

Author Alan Clements

Year 2006

Title of Article/Chapter 2.4 Introduction to Digital Work

Title of Journal/Book Principles of Computer Hardware

Vol/part/pages 55-67

Publisher Oxford University Press

This Digital Copy has been made under the terms of a CLA licence
which allows you to:

Access and download a copy

Print out a copy

ISBN/ISSN: 9780199273133

5

~I---------

2.4 Introduction to Digital Works

. Digital Works 95 - OUP_2MPO<a.dwm RlilEI
file . ~dit Gircu it ·Yievl/ 100ls tielp

0 B
[;0 . n> . [>0 Q[) l[» D Do i?- f§] 1m ill iEll rru d 0 - mm IQ] ~ +

1

AI •

I> 0 DD II> ~

Multiplexer

Once the
expanded version JThis is the 1DI----~ of the macro has

expanded

J
been edited, you

macro. It
can retu rn to the

can be
circu it that04modified
embeds the macro

just li ke any
by eli ki ng on

other.
Close Macro.

2D----+-----L~

3

I ure Z. Editing the expanded form of the macro.

-. oujilcoiworks % . OUP_2MPLXb dwm I!lIiII3 Digital Work. 9~ OUP_2MPIXb.dwm I!lIiIEIA
[I. Ed'l QlOI,f 'it"'" Tools tlelp

I) ,g

[}> () D- I><> D I» i;>- I!iI IlEl m mil 101 Cl [J ;::::ht
:0 I> 0 I> ~ " I"'

J

~
--~---------~~------

(a) The modified macro. (b) The circuit with the modified macro.

figure 2.~ 1 Example of editing a macro.

56 Chapter 2 Gates, circuits, and combinational logic

2.5 An introduction to Boolean
al~ebra

We've already seen that yo u can describe circuits containing

gates in terms ofvariables and AN D, OR, and NOT operators.

Consider an AN D gate with input variables A and 13, and an

output C. We can write the Boolean equa tion C = A -B which

uses variables A, 13, and C and the AND operator. In this sec

tion we introduce Boolean algebra I, show how equations are

manipul ated, and demonstrate how logic circuits can be con

structed with only one type of gate. Students requiring o nly a

very basic knowledge of Boolean algebra can omit some of

the fin e detail that appears later in this secti on .

George Boole was an Lnglish m athematician (1815-1864)
who developed a mathematical analysis of logic and pub

lished it in his book An Investigation of the Laws of Thought in

1854. Boole's algeb ra of logic would probably have remain ed

a tool of the philosopher, had it not been fo r the development

of electro n ics in the 'wentieth Century.

In 1938 Claude Shannon published a paper entitled 'A

symbolic analysis of relays and switching circuits', which

alJjJlied Boolean algebra to switching circuits using relays.

Such circuits were wi dely used in telephone exchanges and

later in digita l compulers. Today, Boolean algebra is used to

des ign digital ci rcuits and to analyze their behavior.

Digital design is concerned with the conversion of ideas or

speci fica tions into hardware and Boolean algebra is a tool

that facilitates this process. In particular, Boolean algeb ra

permits an idea to be expressed in a m athem atical form and

the resulting exp ression to be simplified and then translated

into the real hardware of gates and o ther logic elements.

Let's begin with a form a] definition just in case this book

falls into the h:l11ds of a ma thematician . 1300lean algebra (or

allY other algeb ra) consists o f a set of elements E, a set of

func tions F that operate on members of E, and a set of basic

laws called axioms tha t d efi ne the properties of E and F. The

se t of elements making up a Boolean algebra are va r ia b J e~ an d

constants that have fi xed values o f 0 or 1. A Boolean algebra

with n variables ha~ a set of 2" possible permutations o f tJlese

variables.

Only three functions or operations are perm itted in

Boolean algebra. The first two are th e logical OR represen ted

by a plus (e.g. A + il) aJ1d Ihl: logica l AND represen ted by a

dot (e.g. A· B). Some texts use a u (cup) or a v to Jenole the

logical OR operator and a (\ (cap) 01' a 1\ to denote a logical

AND operator.

The use of the plus and dot symbols is rather confusing

because illC same symbols are used for addit ion and mult ipl i

cation in everyday life. One reason thelt these particu lar sym

bols have been chosen is th al they behave rather like

conven tional ad dit ion and multiplica tion. Another possi ble

reason Boole cbose + and , to represenl the logical OR and

AND functions is that Boole's background was in probability

theory. The chance of throwing a 1 or a 2 with two throws of
a si ngle die is 1/6 + 1/6, whereas th e chance of throwin g a 1

and a 2 is 116 X 1/6; that is, the or and and in probability the

ory also behave like addition and multiplication, respectively.

The third operation permitted in Boolean algebra is that of
negation or complementation and is denoted by a bar over a

constant or a variable. The complement of 0 (i. e. 0) is 1and vice

versa. The equation X + Y . Z= A is read as 'X o r Y and not Z
equa ls t\ The priority of an AND operator is higher than that

of an OR operator so th at th e expression m eans A = X +
(y .Z) and not A = (X + Y)Z. Som e texts use an asterisk to

denote negation and some use a stroke. Thus, we can wri te

N OT(X) as X or X'" or /X.
The ar ithmetic operations of subtraction and division do

not exist in Boolean algebra. For example, the Boolean

expression X + Y = X + Z, cannot be rearran ged in the
form (X + Y) - X = (X + Z) - ;{. which would lead to

Y = Z. If you don't believe this, then consider the case X = I,

Y = 1, and Z = O. Th e left-hand side of the equatio n yields

X + Y = 1 + 1 = 1, and the right-hand side yie lds

X + Z = 1 + 0 = 1. That is, the equation is va lid even

though Y is not equal to Z .

Axioms and theorems of
n

An axiom or postulate is a fund amental rule that has to be

takeil for granted (i.e. the axioms of I300lean algebra define

the framework of Boolean algebra from w hi ch everything

else can be der ived). The firs t axiom is called the closure

property, which states that Boolean operations on Boolean

va riables or constants always yield Boo lean results. If vari·

abies A and B belong to a set of Boolean elements, the opera

tions A· B, II + B, an d N OT A and NOT B also belong to the

set of Boolean elements .

Boolean variables obey the same commu tative, distributive,

and associative laws as the variables o f co nven tional algebra.

We take th ese laws fo r gra n ted when we do everyday ar ith

m et ic; for exam ple, the commutative law stales Ihal

6 X 3 = 3 X 6 .'ra ble 2. 13 describes the commutative, distr ibu

tive, and associative hwvs of Boolean al geb ra.

We approach Boolean algebra by first looking a t the action

o f NOT, OR, anu AND operatio ns on constants. The dfect of

these th ree operatio ns is best illust rated by means o f th e truth

table given in Table 2.1 4 . The!>e rules may be extended to any
I1U mber o f var iables.

We ca n extend Table 2.14, wh ich dehnes the rela tionship

between the Boolean opera tors and the cons taJ) ts 0 and 1, 10

I There are, in fact, an infini le number of Boolean algebras . We IIIC
inlere~lcd only in th e Rook-an algebra who$<.' variables have binar)' lwo
stJte values.

A + B= B + A
A·B = BA

A (B C) = (A B)· C
A + (B + C) = (A + e
A(B+ C)=A·B+ t
A + B· C = (A + B)(A

ble 2. ,3 Commul

N(

0 = 1

l = 0

Table 2.14

Ihe relationship bet

literal (see Table 2. 1

'vVe can prove th<

substituting all the

example, consider

0.1 = 0, which is c(

an AND gate is tr

Similarly, if X = 0

T herefore, the expr

Theorem 1 X

Pr()of X

Tl1corem 2 X

Proof X

Theorem 3 X

Proof X

- -

1was in probability
with two throws of
1(e of throwing a 1
I in probability the

:a tion, respectively.
an algebra is that of
)ted by a bar over a

J (i.e. 0) is 1and vice
as 'X or Y and not Z
r is higherthan that
)n means A = X +
ts use an aster isk to
Thus, we can write

ion and division do

mple, the Boolean
rearranged in the

.ich would lead to
;ider the case X = 1,

the equation yields
hand side yields

Ition is valid eve n

1rule that has to be
olean algebra define
n which everything

s called the closure
orati ons on Boolean
lean results. If var i
clemen ts , the opera

B also belong to lhe

lutative, distributive ,
onycntional algebra.

e do everyday aritb
ve law states that

,mmutative, d istribu

~bra.

looking at the acti o n
nstants. The effect o f

Jymeans of the truth
Iy be extended to any

ines the relationship

constants 0 and 1, Lo

loole,ul algebras. We are
Iriablcs hnvc binnry rwtl

2.5 An Introduct ion to Boolean algebra "j7

A+ B= B+A The AND and OR operators are commutative so that the order of the
AB ~ BA variables in a sum or product group does not ma tter.

A· (B· C) = (A· B) . C The AND and OR operators are associative so that the order in which
A+ (B + c) = (A + B) + C sub-expressions are evaluated does not matter.

A (B + c) = A B + A . C 	 The AND operator behaves like multiplication and the OR operator like
A';' BC= (A+ B)(A+ C) 	 additi on. The firs t distributive property states tha t in an exp ression

containing both AND and OR operators the AND operator takes precedence
over the OR. The second dist ributive law, A + B· C = (A + B)(A + C), is not
va lid in conventional algebra.

I 2.13 Commutative, distributive, and associative laws of Boolean algebra.

~.to D 	 cr

0= 1 00 = 0 0+0=0 	 ox = 0 O+X=X X=X

1= 0 o 1 = 0 0+1=0 1 X = X 1 + X = 1

0=0 1 + 0 = 1 X X=X X+X=X

11 = 1 1 + 1 = 1 X)(=0 X+)(= l

Table 2 1 Basic axioms of Boolean algebra. ~ Boolean operations on a
constant and a variable.

the relationship between a Boolean operator, a variable, and a values ofX. A proof in which we test a theorem by examining
li teral (see Table 2.15). all possibilities is called proof by perfect induction.

We can prove the validity of th e equations in Table 2.15 by The axioms of Boolean algebra could be used to simplify

substituting all the possible values for X (i.e. 0 or 1). For equations, but it would be too tedious to keep going back
example. consider the axiom O· X = O. If X = 1 we have to first principles. Instead , we can apply the axioms o f
0.1 = 0, which is co rrect beca use by definition the output of Boolean algebra to derive some theorems to help in the sim

all AND gate is true if and only if aU its in puts are true . plification of expressions. Once we have proved a theorem
Similarly, if X = 0 we have 0·0 = 0, which is also correct. by Llsing the basic axioms, we can apply the th eorem to

Therefore, the expression o· X = 0 is correct for all possible equations.

Theorem 1 X+X·Y=X

Proof X+X ·Y = X ·l +X·Y Using 1· X = X and commutativity
= X(l + Y) Using distributivity
= X(1) Because 1 + Y = 1

=X

Theorem 2 X+X·Y=X+Y

Proof X + X . Y = (X + X . Y) + X . Y By Theo rem 1 X = X + X· Y

= X+X·Y + X·y
= X + Y(X + X) Remem ber that X + X= 1
=X+Y(l)

= X +Y

Theorem 3 X·y + X·Z + Y· Z = x·y + X·Z

Proof X· Y + X· Z + y. Z = X· Y + X· Z + y. Z(X + X) Remember that (X + X) = 1
= X·y + X Z + X·Y·Z + X·Y· Z Multiply bracketed terms
= X· Y(l + Z) + X· Z(L + Y) Apply distributive rule
= X·Y(l) + X·Z(l) Because (1 + Y) = 1
=X·y + XZ

l

i

- -

58 Chapter 2 Gates, circuits, and combinational logic

Inputs

X Y Z x 	 x y X Z Y Z X V+X · Z X Y+X z+y ·z

o0 0 0 0 0 0

1

0 0 0 0 0

0 0 1 0 1 0

o
0 1 1 1 0 1 1 1

I ~ 0 0 o 0 0 0 o

0 1 o 0 0 0
 o

0 o 0 0

o 0

~same-..

Table 2. 6 Proof of Theorem 3 by perfect induction .

We can also prove Theorem 3 by the method of perfect (Table 2.16). Because the columns labeled X· Y + X· Z and

induction. To do this , we set up a truth table and demonstrate X· Y + :x. Z + y. Z in Table 2.16 are identical for all possible

that the theorem holds for all possible values of X, Y, and Z inputs, these two expressions must be equivalent.

Theorem 4 X(X + Y) = X

Proof X(X + Y) 	= X· X + X· Y Multiply by X

= X + X ·y Beca use X . X = X

= X By Theorem 1

Theorem S X(X + Y) = X·Y

Proof X(X + Y) 	= X· X + X· Y

=O + X · Y BecauseX · X = 0
= X ·Y

Theorem 6 (X + Y)(X .L y) = X

Proof (X + Y)(X + Y) = X· X + X· Y+ X· Y + Y . Y

= X+X·Y+X·y Because X . X = X, Y . Y = 0

= X(I + Y + Y)

=X

Theorem 7 (X + Y)(X + Z) = X· Z + X· Y

Proof (X + Y)(X + Z) = X· X -r X · Z + X· Y + y. Z Multiply brackets

= XZ+X·Y + Y·Z BecauseX·X = 0

= XZ '+ x·y By Theorem 3

Theorem 8 (X + Y)(X + Z)(Y + Z) = (X + Y)(X + Z)

Proof (X + Y)(X + Z)(Y + Z) = (X· Z + X · Y)(Y + Z) By Theorem 7

= X·YZ + X· Z · Z + X·y·y + X·Y Z

= X·Y· Z + X· 7. + X·Y + X·Y·Z Because X . X = 1

= X Z(Y + I) + X ·yO + Z)

= X · Z+ X ·Y

= (X + Y)(X + Z) By Theorem 7

We provide an alternative proof for Theorem 8 when we look at de Morgan's theorem later in this chapter.

Theoren19 X 'Y'L

Proof To pre
expre:

lfX -t

basic;

(X+

Subproof 1 (X +
= X·

=0

Subproof2 (X +
= y.

= (Y
= y .

= y.

Sw(

(X +
(X +
com~

Theorem 10 X·Y·

Proof One
wew
prov!

Table 2.11 Proof ofH

Theorems 9 and

Lheorem. Th is theore

I:tl lllplemented by reI

replacing O R operate

ing va r iables and I

lorgan's theorem la

An important rule

of duality. Any expre

replaced by OR (and

versa) . Consider the.

- -

- - --

2.5 An Introduction to Boolean algebra 59

d X · Y + X· Z and

tical for all possible

ivalent.

x

0

'X,y· Y = 0

ets
= 0

= 1

pter.

Theorem 9

Proof

Subproof I

Subproof2

heorem 10

ProQf

X·Y·Z = X + Y + Z

ToprovethatX·Y·Z = X + Y + Z,weass ume that the

expression is true and test its consequences .

If X .+ Y+ Z is the complement of X · y. Z, then from the

basic axioms of Boolean algebra, we have

(X + Y + Z)· (X· y. Z) = 0 and (X + Y + Z) + (X Y Z) = 1

(X + Y + Z) . X Y Z = X· X . Y . Z + y. X . y. Z + z · X . Y . Z

= X·X·(Y · Z) + Y Y·(YZ) + ZZ(X ·Y)

=0

(X - Y + Z) -I- X· Y Z = y. Z· (X) + X-I- Y + Z Re -arrange ~quation
= y· z + + Y-I- Z UseA B + B = + B
= (Y -I- y. Z) + X + Z Re-arrange equa tion
= Y + Z+Z+X

= Y +J+ X =1 Use Z + Z = J

As we have demonstrated that

(X + Y + Z) . X· y. Z = 0 and that

(X + Y+ Z) + X· y. Z = I, it follows that X + Y+ Z is the
complement of X . Y . Z.

X ·Y·Z = X Y + Z

One possible way of proving Theorem 10 is to use the method

we used to prove Theorem 9. For the sake of variety, we will

prove Theorem 10 by perfect induction (see Table 2.17).

Inputs

X Y Z X+Y+Z Xf Y-"-l X Y I XVZ

0 0 0 0

0 0

0

1

0 0

0 1

0

1

0

0

0

0

0

0

0

1

1 0

0 1

1 0 0

0 1

0 1 0

0 0 1

0 0 0

1

0

0

0

0

0

0

0

.... same •
ble 2.17 Proof of Theorem 10 by perfect induction.

Theorems 9 and 10 are collectively called de Morgan's Expression Dual
IheOl"Cln. This theorem can be stated as an entire function is X =X+X X=X X (replace + by ·)
complemented by replacing AND operators by OR operators, l=X+l 0= XO (replace + by· and
replacing OR operators by AND operators, and complement replace 1 by 0)
ing variables and literals. We make extensive use of de X = X(X + Y) X = X + XY (replace· by + and
Morgan's theorem later. replace + by·)

An important rule in Boolean algebra is called the principle
of dllality. Any expression that is true is also true if AND is

As you can see, the dual of each expression is also true.

replaced by OR (and vice versa) and I replaced by 0 (a nd vice

versa). Consider the fol lowing examples of duals.

6('1 Chapter 2 Gates, circuits, and combinational logic

When novices first encounter Boolean algebra, it is not Observation 2 x . Y + X· Y is not equal to 1
uncommon for them to invent new theorems that are incorrect X· Y + X . Ycannot be simplified
(because they superficially look like existing theorems). We
include the following observations because they represent the Observation 3 X·Y is not equal to X·y

most frequently encountered misconceptions.
Observation 4 	 X + Yis not equal to X + Y

Observation 1 	 X · Y + X Y is not equal to 1
X· Y+ X· Y cannot be simplified

(c) X· Y·X ·Z

(d) (X + Y)(X + Z)

(e) (W+X + Y·Z)

V,Then I simplify Boo
groupings.

(a) X+Y + 	X · Y + (

No te: ' II/hen a Boole1
v'lriables.

(b))(·Y· Z +X ·y ·

(c) 	x· Y.x.z=x·Y +

=X Y

Note: Both expressio
", len t. T hese equatiol
diagram of Fig. 2.14.

(d) (X + Y)(X + Z]

(e) (W + X+Y ·Z;

(f) WXZ I- XYZ +

Note that YZ = '

F"-r'-l r 	 r n
This table provides all possible functions of two variables A and
B. These two variables have 22 = 4 possible different
combinations. We can associate a different function with
each of these 42 = 16 values to create all possible functions

Input

IA B r= 	 F F" F F

o o o o o o
o o o o o

o o o o 0 1

o o o 0 0 o o o

Fo

F,

F2

F3

F4

Fs

F6

Fl

Fa

F9

FlO

o
A + B
AB

A
-

AB

B

AiflB

AB
AB

A®B
B

Examples of the use of Boolean algebra In

~q",<,

Having presented the basic rules of Boolean algebra, the next
step is to show how it's used to simplify Boolean expressions.
By simplifying these equations you can sometimes produce

of two variables; that is , there are only 16 possible types of
two-input gate. Some of the functions correspond to
functions we've already met. Some functions are
meaningless.

Functions

L r 	 f .., F F"-,, F F

o o o 1 o
o o o o
o o o o

m

NOR

NOT

NOT

EOR

NAND

AND

ENOR

A·B+AB+AB=A ·B =A+B

F' 2

F"

A

F13 A·B+A·B+A · B = A·B=A+ B

F' 4 A+B OR

F, s

a cheaper version of the logic circuit. The following equa tions
are generally random functions chosen to demonstrate the
rules of Boolean algebra.

(a) X + y + X· Y + (X + Y) . X· Y

(b) X·y·Z + X·Y·Z + X·Y·Z + x·Y·z

- - -

- -

, 1

plified

- y

ble types of
)nd to
re

Fl , F s

o

ollowing equations

o demonstrate the

z

2.5 An Introduction to Boolean algebra

(f) W ·X· Z -I- XY Z+ W·X·Y + XYZ+W·Y·Z(e) X·Y·X·Z
(g) W· X· Z + W · Z + X . Y . Z + W . X . Y (d) (X + Y)(X + Z)(Y + Z)

(e) (W -I- X + Y·Z)(W + X)(X + Y) 	 (h) (X + Y + Z)(X + Y + Z)(X + Y + Z)

utions

When I simplify Boolean expressions, I try to keep the order of the variables alphabetical , making it easier to pick out logical
groupings.

(a) 	 X+Y + X· Y + (X + Y) X· Y = X + Y + X· Y + X · X · Y + X ·y. Y

= X + Y + XY AsA A = 0

= X+Y -I- Y as A A· B = A + B

= 1 as A-I- = 1

Note: When a Boolean expression can be reduced to the constant 1, the expression is a lways tru e and is independent of the
variables.

(b) 	X· Y Z + X· y . Z -I X· y . Z -I- X· Y Z = X y. (Z + z) + X· Z · (Y + Y)

= X ·Y(l) + X Z · (l)

= X · Y + X·Z

(e) 	X·Y·X·Z = X·y .. X·Z By Theorem 9

= XY +X ·Z As F = F

~!ote: Both expressions in eAamples (b) and (c) simplify to X· Y + X · Z, demonstrating that these two exp ressions are equiv
alent. These equa tions are those of the m ultiplexer with (b) derived from the truth table (Table 2.9) and (c) from the circuit
diagram of Fig. 2. 14.

(d) (X + y)(x + Z)(Y -I- Z) = (X ·X + XZ + X Y +Y ·7) · (Y -t- Z)

= (X · Z -I X· Y + y . Z) . (Y + Z) AsX X = 0

= (X· z + X· Y) (Y + Z) By Theorem 3

= X·Y· Z+ X Z ·Z +X ·Y·Y +X ·Y· Z

=X Y Z+X ·Y Z

(e) (W + X + y. Z)(W -I- X)(X + Y) = (W· W + w · X ' w · y. Z + W · X + X· X + X· y. Z)(X + Y)

= (X + W· y . Z + W · X -I- X -t- X · Y Z)(X + Y)

= (X + W Y Z)(X -I- Y)

= X·X+X ·Y+ W ·X·Y Z+W Y· Y· Z

= X·Y+ W · / ·Y· Z+W ·Y· Z

= X . Y + W . Y Z(X + 1)

= X Y +W YZ

(f) 	 'vVXZ + XYZ WXY + XYZ + WYZ = wXi I yz(5{' + X + W) + XY

= WXZ + YZ + WXY

= WX(Y + Z) + YZ

Note that YZ = Y+ 7' so we can write

= W ' I (Y + Z) + Y + Z

=w ·x +Y · z Because + A.' R = A + B

62 Chapter 2 Gates, circuits, and combinati onal logic

(g) 	WXZ + WZ -I XYZ -I WXY = Z(WX + W) + XYZ + WXy

= Z(X + W) + XYZ + WXY

= XZ + WZ + XYZ + WXY

= X(Z + YZ) + WZ + WXY

~ X (Z + Y) + WZ + WXy

= Xl + XY I- WZ + W XY

fhcse examples ill
ex I'rl.'~siol1S. It \ ,.
snilltioll. Later we st

ul'pro.H. h that gives us
mal solut ion.

rhe 1,)lIowing exam
= XZ T A'YO + W) + wz .I"plied to a practical
= XZ + XY + WZ ;t 2 hit by 2-bit binar~

' II ;llld Y I ' Yo and the~
(h) (X + Y + L)(X + Y + Z)(X 	+ Y + Z) = (Y + Z)(X + Y + Z) as (A + B)(A -I- B) = A is I" 7.~ , Z" Zo' 'liVe ha

= Z (X - Y) + Y . Z as (A + B) (A + C) = A . e T A· B ('Cl' Chapler 4), but
lll'gi n by cOllSlderi = XZ I Y Z + Y · Z

- - (Ii)!. 2,::;2) and const
= X . Z + Y(Z + Z)

= X· Z + Y

I " - x " x,)'Y"Yn +
In this example,2 >-- 3=6=OllO X"XIl ,yiy, +

/ For example, , ,0 = 2
XI ,XO,YO + X,

.,.
11
V 2-bit by 2-bit f--- -+

mult iplier
1\

JJ n
""	

/
Input Xo Zo 	 I\U'YO(X, + X,
X Xl ZI

4-bit product 	 - X, Yo

Zz ZInput Yo z, = X, . Xo Y, , Yo +
Z3

XI X"' YI (Yo +
'- For example, 1,1"" 3 Figure 2,52 A 2-bi t multiplier

Y Y,

- XI·X",Y, + XI

= Xu ·Y,(X, + X,

Inputs Output - X~ , · Y,(X, -r Yo

X V Z '\I'X,,'Y +"

XxV=Z Xl Xo V , Yo Z! Zz I , Lu
l. ~ X Xu Yl Yo

o x O=O 0 0 0 0 0 0 0 0 = X, ·X")' ,(Yil +j
O X 1 = O 0 0 0 1 0 0 0 0 X~'X,,·Y + X
OX2=O 0 0 0 0 0 0 0 X,·y (Xo + X
O X 3=O 0 0 1 0 0 0 0

XI''!' ,(X" + YI
l X O= O 0 1 0 0 0 0 0 0

X,·Xi'·Y' +- " 1 X 1 = , 0 0 1 0 0 0

1 X 2 ~ 2 0 0 0 0 0 L X1·X,,·Y j -Yo
1 X 3 = 3 0 0 0 1 1

2 x O = O 0 0 0 0 0 0 0

2 X 1 = 2 0 0 0 0 1 0

2 x 2 = 4 0 0 0 0 0

2 x 3 = 6 0 1 1 0 1 0

3XO=O 0 0 0 0 0 0

3 Xl = 3 0 1 0 0 1

3 X 2=6 0 0 0
Z = X,-Xo-Y, Yo 3 X 3=9 0 0

It 's interesting to

Table 2,18 Truth table for a 2-bit by 2-bit mult iplier. fllll/c'/ric in X and

'1." . A"'Y,,

Z, XI-X" .,Y, +
Z, . Xl-X,,-Y +,

- -

- -

+ 1\ B

multiplier

These examples illustrate the art of manipulating Boolean
expressio ns,lt's diffic ult to be sure we have reached an optimal

solution, Later we study Karnaugh maps, which provide an

approJch that gives us co nfidence tha t we've reached an opti
mal solution,

.sig ot a it 1uL 'r '
The foll owi ng example illustrates how iloo lean algebra IS

applied to a practical l 'roblem. A designer w ishes to p roduce

a 2· bit by 2-bit binary multiplie r. The two 2-bit inputs are X"
Xoand Yl ,Yo and the four-bit product at the o utpu t terminals

is Z;, Zl' Z" ZOo We have not ye t introd uced binary arithmetic
(see Chapter 4), but no thing difficult is involved here, We

begin by considering the block diagram o f the syste m

(Fig. 2.52) and constructing its truth table.

2.5 An In troduct ion to Boo lean algebra 63

The multiplier has fo ur inputs, XI) XO' Y I' Yo, (ind icat
ing a 16- line truth table) and four outp uts , Table 2.18 pro

vides a truth tabl e for the bina ry multiplier. Each 4-bit

in put represents the product of two 2-bit numbers so that,

for example , an input of XI ' Xu, Yp Yo = lOll represents
the p rodu ct 102 X Il ~ or 2 X 3, The co rrespo ndi.ng out

put is a 4-bit product, which, in t his case , is 6 or OliO in

binary fo rm ,

Fro m Table 2,18, we ca n derive expressions for the fOUf

ou tputs, Zu to Z \, Whenever a truth tabl e has m ou tp ut

columns, J set of m Boolean equ ations must be der ived, One

equa tion is associated with each of th e m columns. To derive

an expression fo r ~, the four minterms in the Zo column are
ORed logically,

20 = XI ·XO,y l ·y o + X I,XO'Y!'Yu + XI,Xo'Yj'Yo + X I ,XO'Y!'Yo

= XI ,XO 'YO(Y I + YI) X I ,XO 'YO(Y I + Y I)

= XI ,XU'YO XI· Xu ,y O

= XO'YO(XI + XI)

7.1 	 = XI ' :\o 'YI, YO + Xj,Xo'Yl'Yn + XI ,XU,y l ,y O+ X j ,X" ,Y I ·Yo + X I 'X~'Y I ' YO + X I,XO ,Y l, YU

= XI ,XO,Y I(YO + Y Il) + X I 'Xo'Y1j(Y I +)Tl) + X I ' ,Y I,YO -I- X I 'Xu ,Yl ,YO

= XI ,XO'YI + XI ,XU, y O + X I ' ·yl, y O + X I, XO' YI'YO
-~.

= XIl ,YI(Xl + X I ,yO) + XI 'Yo(Xn + XU,yl)

= X" ,YI(Xl + Yo) + X I 'YOCX{j + Y I)

= XI ,XQ'Y I + XO,Yl ,YO + X l ·X0 ·YO + XI ,yl ,y O

l 	 ~ / I ,Xo' Yj 'Yn + X! .Xu 'Y I 'YO + X I ,XO' Y! 'YiI

= XI '-XO,Y I(YO + Yo) + XI '~'Y j 'Yn

- XI"Xo 'YI ;- X I 'Xu ' YI 'YI1

:0 X\ ,YI(X'J + XoYII)

= XI 'YI(~ ..L Yo)

= XI,XO 'Y I + Xj'YI 'Yo

We have now obtained four ~imp l ified Sum of products

~xpJ'(;ss ions for 20 to Z, ; that is,

~I = Xo ·Yo

Lj =XI ,XO 'Yl + ~ 'Y I ' Yo + XI ,XO ,YU + XI ·YI ,YO

Z: = X I '~ ' YI + X I ·Y j ,Yo

L = XI'~ ' YI ' YO

It's Interesting to note that aeh o f the above expressions is

symmetric in Xand Y. This is to be expected- if the p roblem

ilsel f is syml11etri c in X and Y (i ,e, 3 X 1 = 1 X 3), then the

resuil should also demonstrate this symmetry. There are

many ways or rea lizing the exp ress ions for Zo to Z" The
c,ircu it of rig, 2.53 ill us tra tes o ne possible way.

2.5 2 De Morgan's theorem

Theorem~ 9 and 1 () provide the designer with (l powerful tool

because they enable an A D functio n to be implemented by

http:correspondi.ng

- - -

6' Chapter 2 Gates, circuits, and combinationai iogic

x, Xo Y, Yo

-
Y, YXl Xo 0

-

LJ
~Xoy ,Yo
LJ
~

LJ

I\X1X

'---

~

LJ

'-

Figure 2 . .53 Circuit fo r the two-bit multiplier.

an OR ga te and inverter. Similarly, th ese theo rems endble an

OR gate to be implemented by an AND gate and inverter.

We first demonstrate how de Mo rgan's theorem is applied

to Boolean expressions and then show how circu it s can be

converted to NAND-on ly or NOR-only forms. You may

wonder why anyone sho uld wish 10 implement ci rcui ts ill
D (or NOR) logic only. There arc several reasons fur

tltis, bu t, in gene ral, NAN D gates opera te a t a h igher speed

than AND gates ::md Ni'\ND gates can be bLlilt with fewer

components (at t he chip level) . Later we shall exa m ine in

m ore detai l how a circuit can be designed entirely wit h

NAND gates only.

To apply de Morgan's th eorem to a funct ion the ANDs a re

changed into ORs, ORs an d the in to AN Ds ,md var iables (and

Zo

X, XOYl

I
ZI

J
X1XOYO r

X,Y,Yo

OY1

I
) Zz

X,Y ;Y~ r

X,XoY,Yo Z3

li teraLs) are cnmplemen ted . The following exam pIes illustrak

the app lication of de Morgan's theorem.

1. 	 F = X ·y + X ·Z We wish to appi y de Morgan's

theorem to lh~ right-ha nd side

= X· y . X· Z The + becom es · and variables

'X · Y' and 'X · Z' co mple mented

= 	 (X + Y)(X + Z) Variables X ·Y and X·Y are

themselves complemented

As you can see, the first step is to replace the OR by an AND

operator. The compound variables X · Yand X · Z are comple

mented to get X·Y and X ·Z. The process is continued b)

applying de Morgan to the two complemented groups (i.e.

x ·y becomes X + Yan d X·Z becomes X+ Z).

fT=A·.B+C.D +

= A·B·c. D· A·r

- (A + B)(C +

" F = i\--:-S ·(C -+£.1
-A + B+C

= A + B + C·

=A+B+C (

This exam ple demi.JI1S

til eval ua te.

4. A pfI)of of Theoren

(X ~· Y) · (X + Y) · (Y

.. ()ml' gatt!s are /Je tter
gat~ is both faster and

£alc Consequently, it
w.ing one Lype of gale

,\ dibrita l l.ircuil wilh 0

is nnl a uniform rani

n omIC reasons m ilJ1L

rallge of gates (e,g. Iv

IO -input AND, two- iJ

many types o f NAND

tu till J3- inpUl NANI
NAND logic We fi r

be cOllslrudcd from
lkm(1n~tra te that we

f',.J t t's only. To COllst n

gat~s , de Morgan's tht

IlR operators in the

wish 10 generate the eJ

gale~ on ly. We begin

l'xpression, as this dOl

does give us tbe 0Ppo

f=A+ll +C

-
F=F = A+13+C

F = A·R ·C

- ----

5

----+. Zo

___--+.. Z

examples il lustrate

Iy d\! Morgan's
right-hand side
s . and variables
:' complemented
II1d X'Yare
lplemented

he OR by an 1\ND
J X . Z are comple
;5 is continued by
le~ed groups (i.e.
l- Z) .

2. 	F = .B + C· D + A· D

= A·B·C ·D ·A·D

= (A + 13)(C + D)(A + D)

3. F = A·B·(C + E·D)

= A + B + C + E·D

=A+ B + C -E-D

= A + B ..L C. (E + D)

2.5 	 An Introduction t o Boolean algebra

Repla e + by· and omplement the product terms

Expand thc complemented pro uct terms

This is a productlerm with three eJemt:lll';.

Replace · by + and con pleml~nt variable"

Evaluate the complemented expression (hange + to ·)

Fina l~tcp,evalua te E·D

This example demonstrates how you have to keep applying de Morga n's theo rem un til ulere are no complemel ted terms left
to evaluate.
4. A proof of Theorem 8 by de Morgan's theorem

(X + Y)'(X + Y) ·(Y -I Z) = (X + YH X ;- ZHY T Z)

=/+Y+X + Z+y, Z

= X·y + X·Z + Y ·l

= x ·Y + X·Z

= 5(·Y ·X·Z

= (X + Y)(x + Z)

I
Implementing logic functions in

Some gates are be rrcr than others; fo r example, the NAND
gate is both faster and cheaper tha n the corresponding AND
gate. Consequel tly, it's often necessary to rea lize a circu it
llsing one type 0 gak only. Engineers sometimes implement
a digital circuit with one particula r type of gate becau 'e there
is not a uniform ran ge of ga tes avai lable. For obvious eco
nom ic reasons manu facturers don't sell a comprehensive
range of gates (e.g. two -input A1 D, three- input AND, . .. ,
IO-input AND, two-input OR • . . .). For example, there are
many t)'Pes of AND gate, from the quad two- inpu t NA D
to the 13-inpul NAND, but there are few types of AND gates.

NAND logic We first look at the way in which circuits can
be constructed from nothing but NAND gates and tben
demons trate that we can also fabricate circuits with NOR
gates only. To construct a circuit solely in terms of AND
gates, de ~(organ's theorem must be invoked to get ri d of all
OR operators in the expression. For example, suppose we
lI'ish to generate the expression F = A + B + C using NAND
gates only. We begin by applying a double nega tion to the
expression, as this does not al ter the expression's value but it
docs give u. the opportunity to apply de Morgan's theorem.

F= A+B+C

-

F= F = A R + C

I = A·B·C

The original expression using
OR logic

Double negation has no effect on
the value of a fu nction

Apply de Morgan's theorem

Complement twice because X = X.

Remove inner bar by applying de Morgap

Complement the th r 'c two-variable groups

Use Theorem 3 to simplify

Remove outer bar, change + to ·

Rem ve bars over two-variable groups

We've now converted the OR [unction into a A:-.lD func

tion. The th ree NOT functions that genera te A, H,and Ccan
be implemented in terms of NOT gates, or by means of two
input NAND gates wilh their inputs connected together.

Figur\! 2.54 shows how the function F = A -'- B + C can
be implemented in NAND logic only. If the inputs or a

NAND gale are A and B. and the outpu t is C. then C = A· B.
But if A = B, then C = 1\ . A or C = A. You can better under
stand this by looking al the truth table for the NAND gatc,
and imagining tbe effect of remo ing the lines A, B = 0, l and
A,B = 1, 0.

It's important to note thal wc are not using de Morgan's
theorem here to simplify Boolean expressions. We are using
de Morgan's theorem to convert an expression in to a fo rm
suitable [or realization in terms of NA D (or NOR) gates.

A

B---~--i

----r-~

c----.......~

Figure 2.!>4 Implementing F = A + B + C with NAND logic only.

66 Chapter 2 Gates, circuits, and combinational logic

By applying the same techniques to the 2-bit by 2- bit

multiplier we designed earlier we can convert th e expressions

for the four outputs into NAND-only logic.

Zo = Xo ·yo = XoYo 	 (i.e. NAND gate followed by NOT

ga te = AND gate)

Zt = X1XOY 1 + XOY1YO+ X1XOYO+ X1Y1Yo

= X1X1Yo + XO¥IYO + X1XOYO+ X1Y 1YO

= XtXOY I·XOY IYO ·XI XOYO·XI YI YO

X1 Xo Y1 Yo

I I I I 1 I 1 1
l.! l.) l) lJ

Xl Xo Yl Yo

'" fV

~
LJ
~
~

~
-
.--

I'"

.--

'" LJ

Figure 2.55 Implementing the multiplier ci rcuit in NAND logic only.

Z2 = X1XOY 1 + X1Y1¥O

= X1XOY1+ X1Y 1YO

= X1XOY 1. XJY1YO

Z} = X1XOY1 YO

= X1XOY1YO

Figure 255 shows the implementation of the multiplier in

terms of NAND logic only. Note that this circuit perfo rms

exactly the same function as the circuit of Fig. 253.

NOR logic The procedures we've just used m ay equally be

applied to the implementation of circuits using NOR ga tes

Zo

I '-
Zl

I r-L/

I

I 	
Zz =>-
Z3 r- r--'\.

IV

on ly. By way of illustr

plier can be converted

Z} = Xl ·Xo ·Y 1 ·Yo

= X1·XO·Y 1·YO

= Xl + Xo + YI

Note that negation IT

a N O R gate with its il

As a final exampl,

Boolean exp ression

form as A· B + C· [
NAND logic as

A·13 ·C·D

Note how the th

converted into the tI

:IYL

:=nr

(A) Realization of AB·
(AND/OR logic) .

D ~ ~

I> 1'<' D
,~

~

:=r
:==r

AND· Of

• I

Us ing CZ.

If the multiplier in
s circu it perfor ms

Fig. 2.53.
ied may equally be
; using NOR gates

onl)'. By way of illustration, the value of 23 in the 2-bit multi
pliercan be converted to NOR logic fo rm in the following way

Z\ = Xi ,XO' Yj'Yo

= XI ,Xo'YI 'Yn

= XI + Xu + YI + Yo

Note that negation may be implemented by an inverter or by
a NOR gate with its inputs connected together.

As a final example of NAN D logic consider Fig. 2.56. A
Boolean expression can be expressed in sum-of-products
form as A· B + C· D. This expression can be converted to
NAND logic as

A·[j· C· D

Note how the three-gate circuit in Fig. 2.56(a) can be
converted into the three-gate NA 0 circuit of Fig. 2.56(b).

A A

c C

D D

(A) Realization of AB + CD (b) Realization of AB + CD
(AND/OR logic). (NAND logic).

DIgItal Works 95 - OUPNANONAND.dwm

Ble fdl1 !:)ICUlt '{iew
........----~---.,

2.5 An Introduction to Boolean Algebra 67

Fig. 2.57 sh ows the construction of the two versions of
AB + CD in Digital Works. We have provided an LED at each
output and manually selectable inputs to enable you to inves
tigate the circuits.

2.5 4 Karnaugh maps
When you use algebraic techniques to simplify a Boolean
cXjJression you somet imes reach a point at which yo u
can't proceed, because yo u're unable to find further
simplifications. The Karnaugh map, or more simply the
K- map, is a graphical technique fo r the representation and
simplification of a Boolean expression that shows unambigu
ously when a Boolean expression has been reduced to its
most simple form.

Although the Karnaugh map can simplify Boolean equa
tions with five or six variables, we will use it to so lve problems

B--, ./

figurf?56 Implementing
A B + C D inAND/O R and
NAND logic.

IIlJIiIEJ

D ~ D ~ = D ~ .~ D ~ 00 ~ ~ 60 - ~ ~ A f

t> .0 . 03 I> ~

lIND OR tll eUl! NIIND cirCUli

figure 2.57 Using Digital Works to investigate two circuits.

