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DIGITAL SYSTEMS 

AND INFORMATION 


This book deals with logic circuits and digital computers. Early computers were 
used for computations with discrete numeric elements called digits (the latin 
word for fingers)-hence the term digital computer. The use of "digital" spread 

from the computer to logic circuits and other systems that use discrete elements of 
information, giving us the terms digital circuits and digital systems. The term logic is 
applied to circuits that operate on a set of just two elements with values True (1) and 
False (0). Since computers are based on logic circuits, they operate on patterns of 
elements from these two-valued sets, which are used to represent, among other 
things, the decimal digits. Today, the term "digital circuits" is viewed as synonymous 
with the term "logic circuits." 

The general-purpose digital computer is a digital system that can follow a stored 
sequence of instructions, called a program, that operates on data. The user can 
specify and change the program or the data according to specific needs. As a result 
of this flexibility, general-purpose digital computers can perform a variety of 
Information-processing tasks, ranging over a very wide spectrum of applications. This 
makes the digital computer a highly general and very flexible digital system. Also, due 
to its generality, complexity, and widespread use, the computer provides an ideal 
vehicle for learning the concepts, methods, and tools of digital system design. To this 
end, we use the exploded pictorial diagram of a computer of the class commonly 
referred to as a PC (personal computer) given on the opposite page. We employ this 
generic computer to highlight the significance of the material covered and its 
relatlonship to the overall system. A bit later in this chapter, we will discuss the various 
major components of the generic computer and see how they relate to a block 
diagram commonly used to represent a computer. Otherwise, the remainder of the 
chapter focuses on the digital systems in our daily lives and introduces approaches 
for representing information in digital circuits and systems. 
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1-1 INFoRMATION REPRESENTATION 

Digital systems store, move, and process information. The information represents a 
broad range of phenomena from the physical and man-made world. The physical 
world is characterized by parameters such as weight, temperature, pressure, veloc­
ity, flow, and sound intensity and frequency. Most physical parameters are continu­
ous, typically capable of taking on all possible values over a defined range. In 
contrast, in the man-made world, parameters can be discrete in nature, such as 
business records using words, quantities, and currencies, taking on values from an 
alphabet, the integers, or units of currency, respectively. In general, information 
systems must be able to represent both continuous and discrete information. Sup­
pose that temperature, which is continuous, is measured by a sensor and converted 
to an electrical voltage, which is likewise continuous. We refer to such a continuous 
voltage as an analog signal, which is one possible way to represent temperature. 
But, it is also possible to represent temperature by an electrical voltage that takes 
on discrete values that occupy only a finite number of values over a range, e.g., cor­
responding to integer degrees centigrade between -40 and +119. We refer to such 
a voltage as a digital signal. Alternatively, we can represent the discrete values by 
multiple voltage signals, each taking on a discrete value. At the extreme, each sig­
nal can be viewed as having only two discrete values, with multiple signals repre­
senting a large number of discrete values. For example, each of the 160 values just 
mentioned for temperature can be represented by a particular combination of 
eight two-valued signals. The signals in most present-day electronic digital systems 
use just two discrete values and are therefore said to be binary. The two discrete 
values used are often called 0 and 1, the digits for the binary number system. 

We typically represent the two discrete values by ranges of voltage values called 
HIGH and LOW. Output and input voltage ranges are illustrated in Figure l-l(a). 
The HIGH output voltage value ranges between 0.9 and 1.1 volts, and the LOW 
output voltage value between -0.1 and 0.1 volts. The high input range allows 0.6 to 
1.1 volts to be recognized as a HIGH, and the low input range allows -0.1 to 0.4 
volts to be recognized as a LOW. The fact that the input ranges are wider than the 
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o FIGURE 1·1 
Examples of Voltage Ranges and Waveforms for Binary Signals 

output ranges alll 
behavior and un 
from the outputs. 

We give thl 
Among these are 
O. It is natural tl 
lower voltage ra 
ever, there is a I 

lower voltage raJ 
cated, we assum 
ranges, H, and 1 
ranges, L. This P 

It is inten 
Figure l-l(a) a 
voltage is actm 
high-speed digi 
referred to as ~ 

on a model us 
inputs and the 
voltage above 
form in Figure 
only discrete \ 
that digital c: 
designed to ca 
for 1 (H) and 
contrast, anal< 
values over th 

Since 0 a 
ferred names i 
resented in di~ 
groups of bits 
groups of disc 
the computer 

Why is t 
tem with 10, 
available-sa~ 

0.1 volt. A cir 
An input ofa 
voltage lies. Ii 
be permitted 
boundaries c 
complex and 
small "noise 
manufacture 
limited. Instt 
achieved wi1 



ON 


mation represents a 
world. The physical 
ure, pressure, veloc­
,meters are continu­
a defined range. In 
, in nature, such as 
: on values from an 
eneral, information 
e information. Sup­
nsor and converted 
) such a continuous 
'esent temperature. 
I voltage that takes 
~r a range, e.g., cor­
9. We refer to such 
discrete values hy 
extreme, each sig­

tiple signals repre­
the 160 values just 
ar combination of 
Inic digital systems 
I. The two discrete 
nher system. 
)ltage values called 
d in Figure l-l(a). 
,lts, and the LOW 
~ange allows 0.6 to 
allows -0.1 to 0.4 
Ire wider than the 

le 
~ge 

e 
~ndent voltage 

gnals 

1-1 I Information Representation 0 23 

output ranges allows the circuits to function correctly in spite of variations in their 
behavior and undesirable "noise" voltages that may be added to or subtracted 
from the outputs. 

We give the output and input voltage ranges a number of different names. 
Among these are HIGH (H) and LOW (L), TRUE (T) and FALSE (F), and 1 and 
O. It is natural to associate the higher voltage ranges with HIGH or H, and the 
lower voltage 'ranges with LOW or L. For TRUE and 1 and FALSE and 0, how­
ever, there is a choice. TRUE and 1 can be associated with either the higher or 
lower voltage range and FALSE and 0 with the other range. Unless otherwise indi­
cated, we assume that TRUE and 1 are associated with the higher of the voltage 
ranges, H, and that FALSE and 0 are associated with the lower of the voltage 
ranges, L. This particular convention is called positive logic. 

It is interesting to note that the values of voltages for a digital circuit in 
Figure 1-1 (a) are still continuous, ranging from -0.1 to +1.1 volts. Thus, the 
voltage is actually analog! The actual voltages values for the output of a very 
high-speed digital circuit are plotted versus time in Figure l-l(b). Such a plot is 
referred to as a waveform. The interpretation of the voltage as binary is based 
on a model using voltage ranges to represent discrete values 0 and 1 on the 
inputs and the outputs. The application of such a model, which redefines all 
voltage above 0.5 Vas 1 and below 0.5 V as 0 in Figure 1-1(b), gives the wave­
form in Figure l-l(c). The output has now been interpreted as binary, having 
only discrete values 1 and 0, with the actual voltage values removed. We note 
that digital circuits, made up of electronic devices called transistors, are 
designed to cause the outputs to occupy the two distinct output voltage ranges 
for 1 (H) and 0 (L) in Figure 1-1, whenever the outputs are not changing. In 
contrast, analog circuits are designed to have their outputs take on continuous 
values over their range, whether changing or not. 

Since 0 and 1 are associated with the binary number system, they are the pre­
ferred names for the signal ranges. A binary digit is called a bit. Information is rep­
resented in digital computers by groups of bits. By using various coding techniques, 
groups of bits can be made to represent not only binary numbers, but also other 
groups of discrete symbols. Groups of bits, properly arranged, can even specify to 
the computer the program instructions to be executed and the data to be processed. 

Why is binary used? In contrast to the situation in Figure 1-1, consider a sys­
tem with 10 values representing the decimal digits. In such a system, the voltages 
available-say, 0 to 1.0 volts-could be divided into 10 ranges, each of length 
0.1 volt. A circuit would provide an output voltage within each of these 10 ranges. 
An input of a circuit would need to determine in which of the 10 ranges an applied 
voltage lies. If we wish to allow for noise on the voltages, then output voltage might 
be permitted to range over less than 0.05 volt for a given digit representation, and 
boundaries between inputs could vary by less than 0.05 volt. This would require 
complex and costly electronic circuits, and the output still could be disturbed by 
small "noise" voltages or small variations in the circuits occurring during their 
manufacture or use. As a consequence, the use of such multivalued circuits is very 
limited. Instead, binary circuits are used in which correct circuit operation can be 
achieved with significant variations in values of the two output voltages and the 
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CPU 

Input/Output 

o FIGURE 1-2 
Block Diagram of a Digital Computer 

two input ranges. The resulting transistor circuit with an output that is either 
HIGH or LOW is simple, easy to design, and extremely reliable. In addition, this 
use of binary values makes the results calculated repeatable in the sense that the 
same set of input values to a calculation always gives exactly the same set of out­
puts. This is not necessarily the case for multivalued or analog circuits, in which 
noise voltages and small variations due to manufacture or circuit aging can cause 
results to differ at different times. 

The Digital Computer 

A block diagram of a digital computer is shown in Figure 1-2. The memory stores 
programs as well as input, output, and intermediate data. The datapath performs 
arithmetic and other data-processing operations as specified by the program. The 
control unit supervises the flow of information between the various units. A data­
path, when combined with the control unit, forms a component referred to as a 
central processing unit, or CPU. 

The program and data prepared by the user are transferred into memory by 
means of an input device such as a keyboard. An output device, such as an LCD 
(liquid crystal display), displays the results of the computations and presents them 
to the user. A digital computer can accommodate many different input and output 
devices, such as CD-ROM and DVD drives, scanners, and printers. These devices 
use digital logic circuits, but often include analog electronic circuits, optical sensors, 
LCDs (liquid crystal displays), and electromechanical components. 

The control unit in the CPU retrieves the instructions, one by one, from the 
program stored in the memory; For each instruction, the control unit manipulates 
the datapath to execute the operation specified by the instruction. Both program 
and data are stored in memory. A digital computer can perform arithmetic compu­
tations, manipulate strings of alphabetic characters, and be programmed to make 
decisions based on internal and external conditions. 
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Beyond the Computer 

In terms of world impact, computers, such as the PC, are not the end of the story. 
Smaller, often less powerful, single-chip computers called microcomputers or 
microcontroliers, or special-purpose computers called digital signal processors 
(DSPs) actually are more prevalent in our lives. These computers are parts of 
everyday products and their presence is often not apparent. As a consequence of 
being integral parts of other products and often enclosed within them, they are 
called embedded systems. A generic block diagram of an embedded system is 
shown in Figure 1-3. Central to the system is the microcomputer (or its equivalent). 
It has many of the characteristics of the PC, but differs in the sense that its soft­
ware programs are often permanently stored to provide only the functions 
required for the product. This software, which is critical to the operation of the 
product, is an integral part of the embedded system and referred to as embedded 
software. Also, the human interface of the microcomputer can be very limited or 
nonexistent. The larger information-storage components such as a hard drive and 
compact disk or DVD drive frequently are not present. The microcomputer con­
tains some memory; if additional memory is needed, it can be added externally. 

With the exception of the external memory, the hardware connected to the 
embedded microcomputer in Figure 1-3 interfaces with the product and/or the out­
side world. The input devices transform inputs from the product or outside world 
into electrical signals, and the output devices transform electrical signals into out­
puts to the product or outside world. The input and output devices are of two 
types, those which use analog signals and those which use digital signals. Examples 
of digital input devices include a limit switch which is closed or open depending on 
whether a force is applied to it and a keypad having ten decimal integer buttons. 
Examples of analog input devices include a thermistor which changes its electrical 
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Block Diagram of an Embedded System 
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resistance in response to the temperature and a crystal which produces a charge 
(and a corresponding voltage) in response to the pressure applied. Typically, elec­
trical or electronic circuitry is required to "condition" the signal so that it can be 
read by the embedded system. Examples of digital output devices include relays 
(switches that are opened or closed by applied voltages), a stepper motor that 
responds to applied voltage pulses, or an LED digital display. Examples of analog 
output devices include a loudspeaker and a panel meter with a dial. The dial posi­
tion is controlled by the interaction of the magnetic fields of a permanent magnet 
and an electromagnet driven by the voltage applied to the meter. 

Next, we illustrate embedded systems by considering a temperature measure­
ment performed by using a wireless weather station. In addition, this example also 
illustrates analog and digital signals, including conversion between the signal types. 

..EXAMPLE 1·1 Temperature Measurement and Display 

A wireless weather station measures a number of weather parameters at an out­
door site and transmits them for display to an indoor base station. Its operation 
can be illustrated by considering the temperature measurement illustrated in Fig­
ure 1-4 with reference to the block diagram in Figure 1-3. Two embedded micro­
processors are used, one in the outdoor site and the other in the indoor base 
station. 

The temperature at the outdoor site ranges continuously from -40°F to 
+115°F. Temperature values over one 24-hour period are plotted as a function of 
time in Figure 1-4(a). This temperature is measured by a sensor consisting of a 
thermistor (a resistance that varies with temperature) with a fixed current applied 
by an electronic circuit. This sensor provides an analog voltage that is proportional 
to the temperature. Using signal conditioning, this voltage is changed to a continu­
ous voltage ranging between 0 and 15 volts, as shown in Figure 1-4(b). 

The analog voltage is sampled at a rate of once per hour (a very slow sam­
pling rate used just for illustration), as shown by the dots in Figure 1-4(b). Each 
value sampled is applied to an analog-to-digital (AID) converter, as in Figure 1-3, 
which replaces the value with a digital number written in binary and having deci­
mal values between 0 and 15, as shown in Figure 1-4(c). A binary number can be 
interpreted in decimal by multiplying the bits from left to right times the respective 
weights, 8, 4, 2, and 1, and adding the resulting values. For example, 0101 can be 
interpreted as 0 x 8 + 1 x 4 + 0 x 2 + 1 x 1 5. In the process of conversion, the 
value of the temperature is quantized from an infinite number of values to just 16 
values. Examining the correspondence between the temperature in Figure 1-4(a) 
and the voltage in Figure 1-4(b), we find that the typical digital value of tempera­
ture represents an actual temperature range up to 5 degrees above or below the 
digital value. For example, the analog temperature range between -25 and -15 
degrees is represented by the digital temperature value of -20 degrees. This dis­
crepancy between the actual temperature and the digital temperature is called the 
quantization error. In order to obtain greater precision, we would need to increase 
the number of bits beyond four in the output of the AID converter. The hardware 
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components for sensing, signal conditioning, and AID conversion are shown in the 
upper left corner of Figure 1-3. 

Next, the digital value passes through the microcomputer to a wireless trans­
mitter as a digital output device in the lower right corner of Figure 1-3. The digital 
value is transmitted to a wireless receiver, which is a digital input device in the 
base station. The digital value enters the microcomputer at the base station, where 
calculations may be performed to adjust its value based on thermistor properties. 
The resulting value is to be displayed with an analog meter shown in Figure 1-4(f) 
as the output device. In order to support this display, the digital value is converted 
to an analog value by a digital-to-analog converter, giving the quantized, discrete 
voltage levels shown in Figure 1-4(d). Signal conditioning, such as processing of 
the output by a low-pass analog filter, is applied to give the continuous signal in 
Figure 1-4( e). This signal is applied to the analog voltage display, which has been 
labeled with the corresponding temperature values shown for five selected points 
over the 24-hour period in Figure 1-4(f). II 

o TABLE 1-1 

Embedded System Examples 


Application Area Product 

Banking, commerce and manufacturing Copiers, FAX machines, UPC scanners, vend­
ing machines, automatic teller machines, 
automated warehouses, industrial robots 

Communication Cell phones, routers, satellites 

Games and toys Video games, handheld games, talking stuffed 
toys 

Home appliances Digital alarm clocks, conventional and micro­
wave ovens, dishwashers 

Media CD players, DVD players, fiat panel TVs, 
Digital cameras, digital video cameras 

Medical equipment Pacemakers, incubators, magnetic resonance 
imaging 

Personal Digital watches, MP3 players, personal digital 
assistants 

Transportation and navigation Electronic engine controls, traffic light con­
trollers, aircraft fiight controls, global posi­
tioning systems 
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You might ask: "How many embedded systems are there in my current living 
environment?" Do you have a cell phone? An iPod™? An Xbox™? A digital cam­
era? A microwave oven? An automobile? All of these are embedded systems! In 
fact, a late-model automobile can contain more than 50 microcontrollers, each con­
trolling a distinct embedded system, such as the engine control unit (ECU), auto­
matic braking system (ABS), and stability control unit (SCU). Further, a 
significant proportion of these embedded systems communicate with each other 
through a CAN (controller area network). A new automotive network called 
AexRay promises to provide high-speed, reliable communication for safety-critical 
tasks such as braking-by-wire and steering-by-wire, eliminating primary depen­
dence on mechanical and hydraulic linkages and enhancing the potential for addi­
tional safety features such as collision avoidance. Table 1-1 lists examples of 
embedded systems classified by application area. 

Considering the widespread use of personal computers and embedded sys­
tems, the impact of digital systems on our lives is truly mind boggling! Digital 
systems play central roles in our medical diagnosis and treatment, our educa­
tional institutions and workplaces, in moving from place to place, in our homes, 
in interacting with others, and in just having fun! Considering the complexity of 
many of these systems, it is a wonder that they work at all. Thanks to the inven­
tion of the transistor and the integrated circuit and to the ingenuity and persever­
ance of millions of engineers and programmers, they indeed work and usually 
work well. In the remainder of this text, we take you on a journey that reveals 
how digital systems work and provide a detailed look at how to design digital sys­
tems and computers. 

More on the Generic Computer 

At this point, we will briefly discuss the generic computer and relate its various 
parts to the block diagram in Figure 1-2. At the lower left of the diagram at the 
beginning of this chapter is the heart of the computer, an integrated circuit called 
the processor. Modern processors such as this one are quite complex and consist of 
tens to hundreds of millions of transistors. The processor contains four functional 
modules: the CPU, the FPU, the MMU, and the internal cache. 

We have already discussed the CPu. The FPU (floating-point unit) is some­
what like the CPU, except that its datapath and control unit are specifically 
designed to perform floating-point operations. In essence, these operations pro­
cess information represented in the form of scientific notation (e.g., 1.234 X 107), 
permitting the generic computer to handle very large and very small numbers. 
The CPU and the FPU, in relation to Figure 1-2, each contain a datapath and a 
control unit. 

The MMU is the memory management unit. The MMU plus the internal cache 
and the separate blocks near the bottom of the computer labeled "External Cache" 
and "RAM" (random-access memory) are all part of the memory in Figure 1-2. The 
two caches are special kinds of memory that allow the CPU and FPU to get at the 
data to be processed much faster than with RAM alone. RAM is what is most com­
monly referred to as memory. As its main function, the MMU causes the memory 
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that appears to be available to the CPU to be much, much larger than the actual 
size of the RAM. This is accomplished by data transfers between the RAM and the 
hard drive shown at the top of the drawing of the generic computer. So the hard 
drive, which we discuss later as an input/output device, conceptually appears as a 
part of both the memory and input/output. 

The connection paths shown between the processor, memory, and external 
cache are the pathways between integrated circuits. These are typically imple­
mented as fine copper conductors on a printed circuit board. The connection paths 
below the bus interface are referred to as the processor bus. The connections above 
the bus interface are the input/output (I/O) bus. The processor bus and the 110 bus 
attached to the bus interface carry data having different numbers of bits and have 
different ways of controlling the movement of data. They may also operate at dif­
ferent speeds. The bus interface hardware handles these differences so that data 
can be communicated between the two buses. 

All of the remaining structures in the generic computer are considered part of 
I/O in Figure 1-2. In terms of sheer physical volume, these structures dominate. In 
order to enter information into the computer, a keyboard is provided. In order to 
view output in the form of text or graphics, a graphics adapter card and LCD (liquid 
crystal display) screen are provided. The hard drive, discussed previously, is an elec­
tromechanical magnetic storage device. It stores large quantities of information in 
the form of magnetic flux on spinning disks coated with magnetic materials. In order 
to control the hard drive and transfer information to and from it, a drive controller 
is used. The keyboard, graphics adapter card, and drive controller card are all 
attached to the I/O bus. This allows these devices to communicate through the bus 
interface with the CPU and other circuitry connected to the processor buses. 

The generic computer consists mainly of an interconnection of digital modules. 
To understand the operation of each module, we need a basic knowledge of digital 
systems and their general behavior. Chapters 1 through 6 of this book deal with logic 
design of digital circuits in generaL Chapters 5 and 7 discuss the primary components 
of a digital system, their operation, and their design. The operational characteristics 
of RAM are explained in Chapter 8. Datapath and control for simple computers are 
introduced in Chapter 9. Chapters 10 through 13 present the basics of computer 
design. Typical instructions employed in computer instruction-set architectures are 
presented in Chapter 10. The architecture and design of CPUs are examined in 
Chapter 11. Input and output devices and the various ways that a CPU can commu­
nicate with them are discussed in Chapter 12. Finally, memory hierarchy concepts 
related to the caches and MMU are introduced in Chapter 13. 

To guide the reader through this material and to keep in mind the "forest" as 
we carefully examine many of the "trees," accompanying discussion appears in a 
blue box at the beginning of each chapter. Each discussion introduces the topics in 
the chapter and ties them to the associated components in the generic computer 
diagram at the start of this chapter. At the completion of our journey, we will have 
covered most of the various modules of the computer and will have gained an 
understanding of the fundamentals that underlie both its function and design. 

Earlier, we mentioned that a digital computer manipulates discrete elements 
of information and that all information in the computer is represented in binary 
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form. Operands used for calculations may be expressed in the binary number sys­
tem or in the decimal system by means of a binary code. The letters of the alpha­
bet are also converted into a binary code. The remainder of this chapter 
introduces the binary number system, binary arithmetic, and selected binary codes 
as a basis for further study in the succeeding chapters. In relation to the generic 
computer, this material is very important and spans all of the components, except­
ing some in 110 that involve mechanical operations and analog (as contrasted with 
digital) electronics. 

1-2 NUMBER SYSTEMS 

The decimal number system is employed in everyday arithmetic to represent 
numbers by strings of digits. Depending on its position in the string, each digit 
has an associated value of an integer raised to the power of 10. For example, the 
decimal number 724.5 is interpreted to represent 7 hundreds plus 2 tens plus 4 
units plus 5 tenths. The hundreds, tens, units, and tenths are powers of 10 
implied by the position of the digits. The value of the number is computed as 
follows: 

724.5 = 7 x 102 +2 X 101 +4 x 100 +5 x 10-1 

The convention is to write only the digits and infer the corresponding powers of 10 
from their positions. In general, a decimal number with n digits to the left of the 
decimal point and m digits to the right of the decimal point is represented by a 
string of coefficients: 

Each coefficient Ai is one of 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). The subscript 
value i gives the position of the coefficient and, hence, the weight 10 i by which 
the coefficient must be multiplied. 

The decimal number system is said to be of base or radix 10, because the 
coefficients are multiplied by powers of 10 and the system uses 10 distinct digits. In 
general, a number in base, contains, digits, 0,1,2, ... , , - 1, and is expressed as a 
power series in , with the general form 

n-l n-2 1 0
An-I' +An- 2, + ... +A1, +AO' 

-1 -2 -m+1-m+A_1, +A_2, + ... +A_ + 1, +A_ ,m m 

When the number is expressed in positional notation, only the coefficients and the 
radix point are written down: 

In general, the"." is called the radix point. An _1 is referred to as the most signifi­
cant digit (msd) and A-m as the least significant digit (lsd) of the number. Note that 



1 

i 

32 0 CHAPTER 1 ! DIGITAL SYSTEMS AND INFORMATION 

if m 0, the lsd is A-o =:: Ao. To distinguish between numbers of different bases, it 
is customary to enclose the coefficients in parentheses and place a sUbscript after 
the right parenthesis to indicate the base of the number. However, when the con­
text makes the base obvious, it is not necessary to use parentheses. The following 
illustrates a base 5 number with n = 3 and m = 1 and its conversion to decimal: 

(312.4)5 = 3 X 52 + 1 X 51 +2 x 50 +4 X 5-1 

= 75 +5 +2 +0.8 = (82.8ho 

Note that for all the numbers without the base designated, the arithmetic is per­
formed with decimal numbers. Note also that the base 5 system uses only five dig­
its, and, therefore, the values of the coefficients in a number can be only 0, 1, 2, 3, 
and 4 when expressed in that system. 

An alternative method for conversion to base 10 that reduces the number of 
operations is based on a factored form of the power series: 

( ...«An l r + An -2)r + An -3)r + ... + A l )r + AO 

-1 -1 -1 -1 -1 -1
+(A-l+(A_2+(A_3+···+(A-m+2+(A-m+l+A-mr )r )r ... )r )r )r 

For the example above, 

(312.4>S = «3 x 5 + 1) x 5) +2 +4 x 5-1 

= 16 x 5 +2 + 0.8 = (82.8ho 

In addition to decimal, three number systems are used in computer work: 
binary, octal, and hexadecimal. These are base 2, base 8, and base 16 number sys­
tems, respectively. 

Binary Numbers 

The binary number system is a base 2 system with two digits: 0 and 1. A binary 
number such as 11010.11 is expressed with a string of Is and Os and, possibly, a 
binary point. The decimal equivalent of a binary number can be found by expand­
ing the number into a power series with a base of 2. For example, 

(llOlOh = 1 x 24 + 1 X 23 + 0 X 22 + 1 X 21 + 0 x 20 
=:: (26ho 

As noted earlier, the digits in a binary number are called bits. When a bit is equal 
to 0, it does not contribute to the sum during the conversion. Therefore, the con­
version to decimal can be obtained by adding the numbers with powers of two cor­
responding to the bits that are equal to 1. For example, 

(110101.11h =:: 32 + 16 + 4 + 1 + 0.5 + 0.25 = (53.75ho 
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o TABLE 1-2 
Powers ofTwo 

2n 2n 2nn n n 

° 1 8 256 16 65,536 
1 2 9 512 17 131,072 
2 4 10 1,024 18 262,144 
3 8 11 2,048 19 524,288 
4 16 12 4,096 20 1,048,576 
5 32 13 8,192 21 2,097,152 
6 64 14 16,384 22 4,194,304 
7 128 15 32,768 23 8,388,608 

The first 24 numbers obtained from 2 to the power of n are listed in Table 1-2. 
In digital systems, we refer to 210 as K (kilo), 220 as M (mega), 230 as G (giga), and 240 

as T (tera). Thus, 

4K = 22 X 210 212 4096 and 16M X 220 224:= 16,777,216 

This convention does not necessarily apply in all cases, with more conventional us­
age of K, M, G, and T as 103,106,109 and 1012, respectively, sometimes applied as 
well. So caution is necessary in interpreting and using this notation. 

The conversion of a decimal number to binary can be easily achieved by a 
method that successively subtracts powers of two from the decimal number. To 
convert the decimal number N to binary, first find the greatest number that is a 
power of two (see Table 1-2) and that, subtracted from N, produces a positive dif­
ference. Let the difference be designated N l . Now find the greatest number that is 
a power of two and that, subtracted from N 1 , produces a positive difference N2 • 

Continue this procedure until the difference is zero. In this way, the decimal num­
ber is converted to its powers-of-two components. The equivalent binary number is 
obtained from the coefficients of a power series that forms the sum of the compo­
nents. Is appear in the binary number in the positions for which terms appear in 
the power series, and Os appear in all other positions. This method is demonstrated 
by the conversion of decimal 625 to binary as follows: 

29625 -512 = 113 = Nl 512 

26113 -64 49 N2 64 

2549-32 = 17 = N3 32 

17-16=1 N4 16 24 

1 -1 = 0 = Ns 1 2° 

(625ho = 29 +26 +25 +24 +20 = (1001110001h 
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Octal and Hexadecimal Numbers 

As previously mentioned, all computers and digital systems use the binary repre­
sentation. The octal (base 8) and hexadecimal (base 16) systems are useful for rep­
resenting binary quantities indirectly because their bases are powers of two. Since 
23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and each 
hexadecimal digit corresponds to four binary digits. 

The more compact representation of binary numbers in either octal or 
hexadecimal is much more convenient for people than using bit strings in binary 
that are three or four times as long. Thus, most computer manuals use either 
octal or hexadecimal numbers to specify binary quantities. A group of 15 bits, for 
example, can be represented in the octal system with only five digits. A group of 
16 bits can be represented in hexadecimal with four digits. The choice between an 
octal and a hexadecimal representation of binary numbers is arbitrary, although 
hexadecimal tends to win out, since bits often appear in strings of size divisible 
by four. 

The octal number system is the base 8 system with digits 0, 1,2,3,4,5,6, and 
7. An example of an octal number is 127.4. To determine its equivalent decimal 
value, we expand the number in a power series with a base of 8: 

(127.4)8 = 1 X 82 +2 X 81 +7 x 80 +4 X 8-1 = (87.5ho 

Note that the digits 8 and 9 cannot appear in an octal number. 
It is customary to use the first r digits from the decimal system, starting with 

0, to represent the coefficients in a base r system when r is less than 10. The letters 
of the alphabet are used to supplement the digits when r is 10 or more. The hexa­
decimal number system is a base 16 system with the first 10 digits borrowed from 
the decimal system and the letters A, B, C, D, and F used for the values 10, 11, 
12, 13, 14, and 15, respectively. An example of a hexadecimal number is 

(B65Fh6 = 11 X 163 + 6 X 162 + 5 X 161 + 15 x 160 (46687)10 

The first 16 numbers in the decimal, binary, octal, and hexadecimal number sys­
tems are listed in Table 1-3. Note that the sequence of binary numbers follows a 
prescribed pattern. The least significant bit alternates between 0 and 1, the second 
significant bit between two Os and two 1s, the third significant bit between four Os 
and four Is, and the most significant bit between eight Os and eight 1s. 

The conversion from binary to octal is easily accomplished by partitioning 
the binary number into groups of three bits each, starting from the binary point 
and proceeding to the left and to the right. The corresponding octal digit is then 
assigned to each group. The following example illustrates the procedure: 

(OlD 110001101011. 111100 000 l10h (26153.7406)8 

The corresponding octal digit for each group of three bits is obtained from the first eight 
entries in Table 1-3. To make the total COMt of bits a multiple of three, Os can be added 
on the left of the string of bits to the left of the binary point. More importantly, Os must 
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o TABLE 1·3 
Nwnbers with Different Bases 

Decimal Binary Octal Hexadecimal 
(base 10) (base 2) (base 8) (base 16) 

00 0000 00 0 
01 0001 01 1 
02 0010 02 2 
03 0011 03 3 
04 0100 04 4 
05 0101 05 5 
06 0110 06 6 
07 0111 07 7 
08 1000 10 8 
09 1001 11 9 
10 1010 12 A 
11 1011 13 B 
12 1100 14 C 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F 

be added on the right of the string of bits to the right of the binary point to make the 
number of bits a multiple of three and obtain the correct octal result. 

Conversion from binary to hexadecimal is similar, except that the binary 
number is divided into groups of four digits, starting at the binary point. The previ­
ous binary number is converted to hexadecimal as follows: 

(0010 1100 0110 1011. 1111 0000 0110h = (2C6B.F06h6 

The corresponding hexadecimal digit for each group of four bits is obtained by ref­
erence to Table 1-3. 

Conversion from octal or hexadecimal to binary is done by reversing the pro­
cedure just performed. Each octal digit is converted to a 3-bit binary equivalent, 
and extra Os are deleted. Similarly, each hexadecimal digit is converted to its 4-bit 
binary equivalent. This is illustrated in the following examples: 

(673.12)8 110 111 OIl. 001 010 = (110111011.0010l)z 

(3A6'C)16 = 0011 1010 0110. 1100 = (1110100110.11h 

Number Ranges 

In digital computers, the range of numbers that can be represented is based on the 
number of bits available in the hardware structures that store and process informa­
tion. The number of bits in these structures is most frequently a power of two, such 
as 8,16,32, and 64. Since the numbers of bits is fixed by the structures, the addition 
of leading or trailing zeros to represent numbers is necessary, and the range of 
numbers that can be represented is also fixed. 
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For example, for a computer processing 16-bit unsigned integers, the num­
ber 537 is represented as 0000001000011001. The range of integers that can be 
handled by this representation is from 0 to 216 - 1, that is, from 0 to 65,535. If the 
same computer is processing 16-bit unsigned fractions with the binary point to the 
left of the most significant digit, then the number 0.375 is represented by 
0.0110000000000000. The range of fractions that can be represented is from 0 to 
(216 - 1)/216 , or from 0.0 to 0.9999847412. 

In later chapters, we will deal with fixed-bit representations and ranges 
for binary signed numbers and floating-point numbers. In both of these cases, 
some bits are used to represent information other than simple integer or frac­
tion values. 

1-3 ARITHMETIC OPERATIONS 

Arithmetic operations with numbers in base r follow the same rules as for decimal 
numbers. However, when a base other than the familiar base 10 is used, one must 
be careful to use only r allowable digits and perform all computations with base r 
digits. Examples of the addition of two binary numbers are as follows (note the 
names of the operands for addition): 

Carries: 00000 101100 

Augend: 01100 10110 

Addend: +10001 +10111 

Sum: 11101 101101 

The sum of two binary numbers is calculated following the same rules as for deci­
mal numbers, except that the sum digit in any position can be only 1 or O. Also, a 
carry in binary occurs if the sum in any bit position is greater than 1. (A carry in 
decimal occurs if the sum in any digit position is greater than 9.) Any carry 
obtained in a given position is added to the bits in the column one significant posi­
tion higher. In the first example, since all of the carries are 0, the sum bits are sim­
ply the sum of the augend and addend bits. In the second example, the sum of the 
bits in the second column from the right is 2, giving a sum bit of 0 and a carry bit of 
1 (2 2 + 0). The carry bit is added with the Is in the third position, giving a sum 
of 3, which produces a sum bit of 1 and a carry of 1 (3 2 + 1). 

The following are examples of the subtraction of two binary numbers; as with 
addition, note the names of the operands: 

Borrows: 

Minuend: 

Subtrahend: 

00000 

10110 

-10010 

00110 

10110 

-10011 

00110 

l0011X 11110 
-11110 -10011 

Difference: 00100 00011 -01011 
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The rules for subtraction are the same as in decimal, except that a borrow into a 
given column adds 2 to the minuend bit. (A borrow in the decimal system adds 10 
to the minuend digit.) In the first example shown, no borrows occur, so the differ­
ence bits are simply the minuend bits minus the subtrahend bits. In the second 
example, in the right position, the subtrahend bit is 1 with the minuend bit 0, so it 
is necessary to borrow from the second position as shown. This gives a difference 
bit in the first position of 1 (2 + 0 1 1). In the second position, the borrow is 
subtracted, so a borrow is again necessary. Recall that, in the event that the subtra­
hend is larger than the minuend, we subtract the minuend from the subtrahend 
and give the result a minus sign. This is the case in the third example, in which this 
interchange of the two operands is shown. 

The final operation to be illustrated is binary multiplication, which is quite 
simple. The multiplier digits are always 1 or O. Therefore, the partial products are 
equal either to the multiplicand or to O. Multiplication is illustrated by the follow­
ing example: 

Multiplicand: 

Multiplier: 

1011 

x 101 

1011 

0000 

1011 

Product: 110111 

Arithmetic operations with octal, hexadecimal, or any other base r system 
will normally require the formulation of tables from which one obtains sums and 
products of two digits in that base. An easier alternative for adding two numbers 
in base r is to convert each pair of digits in a column to decimal, add the digits in 
decimal, and then convert the result to the corresponding sum and carry in the 
base r system. Since addition is done in decimal, we can rely on our memories 
for obtaining the entries from the familiar decimal addition table. The sequence 
of steps for adding the two hexadecimal numbers 59F and E46 is shown in 
Example 1-2 . 

EXAMPLE 1-2 Hexadecimal Addition 

Perform the addition (59Fh6 + (E46h6: 

Hexadecimal Equivalent Decimal Calculation 

1""---, 
59F 5 Carry ~---n5 Carry 
E46 14 4 6 

13 E 5 1 19 = 16 + 3 14 E 21 = 16 + 5 
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The equivalent decimal calculation columns on the right show the mental reason­
ing that must be carried out to produce each digit of the hexadecimal sum. Instead 
of adding F + 6 in hexadecimal, we add the equivalent decimals, 15 + 6 = 21. We 
then convert back to hexadecimal by noting that 21 16 + 5. This gives a sum 
digit of 5 and a carry of 1 to the next higher-order column of digits. The other two 
columns are added in a similar fashion. • 

In general, the multiplication of two base r numbers can be accomplished by 
doing all the arithmetic operations in decimal and converting intermediate results 
one at a time. This is illustrated in the mUltiplication of two octal numbers shown in 
Example 1-3. 

EXAMPLE 1-3 Octal Multiplication 

Perform the multiplication (762)8 x (45)g: 

Octal Octal Decimal Octal 

762 5x2 10 8+2 12 
45 5 x 6 + 1 31 24 + 7 37 

4672 5 x 7 + 3 38 32 + 6 46 
3710 4x2 8=8+0 10 

43772 	 4 x 6 + 1 25=24+1 31 
4x7 + 3 31 = 24 + 7 37 

Shown on the right are the mental calculations for each pair of octal digits. The octal 
digits 0 through 7 have the same value as their corresponding decimal digits. The 
multiplication of two octal digits plus a carry, derived from the calculation on the 
previous line, is done in decimal, and the result is then converted back to octal. The 
left digit of the two-digit octal result gives the carry that must be added to the digit 
product on the next line. The blue digits from the octal results of the decimal calcu­
lations are copied to the octal partial products on the left. For example, 
(5 X 2)8 (12)8' The left digit, 1, is the carry to be added to the product (5 X 6)8' 
and the blue least significant digit, 2, is the corresponding digit of the octal partial 
product. When there is no digit product to which the carry can be added, the carry is 
written directly into the octal partial product, as in the case of the 4 in 46. • 

Conversion from Decimal to Other Bases 

We convert a number in base r to decimal by expanding it in a power series and 
adding all the terms, as shown previously. We now present a general procedure for 
the operation of converting a decimal number to a number in base r that is the 
reverse of the alternative expansion to base 10 on page 32. If the number includes 
a radix point, we need to separate the number into an integer part and a fraction 
part, since the two parts must be converted differently. The conversion of a decimal 
integer to a number in base r is done by dividing the number and all successive 
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quotients by r and accumulating the remainders. This procedure is best explained 
by example. 

EXAMPLE 1-4 Conversion of Decimal Integers to Octal 

Convert decimal 153 to octal: 

The conversion is to base 8. First, 153 is divided by 8 to give a quotient of 19 and 
a remainder of 1, as shown in blue. Then 19 is divided by 8 to give a quotient of 2 
and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a 
remainder of 2. The coefficients of the desired octal number are obtained from 
the remainders: 

153/8 = 19 + 118 Least significant digit Remainder = 1 1 
19/8 = 2 + 3/8 =3 

2/8 = 0 + 2/8 2 Most significant digit 

(153ho = (231)8 • 
Note in Example 1-4 that the remainders are read from last to first, as indi­

cated by the arrow, to obtain the converted number. The quotients are divided by r 
until the result is O. We also can use this procedure 10 convert decimal integers to 
binary, as shown in Example 1-5. In this case, the base of the converted number is 
2, and therefore, all the divisions must be done by 2. 

EXAMPLE 1-5 Conversion of Decimal Integers to Binary 

Convert decimal 41 to binary: 

Least significant digit 

20/2 = 10 =0 

1012 = 5 o 
5/2 = 2 + 112 1 


2/2 = 1 o 

112 0 + 112 1 


4112 = 20 + 112 Remainder 1 

Most significant digit 

(41ho (101001h 
Of course, the decimal number could be converted by the sum of powers of two: 

(41ho = 32 + 8 + 1 (101001h • 
The conversion of a decimal fraction to base r is accomplished by a method 

similar to that used for integers, except that multiplication by r is used instead of 
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division, and integers are accumulated instead of remainders. Again, the method is 
best explained by example. 

EXAMPLE 1·6 Conversion of Decimal Fractions to Binary 

Convert decimal 0.6875 to binary: 

First, 0.6875 is multiplied by 2 to give an integer and a fraction. The new fraction is 
multiplied by 2 to give a new integer and a new fraction. This process is continued until 
the fractional part equals 0 or until there are enough digits to give sufficient accuracy. 
The coefficients of the binary number are obtained from the integers as follows: 

1.37500.6875 x 2 = Integer ~ j Most significant digit ~ 
0.3750 x 2 0.7500 

0.7500 x 2 = 1.5000 

0.5000 x 2 = 1.0000 = 1 Least significant digit 

(0.6875)10 = (0.1011h • 
Note in the foregoing example that the integers are read from first to last, as 

indicated by the arrow, to obtain the converted number. In the example, a finite 
number of digits appear in the converted number. The process of multiplying frac­
tions by r does not necessarily end with zero, so we must decide how many digits of 
the fraction to use from the conversion. Also, remember that the multiplications 
are by number r. Therefore, to convert a decimal fraction to octal, we must multi­
ply the fractions by 8, as shown in Example 1-7. 

EXAMPLE 1-7 Conversion of Decimal Fractions to Octal 

Convert decimal 0.513 to a three-digit octal fraction: 

0.513 x 8 = 4.104 Integer 4 jMost significant digit 
0.104 x 8 = 0.832 =0 
0.832 x 8 = 6.656 6 

0.656 x 8 = 5.248 = 5 Least significant digit 

The answer, to three significant figures, is obtained from the integer digits. Note 
that the last integer digit, 5, is used for rounding in base 8 of the second-to-the-Iast 
digit, 6, to obtain 

(0.513ho (OA07)g • 
The conversion of decimal numbers with both integer and fractional parts is 

done by converting each part separately and then combining the two answers. 
Using the results of Example 1-4 and Example 1-7, we obtain 

(l53.513ho (231.407)8 
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1-4 DECIMAL CODES 

The binary number system is the most natural one for a computer, but people are 
accustomed to the decimal system. One way to resolve this difference is to convert 
decimal numbers to binary, perform all arithmetic calculations in binary, and then 
convert the binary results back to decimal. This method requires that we store the 
decimal numbers in the computer in such a way that they can be converted to 
binary. Since the computer can accept only binary values, we must represent the 
decimal digits by a code that contains Is and as. It is also possible to perform the 
arithmetic operations directly with decimal numbers when they are stored in the 
computer in coded form. 

An n-bit binary code is a group of n bits that assume up to 2n distinct combi­
nations of 1s and as, with each combination representing one element of the set 
being coded. A set of four elements can be coded with a 2-bit binary code, with 
each element assigned one of the following bit combinations: 00, 01,10,11. A set of 
8 elements requires a 3-bit code, and a set of 16 elements requires a 4-bit code. The 
bit combinations of an n-bit code can be determined from the count in binary from 
a to 2n - 1. Each element must be assigned a unique binary bit combination, and 
no two elements can have the same value; otherwise, the code assignment is 
ambiguous. 

A binary code will have some unassigned bit combinations if the number of 
elements in the set is not a power of 2. The ten decimal digits form such a set. A 
binary code that distinguishes among ten elements must contain at least four bits, 
but six out of the 16 possible combinations will remain unassigned. Numerous dif­
ferent binary codes can be obtained by arranging four bits into lO distinct combi­
nations. The code most commonly used for the decimal digits is the straightforward 
binary assignment listed in Table 1-3 on page 32. This is called binary-coded deci­
mal and is commonly referred to as BCD. Other decimal codes are possible, one of 
which is presented in Chapter 3. 

Table 1-4 gives a 4-bit code for each decimal digit. A number with n decimal 
digits will require 4n bits in BCD. Thus, decimal 396 is represented in BCD with 12 
bits as 

0011 1001 0110 

with each group of four bits representing one decimal digit. A decimal number in 
BCD is the same as its equivalent binary number only when the number is 
between a and 9, inclusive. A BCD number greater than lO has a representation 
different from its equivalent binary number, even though both contain Is and as. 
Moreover, the binary combinations lOlO through 1111 are not used and have no 
meaning in the BCD code. 

Consider decimal 185 and its corresponding value in BCD and binary: 

(185ho = (0001 1000 OlOl)BCD (lOl1lOOlh 
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o TABLE 1-4 
Binary-Coded Decimal (BCD) 

Decimal BCD 
Symbol Digit 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 

The BCD value has 12 bits, but the equivalent binary number needs only 8 bits. It 
is obvious that a BCD number needs more bits than its equivalent binary value. 
However, BCD representation of decimal numbers is still important, because com­
puter input and output data used by most people needs to be in the decimal sys­
tem. BCD numbers are decimal numbers and not binary numbers, even though 
they are represented using bits. The only difference between a decimal and a BCD 
number is that decimals are written with the symbols 0, 1, 2, ... , 9, and BCD num­
bers use the binary codes 0000,0001,0010, ... , 1001. 

BCD Addition 

Consider the addition of two decimal digits in BCD, together with a possible 
carry of 1 from a previous less significant pair of digits. Since each digit does not 
exceed 9, the sum cannot be greater than 9 + 9 + 1 19, the 1 being a carry. 
Suppose we add the BCD digits as if they were binary numbers. Then the binary 
sum will produce a result in the range from 0 to 19. In binary, this will be from 
0000 to 10011, but in BCD, it should be from 0000 to 1 1001, the first 1 being a 
carry and the next four bits being the BCD digit sum. When the binary sum is 
less than 1010 (without a carry), the corresponding BCD digit is correct. But 
when the binary sum is greater than or equal to 1010, the result is an invalid 
BCD digit. The addition of binary 6, (0110)2, to the sum converts it to the correct 
digit and also produces a decimal carry as required. The reason is that the differ­
ence between a carry from the most significant bit position of the binary sum and 
a decimal carry is 16 - 10 = 6. Thus, the decimal carry and the correct BCD sum 
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I 
digit are forced by adding 6 in binary. Consider the next three-digit BCD addi­
tion example. 

BCD Addition EXAMPLE 1-8 

110 BCD carry 1 1 

448 0100 0100 1000 

+489 +0100 +1000 +1001 

10001 

Add 6 

937 Binary sum 1001 1101 

+0110 +0110 

10011BCD sum 10111 

BCD result 1001 0011 0111 

In each position, the two BCD digits are added as if they were two binary numbers. 
If the binary sum is greater than 1001, we add 0110 to obtain the correct BCD digit 
sum and a carry. In the right column, the binary sum is equal to 17. The presence of 
the carry indicates that the sum is greater than 16 (certainly greater than 9), so a 
correction is needed. The addition of 0110 produces the correct BCD digit sum, 
0111 (7), and a carry of 1. In the next column, the binary sum is 1101 (13), an 
invalid BCD digit. Addition of 0110 produces the correct BCD digit sum, 0011 (3), 
and a carry of 1. In the final column, the binary sum is equal to 1001 (9) and is the 
correct BCD digit. • 

1-5 ALPHANUMERIC CODES 

Many applications of digital computers require the handling of data consisting not 
only of numbers, but also of letters. For instance, an insurance company with thou­
sands of policyholders uses a computer to process its files. To represent the names 
and other pertinent information, it is necessary to formulate a binary code for the 
letters of the alphabet. In addition, the same binary code must represent numerals 
and special characters such as $. Any alphanumeric character set for English is a 
set of elements that includes the ten decimal digits, the 26 letters of the alphabet, 
and several (more than three) special characters. If only capital letters are 
included, we need a binary code of at least six bits, and if both uppercase letters 
and lowercase letters are included, we need a binary code of at least seven bits. 
Binary codes play an important role in digital computers. The codes must be in 
binary because computers can handle only Is and Os. Note that binary encoding 
merely changes the symbols, not the meaning of the elements of information being 
encoded. 
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ASCII Character Code 

The standard binary code for the alphanumeric characters is called ASCII 
(American Standard Code for Information Interchange). It uses seven bits to 
code 128 characters, as shown in Table 1-5. The seven bits of the code are desig­
nated by Bl through B7 , with B7 being the most significant bit. Note that the 
most significant three bits of the code determine the column of the table and 
the least significant four bits the row of the table. The letter A, for example, is 
represented in ASCII as 1000001 (column 100, row 0001). The ASCII code con­
tains 94 characters that can be printed and 34 non printing characters used for 
various control functions. The printing characters consist of the 26 uppercase 
letters, the 26 lowercase letters, the 10 numerals, and 32 special printable char­
acters such as %, @, and $. 

The 34 control characters are designated in the ASCII table with abbreviated 
names. They are listed again below the table with their full functional names. The 
control characters are used for routing data and arranging the printed text into a 
prescribed format. There are three types of control characters: format effectors, 
information separators, and communication control characters. Format effectors 
are characters that control the layout of printing. They include the familiar type­
writer controls such as backspace (BS), horizontal tabulation (RT), and carriage 
return (CR). Information separators are used to separate the data into divisions­
for example, paragraphs and pages. They include characters such as record separa­
tor (RS) and file separator (FS). The communication control characters are used 
during the transmission of text from one location to the other. Examples of com­
munication control characters are STX (start of text) and ETX (end of text), 
which are used to frame a text message transmitted via communication wires. 

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a 
single unit called a byte. Therefore, ASCII characters most often are stored one per 
byte, with the most significant bit set to O. The extra bit is sometimes used for spe­
cific purposes, depending on the application. For example, some printers recognize 
an additional 128 8-bit characters, with the most significant bit set to 1. These char­
acters enable the printer to produce additional symbols, such as those from the 
Greek alphabet or characters with accent marks as used in languages other than 
English. 

UNICODE This supplement on Unicode, a 16-bit standard code for representing the 
symbols and ideographs for the world's languages, is available on the Companion ~ 
Website (http://www.prenhall.com/mano) for the text. 

Parity Bit 

To detect errors in data communication and processing, an additional bit is some­
times added to a binary code word to define its parity. A parity bit is the extra bit 

o TABLE 1·5 
American Stanw 

8 48 3 8 2 8 1 

0000 
0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 


Control Character: 

NULl 
SOH 
NULL 

Start < 

STX Start ~ 

ETX Endc 

EOT Endc 
ENQ Enqu 

ACK Ackn 
BEL Bell 

Back:BS 

HT 
 Horil 

LF Line 
VertiVT 
Fom 

CR Carr 
SO 

FF 

Shift 
SI Shift 
SP Spac 

http://www.prenhall.com/mano
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o TABLE 1-5 
American Standard Code for Information Interchange (ASCII) 
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included to make the total number of Is in the resulting code word either even or 
odd. Consider the following two characters and their even and odd parity: 

With Even Parity With Odd Parity 

1000001 01000001 11000001 
1010100 11010100 01010100 

In each case, we use the extra bit in the most significant position of the code to pro­
duce an even number of Is in the code for even parity or an odd number of Is in 
the code for odd parity. In general, one parity or the other is adopted, with even 
parity being more common. Parity may be used with binary numbers as well as 
with codes, including ASCII for characters, and the parity bit may be placed in any 
fixed position in the code. 

,~, EXAMPLE 1·9 Error Detection and Correction for ASCII Transmission 

- The parity bit is helpful in detecting errors during the transmission of information 
from one location to another. Assuming that even parity is used, the simplest case 
is handled as follows: An even (or odd) parity bit is generated at the sending end 
for all 7-bit ASCII characters; the 8-bit characters that include parity bits are trans­
mitted to their destination. The parity of each character is then checked at the 
receiving end; if the parity of the received character is not even (odd), it means 
that at least one bit has changed its value during the transmission. This method 
detects one, three, or any odd number of errors in each character transmitted. An 
even number of errors is undetected. Other error-detection codes, some of which 
are based on additional parity bits, may be needed to take care of an even number 
of errors. What is done after an error is detected depends on the particular applica­
tion. One possibility is to request retransmission of the message on the assumption 
that the error was random and will not occur again. Thus, if the receiver detects a 
parity error, it sends back a NAK (negative acknowledge) control character con­
sisting of the even-parity eight bits, 10010101, from Table 1-5 on page 45. If no 
error is detected, the receiver sends back an ACK (acknowledge) control charac­
ter, 00000110. The sending end will respond to a NAK by transmitting the message 
again, until the correct parity is received. If, after a number of attempts, the trans­
mission is still in error, an indication of a malfunction in the transmission path is 
given. • 

1-6 GRAY CODES 

As we count up or down using binary codes, the number of bits that change from 
one binary value to the next varies. This is illustrated by the binary code for the 
octal digits on the left in Table 1-6. As we count from 000 up to 111 and "roll 

over" to 000, the 
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o TABLE 1-6 
Gray Code 

Binary Bit Gray Bit 
Code Changes Code Changes 

000 000 
001 
010 

2 
001 
011 

011 
100 

3 010 
110 

101 
110 
111 
000 

2 
1 
3 

111 
101 
100 
000 

over" to 000, the number of bits that change between the binary values ranges 
from 1 to 3. 

For many applications, multiple bit changes as the circuit counts is not a 
problem. There are applications, however, in which a change of more than one 
bit when counting up or down can cause serious problems. One such problem is 
illustrated by an optical shaft-angle encoder shown in Figure I-S(a). The 
encoder is a disk attached to a rotating shaft for measurement of the rotational 
position of the shaft. The disk contains areas that are clear for binary 1 and 
opaque for binary O. An illumination source is placed on one side of the disk, 
and optical sensors, one for each of the bits to be encoded, are placed on the 
other side of the disk. When a clear region lies between the source and a sensor, 
the sensor responds to the light with a binary 1 output. When an opaque region 
lies between the source and the sensor, the sensor responds to the dark with a 
binary O. 

The rotating shaft, however, can be in any angular position. For example, 
suppose that the shaft and disk are positioned so that the sensors lie right at the 

(a) Binary code for positions 0 through 7 (b) Gray code for positions 0 through 7 

o FIGURE 1-5 
Optical Shaft-Angle Encoder 



48 Cl CHAPTER 11 DIGITAL SYSTEMS AND INFORMATION 

boundary between 011 and 100. In this case, sensors in positions Bz, BI and Bo 
have the light partially blocked. In such a situation, it is unclear whether the three 
sensors will see light or dark. As a consequence, each sensor may produce either a 
1 or a O. Thus, the resulting encoded binary number for a value between 3 and 4 
may be 000,001,010,011,100, 101, 110, or 111. Either 011 or 100 will be satisfac­
tory in this case, but the other six values are clearly erroneous! 

To see the solution to this problem, notice that in those cases in which only 
a single bit changes when going from one value to the next or previous value, 
this problem cannot occur. For example, if the sensors lie on the boundary 
between 2 and 3, the resulting code is either 010 or 011, either of which is satis­
factory. If we change the encoding of the values 0 through 7 such that only one 
bit value changes as we count up or down (including rollover from 7 to 0), then 
the encoding will be satisfactory for all positions. A code having the property 
that only one bit at a time changes between codes during counting is a Gray code 
named for Frank Gray, who patented its use for shaft encoders in 1953. There are 
multiple Gray codes for any set of n consecutive integers, with n even. 

A specific Gray code for thc octal digits, called a binary reflected Gray code, 
appears on the right in Table 1-6. Note that the counting order for binary codes is 
now 000, 001, 011, 010, 110, 111, 101, 100, and 000. If we want binary codes for pro­
cessing, then we can build a digital circuit or use software that converts these codes 
to binary before they are used in further processing of the information. 

Figure 1-5(b) shows the optical shaft-angle encoder using the Gray code from 
Table 1-6. Note that any two segments on the disk adjacent to each other have only 
one region that is clear for one and opaque for the other. 

The optical shaft encoder illustrates one use of the Gray code concept. There 
are many other similar uses in which a physical variable, such as position or volt­
age, has a continuous range of values that is converted to a digital representation. 
A quite different use of Gray codes appears in low-power CMOS (Complementary 
Metal Oxide Semiconductor) logic circuits that count up or down. In CMOS, 
power is consumed only when a bit changes. For the example codes given in Table 
1-6 with continuous counting (either up or down), there are 14 bit changes for 
binary counting for every eight bit changes for Gray code counting. Thus, the 
power consumed at the counter outputs for the Gray code counter is only 57 per­
cent of that consumed at the binary counter outputs. 

A Gray code for a counting sequence of n binary code words (n must be 
even) can be constructed by replacing each of the first nl2 numbers in the sequence 
with a code word consisting of 0 followed by the even parity for each bit of the 
binary code word and the bit to its left. For example, for the binary code word 
0100, the Gray code word is 0, parity(O, 1), parity(l, 0), parity(O, 0) = 0110. Next, 
take the sequence of numbers formed and copy it in reverse order with the left­
most 0 replaced by a 1. This new sequence provides the Gray code words for the 
second nl2 of the original n code words. For example, for BCD codes, the first five 
Gray code words are 0000,0001. 0011, 0010, and 0110. Reversing the order of these 
codes and replacing the leftmost 0 with a 1, we obtain 1110, 1010, 1011, 1001, and 
1000 for the last five Gray codes. For the special cases in which the original binary 
codes are 0 through 2" - 1, each Gray code word may be formed directly from the 
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corresponding binary code word by copying its leftmost bit and then replacing 
each of the remaining bits with the even parity of the bit of the number and the bit 
to its left. 

1-7 CHAPTER SUMMARY 

In this chapter, we introduced digital systems and digital computers and showed 
why such systems use signals having only two values. We briefly introduced the 
structure of the stored-program digital computer and showed how computers can 
be applied to a broad range of specialized applications by using embedded systems. 
We then related the computer structure to a representative example of a personal 
computer (PC). 

Number-system concepts, including base (radix) and radix point, were pre­
sented. Because of their correspondence to two-valued signals, binary numbers were 
discussed in detail. Octal (base 8) and hexadecimal (base 16) were also emphasized, 
since they are useful as shorthand notation for binary. Arithmetic operations in bases 
other than base 10 and the conversion of numbers from one base to another were 
covered. Because of the predominance of decimal in normal use, Binary-Coded Dec­
imal (BCD) was treated. The representation of information in the form of characters 
instead of numbers by means of the ASCII code for the English alphabet was pre­
sented. The parity bit was presented as a technique for error detection, and the Gray 
code, which is critical to selected applications, was defined. 

In subsequent chapters, we treat the representation of signed numbers and 
floating-point numbers. Although these topics fit well with the topics in this chap­
ter, they are difficult to motivate without associating them with the hardware used 
to implement the operations performed on them. Thus, we delay their presentation 
until we examine the associated hardware. 
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PROBLEMS 

The plus (+) indicates a more advanced problem. 

,,a 1-1. This problem concerns wind measurements made by the wireless weather 
~ station illustrated in Example 1-1. The wind-speed measurement uses a 


