-20. 

EXA MP LE 4-20 Develop a truth table for the standard SOP expression ABC + ABC + ABC. 

'oll/ticm 	 There are three variables in the domain , so there are eight poss ible combinations of 
binary values of the variables as li sted in the left three columns of Table 4-6. The 
~i~ary valuc~~at make the product te rms in the expressions equal to 1 are 
ABC: 00 I ; AB C: 100; and ABC: I I I. For each of these binary values , place a 1 in 
the output column as show n iJl the table. For each of the remaining binary combina
tions , place a 0 in the output co lumn. 
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Idard TABLE 4-6 
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He/atel! Problem Create a truth table for the standard SOP l:xpress ion ABC + ABC. 

Converting POS Expressions to Truth Table Format 
Recall that a POS expression is equal to 0 only if at least one of the sum term s is equal to 
O. To construct a truth table from a POS expression, list all the possible combinations of bi
nary values of the variable' just as was do ne for th e SOP expression. Next, convert the 
POS expression to standard fo rm if it is not already. Finally, place a 0 in the output column 
(X) for each binary value that makes the express ion a 0 and place a I for all the remai ning 
binary values. This procedure is illustrated in Example 4-2 1. 

EXAMPLE 4-21 Determine the truth table for the following standard POS express ion: 

(A + 15 + C) (A + B -r C ) (A + B + C) (A + B + C) (A + B + C) 

Solution 	 There are three variables in t.he domain ane! the eight possible binary values are li sted 
in the lefr three columns of Table 4- 7. T he binary values that make the sum terms in 
the expres~()n equal to 0 ar0 + B + C: 000; A I B + C: OJ 0; A + B + C: 011; 
A + B + C: 101 ; and A + B + C: I 10. For each of these binary values, place a 0 in 
the output column as shown in the tabl e. For each of the remaining binary combina
tion s. place a I in the outp ut column. 

TABU 4- 7 INPUTS OUTPUT 
ABC X SUM TERM 

0 0 0 0 (A + B·. C) 

() 0 	 I 

0 0 0 (A T B I- C) 

0 I 	 0 (A + B + C) 

0 0 I 

0 0 (A + B + C) 

0 0 (A + B + C) 
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Notice that the truth table in lhi~ example is the same as the one in Example 4-20. 
This mean ,~ that the SOP expression in the previous example and the POS expression 
in this example are equivalent. 

Relatt!d Problem Develop a truth table for the following standard POS expression: 

(A + B + C) (A + B + C) (A + B + C) 

Determining Standard Expressions from a Truth Table 

To determine the s tandard SOP express ion represented by a truth table, list the binary val
ues of the input variables for which the output is I. Convert each binary value to the corre
sponding product term by replacing each 1 with the corresponding variable and each 0 
with the corresponding variable complement. For example, the binary value 10 lOis con
verted to a product term as follows: 

1010 --) ABCD 

If you substitute , you can see that the product term is I: 

ABeD = 1 . 0 . I . 0 = 1 • I . 1 . I = I 

To determine the standard POS expression represented by a truth table, list the binary 
values for which the output is O. Convert each binary value to the corresponding sum term 
by replacing each I with the corresponding variable com plement and each 0 with the cor
responding variable. For example, the binary value 100 I is convelted to a sum term as 
follows: 

100 I --) A + B + C + D 

If you substitute, you can see that the sum term is 0: 

A+B+C+ D = 1+0+0+1=0+0+0+0=0 

......--------------- ------------ 
EXAMPLE 4-22 	 From the truth table in Table 4-8, determine the standard SOP express ion and the 

equivalent standard POS express ion. 

TABLE 4-8 

INPUTS 
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() () () 
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There are four 1 s in the output column and the corresponding binary values are 011 , 
100, 110, and Ill. Convert these binary values to product terms as follows: 

011 ~ ABC 

100 ~ ABC 

110 ~ ABC 

III ~ ABC 

The resulting standard SOP expression for the output X is 

X = ABC + AB C + ABC + ABC 

For the P OS expression. the output is 0 for binary values 000, 001, 010, and 101. 
Convert these binary values to sum terms as follows: 

000 ~ A + B + C 

001 ~ A + B + C 

010 ~ A + B + C 
101 ~ A + B + C 

The resulting standard POS expression for the output X is 

X = (A + B + C)(A + B + C)(A + B + C)(A + B + C) 

By substitution of binary values, show that the SOP and the POS expressions derived 

in this example are equivalent: that is. for any binary value each SOP and POS term 
should either both be 1 or both be 0, depending on the binary value. 

1. 	 If a certain Boolean expression has a domain of five variables, how many binary val
ues will be in its truth table? 

2. 	In a certain truth table, the output is a 1 for the binary value 0110. Convert this bi
nary value to the corresponding product term using variables W, X, Y, and Z. 

3. 	In a certain truth table, the output is a 0 for the binary value 1100. Convert this bi
nary value to the corresponding sum term using variables W, X, Y, and Z. 

4-8 THE KARNAUGH MAP 


A Karnaugh map provides a systematic method for simplifying Boolean expressions 
and, if properly used , will produce the simplest SOP or POS expression possible, 
known as the minimum expression. As you have seen, the effectiveness of algebraic 
simplification depends on your familiarity with all the laws, rules, and theorems of 
Boolean algebra and on your ability to apply them. The Karnaugh map, on the other 
hand. provides a "cookbook" method for simplification. Other simplification tech
niques include the Quine-McClusky method and the Espresso algorithm. 

After completing this section, you should be able to 

• 	 Construcr a Karnaugh map for three or four variables 

• 	 Determine the binary value of each cell in a Karnaugh map 

• 	 Determine the standard product term represented by each cell in a Karnaugh map 

• 	 Explain cell adjacency and identify adjacent cells 
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The purpose of a Kam~ ugh map is to 
simplify a Boolean expression . 

A Karnaugb map is similar to a truth table because it presents all of the possible val
ues of input variables and the resulting output for each va lue. Instead of being organized 
into col umns and rows like a truth table, the Kamaugh map is an alTay of cells in which 
each cell represents a binary value of the input variables. The cell s are arranged in a way so 
that simplification of a given expression is simply a matter of properly grouping the cells. 
Karnaugh maps can be used for expressions with two, three, four, and five variables, but 
we will discuss only 3-variable and4-variable situations to illustrate the principles. Section 
4-10 deals with five variables using a 32-cell Karnaugh map. 

The number of cells in a Karnaugh map, as well as the number of rows in a truth table, 
is eq ual to the total number of possible input variable combinations. For three variables, 
the number of cells is 23 = 8. For fo ur variables, the number of cells is 24 = 16. 

The 3-Variable Karnaugh Map 

The 3-variable Karnaugh map is an array of e ight ce ll s, as shown in Figure 4-23(a). In this 
case, A, B, and C are used for the variables al thou gh other letters could be used. Binary val
ues of A and B are along the left side (notice the sequence) and the values of C are across 
the top. The value of a given cell is the binary values of A and B at the left in the same row 
combined with the value of C at the top in the same column. For example , the cell in the 
upper left corner has a binary va lue of 000 and the cell in the lower right corner has a 
binary value of 10 J . Figure 4-23(b) shows the standard product terms th at are represented 
by each cell in the Karnaugh map. 

FIGURE 4- 23 c c 
AS ASA 3-variable Karnaugh map showing 

product terms. ~nc AM 

AilC ~BC 

~C IBC' 

A~ 
-

4& 
-

(a) (b) 

The 4-Variable Karnaugh Map 

The 4-variable Karnaug h map is an alTay of sixteen cells, as shown in Figure 4-24(a). Bi
nary values of A and B are along the left side and the values of C and D are across the top. 
T he value of a given cell is the binary values of A and B at the left in the same row com
bined with the binary values of C and D at the top in the same column. For example, the 
cell in the upper right corner has a binary value of 00 I 0 and the cell in the lower right cor
ner has a binary value of 10 10. f igure 4-24(b) shows the standard product terms that are 
represented by each ce ll in the 4-variable KarnaLlgh map. 

Cell Adja[ency 

The cells in D Karnaugh map are arranged so that there is on ly a single- variable change be
tween adjacent cells. Adjacency is defined by a si ngle-variabl e change. In the 3-variable 
map the 010 cell is adjacent to the 000 cell, the OJ J cell, and the 1J 0 cel l. The 010 cell is 
not adj acent to the 00 I ce ll , the III cell , the J 00 cell , or the 101 cell. 

Physically, each cell is adjacent to the cells that are immediately next to it on any of its 
four sides. A ce ll is not adjacent to the cell s that diagonally touch any of its corners. Also, 

Cells that differ by only one variable 
are adjacent. 

Cells with values that differ by more 
than one variable are not adjacent. 
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the cells in the top row are adjacent to the corresponding cells in the bottom row and the 

cells in the outer left column are adjacent to the corresponding cells in the outer right col
umn. This is called "wrap-around" adjacency because you can think of the map as wrap

ping around from top to bottom to f01111 a cylinder or from left to right to form a cylinder. 

Figure 4-25 illustrates the cell adjacencies with a 4-variable map, although the same rules 

for adjacency apply to Kamaugh maps with any number of cells. 

FIGURE 4-25 

Adjacent cells on a Karnaugh map 
are those that differ by only one 
variable. Arrows point between 
adjacent cells. 

The Quine-McClusky Method 

Minimizing Boolean functions using Karnaugh maps is not applicable for more than five 
variables and practical only for up to four variables. Also, this method does not lend itself 

to be automated in the form of a computer program. 
The Quine-McClusky method is more practical for logic simplification of functions 

with more than four or five variables. It also has the advantage of being easily imple

mented with a computer or programmable calculator. 
The Quine-McClusky method is functionally similar to Karnaugh mapping, but the tab

ular form makes it more efficient for use in computer algorithms. and it also gives a way to 
check that the minimal form of a Boolean function has been reached. This method is some
times referred to as the tabulation method. An introduction to the Quine-McClusky method 
is provided in Appendix C. 

Espresso Algorithm 
Although the Quine-McCluskey method is well suited to be implemented in a computer 
program and can handle more variables than the Karnaugh map method, the result is still 
far from efficient in terms of processing time and memory usage. Adding a variable to the 
function will roughly double both of these parameters because the truth table length in
creases exponentially with the number of variables. Functions with a large number of vari
ables have to be minimized with other methods such as the Espresso logic minimizer, 
which has become the de facto world standard. 

TH E K ARNAUGH MAP • 20 1 

FIGURE 4- 24 

A 4-variable Karnaugh map. 
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iog with.Compared to the other methods, Espresso is essentiall y more effic ient in te rms of re
tion in Fi ducing memory usage and computation time by several orders of magnitude. There is es

sentiall y no res tric tio ns to the nu mber of variables , output functions, and prod uct terms of Step 1 
a combinational logic funct io n. In ge neral, tens of variables wi th tens of output func tions 
can be handled by Espresso. 

Step : The Espresso algorithm has been incorporated as a standard logic function minimi za
ti on step in most logic synthesis tools for programmable logic devices. For implementing a 
fun ction in multilevel logic, the minimization res ult is optimized by fac torization and 
mapped onto the available bas ic logic cell s in the target device, such as an FPGA (Field· 
Programmable Gate Array). 

SECTION 4-8 1. In a 3-variable Karnaugh map, what is the binary value for the cell in each of the fol· 

CHECKUP lowing locations: 


(a) upper left corner (b) lower right corner 

(c) lower left corner (d) upper right corner 

2_ What is the standard product term for each cell in Question 1 for variables X, Y, and Z? 

3. Repeat Question 1 for a 4-variable map. 

4. Repeat Question 2 for a 4-variable map using variables W, X, Y, and Z. E 

4-9 KARNAUGH MAP SO P MINIMIZATION 

As stated in the las t section, the Karn augh map is used for simplifying Boolean ex 
pressions to their minimum form. A min imi zed SOP expression contains the fe west 
possible terms with the fewest possible varia bles per term. Generall y, a minimum SOP 
express ion can be implemented with fewer logic gates than a standard expression . 

After completing this section, you should be able to 

• 	 M ap a standard SOP express ion on a Karnaugh map 

• 	 Combine the Is on the map into max imum gro clpS 

• 	 Determi ne the minimum product term for each group OJ! th e map 

• 	 Combine the minimum product terms to form 8 minimum SOP ex press ion 

• 	 Convert a truth table into a Karnaugh map for simplification of the represented 
expression 

• 	 Use "don ' t care" conditions OJ! a Karn augh map 

Mapping a Standard SOP Expression 

For an SOP express ion in standard form, a 1 is placed on the Karnaugh map for each 
produc t term in the expression. Each I is placedJn a cell correspondi ng to the value of a 
product term. For example, for the product term ABC, a 1 goes in the 10 1 cell on a 3-variable 
map. 

When an SO P expression is co mpletely mapped , there will be a num ber of Is on the 
Karnaugh map equal to the number of product terms in the standard SOP expressio n. The 
cells that do not have a 1 are the cells for which the expression is O. Usuall y, when work
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ing with SOP expressions, the Os are left off the map. The following steps and the illustra
tion in Figure 4-26 show the mapping process. 

Step 1: 	 Determine the binary value of each product term in the standard SOP expres

sion. After some practice, you can usually do the evaluation of telms mentally. 


Step 2: 	 As each product term is evaluated, place a I on the Karnaugh map in the cell 

having the same value as the product term. 


FIGURE 4-26c --- - 
0 J ·IIJI ABC + ·IllAB 

000 ()Ol I J() I()( 
I 1-

I 

I 

4.B( 
Example of mapping a standard SO P 


00 
 expression. 

01 

Jl 

10 

EXA MPLE 4-23 Map the following standard SOP expression on a Karnaugh map: 

ABC + ABC -I- ABC -I- ABC 

• o/u/iop Evaluate the expression as shown below. Place a 1 on the 3-variable Karnaugh map in 
Figure 4-27 for each standard product term in the expression. 

ABC + A BC -I- ABC -I- ABC 

001 a I 0 11 0 I I 1 

FIGURE 4-27 
C 

AB 

00 

0 

IfJ 

OJ 1 IRC 

11 IHe 

10 IRe 

Related Problem Map the standard SOP expression ABC -I- ABC + AB C on a Karnaugh map. 

EXA M Pl E 4-2 4 Map the following standard SOP expression on a Karnaugh map: 

ABCD + ABCD -I- ABCD -I- ABCD -I- ABCD + ABCD -I- ABCD 

alU/ian Evaluate the expression as shown below. Place a I on the 4-variable Karnaugh map in 
Figure 4- 28 for each standard product term in the expression. 

ABCD -I- ABCD + ABCD + ABCD + ABCD + A B eD -I- ABCD 

00 11 01 00 11 01 1111 1[00 0001 [010 
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fiGURE: 4- 28 

Related Problem M ap the foll owing standard SO P ex pression Oil a Karnaugh map: 

ABeD + ABeD + ABCD + ABCD 

Mappin~ a Nonstandard SOP Expression 
A Boolean ex pression must first be in s tandard form before you use a Karnau gh map. If an 
expression is not in stan dard form , then it must be converted to standard form by the pro
cedure covered in Section 4-6 or by numerical expansion. Since an expression should be 
evalua ted before mapping anyway, numerical expansion is probably the most effici ent ap
proach. 

Numerical Expansion oj a Nonstandard Product Term Recall that a nonstan dard 
product term has one or more missing varia bles. For ~ample , as sume that one of the prod
uct te rm s in a certain 3-variab le SOP express ion is AB. This term can be expanded numer
ically to standard form as follows~First. write the binary value of the two vari ab les and 
attach a 0 for the miss ing vari able C : 100. Next, write the binary va lue of the two variables 
and attach a I for the miss ing vari~~ C: 10l. The two resu lting binary numbers are the 
values of the stand ard SOP terms AB C and ABC. 

As anot her exampl e, ass ume that one of the product terms in a 3-va riabl e expression 
is B (rem ember that a sing le vari able counts as a prod uct term in an SOP expression). 
This term can be ex pan ded numeri cally to standard form as fo llows. Write the binary 
val ue of the vari abl e; th e ll attach all poss ibl e values for th e missing va riables A and Cas 
follows: 

N 

010 

011 

1 I () 

111 

EX 

E) 

The four resulting binary numbers are the values of the standard SOP terms ABC, ABC, ABC, 
and ABC. 
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Sululion 

Related fJmblem 

EXAMPLE 4-26 

-o/IlUon 

Map the following SOP xpress ion on a Karnaugh map: A + AB + ABC. 

The SOP expression is obviously not in standard 1'orm because each product term does 
not have threc variables. The first term is miss ing two variables, the second term is 
miss ing one variable. and the third term is standard. First expand the terms numeri
cal1y as follow s: 

A + AB + ABC 

000 100 LIO 

001 101 

010 

0 11 

IVlap each of the resulting binary values hy placi ng a J in the appropriate cell of the 3
variable Karnaugh map in Figure 4-29. 

FIGURE 4-29 c 
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Map the SOP expression BC .1- A C on a Karnaugh map. 

Map the following SOP expressi.on on a Karnaugh map: 

B C + AS + ABC + ABCD + AB D + A BCD 

The SOP expression is obviously not in standard form because each product term does 
!lot have four variables. T he first and second tenns are both miss ing two variables, the 
third term is mi ss ing one variable, and the rest of the terms are standard . First expand 
the terms hy including all combinations of the missing variables numerically as 
follows: 

BC + AS + ABC + ABCD + ABCD + ABCD 

0000 1000 1100 1010 OOO J 10 11 

0001 1001 1101 

1000 1010 

100 I 10 j I 

Map each of the resulting binary values by placing a L in the appropriate cell of 
the 4-variable Karnaugh map in Figure 4-30. otice that some of the values in the 
expanded expression are redundant. 
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FIGURE 4- 30 
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Reia!ed PmbJem Map the expression A + CD + ACD + ABCD on a Karnaugh map. 

EXA MPLE 4-27 

C 
AB 	 AB 

I I 

I 
I 

I I 

(a) 	 (b) 

Kamaugh Map Simplification of SOP Expressions 

The process that results in an expression containing the fewest possible terms with the fewest 
possible vatiables is cal led minimization. After an SOP expression has been mapped, a min
imum SOP expression is obtained by grouping the Is and determining the minimum SOP ex
press ion from the map. (For simplification of POS expressions, see Appendix B.) 

Grouping the 1s You can group I s on the Karnaugh map according to the follow ing 
rules by enclosing those adjacent cells containing I s. The goal is to maximize the size of 
the groups and to minimize the number of groups. 

1. 	 A group must contain either I, 2, 4, 8, or ]6 cells, which are all powers of two. In 
the case of a 3-variable map. 23 = 8 cells is the maximum group. 

2. 	 Each cell in a group must be adjacent to one or more cells in that same group, but 
all cells in the group do not have to be adjacent to each other. 

3. 	 Always include the largest possible number of] s in a group in accordance with rule 1. 

4. 	 Each] on the map must be included in at least one group. The] s already in a group 
can be included in another group as long as the overlapping groups include non
common Is. 

Group the I s in each of the Karnaugh maps in Figure 4-31. 

C CD CD 
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I 1 I 
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FIGURE 4-31 
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olutlOn 	 The groupings are shown in Figure 4-32. In some cases, there may be more than one 
way to group the I s to form max imum groupings. 

WI<I[1 .Iroun 1.ldj"I<:<'nn' 
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( I 1) 

00 01 ]j 10 B 
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-~ r-
I I 

I 1 1 

1 I 1 

1 IC 1 1 ) 
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h
00 01 11 \ 100 1AB 	 AB A 

00 00 00 OO 

0101 01 01 

I 1 1111 II 

1010 10 10 

(a) (b) (c) 	 (eI) 

FIGURE 4-32 

Related Problem 	 Determine if there are other ways to group the I s in Figure 4-32 to obtain a minimum 
number of maximum groupings. 

0 

Determining the Minimum SOP fxpressionjrom the Map When all the I s rep
resenting the standard product terms in an expression are properly mapped and 
grouped, the process of determining the resulting minimum SOP expression begins . 
The fo llowing rules are applied to find the minimum product terms and the minimum 
SOP expression: 

1. 	 Group the cells that have I s. Each group of ce ll s containing 1 s creates one product 
term composed of all variab les that occur in only one form (ei ther uncomple
men ted or complemented) within the group. Variables that occur both uncomple
mented and complemented within the group are eliminated. These are called 
contradictory variables. 

2. 	 Determine the minimum product term for each group. 
a. For a 3-variable map: 

(1) A I-cell group yields a 3-variable product term 
(2) A 2-ce ll group yields a 2-variable product term 
(3) A 4-cell group yields a I-variable term 
(4) An 8-cell group yields a value of I for the express ion 

b. For a 4-variable map: 
(1) A I-cell group yields a 4-variable product term 
(2) A 2-cell group yields a 3-variable product term 
(3) A 4-cell group yields a 2-variable product term 
(4) An 8-cell group yields a I-variable term 
(5) A l6-ce ll group yields a value of 1 for the express ion 

3. 	 When all the minimum product terms are derived from the Karnaugh map, they are 
summed to form the minimum SOP expression. 
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EXAM PlE 4-18 	 Dete rmine the produc t terms for the Karnaugh Inap in Figure 4-33 and write the 
resulting minimum SOP express ion. 

FIGURE 4-33 
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Solution 	 E liminate vari ables that are in a groupin g in bo th complemented and unco mplemented 
forms. In Figure 4-33 , the produc t telEJ for theJl -cell group ~ B because the cell s 
within that group conta in bo t~A and AS and C, and D and D, ~hich are e limi nated. 
The 4-cell g roup ~lIlt a jn s S , S , D, and D, leav ing the '0ri ables A and C, whic~ form 
the produ ct. term A C. The 2-cel2-group conta ins S and S , leaving vari ables A, C, and D 
which form th e producr term A CD. Notice how overlapping is used to maximize the 
size of the g roups. The resulting minimum SOP expression is the sum of these produc t 
terms: 

B + AC + A CD 

Ile/ated Problem 	 For the Karnaugh map in F ig ure 4- 33, add a 1 in the lower right cell (lOIO) and 
determine the resulting SOP ex pression. 

EXAMPLE 4-19 
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(a) 

Determine the product te rms for each of tbe Karnaugh maps in Figure 4-34 and write 
the res ul ting minimum SOP expression. 

a 	 f)·Ie 
c CD 
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(b) (e ) 	 (d) 

fiGURE 4--34 


