Author

Year

Title of Article/Chapter
Title of Journal/Book
Vol/part/pages

Publisher

University of
Bedfordshire

Alan Clements

2006

2.4 Introduction to Digital Work
Principles of Computer Hardware
55-67

Oxford University Press

This Digital Copy has been made under the terms of a CLA licence

which allows you to:

Access and download a copy

Print out a copy

ISBN/ISSN: 9780199273133

Learning| Resources

2.4 Introduction to Digital Works 55
Digi!al Works 95 - OUP_2MPILXa.dwm
File Edit Circutt View Tools ﬁelp '
it 2 v gl
|
Bile AqieA|
— — “
[
I s
.
- Multiplexer
1 &_—3 Once the
s D expanded version
This 'Sdthde ' of the macro has
expan Tt - been edited, you
mac;)o. . : can return to the
cand.fe.) : Zi :DQ_EM circuit that
o ll'lle . | embeds the macro
Jutsht ; e any . by clicking on
other. L Close Macro.
T :
3'L =
q | 10
Figure 2.50 Editing the expanded form of the macro.
 Digital Works 85 - OUP_2MPLXb dwm _[o] x]| Digital Works 85 - OUP_ZMPLXb.dwm |_ ol x]
z@l_a Edﬂ g;c;_m View Tools I:[e!p File Edit Circuit: View Tools Help
ppppmf)[}»@mm-lﬁ[oax' PIEEDIece DPeroEmmoE ol = no

‘rx [N] R; £ Ollnse Masio |

O - S S

g Multiplexer
”}b_—_[ﬁ'

\ L

53— ‘j_ Zi

3

E}——-’;« a _‘ﬁ' e

- Output
IMuttp G

. o
B Control ORG——O i
_'ffjr’ . ——

B
el %:\M\‘ ~
5 Cufput
]Muhxplﬂxar
I Cantrol
= o
B—
£ Pes e |

(a) The modified macro.

fgure 257 Example of editing a macro.

(b) The circuit with the modified macro.

Chapter 2 Gates, circuits, and combinational logic

We’ve already seen that you can describe circuits containing
gates in terms of variables and AND, OR, and NOT operators.
Consider an AND gate with input variables A and B, and an
output C. We can write the Boolean equation C = A - B which
uses variables A, B, and C and the AND operator. In this sec-
tion we introduce Boolean algebra', show how equations are
manipulated, and demonstrate how logic circuits can be con-
structed with only one type of gate. Students requiring only a
very basic knowledge of Boolean algebra can omit some of
the fine detail that appears later in this section.

George Boole was an Lnglish mathematician (1815-1864)
who developed a mathematical analysis of logic and pub-
lished it in his book An Investigation of the Laws of Thought in
1854. Boole’s algebra of logic would probably have remained
atool of the philosopher, had it not been for the development
of electronics in the Twentieth Century.

In 1938 Claude Shannon published a paper entitled ‘A
symbolic analysis of relays and switching circuits, which
applied Boolean algebra to switching circuits using relays.
Such circuits were widely nsed in telephone exchanges and
later in digital computers. Today, Boolean algebra is used to
design digital circuits and to analyze their behavior.

Digital design is concerned with the conversion of ideas or
specifications into hardware and Boolean algebra is a tool
that facilitates this process. In particular, Boolean algebra
permits an idea to be expressed in a mathematical form and
the resulting expression to be simplified and then translated
into the real hardware of gates and other logic elements.

Lets begin with a formal definition just in case this book
falls into the hands of a mathematician. Boolean algebra (or
any other algebra) consists of a set of elements E, a set of
functions F that operate on members of E, and a set of basic
laws called axioms that define the properties of E and F. The
set of elements making up a Boolean algebra are variables and
constants that have fixed values of 0 or 1. A Boolean algebra
with n variables has a set of 2" possible permutations of these
variables.

Only three functions or operations are permitted in
Boolean algebra. The first two are the logical OR represented
by a plus (e.g. A + B) and the logical AND represented by a
dot (e.g. A*B). Some texts use a U (cup) or a v to denote the
logical OR operator and a N (cap) or a A to denote a logical
AND operator.

The use of the plus and dot symbols is rather confusing
because the same symbols are used for addition and multipli
cation in everyday life. One reason that these particular sym-
bols have been chosen is that they behave rather like
conventional addition and multiplication. Another possible
reason Boole chose + and - to represent the logical OR and

AND functions is that Boole’s background was in probability
theory. The chance of throwing a 1 or a 2 with two throws of
a single die 1s 1/6 + 1/6, whereas the chance of throwing a1
anda2is 1/6 X 1/6; thatis, the or and and in probability the-
ory also behave like addition and multiplication, respectively.

The third operation permitted in Boolean algebra is that of
negation or complementation and is denoted by a bar overa
constant or a variable. The complement of 0 (i.e.0) is I and vice
versa. The equation X + Y-Z = Ais read as‘X or Y and not Z
equals A The priority of an AND operator is higher than that
of an OR operator so that the expression means A = X +
(Y-7) and not A = (X + Y)Z. Some texts use an asterisk to
denote negation and some use a stroke, Thus, we can write
NOT(X) as X or X* or /X.

The arithmetic operations of subtraction and division do
not exist in Boolean algebra. For example, the Boolean
expression X + Y = X + Z, cannot be rearranged in the
form X+ Y)—X=(X+7Z)— 2 which would lead to
Y = Z.If you don’t believe this, then consider the case X = 1,
Y = 1,and Z = 0. The left-hand side of the equaticn yields
X+Y=1+1=1, and the right-hand side vyields
X+ 7Z=1+0=1. That is, the equation is valid even
though Y is not equal to Z.

An axiom or postulate is a fundamental rule that has to be
takeil for granted (i.e. the axioms of Boolean algebra define
the framework of Boolean algebra from which everything
else can be derived). The first axiom is called the closure
property, which states that Boolean operations on Boolean
variables or constants always yield Boolean results. If vari-
ables A and B belong to a set of Boolean eleruents, the opera-
tions A- B, A + B,and NOT A and NOT' B also belong to the
set of Boolean elements.

Boolean variables obey the same commutative, distributive,
and associative laws as the variables of conventional algebra.
We take these laws for granted when we do everyday arith-
metic; for example, the commutative law states that
6 X 3 = 3 X 6.Table 2.13 describes the commutative, distribu-
tive, and associative laws of Boolean algebra.

We approach Boolean algebra by first looking at the action
of NOT, OR, and AND operations on constants. The effect of
these three operations is best illustrated by means of the truth
table given in Table 2.14. These rules may be extended to any
number of variables.

We can extend Table 2.14, which defines the relationship
between the Boolean operators and the constants 0 and 1,

! There are, in fact, an infinite number of Boolean algebras. We arg
interested only in the Boolean algebra whose variables have binary two-

state values.

2.5 An Introduction to Boolean algebra

A+B=B+A The AND and OR operators are commutative so that the order of the
A-B=B-A variables in a sum or product group does not matter.
A-(B-C)=(A-B)-C The AND and OR operators are associative so that the order in which
A+B+C)=(A+B)+C sub-expressions are evaluated does not matter.
AB+C=AB+A-C The AND operator behaves like multiplication and the OR operator like
A+B-C=(A+B)(A+C) addition. The first distributive property states that in an expression
containing both AND and OR operators the AND operator takes precedence
over the OR.The second distributive law,A + B- C = (A + B)(A + C),is not
valid in conventional algebra.
Sl 212 Commutative, distributive, and associative laws of Boolean algebra.
0=1 0.:0=0 0+0=0 0-X=0 0+X=X X =X
=g 0-1=0 0+1=0 T-X=X T+X=1
1-0=0 1+0=1 X-X=X X+ X=X
11=1 1T+1=1 X-X=0 X+X=1

Basic axioms of Boolean algebra.

the relationship between a Boolean operator, a variable, and a
literal (see Table 2.15).

We can prove the validity of the equations in Table 2.15 by
substituting all the possible values for X (i.e. 0 or 1). For
example, consider the axiom 0-X =0. If X =1 we have
0.1 = 0, which is correct because by definition the output of
an AND gate is true if and only if all its inputs are true.
Similarly, if X = 0 we have 0-0 = 0, which is also correct.
Therefore, the expression 0-X = 0 is correct for all possible

Theorem 1 X+X-Y=X

Proof X+XY=X1+X'Y
=X(1+Y)
= X(1)
=X

Theorem 2 X+X-Y=X+Y

Proof X+X-Y=X+XY)+XY
=X+ XY +Z(-Y
=X+ Y(X+X)
=X+ Y(1)
=X+Y
Theorem 3 XY+XZ+Y-Z=X-Y+X-Z
Proof X Y+XZ4+YZ=XY+X-Z+Y-ZX+X)

=X Y+XZ+XY-Z+X Y Z
=X.Y(1+2Z)+X-Z(l +Y)

=X-Y(1) + X-Z(1)

Boolean operations on a
constant and a variable.

values of X. A proof in which we test a theorem by examining
all possibilities is called proof by perfect induction.

The axioms of Boolean algebra could be used to simplify
equations, but it would be too tedious to keep going back
to frst principles. Instead, we can apply the axioms of
Boolean algebra to derive some theorenis to help in the sim-
plification of expressions. Once we have proved a theorem
by using the basic axioms, we can apply the theorem to
equations.

Using 1-X = X and commutativity
Using distributivity
Because | + Y =1

By Theorem 1 X =X+ X-Y

Remember that X + X =1

Remember that (X + i) =1
Multiply bracketed terms
Apply distributive rule
Because (1 +Y) =1

58 Chapter 2 Gates, circuits, and combinational logic

Inputs
X Y z X XY X.Z Y.Z XY+X-Z XY+X-Z+Y-Z
0 0 0 1 0 0 0 0 0
0o 0 1 1 0 1 0 1 1
o 1 o0 1 0 0 0 lo 0
o 1 1 1 0 1 1 1 L1
1 0 o0 0 0 0 0 0 o
10 1 0 0 0 0 Lo 0
1 1 o0 0 1 0 0 1 1
111 0 1 0 1 1 1

~—— same —»
Table 216 Proof of Theorem 3 by perfect induction.

We can also prove Theorem 3 by the method of perfect (Table 2.16). Because the columns labeled X-Y + X-Z and
induction. To do this, we set up a truth table and demonstrate XY + X:Z + Y-Z in Table 2.16 are identical for all possible
that the theorem holds for all possible values of X, ¥, and Z ~ inputs, these two expressions must be equivalent.

Theorem 4 X(X+Y)=X

Proof X(X+Y)=X-X+X-Y Multiply by X
=X+X-Y Because X - X = X
=X By Theorem 1

Theorem 5 XX +Y)=X-Y

Proof XX+Y)=XX+XY -
=0+X-Y Because X- X =0
=X-Y

Theorem 6 X+VX+ Y)=X

Proof X+V)X+Y)=X-X+X-Y+X-Y+YY
=X+X-Y+X'Y Because X-X =X, Y Y =0
=X(1+Y+Y)
=X

Theorem7 (X+YV)X+2)=X-Z+X-Y

Proof X+V)X+Z2)=X-X+X-Z+X-Y+Y-Z Multiply brackets
=X-Z+X-Y+Y-Z Because X-X = 0
=X-Z+XY By Theorem 3
Theorem8 (X+ V)X +Z2)(Y+Z)=X+Y)X+2)
Proof X+VNX+2Z)(Y+2)=(X-Z+X-Y)(Y+2Z) By Theorem 7
=X-YZ+XZZ+X-Y-Y+X-Y-Z
=XYZ+X-Z+XY+X-Y-Z Because X - X = 1
=X Z(Y+ D+ X-Y1+2)
=X-Z+X:Y
=X+ V(X +2) By Theorem 7

We provide an alternative proof for Theorem 8 when we look at de Morgan’s theorem later in this chapter.

2.5 An Introduction to Boolean algebra
Theorem 9 XYZ=X+Y+2Z
Proof To prove that XYZ=X+Y+ Z we assume that the
expression is true and test its consequences.
If X + Y + Zis the complement of X- Y - Z, then from the
basic axioms of Boolean algebra, we have
X+Y+2Z) X-Y-Z)=0andX+Y+Z)+(X-Y-Z)=1
Subproof1 (X +Y+Z)X-Y-Z=X-X-Y-Z+Y-X-Y-Z+Z-XY-Z
=X-X-Y-Z)+Y-Y-(Y-2) +Z-Z(X-Y)
=0
Subproof 2 (X + Y + 7) + X- YE=7%: Z-X)+X+Y+Z Re-arrange equation
’—Y_-Z I~X+Y_+Z_ UseA-B+B=A+8B
=¥ +¥3)+FX+Z Re-arrange equation
=Y+Z+Z+X _
=Y+ 1+X=1 UseZ +7Z =1
As we have demonstrated that
(§+X4_7:)-X~Y'Z=0andthat o
(X+Y+Z)+X-Y-Z=1,itfollows that X + Y + Zis the
complement of X-Y - Z.
Theorem10 X Y-Z=X+Y+Z
Proof One possible way of proving Theorem 10 is to use the method
we used to prove Theorem 9. For the sake of variety, we will
prove Theorem 10 by perfect induction (see Table 2.17).
inputs
X v X +Y+Z X ¥ 2 s
O 0 0 0 1 1 1 1 1
0 0 1 1 0 1 1 0 0
B 1 0 1 0 1 0 1 0
a1 1 1 0 1 0 0 0
i 0 0 1 0 0 1 1 0
B 0 1 1 0 0 1 0 0
1 i) 0 1 0 0 0 1 0
1 1 1 1 0 0 0 0 0
- ame—
1able 2.17 Proof of Theorem 10 by perfect induction.
Theorems 9 and 10 are collectively called de Morgan’s Expression Dual
theorem. This theorem can be stated as an entire functionis X =X + X X=X-X (replace + by-)
complemented by replacing AND operators by OR operators, 1= X + 1 0=X-0 (replace + by-and
replacing OR operators by AND operators, and complement- replace 1 by 0)
ing variables and literals. We make extensive use of de X =X(X+Y) X=X+X-Y (replace by + and
Morgan’s theorem later. replace + by-)

Animportant rulein Boolean algebra is called the principle
of duality. Any expression that is true is also true if AND is

As you can see, the dual of each expression is also true.

replaced by OR (and vice versa) and 1 replaced by 0 (and vice
versa). Consider the following examples of duals.

59

o0 Chapter 2 Gates, circuits, and combinational logic

When novices first encounter Boolean algebra, it is not
uncommon for them to invent new theorems that are incorrect
(because they superficially look like existing theorems). We
include the following observations because they represent the
most frequently encountered misconceptions.

Observation1 X-Y + X-Yisnot equal to 1
XY + X-Y cannot be simplified

This table provides all possible functions of two variables A and
B.These two variables have 22 = 4 possible different
combinations. We can associate a different function with

each of these 4% = 16 values to create all possible functions

0 0 o0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
o 1 0 0 1 1 0 o0 1 1 0o 0 1 1 0 0 1 1
1T 0 0 0 0 o0 1 1 1 1 o o0 o0 0 1 1 1 1
1T 1 0 0 O 0O 0 0 0 0 1 1 1 1 1 1 1 1

Fo 0

F, A+ B NOR

F, A-B

Fs A NOT

Fu A-B

Fs B NOT

Fe A®B EOR

F, A-B NAND

Fa A-B AND

Fo AGB ENOR

Fio B -

Fir A-B+AB+AB=A-B=A+B

Fi2 A ¥

Fus A-B+A-B+AB=A-B=A+B

Fre A+B OR

Fus 1

Having presented the basic rules of Boolean algebra, the next
step is to show how it’s used to simplify Boolean expressions.
By simplifying these equations you can sometimes produce

Observation2 XY+ X:Yisnot equal to 1
X-Y + X-Y cannot be simplified
Observation3 X-Yisnot equal to X-Y

Observation4 X + YisnotequaltoX + Y

of two variables; that is, there are only 16 possible types of
two-input gate. Some of the functions correspond to
functions we've already met. Some functions are
meaningless.

a cheaper version of the logic circuit. The following equations
are generally random functions chosen to demonstrate the
rules of Boolean algebra.

@ X+Y+XY+X+Y) XY

b) XY Z+X-YZ+XYZ+XYZ

2.5 An Introduction to Boolean algebra

© XY-X-Z) WXZ+XYZ+W-XY+XYZ+W-Y-Z
(d) X+)X+ Z)Y + Z) (8 W-X-Z+W-Z+X-Y-Z+W-X-Y

(@) (W+X+Y-Z)(W+X)(X+Y) h) X+Y+2D)X+Y+2)X+Y+2)

Solutions

When I simplify Boolean expressions, I try to keep the order of the variables alphabetical, making it easier to pick out logical
groupings.

@ X+Y + X Y+ X+DX Y =X+Y+X-Y+X-X-Y+X-Y Y

=X+Y+XY AsA-A =0
=X+Y+Y asA+ A-B=A+B
= as A+ A =1

Note: When a Boolean expression can be reduced to the constant 1, the expression is always true and is independent of the
variables.

) XYZ+XYZ+XYZ+XYZ=XY-(Z+2)+X-Z-(Y+Y)

=X-Y-()+X-Z-(1)

=X-Y+X-Z
{c) XY-X-Z=XY+XZ By Theorem 9
=X:Y+X.Z AsF=F

Note: Both expressions in examples (b) and (c) simplify to X - Y + X- Z, demonstrating that these two expressions are equiv-
alent. These equations are those of the multiplexer with (b) derived from the truth table (Table 2.9) and (c) from the circuit
diagram of Fig. 2.14.

) X+ VNX+Z2)(Y+Z)=X-X+X-Z+X-Y+Y-2)- (Y+2)
=X-Z+X-Y+Y-2)-(Y+Z) AsX-X=0
= (X-Z+X-Y) (Y +Z) By Theorem 3
=X-YZ+XZZ+XYY+XY-Z
=X-¥Z+X-YZ

© W+HX+Y Z2W+X)X+Y)=(WW+WX+W-YZ+WX+XX+XYZX+Y)
=(WX+WYZ+WX+X+X-Y-Z)X+Y)
=X+W-Y-2)X+Y)

=X-X+X-Y+W-X-Y-Z+W-Y-Y-Z
=X-Y+W-X-Y-Z+W-Y-Z
=X-Y+W-Y-ZX+1)

XY+W-YZ

() WXZ + XYZ + WXY + XYZ + WYZ = WXZ + YZ(X + X + W) + WXY
= WXZ + YZ + WXY
=WX(Y+Z) +YZ

Note that YZ = Y + Z so we can write

=WX(Y+Z)+Y+2Z
=W-X+Y-Z BecauseA + A-B= A + B

62 Chapter 2 Gates, circuits, and combinational logic

(g) WXZ + WZ + XYZ + WXY = Z(WX + W) + XYZ + WXY
= Z(X + W) + XYZ + WXY
= XZ + WZ + XYZ + WXY
= X(Z + YZ) + WZ + WXY
= X(Z +Y) + WZ + WXY
= XZ + XY + WZ + WXY
=XZ + XY(1 + W) + WZ
= XZ + XY + WZ

h) X+Y+2D)X+Y+Z)X+Y+Z) =Y +2DX+Y+2) as(A+B)A+B)=A
=ZX+Y)+Y-Z as(A+B)A+C)=A-C+A-B
=X-Z4+-Z+YZ
=X-Z+Y(Z+Z)
= X Zid Y

In this example, 2X3=6=0110
For example, 1,0=2

Input Xo :@’:: L 2 37
XX ' > 21,
2-bit by 2-bit © " 4-bit product
multiplier pig L
Input Yo d > 7,
y Y1:@:: I |
‘\

™ For example, 1,1=3 Figure 2.52 A 2-bit multiplier

Inputs Output

x
3(
_‘4 |
r:(
N

XxY¥Y=2

d

N
N
N

0X0=0
0X1=0
0X2=0
0X3=0
1X0=0
1x1=1
1X2=2
1X3=3
2X0=0
2X1=2
2X2=4
2X3=6
3X0=0
3X1=3
3X2=6
3X3=9

4 4 4 s 8 8 s a0 00 OO0 O OO
SR o T = T = [l « QTP PSS o T S = Il >
40 2 00 2 2 0O 0 = 2 OO0 = 2 OO0
40 2 0O 24 0O 2 0O =2 0O 2 O s O 2 O
. 0O 0O 0000 00000 OO0 OO
O 2 00 2 2 OO0 0 OO0 0O o0 o0 o0 O
O 4 4 0O =2 0O 2 0O = » OO0 O O O O
- 0O 4 OO0 0O 0O 0O 2 O = OO0 O O O

Table 2,18 Truth table for a 2-bit by 2-bit multiplier.

These examples illustrate the art of manipulating Boolean
expressions. 1t’s difficult to be sure we have reached an optimal
solution. Later we study Karnaugh maps, which provide an
approach that gives us confidence that we’ve reached an opti-
mal solution.

The Design of

The following example illustrates how Boolean algebra is
applied to a practical problem. A designer wishes to produce
a2-bit by 2-bit binary multiplier. The two 2-bit inputs are X,
Xpand Y, Y, and the four-bit product at the output terminals
1825, 75, 2, Zo. We have not yet introduced binary arithmetic
(see Chapter 4), but nothing difficult is involved here. We
begin by considering the block diagram of the system
(Fig. 2.52) and constructing its truth table.

2.5 An Introduction to Boolean algebra

The multiplier has four inputs, X, X,, Y, Y,, (indicat-
ing a 16-line truth table) and four outputs. Table 2.18 pro-
vides a truth table for the binary multiplier. Fach 4-bit
input represents the product of two 2-bit numbers so that,
for example, an input of X, X, Y,, Y, = 1011 represents
the product 10, X 11, or 2 X 3. The corresponding out-
put is a 4-bit product, which, in this case, is 6 or 0110 in
binary form.

From Table 2.18, we can derive cxpressions for the four
outputs, Z, to Z,. Whenever a truth table has m output
columns, a set of m Boolean equations must be derived. One
equation is associated with each of the m columns. To derive
an expression for 7, the four minterms in the 7, column are
ORed logically.

Zo= X, X0 Y, Y, + XX Y, Yy + X, Xp Y, Y, + XX Y0,

=X, X, VoY, +Y)) + X, XYY, +Y)
=X XY, + X, Xo'Y,

B (X, + X)

= X“.YO

2= X, %X, Yy + X Xo Y Y + XX X Yo+ X Xo Y, Yo + X Xoo Y, Y, + XXX, 1Y
B X XY (Yo + Yo) + XX Yo(Y, +) + X Xo Y, Y + X Xp Y Y,

B XY, + XX Y, + X XX Yy + Xy KXoV,
=X, Y, (X, + X, Yo) + X, Yo(X, + Xp°Yy)

=X, (X, + Yo) + X Y(Xe + Y)

=X XY, + X Y Yo + X KoYy + XYY,

X, X, Y, Y, + XX Y Y + XX Y, Y
=X-X, Y (Y + Yo + X, X0 Y0 Y
= Xy Y, + X, XY Y
= X,-Y,(X, + X,Yo)
Y, (X, + Y)
=X, Y, + XYY,

= XX, Y,

We have now obtained four simplified sum of products
expressions for 7, to Z;; that is,
= Xp'Y,
Z = X XY, + XY, YV, + X XYy + XYY
=% X, Y, + X,-Y, 'Y,
L= XXy Yy Y,

It’s interesting to note that each of the above expressions is
symmetric in X and Y. This is to be expected—if the problem

itself is symmetric in X and Y (i.e. 3 X 1 = 1 X 3), then the
result should also demonstrate this symmetry. There are
many ways of realizing the expressions for Z; to Z,. The
circuit of Fig. 2.53 illustrates one possible way.

De Morgan's theorem

Theorems 9 and 10 provide the designer with a powerful tool
because they enable an AND function to be implemented by

http:correspondi.ng

64 Chapter 2 Cates, circuits, and combinational logic

YIVY]Y

v
e

&

U

3¢
=
o

g

Zy

¥

&
=

o

e

\ XiXoYs

L

\ XY Y[Z

L

N\ X X6YYo
R

Figure 2.53 Circuit for the two-bit multiplier.

an OR gate and inverter. Similarly, these theorems enable an
OR gate to be implemented by an AND gate and inverter.
We first demonstrate how de Morgan’s theorem is applied
to Boolean expressions and then show how circuits can be
converted to NAND-only or NOR-only forms. You may
wonder why anyone should wish to implement circuits in
NAND (or NOR) logic only. There are several reasons for
this, but, in general, NAND gates operate at a higher speed
than AND gates and NAND gates can be built with fewer
components (at the chip level). Later we shall examine in
more detail how a circuit can be designed entirely with
NAND gates only.

To apply de Morgan’s theorem to a function the ANDs are
changed into ORs, ORs and the into ANDs and variables (and

literals) are complemented. The following examples illustra
the application of de Morgan’s theorem.

LEF=XY+XZ We wish to apply de Morgan'’s
theorem to the right-hand side
The + becomes - and variables
‘X-Y'and 'X-Z' complemented
Variables X-Y and X-Y are
themselves complemented

X7

If
4
e

As you can see, the first step is to replace the OR by an AN
operator. The compound variables X - Y and X - Z are comple-
mented to get X-Y and X-Z. The process is continued by
applying de Morgan to the two complemented groups (i.e.
XY becomes X + Y and X-Z becomes X + Z).

A-B+ C-D+ AD
A-B-C-D-A-D
=(A+B)(C+D)A +D)

¥

3. F=A-B-(C + ED)
=A+B+C+ED
=A+B+CED
=A+B+C- (E+D)

=

2.5 An Introduction to Boolean algebra &5

Replace + by - and complement the product terms

Expand the complemented product terms

This is a product term with three elements.
Replace - by + and complement variables
Evaluate the complemented expression (change + to-)

Final step, evaluate E-D

This example demonstrates how you have to keep applying de Morgan’s theorem until there are no complemented terms left
| b p applying g p

to evaluate.
4. A proof of Theorem 8 by de Morgan’s theorem

B+ 0)-X+Y)-(Y+2) = (X + V)X + 2)(Y + 2)

=X+Y+X+Z+Y+Z

=XY+XZ+YZ

=X-Y+XZ
- X¥x7
=X+ YVX+2Z)

2.5.3 ‘mpigﬂnntwg logi
INAND or NOR two logic on

Some gates are better than others; for example, the NAND
gate is both faster and cheaper than the corresponding AND
gate. Consequently, it’s often necessary to realize a circuit
using one type of gate only. Engineers sometimes implement
adigital circuit with one particular type of gate because there
is not a uniform range of gates available. For obvious eco-
nomic reasons manufacturers don’t sell a comprehensive
range of gates (e.g. two-input AND, three-input AND, .. .,
10-input AND, two-input OR, . ..). For example, there are
many types of NAND gate, from the quad two-input NAND
to the 13-input NAND, but there are few types of AND gates.
NAND logic We first look at the way in which circuits can
be constructed from nothing but NAND gates and then
demonstrate that we can also fabricate circuits with NOR
gates only. To construct a circuit solely in terms of NAND
gates, de Morgan’s theorem must be invoked to get rid of all
OR operators in the expression. For example, suppose we
wish to generate the expression F = A + B + C using NAND
gates only. We begin by applying a double negation to the
expression, as this does not alter the expression’s value but it
does give us the opportunity to apply de Morgan’s theorem.

F=A+B+C The original expression using
OR logic

Double negation has no effect on
the value of a function

Apply de Morgan's theorem

Complement twice because X = i
Remove inner bar by applying de Morgan
Complement the three two-variable groups
Use Theorem 3 to simplify

Remove outer bar, change + to -

Remove bars over two-variable groups

We've now converted the OR function into a NAND func-
tion. The three NOT functions that generate A, B, and C can
be implemented in terms of NOT gates, or by means of two-
input NAND gates with their inputs connected together.

Figure 2.54 shows how the function ¥ = A + B + C can
be implemented in NAND logic only. If the inputs of a
NAND gate are A and B, and the output is C, then C = A-B.
Butif A = B, then C = A-A or C = A.You can better under-
stand this by looking at the truth table for the NAND gate,
and imagining the effect of removing thelines A, B = 0, L and
A,B=1,0,

It's important to note that we are not using de Morgan’s
theorem here to simplify Boolean expressions. We are using
de Morgan’s theorem to convert an expression into a form
suitable for realization in terms of NAND (or NOR) gates,

ABC=A+B+C

Figure 2.54 Implementing F = A + B + C with NAND logic only.

56 Chapter 2 Gates, circuits, and combinational logic

By applying the same techniques to the 2-bit by 2-bit 7z, = X X,Y, + X,Y,Y,
multiplier we designed earlier we can convert the expressions N e———

for the four outputs into NAND-only logic. - MYO
=X XY, - XYY,
Zy = Xo'Yy = X,Y, (i.e. NAND gate followed by NOT Zy = X XYY,
gate = AND gate) =X, XYY,

=X + XY, Y, + X, XY, + X, Y _ _ o
Zi = XXXy + XYY KoY + XXX Figure 2.55 shows the implementation of the multiplier in

= XX ¥y + X¥ Ty + X,i)ZOY07+ X1Y|Y§ terms of NAND logic only. Note that this circuit performs
— exactly the same function as the circuit of Fig. 2.53.
= X XY, XY, Y- X, X Yo X, Y, Y, NOR logic The procedures we’ve just used may equally be

applied to the implementation of circuits using NOR gates

.
:

1]

i
(

“?

L
!

Flzure 255 Implementing the multiplier circuit in NAND logic only.

only. By way of illustration, the value of Z; in the 2-bit multi-
plier can be converted to NOR logic form in the following way

= X, XYY,

= X, XoY, Y,

X 4K, 4T, + T,

Note that negation may be implemented by an inverter or by
aNOR gate with its inputs connected together.

As a final example of NAND logic consider Fig. 2.56. A
Boolean expression can be expressed in sum-of-products
form as A-B + C:D. This expression can be converted to
NAND logic as

AB-C-D

Note how the three-gate circuit in Fig. 2.56(a) can be
converted into the three-gate NAND circuit of Fig. 2.56(b).

& AB
!
5)

(A) Realization of AB+CD

(b) Realization of AB+CD

2.5 AnIntroduction to Boolean Algebra &7
Fig. 2.57 shows the construction of the two versions of
AB + CD in Digital Works. We have provided an LED at each
output and manually selectable inputs to enable you to inves-
tigate the circuits.

)

ap

J

54 Karnaughm

S

When you use algebraic techniques to simplify a Boolean
cspression you somctinmes reach a point at which you
can’t proceed, because youre unable to find further
simplifications. The Karnaugh map, or more simply the
K-map, is a graphical technique for the representation and
simplification of a Boolean expression that shows unambigu-
ously when a Boolean expression has been reduced to its
most simple form.

Although the Karnaugh map can simplify Boolean equa-
tions with five or six variables, we will use it to solve problems

> Implementing
A-B+ C-DinAND/OR and

{AND/OR logic). (NAND logic). NAND logic.
" Digital Works 95 - OUPNANDNAND. dwm - [O] %]
Flle Edit Circuit Wiew Tools Help
(== | =3 - I
DD b=Dreraaonlod sma ++| (&
> o Ry e

DS D
—— l B)—L
= : oo
e N r[_z
a— \ s e
1 g =
AND-OR clrcuit NAND eircuit

fleure 2,57 Using Digital Works to investigate two circuits.

