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2.4 Introduction to Digital Works 
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(a) The modified macro. (b) The circuit with the modified macro. 

figure 2.~ 1 Example of editing a macro. 



56 Chapter 2 Gates, circuits, and combinational logic 

2.5 An introduction to Boolean 
al~ebra 

We've already seen that yo u can describe circuits containing 

gates in terms ofvariables and AN D, OR, and NOT operators. 

Consider an AN D gate with input variables A and 13, and an 

output C. We can write the Boolean equa tion C = A -B which 

uses variables A, 13, and C and the AND operator. In this sec­

tion we introduce Boolean algebra I, show how equations are 

manipul ated, and demonstrate how logic circuits can be con­

structed with only one type of gate. Students requiring o nly a 

very basic knowledge of Boolean algebra can omit some of 

the fin e detail that appears later in this secti on . 

George Boole was an Lnglish m athematician (1815-1864) 
who developed a mathematical analysis of logic and pub­

lished it in his book An Investigation of the Laws of Thought in 

1854. Boole's algeb ra of logic would probably have remain ed 

a tool of the philosopher, had it not been fo r the development 

of electro n ics in the 'wentieth Century. 

In 1938 Claude Shannon published a paper entitled 'A 

symbolic analysis of relays and switching circuits', which 

alJjJlied Boolean algebra to switching circuits using relays. 

Such circuits were wi dely used in telephone exchanges and 

later in digita l compulers. Today, Boolean algebra is used to 

des ign digital ci rcuits and to analyze their behavior. 

Digital design is concerned with the conversion of ideas or 

speci fica tions into hardware and Boolean algebra is a tool 

that facilitates this process. In particular, Boolean algeb ra 

permits an idea to be expressed in a m athem atical form and 

the resulting exp ression to be simplified and then translated 

into the real hardware of gates and o ther logic elements. 

Let's begin with a form a] definition just in case this book 

falls into the h:l11ds of a ma thematician . 1300lean algebra (or 

allY other algeb ra) consists o f a set of elements E, a set of 

func tions F that operate on members of E, and a set of basic 

laws called axioms tha t d efi ne the properties of E and F. The 

se t of elements making up a Boolean algebra are va r ia b J e~ an d 

constants that have fi xed values o f 0 or 1. A Boolean algebra 

with n variables ha~ a set of 2" possible permutations o f tJlese 

variables. 

Only three functions or operations are perm itted in 

Boolean algebra. The first two are th e logical OR represen ted 

by a plus (e.g. A + il ) aJ1d Ihl: logica l AND represen ted by a 

dot (e.g. A· B). Some texts use a u (cup) or a v to Jenole the 

logical OR operator and a (\ (cap) 01' a 1\ to denote a logical 

AND operator. 

The use of the plus and dot symbols is rather confusing 

because illC same symbols are used for addit ion and mult ipl i­

cation in everyday life. One reason thelt these particu lar sym­

bols have been chosen is th al they behave rather like 

conven tional ad dit ion and multiplica tion. Another possi ble 

reason Boole cbose + and , to represenl the logical OR and 

AND functions is that Boole's background was in probability 

theory. The chance of throwing a 1 or a 2 with two throws of 
a si ngle die is 1/6 + 1/6, whereas th e chance of throwin g a 1 

and a 2 is 116 X 1/6; that is, the or and and in probability the­

ory also behave like addition and multiplication, respectively. 

The third operation permitted in Boolean algebra is that of 
negation or complementation and is denoted by a bar over a 

constant or a variable. The complement of 0 (i. e. 0) is 1and vice 

versa. The equation X + Y . Z= A is read as 'X o r Y and not Z 
equa ls t\ The priority of an AND operator is higher than that 

of an OR operator so th at th e expression m eans A = X + 
(y .Z ) and not A = (X + Y)Z. Som e texts use an asterisk to 

denote negation and some use a stroke. Thus, we can wri te 

N OT(X) as X or X'" or /X. 
The ar ithmetic operations of subtraction and division do 

not exist in Boolean algebra. For example, the Boolean 

expression X + Y = X + Z, cannot be rearran ged in the 
form (X + Y) - X = (X + Z) - ;{. which would lead to 

Y = Z. If you don't believe this, then consider the case X = I, 

Y = 1, and Z = O. Th e left-hand side of the equatio n yields 

X + Y = 1 + 1 = 1, and the right-hand side yie lds 

X + Z = 1 + 0 = 1. That is, the equation is va lid even 

though Y is not equal to Z . 

Axioms and theorems of 
n 

An axiom or postulate is a fund amental rule that has to be 

takeil for granted (i.e. the axioms of I300lean algebra define 

the framework of Boolean algebra from w hi ch everything 

else can be der ived). The firs t axiom is called the closure 

property, which states that Boolean operations on Boolean 

va riables or constants always yield Boo lean results. If vari· 

abies A and B belong to a set of Boolean elements, the opera­

tions A· B, II + B, an d N OT A and NOT B also belong to the 

set of Boolean elements . 

Boolean variables obey the same commu tative, distributive, 

and associative laws as the variables o f co nven tional algebra. 

We take th ese laws fo r gra n ted when we do everyday ar ith­

m et ic; for exam ple, the commutative law stales Ihal 

6 X 3 = 3 X 6 .'ra ble 2. 13 describes the commutative, distr ibu­

tive, and associative hwvs of Boolean al geb ra. 

We approach Boolean algebra by first looking a t the action 

o f NOT, OR, anu AND operatio ns on constants. The dfect of 

these th ree operatio ns is best illust rated by means o f th e truth 

table given in Table 2.1 4 . The!>e rules may be extended to any 
I1U mber o f var iables. 

We ca n extend Table 2.14, wh ich dehnes the rela tionship 

between the Boolean opera tors and the cons taJ) ts 0 and 1, 10 

I There are, in fact, an infini le number of Boolean algebras . We IIIC 
inlere~lcd only in th e Rook-an algebra who$<.' variables have binar)' lwo­
stJte values. 

A + B= B + A 
A·B = BA 

A (B C) = (A B)· C 
A + (B + C) = (A + e 
A(B+ C)=A·B+ t 
A + B· C = (A + B)(A 

ble 2. ,3 Commul 

N( 

0 = 1 

l = 0 

Table 2.14 

Ihe relationship bet 

literal (see Table 2. 1 

'vVe can prove th< 

substituting all the 

example, consider 

0.1 = 0, which is c( 

an AND gate is tr 

Similarly, if X = 0 

T herefore, the expr 

Theorem 1 X 

Pr()of X 

Tl1corem 2 X 

Proof X 

Theorem 3 X 

Proof X 
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A+ B= B+A The AND and OR operators are commutative so that the order of the 
AB ~ BA variables in a sum or product group does not ma tter. 

A· (B· C) = (A· B) . C The AND and OR operators are associative so that the order in which 
A+ (B + c) = (A + B) + C sub-expressions are evaluated does not matter. 

A (B + c) = A B + A . C 	 The AND operator behaves like multiplication and the OR operator like 
A';' BC= (A+ B)(A+ C) 	 additi on. The firs t distributive property states tha t in an exp ression 

containing both AND and OR operators the AND operator takes precedence 
over the OR. The second dist ributive law, A + B· C = (A + B)(A + C), is not 
va lid in conventional algebra. 

I 2.13 Commutative, distributive, and associative laws of Boolean algebra. 

~.to D 	 cr 

0= 1 00 = 0 0+0=0 	 ox = 0 O+X=X X=X 

1= 0 o 1 = 0 0+1=0 1 X = X 1 + X = 1 


0=0 1 + 0 = 1 X X=X X+X=X 


11 = 1 1 + 1 = 1 X )( =0 X+)( = l 


Table 2 1 Basic axioms of Boolean algebra. ~ Boolean operations on a 
constant and a variable. 

the relationship between a Boolean operator, a variable, and a values ofX. A proof in which we test a theorem by examining 
li teral (see Table 2.15 ). all possibilities is called proof by perfect induction. 

We can prove the validity of th e equations in Table 2.15 by The axioms of Boolean algebra could be used to simplify 

substituting all the possible values for X (i.e. 0 or 1). For equations, but it would be too tedious to keep going back 
example. consider the axiom O· X = O. If X = 1 we have to first principles. Instead , we can apply the axioms o f 
0.1 = 0, which is co rrect beca use by definition the output of Boolean algebra to derive some theorems to help in the sim­

all AND gate is true if and only if aU its in puts are true . plification of expressions. Once we have proved a theorem 
Similarly, if X = 0 we have 0·0 = 0, which is also correct. by Llsing the basic axioms, we can apply the th eorem to 

Therefore, the expression o· X = 0 is correct for all possible equations. 

Theorem 1 X+X·Y=X 

Proof X+X ·Y = X ·l +X·Y Using 1· X = X and commutativity 
= X( l + Y) Using distributivity 
= X(1) Because 1 + Y = 1 

=X 

Theorem 2 X+X·Y=X+Y 

Proof X + X . Y = (X + X . Y) + X . Y By Theo rem 1 X = X + X· Y 

= X+X·Y + X·y 
= X + Y(X + X) Remem ber that X + X= 1 
=X+Y(l) 

= X +Y 

Theorem 3 X·y + X·Z + Y· Z = x·y + X·Z 

Proof X· Y + X· Z + y. Z = X· Y + X· Z + y. Z(X + X) Remember that (X + X) = 1 
= X·y + X Z + X·Y·Z + X·Y· Z Multiply bracketed terms 
= X· Y(l + Z) + X· Z(L + Y) Apply distributive rule 
= X·Y(l) + X·Z(l) Because (1 + Y) = 1 
=X·y + XZ 
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Inputs 

X Y Z x 	 x y X Z Y Z X V+X · Z X Y+X z+y ·z 

o0 0 0 0 0 0 

1 

0 0 0 0 0 

0 0 1 0 1 0 

o 
0 1 1 1 0 1 1 1 

I ~ 0 0 o 0 0 0 o 

0 1 o 0 0 0 
 o 


0 o 0 0 


o 0 

~same-.. 

Table 2. 6 Proof of Theorem 3 by perfect induction . 

We can also prove Theorem 3 by the method of perfect (Table 2.16). Because the columns labeled X· Y + X· Z and 

induction. To do this , we set up a truth table and demonstrate X· Y + :x. Z + y. Z in Table 2.16 are identical for all possible 

that the theorem holds for all possible values of X, Y, and Z inputs, these two expressions must be equivalent. 

Theorem 4 X(X + Y) = X 

Proof X(X + Y) 	= X· X + X· Y Multiply by X 

= X + X ·y Beca use X . X = X 

= X By Theorem 1 

Theorem S X(X + Y) = X·Y 

Proof X(X + Y) 	= X· X + X· Y 

=O + X · Y BecauseX · X = 0 
= X ·Y 

Theorem 6 (X + Y)(X .L y) = X 

Proof (X + Y)(X + Y) = X· X + X· Y+ X· Y + Y . Y 

= X+X·Y+X·y Because X . X = X, Y . Y = 0 

= X(I + Y + Y) 

=X 

Theorem 7 (X + Y)( X + Z) = X· Z + X· Y 

Proof (X + Y)(X + Z) = X· X -r X · Z + X· Y + y. Z Multiply brackets 

= XZ+X·Y + Y·Z BecauseX·X = 0 

= XZ '+ x·y By Theorem 3 

Theorem 8 (X + Y)(X + Z)(Y + Z) = (X + Y)(X + Z) 

Proof (X + Y)(X + Z)(Y + Z) = (X· Z + X · Y)(Y + Z) By Theorem 7 


= X·YZ + X· Z · Z + X·y·y + X·Y Z 


= X·Y· Z + X· 7. + X·Y + X·Y·Z Because X . X = 1 


= X Z(Y + I) + X ·yO + Z) 


= X · Z+ X ·Y 

= (X + Y)(X + Z) By Theorem 7 


We provide an alternative proof for Theorem 8 when we look at de Morgan's theorem later in this chapter. 

Theoren19 X 'Y'L 

Proof To pre 
expre: 

lfX -t 

basic; 

(X+ 

Subproof 1 (X + 
= X· 

=0 

Subproof2 (X + 
= y. 

= (Y 
= y . 

= y. 

Sw( 

(X + 
(X + 
com~ 

Theorem 10 X·Y· 

Proof One 
wew 
prov! 

Table 2.11 Proof ofH 
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An important rule 
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d X · Y + X· Z and 

tical for all possible 

ivalent. 

x 

0 

'X,y· Y = 0 

ets 
= 0 

= 1 

pter. 

Theorem 9 

Proof 

Subproof I 

Subproof2 

heorem 10 

ProQf 

X·Y·Z = X + Y + Z 

ToprovethatX·Y·Z = X + Y + Z,weass ume that the 

expression is true and test its consequences . 

If X .+ Y+ Z is the complement of X · y. Z, then from the 

basic axioms of Boolean algebra, we have 

(X + Y + Z)· (X· y. Z) = 0 and (X + Y + Z) + (X Y Z) = 1 

(X + Y + Z ) . X Y Z = X· X . Y . Z + y. X . y. Z + z · X . Y . Z 

= X·X·(Y · Z) + Y Y·(YZ) + ZZ(X ·Y) 

=0 

(X - Y + Z) -I- X· Y Z = y. Z· (X) + X-I- Y + Z Re -arrange ~quation 
= y· z + + Y-I- Z UseA B + B = + B 
= (Y -I- y. Z) + X + Z Re-arrange equa tion 
= Y + Z+Z+X 

= Y +J+ X =1 Use Z + Z = J 

As we have demonstrated that 

(X + Y + Z) . X· y. Z = 0 and that 

(X + Y+ Z) + X· y. Z = I, it follows that X + Y+ Z is the 
complement of X . Y . Z. 

X ·Y·Z = X Y + Z 

One possible way of proving Theorem 10 is to use the method 

we used to prove Theorem 9. For the sake of variety, we will 

prove Theorem 10 by perfect induction (see Table 2.17). 

Inputs 

X Y Z X+Y+Z Xf Y-"-l X Y I XVZ 

0 0 0 0 

0 0 

0 

1 

0 0 

0 1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 0 

0 1 

1 0 0 

0 1 

0 1 0 

0 0 1 

0 0 0 

1 

0 

0 

0 

0 

0 

0 

0 

.... same • 
ble 2.17 Proof of Theorem 10 by perfect induction. 

Theorems 9 and 10 are collectively called de Morgan's Expression Dual 
IheOl"Cln. This theorem can be stated as an entire function is X =X+X X=X X (replace + by · ) 
complemented by replacing AND operators by OR operators, l=X+l 0= XO (replace + by· and 
replacing OR operators by AND operators, and complement­ replace 1 by 0) 
ing variables and literals. We make extensive use of de X = X(X + Y) X = X + XY (replace· by + and 
Morgan's theorem later. replace + by·) 

An important rule in Boolean algebra is called the principle 
of dllality. Any expression that is true is also true if AND is 

As you can see, the dual of each expression is also true. 

replaced by OR (and vice versa) and I replaced by 0 (a nd vice 

versa). Consider the fol lowing examples of duals. 
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When novices first encounter Boolean algebra, it is not Observation 2 x . Y + X· Y is not equal to 1 
uncommon for them to invent new theorems that are incorrect X· Y + X . Ycannot be simplified 
(because they superficially look like existing theorems). We 
include the following observations because they represent the Observation 3 X·Y is not equal to X·y 

most frequently encountered misconceptions. 
Observation 4 	 X + Yis not equal to X + Y 

Observation 1 	 X · Y + X Y is not equal to 1 
X· Y+ X· Y cannot be simplified 

(c ) X· Y·X ·Z 

(d) (X + Y)(X + Z) 

(e) (W+X + Y·Z) 

V,Then I simplify Boo 
groupings. 

(a) X+Y + 	X · Y + ( 

No te: ' II/hen a Boole1 
v'lriables. 

(b) )( ·Y· Z +X ·y · 

(c) 	x· Y.x.z=x·Y + 

=X Y 

Note: Both expressio 
", len t. T hese equatiol 
diagram of Fig. 2.14. 

(d) (X + Y)(X + Z] 

(e) (W + X+Y ·Z; 

(f) WXZ I- XYZ + 

Note that YZ = ' 

F"-r'-l r 	 r n 
This table provides all possible functions of two variables A and 
B. These two variables have 22 = 4 possible different 
combinations. We can associate a different function with 
each of these 42 = 16 values to create all possible functions 

Input 

IA B r= 	 F F" F F 

o o o o o o 
o o o o o 

o o o o 0 1 

o o o 0 0 o o o 

Fo 


F, 


F2 


F3 


F4 


Fs 


F6 


Fl 


Fa 


F9 


FlO 


o 
A + B 
AB 

A 
-

AB 

B 

AiflB 

AB 
AB 

A®B 
B 

Examples of the use of Boolean algebra In 

~q",<, 

Having presented the basic rules of Boolean algebra, the next 
step is to show how it's used to simplify Boolean expressions. 
By simplifying these equations you can sometimes produce 

of two variables; that is , there are only 16 possible types of 
two-input gate. Some of the functions correspond to 
functions we've already met. Some functions are 
meaningless. 

Functions 

L r 	 f .., F F"-,, F F 

o o o 1 o 
o o o o 
o o o o 

m 

NOR 

NOT 

NOT 

EOR 

NAND 

AND 

ENOR 

A·B+AB+AB=A ·B =A+B 

F' 2 

F" 

A 

F13 A·B+A·B+A · B = A·B=A+ B 

F' 4 A+B OR 

F, s 

a cheaper version of the logic circuit. The following equa tions 
are generally random functions chosen to demonstrate the 
rules of Boolean algebra. 

(a) X + y + X· Y + (X + Y) . X· Y 

(b) X·y·Z + X·Y·Z + X·Y·Z + x·Y·z 
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(f) W ·X· Z -I- XY Z+ W·X·Y + XYZ+W·Y·Z(e) X·Y·X·Z 
(g) W· X· Z + W · Z + X . Y . Z + W . X . Y (d) (X + Y)(X + Z)(Y + Z) 

(e) (W -I- X + Y·Z)(W + X)(X + Y) 	 (h) (X + Y + Z)(X + Y + Z)(X + Y + Z) 

utions 

When I simplify Boolean expressions, I try to keep the order of the variables alphabetical , making it easier to pick out logical 
groupings. 

(a) 	 X+Y + X· Y + (X + Y) X· Y = X + Y + X· Y + X · X · Y + X ·y. Y 

= X + Y + XY AsA A = 0 

= X+Y -I- Y as A A· B = A + B 

= 1 as A-I- = 1 

Note: When a Boolean expression can be reduced to the constant 1, the expression is a lways tru e and is independent of the 
variables. 

(b) 	X· Y Z + X· y . Z -I X· y . Z -I- X· Y Z = X y. (Z + z) + X· Z · (Y + Y) 

= X ·Y(l) + X Z · (l) 

= X · Y + X·Z 

(e) 	X·Y·X·Z = X·y .. X·Z By Theorem 9 

= XY +X ·Z As F = F 

~!ote: Both expressions in eAamples (b) and (c) simplify to X· Y + X · Z, demonstrating that these two exp ressions are equiv­
alent. These equa tions are those of the m ultiplexer with (b) derived from the truth table (Table 2.9) and (c) from the circuit 
diagram of Fig. 2. 14. 

(d ) (X + y)(x + Z)(Y -I- Z) = (X ·X + XZ + X Y +Y ·7) · (Y -t- Z) 

= (X · Z -I X· Y + y . Z) . (Y + Z) AsX X = 0 

= (X· z + X· Y) (Y + Z ) By Theorem 3 

= X·Y· Z+ X Z ·Z +X ·Y·Y +X ·Y· Z 

=X Y Z+X ·Y Z 

(e ) (W + X + y. Z)(W -I- X)(X + Y) = (W· W + w · X ' w · y. Z + W · X + X· X + X· y. Z)(X + Y) 

= (X + W· y . Z + W · X -I- X -t- X · Y Z)(X + Y) 

= (X + W Y Z)(X -I- Y) 

= X·X+X ·Y+ W ·X·Y Z+W Y· Y· Z 

= X·Y+ W · / ·Y· Z+W ·Y· Z 

= X . Y + W . Y Z(X + 1) 

= X Y +W YZ 

(f) 	 'vVXZ + XYZ WXY + XYZ + WYZ = wXi I yz(5{' + X + W) + XY 

= WXZ + YZ + WXY 

= WX(Y + Z) + YZ 

Note that YZ = Y+ 7' so we can write 


= W ' I (Y + Z) + Y + Z 


=w ·x +Y · z Because + A.' R = A + B 




----

62 Chapter 2 Gates, circuits, and combinati onal logic 

(g) 	WXZ + WZ -I XYZ -I WXY = Z(WX + W) + XYZ + WXy 

= Z(X + W) + XYZ + WXY 

= XZ + WZ + XYZ + WXY 

= X(Z + YZ) + WZ + WXY 

~ X (Z + Y) + WZ + WXy 

= Xl + XY I- WZ + W XY 

fhcse examples ill 
ex I'rl.'~siol1S. It \ ,. 
snilltioll. Later we st 

ul'pro.H. h that gives us 
mal solut ion. 

rhe 1,)lIowing exam 
= XZ T A'YO + W ) + wz .I"plied to a practical 
= XZ + XY + WZ ;t 2 hit by 2-bit binar~ 

' II ;llld Y I ' Yo and the~ 
(h) (X + Y + L)(X + Y + Z )(X 	+ Y + Z) = (Y + Z)(X + Y + Z) as (A + B)(A -I- B) = A is I" 7.~ , Z" Zo' 'liVe ha 

= Z (X - Y) + Y . Z as (A + B) (A + C) = A . e T A· B ('Cl' Chapler 4), but 
lll'gi n by cOllSlderi = XZ I Y Z + Y · Z 

- - (Ii)!. 2,::;2) and const 
= X . Z + Y(Z + Z) 

= X· Z + Y 

I " - x " x,)'Y"Yn + 
In this example,2 >-- 3=6=OllO X"XIl ,yiy, +

/ For example, , ,0 = 2 
XI ,XO,YO + X, 

.,. 
11 
V 2-bit by 2-bit f--- -+ 

mult iplier 
1\ 

JJ n
""­	

/
Input Xo Zo 	 I\U'YO(X, + X, 
X Xl ZI 

4-bit product 	 - X, Yo 

Zz ZInput Yo z, = X, . Xo Y, , Yo +
Z3 

XI X"' YI (Yo + 
'- For example, 1,1"" 3 Figure 2,52 A 2-bi t multiplier 

Y Y, 

- XI·X",Y, + XI 

= Xu ·Y,(X, + X, 

Inputs Output - X~ , · Y,(X, -r Yo 

X V Z '\I'X,,'Y +" 

XxV=Z Xl Xo V , Yo Z! Zz I , Lu 
l. ~ X Xu Yl Yo 

o x O=O 0 0 0 0 0 0 0 0 = X, ·X" )' ,(Yil +j 
O X 1 = O 0 0 0 1 0 0 0 0 X~'X,,·Y + X 
OX2=O 0 0 0 0 0 0 0 X,·y (Xo + X 
O X 3=O 0 0 1 0 0 0 0 

XI''!' ,(X" + YI
l X O= O 0 1 0 0 0 0 0 0 

X,·Xi'·Y' +- " 1 X 1 = , 0 0 1 0 0 0 

1 X 2 ~ 2 0 0 0 0 0 L X1·X,,·Y j -Yo 
1 X 3 = 3 0 0 0 1 1 

2 x O = O 0 0 0 0 0 0 0 

2 X 1 = 2 0 0 0 0 1 0 

2 x 2 = 4 0 0 0 0 0 

2 x 3 = 6 0 1 1 0 1 0 

3XO=O 0 0 0 0 0 0 

3 Xl = 3 0 1 0 0 1 

3 X 2=6 0 0 0 
Z = X,-Xo-Y, Yo 3 X 3=9 0 0 

It 's interesting to 

Table 2,18 Truth table for a 2-bit by 2-bit mult iplier. fllll/c'/ric in X and 

'1." . A"'Y,, 

Z, XI-X" .,Y, + 
Z, . Xl-X,,-Y +, 



- -

- -

+ 1\ B 

multiplier 

These examples illustrate the art of manipulating Boolean 
expressio ns,lt's diffic ult to be sure we have reached an optimal 

solution, Later we study Karnaugh maps, which provide an 

approJch that gives us co nfidence tha t we've reached an opti ­
mal solution, 

.sig ot a it 1uL 'r ' 
The foll owi ng example illustrates how iloo lean algebra IS 

applied to a practical l 'roblem. A designer w ishes to p roduce 

a 2· bit by 2-bit binary multiplie r. The two 2-bit inputs are X" 
Xoand Yl ,Yo and the four-bit product at the o utpu t terminals 

is Z;, Zl' Z" ZOo We have not ye t introd uced binary arithmetic 
(see Chapter 4), but no thing difficult is involved here, We 

begin by considering the block diagram o f the syste m 

(Fig. 2.52) and constructing its truth table. 
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The multiplier has fo ur inputs, XI ) XO' Y I' Yo, (ind icat­
ing a 16- line truth table ) and four outp uts , Table 2.18 pro­

vides a truth tabl e for the bina ry multiplier. Each 4-bit 

in put represents the product of two 2-bit numbers so that, 

for example , an input of XI ' Xu, Yp Yo = lOll represents 
the p rodu ct 102 X Il ~ or 2 X 3, The co rrespo ndi.ng out­

put is a 4-bit product, which, in t his case , is 6 or OliO in 

binary fo rm , 

Fro m Table 2,18, we ca n derive expressions for the fOUf 

ou tputs, Zu to Z \, Whenever a truth tabl e has m ou tp ut 

columns, J set of m Boolean equ ations must be der ived, One 

equa tion is associated with each of th e m columns. To derive 

an expression fo r ~, the four minterms in the Zo column are 
ORed logically, 

20 = XI ·XO,y l ·y o + X I,XO'Y!'Yu + XI,Xo'Yj'Yo + X I ,XO'Y!'Yo 

= XI ,XO 'YO(Y I + YI) X I ,XO 'YO(Y I + Y I) 

= XI ,XU'YO XI· Xu ,y O 

= XO'YO(XI + XI) 

7.1 	 = XI ' :\o 'YI, YO + Xj,Xo'Yl'Yn + XI ,XU,y l ,y O+ X j ,X" ,Y I ·Yo + X I 'X~'Y I ' YO + X I,XO ,Y l, YU 

= XI ,XO,Y I(YO + Y Il ) + X I 'Xo'Y1j(Y I + )Tl) + X I ' ,Y I,YO -I- X I 'Xu ,Yl ,YO 

= XI ,XO'YI + XI ,XU, y O + X I ' ·yl, y O + X I, XO' YI'YO 
-~. 

= XIl ,YI(Xl + X I ,yO) + XI 'Yo(Xn + XU,yl ) 

= X" ,YI(Xl + Yo) + X I 'YOCX{j + Y I) 

= XI ,XQ'Y I + XO,Yl ,YO + X l ·X0 ·YO + XI ,yl ,y O 

l 	 ~ / I ,Xo' Yj 'Yn + X! .Xu 'Y I 'YO + X I ,XO' Y! 'YiI 

= XI '-XO,Y I(YO + Yo) + XI '~'Y j 'Yn 

- XI"Xo 'YI ;- X I 'Xu ' YI 'YI1 

:0 X\ ,YI(X'J + XoYII ) 


= XI 'YI(~ ..L Yo) 


= XI,XO 'Y I + Xj'YI 'Yo 


We have now obtained four ~imp l ified Sum of products 

~xpJ'(;ss ions for 20 to Z, ; that is, 

~I = Xo ·Yo 

Lj =XI ,XO 'Yl + ~ 'Y I ' Yo + XI ,XO ,YU + XI ·YI ,YO 

Z: = X I '~ ' YI + X I ·Y j ,Yo 

L = XI'~ ' YI ' YO 

It's Interesting to note that aeh o f the above expressions is 

symmetric in Xand Y. This is to be expected- if the p roblem 

ilsel f is syml11etri c in X and Y (i ,e, 3 X 1 = 1 X 3), then the 

resuil should also demonstrate this symmetry. There are 

many ways or rea lizing the exp ress ions for Zo to Z" The 
c,ircu it of rig, 2.53 ill us tra tes o ne possible way. 

2.5 2 De Morgan's theorem 

Theorem~ 9 and 1 () provide the designer with (l powerful tool 

because they enable an A D functio n to be implemented by 

http:correspondi.ng
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x, Xo Y, Yo 

-
Y, YXl Xo 0 

-

LJ 
~Xoy ,Yo 
LJ 
~ 

LJ 

I\X1X

'---­

~ 

LJ 

'- ­

Figure 2 . .53 Circuit fo r the two-bit multiplier. 

an OR ga te and inverter. Similarly, th ese theo rems endble an 

OR gate to be implemented by an AND gate and inverter. 

We first demonstrate how de Mo rgan's theorem is applied 

to Boolean expressions and then show how circu it s can be 

converted to NAND-on ly or NOR-only forms. You may 

wonder why anyone sho uld wish 10 implement ci rcui ts ill 
D (or NOR) logic only. There arc several reasons fur 

tltis, bu t, in gene ral, NAN D gates opera te a t a h igher speed 

than AND gates ::md Ni'\ND gates can be bLlilt with fewer 

components (at t he chip level) . Later we shall exa m ine in 

m ore detai l how a circuit can be designed entirely wit h 

NAND gates only. 

To apply de Morgan's th eorem to a funct ion the ANDs a re 

changed into ORs, ORs an d the in to AN Ds ,md var iables (and 

Zo 

X, XOYl 

I 
ZI 

J 
X1XOYO r 

X,Y,Yo 

OY1 

I 
) Zz 

X,Y ;Y~ r 

X,XoY,Yo Z3 

li teraLs) are cnmplemen ted . The following exam pIes illustrak 

the app lication of de Morgan's theorem. 

1. 	 F = X ·y + X ·Z We wish to appi y de Morgan's 

theorem to lh~ right-ha nd side 

= X· y . X· Z The + becom es · and variables 

'X · Y' and 'X · Z' co mple mented 

= 	 (X + Y)(X + Z) Variables X ·Y and X·Y are 

themselves complemented 

As you can see, the first step is to replace the OR by an AND 

operator. The compound variables X · Yand X · Z are comple­

mented to get X·Y and X ·Z. The process is continued b) 

applying de Morgan to the two complemented groups (i.e. 

x ·y becomes X + Yan d X·Z becomes X+ Z). 

fT=A·.B+C.D + 

= A·B·c. D· A·r 

- (A + B)(C + 

" F = i\--:-S ·(C -+£.1 
-A + B+C 

= A + B + C· 

=A+B+C ( 

This exam ple demi.JI1S 

til eval ua te. 

4. A pfI)of of Theoren 

( X ~· Y ) · (X + Y) · ( Y 

.. ()ml' gatt!s are /Je tter 
gat~ is both faster and 

£alc Consequently, it 
w.ing one Lype of gale 

,\ dibrita l l.ircuil wilh 0 

is nnl a uniform rani 

n omIC reasons m ilJ1L 

rallge of gates (e,g. Iv 

IO -input AND, two- iJ 

many types o f NAND 

tu till J3- inpUl NANI 
NAND logic We fi r 

be cOllslrudcd from 
lkm(1n~tra te that we 

f',.J t t's only. To COllst n 

gat~s , de Morgan's tht 

IlR operators in the 

wish 10 generate the eJ 

gale~ on ly. We begin 

l'xpression, as this dOl 

does give us tbe 0Ppo 

f=A+ll +C 

-
F=F = A+13+C 

F = A·R ·C 



- ----

5 

----+. Zo 

___--+.. Z 

examples il lustrate 

Iy d\! Morgan's 
right-hand side 
s . and variables 
:' complemented 
II1d X'Yare 
lplemented 

he OR by an 1\ND 
J X . Z are comple­
;5 is continued by 
le~ed groups (i.e. 
l- Z) . 

2. 	F = .B + C· D + A· D 

= A·B·C ·D ·A·D 

= (A + 13)(C + D)(A + D) 

3. F = A·B·(C + E·D) 

= A + B + C + E·D 

=A+ B + C -E-D 

= A + B ..L C. (E + D) 

2.5 	 An Introduction t o Boolean algebra 

Repla e + by· and omplement the product terms 


Expand thc complemented pro uct terms 


This is a productlerm with three eJemt:lll';. 


Replace · by + and con pleml~nt variable" 


Evaluate the complemented expression ( hange + to ·) 


Fina l~tcp,evalua te E·D 


This example demonstrates how you have to keep applying de Morga n's theo rem un til ulere are no complemel ted terms left 
to evaluate. 
4. A proof of Theorem 8 by de Morgan's theorem 

(X + Y)'(X + Y) ·(Y -I Z) = (X + YH X ;- ZHY T Z) 

=/+Y+X + Z+y, Z 

= X·y + X·Z + Y ·l 

= x ·Y + X·Z 

= 5(·Y ·X·Z 

= (X + Y)(x + Z) 

I 
Implementing logic functions in 

Some gates are be rrcr than others; fo r example, the NAND 
gate is both faster and cheaper tha n the corresponding AND 
gate. Consequel tly, it's often necessary to rea lize a circu it 
llsing one type 0 gak only. Engineers sometimes implement 
a digital circuit with one particula r type of gate becau 'e there 
is not a uniform ran ge of ga tes avai lable. For obvious eco ­
nom ic reasons manu facturers don't sell a comprehensive 
range of gates (e.g. two -input A1 D, three- input AND, . .. , 
IO-input AND, two-input OR • . . . ). For example, there are 
many t)'Pes of AND gate, from the quad two- inpu t NA D 
to the 13-inpul NAND, but there are few types of AND gates. 

NAND logic We first look at the way in which circuits can 
be constructed from nothing but NAND gates and tben 
demons trate that we can also fabricate circuits with NOR 
gates only. To construct a circuit solely in terms of AND 
gates, de ~(organ's theorem must be invoked to get ri d of all 
OR operators in the expression. For example, suppose we 
lI'ish to generate the expression F = A + B + C using NAND 
gates only. We begin by applying a double nega tion to the 
expression, as this does not al ter the expression's value but it 
docs give u. the opportunity to apply de Morgan's theorem. 

F= A+B+C 

-

F= F = A R + C 

I = A·B·C 

The original expression using 
OR logic 

Double negation has no effect on 
the value of a fu nction 

Apply de Morgan's theorem 

Complement twice because X = X. 

Remove inner bar by applying de Morgap 

Complement the th r 'c two-variable groups 

Use Theorem 3 to simplify 

Remove outer bar, change + to · 

Rem ve bars over two-variable groups 

We've now converted the OR [unction into a A:-.lD func ­

tion. The th ree NOT functions that genera te A, H,and Ccan 
be implemented in terms of NOT gates, or by means of two­
input NAND gates wilh their inputs connected together. 

Figur\! 2.54 shows how the function F = A -'- B + C can 
be implemented in NAND logic only. If the inputs or a 

NAND gale are A and B. and the outpu t is C. then C = A· B. 
But if A = B, then C = 1\ . A or C = A. You can better under­
stand this by looking al the truth table for the NAND gatc, 
and imagining tbe effect of remo ing the lines A, B = 0, l and 
A,B = 1, 0. 

It's important to note thal wc are not using de Morgan's 
theorem here to simplify Boolean expressions. We are using 
de Morgan's theorem to convert an expression in to a fo rm 
suitable [or realization in terms of NA D (or NOR) gates. 

A 

B---~--i 

----r-~ 

c----.......~ 


Figure 2.!>4 Implementing F = A + B + C with NAND logic only. 
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By applying the same techniques to the 2-bit by 2- bit 

multiplier we designed earlier we can convert th e expressions 

for the four outputs into NAND-only logic. 

Zo = Xo ·yo = XoYo 	 (i.e. NAND gate followed by NOT 

ga te = AND gate ) 

Zt = X1XOY 1 + XOY1YO+ X1XOYO+ X1Y1Yo 

= X1X1Yo + XO¥IYO + X1XOYO+ X1Y 1YO 

= XtXOY I·XOY IYO ·XI XOYO·XI YI YO 

X1 Xo Y1 Yo 

I I I I 1 I 1 1 
l.! l.) l) lJ 

Xl Xo Yl Yo 

'" fV 

~ 
LJ 
~ 
~ 

~ 
-
.-- ­

I'" 

.-- ­

'" LJ 

Figure 2.55 Implementing the multiplier ci rcuit in NAND logic only. 

Z2 = X1XOY 1 + X1Y1¥O 

= X1XOY1+ X1Y 1YO 

= X1XOY 1. XJY1YO 

Z} = X1XOY1 YO 

= X1XOY1YO 

Figure 255 shows the implementation of the multiplier in 

terms of NAND logic only. Note that this circuit perfo rms 

exactly the same function as the circuit of Fig. 253. 

NOR logic The procedures we've just used m ay equally be 

applied to the implementation of circuits using NOR ga tes 

Zo 

I '-
Zl 

I r-L/ 

I 

I 	
Zz =>-­
Z3 r- ­ r--'\. 

IV .... 

on ly. By way of illustr 

plier can be converted 

Z} = Xl ·Xo ·Y 1 ·Yo 

= X1·XO·Y 1·YO 

= Xl + Xo + YI 

Note that negation IT 

a N O R gate with its il 

As a final exampl, 

Boolean exp ression 

form as A· B + C· [ 
NAND logic as 

A·13 ·C·D 

Note how the th 

converted into the tI 

:IYL 

:=nr 


(A) Realization of AB· 
(AND/OR logic) . 

D ~ ~ 

I> 1'<' D 
,~ 

~ 

:=r 
:==r 

AND· Of 

• I 

Us ing CZ. 



If the multiplier in 
s circu it perfor ms 

Fig. 2.53. 
ied may equally be 
; using NOR gates 

onl)'. By way of illustration, the value of 23 in the 2-bit multi­
pliercan be converted to NOR logic fo rm in the following way 

Z\ = Xi ,XO' Yj'Yo 

= XI ,Xo'YI 'Yn 

= XI + Xu + YI + Yo 

Note that negation may be implemented by an inverter or by 
a NOR gate with its inputs connected together. 

As a final example of NAN D logic consider Fig. 2.56. A 
Boolean expression can be expressed in sum-of-products 
form as A· B + C· D. This expression can be converted to 
NAND logic as 

A·[j· C· D 

Note how the three-gate circuit in Fig. 2.56(a) can be 
converted into the three-gate NA 0 circuit of Fig. 2.56(b). 

A A 

c C 

D D 

(A) Realization of AB + CD (b) Realization of AB + CD 
(AND/OR logic). (NAND logic). 

DIgItal Works 95 - OUPNANONAND.dwm 
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2.5 An Introduction to Boolean Algebra 67 

Fig. 2.57 sh ows the construction of the two versions of 
AB + CD in Digital Works. We have provided an LED at each 
output and manually selectable inputs to enable you to inves ­
tigate the circuits. 

2.5 4 Karnaugh maps 
When you use algebraic techniques to simplify a Boolean 
cXjJression you somet imes reach a point at which yo u 
can't proceed, because yo u're unable to find further 
simplifications. The Karnaugh map, or more simply the 
K- map, is a graphical technique fo r the representation and 
simplification of a Boolean expression that shows unambigu­
ously when a Boolean expression has been reduced to its 
most simple form. 

Although the Karnaugh map can simplify Boolean equa­
tions with five or six variables, we will use it to so lve problems 

B--, ./ 

figurf? ....56 Implementing 
A B + C D inAND/O R and 
NAND logic. 

IIlJIiIEJ 

D ~ D ~ = D ~ .~ D ~ 00 ~ ~ 60 - ~ ~ A f 

t> .0 . 03 I> ~ 

lIND OR tll eUl! NIIND cirCUli 

figure 2.57 Using Digital Works to investigate two circuits. 




