

Author M. Morris Mano and Charles R Kime

Year 2008

Title of Article/Chapter Digital Systems and Information

Title of Journal/Book Logic and Computer Design Fundamentals

Vol/part/pages 21-49

Publisher Pearson Prentice Hall

This Digital Copy has been made under the terms of a CLA licence
which allows you to:

Access and download a copy

Print out a copy

ISBN/ISSN: 0132067110

,..

DIGITAL SYSTEMS

AND INFORMATION

This book deals with logic circuits and digital computers. Early computers were
used for computations with discrete numeric elements called digits (the latin
word for fingers)-hence the term digital computer. The use of "digital" spread

from the computer to logic circuits and other systems that use discrete elements of
information, giving us the terms digital circuits and digital systems. The term logic is
applied to circuits that operate on a set of just two elements with values True (1) and
False (0). Since computers are based on logic circuits, they operate on patterns of
elements from these two-valued sets, which are used to represent, among other
things, the decimal digits. Today, the term "digital circuits" is viewed as synonymous
with the term "logic circuits."

The general-purpose digital computer is a digital system that can follow a stored
sequence of instructions, called a program, that operates on data. The user can
specify and change the program or the data according to specific needs. As a result
of this flexibility, general-purpose digital computers can perform a variety of
Information-processing tasks, ranging over a very wide spectrum of applications. This
makes the digital computer a highly general and very flexible digital system. Also, due
to its generality, complexity, and widespread use, the computer provides an ideal
vehicle for learning the concepts, methods, and tools of digital system design. To this
end, we use the exploded pictorial diagram of a computer of the class commonly
referred to as a PC (personal computer) given on the opposite page. We employ this
generic computer to highlight the significance of the material covered and its
relatlonship to the overall system. A bit later in this chapter, we will discuss the various
major components of the generic computer and see how they relate to a block
diagram commonly used to represent a computer. Otherwise, the remainder of the
chapter focuses on the digital systems in our daily lives and introduces approaches
for representing information in digital circuits and systems.

o 21

HIGH~1.0
~~':":"'::'':'':'''::'~-0.9

~

06 [""">'Y'''lO:4~HYYYYh
LowBM#~g:6 LOW

22 0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

1-1 INFoRMATION REPRESENTATION

Digital systems store, move, and process information. The information represents a
broad range of phenomena from the physical and man-made world. The physical
world is characterized by parameters such as weight, temperature, pressure, veloc­
ity, flow, and sound intensity and frequency. Most physical parameters are continu­
ous, typically capable of taking on all possible values over a defined range. In
contrast, in the man-made world, parameters can be discrete in nature, such as
business records using words, quantities, and currencies, taking on values from an
alphabet, the integers, or units of currency, respectively. In general, information
systems must be able to represent both continuous and discrete information. Sup­
pose that temperature, which is continuous, is measured by a sensor and converted
to an electrical voltage, which is likewise continuous. We refer to such a continuous
voltage as an analog signal, which is one possible way to represent temperature.
But, it is also possible to represent temperature by an electrical voltage that takes
on discrete values that occupy only a finite number of values over a range, e.g., cor­
responding to integer degrees centigrade between -40 and +119. We refer to such
a voltage as a digital signal. Alternatively, we can represent the discrete values by
multiple voltage signals, each taking on a discrete value. At the extreme, each sig­
nal can be viewed as having only two discrete values, with multiple signals repre­
senting a large number of discrete values. For example, each of the 160 values just
mentioned for temperature can be represented by a particular combination of
eight two-valued signals. The signals in most present-day electronic digital systems
use just two discrete values and are therefore said to be binary. The two discrete
values used are often called 0 and 1, the digits for the binary number system.

We typically represent the two discrete values by ranges of voltage values called
HIGH and LOW. Output and input voltage ranges are illustrated in Figure l-l(a).
The HIGH output voltage value ranges between 0.9 and 1.1 volts, and the LOW
output voltage value between -0.1 and 0.1 volts. The high input range allows 0.6 to
1.1 volts to be recognized as a HIGH, and the low input range allows -0.1 to 0.4
volts to be recognized as a LOW. The fact that the input ranges are wider than the

OUTPUT INPUT VO'::fS __ I
o.o~Time
(b) Time-dependent voltage

:Dlnm,
(c) Binary model of time-dependent voltage (a) Example voltage ranges

o FIGURE 1·1
Examples of Voltage Ranges and Waveforms for Binary Signals

output ranges alll
behavior and un
from the outputs.

We give thl
Among these are
O. It is natural tl
lower voltage ra
ever, there is a I

lower voltage raJ
cated, we assum
ranges, H, and 1
ranges, L. This P

It is inten
Figure l-l(a) a
voltage is actm
high-speed digi
referred to as ~

on a model us
inputs and the
voltage above
form in Figure
only discrete \
that digital c:
designed to ca
for 1 (H) and
contrast, anal<
values over th

Since 0 a
ferred names i
resented in di~
groups of bits
groups of disc
the computer

Why is t
tem with 10,
available-sa~

0.1 volt. A cir
An input ofa
voltage lies. Ii
be permitted
boundaries c
complex and
small "noise
manufacture
limited. Instt
achieved wi1

ON

mation represents a
world. The physical
ure, pressure, veloc­
,meters are continu­
a defined range. In
, in nature, such as
: on values from an
eneral, information
e information. Sup­
nsor and converted
) such a continuous
'esent temperature.
I voltage that takes
~r a range, e.g., cor­
9. We refer to such
discrete values hy
extreme, each sig­

tiple signals repre­
the 160 values just
ar combination of
Inic digital systems
I. The two discrete
nher system.
)ltage values called
d in Figure l-l(a).
,lts, and the LOW
~ange allows 0.6 to
allows -0.1 to 0.4
Ire wider than the

le
~ge

e
~ndent voltage

gnals

1-1 I Information Representation 0 23

output ranges allows the circuits to function correctly in spite of variations in their
behavior and undesirable "noise" voltages that may be added to or subtracted
from the outputs.

We give the output and input voltage ranges a number of different names.
Among these are HIGH (H) and LOW (L), TRUE (T) and FALSE (F), and 1 and
O. It is natural to associate the higher voltage ranges with HIGH or H, and the
lower voltage 'ranges with LOW or L. For TRUE and 1 and FALSE and 0, how­
ever, there is a choice. TRUE and 1 can be associated with either the higher or
lower voltage range and FALSE and 0 with the other range. Unless otherwise indi­
cated, we assume that TRUE and 1 are associated with the higher of the voltage
ranges, H, and that FALSE and 0 are associated with the lower of the voltage
ranges, L. This particular convention is called positive logic.

It is interesting to note that the values of voltages for a digital circuit in
Figure 1-1 (a) are still continuous, ranging from -0.1 to +1.1 volts. Thus, the
voltage is actually analog! The actual voltages values for the output of a very
high-speed digital circuit are plotted versus time in Figure l-l(b). Such a plot is
referred to as a waveform. The interpretation of the voltage as binary is based
on a model using voltage ranges to represent discrete values 0 and 1 on the
inputs and the outputs. The application of such a model, which redefines all
voltage above 0.5 Vas 1 and below 0.5 V as 0 in Figure 1-1(b), gives the wave­
form in Figure l-l(c). The output has now been interpreted as binary, having
only discrete values 1 and 0, with the actual voltage values removed. We note
that digital circuits, made up of electronic devices called transistors, are
designed to cause the outputs to occupy the two distinct output voltage ranges
for 1 (H) and 0 (L) in Figure 1-1, whenever the outputs are not changing. In
contrast, analog circuits are designed to have their outputs take on continuous
values over their range, whether changing or not.

Since 0 and 1 are associated with the binary number system, they are the pre­
ferred names for the signal ranges. A binary digit is called a bit. Information is rep­
resented in digital computers by groups of bits. By using various coding techniques,
groups of bits can be made to represent not only binary numbers, but also other
groups of discrete symbols. Groups of bits, properly arranged, can even specify to
the computer the program instructions to be executed and the data to be processed.

Why is binary used? In contrast to the situation in Figure 1-1, consider a sys­
tem with 10 values representing the decimal digits. In such a system, the voltages
available-say, 0 to 1.0 volts-could be divided into 10 ranges, each of length
0.1 volt. A circuit would provide an output voltage within each of these 10 ranges.
An input of a circuit would need to determine in which of the 10 ranges an applied
voltage lies. If we wish to allow for noise on the voltages, then output voltage might
be permitted to range over less than 0.05 volt for a given digit representation, and
boundaries between inputs could vary by less than 0.05 volt. This would require
complex and costly electronic circuits, and the output still could be disturbed by
small "noise" voltages or small variations in the circuits occurring during their
manufacture or use. As a consequence, the use of such multivalued circuits is very
limited. Instead, binary circuits are used in which correct circuit operation can be
achieved with significant variations in values of the two output voltages and the

l

24 0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

CPU

Input/Output

o FIGURE 1-2
Block Diagram of a Digital Computer

two input ranges. The resulting transistor circuit with an output that is either
HIGH or LOW is simple, easy to design, and extremely reliable. In addition, this
use of binary values makes the results calculated repeatable in the sense that the
same set of input values to a calculation always gives exactly the same set of out­
puts. This is not necessarily the case for multivalued or analog circuits, in which
noise voltages and small variations due to manufacture or circuit aging can cause
results to differ at different times.

The Digital Computer

A block diagram of a digital computer is shown in Figure 1-2. The memory stores
programs as well as input, output, and intermediate data. The datapath performs
arithmetic and other data-processing operations as specified by the program. The
control unit supervises the flow of information between the various units. A data­
path, when combined with the control unit, forms a component referred to as a
central processing unit, or CPU.

The program and data prepared by the user are transferred into memory by
means of an input device such as a keyboard. An output device, such as an LCD
(liquid crystal display), displays the results of the computations and presents them
to the user. A digital computer can accommodate many different input and output
devices, such as CD-ROM and DVD drives, scanners, and printers. These devices
use digital logic circuits, but often include analog electronic circuits, optical sensors,
LCDs (liquid crystal displays), and electromechanical components.

The control unit in the CPU retrieves the instructions, one by one, from the
program stored in the memory; For each instruction, the control unit manipulates
the datapath to execute the operation specified by the instruction. Both program
and data are stored in memory. A digital computer can perform arithmetic compu­
tations, manipulate strings of alphabetic characters, and be programmed to make
decisions based on internal and external conditions.

Beyond the Cc

In terms of worl<
Smaller, often 11
microcontrollers,
(DSPs) actually
everyday produc
being integral p;
called embeddeG
shown in Figure
It has many of t
ware programs
required for the
product, is an in
software. Also, t
nonexistent. Th~
compact disk 01

tains some mem
With the €

embedded micr
side world. The
into electrical s
puts to the pre
types, those wh
of digital input
whether a foro
Examples of aJ

Analog

Input Devices

and Signal

Conditioning

Itput that is either
,Ie. In addition, this
1 the sense that the
he same set of out­
g circuits, in which
uit aging can cause

1te memory stores
datapath performs
the program. The

ious units. A data­
It referred to as a

d into memory by
:, such as an LCD
md presents them
input and output

::fS. These devices
t8, optical sensors,
s.
by one, from the
unit manipulates
In. Both program
rithmetic compu­
'ammed to make

1-1 / Information Representation 0 25

Beyond the Computer

In terms of world impact, computers, such as the PC, are not the end of the story.
Smaller, often less powerful, single-chip computers called microcomputers or
microcontroliers, or special-purpose computers called digital signal processors
(DSPs) actually are more prevalent in our lives. These computers are parts of
everyday products and their presence is often not apparent. As a consequence of
being integral parts of other products and often enclosed within them, they are
called embedded systems. A generic block diagram of an embedded system is
shown in Figure 1-3. Central to the system is the microcomputer (or its equivalent).
It has many of the characteristics of the PC, but differs in the sense that its soft­
ware programs are often permanently stored to provide only the functions
required for the product. This software, which is critical to the operation of the
product, is an integral part of the embedded system and referred to as embedded
software. Also, the human interface of the microcomputer can be very limited or
nonexistent. The larger information-storage components such as a hard drive and
compact disk or DVD drive frequently are not present. The microcomputer con­
tains some memory; if additional memory is needed, it can be added externally.

With the exception of the external memory, the hardware connected to the
embedded microcomputer in Figure 1-3 interfaces with the product and/or the out­
side world. The input devices transform inputs from the product or outside world
into electrical signals, and the output devices transform electrical signals into out­
puts to the product or outside world. The input and output devices are of two
types, those which use analog signals and those which use digital signals. Examples
of digital input devices include a limit switch which is closed or open depending on
whether a force is applied to it and a keypad having ten decimal integer buttons.
Examples of analog input devices include a thermistor which changes its electrical

Analog
Input Devices

and Signal
Conditioning

A-to-D r--­Converters

Signal
Conditioning
and Digital

Output Devices

D-to-A ..
Converters

...
Microcomputer,
Microcontroller,
or Digital Signal

Processor ...

t t

Digital
Input Devices r-­and Signal
Conditioning

Signal
Conditioning
and Digital

Output Devices

External

Memory

o FIGURE 1-3
Block Diagram of an Embedded System

26 0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

resistance in response to the temperature and a crystal which produces a charge
(and a corresponding voltage) in response to the pressure applied. Typically, elec­
trical or electronic circuitry is required to "condition" the signal so that it can be
read by the embedded system. Examples of digital output devices include relays
(switches that are opened or closed by applied voltages), a stepper motor that
responds to applied voltage pulses, or an LED digital display. Examples of analog
output devices include a loudspeaker and a panel meter with a dial. The dial posi­
tion is controlled by the interaction of the magnetic fields of a permanent magnet
and an electromagnet driven by the voltage applied to the meter.

Next, we illustrate embedded systems by considering a temperature measure­
ment performed by using a wireless weather station. In addition, this example also
illustrates analog and digital signals, including conversion between the signal types.

..EXAMPLE 1·1 Temperature Measurement and Display

A wireless weather station measures a number of weather parameters at an out­
door site and transmits them for display to an indoor base station. Its operation
can be illustrated by considering the temperature measurement illustrated in Fig­
ure 1-4 with reference to the block diagram in Figure 1-3. Two embedded micro­
processors are used, one in the outdoor site and the other in the indoor base
station.

The temperature at the outdoor site ranges continuously from -40°F to
+115°F. Temperature values over one 24-hour period are plotted as a function of
time in Figure 1-4(a). This temperature is measured by a sensor consisting of a
thermistor (a resistance that varies with temperature) with a fixed current applied
by an electronic circuit. This sensor provides an analog voltage that is proportional
to the temperature. Using signal conditioning, this voltage is changed to a continu­
ous voltage ranging between 0 and 15 volts, as shown in Figure 1-4(b).

The analog voltage is sampled at a rate of once per hour (a very slow sam­
pling rate used just for illustration), as shown by the dots in Figure 1-4(b). Each
value sampled is applied to an analog-to-digital (AID) converter, as in Figure 1-3,
which replaces the value with a digital number written in binary and having deci­
mal values between 0 and 15, as shown in Figure 1-4(c). A binary number can be
interpreted in decimal by multiplying the bits from left to right times the respective
weights, 8, 4, 2, and 1, and adding the resulting values. For example, 0101 can be
interpreted as 0 x 8 + 1 x 4 + 0 x 2 + 1 x 1 5. In the process of conversion, the
value of the temperature is quantized from an infinite number of values to just 16
values. Examining the correspondence between the temperature in Figure 1-4(a)
and the voltage in Figure 1-4(b), we find that the typical digital value of tempera­
ture represents an actual temperature range up to 5 degrees above or below the
digital value. For example, the analog temperature range between -25 and -15
degrees is represented by the digital temperature value of -20 degrees. This dis­
crepancy between the actual temperature and the digital temperature is called the
quantization error. In order to obtain greater precision, we would need to increase
the number of bits beyond four in the output of the AID converter. The hardware

Temperature
120

80L40

o
-40

o

Voltage (VC
16

12L8

4

o
o

~r'~talnur
12

:~

o

Voltage (

1216L

8

4

o
o

v~~atge(,
12

8

4

o
o

i

ON

h produces a charge

plied. Typically, elec­

nal so that it can be

~vices include relays

stepper motor that

Examples of analog

dial. The dial posi­

I permanent magnet

er.
nperature measure­
n, this example also
~en the signal types.

rameters at an out­
ation. Its operation
It illustrated in Fig­
) embedded micro­
In the indoor base

:ly from -40°F to
ed as a function of
sor consisting of a
;ed current applied
hat is proportional
mged to a continu­
-4(b).
(a very slow sam­
igure 1-4(b). Each
r, as in Figure 1-3,
V and having deci­
.ry number can be
mes the respective
nple, 0101 can be
If conversion, the
.f values to just 16
~ in Figure 1-4(a)
value of tempera­
lOve or below the
:en -25 and -15
degrees. This dis­
!ture is called the
I need to increase
er. The hardware

1-1 / Information Representation 0 27

Temperature (degrees F)

1~~i

-1~Tim'(hOO"~o 4 8 12 16 20 24

(a) Analog temperature Sensor and
Voltage (Volts) Signal Conditioning

:~~~
o 	 Time(HOU~

o 4 8 12 16 20 24 Analog-to.Digital
(b) Continuous (analog) voltage (AID) Conversion

Digital numbers (binary)
16 ~

(c) Digital voltage

Voltage (volts)

16L12

8

4 ­

O~II I I I I I I I I I I I I I I I ~"~-~-"~rime (hOur:;')
o 4 8 12 16 20 24

Signal Conditioning
(d) Discrete (digital) voltage

Voltage (volts) ~

:j if,;..+,-+-+-l-+-+-+-+-+-+-l-+-+H-+-+--+--+-+-l-+--+­
16 20 24

(e) Continuous (analog) voltage

o 4 8

(f) Continuous (analog) readout

o 	FIGURE 1..4
Temperature Measurement and Display

I

.

28 0 CHAPTER 1 I DIGITAL SYSTEMS AND INFORMATION

components for sensing, signal conditioning, and AID conversion are shown in the
upper left corner of Figure 1-3.

Next, the digital value passes through the microcomputer to a wireless trans­
mitter as a digital output device in the lower right corner of Figure 1-3. The digital
value is transmitted to a wireless receiver, which is a digital input device in the
base station. The digital value enters the microcomputer at the base station, where
calculations may be performed to adjust its value based on thermistor properties.
The resulting value is to be displayed with an analog meter shown in Figure 1-4(f)
as the output device. In order to support this display, the digital value is converted
to an analog value by a digital-to-analog converter, giving the quantized, discrete
voltage levels shown in Figure 1-4(d). Signal conditioning, such as processing of
the output by a low-pass analog filter, is applied to give the continuous signal in
Figure 1-4(e). This signal is applied to the analog voltage display, which has been
labeled with the corresponding temperature values shown for five selected points
over the 24-hour period in Figure 1-4(f). II

o TABLE 1-1

Embedded System Examples

Application Area Product

Banking, commerce and manufacturing Copiers, FAX machines, UPC scanners, vend­
ing machines, automatic teller machines,
automated warehouses, industrial robots

Communication Cell phones, routers, satellites

Games and toys Video games, handheld games, talking stuffed
toys

Home appliances Digital alarm clocks, conventional and micro­
wave ovens, dishwashers

Media CD players, DVD players, fiat panel TVs,
Digital cameras, digital video cameras

Medical equipment Pacemakers, incubators, magnetic resonance
imaging

Personal Digital watches, MP3 players, personal digital
assistants

Transportation and navigation Electronic engine controls, traffic light con­
trollers, aircraft fiight controls, global posi­
tioning systems

You might as
environment?" Do
era? A microwave
fact, a late-model ~
trolling a distinct €
matic braking sy
significant propor1
through a CAN
FlexRay promises
tasks such as bra
dence on mechani
tional safety feat
embedded system

Considering
terns, the impact
systems play cen
tional institutiOn!
in interacting wit
many of these sy
tion of the transi!
ance of millions
work well. In thj
how digital syste:
terns and compu

More on the G

At this point, WI

parts to the bloc
beginning of thi~
the processor. M
tens to hundred:
modules: the CP

We have a
what like the (
designed to per
cess informatiOI
permitting the
The CPU and t
control unit.

TheMMl
and the separatl
and "RAM" (ra
two caches are
data to be proci
monly referred

[ON

ion are shown in the

:r to a wireless trans­
igure 1-3. The digital
input device in the

~ base station, where
lennistor properties.
own in Figure 1-4(f)
1I value is converted
: quantized, discrete
Ich as processing of
:ontinuous signal in
,lay, which has been
five selected points

•

)C scanners, vend­
ler machines.
Ilstrial robots

es

es, talking stuffed

,tional and micro-

it panel TVs,
) cameras

;netic resonance

, personal digital

affic light con­
s,giobal posi­

1-1 I Information Representation 0 29

You might ask: "How many embedded systems are there in my current living
environment?" Do you have a cell phone? An iPod™? An Xbox™? A digital cam­
era? A microwave oven? An automobile? All of these are embedded systems! In
fact, a late-model automobile can contain more than 50 microcontrollers, each con­
trolling a distinct embedded system, such as the engine control unit (ECU), auto­
matic braking system (ABS), and stability control unit (SCU). Further, a
significant proportion of these embedded systems communicate with each other
through a CAN (controller area network). A new automotive network called
AexRay promises to provide high-speed, reliable communication for safety-critical
tasks such as braking-by-wire and steering-by-wire, eliminating primary depen­
dence on mechanical and hydraulic linkages and enhancing the potential for addi­
tional safety features such as collision avoidance. Table 1-1 lists examples of
embedded systems classified by application area.

Considering the widespread use of personal computers and embedded sys­
tems, the impact of digital systems on our lives is truly mind boggling! Digital
systems play central roles in our medical diagnosis and treatment, our educa­
tional institutions and workplaces, in moving from place to place, in our homes,
in interacting with others, and in just having fun! Considering the complexity of
many of these systems, it is a wonder that they work at all. Thanks to the inven­
tion of the transistor and the integrated circuit and to the ingenuity and persever­
ance of millions of engineers and programmers, they indeed work and usually
work well. In the remainder of this text, we take you on a journey that reveals
how digital systems work and provide a detailed look at how to design digital sys­
tems and computers.

More on the Generic Computer

At this point, we will briefly discuss the generic computer and relate its various
parts to the block diagram in Figure 1-2. At the lower left of the diagram at the
beginning of this chapter is the heart of the computer, an integrated circuit called
the processor. Modern processors such as this one are quite complex and consist of
tens to hundreds of millions of transistors. The processor contains four functional
modules: the CPU, the FPU, the MMU, and the internal cache.

We have already discussed the CPu. The FPU (floating-point unit) is some­
what like the CPU, except that its datapath and control unit are specifically
designed to perform floating-point operations. In essence, these operations pro­
cess information represented in the form of scientific notation (e.g., 1.234 X 107),
permitting the generic computer to handle very large and very small numbers.
The CPU and the FPU, in relation to Figure 1-2, each contain a datapath and a
control unit.

The MMU is the memory management unit. The MMU plus the internal cache
and the separate blocks near the bottom of the computer labeled "External Cache"
and "RAM" (random-access memory) are all part of the memory in Figure 1-2. The
two caches are special kinds of memory that allow the CPU and FPU to get at the
data to be processed much faster than with RAM alone. RAM is what is most com­
monly referred to as memory. As its main function, the MMU causes the memory

30 CJ CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

that appears to be available to the CPU to be much, much larger than the actual
size of the RAM. This is accomplished by data transfers between the RAM and the
hard drive shown at the top of the drawing of the generic computer. So the hard
drive, which we discuss later as an input/output device, conceptually appears as a
part of both the memory and input/output.

The connection paths shown between the processor, memory, and external
cache are the pathways between integrated circuits. These are typically imple­
mented as fine copper conductors on a printed circuit board. The connection paths
below the bus interface are referred to as the processor bus. The connections above
the bus interface are the input/output (I/O) bus. The processor bus and the 110 bus
attached to the bus interface carry data having different numbers of bits and have
different ways of controlling the movement of data. They may also operate at dif­
ferent speeds. The bus interface hardware handles these differences so that data
can be communicated between the two buses.

All of the remaining structures in the generic computer are considered part of
I/O in Figure 1-2. In terms of sheer physical volume, these structures dominate. In
order to enter information into the computer, a keyboard is provided. In order to
view output in the form of text or graphics, a graphics adapter card and LCD (liquid
crystal display) screen are provided. The hard drive, discussed previously, is an elec­
tromechanical magnetic storage device. It stores large quantities of information in
the form of magnetic flux on spinning disks coated with magnetic materials. In order
to control the hard drive and transfer information to and from it, a drive controller
is used. The keyboard, graphics adapter card, and drive controller card are all
attached to the I/O bus. This allows these devices to communicate through the bus
interface with the CPU and other circuitry connected to the processor buses.

The generic computer consists mainly of an interconnection of digital modules.
To understand the operation of each module, we need a basic knowledge of digital
systems and their general behavior. Chapters 1 through 6 of this book deal with logic
design of digital circuits in generaL Chapters 5 and 7 discuss the primary components
of a digital system, their operation, and their design. The operational characteristics
of RAM are explained in Chapter 8. Datapath and control for simple computers are
introduced in Chapter 9. Chapters 10 through 13 present the basics of computer
design. Typical instructions employed in computer instruction-set architectures are
presented in Chapter 10. The architecture and design of CPUs are examined in
Chapter 11. Input and output devices and the various ways that a CPU can commu­
nicate with them are discussed in Chapter 12. Finally, memory hierarchy concepts
related to the caches and MMU are introduced in Chapter 13.

To guide the reader through this material and to keep in mind the "forest" as
we carefully examine many of the "trees," accompanying discussion appears in a
blue box at the beginning of each chapter. Each discussion introduces the topics in
the chapter and ties them to the associated components in the generic computer
diagram at the start of this chapter. At the completion of our journey, we will have
covered most of the various modules of the computer and will have gained an
understanding of the fundamentals that underlie both its function and design.

Earlier, we mentioned that a digital computer manipulates discrete elements
of information and that all information in the computer is represented in binary

~

form. Operands \l
tem or in the dec
bet are also co
introduces the bil
as a basis for fUI
computer, this m:
ing some in I/O t
digital) electroni.

1-2 NUMBl

The decimal nu
numbers by stri
has an associate
decimal numbel
units plus 5 te
implied by the
follows:

The convention
from their posil
decimal point ~
string of coeffic

Each coefficiel
value i gives 11
the coefficient

The decil
coefficients are
general, anum
power series iT

When thenuD
radix point an

In general, th
cant digit (msl

ION

arger than the actual
:en the RAM and the
>mputer. So the hard
~ptually appears as a

lemory, and external
are typically imp le­
[be connection paths
Ie connections above
. bus and the I/O bus
Jers of bits and have
f also operate at dif­
erences so that data

re considered part of
uctures dominate. In
,rovided. In order to
ard and LCD (liquid
>reviously, is an elec­
es ofinformation in
c materials. In order
it, a drive controller
troller card are all
ate through the bus
cessor buses.
1 of digital modules.
:nowledge of digital
look deal with logic
lrimary components
ional characteristics
nple computers are
basics of computer
~t architectures are
IS are examined in
I CPU can commu­
hierarchy concepts

rind the "forest" as
ssion appears in a
duces the topics in
generic computer

lmey, we will have
11 have gained an
n and design.
discrete elements
~esented in binary

1-2/ Number Systems D 31

form. Operands used for calculations may be expressed in the binary number sys­
tem or in the decimal system by means of a binary code. The letters of the alpha­
bet are also converted into a binary code. The remainder of this chapter
introduces the binary number system, binary arithmetic, and selected binary codes
as a basis for further study in the succeeding chapters. In relation to the generic
computer, this material is very important and spans all of the components, except­
ing some in 110 that involve mechanical operations and analog (as contrasted with
digital) electronics.

1-2 NUMBER SYSTEMS

The decimal number system is employed in everyday arithmetic to represent
numbers by strings of digits. Depending on its position in the string, each digit
has an associated value of an integer raised to the power of 10. For example, the
decimal number 724.5 is interpreted to represent 7 hundreds plus 2 tens plus 4
units plus 5 tenths. The hundreds, tens, units, and tenths are powers of 10
implied by the position of the digits. The value of the number is computed as
follows:

724.5 = 7 x 102 +2 X 101 +4 x 100 +5 x 10-1

The convention is to write only the digits and infer the corresponding powers of 10
from their positions. In general, a decimal number with n digits to the left of the
decimal point and m digits to the right of the decimal point is represented by a
string of coefficients:

Each coefficient Ai is one of 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). The subscript
value i gives the position of the coefficient and, hence, the weight 10 i by which
the coefficient must be multiplied.

The decimal number system is said to be of base or radix 10, because the
coefficients are multiplied by powers of 10 and the system uses 10 distinct digits. In
general, a number in base, contains, digits, 0,1,2, ... , , - 1, and is expressed as a
power series in , with the general form

n-l n-2 1 0
An-I' +An- 2, + ... +A1, +AO'

-1 -2 -m+1-m+A_1, +A_2, + ... +A_ + 1, +A_ ,m m

When the number is expressed in positional notation, only the coefficients and the
radix point are written down:

In general, the"." is called the radix point. An _1 is referred to as the most signifi­
cant digit (msd) and A-m as the least significant digit (lsd) of the number. Note that

1

i

32 0 CHAPTER 1 ! DIGITAL SYSTEMS AND INFORMATION

if m 0, the lsd is A-o =:: Ao. To distinguish between numbers of different bases, it
is customary to enclose the coefficients in parentheses and place a sUbscript after
the right parenthesis to indicate the base of the number. However, when the con­
text makes the base obvious, it is not necessary to use parentheses. The following
illustrates a base 5 number with n = 3 and m = 1 and its conversion to decimal:

(312.4)5 = 3 X 52 + 1 X 51 +2 x 50 +4 X 5-1

= 75 +5 +2 +0.8 = (82.8ho

Note that for all the numbers without the base designated, the arithmetic is per­
formed with decimal numbers. Note also that the base 5 system uses only five dig­
its, and, therefore, the values of the coefficients in a number can be only 0, 1, 2, 3,
and 4 when expressed in that system.

An alternative method for conversion to base 10 that reduces the number of
operations is based on a factored form of the power series:

(...«An l r + An -2)r + An -3)r + ... + A l)r + AO

-1 -1 -1 -1 -1 -1
+(A-l+(A_2+(A_3+···+(A-m+2+(A-m+l+A-mr)r)r ...)r)r)r

For the example above,

(312.4>S = «3 x 5 + 1) x 5) +2 +4 x 5-1

= 16 x 5 +2 + 0.8 = (82.8ho

In addition to decimal, three number systems are used in computer work:
binary, octal, and hexadecimal. These are base 2, base 8, and base 16 number sys­
tems, respectively.

Binary Numbers

The binary number system is a base 2 system with two digits: 0 and 1. A binary
number such as 11010.11 is expressed with a string of Is and Os and, possibly, a
binary point. The decimal equivalent of a binary number can be found by expand­
ing the number into a power series with a base of 2. For example,

(llOlOh = 1 x 24 + 1 X 23 + 0 X 22 + 1 X 21 + 0 x 20
=:: (26ho

As noted earlier, the digits in a binary number are called bits. When a bit is equal
to 0, it does not contribute to the sum during the conversion. Therefore, the con­
version to decimal can be obtained by adding the numbers with powers of two cor­
responding to the bits that are equal to 1. For example,

(110101.11h =:: 32 + 16 + 4 + 1 + 0.5 + 0.25 = (53.75ho

n

The first 24 1

In digital systems,
as T (tera). Thus,

4K 22X

This convention
age of K, M, G,
well. So caution i

The convel
method that sue
convert the deci
power of two (s.
ference. Let the
a power of two
Continue this p
ber is convertec
obtained from 1
nents. Is appea
the power serle
by the conversi

c

http:11010.11

ON

of different bases, it
ace a subscript after
ever, when the con­

theses. The following
ersion to decimal:

-1

he arithmetic is per­
m uses only five dig­
an be only 0, 1,2,3,

:luces the number of

40
·1 -1 -1 -1 -1

)r ...)r)r)r

in computer work:
ase 16 number sys­

oand 1. A binary
Os and, possibly, a
: found by expand­
,-,

Vhen a bit is equal
'herefore, the con­
powers of two cor­

1-2 I Number Systems 0 33

o TABLE 1-2
Powers ofTwo

2n 2n 2nn n n

° 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 10 1,024 18 262,144
3 8 11 2,048 19 524,288
4 16 12 4,096 20 1,048,576
5 32 13 8,192 21 2,097,152
6 64 14 16,384 22 4,194,304
7 128 15 32,768 23 8,388,608

The first 24 numbers obtained from 2 to the power of n are listed in Table 1-2.
In digital systems, we refer to 210 as K (kilo), 220 as M (mega), 230 as G (giga), and 240

as T (tera). Thus,

4K = 22 X 210 212 4096 and 16M X 220 224:= 16,777,216

This convention does not necessarily apply in all cases, with more conventional us­
age of K, M, G, and T as 103,106,109 and 1012, respectively, sometimes applied as
well. So caution is necessary in interpreting and using this notation.

The conversion of a decimal number to binary can be easily achieved by a
method that successively subtracts powers of two from the decimal number. To
convert the decimal number N to binary, first find the greatest number that is a
power of two (see Table 1-2) and that, subtracted from N, produces a positive dif­
ference. Let the difference be designated N l . Now find the greatest number that is
a power of two and that, subtracted from N 1 , produces a positive difference N2 •

Continue this procedure until the difference is zero. In this way, the decimal num­
ber is converted to its powers-of-two components. The equivalent binary number is
obtained from the coefficients of a power series that forms the sum of the compo­
nents. Is appear in the binary number in the positions for which terms appear in
the power series, and Os appear in all other positions. This method is demonstrated
by the conversion of decimal 625 to binary as follows:

29625 -512 = 113 = Nl 512

26113 -64 49 N2 64

2549-32 = 17 = N3 32

17-16=1 N4 16 24

1 -1 = 0 = Ns 1 2°

(625ho = 29 +26 +25 +24 +20 = (1001110001h

1

34 0 CHAPTER 1 I DIGITAL SYSTEMS AND INFORMATION

Octal and Hexadecimal Numbers

As previously mentioned, all computers and digital systems use the binary repre­
sentation. The octal (base 8) and hexadecimal (base 16) systems are useful for rep­
resenting binary quantities indirectly because their bases are powers of two. Since
23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and each
hexadecimal digit corresponds to four binary digits.

The more compact representation of binary numbers in either octal or
hexadecimal is much more convenient for people than using bit strings in binary
that are three or four times as long. Thus, most computer manuals use either
octal or hexadecimal numbers to specify binary quantities. A group of 15 bits, for
example, can be represented in the octal system with only five digits. A group of
16 bits can be represented in hexadecimal with four digits. The choice between an
octal and a hexadecimal representation of binary numbers is arbitrary, although
hexadecimal tends to win out, since bits often appear in strings of size divisible
by four.

The octal number system is the base 8 system with digits 0, 1,2,3,4,5,6, and
7. An example of an octal number is 127.4. To determine its equivalent decimal
value, we expand the number in a power series with a base of 8:

(127.4)8 = 1 X 82 +2 X 81 +7 x 80 +4 X 8-1 = (87.5ho

Note that the digits 8 and 9 cannot appear in an octal number.
It is customary to use the first r digits from the decimal system, starting with

0, to represent the coefficients in a base r system when r is less than 10. The letters
of the alphabet are used to supplement the digits when r is 10 or more. The hexa­
decimal number system is a base 16 system with the first 10 digits borrowed from
the decimal system and the letters A, B, C, D, and F used for the values 10, 11,
12, 13, 14, and 15, respectively. An example of a hexadecimal number is

(B65Fh6 = 11 X 163 + 6 X 162 + 5 X 161 + 15 x 160 (46687)10

The first 16 numbers in the decimal, binary, octal, and hexadecimal number sys­
tems are listed in Table 1-3. Note that the sequence of binary numbers follows a
prescribed pattern. The least significant bit alternates between 0 and 1, the second
significant bit between two Os and two 1s, the third significant bit between four Os
and four Is, and the most significant bit between eight Os and eight 1s.

The conversion from binary to octal is easily accomplished by partitioning
the binary number into groups of three bits each, starting from the binary point
and proceeding to the left and to the right. The corresponding octal digit is then
assigned to each group. The following example illustrates the procedure:

(OlD 110001101011. 111100 000 l10h (26153.7406)8

The corresponding octal digit for each group of three bits is obtained from the first eight
entries in Table 1-3. To make the total COMt of bits a multiple of three, Os can be added
on the left of the string of bits to the left of the binary point. More importantly, Os must

o Tl
NI

Cecil
(baa.

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

be added on the
number of bits a I

Conversior
number is divide
ous binary numl

(001

The correspond
erence to Table

Conversio
cedure just per
and extra Os arl
binary equivale

(673.1

(3A6.

Number Ran

In digital comI
number of bits
tion. The numl
as 8,16,32, anI
of leading or
numbers that I

ON

f
Use the binary repre-
Ins are useful for rep­
powers of two. Since
inary digits and each

:s in either octal or
~ bit strings in binary
. manuals use either
, group of 15 bits, for
.ve digits. A group of
Ie choice between an
is arbitrary, although
ings of size divisible

sO, 1,2,3,4,5,6, and
s equivalent decimal
8:

(87.5ho

system, starting with
is than 10. The letters
oor more. The hexa­
:ligits borrowed from
for the values 10, 11,
lUmber is

= (46687ho

decimaJ DumPer S)(f­

, numbers follows a
oand 1, the second
)it between four Os .
~t1s.
led by partitioning
n the binary point
octal digit is then

)Cedure:

7406)8

rfrom the first eight
ee, Os can be added
mportantly, Os must

1-2 / Number Systems 0 35

o TABLE 1·3
Nwnbers with Different Bases

Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)

00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

be added on the right of the string of bits to the right of the binary point to make the
number of bits a multiple of three and obtain the correct octal result.

Conversion from binary to hexadecimal is similar, except that the binary
number is divided into groups of four digits, starting at the binary point. The previ­
ous binary number is converted to hexadecimal as follows:

(0010 1100 0110 1011. 1111 0000 0110h = (2C6B.F06h6

The corresponding hexadecimal digit for each group of four bits is obtained by ref­
erence to Table 1-3.

Conversion from octal or hexadecimal to binary is done by reversing the pro­
cedure just performed. Each octal digit is converted to a 3-bit binary equivalent,
and extra Os are deleted. Similarly, each hexadecimal digit is converted to its 4-bit
binary equivalent. This is illustrated in the following examples:

(673.12)8 110 111 OIl. 001 010 = (110111011.0010l)z

(3A6'C)16 = 0011 1010 0110. 1100 = (1110100110.11h

Number Ranges

In digital computers, the range of numbers that can be represented is based on the
number of bits available in the hardware structures that store and process informa­
tion. The number of bits in these structures is most frequently a power of two, such
as 8,16,32, and 64. Since the numbers of bits is fixed by the structures, the addition
of leading or trailing zeros to represent numbers is necessary, and the range of
numbers that can be represented is also fixed.

1

36 0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

For example, for a computer processing 16-bit unsigned integers, the num­
ber 537 is represented as 0000001000011001. The range of integers that can be
handled by this representation is from 0 to 216 - 1, that is, from 0 to 65,535. If the
same computer is processing 16-bit unsigned fractions with the binary point to the
left of the most significant digit, then the number 0.375 is represented by
0.0110000000000000. The range of fractions that can be represented is from 0 to
(216 - 1)/216 , or from 0.0 to 0.9999847412.

In later chapters, we will deal with fixed-bit representations and ranges
for binary signed numbers and floating-point numbers. In both of these cases,
some bits are used to represent information other than simple integer or frac­
tion values.

1-3 ARITHMETIC OPERATIONS

Arithmetic operations with numbers in base r follow the same rules as for decimal
numbers. However, when a base other than the familiar base 10 is used, one must
be careful to use only r allowable digits and perform all computations with base r
digits. Examples of the addition of two binary numbers are as follows (note the
names of the operands for addition):

Carries: 00000 101100

Augend: 01100 10110

Addend: +10001 +10111

Sum: 11101 101101

The sum of two binary numbers is calculated following the same rules as for deci­
mal numbers, except that the sum digit in any position can be only 1 or O. Also, a
carry in binary occurs if the sum in any bit position is greater than 1. (A carry in
decimal occurs if the sum in any digit position is greater than 9.) Any carry
obtained in a given position is added to the bits in the column one significant posi­
tion higher. In the first example, since all of the carries are 0, the sum bits are sim­
ply the sum of the augend and addend bits. In the second example, the sum of the
bits in the second column from the right is 2, giving a sum bit of 0 and a carry bit of
1 (2 2 + 0). The carry bit is added with the Is in the third position, giving a sum
of 3, which produces a sum bit of 1 and a carry of 1 (3 2 + 1).

The following are examples of the subtraction of two binary numbers; as with
addition, note the names of the operands:

Borrows:

Minuend:

Subtrahend:

00000

10110

-10010

00110

10110

-10011

00110

l0011X 11110
-11110 -10011

Difference: 00100 00011 -01011

The rules for subt]
given column add~
to the minuend dil
ence bits are sim1
example, in the ri!
is necessary to bo
bit in the first pos
subtracted, so a be
hend is larger th!
and give the resul
interchange of th<

The final 01
simple. The multi
equal either to ttl
ing example:

Arithmetil
will normally re
products of twc
in base r is to C

decimal, and t~
base r system.
for obtaining t1
of steps for al
Example 1-2.

EXAMPLEl­

Perform the a(

Hexadecil

5
E

13

- -
-01011

r

~ integers, the num­
integers that can be
:>m 0 to 65,535. If the
~e binary lloint to th;;:,
'5 is represented by
resented is from 0 to

ntations and ranges
both of these cases,
lple integer or frac­

~ rules as for decimal
10 is used, one must
>utations with base r
as follows (note the

ne rules as for deci­
only 1 or O. Also, a
than 1. (A carry in
:han 9.) Any carry
)fie significant posi­
Ie sum bits are sim­
lple, the sum of the
oand a carry bit of
• ition, giving a sum

"y numbers; as with

00110

", 11110

'-10011

1-3 I Arithmetic Operations 0 3 7

The rules for subtraction are the same as in decimal, except that a borrow into a
given column adds 2 to the minuend bit. (A borrow in the decimal system adds 10
to the minuend digit.) In the first example shown, no borrows occur, so the differ­
ence bits are simply the minuend bits minus the subtrahend bits. In the second
example, in the right position, the subtrahend bit is 1 with the minuend bit 0, so it
is necessary to borrow from the second position as shown. This gives a difference
bit in the first position of 1 (2 + 0 1 1). In the second position, the borrow is
subtracted, so a borrow is again necessary. Recall that, in the event that the subtra­
hend is larger than the minuend, we subtract the minuend from the subtrahend
and give the result a minus sign. This is the case in the third example, in which this
interchange of the two operands is shown.

The final operation to be illustrated is binary multiplication, which is quite
simple. The multiplier digits are always 1 or O. Therefore, the partial products are
equal either to the multiplicand or to O. Multiplication is illustrated by the follow­
ing example:

Multiplicand:

Multiplier:

1011

x 101

1011

0000

1011

Product: 110111

Arithmetic operations with octal, hexadecimal, or any other base r system
will normally require the formulation of tables from which one obtains sums and
products of two digits in that base. An easier alternative for adding two numbers
in base r is to convert each pair of digits in a column to decimal, add the digits in
decimal, and then convert the result to the corresponding sum and carry in the
base r system. Since addition is done in decimal, we can rely on our memories
for obtaining the entries from the familiar decimal addition table. The sequence
of steps for adding the two hexadecimal numbers 59F and E46 is shown in
Example 1-2 .

EXAMPLE 1-2 Hexadecimal Addition

Perform the addition (59Fh6 + (E46h6:

Hexadecimal Equivalent Decimal Calculation

1""---,
59F 5 Carry ~---n5 Carry
E46 14 4 6

13 E 5 1 19 = 16 + 3 14 E 21 = 16 + 5

--

38 0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

The equivalent decimal calculation columns on the right show the mental reason­
ing that must be carried out to produce each digit of the hexadecimal sum. Instead
of adding F + 6 in hexadecimal, we add the equivalent decimals, 15 + 6 = 21. We
then convert back to hexadecimal by noting that 21 16 + 5. This gives a sum
digit of 5 and a carry of 1 to the next higher-order column of digits. The other two
columns are added in a similar fashion. •

In general, the multiplication of two base r numbers can be accomplished by
doing all the arithmetic operations in decimal and converting intermediate results
one at a time. This is illustrated in the mUltiplication of two octal numbers shown in
Example 1-3.

EXAMPLE 1-3 Octal Multiplication

Perform the multiplication (762)8 x (45)g:

Octal Octal Decimal Octal

762 5x2 10 8+2 12
45 5 x 6 + 1 31 24 + 7 37

4672 5 x 7 + 3 38 32 + 6 46
3710 4x2 8=8+0 10

43772 	 4 x 6 + 1 25=24+1 31
4x7 + 3 31 = 24 + 7 37

Shown on the right are the mental calculations for each pair of octal digits. The octal
digits 0 through 7 have the same value as their corresponding decimal digits. The
multiplication of two octal digits plus a carry, derived from the calculation on the
previous line, is done in decimal, and the result is then converted back to octal. The
left digit of the two-digit octal result gives the carry that must be added to the digit
product on the next line. The blue digits from the octal results of the decimal calcu­
lations are copied to the octal partial products on the left. For example,
(5 X 2)8 (12)8' The left digit, 1, is the carry to be added to the product (5 X 6)8'
and the blue least significant digit, 2, is the corresponding digit of the octal partial
product. When there is no digit product to which the carry can be added, the carry is
written directly into the octal partial product, as in the case of the 4 in 46. •

Conversion from Decimal to Other Bases

We convert a number in base r to decimal by expanding it in a power series and
adding all the terms, as shown previously. We now present a general procedure for
the operation of converting a decimal number to a number in base r that is the
reverse of the alternative expansion to base 10 on page 32. If the number includes
a radix point, we need to separate the number into an integer part and a fraction
part, since the two parts must be converted differently. The conversion of a decimal
integer to a number in base r is done by dividing the number and all successive

quotients by rand
by example.

EXAMPLE 1·4

Convert decimal]

The conversion is
a remainder of 1,
and a remainder
remainder of 2. 1
the remainders:

153/8

1918

218

(153)10 = (

Note in Ex
cated by the arro
until the result i!
binary, as shown
2, and therefore,

EXAMPLE 1·5

Convert decimal

41/2 =

20/2

10/2 =
512 =
2/2 =
1/2 =

(41)10 = (IC

Of course, the d

The convl
similar to that

the mental reason­
decimal sum. Instead

S, 15 + 6 = 21. We
I- 5. This gives a sum
[digits. The other two

•
11 be accomplished by
~ intermediate results
tal numbers shown in

Octal

= 12
37

= 46
= 10

31
37

octal digits. The octal
g decimal digits. The
Ie calculation on the
ed back to octal. The
be added to the digit
of the decimal ca1cu­

left. For example,
the product (5 X 6)8'
t of the octal partial
>e added, the carry is
he4 in 46. •

I a power series and
meral procedure for
in base r that is the
:he number includes
. part and a fraction
version of a decimal
r and all successive

1-3 I Arithmetic Operations 0 39

quotients by r and accumulating the remainders. This procedure is best explained
by example.

EXAMPLE 1-4 Conversion of Decimal Integers to Octal

Convert decimal 153 to octal:

The conversion is to base 8. First, 153 is divided by 8 to give a quotient of 19 and
a remainder of 1, as shown in blue. Then 19 is divided by 8 to give a quotient of 2
and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a
remainder of 2. The coefficients of the desired octal number are obtained from
the remainders:

153/8 = 19 + 118 Least significant digit Remainder = 1 1
19/8 = 2 + 3/8 =3

2/8 = 0 + 2/8 2 Most significant digit

(153ho = (231)8 •
Note in Example 1-4 that the remainders are read from last to first, as indi­

cated by the arrow, to obtain the converted number. The quotients are divided by r
until the result is O. We also can use this procedure 10 convert decimal integers to
binary, as shown in Example 1-5. In this case, the base of the converted number is
2, and therefore, all the divisions must be done by 2.

EXAMPLE 1-5 Conversion of Decimal Integers to Binary

Convert decimal 41 to binary:

Least significant digit

20/2 = 10 =0

1012 = 5 o
5/2 = 2 + 112 1

2/2 = 1 o

112 0 + 112 1

4112 = 20 + 112 Remainder 1

Most significant digit

(41ho (101001h
Of course, the decimal number could be converted by the sum of powers of two:

(41ho = 32 + 8 + 1 (101001h •
The conversion of a decimal fraction to base r is accomplished by a method

similar to that used for integers, except that multiplication by r is used instead of

40 0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

division, and integers are accumulated instead of remainders. Again, the method is
best explained by example.

EXAMPLE 1·6 Conversion of Decimal Fractions to Binary

Convert decimal 0.6875 to binary:

First, 0.6875 is multiplied by 2 to give an integer and a fraction. The new fraction is
multiplied by 2 to give a new integer and a new fraction. This process is continued until
the fractional part equals 0 or until there are enough digits to give sufficient accuracy.
The coefficients of the binary number are obtained from the integers as follows:

1.37500.6875 x 2 = Integer ~ j Most significant digit ~
0.3750 x 2 0.7500

0.7500 x 2 = 1.5000

0.5000 x 2 = 1.0000 = 1 Least significant digit

(0.6875)10 = (0.1011h •
Note in the foregoing example that the integers are read from first to last, as

indicated by the arrow, to obtain the converted number. In the example, a finite
number of digits appear in the converted number. The process of multiplying frac­
tions by r does not necessarily end with zero, so we must decide how many digits of
the fraction to use from the conversion. Also, remember that the multiplications
are by number r. Therefore, to convert a decimal fraction to octal, we must multi­
ply the fractions by 8, as shown in Example 1-7.

EXAMPLE 1-7 Conversion of Decimal Fractions to Octal

Convert decimal 0.513 to a three-digit octal fraction:

0.513 x 8 = 4.104 Integer 4 jMost significant digit
0.104 x 8 = 0.832 =0
0.832 x 8 = 6.656 6

0.656 x 8 = 5.248 = 5 Least significant digit

The answer, to three significant figures, is obtained from the integer digits. Note
that the last integer digit, 5, is used for rounding in base 8 of the second-to-the-Iast
digit, 6, to obtain

(0.513ho (OA07)g •
The conversion of decimal numbers with both integer and fractional parts is

done by converting each part separately and then combining the two answers.
Using the results of Example 1-4 and Example 1-7, we obtain

(l53.513ho (231.407)8

1-4 DECIMA

The binary numbe
accustomed to th(
decimal numbers
convert the bin~
decimal numbers
binary. Since the
decimal digits by
arithmetic opera1
computer in code

An n-bit bil
nations of Is aD(
being coded. A s
each element ass
8 elements requi
bit combinations
o to 2n L Eacl
no two elemen1
ambiguous.

A binary c
elements in the
binary code thai
but six out of tl1
ferent binary cc
nations. The cod
binary assignm(
mal and is conu
which is presen

Table 1·4
digits will requi
bits as

with each grOt

BCD is the s
between 0 anc
different from
Moreover, the
meaning in the

Considel

lION

. Again, the method is

n. The new fraction is
x:ess is continued until
ive sufficient accuracy.
~gers as follows:

lleant digit

ficant digit .'
j from first to last, as
the example, a finite
s of multiplying frac­
ie how many digits of
It the multiplications
:lctal, we must multi-

ant digit

ant digit

integer digits. Note
le second-to-the-Iast

•
ld fractional parts is
19 the two answers.

1-4 / Decimal Codes 0 41

1-4 DECIMAL CODES

The binary number system is the most natural one for a computer, but people are
accustomed to the decimal system. One way to resolve this difference is to convert
decimal numbers to binary, perform all arithmetic calculations in binary, and then
convert the binary results back to decimal. This method requires that we store the
decimal numbers in the computer in such a way that they can be converted to
binary. Since the computer can accept only binary values, we must represent the
decimal digits by a code that contains Is and as. It is also possible to perform the
arithmetic operations directly with decimal numbers when they are stored in the
computer in coded form.

An n-bit binary code is a group of n bits that assume up to 2n distinct combi­
nations of 1s and as, with each combination representing one element of the set
being coded. A set of four elements can be coded with a 2-bit binary code, with
each element assigned one of the following bit combinations: 00, 01,10,11. A set of
8 elements requires a 3-bit code, and a set of 16 elements requires a 4-bit code. The
bit combinations of an n-bit code can be determined from the count in binary from
a to 2n - 1. Each element must be assigned a unique binary bit combination, and
no two elements can have the same value; otherwise, the code assignment is
ambiguous.

A binary code will have some unassigned bit combinations if the number of
elements in the set is not a power of 2. The ten decimal digits form such a set. A
binary code that distinguishes among ten elements must contain at least four bits,
but six out of the 16 possible combinations will remain unassigned. Numerous dif­
ferent binary codes can be obtained by arranging four bits into lO distinct combi­
nations. The code most commonly used for the decimal digits is the straightforward
binary assignment listed in Table 1-3 on page 32. This is called binary-coded deci­
mal and is commonly referred to as BCD. Other decimal codes are possible, one of
which is presented in Chapter 3.

Table 1-4 gives a 4-bit code for each decimal digit. A number with n decimal
digits will require 4n bits in BCD. Thus, decimal 396 is represented in BCD with 12
bits as

0011 1001 0110

with each group of four bits representing one decimal digit. A decimal number in
BCD is the same as its equivalent binary number only when the number is
between a and 9, inclusive. A BCD number greater than lO has a representation
different from its equivalent binary number, even though both contain Is and as.
Moreover, the binary combinations lOlO through 1111 are not used and have no
meaning in the BCD code.

Consider decimal 185 and its corresponding value in BCD and binary:

(185ho = (0001 1000 OlOl)BCD (lOl1lOOlh

42 0 CHAPTER 1 I DIGITAL SYSTEMS AND INFORMATION

o TABLE 1-4
Binary-Coded Decimal (BCD)

Decimal BCD
Symbol Digit

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

The BCD value has 12 bits, but the equivalent binary number needs only 8 bits. It
is obvious that a BCD number needs more bits than its equivalent binary value.
However, BCD representation of decimal numbers is still important, because com­
puter input and output data used by most people needs to be in the decimal sys­
tem. BCD numbers are decimal numbers and not binary numbers, even though
they are represented using bits. The only difference between a decimal and a BCD
number is that decimals are written with the symbols 0, 1, 2, ... , 9, and BCD num­
bers use the binary codes 0000,0001,0010, ... , 1001.

BCD Addition

Consider the addition of two decimal digits in BCD, together with a possible
carry of 1 from a previous less significant pair of digits. Since each digit does not
exceed 9, the sum cannot be greater than 9 + 9 + 1 19, the 1 being a carry.
Suppose we add the BCD digits as if they were binary numbers. Then the binary
sum will produce a result in the range from 0 to 19. In binary, this will be from
0000 to 10011, but in BCD, it should be from 0000 to 1 1001, the first 1 being a
carry and the next four bits being the BCD digit sum. When the binary sum is
less than 1010 (without a carry), the corresponding BCD digit is correct. But
when the binary sum is greater than or equal to 1010, the result is an invalid
BCD digit. The addition of binary 6, (0110)2, to the sum converts it to the correct
digit and also produces a decimal carry as required. The reason is that the differ­
ence between a carry from the most significant bit position of the binary sum and
a decimal carry is 16 - 10 = 6. Thus, the decimal carry and the correct BCD sum

digit are forced b)
tion example.

IEXAMPLE 1-8

110

448

+489

937

In each position, t
If the binary sum
sum and a carry. I
the carry indicatf
correction is nee,
0111 (7), and a ,
invalid BCD digi
and a carry of 1.
correct BCD digi

1-5 ALPHA

Many applicatiol
only of numbers
sands of policyhl

and other pertin
letters of the al}:
and special chal
set of elements
and several (m
included, we ne
and lowercase I
Binary codes pl
binary because
merely changes
encoded.

ON

. needs only 8 bits. It
ivalent binary value.
ortant, because com­
; in the decimal sys­
1mbers, even though
decimal and a BCD

..,9, and BCD num­

lIer with a possible
each digit does not
:he 1 being a carry.
~rs. Then the binary
y, this will be from
, the first 1 being a
I the binary sum is
igit is correct. But
result is an invalid
rts it to the correct
n is that the differ­
:he binary sum and
~ correct BCD sum

1-5/ Alphanumeric Codes 0 43

I
digit are forced by adding 6 in binary. Consider the next three-digit BCD addi­
tion example.

BCD Addition EXAMPLE 1-8

110 BCD carry 1 1

448 0100 0100 1000

+489 +0100 +1000 +1001

10001

Add 6

937 Binary sum 1001 1101

+0110 +0110

10011BCD sum 10111

BCD result 1001 0011 0111

In each position, the two BCD digits are added as if they were two binary numbers.
If the binary sum is greater than 1001, we add 0110 to obtain the correct BCD digit
sum and a carry. In the right column, the binary sum is equal to 17. The presence of
the carry indicates that the sum is greater than 16 (certainly greater than 9), so a
correction is needed. The addition of 0110 produces the correct BCD digit sum,
0111 (7), and a carry of 1. In the next column, the binary sum is 1101 (13), an
invalid BCD digit. Addition of 0110 produces the correct BCD digit sum, 0011 (3),
and a carry of 1. In the final column, the binary sum is equal to 1001 (9) and is the
correct BCD digit. •

1-5 ALPHANUMERIC CODES

Many applications of digital computers require the handling of data consisting not
only of numbers, but also of letters. For instance, an insurance company with thou­
sands of policyholders uses a computer to process its files. To represent the names
and other pertinent information, it is necessary to formulate a binary code for the
letters of the alphabet. In addition, the same binary code must represent numerals
and special characters such as $. Any alphanumeric character set for English is a
set of elements that includes the ten decimal digits, the 26 letters of the alphabet,
and several (more than three) special characters. If only capital letters are
included, we need a binary code of at least six bits, and if both uppercase letters
and lowercase letters are included, we need a binary code of at least seven bits.
Binary codes play an important role in digital computers. The codes must be in
binary because computers can handle only Is and Os. Note that binary encoding
merely changes the symbols, not the meaning of the elements of information being
encoded.

44 0 CHAPTER 1 I DIGITAL SYSTEMS AND INFORMATION

ASCII Character Code

The standard binary code for the alphanumeric characters is called ASCII
(American Standard Code for Information Interchange). It uses seven bits to
code 128 characters, as shown in Table 1-5. The seven bits of the code are desig­
nated by Bl through B7 , with B7 being the most significant bit. Note that the
most significant three bits of the code determine the column of the table and
the least significant four bits the row of the table. The letter A, for example, is
represented in ASCII as 1000001 (column 100, row 0001). The ASCII code con­
tains 94 characters that can be printed and 34 non printing characters used for
various control functions. The printing characters consist of the 26 uppercase
letters, the 26 lowercase letters, the 10 numerals, and 32 special printable char­
acters such as %, @, and $.

The 34 control characters are designated in the ASCII table with abbreviated
names. They are listed again below the table with their full functional names. The
control characters are used for routing data and arranging the printed text into a
prescribed format. There are three types of control characters: format effectors,
information separators, and communication control characters. Format effectors
are characters that control the layout of printing. They include the familiar type­
writer controls such as backspace (BS), horizontal tabulation (RT), and carriage
return (CR). Information separators are used to separate the data into divisions­
for example, paragraphs and pages. They include characters such as record separa­
tor (RS) and file separator (FS). The communication control characters are used
during the transmission of text from one location to the other. Examples of com­
munication control characters are STX (start of text) and ETX (end of text),
which are used to frame a text message transmitted via communication wires.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a
single unit called a byte. Therefore, ASCII characters most often are stored one per
byte, with the most significant bit set to O. The extra bit is sometimes used for spe­
cific purposes, depending on the application. For example, some printers recognize
an additional 128 8-bit characters, with the most significant bit set to 1. These char­
acters enable the printer to produce additional symbols, such as those from the
Greek alphabet or characters with accent marks as used in languages other than
English.

UNICODE This supplement on Unicode, a 16-bit standard code for representing the
symbols and ideographs for the world's languages, is available on the Companion ~
Website (http://www.prenhall.com/mano) for the text.

Parity Bit

To detect errors in data communication and processing, an additional bit is some­
times added to a binary code word to define its parity. A parity bit is the extra bit

o TABLE 1·5
American Stanw

8 48 3 8 2 8 1

0000
0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Control Character:

NULl
SOH
NULL

Start <

STX Start ~

ETX Endc

EOT Endc
ENQ Enqu

ACK Ackn
BEL Bell

Back:BS

HT
 Horil

LF Line
VertiVT
Fom

CR Carr
SO

FF

Shift
SI Shift
SP Spac

http://www.prenhall.com/mano

nON 1-5 / Alphanwneric Codes 0 45

o TABLE 1-5
American Standard Code for Information Interchange (ASCII)

lers is called ASCII
It uses seven bits to 8 78 6 8 5

)f the code are desig­ 84 8 38 2 8 1 000 001 010 011 100 101 110 111
.ot bit. Note that the
tnm of the table and 0000 NULL DLE SP 0 @ P P
:er A, for example, is 0001 SOH DC1 1 A Q a q
[he ASCII code con­ 0010 STX DC2 2 B R b r
~ characters used for 0011 ETX DC3 # 3 C S c s
of the 26 uppercase 0100 EOT DC4 $ 4 D T d
)ecial printable char­ 0101 ENQ

0110 ACK
NAK
SYN

%
&

5
6

E
F

U e u
V f v

able with abbreviated
unctional names. The
Ie printed text into a
ers: format effectors,
ers. Format effectors

0111 BEL
1000 BS
1001 HT
10lD LF
1011 VT
1100 FF

ETB
CAN
EM
SUB
ESC
FS

'"
+

7
8
9

<

G
H
I
J
K
L

W g w
X h x
Y y
Z j z
[k
\ I

de the familiar type­ 1101 CR GS M] m
tl (HT), and carriage 1110 SO RS > N /\ n
data into divisions­ 1111 SI US ? 0 0 DEL
lch as record separa-
I characters are used Control Characters

:r. Examples of com-
ETX (end of text),
unication wires.

NULL
SOH
STX

NULL
Start of heading
Start of text

DLE
DCI
DC2

Data link escape
Device control 1
Device control 2

tn 8-bit quantity as a ETX End of text DC3 Device control 3
:n are stored one per EOT End of transmission DC4 Device control 4
letimes used for spe- ENQ Enquiry NAK Negative acknowledge
le printers recognize ACK Acknowledge SYN Synchronous idle
set to 1. These char- BEL Bell ETB End of transmission block
h as those from the BS Backspace CAN Cancel
mguages other than HT Horizontal tab EM End of medium

LF Line feed SUB Substitute
VT Vertical tab ESC Escape

for representing the
FF
CR

Form feed
Carriage return

FS
GS

File separator
Group separator

•on the Companion SO Shift out RS Record separator
SI Shift in US Unit separator
SP Space DEL Delete

iitional bit is some­
~ bit is the extra bit

46 0 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

included to make the total number of Is in the resulting code word either even or
odd. Consider the following two characters and their even and odd parity:

With Even Parity With Odd Parity

1000001 01000001 11000001
1010100 11010100 01010100

In each case, we use the extra bit in the most significant position of the code to pro­
duce an even number of Is in the code for even parity or an odd number of Is in
the code for odd parity. In general, one parity or the other is adopted, with even
parity being more common. Parity may be used with binary numbers as well as
with codes, including ASCII for characters, and the parity bit may be placed in any
fixed position in the code.

,~, EXAMPLE 1·9 Error Detection and Correction for ASCII Transmission

- The parity bit is helpful in detecting errors during the transmission of information
from one location to another. Assuming that even parity is used, the simplest case
is handled as follows: An even (or odd) parity bit is generated at the sending end
for all 7-bit ASCII characters; the 8-bit characters that include parity bits are trans­
mitted to their destination. The parity of each character is then checked at the
receiving end; if the parity of the received character is not even (odd), it means
that at least one bit has changed its value during the transmission. This method
detects one, three, or any odd number of errors in each character transmitted. An
even number of errors is undetected. Other error-detection codes, some of which
are based on additional parity bits, may be needed to take care of an even number
of errors. What is done after an error is detected depends on the particular applica­
tion. One possibility is to request retransmission of the message on the assumption
that the error was random and will not occur again. Thus, if the receiver detects a
parity error, it sends back a NAK (negative acknowledge) control character con­
sisting of the even-parity eight bits, 10010101, from Table 1-5 on page 45. If no
error is detected, the receiver sends back an ACK (acknowledge) control charac­
ter, 00000110. The sending end will respond to a NAK by transmitting the message
again, until the correct parity is received. If, after a number of attempts, the trans­
mission is still in error, an indication of a malfunction in the transmission path is
given. •

1-6 GRAY CODES

As we count up or down using binary codes, the number of bits that change from
one binary value to the next varies. This is illustrated by the binary code for the
octal digits on the left in Table 1-6. As we count from 000 up to 111 and "roll

over" to 000, the

(a) Binar

from 1 to 3.
For many a

problem. There,
bit when countill
illustrated by a
encoder is a dis~
position of the
opaque for bina
and optical sens
other side of the
the sensor respc
lies between tht
binary O.

The rotati]
suppose that thl

I

iATION 1-6 / Gray Codes 0 47

ode word either even or
and odd parity:

Idd Parity

00001
110100

ition of the code to pro­
an odd number of Is in
:r is adopted, with even
ary numbers as well as
,it may be placed in any

:U Transmission

imission of information
used, the simplest case
lted at the sending end
de parity bits are trans­
is then checked at the
t even (odd), it means
lsmission. This method
lracter transmitted. An
I codes, some of which
are of an even number
the particular applica­
age on the assumption
the receiver detects a

control character con­
1-5 on page 45. If no
ledge) control charac­
nsmitting the message
of attempts, the trans­
e transmission path is

•

Jits that change from
! binary code for the
up to 111 and "roll

o TABLE 1-6
Gray Code

Binary Bit Gray Bit
Code Changes Code Changes

000 000
001
010

2
001
011

011
100

3 010
110

101
110
111
000

2
1
3

111
101
100
000

over" to 000, the number of bits that change between the binary values ranges
from 1 to 3.

For many applications, multiple bit changes as the circuit counts is not a
problem. There are applications, however, in which a change of more than one
bit when counting up or down can cause serious problems. One such problem is
illustrated by an optical shaft-angle encoder shown in Figure I-S(a). The
encoder is a disk attached to a rotating shaft for measurement of the rotational
position of the shaft. The disk contains areas that are clear for binary 1 and
opaque for binary O. An illumination source is placed on one side of the disk,
and optical sensors, one for each of the bits to be encoded, are placed on the
other side of the disk. When a clear region lies between the source and a sensor,
the sensor responds to the light with a binary 1 output. When an opaque region
lies between the source and the sensor, the sensor responds to the dark with a
binary O.

The rotating shaft, however, can be in any angular position. For example,
suppose that the shaft and disk are positioned so that the sensors lie right at the

(a) Binary code for positions 0 through 7 (b) Gray code for positions 0 through 7

o FIGURE 1-5
Optical Shaft-Angle Encoder

48 Cl CHAPTER 11 DIGITAL SYSTEMS AND INFORMATION

boundary between 011 and 100. In this case, sensors in positions Bz, BI and Bo
have the light partially blocked. In such a situation, it is unclear whether the three
sensors will see light or dark. As a consequence, each sensor may produce either a
1 or a O. Thus, the resulting encoded binary number for a value between 3 and 4
may be 000,001,010,011,100, 101, 110, or 111. Either 011 or 100 will be satisfac­
tory in this case, but the other six values are clearly erroneous!

To see the solution to this problem, notice that in those cases in which only
a single bit changes when going from one value to the next or previous value,
this problem cannot occur. For example, if the sensors lie on the boundary
between 2 and 3, the resulting code is either 010 or 011, either of which is satis­
factory. If we change the encoding of the values 0 through 7 such that only one
bit value changes as we count up or down (including rollover from 7 to 0), then
the encoding will be satisfactory for all positions. A code having the property
that only one bit at a time changes between codes during counting is a Gray code
named for Frank Gray, who patented its use for shaft encoders in 1953. There are
multiple Gray codes for any set of n consecutive integers, with n even.

A specific Gray code for thc octal digits, called a binary reflected Gray code,
appears on the right in Table 1-6. Note that the counting order for binary codes is
now 000, 001, 011, 010, 110, 111, 101, 100, and 000. If we want binary codes for pro­
cessing, then we can build a digital circuit or use software that converts these codes
to binary before they are used in further processing of the information.

Figure 1-5(b) shows the optical shaft-angle encoder using the Gray code from
Table 1-6. Note that any two segments on the disk adjacent to each other have only
one region that is clear for one and opaque for the other.

The optical shaft encoder illustrates one use of the Gray code concept. There
are many other similar uses in which a physical variable, such as position or volt­
age, has a continuous range of values that is converted to a digital representation.
A quite different use of Gray codes appears in low-power CMOS (Complementary
Metal Oxide Semiconductor) logic circuits that count up or down. In CMOS,
power is consumed only when a bit changes. For the example codes given in Table
1-6 with continuous counting (either up or down), there are 14 bit changes for
binary counting for every eight bit changes for Gray code counting. Thus, the
power consumed at the counter outputs for the Gray code counter is only 57 per­
cent of that consumed at the binary counter outputs.

A Gray code for a counting sequence of n binary code words (n must be
even) can be constructed by replacing each of the first nl2 numbers in the sequence
with a code word consisting of 0 followed by the even parity for each bit of the
binary code word and the bit to its left. For example, for the binary code word
0100, the Gray code word is 0, parity(O, 1), parity(l, 0), parity(O, 0) = 0110. Next,
take the sequence of numbers formed and copy it in reverse order with the left­
most 0 replaced by a 1. This new sequence provides the Gray code words for the
second nl2 of the original n code words. For example, for BCD codes, the first five
Gray code words are 0000,0001. 0011, 0010, and 0110. Reversing the order of these
codes and replacing the leftmost 0 with a 1, we obtain 1110, 1010, 1011, 1001, and
1000 for the last five Gray codes. For the special cases in which the original binary
codes are 0 through 2" - 1, each Gray code word may be formed directly from the

corresponding bi:J
each of the remai:
to its left.

1...7 CHAPTl
In this chapter, v
why such system
structure of the ~
be applied to a bl
We then related
computer (PC).

Number-sy~

sented. Because (
discussed in deta
since they are USI

other than base
covered. Because
imal (BCD) was
instead of numb
sented. The pari1
code, which is cr

In subseql
floating-point n
ter, they are dif
to implement t1
until we examiI

R:EFERENC]

1. 	GRAY,F.l

2. 	PATIERSO
The Hard
2004.

3. 	WHITE,R

Que,l9%

PROBLEM~

The plus (+) i

~ 1-1. Thi~ pI
~ station

nON

)sitions B2, Bl and Bo
lear whether the three
. may produce either a
ralue between 3 and 4
)r 100 will be satisfac­
IS!

se cases in which only
:xt or previous value,
lie on the boundary
ther of which is satis­
7 such that only one

ver from 7 to 0), then
having the property

,unting is a Gray code
ers in 1953. There are
'ith n even.
y reflected Gray code,
ler for binary codes is
binary codes for pro­

t converts these codes
:ormation.
19 the Gray code from
I each other have only

y code concept. There
:h as position or volt­
iigital representation.
[OS (Complementary
or down. In CMOS,
: codes given in Table
'e 14 bit changes for
: counting. Thus, the
)unter is only 57 per-

Ie words (n must be
lbers in the sequence
y for each bit of the
Ie binary code word
yeO, 0) = 0110. Next,
: order with the left­
V code words for the
) codes, the first five
ng the order of these
1010, 1011, 1001, and
h the original binary
led directly from the

Problems 0 49

corresponding binary code word by copying its leftmost bit and then replacing
each of the remaining bits with the even parity of the bit of the number and the bit
to its left.

1-7 CHAPTER SUMMARY

In this chapter, we introduced digital systems and digital computers and showed
why such systems use signals having only two values. We briefly introduced the
structure of the stored-program digital computer and showed how computers can
be applied to a broad range of specialized applications by using embedded systems.
We then related the computer structure to a representative example of a personal
computer (PC).

Number-system concepts, including base (radix) and radix point, were pre­
sented. Because of their correspondence to two-valued signals, binary numbers were
discussed in detail. Octal (base 8) and hexadecimal (base 16) were also emphasized,
since they are useful as shorthand notation for binary. Arithmetic operations in bases
other than base 10 and the conversion of numbers from one base to another were
covered. Because of the predominance of decimal in normal use, Binary-Coded Dec­
imal (BCD) was treated. The representation of information in the form of characters
instead of numbers by means of the ASCII code for the English alphabet was pre­
sented. The parity bit was presented as a technique for error detection, and the Gray
code, which is critical to selected applications, was defined.

In subsequent chapters, we treat the representation of signed numbers and
floating-point numbers. Although these topics fit well with the topics in this chap­
ter, they are difficult to motivate without associating them with the hardware used
to implement the operations performed on them. Thus, we delay their presentation
until we examine the associated hardware.

REFERENCES

1. 	 GRAY, F. Pulse Code Communication. U.S. Patent 2 632 058, March 17,1953.
2. 	PATIERSON, D. A., AND J. L. HENNESSY, Computer Organization and Design:

The Hardware/Software Interface, 3rd ed San Francisco: Morgan Kaufmann,
2004.

3. 	WHITE, R. How Computers Work: Millennium Edition, 5th ed. Indianapolis:
Que, 1999.

PROBLEMS

The plus (+) indicates a more advanced problem.

,,a 1-1. This problem concerns wind measurements made by the wireless weather
~ station illustrated in Example 1-1. The wind-speed measurement uses a

