

i

About the Tutorial

Computer Logical Organization refers to the level of abstraction above the digital

logic level, but below the operating system level. At this level, the major

components are functional units or subsystems that correspond to specific pieces

of hardware built from the lower level building blocks.

This tutorial gives a complete understanding on Computer Logical Organization

starting from basic computer overview till its advanced architecture.

Audience

This reference has been prepared for the students pursing either Bachelors or

Masters in Computer Science to help them understand the basic-to-advanced

concepts related to Computer Logical Organization.

Prerequisites

Before you start proceeding with this tutorial, I'm making an assumption that

you are already aware of basic computer concepts like what is keyboard, mouse,

monitor, input, output, primary memory, secondary memory, etc. If you are not

well aware of these concepts, then I will suggest you to go through our short

tutorial on Computer Fundamentals.

 Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,

copy, distribute or republish any contents or a part of contents of this e-book in

any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial.

If you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

About the Tutorial ··· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ·· i

Table of Contents ·· ii

1. OVERVIEW ·· 1

Signal ·· 1

Analog Signal ·· 1

Digital Signal ··· 2

Comparison of Analog and Digital Signal ··· 3

2. DIGITAL NUMBER SYSTEM ·· 5

Decimal Number System ··· 5

Binary Number System ··· 6

Octal Number System ··· 6

Hexadecimal Number System ··· 7

3. NUMBER SYSTEM CONVERSION ·· 9

Decimal to Other Base System ·· 9

Other Base System to Decimal System ·· 10

Other Base System to Non-Decimal System ·· 11

Shortcut method - Binary to Octal ·· 12

Shortcut method - Octal to Binary ·· 12

Shortcut method - Binary to Hexadecimal ·· 13

Shortcut method - Hexadecimal to Binary ·· 13

4. BINARY CODES ·· 15

Advantages of Binary Code ··· 15

iii

Classification of binary codes ·· 15

Weighted Codes ·· 15

Non-Weighted Codes ·· 16

Binary Coded Decimal (BCD) code ··· 17

Alphanumeric codes ··· 18

Error Codes ··· 18

5. ERROR DETECTION AND CORRECTION ·· 19

What is Error? ··· 19

Error-Detecting codes ··· 19

Error-Correcting codes ·· 19

How to Detect and Correct Errors? ··· 19

Parity Checking of Error Detection ·· 20

Use of Parity Bit ·· 20

How Does Error Detection Take Place? ··· 21

6. CODES CONVERSION ··· 22

Binary to BCD Conversion ··· 22

BCD to Binary Conversion ··· 23

BCD to Excess-3 ··· 24

Excess-3 to BCD Conversion ·· 25

7. COMPLEMENT ARITHMETIC ·· 26

Binary System Complements ·· 26

8. BINARY ARITHMETIC ··· 28

Binary Addition ··· 28

Binary Subtraction ·· 28

Binary Multiplication ·· 29

Binary Division ·· 29

iv

9. OCTAL ARITHMETIC ·· 31

Octal Number System ··· 31

Octal Addition ··· 32

Octal Subtraction ·· 32

10. HEXADECIMAL ARITHMETIC ·· 33

Hexadecimal Number System ··· 33

Hexadecimal Addition ··· 33

Hexadecimal Subtraction ·· 34

11. BOOLEAN ALGEBRA ·· 36

Rule in Boolean Algebra ·· 36

Boolean Laws ·· 36

Important Boolean Theorems ··· 37

12. BOOLEAN FUNCTION ·· 38

Truth Table Formation ·· 38

Methods to Simplify a Boolean Function ·· 39

Karnaugh-map or K-map ··· 39

NAND Gates Realization ·· 40

13. DE MORGAN'S THEOREMS ·· 42

Theorem 1 ·· 42

Theorem 2 ·· 43

14. LOGIC GATES ··· 44

AND Gate ·· 44

OR Gate ·· 44

NOT Gate ·· 45

NAND Gate ··· 45

NOR Gate ·· 46

v

XOR Gate ·· 47

XNOR Gate ·· 47

15. COMBINATIONAL CIRCUITS ··· 49

Half Adder ··· 49

Full Adder ··· 50

N-Bit Parallel Adder ·· 51

N-Bit Parallel Subtractor ··· 52

Half Subtractors ·· 53

Full Subtractors ··· 53

Multiplexers·· 54

Demultiplexers ··· 56

Decoder ·· 57

2 to 4 Line Decoder ··· 57

Encoder ··· 58

Priority Encoder ·· 59

16. SEQUENTIAL CIRCUITS ·· 61

Flip Flop ·· 61

S-R Flip Flop ·· 61

Master Slave JK Flip Flop ··· 63

Delay Flip Flop / D Flip Flop ··· 65

Toggle Flip Flop / T Flip Flop ·· 66

17. DIGITAL REGISTERS ··· 68

Serial Input Serial Output ·· 68

Serial Input Parallel Output ··· 70

Parallel Input Serial Output (PISO) ·· 71

Parallel Input Parallel Output (PIPO) ··· 72

Bidirectional Shift Register ·· 73

vi

Universal Shift Register ··· 74

18. DIGITAL COUNTERS ··· 76

Asynchronous or ripple counters ·· 76

Synchronous Counters ·· 78

Classification of Counters ·· 80

UP/DOWN Counter ··· 80

UP/DOWN Ripple Counters ··· 81

Modulus Counter (MOD-N Counter) ··· 83

Application of Counters ·· 83

19. MEMORY DEVICES ·· 84

RAM ·· 85

ROM ··· 85

Serial Access Memory ··· 86

Direct Access Memory ·· 87

Cache Memory ·· 87

Auxiliary Memory ··· 88

20. CPU ARCHITECTURE ·· 89

8085 Microprocessor ·· 89

ALU ··· 89

Accumulator ··· 90

Flags ·· 90

Register section ·· 91

Time and Control Section ·· 91

Instruction Format ·· 94

Variable Instruction Formats ··· 94

Fixed Instruction Formats ··· 94

Hybrid Instruction Formats ··· 95

vii

Addressing Modes ·· 95

CLO

1

In the modern world of electronics, the term Digital is generally associated with

a computer because the term Digital is derived from the way computers

perform operation, by counting digits. For many years, the application of digital

electronics was only in the computer system. But now-a-days, digital electronics

is used in many other applications. Following are some of the examples in

which Digital electronics is heavily used.

 Industrial process control

 Military system

 Television

 Communication system

 Medical equipment

 Radar

 Navigation

Signal

Signal can be defined as a physical quantity, which contains some information.

It is a function of one or more than one independent variables. Signals are of

two types.

 Analog Signal

 Digital Signal

Analog Signal

An analog signal is defined as the signal having continuous values. Analog

signal can have infinite number of different values. In real world scenario, most

of the things observed in nature are analog. Examples of the analog signals are

following.

 Temperature

 Pressure

 Distance

 Sound

 Voltage

 Current

1. OVERVIEW

CLO

2

 Power

Graphical Representation of Analog Signal (Temperature)

The circuits that process the analog signals are called as analog circuits or

system. Examples of the analog system are following.

 Filter

 Amplifiers

 Television receiver

 Motor speed controller

Disadvantage of Analog Systems

 Less accuracy

 Less versatility

 More noise effect

 More distortion

 More effect of weather

Digital Signal

A digital signal is defined as the signal which has only a finite number of

distinct values. Digital signals are not continuous signals. In the digital electronic

calculator, the input is given with the help of switches. This input is converted

into electrical signal which have two discrete values or levels. One of these may

be called low level and another is called high level. The signal will always be one

of the two levels. This type of signal is called digital signal. Examples of the

digital signal are following.

 Binary Signal

 Octal Signal

CLO

3

 Hexadecimal Signal

Graphical Representation of Digital Signal (Binary)

The circuits that process the digital signals are called digital systems or digital

circuits. Examples of the digital systems are following.

 Registers

 Flip-flop

 Counters

 Microprocessors

Advantage of Digital Systems

 More accuracy

 More versatility

 Less distortion

 Easy communicate

 Possible storage of information

Comparison of Analog and Digital Signal

S.N. Analog Signal Digital Signal

1 Analog signal has infinite values. Digital signal has a finite

number of values.

2 Analog signal has a continuous nature. Digital signal has a discrete

nature.

3 Analog signal is generated by Digital signal is generated by

CLO

4

transducers and signal generators. A to D converter.

4 Example of analog signal: sine wave,

triangular waves.

Example of digital signal:

binary signal.

CLO

5

A digital system can understand positional number system only where there are

a few symbols called digits and these symbols represent different values

depending on the position they occupy in the number.

A value of each digit in a number can be determined using

 The digit

 The position of the digit in the number

 The base of the number system (where base is defined as the total

number of digits available in the number system).

Decimal Number System

The number system that we use in our day-to-day life is the decimal number

system. Decimal number system has base 10 as it uses 10 digits from 0 to 9. In

decimal number system, the successive positions to the left of the decimal point

represents units, tens, hundreds, thousands and so on.

Each position represents a specific power of the base (10). For example, the

decimal number 1234 consists of the digit 4 in the units position, 3 in the tens

position, 2 in the hundreds position, and 1 in the thousands position, and its

value can be written as

(1x1000)+ (2x100)+ (3x10)+ (4xl)

(1x103)+ (2x102)+ (3x101)+ (4xl00)

1000 + 200 + 30 + 1

1234

As a computer programmer or an IT professional, you should understand the

following number systems which are frequently used in computers.

S.N. Number System & Description

1 Binary Number System

Base 2. Digits used: 0, 1

2 Octal Number System

Base 8. Digits used: 0 to 7

2. DIGITAL NUMBER SYSTEM

CLO

6

3 Hexa Decimal Number System

Base 16. Digits used: 0 to 9, Letters used: A- F

Binary Number System

Characteristics

 Uses two digits, 0 and 1.

 Also called base 2 number system

 Each position in a binary number represents a 0 power of the base (2).

Example: 20

 Last position in a binary number represents an x power of the base (2).

Example: 2x where x represents the last position - 1.

Example

Binary Number: 101012

Calculating Decimal Equivalent:

Step Binary

Number

Decimal Number

Step 1 101012 ((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) +

(1 x 20))10

Step 2 101012 (16 + 0 + 4 + 0 + 1)10

Step 3 101012 2110

Note: 101012 is normally written as 10101.

Octal Number System

Characteristics

 Uses eight digits, 0,1,2,3,4,5,6,7.

 Also called base 8 number system

 Each position in an octal number represents a 0 power of the base (8).

Example: 80

 Last position in an octal number represents an x power of the base (8).

Example: 8x where x represents the last position - 1.

CLO

7

Example

Octal Number: 125708

Calculating Decimal Equivalent:

Step Octal

Number

Decimal Number

Step 1 125708 ((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0

x 80))10

Step 2 125708 (4096 + 1024 + 320 + 56 + 0)10

Step 3 125708 549610

Note: 125708 is normally written as 12570.

Hexadecimal Number System

Characteristics

 Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

 Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D =

13, E = 14, F = 15.

 Also called base 16 number system.

 Each position in a hexadecimal number represents a 0 power of the base

(16). Example 160.

 Last position in a hexadecimal number represents an x power of the base

(16). Example 16x where x represents the last position - 1.

Example:

Hexadecimal Number: 19FDE16

Calculating Decimal Equivalent:

Step Binary

Number

Decimal Number

Step 1 19FDE16 ((1 x 164) + (9 x 163) + (F x 162) + (D x 161)

+ (E x 160))10

Step 2 19FDE16 ((1 x 164) + (9 x 163) + (15 x 162) + (13 x

CLO

8

161) + (14 x 160))10

Step 3 19FDE16 (65536+ 36864 + 3840 + 208 + 14)10

Step 4 19FDE16 10646210

Note: 19FDE16 is normally written as 19FDE.

CLO

9

There are many methods or techniques which can be used to convert numbers

from one base to another. We'll demonstrate here the following:

 Decimal to Other Base System

 Other Base System to Decimal

 Other Base System to Non-Decimal

 Shortcut method - Binary to Octal

 Shortcut method - Octal to Binary

 Shortcut method - Binary to Hexadecimal

 Shortcut method - Hexadecimal to Binary

Decimal to Other Base System

Steps

 Step 1 - Divide the decimal number to be converted by the value of the

new base.

 Step 2 - Get the remainder from Step 1 as the rightmost digit (least

significant digit) of new base number.

 Step 3 - Divide the quotient of the previous divide by the new base.

 Step 4 - Record the remainder from Step 3 as the next digit (to the left)

of the new base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient

becomes zero in Step 3.

The last remainder thus obtained will be the Most Significant Digit (MSD) of the

new base number.

Example:

Decimal Number: 2910

Calculating Binary Equivalent:

Step Operation Result Remainder

Step 1 29 / 2 14 1

3. NUMBER SYSTEM CONVERSION

CLO

10

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

Step 4 3 / 2 1 1

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the

reverse order so that the first remainder becomes the Least Significant Digit

(LSD) and the last remainder becomes the Most Significant Digit (MSD).

Decimal Number: 2910 = Binary Number: 111012.

Other Base System to Decimal System

Steps

 Step 1 - Determine the column (positional) value of each digit (this

depends on the position of the digit and the base of the number system).

 Step 2 - Multiply the obtained column values (in Step 1) by the digits in

the corresponding columns.

 Step 3 - Sum the products calculated in Step 2. The total is the

equivalent value in decimal.

Example

Binary Number: 111012

Calculating Decimal Equivalent:

Step Binary

Number

Decimal Number

Step 1 111012 ((1 x 24) + (1 x 23) + (1 x 22) + (0 x 21) +

(1 x 20))10

Step 2 111012 (16 + 8 + 4 + 0 + 1)10

Step 3 111012 2910

Binary Number: 111012 = Decimal Number: 2910

CLO

11

Other Base System to Non-Decimal System

Steps

 Step 1 - Convert the original number to a decimal number (base 10).

 Step 2 - Convert the decimal number so obtained to the new base

number.

Example

Octal Number: 258

Calculating Binary Equivalent:

Step 1: Convert to Decimal

Step Octal Number Decimal Number

Step 1 258 ((2 x 81) + (5 x 80))10

Step 2 258 (16 + 5)10

Step 3 258 2110

Octal Number: 258 = Decimal Number: 2110

Step 2: Convert Decimal to Binary

Step Operation Result Remainder

Step 1 21 / 2 10 1

Step 2 10 / 2 5 0

Step 3 5 / 2 2 1

Step 4 2 / 2 1 0

Step 5 1 / 2 0 1

Decimal Number: 2110 = Binary Number: 101012

Octal Number: 258 = Binary Number: 101012

CLO

12

Shortcut method - Binary to Octal

Steps

 Step 1 - Divide the binary digits into groups of three (starting from the

right).

 Step 2 - Convert each group of three binary digits to one octal digit.

Example

Binary Number: 101012

Calculating Octal Equivalent:

Step Binary Number Octal Number

Step 1 101012 010 101

Step 2 101012 28 58

Step 3 101012 258

Binary Number: 101012 = Octal Number: 258

Shortcut method - Octal to Binary

Steps

 Step 1 - Convert each octal digit to a 3 digit binary number (the octal

digits may be treated as decimal for this conversion).

 Step 2 - Combine all the resulting binary groups (of 3 digits each) into a

single binary number.

Example

Octal Number: 258

Calculating Binary Equivalent:

Step Octal Number Binary Number

Step 1 258 210 510

Step 2 258 0102 1012

Step 3 258 0101012

CLO

13

Octal Number: 258 = Binary Number: 101012

Shortcut method - Binary to Hexadecimal

Steps

 Step 1 - Divide the binary digits into groups of four (starting from the

right).

 Step 2 - Convert each group of four binary digits to one hexadecimal

symbol.

Example

Binary Number: 101012

Calculating hexadecimal Equivalent:

Step Binary Number Hexadecimal Number

Step 1 101012 0001 0101

Step 2 101012 110 510

Step 3 101012 1516

Binary Number: 101012 = Hexadecimal Number: 1516

Shortcut method - Hexadecimal to Binary

Steps

 Step 1 - Convert each hexadecimal digit to a 4 digit binary number (the

hexadecimal digits may be treated as decimal for this conversion).

 Step 2 - Combine all the resulting binary groups (of 4 digits each) into a

single binary number.

Example

Hexadecimal Number: 1516

Calculating Binary Equivalent:

Step Hexadecimal Number Binary Number

Step 1 1516 110 510

CLO

14

Step 2 1516 00012 01012

Step 3 1516 000101012

Hexadecimal Number: 1516 = Binary Number: 101012

CLO

15

In the coding, when numbers, letters or words are represented by a specific

group of symbols, it is said that the number, letter or word is being encoded.

The group of symbols is called as a code. The digital data is represented, stored

and transmitted as group of binary bits. This group is also called as binary

code. The binary code is represented by the number as well as alphanumeric

letter.

Advantages of Binary Code

Following is the list of advantages that binary code offers.

 Binary codes are suitable for the computer applications.

 Binary codes are suitable for the digital communications.

 Binary codes make the analysis and designing of digital circuits if we use

the binary codes.

 Since only 0 & 1 are being used, implementation becomes easy.

Classification of binary codes

The codes are broadly categorized into following four categories.

 Weighted Codes

 Non-Weighted Codes

 Binary Coded Decimal Code

 Alphanumeric Codes

 Error Detecting Codes

 Error Correcting Codes

Weighted Codes

Weighted binary codes are those binary codes which obey the positional weight

principle. Each position of the number represents a specific weight. Several

systems of the codes are used to express the decimal digits 0 through 9. In

these codes each decimal digit is represented by a group of four bits.

4. BINARY CODES

CLO

16

Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The

examples of non-weighted codes are Excess-3 code and Gray code.

Excess-3 code

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to

express decimal numbers. The Excess-3 code words are derived from the 8421

BCD code words adding (0011)2 or (3)10 to each code word in 8421. The

excess-3 codes are obtained as follows:

Example

Gray Code

It is the non-weighted code and it is not arithmetic codes. That means there are

no specific weights assigned to the bit position. It has a very special feature

that, only one bit will change each time the decimal number is incremented as

shown in fig. As only one bit changes at a time, the gray code is called as a unit

CLO

17

distance code. The gray code is a cyclic code. Gray code cannot be used for

arithmetic operation.

Application of Gray code

 Gray code is popularly used in the shaft position encoders.

 A shaft position encoder produces a code word which represents the

angular position of the shaft.

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a

way to express each of the decimal digits with a binary code. In the BCD, with

four bits we can represent sixteen numbers (0000 to 1111). But in BCD code

only first ten of these are used (0000 to 1001). The remaining six code

combinations i.e. 1010 to 1111 are invalid in BCD.

Advantages of BCD Codes

 It is very similar to decimal system.

 We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of BCD Codes

 The addition and subtraction of BCD have different rules.

 The BCD arithmetic is little more complicated.

CLO

18

 BCD needs more number of bits than binary to represent the decimal

number. So BCD is less efficient than binary.

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states '0'

or '1'. But this is not enough for communication between two computers because

there we need many more symbols for communication. These symbols are

required to represent 26 alphabets with capital and small letters, numbers from

0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic

characters. Mostly such codes also represent other characters such as symbol

and various instructions necessary for conveying information. An alphanumeric

code should at least represent 10 digits and 26 letters of alphabet i.e. total 36

items. The following three alphanumeric codes are very commonly used for the

data representation.

 American Standard Code for Information Interchange (ASCII).

 Extended Binary Coded Decimal Interchange Code (EBCDIC).

 Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more

commonly used worldwide while EBCDIC is used primarily in large IBM

computers.

Error Codes

There are binary code techniques available to detect and correct data during

data transmission.

Error Code Description

Error Detection and

Correction

Error detection and correction code techniques

CLO

19

What is Error?

Error is a condition when the output information does not match with the input

information. During transmission, digital signals suffer from noise that can

introduce errors in the binary bits travelling from one system to other. That

means a 0 bit may change to 1 or a 1 bit may change to 0.

Error-Detecting Codes

Whenever a message is transmitted, it may get scrambled by noise or data may

get corrupted. To avoid this, we use error-detecting codes which are additional

data added to a given digital message to help us detect if an error occurred

during transmission of the message. A simple example of error-detecting code is

parity check.

Error-Correcting Codes

Along with error-detecting code, we can also pass some data to figure out the

original message from the corrupt message that we received. This type of code

is called an error-correcting code. Error-correcting codes also deploy the same

strategy as error-detecting codes but additionally, such codes also detect the

exact location of the corrupt bit.

In error-correcting codes, parity check has a simple way to detect errors along

with a sophisticated mechanism to determine the corrupt bit location. Once the

corrupt bit is located, its value is reverted (from 0 to 1 or 1 to 0) to get the

original message.

How to Detect and Correct Errors?

To detect and correct the errors, additional bits are added to the data bits at the

time of transmission.

5. ERROR DETECTION AND CORRECTION

CLO

20

 The additional bits are called parity bits. They allow detection or

correction of the errors.

 The data bits along with the parity bits form a code word.

Parity Checking of Error Detection

It is the simplest technique for detecting and correcting errors. The MSB of an 8-

bits word is used as the parity bit and the remaining 7 bits are used as data or

message bits. The parity of 8-bits transmitted word can be either even parity or

odd parity.

Even parity -- Even parity means the number of 1's in the given word including

the parity bit should be even (2, 4, 6,....).

Odd parity -- Odd parity means the number of 1's in the given word including

the parity bit should be odd (1, 3, 5,....).

Use of Parity Bit

The parity bit can be set to 0 and 1 depending on the type of the parity required.

 For even parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the

entire word is even. Shown in fig. (a).

 For odd parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the

entire word is odd. Shown in fig. (b).

CLO

21

How Does Error Detection Take Place?

Parity checking at the receiver can detect the presence of an error if the parity

of the receiver signal is different from the expected parity. That means, if it is

known that the parity of the transmitted signal is always going to be "even" and

if the received signal has an odd parity, then the receiver can conclude that the

received signal is not correct. If an error is detected, then the receiver will

ignore the received byte and request for retransmission of the same byte to the

transmitter.

CLO

22

There are many methods or techniques which can be used to convert code from

one format to another. We'll demonstrate here the following

 Binary to BCD Conversion

 BCD to Binary Conversion

 BCD to Excess-3

 Excess-3 to BCD

Binary to BCD Conversion

Steps

 Step 1 -- Convert the binary number to decimal.

 Step 2 -- Convert decimal number to BCD.

Example: convert (11101)2 to BCD.

Step 1 - Convert to Decimal

Binary Number: 111012

Calculating Decimal Equivalent:

Step Binary

Number

Decimal Number

Step 1 111012 ((1 x 24) + (1 x 23) + (1 x 22) + (0 x 21) +

(1 x 20))10

Step 2 111012 (16 + 8 + 4 + 0 + 1)10

Step 3 111012 2910

Binary Number: 111012 = Decimal Number: 2910

Step 2 - Convert to BCD

Decimal Number: 2910

Calculating BCD Equivalent. Convert each digit into groups of four binary digits

equivalent.

6. CODES CONVERSION

CLO

23

Step Decimal Number Conversion

Step 1 2910 00102 10012

Step 2 2910 00101001BCD

Result

(11101)2 = (00101001)BCD

BCD to Binary Conversion

Steps

 Step 1 -- Convert the BCD number to decimal.

 Step 2 -- Convert decimal to binary.

Example: convert (00101001)BCD to Binary.

Step 1 - Convert to BCD

BCD Number: (00101001)BCD

Calculating Decimal Equivalent. Convert each four digit into a group and get

decimal equivalent for each group.

Step BCD Number Conversion

Step 1 (00101001)BCD 00102 10012

Step 2 (00101001)BCD 210 910

Step 3 (00101001)BCD 2910

BCD Number: (00101001)BCD = Decimal Number: 2910

Step 2 - Convert to Binary

Used long division method for decimal to binary conversion.

Decimal Number: 2910

Calculating Binary Equivalent:

CLO

24

Step Operation Result Remainder

Step 1 29 / 2 14 1

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

Step 4 3 / 2 1 1

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the

reverse order so that the first remainder becomes the least significant digit

(LSD) and the last remainder becomes the most significant digit (MSD).

Decimal Number: 2910 = Binary Number: 111012

Result

(00101001)BCD = (11101)2

BCD to Excess-3

Steps

 Step 1 -- Convert BCD to decimal.

 Step 2 -- Add (3)10 to this decimal number.

 Step 3 -- Convert into binary to get excess-3 code.

Example: convert (1001)BCD to Excess-3.

Step 1 - Convert to decimal

(1001)BCD = 910

Step 2 - Add 3 to decimal

(9)10 + (3)10 = (12)10

Step 3 - Convert to Excess-3

(12)10 = (1100)2

Result

CLO

25

(1001)BCD = (1100)XS-3

Excess-3 to BCD Conversion

Steps

 Step 1 -- Subtract (0011)2 from each 4 bit of excess-3 digit to obtain the

corresponding BCD code.

Example: convert (10011010)XS-3 to BCD.

Given XS-3 number = 1 0 0 1 1 0 1 0

Subtract (0011)2 = 0 0 1 1 0 0 1 1

 BCD = 0 1 1 0 0 1 1 1

Result

(10011010)XS-3 = (01100111)BCD

CLO

26

Complements are used in the digital computers in order to simplify the

subtraction operation and for the logical manipulations. For each radix-r system

(radix r represents base of number system) there are two types of

complements.

S.N. Complement Description

1 Radix Complement The radix complement is referred to as the r's

complement

1 Diminished Radix

Complement

The diminished radix complement is referred

to as the (r-1)'s complement

Binary System Complements

As the binary system has base r = 2. So the two types of complements for the

binary system are 2's complement and 1's complement.

1's complement

The 1's complement of a number is found by changing all 1's to 0's and all 0's to

1's. This is called as taking complement or 1's complement. Example of 1's

Complement is as follows.

2's complement

The 2's complement of binary number is obtained by adding 1 to the Least

Significant Bit (LSB) of 1's complement of the number.

2's complement = 1's complement + 1

Example of 2's Complement is as follows.

7. COMPLEMENT ARITHMETIC

CLO

27

CLO

28

Binary arithmetic is essential part of all the digital computers and many other

digital system.

Binary Addition

It is a key for binary subtraction, multiplication, division. There are four rules of

binary addition.

In fourth case, a binary addition is creating a sum of (1+1=10) i.e. 0 is written

in the given column and a carry of 1 over to the next column.

Example - Addition

Binary Subtraction

Subtraction and Borrow, these two words will be used very frequently for the

binary subtraction. There are four rules of binary subtraction.

Example - Subtraction

8. BINARY ARITHMETIC

CLO

29

Binary Multiplication

Binary multiplication is similar to decimal multiplication. It is simpler than

decimal multiplication because only 0s and 1s are involved. There are four rules

of binary multiplication.

Example - Multiplication

Binary Division

Binary division is similar to decimal division. It is called as the long division

procedure.

Example - Division

CLO

30

CLO

31

Octal Number System

Following are the characteristics of an octal number system.

 Uses eight digits, 0,1,2,3,4,5,6,7.

 Also called base 8 number system.

 Each position in an octal number represents a 0 power of the base (8).

Example: 80

 Last position in an octal number represents an x power of the base (8).

Example: 8x where x represents the last position - 1.

Example

Octal Number: 125708

Calculating Decimal Equivalent:

Step Octal

Number

Decimal Number

Step 1 125708 ((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0

x 80))10

Step 2 125708 (4096 + 1024 + 320 + 56 + 0)10

Step 3 125708 549610

Note: 125708 is normally written as 12570.

9. OCTAL ARITHMETIC

CLO

32

Octal Addition

Following octal addition table will help you to handle octal addition.

To use this table, simply follow the directions used in this example: Add 68 and

58. Locate 6 in the A column then locate the 5 in the B column. The point in

‘sum’ area where these two columns intersect is the sum of two numbers.

68 + 58 = 138.

Example - Addition

Octal Subtraction

The subtraction of octal numbers follows the same rules as the subtraction of

numbers in any other number system. The only variation is in borrowed number.

In the decimal system, you borrow a group of 1010. In the binary system, you

borrow a group of 210. In the octal system you borrow a group of 810.

Example – Subtraction

CLO

33

Hexadecimal Number System

Following are the characteristics of a hexadecimal number system.

 Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

 Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D =

13, E = 14, F = 15.

 Also called base 16 number system.

 Each position in a hexadecimal number represents a 0 power of the base

(16). Example: 160

 Last position in a hexadecimal number represents an x power of the base

(16). Example: 16x where x represents the last position - 1.

Example

Hexadecimal Number: 19FDE16

Calculating Decimal Equivalent:

Step Binary

Number

Decimal Number

Step 1 19FDE16 ((1 x 164) + (9 x 163) + (F x 162) + (D x 161)

+ (E x 160))10

Step 2 19FDE16 ((1 x 164) + (9 x 163) + (15 x 162) + (13 x

161) + (14 x 160))10

Step 3 19FDE16 (65536+ 36864 + 3840 + 208 + 14)10

Step 4 19FDE16 10646210

Note: 19FDE16 is normally written as 19FDE.

Hexadecimal Addition

Following hexadecimal addition table will help you greatly to handle Hexadecimal

addition.

10. HEXADECIMAL ARITHMETIC

CLO

34

To use this table, simply follow the directions used in this example: Add A16 and

516. Locate A in the X column then locate the 5 in the Y column. The point in

‘sum’ area where these two columns intersect is the sum of two numbers.

A16 + 516 = F16.

Example - Addition

Hexadecimal Subtraction

The subtraction of hexadecimal numbers follow the same rules as the

subtraction of numbers in any other number system. The only variation is in

borrowed number. In the decimal system, you borrow a group of 1010. In the

binary system, you borrow a group of 210. In the hexadecimal system you

borrow a group of 1610.

Example - Subtraction

CLO

35

CLO

36

Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It

uses only the binary numbers i.e. 0 and 1. It is also called as Binary

Algebra or logical Algebra. Boolean algebra was invented by George Boole in

1854.

Rule in Boolean Algebra

Following are the important rules used in Boolean algebra.

 Variable used can have only two values. Binary 1 for HIGH and Binary 0

for LOW.

 Complement of a variable is represented by an overbar (-). Thus,

complement of variable B is represented as . Thus if B = 0 then = 1

and B = 1 then = 0.

 ORing of the variables is represented by a plus (+) sign between them.

For example ORing of A, B, C is represented as A + B + C.

 Logical ANDing of the two or more variable is represented by writing a dot

between them such as A.B.C. Sometime the dot may be omitted like ABC.

Boolean Laws

There are six types of Boolean Laws.

Commutative law

Any binary operation which satisfies the following expression is referred to as

commutative operation.

Commutative law states that changing the sequence of the variables does not

have any effect on the output of a logic circuit.

Associative law

This law states that the order in which the logic operations are performed is

irrelevant as their effect is the same.

11. BOOLEAN ALGEBRA

CLO

37

Distributive law

Distributive law states the following condition.

AND law

These laws use the AND operation. Therefore they are called as AND laws.

OR law

These laws use the OR operation. Therefore they are called as OR laws.

INVERSION law

This law uses the NOT operation. The inversion law states that double inversion

of a variable results in the original variable itself.

Important Boolean Theorems

Following are few important boolean theorems.

Boolean

function/theorems

Description

Boolean Functions Boolean Functions and Expressions, K-Map and

NAND Gates realization

De Morgan's Theorems De Morgan's Theorem 1 and Theorem 2

CLO

38

Boolean algebra deals with binary variables and logic operation. A Boolean

Function is described by an algebraic expression called Boolean expression

which consists of binary variables, the constants 0 and 1, and the logic operation

symbols. Consider the following example.

Here the left side of the equation represents the output Y. So we can state

equation no. 1

Truth Table Formation

A truth table represents a table having all combinations of inputs and their

corresponding result.

It is possible to convert the switching equation into a truth table. For example,

consider the following switching equation.

The output will be high (1) if A = 1 or BC = 1 or both are 1. The truth table for

this equation is shown in Table (a). The number of rows in the truth table is

2n where n is the number of input variables (n=3 for the given equation). Hence

there are 23 = 8 possible input combination of inputs.

12. BOOLEAN FUNCTION

CLO

39

Methods to Simplify a Boolean Function

The methods used for simplifying a Boolean function are as follows:

 Karnaugh-map or K-map, and

 NAND gate method.

Karnaugh-map or K-map

The Boolean theorems and the De-Morgan's theorems are useful in manipulating

the logic expression. We can realize the logical expression using gates. The

number of logic gates required for the realization of a logical expression should

be reduced to a minimum possible value by K-map method. This method can be

done in two different ways, as discussed below.

Sum of Products (SOP) Form

It is in the form of sum of three terms AB, AC, BC with each individual term is a

product of two variables. Say A.B or A.C etc. Therefore such expressions are

known as expression in SOP form. The sum and products in SOP form are not

the actual additions or multiplications. In fact they are the OR and AND

functions. In SOP form, 0 represents a bar and 1 represents an unbar. SOP form

is represented by .

Given below is an example of SOP.

CLO

40

Product of Sums (POS) Form

It is in the form of product of three terms (A+B), (B+C), or (A+C) with each

term is in the form of a sum of two variables. Such expressions are said to be in

the product of sums (POS) form. In POS form, 0 represents an unbar and 1

represents a bar. POS form is represented by .

Given below is an example of POS.

NAND Gates Realization

NAND gates can be used to simplify Boolean functions as shown in the example

below.

CLO

41

CLO

42

De Morgan has suggested two theorems which are extremely useful in Boolean

Algebra. The two theorems are discussed below.

Theorem 1

 The left hand side (LHS) of this theorem represents a NAND gate with

inputs A and B, whereas the right hand side (RHS) of the theorem

represents an OR gate with inverted inputs.

 This OR gate is called as Bubbled OR.

Table showing verification of the De Morgan's first theorem:

13. DE MORGAN'S THEOREMS

CLO

43

Theorem 2

 The LHS of this theorem represents a NOR gate with inputs A and B,

whereas the RHS represents an AND gate with inverted inputs.

 This AND gate is called as Bubbled AND.

Table showing verification of the De Morgan's second theorem:

CLO

44

Logic gates are the basic building blocks of any digital system. It is an electronic

circuit having one or more than one input and only one output. The relationship

between the input and the output is based on a certain logic. Based on this,

logic gates are named as AND gate, OR gate, NOT gate etc.

AND Gate

A circuit which performs an AND operation is shown in figure. It has n input (n

>= 2) and one output.

Logic diagram

Truth Table

OR Gate

A circuit which performs an OR operation is shown in figure. It has n input (n >=

2) and one output.

14. LOGIC GATES

CLO

45

Logic diagram

Truth Table

NOT Gate

NOT gate is also known as Inverter. It has one input A and one output Y.

Logic diagram

Truth Table

NAND Gate

A NOT-AND operation is known as NAND operation. It has n input (n >= 2) and

one output.

CLO

46

Logic diagram

Truth Table

NOR Gate

A NOT-OR operation is known as NOR operation. It has n input (n >= 2) and one

output.

Logic diagram

Truth Table

CLO

47

XOR Gate

XOR or Ex-OR gate is a special type of gate. It can be used in the half adder, full

adder and subtractor. The exclusive-OR gate is abbreviated as EX-OR gate or

sometime as X-OR gate. It has n input (n >= 2) and one output.

Logic diagram

Truth Table

XNOR Gate

XNOR gate is a special type of gate. It can be used in the half adder, full adder

and subtractor. The exclusive-NOR gate is abbreviated as EX-NOR gate or

sometime as X-NOR gate. It has n input (n >= 2) and one output.

Logic diagram

Truth Table

CLO

48

CLO

49

Combinational circuit is a circuit in which we combine the different gates in the

circuit, for example encoder, decoder, multiplexer and demultiplexer. Some of

the characteristics of combinational circuits are following:

 The output of combinational circuit at any instant of time, depends only

on the levels present at input terminals.

 The combinational circuit do not use any memory. The previous state of

input does not have any effect on the present state of the circuit.

 A combinational circuit can have an n number of inputs and m number of

outputs.

Block diagram

We're going to elaborate few important combinational circuits as follows.

Half Adder

Half adder is a combinational logic circuit with two inputs and two outputs. The

half adder circuit is designed to add two single bit binary number A and B. It is

the basic building block for addition of two single bit numbers. This circuit has

two outputs carry and sum.

Block diagram

15. COMBINATIONAL CIRCUITS

CLO

50

Truth Table

Circuit Diagram

Full Adder

Full adder is developed to overcome the drawback of Half Adder circuit. It can

add two one-bit numbers A and B, and carry c. The full adder is a three input

and two output combinational circuit.

Block diagram

CLO

51

Truth Table

Circuit Diagram

N-Bit Parallel Adder

The Full Adder is capable of adding only two single digit binary number along

with a carry input. But in practical we need to add binary numbers which are

much longer than just one bit. To add two n-bit binary numbers we need to use

the n-bit parallel adder. It uses a number of full adders in cascade. The carry

output of the previous full adder is connected to carry input of the next full

adder.

4 Bit Parallel Adder

In the block diagram, A0 and B0 represent the LSB of the four bit words A and B.

Hence Full Adder-0 is the lowest stage. Hence its Cin has been permanently

made 0. The rest of the connections are exactly same as those of n-bit parallel

adder is shown in fig. The four bit parallel adder is a very common logic circuit.

CLO

52

Block diagram

N-Bit Parallel Subtractor

The subtraction can be carried out by taking the 1's or 2's complement of the

number to be subtracted. For example we can perform the subtraction (A-B) by

adding either 1's or 2's complement of B to A. That means we can use a binary

adder to perform the binary subtraction.

4 Bit Parallel Subtractor

The number to be subtracted (B) is first passed through inverters to obtain its

1's complement. The 4-bit adder then adds A and 2's complement of B to

produce the subtraction. S3 S2 S1 S0 represents the result of binary subtraction

(A-B) and carry output Cout represents the polarity of the result. If A > B then

Cout =0 and the result of binary form (A-B) then Cout = 1 and the result is in the

2's complement form.

Block diagram

CLO

53

Half Subtractors

Half subtractor is a combination circuit with two inputs and two outputs

(difference and borrow). It produces the difference between the two binary bits

at the input and also produces an output (Borrow) to indicate if a 1 has been

borrowed. In the subtraction (A-B), A is called as Minuend bit and B is called as

Subtrahend bit.

Truth Table

Circuit Diagram

Full Subtractors

The disadvantage of a half subtractor is overcome by full subtractor. The full

subtractor is a combinational circuit with three inputs A,B,C and two output D

and C'. A is the ‘minuend’, B is ‘subtrahend’, C is the ‘borrow’ produced by the

previous stage, D is the difference output and C' is the borrow output.

CLO

54

Truth Table

Circuit Diagram

Multiplexers

Multiplexer is a special type of combinational circuit. There are n-data inputs,

one output and m select inputs with 2m = n. It is a digital circuit which selects

one of the n data inputs and routes it to the output. The selection of one of the n

inputs is done by the selected inputs. Depending on the digital code applied at

the selected inputs, one out of n data sources is selected and transmitted to the

single output Y. E is called the strobe or enable input which is useful for the

cascading. It is generally an active low terminal that means it will perform the

required operation when it is low.

CLO

55

Block diagram

Multiplexers come in multiple variations

 2 : 1 multiplexer

 4 : 1 multiplexer

 16 : 1 multiplexer

 32 : 1 multiplexer

Block Diagram

Truth Table

CLO

56

Demultiplexers

A demultiplexer performs the reverse operation of a multiplexer i.e. it receives

one input and distributes it over several outputs. It has only one input, n

outputs, m select input. At a time only one output line is selected by the select

lines and the input is transmitted to the selected output line. A de-multiplexer is

equivalent to a single pole multiple way switch as shown in fig.

Demultiplexers comes in multiple variations.

 1 : 2 demultiplexer

 1 : 4 demultiplexer

 1 : 16 demultiplexer

 1 : 32 demultiplexer

Block diagram

Truth Table

CLO

57

Decoder

A decoder is a combinational circuit. It has n input and to a maximum m = 2n

outputs. Decoder is identical to a demultiplexer without any data input. It

performs operations which are exactly opposite to those of an encoder.

Block diagram

Examples of Decoders are following.

 Code converters

 BCD to seven segment decoders

 Nixie tube decoders

 Relay actuator

2 to 4 Line Decoder

The block diagram of 2 to 4 line decoder is shown in the fig. A and B are the two

inputs where D through D are the four outputs. Truth table explains the

operations of a decoder. It shows that each output is 1 for only a specific

combination of inputs.

Block diagram

CLO

58

Truth Table

Logic Circuit

Encoder

Encoder is a combinational circuit which is designed to perform the inverse

operation of the decoder. An encoder has n number of input lines and m number

CLO

59

of output lines. An encoder produces an m bit binary code corresponding to the

digital input number. The encoder accepts an n input digital word and converts it

into an m bit another digital word.

Block diagram

Examples of Encoders are following.

 Priority encoders

 Decimal to BCD encoder

 Octal to binary encoder

 Hexadecimal to binary encoder

Priority Encoder

This is a special type of encoder. Priority is given to the input lines. If two or

more input line are 1 at the same time, then the input line with highest priority

will be considered. There are four input D0, D1, D2, D3 and two output Y0, Y1. Out

of the four input D3 has the highest priority and D0 has the lowest priority. That

means if D3 = 1 then Y1 Y1 = 11 irrespective of the other inputs. Similarly if D3 =

0 and D2 = 1 then Y1 Y0 = 10 irrespective of the other inputs.

Block diagram

Truth Table

CLO

60

Logic Circuit

CLO

61

The combinational circuit does not use any memory. Hence the previous state of

input does not have any effect on the present state of the circuit. But sequential

circuit has memory so output can vary based on input. This type of circuits uses

previous input, output, clock and a memory element.

Block diagram

Flip Flop

Flip flop is a sequential circuit which generally samples its inputs and changes its

outputs only at particular instants of time and not continuously. Flip flop is said

to be edge sensitive or edge triggered rather than being level triggered like

latches.

S-R Flip Flop

It is basically S-R latch using NAND gates with an additional enable input. It is

also called as level triggered SR-FF. For this, circuit in output will take place if

and only if the enable input (E) is made active. In short this circuit will operate

as an S-R latch if E= 1 but there is no change in the output if E = 0.

Block Diagram

16. SEQUENTIAL CIRCUITS

CLO

62

Circuit Diagram

Truth Table

Operation

S.N. Condition Operation

1 S = R = 0 : No change If S = R = 0 then output of NAND gates 3

and 4 are forced to become 1.

Hence R' and S' both will be equal to 1. Since

S' and R' are the input of the basic S-R latch

using NAND gates, there will be no change in

the state of outputs.

2 S = 0, R = 1, E = 1 Since S = 0, output of NAND-3 i.e. R' = 1 and

E = 1 the output of NAND-4 i.e. S' = 0.

CLO

63

Hence Qn+1 = 0 and Qn+1 bar = 1. This is reset

condition.

3 S = 1, R = 0, E = 1 Output of NAND-3 i.e. R' = 0 and output of

NAND-4 i.e. S' = 1.

Hence output of S-R NAND latch is Qn+1 = 1

and Qn+1bar = 0. This is the reset condition.

4 S = 1, R = 1, E = 1 As S = 1, R = 1 and E = 1, the output of

NAND gates 3 and 4 both are 0 i.e. S' = R' =

0.

Hence the Race condition will occur in the

basic NAND latch.

Master Slave JK Flip Flop

Master slave JK FF is a cascade of two S-R FF with feedback from the output of

second to input of first. Master is a positive level triggered. But due to the

presence of the inverter in the clock line, the slave will respond to the negative

level. Hence when the clock = 1 (positive level) the master is active and the

slave is inactive. Whereas when clock = 0 (low level) the slave is active and

master is inactive.

Circuit Diagram

Truth Table

CLO

64

Operation

S.N. Condition Operation

1 J = K = 0 (No change) When clock = 0, the slave becomes active

and master is inactive. But since the S and

R inputs have not changed, the slave

outputs will also remain unchanged.

Therefore outputs will not change if J = K

=0.

2 J = 0 and K = 1 (Reset) Clock = 1: Master active, slave inactive.

Therefore outputs of the master become

Q1 = 0 and Q1 bar = 1. That means S = 0

and R =1.

Clock = 0: Slave active, master inactive

Therefore outputs of the slave become Q =

0 and Q bar = 1.

Again clock = 1: Master active, slave

inactive. Therefore even with the changed

outputs Q = 0 and Q bar = 1 fed back to

master, its output will be Q1 = 0 and Q1

bar = 1. That means S = 0 and R = 1.

Hence with clock = 0 and slave becoming

active the outputs of slave will remain Q =

0 and Q bar = 1. Thus we get a stable

output from the Master slave.

3 J = 1 and K = 0 (Set) Clock = 1: Master active, slave inactive.

Therefore outputs of the master become

Q1 = 1 and Q1 bar = 0. That means S = 1

and R =0.

Clock = 0: Slave active, master inactive

Therefore outputs of the slave become Q =

CLO

65

1 and Q bar = 0.

Again clock = 1: then it can be shown that

the outputs of the slave are stabilized to Q

= 1 and Q bar = 0.

4 J = K = 1 (Toggle) Clock = 1: Master active, slave inactive.

Outputs of master will toggle. So S and R

also will be inverted.

Clock = 0: Slave active, master inactive.

Outputs of slave will toggle.

These changed output are returned back to

the master inputs. But since clock = 0, the

master is still inactive. So it does not

respond to these changed outputs. This

avoids the multiple toggling which leads to

the race around condition. The master slave

flip flop will avoid the race around condition.

Delay Flip Flop / D Flip Flop

Delay Flip Flop or D Flip Flop is the simple gated S-R latch with a NAND inverter

connected between S and R inputs. It has only one input. The input data is

appearing at the output after some time. Due to this data delay between i/p and

o/p, it is called delay flip flop. S and R will be the complements of each other

due to NAND inverter. Hence S = R = 0 or S = R = 1, these input condition will

never appear. This problem is avoid by SR = 00 and SR = 1 conditions.

Block Diagram

Circuit Diagram

CLO

66

Truth Table

Operation

S.N. Condition Operation

1 E = 0 Latch is disabled. Hence no change in output.

2 E = 1 and D = 0 If E = 1 and D = 0 then S = 0 and R = 1. Hence

irrespective of the present state, the next state is

Qn+1= 0 and Qn+1 bar = 1. This is the reset condition.

3 E = 1 and D = 1 If E = 1 and D = 1, then S = 1 and R = 0. This will

set the latch and Qn+1 = 1 and Qn+1 bar = 0

irrespective of the present state.

Toggle Flip Flop / T Flip Flop

Toggle flip flop is basically a JK flip flop with J and K terminals permanently

connected together. It has only input denoted by T as shown in the Symbol

Diagram. The symbol for positive edge triggered T flip flop is shown in the Block

Diagram.

Symbol Diagram

CLO

67

Block Diagram

Truth Table

Operation

S.N. Condition Operation

1 T = 0, J = K = 0 The output Q and Q bar won't change

2 T = 1 ,J = K = 1 Output will toggle corresponding to every leading

edge of clock signal.

CLO

68

Flip-flop is a 1 bit memory cell which can be used for storing the digital data. To

increase the storage capacity in terms of number of bits, we have to use a group

of flip-flop. Such a group of flip-flop is known as a Register. The n-bit

register will consist of n number of flip-flop and it is capable of storing an n-

bit word.

The binary data in a register can be moved within the register from one flip-flop

to another. The registers that allow such data transfers are called as shift

registers. There are four mode of operations of a shift register.

 Serial Input Serial Output

 Serial Input Parallel Output

 Parallel Input Serial Output

 Parallel Input Parallel Output

Serial Input Serial Output

Let all the flip-flop be initially in the reset condition i.e. Q3 = Q2 = Q1 = Q0 = 0. If

an entry of a four bit binary number 1 1 1 1 is made into the register, this

number should be applied to Din bit with the LSB bit applied first. The D input of

FF-3 i.e. D3 is connected to serial data input Din. Output of FF-3 i.e. Q3 is

connected to the input of the next flip-flop i.e. D2 and so on.

Block Diagram

Operation

Before application of clock signal, let Q3 Q2 Q1 Q0 = 0000 and apply LSB bit of the

number to be entered to Din. So Din=D3=1. Apply the clock. On the first falling

edge of clock, the FF-3 is set, and stored word in the register is Q3 Q2 Q1 Q0 =

1000.

17. DIGITAL REGISTERS

CLO

69

Apply the next bit to Din. So Din=1. As soon as the next negative edge of the

clock hits, FF-2 will set and the stored word change to Q3 Q2 Q1 Q0 = 1100.

Apply the next bit to be stored i.e. 1 to Din. Apply the clock pulse. As soon as the

third negative clock edge hits, FF-1 will be set and output will be modified to

Q3 Q2 Q1 Q0 = 1110.

Similarly with Din=1 and with the fourth negative clock edge arriving, the stored

word in the register is Q3 Q2 Q1 Q0 = 1111.

Truth Table

CLO

70

Waveforms

Serial Input Parallel Output

 In such types of operations, the data is entered serially and taken out in

parallel fashion.

 Data is loaded bit by bit. The outputs are disabled as long as the data is

loading.

 As soon as the data loading gets completed, all the flip-flops contain their

required data, the outputs are enabled so that all the loaded data is made

available over all the output lines at the same time.

 4 clock cycles are required to load a four bit word. Hence the speed of

operation of SIPO mode is same as that of SISO mode.

CLO

71

Block Diagram

Parallel Input Serial Output (PISO)

 Data bits are entered in parallel fashion.

 The circuit shown below is a four bit parallel input serial output register.

 Output of previous Flip Flop is connected to the input of the next one via a

combinational circuit.

 The binary input word B0, B1, B2, B3 is applied though the same

combinational circuit.

 There are two modes in which this circuit can work namely - shift mode or

load mode.

Load Mode

When the shift/load bar line is low (0), the AND gate 2, 4 and 6 become active

they will pass B1,B2,B3 bits to the corresponding flip-flops. On the low going edge

of clock, the binary input B0, B1, B2, B3 will get loaded into the corresponding

flip-flops. Thus parallel loading takes place.

Shift Mode

When the shift/load bar line is low (1), the AND gate 2, 4 and 6 become inactive.

Hence the parallel loading of the data becomes impossible. But the AND gate 1,

3 and 5 become active. Therefore the shifting of data from left to right bit by bit

on application of clock pulses. Thus the parallel in serial out operation takes

place.

CLO

72

Block Diagram

Parallel Input Parallel Output (PIPO)

In this mode, the 4 bit binary input B0, B1, B2, B3 is applied to the data inputs D0,

D1, D2, D3 respectively of the four flip-flops. As soon as a negative clock edge is

applied, the input binary bits will be loaded into the flip-flops simultaneously.

The loaded bits will appear simultaneously to the output side. Only clock pulse is

essential to load all the bits.

Block Diagram

CLO

73

Bidirectional Shift Register

 If a binary number is shifted left by one position then it is equivalent to

multiplying the original number by 2. Similarly if a binary number is

shifted right by one position then it is equivalent to dividing the original

number by 2.

 Hence if we want to use the shift register to multiply and divide the given

binary number, then we should be able to move the data in either left or

right direction.

 Such a register is called a bi-directional register. A four bit bi-directional

shift register is shown in fig.

 There are two serial inputs namely - the serial right shift data input DR,

and the serial left shift data input DL along with a mode select input (M).

Block Diagram

Operation

S.N. Condition Operation

1 With M = 1 : Shift right operation If M = 1, then the AND gates 1,

3, 5 and 7 are enabled whereas

the remaining AND gates 2, 4, 6

and 8 will be disabled.

The data at DR is shifted to right

bit by bit from FF-3 to FF-0 on

the application of clock pulses.

Thus with M = 1 we get the

serial right shift operation.

CLO

74

2 With M = 0 : Shift left operation When the mode control M is

connected to 0 then the AND

gates 2, 4, 6 and 8 are enabled

while 1, 3, 5 and 7 are disabled.

The data at DL is shifted left bit

by bit from FF-0 to FF-3 on the

application of clock pulses. Thus

with M = 0 we get the serial

right shift operation.

Universal Shift Register

A shift register which can shift the data in only one direction is called a uni-

directional shift register. A shift register which can shift the data in both

directions is called a bi-directional shift register. Applying the same logic, a shift

register which can shift the data in both directions as well as load it parallely, is

known as a universal shift register. The shift register is capable of performing

the following operation:

 Parallel loading

 Lift shifting

 Right shifting

The mode control input is connected to logic 1 for parallel loading operation

whereas it is connected to 0 for serial shifting. With mode control pin connected

to ground, the universal shift register acts as a bi-directional register. For serial

left operation, the input is applied to the serial input which goes to AND gate-1

shown in figure. Whereas for the shift right operation, the serial input is applied

to D input.

CLO

75

Block Diagram

CLO

76

Counter is a sequential circuit. A digital circuit which is used for a counting

pulses is known counter. Counter is the widest application of flip-flops. It is a

group of flip-flops with a clock signal applied. Counters are of two types.

 Asynchronous or ripple counters.

 Synchronous counters.

Asynchronous or ripple counters

The logic diagram of a 2-bit ripple up counter is shown in figure. The toggle (T)

flip-flop are being used. But we can use the JK flip-flop also with J and K

connected permanently to logic 1. External clock is applied to the clock input of

flip-flop A and QA output is applied to the clock input of the next flip-flop i.e. FF-

B.

Logical Diagram

Operation

S.N. Condition Operation

1 Initially let both the FFs be in the reset state QBQA = 00 initially

2 After 1st negative clock edge As soon as the first

negative clock edge

is applied, FF-A will

toggle and QA will be

equal to 1.

QA is connected to

clock input of FF-B.

Since QA has

changed from 0 to

18. DIGITAL COUNTERS

CLO

77

1, it is treated as

the positive clock

edge by FF-B. There

is no change in

QB because FF-B is a

negative edge

triggered FF.

QBQA = 01 after the

first clock pulse.

3 After 2nd negative clock edge On the arrival of

second negative

clock edge, FF-A

toggles again and

QA = 0.

The change in

QA acts as a

negative clock edge

for FF-B. So it will

also toggle, and QB

will be 1.

QBQA = 10 after the

second clock pulse.

4 After 3rd negative clock edge On the arrival of 3rd

negative clock edge,

FF-A toggles again

and QA become 1

from 0.

Since this is a

positive going

change, FF-B does

not respond to it

and remains

inactive. So QB does

not change and

continues to be

equal to 1.

QBQA = 11 after the

third clock pulse.

CLO

78

5 After 4th negative clock edge On the arrival of 4th

negative clock edge,

FF-A toggles again

and QA becomes 1

from 0.

This negative

change in QA acts as

clock pulse for FF-B.

Hence it toggles to

change QB from 1 to

0.

QBQA = 00 after the

fourth clock pulse.

Truth Table

Synchronous Counters

If the "clock" pulses are applied to all the flip-flops in a counter simultaneously,

then such a counter is called as synchronous counter.

2-bit Synchronous up counter

The JA and KA inputs of FF-A are tied to logic 1. So FF-A will work as a toggle flip-

flop. The JB and KB inputs are connected to QA.

Logical Diagram

CLO

79

Operation

S.N. Condition Operation

1 Initially let both the FFs be in the reset state QBQA = 00 initially.

2 After 1st negative clock edge As soon as the first

negative clock edge

is applied, FF-A will

toggle and QA will

change from 0 to 1.

But at the instant of

application of

negative clock edge,

QA, JB = KB =0

Hence FF-B will not

change its state. So

QB will remain 0.

QBQA = 01 after the

first clock pulse.

3 After 2nd negative clock edge On the arrival of

second negative

clock edge, FF-A

toggles again and

QA changes from 1

to 0.

But at this instant

QA was 1. So JB =

KB=1 and FF-B will

toggle. Hence

QB changes from 0

CLO

80

to 1.

QBQA = 10 after the

second clock pulse.

4 After 3rd negative clock edge On application of

the third falling

clock edge, FF-A will

toggle from 0 to 1

but there is no

change of state for

FF-B.

QBQA = 11 after the

third clock pulse.

5 After 4th negative clock edge On application of

the next clock pulse,

QA will change from

1 to 0 as QB will also

change from 1 to 0.

QBQA = 00 after the

fourth clock pulse.

Classification of Counters

Depending on the way in which the counting progresses, the synchronous or

asynchronous counters are classified as follows:

 Up counters

 Down counters

 Up/Down counters

UP/DOWN Counter

Up counter and down counter is combined together to obtain an UP/DOWN

counter. A mode control (M) input is also provided to select either up or down

mode. A combinational circuit is required to be designed and used between each

pair of flip-flop in order to achieve the up/down operation.

 Type of up/down counters

 UP/DOWN ripple counters

CLO

81

 UP/DOWN synchronous counters

UP/DOWN Ripple Counters

In the UP/DOWN ripple counter all the FFs operate in the toggle mode. So either

T flip-flops or JK flip-flops are to be used. The LSB flip-flop receives clock

directly. But the clock to every other FF is obtained from (Q = Q bar) output of

the previous FF.

 UP counting mode (M=0) - The Q output of the preceding FF is

connected to the clock of the next stage if up counting is to be achieved.

For this mode, the mode select input M is at logic 0 (M=0).

 DOWN counting mode (M=1) - If M =1, then the Q bar output of the

preceding FF is connected to the next FF. This will operate the counter in

the counting mode.

Example

3-bit binary up/down ripple counter.

 3-bit: hence three FFs are required.

 UP/DOWN: So a mode control input is essential.

 For a ripple up counter, the Q output of preceding FF is connected to the

clock input of the next one.

 For a ripple up counter, the Q output of preceding FF is connected to the

clock input of the next one.

 For a ripple down counter, the Q bar output of preceding FF is connected

to the clock input of the next one.

 Let the selection of Q and Q bar output of the preceding FF be controlled

by the mode control input M such that, If M = 0, UP counting. So connect

Q to CLK. If M = 1, DOWN counting. So connect Q bar to CLK.

Block Diagram

Truth Table

CLO

82

Operation

S.N. Condition Operation

1 Case 1: With M = 0 (Up counting mode) If M = 0 and M bar =

1, then the AND gates

1 and 3 in fig. will be

enabled whereas the

AND gates 2 and 4 will

be disabled.

Hence QA gets

connected to the clock

input of FF-B and

QB gets connected to

the clock input of FF-

C.

These connections are

same as those for the

normal up counter.

Thus with M = 0 the

circuit work as an up

counter.

2 Case 2: With M = 1 (Down counting mode) If M = 1, then AND

gates 2 and 4 in fig.

are enabled whereas

the AND gates 1 and 3

are disabled.

Hence QA bar gets

connected to the clock

CLO

83

input of FF-B and

QB bar gets connected

to the clock input of

FF-C.

These connections will

produce a down

counter. Thus with M

= 1 the circuit works

as a down counter.

Modulus Counter (MOD-N Counter)

The 2-bit ripple counter is called as MOD-4 counter and 3-bit ripple counter is

called as MOD-8 counter. So in general, an n-bit ripple counter is called as

modulo-N counter. Where, MOD number = 2n.

Type of modulus

 2-bit up or down (MOD-4)

 3-bit up or down (MOD-8)

 4-bit up or down (MOD-16)

Application of Counters

 Frequency counters

 Digital clock

 Time measurement

 A to D converter

 Frequency divider circuits

 Digital triangular wave generator.

CLO

84

A memory is just like a human brain. It is used to store data and instruction.

Computer memory is the storage space in computer where data is to be

processed and instructions required for processing are stored.

The memory is divided into large number of small parts. Each part is called a

cell. Each location or cell has a unique address which varies from zero to

memory size minus one.

For example if computer has 64k words, then this memory unit has 64 *

1024=65536 memory location. The address of these locations varies from 0 to

65535.

Memory is primarily of two types

 Internal Memory - cache memory and primary/main memory

 External Memory - magnetic disk / optical disk etc.

Characteristics of Memory Hierarchy are following when we go from top to

bottom.

 Capacity in terms of storage increases.

 Cost per bit of storage decreases.

19. MEMORY DEVICES

CLO

85

 Frequency of access of the memory by the CPU decreases.

 Access time by the CPU increases.

RAM

A RAM constitutes the internal memory of the CPU for storing data, program and

program result. It is read/write memory. It is called random access memory

(RAM).

Since access time in RAM is independent of the address to the word that is, each

storage location inside the memory is as easy to reach as other location & takes

the same amount of time. We can reach into the memory at random &

extremely fast but can also be quite expensive.

RAM is volatile, i.e. data stored in it is lost when we switch off the computer or if

there is a power failure. Hence, a backup uninterruptible power system (UPS) is

often used with computers. RAM is small, both in terms of its physical size and in

the amount of data it can hold.

RAM is of two types

 Static RAM (SRAM)

 Dynamic RAM (DRAM)

Static RAM (SRAM)

The word static indicates that the memory retains its contents as long as power

remains applied. However, data is lost when the power gets down due to volatile

nature. SRAM chips use a matrix of 6-transistors and no capacitors. Transistors

do not require power to prevent leakage, so SRAM need not have to be

refreshed on a regular basis.

Because of the extra space in the matrix, SRAM uses more chips than DRAM for

the same amount of storage space, thus making the manufacturing costs higher.

Static RAM is used as cache memory needs to be very fast and small.

Dynamic RAM (DRAM)

DRAM, unlike SRAM, must be continually refreshed in order for it to maintain

the data. This is done by placing the memory on a refresh circuit that rewrites

the data several hundred times per second. DRAM is used for most system

memory because it is cheap and small. All DRAMs are made up of memory cells.

These cells are composed of one capacitor and one transistor.

ROM

ROM stands for Read Only Memory. The memory from which we can only read

but cannot write on it. This type of memory is non-volatile. The information is

stored permanently in such memories during manufacture.

CLO

86

A ROM, stores such instruction as are required to start computer when electricity

is first turned on, this operation is referred to as bootstrap. ROM chip are not

only used in the computer but also in other electronic items like washing

machine and microwave oven.

Following are the various types of ROM:

MROM (Masked ROM)

The very first ROMs were hard-wired devices that contained a pre-programmed

set of data or instructions. These kind of ROMs are known as masked ROMs. It is

inexpensive ROM.

PROM (Programmable Read Only Memory)

PROM is read-only memory that can be modified only once by a user. The user

buys a blank PROM and enters the desired contents using a PROM programmer.

Inside the PROM chip there are small fuses which are burnt open during

programming. It can be programmed only once and is not erasable.

EPROM (Erasable and Programmable Read Only Memory)

The EPROM can be erased by exposing it to ultra-violet light for a duration of

upto 40 minutes. Usually, an EPROM eraser achieves this function. During

programming an electrical charge is trapped in an insulated gate region. The

charge is retained for more than ten years because the charge has no leakage

path. For erasing this charge, ultra-violet light is passed through a quartz crystal

window (lid). This exposure to ultra-violet light dissipates the charge. During

normal use the quartz lid is sealed with a sticker.

EEPROM (Electrically Erasable and Programmable Read Only
Memory)

The EEPROM is programmed and erased electrically. It can be erased and

reprogrammed about ten thousand times. Both erasing and programming take

about 4 to 10 ms (millisecond). In EEPROM, any location can be selectively

erased and programmed. EEPROMs can be erased one byte at a time, rather

than erasing the entire chip. Hence, the process of re-programming is flexible

but slow.

Serial Access Memory

Sequential access means the system must search the storage device from the

beginning of the memory address until it finds the required piece of data.

Memory device which supports such access is called a Sequential Access Memory

or Serial Access Memory. Magnetic tape is an example of serial access memory.

CLO

87

Direct Access Memory

Direct access memory or Random Access Memory, refers to conditions in which a

system can go directly to the information that the user wants. Memory device

which supports such access is called a Direct Access Memory. Magnetic disks,

optical disks are examples of direct access memory.

Cache Memory

Cache memory is a very high speed semiconductor memory which can speed up

CPU. It acts as a buffer between the CPU and main memory. It is used to hold

those parts of data and program which are most frequently used by CPU. The

parts of data and programs, are transferred from disk to cache memory by

operating system, from where CPU can access them.

Advantages

 Cache memory is faster than main memory.

 It consumes less access time as compared to main memory.

 It stores the program that can be executed within a short period of time.

 It stores data for temporary use.

Disadvantages

 Cache memory has limited capacity.

 It is very expensive.

Virtual memory is a technique that allows the execution of processes which are

not completely available in memory. The main visible advantage of this scheme

is that programs can be larger than physical memory. Virtual memory is the

separation of user logical memory from physical memory.

This separation allows an extremely large virtual memory to be provided for

programmers when only a smaller physical memory is available. Following are

the situations, when entire program is not required to be loaded fully in main

memory.

 User written error handling routines are used only when an error occurred

in the data or computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though

only a small amount of the table is actually used.

 The ability to execute a program that is only partially in memory would

counter many benefits.

 Less number of I/O would be needed to load or swap each user program

into memory.

CLO

88

 A program would no longer be constrained by the amount of physical

memory that is available.

 Each user program could take less physical memory, more programs

could be run the same time, with a corresponding increase in CPU

utilization and throughput.

Auxiliary Memory

Auxiliary memory is much larger in size than main memory but is slower. It

normally stores system programs, instruction and data files. It is also known as

secondary memory. It can also be used as an overflow/virtual memory in case

the main memory capacity has been exceeded. Secondary memories cannot be

accessed directly by a processor. First the data/information of auxiliary memory

is transferred to the main memory and then that information can be accessed by

the CPU. Characteristics of Auxiliary Memory are following:

 Non-volatile memory - Data is not lost when power is cut off.

 Reusable - The data stays in the secondary storage on permanent basis

until it is not overwritten or deleted by the user.

 Reliable - Data in secondary storage is safe because of high physical

stability of secondary storage device.

 Convenience - With the help of a computer software, authorised people

can locate and access the data quickly.

 Capacity - Secondary storage can store large volumes of data in sets of

multiple disks.

 Cost - It is much lesser expensive to store data on a tape or disk than

primary memory.

CLO

89

Microprocessing unit is synonymous to central processing unit, CPU used in

traditional computer. Microprocessor (MPU) acts as a device or a group of

devices which do the following tasks.

 communicate with peripherals devices

 provide timing signal

 direct data flow

 perform computer tasks as specified by the instructions in memory

8085 Microprocessor

The 8085 microprocessor is an 8-bit general purpose microprocessor which is

capable to address 64k of memory. This processor has forty pins, requires +5 V

single power supply and a 3-MHz single-phase clock.

Block Diagram

ALU

The ALU perform the computing function of microprocessor. It includes the

accumulator, temporary register, arithmetic & logic circuit & and five flags.

Result is stored in accumulator & flags.

20. CPU ARCHITECTURE

CLO

90

Block Diagram

Accumulator

It is an 8-bit register that is part of ALU. This register is used to store 8-bit data

& in performing arithmetic & logic operation. The result of operation is stored in

accumulator.

Diagram

Flags

Flags are programmable. They can be used to store and transfer the data from

the registers by using instruction. The ALU includes five flip-flops that are set

and reset according to data condition in accumulator and other registers.

 S (Sign) flag - After the execution of an arithmetic operation, if bit D7 of

the result is 1, the sign flag is set. It is used to signed number. In a given

byte, if D7 is 1 means negative number. If it is zero means it is a positive

number.

 Z (Zero) flag - The zero flag is set if ALU operation result is 0.

 AC (Auxiliary Carry) flag - In arithmetic operation, when carry is

generated by digit D3 and passed on to digit D4, the AC flag is set. This

flag is used only internally BCD operation.

 P (Parity) flag - After arithmetic or logic operation, if result has even

number of 1s, the flag is set. If it has odd number of 1s, flag is reset.

 C (Carry) flag - If arithmetic operation result is in a carry, the carry flag

is set, otherwise it is reset.

CLO

91

Register section

It is basically a storage device and transfers data from registers by using

instructions.

 Stack Pointer (SP) - The stack pointer is also a 16-bit register which is

used as a memory pointer. It points to a memory location in Read/Write

memory known as stack. In between execution of program, sometime

data to be stored in stack. The beginning of the stack is defined by

loading a 16-bit address in the stack pointer.

 Program Counter (PC) - This 16-bit register deals with fourth operation

to sequence the execution of instruction. This register is also a memory

pointer. Memory location have 16-bit address. It is used to store the

execution address. The function of the program counter is to point to

memory address from which next byte is to be fetched.

 Storage registers -- These registers store 8-bit data during a program

execution. These registers are identified as B, C, D, E, H, L. They can be

combined as register pair BC, DE and HL to perform some 16 bit

operations.

Time and Control Section

This unit is responsible to synchronize Microprocessor operation as per the clock

pulse and to generate the control signals which are necessary for smooth

communication between Microprocessor and peripherals devices. The RD bar and

WR bar signals are synchronous pulses which indicates whether data is available

on the data bus or not. The control unit is responsible to control the flow of data

between microprocessor, memory and peripheral devices.

CLO

92

PIN diagram

All the signal can be classified into six groups

S.N. Group Description

1 Address bus The 8085 microprocessor has 8 signal line,

A15 - A8 which are uni-directional and used

as a high order address bus.

2 Data bus The signal line AD7 - AD0 are bi-directional

for dual purpose. They are used as low

order address bus as well as data bus.

3 Control signal and

Status signal

Control Signal

RD bar - It is a read control signal (active

low). If it is active then memory read the

data.

WR bar - It is write control signal (active

low). It is active when written into selected

memory.

CLO

93

Status signal

ALU (Address Latch Enable) - When ALU

is high 8085 microprocessor use address

bus. When ALU is low 8085 microprocessor

use data bus.

IO/M bar - This is a status signal used to

differentiate between i/o and memory

operations. When it is high, it indicate an

i/o operation and when it is low, it indicate

memory operation.

S1 and S0 - These status signals, similar to

i/o and memory bar, can identify various

operations, but they are rarely used in

small system.

4 Power supply and

frequency signal

Vcc - +5v power supply.

Vss - ground reference.

X, X - A crystal is connected at these two

pins. The frequency is internally divided by

two operate system at 3-MHz, the crystal

should have a frequency of 6-MHz.

CLK out - This signal can be used as the

system clock for other devices.

5 Externally initiated

signal

INTR (i/p) - Interrupt request.

INTA bar (o/p) - It is used as

acknowledge interrupt.

TRAP (i/p) - This is non maskable

interrupt and has highest priority.

HOLD (i/p) - It is used to hold the

executing program.

HLDA (o/p) - Hold acknowledge.

READY (i/p) - This signal is used to delay

the microprocessor read or write cycle until

a slow responding peripheral is ready to

accept or send data.

RESET IN bar - When the signal on this pin

goes low, the program counter is set to

zero, the bus are tri-stated, & MPU is reset.

CLO

94

RESET OUT - This signal indicate that MPU

is being reset. The signal can be used to

reset other devices.

RST 7.5, RST 6.5, RST 5.5 (Request

interrupt) - It is used to transfer the

program control to specific memory

location. They have higher priority than

INTR interrupt.

6 Serial I/O ports The 8085 microprocessor has two signals to

implement the serial transmission serial

input data and serial output data.

Instruction Format

Each instruction is represented by a sequence of bits within the computer. The

instruction is divided into group of bits called field. The way instruction is

expressed is known as instruction format. It is usually represented in the form of

rectangular box. The instruction format may be of the following types.

Variable Instruction Formats

These are the instruction formats in which the instruction length varies on the

basis of opcode & address specifiers. For Example, VAX instruction vary between

1 and 53 bytes while X86 instruction vary between 1 and 17 bytes.

Format

Advantage

These formats have good code density.

Drawback

These instruction formats are very difficult to decode and pipeline.

Fixed Instruction Formats

In this type of instruction format, all instructions are of same size. For Example,

MIPS, Power PC, Alpha, ARM.

Format

CLO

95

Advantage

They are easy to decode & pipeline.

Drawback

They don't have good code density.

Hybrid Instruction Formats

In this type of instruction formats, we have multiple format length specified by

opcode. For example, IBM 360/70, MIPS 16, Thumb.

Format

Advantage

These compromise between code density & instruction of these type are very

easy to decode.

Addressing Modes

Addressing mode provides different ways for accessing an address to given data

to a processor. Operated data is stored in the memory location, each instruction

required certain data on which it has to operate. There are various techniques to

specify address of data. These techniques are called Addressing Modes.

 Direct addressing mode - In the direct addressing mode, address of the

operand is given in the instruction and data is available in the memory

location which is provided in instruction. We will move this data in desired

location.

 Indirect addressing mode - In the indirect addressing mode, the

instruction specifies a register which contain the address of the operand.

Both internal RAM and external RAM can be accessed via indirect

addressing mode.

 Immediate addressing mode - In the immediate addressing mode,

direct data is given in the operand which move the data in accumulator. It

is very fast.

CLO

96

 Relative addressing mode - In the relative address mode, the effective

address is determined by the index mode by using the program counter

instead of general purpose processor register. This mode is called relative

address mode.

 Index addressing mode - In the index address mode, the effective

address of the operand is generated by adding a content value to the

contents of the register. This mode is called index address mode.

