
Introduction to Programming with Java 3D

Lecturers

Henry A. Sowizral (Organizer)
henry.sowizral@eng.sun.com
Sun Microsystems, Inc.

David R. Nadeau
nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau
San Diego Supercomputer Center
University of California at San Diego

Tutorial notes sections

Abstract
Preface
Lecturer information
Using the Java examples
Tutorial slides

Introduction to Programming with Java 3D

Abstract
Java 3D is a new cross-platform API for developing 3D graphics applications in Java. Its feature set is
designed to enable quick development of complex 3D applications and, at the same time, enable fast and
efficient implementation on a variety of platforms, from PCs to workstations. Using Java 3D, software
developers can build cross-platform applications that build 3D scenes programmatically, or via loading
3D content from VRML, OBJ, and/or other external files. The Java 3D API includes a rich feature set
for building shapes, composing behaviors, interacting with the user, and controlling rendering details.

In this tutorial, participants learn the concepts behind Java 3D, the Java 3D class hierarchy, typical usage
patterns, ways of avoiding common mistakes, animation and scene design techniques, and tricks for
increasing performance and realism.

Introduction to Programming with Java 3D

Preface
Welcome to these tutorial notes! These tutorial notes have been written to give you a quick,
practical, example-driven overview of Java 3D, the cross-platform 3D graphics API for Java. To
do this, we’ve included almost 600 pages of tutorial material with nearly 100 images and over 50
Java 3D examples.

To use these tutorial notes you will need:

An HTML Web browser
Java JDK 1.2 (Java 2 Platform) or later
Java 3D 1.1 or later

Information on Java JDKs and Java 3D is available at:

http://www.javasoft.com

What’s included in these notes

These tutorial notes primarily contain two types of information:

1. General information, such as this preface
2. Tutorial slides and examples

The tutorial slides are arranged as a sequence of 600+ hyper-linked pages containing Java 3D
syntax notes, Java 3D usage comments, or images of sample Java 3D applications. Clicking on the
file name underneath an image brings up a window showing the Java source file that generated the
image. The Java source files contain extensive comments providing information about the
techniques the file illustrates.

Compiling and executing the Java example file from the command-line brings up a Java
application illustrating a Java 3D feature. Most such applications include menus and other
interaction options with which you can explore Java 3D features.

The tutorial notes provide a necessarily terse overview of Java 3D. We recommend that you invest
in a Java 3D book to get thorough coverage of the language. One of the course lecturers is an
author of the Java 3D specification, available from Addison-Wesley: The Java 3D API
Specification, ISBN 0-201-32576-4, 1997.

Use of these tutorial notes

We are often asked if there are any restrictions on use of these tutorial notes. The answer is:

Parts of these tutorial notes are copyright (c) 1999 by Henry A. Sowizral, and copyright (c)
1999 by David R. Nadeau. Users and possessors of these tutorial notes are hereby granted a

nonexclusive, royalty-free copyright and design patent license to use this material in
individual applications. License is not granted for commercial resale, in whole or in part,
without prior written permission from the authors. This material is provided "AS IS" without
express or implied warranty of any kind.

You are free to use these tutorial notes in whole or in part to help you teach your own Java 3D
tutorial. You may translate these notes into other languages and you may post copies of these notes
on your own Web site, as long as the above copyright notice is included as well. You may not,
however, sell these tutorial notes for profit or include them on a CD-ROM or other media product
without written permission.

If you use these tutorial notes, we ask that you:

1. Give us credit for the original material
2. Tell us since we like hearing about the use of our material!

If you find bugs in the notes, please tell us. We have worked hard to try and make the notes
bug-free, but if something slipped by, we’d like to fix it before others are confused by our mistake.

Contact

David R. Nadeau
University of California
NPACI/SDSC, MC 0505
9500 Gilman Drive
La Jolla, CA 92093-0505

(619) 534-5062
FAX: (619) 534-5152

nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau

Introduction to Programming with Java 3D

Lecturer information
Henry A. Sowizral (Organizer)

Title Distinguished Engineer

Affiliation Sun Microsystems, Inc.

Address 901 San Antonio Road, MS UMPK14-202
Palo Alto, CA 94303-4900

UPS, Fed Ex: 14 Network Circle
Menlo Park, CA, 94025

Email henry.sowizral@eng.sun.com

Henry Sowizral is a Distinguished Engineer at Sun Microsystems where he is the chief architect of
the Java 3D API. His areas of interest include virtual reality, large model visualization, and
distributed and concurrent simulation. He has taught tutorials on topics including expert systems
and virtual reality at conferences including COMPCON, Supercomputing, VRAIS, and
SIGGRAPH. Henry has taught Java 3D at SIGGRAPH, Eurographics, Visualization, JavaOne,
VRAIS, and other conferences.

Henry is a co-author of the book The Java 3D API Specification, published by Addison-Wesley.
He holds a B.S. in Information and Computer Science from the University of California, Irvine,
and an M.Phil. and Ph.D. in Computer Science from Yale University.

David R. Nadeau
Title Principal Scientist

Affiliation San Diego Supercomputer Center (SDSC)
University of California, San Diego (UCSD)

Address NPACI/SDSC, MC 0505
9500 Gilman Drive
La Jolla, CA 92093-0505

Email nadeau@sdsc.edu

Home page http://www.sdsc.edu/~nadeau

Dave Nadeau is a principal scientist at the San Diego Supercomputer Center, a national research
center specializing in computational science and engineering, located on the campus of the
University of California, San Diego. His areas of interest include scientific visualization and
virtual reality, He has taught Java 3D and VRML at multiple conferences including SIGGRAPH,
Eurographics, Supercomputing, WebNet, WMC/SCS, VRAIS, and Visualization.

Dave is a co-author of The VRML 2.0 Sourcebook published by John Wiley & Sons. He holds a
B.S. in Aerospace Engineering from the University of Colorado, Boulder, an M.S. in Mechanical
Engineering from Purdue University, and is in the Ph.D. program in Electrical and Computer
Engineering at the University of California, San Diego.

Introduction to Programming with Java 3D

Using the Java examples
These tutorial notes include dozens of separate Java applications illustrating the use of Java 3D.
The source code for these applications is included in files with .java file name extensions.
Compiled byte-code for these Java files is not included! To use these examples, you will need to
compile the applications first.

Compiling Java

The source code for all Java 3D examples is in the examples folder. Images, sound, and geometry
files used by these examples are also contained within the same folder. A README.txt file in the
folder lists the Java 3D applications included therein.

To compile the Java examples, you will need:

The Java 3D API 1.1 class files (or later)
The Java JDK 1.2 (Java 2 Platform) class files (or later)
A Java compiler

The JDK 1.2 class files are available for free from JavaSoft at http://www.javasoft.com.

The Java 3D class files are available for free from Sun Microsystems at
http://www.sun.com/desktop/java3d.

There are multiple Java compilers available for most platforms. JavaSoft provides the Java
Development Kit (JDK) for free from its Web site at http://www.javasoft.com. The JDK includes
the javac compiler and instructions on how to use it. Multiple commercial Java development
environments are available from Microsoft, Symantec, and others. An up to date list of available
Java products is available at Developer.com’s Web site at
http://www.developer.com/directories/pages/dir.java.html.

Once you have the Java API class files and a Java compiler, you may compile the supplied Java
files. Unfortunately, we can’t give you explicit directions on how to do this. Each platform and
Java compiler is different. You’ll have to consult your software’s manuals.

Running the Java 3D Examples

To run a Java application, you must run the Java interpreter and give it the Java class file as an
argument, like this:

java MyClass

The Java interpreter looks for the file MyClass.class in the current directory and loads it, and any
additional files needed by that class.

Title Page

Introduction to Programming with Java 3D

Table of contents

Morning

Section 1 - Introduction, Scene graphs, Shapes, Appearance

Welcome 1
Introduction 5
Building 3D content with a scene graph 24
Building 3D shapes 65
Controlling appearance 103

Section 2 - Groups, Transforms, Texture mapping, Lighting

Grouping shapes 138
Transforming shapes 149
Using special-purpose groups 171
Introducing texture mapping 196
Using texture coordinates 212
Using raster geometry 235
Lighting the environment 245

Afternoon

Section 3 - Universes, Viewing, Input, Behaviors

Building a virtual universe 272
Introducing the view model 283
Viewing the scene 321
Building a simple universe 360
Using input devices 366
Creating behaviors 381

Section 4 - Interpolators, Picking, Backgrounds, Fog

Creating interpolator behaviors 409
Using specialized behaviors 437

Picking shapes 448
Creating backgrounds 469
Working with fog 489
Conclusions 516

Extended notes

Section 5 - Text geometry, Raster geometry, Advanced texture mapping

Building text shapes 519
Controlling the appearance of textures 535
Adding sound 552
Controlling the sound environment 587

1

Welcome

 Introduction to Programming with Java 3D 2
 Tutorial schedule 3
 Tutorial scope 4

2

Welcome

Introduction to Programming with Java 3D

Welcome to the tutorial!

3

Welcome

Tutorial schedule

Morning

Section 1 Introduction, Scene graphs, Shapes, Appearance

Section 2 Groups, Transforms, Texture mapping, Lighting

Afternoon

Section 3 Universes, Viewing, Input, Behaviors

Section 4 Interpolators, Picking, Backgrounds, Fog

Extended notes

Section 5 Text geometry, Advanced texture mapping, Sound,
Sound environment

4

Welcome

Tutorial scope

This tutorial will:
Introduce Java 3D concepts and terminology

Discuss important Java 3D classes

Illustrate how to write a Java 3D application or applet

Discuss typical usage patterns, techniques, and tricks

5

Introduction

 What is Java 3D? 6
 What is Java 3D? 7
 What does Java 3D do? 8
 What does Java 3D do? 9
 What application areas can use Java 3D? 10
 Examples: Scientific Visualization 11
 Examples: Abstract Data (Financial) 12
 Examples: Medical Education 13
 Examples: CAD 14
 Examples: Analysis 15
 Examples: Animations 16
 Examples: 3D Logos 17
 Examples: Scientific Visualization 18
 What software do I need to use Java 3D? 19
 What hardware do I need to use Java 3D? 20
 How do I run a Java 3D application/applet? 21
 How does Java 3D compare with other APIs? 22
 Summary 23

6

Introduction

What is Java 3D?

Java 3D is an interactive 3D graphics Application Programming
Interface (API) for building applications and applets in Java

A means for developing and presenting 3D content

Designed for Write once, run anywhere
Multiple platforms (processors and pipes)
Multiple display environments
Multiple input devices

7

Introduction

What is Java 3D?

Raise the programming floor

Think objects . . . not vertices

Think content . . . not rendering process

8

Introduction

What does Java 3D do?

Provide a vendor-neutral, platform-independent API within Java
Integrates with other Java APIs: image processing, fonts, 2D
drawing, user interfaces, etc.

Enable high level application development
Authors focus upon content, not rendering
Java 3D handles optimal rendering

9

Introduction

What does Java 3D do?

Perform rendering optimizations
Scene management
Content culling based upon visibility (frustum)
Efficient pipeline use (sorting, batching)
Parallel rendering
Scene compilation (reorganization, combination, etc.)

And achieve high performance
Draw via OpenGL/Direct3D
Uses 3D graphics hardware acceleration where available

10

Introduction

What application areas can use Java 3D?

Scientific visualization
Information visualization
Medical visualization
Geographical information systems (GIS)
Computer-aided design (CAD)
Animation
Education

11

Introduction

Examples: Scientific Visualization

12

Introduction

Examples: Abstract Data (Financial)

13

Introduction

Examples: Medical Education

14

Introduction

Examples: CAD

15

Introduction

Examples: Analysis

16

Introduction

Examples: Animations

17

Introduction

Examples: 3D Logos

18

Introduction

Examples: Scientific Visualization

Anatomy Browser

University of Massachusets
and

Brigham and Women’s
Hospital

Collaborative Visualization

Space Science and
Engineering Center (SSEC)

19

Introduction

What software do I need to use Java 3D?

Java development kit
Java 2 platform
Free from http://java.sun.com

Java 3D development kit
Java 3D 1.1
Free from http://www.sun.com/desktop/java3D

Sun provides Windows 9x/NT and Solaris ports

Linux port is available

Other ports come from platform vendors

20

Introduction

What hardware do I need to use Java 3D?

You will need a 3D graphics accelerator

On PCs:
PC cards are widely available
Should support OpenGL 1.1 features
A Direct3D version is in progress
Linux port uses Mesa

On Suns:
Creator 3D or Elite 3D hardware
Support OpenGL 1.2

21

Introduction

How do I run a Java 3D application/applet?

Java 3D applications:
Run like any other Java application

prompt> java myapplication

Java 3D applets:
Use the Java plug-in in Netscape or Internet Explorer
Embeds the applet in a Web page
Java plug-in automatically downloads JDK and Java 3D if not
already installed

22

Introduction

How does Java 3D compare with other APIs?

"Older" APIs enable only low-level hardware state control
Provide and require detailed control
OpenGL, Direct3D, low-level game engines

"Newer" APIs focus upon high-level content control
Provide some rendering optimization
Java 3D
VRML
SGI OpenInventor, Optimizer/Cosmo3D (being phased out)
SGI-Microsoft "Fahrenheit"

23

Introduction

Summary

Java 3D is a high-level API for building interactive 3D
applications and applets in Java

Write once, run anywhere . . . in 3D

24

Building 3D content with a scene graph

 Building a scene graph 25
 Scene graph example 26

 Sketching a scene graph diagram 27
 Examples of creating large scenes 28
 Building a scene graph 29
 Processing a scene graph 30

 Examples of Java 3D features 31
 Examples of Java 3D features 32
 Examples of Java 3D features 33

 Using scene graph terminology 34
 Scene graph base class hierarchy 35
 Building a scene graph 36
 Building a scene graph 37

 Using universe terminology 38
 Using branch terminology 39

 Sketching a universe diagram 40
 Superstructure class hierarchy 41
 Building a universe 42
 Building a universe 43

 Building scene content 44
 Loading scene content from files 45
 Building scene graph superstructure 46

 Sketching a simple universe diagram 47
 HelloWorld example 48

 HelloWorld example code 49
 HelloWorld example code 50
 HelloWorld example code 51
 HelloWorld example code 52
 HelloWorld example 53

 Making a node live 54
 Checking if a node is live 55

 Compiling a scene graph 56
 Compiling a scene graph 57

 Controlling access capabilities 58

 Controlling access capabilities 59
 Controlling access capabilities 60
 Controlling access capabilities 61

 Summary 62
 Summary 63
 Summary 64

25

Building 3D content with a scene graph

Building a scene graph

A scene graph is a "family tree" containing scene data
"Children" are shapes, lights, sounds, etc.
"Parents" are groups of children and other parents
This defines a hierarchical grouping of shapes

The application builds a scene graph using Java 3D classes and
methods

Java 3D renders that scene graph onto the screen

26

Building 3D content with a scene graph

Scene graph example

For example, imagine building a toy airplane:

Start with parts on the table

Assemble related parts

Assemble those into the final plane

27

Building 3D content with a scene graph

Sketching a scene graph diagram

Sketching a scene graph diagram can clarify a design and ease
software development

28

Building 3D content with a scene graph

Examples of creating large scenes

Java 3D scene graphs may include large numbers of shapes

Landing gear
192 shapes

Boom box
11,000 shapes

29

Building 3D content with a scene graph

Building a scene graph

Scene graphs are built from components including:
Shapes (geometry and appearance)
Groups and transforms
Lights
Fog and backgrounds
Sounds and sound environments (reverb)
Behaviors
View platforms (viewpoints)

30

Building 3D content with a scene graph

Processing a scene graph

Java 3D renders the scene graph
Scene graph specifies content, not rendering order
Rendering order is up to Java 3D

Java 3D uses separate, independent and asynchronous threads
Graphics rendering
Sound "rendering"
Animation "behavior execution"
Input device management
Event generation (collision detection)

31

Building 3D content with a scene graph

Examples of Java 3D features

You can control shape coloration and texture . . .

32

Building 3D content with a scene graph

Examples of Java 3D features

. . . lighting and fog effects . . .

Monument

Colonade

33

Building 3D content with a scene graph

Examples of Java 3D features

. . . shape position, orientation, and size and how those change
over time, and more

Jetsons-Vis

Logo

Car Suspension

Duke Treadmill

34

Building 3D content with a scene graph

Using scene graph terminology

But first, some terminology . . .

Node: an item in a scene graph
Leaf nodes: nodes with no children

Shapes, lights, sounds, etc.
Animation behaviors

Group nodes: nodes with children
Transforms, switches, etc.

Node component: a bundle of attributes for a node
Geometry of a shape
Color of a shape
Sound data to play

35

Building 3D content with a scene graph

Scene graph base class hierarchy

Leaf nodes, group nodes, node components, and different types
of all of these lead to . . . a Java 3D class hierarchy

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Group

 javax.media.j3d.Leaf

 javax.media.j3d.NodeComponent

36

Building 3D content with a scene graph

Building a scene graph

Build nodes by instantiating Java 3D classes

Shape3D myShape1 = new Shape3D(myGeom1, myAppear1);
Shape3D myShape2 = new Shape3D(myGeom2);

Modify nodes by calling methods on an instance

myShape2.setAppearance(newAppear2);

Build groups of nodes

Group myGroup = new Group();
myGroup.addChild(myShape1);
myGroup.addChild(myShape2);

37

Building 3D content with a scene graph

Building a scene graph

We need to assemble chunks of content, each in its own scene
graph

Build components separately

Assemble them into a common container: a virtual universe
A way to combine scene graphs
A place to root the scene graph

38

Building 3D content with a scene graph

Using universe terminology

Virtual universe: a collection of scene graphs
Typically one universe per application

Locale: a position in the universe at which to put scene graphs
Typically one locale per universe

Branch graph: a scene graph
Typically several branch graphs per locale

39

Building 3D content with a scene graph

Using branch terminology

Scene graphs are typically divided into two types of branch
graphs:

Content branch: shapes, lights, and other content
Typically multiple branches per locale

View branch: viewing information
Typically one per universe

This division is optional:
Content and viewing information can be interleaved in the
same branch (and sometimes should be)

40

Building 3D content with a scene graph

Sketching a universe diagram

A universe builds superstructure to contain scene graphs

41

Building 3D content with a scene graph

Superstructure class hierarchy

Universes and locales are superstructure classes for organizing
content

Class Hierarchy
java.lang.Object

 javax.media.j3d.VirtualUniverse

 javax.media.j3d.Locale

 javax.media.j3d.Node

 javax.media.j3d.Group

 javax.media.j3d.BranchGroup

42

Building 3D content with a scene graph

Building a universe

Build a universe

VirtualUniverse myUniverse = new VirtualUniverse();

Build a locale

Locale myLocale = new Locale(myUniverse);

Build a branch group

BranchGroup myBranch = new BranchGroup();

43

Building 3D content with a scene graph

Building a universe

Build nodes and groups of nodes

Shape3D myShape = new Shape3D(myGeom, myAppear);
Group myGroup = new Group();
myGroup.addChild(myShape);

Add them to the branch group

myBranch.addChild(myGroup);

Add the branch graph to the locale

myLocale.addBranchGraph(myBranch);

44

Building 3D content with a scene graph

Building scene content

Java 3D’s rich feature set enables you to build complex 3D
content

Build content directly within your Java application
Load content from files
Do both

File loader classes enable reading content from files in standard
formats

VRML (Virtual Reality Modeling Language)
OBJ (Alias|Wavefront object)
LW3D (Lightwave 3D scene)
others . . .

45

Building 3D content with a scene graph

Loading scene content from files

Load an OBJ file describing a ship

[A3DApplet]

46

Building 3D content with a scene graph

Building scene graph superstructure

Utility classes help automate common operations
Implemented atop Java 3D

The SimpleUniverse utility builds a common arrangement of a
universe, locale, and viewing classes

SimpleUniverse mySimple = new SimpleUniverse(myCanva s
mySimple.addBranchGraph(myBranch);

47

Building 3D content with a scene graph

Sketching a simple universe diagram

A SimpleUniverse encapsulates a common superstructure

48

Building 3D content with a scene graph

HelloWorld example

Let’s build a multi-colored 3D cube and spin it about the vertical
axis

[HelloWorld]

49

Building 3D content with a scene graph

HelloWorld example code

Import the Java 3D classes . . .

import javax.media.j3d.*;
import javax.vecmath.*;
import java.applet.*;
import java.awt.*;
import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.universe.*;

public class HelloWorld
{
. . .
}

50

Building 3D content with a scene graph

HelloWorld example code

Build a frame, 3D canvas, and simple universe . . .

public static void main(String[] args) {
 Frame frame = new Frame();
 frame.setSize(640, 480);
 frame.setLayout(new BorderLayout());

 Canvas3D canvas = new Canvas3D(null);
 frame.add("Center", canvas);

 SimpleUniverse univ = new SimpleUniverse(canvas)
 univ.getViewingPlatform().setNominalViewingTrans f

 BranchGroup scene = createSceneGraph();
 scene.compile();
 univ.addBranchGraph(scene);

 frame.show();
}

51

Building 3D content with a scene graph

HelloWorld example code

Build 3D shapes within a BranchGroup . . .

public BranchGroup createSceneGraph()
{
 BranchGroup branch = new BranchGroup();

 // Make a changeable 3D transform
 TransformGroup trans = new TransformGroup();
 trans.setCapability(TransformGroup.ALLOW_TRANSFO R
 branch.addChild(trans);

 // Make a shape
 ColorCube demo = new ColorCube(0.4);
 trans.addChild(demo);

 . . .

52

Building 3D content with a scene graph

HelloWorld example code

Set up an animation behavior to spin the shapes . . .

 // Make a behavor to spin the shape
 Alpha spinAlpha = new Alpha(-1, 4000);
 RotationInterpolator spinner =
 new RotationInterpolator(spinAlpha, trans);
 spinner.setSchedulingBounds(
 new BoundingSphere(new Point3d(), 1000. 0
 trans.addChild(spinner);

 return branch;
}

53

Building 3D content with a scene graph

HelloWorld example

Which produces a spinning multi-colored 3D cube . . .

[HelloWorld]

54

Building 3D content with a scene graph

Making a node live

Adding a branch graph into a locale (or simple universe) makes
its nodes live (drawable)

BranchGroup myBranch = new BranchGroup();
myBranch.addChild(myShape);
myLocale.addBranchGraph(myBranch); // make live!

Removing the branch graph from the locale reverses the effect

myLocale.removeBranchGraph(myBranch);// not live

55

Building 3D content with a scene graph

Checking if a node is live

A method on SceneGraphObject queries if a node is live

Method
boolean isLive()

56

Building 3D content with a scene graph

Compiling a scene graph

A method on BranchGroup compiles the branch, optimizing it for
faster rendering

Method
void compile()

57

Building 3D content with a scene graph

Compiling a scene graph

Compile a branch graph before making it live

BranchGroup myBranch = new BranchGroup();
myBranch.addChild(myShape);
myBranch.compile();
myLocale.addBranchGraph(myBranch);

58

Building 3D content with a scene graph

Controlling access capabilities

Node capabilities (permissions) control read and write access

Read or write any attribute before a node is live or compiled

Capabilities control access while a node is live or compiled

Keep the number of capabilities small so Java 3D can make more
optimizations during compilation

59

Building 3D content with a scene graph

Controlling access capabilities

Methods on the SceneGraphObject set/clear capabilities

Method
void setCapability(int bit)

void clearCapability(int bit)

boolean getCapability(int bit)

60

Building 3D content with a scene graph

Controlling access capabilities

Each node has its own read and write capabilities
Usually a separate capability for each attribute of a node
Node’s also inherit parent class capabilities
Each capability has an upper-case name

For example, Shape3D capabilities include:
ALLOW_APPEARANCE_READ
ALLOW_APPEARANCE_WRITE
ALLOW_GEOMETRY_READ
ALLOW_GEOMETRY_WRITE
ALLOW_COLLISION_BOUNDS_READ
ALLOW_COLLISION_BOUNDS_WRITE
Plus capabilities from the parent Node class, including:

ALLOW_BOUNDS_READ
ALLOW_BOUNDS_WRITE
ALLOW_PICKABLE_READ
ALLOW_PICKABLE_WRITE
. . . and others

61

Building 3D content with a scene graph

Controlling access capabilities

Set capabilities while you build your content

Shape3D myShape = new Shape3D(myGeom, myAppear);
myShape.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE

After a node is live, change attributes that have enabled
capabilities

myShape.setAppearance(newAppear); // allowed

But you cannot change attributes for which you do not have
capabilities set

myShape.setGeometry(newGeom); // error!

62

Building 3D content with a scene graph

Summary

A scene graph is a hierarchy of groups of shapes, lights, sounds,
etc.

Your application builds the scene graph using Java 3D classes
and methods

The Java 3D implementation uses the scene graph behind the
scene to render shapes, play sounds, execute animations, etc.

63

Building 3D content with a scene graph

Summary

A virtual universe holds everything

A locale positions a branch graph in a universe

A branch graph is a scene graph

A node is an item in a scene graph

A node component is a bundle of attributes for a node

64

Building 3D content with a scene graph

Summary

Adding a branch graph to a locale makes it live and drawable

Compiling a branch graph optimizes it for faster rendering

Capabilities control access to node attributes after a node is live
or compiled

Fewer capabilities enables more optimizations

65

Building 3D shapes

 Motivation 66
 Example 67
 Shape3D class hierarchy 68

 Shape3D class methods 69
 Building geometry using coordinates 70

 Building geometry using coordinates 71
 Using a right-handed coordinate system 72
 Using coordinate order 73
 Using coordinate order 74
 Defining vertices 75
 Defining vertices 76

 Building geometry 77
 GeometryArray class hierarchy 78
 GeometryArray class methods 79
 GeometryArray class methods 80
 Building different types of geometry 81

 Building a PointArray 82
 PointArray example code 83

 Building a LineArray 84
 LineArray example code 85

 Building a TriangleArray 86
 TriangleArray example code 87

 Building a QuadArray 88
 QuadArray example code 89

 Building geometry strips 90
 GeometryStripArray class hierarchy 91

 Building a LineStripArray 92
 Building a TriangleFanArray 93
 Building a TriangleStripArray 94
 Building indexed geometry 95

 IndexedGeometryArray class hierarchy 96
 IndexedGeometryArray class methods 97
 IndexedGeometryArray class methods 98

 Gearbox example 99

 Summary 100
 Summary 101
 Summary 102

66

Building 3D shapes

Motivation

A Shape3D leaf node builds a 3D object with:

Geometry:
The form or structure of a shape

Appearance:
The coloration, transparency, and shading of a shape

Java 3D supports multiple geometry and appearance features

We’ll talk about geometry first, then appearance

67

Building 3D shapes

Example

[GearBox]

68

Building 3D shapes

Shape3D class hierarchy

The Shape3D class extends the Leaf class

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Shape3D

69

Building 3D shapes

Shape3D class methods

Methods on Shape3D set geometry and appearance attributes

Method
Shape3D()

Shape3D(Geometry geometry, Appearance appearance)

void setGeometry(Geometry geometry)

void setAppearance(Appearance appearance)

70

Building 3D shapes

Building geometry using coordinates

Building shape geometry is like a 3D connect-the-dots game
Place "dots" at 3D coordinates
Connect-the-dots to form 3D shapes

For example, to build a pyramid start with five coordinates

71

Building 3D shapes

Building geometry using coordinates

Finish the pyramid by connecting the dots to form triangles

1. 2.

3. 4.

72

Building 3D shapes

Using a right-handed coordinate system

3D coordinates are given in a right-handed coordinate system
X = left-to-right
Y = bottom-to-top
Z = back-to-front

Distances are conventionally in meters

73

Building 3D shapes

Using coordinate order

Polygons have a front and back:
By default, only the front side of a polygon is rendered
A polygon’s winding order determines which side is the front

Most polygons only need one side rendered
You can turn on double-sided rendering, at a performance
cost

74

Building 3D shapes

Using coordinate order

Use the right-hand rule:
Curl your right-hand fingers around the polygon perimeter in
the order vertices are given (counter-clockwise)

Your thumb sticks out the front of the polygon

75

Building 3D shapes

Defining vertices

A vertex describes a polygon corner and contains:
A 3D coordinate
A color
A texture coordinate
A lighting normal vector

The 3D coordinate in a vertex is required, the rest are optional

76

Building 3D shapes

Defining vertices

A vertex normal defines surface information for lighting
But the coordinate winding order defines the polygon’s front
and back, and thus the side that is drawn

If you want to light your geometry, you must specify vertex
lighting normals

Lighting normals must be unit length

77

Building 3D shapes

Building geometry

Java 3D has multiple types of geometry that use 3D coordinates:
Points, lines, triangles, and quadrilaterals
3D extruded text
Raster image sprites

Geometry constructors differ in what they build, and how you tell
Java 3D to build them

Let’s look at points, lines, triangles, and quadrilaterals first . . .

78

Building 3D shapes

GeometryArray class hierarchy

All geometry types are derived from Geometry
GeometryArray extends it to build points, lines, triangles, and
quadrilaterals

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Geometry

 javax.media.j3d.GeometryArray

79

Building 3D shapes

GeometryArray class methods

Generic methods on GeometryArray set coordinates and normals

Method
void setCoordinate(int index, * coordinate)

void setCoordinates(int index, * coordinate)

void setNormal(int index, * normal)

void setNormals(int index, * normal)

Coordinate method variants accept float , double , Point3f , and
Point3d
Coordinate method variants accept float and Vector3f

80

Building 3D shapes

GeometryArray class methods

Generic methods on GeometryArray also set colors and texture
coordinates

Discussed in the section on shape appearance

Method
void setColor(int index, * color)

void setColors(int index, * color)

void setTextureCoordinate(int index, * texCoord)

void setTextureCoordinates(int index, * texCoord)

Color method variants accept byte , float , Color3f , Color4f ,
Color3b , Color4b , and Vector3f
Texture coordinate method variants accept float , Point2f , and
Point3f

81

Building 3D shapes

Building different types of geometry

There are 14 different geometry array types grouped into:
Simple geometry:

PointArray , LineArray , TriangleArray , and QuadArray
Strip geometry:

LineStripArray , TriangleStripArray , and
TriangleFanArray

Indexed simple geometry:
IndexedPointArray , IndexedLineArray ,
IndexedTriangleArray , and IndexedQuadArray

Indexed stripped geometry:
IndexedLineStripArray , IndexedTriangleStripArray ,
and IndexedTriangleFanArray

Let’s look at simple geometry types first . . .

82

Building 3D shapes

Building a PointArray

A PointArray builds points
One point at each vertex
Point size may be controlled by
shape appearance attributes

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Geometry

 javax.media.j3d.GeometryArray

 javax.media.j3d.PointArray

83

Building 3D shapes

PointArray example code

Create a list of 3D coordinates for the vertices

Point3f[] myCoords = {
 new Point3f(0.0f, 0.0f, 0.0f),
 . . .
}

Create a PointArray and set the vertex coordinates

PointArray myPoints = new PointArray(
 myCoords.length,
 GeometryArray.COORDINATES);
myPoints.setCoordinates(0, myCoords);

Assemble the shape

Shape3D myShape = new Shape3D(myPoints, myAppear);

84

Building 3D shapes

Building a LineArray

A LineArray builds lines
Between each pair of vertices
Line width and style may be
controlled by shape appearance
attributes

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Geometry

 javax.media.j3d.GeometryArray

 javax.media.j3d.LineArray

85

Building 3D shapes

LineArray example code

Create a list of 3D coordinates for the vertices

Point3f[] myCoords = {
 new Point3f(0.0f, 0.0f, 0.0f),
 . . .
}

Create a LineArray and set the vertex coordinates

LineArray myLines = new LineArray(
 myCoords.length,
 GeometryArray.COORDINATES);
myLines.setCoordinates(0, myCoords);

Assemble the shape

Shape3D myShape = new Shape3D(myLines, myAppear);

86

Building 3D shapes

Building a TriangleArray

A TriangleArray builds triangles
Between each triple of vertices
Rendering may be controlled by
shape appearance attributes

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Geometry

 javax.media.j3d.GeometryArray

 javax.media.j3d.TriangleArray

87

Building 3D shapes

TriangleArray example code

Create lists of 3D coordinates and normals for the vertices

Point3f[] myCoords = {
 new Point3f(0.0f, 0.0f, 0.0f),
 . . .
}
Vector3f[] myNormals = {
 new Vector3f(0.0f, 1.0f, 0.0f),
 . . .
}

Create a TriangleArray and set the vertex coordinates and
normals

TriangleArray myTris = new TriangleArray(
 myCoords.length,
 GeometryArray.COORDINATES |
 GeometryArray.NORMALS);
myTris.setCoordinates(0, myCoords);
myTris.setNormals(0, myNormals);

Assemble the shape

Shape3D myShape = new Shape3D(myTris, myAppear);

88

Building 3D shapes

Building a QuadArray

A QuadArray builds quadrilaterals
Between each quadruple of vertices
Rendering may be controlled by
shape appearance attributes

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Geometry

 javax.media.j3d.GeometryArray

 javax.media.j3d.QuadArray

89

Building 3D shapes

QuadArray example code

Create lists of 3D coordinates and normals for the vertices

Point3f[] myCoords = {
 new Point3f(0.0f, 0.0f, 0.0f),
 . . .
}
Vector3f[] myNormals = {
 new Vector3f(0.0f, 1.0f, 0.0f),
 . . .
}

Create a QuadArray and set the vertex coordinates and normals

QuadArray myQuads = new QuadArray(
 myCoords.length,
 GeometryArray.COORDINATES |
 GeometryArray.NORMALS);
myQuads.setCoordinates(0, myCoords);
myQuads.setNormals(0, myNormals);

Assemble the shape

Shape3D myShape = new Shape3D(myQuads, myAppear);

90

Building 3D shapes

Building geometry strips

Simple geometry types use vertices in . . .
pairs, triples, and quadruples to build lines, triangles, and
quadrilaterals one at a time

Strip geometry uses multiple vertices in . . .
A chain to build multiple lines and triangles

You provide a coordinate list (as always)

You provide lighting normal, color, and texture coordinate
lists (optionally)

You provide a strip length list
Each list entry gives the number of consecutive vertices
to chain together

91

Building 3D shapes

GeometryStripArray class hierarchy

GeometryStripArray extends GeometryArray to build strips of
lines and triangles

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Geometry

 javax.media.j3d.GeometryArray

 javax.media.j3d.GeometryStripArray

 javax.media.j3d.LineStripArray

 javax.media.j3d.TriangleFanArray

 javax.media.j3d.TriangleStripArray

92

Building 3D shapes

Building a LineStripArray

Create a list of 3D coordinates for the vertices

Point3f[] myCoords = {
 new Point3f(0.0f, 0.0f, 0.0f),
 . . .
}

Create a list of vertex strip lengths

int[] stripLengths = { 4, 5 };

Create a LineStripArray and set the vertex coordinates

LineStripArray myLines = new LineStripArray(
 myCoords.length,
 GeometryArray.COORDINATES,
 stripLengths);
myLines.setCoordinates(0, myCoords);

Assemble the shape

Shape3D myShape = new Shape3D(myLines, myAppear);

93

Building 3D shapes

Building a TriangleFanArray

Create lists of 3D coordinates and lighting normals for the
vertices

Point3f[] myCoords = {
 new Point3f(0.0f, 0.0f, 0.0f),
 . . .
}
Vector3f[] myNormals = {
 new Vector3f(0.0f, 1.0f, 0.0f),
 . . .
}

Create a list of vertex fan lengths

int[] fanLengths = { 5, 6 };

Create a TriangleFanArray and set vertex coordinates and
lighting normals

TriangleFanArray myFans = new TriangleFanArray(
 myCoords.length,
 GeometryArray.COORDINATES |
 GeometryArray.NORMALS,
 fanLengths);
myFans.setCoordinates(0, myCoords);
myFans.setNormals(0, myNormals);

Assemble the shape

Shape3D myShape = new Shape3D(myFans, myAppear);

94

Building 3D shapes

Building a TriangleStripArray

Create lists of 3D coordinates and lighting normals for the
vertices

Point3f[] myCoords = {
 new Point3f(0.0f, 0.0f, 0.0f),
 . . .
}
Vector3f[] myNormals = {
 new Vector3f(0.0f, 1.0f, 0.0f),
 . . .
}

Create a list of vertex strip lengths

int[] stripLengths = { 6, 5 };

Create a TriangleStripArray and set vertex coordinates and
lighting normals

TriangleStripArray myTris = new TriangleStripArray(
 myCoords.length,
 GeometryArray.COORDINATES |
 GeometryArray.NORMALS,
 stripLengths);
myTris.setCoordinates(0, myCoords);
myTris.setNormals(0, myNormals);

Assemble the shape

Shape3D myShape = new Shape3D(myTris, myAppear);

95

Building 3D shapes

Building indexed geometry

For surfaces, the same vertices are used for adjacent lines and
triangles

Simple and strip geometry require redundant coordinates,
lighting normals, colors, and texture coordinates

Indexed geometry uses indices along with the usual lists of
coordinates, lighting normals, etc.

Indices select coordinates to use from your list
Use a coordinate multiple times, but give it only once
Indices also used for lighting normals, colors, and texture
coordinates

96

Building 3D shapes

IndexedGeometryArray class hierarchy

IndexedGeometryArray extends GeometryArray to build indexed
points, lines, triangles, and quadrilaterals

IndexedGeometryStripArray extends IndexedGeometryArray to
build indexed strips of lines and triangles

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Geometry

 javax.media.j3d.GeometryArray

 javax.media.j3d.IndexedGeometryArray

 javax.media.j3d.IndexedGeometryStripArray

 javax.media.j3d.IndexedLineStripArray

 javax.media.j3d.IndexedTriangleFanArray

 javax.media.j3d.IndexedTriangleStripArra y

 javax.media.j3d.IndexedLineArray

 javax.media.j3d.IndexedPointArray

 javax.media.j3d.IndexedQuadArray

 javax.media.j3d.IndexedTriangleArray

97

Building 3D shapes

IndexedGeometryArray class methods

Generic methods on IndexedGeometryArray set coordinate and
lighting normal indices

Method
void setCoordinateIndex(int index, int value)

void setCoordinateIndices(int index, int[] value)

void setNormalIndex(int index, int value)

void setNormalIndices(int index, int[] value)

98

Building 3D shapes

IndexedGeometryArray class methods

Generic methods on IndexedGeometryArray also set colors and
texture coordinate indices

Discussed in the section on shape appearance

Method
void setColorIndex(int index, int value)

void setColorIndices(int index, int[] value)

void setTextureCoordinateIndex(int index, int value)

void setTextureCoordinateIndices(int index, int[] value)

99

Building 3D shapes

Gearbox example

[GearBox]

100

Building 3D shapes

Summary

A 3D shape is described by:
Geometry: form or structure
Appearance: coloration, transparency, shading

Java 3D has multiple geometry types that all use vertices
containing:

Coordinates: 3D XYZ locations
Normals: 3D direction vectors
Colors: red-green-blue mix colors
Texture coordinates: 2D ST texture image locations

101

Building 3D shapes

Summary

Simple geometry types build points, lines, triangles, and
quadrilaterals

Automatically using vertices in sets of 1, 2, 3, or 4

Strip geometry types build lines and triangles
Using vertices in user-defined chains

Indexed geometry types build points, lines, triangles, and
quadrilaterals

Using coordinates, lighting normals, etc. selected by indices

102

Building 3D shapes

Summary

Java 3D also provides a couple more geometry types, including:

Raster geometry, discussed later this morning

Text geometry, discussed in the extended notes, but not
during the tutorial

103

Controlling appearance

 Motivation 104
 Example 105
 Appearance class hierarchy 106

 Introducing appearance attributes 107
 Appearance attributes class hierarchy 108

 Appearance class methods 109
 Using coloring attributes 110

 ColoringAttributes class methods 111
 ColoringAttributes example code 112

 Using material attributes 113
 Using material colors 114
 Material class methods 115
 Material attributes example code 116

 Using coordinate colors 117
 Using coordinate color indices 118
 Coloring coordinates 119

 Using transparency attributes 120
 Using transparency modes 121
 TransparencyAttributes class methods 122
 TransparencyAttributes example code 123

 Using point and line attributes 124
 PointAttributes class methods 125
 LineAttributes class methods 126
 PointAttributes example code 127
 LineAttributes example code 128

 Using polygon attributes 129
 PolygonAttributes class methods 130
 PolygonAttributes example code 131

 Using rendering attributes 132
 RenderingAttributes class methods 133
 RenderingAttributes example code 134

 Appearance example 135
 Summary 136
 Summary 137

104

Controlling appearance

Motivation

Control how Java 3D renders Geometry
Color
Transparency
Shading model
Line thickness
And lots more

All appearance control is encapsulated within the Appearance

class, and its components

105

Controlling appearance

Example

[ExAppearance]

106

Controlling appearance

Appearance class hierarchy

The Appearance class specifies how to render a shape’s geometry

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Appearance

107

Controlling appearance

Introducing appearance attributes

Appearance attributes are grouped into several node components:
Color and transparency control

Material
ColoringAttributes
TransparencyAttributes

Rendering control
PointAttributes
LineAttributes
PolygonAttributes
RenderingAttributes

Texture control (discussed later)
Texture
TextureAttributes
TexCoordGeneration

108

Controlling appearance

Appearance attributes class hierarchy

The various appearance attributes extend NodeComponent

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.ColoringAttributes

 javax.media.j3d.LineAttributes

 javax.media.j3d.PointAttributes

 javax.media.j3d.PolygonAttributes

 javax.media.j3d.RenderingAttributes

 javax.media.j3d.TextureAttributes

 javax.media.j3d.TransparencyAttributes

 javax.media.j3d.Material

 javax.media.j3d.TexCoordGeneration

 javax.media.j3d.Texture

109

Controlling appearance

Appearance class methods

Methods on Appearance just set which attributes to use
Set only the ones you need, leaving the rest at their default
values

Method
Appearance()

void setColoringAttributes(ColoringAttributes
coloringAttributes)

void setMaterial(Material material)

void setTransparencyAttributes(TransparencyAttributes
transparencyAttributes)

void setLineAttributes(LineAttributes lineAttributes)

void setPointAttributes(PointAttributes pointAttributes)

void setPolygonAttributes(PolygonAttributes
polygonAttributes)

void setRenderingAttributes(RenderingAttributes
renderingAttributes)

110

Controlling appearance

Using coloring attributes

ColoringAttributes controls:
Intrinsic color (used when lighting is disabled)
Shading model (flat or Gouraud)

Use coloring attributes when a shape is not shaded
Emissive points, lines, and polygons
Avoids expensive shading calculations

111

Controlling appearance

ColoringAttributes class methods

Methods on ColoringAttributes select the color and shading
model

The default color is white, and the default shading model
SHADE_GOURAUD

Method
ColoringAttributes()

void setColor(Color3f color)

void setShadeModel(int model)

Shade models include: SHADE_FLAT and SHADE_GOURAUD (default)

The FASTEST and NICEST shade models automatically select the
fastest, and highest quality models available

112

Controlling appearance

ColoringAttributes example code

Create ColoringAttributes to set an intrinsic color and shading
model

ColoringAttributes myCA = new ColoringAttributes();
myCA.setColor(1.0f, 1.0f, 0.0f);
myCA.setShadeModel(ColoringAttributes.SHADE_GOURAUD)

Create Appearance , set the coloring attributes, and assemble the
shape

Appearance myAppear = new Appearance();
myAppear.setColoringAttributes(myCA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

113

Controlling appearance

Using material attributes

Material controls:
Ambient, emissive, diffuse, and specular color
Shininess factor

Use materials when a shape is shaded
Most scene shapes
Overrides ColoringAttributes intrinsic color (when lighting
is enabled)

114

Controlling appearance

Using material colors

Diffuse color sets the main shading color, giving a dull, matte
finish (upper-left)

Specular color and shininess factor make a shape appear shiny
(lower-right)

Emissive color makes a shape appear to glow (upper-right)

115

Controlling appearance

Material class methods

Methods on Material set shading colors and turn on/off lighting
effects

Defaults include white diffuse and specular colors, a black
emissive color, (0.2,0.2,0.2) ambient color, shininess of 64.0,
and lighting enabled

Method
Material()

void setAmbientColor(Color3f color)

void setEmissiveColor(Color3f color)

void setDiffuseColor(Color3f color)

void setSpecularColor(Color3f color)

void setShininess(float shininess)

void setLightingEnable(boolean state)

116

Controlling appearance

Material attributes example code

Create Material to set shape colors

Material myMat = new Material();
myMat.setAmbientColor(0.3f, 0.3f, 0.3f);
myMat.setDiffuseColor(1.0f, 0.0f, 0.0f);
myMat.setEmissiveColor(0.0f, 0.0f, 0.0f);
myMat.setSpecularColor(1.0f, 1.0f, 1.0f);
myMat.setShininess(64.0f);

Create Appearance , set the material, and assemble the shape

Appearance myAppear = new Appearance();
myAppear.setMaterial(myMat);
Shape3D myShape = new Shape3D(myGeom, myAppear);

117

Controlling appearance

Using coordinate colors

You may also set a color for each geometry coordinate in a
GeometryArray

Coordinate colors override coloring attributes or a material’s
diffuse color

Method
void setColor(int index, * color)

void setColors(int index, * color)

Method variants accept byte , float , Color3f , Color4f , Color3b ,
and Color4b

118

Controlling appearance

Using coordinate color indices

For indexed geometry, you may select color indices in an
IndexedGeometryArray

Method
void setColorIndex(int index, int value)

void setColorIndices(int index, int[] value)

119

Controlling appearance

Coloring coordinates

Coordinate colors are interpolated along lines or across polygons

120

Controlling appearance

Using transparency attributes

TransparencyAttributes controls:
Transparency amount (0.0 = opaque, 1.0 = invisible)
Transparency mode (screen-door, alpha-blend, none)

121

Controlling appearance

Using transparency modes

The transparency mode selects between SCREEN_DOOR or BLENDED

transparency

SCREEN_DOOR

BLENDED

122

Controlling appearance

TransparencyAttributes class methods

Methods on TransparencyAttributes set the transparency
By default, transparency is 0.0 (opaque) with a FASTEST

transparency mode

Method
TransparencyAttributes()

void setTransparency(float transparency)

void setTransparencyMode(int mode)

Transparency modes include: SCREEN_DOOR, BLENDED, NONE,
FASTEST (default), and NICEST
The FASTEST and NICEST transparency modes automatically select
the fastest, and highest quality modes available

123

Controlling appearance

TransparencyAttributes example code

Create TransparencyAttributes to set the transparency amount
and mode

TransparencyAttributes myTA = new TransparencyAttribu t
myTA.setTransparency(0.5f);
myTA.setTransparencyMode(TransparencyAttributes.BLEN D

Create Appearance , set the transparency attributes, and assemble
the shape

Appearance myAppear = new Appearance();
myAppear.setTransparencyAttributes(myTA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

124

Controlling appearance

Using point and line attributes

PointAttributes controls:
Point size (in pixels)
Point anti-aliasing

LineAttributes controls:
Line width (in pixels)
Line dot/dash pattern
Line anti-aliasing

125

Controlling appearance

PointAttributes class methods

Methods on PointAttributes select the way points are rendered
By default, the point size is 1.0 and anti-aliasing is disabled

Method
PointAttributes()

void setPointSize(float size)

void setPointAntialiasingEnable(boolean state)

126

Controlling appearance

LineAttributes class methods

Methods on LineAttributes select the way lines are rendered
By default, the line width is 1.0, the pattern is PATTERN_SOLID,
and anti-aliasing is disabled

Method
LineAttributes()

void setLineWidth(float width)

void setLinePattern(int pattern)

void setLineAntialiasingEnable(boolean state)

Line patterns include: PATTERN_SOLID (default), PATTERN_DASH,
PATTERN_DOT, and PATTERN_DASH_DOT

127

Controlling appearance

PointAttributes example code

Create PointAttributes to set the point size and anti-aliasing

PointAttributes myPA = new PointAttributes();
myPA.setPointSize(10.0f);
myPA.setPointAntialiasingEnable(true);

Create Appearance , set the point attributes, and assemble the
shape

Appearance myAppear = new Appearance();
myAppear.setPointAttributes(myPA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

128

Controlling appearance

LineAttributes example code

Create LineAttributes to set the line width, pattern, and
anti-aliasing

LineAttributes myLA = new LineAttributes();
myLA.setLineWidth(10.0f);
myLA.setLinePattern(LineAttributes.PATTERN_SOLID);
myLA.setLineAntialiasingEnable(true);

Create Appearance , set the line attributes, and assemble the shape

Appearance myAppear = new Appearance();
myAppear.setLineAttributes(myLA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

129

Controlling appearance

Using polygon attributes

PolygonAttributes controls:
Face culling (front, back, neither)
Fill mode (point, line, fill)
Z offset

130

Controlling appearance

PolygonAttributes class methods

Methods on PolygonAttributes select the way polygons are
rendered

By default, back faces are culled, polygons are filled, and the
offset is 0.0

Method
PolygonAttributes()

void setCullFace(int cullface)

void setPolygonMode(int mode)

void setPolygonOffset(float offset)

Face culling modes include: CULL_NONE, CULL_BACK (default), and
CULL_FRONT
Polygon modes include: POLYGON_POINT, POLYGON_LINE, and
POLYGON_FILL (default)

131

Controlling appearance

PolygonAttributes example code

Create PolygonAttributes to set the culling mode and fill style

PolygonAttributes myPA = new PolygonAttributes();
myPA.setCullFace(PolygonAttributes.CULL_NONE);
myPA.setPolygonMode(PolygonAttributes.POLYGON_FILL) ;

Create Appearance , set the polygon attributes, and assemble the
shape

Appearance myAppear = new Appearance();
myAppear.setPolygonAttributes(myPA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

132

Controlling appearance

Using rendering attributes

RenderingAttributes controls:
Depth buffer use and write enable
Alpha buffer test function and value

133

Controlling appearance

RenderingAttributes class methods

Methods on RenderingAttributes control the way everything is
rendered

By default, the depth buffer is enabled and writable, and the
alpha test function is ALWAYS with a 0.0 alpha test value

Method
RenderingAttributes()

void setDepthBufferEnable(boolean state)

void setDepthBufferWriteEnable(boolean state)

void setAlphaTestFunction(int func)

void setAlphaTestValue(float value)

Alpha test functions include: ALWAYS (default), NEVER, EQUAL,
NOT_EQUAL, LESS, LESS_OR_EQUAL, GREATER, and
GREATER_OR_EQUAL

134

Controlling appearance

RenderingAttributes example code

Create RenderingAttributes to set the depth and alpha modes

RenderingAttributes myRA = new RenderingAttributes() ;
myRA.setDepthBufferEnable(false);
myRA.setAlphaTestFunction(RenderingAttributes.NEVER)

Create Appearance , set the rendering attributes, and assemble the
shape

Appearance myAppear = new Appearance();
myAppear.setRenderingAttributes(myRA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

135

Controlling appearance

Appearance example

[ExAppearance]

Diffuse Specular Diffuse &
Specular

Shaded Textured Transparent

Unlit
polygons

Unlit lines Unlit points

136

Controlling appearance

Summary

Appearance groups together appearance attributes for a Shape3D

Color and transparency control
ColoringAttributes

Non-shading color and shading model
Material

Ambient, diffuse, emissive, and specular colors
Lighting enable/disable

GeometryArray and IndexedGeometryArray
Color per coordinate

TransparencyAttributes
Transparency amount and mode

137

Controlling appearance

Summary

Rendering control
PointAttributes

Point size and anti-aliasing
LineAttributes

Line width, pattern, and anti-aliasing
PolygonAttributes

Polygon culling and draw style
RenderingAttributes

Depth and alpha buffer use

138

Grouping shapes

 Motivation 139
 Introducing grouping types 140

 Group class hierarchy 141
 Creating groups 142

 Group class methods 143
 Group example code 144

 Creating branch groups 145
 BranchGroup class methods 146
 BranchGroup example code 147

 Summary 148

139

Grouping shapes

Motivation

Recall that a scene graph is a hierarchy of groups
Shapes, lights, sounds, etc.
Groups of groups of groups of . . .

Java 3D has several types of groups
Some simply group their children
Others provide added functionality

140

Grouping shapes

Introducing grouping types

Java 3D’s grouping nodes include:
Group
BranchGroup
OrderedGroup
DecalGroup
Switch
SharedGroup
TransformGroup

All groups manage a list of children nodes

For most groups, Java 3D may render children in any order

141

Grouping shapes

Group class hierarchy

All groups share attributes inherited from the Group class

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Group

 javax.media.j3d.BranchGroup

 javax.media.j3d.OrderedGroup

 javax.media.j3d.DecalGroup

 javax.media.j3d.SharedGroup

 javax.media.j3d.Switch

 javax.media.j3d.TransformGroup

142

Grouping shapes

Creating groups

Group is the most general-purpose grouping node

You can add, insert, remove, and get children in a group
Children are implicitly numbered starting with 0
A group can have any number of children

Child rendering order is up to Java 3D!
Java 3D can sort shapes for better rendering efficiency

143

Grouping shapes

Group class methods

Methods on Group control group content

Method
Group()

void addChild(Node child)

void setChild(Node child, int index)

void insertChild(Node child, int index)

void removeChild(int index)

144

Grouping shapes

Group example code

Build a shape

Shape3D myShape = new Shape3D(myGeom, myAppear);

Add it to a group

Group myGroup = new Group();
myGroup.addChild(myShape);

145

Grouping shapes

Creating branch groups

BranchGroup extends Group and creates a branch graph, a major
branch in the scene graph

Can be attached to a Locale (or SimpleUniverse)
Can be compiled
Can be a child of any grouping node
Can detach itself from its parent (if that parent has
appropriate capabilities enabled)

Adding a BranchGroup to a Locale makes it live
Once live or compiled, changes are constrained to those
enabled by capabilities

146

Grouping shapes

BranchGroup class methods

In addition to Group ’s methods, BranchGroup provides
compilation and membership control

Method
BranchGroup()

void compile()

void detach()

147

Grouping shapes

BranchGroup example code

Build a locale in a universe

Locale myLocale = new Locale(myUniverse);

Build a shape

Shape3D myShape = new Shape3D(myGeom, myAppear);

Add the shape to a branch group

BranchGroup myBranch = new BranchGroup();
myBranch.addChild(myShape);

Add the branch group to the locale

myLocale.addBranchGraph(myBranch);

148

Grouping shapes

Summary

All groups can have children set, added, inserted, and removed

All groups can have any number of children

Group does nothing more
All children rendered
Rendered in any order

BranchGroup can compile its children for faster rendering
All children rendered
Rendered in any order

149

Transforming shapes

 Motivation 150
 Using coordinate systems 151

 Using coordinate systems 152
 Using coordinate systems 153

 Creating transform groups 154
 TransformGroup class hierarchy 155
 TransformGroup class methods 156

 Creating a 3D transform 157
 Transform3D class hierarchy 158
 Transform3D class methods 159
 Abiding by Transform3D restrictions 160

 Resetting a transform 161
 Translating a coordinate system 162

 TransformGroup example code 163
 Rotating a coordinate system 164

 TransformGroup example code 165
 Scaling a coordinate system 166

 TransformGroup example code 167
 Modifying parts of transforms 168
 Transforming vectors and points 169
 Summary 170

150

Transforming shapes

Motivation

By default, all shapes are built within a shared world coordinate
system

A TransformGroup builds a new coordinate system for its
children, relative to its parent

Translate to change relative position
Rotate to change relative orientation
Scale to change relative size
Use in combination

Shapes built in the new coordinate system are relative to it
If you translate the coordinate system, the shapes move too

151

Transforming shapes

Using coordinate systems

Recall the toy airplane . . . its parts are each built in their own
coordinate system

152

Transforming shapes

Using coordinate systems

Those parts are assembled, bringing a child shape into a parent’s
coordinate system

153

Transforming shapes

Using coordinate systems

And so on, to build the full toy airplane

154

Transforming shapes

Creating transform groups

Transforms can be arbitrarily nested to include one
TransformGroup within another

Transforms "closer" to the geometry (deeper nesting in the scene
graph) apply first

155

Transforming shapes

TransformGroup class hierarchy

TransformGroup extends Group and builds a transformed
coordinate system for its children

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Group

 javax.media.j3d.BranchGroup

 javax.media.j3d.OrderedGroup

 javax.media.j3d.DecalGroup

 javax.media.j3d.SharedGroup

 javax.media.j3d.Switch

 javax.media.j3d.TransformGroup

156

Transforming shapes

TransformGroup class methods

In addition to Group ’s methods, TransformGroup adds a 3D
transform

The default transform is identity, which does no translation,
rotation, or scaling

Method
TransformGroup()

void setTransform(Transform3D xform)

157

Transforming shapes

Creating a 3D transform

A Transform3D describes the actual translation, rotation, and
scaling

3D transforms are internally represented as a 4x4 matrix
You can set the matrix directly

Most people will use helper methods to do translation,
rotation, and scaling

158

Transforming shapes

Transform3D class hierarchy

Transform3D extends Object

Class Hierarchy
java.lang.Object

 javax.media.j3d.Transform3D

159

Transforming shapes

Transform3D class methods

At the most basic level, methods on Transform3D create and set
the underlying 4x4 matrix

Method
Transform3D()

Transform3D(Matrix4d mat)

Transform3D(Matrix3d rot, Vector3d trans, double scale)

void set(Matrix4d mat)

void set(Matrix3d rot, Vector3d trans, double scale)

160

Transforming shapes

Abiding by Transform3D restrictions

A 3D transform must be affine
No perspective-like homogeneous division, such as for
hyperbolic spaces

A 3D transform must be congruent if used in a TransformGroup

above a ViewPlatform
No non-uniform scaling of the viewpoint
ViewPlatform is discussed later in the tutorial

161

Transforming shapes

Resetting a transform

Setting the transform to identity does a reset
Zero translation in X, Y, and Z
No rotation
Scale factor of 1.0 in X, Y, and Z

Method
void setIdentity()

162

Transforming shapes

Translating a coordinate system

Translation moves the coordinate system and its shapes
A direction Vector3d gives X, Y, and Z distances

Method
void set(Vector3d trans)

163

Transforming shapes

TransformGroup example code

Build a shape

Shape3D myShape = new Shape3D(myGeom, myAppear);

Create a 3D transform for a +1.0 translation in X

Transform3D myTrans3D = new Transform3D();
myTrans3D.set(new Vector3d(1.0, 0.0, 0.0));

Create a transform group, set the transform, and add the shape

TransformGroup myGroup = new TransformGroup();
myGroup.setTransform(myTrans3D);
myGroup.addChild(myShape);

164

Transforming shapes

Rotating a coordinate system

Rotation orients the coordinate system and its shapes
Rotate about X, Y, or Z by an angle
Rotate about an arbitrary axis

Method
void rotX(double angle)

void rotY(double angle)

void rotZ(double angle)

void set(AxisAngle4d axang)

void set(Matrix3d rot)

165

Transforming shapes

TransformGroup example code

Build a shape, as before

Shape3D myShape = new Shape3D(myGeom, myAppear);

Create a 3D transform for a Z-axis rotation by 30 degrees (0.52
radians)

Transform3D myTrans3D = new Transform3D();
myTrans3D.rotZ(0.52); // 30 degrees

Create a transform group, set the transform, and add the shape

TransformGroup myGroup = new TransformGroup();
myGroup.setTransform(myTrans3D);
myGroup.addChild(myShape);

166

Transforming shapes

Scaling a coordinate system

Scaling grows or shrinks the coordinate system and its shapes
Use a single scale factor for uniform scaling
Use X, Y, and Z scale factors for non-uniform scaling

Method
void set(double scale)

void setScale(Vector3d scale)

167

Transforming shapes

TransformGroup example code

Build a shape, as before

Shape3D myShape = new Shape3D(myGeom, myAppear);

Create a 3D transform for scaling by 1.5 in X, Y, and Z

Transform3D myTrans3D = new Transform3D();
myTrans3D.set(1.5);

Create a transform group, set the transform, and add the shape

TransformGroup myGroup = new TransformGroup();
myGroup.setTransform(myTrans3D);
myGroup.addChild(myShape);

168

Transforming shapes

Modifying parts of transforms

Modify parts of an existing transform
Leave the rest of the transform unaffected
Used to combine translation, rotation, and scaling

Method
void setTranslation(Vector3d trans)

void setRotation(AxisAngle4d axang)

void setRotation(Matrix3d rot)

void setEuler(Vector3d rollPitchYaw)

void setScale(double scale)

169

Transforming shapes

Transforming vectors and points

During rendering, Java 3D processes geometry coordinates and
vectors through each Transform3D

You can use Transform3D methods to do this processing on your
own points and vectors

Method
void transform(Point3d inout)

void transform(Point3d in, Point3d out)

void transform(Vector3d inout)

void transform(Vector3d in, Vector3d out)

170

Transforming shapes

Summary

Transform3D describes translation, rotation, and scaling

A transform may be built from a 4x4 matrix, or by helper
methods

TransformGroup creates a new coordinate system for its children,
transformed by a Transform3D

All children rendered
Rendered in any order

171

Using special-purpose groups

 Motivation 172
 Group class hierarchy 173

 Creating ordered groups 174
 Creating decal groups 175

 OrderedGroup and DecalGroup class methods 176
 DecalGroup example code 177

 Creating switch groups 178
 Switch class methods 179
 Selecting switch children 180
 Switch example code 181
 Switch example code 182
 Switch example code 183
 Switch example 184

 Creating shared groups 185
 Example 186

 Linking to shared groups 187
 SharedGroup and Link class hierarchy 188

 SharedGroup class methods 189
 Link class methods 190

 SharedGroup example code 191
 SharedGroup example 192

 Summary 193
 Summary 194
 Summary 195

172

Using special-purpose groups

Motivation

Java 3D includes several more types of groups
Group
BranchGroup
OrderedGroup
DecalGroup
Switch
SharedGroup
TransformGroup

173

Using special-purpose groups

Group class hierarchy

All groups share attributes inherited from the Group class

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Group

 javax.media.j3d.BranchGroup

 javax.media.j3d.OrderedGroup

 javax.media.j3d.DecalGroup

 javax.media.j3d.SharedGroup

 javax.media.j3d.Switch

 javax.media.j3d.TransformGroup

174

Using special-purpose groups

Creating ordered groups

An OrderedGroup extends Group and guarantees children are
rendered in first-to-last order

Unlike Group , BranchGroup , etc.

175

Using special-purpose groups

Creating decal groups

DecalGroup extends OrderedGroup and renders children in
first-to-last order

Children must be co-planar
All polygons must be facing the same way
First child is the underlying surface
The underlying surface must encompass all other children

Use for rendering decal geometry
Text, texture decals (eg. airport runway markings)
Good for avoiding Z-fighting artifacts

176

Using special-purpose groups

OrderedGroup and DecalGroup class methods

Neither class provides methods beyond the basics

Method
OrderedGroup()

Method
DecalGroup()

177

Using special-purpose groups

DecalGroup example code

Build an underlying surface shape, and decal shapes

Shape3D underly = new Shape3D(geom0, app0);
Shape3D decal_1 = new Shape3D(geom1, app1);
Shape3D decal_2 = new Shape3D(geom2, app2);

Add them to a decal group, starting with the underlying surface

DecalGroup myDecals = new DecalGroup();
myDecals.addChild(underly); // First!
myDecals.addChild(decal_1);
myDecals.addChild(decal_2);

178

Using special-purpose groups

Creating switch groups

Switch extends Group and selects zero, one, or multiple children
to render or process

Child choice can be by number, or by a bit mask
Only selected children are rendered (shapes) or processed
(lights, fog, backgrounds, behaviors)

Similar to a Java "switch" statement

Java 3D is still free to render children in any order

179

Using special-purpose groups

Switch class methods

In addition to Group ’s methods, Switch enables child rendering
control

Method
Switch()

void setWhichChild(int index)

void setChildMask(BitSet mask)

Remember to use . . .
setCapability(Switch.ALLOW_SWITCH_WRITE);

. . . to enable the switch value to be changed while it is live or
compiled

180

Using special-purpose groups

Selecting switch children

Select which child to render by:
Passing its child index to setWhichChild()
Or by passing in a special value:

Render no children: CHILD_NONE
Render all children: CHILD_ALL

Or select a set of children with a bit mask
A value of CHILD_MASK enables mask use
Set a member of a Java BitSet for each child to render

181

Using special-purpose groups

Switch example code

Build children

Shape3D zero = new Shape3D(geom0, app0);
Shape3D one = new Shape3D(geom1, app1);
Shape2D two = new Shape2D(geom2, app2);

Add them to the switch group

Switch mySwitch = new Switch();
mySwitch.setCapability(Switch.ALLOW_SWITCH_WRITE);
mySwitch.addChild(zero);
mySwitch.addChild(one);
mySwitch.addChild(two);

182

Using special-purpose groups

Switch example code

Select a single child of the switch group

mySwitch.setWhichChild(2);

Select all children of the switch group

mySwitch.setWhichChild(Switch.CHILD_ALL);

183

Using special-purpose groups

Switch example code

Select a set of children of the switch group

BitSet mask = new BitSet(3);
mask.set(0);
mask.set(2);

mySwitch.setWhichChild(Switch.CHILD_MASK);
mySwitch.setChildMask(mask);

184

Using special-purpose groups

Switch example

[ExSwitch]

185

Using special-purpose groups

Creating shared groups

SharedGroup extends Group to create a group of shapes that can
be shared (used multiple times throughout a scene graph)

It contains shapes, like other groups
It is never added into the scene graph directly
It is referenced by one or more Link leaf nodes

Changes to a SharedGroup affect all references to it

Can be compiled prior to referencing it from a Link node

186

Using special-purpose groups

Example

[ExLinearFog]

187

Using special-purpose groups

Linking to shared groups

In the example, the column is in a SharedGroup
Each visible column uses a Link to that group

188

Using special-purpose groups

SharedGroup and Link class hierarchy

Link extends Leaf to point to a SharedGroup

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Link

189

Using special-purpose groups

SharedGroup class methods

In addition to Group ’s methods, SharedGroup adds a compilation
method

Method
SharedGroup()

void compile()

190

Using special-purpose groups

Link class methods

Methods on Link select the shared group to link to

Method
Link()

Link(SharedGroup group)

void setSharedGroup(SharedGroup group)

191

Using special-purpose groups

SharedGroup example code

Build one or more shapes to share

Shape3D myShape = new Shape3D(myGeom, myAppear);

Create a SharedGroup and add the shapes to it

SharedGroup myShared = new SharedGroup();
myShared.addChild(myShape);

Compile the SharedGroup for maximum performance

myShared.compile();

Use Link nodes to point to the group from another group

Link myLink = new Link(myShared);
TransformGroup myGroup = new TransformGroup();
myGroup.addChild(myLink);

192

Using special-purpose groups

SharedGroup example

[ExLinearFog]

193

Using special-purpose groups

Summary

All groups can have children set, added, inserted, and removed

All groups can have any number of children

Group does nothing more
All children rendered
Rendered in any order

BranchGroup can compile its children for faster rendering
All children rendered
Rendered in any order

194

Using special-purpose groups

Summary

OrderedGroup forces a rendering order
All children rendered
Rendered in first-to-last order

DecalGroup forces a rendering order for shapes atop an
underlying shape

All children rendered
Rendered in first-to-last order

Switch selects zero, one, or multiple children to render or process
Selected children rendered
Rendered in any order

195

Using special-purpose groups

Summary

SharedGroup creates a group of shared shapes
All children rendered if the group is referenced by a live link
node
Rendered in any order

SharedGroup nodes are never placed directly in a live scene graph

Link points to a shared group from a live scene graph
Any number of links to the same shared group

196

Introducing texture mapping

 Motivation 197
 Example 198
 Using texture appearance attributes 199

 Using texture appearance attributes 200
 Texture class hierarchy 201
 Texture class methods 202
 Texture2D example code 203
 Texture example 204

 Preparing for texture mapping 205
 ImageComponent class hierarchy 206
 ImageComponent2D class methods 207

 Loading texture images 208
 TextureLoader example code 209
 TextureLoader example 210

 Summary 211

197

Introducing texture mapping

Motivation

You could model every detail of every 3D shape in your scene
This requires an enormous amount of modeling effort
More shapes means more to draw and worse interactivity

Instead, create the illusion of detail:
Take a photograph of the "real thing"
Paste that photo onto simple 3D geometry

Increases realism without increasing the amount of geometry to
draw

198

Introducing texture mapping

Example

Texture image

[ExTexture]

199

Introducing texture mapping

Using texture appearance attributes

Recall that Appearance is a container for multiple visual attributes
for a shape

Color and transparency control (discussed earlier)
Material
ColoringAttributes
TransparencyAttributes

Rendering control (discussed earlier)
PointAttributes
LineAttributes
PolygonAttributes
RenderingAttributes

Texture control
Texture
TextureAttributes
TexCoordGeneration

200

Introducing texture mapping

Using texture appearance attributes

Texture control attributes are divided among a few node
components

Texture
Select a texture image and control basic mapping
attributes

TextureAttributes
Control advanced mapping attributes

TexCoordGeneration
Automatically generate texture coordinates if you do not
provide your own (most people provide their own)

201

Introducing texture mapping

Texture class hierarchy

Texture is the base class for two node components that select the
image to use

Texture2D : a standard 2D image
Texture3D : a 3D volume of images

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Texture

 javax.media.j3d.Texture2D

 javax.media.j3d.Texture3D

202

Introducing texture mapping

Texture class methods

Methods on Texture and Texture2D select the image, and turn
texture mapping on and off

Method
Texture()

Texture2D()

void setImage(int level, ImageComponent2D image)

void setEnable(boolean onOff)

203

Introducing texture mapping

Texture2D example code

Load a texture image (discussed later)

TextureLoader myLoader = new TextureLoader("brick.jp g
ImageComponent2D myImage = myLoader.getImage();

Create a Texture2D using the image, and turn it on

Texture2D myTex = new Texture2D();
myTex.setImage(0, myImage);
myTex.setEnable(true);

Create an Appearance and set the texture in it

Appearance myAppear = new Appearance();
myAppear.setTexture(myTex);

Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

204

Introducing texture mapping

Texture example

[ExTexture]

205

Introducing texture mapping

Preparing for texture mapping

Getting a texture requires:
A file to load from disk or the Web

A TextureLoader to load that file

An ImageComponent to hold the loaded image
Which in turn uses a standard BufferedImage

206

Introducing texture mapping

ImageComponent class hierarchy

ImageComponent is the base class for two image containers:
ImageComponent2D holds a 2D image
ImageComponent3D holds a 3D volume of images

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.ImageComponent

 javax.media.j3d.ImageComponent2D

 javax.media.j3d.ImageComponent3D

207

Introducing texture mapping

ImageComponent2D class methods

Methods on ImageComponent2D set the image it is holding

Method
ImageComponent2D(int format, BufferedImage image)

void set(BufferedImage image)

208

Introducing texture mapping

Loading texture images

The TextureLoader utility loads an image from a file or URL,
and returns an ImageComponent or Texture

Method
TextureLoader(String path, Component observer)

ImageComponent2D getImage()

Texture getTexture()

209

Introducing texture mapping

TextureLoader example code

Load a texture image

TextureLoader myLoader = new TextureLoader("brick.jp g
ImageComponent2D myImage = myLoader.getImage();

Create a Texture2D using the image, and turn it on

Texture2D myTex = new Texture2D();
myTex.setImage(0, myImage);
myTex.setEnable(true);

Create an Appearance and set the texture in it

Appearance myAppear = new Appearance();
myAppear.setTexture(myTex);

Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

210

Introducing texture mapping

TextureLoader example

[ExTexture]

211

Introducing texture mapping

Summary

A texture is an image pasted onto a shape to create the illusion of
detail

Texture mapping is controlled by node components in a shape’s
Appearance including Texture2D

Enables texture mapping using an image in an
ImageComponent2D

TextureLoader gets an image from disk or the Web, returning an
ImageComponent

ImageComponent2D holds 2D image data

212

Using texture coordinates

 Motivation 213
 Using a texture coordinate system 214

 Using a texture coordinate system 215
 Specifying texture coordinates 216
 GeometryArray class methods 217
 IndexedGeometryArray class methods 218
 Texture coordinates example code 219

 Transforming texture coordinates 220
 TextureAttributes class hierarchy 221
 TextureAttributes class methods 222
 Texture rotation example code 223
 Texture rotation example 224
 Texture scaling example code 225
 Texture scaling example 226
 Texture translation example code 227
 Texture translation example 228

 Using texture boundary modes 229
 Texture class methods 230
 Texture boundary mode example code 231
 Texture boundary mode example 232

 Summary 233
 Summary 234

213

Using texture coordinates

Motivation

We need a mapping from parts of a texture to parts of a shape
Define a "texture cookie cutter" to cut out a texture piece

Translate, rotate, and scale the cookie cutter before cutting
out the piece

Map the cut out texture "cookie" onto your shape

Texture coordinates describe the 2D shape of that cookie cutter

214

Using texture coordinates

Using a texture coordinate system

Texture images have a true size and a logical size

True size is the width and height of the image in pixels
Must be powers of 2
Width and height need not be the same

Logical size is a generic treatment of image dimensions
Always a width of 1.0
Always a height of 1.0

215

Using texture coordinates

Using a texture coordinate system

Textures can be visualized as in a 2D texture coordinate system
The horizontal dimension is S
The vertical dimension is T

An image extends from 0.0 to 1.0 in S and T, regardless of the
true size

216

Using texture coordinates

Specifying texture coordinates

Texture coordinates define a 2D shape atop the texture image
A "texture cookie cutter"

There must be one ST pair for each shape coordinate
Give texture coordinates to GeometryArray , and texture
coordinate indices to IndexedGeometryArray

217

Using texture coordinates

GeometryArray class methods

Methods on GeometryArray set texture coordinates

Method
void setTextureCoordinate(int index, * texCoord)

void setTextureCoordinates(int index, * texCoord)

Method variants accept float , Point2f , and Point3f

218

Using texture coordinates

IndexedGeometryArray class methods

Methods on IndexedGeometryArray set texture coordinate indices

Method
void setTextureCoordinateIndex(int index, int value)

void setTextureCoordinateIndices(int index, int[] value)

219

Using texture coordinates

Texture coordinates example code

Create lists of 3D coordinates, lighting normals, and texture
coordinates for the vertices

Point3f[] myCoords = {
 new Point3f(0.0f, 0.0f, 0.0f),
 . . .
}
Vector3f[] myNormals = {
 new Vector3f(0.0f, 1.0f, 0.0f),
 . . .
}
Point2f[] myTexCoords = {
 new Point2f(0.0f, 0.0f),
 . . .
}

Create a QuadArray and set the vertex coordinates, lighting
normals, and texture coordinates

QuadArray myQuads = new QuadArray(
 myCoords.length,
 GeometryArray.COORDINATES |
 GeometryArray.NORMALS |
 GeometryArray.TEXTURE_COORDINATE_2);
myQuads.setCoordinates(0, myCoords);
myQuads.setNormals(0, myNormals);
myQuads.setTextureCoordinates(0, myTexCoords);

Assemble the shape

Shape3D myShape = new Shape3D(myQuads, myAppear);

220

Using texture coordinates

Transforming texture coordinates

The "texture cookie cutter" can be transformed to translate, rotate,
and scale it before cutting out a piece of texture

Scaling is the most important
Scale up and coordinates wrap around image boundaries
Similar to imagining an infinite amount of texture cookie
dough

221

Using texture coordinates

TextureAttributes class hierarchy

TextureAttributes control how a texture is mapped, including
use of a texture coordinates transform

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.TextureAttributes

222

Using texture coordinates

TextureAttributes class methods

Methods on TextureAttributes set a Transform3D to transform
texture coordinates

Method
TextureAttributes()

void setTextureTransform(Transform3D trans)

223

Using texture coordinates

Texture rotation example code

Create TextureAttributes

TextureAttributes myTA = new TextureAttributes();

Create a rotation transform (Z sticks out of the ST plane)

Transform3D myTrans = new Transform3D();
myTrans.rotZ(Math.PI/4.0); // 45 degrees
myTA.setTextureTransform(myTrans);

Set the texture attributes on an Appearance

Appearance myAppear = new Appearance();
myAppear.setTextureAttributes(myTA);

Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

224

Using texture coordinates

Texture rotation example

No rotation

Rotate 45 degrees

225

Using texture coordinates

Texture scaling example code

Create TextureAttributes

TextureAttributes myTA = new TextureAttributes();

Create a scaling transform

Transform3D myTrans = new Transform3D();
myTrans.set(4.0);
myTA.setTextureTransform(myTrans);

Set the texture attributes on an Appearance

Appearance myAppear = new Appearance();
myAppear.setTextureAttributes(myTA);

Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

226

Using texture coordinates

Texture scaling example

Scale by 1.0

Scale by 4.0

227

Using texture coordinates

Texture translation example code

Create TextureAttributes

TextureAttributes myTA = new TextureAttributes();

Create a translation transform

Transform3D myTrans = new Transform3D();
myTrans.set(new Vector3f(0.25f, 0.0f, 0.0f));
myTA.setTextureTransform(myTrans);

Set the texture attributes on an Appearance

Appearance myAppear = new Appearance();
myAppear.setTextureAttributes(myTA);

Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

228

Using texture coordinates

Texture translation example

No translation

Translate by 0.25 in S,

0.0 in T

229

Using texture coordinates

Using texture boundary modes

But . . . when texture coordinates extend past the edge of the
image they can:

Wrap to create a repeating pattern (as before)
Or Clamp to prevent repeatition

230

Using texture coordinates

Texture class methods

Methods on Texture select WRAP or CLAMP boundary modes in S
and T

WRAP is the default in both S and T

Method
void setBoundaryModeS(int mode)

void setBoundaryModeT(int mode)

231

Using texture coordinates

Texture boundary mode example code

Load a texture image

TextureLoader myLoader = new TextureLoader("brick.jp g
ImageComponent2D myImage = myLoader.getImage();

Create a Texture2D using the image, and turn it on

Texture2D myTex = new Texture2D();
myTex.setImage(0, myImage);
myTex.setEnable(true);

Set the boundary modes and color

myTex.setBoundaryModeS(Texture.WRAP);
myTex.setBoundaryModeT(Texture.WRAP);

Create an Appearance and set the texture in it

Appearance myAppear = new Appearance();
myAppear.setTexture(myTex);

Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

232

Using texture coordinates

Texture boundary mode example

Wrap

Clamp

233

Using texture coordinates

Summary

Textures are in a logical coordinate system with S (horizontal)
and T (vertical) directions

Regardless of true size, all textures have logical width and height
of 1.0

Texture coordinates describe the shape of a texture cookie cutter
Provide texture coordinates to GeometryArray
Provide texture coordinate indices to IndexedGeometryArray

234

Using texture coordinates

Summary

A Texture transform translates, rotates, and scales texture
coordinates

When texture coordinates extend past the image boundary they
can wrap or be clamped

When clamped, the rest of the texture cookie is set to a
boundary color

Boundary modes are set in Texture

Texture transforms are set in TextureAttributes

235

Using raster geometry

 Motivation 236
 Example 237
 Raster class hierarchy 238

 Building raster geometry 239
 Raster class methods 240
 Raster class methods 241

 Raster example code 242
 Raster Example 243

 Summary 244

236

Using raster geometry

Motivation

We would like to position a 2D image in the 3D scene
Anchor it to a 3D point in model coordinates
Make its size independent of the distance from the user to the
shape

Useful for annotation text, sprites, etc.

We call this raster geometry

237

Using raster geometry

Example

[ExRaster]

238

Using raster geometry

Raster class hierarchy

Raster extends Geometry

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Geometry

 javax.media.j3d.Raster

239

Using raster geometry

Building raster geometry

Raster describes geometry for a Shape3D, including

A 3D anchor position
Placement of upper-left corner of image

An image and its type
Color image, depth, or both

A region of the image to copy to the screen

240

Using raster geometry

Raster class methods

Methods on Raster set the image data and type

Method
Raster()

void setImage(ImageComponent2D image)

void setDepthComponent(DepthComponent depth)

void setType(int flag)

Raster image types include: RASTER_COLOR (default),
RASTER_DEPTH, and RASTER_COLOR_DEPTH

241

Using raster geometry

Raster class methods

Methods on Raster also set the anchor position and image region
to use

Method
void setPosition(Point3f pos)

void setSize(int width, int height)

void setOffset(int x, int y)

void readRaster(Raster raster)

Reading from a Raster only may be done in immediate mode

242

Using raster geometry

Raster example code

Load a texture image

TextureLoader myLoader = new TextureLoader("brick.jp g
ImageComponent2D myImage = myLoader.getImage();

Create a Raster

Raster myRaster = new Raster();
myRaster.setPosition(new Point3f(1.0f, 0.0f, 0.0f)
myRaster.setType(Raster.RASTER_COLOR);
myRaster.setImage(myImage);
myRaster.setOffset(0, 0);
myRaster.setSize(256, 256);

Assemble the shape

Shape3D myShape = new Shape3D(myRaster, myAppear);

243

Using raster geometry

Raster Example

[ExRaster]

244

Using raster geometry

Summary

Raster creates an image sprite by placing a 2D image at a screen
position controlled by a 3D anchor position

245

Lighting the environment

 Motivation 246
 Example 247

 Light class hierarchy 248
 Light class methods 249

 Creating ambient lights 250
 AmbientLight example code 251

 Creating directional lights 252
 DirectionalLight example code 253

 Creating point lights 254
 Using point light attenuation 255
 PointLight example code 256

 Creating spot lights 257
 SpotLight class methods 258
 SpotLight example code 259

 Using light influencing bounds 260
 Creating influencing bounds 261
 Anchoring influencing bounds 262
 Light class methods 263
 Influencing bounds example code 264
 Influencing bounds example 265

 Scoping lights 266
 Light class methods 267
 Scoping example code 268
 Scoping Example 269

 Summary 270
 Summary 271

246

Lighting the environment

Motivation

Previous examples have used a default light attached to the
viewer’s head

Java 3D provides four types of lights to illuminate your scene:
Ambient
Directional
Point
Spot

247

Lighting the environment

Example

[ExHenge]

248

Lighting the environment

Light class hierarchy

All lights share attributes inherited from Light

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Light

 javax.media.j3d.AmbientLight

 javax.media.j3d.DirectionalLight

 javax.media.j3d.PointLight

 javax.media.j3d.SpotLight

249

Lighting the environment

Light class methods

Methods on Light control attributes common to all light types:
An on/off enable state
A color
A bounding volume and scope controlling the range of shapes
they illuminate

Method
void setEnable(boolean OnOff)

void setColor(Color3f color)

250

Lighting the environment

Creating ambient lights

[ExAmbientLight]

AmbientLight extends Light

Light rays aim in all directions, flooding
an environment and illuminating shapes
evenly

Method
AmbientLight()

251

Lighting the environment

AmbientLight example code

Create a light

AmbientLight myLight = new AmbientLight();
myLight.setEnable(true);
myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));

Set its influencing bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myLight.setInfluencingBounds(myBounds);

252

Lighting the environment

Creating directional lights

[ExDirectionalLight]

DirectionalLight extends Light

Light rays are parallel and aim in
one direction

Method
DirectionalLight()

void setDirection(Vector3f dir)

The default aim direction is (0.0, 0.0, -1.0)

253

Lighting the environment

DirectionalLight example code

Create a light

DirectionalLight myLight = new DirectionalLight();
myLight.setEnable(true);
myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));
myLight.setDirection(new Vector3f(1.0f, 0.0f, 0.0f)

Set its influencing bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myLight.setInfluencingBounds(myBounds);

254

Lighting the environment

Creating point lights

[ExPointLight]

PointLight extends Light

Light rays emit radially from a point in all
directions

Method
PointLight()

void setPosition(Point3f pos)

255

Lighting the environment

Using point light attenuation

Point light rays are attenuated:
As distance increases, light brightness decreases

Attenuation is controlled by three coefficients:
constant, linear, and quadratic

brightness =
lightIntensity

constant + linear*distance + quadratic*distance2

Method
void setAttenuation(Point3f atten)

256

Lighting the environment

PointLight example code

Create a light

PointLight myLight = new PointLight();
myLight.setEnable(true);
myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));
myLight.setPosition(new Point3f(0.0f, 1.0f, 0.0f))
myLight.setAttenuation(new Point3f(1.0f, 0.0f, 0.0f

Set its influencing bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myLight.setInfluencingBounds(myBounds);

257

Lighting the environment

Creating spot lights

[ExSpotLight]

SpotLight extends PointLight

Light rays emit radially from a point,
within a cone

Vary the spread angle to widen, or
narrow the cone
Vary the concentration to focus the
spot light

Method
SpotLight()

void setDirection(Vector3f dir)

The default aim direction is (0.0, 0.0, -1.0)

258

Lighting the environment

SpotLight class methods

Methods on SpotLight also set the cone spread angle and
concentration

Method
void setSpreadAngle(float angle)

void setConcentration(float concen)

Spread angle varies from 0.0 to PI/2.0 radians
A value of PI radians makes the light a PointLight
The default is PI

Concentrations vary from 0.0 (unfocused) to 128.0 (focused)
The default is 0.0

259

Lighting the environment

SpotLight example code

Create a light

SpotLight myLight = new SpotLight();
myLight.setEnable(true);
myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));
myLight.setPosition(new Point3f(0.0f, 1.0f, 0.0f))
myLight.setAttenuation(new Point3f(1.0f, 0.0f, 0.0f
myLight.setDirection(new Vector3f(1.0f, 0.0f, 0.0f)
myLight.setSpreadAngle(0.785f); // 45 degrees
myLight.setConcentration(3.0f); // Unfocused

Set its influencing bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myLight.setInfluencingBounds(myBounds);

260

Lighting the environment

Using light influencing bounds

A light’s illumination is bounded to a region of influence
Shapes within the region may be lit by the light

Light bounding:
Enables controlled lighting in large scenes
Avoids over-lighting a scene when using multiple lights
Saves lighting computation time

261

Lighting the environment

Creating influencing bounds

A light region of influence is a bounded volume:
Sphere, box, polytope, or combination using Bounds
To make a global light, use a huge bounding sphere

By default, lights have no influencing bounds and illuminate
nothing!

Common error: forgetting to set influencing bounds

262

Lighting the environment

Anchoring influencing bounds

A light bounding volume can be relative to:
The light’s coordinate system

Volume centered on light
As light moves, so does volume

A Bounding leaf’s coordinate system
Volume centered on a leaf node elsewhere in scene graph
As that leaf node moves, so does volume
If light moves, volume does not

263

Lighting the environment

Light class methods

Methods on Light set the influencing bounds

Method
void setInfluencingBounds(Bounds bounds)

void setInfluencingBoundingLeaf(BoundingLeaf leaf)

264

Lighting the environment

Influencing bounds example code

Set bounds relative to the light’s coordinate system

PointLight myLight = new PointLight();
myLight.setInfluencingBounds(myBounds);

Or relative to a bounding leaf’s coordinate system

TransformGroup myGroup = new TransformGroup();
BoundingLeaf myLeaf = new BoundingLeaf(myBounds);
myGroup.addChild(myLeaf);
. . .
PointLight myLight = new PointLight();
myLight.setInfluencingBoundingLeaf(myLeaf);

265

Lighting the environment

Influencing bounds example

Large bounds

Small bounds

[ExLightBounds]

266

Lighting the environment

Scoping lights

A light’s illumination may be scoped to one or more groups of
shapes

Shapes within the influencing bounds and within those
groups are lit

By default, lights have universal scope and illuminate everything
within their influencing bounds

267

Lighting the environment

Light class methods

Methods on Light control the scope list

Method
void setScope(Group group, int index)

void addScope(Group group)

void insertScope(Group group, int index)

void removeScope(int index)

268

Lighting the environment

Scoping example code

Build a group of shapes

TransformGroup myLightable = new TransformGroup();
Shape3D myShape = new Shape3D(myGeom, myAppear);
myLightable.addChild(myShape);

Create a light and add the group to its scope list

DirectionalLight myLight = new DirectionalLight();
myLight.addScope(myLightable);

269

Lighting the environment

Scoping Example

[ExLightScope]

270

Lighting the environment

Summary

Java 3D provides four types of lights:
AmbientLight
DirectionalLight
PointLight
SpotLight

All lights have a color, can be turned on/off, and have influencing
bounds and a scope list

Directional lights have an aim direction

Point lights have a position and attenuation

Spot lights have an aim direction, position, attenuation, and a
cone spread angle and concentration

271

Lighting the environment

Summary

Lights illuminate shapes within their influencing bounds
Default is no influence, so nothing is illuminated!

and within groups on the light’s scope list
Default is universal scope, so everything is illuminated (if
within influencing bounds)

272

Building a virtual universe

 Motivation 273
 Looking at the content branch 274
 Terminology 275

 Scene graph superstructure class hierarchy 276
 VirtualUniverse class methods 277
 Locale class methods 278
 Locale class methods 279
 Building a universe example code 280
 Building a universe example code 281

 Summary 282

273

Building a virtual universe

Motivation

We need to assemble large chunks of content
Build components separately

Assemble them into a virtual universe

We need scene graph superstructure

274

Building a virtual universe

Looking at the content branch

The virtual universe superstructure includes the upper portion of
the scene graph

275

Building a virtual universe

Terminology

Recall some terminology we introduced at the start of this tutorial

Virtual universe: a collection of scene graphs
Typically one universe per application

Locale: a position in the universe at which to put scene graphs
Typically one locale per universe

Branch graph: a scene graph
Typically several branch graphs per locale
Content and view branchs are both branch graphs

276

Building a virtual universe

Scene graph superstructure class hierarchy

Universes and locales are built using superstructure classes

Class Hierarchy
java.lang.Object

 javax.media.j3d.VirtualUniverse

 javax.media.j3d.Locale

 javax.media.j3d.Node

 javax.media.j3d.Group

 javax.media.j3d.BranchGroup

277

Building a virtual universe

VirtualUniverse class methods

Methods on VirtualUniverse access its list of Locale s

Method
VirtualUniverse()

Enumeration getAllLocales()

int numLocales()

278

Building a virtual universe

Locale class methods

Methods on Locale position it within a VirtualUniverse

Method
Locale(VirtualUniverse universe)

Locale(VirtualUniverse universe, HiResCoord hiRes)

void setHiRes(HiResCoord hiRes)

279

Building a virtual universe

Locale class methods

Locale methods also manage a list of branch graphs

Method
void addBranchGraph(BranchGroup branchGroup)

void removeBranchGraph(BranchGroup branchGroup)

void replaceBranchGraph(BranchGroup oldGroup, BranchGroup
newGroup)

int numBranchGraphs()

Enumeration getAllBranchGraphs()

280

Building a virtual universe

Building a universe example code

Build a universe

VirtualUniverse myUniverse = new VirtualUniverse();

Build a locale

Locale myLocale = new Locale(myUniverse);

Build a branch group

BranchGroup myBranch = new BranchGroup();

281

Building a virtual universe

Building a universe example code

Build nodes and groups of nodes

Shape3D myShape = new Shape3D(myGeom, myAppear);
Group myGroup = new Group();
myGroup.addChild(myShape);

Add them to the branch group

myBranch.addChild(myGroup);

Add the branch graph to the locale

myLocale.addBranchGraph(myBranch);

282

Building a virtual universe

Summary

A VirtualUniverse holds everything within one or more Locale s

A Locale positions in a universe one or more BranchGroup s

A BranchGroup holds a scene graph, often with separate branchs
for content and viewing information

283

Introducing the view model

 Motivation 284
 Looking at the view branch 285
 Coexisting in the physical and virtual worlds 286

 Understanding constraints and policies 287
 Understanding view policies 288

 Understanding room-mounted displays 289
 Understanding room-mounted displays 290
 Understanding room-mounted displays 291
 Understanding room-mounted displays 292
 Understanding room-mounted displays 293

 Understanding head-mounted displays 294
 Understanding head-mounted displays 295
 Understanding head-mounted displays 296
 Understanding head-mounted displays 297
 Understanding head-mounted displays 298

 Understanding physical to virtual mappings 299
 Understanding physical to virtual mappings 300
 Understanding physical to virtual mappings 301
 Understanding physical to virtual mappings 302
 Understanding physical to virtual mappings 303

 Putting it all together 304
 Putting it all together 305

 Using view attach policies 306
 Using the head view attach policy 307
 Using the feet view attach policy 308
 Using the screen view attach policy 309

 Using the Java 3D viewing model 310
 Using the Java 3D viewing model 311
 Looking at view model classes 312

 Looking at view model classes 313
 Looking at view model classes 314

 Looking at what is where 315
 Looking at what is where 316
 Looking at what is where 317

 Looking at what is where 318
 Looking at what is where 319

 Summary 320

284

Introducing the view model

Motivation

We need control over the user’s virtual position and orientation
Navigate their viewpoint using the mouse, or any other input
device

Or move the viewpoint automatically in a guided tour

We call such a user viewpoint a view platform

We also need a careful abstraction from hardware gadgetry
Support different display configurations

Stereo, HMDs, multi-screen portals

Support head tracking

285

Introducing the view model

Looking at the view branch

Viewing controls are typically placed in a parallel view branch of
the scene graph

286

Introducing the view model

Coexisting in the physical and virtual worlds

Shapes, branch groups, locales, and the virtual universe define the
virtual world

A user co-exists in this virtual world and in the physical world

The user has a position and orientation in the virtual world

The user, and their display, have positions and orientations in
the physical world

The Java 3D view model handles mapping between virtual and
physical worlds

287

Introducing the view model

Understanding constraints and policies

A chain of relationships control this mapping between worlds
Eye locations relative to the user’s head
Head location relative to a head tracker
Head tracker relative to the tracker base
Tracker base relative to an image plate (display)
. . . and so on, with variations

A constraint system defines these relationships
For a given environment and usage, some relationships are
constants, while others vary

Java 3D policies select among standard constraint systems and
control how they adapt to changes

288

Introducing the view model

Understanding view policies

The view policy selects one of two constraint systems

Room-mounted displays
Displays whose locations are fixed
CRTs, video projectors, multi-screen walls, portals

Head-mounted displays
Displays whose locations change as the user moves
HMDs

289

Introducing the view model

Understanding room-mounted displays

In a room-mounted display, the user looks at a display with a
fixed location relative to the physical world

Desktop CRT

Video wall

Portal

290

Introducing the view model

Understanding room-mounted displays

Physical world components include:
Head - the user!
Eye - a "center eye" on the user’s head
Image plate - the physical display
Head tracker - the tracked point on a user’s head
Tracker base - the tracking system’s emitter or reference
point

291

Introducing the view model

Understanding room-mounted displays

The constraint system uses the eye location relative to the image
plate to compute a correct view frustum

When using head tracking, the eyepoint is computed
automatically
When not using head tracking, the eyepoint may be set
manually

292

Introducing the view model

Understanding room-mounted displays

To map from eye to image plate, the constraint system uses a
chain of coordinate system mappings

293

Introducing the view model

Understanding room-mounted displays

Configuration constants: (yellow)
Physical body

Eye-to-head
Head-to-head tracker

Screen
Tracker base-to-image plate

Vary during use: (red)
Head tracker-to-tracker base

294

Introducing the view model

Understanding head-mounted displays

In a head-mounted display, each eye looks at its own display with
a fixed location relative to the user’s head

295

Introducing the view model

Understanding head-mounted displays

Physical world components include:
Head - the user!
Eyes - left and right eyes on the user’s head
Image plates - a physical display per eye
Head tracker - the tracked point on a user’s head
Tracker base - the tracking system’s emitter or reference
point

296

Introducing the view model

Understanding head-mounted displays

The constraint system uses the left and right eye locations relative
to the left and right image plates to compute correct view
frustums

297

Introducing the view model

Understanding head-mounted displays

To map from left and right eyes to their image plates, the
constraint system uses a chain of coordinate system mappings

298

Introducing the view model

Understanding head-mounted displays

Configuration constants: (yellow)
Physical body

Left/Right eye-to-head mapping
Head-to-head tracker

Screen
Head tracker-to-left/right image
plate

Vary during use: (red)
Head tracker-to-tracker base

299

Introducing the view model

Understanding physical to virtual mappings

Recall that the user co-exists in the virtual and physical worlds
The user has a physical position and orientation
The user also has a virtual position and orientation

Room- and head-mounted display view policies handle mapping
from the user’s physical body to a tracker base and image plates

To map from this physical world to the virtual world, we add to
the constraint chain:

Tracker base to coexistance
Coexistance to view platform
View platform to locale
Locale to virtual universe

300

Introducing the view model

Understanding physical to virtual mappings

For example, in a virtual world imagine the view platform is a
magic carpet

The user can walk about on the carpet
The carpet flys about under application control

Define the view platform origin at "ground level", at carpet
center

301

Introducing the view model

Understanding physical to virtual mappings

In the physical world, imagine the user is standing in a portal
Images of the virtual world are rendered on three sides
The user’s position is tracked within the portal

Define the portal origin at ground level, at the portal center

302

Introducing the view model

Understanding physical to virtual mappings

Physical device configurations and a room-mounted view policy
establish:

Mappings from eye to head, to head tracker, to tracker base,
to image plate (portal screen)

A tracker base to coexistence transform maps from the
tracker base to the portal center

Or whatever reference point you prefer

As the user moves about, their location is computable relative to
this coexistence frame of reference - the portal center

303

Introducing the view model

Understanding physical to virtual mappings

On the virtual side, the scene graph establishes:
Mappings from view platform center, to locale, to virtual
universe

The view platform’s center co-exists with the center of the
portal (or wherever the coexistence transform selects)

Together, these physical and virtual mappings establish
coexistence

Movement in the physical world gives proper corresponding
movement in the virtual world

304

Introducing the view model

Putting it all together

The room-mounted display view policy:

305

Introducing the view model

Putting it all together

The head-mounted display view policy:

306

Introducing the view model

Using view attach policies

The view attach policy establishes how the view platform origin
is placed relative to the user (i.e., how it is attached to the user’s
view)

Nominal head

Nominal feet

Nominal screen

307

Introducing the view model

Using the head view attach policy

Nominal head places the view platform origin at the user’s head
Convenient for arrangement of content around the user’s head
for a heads-up display
Most like "older" view models

308

Introducing the view model

Using the feet view attach policy

Nominal feet places the view platform origin at the user’s feet, at
the ground plane

Convenient for walk-throughs where the user’s feet should
touch the virtual ground

309

Introducing the view model

Using the screen view attach policy

Nominal screen places the view platform origin at the screen
center

Enables the user to view objects from an optimal viewpoint

310

Introducing the view model

Using the Java 3D viewing model

So, the view model is composed of:
A view policy to choose a room- or head-mounted constraint
system

A set of physical body, physical environment, and screen
configuration parameters

A set of policies to guide the chosen constraint system
Including the view attach policy

311

Introducing the view model

Using the Java 3D viewing model

The physical world policies and parameters are set up when the
system is installed and initially configured

Application programmers rarely need to deal with these

The virtual world policies and parameters are set up when the
application initializes

The constraint system then maintains proper coexistence
relationships automatically as the user moves

312

Introducing the view model

Looking at view model classes

Let’s look at which classes are involved in the view model

A VirtualUniverse defines the universe coordinate system

A Locale places a scene graph branch within that universe

A ViewPlatform (and a Transform3D above it) defines a view
point within that locale

It defines a frame of reference for the user’s position and
orientation in the virtual world
Think of it as a magic carpet
There can be many ViewPlatform s in a scene graph

313

Introducing the view model

Looking at view model classes

A View is the virtual user standing on a ViewPlatform
There can be many View s on the same ViewPlatform

A PhysicalBody describes the user’s dimensions for use by a
View

There is always one PhysicalBody for a View

A PhysicalEnvironment describes the user’s environment for use
by a View

There is always one PhysicalEnvironment for a View

314

Introducing the view model

Looking at view model classes

A Canvas3D selects a screen area on which to draw a View
Every View has one or more Canvas3Ds

A Screen3D describes the physical display device (image plate)
drawn onto by a Canvas3D

A Canvas3D always has a Screen3D to draw onto

315

Introducing the view model

Looking at what is where

And now, the view model policies and parameters are found in
these classes

The virtual user’s location and orientation is controlled by a
ViewPlatform :

A Transform3D above the ViewPlatform moves the platform
about

The view attach policy aligns the platform origin with the
user’s screen, head, or feet

316

Introducing the view model

Looking at what is where

Viewing policies and parameters are controlled by a View

The projection policy selects perspective or parallel
projection

The view policy selects the room- or head-mounted display
constraint systems

Various window policies control how the view frustum adapts
to viewing parameter changes

317

Introducing the view model

Looking at what is where

The user’s physical dimensions are described by a PhysicalBody

Parameters set the left and right eye and ear positions

Parameters also set the nominal head height from the ground,
and the nominal eye offset from the nominal screen

A transform describes the head to head tracker relationship

318

Introducing the view model

Looking at what is where

The user’s display, input sensors, and sound environment are
described by a PhysicalEnvironment

A transform describes the coexistence to tracker base
relationship

A set of abstract input sensors provide access to trackers

An audio device enables sound playback

319

Introducing the view model

Looking at what is where

The drawing area is selected by a Canvas3D

The physical screen device is described by a Screen3D (image
plate)

A transform describes the tracker base to image plate
relationship

Parameters set the display’s physical width and height (in
meters)

320

Introducing the view model

Summary

Virtual world:
ViewPlatform controls the user’s virtual position and
orientation
View sets the view policy, etc.

Physical world:
PhysicalBody describes the user
PhysicalEnvironment describes the user’s environment
Canvas3D selects a region to draw into
Screen3D describes the screen device

321

Viewing the scene

 Motivation 322
 Looking at the view branch 323
 Creating a ViewPlatform 324

 Using ViewPlatforms 325
 Setting the activation radius 326
 Using view attach policies 327
 ViewPlatform class methods 328
 ViewPlatform example code 329

 Using views 330
 Setting the view projection policy 331
 Setting the view policy 332
 Setting physical data for a view 333

 Using a Canvas3D 334
 Canvas3D class methods 335
 Canvas3D class methods 336

 Using a Screen3D 337
 Using a Screen3D 338

 Describing the user’s physical body 339
 Describing the user’s physical body 340

 Describing the physical environment 341
 View example code 342

 Using view window policies 343
 Using view window policies 344
 Using view window policies 345
 Using view window policies 346
 View class methods 347
 View class methods 348

 Setting the view screen scale policy 349
 Setting the view monoscopic policy 350

 Using a desktop configuration 351
 Using an HMD configuration 352
 Using a portal configuration 353
 Using a wall configuration 354
 Using multiple view platforms 355

 Using multiple views 356
 Immersive workbench example code 357

 Immersive workbench example code 358
 Summary 359

322

Viewing the scene

Motivation

Now we can look deeper at the view model classes and methods

Everything has reasonable default values

For complex display systems, a system manager’s configuration
establishes the default values

Thereafter, applications need not be aware of the
configuration’s details

323

Viewing the scene

Looking at the view branch

Let’s start with the ViewPlatform , and work through the viewing
objects

324

Viewing the scene

Creating a ViewPlatform

A ViewPlatform defines a view point within the scene

It defines a frame of reference for the user’s position and
orientation in the virtual world

Think of it as a magic carpet on which the user stands/sits

There can be many ViewPlatform s in a scene graph

325

Viewing the scene

Using ViewPlatforms

A ViewPlatform is a leaf in the scene graph
It can be transformed by a TransformGroup parent

User interface and animation features can modify that
TransformGroup to move the platform (fly the magic carpet)

326

Viewing the scene

Setting the activation radius

Each ViewPlatform has an activation radius that defines a region
of interest

Animation behaviors, sounds, backgrounds, fog, and other
nodes have bounding volumes

When the activation radius intersects those bounds, those
nodes are active

Backgrounds or fog are activated
Sounds and behaviors are scheduled

327

Viewing the scene

Using view attach policies

Each ViewPlatform has a view attach policy that determines how
the user’s View is placed relative to the ViewPlatform ’s origin

NOMINAL_HEAD

origin at user’s head
(default)

NOMINAL_FEET

origin at user’s feet

NOMINAL_SCREEN

origin at screen
center

328

Viewing the scene

ViewPlatform class methods

Methods on ViewPlatform set the activation radius and attach
policy

Method
ViewPlatform()

void setActivationRadius(float radius)

void setViewAttachPolicy(int policy)

Policy values include: NOMINAL_SCREEN, NOMINAL_HEAD (default),
and NOMINAL_FEET

329

Viewing the scene

ViewPlatform example code

Create a TransformGroup to steer the platform

TransformGroup viewGroup = new TransformGroup();
viewGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_ W

Add a ViewPlatform

ViewPlatform myPlatform = new ViewPlatform();
myPlatform.setActivationRadius(1000.0f);
myPlatform.setViewAttachPolicy(View.NOMINAL_HEAD);
viewGroup.addChild(myPlatform);

Add them to a BranchGroup view branch

BranchGroup viewBranch = new BranchGroup();
viewBranch.addChild(viewGroup);
myLocale.addBranchGraph(viewBranch);

330

Viewing the scene

Using views

A View represents the user on a ViewPlatform
It manages the rendering of the scene into a screen region
from the user’s viewpoint
That screen region is a Canvas3D (extends AWT Canvas)

Typically, add a Canvas3D to a Java Frame , then point a View at
that canvas

Method
View()

void attachViewPlatform(ViewPlatform vp)

void setCanvas3D(Canvas3D c3d)

331

Viewing the scene

Setting the view projection policy

Rendering through a View can use PERSPECTIVE_PROJECTION

(default) or PARALLEL_PROJECTION

You can also control front and back clip planes

Method
void setProjectionPolicy(int policy)

void setFrontDistance(double distance)

void setBackDistance(double distance)

332

Viewing the scene

Setting the view policy

A View ’s view policy selects the constraint system to use for the
display configuration

SCREEN_VIEW: room-mounted displays (default)
HMD_VIEW: head-mounted displays

Method
void setViewPolicy(int policy)

Desktop CRT

Video wall

Portal

HMD

333

Viewing the scene

Setting physical data for a view

View methods select the physical body and environment to use
with the view policy

Method
void setPhysicalBody(PhysicalBody pb)

void setPhysicalEnvironment(PhysicalEnvironment pe)

334

Viewing the scene

Using a Canvas3D

Canvas3D extends the AWT Canvas class to support
Stereo
Double buffering
A Screen3D

A Canvas3D describes the region of a Screen3D in which to draw a
View

A Screen3D describes the physical screen device (image plate)

335

Viewing the scene

Canvas3D class methods

Methods on Canvas3D configure the use of the underlying
Screen3D , including support for stereo

Method
Canvas3D(Configuration gc)

boolean getStereoAvailable()

void setStereoEnable(boolean flag)

boolean getDoubleBufferAvailable()

void setDoubleBufferEnable(boolean flag)

336

Viewing the scene

Canvas3D class methods

When not using head tracking, methods on Canvas3D also
manually set the left and right eye locations relative to the image
plate

Method
void setLeftManualEyeInImagePlate(Point3d position)

void setRightManualEyeInImagePlate(Point3d position)

337

Viewing the scene

Using a Screen3D

Methods on Screen3D describe the physical device and the tracker
base to image plate transform

Method
void setPhysicalScreenWidth(double width)

void setPhysicalScreenHeight(double height)

338

Viewing the scene

Using a Screen3D

Methods on Screen3D also set transforms to place the tracker base
relative to the single image plate (for room-mounted displays) or
to the left and right image plates (for head-mounted displays)

Method
void setTrackerBaseToImagePlate(Transform3D trans)

void setTrackerBaseToLeftImagePlate(Transform3D trans)

void setTrackerBaseToRightImagePlate(Transform3D trans)

339

Viewing the scene

Describing the user’s physical body

Methods on PhysicalBody set the eye and ear positions, and the
user’s height

Method
PhysicalBody()

void setLeftEarPosition(Point3d position)

void setRightEarPosition(Point3d position)

void setLeftEyePosition(Point3d position)

void setRightEyePosition(Point3d position)

void setNominalEyeHeightFromGround(double height)

340

Viewing the scene

Describing the user’s physical body

Methods on PhysicalBody also set the head tracker’s position
relative to the head, and the screen’s position relative to the eye

Method
void setHeadToHeadTracker(Transform3D trans)

void setNominalEyeOffsetFromNominalScreen(double offset)

341

Viewing the scene

Describing the physical environment

Methods on PhysicalEnvironment set the coexistence to tracker
base transform

Method
PhysicalEnvironment()

void setCoexistenceToTrackerBase(Transform3D trans)

The PhysicalEnvironment also describes the set of available
input sensors, discussed in a later section

342

Viewing the scene

View example code

Create a Canvas3D with a default configuration (automatically
creating a Screen3D)

Canvas3D myCanvas = new Canvas3D(null);

Create a View and give it the Canvas3D

View myView = new View();
myView.setCanvas3D(myCanvas);

And attach the ViewPlatform to the View

myView.attachViewPlatform(myPlatform);

Use defaults for the physical body, physical environment, and
miscellaneous transforms

343

Viewing the scene

Using view window policies

A View ’s resize policy sets how the view changes on a window
resize

PHYSICAL_WORLD
Same view fills window

VIRTUAL_WORLD
View changes to see more/less

344

Viewing the scene

Using view window policies

A View ’s movement policy sets how the view changes on a
window move

PHYSICAL_WORLD
Same view fills window

VIRTUAL_WORLD
View shifts to see

left/right/above/below

345

Viewing the scene

Using view window policies

When using head tracking, the constraint system automatically
changes the view frustum as the users head moves

346

Viewing the scene

Using view window policies

When not using head tracking, a View ’s eyepoint policy sets how
the view frustum changes on a window move

RELATIVE_TO_SCREEN

Frustum changes

RELATIVE_TO_WINDOW

Frustum doesn’t
change

RELATIVE_TO_FIELD_OF_VIEW (default) enables the application to
set the field of view directly. The eyepoint changes accordingly.

347

Viewing the scene

View class methods

View methods set these window policies

Method
void setWindowEyepointPolicy(int policy)

void setWindowMovementPolicy(int policy)

void setWindowResizePolicy(int policy)

348

Viewing the scene

View class methods

When using a RELATIVE_TO_FIELD_OF_VIEW window eyepoint
policy, you can set the View ’s field of view

Method
void setFieldOfView(double fovx)

349

Viewing the scene

Setting the view screen scale policy

A View ’s screen scale policy selects how a view’s scale factor is
chosen:

SCALE_EXPLICIT : set it using setScreenScale
SCALE_SCREEN_SIZE: derive it from the screen’s physical size
(default)

Method
void setScreenScalePolicy(int policy)

void setScreenScale(double scale)

350

Viewing the scene

Setting the view monoscopic policy

A View ’s monoscopic view policy selects how a single-image
view is created when a Canvas3D is not in stereo mode

LEFT_EYE_VIEW: render from the left eye
RIGHT_EYE_VIEW: render from the right eye
CYCLOPEAN_EYE_VIEW: render from a "center" eye midway
between left and right eyes (default)

Method
void setMonoscopicViewPolicy(int policy)

351

Viewing the scene

Using a desktop configuration

Use a single Canvas3D for a single drawing surface in a desktop
configuration

352

Viewing the scene

Using an HMD configuration

Use two Canvas3Ds for left and right drawing surfaces in an HMD
configuration

353

Viewing the scene

Using a portal configuration

Use three Canvas3Ds for left, front, and right drawing surfaces in
a portal configuration

354

Viewing the scene

Using a wall configuration

Use four or more Canvas3Ds for a multi-screen drawing surface in
a wall configuration

355

Viewing the scene

Using multiple view platforms

A scene graph may contain multiple ViewPlatform s
When a View is attached to a platform, the scene is rendered
from that viewpoint
Moving a View from one platform to another "teleports" the
user to a new viewpoint

356

Viewing the scene

Using multiple views

A ViewPlatform may have multiple View s attached
Each View renders the same scene from that platform
You could track multiple users, each with their own View on
that platform

357

Viewing the scene

Immersive workbench example code

For an immersive workbench, use a single canvas and screen

myView.setCanvas3D(myCanvas);

Use a room-mounted display view policy:

myView.setViewPolicy(View.SCREEN_VIEW);

Attach the view to the user’s head:

myViewPlatform.setViewAttachPolicy(View.NOMINAL_HEAD);

Use virtual-world window policies and a screen-relative eyepoint:

myView.setWindowResizePolicy(View.VIRTUAL_WORLD);
myView.setWindowMovementPolicy(View.VIRTUAL_WORLD);
myView.setWindowEyePointPolicy(RELATIVE_TO_SCREEN);

358

Viewing the scene

Immersive workbench example code

Enable head-tracking and place co-existence at the tracker base:

myView.setTrackingEnable(true);
myPhysEnv.setCoexistenceToTrackerBase(ident);

Locate the tracker base relative to the workbench:

Screen3D myScreen = myCanvas.getScreen3D();
myScreen.setTrackerBaseToImagePlate(transform);

And configure the screen’s size and scale policy:

myScreen.setPhysicalScreenHeight(height);
myScreen.setPhysicalScreenWidth(width);
myScreen.setScreenScalePolicy(View.SCALE_EXPLICIT);

359

Viewing the scene

Summary

A ViewPlatform positions a user’s View of the scene

A View controls how to render the scene

A Canvas3D selects the region of the screen in which a View

should render

A Screen3D describes that screen

A PhysicalBody describes the user

A PhysicalEnvironment describes the user’s environment

360

Building a simple universe

 Motivation 361
 Using SimpleUniverse 362

 SimpleUniverse class methods 363
 SimpleUniverse example code 364

 Summary 365

361

Building a simple universe

Motivation

You can create universes, locales, branchs, view platforms,
views, and so forth by yourself

Or you can use the SimpleUniverse utility to create a standard set
for you

Far easier and appropriate for most applications

362

Building a simple universe

Using SimpleUniverse

A SimpleUniverse encapsulates a common superstructure

363

Building a simple universe

SimpleUniverse class methods

Methods on SimpleUniverse build the universe and attach
content to it

Method
SimpleUniverse(Canvas3D canvas)

void addBranchGraph(BranchGroup group)

364

Building a simple universe

SimpleUniverse example code

Create a Canvas3D with a default configuration (automatically
creating a Screen3D)

Canvas3D myCanvas = new Canvas3D(null);

Create a SimpleUniverse and give it the Canvas3D

SimpleUniverse myUniverse = new SimpleUniverse(myCanvas

And attach your content branch

myUniverse.addBranchGraph(myBranch);

365

Building a simple universe

Summary

A SimpleUniverse handles building standard infrastructure and
viewing components

VirtualUniverse
Locale
BranchGroup for viewing objects
TransformGroup for moving the view platform
ViewPlatform
View
PhysicalBody
PhysicalEnvironment

366

Using input devices

 Motivation 367
 Looking at input device components 368

 InputDevice interface methods 369
 Using sensors 370

 Using sensors 371
 Using sensors 372
 Using sensors 373
 Sensor class hierarchy 374
 Sensor class methods 375
 Sensor class methods 376
 Sensor class methods 377

 SensorRead class hierarchy 378
 SensorRead class methods 379

 Summary 380

367

Using input devices

Motivation

There are more input devices besides the mouse:
Joysticks
Six-degree-of-freedom devices (6DOF) such as a Polhemus,
Bird, SpaceBall, Magellan, Ultrasonic tracker, etc.
Button, knobs, sliders

Read from any physical input device:
Use the serial-device standard extension
Use the networking API
Use the Java-to-C interface

Java 3D provides an input device abstraction to:
Encapsulate device-specific details behind a generic interface
Enable painless integration of new input devices within
existing Java applications

368

Using input devices

Looking at input device components

An implementation of the InputDevice interface provides:
A description of a continuous device
Initialization, prompt for a value, get a value, close, etc.
Construction of one or more Sensor s for abstract access to the
physical detectors

Devices can be:
Real (trackers, network values)
Virtual (retrieved from a file, computationally generated)

369

Using input devices

InputDevice interface methods

Implement the InputDevice interface for a new input device
Supply methods to initialize the device, and get data
The principal result is one or more new Sensor s that abstract
the device for generic use elsewhere in Java 3D

Method
void initialize()

void close()

void processStreamInput()

void pollAndProcessInput()

void setProcessingMode(int mode)

int getSensorCount()

Sensor getSensor(int sensorIndex)

370

Using input devices

Using sensors

Sensor represents an abstract 6DOF input and any associated
buttons/knobs

The Sensor abstraction enables a separation between physical and
virtual worlds

Maps physical position, orientation, and state to an abstract
6DOF value and state

Provides generic methods for accessing these values

Available sensors are managed by the PhysicalEnvironment

Sensors are built by low-level InputDevice implementations

371

Using input devices

Using sensors

PhysicalEnvironment maintains a list of sensors
Plugboard model: The application assigns input device
Sensor s to positions in the sensor array

Each one is specially identified by an array index

The application can associate sensor indices with:
HeadIndex
LeftHandIndex
RightHandIndex
DominantHandIndex
NonDominantHandIndex

Whatever sensor is at the HeadIndex is used for head tracking,
and so forth

372

Using input devices

Using sensors

A Sensor manages the last k read values as SensorRead objects

Each SensorRead contains:
A time-stamp
A 6DOF value
The button states

A sensor can return a Transform3D that can be written directly to
a TransformGroup

373

Using input devices

Using sensors

Sensor prediction policies enable a sensor to predict a future
value assuming:

The sensor is associated with a hand (a data glove, etc.)

The sensor is associated with a head (HMD, etc.)

374

Using input devices

Sensor class hierarchy

Sensor extends Object

Class Hierarchy
java.lang.Object

 javax.media.j3d.Sensor

375

Using input devices

Sensor class methods

Methods on Sensor get access to the input device . . .

Method
Sensor(InputDevice device)

InputDevice getDevice()

void setDevice(InputDevice device)

int getSensorButtonCount()

376

Using input devices

Sensor class methods

. . . and get the latest input

Method
SensorRead getCurrentSensorRead()

int getSensorReadCount()

void lastRead(Transform3D read)

void lastRead(Transform3D read, int kth)

int lastButtons()

int lastButtons(int kth)

long lastTime()

long lastTime(int kth)

377

Using input devices

Sensor class methods

Methods also set a prediction policy and get a predicted value

Method
void setPredictionPolilcy(int policy)

void setPredictor(int predictor)

void getRead(Transform3D read)

void getRead(Transform3D read, long deltaT)

Prediction policies include: PREDICT_NONE (default) and
PREDICT_NEXT_FRAME_TIME
Predictors include: NO_PREDICTOR(default) , HEAD_PREDICTOR, and
HAND_PREDICTOR

378

Using input devices

SensorRead class hierarchy

SensorRead extends Object and encapsulates the latest data from
an input device

Class Hierarchy
java.lang.Object

 javax.media.j3d.SensorRead

379

Using input devices

SensorRead class methods

Methods on SensorRead get the current button state and 3D
transform

Method
SensorRead()

void get(Transform3D result)

int getButtons()

long getTime()

380

Using input devices

Summary

To use a new input gadget, implement the InputDevice interface
and supply methods to read that gadget

Provide high-level generic access to that device through a Sensor

A SensorRead contains a reading from the Sensor

Use methods on SensorRead to get the associated transform and
button state

381

Creating behaviors

 Motivation 382
 Motivation 383
 Behavior class hierarchy 384

 Creating behaviors 385
 Creating behaviors 386
 Behavior class methods 387
 Behavior example code 388

 Creating behavior scheduling bounds 389
 Anchoring scheduling bounds 390
 Behavior class methods 391
 Scheduling bounds example code 392

 Waking up a behavior 393
 WakeupCriterion class hierarchy 394
 WakeupCriterion class methods 395
 Waking up on an AWT event 396
 Waking up on elapsed time 397
 Waking up on shape collision 398
 Waking up on viewer proximity 399

 Composing wakeup criterion 400
 Composing Wakeup Criterion 401
 WakeupCondition class hierarchy 402
 WakeupCondition class methods 403
 WakeupCondition subclass methods 404
 WakeupCondition example code 405
 WakeupCondition example code 406
 WakeupCondition example 407

 Summary 408

382

Creating behaviors

Motivation

A Behavior is a Java class that makes changes to a scene graph

In a broad sense, your entire Java application is a behavior

Java 3D also provides a Behavior class as a base class for smaller
components that change the scene

Often one behavior for each shape being animated

383

Creating behaviors

Motivation

Java 3D behavior support:
Supports arbitrary content changes - behaviors are just Java
methods

Schedules behaviors to run only when necessary

Enables composability where independent behaviors may run
in parallel without interfering with each other

Provides basic dead reckoning for animation execution
independent of host speed

384

Creating behaviors

Behavior class hierarchy

Behavior extends Leaf

Your application extends Behavior further to create one or more
behaviors to change scene content

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Behavior

385

Creating behaviors

Creating behaviors

Every behavior contains:
An initialize method called when the behavior is made live

A processStimulus method called when the behavior wakes
up

Wakeup conditions controlling when to wakeup next
Respecified on each wakeup

Scheduling bounds controlling scheduling
When the viewer’s activation radius intersects the bounds,
the behavior is scheduled

386

Creating behaviors

Creating behaviors

A behavior can do anything
Perform computations
Update its internal state
Modify the scene graph
Start a thread

For example, a behavior to rotate a radar dish to track an object:
On initialization, set initial wakeup criteria
Get the object’s location
Create a transform to re-orient the radar dish
Set a TransformGroup of the radar dish
Set the next wakeup criteria
Return

387

Creating behaviors

Behavior class methods

Methods on Behavior include those your subclass provides, and a
generic method to enable or disable the behavior

Method
Behavior()

void initialize()

void processStimulus(Enumeration criteria)

void setEnable(boolean onOff)

void wakeupOn(WakeupCondition criteria)

388

Creating behaviors

Behavior example code

Extend the Behavior class and fill in the initialize and
processStimulus methods

public class MyBehavior extends Behavior {
 private WakeupCriterion criteria;
 public MyBehavior() {
 // Do something on construction
 . . .
 criteria = new WakeupOnAWTEvent(. . .);
 }
 public void initialize() {
 // Do something at startup
 . . .
 wakeupOn(criteria);
 }
 public void processStimulus(Enumeration criteria) {
 // Do something on a wakeup
 . . .
 wakeupOn(criteria);
 }
}

389

Creating behaviors

Creating behavior scheduling bounds

A behavior only needs to be scheduled if the viewer is nearby
The viewer’s activation radius intersects its scheduling
bounds
Behavior bounding enables costly behaviors to be skipped if
they aren’t nearby

A behavior’s scheduling bounds is a bounded volume
Sphere, box, polytope, or combination
To make a global behavior, use a huge bounding sphere

By default, behaviors have no scheduling bounds and are never
executed!

Common error: forgetting to set scheduling bounds

390

Creating behaviors

Anchoring scheduling bounds

A behavior’s bounding volume can be relative to:
The behavior’s coordinate system

Volume centered on origin
As origin moves, so does volume

A Bounding leaf’s coordinate system
Volume centered on leaf node elsewhere in scene graph
As that leaf node moves, so does volume
If behavior’s origin moves, volume does not

391

Creating behaviors

Behavior class methods

Methods on Behavior set the scheduling bounds

Method
void setSchedulingBounds(Bounds bounds)

void setSchedulingBoundingLeaf(BoundingLeaf leaf)

392

Creating behaviors

Scheduling bounds example code

Set bounds relative to the behavior’s coordinate system

Behavior myBeh = new MyBehavior();
myBeh.setSchedulingBounds(myBounds);

Or relative to a bounding leaf’s coordinate system

TransformGroup myGroup = new TransformGroup();
BoundingLeaf myLeaf = new BoundingLeaf(bounds);
myGroup.addChild(myLeaf);
. . .
Behavior myBeh = new MyBehavior();
myBeh.setSchedulingBoundingLeaf(myLeaf);

393

Creating behaviors

Waking up a behavior

Even when scheduled, a behavior runs only when wakeup
criterion are met

A number of frames or milliseconds have elapsed
A behavior or AWT posts an event
A transform changes in a TransformGroup
A shape collides with another shape
A view platform or sensor gets close

Multiple criteria can be AND/ORed to form wakeup conditions

394

Creating behaviors

WakeupCriterion class hierarchy

WakeupCriterion extends WakeupCondition to provide multiple
ways to wakeup a behavior

Class Hierarchy
java.lang.Object

 javax.media.j3d.WakeupCondition

 javax.media.j3d.WakeupCriterion

 javax.media.j3d.WakeupOnActivation

 javax.media.j3d.WakeupOnAWTEvent

 javax.media.j3d.WakeupOnBehaviorPost

 javax.media.j3d.WakeupOnCollisionEntry

 javax.media.j3d.WakeupOnCollisionExit

 javax.media.j3d.WakeupOnDeactivation

 javax.media.j3d.WakeupOnElapsedFrames

 javax.media.j3d.WakeupOnElapsedTime

 javax.media.j3d.WakeupOnSensorEntry

 javax.media.j3d.WakeupOnSensorExit

 javax.media.j3d.WakeupOnTransformChange

 javax.media.j3d.WakeupOnViewPlatformEntry

 javax.media.j3d.WakeupOnViewPlatformExit

395

Creating behaviors

WakeupCriterion class methods

The WakeupCriterion base class only provides a method to ask if
the wakeup has been triggered

Each of the subclasses provide constructors and methods for
specific wakeup criterion

Method
WakeupCriterion()

boolean hasTriggered()

396

Creating behaviors

Waking up on an AWT event

A behavior can wakeup on a specified AWT event

To use the mouse to rotate geometry:
Wake up a behavior on mouse press, release, and drag
On each drag event, compute the distance the mouse has
moved since the press and map it to a rotation angle
Create a rotation transform and write to a TransformGroup

Method
WakeupOnAWTEvent(int AWTid)

AWTEvent getAWTEvent()

397

Creating behaviors

Waking up on elapsed time

A behavior can wakeup after a number of elapsed frames or
milliseconds

Method
WakeupOnElapsedFrames(int frameCount)

int getElapsedFrameCount()

Method
WakeupOnElapsedTime(long milliseconds)

long getElapsedFrameTime()

398

Creating behaviors

Waking up on shape collision

A behavior can wakeup when a Shape3D’s geometry:
Enters/exits collision with another shape
Moves while collided with another shape

Collision detection can be approximate and fast by using
bounding volumes, not geometry

Method
WakeupOnCollisionEntry(SceneGraphPath armingpath)

WakeupOnCollisionExit(SceneGraphPath armingpath)

WakeupOnCollisionMovement(SceneGraphPath armingpath)

SceneGraphPath getArmingPath()

SceneGraphPath getTriggeringPath()

399

Creating behaviors

Waking up on viewer proximity

Viewer proximity can wakeup a behavior on:
Entry/exit of the ViewPlatform in a region

Method
WakeupOnViewPlatformEntry(Bounds region)

WakeupOnViewPlatformExit(Bounds region)

Bounds getBounds()

Sensor proximity can wakeup a behavior in the same way on:
Entry/exit of the sensor in a region

Method
WakeupOnSensorEntry(Bounds region)

WakeupOnSensorExit(Bounds region)

Bounds getBounds()

400

Creating behaviors

Composing wakeup criterion

A behavior can wake up when a set of criterion occur:
Criterion are ANDed and ORed together to form wakeup
conditions

For example:
Wakeup on any of several AWT events (mouse press, release,
or drag)
Wakeup on viewer proximity OR after some time has elapsed

401

Creating behaviors

Composing Wakeup Criterion

Wakeup conditions can be complex and changing, for example:
In a game, the user must press two buttons within a time limit
to open a door

Behavior’s initial wakeup conditions are:
Viewer near button 1 or viewer near button 2

After button 1 is pressed, conditions become:
Viewer near button 2 or time elapsed

If time elapses, conditions revert back to the initial one

If button 2 is pressed in time, behavior sends event to wakeup
door-opening behavior, then exits without rescheduling

402

Creating behaviors

WakeupCondition class hierarchy

WakeupCondition extends Object and provides several subclasses
to group wakeup criterion

Class Hierarchy
java.lang.Object

 javax.media.j3d.WakeupCondition

 javax.media.j3d.WakeupAnd

 javax.media.j3d.WakeupAndOfOrs

 javax.media.j3d.WakeupOr

 javax.media.j3d.WakeupOrOfAnds

403

Creating behaviors

WakeupCondition class methods

Methods on the WakeupCondition base class only ask about the
grouped wakeup criterion

Each of the subclasses provide constructors and methods for
specific wakeup groupings

Method
WakeupCondition()

Enumeration allElements()

Enumeration triggeredElements()

404

Creating behaviors

WakeupCondition subclass methods

The WakeupCondition subclasses have constructions that use
arrays of WakeupCriterion or other WakeupCondition s

Method
WakeupAnd(WakeupCriterion[] conditions)

WakeupAndOfOrs(WakeupOr[] conditions)

WakeupOr(WakeupCriterion[] conditions)

WakeupOrOfAnds(WakeupAnd[] conditions)

405

Creating behaviors

WakeupCondition example code

Create AWT event wakeup criterion

WakeupCriterion[] onMouseEvents =
 new WakeupCriterion[2];
onMouseEvents[0] =
 new WakeupOnAWTEvent(MouseEvent.MOUSE_PRESSED);
onMouseEvents[1] =
 new WakeupOnAWTEvent(MouseEvent.MOUSE_RELEASED) ;

Combine together those criterion

WakeupCondition onMouse =
 new WakeupOr(onMouseEvents);

406

Creating behaviors

WakeupCondition example code

Create the behavior

Behavior myBeh = new MyBehavior();

And set the behavior’s wakup conditions and scheduling bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myBeh.setSchedulingBounds(myBounds);

407

Creating behaviors

WakeupCondition example

[Drag]

408

Creating behaviors

Summary

A Behavior is a base class extended to hold:
An initialize method called when made live
A processStimulus method called at wakeup

A WakeupCriterion defines a specific condition for behavior
wakeup, including elapsed time, AWT events, etc.

A WakeupCondition combines together multiple WakeupCriterion

Behaviors are schedulable (if enabled) when the viewer’s
activation radius intersects the behavior’s scheduling bounds

Default is no scheduling bounds, so nothing is scheduled!

409

Creating interpolator behaviors

 Motivation 410
 Using interpolator value mappings 411
 Mapping time to alpha 412

 Mapping time to alpha 413
 Building one-shot and cyclic behaviors 414
 Alpha class hierarchy 415
 Alpha class methods 416
 Alpha class methods 417

 Types of interpolators 418
 Types of interpolators 419
 Using Interpolators 420
 Interpolator class hierarchy 421
 Interpolator class methods 422
 PositionInterpolator class methods 423
 RotationInterpolator class methods 424
 ScaleInterpolator class methods 425
 ColorInterpolator class methods 426
 TransparencyInterpolator class methods 427
 SwitchValueInterpolator class methods 428
 RotationInterpolator example code 429
 RotationInterpolator example 430
 PathInterpolator class methods 431
 PositionPathInterpolator class methods 432
 RotationPathInterpolator class methods 433
 RotPosPathInterpolator class methods 434
 RotPosScalePathInterpolator class methods 435

 Summary 436

410

Creating interpolator behaviors

Motivation

Many simple behaviors can be expressed as interpolators
Vary a parameter from a starting to an ending value during a
time interval

Transforms, colors, switches

Java 3D provides interpolator behaviors
Enables optimized implementations
Since they are closed functions of time, they can be used for
dead-reckoning over a network

411

Creating interpolator behaviors

Using interpolator value mappings

An interpolator uses two mappings:
Time-to-Alpha

Alpha is a generalized value that varies from 0.0 to 1.0
over a time interval

Alpha-to-Value
Different interpolator types map to different values, such
as transforms, colors, switches

412

Creating interpolator behaviors

Mapping time to alpha

An Alpha generator computes alpha using:
Trigger time
Phase Delay before initial alpha change
Increasing time for increasing alpha
At-One time for constant high alpha
Decreasing time for decreasing alpha
At-Zero time for constant low alpha

Increasing and decreasing phases may be individually enabled or
disabled and their acceleration controlled

Increasing ramp controls increasing acceleration
Decreasing ramp controls decreasing acceleration

413

Creating interpolator behaviors

Mapping time to alpha

414

Creating interpolator behaviors

Building one-shot and cyclic behaviors

This model of alpha generalizes to several different types of
one-shot and cyclic behaviors

415

Creating interpolator behaviors

Alpha class hierarchy

Alpha extends Object

Class Hierarchy
java.lang.Object

 javax.media.j3d.Alpha

416

Creating interpolator behaviors

Alpha class methods

Alpha methods construct and control alpha start and looping, or
get the current value

Method
Alpha()

void setStartTime(long millisecs)

void setTriggerTime(long millisecs)

void setLoopCount(int count)

void setMode(int mode)

float value()

float value(long millisecs)

Alpha modes include INCREASING_ENABLE and
DECREASING_ENABLE to enable use of increasing and/or decreasing
portions of the alpha envelope

417

Creating interpolator behaviors

Alpha class methods

Alpha methods also set stage parameters

Method
void setAlphaAtOneDuration(long millisecs)

void setAlphaAtZeroDuration(long millisecs)

void setDecreasingAlphaDuration(long millisecs)

void setDecreasingAlphaRampDuration(long millisecs)

void setIncreasingAlphaDuration(long millisecs)

void setIncreasingAlphaRampDuration(long millisecs)

void setPhaseDelayDuration(long millisecs)

418

Creating interpolator behaviors

Types of interpolators

Simple interpolators map alpha to a value between start and end
values

Single transforms
PositionInterpolator , RotationInterpolator , and
ScaleInterpolator

Colors and transparency
ColorInterpolator and TransparencyInterpolator

Switch group values
SwitchValueInterpolator

419

Creating interpolator behaviors

Types of interpolators

Path interpolators map alpha to a value along a path of two or
more values

Single transforms
PositionPathInterpolator and
RotationPathInterpolator

Combined transforms
RotPosPathInterpolator and
RotPosScalePathInterpolator

420

Creating interpolator behaviors

Using Interpolators

All interpolators specify a target into which to write new values

Transform interpolators use a TransformGroup target

A ColorInterpolator uses a Material target

A TransparencyInterpolator uses a
TransparencyAttributes target

A SwitchValueInterpolator uses a Switch target

And so forth

421

Creating interpolator behaviors

Interpolator class hierarchy

Interpolator extends Behavior , and is further extended for the
different types of interpolators

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Behavior

 javax.media.j3d.Interpolator

 javax.media.j3d.ColorInterpolator

 javax.media.j3d.PathInterpolator

 javax.media.j3d.PositionPathInterpolator

 javax.media.j3d.RotationPathInterpolator

 javax.media.j3d.RotPosPathInterpolator

 javax.media.j3d.RotPosScalePathInterpola t

 javax.media.j3d.PositionInterpolator

 javax.media.j3d.RotationInterpolator

 javax.media.j3d.ScaleInterpolator

 javax.media.j3d.SwitchValueInterpolator

 javax.media.j3d.TransparencyInterpolator

422

Creating interpolator behaviors

Interpolator class methods

Methods on Interpolator just set the alpha generator to use

The subclasses of Interpolator add methods for specific types
of interpolators

Method
Interpolator()

void setAlpha(Alpha alpha)

Let’s look at simple interpolators first . . . (they are all pretty
much the same)

423

Creating interpolator behaviors

PositionInterpolator class methods

PositionInterpolator linearly interpolations a position from a
starting position to an ending position

Methods on PositionInterpolator set the translation axis, value
range, and target

Sets the translation in a TransformGroup

Method
PositionInterpolator(Alpha alpha, TransformGroup target)

void setAxisOfTranslation(Transform3D axis)

void setEndPosition(float pos)

void setStartPosition(float pos)

void setTarget(TransformGroup target)

424

Creating interpolator behaviors

RotationInterpolator class methods

RotationInterpolator linearly interpolations a rotation from a
starting angle to an ending angle

Methods on RotationInterpolator set the rotation axis, value
range, and target

Sets the rotation in a TransformGroup

Method
RotationInterpolator(Alpha alpha, TransformGroup target)

void setAxisOfRotation(Transform3D axis)

void setMaximumAngle(float angle)

void setMinimumAngle(float angle)

void setTarget(TransformGroup target)

425

Creating interpolator behaviors

ScaleInterpolator class methods

ScaleInterpolator linearly interpolations a scale value from a
starting value to an ending value

Methods on ScaleInterpolator set the scale axis, value range,
and target

Sets the scale in a TransformGroup

Method
ScaleInterpolator(Alpha alpha, TransformGroup target)

void setAxisOfScale(Transform3D axis)

void setMaximumScale(float scale)

void setMinimumScale(float scale)

void setTarget(TransformGroup target)

426

Creating interpolator behaviors

ColorInterpolator class methods

ColorInterpolator linearly interpolates a diffuse color (in a
red-green-blue color space) from a starting color to an ending
color

Methods on ColorInterpolator set the value range and target
Sets the diffuse color in a Material

Method
ColorInterpolator(Alpha alpha, Material target)

void setStartColor(Color3f color)

void setEndColor(Color3f color)

void setTarget(Material target)

427

Creating interpolator behaviors

TransparencyInterpolator class methods

TransparencyInterpolator linearly interpolates a transparency
value from a starting value to an ending value

Methods on TransparencyInterpolator set the value range and
target

Sets the transparency in a TransparencyAttributes

Method
TransparencyInterpolator(Alpha alpha,
TransparencyAttributes target)

void setMaximumTransparency(float trans)

void setMinimumTransparency(float trans)

void setTarget(TransparencyAttributes target)

428

Creating interpolator behaviors

SwitchValueInterpolator class methods

SwitchValueInterpolator linearly interpolates a child index
value from a starting index to an ending index

Methods on SwitchValueInterpolator set the value range and
target

Sets the child choice in a Switch

Method
SwitchValueInterpolator(Alpha alpha, Switch target)

void setFirstChildIndex(int index)

void setLastChildIndex(int index)

void setTarget(Switch target)

(Whew! That’s all of the simple interplators)

429

Creating interpolator behaviors

RotationInterpolator example code

Create a TransformGroup to animate

TransformGroup myGroup = new TransformGroup();

Create an alpha generator

Alpha upRamp = new Alpha();
upRamp.setIncreasingAlphaDuration(10000);
upRamp.setLoopCount(-1); // loop forever

Create and set up a rotation interpolator

RotationInterpolator mySpinner = new RotationInterpol a
mySpinner.setAxisOfRotation(new Transform3D());
mySpinner.setMinimumAngle(0.0f);
mySpinner.setMaximumAngle((float)(Math.PI * 2.0));

Set the scheduling bounds and add it to the scene

mySpinner.setSchedulingBounds(bounds);
myGroup.addChild(spinner);

430

Creating interpolator behaviors

RotationInterpolator example

[SphereMotion]

431

Creating interpolator behaviors

PathInterpolator class methods

Methods on PathInterpolator set the alpha generator to use and
the "knots" used for the path

Knots are specific alpha values that correspond to specific
positions, rotations, etc. along a path
Interpolation is done between knots, then mapped to the
corresponding interpolated position, rotation, etc.

The subclasses of PathInterpolator add methods for specific
types of path interpolators

Method
PathInterpolator(Alpha alpha, float[] knots)

void setKnot(int index, float knot)

Let’s look at the various path interpolators . . . (and they too are
pretty much all the same)

432

Creating interpolator behaviors

PositionPathInterpolator class methods

PositionPathInterpolator interpolates a position along a path

Methods on PositionPathInterpolator set the translation axis,
path, and target

Sets the translation in a TransformGroup

Method
PositionPathInterpolator(Alpha alpha, TransformGroup
target, Transform3D axis, float[] knots, Point3f[]
positions)

void setAxisOfTranslation(Transform3D axis)

void setPosition(int index, Point3f pos)

void setTarget(TransformGroup target)

433

Creating interpolator behaviors

RotationPathInterpolator class methods

RotationPathInterpolator interpolates a rotation along a path

Methods on RotationPathInterpolator set the translation axis,
path, and target

Sets the rotation in a TransformGroup

Method
RotationPathInterpolator(Alpha alpha, TransformGroup
target, Transform3D axis, float[] knots, Quat4f[] quats)

void setAxisOfRotation(Transform3D axis)

void setQuat(int index, Quat4f quat)

void setTarget(TransformGroup target)

434

Creating interpolator behaviors

RotPosPathInterpolator class methods

RotPosPathInterpolator interpolates a position and rotation
along a path

Methods on RotPosPathInterpolator set the translation axis,
path, and target

Sets the translation and rotation in a TransformGroup

Method
RotPosPathInterpolator(Alpha alpha, TransformGroup target,
Transform3D axis, float[] knots, Quat4f[] quats, Point3f[]
positions)

void setAxisOfRotPos(Transform3D axis)

void setPosition(int index, Point3f pos)

void setQuat(int index, Quat4f quat)

void setTarget(TransformGroup target)

435

Creating interpolator behaviors

RotPosScalePathInterpolator class methods

RotPosScalePathInterpolator interpolates a position, rotation,
and scale along a path

Methods on RotPosScalePathInterpolator set the translation
axis, path, and target

Sets the translation, rotation, and scale in a TransformGroup

Method
RotPosScalePathInterpolator(Alpha alpha, TransformGroup
target, Transform3D axis, float[] knots, Quat4f[] quats,
Point3f[] positions, float] scales)

void setAxisOfRotPosScale(Transform3D axis)

void setPosition(int index, Point3f pos)

void setQuat(int index, Quat4f quat)

void setScale(int index, float scale)

void setTarget(TransformGroup target)

436

Creating interpolator behaviors

Summary

An Interpolator behavior varies a value over time using two
mappings

Time-to-alpha
Alpha-to-value

An Alpha generator maps time to an alpha value that varies from
0.0 to 1.0 through several stages

Specific interpolator types use an alpha generator, and a target
node to vary position, rotation, color, transparency, etc.

437

Using specialized behaviors

 Motivation 438
 Specialized behavior class hierarchy 439

 Using billboard behaviors 440
 Using billboard behaviors 441
 Using billboard alignment modes 442

 Billboard class methods 443
 Using level-of-detail behaviors 444

 LOD class methods 445
 DistanceLOD class methods 446

 Summary 447

438

Using specialized behaviors

Motivation

As with interpolators, some behaviors are so common they are
provided upfront by Java 3D

Billboard auto-rotation of shapes to face the viewer

Switching between shape levels of detail based upon distance
to the viewer

439

Using specialized behaviors

Specialized behavior class hierarchy

Specialized behaviors are all extensions of Behavior

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Behavior

 javax.media.j3d.Billboard

 javax.media.j3d.LOD

 javax.media.j3d.DistanceLOD

440

Using specialized behaviors

Using billboard behaviors

A Billboard is a specialized behavior that:
Tracks the ViewPlatform

Generates a rotation about an axis so that the Z-axis points at
the platform

Writes that transform to a target TransformGroup

441

Using specialized behaviors

Using billboard behaviors

Viewer steps to the right . . .

. . . and the behavior
immediately rotates the shape

442

Using specialized behaviors

Using billboard alignment modes

Billboard rotation can be about:
An axis to pivot the TransformGroup

A point to arbitrarily rotate the TransformGroup
Rotation makes the group’s Y-axis parallel to the
viewer’s Y-axis

443

Using specialized behaviors

Billboard class methods

Methods on Billboard set the alignment mode, rotation axis or
point, and the target

The default alignment mode is about the Y axis

Method
Billboard()

void setAlignmentMode(int mode)

void setAlignmentAxis(Vector3f axis)

void setRotationPoint(Point3f point)

void setTarget(TransformGroup group)

Alignment modes include ROTATE_ABOUT_AXIS (default) and
ROTATE_ABOUT_POINT

444

Using specialized behaviors

Using level-of-detail behaviors

Level-of-Detail (LOD) is a specialized behavior that:
Tracks the ViewPlatform
Computes a distance to a shape
Maps the distance to Switch group child choices

The LOD abstract class generalizes level-of-detail behaviors

The DistanceLOD class implements distance-based switching
level-of-detail

445

Using specialized behaviors

LOD class methods

Methods on LOD manage a list of Switch groups to control based
upon viewer distance

Method
LOD()

void setSwitch(Switch switch, int index)

void addSwitch(Switch switch)

void insertSwitch(Switch switch, int index)

void removeSwitch(int index)

446

Using specialized behaviors

DistanceLOD class methods

Methods on DistanceLOD set the distances at which detail
switches should occur

Method
DistanceLOD()

void setDistance(int whichLOD, double distance)

447

Using specialized behaviors

Summary

Billboard automatically rotates a TransformGroup so that its
Z-axis always points towards the viewer

DistanceLOD automatically switches children in a Switch group
based upon distance to the viewer

448

Picking shapes

 Motivation 449
 Example 450
 Using the picking API 451
 Where is the API? 452

 Node class methods 453
 Locale and BranchGroup class methods 454

 Types of PickShapes 455
 PickShape class hierarchy 456
 PickShape class methods 457
 PickRay class methods 458
 PickSegment class methods 459
 PickPoint class methods 460
 PickBounds class methods 461

 Getting Pick Results 462
 SceneGraphPath class hierarchy 463
 SceneGraphPath class methods 464

 Using the mouse for a pick 465
 Picking example code 466
 Picking example 467

 Summary 468

449

Picking shapes

Motivation

Selection is essential to interactivity
Without an ability to select objects you cannot manipulate
them

The picking API enables selecting objects in the scene
It supports various selection shapes
It can report the first, any, all, or all sorted hits

450

Picking shapes

Example

[PickWorld]

451

Picking shapes

Using the picking API

The Java 3D API divides picking into two portions
Control: clicking with a 2D mouse or move a 6DOF wand
Selection: finding shapes that meet the search criteria

Seperation enables interchangeable interaction methods

The API designed for speed
Picking only works on bounds
Utilities provide more fine-grained pick support

452

Picking shapes

Where is the API?

The API is distributed among a number of classes . . .

Enable pickability of any node via methods on Node

Initiate a pick using methods on Locale or BranchGroup

Pick methods take as an argument a PickShape
PickBounds , PickPoint , PickRay , PickSegment

Pick methods return one or more SceneGraphPath s

453

Picking shapes

Node class methods

Methods on Node enable pickability

Method
void setPickable(boolean onOff)

boolean getPickable()

454

Picking shapes

Locale and BranchGroup class methods

Methods on Locale or BranchGroup initiate a pick on their
children

Methods are identical for both classes

Method
SceneGraphPath[] pickAll(PickShape pickShape)

SceneGraphPath[] pickAllSorted(PickShape pickShape)

SceneGraphPath pickAny(PickShape pickShape)

SceneGraphPath pickClosest(PickShape pickShape)

455

Picking shapes

Types of PickShapes

Picking intersects a PickShape with pickable shape bounding
volumes

PickRay fires a ray from a position, in a direction
Pick occurs for shape bounds the ray strikes

PickSegment fires a ray along a ray segment between two
positions

Pick occurs for shape bounds the ray segment intersects

PickPoint checks the scene at a position
Pick occurs for shape bounds that contain the position

PickBounds checks the scene at a position, in a bounded volume
Pick occurs for shape bounds that intersect the bounded
volume

456

Picking shapes

PickShape class hierarchy

PickShape extends Object

This is further extended for various types of pick shapes

Class Hierarchy
java.lang.Object

 javax.media.j3d.PickShape

 javax.media.j3d.PickBounds

 javax.media.j3d.PickPoint

 javax.media.j3d.PickRay

 javax.media.j3d.PickSegment

457

Picking shapes

PickShape class methods

PickShape provides no further methods

The pick shape types extend PickShape

Method
PickShape()

458

Picking shapes

PickRay class methods

Methods on PickRay set the position and aim direction used for a
pick intersection

Method
PickRay()

PickRay(Point3d pos, Vector3d dir)

void set(Point3d pos, Vector3d dir)

459

Picking shapes

PickSegment class methods

Methods on PickSegment set the starting and ending positions for
the ray segment used for a pick intersection

Method
PickSegment()

PickSegment(Point3d start, Point3d end)

void set(Point3d start, Point3d end)

460

Picking shapes

PickPoint class methods

Methods on PickPoint set the position used for a pick
intersection

Method
PickPoint()

PickPoint(Point3d pos)

void set(Point3d pos)

461

Picking shapes

PickBounds class methods

Methods on PickBounds set the bounding volume used for a pick
intersection

Method
PickBounds()

PickBounds(Bounds bounds)

void set(Bounds bounds)

462

Picking shapes

Getting Pick Results

The pick methods on Locale or BranchGroup return one or more
SceneGraphPath s

Each SceneGraphPath contains:

A Node for the shape that was picked

The Locale above it in the scene graph

A list of the Nodes from the picked shape up to the Locale

The world-to-shape transform

463

Picking shapes

SceneGraphPath class hierarchy

SceneGraphPath extends Object

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphPath

464

Picking shapes

SceneGraphPath class methods

Methods on SceneGraphPath get the shape (object) picked, the
locale above it, the transform to it, and nodes on the path between
the locale and the shape

Method
SceneGraphPath()

Node getObject()

Locale getLocale()

Node getNode(int index)

int nodeCount()

Transform3D getTransform()

465

Picking shapes

Using the mouse for a pick

Create a behavior that wakes up on mouse events

On a mouse release:
Construct a PickRay from the eye passing through the 2D
mouse screen point

Initiate a pick to find all pick hits along the ray, sorted
from closest to furthest

Get the first pick hit in the returned data

Do something to that picked shape

(Re)declare interest in mouse events

466

Picking shapes

Picking example code

Create a pick ray aimed using mouse screen data

PickRay myRay = new PickRay(rayOrigin, rayDirection)

Initiate a pick starting at a Locale

SceneGraphPath[] results = myLocale.pickAllSorted(m y

Get the first (closest) shape off the results

Node pickedObject = results[0].getObject();

467

Picking shapes

Picking example

[PickWorld]

468

Picking shapes

Summary

Picking selects a shape pointed at by the user
The pointing device can be anything (often the mouse)

Pickability is enabled on a per-node basis

Picking looks for the intersection of a PickShape with shape
bounding volumes

PickBounds , PickPoint , PickRay , and PickSegment ,

A pick is initiated on a Locale or BranchGroup

A pick returns one or more SceneGraphPath s for the shapes hit by
the pick

469

Creating backgrounds

 Motivation 470
 Example 471
 Types of backgrounds 472

 Background class hierarchy 473
 Using background colors 474
 Using background images 475
 Using background geometry 476
 Background class methods 477
 Background color example code 478
 Background color example 479
 Background image example code 480
 Background image example 481
 Background geometry example code 482

 Using background application bounds 483
 Creating application bounds 484
 Anchoring application bounds 485
 Background class methods 486
 Application bounds example code 487

 Summary 488

470

Creating backgrounds

Motivation

You can add a background to provide context for foreground
content

Use backgrounds to:
Set a sky color
Add clouds, stars, mountains, city skylines
Create an environment map

471

Creating backgrounds

Example

[ExBackgroundColor]

[ExBluePrint]

472

Creating backgrounds

Types of backgrounds

Java 3D provides three types of backgrounds:
Constant color
Flat Image
Geometry

All types are built with a Background node with:
A color, image, or geometry
A bounding volume controlling when the background is
activated

473

Creating backgrounds

Background class hierarchy

All background features are controlled using Background

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Background

474

Creating backgrounds

Using background colors

A Background node can set a single background color
Fills canvas with the color
Same color for all viewing directions and lighting levels

If you want a color gradient, use background geometry

475

Creating backgrounds

Using background images

A Background node can set a background image
Fills canvas with the image
Image upper-left is at the canvas upper-left

To fill the canvas, use an image the size of the canvas
Image overrides background color

Same image for all viewing directions and lighting levels

If you want an environment map, use background geometry

476

Creating backgrounds

Using background geometry

A Background node can set background geometry
Geometry surrounds the viewer at an "infinite" distance

As the viewer turns, they see different parts of the
geometry
The viewer can never move closer to the geometry

Geometry should be on a unit sphere
The geometry is not lit by scene lights

Use background geometry to:
Create sky and ground color gradients
Build mountain or city skylines
Do environment maps (ala QuickTimeVR)

477

Creating backgrounds

Background class methods

Methods on Background set the color, image, or geometry

Method
Background()

void setColor(Color3f color)

void setImage(ImageComponent2D image)

void setGeometry(BranchGroup group)

478

Creating backgrounds

Background color example code

Create a background

Background myBack = new Background();
myBack.setColor(new Color3f(0.3f, 0.0f, 0.0f));

Set the application bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myBack.setApplicationBounds(myBounds);

479

Creating backgrounds

Background color example

[ExBackgroundColor]

480

Creating backgrounds

Background image example code

Load a texture image

TextureLoader myLoader = new TextureLoader("stars2.j p
ImageComponent2D myImage = myLoader.getImage();

Create a background

Background myBack = new Background();
myBack.setImage(myImage);

Set the application bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myBack.setApplicationBounds(myBounds);

481

Creating backgrounds

Background image example

[ExBackgroundImage] [ExBluePrint]

482

Creating backgrounds

Background geometry example code

Create background geometry

BranchGroup myBranch = createBackground();

Create a background

Background myBack = new Background();
myBack.setGeometry(myBranch);

Set the application bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myBack.setApplicationBounds(myBounds);

483

Creating backgrounds

Using background application bounds

A background is applied when:
The viewer’s activation radius intersects its application
bounds
If multiple backgrounds are active, the closest is used
If no backgrounds are active, background is black

Background bounding enables different backgrounds for different
areas of the scene

484

Creating backgrounds

Creating application bounds

A background’s application bounds is a bounded volume
Sphere, box, polytope, or combination
To make a global background, use a huge bounding sphere

By default, backgrounds have no application bounds and are
never applied!

Common error: forgetting to set application bounds

485

Creating backgrounds

Anchoring application bounds

A background bounding volume can be relative to:
The background’s coordinate system

Volume centered on origin
As origin moves, so does volume

A Bounding leaf’s coordinate system
Volume is centered on leaf node elsewhere in scene graph
As that leaf node moves, so does volume
If background origin moves, volume does not

486

Creating backgrounds

Background class methods

Methods on Background set the application bounds

Method
void setApplicationBounds(Bounds bounds)

void setApplicationBoundingLeaf(BoundingLeaf leaf)

487

Creating backgrounds

Application bounds example code

Set bounds relative to the background’s coordinate system

Background myBack = new Background();
myBack.setApplicationBounds(myBounds);

Or relative to a bounding leaf’s coordinate system

TransformGroup myGroup = new TransformGroup();
BoundingLeaf myLeaf = new BoundingLeaf(myBounds);
myGroup.addChild(myLeaf);
. . .
Background myBack = new Background();
myBack.setApplicationBoundingLeaf(myLeaf);

488

Creating backgrounds

Summary

Background sets the background color, image, or geometry

Backgrounds are activated when the viewer’s activation radius
intersects the background’s application bounds

Default is no application bounds, so never takes effect

489

Working with fog

 Motivation 490
 Fog class hierarchy 491
 Fog class methods 492
 Understanding fog effects 493

 Using exponential fog 494
 ExponentialFog class methods 495
 ExponentialFog example code 496
 ExponentialFog example 497

 Using linear fog 498
 LinearFog class methods 499
 LinearFog example code 500
 LinearFog example 501
 Depth cueing example 502

 Using fog influencing bounds and scope 503
 Fog class methods 504
 Influencing bounds example code 505

 Clipping foggy shapes 506
 Clip class hierarchy 507
 Clipping shapes 508
 Using clip application bounds 509
 Clipping shapes 510
 Clip class methods 511
 Clip example code 512
 Clip example 513

 Summary 514
 Summary 515

490

Working with fog

Motivation

Fog increases realism and declutters a scene

Fog also obscures distant shapes, enabling you to turn them off
and render the scene faster

Java 3D provides two types of fog:
Exponential
Linear

491

Working with fog

Fog class hierarchy

All fog types share attributes inherited from the Fog class

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Fog

 javax.media.j3d.ExponentialFog

 javax.media.j3d.LinearFog

492

Working with fog

Fog class methods

Both types of fog have:
A color (default is black)
A bounding volume and scope controlling the range of shapes
to affect

Method
void setColor(Color3f color)

493

Working with fog

Understanding fog effects

Fog affects shape color, not shape profile
Distant shapes have the fog color, but still have crisp profiles

Set the background color to the fog color or your scene will look
odd!

No fog Light fog Fog on Background

494

Working with fog

Using exponential fog

ExponentialFog extends the Fog class
Thickness increases exponentially with distance

Use exponential fog to create thick, realistic fog

Vary fog density to control thickness

effect = e(-density * distance)
color = effect * shapeColor + (1-effect) * fogColor

495

Working with fog

ExponentialFog class methods

Methods on ExponentialFog set the fog density

Method
ExponentialFog()

void setDensity(float density)

Fog density varies from 0.0 (no fog) and up (denser fog)

496

Working with fog

ExponentialFog example code

Create fog

ExponentialFog myFog = new ExponentialFog();
myFog.setColor(new Color3f(1.0f, 1.0f, 1.0f));
myFog.setDensity(1.0f);

Set the influencing bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myFog.setInfluencingBounds(myBounds);

497

Working with fog

ExponentialFog example

Haze Light fog

Heavy fog Black fog

[ExExponentialFog]

498

Working with fog

Using linear fog

LinearFog extends the Fog class
Thickness increases linearly with distance

Use linear fog to create more easily controlled fog, though less
realistic

Set front and back distances to control density

effect = (back - distance) / (back - front)
color = effect * shapeColor + (1-effect) * fogColor

499

Working with fog

LinearFog class methods

Methods on LinearFog set the fog front and back distances

Method
LinearFog()

void setFrontDistance(double front)

void setBackDistance(double back)

Default front distance is 0.0
Default back distance is 1.0

500

Working with fog

LinearFog example code

Create fog

LinearFog myFog = new LinearFog();
myFog.setColor(new Color3f(1.0f, 1.0f, 1.0f));
myFog.setFrontDistance(1.0);
myFog.setBackDistance(30.0);

Set the influencing bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myFog.setInfluencingBounds(myBounds);

501

Working with fog

LinearFog example

Distances wide apart Distances close together

[ExLinearFog]

502

Working with fog

Depth cueing example

For depth-cueing, use black linear fog
Set front distance to distance to center of shape
Set back distance to distance to back of shape

Depth cueing off Depth cueing on

[ExDepthCue]

503

Working with fog

Using fog influencing bounds and scope

Fog effects are bounded to a volume and scoped to a list of
groups

Identical to light influencing bounds and scope

By default, fog has no influencing bounds and affects nothing!
Common error: forgetting to set influencing bounds

By default, fog has universal scope and affects everything within
its influencing bounds

504

Working with fog

Fog class methods

Methods on Fog set the influencing bounds and scope list

Method
void setInfluencingBounds(Bounds bounds)

void setInfluencingBoundingLeaf(BoundingLeaf leaf)

void setScope(Group group, int index)

void addScope(Group group)

void insertScope(Group group, int index)

void removeScope(int index)

505

Working with fog

Influencing bounds example code

Set bounds relative to the fog’s coordinate system

LinearFog myFog = new LinearFog();
myFog.setInfluencingBounds(myBounds);

Or relative to a bounding leaf’s coordinate system

TransformGroup myGroup = new TransformGroup();
BoundingLeaf myLeaf = new BoundingLeaf(myBounds);
myGroup.addChild(myLeaf);
. . .
LinearFog myFog = new LinearFog();
myFog.setInfluencingBoundingLeaf(myLeaf);

506

Working with fog

Clipping foggy shapes

Shapes obscured by fog are still drawn

To increase performance, you can clip away distant shapes using
a Clip node

You can clip without using fog too
Fog helps cover up the abruptness of clipping

507

Working with fog

Clip class hierarchy

Clip extends Leaf

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Clip

508

Working with fog

Clipping shapes

Clipping chops away shapes, or parts of shapes, further away
from the viewer than a back distance

Also called a far clipping plane

Clipping can be obscured using linear fog
The fog back distance = the clip back distance

509

Working with fog

Using clip application bounds

A clip is applied when:
The viewer’s activation radius intersects its application
bounds
If multiple clips are active, the closest is used
If no clips are active, the View object’s far clip distance is
used

Clip bounding enables different clip planes for different areas of
the scene

510

Working with fog

Clipping shapes

A clip’s application bounds is a bounded volume
Sphere, box, polytope, or combination
To make a global clip, use a huge bounding sphere

By default, clip has no application bounds and affects nothing!
Common error: forgetting to set application bounds

511

Working with fog

Clip class methods

Methods on Clip set the clip distance and application bounds

Method
Clip()

void setBackDistance(double back)

void setApplicationBounds(Bounds bounds)

void setApplicationBoundingLeaf(BoundingLeaf leaf)

512

Working with fog

Clip example code

Create a clip

Clip myClip = new Clip();
myClip.setBackDistance(30.0);

Set its application bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myClip.setApplicationBounds(myBounds);

513

Working with fog

Clip example

[ExClip]

514

Working with fog

Summary

ExponentialFog creates fog that increases in density
exponentially with distance to the user

LinearFog creates fog that increases in density linearly with
distance to the user

Both types of fog have a fog color and influencing bounds

Clip cuts away shapes beyond a clip distance and has application
bounds

515

Working with fog

Summary

Fog affects shapes within the influencing bounds
Default is no influence, so nothing affected!

and within groups on the fog’s scope list
Default is universal scope, so everything is affected (if within
influencing bounds)

Clip is activated when the viewer’s activation radius intersects
the clip node’s application bounds

Default is no application bounds, so never takes effect

516

Conclusions

 Where to find out more 517
 Introduction to Programming with Java 3D 518

517

Conclusions

Where to find out more

The Java 3D specification
http://www.javasoft.com/products/java-media/3D/

Or . . .

The Java 3D API Specification
by Henry Sowizral, Kevin Rushforth, Michael Deering
published by Addison-Wesley

The Java 3D site at Sun
http://www.sun.com/desktop/java3d

The latest version of these tutorial notes are available at the Sun
Java 3D site

518

Conclusions

Introduction to Programming with Java 3D

Thanks for coming!

519

Building text shapes

 Motivation 520
 Example 521
 Building 3D text 522
 Building a 3D font 523
 FontExtrusion and Font3D class hierarchy 524

 FontExtrusion class methods 525
 FontExtrusion example code 526
 Font3D class methods 527
 Font3D example code 528

 Text3D class hierarchy 529
 Text3D class methods 530
 Text3D class methods 531

 Text3D example code 532
 Text3D example 533

 Summary 534

520

Building text shapes

Motivation

Text3D builds 3D text geometry for a Shape3D
Use to make annotation, signs, flying logos, etc.

You could build your own 3D text from triangles and
quadrilaterals

Text3D does it for you

521

Building text shapes

Example

[ExText]

522

Building text shapes

Building 3D text

Building 3D text is a multi-step process
1. Select a 2D font with java.awt.Font

2. Describe a 2D extrusion shape with java.awt.Shape in a
FontExtrusion

3. Create a 3D font by extruding the 2D font along the
extrusion shape with a Font3D

4. Create 3D text using a string and a Font3D in a Text3D

523

Building text shapes

Building a 3D font

Create a 3D font by sweeping a 2D font along a 2D extrusion
shape

524

Building text shapes

FontExtrusion and Font3D class hierarchy

FontExtrusion specifies an extrusion shape and Font3D specifies
a font

Class Hierarchy
java.lang.Object

 javax.media.j3d.FontExtrusion

 javax.media.j3d.Font3D

525

Building text shapes

FontExtrusion class methods

Methods on FontExtrusion select the extrusion

Method
FontExtrusion()

void setExtrusionShape(Shape extrusionShape)

526

Building text shapes

FontExtrusion example code

For a simple extrusion, use the default:

FontExtrusion myExtrude = new FontExtrusion();

This creates a straight-line extrusion shape 0.2 units deep

527

Building text shapes

Font3D class methods

Methods on Font3D build the 3D font from a 2D font and an
extrusion

Method
Font3D(Font font, FontExtrusion shape)

GeometryStripArray[] getAsTriangles(int glyphCode)

Bounds getBounds(int glyphCode)

528

Building text shapes

Font3D example code

Get a 2D font

Font my2DFont = new Font(
 "Arial", // font name
 Font.PLAIN, // font style
 1); // font size

Make a simple extrusion

FontExtrusion myExtrude = new FontExtrusion();

Then build a 3D font

Font3D my3DFont = new Font3D(my2DFont, myExtrude);

529

Building text shapes

Text3D class hierarchy

Text3D extends Geometry to describe 3D text geometry for a
Shape3D

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.Geometry

 javax.media.j3d.Text3D

530

Building text shapes

Text3D class methods

Methods on Text3D select the text string and 3D font

Method
Text3D()

void setString(String string)

void setFont3D(Font3d font)

531

Building text shapes

Text3D class methods

Additional methods on Text3D select the starting position,
alignment, character spacing, and character path

Method
void setPosition(Point3f position)

void setAlignment(int alignment)

void setCharacterSpacing(float spacing)

void setPath(int Path)

Alignment types include ALIGN_FIRST (default), ALIGN_LAST, and
ALIGN_CENTER
Character paths include PATH_LEFT, PATH_RIGHT (default),
PATH_DOWN, and PATH_UP

532

Building text shapes

Text3D example code

Build 3D text that says "Hello!", starting with a 2D font and
extrusion to build a 3D font

Font my2DFont = new Font(
 "Arial", // font name
 Font.PLAIN, // font style
 1); // font size
FontExtrusion myExtrude = new FontExtrusion();
Font3D my3DFont = new Font3D(my2DFont, myExtrude);

Then build 3D text geometry using the font

Text3D myText = new Text3D();
myText.setFont3D(my3DFont);
myText.setString("Hello!");

Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

533

Building text shapes

Text3D example

[ExText]

534

Building text shapes

Summary

A font extrusion defines the depth of 3D text

A 3D font combines a font extrusion with a 2D font to make 3D
character glyphs

3D text geometry is built using a 3D font and a text string

535

Controlling the appearance of textures

 Motivation 536
 Combining texture and shape colors 537
 Blending textures using alpha 538
 Using texture modes 539

 Using texture modes 540
 Using texture modes 541
 Using texture modes 542
 TextureAttributes class methods 543
 Texture mode example code 544

 Using texture mip-map modes 545
 Using texture minification filters 546
 Using texture magnification filters 547

 Texture class methods 548
 Texture filter example code 549
 Texture filter example 550

 Summary 551

536

Controlling the appearance of textures

Motivation

Texture image colors can replace, modulate, or blend with shape
color

Different texture modes are useful for different effects
Some are faster to draw than others

Different texture images can be used at different distances
between the shape and the user

Use lower resolution images for distant shapes
This is known as Mip-mapping

537

Controlling the appearance of textures

Combining texture and shape colors

A texture image may contain:
A red-green-blue color at each pixel
A transparency, or alpha value at each pixel

Typically, image color modulates shape color
Darkly shaded parts of the shape use a darkened texture, etc.

538

Controlling the appearance of textures

Blending textures using alpha

Alpha blending is a linear blending from one value to another as
alpha goes from 0.0 to 1.0:

Value = (1.0-alpha)*Value0 + alpha*Value1

Texture alpha values can control color blending

Texture color values can do spectral color filtering, using color as
three alpha values

539

Controlling the appearance of textures

Using texture modes

The Texture mode in TextureAttributes controls how texture
pixels affect shape color

REPLACE Texture color completely replaces the shape’s
material color

DECAL Texture color is blended as a decal on top of the
shape’s material color

MODULATETexture color modulates (filters) the shape’s
material color

BLEND Texture color blends the shape’s material color
with an arbitrary blend color

540

Controlling the appearance of textures

Using texture modes

Mode Result color Result transparency
REPLACE Trgb Ta

DECAL Srgb*(1-Ta)+Trgb*Ta Sa

MODULATESrgb*Trgb Sa*Ta

BLEND Srgb*(1-Trgb)+Brgb*Trgb Sa*Ta

Where:
Srgb is the color of the shape being texture mapped
Sa is the alpha of the shape being texture mapped
Trgb is the texture pixel color
Ta is the texture pixel alpha
Brgb is the shape blend color
Ba is the shape blend alpha

541

Controlling the appearance of textures

Using texture modes

REPLACE

DECAL

MODULATE with white

BLEND with green

542

Controlling the appearance of textures

Using texture modes

In typical use:
Use REPLACE for emissive textures

Glowing "neon" textures
Textures where lighting is painted in

Use MODULATE on a white shape for shaded textures
Most textured shaded surfaces

Use BLEND on a colored shape for colorized textures
Colorizing a grayscale woodgrain, marble, etc.

543

Controlling the appearance of textures

TextureAttributes class methods

Methods on TextureAttributes set the texture mode and blend
color

REPLACE is the default mode
Black is the default blend color

Method
void setTextureMode(int mode)

void setTextureBlendColor(Color4f color)

Texture modes include MODULATE, DECAL, BLEND, and REPLACE

(default)

544

Controlling the appearance of textures

Texture mode example code

Create TextureAttributes

TextureAttributes myTA = new TextureAttributes();

Set the texture mode to MODULATE

myTA.setTextureMode(Texture.MODULATE);

Set the texture attributes on an Appearance

Appearance myAppear = new Appearance();
myAppear.setTextureAttributes(myTA);

545

Controlling the appearance of textures

Using texture mip-map modes

Mip-mapping is an anti-aliasing technique that uses different
texture versions (levels) at different distances from the user

You can have any number of levels
Level 0 is the base image used when the user is close

Mip-maps can be computed automatically from a base image:
Use a mip-mapping mode of BASE_LEVEL

Or you can specify each image level explicitly:
Use a mip-mapping mode of MULTI_LEVEL_MIPMAP

546

Controlling the appearance of textures

Using texture minification filters

A Minification filter controls how a texture is interpolated when a
scene pixel maps to multiple texture pixels (texels)

FASTEST Use fastest method
NICEST Use best looking method
BASE_LEVEL_POINT Use nearest texel in level 0 map
BASE_LEVEL_LINEAR Bilinearly interpolate 4 nearest texels

in level 0 map
MULTI_LEVEL_POINT Use nearest texel in mip-mapped maps
MULTI_LEVEL_LINEAR Bilinearly interpolate 4 nearest texels

in mip-mapped maps

547

Controlling the appearance of textures

Using texture magnification filters

A Magnification filter controls how a texture is interpolated when
a scene pixel maps to less than one texel

FASTEST Use fastest method
NICESET Use best looking method
BASE_LEVEL_POINT Use nearest texel in level 0 map
BASE_LEVEL_LINEARBilinearly interpolate 4 nearest texels in

level 0 map

548

Controlling the appearance of textures

Texture class methods

Methods on Texture control mip-mapping and filtering
BASE_LEVEL is the default mip-map mode
BASE_LEVEL_POINT is the default filter

Method
void setMipMapMode(int mode)

void setMinFilter(int minFilter)

void setMagFilter(int maxFilter)

549

Controlling the appearance of textures

Texture filter example code

Load a texture image

TextureLoader myLoader = new TextureLoader("brick.jp g
ImageComponent2D myImage = myLoader.getImage();

Create a Texture2D using the image, and turn it on

Texture2D myTex = new Texture2D();
myTex.setImage(0, myImage);
myTex.setEnable(true);

Set the filtering types

myTex.setMagFilter(Texture.BASE_LEVEL_POINT);
myTex.setMinFilter(Texture.BASE_LEVEL_POINT);

Create an Appearance and set the texture in it

Appearance myAppear = new Appearance();
myAppear.setTexture(myTex);

550

Controlling the appearance of textures

Texture filter example

BASE_LEVEL_POINT

No interpolation

BASE_LEVEL_LINEAR

Linear interpolation of 4
nearest neighbors

551

Controlling the appearance of textures

Summary

The texture mode controls how texture color and alpha values
REPLACE, MODULATE, BLEND, or DECAL with the shape color

Mip-mapping uses different versions (levels) of an image at
different distances from the user

Minification and Magnification filters control how individual, or
neighboring texture pixels contribute to an image

552

Adding sound

 Motivation 553
 Example 554
 Types of sounds 555

 Sound class hierarchy 556
 Loading sound data 557
 MediaContainer class hierarchy 558
 MediaContainer class methods 559
 Looking at sound envelopes 560
 Looking at sound envelopes 561
 Looping sounds 562
 Controlling sounds 563
 Sound class methods 564

 Using background sounds 565
 BackgroundSound class methods 566
 BackgroundSound example code 567

 Using point sounds 568
 Varying gain with distance 569
 PointSound class methods 570
 PointSound example code 571
 PointSound example code 572

 Using cone sounds 573
 Varying gain with distance 574
 Varying gain and frequency with angle 575
 ConeSound class methods 576
 ConeSound example code 577
 ConeSound example code 578

 Setting scheduling bounds 579
 Sound class methods 580
 Sound example 581
 Controlling the sound release 582
 Enabling continuous playback 583
 Prioritizing sounds 584
 Sound class methods 585

 Summary 586

553

Adding sound

Motivation

You can add sounds to your environment:
Localized sounds - sounds with a position

User interface sounds (clicks, alerts)
Data sonification
Game sounds (laser blasters, monster growls)

Background sounds - sounds filling an environment
Presentation sounds (voice over, narration)
Environment sounds (ocean waves, wind)
Background music

554

Adding sound

Example

[ExSound]

555

Adding sound

Types of sounds

Java 3D provides three types of sounds:
Background
Point
Cone

All three types of sounds have:
Sound data to play
An initial gain (overall volume)
Looping parameters
Playback priority
Scheduling bounds (like a behavior)

556

Adding sound

Sound class hierarchy

All sounds share attributes inherited from Sound

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Sound

 javax.media.j3d.BackgroundSound

 javax.media.j3d.PointSound

 javax.media.j3d.ConeSound

557

Adding sound

Loading sound data

Sound nodes play sound data describing a digital waveform
Data loaded by a MediaContainer from

A file on disk or on the Web

Typical sound file formats include:
AIF : standard cross-platform format
AU: standard Sun format
WAV: standard PC format

558

Adding sound

MediaContainer class hierarchy

The MediaContainer class provides functionality to load sound
files given a URL or file path

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.MediaContainer

559

Adding sound

MediaContainer class methods

Methods on MediaContainer select the file path or URL for the
sound file

Setting the URL triggers loading of the sound

Method
MediaContainer()

void setUrl(String path)

void setUrl(URL url)

560

Adding sound

Looking at sound envelopes

Sound files have a built-in amplitude Envelope with three stages:
Attack: the start of the sound
Sustain: the body of the sound
Release: the ending decay of the sound

561

Adding sound

Looking at sound envelopes

The envelope is part of the sound data loaded by a
MediaContainer

Set sound envelopes using a sound editor
Amplitude is not ramped by Java 3D

562

Adding sound

Looping sounds

To sustain a sound, you can loop between loop points
Authored using a sound editor

They usually bracket the Sustain stage
If no loop points, loop defaults to entire sound
Loops can run a number of times, or forever

563

Adding sound

Controlling sounds

Sounds may be enabled and disabled
Enabling a sound makes it schedulable

The sound will start to play if the sound’s scheduling bounds
intersect the viewer’s activation radius

Overall sound volume may be controlled with a gain
multiplication factor

564

Adding sound

Sound class methods

Methods on Sound select the sound data, turn on the sound, set its
volume, and loop sound playback

By default, sounds are disabled, have a gain of 1.0, and are
not looped

Method
void setSoundData(MediaContainer sound)

void setEnable(boolean onOff)

void setInitialGain(float amplitude)

void setLoop(int count)

Special loop count values:
A 0 count loops 0 times (play once through)
A -1 count loops forever

565

Adding sound

Using background sounds

BackgroundSound extends the Sound class
Background sound waves come from all directions, flooding
an environment at constant volume
Similar idea as an AmbientLight

Use background sounds for:
Presentation sounds (voice over, narration)
Environment sounds (ocean waves, wind)
Background music

You can have multiple background sounds playing

566

Adding sound

BackgroundSound class methods

BackgroundSound adds no additional methods beyond those of
Sound

Method
BackgroundSound()

567

Adding sound

BackgroundSound example code

Load sound data

MediaContainer myWave = new MediaContainer("canon.wa v

Create a sound

BackgroundSound mySound = new BackgroundSound();
mySound.setSoundData(myWave);
mySound.setEnable(true);
mySound.setInitialGain(1.0f);
mySound.setLoop(-1); // Loop forever

Set the scheduling bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
mySound.setSchedulingBounds(myBounds);

568

Adding sound

Using point sounds

PointSound extends the Sound class
Sound waves emit radially from a point in all directions
Similar idea as a PointLight

Use point sounds to simulate local sounds like:
User interface sounds (clicks, alerts)
Data sonification
Game sounds (laser blasters, monster growls)

You can have multiple point sounds playing

569

Adding sound

Varying gain with distance

Point sound waves are attenuated:
Amplitude decreases as the viewer moves away

Attenuation is controlled by a list of value pairs:
Distance from sound position
Gain at that distance

570

Adding sound

PointSound class methods

Methods on PointSound set the sound position and attenuation
The default position is (0.0,0.0,0.0) with no attenuation

Method
PointSound()

void setPosition(Point3f pos)

void setDistanceGain(Point2f[] atten)

571

Adding sound

PointSound example code

Load sound data

MediaContainer myWave = new MediaContainer("willow1. w

Create an attenuation array

Point2f[] myAtten = {
 new Point2f(100.0f, 1.0f),
 new Point2f(350.0f, 0.5f),
 new Point2f(600.0f, 0.0f)
};

572

Adding sound

PointSound example code

Create a sound

PointSound mySound = new PointSound();
mySound.setSoundData(myWave);
mySound.setEnable(true);
mySound.setInitialGain(1.0f);
mySound.setLoop(-1); // Loop forever
mySound.setPosition(new Point3f(0.0f, 1.0f, 0.0f))
mySound.setDistanceGain(myAtten);

Set the scheduling bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
mySound.setSchedulingBounds(myBounds);

573

Adding sound

Using cone sounds

ConeSound extends the PointSound class
Sound waves emit radially from a point in a direction,
constrained to a cone
Similar idea as a SpotLight

Use cone sounds to simulate local directed sounds like:
Loud speakers
Musical instruments

You can have multiple cone sounds playing

574

Adding sound

Varying gain with distance

ConeSound extends PointSound support for attenuation
PointSound uses one list of distance-gain pairs that apply for
all directions

ConeSound uses two lists of distance-gain pairs that apply in
front and back directions

The cone’s aim direction is the front direction
If no back list is given, the front list is used

575

Adding sound

Varying gain and frequency with angle

Real-world sound sources emit in a direction
Volume (gain) and frequency content varies with angle

ConeSound angular attenuation simulates this effect with a list of
angle-gain-filter triples

Angle from the cone’s front direction
Gain at that angle
Cutoff frequency for a low-pass filter at that angle

576

Adding sound

ConeSound class methods

Methods on ConeSound aim the sound, set its distance gain front
and back, and control angular attenuation

By default, cone sounds are aimed in the positive Z direction
with no distance or angular attenuation

Method
ConeSound()

void setDirection(Vector3f dir)

void setDistanceGain(Point2f[] front, Point2f[] back)

void setBackDistanceGain(Point2f[] back)

void setAngularAttenuation(Point3f[] atten)

Attenuation angles are in the range 0.0 to PI radians

577

Adding sound

ConeSound example code

Load sound data

MediaContainer myWave = new MediaContainer("willow1. w

Create attenuation arrays

Point2f[] myFrontAtten = {
 new Point2f(100.0f, 1.0f),
 new Point2f(350.0f, 0.5f),
 new Point2f(600.0f, 0.0f)
};
Point2f[] myBackAtten = {
 new Point2f(50.0f, 1.0f),
 new Point2f(100.0f, 0.5f),
 new Point2f(200.0f, 0.0f)
};
Point3f[] myAngular = {
 new Point3f(0.000f, 1.0f, 20000.0f),
 new Point3f(0.785f, 0.5f, 5000.0f),
 new Point3f(1.571f, 0.0f, 2000.0f),
};

578

Adding sound

ConeSound example code

Create a sound

ConeSound mySound = new ConeSound();
mySound.setSoundData(myWave);
mySound.setEnable(true);
mySound.setInitialGain(1.0f);
mySound.setLoop(-1); // Loop forever
mySound.setPosition(new Point3f(0.0f, 1.0f, 0.0f))
mySound.setDirection(new Vector3f(0.0f, 0.0f, 1.0f)
mySound.setDistanceGain(myFrontAtten, myBackAtten);
mySound.setAngularAttenuation(myAngular);

Set the scheduling bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
mySound.setSchedulingBounds(myBounds);

579

Adding sound

Setting scheduling bounds

A sound is hearable (if it is playing) when:
The viewer’s activation radius intersects its scheduling
bounds
Multiple sounds can be active at once
Identical to behavior scheduling

Sound bounding enables different sounds for different areas of
the scene

By default, sounds have no scheduling bounds and are never
hearable!

Common error: forgetting to set scheduling bounds

580

Adding sound

Sound class methods

Methods on Sound set the scheduling bounds

Method
void setSchedulingBounds(Bounds bounds)

void setSchedulingBoundingLeaf(BoundingLeaf leaf)

581

Adding sound

Sound example

[ExSound]

582

Adding sound

Controlling the sound release

When you disable a sound:
Enable the release to let the sound finish playing, without
further loops
Disable the release to stop it immediately

Release enabled Release disabled

583

Adding sound

Enabling continuous playback

When a sound is unscheduled (viewer moves out of scheduling
bounds):

Enable continuous playback to keep it going silently
It resumes, in progress if scheduled again

Disable continuous playback to skip silent playback
It starts at the beginning if scheduled again

Continuous enabled Continuous disabled

584

Adding sound

Prioritizing sounds

Sound hardware and software limits the number of simultaneous
sounds

Worst case is 4 point/cone sounds and 7 background sounds

You can prioritize your sounds
A low priority sound may be temporarily muted when a high
priority sound needs to be played

585

Adding sound

Sound class methods

Methods on Sound control the release, continuous playback, and
priority

By default, the release and continuous playback or disabled
and the priority is 1.0

Method
void setReleaseEnable(boolean onOff)

void setContinuousEnable(boolean onOff)

void setPriority(float ranking)

586

Adding sound

Summary

All sounds use sound data from a MediaContainer

For all sounds you can turn them on or off, set their gain, release
style, continuous playback style, looping, priority, and scheduling
bounds

BackgroundSound creates a sound that emits everywhere, flooding
the area with sound

PointSound creates a sound that emits from a position, radially in
all directions, with distance attenuation

ConeSound creates a sound that emits from a position in a forward
direction, with distance and angular attenuation

Sounds are hearable (if playing) when the viewer’s activation
radius intersects the sound’s scheduling bounds

Default is no scheduling bounds, so nothing is hearable!

587

Controlling the sound environment

 Motivation 588
 Soundscape class hierarchy 589

 Setting Soundscape application bounds 590
 Soundscape class methods 591

 Types of aural attributes 592
 AuralAttributes class hierarchy 593
 Controlling reverberation 594
 Controlling reverberation 595
 AuralAttributes class methods 596
 Controlling sound delay with distance 597
 Controlling frequency filtering with distance 598
 AuralAttributes class methods 599
 Controlling Doppler shift 600
 AuralAttributes class methods 601
 AuralAttributes example code 602

 Summary 603

588

Controlling the sound environment

Motivation

The Sound classes control features of the sound

To enhance realism, you can control features of the environment
too

Use soundscapes and aural attributes to
Add reverberation (echos)
Use different reverberation for different rooms
Control doppler pitch shift
Control frequency filtering with distance

589

Controlling the sound environment

Soundscape class hierarchy

All soundscape features are controlled using Soundscape

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.Node

 javax.media.j3d.Leaf

 javax.media.j3d.Soundscape

590

Controlling the sound environment

Setting Soundscape application bounds

A Soundscape affects sound when:
The viewer’s activation radius intersects its application
bounds

Identical to background application bounds
If multiple soundscapes active, closest one used
If no soundscapes active, no reverb, filtering, or doppler shift
takes place

By default, soundscapes have no application bounds and are
never applied!

Common error: forgetting to set application bounds

591

Controlling the sound environment

Soundscape class methods

Methods on Soundscape set the aural attributes and application
bounds

Method
Soundscape()

void setApplicationBounds(Bounds bounds)

void setApplicationBoundingLeaf(BoundingLeaf leaf)

void setAuralAttributes(AuralAttributes aural)

592

Controlling the sound environment

Types of aural attributes

Java 3D provides three types of aural attributes:
Reverberation (echo)
Distance filtering
Doppler Shift

All aural attributes types are controlled with an AuralAttributes

node

593

Controlling the sound environment

AuralAttributes class hierarchy

All aural attributes features are controlled using AuralAttributes

Class Hierarchy
java.lang.Object

 javax.media.j3d.SceneGraphObject

 javax.media.j3d.NodeComponent

 javax.media.j3d.AuralAttributes

594

Controlling the sound environment

Controlling reverberation

In the real world, sound bounces off walls, floors, etc
If the bounce surface is hard, we hear a perfect echo
If it is soft, some frequencies are absorbed
The set of all echos is Reverberation

Java 3D provides a simplified model of reverberation
Sounds echo after a reverb delay time
Echo attenuation is controlled by a reflection coefficient
Echos stop after a reverb order (count)

595

Controlling the sound environment

Controlling reverberation

Reverberation uses a feedback loop:
Each echo is a trip around the feedback loop

596

Controlling the sound environment

AuralAttributes class methods

Methods on AuralAttributes control reverberation
All values are zero by default

Method
AuralAttributes()

void setReverbDelay(float delay)

void setReflectionCoefficient(float coeff)

void setReverbOrder(int order)

A reverb order of -1 repeats echos until they die out

597

Controlling the sound environment

Controlling sound delay with distance

When a sound starts playing, there is a delay before it is heard
It takes time for sound to travel from source to listener

The default speed of sound is 0.344 meters/millisecond
You can scale this up or down using rolloff
Values 0.0 <= 1.0 slow down sound
Values > 1.0 speed up sound
A 0.0 value mutes the sound

598

Controlling the sound environment

Controlling frequency filtering with distance

An attribute gain controls overall volume

Sound waves are filtered, decreasing high frequency content as
the viewer moves away

Attenuation is controlled by a list of value pairs:
Distance from sound position
Cutoff frequency for a low-pass filter at that distance

599

Controlling the sound environment

AuralAttributes class methods

Methods on AuralAttributes control gain, filtering, and rolloff
By default, there is no filtering and gain and rolloff are 1.0

Method
void setAttributeGain(float gain)

void setRolloff(float rolloff)

void setDistanceFilter(Point2f[] atten)

600

Controlling the sound environment

Controlling Doppler shift

Doppler shift varies pitch as the sound or viewer moves
Set the velocity scale factor to scale the relative velocity
between the sound and viewer

A frequency scale factor accentuates or dampens the effect

601

Controlling the sound environment

AuralAttributes class methods

Methods on AuralAttributes control frequency and velocity
scaling for Doppler shift

By default, frequencies are scaled by 1.0 and velocity by 0.0

Method
void setFrequencyScaleFactor(float scale)

void setVelocityScaleFactor(float scale)

602

Controlling the sound environment

AuralAttributes example code

Set up aural attributes

AuralAttributes myAural = new AuralAttributes();
myAural.setReverbDelay(2.0f);
myAural.setReverbOrder(-1); // Until dies out
myAural.setReflectionCoefficient(0.2f); // dampen

Create the sound scape

Soundscape myScape = new Soundscape();
myScape.setAuralAttributes(myAural);

Set the application bounds

BoundingSphere myBounds = new BoundingSphere(
 new Point3d(), 1000.0);
myScape.setApplicationBounds(myBounds);

603

Controlling the sound environment

Summary

Soundscape anchors a set of AuralAttributes to be applied
within a bounded area

AuralAttributes control reverberation, distance filtering, and
Doppler shift within that area

Soundscapes apply when the viewer’s activation radius intersects
the soundscape’s application bounds

Default is no application bounds, so nothing is affected!

	Lecturers
	Abstract
	Preface
	Lecturer Biographies
	Table of Contents
	Section 1: Introduction, Scene Graphs, Shapes, Appearance
	Section 2: Groups, Transforms, Texture Mapping, Lighting
	Section 3: Universes, Viewing, Input, Behaviors
	Section 4: Interpolators, Picking, Backgrounds, Fog
	Section 5: Text geometry, Raster geometry, Advanced Texture Mapping

