
3Sequential Logic

CHAPTER MAP

2 Logic elements and
Boolean algebra
We begin our introduction to the
computer with the basic building
block from which we construct
all computers, the gate.
A combinational digital circuit
such as an adder is composed
of gates and its output is a
Boolean (logical) function of
its inputs only.

3 Sequential logic
The output of a sequential circuit
is a function of both its current
inputs and its past inputs; that is,
a sequential circuit has memory.
The building blocks used to
construct devices that store data
are called flip-flops. In this
chapter we look at basic
sequential elements and the
counters, registers, and shifters
that are constructed from
flip-flops.

4 Computer arithmetic
Computer arithmetic concerns
the representation of numbers in
a computer and the arithmetic
used by digital computers.We
look at how decimal numbers are
converted into binary form and
the properties of binary numbers
and we demonstrate how
operations like addition and
subtraction are carried out.We
also look at how computers deal
with negative numbers and
fractional numbers.

5 The instruction set
architecture
In this chapter we introduce the
computer’s instruction set
architecture (ISA), which
describes the low-level
programmer’s view of the
computer.The ISA describe the
type of operations a computer
carries out.We are interested in
three aspects of the ISA: the
nature of the instructions, the
resources used by the
instructions (registers and
memory), and the ways in which
the instructions access data
(addressing modes).The 68K
microprocessor is used to
illustrate the operation of a real
device.

INTRODUCTION

We now introduce a new type of circuit that is constructed from devices that remember their
previous inputs. The logic circuits in Chapter 2 were all built with combinational elements whose
outputs are functions of their inputs only. Given a knowledge of a combinational circuit’s inputs
and its Boolean function, we can always calculate the state of its outputs. The output of a
sequential circuit depends not only on its current inputs, but also on its previous inputs. Even if
we know a sequential circuit’s Boolean equations, we can’t determine its output state without
knowing its past history (i.e. its previous internal states). The basic building blocks of sequential
circuits are the flip-flop, bistable, and latch just as the basic building block of the combinational
circuit is the gate.

It’s not our intention to deal with sequential circuits at anything other than an introductory
level, as their full treatment forms an entire branch of digital engineering. Sequential circuits can’t
be omitted from introductory texts on computer hardware because they are needed to implement
registers, counters, and shifters, all of which are fundamental to the operation of the central
processing unit.

Figure 3.1 describes the conceptual organization of a sequential circuit. An input is applied
to a combinational circuit using AND, OR, and NOT gates to generate an output that is fed to
a memory circuit that holds the value of the output. The information held in this memory is
called the internal state of the circuit. The sequential circuit uses its previous output together
with its current input to generate the next output. This statement contains a very important
implicit concept, the idea of a next state. Sequential circuits have a clock input, which triggers
the transition from the current state to the next state. The counter is a good example of a
sequential machine because it stores the current count that is updated to become the next
count. We ourselves are state machines because our future behavior depends on our past

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 101

102 Chapter 3 Sequential logic

inputs—if you burn yourself getting something out of the oven, you approach the oven with
more care next time.

We begin our discussion of sequential circuits with the bistable or flip-flop.A bistable is so called
because its output can remain in one of two stable states indefinitely, even if the input changes.
For a particular input, the bistable’s output may be high or low, the actual value depending on the

WHAT IS SEQUENTIAL LOGIC?

Sequential logic elements perform as many different functions as combinational logic
elements; however, they do carry out certain well-defined functions, which have been
given names.

Latch A latch is a 1-bit memory element.You can capture a single bit in a latch at one instant
and then use it later; for example, when adding numbers you can capture the carry-out in a
latch and use it as a carry-in in the next calculation.

Register The register is just m latches in a row and is able to store an m-bit word; that is, the
register is a device that stores one memory word.A computer’s memory is just a very large
array of registers.

Shift register A shift register is a special-purpose register that can move the bits of the word it
holds left or right; for example the 8-bit word 00101001 can be shifted left to give 01010010.

Counter A counter is another special-purpose register that holds an m-bit word. However,
when a counter is triggered (i.e. clocked) its contents increase by 1; for example, if a counter
holding the binary equivalent of 42 is clocked, it will hold the value 43. Counters can count up
or down, by 1 or any other number, or they can count through any arbitrary sequence.

State machines A state machine is a digital system that moves from one state to another
each time it is triggered.You can regard a washing machine controller as a state machine
that steps though all the processes involved in washing (at a rate depending on the load,
the temperature, and its preselected functions). Ultimately, the computer itself is a nothing
more than a state machine controlled by a program and its data.

Input Output

Memory

The memory holds
the previous output
(i.e. state) and uses it
to generate the next
output

The combinational logic
is composed of conventional
AND, OR, and NOT gates

Sequential logic circuit

Combinational logic

Figure 3.1 The sequential circuit.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 102

3.1 The RS flip-flop

We begin our discussion of the flip-flop with the simplest
member of the family, the RS flip-flop. Consider the circuit of
Fig. 3.2. What differentiates this circuit from the combina-
tional circuits of Chapter 2 is that the gates are cross-coupled
and the output of a gate is fed back to its input. Although
Fig. 3.2 uses no more than two two-input NOR gates, its
operation is not immediately apparent.

The circuit has two inputs, A and B, and two outputs, X
and Y. A truth table for the NOR gate is provided alongside
Fig. 3.2 for reference. From the Boolean equations governing

the NOR gates we can readily write down expressions for out-
puts X and Y in terms of inputs A and B.

If we substitute the value for Y from equation (2) in equation
(1), we get

By de Morgan’s theorem

Two negations cancel

Expand the expression � A ·B � A ·X

 � A ·(B � X)

 � A · B � X

3. X � A � B � X

2. Y � B � X

1. X � A � Y

3.1 The RS flip-flop 103

previous inputs. Such a circuit remembers what has happened to it in the past and is therefore
a form of memory element.A more detailed discussion of memory elements is given in
Chapter 8.A bistable is the smallest possible memory cell and stores only a single bit of
information.The term flip-flop, which is synonymous with bistable, gives the impression of the
circuit going flip into one state and then flop into its complement. Bistables were constructed
from electromagnetic relays that really did make a flip-flop sound as they jumped from one
state into another.

The term latch is also used to describe certain types of flip-flop.A latch is a flip-flop that is
unclocked (i.e. its operation isn’t synchronized with a timing signal called a clock). The RS
flip-flop that we describe first can also be called a latch.

Sequential systems can be divided into two classes: synchronous and asynchronous.
Synchronous systems use a master clock to update the state of all flip-flops periodically.
The speed of a synchronous system is determined by its slowest device and all signals must
have settled to steady-state values by the time the system is clocked. In an asynchronous
system a change in an input signal triggers a change in another circuit and this change ripples
through the system (an asynchronous system is rather like a line of closely spaced dominoes
on edge—when one falls it knocks its neighbor over and so on). Reliable asynchronous systems
are harder to design than synchronous systems, although they are faster and consume less
power.We will return to some of these topics later.

We can approach flip-flops in two ways. One is to demonstrate what they do by defining
their characteristics as an abstract model and then show how they are constructed.That is, we
say this is a flip-flop and this is how it behaves—now let’s see what it can do.The other way
of approaching flip-flops is to demonstrate how they can be implemented with just two gates
and then show how their special properties are put to work.We intend to follow the latter
path. Some readers may prefer to skip ahead to the summary of flip-flops at the end of this
section and then return when they have a global picture of the flip-flop.

Gate
G1

Gate
G2

A
X

Y
B

A B

0 0 1

0 1 0

1 0 0

1 1 0
Figure 3.2 Two cross-coupled NOR
gates.

A � B

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 103

Because Boolean algebra doesn’t define the operations
of division or subtraction we can’t simplify this equation
any further and are left with an expression in which the
output is a function of the output; that is, the value of X
depends on X. Equation (3) is correct but its meaning
isn’t obvious. We have to look for another way of analyz-
ing the behavior of cross-coupled gates. Perhaps a better
approach to understanding this circuit is to assume a value
for output X and for the inputs A and B and then see
where it leads us.

3.1.1 Analyzing a sequential circuit by
assuming initial conditions

Figure 3.3(a) shows the cross-coupled NOR gate circuit with
the initial condition X � 1 and A � B � 0 and Fig. 3.3(b)
shows the same circuit redrawn to emphasize the way in
which data flows between the gates.

Because the inputs to gate G2 are X � 1, B � 0, its output,
, must be 0. The inputs to gate G1 are Y � 0 and

A � 0, so that its output, X, is , which is 1. Note that
this situation is self-consistent. The output of gate G1 is X � 1,
which is fed back to the input of gate G1 to keep X in a logical
1 state. That is, the output actually maintains itself. It should
now be a little clearer why equation (3) has X on both sides
(i.e. X � ⋅ B � ⋅ X).

Had we assumed the initial state of X to be 0 and inputs
A � B � 0, we could have proceeded as follows. The inputs
to G2 are X � 0, B � 0 and therefore its output is

. The inputs to G1 are Y � 1 and
A � 0, and its output is . Once
more we can see that the circuit is self-consistent. The output
can remain indefinitely in either a 0 or a 1 state for the inputs
A � B � 0.

The next step in the analysis of the circuit’s behavior is to
consider what happens if we change inputs A or B. Assume
that the X output is initially in a logical 1 state. If input B to
gate G2 goes high while input A remains low, the output of
gate G2 (i.e. Y) is unaffected, because the output of a NOR

X � Y � A � 1 � 0 � 0
Y � X � B � 0 � 0 � 1

AA

Y � A
Y � X � B

gate is low if either of its inputs are high. As X is already high,
the state of B has no effect on the state of Y.

If now input A goes high while B remains low, the output,
X, of gate G1 must fall to a logical 0 state. The inputs to gate G2

are now both in logical 0 states and its output Y rises to a
logical 1. However, because Y is fed back to the input of gate
G1, the output X is maintained at a logical 0 even if A returns
to a 0 state.

The effect of setting A to a 1 causes output X to flip over
from a 1 to a 0 and to remain in that state when A returns to
a 0. We call an RS flip-flop a latch because of its ability to
capture a signal. Table 3.1 provides a truth table for the circuit
of Fig. 3.2. Two tables are presented—one appropriate to the
circuit we have described and one with its inputs and outputs
relabeled.

Table 3.1(a) corresponds exactly to the two-NOR gate
circuit of Fig. 3.2 and Table 3.1(b) to the idealized form of this
circuit that’s called an RS flip-flop. There are two differences
between Tables 3.1(a) and 3.1(b). Table 3.1(b) uses the
conventional labeling of an RS flip-flop with inputs R and S
and an output Q. The other difference is in the entry for the
case in which A � B � 1 and R � S � 1. The effect of these
differences will be dealt with later.

We’ve already stated that Fig. 3.2 defines its output in terms
of itself (i.e. X � ⋅ B � ⋅ X). The truth table gets round
this problem by creating a new variable, X� (or Q�), where
X� is the new output generated by the old output X and
the current inputs A and B. We can write X� � ⋅ B � ⋅ X.
The input and output columns of the truth table are now not
only separated in space (e.g. input on the left and output on
the right) but also in time. The current output X is combined
with inputs A and B to generate a new output X�. The value
of X that produced X� no longer exists and belongs only to
the past.

Labels R and S in the Table 3.1(b) correspond to reset
and set, respectively. The word reset means make 0 (clear has
the same meaning) and set means make 1. The output of all
flip-flops is called Q by a historical convention. Examining
the truth table reveals that whenever R � 1, the output Q
is reset to 0. Similarly, when S � 1 the output is set to 1.

AA

AA

104 Chapter 3 Sequential logic

Assume that
A and B are
initially 0 Assume that X

is initially 1
Note that the gates are cross-coupled
with the output of one gate connected
to the input of the other gate

A A

B

B

X
X

Y

Y

0 0

0

00

1

1 1

0 0

Gate
G1

Gate
G1 Gate

G2

Gate
G2

Analyzing the circuit by assuming initial conditions. An alternative view of the circuit.

(a) (b)

Figure 3.3 Analyzing the behavior of cross-coupled NOR gates.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 104

When R and S are both 0, the output does not change; that
is, Q� � Q.

If both R and S are simultaneously 1, the output is concep-
tually undefined (hence the question marks in Table 3.1(b),
because the output can’t be set and reset at the same time. In
the case of the RS flip-flop implemented by two NOR gates,
the output X does, in fact, go low when A � B � 1. In prac-
tice, the user of an RS flip-flop should avoid the condition
R � S � 1.

The two-NOR gate flip-flop of Fig. 3.2 has two outputs X
and Y. An examination of the circuit for all inputs except
A � B � 1 reveals that X and Y are complements. Because of
the symmetric nature of flip-flops, almost all flip-flops have
two outputs, Q and its complement . The complement of Q
may not always be available to the user of the flip-flop
because many commercial devices leave buried on the chip
and not brought out to a pin. Figure 3.4 gives the circuit
representation of an RS flip-flop.

We can draw the truth table of the RS or any other flip-
flop in two ways. Up to now we’ve presented truth tables
with two output lines for each possible input, one line
for Q � 0 and one for Q � 1. An alternative approach is to
employ the algebraic value of Q and is illustrated by
Table 3.2.

When R � S � 0 the new output Q� is simply the old
output Q. In other words, the output doesn’t change state and
remains in its previous state as long as R and S are both 0.
The inputs R � S � 1 result in the output Q� � X. The
symbol X is used in truth tables to indicate an indeterminate
or undefined condition. In Chapter 2 we used the same symbol

Q

Q

to indicate a don’t care condition. An indeterminate condi-
tion is one whose outcome can’t be calculated, whereas a
don’t care condition is one whose outcome does not matter to
the designer.

3.1.2 Characteristic equation of
an RS flip-flop

We have already demonstrated that you can derive an equa-
tion for a flip-flop by analyzing its circuit. Such an equation is
called the flip-flop’s characteristic equation. Instead of using
an actual circuit, we can derive a characteristic equation from

3.1 The RS Flip-flop 105

(a) Truth table for Fig. 3.2. (b) Truth table for relabeled Fig. 3.2.

Inputs Output Inputs Output

A B X X� R S Q Q�

0 0 0 0 0 0 0 0 No change

0 0 1 1 0 0 1 1 No change

0 1 0 1 0 1 0 1 Set

0 1 1 1 0 1 1 1 Set

1 0 0 0 1 0 0 0 Clear

1 0 1 0 1 0 1 0 Clear

1 1 0 0 1 1 0 ? Undefined

1 1 1 0 1 1 1 ? undefined

↑ ↑ ↑ ↑
Old X New X Old Q New Q

The truth table is interpreted as follows.The output of the circuit is currently X (or Q) and the new inputs to be applied to the input terminals are A, B
(or R, S).When these new inputs are applied to the circuit, its output is given by X� (or Q�). For example, if the current output X is 1 and the new
values of A and B are A � 1, B � 0, then the new output, X�, will be 0.This value of X� then becomes the next value of X when new inputs A and B
are applied to the circuit.

Table 3.1 Truth table for the circuit in Fig. 3.2.

R

S

R Q

S Q
Inputs Outputs

Figure 3.4 Circuit representation of the RS flip-flop as a black box.

Inputs Output Description

R S Q�

0 0 Q No change

0 1 1 Set output to 1

1 0 0 Reset output to 0

1 1 X Forbidden

Table 3.2 An alternative truth table for the RS flip-flop.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 105

the flip-flop’s truth table. Figure 3.5 plots Table 3.1(b) on a
Karnaugh map. We have indicated the condition R � S � 1
by X because it is a forbidden condition. From this truth table
we can write Q� � S � Q ⋅ .

Note that this equation is slightly different from the one
we derived earlier because it treats R � S � 1 as a don’t care
condition.

3.1.3 Building an RS flip-flop from
NAND gates

An RS flip-flop can be constructed from two cross-coupled
NAND gates just as easily as from two NOR gates. Figure 3.6
illustrates a two-NAND gate flip-flop whose truth table is
given in Table 3.3.

The only significant difference between the NOR gate flip-
flop of Fig. 3.2 and the NAND gate flip-flop of Fig. 3.6 is that
the inputs to the NAND gate flip-flop are active-low. If we
were to place inverters at the R and S inputs to the NAND gate
flip-flop, it would then be logically equivalent to the NOR
gate flip-flop of Fig. 3.2.

The no change input to the NAND gate flip-flop is R, S � 1,
1; the output is cleared by forcing R � 0 and set by forcing
S � 0; the forbidden input state is R, S � 0, 0. Suppose that
we did set the inputs of a NAND gate RS flip-flop to 0, 0 and
then released the inputs to 1,1 to enter the no change state.
What would happen? The answer is that we can’t predict the
final outcome. Initially, when both inputs are 0s, both outputs
of the RS flip-flop must be 1s (because the output of a NAND
gate is a 1 if either of its inputs are a 0). The real problem
arises when the inputs change state from 0, 0 to 1, 1. Due to
tiny imperfections, either one or the other input would go
high before its neighbor and cause the flip-flop to be set or
reset.

R

Real applications of RS flip-flops may employ either two
NAND or two NOR gates depending only on which gates
provide the simpler solution. In practice, the majority of RS
flip-flops are often constructed from NAND gates because
most circuits use active-low signals. We began our discussion
of RS flip-flops with the NOR gate circuit (unlike other texts
that introduce first the more common NAND gate flip-flop)
because we have discovered that many students find it hard to
come to terms with negative logic (i.e. logic in which the low
state is the active state).

3.1.4 Applications of the RS flip-flop

An important application of RS flip-flops is in the recording
of short-lived events. If the Q output of a flip-flop is in a zero
state, a logical 1 pulse at its S input (assuming the R input is 0)
will cause Q to be set to a 1, and to remain at a 1, until the R
input resets Q. The effect of a pulse at the S input followed by
a pulse at the R input of an RS flip-flop is illustrated in Fig. 3.7.

Consider the following application of RS flip-flops to an
indicator circuit. If an aircraft is flown outside its perfor-
mance envelope no immediate damage may be apparent, but
its structure might be permanently weakened. To keep things

106 Chapter 3 Sequential logic

00
SR

Q

0 X 1

X 111

01 11 10

Figure 3.5 Karnaugh map for the characteristic equation of an
RS flip-flop.

R
Q

Q
S

Active-low
inputs

Gate
G1

Gate
G2

Figure 3.6 RS flip-flop constructed from two cross-coupled
NAND gates.

Inputs Output Comment

R S Q�

0 0 X Forbidden

0 1 1 Reset output to 0

1 0 0 Set output to 1

1 1 Q No change

Table 3.3 Truth table for an RS flip-flop constructed from
NAND gates.

1

1

1

0

0

0

S

R

Rising edge
of S sets Q

Rising edge
of R resets Q

Inputs

Output Q

Figure 3.7 Timing diagram of the effect of pulses on an
RS flip-flop’s inputs.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 106

simple, we will consider three possible events that are consid-
ered harmful and might endanger the aircraft.

1. Exceeding the maximum permissible speed Vne.

2. Extending the flaps above the flap-limiting speed Vfl. That is,
the flaps must not be lowered if the aircraft is going faster
than Vfl.

3. Exceeding the maximum acceleration (g-force) Gmax.

If any of the above parameters are exceeded (even for only
an instant), a lasting record of the event must be made.

Figure 3.8 shows the arrangement of warning lights used
to indicate that one of these conditions has been violated.
Transducers that convert acceleration or velocity into a
voltage measure the acceleration and speed of the aircraft.
The voltages from the transducers are compared with the three
threshold values (Vne, Vfl, Gmax) in comparators, whose outputs
are true if the threshold is exceeded, otherwise false. In order
to detect the extension of flaps above the flap-limiting
speed, the output of the comparator is ANDed with a signal
from the flap actuator circuit that is true when the flaps
are down.

The three signals from the comparators are fed, via OR
gates, to the S inputs of three RS flip-flops. Initially, on
switching on the system, the flip-flops are automatically reset
by applying a logical 1 pulse to all R inputs simultaneously. If
at any time one of the S inputs becomes true, the output of
that flip-flop is set to a logical 1 and triggers an alarm. All
outputs are ORed together to illuminate a master warning
light. A master alarm signal makes it unnecessary for the pilot
to have to scan all the warning lights periodically. An addi-
tional feature of the circuit is a test facility. When the warning

test button is pushed, all warning lights should be illumin-
ated and remain so until the reset button is pressed. A test
facility verifies the correct operation of the flip-flops and the
warning lights.

A pulse-train generator

Figure 3.9 gives the circuit of a pulse-train generator that
generates a sequence of N pulses each time it is triggered by a
positive transition at its START input. The value of N is user
supplied and is fed to the circuit by three switches to select the
values of Cc, Cb, Ca. This circuit uses the counter that we will
meet later in this chapter.

The key to this circuit is the RS flip-flop, G6, used to start
and stop the pulse generator. Assume that initially the R and
S inputs to the flip-flop are R � 0 and S � 0 and that its
output Q is a logical 0. Because one of the inputs to AND gate
G1 is low, the pulse train output is also low.

When a logical 1 pulse is applied to the flip-flop’s START
input, its Q output rises to a logical 1 and enables AND gate
G1. A train of clock pulses at the second input of G1 now
appears at the output of the AND gate. This gated pulse train
is applied to the input of a counter (to be described later),
which counts pulses and generates a three-bit output on Qa,
Qb, Qc, corresponding to the number of pulses counted in the
range 0 to 7. The outputs of the counter are fed to an equality
detector composed of three EOR gates, G2 to G4, plus NOR
gate G5. A second input to the equality detector is the user-
supplied count value Ca, Cb, Cc. The outputs of the EOR gates
are combined in NOR gate G5 (notice that it’s drawn in
negative logic form to emphasize that the output is 1 if all its
inputs are 0).

3.1 The RS Flip-flop 107

Pressure
sensing
head

Pressure to
voltage
transducer

Accelerometer
measures
g-force

Flap selection
switch

S Q

R
FF1

S Q

R
FF2

S Q

R
FF3

Overspeed
warning light

Flap extension

warning light

Overstress

From other
warning circuits

warning light

Master
warning

Test warning
lights

Master reset
1

1

Comparator

Comparator

Comparator

Vfl

Vne

1

Gmax

Figure 3.8 Application of RS flip-flops in a warning system.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 107

Figure 3.10 gives a timing diagram for the pulse generator.
Initially the counter is held in a reset state (Qa � Qb � Qc � 0).
When the counter is clocked, its output is incremented by 1 on
the falling edge of each clock pulse. The counter counts upward
from 0 and the equality detector compares the current count on
Qa, Qb, Qc output with the user-supplied inputs Ca, Cb, Cc.When
the output of the counter is equal to the user-supplied input, the
output of gate G5 goes high and resets both the counter and the
RS flip-flop.Resetting the counter forces the counter output to 0.

Resetting the RS flip-flop disables AND gate G1 and no further
clock pulses appear at the output of G1. In this application of the
RS flip-flop, its S input is triggered to start an action and its
R input is triggered to terminate the action.

3.1.5 The clocked RS flip-flop

The RS flip-flop of Fig. 3.2 responds to signals applied to its
inputs according to its truth table. There are situations when

108 Chapter 3 Sequential logic

START

RESET Counter

S

R Q

Start/stop flip-flop

Pulse train
output

Clock

RESET

Clock

G6

G1

G7

G2

G5

Cc Cb Ca

G3 G4

Qc Qb QaThe counter's
RESET input
resets its outputs
to zero

RESET asserted when the counter
reaches the preselected value of
Cc, Cb, Ca

The values of Cc, Cb, Ca are
user selected to determine
the length of the pulse train

Gates G2, G3, G4, and G5
constitute a comparator
that compares QcQbQa
with CcCbCa

The counter
counts pulses

Figure 3.9 Pulse train
generator.

Clock

START

Q

Output

Counter
output

RESET

0 1 2 3 4 0

Figure 3.10 Timing diagram of pulse train generator.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 108

we want the RS flip-flop to ignore its inputs until a particular
time. The circuit of Fig. 3.11 demonstrates how this is accomp-
lished by turning the RS flip-flop into a clocked RS flip-flop.

A normal, unmodified, RS flip-flop lies in the inner box in
Fig. 3.11. Its inputs, R� and S�, are derived from the external
inputs R and S by ANDing them with a clock input C—some
texts call these two AND gates ‘steering gates’. As long as
C � 0, the inputs to the RS flip-flop, R� and S�, are forced to
remain at 0, no matter what is happening to the external

R and S inputs. The output of the RS flip-flop remains
constant as long as these R� and S� inputs are both 0.

Whenever C � 1, the external R and S inputs to the
circuit are transferred to the flip-flop so that R� � R and
S � S, and the flip-flop responds accordingly. The clock
input may be thought of as an inhibitor, restraining the flip-
flop from acting until the right time. Figure 3.12 demon-
strates how we can build a clocked RS flip-flop from NAND
gates. Clocked flip-flops are dealt with in more detail later
in this chapter.

3.2 The D flip-flop

Like the RS flip-flop, the D flip-flop has two inputs, one called
D and the other C. The D input is referred to as the data input
and C as the clock input. The D flip-flop is, by its nature, a
clocked flip-flop and we will call the act of pulsing the C input
high and then low clocking the D flip-flop.

When a D flip-flop is clocked, the value at its D input is
transferred to its Q output and the output remains constant
until the next time it is clocked. The D flip-flop is a staticizer
because it records the state of the D input and holds it con-
stant until it’s clocked. Others call it a delay element because,
if the D input changes state at time T but the flip-flop is
clocked t seconds later, the output Q doesn’t change state
until t seconds after the input. I think of the D flip-flop as a
census taker because it takes a census of the input and remem-
bers it until the next census is taken. The truth table for a
D flip-flop is given in Table 3.4.

The circuit of a D flip-flop is provided in Fig. 3.13 and
consists of an RS flip-flop plus a few gates. The two AND
gates turn the RS flip-flop into a clocked RS flip-flop. As long
as the C input to the AND gates is low, the R and S inputs are
clamped at 0 and Q cannot change.

3.2 The D flip-flop 109

R R�

S�S

C
RS flip-flop

The AND gates ensure that
the inputs to the RS flip-flop
are low unless C is high

Q

Q

Figure 3.11 The clocked RS flip-flop.

R

S

C

Q

Q

Figure 3.12 Building a clocked RS flip-flop with NAND gates.

Full form Algebraic form

Inputs Output Inputs Output

C D Q
Q�

C D
Q�

0 0 0 0 Q�←Q No change 0 0 Q

0 0 1 1 Q�←Q No change 0 1 Q

0 1 0 0 Q�←Q No change 1 0 0

0 1 1 1 Q�←Q No change 1 1 1

1 0 0 0 Q�←D

1 0 1 0 Q�←D

1 1 0 1 Q�←D

1 1 1 1 Q�←D

Table 3.4 Truth table for a D flip-flop.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 109

When C goes high, the S input is connected to D and the
R input to . Consequently, (R, S) must either be (0, 1) if
D � 1, or (1, 0) if D � 0. Therefore, D � 1 sets the RS flip-
flop, and D � 0 clears it.

3.2.1 Practical sequential logic
elements

Just as semiconductor manufacturers have provided combi-
national logic elements in single packages, they have done the
same with sequential logic elements. Indeed, there are more
special-purpose sequential logic elements than combina-
tional logic elements. Practical flip-flops are more complex
than those presented hitherto in this chapter. Real circuits
have to cater for real-world problems. We have already said
that the output of a flip-flop is a function of its current inputs
and its previous output. What happens when a flip-flop is
first switched on? The answer is quite simple. The Q output
takes on a random state, assuming no input is being applied
that will force Q into a 0 or 1 state.

Random states may be fine at the gaming tables in Las
Vegas; they’re less helpful when the control systems of a
nuclear reactor are first energized. Many flip-flops are pro-
vided with special control inputs that are used to place them
in a known state. Figure 3.14 illustrates the 74LS74, a dual
positive-edge triggered D flip-flop that has two active-low
control inputs called preset and clear (abbreviated and

). In normal operation both and remain in
logical 1 states. If � 0 the Q output is set to a logical 1
and if � 0 the Q output is cleared to a logical 0. As in
the case of the RS flip-flop, the condition � � 0
should not be allowed to occur.

These preset and clear inputs are unconditional in the sense
that they override all activity at the other inputs of this flip-
flop. For example, asserting sets Q to 1 irrespective of
the state of the flip-flop’s C and D inputs. When a digital
system is made up from many flip-flops that must be set or
cleared at the application of power, their or lines
are connected to a common line and this line isRESET

CLRPRE

PRE

CLRPRE
CLR

PRE
CLRPRECLR

PRE

D

momentarily asserted active-low by a single pulse shortly
after the power is switched on.

3.2.2 Using D flip-flops to
create a register

Later we shall discover that a computer is composed of little
more than combinational logic elements, buses, and groups of
flip-flops called registers that transmit data to and receive data
from buses. A typical example of the application of D flip-
flops is provided by Fig. 3.15 in which an m-bit wide data bus
transfers data from one part of a digital system to another.
Data on the bus is constantly changing as different devices use
it to transmit their data from one register to another.

The D inputs of a group of m D flip-flops are connected to
the m lines of the bus. The clock inputs of all flip-flops are

110 Chapter 3 Sequential logic

D

R

S

RS flip-flop
C

Q

D

D

Q

Figure 3.13 Circuit of a D flip-flop.

Vcc

1CLR 1D 1Clk 1PRE 1Q 1Q GND

2Clk 2Q2D

14 13 12 11 10 9

D Q

QD

1 2 3 4 5 6 7

PRE

PRE

CLR CLR

Clk

Clk

8

Q Q

2CLR 2Q2PRE

Figure 3.14 The 74LS74 D flip-flop.

Figure 3.15 Using D flip-flops to create a register.

dm–1 d1 d0

Register

D Q Q0

C

D Q Q1

C

D Q Qm–1

m D flip-flops

m-bit data bus Clock

C

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 110

connected together, allowing them to be clocked simultan-
eously. As long as C � 0, the flip-flops ignore data on the bus
and their Q outputs remain unchanged. Suppose some device
wishes to transfer its data to the flip-flops. It first puts its data
on the bus and then the flip-flops are clocked, latching the
data into them. When the clock has returned to zero, the data
remains frozen in the flip-flops.

3.2.3 Using Digital Works to
create a register

We are now going to use Digital Works to create a simple
bused system using D flip-flops. Although Digital Works
implements both RS and D flip-flops, we’ll construct a D flip-
flop from basic gates. Figure 3.16 shows a single 1-bit cell in a
register (we can construct an m-bit register by using m iden-
tical elements in parallel).

If you examine Fig. 3.16 you will find that the flip-flop is
more complex than the simple D flip-flop of Fig. 3.13. We
have added a tri-state gate to the Q output to allow the flip-
flop to drive a bus or to be disconnected from the bus.
Furthermore, we’ve added an input multiplexer to allow the
D input to be connected to one of two sources A and B. The
inputs and output of Fig. 3.16 are

● A input

● B input

● A/B select input

● Clock input

● Enable output

● Q output.

In Fig. 3.17 we’ve used Digital Work’s macro facility to
convert the circuit in Fig. 3.16 into a black box macro that
can be used as a circuit element to build more complex
systems.

Figure 3.18 provides a test bed for three of the register slices.
We have provided one bit of three registers and three buses
(input bus A, input bus B, and output bus C). Each register
slice is connected to all three buses. We’ve added input
devices to all the control inputs to enable us to experiment
with this circuit.

The system in Fig. 3.18 can’t do a lot, but what it can do is
very important. Because we’ve added input devices to buses A
and B, we can force our own data on bus A and B. We can
select whether each register slice gets its input from bus A or
bus B by setting the value of the Input select input to 1 (bus A)
or 0 (bus B). Data is clocked into any of the register slices by
clocking it (i.e. setting its clock input to 1 to capture the data
and then setting the clock input to 0 to latch and retain the
data). Finally, data from any of the three register slices can be
put on bus C by asserting the appropriate output.

This circuit is important because it forms the heart of a
computer. All we need to create an ALU (arithmetic and logic
unit) are the circuits that take data from bus C, process it, and
copy the result to the A or B bus.

3.2 The D filp-flop 111

Figure 3.16 Using D
flip-flops to create one cell of
a register.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 111

3.2.4 A typical register chip

You can obtain a single package containing the flip-flops that
implement a register. Figure 3.19 illustrates the 74LS373, an
octal register composed of D flip-flops that is available in a
20-pin package with eight inputs, eight outputs, two power

supply pins, and two control inputs. The clock input, G, is a
level-sensitive clock, which, when high, causes the value at Di

to be transferred to Qi. All eight clock inputs are connected
together internally so that the G input clocks each flip-flop
simultaneously.

112 Chapter 3 Sequential logic

Figure 3.17 Converting the circuit of Fig. 3.16
into a macro (i.e. black box representation).

We can jam data
on the A or B bus
via the Set A and
Set B switches.

Data from a register
is put on the C bus
by enabling the
appropriate register.

LEDs on the A, B,
and C buses show
the state of the bus.

Figure 3.18 Using D flip-flops to create a register in Digital Works.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 112

The 74LS373’s other control input is active-low (out-
put enable), which controls the output of all flip-flops. When

, the flip-flop behaves exactly as we would expect.
When , the eight Q outputs are internally discon-
nected from the output pins of the device; that is, the
74LS373 has tri-state outputs and is used to turn off the
chip’s output circuits when it is not driving a bus.

Figure 3.20 demonstrates the 74LS373 octal register in a
digital system where four registers are connected to a com-
mon data bus. Each register is arranged with both its outputs
and its inputs connected to the same bus allowing it to trans-
mit data onto the bus or to receive data from it.

Each register has tri-state outputs controlled by an output
enable pin. When is asserted low, the corresponding reg-
ister drives the bus. Registers are clocked by an active-high
clock input labeled G.

IC5a is a 2-line to 4-line decoder; that is, a demultiplexer
of the type we described in Chapter 2. When this device
is enabled, the 2-bit binary source code at the input of IC5a
causes one of its output lines, 0 to 3, to go low. These out-
puts are connected to the respective inputs of the four
registers. Each of the four possible source codes enables one
of the registers; for example, if the source code at the input to
IC5a is 01, the output of register 1 is enabled and the contents
of register 1 are placed on the bus. The outputs of all other
registers remain internally disconnected from the bus.

The 74LS139 contains two complete 2-line to 4-line
decoders in a single 16-pin package. The second half of this
package acts as a destination decoder. Each of the four out-
puts from IC5b is connected to one of the clock inputs, G, of

OE
YY

OE

OE

OE � 1
OE � 0

OE

the four registers. Because the clock inputs are active-high
and the outputs of the decoder are active-low, it’s necessary to
invert these outputs. Four inverters, IC6, perform this func-
tion. When IC5b is enabled, one of its outputs is asserted and
the corresponding register clocked. Clocking a register
latches data from the data bus.

Suppose the contents of register 1 are to be copied into reg-
ister 3. The source code at IC5a is set to 01 and the destination
code at IC5b is set to 11. This puts the data from register 1 on
the bus and latches the data into register 3. We can easily
relate the example of Fig. 3.20 to the digital computer. One of
the most fundamental operations in computing is the assign-
ment that can be represented in a high-level language as
B�A and in a low-level language as MOVE A, B. The action
MOVE A, B (i.e. transfer the contents of A to B) is imple-
mented by specifying A as the source and B as the destination.
Note that throughout this text we put the destination of a
data transfer in bold font to stress the direction of data
transfer.

3.3 Clocked flip-flops

Before we introduce the JK flip-flop we look more closely at
the idea of clocking sequential circuits. Clocked circuits allow
logic elements to respond to their inputs only when the
inputs are valid. Some writers use the term trigger rather than
clock, because triggering a flip-flop gives the impression of
causing an event to take place at a discrete instant. We begin
by examining the effect of delays on the passage of signals
through systems.

Figure 3.21 demonstrates the effect of circuit delays on a
system with two inputs, A and B, that are acted upon by
processes A, B, and C to produce an output. The nature of the
processes is not important because we’re interested only in
the way in which they delay signals passing through them.
Imagine that at time t � 0, the inputs to processes A and B
become valid (i.e. these are the correct inputs to be operated
on by the processes). Assume that process A in Fig. 3.21 intro-
duces a two-unit delay, process B a one-unit delay, and
process C a two-unit delay.

Although the output from process B becomes valid at
t � 1, it’s not until t � 2 that the output of process A has
become valid. The outputs of processes A and B are fed to
process C, which has a two-unit delay. Clearly, the desired
output from C due to inputs A and B is not valid until at least
four time units after t � 0. The output from process C
changes at least once before it settles down to its final value
(Why? Because of the different delays through processes A
and B). This poses a problem. How does an observer at the
output of process C know when to act upon the data from C?

What we need is some means of capturing data only when
we know that it’s valid—see Fig. 3.22. If a D flip-flop is placed

3.3 Clocked flip-flops 113

Output enable
OE

1D

1Q

2Q

3Q

4Q

5Q

6Q

7Q

8Q

D
G

2D

3D

4D

5D

6D

7D

8D

Clock
G

Q

D
G Q

D
G Q

D
G Q

D
G Q

D
G Q

D
G Q

D
G Q

Figure 3.19 The 74LS373 octal register.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 113

at the output of process C and is clocked four units of time
after t � 0, the desired data will be latched into the flip-flop
and held constant until the next clock pulse. Clocked systems
hold digital information constant in flip-flops while the infor-
mation is operated on by groups of logic elements, analogous
to the processes of Fig. 3.21. Between clock pulses, the outputs
of the flip-flops are processed by the logic elements and the
new data values are presented to the inputs of flip-flops.

After a suitable time delay (longer than the time taken for
the slowest process to be completed), the flip-flops are clocked.
The outputs of the processes are held constant until the next
time the flip-flops are clocked. A clocked system is often called
synchronous, as all processes are started simultaneously on each
new clock pulse. An asynchronous system is one in which the
end of one process signals (i.e. triggers) the start of the next.
Obviously, an asynchronous system must be faster than the
corresponding synchronous system. Asynchronous systems
are more complex and difficult to design than synchronous

systems and popular wisdom says that they are best avoided
because they are inherently less reliable than synchronous
circuits. The 1990s saw a renewed interest in asynchronous
systems because of their speed and lower power consumption.

3.3.1 Pipelining

Now consider the effect of placing D flip-flops at the outputs of
processes A, B, and C in the system of Fig. 3.23. Figure 3.23
shows the logical state at several points in a system as a function
of time. The diagram is read from left to right (the direction of
time flow). Signals are represented by parallel lines to demon-
strate that the signal values may be 1s or 0s (we don’t care).
What matters is the time at which signals change. Changes are
shown by the parallel lines crossing over. Lines with arrow-
heads are drawn between points to demonstrate cause and
effect; for example, the line from Input A to Output A shows
that a change in Input A leads to a change in Output A.

114 Chapter 3 Sequential logic

IC1

Q0
D0

Q1
D1

Q2
D2

Q3
D3

Q4
D4

Q5
D5

Q6
D6

Q7
D7

G
OE

Register 3 74LS373 d0 d1 d7

IC2

Q0
D0

Q1
D1

Q2
D2

Q3
D3

Q4
D4

Q5
D5

Q6
D6

Q7
D7

G
OE

Register 2 74LS373

IC3

Q0
D0

Q1
D1

Q2
D2

Q3
D3

Q4
D4

Q5
D5

Q6
D6

Q7
D7

G
OE

Register 1 74LS373

IC4

Q0
D0

Q1
D1

Q2
D2

Q3
D3

Q4
D4

Q5
D5

Q6
D6

Q7
D7

G
OE

Register 0 74LS373

IC6 74LS04

OE = Output enable
G = Clock

Y3 Y2 Y1 Y0

74LS139
IC 5a

Y3 Y2 Y1 Y0

74LS139

S1 S0
Source code

Enable source Enable destination 8-bit parallel data bus

DE1 DE0
Destination code

2-line to 4-line
decoders

IC 5b

Figure 3.20 Using the
74LS373 octal register in a
bused system.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 114

In this example we assume that each of the processes intro-
duces a single unit of delay and the flip-flops are clocked
simultaneously every unit of time. Figure 3.23 gives the tim-
ing diagram for this system. Note how a new input can be
accepted every unit of time, rather than every two units of
time as you might expect. The secret of our increase in
throughput is called pipelining because we are operating on
different data at different stages in the pipeline. For example,
when process A and process B are operating on data i, process
C is operating on data i � 1 and the latched output from
process C corresponds to data i � 2.

When we introduce the RISC processor we will discover
that pipelining is a technique used to speed up the operation
of a computer by overlapping consecutive operations.

3.3.2 Ways of clocking flip-flops

A clocked flip-flop captures a digital value and holds it
constant. There are, however, three ways of clocking a
flip-flop.

1. Whenever the clock is asserted (i.e. a level-sensitive flip-flop).

2. Whenever the clock is changing state (i.e. an edge-sensitive
flip-flop).

3. Capture data on one edge of the clock and transfer it to the
output on the following edge (i.e. a master–slave flip-flop).

A level-sensitive clock triggers a flip-flop whenever the
clock is in a particular logical state (some flip-flops are
clocked by a logical 1 and some by a logical 0). The clocked RS
flip-flop of Fig. 3.11 is level sensitive because the RS flip-flop
responds to its R and S inputs whenever the clock input is
high. A level-sensitive clock is unsuitable for certain
applications. Consider the system of Fig. 3.24 in which the
output of a D flip-flop is fed through a logic network and
then back to the flip-flop’s D input. If we call the output of the
flip-flop the current Q, then the current Q is fed through the
logic network to generate a new input D. When the flip-flop
is clocked, the value of D is transferred to the output to
generate Q�.

If the clock is level sensitive, the new Q� can rush through
the logic network and change D and hence the output. This
chain of events continues in an oscillatory fashion with the
dog chasing its tail. To avoid such unstable or unpredictable
behavior, we need an infinitesimally short clock pulse to
capture the output and hold it constant. As such a short pulse
can’t easily be created, the edge-sensitive clock has been intro-
duced to solve the feedback problem. Level-sensitive clocked
D flip-flops are often perfectly satisfactory in applications
such as registers connected to data buses, because the dura-
tion of the clock is usually small compared to the time for
which the data is valid.

3.3 Clocked flip-flops 115

Input A

Input A
Input A valid

Output A valid

Output B valid

Output C valid

Input B valid
Input B

Output A

Output B

Output C
0 41 2 3 5 6 Time

Delay before C is valid

Process A

Process C

Process B

Output C

Two-unit delay

One-unit delay

One-unit delay

Two signals, A and B are operated on
by process A and process B respectively.
The outputs of these two processes, are
the inputs to process C

Two-unit delay

Two-unit delay

Two-unit delay

Input B

Figure 3.21 Processes and
delays.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 115

3.3.3 Edge-triggered flip-flops

An edge-triggered flip-flop is clocked not by the level or state
of the clock (i.e. high or low), but by the transition of the
clock signal from zero to one, or one to zero. The former case
is called a positive or rising-edge sensitive clock and the latter
is called a negative or falling-edge sensitive clock. As the ris-
ing or falling edge of a pulse may have a duration of less than
1 ns, an edge-triggered clock can be regarded as a level-
sensitive clock triggered by a pulse of an infinitesimally short
duration. A nanosecond (ns) is a thousand millionth (10�9)
of a second. The feedback problem described by Fig. 3.24
ceases to exist if you use an edge-sensitive flip-flop because
there’s insufficient time for the new output to race back to the
input within the duration of a single rising edge.

There are circumstances when edge-triggered flip-flops are
unsatisfactory because of a phenomenon called clock skew.
If, in a digital system, several edge-triggered flip-flops are
clocked by the same edge of a pulse, the exact times at which
the individual flip-flops are clocked vary. Variation in the
arrival time of pulses at each clock input is called clock skew
and is caused by the different paths by which clock pulses

reach each flip-flop. Electrical impulses move through
circuits at somewhat less than the speed of light, which is
30 cm/ns. Unless each flip-flop is located at the same distance
from the source of the clock pulse and unless any additional
delays in each path due to other logic elements are identical,
the clock pulse will arrive at the flip-flops at different
instants. Moreover, the delay a signal experiences going
through a gate changes with temperature and even the age of
the gate. Suppose that the output of flip-flop A is connected
to the input of flip-flop B and they are clocked together.
Ideally, at the moment of clocking, the old output of A is
clocked into B. If, by bad design or bad luck, flip-flop A is trig-
gered a few nanoseconds before flip-flop B, B sees the new
output from A, not the old (i.e. previous) output—it’s as if
A were clocked by a separate and earlier clock.

Figure 3.25 gives the circuit diagram of a positive edge-
triggered D flip-flop that also has unconditional preset and
clear inputs. Edge triggering is implemented by using the
active transition of the clock to clock latches 1 and 2 and then
feeding the output of latch 2 back to latch 1 to cut off the
clock in the NAND gate. That is, once the clock has been
detected, the clock input path is removed.

116 Chapter 3 Sequential logic

Input A Process A

Process B

i –1 i +2i

i –1 i +2i

i –1 i

i –1 i

i –1 i

i –1 i

Process C D Q
Output

Clock

The output of
process C is latched
by a D flip-flop and
held constant

The input to the
D flip-flop is sampled
at this point

C

Input A

Time

Output A

Output B

Output C

Output Q

Clock

Input B

Input B

Figure 3.22 Latching the
output of a system.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 116

3.3.4 The master–slave flip-flop

The master–slave (MS) flip-flop has the external appearance
of a single flip-flop, but internally is arranged as two flip-flops
operating in series. One of these flip-flops is called the master
and the other the slave. The term slave is used because the
slave flip-flop follows the master. Figure 3.26 describes a

simple RS master–slave flip-flop composed of two RS flip-
flops in series. Note that the master flip-flop is enabled when
the clock is high and the slave flip-flop is enabled when the
clock is low.

When the clock pulse goes high, the input data at the R and
S input terminals of the master flip-flop is copied into the
master flip-flop. At this point, the output terminals of the
master–slave flip-flop aren’t affected and don’t change state
because the output comes from the slave flip-flop that is in a
hold state because its clock is low.

Because the master flip-flop of Fig. 3.26 uses a level-
sensitive RS flip-flop, the master responds to data at its RS
inputs as long as the clock is asserted high. The data at the RS
inputs of the master is latched by the master at the instant the
clock input goes low. On the falling edge of the clock, the
slave’s clock input goes high and data from the master flip-
flop’s outputs is copied into the save flip-flop. Only now may
the output terminals change state. Figure 3.27 provides a tim-
ing diagram for the master–slave RS flip-flop.

Master–slave flip-flops totally isolate their input terminals
from their output terminals simply because the output of the
slave flip-flop does not change until after the input conditions
have been sampled and latched internally in the master.
Conceptually, the master–slave flip-flop behaves like an air

3.3 Clocked flip-flops 117

Input A Process A

Process B

Process C

Clock

Output

Time

The outputs from processes
A and B are captured and
latched and held constant
as the inputs to process C

Input B

Clock

Input A
i –1 i +1 i + 2 i + 3 i + 4 i + 5i

i – 2 i i + 1 i + 2 i + 3 i + 4i –1

i – 3 i –1 i i + 1 i + 2 i + 3i – 2

i – 3 i –1 i i + 1 i + 2 i + 3i – 2

i – 4 i – 2 i –1 i i + 1 i + 2i – 3

i – 5 i – 3 i – 2 i –1 i i + 1i – 4

Output A

Latched A

Latched B

Latched C

Output C

D Q

C

D Q

C

Figure 3.23 Latching the
input and output of processes
to implement pipelining.

Clock

D

D = f(Q)
Logic network

Loop

During clocking
the input can be
fed to the output

Output from
the flip-flop
is the input to
the network

Q

C

Figure 3.24 Feedback and the level-sensitive clock.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 117

lock in a submarine or spacecraft. An air lock exists to transfer
people between regions of different pressure (air-to-vacuum
or air-to-water) without ever permitting a direct path between
the two pressure regions. A flip-flop is analogous to an air
lock because its output must not be fed directly back to its

input. To operate an air lock in a submarine,
divers in the water open the air lock, enter, and
close the door behind them. The divers are
now isolated from both the water outside and
the air inside. When the divers open the door
into the submarine, they step inside and close
the air lock door behind them.

In order to demonstrate how the different
types of clocked flip-flop behave, Fig. 3.28
presents the output waveforms for four
clocked D flip-flops when presented with the
same input.

3.3.5 Bus arbitration—an
example

We now look at a more advanced application
of flip-flops in a bus arbitration circuit that
decides which of two processors get to access
a block of common memory, called dual-
ported RAM, when both processors want the
memory at the same time. Students may omit
this section on a first reading.

Let’s look at a system with two processors
that communicate via a common block of
RAM called DPRAM (dual-ported RAM).
Figure 3.29 describes such an arrangement.
You could regard the DPRAM as a bridge
between two buses.

Because both processors 1 and 2 operate
independently, either processor may access

the common memory at any time. We need a means of
requesting control of the common memory and getting
access to the memory even if both processors make near-
simultaneous requests.

Figure 3.30 describes an arbiter with a clock input, two
request inputs, and two grant outputs. The request and grant
inputs and outputs are all active-low. The memory-request
inputs, and , are sampled by two positive-
edge triggered latches. The arbiter clocks latch 1a on the ris-
ing edge of the clock and latch 2a on the falling edge of the
clock. This arrangement ensures that the two request inputs
are not sampled simultaneously.

Figure 3.31 provides a timing diagram for the case in which
both processors request the bus simultaneously. As we can
see, processor 2 wins the request and processor 1 must wait
until processor 2 has relinquished the bus. That is, processor
1 does not have to try again—it simply waits for the memory
to become free. Processor 1 determines that the bus is once
more free.

Initially, the arbiter is in an idle state with both request
inputs inactive-high. Therefore, both D inputs to latches 1a
and 2a are high and in a steady-state condition. Outputs AA,
BB, Grant1, and Grant2 are all high.

Request2Request1

118 Chapter 3 Sequential logic

Unconditonal
preset

Unconditonal
clear

PRE

CLR

Clock

D

RS latch 1

RS latch 3

Q

RS latch 2

Q

Figure 3.25 Circuit of an edge-triggered flip-flop.

S
S

R
R

Clock

Q

Q S

R Q Q

Q Q

SlaveMaster

Clock

The master captures the input The slave holds the output

Figure 3.26 The master–slave RS flip-flop.

Clock

Input sampled
by master

Master flip-flop
may change as
long as the clock
is high

Clock to master
goes low and
clock to slave
goes high

Input Input valid

Output validOutput

Figure 3.27 Timing diagram of a master–slave RS flip-flop.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 118

3.3 Clocked flip-flops 119

D input to
flip-flop

Q input of
level-sensitive
flip-flop

Q output of
positive-edge
triggered
flip-flop
Q output of
negative-edge
triggered
flip-flop

Q output of
master–slave
flip-flop

Clock input

Figure 3.28 Comparison of
flip-flop clocking modes.

Address DP RAM

Data

Grant1

Request1 Request1

Grant1

Request2

Grant2

Processor 1

Address

Data

Grant2

Request2

Processor 2Local
memory 1

Local
memory 2

Request1
Grant1

Grant2
Request2

Clock CLK

CLK CLK

CLK

Latch 1a Latch 1b

AAA
D Q

CLK

Latch 2a

D Q

CLK

Latch 2b

Pre
D Q

CLK

CLK

D

B BB

Pre
Q

Q

Q

Figure 3.29 Two processors communicating via
dual-ported RAM.

Figure 3.30 An
arbiter circuit.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 119

Suppose that and are asserted almost
simultaneously when the clock is in a high state. This results in
the outputs of both OR gates (A and B) going low simultan-
eously. The cross-coupled feedback inputs to the OR gates
(Grant1 and Grant2) are currently both low.

On the next rising edge of the clock, the Q output of latch
1a (i.e. AA) and the Q output of latch 2a (i.e. BB) both go low.
However, as latch 2a sees a rising edge clock first, its Q output
goes low one half a clock cycle before latch 1’s output also
goes low.

When a latch is clocked at the moment its input is chang-
ing, it may enter a metastable1 state lasting for up to about
75 ns before the output of the latch settles into one state or
the other. For this reason a second pair of latches is used to
sample the input latches after a period of 80 ns.

One clock cycle after has been latched and out-
put BB forced low, the output of latch 2b, goes low. Its
complement, Grant2 is fed back to OR gate 1, forcing input A
high. After a clock cycle AA also goes high. Because is
connected to latch 1b’s active-low preset input, latch 1b is
held in a high state.

At this point, is negated and asserted, per-
mitting processor 2 to access the bus.

When processor 1 relinquishes the memory,
becomes inactive-high, causing first B, then BB and finally

to be negated as the change ripples through theGrant2

Request2

Grant2Grant1

Grant2

Grant2
Request2

Request2Request1 arbiter. Once is high, Grant2 goes low, causing the
output of OR gate 1 (i.e. A) to go low. This is clocked through
latches 1a and 1b to force low and therefore permit
processor 1 to access the memory. Of course, once is
asserted, any assertion of Request2 is ignored.

3.4 The JK flip-flop

The JK flip-flop can be configured, or programmed, to oper-
ate in one of two modes. All JK flip-flops are clocked and the
majority of them operate on the master–slave principle. The
truth table for a JK flip-flop is given in Table 3.5 and Fig. 3.32
gives its logic symbol. A bubble at the clock input to a flip-
flop indicates that the flip-flop changes state on the falling
edge of a clock pulse.

Table 3.5 demonstrates that for all values of J and K, except
J � K � 1, the JK flip-flop behaves exactly like an RS flip-flop
with J acting as the set input and K acting as the reset input.
When J and K are both true, the output of the JK flip-flop

Grant1
Grant1

Grant2

120 Chapter 3 Sequential logic

CLK

CLK

A

AA

BB

Grant1

Grant2

B

Request1

Idle Contention Request2 gets bus Request1
gets bus

Idle Idle

Request2

Figure 3.31 Timing diagram for
Fig. 3.30.

1 If a latch is clocked at the exact moment its input is changing state, it
can enter a metastable state in which its output is undefined and it may
even oscillate for a few nanoseconds.You can avoid the effects of metasta-
bility by latching a signal, waiting for it to settle, and then capturing it in
a second latch.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 120

toggles, or changes state, each time the flip-flop is clocked.
That is, if Q was a 0 it becomes a 1 and vice versa. It is this
property that puts the JK flip-flop at the heart of many
counter circuits, the operation of which is dealt with in the

next section. Note that the T flip-flop is a JK flip-flop with
J � K � 1, which changes state on each clock pulse (we don’t
deal with T flip-flops further in this text).

We can derive the characteristic equation for a JK flip-flop
by plotting Table 3.5 on a Karnaugh map, Fig. 3.33. This gives
Q� � J ⋅ � ⋅ Q.

Figure 3.34 demonstrates how a JK flip-flop can be
constructed from NAND gates and Fig. 3.35 describes a
master–slave JK flip-flop.

3.5 Summary of flip-flop types

To understand flip-flops, it’s necessary to appreciate that,
unlike combinational circuits, they have internal states as
well as external inputs; that is, the output of a flip-flop
depends on the previous inputs of the flip-flop. Flip-flops
are therefore memory elements. The most common forms of
flip-flop are the D flip-flop, the RS flip-flop, and the JK flip-
flop. Each flip-flop has two outputs, and its complement
Q, although the complementary output is not always con-
nected to a pin in an integrated circuit. Most flip-flops are
clocked and have a clock input that is used to trigger the flip-
flop. Flip-flops often have unconditional preset and clear
inputs that can be used the set or clear the output, respect-
ively. The term unconditional means that these inputs
override any clock input.

The D flip-flop D flip-flops have two inputs, a D (data) input
and a C (clock) input. The output of a D flip-flop remains in
its previous state until its C input is clocked. When its C input
is clocked, the Q output becomes equal to D until the next
time it is clocked.

The RS flip-flop An RS flip-flop has two inputs, R (reset) and
S (set). As long as both R and S are 0, the Q output of the
RS flip-flop is constant and remains in its previous state.
When R � 1 and S � 0, the Q output is forced to 0 (and

Q

KQ

3.5 Summary of flip-flop types 121

Falling-edge
clock

Positive-edge triggered
JK flip-flop.

Negatitive-edge triggered
JK flip-flop.

Rising-edge
clock

J
C Clk
K

J

K Q

Q
Clk

J

K Q

Q

(a) (b)

Full form Algebraic form

Inputs Output Inputs Output

J K Q Q� J K Q�

0 0 0 0 No change 0 0 Q No change

0 0 1 1 No change 0 1 0 Clear

0 1 0 0 Reset Q 1 0 1 Set

0 1 1 0 Reset Q 1 1 Toggle

1 0 0 1 Set Q

1 0 1 1 Set Q

1 1 0 1 Q�←
1 1 1 0 Q�←

Table 3.5 Truth table for a JK flip-flop.

Q

Q

Q

Figure 3.32 Representation of the JK flip-flop.

Q
JK

00

0 1 1

1 1 1

01 11 10

Figure 3.33 Deriving the characteristic equation of a
JK flip-flop.

K

C

J
RS flip-flop

Q

Q

Figure 3.34 Construction of a basic JK flip-flop.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 121

remains at zero when R returns to 0). When S � 1 and R � 0,
the Q output is forced to one (and remains at one when S
returns to 0). The input conditions R � S � 1 produce an
indeterminate state and should be avoided. Clocked RS flip-
flops behave as we have described, except that their R and S
inputs are treated as zero until the flip-flop is clocked. When
the RS flip-flop is clocked, its Q output behaves as we have
just described.

The JK flip-flop The JK flip-flop always has three inputs, J, K,
and a clock input C. As long as a JK flip-flop is not clocked, its
output remains in the previous state. When a JK flip-flop is
clocked, it behaves like an RS flip-flop (where J � S, K � R)
for all input conditions except J � K � 1. If J � K � 0, the
output does not change state. If K � 1 and J � 0, the Q out-
put is reset to zero. If J � 1 and K � 0, the Q output is set to
1. If both J and K are 1, the output changes state (or toggles)
each time it is clocked.

The T flip-flop The T flip-flop has a single clock input. Each
time it is clocked, its output toggles or changes state. A T flip-
flop is functionally equivalent to a JK flip-flop with
J � K � 1.

3.6 Applications of
sequential elements

Just as the logic gate is combined with other gates to form
combinational circuits such as adders and multiplexers, flip-
flops can be combined together to create a class of circuits
called sequential circuits. Here, we are concerned with two
particular types of sequential circuit: the shift register, which
moves a group of bits left or right and the counter, which steps
through a sequence of values.

3.6.1 Shift register

By slightly modifying the circuit of the register we can build a
shift register whose bits can be moved one place right every
time the register is clocked. For example, the binary pattern

01110101
becomes 00111010 after the shift register is clocked once
and 00011101 after it is clocked twice
and 00001110 after it is clocked three times, and so on.

Note that after the first shift, a 0 has been shifted in from
the left-hand end and the 1 at the right-hand end has been
lost. We used the expression binary pattern because, as we
shall see later, the byte 01110101 can represent many things.
However, when the pattern represents a binary number, shift-
ing it one place right has the effect of dividing the number by
two (just as shifting a decimal number one place right divides
it by 10). Similarly, shifting a number one place left multiplies
it by 2. Later we will see that special care has to be taken when
shifting signed two’s complement binary numbers right (the
sign-bit has to be dealt with).

Figure 3.36 demonstrates how a shift register is con-
structed from D flip-flops. The Q output of each flip-flop is
connected to the D input of the flip-flop on its right. All clock
inputs are connected together so that each flip-flop is clocked
simultaneously. When the ith stage is clocked, its output, Qi,
takes on the value from the stage on its left, that is, Qi ← Qi�1.
Data presented at the input of the left-hand flip-flop, Din, is
shifted into the (m�1)th stage at each clock pulse.
Figure 3.36 describes a right-shift register—we will look at
registers that shift the data sequence left shortly.

The flip-flops in a shift register must either be edge-
triggered or master-slave flip-flops, otherwise if a level-sensitive
flip-flop were used, the value at the input to the left-hand

122 Chapter 3 Sequential logic

The invertor ensures that the master stage
operates on a rising edge and the slave stage
on a falling edge

The master stage captures the input
and holds it constant

The slave stage copies the previous
captured input to the output terminals
and holds it constant while the next
input is being captured

J
Master Slave

K

Clock

Q

Q

Figure 3.35 Circuit diagram of a
master–slave JK flip-flop.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 122

stage would ripple through all stages as soon as the clock went
high. We can construct a shift register from JK flip-flops just
as easily as from RS flip-flops as Fig. 3.37 demonstrates.

Figure 3.38 shows a five-stage shift register that contains
the initial value 01101. At each clock pulse the bits are shifted

right and a 0 enters the most-significant bit stage. This figure
also provides a timing diagram for each of the five Q outputs.
The output of the right-hand stage, Q0, consists of a series of
five sequential pulses, corresponding to the five bits of the
word in the shift register (i.e. 11010).

3.6 Applications of sequential elements 123

Din D

C

Clock

Q D

Qm–1 Qm–2 Qm–3 Q0

C

Q D

C

Q D

C

Q

On each clock pulse
data is copies to the
next stage on the right

Din J Q

C

K

Shift clock

Q

J Q

C

K Q

J Q

C

K Q

J Q

C

K Q

The invertor ensures that
the J, K input is 0, 1 or 1, 0

Qm–1 Qm–2 Qm–3 Q0

Figure 3.36 The right-shift
register.

Figure 3.37 Shift register
composed of JK flip-flops.

0 D

C

Clock

Clock

Q4

Q3

Q2

Q1

Q0

State 11010 01101 00110 00011 00001 00000

Q D

C

Q

Q4 Q3 Q2 Q1 Q0

D

C

Q D

C

Q D

C

Q

Figure 3.38 Example of a five-stage
shift-right register.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 123

A shift register can be used to convert a parallel word of
m bits into a serial word of m consecutive bits. Such a circuit
is called a parallel to serial converter. If the output of an m-bit
parallel to serial converter is connected to the Din input of an
m-bit shift register, after m clock pulses the information in
the parallel to serial converter has been transferred to the
second (right-hand) shift register. Such a shift register is
called a serial to parallel converter and Fig. 3.39 describes a
simplified version. In practice, a means of loading parallel
data into the parallel-to-serial converter is necessary (see
Fig. 3.40). There is almost no difference between a parallel to
serial converter and a serial to parallel converter.

A flaw in our shift register (when operating as a parallel to
serial converter) is the lack of any facilities for loading it with
m bits of data at one go, rather than by shifting in m bits
through Din. Figure 3.40 shows a right-shift register with a

parallel load capacity. A two-input multiplexer, composed of
two AND gates, an OR gate, and an inverter switches a flip-
flop’s D input between the output of the previous stage to the
left (shift mode) and the load input (load mode). The control
inputs of all multiplexers are connected together to provide
the mode control, labeled load/ . When we label a variable
name1/ 2, we mean that when the variable is high it
carries out action name1 and when it is low it carries out
action name2. If load/ the operation performed
is a shift and if load/ the operation performed is a
load.

Constructing a left-shift register with
JK flip-flops

Although we’ve considered the right-shift register, a left-shift
register is easy to design. The input of the ith stage, Di, is

shift � 1
shift � 0

name
shift

124 Chapter 3 Sequential logic

D DD DD D

C CC CC C

Q QQ QQ Q

Shift
clock

Input

Serial data

Parallel to serial converter Serial to parallel converter

Qm–1 Qm–2 Q0

Parallel output

Only two lines are required
to transmit serial data

Note: A real parallel to serial register would
have a means of loading parallel data into it

Figure 3.39 Serial to parallel converter.

Q i+1

D i –2

D i –2D i –1D i

Q i–1D i –1Q iD i

C C

Shift clock

Load/shift

Multiplexer

Parallel load inputs

The D input of each
stage in the shift register
comes either from the
previous stage or from
an external input

Figure 3.40 Shift register with a parallel load capability.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 124

connected to the output of the (i�1)th stage so that, at each
clock pulse, Qi ← Di �1. In terms of the previous example

01110101
becomes 11101010 after one shift left
and 11212100 after two shifts left

The structure of a left-shift register composed of JK flip-
flops is described in Fig. 3.41.

When we introduce the instruction set of a typical computer
we’ll see that there are several types of shift (logical, arithmetic,
circular). These operations all shift bits left or right—the only
difference between them concerns what happens to the bit
shifted in. So far we’ve described the logical shift where a 0 is
shifted in and the bit shifted out at the other end is lost. In an
arithmetic shift the sign of 2’s complement number is preserved
when it is shifted right (this will become clear when we intro-
duce the representation of negative numbers in the next chap-
ter). In a circular shift the bit shifted out of one end becomes the
bit shifted in at the other end. Table 3.6 describes what happens
when the 8-bit value 11010111 undergoes three types of shift.

A typical shift register

Figure 3.42 gives the internal structure of a 74LS95 parallel-
access bidirectional shift register chip.You access the shift regis-
ter through its pins and cannot make connections to the
internal parts of its circuit. Indeed, its actual internal imple-
mentation may differ from the published circuit. As long as it
behaves like its published circuit, the precise implementation of

its logic function doesn’t matter to the end user. The 74LS95 is a
versatile shift register and has the following functions.

Parallel load The four bits of data to be loaded into the shift
register are applied to its parallel inputs, the mode control
input is set to a logical one, and a clock pulse applied to the
clock 2 input. The data is loaded on the falling edge of the
clock 2 pulse.

Right-shift A shift right is accomplished by setting the mode
control input to a logical zero and applying a pulse to the
clock 1 input. The shift takes place on the falling edge of the
clock pulse.

Left-shift A shift left is accomplished by setting the mode con-
trol input to a logical one and applying a pulse to the clock 2
input. The shift takes place on the falling edge of the clock
pulse. A left shift requires that the output of each flip-flop be
connected to the parallel input of the previous flip-flop and
serial data entered at the D input.

Table 3.7 provides a function table for this shift register
(taken from the manufacturer’s literature). This table
describes the behavior of the shift register for all combina-
tions of its inputs. Note that the table includes don’t care
values of inputs and the effects of input transitions (indicated
by ↓ and ↑).

Designing a versatile shift register—an example

Let’s design an 8-bit shift register to perform the following
operations.

(a) Load each stage from
an 8-bit data bus (parallel load)

(b) Logical shift left (0 in, MSB lost)

(c) Logical shift right (0 in, LSB lost)

(d) Arithmetic shift left (same as logical shift left)

(e) Arithmetic shift right (MSB replicated, LSB lost)

(f) Circular shift left (MSB moves to LSB position)
(g) Circular shift right (LSB moves to MSB position)

3.6 Applications of sequential elements 125

K K K K

Q Q

QQ Q Q

Q Q

Shift clock

C

J J J J

C C C

Stage i+1 Stage i Stage i–1 Stage i–2

The input to stage i
comes from the register
on the right (i.e. stage i–1)

Figure 3.41 The left-shift
register.

Shift type Shift left Shift right

Original bit pattern before shift 11010111 11010111

Logical shift 10101110 01101011

Arithmetic shift 10101110 11101011

Circular shift 10101111 11101011

Table 3.6 The effect of logical, arithmetic, and circular shifts.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 125

126 Chapter 3 Sequential logic

Inputs Outputs

Mode Clocks Serial Parallel inputs
control

2 (L) 1(R) A B C D Qa Qb Qc Qd

1 1 x x x x x x Qa0 Qb0 Qc0 Qd0

1 ↓ x x A B C D A B C D

1 ↓ x x Qb Qc Qd D Qbn Qcn Qdn D

0 0 1 x x x x x Qa0 Qb0 Qc0 Qd0

0 x ↓ 1 x x x x 1 Qan Qbn Qcn

0 x ↓ 0 x x x x 0 Qan Qbn Qcn

↑ 0 0 x x x x x Qa0 Qb0 Qc0 Qd0

↓ 0 0 x x x x x Qa0 Qb0 Qc0 Qd0

↓ 0 1 x x x x x Qa0 Qb0 Qc0 Qd0

↑ 1 0 x x x x x Qa0 Qb0 Qc0 Qd0

↑ 1 1 x x x x x Qa0 Qb0 Qc0 Qd0

Notes 1. Left-shift operations assume that Qb is connected to A, Qc to B, and Qd to C.
2. x � don’t care.
3. ↓ and ↑ indicate high-to-low and low-to-high transitions, respectively.
4. Qa0 indicates the level at Qa before the indicated inputs were established.
5. Qan indicates the level of Qa before the ↓ transition of the clock.

Table 3.7 Function table for a 74LS95 shift register.

R R RR

S S SQS Q Q Q

Clk Clk ClkClk

Qa Qb Qc Qd

Outputs

DCBA

Parallel inputs

Serial
input

Mode
control

Clock1
right shift

Clock2
left shift

Figure 3.42 The left-shift register.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 126

The circuit is composed of eight master–slave JK flip-flops
and has a clock input that causes operations (a)–(g) above to
be carried out on its falling edge. The circuit has five control
inputs:

R When R � 1 shift right, when R � 0 shift left.
S When S � 1 perform a shift operation, when S � 0

a parallel load.
L When L � 1 perform a logical shift (if S � 1).
A When A � 1 perform an arithmetic shift (if S � 1).
C When C � 1 perform a circular shift (if S � 1).

Assume that illegal combinations of L, A, and C cannot
occur because only one type of shift can be performed at a
time. Therefore, more than one of L, A, and C, will never be
true simultaneously.

For all eight stages of the shift register obtain algebraic
expressions for J and K in terms of control inputs R, S, L, A,
and C and the outputs of the flip-flops.

Figure 3.43 illustrates five stages of the shift register. These
are the end stages Q7 and Q0, the most-significant and least-
significant bit stages, respectively. A non-end stage Qi,
together with its left-hand neighbor Qi�1 and its right-hand
neighbor Qi�1, must also be considered.

All stages except 0 and 7 perform the same functions: par-
allel load, shift right, and shift left. As the JK flip-flops always
load from an external input or another stage, only the inputs
J � 1, K � 0, or J � 0, K � 1 have to be considered.
Consequently, J � and we need only derive expressions for
J, as the corresponding values for K can be obtained from an
inverter.

K

Stage i
Parallel load Ji � Di S � 0
Shift right Ji � Qi�1 S � 1, R � 1
Shift left Ji � Qi�1 S � 1, R � 0

Therefore, Ji� ⋅Di � S(R⋅Qi�1 � ⋅Qi�1)

Stage 0 (LSB)
Parallel load J0 � D0 S � 0
Shift right logical J0 � Q1 S � 1, R � 1, L � 1

arithmetic J0 � Q1 S � 1, R � 1, A � 1
circular J0 � Q1 S � 1, R � 1, C � 1

Shift left logical J0 � 0 S � 1, R � 0, L � 1
arithmetic J0 � 0 S � 1, R � 0, A � 1
circular J0 � Q7 S � 1, R � 0, C � 1

Therefore, J0 � ⋅D0 � S(R⋅L⋅Q1 � R⋅A⋅Q1 � R⋅C⋅Q1

� ⋅L⋅0 � ⋅A⋅0 � ⋅C⋅Q7)
� ⋅D0 � S(R⋅L⋅Q1 � R⋅A⋅Q1 � R⋅C⋅Q1

� ⋅C⋅Q7)
� ⋅D0 � S(R⋅Q1(L � A � C)� ⋅C⋅Q7)

Note: L � A � C � 1
� ⋅D0 � S(R⋅Q1 � ⋅C⋅Q7).

Stage 7 (MSB)
Parallel load J7 � D7 S � 0
Shift right logical J7 � 0 S � 1, R � 1, L � 1

arithmetic J7 � Q7 S � 1, R � 1, A � 1
circular J7 � Q0 S � 1, R � 1, C � 1

Shift left logical J7 � Q6 S � 1, R � 0, L � 1
arithmetic J7 � Q6 S � 1, R � 0, A � 1
circular J7 � Q6 S � 1, R � 0, C � 1

RS

RS
R

S
RRR

S

RS

3.6 Applications of sequential elements 127

J

K

Q

Shift clock

C

J

K

Q

C

J

K

Q

C

J

K

Q

C

J

K

Q

Q

C

J7 Ji J0Ji+1 Ji–1

Q7

D 7 Di+1 D i D i–1 D0

Qi Q0Q i+1 Q i –1

Q
Q Q

Q Q
Q

Q
Q

Q7 i 0i+1 i –1K 7 Ki K 0K i+1 Ki–1

Most-significant
bit stage

Least-significant
bit stage

Three middle stages i +1, i, i –1

Parallel input

Figure 3.43 End and middle stages of a shift register.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 127

Therefore, J7 � ⋅D7 � S(R⋅L⋅0 � R⋅A⋅Q7 � R⋅C⋅Q0

� ⋅L⋅Q6 � ⋅A⋅Q6 � ⋅C⋅Q6)
� ⋅D7 � S(R⋅A⋅Q7 � R⋅C⋅Q0

� ⋅Q6 (L � A � C))
� ⋅D7 � S(R (A⋅Q7 � C⋅Q0) � ⋅Q6)

3.6.2 Asynchronous counters

A counter is a sequential circuit with a clock input and
m outputs. Each time the counter is clocked, one or more of
its outputs change state. These outputs form a sequence with
N unique values. After the Nth value has been observed at the
counter’s output terminals, the next clock pulse causes
the counter to assume the same output as it had at the start of
the sequence; that is, the sequence is cyclic. For example, a
counter may display the sequence 01234501234501 . . . or the
sequence 9731097310973 . . .

A counter composed of m flip-flops can generate an arbit-
rary sequence with a length of not greater than 2m cycles
before the sequence begins to repeat itself.

One of the tools frequently employed to illustrate the oper-
ation of sequential circuits is the state diagram. Any system
with internal memory and external inputs such as the flip-
flop can be said to be in a state that is a function of its internal
and external inputs. A state diagram shows some (or all) of
the possible states of a given system. A labeled circle repres-
ents each of the states and the states are linked by unidirec-
tional lines showing the paths by which one state becomes
another state.

Figure 3.44 gives the state diagram of a JK flip-flop that has
just two states, S0 and S1. S0 represents the state Q � 0 and
S1 represents the state Q � 1. The transitions between states
S0 and S1 are determined by the values of the JK inputs at the
time the flip-flop is clocked. In Fig. 3.44 we have labeled the
flip-flop’s input states C1 to C4. Table 3.8 defines the four pos-
sible input conditions, C1, C2, C3, and C4, in terms of J and K.

RS
R

S
RRR

S From Fig. 3.44 it can be seen that conditions C3 or C4 cause
a transition from state S0 to state S1. Similarly, conditions
C2 or C4 cause a transition from state S1 to state S0. Condition
C4 causes a change of state from S0 to S1 and also from S1 to S0.
This is, of course, the condition J � K � 1, which causes the
JK flip-flop to toggle its output. Some conditions cause a state
to change to itself; that is, there is no overall change. Thus,
conditions C1 or C2, when applied to the system in state S0,
have the effect of leaving the system in state S0.

The binary up-counter

The state diagram of a simple 3-bit binary up-counter is given
in Fig. 3.45 (an up-counter counts upward 0, 1, 2, 3, . . . in
contrast with a down-counter, which counts downward . . . ,
3, 2, 1, 0). In this state diagram, there is only a single path from
each state to its next higher neighbor. As the system is clocked,
it cycles through the states S0 to S7 representing the natural
binary numbers 0 to 7. The actual design of counters in gen-
eral can be quite involved, although the basic principle is to
ask ‘What input conditions are required by the flip-flops to
cause them to change from state Si to state Si�1?’

The design of an asynchronous natural binary up-counter
is rather simpler than the design of a counter for an arbitrary
sequence. Figure 3.46 gives the circuit diagram of a 3-bit
binary counter composed of JK flip-flops and Fig. 3.47 pro-
vides its timing diagram. The J and K inputs to each flip-flop

128 Chapter 3 Sequential logic

A line from a state back to
itself indicates that the
corresponding condition
does not cause a change
of state

Lines with arrows indicate a change of state.
The boolean equation indicates the condition
that causes this state transition

C1 + C2

C3 + C4

C2 + C4

C1 + C3
S0

(Q = 0)
S1

(Q = 0)

Figure 3.44 The state diagram of a JK flip-flop.

J K Condition

0 0 C1

0 1 C2

1 0 C3

1 1 C4

Table 3.8 Relationship between JK inputs
and conditions C1 to C4.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 128

are connected to constant logical 1 levels. Consequently,
whenever a flip-flop is clocked, its output changes state. The
flip-flops are arranged so that the Q output of one stage trig-
gers the clock input of the next higher stage (i.e. the output Qi

of stage i triggers the clock input of stage i�1). The flip-flops
in Fig. 3.46 are master–slave clocked and their outputs change
on the negative edge of the clock pulse.

Consider the first stage of this counter. When the clock
input makes a complete cycle (0 to 1 to 0), the Q output
changes state on the falling edge of the clock. It takes two
clock cycles to make the Q output execute one cycle; that is,
the flip-flop divides the clock input by 2.

The asynchronous binary counter of Fig. 3.46 is called a
ripple counter because the output of the first stage triggers the
input of the second stage, the output of the second stage trig-
gers the input of the third stage, and so on. Consequently,
a change of state at the output of the first stage ripples through

the counter until it clocks the final stage. The propagation
delay through each stage of the counter determines its max-
imum speed of operation. The timing diagram of Fig. 3.47
doesn’t show the ripple effect—when one stage changes state,
there’s a short delay before stages to its right change state.

Figure 3.48 demonstrates the construction of a four-stage
binary up-counter in Digital Works. We have wired all J and
K inputs together and connected them to Vcc (the positive
power supply that provides a logical 1 to cause the JK flip-
flops to toggle when clocked). We have labeled each of the
Q outputs and used the Logic History function to capture
the output waveform. Digital Works clears all flip-flops at the
start of each run. However, the flip-flops have two unlabeled
set and clear inputs that can be used to preset outputs to 1 or
0, respectively (these are not used in this application).

The binary down-counter

We can also create a binary down-counter that counts
backwards from 7 to 0. Figure 3.49 demonstrates the effect of
connecting the output of each stage in a ripple counter to the
clock input of the next stage.You can also create a binary down-
counter by using JK flip-flops that are clocked on the positive or
rising edge of the clock pulse by connecting Qi to Clki�1.

Designing an asynchronous decimal counter

Let’s design a 4-bit asynchronous ripple-through decimal
counter to count from 0 to 9 cyclically. We use JK
master–slave flip-flops with an unconditional active-low
clear input. A decimal counter can be derived from a binary
counter by resetting the counter to zero at the appropriate
point. A four-stage binary counter counts from 0000 to 1111

Q

3.6 Applications of sequential elements 129

S0
000

S7
111

S6
110

S5
101

S4
100

S3
011

S2
010

S1
001

At each clock pulse, the system
changes state; for example, if
the current state is S4 with the
output 100, the next state will
be S5 with the output 101

Figure 3.45 The state diagram of a
binary 3-bit up-counter.

The J and K inputs
of each filp-flop
are connected to
logical 1 levels to force
the flip-flop to toggle
on each clock pulse

The Q output of each
flip-flop is connected
to the clock input of the
next stage

The flip-flops are
negative-edge triggered
and change state on
the falling edge of
the clock

Clock

1 11

1 11

Q2

J

C C C

Q

QK

J Q

QK

J Q

QK

Q1 Q0

Figure 3.46 Circuit of an asynchronous binary up-counter.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 129

Digital Works
initializes flip-flops to
Q = 0 at the start of
a simulation.

This is the symbol for
a connection to a high
level. When placed in
the work area, it
appears as Vcc and
can be used to provide
a logical 1 level.

130 Chapter 3 Sequential logic

Figure 3.48 Using Digital Works to create a binary up-counter.

State S0

Q0

Q1

Q2

S0S4S2 S6S1 S5S3 S7

Clock

Count 000 000001 010 011 100 101 110 111

Figure 3.47 Timing diagram of an
asynchronous 3-bit binary up-counter.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 130

(i.e. 0 to 15). To create a decade counter the state 10 (1010)
must be detected and used to reset the flip-flops. Fig. 3.50
provides a possible circuit.

The binary counter counts normally from 0 to 9. On the
tenth count Q3 � 1 and Q1 � 1. This condition is detected by
the NAND gate whose output goes low, resetting the flip-
flops. The count of 10 exists momentarily as Fig. 3.51 demon-
strates. We could have detected the state 10 with Q3, Q2, Q1,
Q0 � 1010. However, that would have required a four-input
gate and is not strictly necessary. Although Q3 � 1 and
Q1 � 1 corresponds to counts 10, 11, 14, and 15, the counter
never gets beyond 10.

The reset pulse must be long enough to reset all flip-flops
to zero. If the reset pulse were too short and, say, Q1 was reset
before Q3, the output might be reset to 1000. The counting
sequence would now be: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (10), 8, 9, 8,
9, However, such a problem is unlikely to occur in this
case, because the reset pulse is not removed until at least the
output of one flip-flop and the NAND gate has changed state.

The combined duration of flip-flop reset time plus a gate
delay will normally provide sufficient time to ensure that all
flip-flops are reset.

It is possible to imagine situations in which the circuit
would not function correctly. Suppose that the minimum
reset pulse required to guarantee the reset of a flip-flop were
50 ns. Suppose also that the minimum time between the
application of a reset pulse and the transition Q ← 0 were
10 ns and that the propagation delay of a NAND gate were
10 ns. It would indeed be possible for the above error to
occur. This example demonstrates the dangers of designing
asynchronous circuits!

The pulse generator revisited

When we introduced the RS flip-flop we used it to start and
stop a simple pulse generator that created a train of n pulses.
Figure 3.52 shows a pulse generator in Digital Works. This
system is essentially the same as that in Fig. 3.9, except that
we’ve built the counter using JK flip-flops and we’ve added

3.6 Applications of sequential elements 131

Figure 3.49 Using Digital Works to create a binary down-counter.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 131

LEDs to examine the signals produced when the system runs.
Note also that the RS flip-flop can be set only when the
flip-flop is in the reset mode.

3.6.3 Synchronous counters

Synchronous counters are composed of flip-flops that are all
clocked at the same time. The outputs of all stages of a syn-
chronous counter become valid at the same time and the
ripple-through effect associated with asynchronous counters
is entirely absent. Synchronous counters can be easily

designed to count through any arbitrary sequence just as well
as the natural sequence 0, 1, 2, 3,

We design a synchronous counter by means of a state dia-
gram and the excitation table for the appropriate flip-flop
(either RS or JK). An excitation table is a version of a flip-
flop’s truth table arranged to display the input states required
to force a given output transition. Table 3.9 illustrates the
excitation table of a JK flip-flop. Suppose we wish to force the
Q output of a JK flip-flop to make the transition from 0 to 1
the next time it is clocked. Table 3.9 tells us that the J, K input
should be 1, d (where d � don’t care).

132 Chapter 3 Sequential logic

When the counter reaches 1010, both
Q1 and Q3 are 1. The NAND gate detects
this condition and resets all flop-flops to 0

1s counter 2s counter 4s counter 8s counter

Q0

Q1 Q3

Q1 Q2 Q3

CLR CLR CLR CLR

Clock

1

1

1

1

1

1

1

1

J Q

C

K

J Q

C

K

J Q

C

K

J Q

C

K QQQQ

Figure 3.50 Circuit of a
decimal counter.

The NAND gate
detects when the
counter reaches 10

Although Q goes high
when the counter
reaches 10, it is reset
by the NAND gate

State S0

Q0

Q1

Q2

Q3

Q3Q1

S8 S9 S0S4S2 S6S1 S5S3 S7

Clock

Count 0000 000010000001 0010 0011 0100 0101 0110 0111 1001

Figure 3.51 Timing diagram of a decimal counter.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 132

Why is the K input a don’t care condition when we want a
0 → 1 transition? If we set J � 1 and K � 0, the flip-flop is set
when it’s clocked and Q� becomes 1. If we set J � 1 and
K � 1, the flip-flop is toggled when it’s clocked and the out-
put Q � 0 is toggled to Q � 1. Clearly, the state of the K input
doesn’t matter when we wish to set Q� to 1 given that Q � 0
and J � 1. It should now be clear why all the transitions in the
JK’s excitation table have a don’t care input—a given state can
be reached from more than one starting point.

The next step in designing a synchronous counter is to
construct a truth table for the system to determine the JK
inputs required to force a transition to the required next state
for each of the possible states in the table. It is much easier to
explain this step by example rather than by algorithm.

Let’s design a synchronous binary-coded decimal or
modulo-10 counter to count through the natural sequence 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, As there are 10 states, we require
four JK flip-flops because 23 �10 �24. Table 3.10 provides
a truth table for this counter.

To understand Table 3.10 it’s necessary to look along a line
and to say, ‘Given this state, what must the inputs of the flip-
flops be to force the transition to the next state?’ For example,
in the first line the current state is 0, 0, 0, 0 and the next state
is 0, 0, 0, 1. The values for the four pairs of J, K inputs are
obtained from the excitation table in Table 3.9. Three of these
outputs cause the transition 0 → 0 and one causes the
transition 0 → 1. The J, K inputs required are 0, d for the 0 to
0 transitions and 1, d for the 0 to 1 transition.

From the truth table of the synchronous counter we can
write down eight Karnaugh maps for the Js and Ks.

3.6 Applications of sequential elements 133

Figure 3.52 Using Digital Works to design a pulse generator.

Inputs Transition

J K Q → Q�

0 d 0 → 0

1 d 0 → 1

d 1 1 → 0

d 0 1 → 1

Table 3.9 Excitation table of a JK flip-flop.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 133

Figure 3.53 gives the Karnaugh maps for this counter. These
maps can be simplified to give

Jd � Qc⋅ Qb⋅ Qa Kd � Qa

Jc � Qb⋅ Qa Kc � Qb⋅Qa

Jb � d⋅ Qa Kb � Qa

Ja � 1 Ka � 1

We can now write down the circuit diagram of the
synchronous counter (Fig. 3.54). Remember that d denotes a
don’t care condition and indicates that the variable marked
by a d may be a 0 or a 1 state. The same technique can be
employed to construct a counter that will step through any
arbitrary sequence. We will revisit this technique when we
look at state machines.

Q

3.7 Introduction to state machines

No discussion of sequential circuits would be complete with-
out at least a mention of state machines. The state machine
offers the designer a formal way of specifying, designing, test-
ing, and analyzing sequential systems. Because the detailed
study of state machines is beyond the scope of this intro-
ductory text, we shall simply introduce some of the basic
concepts here.

It would be impossible to find a text on state machines
without encountering the general state machines called
Mealy machines and Moore machines (after G. H. Mealy and
E. Moore). Figure 3.55 illustrates the structure of a Mealy

134 Chapter 3 Sequential logic

Count Output Next state J, K inputs required to force transition

Qd Qc Qb Qa Qd Qc Qb Qa Jd Kd Jc Kc Jb Kb Ja Ka

0 0 0 0 0 0 0 0 1 0 d 0 d 0 d 1 d

1 0 0 0 1 0 0 1 0 0 d 0 d 1 d d 1

2 0 0 1 0 0 0 1 1 0 d 0 d d 0 1 d

3 0 0 1 1 0 1 0 0 0 d 1 d d 1 d 1

4 0 1 0 0 0 1 0 1 0 d d 0 0 d 1 d

5 0 1 0 1 0 1 1 0 0 d d 0 1 d d 1

6 0 1 1 0 0 1 1 1 0 d d 0 d 0 1 d

7 0 1 1 1 1 0 0 0 1 d d 1 d 1 d 1

8 1 0 0 0 1 0 0 1 d 0 0 d 0 d 1 d

9 1 0 0 1 0 0 0 0 d 1 0 d 0 d d 1

10 1 0 1 0 x X x x x x x x x x x x

11 1 0 1 1 x x x x x x x x x x x x

12 1 1 0 0 x x x x x x x x x x x x

13 1 1 0 1 x x x x x x x x x x x x

14 1 1 1 0 x x x x x x x x x x x x

15 1 1 1 1 x x x x x x x x x x x x

The ds in the table correspond to don’t care conditions in the excitation table of the JK flip-flop.The x’s correspond to don’t care conditions due to
unused states; for example, the counter never enters states 1010 to 1111.There is, of course, no fundamental difference between x and d.We’ve
chosen different symbols in order to distinguish between the origins of the don’t care states.

Table 3.10 Truth table for a synchronous counter.

The clock triggers all flip-flops simultaneously
Clock

1

1

G1 G2
G3

K

FF1

J

C

Qa

Qa

K

FF2

J

C

Qb

Qb

K

FF3

J

C

Qc

Qc

K

FF4

J

C

Qd

Qd

Figure 3.54 Circuit diagram for
a 4-bit synchronous BCD
counter.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 134

3.7 Introduction to state machines 135

00 00

0000

00 00

0000

01 01

0101

01 01

0101

11 11

1111

11 11

1111

10 10

1010

10 10

1010

XX

X

X

X

X X

X X

X X

X X

X

Q Qd c

Q Qd c Q Qd c

Q Qd c
Q Qb a

Q Qb a Q Qb a

Q Qb a

d

d

d

d

d

d

d

ddd

d

d

d

d

J = Q Q Qd c b a

J = Q Qc b a K = Q Qc b a

K = Qd a

X1 XX

X 1

d d

d d

X X

X X

d1 X Xd 1

00 00

0000

00 00

0000

01 01

0101

01 01

0101

11 11

1111

11 11

1111

10 10

1010

10 10

1010

XX

X

X X

X

X

X X

Q Qd c

Q Qd c Q Qd c

Q Qd c
Q Qb a

Q Qb a Q Qb a

Q Qb a

d dd

dd

J = Q Qb d a

J = 1a K = 1a

K = Qb a

1

dd

1

XX

X

1 1

d dd

X

X X

X X

X

X

X

X

X

X X

X

dd d

1dd

11

1

1

1

1

d

1

1

d

d d

1

Figure 3.53 Karnaugh maps for a
synchronous counter.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 135

state machine and Fig. 3.56 the structure of a Moore state
machine. Both machines have a combinational network that
operates on the machine’s inputs and on its internal states to
produce a new internal state. The output of the Mealy
machine is a function of the current inputs and the internal
state of the machine, whereas the output of a Moore machine
is a function of the internal state of the machine only.

3.7.1 Example of a state machine

As we have already said, the state machine approach to the
design of sequential circuits is by no means trivial. Here, we
will design a simple state machine by means of an example.

Suppose we require a sequence detector that has a serial
input X and an output Y. If a certain sequence of bits appears
at the input of the detector, the output goes true. Sequence
detectors are widely used in digital systems to split a stream of
bits into units or frames by providing special bit patterns
between adjacent frames and then using a sequence detector
to identify the start of a frame.

In the following example we design a sequence detector
that produces a true output Y whenever it detects the
sequence 010 at its X input.

For example, if the input sequence is 000110011010110001011,
the output sequence will be 000000000000100000010

(the output generates a 1 in the state following the detection
of the pattern).

Figure 3.57 shows a black box state machine that detects
the sequence 010 in a bit stream. We have provided input and
output sequences to demonstrate the machine’s action.

We solve the problem by constructing a state diagram as
illustrated in Fig. 3.58. Each circle represents a particular state
of the system and transitions between states are determined
by the current input to the system at the next clock pulse.

A state is marked name/value, where name is the label we
use to describe the state (e.g. states A, B, C, and D in Fig. 3.58)
and value is the output corresponding to that state. The trans-
ition between states is labeled a/b, where a is the input condi-
tion and b the output value after the next clock. For example,
the transition from state A to state B is labeled 0/0 and
indicates that if the system is in state A and the input is 0, the
next clock pulse will force the system into state B and set
the output to 0.

Figure 3.59 provides a partial state diagram for this
sequence detector with details of the actions that take place
during state transitions. State A is the initial state in Fig. 3.59.
Suppose we receive an input while in state A. If input X is a 0
we may be on our way to detecting the sequence 010 and
therefore we move to state B along the line marked 0/0 (the
output is 0 because we have not detected the required
sequence yet). If the input is 1, we return to state A because we
have not even begun to detect the start of the sequence.

From state B there are two possible transitions. If we detect
a 0 we remain in state B because we are still at the start of the
desired sequence. If we detect a 1, we move on to state C (we
have now detected 01). From state C a further 1 input takes us

136 Chapter 3 Sequential logic

This logic generates
the next state

Memory

Input logic
(combinational)

Output logic
(combinational)

Inputs

Outputs

Clock
Figure 3.55 The Mealy state
machine.

This logic generates
the next state

Memory

Input logic
(combinational)

Output logic
(combinational)

Inputs

Outputs

Clock Figure 3.56 The Moore state
machine.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 136

3.7 Introduction to state machines 137

State machine
Serial input X Output Y

Clock

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 00 0 1 1 0 1 0 1 1 0 0 0 1 0 1 1

This machine detects the
input sequence 010

X = 1
1/0

X = 1
1/0

X = 1
1/0

X = 1
1/0

X = 0
0/1

X = 0
0 /0

X = 0
0/0

X = 0
0/0

A/0 B/0 C/0 D/1

Start

Figure 3.57 State machine to detect
the sequence 010.

Figure 3.58 State diagram for a
010 sequence detector (X is the
current input).

Figure 3.59 Details of the
state counter diagram of
Fig. 3.58.

This is the initial state
called A. The initial
output is 0If the system is

in state A and the
input is X = 1, the
system remains
in state A

If the system is
in state A and the
input is X = 0, the
system moves to
state B

The notation 0/0
means that the
input is 0 and the
output is 0

The notation B/0
indicates that this is
state B with output 0

If the next input is
X=1, we have detected
the sequence 01 and
we move to state C
where we look for 0
to complete the
sequence 010

A/0 B/0

X=1
1/0

X = 1
1/0

X=0
0/0

X = 0
0/0

Start

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 137

right back to state A (because we have received 011).
However, if we detect a 0 we move to state D and set the out-
put to 1 to indicate that the sequence has been detected. From
state D we move back to state A if the next input is a 1 and
back to state B if it is a 0. From the state diagram we can con-
struct a state table that defines the output and the next state
corresponding to each current state and input. Table 3.11
provides a state table for Fig. 3.58.

3.7.2 Constructing a circuit to implement
the state table

The next step is to go about constructing the circuit itself. If a
system can exist in one of several states, what then defines the
current state? In a sequential system flip-flops are used to hold
state information—in this example there are four states,
which requires two flip-flops.

138 Chapter 3 Sequential logic

Current state Output Next state

X � 0 X � 1

A 0 B A

B 0 B C

C 0 D A

D 1 B A

Table 3.11 State table for a 010 sequence detector.

Current state Flip-flop outputs Output Next state

Q1 Q2 X � 0 X � 1

A 0 0 0 0,1 0,0

B 0 1 0 0,1 1,0

C 1 0 0 1,1 0,0

D 1 1 1 0,1 0,0

Table 3.12 Modified state table for a sequence detector.

Current state Next state Output

Q1 Q2 X Q1 Q2 J1 K1 J2 K2

0 0 0 0 1 0 d 1 d

0 0 1 0 0 0 d 0 d

0 1 0 0 1 0 d d 0

0 1 1 1 0 1 d d 1

1 0 0 1 1 d 0 1 d

1 0 1 0 0 d 1 0 d

1 1 0 0 1 d 1 d 0

1 1 1 0 0 d 1 d 1

J1 � Q1 � Q2⋅X
J2 �

K1 � Q2 � X
K2 � X

Table 3.13 Determining the JK outputs of the sequence detector.

X

Q2

Q2
Q1

Q1

J2J1

K2K1

CC

X

X

X + Q2

X· Q2

Input X

Clock

Output = Q1Q2

Figure 3.60 Circuit to detect
the sequence 010.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 138

Table 3.12 expands Table 3.11 to represent internal states A
to D by flip-flop outputs Q1, Q2 � 0, 0 to 1, 1. We next
construct Table 3.13 to determine the JK input of each JK
flip-flop that will force the appropriate state transition, given
the next input X. Table 3.13 is derived by using the excitation
table of the JK flip-flop (see Table 3.9). The final step is to cre-
ate a circuit diagram from Table 3.13 (i.e. Fig. 3.60).

Figure 3.61 demonstrates the construction of the
sequence detector in Digital Works.We’ve added LEDs to show
the state of the flip-flop outputs and control signals and have
provided an example of a run. Note the output pulse after the
sequence 010. We used the programmable sequence generator
to provide a binary pattern for the test.

■ SUMMARY

In this chapter we’ve looked at the flip-flop, which provides data
storage facilities in a computer and which can be used to create

counters and shift registers as well as more general forms of
state machine.We have introduced the RS, D, and JK flip-flops.
All these flip-flops can capture data and the JK flip-flop is able
to operate in a toggle mode in which its output changes state
each time it is clocked.Any of these flip-flops can be converted
into the other two flip-flops by the addition of a few gates.

We have also introduced the idea of clocking or triggering
flip-flops.A flip-flop can be triggered by a clock at a given level
or by the change in state of a clock.The master–slave flip-flop
latches data at its input when the clock is high (or low) and
transfers data to the output (slave) when the clock changes
state.

We have looked at the counter and shift register. The counter
counts through a predetermined sequence such as the natural
integers 0, 1, 2, 3, A shift register holds a word of data and
is able to shift the bits one or more places left or right. Shift
registers are used to divide and multiply by two and to
manipulate data in both arithmetic and logical operations.
Counters and shift registers can be combined with the type of

3.7 Introduction to state machines 139

Figure 3.61 Using Digital Works to implement the sequence detector.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 139

combinational logic we introduced in the previous chapter to
create a digital computer.

Sequential machines fall into two categories.Asynchronous
sequential machines don’t have a master clock and the output
from one flip-flop triggers the flip-flop it’s connected to. In a
synchronous sequential machine all the flip-flops are triggered
at the same time by means of a common master clock.
Synchronous machines are more reliable. In this chapter we
have briefly demonstrated how you can construct a
synchronous counter and a machine that can detect a specific
binary pattern in a stream of serial data.

■ PROBLEMS

3.1 What is a sequential circuit and in what way does it differ
from a combinational circuit?

3.2 Explain why it is necessary to employ clocked flip-flops in
sequential circuits (as opposed to unclocked flip-flops)?

3.3 What are the three basic flip-flop clocking modes and why
is it necessary to provide so many clocking modes?

3.4 The behavior of an RS flip-flop is not clearly defined when
R � 1 and S � 1. Design an RS flip-flop that does not suffer from
this restriction. (Note:What assumptions do you have to
make?)

3.5 For the waveforms in Fig. 3.62 draw the Q and outputs
of an RS flip-flop constructed from two NOR gates (as in
Fig. 3.2).

3.6 For the input and clock signals of Fig. 3.63, provide a
timing diagram for the Q output of a D flip-flop.Assume that
the flip-flop is

(a) Level sensitive
(b) positive edge triggered

(c) negative-edge triggered
(d) a master–slave flip-flop

3.7 What additional logic is required to
convert a JK flip-flop into a D flip-flop?

3.8 Assuming that the initial state of the
circuit of Fig. 3.64 is given by C � 1, D � 1,
P � 1, and Q � 0, complete the table.This
question should be attempted by calculating
the effect of the new C and D on the inputs to
both cross-coupled pairs of NOR gates and
therefore on the outputs P and Q.As P and Q
are also inputs to the NOR gates, the change
in P and Q should be taken into account when
calculating the effect of the next inputs C and
D. Remember that the output of a NOR is 1 if
both its inputs are 0, and is 0 otherwise.

Q

140 Chapter 3 Sequential logic

R input

S input

Q output

Q output

D input to
flip-flop

Clock input

Figure 3.63 Timing diagram of a clock and data signal.

Figure 3.62 R and S inputs to an RS flip-flop.

D

Q

P

C

Figure 3.64 Circuit for Question 3.8. Figure 3.65 Circuit for Question 3.9.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 140

Modify the circuit to provide a new input S which, when 1, will
at any time set P to 1 and Q to 0. Provide another input R that
will similarly set P to 0 and Q to 1. Note that R and S cannot
both be a 1 at the same time and therefore the condition
R � S � 1 need not be considered.

3.9 Demonstrate that the flip-flops in Fig. 3.65 are equivalent.
Are they exactly equivalent?

3.10 Many flip-flops have unconditional preset and clear inputs.
What do these inputs do and why are they needed in sequential
circuits?

C D P Q

1 1 1 0

1 0

0 0

1 1

0 1

1 1

0 1

0 0

1 0

3.11 A T flip-flop has a single clock input and outputs Q and .
Its Q output toggles (changes state) each time it is clocked.The
T flip-flop behaves exactly like a JK flip-flop with its J and K
inputs connected permanently to a logical one. Design a T flip-
flop using a D flip-flop.

3.12 Why haven’t D and RS flip-flops been replaced by the JK
flip-flop, because the JK flip-flop can, apparently, do everything a
D flip-flop or an RS flip-flop can do?

3.13 What is a shift register and why is it so important in digital
systems?

3.14 Design a shift register that has two inputs, a clock input
and a shift input.Whenever this register receives a pulse at its
shift input, it shifts its contents two places right.

3.15 Analyze the operation of the circuit of Fig. 3.66 by
constructing a timing diagram (assume that Q0 and Q1 are
initially 0). Construct the circuit using Digital Works and observe
its behavior.

3.16 Analyze the operation of the circuit of Fig. 3.67 by
constructing a timing diagram (assume any initial value for Q0 to
Q3). Construct the circuit using Digital Works and observe its
behavior.This type of circuit is an important circuit in digital
systems because it can be used to generate a pseudo random
sequence; that is, the sequence of bits at its Q0 output look (to an

Q

3.7 Introduction to state machines 141

Q0 Q1

Q0 Q1

J0 J1

K0 K1

C C

Input
Output

Clock

Figure 3.66 Circuit diagram for
Question 3.15.

Shift clock

J Q3

Q

C
K

J Q2

Q

C
K

J Q1

Q

C
K

J Q0

Q

C
K

Figure 3.67 Circuit diagram for
Question 3.16.

Q2

Q2

Q3

Q3

Q1 J2 J3J1

K2 K3K1

C CC

Clock

1

1

Figure 3.68 Circuit diagram for
Question 3.17.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 141

142 Chapter 3 Sequential logic

Q

Q

J

C

J

Clock

1

1

G1

FF1

Q

Q

J

C

J

FF2

Q

Q

J

C

J

FF3

Q

Q

J

C

J

FF4

G2

Figure 3.69 Circuit diagram for Question 3.18.

Q

Q

J

C

K

Q3 Q2 Q1 Q0

Shift clock

Q

Q

J

C

K

Q

Q

J

C

K

Q

Q

J

C

K

Figure 3.70 Circuit diagram of a Johnson
counter.

Figure 3.71 Organization of a 74162 synchronous decade counter.

QA

QD

QB

QC

Load

Data A

Data B

Clock

QData D

Clear

Data C

Carry out
P

T

Enable
inputs

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 142

3.7 Introduction to state machines 143

3.23 Design a programmable modulo 10/modulo 12
synchronous counter using JK flip-flops.The counter
has a control input,TEN/ , which when high, causes
the counter to count modulo 10.When low,TEN/
causes the counter to count
modulo 12.

3.24 How would you determine the maximum rate at which a
synchronous counter could be clocked?

3.25 The circuit in Fig. 3.70 represents a Johnson counter.
This is also called a twisted ring counter because
feedback from the last (rightmost) stage is fed back
to the first stage by crossing over the Q and connections.
Investigate the operation of this
circuit.

3.26 Design a simple digital time of day clock that can display
the time from 00:00:00 to 23:59:59. Assume that
you have a clock pulse input derived from the public
electricity supply of 50 Hz (Europe) or
60 Hz (USA).

3.27 Figure 3.71 gives the internal organization of a 74162
synchronous decade (i.e. modulo 10) counter.
Investigate its operation. Explain the function of the various
control inputs. Note that the flip-flops are master–slave JKs
with asynchronous (i.e. unconditional) clear inputs.

3.28 Design a modulo 8 counter with a clock and a
control input UP. When UP � 1, the counter counts 0, 1, 2, . . . ,
7.When UP � 0, the counter counts down 7, 6, 5, . . . 0. This
circuit is a programmable up-/down-counter.

3.29 Design a counter using JK flip-flops to count through the
following sequence.

Q2 Q1 Q0

0 0 1

0 1 0

0 1 1

1 1 0

1 1 1

0 0 1 sequence repeats

Q

TWELVE
TWELVE

Figure 3.72 Circuit diagram of a
sequence processor.

QK QK

J JQ Q

C C

FF1 FF2Qa Qb

G2

G1

G3

Input
X

Clock

S3

S2

S1

S5

S4

1/0

1/0

1/0

1/0

1/0

1/0

1/0

0/0

0/0

0/0 0/0

0/1

0/1
0/1

S0

S6

Figure 3.73 Circuit diagram of a sequence processor.

observer) as if they constitute a random series of 1s and 0s. Longer
sequences of random numbers are generated by increasing the
number of stages in the shift register.The input is the exclusive OR
of two or more outputs.

3.17 Use Digital Works to construct the circuit of Fig. 3.68 and
then investigate its behavior.

3.18 Investigate the behavior of the circuit in Fig. 3.69.

3.19 Explain the meaning of the terms asynchronous and
synchronous in the context of sequential logic systems.What is
the significance of these terms?

3.20 Design an asynchronous base 13 counter that counts
through the natural binary sequence from 0 (0000) to
12 (1100) and then returns to zero on the next count.

3.21 Design a synchronous binary duodecimal (i.e. base 12)
counter that counts through the natural binary sequence
from 0 (0000) to 11 (1011) and then returns to zero on
the next count.The counter is to be built from four JK
flip-flops.

3.22 Design a synchronous modulo 9 counter using

(a) JK flip-flops
(b) RS flip-flops (with a master–slave clock).

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 143

144 Chapter 3 Sequential logic

Figure 3.74 A sequential circuit constructed with Digital Works.

3.30 Investigate the action of the circuit in Fig. 3.72 when it is
presented with the input sequence 111000001011111, where
the first bit is the rightmost bit. Assume that all flip-flops are
reset to Q � 0 before the first bit is received.

3.31 Design a state machine to implement the state diagram
defined in Fig. 3.73.

3.32 Figure 3.74 provides a screen shot of a session using
Digital Works. Examine the behavior of the circuit both by
constructing it and by analyzing it.

03-CLements-Chap03.qxd 17/1/06 11:10 PM Page 144

