Getting Started with
the Java 3D™ API

Chapter 2
Creating Geometry

Getting Started with the Java 3D API Creating Geometry 2

© Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A

All Rights Reserved.
The information contained in this document is subject to change without notice.

SUN MICROSYSTEMS PROVIDES THIS MATERIAL "AS IS' AND MAKES NO WARRANTY OF ANY
KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SUN MICROSYSTEMS SHALL
NOT BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES (INCLUDING LOST PROFITS IN CONNECTION WITH THE FURNISHING, PERFORMANCE
OR USE OF THIS MATERIAL, WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL
THEORY).

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY MADE TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR PROGRAM(S) DESCRIBED IN THIS
PUBLICATION AT ANY TIME.

Some states do not allow the exclusion of implied warranties or the limitations or exclusion of liability for
incidental or consequential damages, so the above limitations and exclusion may not apply to you. This warranty
gives you specific legal rights, and you a'so may have other rights which vary from state to state.

Permission to use, copy, modify, and distribute this documentation for NON-COMMERCIAL purposes and
without fee is hereby granted provided that this copyright notice appearsin all copies.

This documentation was prepared for Sun Microsystems by K Computing (530 Showers Drive, Suite 7-225,
Mountain View, CA 94040, 770-982-7881, www.kcomputing.com). For further information about course
development or course delivery, please contact either Sun Microsystems or K Computing.

Java, JavaScript, Java 3D, HotJava, Sun, Sun Microsystems, and the Sun logo are trademarks or registered
trademarks of Sun Microsystems, Inc. All other product names mentioned herein are the trademarks of their
respective owners.

The Java 3D Tutorial 2-i

Getting Started with the Java 3D API Creating Geometry 2

Chapter 2:

L@ 1 aTo Tl 1 oS 2-1
2.1 Virtual World Coordinate SYSEOMcceoueeeiiiie ettt e et e e sneeeeneeeenees 2-1
2.2 Visua Object DEfiNitiON BASICSccuueeiiieeiiiee e esiee et etee st e et e e eneeeseaeeesneeesneeeenneeeenees 2-2

2.2.1 AnInstance of Shape3D Defines aVisual ODJECLc.oiiiiiiiiiiniieie e 2-2
2.2.2 INOOE COMPONENES......eeuteeiutieeteeerteeesuteesateasbeeasbeeaaseeeaabeesabeaabeeaabeeaaaeeesabeeanbeeabeeeabeeesneeesnresanbeeanses 2-4
2.2.3 Defining Visual OBJECE ClaSSESciiiuiieiieiitie ettt ettt et sbe e saee e sabe e e beaeees 2-5
2.3 GEOMELNC ULHTILY ClIASSES.......coiiieiiesieeeit ettt sie e n e nnn e nees 2-6
P N R =0 TR TP PRORPT 2-7
2.3.2 G0N ...ttt s e r et 2-8
PR R I O 110 To = TP PTU PRSP 2-9
PR S o 1= N O ST PRSP 2-9
2.3.5 More ABout GEOMELIC PrIMITIVES.......coiviiiiiieie e e 2-10
PR N I o o] { O1F oL S TP PROSP 2-10
2.3.7 Example: Creating a Simple YO0-Y 0 From TWO CONES.........ccicuiiiiiianieieiieenieesiee et 2-11
Advanced TopiC: GEOMELNIC PrMITIVEeiiiiieiiieiie ettt sttt e b e e 2-14
2.4 MahEMELICAl ClASSES.eiiiieeieieieeee ettt e e e nne e 2-15
2.4. 1 POINE ClBSSES.ueiteteeteeee sttt eteetestesbe s st et e sttt s st e beebesbeeae e be e beebe e ae e beebesbeeaseebesbesbeeneenbesbesaeenteneeee 2-18
2.4.2 COlOr ClBSSESteeteeiteeite ettt ettt ettt et b e bt b e bt bt bt bt e bt e bt e bt bt e Rt e E e R Rt e n e ne e ne e nre s 2-19
2.4.3 VECION ClBSSES.....cetieitieitieite ettt ettt ettt b et b e bt bt bt bt bt e bt e b e e bt e bt e b e e are e be e b eane e neenre s 2-19
244 TEXCOON ClIASSES.....c.ueeitieteeiteeite ettt ettt et r e sb e bt bbbt e bt bt e bt e b e e be e b e e b e e be e neene e neenre s 2-20
2.5 GEOMELIY ClaSSES. ... eeieiuiieiitiieetieeetee et e et e e et e e sateesbeeesateeesneeeaseeesneeeeanseesaneeeanseeeanseeenneeean 2-20
2.5.1 GEOMELIYATTAY ClESS.. . eiiitiiiiiteitii ettt ettt ettt sh e be e bt e et e e e sbe e e saee e sabeesabeeabeeeabeeesaneesnbeens 2-21
2.5.2 SUDCIaSSES Of GEOMELIYAITAYeiiteieieit ettt ettt ettt et e e sat e st e e st e e e be e e sbee e saneesnbeens 2-25
2.5.3 SUDCIaSSES Of GEOMELIY SEIIPATTAYceeeeiiieeetee ettt ettt e sb e saee e sabe e sbe e e sbe e e sbee e saneesnbeens 2-27
2.5.4 Subclasses Of INAEXEAGEOMEINYATITAYoeiueriiei ettt e ettt e e sate e st esbe e e sbe e sbee e saeeesabeeans 2-31
25.5 Axisjavaisan Example of INdeXedGeOMEINYATITAYccioueeiiiiiiieeenieeeriie st e sies et e e siee e saeeeseee s 2-34
2.6 AppearanCe and AITDULES..........oiiiie et e e snee e e e sae e e sneeeeneeeens 2-34
2.6.1 Appearance NOECOMPONENTcuuiiiiie e itee et ee et ettt et e s sbe e e sbee e saeeesabeesbeeasbeeesbeeesaneesnbeans 2-36
2.6.2 Sharing NodeComponent ObJECLS.coiuiaiieriiie ettt et e sbee s sbe e sbe e saee e ssbeesbeessbeeesbeeesaneesnbeeans 2-36
2.6.3 ALNDUIE ClASSES......cui ittt 2-37
2.6.4 Example: Back FACe CUIlINGcoiiiiiiiieiiie ettt ettt e et e sbe e e saee e saneen 2-42
S I = SRR 2-44

The Java 3D Tutoria 2-i

Getting Started with the Java 3D API Creating Geometry 2

List of Figures

Figure 2-1 Orientation of AXiSIN Virtual Worldccoooiiii e 2-2
Figure 2-2 A Shape3D Object Defines a Visual Object in aScene Graph.ccccvvvevieenieneeeie e 2-3
Figure 2-3 Partial Java 3D API Class Hierarchy Showing Subclasses of NodeComponent...................... 2-5
Figure 2-4 Class Hierarchy for Utility Geometric Primitives. Box, Cone, Cylinder, and Sphere............... 2-7
Figure 2-5 Class Hierarchy of ColorCube Utility Geometric Class........coooceeveiiiiiereriee e 2-11
Figure 2-6 Scene Graph fOr CONEY OYOAPP.c.veerrerrerieeriee st et et e e sr e e e sr e sneesneessneesneesneesnneens 2-12
Figure 2-7 Multiple Parent Exception While Attempting to Reuse a Cone Objectccocoveieieienee. 2-13
Figure 2-8 An Image Rendered by CONEY OYOAPPJAVAeerueirreeiiieriiesieeiee s 2-13
Figure 2-9 Mathematical Classes Package and Hierarchy...........coocevvieieiee e 2-16
Figure 2-10 Geometry Class HIErarChyooeooiiir e 2-21
Figure 2-11 Axis Classin AxisApp.java Creates this Scene Graph............cccoeverieeiiencnieeiecseceeee 2-25
Figure 2-12 Non-Indexed GEOmELryArray SUDCIBSSES..........oiiiiiiiiieiee et 2-26
Figure 2-13 GeOMELryAITay SUDCIBSSES.........ooiuieiiiiiiii e 2-26
Figure 2-14 GeometryStripAITay SUDCIBSSES.........eoiviiiieiieeiie et 2-27
Figure 2-15 Three VIiews Of the YO-Y0.. ..o e 2-28
Figure 2-16 Y 0-yo with Colored Filled POlYGONS..........c.ciiiiiiee e 2-31
Figure 2-17 Index and Data ArraySfor @ Cubeoooiiiee e 2-32
Figure 2-18 IndexedGeometryArray SUDCIBSSES..........coiuieiiiiiiiieeiee e 2-32
Figure 2-19 An AppearanCe BUNIE..........ooeii i e 2-35
Figure 2-20 Appearance Bundle Created by Code Fragment 2-9.ccoooiiiiiniiie e 2-36
Figure 2-21 Multiple Appearance Objects Sharing a Node CoOmMpoNeNt...........cccoeveeeereeerieeesieeeseee e 2-37
Figure 2-22 Twisted Strip with Back Face CUlliNg.........cooiieiiiiieeie e 2-42
Figure 2-23 Twisted Strip without Back Face CUlling..........cocuiiiiiieiiiieeeee e 2-43
Figure 2-24 Determining the Front Face of Polygons and SIiPS........ccovvviieieenieniieesieesee e 2-44

List of Tables
TaDlE 2-1 ATIITDULE DEFAUITS.....ceevvneee ettt ettt ettt e e et e e e ettt e e eeeeeee e s e e eeeeeeeensnan s 2-42

List of Code Fragments

Code Fragment 2-1 Skeleton Code for aVisualObject ClasS........cooieeeiiiiieeeeee e 2-6
Code Fragment 2-2 Class ConeY oyo From ConeY oyoApp.java Example Program............ccceveceeeneenne 2-14
Code Fragment 2-3 Example ColorConstantS Class.........coeiueieiieeiiiee e esiee et seeeenaeee s 2-19
Code Fragment 2-4 GeometryArray CONSIIUCIONSceecueieiieeeeieeeieeesieeesteeeeeeeseeeeesaeeeseeeesneeeesneeeans 2-23
Code Fragment 2-5 Storing Data into a GeometryArray ODJECT.........cooviiiiiiieeiieeeee e 2-24
Code Fragment 2-6 GeometryArray Objects Referenced by Shape3D Objects.........ccoocveieerieriieecieene 2-25
Code Fragment 2-7 yoyoGeometry() Method Creates TriangleFanArray Objectcccevieeeiceneiens 2-29
Code Fragment 2-9 Using Appearance and ColoringAttributes NodeComponent Objects...................... 2-35
Code Fragment 2-10 Disable Back Face Culling for the Twisted SIipoooveiiieiienieeeeeeeeeeeee 2-43

The Java 3D Tutorial 2-ii

Getting Started with the Java 3D API Creating Geometry 2

List of Reference Blocks

ShEPEBD CONSIIUCTONS ...ttt ettt ettt b e e s he e et e b e e e seesan e e s e e nneesaneeneennnennneaas 2-3
Shape3D MethodsS (Partial TISt)coveeieeeie e 2-3
Shape3D CapabiliTIES........couieiieie et 2-4
BOX CONSIrUCLOrS (Partial liSt)c.ooueeeeeiee ittt et e e e aee e s e e st e e e sneeeeneeas 2-8
Box, Cone, and Cylinder MEINOOScoo it e e e s e st e e sneeeeneens 2-8
Cone ConStructors (PArtial [ISt)...... .o oeieiiee ettt e e eeeee e e smeeeeeneeeennes 2-9
Cylinder Constructors (Partial liSL)eeeoeee et 2-9
Sphere Constructors (Partial 1SE)o.eieieee et st e et e smte e e eneeeenees 2-9
SPNEME IMEINOMS ...ttt e et e e e bt e e sateeesneeesteeesnseeeneeesnneeesnneeenneeeans 2-10
Primitive Methods (Partial l1SE)eeeeiee et neee e 2-15
QI 2 0 1 ok o) TS 2-17
Tuple2f MethodsS (Partial TISt)ceeieeiii e 2-17
POINt3f MethodsS (Partial [1St)..........cveeiieiieee e 2-18
(000 0] g O 1= =S ST PR TR PP 2-19
Vector3f MethodsS (Partial [1St)ccoeeriiriieee e 2-20
GEOMELIYAITAY CONSIIUCLONccuieie it ettt ss e s sne e e s e e snn e e s ne e e sne e s snneesnneenns 2-22
GeometryArray Methods (Partial 1iSE)c.eeeeeiieii e 2-23
GeometryArray Methods (partial list, CONtINUE)c.eeiiiiiiiiieiie e 2-24
GeometryArray SUDCIESS CONSIIUCTONS.........covieiiieieieiee sttt eene e s 2-26
Geometry StripArray SUDCIESS CONSIIUCTONS.........eoiriiieeiiee ittt 2-27
QI Tz 1010 [0 = o O = S 2-28
CONSLIUCLOT SUMIMEBIY ...iveieiiee et ssree et e s e sse e e s e e s e s me e e s ne e e smr e e e nn e e sane e e smneesnneesnneeesnneennneenns 2-28
IMEENOO SUMIMIBIY ...ttt h e b et e b e e s s e s e e e n e e e snenaneeneennnennnean 2-28
IndexedGeometryArray and SUDCIasSeS CONSIIUCKONS...........civiiiieiie e 2-33
IndexedGeometry StripArray and SUDCIESSES CONSITUCLOISceeiueerieeireeiee e 2-33
IndexedGeometryArray Methods (Partial [1St)cocueeieeiieiiiieeee e 2-34
APPEAANCE CONSITUCTON ... ettt e et e st e e et e sne e s e e e smr e e sne e e sare e e snreeenneennnes 2-36
Appearance Methods (excluding lighting and teXTUNNG)coeeeerieerieneeeesee e 2-36
POINTATLTDULES CONSIIUCTONS ...ttt n e e n e e nneennneen 2-37
POINLAITOULES MEINOUS. ... 2-38
LiNEATLTDULES CONSITUCTOIS ...ttt ettt n e n e snn e e neenneennneen 2-38
LiNEATIITDULES IMEINOUS. ... n e nneennne e 2-38
POlYGONALLITDULES CONSIIUCTONS. ...ttt n e nnneen 2-39
POlYQONATLIDULES MEINOUTS ... e 2-39
ColOriNGALIDULES CONSIIUCTONS.........eeeeeeeiie ettt nn e ne e s 2-39
ColoriNGATHDULES MEINOOS ...t e e sneeeenneeeens 2-40
TransparenCyAttriDULES CONSIIUCIONScovieiiieiieeiiesie ettt nnne e 2-40
TransparenCyArDULES MENOUS.............coiiieie e 2-40
RenderingAriDULES CONSITUCTOIS.........ciitieiiieieeiie ettt n e 2-41
RenderingAttributeS MEhOUS............oiiee e e e 2-41

The Java 3D Tutoria 2-iii

Getting Started with the Java 3D API Creating Geometry 2

Preface to Chapter 2

This document is one part of atutorial on using the Java 3D API. You should be familiar with Java 3D
APl basicsto fully appreciate the material presented in this Chapter. Additional chapters and the full

preface to this materia is presented in the Module O document available at:
http://java. sun. conl products/java-nedi a/ 3D/ col | at er al

The Java 3D Tutorial 2-iv

Getting Started with the Java 3D API Chapter 2. Creating Geometry

CHAPTER 2
Creating Geometry

100k
T(dx, dy, dz) = géggz
0001

Chapter Objectives

After reading this chapter, you'll be able to:
Use geometric primitive utility classes
Write classes to define visual objects
Specify geometry using core classes
Specify appearance for visual objects

C hapter 1 explores the basic concepts of building a Java 3D virtual universe, concentrating on specifying
transforms and ssimple behaviors. The HelloJava3D examples in Chapter 1 use the ColorCube class for the
only visual object. With ColorCube, the programmer doesn't specify shape or color. The ColorCube class
is easy to use but can not be used to create other visua objects.

There are three major ways to create new geometric content. One way uses the geometric utility classes for
box, cone, cylinder, and sphere. Another way is for the programmer to specify the vertex coordinates for
points, line segments, and/or polygona surfaces. A third way is to use a geometry loader. This chapter
demonstrates creating geometric content the first two ways.

The focus of this chapter is the creation of geometric content, that is, the shape of visual objects. A few
topics related to geometry are also covered, including math classes and appearance. Before describing how
to create geometric content, more information on the virtual universe coordinate system is presented in
section 2.1.

2.1 Virtual World Coordinate System

As discussed in Chapter 1, an instance of VirtualUniverse class serves as the root of the scene graph in all
Java 3D programs. The term virtual universe commonly refers to the three dimensiona virtual space Java
3D objects populate. Each Locale object in the virtual universe establishes a virtual world Cartesian
coordinate system.

A Locale object serves as the reference point for visua objects in avirtual universe. With one Localein a
SimpleUniverse, there is one coordinate system in the virtua universe.

The Java 3D Tutoria 2-1

Getting Started with the Java 3D API Chapter 2. Creating Geometry

The coordinate system of the Java 3D virtual universe is right-handed. The x-axis is positive to the right,
y-axis is positive up, and z-axis is positive toward the viewer, with al units in meters. Figure 2-1 shows
the orientation with respect to the viewer in a SmpleUniverse.

viewer position Z image plate

Figure 2-1 Orientation of Axisin Virtual World

2.2 Visual Object Definition Basics

Section 2.2.1 presents the Shape3D class. A genera discussion of the NodeComponent class follows in
section 2.2.2. After discussing geometry primitives defined in the utility package, the rest of the chapter
covers Geometry and Appearance node components.

2.2.1 An Instance of Shape3D Defines a Visual Object

A Shape3D scene graph node defines a visua object’. Shape3D is one of the subclasses of Leaf class;
therefore, Shape3D objects can only be leaves in the scene graph. The Shape3D object does not contain
information about the shape or color of avisual object. Thisinformation is stored in the NodeComponent
objects referred to by the Shape3D object. A Shape3D object can refer to one Geometry node component
and one Appearance node component.

In the HelloJava3D scene graphs in Chapter 1, the generic object symbol (rectangle) was used to represent
the ColorCube object. The simple scene graph in Figure 2-2 shows a visua object represented as a
Shape3D leaf (triangle) and two NodeComponents (ovals) instead of the generic rectangle’.

! Shape3D objects define the most common visual objects of a virtual universe, but there are other ways.

2 This scene graph is not correct for a ColorCube object. ColorCube does not use an Appearance NodeComponent.
Thisis an example of atypical visua object.

The Java 3D Tutorial 2-2

Getting Started with the Java 3D API Chapter 2. Creating Geometry

View branch graph

/’/// A‘\\\\
/ \

........... V| S.,Ial Ob] &t

Figure 2-2 A Shape3D Object Definesa Visual Object in a Scene Graph.

A visua object can be defined using just a Shape3D object and a Geometry node component. Optionally,
the Shape3D object refers to an Appearance node component as well. The constructors for Shape3D
(presented in the next reference block) show that a Shape3D object can be created without node component
references, with just a Geometry node component reference, or with references to both types of node
components.

Shape3D Constructors

Shape3D()
Constructs and initializes a Shape3D object without geometry and appearance node components.

Shape3D(Geonetry geomnetry)
Constructs and initializes a Shape3D object with the specified geometry and a null appearance component.

Shape3D(Geonetry geonetry, Appearance appearance)
Constructs and initializes a Shape3D object with the specified geometry and appearance components.

Aslong as the Shape3D object is not live and not compiled, the node component references can be changed
with the methods shown in the next reference block. These methods can be used on live or compiled
Shape3D objects if the capabilities to do so are set first. Another reference block below lists the Shape3D
capabilities. Be sure to read the "Reading Reference Blocks' section. It applies to many future reference
blocks.

Shape3D Methods (partial list)

A Shape3D object references Geometry and/or Appearance NodeComponent objects. Along with the set-
methods shown here, there are complementary get-methods.

voi d set Geonet ry(Geonetry geonetry)
voi d set Appear ance(Appear ance appear ance)

The Java 3D Tutorial 2-3

Getting Started with the Java 3D API Chapter 2. Creating Geometry

Reading Reference Blocks

The reference blocks in this tutorial do not list al of the constructors, methods, and capabilities for each
Java 3D APl class. For example, the Shape3D methods reference block (above) does not list al the
methods of the Shape3D class. Two of the methods not listed are the "get-methods' that match the "set-
methods" shown. That is, Shape3D hasget Geonet ry() and get Appear ance() methods. Each of
these methods returns a reference to the appropriate NodeComponent.

Since many Java 3D APl classes have many methods, not al are listed. The ones listed in the reference
blocks in this tutoria are the ones that pertain to the tutorial topics. Also, many classes have get-methods
that match set-methods. The get-methods are not listed in the reference blocks in this tutorial to reduce the
length of the reference blocks.

The following reference block shows the capabilities of Shape3D objects. This reference block introduces a
shorthand notation for listing capabilities. Each line in the reference block lists two capabilities instead of
one. There is an ALLOW_GEOMETRY_READ and an ALLOW_GEOMETRY_WRITE capability in
each Shape3D object. Quite often there are read and write pairs of capabilities. To reduce the size of the
reference blocks, capability reference blocks list the matched read and write capability pairs together in the
short hand notation.

Consult the API specification for the complete list of constructors, methods, and capabilities.

Shape3D Capabilities
Shape3D objects inherit capabilities from SceneGraphObject, Node, and Leaf classes. They are not listed
here. Refer to section 1.8.2 for more information on Capabilities.
ALLOW GEOVETRY_READ | WRI TE
ALLOW APPEARANCE_READ | W\RI TE
ALLOW COLLI SI ON_BOUNDS _READ | WRI TE

2.2.2 Node Components

NodeComponent objects contain the exact specification of the attributes of a visual object. Each of the
severa subclasses of NodeComponent defines certain visual attributes. Figure 2-3 shows part of the Java
3D API hierarchy containing the NodeComponent class and its descendants. Section 2.5 presents the
Geometry NodeComponent. Section 2.6 presents the Appearance NodeComponent.

The Java 3D Tutorial 2-4

Getting Started with the Java 3D API Chapter 2. Creating Geometry

Appearance
Geometry
Material
NodeComponent Texture
Attributes* Background
SceneGraphObject Behavior
Group
Node Fog
L eaf Light
Morph
Shape3D
*There are several attribute classes. Sound
ViewPlatform

Figure 2-3 Partial Java 3D API Class Hierarchy Showing Subclasses of NodeComponent.

2.2.3 Defining Visual Object Classes

The same visua object will quite often appear many times in a single virtual universe. It makes sense to
define a class to create the visual object instead of constructing each visua object from scratch. There are
severa waysto design a class to define a visua object.

Code Fragment 2-1 shows the skeleton code of VisualObject class as an example of one possible
organization for a generic visua object class. The methods are empty in the code. The code of
Visual Object does not appear in the examples distribution because is it not particularly useful asis.

1. public class Visual Object extends Shape3D{

2.

3. private Geometry voCGeonetry;

4. privat e Appearance voAppear ance;

5.

6. /1 create Shape3D with geonetry and appearance

7. /1 the geonetry is created in nmethod createCeonetry
8. /1 the appearance is created in nethod createAppearance
9. public Visual Object() {

10.

11. voCeonetry = createGeonetry();

12. VoAppear ance = creat eAppear ance();

13. this. set Geonetry(voGeonetry);

14. t hi s. set Appear ance(voAppear ance) ;

15. }

16.

The Java 3D Tutorial 2-5

Getting Started with the Java 3D API Chapter 2. Creating Geometry

17. private Geonetry createGeonetry() {

18. /1 code to create default geonetry of visual object
19. }

20.

21. private Appearance createAppearance () {

22. /1 code to create default appearance of visual object
23. }

24.

25. } // end of class Visual Object

Code Fragment 2-1 Skeleton Code for a VisualObject Class

The organization of the VisualObject class in Code Fragment 2-1 is similar to the ColorCube utility class
in that it extends a Shape3D object. The VisualObject class is a suggested starting point for defining
custom content classes for use in scene graph construction. Each individual Java 3D programmer will
almost certainly customize the VisualObject class for their own purposes. For a complete example of this
class organization, read the source code for ColorCube classinthecom sun. j 3d. util s. geonetry
package, which is available with the Java 3D API distribution.

Using Shape3D as a base for creating a visual object class makesit easy to usein aJava 3D program. The
visual object class can be used as easily as the ColorCube class in the HelloJava3D examples from Chapter
1. The constructor can be called and the newly created object inserted as the child of some Group in one
line of code. In the following example line of code, objRoot is an instance of Group. This code creates a
Visua Object and adds it as a child of objRoot in the scene graph:

obj Root . addChi | d(new Vi sual Qbject());

The VisualObject constructor creates the Visua Object by creating a Shape3D object which references the
NodeComponents created by the methods cr eat eGeonet ry() and cr eat eAppearance(). The
method cr eat eGeonret r y() creates a Geometry NodeComponent to be used in the visua object. The
method cr eat eAppear ance() is responsible for creating the NodeComponent that defines the
Appearance of the visual object.

Another possible organization for a visual object is to define a container class not derived from Java 3D
API classes. In this design, the visual object class would contain a Group Node or a Shape3D as the root
of the subgraph it defines. The class must define method(s) to return a reference to this root. This
technique is a little more work, but may be easier to understand. Some program examples presented later
in this chapter give examples of independent visual object class definitions.

A third possible organization for avisua object classis one similar to the classes Box, Cone, Cylinder, and
Sphere defined in the com sun. j 3d. util s. geometry package. Each class extends Primitive,
which extends Group. The design details of Primitive and its descendants are not discussed in this tutoria,
but the source code for all of these classes is available with the Java 3D API distribution. From the source
of Primitive class, and other utility classes, the reader can learn more about this class design approach.

2.3 Geometric Utility Classes

This section covers the utility classes for creating box, cone, cylinder, and sphere geometric primitives.
The geometric primitives are the second easiest way to create content in avirtua universe. The easiest way
is to use the ColorCube class.

The primitive classes provide the programmer with more flexibility than the ColorCube class provides. A
ColorCube object defines the geometry and color in a Geometry node component. Consequently,

The Java 3D Tutorial 2-6

Getting Started with the Java 3D API Chapter 2. Creating Geometry

everything about a ColorCube is fixed, except its size®’. The size of a ColorCube is only specified when the
object is created.

A primitive object provides more flexibility by specifying shape without specifying color. In a geometric
primitive utility class, the programmer cannot change the geometry, but can change the appearance’. The
primitive classes give the programmer the flexibility to have multiple instances of the same geometric
primitive where each can have a different appearance by having a reference to different Appearance
NodeComponents.

The Box, Cone, Cylinder and Sphere utility classes ae defined in the
com sun. j 3d. utils. geonetry package. Details of the Box, Cone, Cylinder, and Sphere classes
are presented in Sections 2.3.1 through 2.3.4, respectively. The superclass of these primitives, Primitive, is
discussed in Section 2.3.5. The portion of the com sun. j 3d. uti | s. geonet ry package hierarchy
that contains the primitive classesis shown in Figure 2-4.

javalang.Object

javax.media.j3d.SceneGraphObject

javax.mediaj3d.Node

javax.media.j3d.Group

com.sun.j3d.utils.geometry.Primitive

com.sun.j3d.utils.geometry.Box

com.sun.j3d.utils.geometry.Cone

com.sun.j3d.utils.geometry.Cylinder

com.sun.j3d.utils.geometry.Sphere

Figure 2-4 Class Hierarchy for Utility Geometric Primitives: Box, Cone, Cylinder, and Sphere

2.3.1 Box

The Box geometric primitive creates 3D box visual objects’. The defaults for length, width, and height are
2 meters, with the center at the origin, resulting in a cube with corners at (-1, -1, -1) and (1, 1, 1). The

% The Geometry NodeComponent referenced by a ColorCube object can be changed, but then it wouldn't appear as
a ColorCube.

* Just like with ColorCube, the Geometry NodeComponent referenced by a primitive object can be changed, but
then it wouldn't appear as the primitive.

® Technically, abox is a six-sided polyhedron with rectangular faces.

The Java 3D Tutorial 2-7

Getting Started with the Java 3D API Chapter 2. Creating Geometry

length, width, and height can be specified at object creation time. Of course, TransformGroup aong the
scene graph path to a Box can be used to change the location and/or orientation of instances of Box and
other visua objects.

Box Constructors (partial list)
Package: com sun.j 3d. utils. geonetry

Box extends Primitive, another class in the com.sun.j3d.utils.geometry package.

Box()
Constructs a default box of 2.0 metersin height, width, and depth, centered at the origin.

Box(float xdim float ydim float zdim Appearance appearance)
Constructs a box of a given dimension and appearance, centered at the origin.

While the constructors differ by class, Box, Cone, and Cylinder classes share the same methods. The
following reference block lists the methods for these classes.

Box, Cone, and Cylinder Methods
Package: com sun.j 3d. utils. geonetry
These methods are defined in each of the Primitive classes. Box, Cone, and Cylinder. These primitives are
composed of multiple Shape3D objectsin a group.

Shape3D get Shape(int id)

Gets one of the faces (Shape3D) from the primitive that contains the geometry and appearance. Box, Cone,
and Cylinder objects are composed of more than one Shape3D object, each with its own Geometry node
component. The value used for partid specifies which of the Geometry node components to get.

voi d set Appear ance(Appear ance appear ance)
Sets appearance of the primitive (for al of the Shape3D objects).

2.3.2 Cone

The Cone class defines capped, cone shaped objects centered at the origin with the central axis aligned
along the y-axis. The default for radiusis 1.0 and 2.0 for height. The center of the cone is defined to be the
center of its bounding box rather than its centroid.

The Java 3D Tutorial 2-8

Getting Started with the Java 3D AP Chapter 2. Creating Geometry

Cone Congtructors (partial list)
Package: com sun.j 3d. utils. geonetry

Cone extends Primitive, another classin the com.sun.j3d.utils.geometry package.

Cone()
Constructs a default Cone of radius of 1.0 and height of 2.0.

Cone(fl oat radius, float height)
Constructs a default Cone of a given radius and height.

2.3.3 Cylinder

Cylinder class creates a capped, cylindrical object centered at the origin with its central axis aligned along
the y-axis. The default for radius is 1.0 and 2.0 for height.

Cylinder Constructors (partial list)
Package: com sun.j 3d. utils. geonetry

Cylinder extends Primitive, another class in the com.sun.j3d.utils.geometry package.

Cyl i nder ()
Constructs a default cylinder of radius of 1.0 and height of 2.0.

Cylinder(fl oat radius, float height)
Constructs a cylinder of a given radius and height.

Cylinder(fl oat radius, float height, Appearance appearance)
Constructs a cylinder of a given radius, height, and appearance.

2.3.4 Sphere
The Sphere class creates spherical visual objects centered at the origin. The default radiusis 1.0.

Sphere Constructors (partial list)
Package: com sun.j 3d. utils. geonetry

Sphere extends Primitive, another class in the com.sun.j3d.utils.geometry package.

Spher e()
Constructs a default Sphere of radius of 1.0.

Sphere(fl oat radi us)
Constructs a default Sphere of agiven radius.

Sphere(fl oat radi us, Appearance appearance)
Constructs a Sphere of a given radius and a given appearance.

The Java 3D Tutorial 2-9

Getting Started with the Java 3D API Chapter 2. Creating Geometry

Sphere Methods
Package: com sun.j 3d. util s. geonetry
As an extention of Primitive, a Sphere is a Group object that has a single Shape3D child object.

Shape3D get Shape()
Gets the Shape3D that contains the geometry and appearance.

Shape3D get Shape(int id)
This method isincluded for compatibility with the other Primitive classes: Box, Cone, and Cylinder.
However, since a Sphere has only one Shape3D object, it can be called only with id = 1.

voi d set Appear ance(Appear ance appear ance)
Sets appearance of the sphere.

2.3.5 More About Geometric Primitives

The geometry of a primitive utility class does not define color. Geometry that does not define color derives
its color from its Appearance node component. Without a reference to an Appearance node
component, the visual object will be white, the default appearance color. Color is first discussed in Section
24.2 and added to geometry in Section 2.5.1. Section 2.6 presents the details of Appearance node
components.

The Primitive class defines default values common to Box, Cone, Cylinder, and Sphere. For example,
Primitive defines the default value for the number of polygons used to represent surfaces. Section 2.3.8
presents some of the details of the Primitive class. Since the default values defined by Primitive are fine for
most applications, Java 3D programs can be written without even using the Primitive class. For this
reason, the section describing the Primitive class is considered an advanced topic (which can be skipped).
Y ou will recognize advanced sections when you get there by the Duke figure hanging from the double-line
outline.

2.3.6 ColorCube

The ColorCube class is presented here to contrast with the geometric primitive classes of Box, Cone,
Cylinder, and Sphere. The ColorCube class extends a different hierarchy than the graphic primitive
classes. It is a subclass of Shape3D. This hierarchy for ColorCube is shown in Figure 2-5. Chapter 1
contains the reference blocks for ColorCube.

The Java 3D Tutorial 2-10

Getting Started with the Java 3D API Chapter 2. Creating Geometry

javalang.Object

javax.media.j3d.SceneGraphObject

javax.mediaj3d.Node

javax.mediaj3d.L eaf

javax.media.j3d.Shape3D

com.sun.j3d.utils.geometry.ColorCube

Figure 2-5 Class Hierarchy of Color Cube Utility Geometric Class

ColorCube is the only class distributed with the Java 3D API that allows a programmer to ignore the issues
of colors and lights. For this reason, ColorCube class is useful for quickly assembling scene graphs for
testing or prototyping.

2.3.7 Example: Creating a SimpleYo-Yo From Two Cones

This section presents a simple example that uses the Cone class: ConeYoyoApp. j ava. Thegoal of the
program is to render a yo-yo. Two cones are used to form the yo-yo. Java 3D APl behaviors could be
used to make the yo-yo move up and down, but that is beyond the scope of this Chapter. The program
spins the yo-yo so the geometry can be appreciated. The scene graph diagram in Figure 2-5 shows the
designs for the ConeY oyo and ConeY oyoApp classes in the ConoY oyoApp example program.

The default position of a Cone object is with its bounding box centered at the origin. The default
orientation is with the tip of the Cone object in the direction of the positive y-axis. The yo-yo is formed of
two cones that are rotated about the z-axis and translated along the x-axis to bring the tips of the cones
together at the origin. Other combinations of rotation and trandation transformations could bring the tips
of the Cone objects together.

The Java 3D Tutorial 2-11

Getting Started with the Java 3D API Chapter 2. Creating Geometry

View branch graph

ConeYoyo ohject !

Appearance

Figure 2-6 Scene Graph for ConeY oyoApp®

In the branch graph that begins with the BranchGroup object created by the ConeY oyo object, the scene
graph path to each Cone object begins with the TransformGroup object that specifies the trandation,
followed by the TransformGroup that specifies the rotation, and terminates at the Cone object.

Severa scene graphs may represent the same virtual world. Taking the scene graph of Figure 2-6 as an
example, some obvious changes can be made. One change eiminates the BranchGroup object whose child
is the ConeY oyo object and inserts the ConeY oyo object directly in the Locale. The BranchGroup is there
to add future visual objects to the visual world. Another change combines the two TransformGroup objects
inside the ConeY oyo object. The transformations are shown thisway simply as an example.

Shape3D nodes of the Cone objects reference Geometry node components. These are internal to the Cone
objects. The Shape3D objects of the Cone are children of a Group in the Cone. Since Cone objects

® Actually, the Cone primitive is shared automatically as a feature of the Primitive class. This feature is discussed
in Section 2.3.8.

The Java 3D Tutorial 2-12

Getting Started with the Java 3D API Chapter 2. Creating Geometry

descend from Group, the same Cone (or other Primitive object) can not be used more than once in a scene
graph. Figure 2-7 shows an example error message produced when attempting to use the same Cone object
in asingle scene graph. This error does not exist in the example program distributed with this tutorial.

Exception in thread "main" javax. nedia.j3d. MiltipleParent Exception:
G oup. addChil d: child al ready has a parent
at javax. nedia.j 3d. G oupRet ai ned. addChi | d(G oupRet ai ned. j ava: 246)
at javax. nedia.j 3d. G oup. addChi | d(G oup. j ava: 241)
at ConeYoyoApp$ConeYoyo. <i ni t >(ConeYoyoApp. j ava: 89)
at ConeYoyoApp. creat eScene@ aph(ConeYoyoApp. j ava: 119)
at ConeYoyoApp. <i ni t >(ConeYoyoApp. j ava: 159)
at ConeYoyoApp. mai n(ConeYoyoApp. j ava: 172)

Figure 2-7 Multiple Parent Exception While Attempting to Reuse a Cone Obj ect

E'-;_,% [fune‘r'uyu.ﬁpp'

Figure 2-8 An Image Render ed by ConeY oyoApp.java

Figure 2-8 shows one of the possible images rendered by ConeYoyoApp. j ava as the ConeY oyo object
spins. ConeYoyoApp. j ava is found in the exanpl e/ Geonet ry subdirectory. The ConeYoyo
classin the program is reproduced here in Code Fragment 2-2.

Lines 14 through 21 create the objects of one half of the yo-yo scene graph. Lines 23 through 25 create the
relationships among these objects. The process is repeated for the other half of the yo-yo on lines 27
through 38.

Line 12 creates yoyoAppear , an Appearance node component with default values, to be used by the
Cone objects. Lines 21 and 34 set the appearance for the two cones.

public class ConeYoyo{
private BranchG oup yoyoBG
/1 create Shape3D with geonetry and appearance

/1
public ConeYoyo() {

SNoRwbE

The Java 3D Tutorial 2-13

Getting Started with the Java 3D API Chapter 2. Creating Geometry

9, ¥o 0BG = new BranchG oual()I_;

10. ransfornBD rotate = ne ransf ornBD() ;

11. TransfornBD transl ate = new Transfor n8D() ;

12. Appear ance yoyoAppear = new Appearance();

13.

14. rotate.rotZ(Math. Pl /2.0d);

15. Transf or m&a oup yoyoTGRL = new Transfor nz oup(rotate);
16.

17. transl ate. set (new Vector3f(0.1f, 0.0f, 0.0f));

18. Transf or m&a oup yoyoTGI1l = new Transfornm&oup(transl ate);
19.

20. Cone conel = new Cone(0.6f, 0.2f);

21. conel. set Appear ance(yoyoAppear) ;

22.

23. yoyoBG addChi | d(yoyoTGT1);

24. yoyoTGI1. addChi | d(yoyoTGR1) ;

25. yoyoTGR1. addChi | d(conel);

26.

27. transl ate. set (new Vector 3f(-0.1f, 0.0f, 0.0f));

28. Transf or m&a oup yoyoTGI2 = new Transfornm&oup(transl ate);
29.

30. rotate.rotZ(-Math.Pl/2.0d);

31. Transf or mM&a oup yoyoTGR2 = new Transfor nx oup(rotate);
32.

33. Cone cone2 = new Cone(0.6f, 0.2f);

34. cone2. set Appear ance(yoyoAppear) ;

35.

36. yoyoBG addChi | d(yoyoTGT2);

37. yoyoTGI2. addChi | d(yoyoTGR2) ;

38. yoyoTGR2. addChi | d(cone?2);

39.

40. yoyoBG. conpi | e();

41.

42. } // end of ConeYoyo constructor

43.

44. public BranchG oup get BE) {

45. return yoyoBG

46. }

47.

48. } // end of class ConeYoyo

Code Fragment 2-2 Class ConeY ayo From ConeY oyoApp.java Example Program

2.3.8 Advanced Topic: Geometric Primitive TAT

The class hierarchy of Figure 2-4 shows Primitive as the superclass of Box, Cone, Cylinder, and |
Sphere classes. It defines a number of fields and methods common to these classes, aswell as N
default values for the fields.

The Primitive class provides a way to share Geometry node components among instances of a primitive of
the same size. By defaullt, al primitives of the same size share one geometry node component. An example
of afield defined in the Primitive class is the GEOMETRY_NOT_SHARED integer. This field specifies
the geometry being created will not be shared by another. Set this flag to prevent the geometry from being
shared among primitives of the same parameters (e.g., spheres with radius 1).

nyCone. setPrimtiveFl ags(Primtive. GEOVETRY_NOT_SHARED) ;

The Java 3D Tutorial 2-14

Getting Started with the Java 3D API Chapter 2. Creating Geometry

Primitive Methods (partial list)
Package: com sun.j 3d. utils. geonetry

Primitive extends Group and is the superclass for Box, Cone, Cylinder, and Sphere.

public void setNunVertices(int num
Sets total number of verticesin this primitive.

void setPrimtiveFlags(int fl)

The primitive flags are:
GEOMETRY_NOT_SHARED Normals are generated along with the positions.
GENERATE_NORMALS INWARD Normals are flipped aong the surface.
GENERATE_TEXTURE_COORDS Texture coordinates are generated.
GEOMETRY_NOT_SHARED The geometry created will not be shared by another node.

voi d set Appearance(int partid, Appearance appearance)

Sets the appearance of a subpart given a partid. Box, Cone, and Cylinder objects are composed of more
than one Shape3D object, each potentially with its own Appearance node component. The value used for
partid specifies which of the Appearance node components to set.

voi d set Appear ance()
Sets the main appearance of the primitive (all subparts) to a default white appearance.

Additional constructors for Box, Cone, Cylinder, and Sphere alow the specification of Primitive flags at
object creation time. Consult the Java 3D API specification for more information.

2.4 Mathematical Classes

To create visual objects, the Geometry class and its subclasses are required. Many Geometry subclasses
describe vertex-based primitives, such as points, lines, and filled polygons. The subclasses of Geometry
will be discussed in Section 2.5, but before that discussion, severa mathematical classes (Point*, Color*,
Vector*, TexCoord*) used to specify vertex-related data need to be discussed’.

Note the asterisk used above is a wildcard to represent variations of class names. For example, Tuple*
refersto al Tuple classes: Tuple2f, Tuple2d, Tuple3b, Tuple3f, Tuple3d, Tupledb, Tupledf, and Tupledd.
In each case the number indicates the number of elementsin the tuple, and the letter indicates the data type
of the elements. ‘f’ indicates single-precision floating point, ‘d’ indicates double-precision floating point,
and ‘b’ isfor bytes. So Tuple3f is a class that manipulates three single-precision floating point values.

All these mathematical classes are in the j avax. vecmat h. * package. This package defines severd
Tuple* classes as generic abstract superclasses. Other more useful classes are derived from the various
Tuple classes. The hierarchy for some of the package is shown in Figure 2-9.

" TexCoord* classes are not used in Java 3D API version 1.1. Thiswill change in subsequent versions,

The Java 3D Tutorial 2-15

Getting Started with the Java 3D API Chapter 2. Creating Geometry

j avax. vecmat h

Tupleat |
Tuple2d | I = |
- Pointzd | e |
_| m— | I V ector2f |

Tuple3f |
Tuple3b | } Point3f |
LI Colorab | [TexCoordat |
Tuple3d | } Vector3f |
— Point3d | | Color3f |
_| Vector3d | TopioAt |
Tupledb | | Pointaf |
_| Color4b | i Quat4f |
Tuple4d | i Vector4f |
:: Point4d : | Color4f |

Vector4dd

L Quaad |

Figure 2-9 Mathematical Classes Package and Hierar chy
Each vertex of a visua object may specify up to four j avax.vecrat h objects, representing
coordinates, colors, surface normals, and texture coordinates. The following classes are commonly used:
Point* (for coordinates)
Color* (for colors)
Vector* (for surface normals)
TexCoord* (for texture coordinates)

Note that coordinates (Point* objects) are necessary to position each vertex. The other data is optiona,
depending upon how the primitive is rendered. For instance, a color (a Color* object) may be defined at
each vertex and the colors of the primitive are interpolated between the colors at the vertices. If lighting is
enabled, surface normals (and therefore Vector* objects) are needed. If texture mapping is enabled, then
texture coordinates may be needed.

(The Quat* objects represent quaternions, which are only used for advanced 3D matrix transformations.)

Since al the useful classes inherit from the abstract Tuple* classes, it's important to be familiar with the
Tuple constructors and methods, which are listed below.

The Java 3D Tutorial 2-16

Getting Started with the Java 3D AP Chapter 2. Creating Geometry

Tuple2f Constructors
Package: j avax. vecnat h

Tuple* classes are not typically used directly in Java 3D programs but provide the base for Point*, Color*,
Vector*, and TexCoord* classes. In particular, Tuple2f provides the base for Point2f, Color2f, and
TexCoord2f. The constructors listed here are available to these subclasses. Tuple3f and Tuple4df have
similar sets of constructors.

Tupl e2f ()
Constructs and initializes a Tuple object with the coordinates (0,0).

Tupl e2f (fl oat x, float y)
Constructs and initializes a Tuple object from the specified x, y coordinates.

Tupl e2f (float[] t)
Constructs and initializes a Tuple object from the specified array.

Tupl e2f (Tupl e2f t)
Constructs and initializes a Tuple object from the data in another Tuple object.

Tupl e2f (Tupl e2d t)
Constructs and initializes a Tuple object from the data in another Tuple object.

Tuple2f Methods (partial list)
Package: j avax. vecmat h

Tuple* classes are not typically used directly in Java 3D programs but provide the base for Point*, Color*,
Vector*, and TexCoord* classes. In particular, Tuple2f provides the base for Point2f, Color2f, and
TexCoord2f. The methods listed here are available to these subclasses. Tuple3f and Tupledf have similar
sets of methods.

void set(float x, float y)

void set(float[] t)
Sets the value of this tuple from the specified values.

bool ean equal s(Tupl e2f t1)
Returnstrue if the datain the Tuple tl are equal to the corresponding datain this tuple.

final void add(Tuple2f t1)
Sets the value of this tuple to the vector sum of itself and Tuple t1.

voi d add(Tupl e2f t1, Tuple2f t2)
Sets the value of this tuple to the vector sum of tuplestl and t2.

voi d sub(Tupl e2f t1, Tuple2f t2)
Sets the value of this tuple to the vector difference of tuple t1 and t2 (this = t1 - t2).

The Java 3D Tutorial 2-17

Getting Started with the Java 3D AP Chapter 2. Creating Geometry

voi d sub(Tupl e2f t1)
Sets the value of this tuple to the vector difference of itself and tuple t1 (this = this - t1).

voi d negat e()
Negates the value of this vector in place.

voi d negat e(Tupl e2f t1)
Sets the value of this tuple to the negation of tupletl.

voi d absol ut e()
Sets each component of this tuple to its absolute value.

voi d absol ut e(Tupl e2f t)
Sets each component of the tuple parameter to its absolute value, and places the modified values into this
tuple.

There are subtle, but predictable, differences among Tuple* constructors and methods, due to number and
datatype. For example, Tuple3d differs from Tuple2f, because it has a constructor method:

Tupl e3d(doubl e x, double y, double z);
which expects three, not two, double-precision, not single-precision, floating point parameters.

Each of the Tuple* classes has public members. For Tuple2*, they arex and y. For Tuple3* the members
arex, Yy, and z. For Tupled* the membersarex, y, z, and w.

2.4.1 Point Classes

Point* objects usually represent coordinates of a vertex, although they can aso represent the position of a
raster image, point light source, spatial location of a sound, or other positional data. The constructors for
Point* classes are similar to the Tuple* constructors, except they return Point* objects. (Some constructors
are passed parameters which are Point* objects, instead of Tuple* objects.)

Point3f Methods (partial list)
Package: j avax. vecmat h

The Point* classes are derived from Tuple* classes. Each instance of the Point* classes represents asingle
point in two-, three-, or four-space. In addition to the Tuple* methods, Point* classes have additional
methods, some of which are listed here.

fl oat di stance(Point3f pl)
Returns the Euclidean distance between this point and point pl.

fl oat di stanceSquar ed(Poi nt 3f p1l)
Returns the square of the Euclidean distance between this point and point pl.

fl oat di stancelLl(Point3f pl)
Returnsthe L; (Manhattan) distance between this point and point p1. TheL, distanceis equa to:
abs(xy - xz) + abs(y: - y2) + abs(z; - 2)
Once again, there are subtle, predictable differences among Point* constructors and methods, due to

number and data type. For example, for Point3d, the distance method returns a double-precision floating
point value.

The Java 3D Tutorial 2-18

Getting Started with the Java 3D API Chapter 2. Creating Geometry

2.4.2 Color Classes

Color* objects represent a color, which can be for a vertex, material property, fog, or other visual object.
Colors are specified either as Color3* or Color4*, and only for byte or single-precision floating point data
types. Color3* objects specify a color as a combination of red, green, and blue (RGB) values. Color4*
objects specify a transparency value, in addition to RGB. (By default, Color3* objects are opaque.) For
byte-sized data types, color values range between 0 and 255, inclusive. For single-precision floating point
data, color values range between 0.0 and 1.0, inclusive.

Once again, the constructors for Color* classes are similar to the Tuple* constructors, except they return
Color* objects. (Some constructors are passed parameters which are Color* objects.) The Color* classes
do not have additional methods, so they rely upon the methods they inherit from their Tuple* superclasses.

It is sometimes convenient to create constants for colors that are used repetitiously in the creation of visua
object. For example,
Col or3f red = new Col or3f (1. 0f, 0.0f, 0.0f);

instantiates the Color3f object red that may be used multiple times. It may be helpful to create a class that
contains a number of color constants. An example of such a class appears in Code Fragment 2-1.

1. inport javax.vecmath.*;

cl ass Col or Const ant s{
public static final Color3f red
public static final Col or3f green

3

4 new Col or 3f (1. 0f , 0. Of , 0. Of) ;
5.

6. public static final Color3f blue

7

8

9

new Col or 3f (0. Of , 1. Of , 0. Of) ;
new Col or 3f (0. Of , 0. Of , 1. Of) ;
new Col or 3f (1. 0f , 1. Of , 0. Of) ;
new Col or 3f (0. Of , 1. Of , 1. Of) ;
new Col or 3f (1. Of , 0. Of , 1. Of) ;
new Col or 3f (1. 0f , 1. Of , 1. Of) ;
new Col or 3f (0. Of , 0. Of , 0. Of) ;

public static final Col or3f yellow
public static final Col or3f cyan
. public static final Col or3f nagenta
10. public static final Color3f white
11. public static final Col or3f black

Code Fragment 2-3 Example Color Constants Class

Color* Classes
Package: j avax. vecmat h

The Color* classes are derived from Tuple* classes. Each instances of the Color* classes represents a
single color in three components (RGB), or four components (RGBA). The Color* classes do not add any
methods to those supplied by Tuple* classes.

2.4.3 Vector Classes

Vector* objects often represent surface normals at vertices although they can also represent the direction of
a light source or sound source. Again, the constructors for Vector* classes are similar to the Tuple*
congtructors. However, Vector* objects add many methods that are not found in the Tuple* classes.

The Java 3D Tutorial 2-19

Getting Started with the Java 3D API Chapter 2. Creating Geometry

Vector 3f Methods (partial list)
Package: j avax. vecmat h

The Vector* classes are derived from Tuple* classes. Each instances of the Vector* classes represents a
single vector in two-, three-, or four-space. In addition to the Tuple* methods, Vector* classes have
additional methods, some of which are listed here.

float |ength()
Returns the length of this vector.

fl oat | engthSquared()
Returns the squared length of this vector.

voi d cross(Vector3f v1, Vector3f v2)
Sets this vector to be the vector cross product of vectors vl and v2.

float dot(Vector3f vl)
Computer and return the dot product of this vector and vector v1.

voi d normalize()
Normalizes this vector.

voi d nornalize(Vector3f vl)
Sets the value of this vector to the normalization of vector v1.

fl oat angl e(Vect or 3f v1)
Returns the angle in radians between this vector and the vector parameter; the return value is constrained to
the range [O,P1].

And yes, there are subtle, predictable differences among Vector* constructors and methods, due to number
or data type.

2.4.4 TexCoord Classes

There are only two TexCoord* classes which can be used to represent a set of texture coordinates at a
vertex: TexCoord2f and TexCoord3f. TexCoord2f maintains texture coordinates as an (s, t) coordinate
pair; TexCoord3f asan (s, t, r) triple.

The constructors for TexCoord* classes are again similar to the Tuple* constructors. Like the Color*
classes, the TexCoord* classes aso do not have additional methods, so they rely upon the methods they
inherit from their Tuple* superclasses.

2.5 Geometry Classes

In 3D computer graphics, everything from the smplest triangle to the most complicated jumbo jet model is
modeled and rendered with vertex-based data. With Java 3D, each Shape3D object should call its method
set Geonet ry() to reference one and only one Geometry object. To be more precise, Geometry is an
abstract superclass, so the referenced object is an instance of a subclass of Geometry.

The Java 3D Tutorial 2-20

Getting Started with the Java 3D API Chapter 2. Creating Geometry

Subclasses of Geometry fall into three broad categories:

Non-indexed vertex-based geometry (each time a visua object is rendered, its vertices may be used
only once)

Indexed vertex-based geometry (each time avisua object is rendered, its vertices may be reused)

Other visua objects (the classes Raster, Text3D, and CompressedGeometry)

This section coversthefirst two aforementioned categories. The class hierarchy for Geometry classes
and subclassesis shown in Figure 2-10 Geometry Class Hierarchy

LineStripArr.
SceneGraphObject pArTay
\ GeometryStripArray TriangleStripArray
NodeComponent) -
LineArray TriangleFanArray
Geometry PointArray
QuadArray IndexedLineArray
GeometryArray . .
TriangleArray IndexedPointArray
IndexedGeometryArray IndexedQuadArray
CompressedGeometry -
IndexedTriangleArray
Raster .
IndexedGeometryStripArray
Text3D

IndexedLineStripArray

IndexedTriangleStripArray

IndexedTriangleFanArray

Figure 2-10 Geometry Class Hierar chy

2.5.1 GeometryArray Class

As you may deduce from the class names, the Geometry subclasses may be used to specify points, lines,
and filled polygons (triangles and quadrilaterals). These vertex-based primitives are subclasses of the
GeometryArray abstract class, which indicates that each has arrays that maintain data per vertex.

For example, if a GeometryArray object is used to specify one triangle, a three-edlement array is defined:
one element for each vertex. Each element of this array maintains the coordinate location for its vertex
(which can be defined with a Point* object or similar data). In addition to the coordinate location, three
more arrays may be optionally defined to store color, surface normal, and texture coordinate data. These
arrays, containing the coordinates, colors, surface normals, and texture coordinates, are the “ data arrays.”

The Java 3D Tutorial 2-21

Getting Started with the Java 3D API Chapter 2. Creating Geometry

There are three steps in the life of a GeometryArray object:

1. Construction of an empty object.

2. Filling the object with data.

3. Associating (referencing) the object from (one or more) Shape3D obyjects.

Step 1: Construction of an Empty GeometryArray Object
When a GeometryArray object isinitially constructed, two things must be defined:

the number of vertices (array elements) to be needed.

the type of data (coordinate location, color, surface normal, and/or texture coordinate) to be stored at
each vertex. Thisis called the vertex format.

Thereis only one GeometryArray constructor method:
GeometryArray Constructor

GeonetryArray(int vertexCount, int vertexFormat)
Constructs an empty GeometryArray object with the specified number of vertices, and vertex format. One
or more individual flags are bitwise "OR"ed together to describe the per-vertex data. The flag constants
used for specifying the format are:
COORDINATES: Specifiesthis vertex array contains coordinates. This bit must be set.
NORMALS: Specifiesthis vertex array contains surface normals.
COLOR_3: Specifies this vertex array contains colors without transparency.
COLOR_4: Specifies this vertex array contains colors with transparency.
TEXTURE_COORDINATE_2: Specifies this vertex array contains 2D texture coordinates.
TEXTURE_COORDINATE_3: Specifies this vertex array contains 3D texture coordinates.
For each vertex format flags set, there is a corresponding array created internal to the GeometryArray
object. Each of these arraysis vertexCount in size.

Let’s see how this constructor works, but first recall that GeometryArray is an abstract class. Therefore,
you actualy call the constructor for one of GeometryArray’s subclasses, for instance, LineArray. (A
LineArray object describes a set of vertices, and each two vertices defines the endpoints of a line. The
constructor and other methods of LineArray are very similar to its superclass GeometryArray. LineArray is
explained in more detail in Section 2.5.2.)

Code Fragment 2-4 shows the Axis class from the program exanpl es/ Geonet ry/ Axi SApp. j ava
which uses multiple LineArray objects to draw lines to represent the X, y, and z axes. The X axis object
creates an object with two vertices (to draw one line between them), with only coordinate location data. The
Y axis object aso has two vertices, but allows for RGB color, as well as coordinate location, at each
vertex. Therefore, the Y axis line may be drawn with colors interpolated from one vertex to the other.
Finaly, the Z axis has ten vertices with coordinate and color data at each vertex. Five color-interpolated
lines may be drawn, one line between each pair of vertices. Note the use of the bitwise “OR” operation for
the vertex format of both the'Y and Z axes.

The Java 3D Tutorial 2-22

Getting Started with the Java 3D API Chapter 2. Creating Geometry

/1 construct object to represent the X axis
Li neArray axi sXLi nes= new Li neArray (2, LineArray. COORDI NATES)

/1 construct object to represent the Y axis
Li neArray axi sYLi nes = new LineArray(2, LineArray.COORD NATES
| LineArray. COLOR 3);

/1 construct object to represent the Z axis
Li neArray axi sZLi nes = new Li neArray(10, LineArray. COORDI NATES
0. | LineArray. COLOR 3);

BooNokwbE

Code Fragment 2-4 GeometryArray Constructors

Be carefull The Axis class in Axi sApp.java is different from the Axis class defined in
exanpl es/ geonetry/ Axi s. j ava, which uses only one LineArray object. Make sure you have the
right one. The Axis class defined in Axi s.java is intended for use in your programs, where
AxisApp.java is the demongtration program for this tutorial. Also, the Axis class defined in Axisjava
demonstrates creating a visua object class that extends Shape3D.

Step 2: Fill the GeometryArray Object with Data

After congtructing the GeometryArray object, assign values to the arrays, corresponding to the assigned
vertex format. This may be done per vertex, or by using an array to assign data to many vertices with one
method call. The available methods are:

GeometryArray Methods (partial list)
GeometryArray is the superclass for PointArray, LineArray, TriangleArray, QuadArray,
GeometryStripArray, and IndexedGeometryArray.
voi d set Coordi nate(int index, float[] coordi nate)
voi d set Coordi nate(int index, double[] coordinate)
voi d set Coordi nate(int index, Point* coordinate)
Sets the coordinate associated with the vertex at the specified index for this object.
voi d set Coordi nates(int index, float[] coordinates)
voi d set Coordi nates(int index, double[] coordinates)
voi d set Coordi nates(int index, Point*[] coordinates)
Sets the coordinates associated with the vertices starting at the specified index for this object.
voi d setCol or(int index, float[] color)
voi d set Col or (i nt index, byte[] color)
voi d set Col or (i nt index, Color* color)
Sets the color associated with the vertex at the specified index for this object.
voi d setCol ors(int index, float[] col ors)
voi d setCol ors(int index, byte[] colors)

voi d set Col ors(int index, Color*[] colors)
Sets the colors associated with the vertices starting at the specified index for this object.

The Java 3D Tutorial 2-23

Getting Started with the Java 3D API Chapter 2. Creating Geometry

GeometryArray Methods (partial list, continued)

voi d setNormal (int index, float[] normal)

voi d set Normal (i nt index, Vector* nornal)

Sets the normal associated with the vertex at the specified index for this object.

voi d set Normal s(int index, float[] nornals)

voi d set Normal s(int index, Vector*[] nornals)

Sets the normal s associated with the vertices starting at the specified index for this object.
voi d set Text ureCoordi nate(int index, float[] texCoord)

voi d set Text ureCoordi nat e(i nt index, Point* coordinate)

Sets the texture coordinate associated with the vertex at the specified index for this object.
voi d set Text ureCoordi nates(int index, float[] texCoords)

voi d set Text ureCoordi nates(int index, Point*[] texCoords)
Sets the texture coordinates associated with the vertices starting at the specified index for this object.

Code Fragment 2-5 shows use of the GeometryArray methods to store coordinate and color values in the
LineArray objects. The X axis object calls only the method setCoordinate() to store coordinate location
data. The Y axis object calls both setColor() and setCoordinate() to load RGB color and coordinate
location values. And the Z axis object calls setCoordinate() ten times for each individual vertex and
setColorg() once to load all ten vertices with one method call.

axi sXLi nes. set Coor di nate(0, new Point3f(-1.0f, 0.0f, 0.0f));
axi sXLi nes. set Coordi nate(1, new Point3f(1.0f, 0.0f, 0.0f));
Col or3f red new Col or 3f (1. 0f, 0.0f, 0.0f);

Col or 3f green new Col or 3f (0. 0f, 1.0f, 0.0f);

Col or 3f Dbl ue new Col or 3f (0. 0f, 0.0f, 1.0f);

axi sYLi nes. set Coor di nate(0, new Point3f(0.0f,-1.0f, 0.0f));
axi sYLi nes. set Coordi nate(1, new Point3f(0.0f, 1.0f, 0.0f));
axi sYLi nes. set Col or (0, green);

10. axi sYLi nes. set Col or (1, bl ue);

CoNoURhwNE

12. axi sZLi nes. set Coordi nate(0, z1);
13. axi sZLi nes. set Coordi nate(1, z2);
14. axi sZLi nes. set Coordi nate(2, z2);
15. axi sZLi nes. set Coordi nate(3, new Point3f(0.1f, 0.1f, 0.9f));
16. axi sZLi nes. set Coordi nate(4, z2);
17. axi sZLi nes. set Coor di nat e(5, new Poi nt3f (-0.1f, 0.1f, 0.9f));
18. axi sZLi nes. set Coordi nate(6, z2);
19. axi sZLi nes. set Coordi nate(7, new Point3f(0.1f,-0.1f, 0.9f));
20. axi sZLi nes. set Coordi nate(8, z2);
21. axi sZLi nes. set Coor di nate(9, new Point 3f (-0. 1f,-0. 1f, 0.9f));

23. Col or 3f colors[] = new Color3f[9];
24.colors[0] = new Col or 3f (0.0f, 1.0f, 1.0f);
25.for(int v = 0; v < 9; v++)

26. colors[v] = red

27. axi sZLi nes. set Col ors(1, colors);

Code Fragment 2-5 Storing Data into a GeometryArray Object
The Java 3D Tutorial 2-24

Getting Started with the Java 3D API Chapter 2. Creating Geometry

The default color for vertices of a GeometryArray object iswhite, unless either COLOR_3 or COLOR 4 is
specified in the vertex format. When either COLOR_3 or COLOR_4 is specified, the default vertex color
is black. When lines or filled polygons are rendered with different colors a the vertices, the color is
smoothly shaded (interpolated) between vertices using Gouraud shading.

Step 3: Make Shape3D Objects Refer ence the GeometryArray Objects

Finally, Code Fragment 2-6 shows how the GeometryArray objects are referenced by newly created
Shape3D objects. In turn, the Shape3D objects are added to a BranchGroup, which is added elsawhere to
the overal scene graph. (Unlike GeometryArray objects, which are NodeComponents, Shape3D is a
subclass of Node, so Shape3D objects may be added as children to a scene graph.)

axi sBG = new BranchG oup();

1
2.
3. axi sBG addChi | d(new Shape3D(axi sYLi nes));
4. axi sBG addChi | d(new Shape3D(axi sZLi nes));

Code Fragment 2-6 GeometryArray Objects Referenced by Shape3D Objects

Figure 2-11 shows the partial scene graph created by the Axisclassin Axi SApp. j ava.

AN \

axisXLines axisYLines axisZLines

Figure 2-11 Axis Class in AxisApp.java Creates this Scene Graph

2.5.2 Subclasses of GeometryArray

As was discussed in the previous section, the GeometryArray class is an abstract superclass for more
useful subclasses, such as LineArray. Figure 2-12 shows the class hierarchy for GeometryArray and some
of its subclasses. The main distinction among these subclasses is how the Java 3D renderer decides to
render their vertices.

The Java 3D Tutorial 2-25

Getting Started with the Java 3D API Chapter 2. Creating Geometry

Geometry LineArray
PointArray
QuadArray
GeometryArray TriangleArray LineStripArray
GeometryStripArray TriangleStripArray

TriangleFanArray

Figure 2-12 Non-Indexed GeometryArray Subclasses

Figure 2-13 shows examples of the four GeometryArray subclasses: PointArray, LineArray,
TriangleArray, and QuadArray (the ones which are not also subclasses of GeometryStripArray). In this
figure, the three leftmost sets of vertices show the same six vertex points rendering six points, three lines, or
two triangles. The fourth image shows four vertices defining a quadrilateral. Note that none of the vertices
are shared: each line or filled polygon is rendered independently of any other.

vo, v2 V4 vOo v2 v4 vO v v4 vO v3
NN A T
vl V3 v5 vl v3 v5 vl v3 v5 vl V2

PointArray LineArray TriangleArray QuadArray

Figure 2-13 GeometryArray Subclasses

By default, the interiors of triangles and quadrilaterals are filled. In later sections, you will learn that
attributes can influence how filled primitives can be rendered in different ways.

These four subclasses inherit their constructors and methods from GeometryArray. Their constructors are
listed below. For their methods, go back to the listing entitled GeometryArray Methods.

GeometryArray Subclass Constructors

Constructs an empty object with the specified number of vertices and the vertex format. The format is one
or more individual flags bitwise "OR"ed together to describe the per-vertex data. The format flags are the
same as defined in the GeometryArray superclass.

Poi nt Array(int vertexCount, int vertexFormat)

Li neArray(int vertexCount, int vertexFornat)

Triangl eArray(int vertexCount, int vertexFornat)

QuadArray(int vertexCount, int vertexFornat)
To see the use of these constructors and methods, go back to Code Fragment 2-4, Code Fragment 2-5, and
Code Fragment 2-6, which use aLineArray object.

If you are rendering quadrilaterals, be careful that the vertices do not create concave, self-intersecting, or
non-planar geometry. If they do, they may not be rendered properly.

The Java 3D Tutorial 2-26

Getting Started with the Java 3D API Chapter 2. Creating Geometry

2.5.3 Subclasses of GeometryStripArray

The previously described four subclasses of GeometryArray do not allow for any reuse of vertices. Some
geometric configurations invite the reuse of vertices, so specialized classes may result in better rendering
performance.

The GeometryStripArray is an abstract class from which strip primitives (for creating compound lines and
surfaces) are derived. GeometryStripArray is the superclass of LineStripArray, TriangleStripArray, and
TriangleFanArray. Figure 2-14 shows an instance of each type of strip and how vertices are reused. The
LineStripArray renders connected lines. The TriangleStripArray results in triangles that share an edge,
reusing the most recently rendered vertex. The TriangleFanArray reuses the very first vertex in its strip for
each triangle.

VOVV%\/M\ vO V2 v4 vO
vl v3 v vl v3 vb vl v; v3 v4

LineStripArray TriangleStripArray TriangleFanArray

Figure 2-14 GeometryStripArray Subclasses

The GeometryStripArray has a different constructor than GeometryArray. The GeometryStripArray
constructor has a third parameter, which is an array of vertex counts per strip, enabling a single object to
maintain multiple dstrips. (GeometryStripArray also introduces a couple of querying methods,
getNumStrips() and getStripV ertexCounts(), which are infrequently used.)

GeometryStripArray Subclass Constructors

Constructs an empty object with the specified number of vertices, the vertex format, and an array of vertex
counts per strip. The format is one or more individual flags bitwise "OR"ed together to describe the per-
vertex data. The format flags are the same as defined in the GeometryArray superclass. Multiple strips are
supported. The sum of the vertex counts for al strips (from the stripVertexCounts array) must equa the
total count of al vertices (vixCount).

LineStripArray(int vtxCount, int vertexFormat, int stripVertexCounts[])

Triangl eStri pArray(int vtxCount, int vertexFormat, int stripVertexCounts[]))
Tri angl eFanArray(int vtxCount, int vertexFormat, int stripVertexCounts[]))

Note that Java 3D does not support filled primitives with more than four sides. The programmer is
responsible for using tessellators to break down more complex polygons into Java 3D objects, such as
triangle strips or fans. The Triangulator utility class converts complex polygonsinto triangles®,

8 The Triangulator class and related classes are explained in more detail in Chapter 3.

The Java 3D Tutorial 2-27

Getting Started with the Java 3D AP Chapter 2. Creating Geometry

Triangulator Class
Package: com sun. j 3d. utils. geonetry

Used for converting non-triangular polygon geometry into triangles for rendering by Java 3D. Polygons
can be concave, nonplanar, and can contain holes (see Geometrylnfo.setContourCounts()). Nonplanar
polygons are projected onto the nearest plane. NOTE: See the current class documentation for limitations.
See Section 3.3 of thistutorial for more information.

Constructor Summary

Tri angul at or ()
Create a Triangulator object.

Method Summary

voi d triangul at e(Geonet ryl nf o gi nf o)
This routine converts the GeometryInfo object from primitive type POLY GON_ARRAY to primitive type
TRIANGLE_ARRAY using polygon decomposition techniques.

Parameters:
ginfo-com sun. j 3d. util s. geonetry. Geonet ryl nf o to be triangulated.

Example of usage:

Triangul ator tr = new Triangul ator();
tr.triangul ate(gi nfo); /1l ginfo contains the geonetry
shape. set Geonet ry(gi nf 0. get GeonetryArray()); [/l shape is a Shape3D

Y o-yo Code Demonstrates TriangleFanArray

The Yoyo object in the YoyoApp. j ava program shows how to use a TriangleFanArray object to model
the geometry of a yo-yo. The TriangleFanArray contains four independent fans. two exterior faces (circular
disks) and two internal faces (cones). Only one TriangleFanArray object is needed to represent the four
fans.

Figure 2-15 shows three renderings of the TriangleFanArray. The first view shows its default rendering, as
white, filled polygons. However, it's hard to see detail, especially the location of the vertices. To show the
triangles better, the other two views show the TriangleFanArray with its vertices connected with lines. To
render what would be filled polygons as lines, see the class PolygonAttributes in Section 2.6.

Figure 2-15 Three Views of the Yo-yo

The Java 3D Tutorial 2-28

Getting Started with the Java 3D API Chapter 2. Creating Geometry

In Code Fragment 2-7, the method yoyoGeonet r y() creates and returns the desired TriangleFanArray.
Lines 15-18 calculates the central points for al four fans. Each fan has 18 vertices, which are calculated in
lines 20-28. Lines 30-32 construct the empty TriangleFanArray object, and then line 34 is where the
previoudly calculated coordinate data (from lines 15-28) is stored into the object.

1. private Geonetry yoyoGeonetry() {

2

3 Tri angl eFanArray tfa;

4. i nt N = 17;

5. i nt total N = 4*(N+1);

6 Poi nt 3f coords[] = new Point3f[total N|;

7 i nt stripCounts[] = {N+1, N+1, N+1, N+1};

8 fl oat r = 0.6f;

9. fl oat w = 0. 4f;

10. i nt n,

11. doubl e a;

12. fl oat X, VY;

13.

14. /1 set the central points for four triangle fan strips
15. coords[0*(N+1)] = new Point3f(0.0f, 0.0f, w;

16. coords[1*(N+1)] = new Point3f(0.0f, 0.0f, 0.0f);
17. coords[2*(N+1)] = new Point3f(0.0f, 0.0f, 0.0f);
18. coords[3*(N+1)] = new Point3f(0.0f, 0.0f, -w;
19.

20. for (a=0,n=0; n<N a=20Math.PI/(N1) * ++n){
21. x = (float) (r * Math.cos(a));

22. y = (float) (r * Math.sin(a));

23.

24. coords[0*(N+1) +N-n] = new Poi nt3f(x, vy, wW;
25. coords[1*(N+1) +n+1] = new Poi nt3f(x, y, W;
26. coords[2*(N+1) +N-n] = new Poi nt3f(x, vy, -w;
27. coords[3*(N+1) +n+1] = new Poi nt3f(x, vy, -w);
28. }

29.

30. tfa = new Triangl eFanArray (total N,

31. Tri angl eFanAr r ay. COORDI NATES,
32. stri pCounts);

33.

34. tfa. set Coordi nates(0, coords);

35.

36 return tfa;

37:} /1 end of nmethod yoyoGeonetry in class Yoyo

Code Fragment 2-7 yoyoGeometry() Method Creates TriangleFanArray Object

The al whiteyo-yo isjust astarting point. Figure 2-16 shows a similar object, modified to include colors at
each vertex. The modified yoyoGeonet r y() method, which includes colors in the TriangleFanArray
object, is shown in Code Fragment 2-8. Lines 23 through 26, 36 through 39, and line 46 specify color
values for each vertex.

More possibilities exist for specifying the appearance of a visual object through the use of lights, textures,
and material properties of avisual object. These topics are not covered in this tutorial module. Lights and
textures are the topics of tutorial module 2.

The Java 3D Tutorial 2-29

Getting Started with the Java 3D API Chapter 2. Creating Geometry

1. private Geonetry yoyoGeonetry() {

2

3 Tri angl eFanArray tfa;

4. i nt N = 17;

5. i nt total N = 4*(N+1);

6 Poi nt 3f coords[] = new Point3f[total N|;

7 Col or3f colors[] = new Color3f[total N|;

8 Col or3f red = new Col or3f(1.0f, 0.0f, 0.0f);

9. Col or 3f yell ow = new Col or 3f (0. 7f, 0.5f, 0.0f);
10. i nt stripCounts[] = {N+1, N+1, N+1, N+1};

11. fl oat r = 0.6f;

12. fl oat w = 0. 4f;

13. i nt n,

14. doubl e a;

15. fl oat X, VY;

16.

17. /1 set the central points for four triangle fan strips
18. coords[O0*(N+1)] = new Point3f(0.0f, 0.0f, w;

19. coords[1*(N+1)] = new Point3f(0.0f, 0.0f, 0.0f);
20. coords[2*(N+1)] = new Point3f(0.0f, 0.0f, 0.0f);
21. coords[3*(N+1)] = new Point3f(0.0f, 0.0f, -w;
22.

23. colors[O*(N+1)] = red

24. colors[1*(N+1)] = yell ow

25. colors[2*(N+1)] = yell ow

26. colors[3*(N+1)] = red

27.

28. for(a =0,n=0; n<N a=20Math.PI/(N1) * ++n){
29. x = (float) (r * Math.cos(a));

30. y = (float) (r * Math.sin(a));

31. coords[0*(N+1) +n+1] = new Poi nt3f(x, y, W;
32. coords[1*(N+1) +N-n] = new Poi nt 3f(x, vy, W;
33. coords[2*(N+1) +n+1] = new Poi nt3f(x, vy, -w);
34. coords[3*(N+1) +N-n] = new Poi nt3f(x, vy, -w;
35.

36. colors[O*(N+1) +N-n] = red;

37. col ors[1*(N+1) +n+1] = yel | ow

38. colors[2*(N+1) +N-n] = yel | ow

39. col or s[3*(N+1) +n+1] = red;

40. }

41. tfa = new Triangl eFanArray (total N,

42. Tri angl eFanAr r ay. COORDI NATES| Tri angl eFanArray. COLOR 3,
43. stri pCounts);

44.

45. tfa. set Coordi nates(0, coords);

46. tfa.setCol ors(0, col ors);

47.

48 return tfa;

49:} /1 end of nmethod yoyoGeonetry in class Yoyo

Code Fragment 2-8 M odified yoyoGeometry() Method with Added Colors
The observant reader will notice the differences in lines 36 through 39. The code is written to make the

front face of each triangle in the geometry the outside of the yo-yo. The discussion of front and back
triangle faces, and why it makes a differenceisin Section 2.6.4.

The Java 3D Tutorial 2-30

Getting Started with the Java 3D API Chapter 2. Creating Geometry

E'-;_,% [fulm‘r'uyu.ﬁpp'

Figure 2-16 Y o-yo with Colored Filled Polygons

2.5.4 Subclasses of | ndexedGeometryArray

The previoudy described subclasses of GeometryArray declare vertices wastefully. Only the
GeometryStripArray subclasses have even limited reuse of vertices. Many geometric objects invite reuse of
vertices. For example, to define a cube, each of its eight vertices is used by three different squares. In a
worse case, a cube requires specifying 24 vertices, even though only eight unique vertices are needed (16 of
the 24 are redundant).

IndexedGeometryArray objects provide an extralevel of indirection, so redundant vertices may be avoided.
Arrays of vertex-based information must still be provided, but the vertices may be stored in any order, and
any vertex may be reused during rendering. We cal these arrays, containing the coordinates, colors,
surface normals, and texture coordinates, the “ data arrays.”

However, IndexedGeometryArray objects also need additional arrays (“index arrays’) that contain indices
into the “data arrays.” There are up to four “index arrays’: coordinate indices, color indices, surface
norma indices, and texture coordinate indices, which corresponds to the “data arrays.” The number of
index arrays is aways the same as the number of data arrays. The number of elements in each index array
is the same and typically larger than the number of elementsin each data array.

The “index arrays’ may have multiple references to the same vertex in the “data arrays.” The values in
these “index arrays’ determine the order in which the vertex data is accessed during rendering. Figure 2-17
shows the relationships between index and data coordinate arrays for a cube as an example.

It is worth mentioning that there is a price to pay for the reuse of vertices provided by indexed geometry —
you pay for it in performance. The indexing of geometry at render time adds more work to the rendering
process. If performance is an issue, use strips whenever possible and avoid indexed geometry. |ndexed
geometry is useful when speed is not critical and there is some memory to be gained through indexing, or
when indexing provides programming convenience.

The Java 3D Tutoria 2-31

Getting Started with the Java 3D API Chapter 2. Creating Geometry

coordinate
_ index array coordinate data arr
p (-1, 1, -1)
frontface< : (-1, -1, -1)
> ~— (l, -l, 'l)
(1, 1, -1)
topface< q
(-1, 1, 1)
—_ N
~— (-1, -1, 1)
- (1, -1, 1)
- (1, 1, 1)
back face

Figure 2-17 Index and Data Arraysfor a Cube

Subclasses of IndexedGeometryArray paralel the subclasses of GeometryArray. The class hierarchy of
IndexedGeometryArray is shown in Figure 2-18.

Geometry

IndexedLineArr,
GeometryArray &

IndexedPointArray

IndexedGeometryArray

IndexedQuadArray

) IndexedLineStripArray
IndexedTriangleArray

IndexedTriangleStripArray

IndexedGeometryStripArray

IndexedTriangleFanArray

Figure 2-18 IndexedGeometryArray Subclasses

The constructors for IndexedGeometryArray, IndexedGeometryStripArray, and their subclasses are smilar
to congtructors for GeometryArray and GeometryStripArray. The classes of indexed data have an
additional parameter to define how many indices are used to describe the geometry (the number of e ements
in the index arrays).

The Java 3D Tutorial 2-32

Getting Started with the Java 3D API Chapter 2. Creating Geometry

IndexedGeometryArray and Subclasses Constructors
Constructs an empty object with the specified number of vertices, vertex format, and number of indicesin
this array.
| ndexedGeonet ryArray(i nt vertexCount, int vertexFormat, int indexCount)
| ndexedPoi nt Array(int vertexCount, int vertexFormat, int indexCount)
| ndexedLi neArray(int vertexCount, int vertexFormat, int indexCount)
| ndexedTri angl eArray(int vertexCount, int vertexFormat, int indexCount)

| ndexedQuadArray(int vertexCount, int vertexFormat, int indexCount)

IndexedGeometryStripArray and Subclasses Constructors
Constructs an empty object with the specified number of vertices, vertex format, number of indicesin this
array, and an array of vertex counts per strip.
| ndexedGeonetryStripArray(int vc, int vf, int ic, int stripVertexCounts[]))
| ndexedLi neStri pArray(int vc, int vf, int ic, int stripVertexCounts[]))
| ndexedTri angl eStri pArray(int vc, int vf, int ic, int stripVertexCounts[]))

| ndexedTri angl eFanArray(int vc, int vf, int ic, int stripVertexCounts[]))
IndexedGeometryArray, IndexedGeometryStripArray, and their subclasses inherit the methods from
GeometryArray and GeometryStripArray to load the “data arrays.” The classes of indexed data have added
methods to load indices into the “index arrays.”

The Java 3D Tutorial 2-33

Getting Started with the Java 3D API Chapter 2. Creating Geometry

IndexedGeometryArray Methods (partial list)

voi d set Coor di nat el ndex(int index, int coordinatel ndex)
Sets the coordinate index associated with the vertex at the specified index for this object.

voi d set Coordi nat el ndi ces(int index, int[] coordi natel ndi ces)
Sets the coordinate indices associated with the vertices starting at the specified index for this object.

voi d set Col or| ndex(int index, int colorlndex)
Sets the color index associated with the vertex at the specified index for this object.

voi d set Col orl ndi ces(int index, int[] col orlndices)
Sets the color indices associated with the vertices starting at the specified index for this object.

voi d set Normal | ndex (int index, int normallndex)
Sets the normal index associated with the vertex at the specified index for this object.

voi d set Normal | ndices (int index, int[] normallndices)
Sets the normal indices associated with the vertices starting at the specified index for this object.

voi d set Text ur eCoor di nat el ndex (int index, int texCoordl ndex)
Sets the texture coordinate index associated with the vertex at the specified index for this object.

voi d set Text ur eCoor di nat el ndi ces (int index, int[] texCoordlndices)
Sets the texture coordinate indices associated with the vertices starting at the specified index for this object.

2.5.5 Axisjavaisan Example of IndexedGeometryArray

The exanpl es/ geonet ry subdirectory contains the Axi s. j ava source code. This file defines the
Axis visua object useful for visualizing the axis and origin in a virtual universe. It aso serves as an
example of indexed geometry.

The Axis abject defines 18 vertices and 30 indices to specify 15 lines. There are five lines per axis used to
create asimple 3D arrow.

2.6 Appearance and Attributes

Shape3D objects may reference both a Geometry and an Appearance object. As was previoudy discussed
in Section 2.5, the Geometry object specifies the per-vertex information of a visual object. The per-vertex
information in a Geometry object can specify the color of visua objects. Data in a Geometry object are
often insufficient to fully describe how an object looks. In most cases, an Appearance object is also needed.

An Appearance object does not contain the information for how the Shape3D object should look, but an
Appearance object knows where to find appearance data. An Appearance object (already a subclass of
NodeComponent) may reference severa objects of other subclasses of the NodeComponent abstract class.
Therefore, information which describes the appearance of a geometric primitive is said to be stored within
an “appearance bundle,” such as the one shown in Figure 2-19.

The Java 3D Tutorial 2-34

Getting Started with the Java 3D API Chapter 2. Creating Geometry

/// o

N\

// .
g] Material Coloring

Figure 2-19 An Appearance Bundle

An Appearance object can refer to several different NodeComponent subclasses called appearance attribute
objects, including:

PointAttributes
LineAttributes
PolygonAttributes
ColoringAttributes
TransparencyAttributes
RenderingAttributes
Material
TextureAttributes
Texture
TexCoordGeneration

The first six of the listed NodeComponent subclasses are explained in this section. Of the remaining four
subclassesin the list, Material is used for lighting, and the last three are used for texture mapping. Lighting
and texture mapping are advanced topics, which are not discussed in this section.

An Appearance object with the attributes objects it refers to is called an appearance bundle. To reference
any of these node components, an Appearance object has a method with an obvious name. For example, for
an Appearance object to refer to a ColoringAttributes object, use the method
Appear ance. set Col ori ngAttri butes(). A smple code example looks like Code Fragment
2-9:

Col oringAttributes ca = new Col oringAttributes();
ca.setColor (1.0, 1.0, 0.0);

Appear ance app = new Appear ance();

app. set Col ori ngAttri butes(ca);

Shape3D s3d = new Shape3D();

s3d. set Appear ance (app);

s3d. set Geonetry (soneCeontbj ect) ;

NogohkwhE

Code Fragment 2-9 Using Appear ance and ColoringAttributes NodeComponent Objects

The scene graph that results from this code is shown in Figure 2-20.

The Java 3D Tutorial 2-35

Getting Started with the Java 3D API Chapter 2. Creating Geometry

/ \
N,
N\

\

Coloring
Attributes

Figure 2-20 Appearance Bundle Created by Code Fragment 2-9.

2.6.1 Appearance NodeComponent
The next two reference blocks list the default constructor and other methods of the Appearance class.
Appearance Constr uctor

The default Appearance constructor creates an Appearance object with al component object references
initiglized to null. The default values, for components with null references, are generally predictable:
points and lines are drawn with sizes and widths of 1 pixel and without antialiasing, the intrinsic color is
white, transparency is disabled, and the depth buffer is enabled and is both read and write accessible.

Appear ance()
An Appearance component usually references one or more attribute components, by calling the following

methods. These attribute classes are described in Section 2.6.3.
Appearance M ethods (excluding lighting and texturing)
Each method sets its corresponding NodeComponent object to be part of the current Appearance bundle.

voi d setPointAttributes(PointAttributes pointAttributes)

voi d setLineAttributes(LineAttributes |ineAttributes)

voi d set Pol ygonAttri but es(Pol ygonAttri butes pol ygonAttri butes)

voi d set Col ori ngAttri butes(Col oringAttributes col oringAttri butes)

voi d set TransparencyAttri but es(TransparencyAttributes transparencyAttributes)
voi d set RenderingAttri butes(RenderingAttributes renderingAttri butes)

2.6.2 Sharing NodeComponent Objects

It is lega and often desirable for several different objects to reference, and therefore share, the same
NodeComponent objects. For examplein Figure 2-21, two Shape3D objects reference the same Appearance
component. Also, two different Appearance objects are sharing the same LineAttributes component.

The Java 3D Tutorial 2-36

Getting Started with the Java 3D API Chapter 2. Creating Geometry

BB

Geometry - Appearance __ Appearance Geometry
v v
Coloring -]

Figure 2-21 Multiple Appear ance Objects Sharing a Node Component

Sharing the same NodeComponent can enhance performance. For instance, if several Appearance
components share the same LineAttributes component, which enables antialiasing, the Java 3D rendering
engine may decide to group the antialiased wire frame shapes together. That would minimize turning
antialiasing on and off, which should be faster.

Note that it is illegal for a Node to have more than one parent. However, since NodeComponents are
referenced, they aren't Node objects, so they really don't have any parents. Therefore, NodeComponent
objects may be shared (referenced) by any number of other objects.

2.6.3 Attribute Classes

In this section, six of the NodeComponent subclasses that can be referenced by Appearance are described
(excluding the ones used for lighting and texturing).

PointAttributes

PointAttributes objects manage how point primitives are rendered. By default, if a vertex is rendered as a
point, it fills a single pixel. You can use setPointSize() to make a point larger. However, by default, a
larger point ill looks square, unless you also use setPointAntialiasingEnable(). Antialiasing points
changes the colors of the pixels to make the point look "rounder” (or at least, less visibly square).

PointAttributes Constructors

Poi nt Attri but es()
Creates a component object that describes 1 pixel size points without antialiasing.

Poi nt Attri butes(fl oat pointSize, boolean state)
Creates a component object that describes the pixel size for points and whether to enable antiaiasing.

The Java 3D Tutorial 2-37

Getting Started with the Java 3D API Chapter 2. Creating Geometry

PointAttributes M ethods

voi d set Poi ntSi ze(fl oat poi ntSi ze)
Describes pixel size for points.

voi d set Poi nt Anti al i asi ngEnabl e(bool ean st at e)
Enables or disables point antialiasing. Visually interesting only if point is larger than 1 pixel.

LineAttributes

LineAttributes objects change how line primitives are rendered in three ways. By default, a line is drawn
solidly filled, one pixd wide, and without antialiasing (the smoothing effect). You can change these
attributes by calling the methods setLinePattern(), setLineWidth(), and setLineAntiaiasngEnable().

LineAttributes Constructors

Li neAttri butes()
Creates a component object that describes 1 pixel wide, solidly filled lines without antialiasing.

Li neAttri butes(float pointSize, int |linePattern, bool ean state)
Creates a component object that describes the pixel size for lines, the pattern to use for drawing, and
whether to enable antialiasing.

LineAttributes Methods

voi d setLineWdth(float |ineW dth)
Describes pixel width for lines.

voi d setLinePattern(int |inePattern)
where linePattern is one of the following constants: PATTERN_SOLID (the default), PATTERN_DASH,
PATTERN_DOT, or PATTERN_DASH_DOT. Describes how the pixels of aline should be filled.

voi d setLineAntialiasi ngEnabl e(bool ean st at e)
Enables or disables line antialiasing.

PolygonAttributes

PolygonAttributes governs how polygon primitives are rendered in three ways. how the polygon is
rasterized, if it is culled, and whether a special depth offset is applied. By default, a polygon is filled, but
setPolygonMode() can change the polygon rasterization mode so that the polygon is drawn as wire frame
(lines) or only as the points at the vertices. (In the latter two cases, the LineAttributes or PointAttributes
also affect how the primitive is visualized.) The method setCullFace() may be used to reduce the number of
polygons which are rendered. If setCullFace() is set to either to CULL_FRONT or CULL_BACK, on
average, half the polygons are no longer rendered.

By default, vertices rendered as both wire frame and filled polygons are not always rasterized with the same
depth values, which can cause dtitching when the wire frame should be fully visble. With
set Pol ygonOf f set (), the depth values of the filled polygons could be nudged toward the image
plate, so that the wire frame would outline the filled object properly. set BackFaceNor mal Fl i p() is
useful to render alit, filled polygon, where a both sides of the polygon are to be shaded. See Section 2.6.4
for an example program that shades both sides of polygons.

The Java 3D Tutorial 2-38

Getting Started with the Java 3D AP Chapter 2. Creating Geometry

PolygonAttributes Constructors

Pol ygonAttri but es()
Creates a component object with default filled polygons, no face culling, and no polygon offset.

Pol ygonAttri butes(int pol ygonMode, int cull Face, float pol ygonOfset)
Creates a component object to render polygons as either points, lines, or filled polygons, with the specified
face culling, and the specified polygon offset.

Pol ygonAttri butes(int pol ygonMode, int cull Face, float pol ygonOifset, bool ean
backFaceNor mal Fl i p)

Creates a component object similar to the previous constructor, but also reverses how front and back facing
polygons are determined.

PolygonAttributes M ethods

voi d set Cul | Face(i nt cul | Face)
where cullFace is one of the following: CULL_FRONT, CULL_BACK, or CULL_NONE. Cull (do not
render) front facing polygons or back facing polygons, or don't cull any polygons at all.

voi d set Pol ygonMbde(i nt pol ygonhbde)
where polygonMode is one of the following: POLY GON_POINT, POLY GON_LINE, or
POLYGON_FILL. Render polygons as either points, lines, or filled polygons (the default).

voi d set Pol ygonOf f set (fl oat pol ygonO f set)
where polygonOffset is the screen-space offset added to adjust the depth value of the polygon primitives.

voi d set BackFaceNor mal Fl i p(bool ean backFaceNor mal Fl i p)

where backFaceNormalFlip determines whether vertex normals of back facing polygons should be flipped
(negated) prior to lighting. When thisflag is set to true and back face culling is disabled, apolygon is
rendered asif the polygon had two sides with opposing normals.

ColoringAttributes

ColoringAttributes controls how any primitive is colored. setColor() sets an intrinsic color, which in some
situations specifies the color of the primitive. Also, setShadeMode () determines whether there is color
interpolation across primitives (usually polygons and lines).

ColoringAttributes Constructors
Col ori ngAttri but es()
Creates a component object using white for the intrinsic color and SHADE_GOURAUD as the default
shading model.
Col ori ngAttri but es(Col or3f color, int shadeMdel)

Col oringAttributes(float red, float green, float blue, int shadeMdel)

where shadeModel is one of SHADE_GOURAUD, SHADE_FLAT, FASTEST, or NICEST. Both
congtructors create a component object using parameters to specify the intrinsic color and shading model .
(In most cases, FASTEST isalso SHADE_FLAT, and NICEST isalso SHADE _GOURAUD.)

The Java 3D Tutorial 2-39

Getting Started with the Java 3D API Chapter 2. Creating Geometry

ColoringAttributes M ethods

voi d set Col or (Col or 3f col or)

voi d setCol or(float red, float green, float blue)
Both methods specify the intrinsic color.

voi d set ShadeMbdel (i nt shadeMbdel)
where shadeModel is one of the following constants: SHADE_GOURAUD, SHADE_FLAT, FASTEST,
or NICEST. Specifies the shading model for rendering primitives.

Since colors can aso be defined at each vertex of a Geometry object, there may be a conflict with the
intrinsic color defined by ColoringAttributes. In case of such a conflict, the colors defined in the Geometry
object overrides the ColoringAttributes intrinsic color. Also, if lighting is enabled, the ColoringAttributes
intrinsic color isignored altogether.

TransparencyAttributes
TransparencyAttributes manages the transparency of any primitive. setTransparency() defines the opacity

value (often known as alpha blending) for the primitive. setTransparencyMode() enables transparency and
selects what kind of rasterization is used to produce transparency.

TransparencyAttributes Constructors

Transpar encyAttri but es()
Creates a component object with the transparency mode of FASTEST.

TransparencyAttributes(int tMde, float tVal)

where tMode is one of BLENDED, SCREEN_DOOR, FASTEST, NICEST, or NONE, and tVal specifies
the object’ s opacity (where 0.0 denotes fully opague and 1.0, fully transparent). Creates a component
object with the specified method for rendering transparency and the opacity vaue of the object’s
appearance.

TransparencyAttributes M ethods

voi d set Transparency(fl oat tVal)
where tVal specifies an object’s opacity (where 0.0 denotes fully opague and 1.0, fully transparent).

voi d set Tr anspar encyMbde(i nt t Mode)
where tMode (one of BLENDED, SCREEN_DOOR, FASTEST, NICEST, or NONE) specifiesif and how
transparency is performed.

RenderingAttributes

RenderingAttributes controls two different per-pixel rendering operations. the depth buffer test and the
alpha test. setDepthBufferEnable() and setDepthBufferWriteEnable() determine whether and how the depth
buffer is used for hidden surface removal. setAlphaTestVaue() and setAlphaTestFunction() determine
whether and how the alpha test function is used.

The Java 3D Tutorial 2-40

Getting Started with the Java 3D API Chapter 2. Creating Geometry

RenderingAttributes Constructors

Renderi ngAttri butes()
Creates a component object which defines per-pixel rendering states with enabled depth buffer testing and
disabled alphatesting.

Renderi ngAttri but es(bool ean dept hBuf f er Enabl e, bool ean dept hBuf f er Wi t eEnabl e,
fl oat al phaTest Val ue, int al phaTest Functi on)

where depthBufferEnable turns on and off the depth buffer comparisons (depth testing),
depthBufferWriteEnable turns on and off writing to the depth buffer, alphaTestValue is used for testing
against incoming source apha values, and dphaTestFunction is one of ALWAY S, NEVER, EQUAL,
NOT_EQUAL, LESS, LESS OR_EQUAL, GREATER, or GREATER_OR_EQUAL, which denotes
what type of aphatest is active. Creates a component object which defines per-pixel rendering states for
depth buffer comparisons and al pha testing.

RenderingAttributes M ethods

voi d set Dept hBuf f er Enabl e(bool ean st at e)
turns on and off the depth buffer testing.

voi d set Dept hBuf f er Wit eEnabl e(bool ean st at e)
turns on and off writing to the depth buffer.

voi d set Al phaTest Val ue(fl oat val ue)
specifies the value to be used for testing against incoming source a pha values.

voi d set Al phaTest Functi on(int function)

where function isone of ALWAYS, NEVER, EQUAL, NOT_EQUAL, LESS, LESS OR_EQUAL,
GREATER, or GREATER_OR_EQUAL, which denotes what type of aphatest is active. If functionis
ALWAY S (the default), then the alpha test is effectively disabled.

Appearance Attribute Defaults

The default Appearance constructor initializes an Appearance object with al attribute references set to
null. Table 2-1 lists the default values for those attributes with null references.

The Java 3D Tutorial 2-41

Getting Started with the Java 3D API

Table 2-1 Attribute Defaults

Chapter 2. Creating Geometry

color white (1, 1, 1)

texture environment mode TEXENV_REPLACE
texture environment color white (1, 1, 1)

depth test enable true

shade model SHADE_GOURAUD
polygon mode POLYGON_FILL

transparency enable

fase

transparency mode FASTEST
cull face CULL_BACK
point size 1.0

line width 1.0

point antialiasing enable fase

line antialiasing enable fase

2.6.4 Example: Back Face Culling

Polygons have two faces. For many visual objects, only one face of the polygons need be rendered. To
reduce the computational power required to render the polygonal surfaces, the renderer can cull the
unneeded faces. The culling behavior is defined on a per visual object basis in the PolygonAttribute
component of Appearance. The front face of an object is the face for which the vertices are defined in

counter-clockwise order.

Twi st Stri pApp. j ava creates a 'twisted strip' visual object and rotates it about the y-axis. As the
twisted strip rotates, parts of it seemed to disappear. The missing pieces are easily noticed Figure 2-22.

Actualy, TwistStripApp defines two visua objects, each with the same geometry - that of a Twisted strip.
One of the visual objects renders as a wireframe, the other as a solid surface. Since the two visual objects
have the same location and orientation, the wireframe visual object is only visible when the surface is not

visible.

Figure 2-22 Twisted Strip with Back Face Culling

The Java 3D Tutoria

2-42

Getting Started with the Java 3D API Chapter 2. Creating Geometry

The reason for the missing polygons is the culling mode hasn't been specified, so it defaults to
CULL_BACK. The triangles of the surface disappear when their back side (back face) face the image
plate. This is a feature that allows the rendering system to ignore rendering triangle surfaces that are
unnecessary, unwanted, or both.

However, sometimes back face culling is a problem, as in the TwistStripApp. The problem has a smple
solution: turn off culling. To do this, create an Appearance component that references a PolygonAttributes
component which disables culling, as shown in Code Fragment 2-10.

Pol ygonAttri but es pol yAppear = new Pol ygonAttri butes();

pol yAppear . set Cul | Face(Pol ygonAttri butes. CULL_NONE) ;

Appear ance tw st Appear = new Appear ance();

twi st Appear . set Pol ygonAt tri but es(pol yAppear);

/1l several lines later, after the twistStrip Triangl eStripArray has
/1 been defined, create a Shape3D object with culling turned off

/1 in the Appearance bundl e, and add the Shape3D to the scene graph
twi st BG addChi | d(new Shape3D(twi stStrip, tw stAppear));

SNoRwbE

Code Fragment 2-10 Disable Back Face Culling for the Twisted Strip

In Figure 2-23, disabling back face culling clearly fills in the cracks. Now all polygons are rendered, no
matter which direction they are facing.

E%%-T'wistﬁtlip.ﬁpp'

Figure 2-23 Twisted Strip without Back Face Culling

The front face of a polygon is the side for which the vertices are appear in counter-clock wise order. This
is often referred to as the "right-hand rule" (see the glossary). The rule used to determine the front face of a
geometric strip (i.e., triangle strip, quad strip) alternates for each element in the strip. Figure 2-24 shows
examples of using the right-hand rule for front face determination.

The Java 3D Tutoria 2-43

Getting Started with the Java 3D API Chapter 2. Creating Geometry

A 4

1

Figure 2-24 Deter mining the Front Face of Polygons and Strips

2.7 Self Test

On the next couple of pages are a few exercises designed to test and enhance your understanding of the
material presented in this chapter. The solutions to some of these exercises are given in Appendix C.

1. Try your hand a creating a new yo-yo using two cylinders instead of two cones. Using
ConeYoyoApp. j ava asadtarting point, what changes are needed?

2. A two-cylinder yo-yo can be created with two quad-strip objects and four triangle-fan objects. Another
way is to reuse one quad-strip and one triangle fan. What objects would form this yo-yo visua object?
The same approach can be used to create the cone yo-yo. What object would form this yo-yo visua
object?

3. The default culling mode is used in YoyoLineApp.java and YoyoPointApp.java. Change either, or
both, of these programs to cull nothing, then compile and run the modified program. What difference
do you see?

The Java 3D Tutorial 2-44

	Preface to the Tutorial
	Chapter 2: Creating Geometry
	Table of Contents
	List of Figures
	Figure 2-1 Orientation of Axis in the Virtual World
	Figure 2-2 A Shape3D Object Defines a Visual Object in a Scene Graph
	Figure 2-3 Partial Java 3D API Class Hierarchy Showing Subclasses of NodeComponent
	Figure 2-4 Class Hierarchy of Utility Geometric Primitves: Box, Cone, Cylinder, and Sphere
	Figure 2-5 Class Hierarchy of ColorCube Ulitily Geometric Class
	Figure 2-6 Scene Graph of ConeYoyo App
	Figure 2-7 Multiple Parent Exception While Attempting to Reuse a Cone Object
	Figure 2-8 An Image Rendered by ConeYoyoApp.java
	Figure 2-9 Mathematical Classes Package and Hierarchy
	Figure 2-10 Geometry Class Hierarchy
	Figure 2-11 Axis Class in AxisApp.java Creates this Scene Graph
	Figure 2-12 Non-Indexed Geometry Array Subclasses
	Figure 2-13 Geometry Array Subclasses
	Figure 2-14 GeometryStripArray Subclasses
	Figure 2-15 Three Views of the Yo-yo
	Figure 2-16 Yo-yo with Colored Filled Polygons
	Figure 2-17 IndexedGeometryArray Subclasses
	Figure 2-18 IndexedGeometryArray Subclasses
	Figure 2-19 An Appearance Bundle
	Figure 2-20 Scene Graph with Appearance Bundle
	Figure 2-21Multiple Appearance Objects Sharing a Node Component
	Figure 2-22 Twisted Strip with Back Face Culling
	Figure 2-23 Twisted Strip without Back Face Culling
	Figure 2-24 Detemning the Front Face of Polygons and Strips

	List of Tables
	Table 2-1

	List of Code Fragments
	Code 2-1 Skeleton Code for a Visual Object Class
	Code 2-2 Class ConeYoyo From ConeYoyoApp.java Example Program
	Code 2-3 Example ColorConstants Class
	Code 2-4 GeometryArray Constructors
	Code 2-5 Storing Data into a GeometryArray Object
	Code 2-6 GeometryArray Objects Referenced by Shape3D Objects
	Code 2-7 yoyoGeometry() Method Creates TriangleFanArray Object
	Code 2-8 Modified yoyoGeometry() Method with Added Colors
	Code 2-9 Using Appearance and ColoringAttributes NodeComponent Objects
	Code 2-10 Disable Back Face Culling for the Twisted Strip

	List of Reference Blocks
	Reading Reference Blocks

	Preface to Chapter 2
	2.1 Virtual World Coordinate System
	2.2 Visual Object Definition Basics
	2.2.1 An Instance of Shape 3D Defines a Visual Object
	2.2.2 Node Components
	2.2.3 Defining Visual Object Classes

	2.3 Geometric Utility Classes
	2.3.5 More About Geometric Primitives
	2.3.1 Box
	2.3.2 Cone
	2.3.3 Cylinder
	2.3.4 Sphere
	2.3.5 More About Geometric Primitives
	2.3.6 ColorCube
	2.3.7 Example: Creating a Simple Yo-Yo From Two Cones
	2.3.8 Advanced Topic: Geometric Primitive

	2.4 Mathematical Classes
	2.4.1 Point Classes
	2.4.2 Color Classes
	2.4.3 Vector Classes
	2.4.4 TexCoord Classes

	2.5 Geometry Classes
	2.5.1 GeometryArray Classes
	2.5.2 Subclasses of GeometryArray
	2.5.3 Subclasses of GeometryStripArray
	2.5.4 Subclasses of IndexedGeometry Array
	2.5.5 Axis.java is an Example of IndexedGeometryArray

	2.6 Appearance and Attributes
	2.6.1 Appearance NodeComponent
	2.6.2 Sharing NodeComponent Objects
	2.6.3 Attribute Classes
	Point Attributes
	Line Attributes
	Polygon Attributes
	Coloring Attributes
	Transparency Attributes
	Rendering Attributes
	Appearance Attribute Defaults

	2.6.4 Example: Back Face Culling

	2.7 Self Test

	Chapter 0: Overview and Appendicies
	Chapter 1: Getting Started
	Chapter 3: Easier Content Creation
	Chapter 4: Interaction
	Chapter 5: Animation
	Chapter 6: Lights
	Chapter 7: Textures
	Appendix A
	Appendix B
	Appendix C
	Glossary

