Getting Started with
the Java 3D™ API

Chapter 3
Easier Content Creation

Dennis J Bouvier

& K Computing

N
< Sun.
'ﬂlE"D‘;_‘y‘.‘a.El‘l‘l‘i

tutorial v1.5 (Java 3D API v1.1.2)

Getting Started with Java 3D

© 1999 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A
All Rights Reserved.

The information contained in this document is subject to change without notice.

SUN MICROSYSTEMS PROVIDES THIS MATERIAL "AS IS’ AND MAKES NO WARRANTY OF ANY KIND,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SUN MICROSYSTEMS SHALL NOT BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS IN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF THIS MATERIAL,
WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL THEORY).

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY MADE TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES
IN THE PRODUCT(S) AND/OR PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Some states do not alow the exclusion of implied warranties or the limitations or exclusion of liability for incidental or
consequential damages, so the above limitations and exclusion may not apply to you. This warranty gives you specific legal
rights, and you also may have other rights which vary from state to state.

Permission to use, copy, modify, and distribute this documentation for NON-COMMERCIAL purposes and without fee is
hereby granted provided that this copyright notice appearsin all copies.

This documentation was prepared for Sun Microsystems by K Computing (530 Showers Drive, Suite 7-225, Mountain View,
CA 94040, 770-982-7881, www.kcomputing.com). For further information about course development or course delivery,
please contact either Sun Microsystems or K Computing.

Java, JavaScript, Java 3D, HotJava, Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun
Microsystems, Inc. All other product names mentioned herein are the trademarks of their respective owners.

The Java 3D Tutoria

Module 1: Getting Started with the Java 3D API

Table of Contents

Chapter 3

EaSIEr CONLENT CrEALIONeeveeiiiieteeeie ettt ettt e e b e e s e e s neesne e saneeneennnennneens 3-1
3.1 What iSTN thiS ChaDEESceieeieeeieeee e ne e s 3-1
I 0= L= £ ST PR PR PRPRP 3-2
321 Simple Example of USING @ L0BOEN............cooviiiiiiieiieeeee e 3-2
3.2.2 Publicly Available LOBOENS.......cccoeee ettt e snee e e nneeeens 34
3.2.3 Loader Package Interfaces and Base ClaSSeSccoviiiieiieiie i 34
324 WITING @LOBOEToiiiiieiie ettt n e nnne e 3-6
R I €T o107 1Y/ [o1 o TP PSPPSR 3-7
3.3.1 Simple Geometrylnfo EXAMPIE........coiiiiiieiieeeee e 3-8
3.3.2 Classes for GEOMEIYINTO.oiiiiiie i 39
K 1= 4 21 B PRSPPSO 3-13
341 SIMPleText2D EXAMPIE.....cceiiieeeeee et 3-14
3.4.2 Classes Used in Creating TeXt2D ObJECLS.......cooiiiriiiieeiieeieeesiee e see e 3-15
T = | I TSP T TP RPN 3-16
351 SIMPle Text3D EXAMPIE.....cccoiieieeeiee e 3-16
3.5.2 ClassesUsed in Creating Text3D ODJECLS.........coviuiiiieiiiiieeeesie e 3-18
3.6 BACKGIOUND.........eeiiiiitieee ittt et e s nnn e e n e e nnneene s 3-22
3.6.1 Background EXAMPIES........coooiiiiiiie ettt 3-23
3.6.2 Background ClaSS........c.coiiiiiiiiieiie e 3-24

G A = o 1H 0o [To = P 3-26
3.7.1 BoUNINGLEAS ClBSS......ceiiuiiiiiiiiieiee e 3-27
I U L < g D - - VTSP PR OPRRPRPP 3-28
3.9 ChapEr SUMIMBIY.....cueiiieeiieeet ettt ettt et e n e se e e s e s s e san e e s e e nneennneenees 3-29
T IR R 1= S PP U RSP RPRP 3-29

The Java 3D Tutorial 3

Getting Started with Java 3D Chapter 3. Contents

List of Figures

Figure 3-1 Recipe for USING @LO80ENeiiiiee ettt e e e st e e s e e snneeeneens 3-2
Figure 3-2 A Geometrylnfo Polygon and One Possible Triangulationccvevoereiieeeiiee e, 3-7
Figure 3-3 Two Renderings of a Car (facing opposite directions) Created Using GeometryInfo............... 3-8
Figure 3-4 Class Hierarchy for the Geometrylnfo Utility Class, and Related Classes.........ccocccvevieenneen. 39
Figure 3-5 RECIPE TON TEXIZDoiieiee ettt ettt e st e e sate e e snee e smte e e smteeeneeeennes 3-14
Figure 3-6 IMage from TEXI2D AP JAVA. ... ueeeiuieeeeeeeeteeeeeeeseeee et e e seteeesaeeesaeeesneeeesseeesseeesnseeeaneeeenees 3-15
Figure 3-7 The Class Hierarchy for TEXI2D........coooiiiiiieee et 3-15
Figure 3-8 Recipe for Creating 8 TeXt3D ObJECL........ccciiiiieeeiiee e 3-16
Figure 3-9 The Default Reference Point and Extrusion for a3DText Object.........cccoveceeviieiceieiieeeee 3-17
Figure 3-10 Class Hierarchy for TEXISDcoooieiiiiie ettt e e e e 3-18
Figure 3-11 Recipe for BaCKGrOUNGSoiiiieeiiiie ettt e e neee e 3-23
Figure 3-12 Viewing the “ Constellation” in the Background of BackgroundApp.java.........cccccceeeeueennee. 3-24
Figure 3-13 The Class Hierarchy for Background..............ccooiiiiiiiiiiiieeeeseeee e 3-24
Figure 3-14 BoundlingL eaf Moves with a Visual Object and Independently of aLight Source............... 3-26
Figure 3-15 Java 3D API Class Hierarchy for BoundingLeEafcooooereiieriiiieiee e 3-28
List of Tables
Table 3-1 Publicly Available Java 3D LOBOENScocveiiieiiiiieeieeee et 3-4
Table 3-2 The Orientation of Text and Position of the Reference Point for Combinations of Text3D
AlGNMENT AN PaLN ... et eneeeens 3-18

List of Code Fragments

Code Fragment 3-1 A Portion of j dk1. 2/ denpo/ j ava3d/ Obj Load/ Cbj Load. j ava................ 33
Code Fragment 3-2 Using Geometrylnfo, Triangulator, Normal Generator, and Stripifier Utilities........... 39
Code Fragment 3-3 A Text2D Object Created (excerpt from Text2DAPP.JaVA)ccevvveereereerieeesieennns 3-14
Code Fragment 3-4 Making a Two-sided Text2D ODJECL.cceeivirrieriierierie e 3-15
Code Fragment 3-5 Creating a Text3D Visual ODJECTcoiiiiiiiiieeee e 3-17
Code Fragment 3-6 Adding a Colored Backgroundceeieeieerieeiienee e 3-23
Code Fragment 3-7 Adding a Geometric Background..............ocueieirieeiienienieesieesee e 3-23
Code Fragment 3-8 Adding a BoundingL eaf to the View Platform for an "Always-On" Bounds............ 3-27

The Java 3D Tutorial 3Hii

Getting Started with Java 3D Chapter 3. Contents

List of Reference Blocks

L0 =5 1 @ o] = 1 1 = S 33
com.sun.j3d.|0aders INEfate SUMMEBYc.ooiiiiiiiri et 35
COM.SUN. | 3d.10a0ErS ClaSS SUMIMEIYcccuviiiiiiieiie et ne e nnne e 35
Interface Loader MethOd SUMIMEIYcoviiiieiie e 35
LoaderBase CONSITUCIOr SUMIMIBIYcoiuriiieerieerieeereessee e s e ssee s s s e s sn e sse e s e sn e e sneesneesnneenneennes 3-6
SceneBase Method Summary (partial list: loader userS Methods)c.cvevveeiieiieice e 3-6
SceneBase CONSIUCION SUMMIBIYeiiireeiieee e esree e s e e sne e e e smeeesne e e snre e s snneesnne e e snneesaneeenanes 3-7
GeometryINfo CONSIIUCIOr SUMIMIBIYcoiuvieieerieeireeiee sttt sbe e ss e s e e nneesneenneeneennes 3-10
Geometrylnfo Method Summary (Partial liSt)........coeoeeeiiiie e 311
Triangulator CONSLIUCION SUMIMEIYcuviiiieiierireete ettt sseesseesn e e sneesnnesneenneennneeas 312
Triangulator MethOd SUMIMBIYcoouiiiiiiiieiee e nnne e 312
Stripifier CONSIUCION SUMIMEIYccvviiireiiieiiesiie sttt s e e s e s e e e ne e sneesn e e neennes 312
Stripifier MEethOd SUMMEIYooiiiiieiieee et n e 312
Normal Generator CONSIIUCION SUMIMEIY........coiueeirrerreireesieesseeeseessee e s e sseesseesseesneesseessneenneesneennneans 3-13
Normal Generator Method SUMIMBIYcoiiiiiieiieiie e 3-13
TexXt2D CONSLIUCLON SUMIMBIYuueeeieeiieeeaeaiutieaeeateeeeeateeeesasbeeesaasbeeassaabeeeesasbeeessanbeeessanneeeesannseeasanns 3-16
TeXt2D MEthOU SUMIMEIY ..ottt b e e st e nne e s e e sneennnennneeas 3-16
TeXt3D CONSLIUCIOr SUMIMEIYveeiieeeireeeisreeesneeessee s e s sseeesne e ssre e s ann e e sne e e snre e s anneesneeesnneeennneennnees 3-19
TeXt3D MEhOU SUMIMEIYcoiueiiiieiee ittt b e s s b s e e en e e sneennneens 3-20
Text3D CapabilitieS SUMIMEIYcoiiiiiiiiieiie et ne e e e e sneennneea 3-20
FONt3D CONSLIUCLOr SUMIMEIY.....cceueeeiieeeiieeesneee et e s e sne e smn e sne e e sre e e snreesnneenanes 3-21
FONt3D MEthOO SUMIMEIYceiiiiiieeiie et ssn e n e e nneennneen 321
Font Constructor Summary (Partial [iS)coceeieeiiieee e 321
FONtEXtrusion CONSITUCIOr SUMIMBIYcoiuiiiiieiieeiie et esie et se e n e ssn e neesneennneens 3-22
FONtEXtrusion MethoT SUMIMEIYooiiiiiiiii et n e 3-22
Background CONSIIUCIOr SUMIMIBIYcoiueiiiiiiiieiiee ettt n e n e n e nsn e n e e nneennneen 325
Background Method SUMIMENYcoouieiiiiiiee e 325
Background CapabilitieS SUMIMEIYcooiiiiiiiiiiie e 3-26
BoundingLeaf CONSIIUCIOr SUMIMEIYcoiiiiieeiiieiieeie ettt sn e s ssn e sneesneesnneens 3-28
BoundingLeaf Method SUMIMEIYooiiiiiiiieiicne e 3-28
SceneGraphObject Methods (Partial List - User Data Methods)cocveieeiiieniciicieeecee e 3-29
Preface to Chapter 3

This document is one part of atutorial on using the Java 3D API. You should be familiar with Java 3D
API basics to fully appreciate the material presented in this Chapter. Additional chapters and the full

preface to this material are presented in the Module O document available at:
http://java. sun. con products/javamedi a/ 3d/ col | at eral

Cover Image

The cover imageis of agalleon asmodeled in an obj file and rendered by Java 3D. The Java 3D program
that produced the rendering, Obj LoadApp. j ava, is a modification of the Obj Load.] ava
example program discussed in Section 3.2. The program source code for Obj Load. j ava and the
galleon model file are available with the JDK 1.2 distribution.

The Java 3D Tutorial 3Hiii

Module 1: Getting Started with the Java 3D API

CHAPTER 3
Easier Content Creation

100k
T(dx, dy, dz) = géggz
0001

Chapter Objectives
After reading this chapter, you'll be able to:
Use loader classes to load geometry from files into Java 3D worlds
Use Geometrylnfo to specify geometry as arbitrary polygons
Use Text2D to add text to Java 3D worlds
Use Text3D to add geometric text to Java 3D worlds
Specify colors, images, or geometry for background
Use BoundingL eaf for specifying bounds for backgrounds, behaviors, and lights
Use the UserData field of SceneGraphObject class for a variety of applications

As the third chapter of the "Getting Started" Module, Chapter Three presents easier ways of creating
visua content. Chapters one and two present the basic ways of creating virtual worlds, which includes
creating visual objects from geometry classes. It only takes a little programming to learn that creating
complex visual content one triangle at atime is tedious. Fortunately, there are a variety of easier ways to
produce visua content. This chapter surveys a number of content creation methods and content issues
beyond cresting ssimple geometry.

3.1 What isin this Chapter

If you want to create a large or complex visual object, a great deal of code is required to just specify
coordinates and normals. If you are concerned about performance, you spend more time, and code, to
specify the geometry in as few triangle strips as possible. Geometry coding, fraught with details, can de a
big sink on your development time. Fortunately, there are ways to create visua objects that require less
code, resulting in fewer mistakes, and quiet often taking much less time.

Section 3.2 presents content |oader classes, or "Loaders’ as they are commonly referred to. Loaders, one
aternative to hand coded geometry, create Java 3D visua objects from files created with 3D modeling

The Java 3D Tutorial 31

Getting Started with Java 3D Chapter 3. Easier Content Creation

software. Loaders exist today for Alias obj files, VRML files, Lightwave files, Autocad df x files, and a
variety of other 3D file formats. New loaders are in development as well. The most important festure is
the ability to write custom loaders for Java 3D.

Section 3.3 presents the Geometrylnfo utility class, another aternative to hand coded geometry.
Geometrylnfo, along with the Triangulator, Stripifier, and Normal Generation classes alows you to specify
visual object geometry as arbitrary polygons. These classes convert the polygons to triangles, make strips
of the triangles, and compute normals for the triangles at runtime, potentially saving you much coding time.

The next three sections present specific content creation techniques. Sections 3.4 and 3.5 present the
Text2D utility and Text3D classes, respectively. These two classes represent two easy ways to add text to
the contents of your virtual world. Section 3.6 presents the Background class. The Background class
allows you to specify a color, image or geometry as the background for a virtual world.

The next two sections don't have as much to do with content. However, these are important topics.
Section 3.7 presents the BoundingLesaf class. BoundingLeaf objects are useful in conjunction with
backgrounds, behaviors, lights, fog, and other Java 3D classes that require a bounds specification. Section
3.8 discusses the use of the UserData field of SceneGraphObject class.

Of course, the Chapter concludes with a summary and Self-Test exercises for the adventurous.

3.2 Loaders

A loader class reads 3D scene files (not Java 3D files) and creates Java 3D representations of the file's
contents that can be selectively added to a Java 3D world and augmented by other Java 3D code. The
utility com sun. j 3d. | oader s package provides the means for loading content from files created in
other applications into Java 3D applications. Loader classes implement the loader interface defined in the
utility com sun. j 3d. | oader s package.

Since there are a variety of file formats for the purpose of representing 3D scenes (e.g., . obj, . vrni,
etc.) and there will always be more file formats, the actual code to load a file is not part of Java 3D or of
the loaders package; only the interface for the loading mechanism isincluded. With the interface definition,
the Java 3D user can develop file loader classes with the same interface as other loader classes.

3.2.1 Simple Example of Using a L oader

Without a class that actually reads afile, it is not possible to load content from afile. With aloader class
itiseasy. Figure 3-1 presents the recipe for using aloader.

find aloader (if one is not available, write one: see section 3.2.4)

import the loader class for your file format (see Section 3.2.2 to find a loader)
import other necessary classes

declare a Scene variable (don't use the constructor)

create aloader object

load thefile in atry block, assigning the result to the Scene variable

insert the Scene into the scene graph

Flgure 3-1 Recipefor Using a L oader
A loader example based on the ObjectFile class is distributed with JDK 1.2. It is found in

j dk1. 2/ deno/j ava3d/ Obj Load. Code Fragment 3-1 presents a excerpt from the code from this
demo.

@k wWNEO

The Java 3D Tutorial 3-2

Getting Started with Java 3D Chapter 3. Easier Content Creation

The ObjectFile class is distributed in the com sun. j 3d. | oader s package as an example file loader.
Other loaders are available (some are listed in Table 3-1).

Class ObjectFile

Package: com sun. j 3d. | oader s
Implements: Loader

The ObjectFile class implements the L oader interface for the Wavefront .obj file format, a standard 3D object file
format created for use with Wavefront's Advanced Visualizer ™. Object Files are text based files supporting both
polygonal and free-form geometry (curves and surfaces). The Java 3D .obj file loader supports a subset of the file
format, but it is complete enough to load almost al commonly available Object Files. Free-form geometry is not

supported.

Code Fragment 3-1 is annotated with numbers corresponding to the loader usage recipe given in Figure 3-1.

CoNOUTRWNE

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

public

pr

com sun. j 3d. | oaders. obj ectfile. ojectFile; o
com sun. j 3d. | oader s. Par si ngEr r or Except i on; 12
com sun. j 3d. | oaders. | ncorrect For mat Except i on; 12
com sun. j 3d. | oaders. Scene; 12
j ava. appl et . Appl et ;

javax. nedi a.j 3d. *;

j avax.vecmat h. *;

java.io.*; 12

cl ass (bj Load extends Applet {

ivate String filename = null;

public BranchG oup createSceneG aph() {

3]
4]
(- R

/1l Create the root of the branch graph
BranchG oup obj Root = new BranchG oup();

hjectFile f = new CbjectFile();
Scene s = null;

try {
s = f.load(filenane);

}

catch (Fil eNot FoundException e) {
Systemerr.println(e);
Systemexit(1l);

catch (ParsingErrorException e) {
Systemerr.println(e);
Systemexit(1l);

catch (I ncorrect Format Exception e) {
Systemerr.println(e);
Systemexit(1l);

}

obj Root . addChi | d(s. get SceneG oup()) ;

Code Fragment 3-1 An Excerpt fromj dk1. 2/ deno/ j ava3d/ Obj Load/ Obj Load. j ava.

This program goes on to add behaviors (the default spin, or the mouse interaction - covered in Chapter 4)
and lights (Chapter 6) to provide a shaded rendering of the object model. Of course, you can do many

The Java 3D Tutorial 33

Getting Started with Java 3D Chapter 3. Easier Content Creation

other things with the model in a Java 3D program such as add animations, add other geometry, change the
color of the model, and so on.

A Lightwave loader example is available with the JDK 1.2 distribution and is found at
j dk1. 2/ denos/java3d/ | i ghtwave/ Vi ewer.java. This loader will load the lights and
animations specified in aLightwave | ws file.

3.2.2 Publicly Available L oaders

A variety of loader classes exist for Java 3D. Table 3-1 lists file formats for which loaders are publicly
available. At the time of thiswriting, at least one loader classis available for each of the file formats listed
in Table 3-1.

Table 3-1 Publicly Available Java 3D L oaders

File Format | Description

3DS 3D-Studio

COB Caligari trueSpace

DEM Digital Elevation Map

DXF AutoCAD Drawing Interchange File
OB Imagine

LWS Lightwave Scene Format

NFF WorldToolKit NFF format

OBJ Wavefront

PDB Protein Data Bank

PLAY PLAY

SLD Solid Works (prt and asm files)
VRT Superscape VRT

VTK Visua Toolkit

WRL Virtual Reality Modeling Language

For a current list of loader classes, check the web. For that matter, loader classes can be downloaded from
the web. Loaders can be found by following links from the Java 3D home page, or check the references
section of thistutoria for a web address.

3.2.3 Loader Package Interfaces and Base Classes

The number and variety of loaders exist because the Java 3D designers made it easy to write a loader™.
Loader classes are implementations of the Loader Interface which lowers the level of difficulty in writing a
loader. More importantly, the interfaces make the various |oader classes consistent in their interface.

Asin the example, a program loading a 3D file actually uses both a loader and a scene object. The loader
reads, parses, and creates the Java 3D representation of the file's contents. The scene object stores the
scene graph created by the loader. It is possible to load scenes from more than one file (of the same
format) using the same loader object creating multiple scene objects. Files of different formats can be
combined in one Java 3D program using the appropriate loader classes.

The following reference block lists the interfaces in the com sun. j 3d. | oader s package. A loader
implements the |oader interface and uses a class that implements the scene interface.

! Having the loader interface and base class actually makes it easy to write a loader for a simple file format. It also
makes it possible to write aloader for a complex file format.

The Java 3D Tutorial 34

Getting Started with Java 3D Chapter 3. Easier Content Creation

com.sun.j3d.loader s I nterface Summary

L oader The Loader interface is used to specify the location and elements of afile format to load.
Scene The Scene interface is a set of methods used to extract Java 3D scene graph information from afile
loader utility.

In addition to the interfaces, the com sun. j 3d. | oader s package provides base implementations of
the interfaces.

com.sun.j3d.loaders Class Summary

LoaderBase This classimplements the Loader interface and adds constructors. This classis extended by the
authors of specific loader classes.

SceneBase This class implements the Scene interface and extends it to incorporate methods used by |oaders.
This classis aso used by programs that use loader classes.

The methods defined in the loader interface are used by programmers using loader classes.
Interface Loader Method Summary
Package: com sun. j 3d. | oader s

The Loader interface is used to specify the location and elements of afile format to load. The interface is used to
give loaders of various file formats a common public interface. Ideally the Scene interface will be implemented to
give the user a consistent interface to extract the data.

Scene | oad(j ava.i 0. Reader reader)
This method |oads the Reader and returns the Scene object containing the scene.

Scene | oad(java.lang. String fil eNane)
This method |oads the named file and returns the Scene abject containing the scene.

Scene | oad(java.net.URL url)
This method |oads the named file and returns the Scene abject containing the scene.

voi d set BasePat h(j ava. |l ang. Stri ng pat hNane)
This method sets the base path name for data files associated with the file passed into the |oad(String) method.

voi d setBaselrl (java. net. URL url)
This method sets the base URL name for data files associated with the file passed into the load(URL) method.

voi d set Fl ags(int flags)
This method sets the load flags for the file.

LOAD_ALL This flag enables the loading of all objects into the scene.
LOAD_BACKGROUND_NODES Thisflag enables the loading of background objects into the scene.
LOAD_BEHAVIOR_NODES This flag enables the loading of behaviors into the scene.
LOAD_FOG_NODES This flag enables the loading of fog objects into the scene.
LOAD_LIGHT_NODES This flag enables the loading of light objects into the scene.
LOAD_SOUND_NODES This flag enables the loading of sound objects into the scene.
LOAD_VIEW_GROUPS This flag enables the loading of view (camera) objects into the scene.

LoaderBase class provides an implementation for each of the threel oad() methods of Interface Loader.
L oaderBase also implements two constructors. Note the three loader methods return a Scene object.

The Java 3D Tutorid 35

Getting Started with Java 3D Chapter 3. Easier Content Creation

L oader Base Constructor Summary

Package: com sun. j 3d. | oader s
Implements: Loader

This class implements the Loader interface. The author of afile loader would extend this class. The user of afile
loader would use these methods.

Loader Base()
Constructs a L oader with default values for all variables.

Loader Base(int fl ags)
Constructs a Loader with the specified flags word.

In addition to the constructors listed in the reference block above, the methods listed in the following
reference block are used by programmers using any loader class.

SceneBase Method Summary (partial list: loader users methods)
In a departure from the normal formatting of a reference block, this reference block lists the methods.

Background[] get Backgr oundNodes()
Behavi or[] get Behavi or Nodes()
java.lang. String getDescription()
Fog[] get FogNodes()

float[] getHorizontal FOVs()

Li ght[] getLi ght Nodes()

java. util . Hasht abl e get NanedObj ect s()
BranchGroup get SceneG oup()

Sound[] get SoundNodes()

Transf orm& oup[] get Vi ewG oups()

3.24 Writing a Loader

As| mentioned above, one of the most important features of loaders is that you can write your own - which
means that all other Java 3D users can too! Space and time constraints do not permit me to go into details
on writing a loader here. However, the point of this section is to outline the process. If you have no
intention of writing aloader, at least not now, you can skip to the next section.

In writing a loader, the author of the new loader class extends the LoaderBase class defined in the
com sun. j 3d. | oaders package. The new loader class uses the SceneBase class of the same
package.

There should be little need for future loaders to subclass SceneBase, or to implement Scene directly, as the
functionality of a SceneBase is fairly straightforward. SceneBase class is responsible for both the storage
and retrieval of data created by a loader while reading a file. The storage methods (used only by Loader
authors) are al of theadd* routines. The retrieval methods (used primarily by Loader users) are all of the
get * routines.

Writing afile loader can be quite complex depending on the complexity of the file format. The hardest part
is to parse the file. Of course, you have to start with the documentation for the file format you want to
write aloader classfor. Once the format is understood, begin by reading the loader and scene base classes.
The new loader class will extend the loader base class and use the scene base class.

In extending the loader base class, most of the work will be writing methods that recognize the various
types of content that can be represented in the file format. Each of these methods then create the

The Java 3D Tutorial 3-6

Getting Started with Java 3D Chapter 3. Easier Content Creation

corresponding Java 3D scene graph component and store it in the scene object. The SceneBase constructor
islisted in the following reference block. Other relevant reference blocks appear in the previous section.

SceneBase Constructor Summary
Package: com sun. j 3d. | oader s
Implements: Scene

This class implements the Scene interface and extends it to incorporate utilities that could be used by loaders.
This classis responsible for both the storage and retrieval of data from the Scene

SceneBase()
Create a SceneBase object - there should be no reason to use this constructor except in the implementation of a new
loader class.

3.3 Geometrylnfo

If you don't have access to geometric model files, or geometric modeling software, you have to create your
geometry by hand. As mentioned in the chapter introduction, hand coding geometry often requires much
time and is an error prone activity. Asyou know, when you specify geometry through the core classes, you
are limited to triangles and quads. Using the GeometryInfo utiltity class can ease the time and tedium of
geometry creation. Instead of specifying each triangle, you can specify arbitrary polygons, which can be
concave, non-planer polygons - even with holes”. The Geometrylnfo object, and other utility classes,
convert the geometry into atriangular geometry that Java 3D can render.

For example, if you wanted to create a car in Java 3D, instead of specifying triangles, you can specify the
profile of the car as a polygon in a Geometrylnfo object. Then, using a Triangulator object, the polygon
can be subdivided into triangles. The left image of Figure 3-2 shows a praofile of a car as polygon. The
right image is the polygon subdivided into triangles’.

/ N/ \

Figure 3-2 A Geometrylnfo Polygon and One Possible Triangulation

If you are interested in performance, and who isn't, use a Stripifier object to convert the triangles to triangle
strips. If you want to shade the visual object, use the NormalGenerator to calculate normals for the
geometry”.

2 While you can specify non-planar polygons in Geometrylnfo, and a Triangulator object will create a
surface from it; non-planar contours do not specify a unique surface. In other words, if you specify a non-
planar contour, you may not get the surface you want from Triangulator.

% Note that the figure does not necessarily represent the quality of the triangulation produced by the
Triangulator class.

* If you are unfamiliar with the term shade as used in the context of computer graphics, check the glossary and
read the introductory sections of Chapter 6.

The Java 3D Tutorial 37

Getting Started with Java 3D Chapter 3. Easier Content Creation

An example program, Geoml nf 0App. j ava, using the Geometrylnfo, Triangulator, Stripifier, and
Normal Generation classes to creaste a car is included in the exanpl es/ easyCont ent directory.
Figure 3-3 shows two renderings produced by Geoml nf oApp. j ava. In both renderings the blue
outlines shows the contours specified in the Geometrylnfo object. The red triangles (filled and shaded on
the left, outline on the right) were computed by the Geometrylnfo object with Triangulation,
Normal Generation, and Stripification done automatically.

E'-;_,% GeomlnfoApp E;g GeominfoApp

Figure 3-3 Two Renderings of a Car (facing opposite directions) Created Using Geometrylnfo

A single planar polygon, similar to the one in shown in Figure 3-2, specifies the profile of the car (each
side) in the GeomInfoApp example. Quadrilaterals specify the hood, roof, trunk lid, and other surfaces of
the car.

3.3.1 Simple Geometrylnfo Example

Using a Geometrylnfo object is as easy as using core GeomertryArray classes, if not easier. In creating a
Geomertylnfo object, smply specify the type of geometry you are going to need. The choices are
POLYGON_ARRAY, QUAD_ARRAY, TRI ANGLE_ARRAY, TRI ANGLE_FAN_ARRAY, and
TRI ANGLE_STRI P_ARRAY. Then set the coordinates and strip counts for the geometry. You don’t
have to tell the Geometryinfo object how many coordinates are in the data; it will be automatically
calculated.

Code Fragment 3-2 shows an example GeometryInfo application. Lines 1 through 3 of Code Fragment 3-2
show cresting a Geometrylnfo object and the initial geometry specification.

After having created the Geometryinfo object, the other classes may be used. If you want to use the
Normal Generator, for example, first create a NormalGenerator object, then pass the Geometrylnfo object
toit. Lines8 and 9 of Code Fragment 3-2 do just that.

The Java 3D Tutorial 3-8

Getting Started with Java 3D Chapter 3. Easier Content Creation

1. Ceonetrylnfo gi = new Geonetryl nf o(Geonet ryl nf o. POLYGON_ARRAY) ;
2. gi . set Coor di nat es(coor di nat eDat a) ;

3. gi .setStripCounts(stripCounts);

4.

5. Triangul ator tr = new Triangul ator();

6. tr.triangul ate(gi);

7.

8. Nor mal Gener at or ng = new Nor nmal Generator () ;
9. ng. gener at eNor mal s(gi);

10.

11. Stripifier st = new Stripifier();

12. st.stripify(gi);

13.

14. Shape3D part = new Shape3D);

15. part. set Appear ance(appear ance) ;

16. part.set Geonetry(gi.get GeonetryArray());

Code Fragment 3-2 Using Geometrylnfo, Triangulator, NormalGenerator, and Stripifier Utilities.

3.3.2 Classesfor Geometrylnfo

The Geometrylnfo and related classes are members of the com sun. j 3d. uti | . geonet ry package

and are subclasses of Object. Figure 3-4 shows the hierarchy for these classes.

javalang.Object

7| com.sun.j3d.utils.geometry.Geometrylnfo

| com.sun.j3d.utils.geometry.Normal Generator

| com.sun.j3d.utils.geometry.Stripifier

—| com.sun.j3d.utils.geometry.Triangulator

Figure 3-4 Class Hierarchy for the Geometrylnfo Utility Class, and Related Classes

The GeometryInfo class has only one constructor and in this constructor you specify the kind of geometry

to be specified by the coordinate data. The following reference block gives more detail.

The Java 3D Tutorial 39

Getting Started with Java 3D Chapter 3. Easier Content Creation

Geometrylnfo Constructor Summary

Package: com sun. j 3d. util s. geonetry
Extends: j ava. | ang. Cbj ect

The Geometrylnfo object is where you put your geometry if you want to use the Java 3D utility libraries. Once you
have your data in the Geometrylnfo object, you can send it to any (or all) of several utilities to have operations
performed on it, such as generating normals or turning it into long strips for more efficient rendering
("stripifying"). Geometry is loaded just asit isin the Java 3D GeometryArray object, but there are fewer options for
getting data into the object. GeometryInfo itself contains some simple utilities, such as calculating indices for non-
indexed data ("indexifying") and getting rid of unused data in your indexed geometry information (*'compacting”).

Georetrylnfo(int primtive)
Construct a Geometrylnfo object, where primitive is one of

POLYGON_ARRAY possibly multi-contour, possibly non-planar polygons
QUAD_ARRAY each set of four vertices forms an independent quad
TRI ANGLE_ARRAY each set of three vertices form an independent triangle

TRI ANGLE_FAN_ARRAY the stripCounts array indicates how many vertices to use for each triangle fan.
TRI ANGLE_STRI P_ARRAY that the stripCounts array indicates how many vertices to use for each triangle strip.

The Geometrylnfo class has many methods. Most methods are for setting (or getting) coordinate, color,
index, normal, or texture coordinate data. Most applications will only use a few of available methods.
However, it is convienient to be able to specify geometry to any level of detail and have the rest computed.

The Java 3D Tutorial 3-10

Getting Started with Java 3D Chapter 3. Easier Content Creation

Geometrylnfo Method Summary (partial list)

voi d reconput el ndi ces()
Redo indexes to guarantee connection information.

voi d reverse()
Reverse the order of al lists.

voi d set Col orlndices(int[] col orlndices)
Setsthe array of indices into the Color array.

voi d set Col ors(Col or3f[] col ors)
Setsthe colors array.

voi d set Col ors(Col or4f[] col ors)
Setsthe colors array. There are other setColors methods.

voi d set Cont our Count s(i nt[] contour Counts)
Setsthe list of contour counts.

voi d set Coordi nat el ndi ces(int[] coordinatel ndi ces)
Sets the array of indicesinto the Coordinate array.

voi d set Coor di nat es(Poi nt 3f[] coordi nat es)
Sets the coordinates array.

voi d set Coor di nat es(Poi nt 3d[] coordi nat es)
Sets the coordinates array. There are other setCoordinates methods.

voi d set Normal I ndi ces(int[] nornallndices)
Setsthe array of indices into the Normal array.

voi d set Normal s(Vector3f[] normal s)
Sets the normals array.

voi d set Normal s(float[] normal s)
Sets the normals array.

void setStripCounts(int[] stripCounts)
Setsthe array of strip counts.

voi d set Text ur eCoor di nat el ndi ces(int[] texCoordlndices)
Sets the array of indicesinto the TextureCoordinate array.

voi d set Text ur eCoor di nat es(Poi nt 2f[] t exCoor ds)
Sets the TextureCoordinates array. There are other setTextureCoordinates methods.

Each of the Geometrylnfo 'helper' classes are used in a way similar to the Geometrylnfo class. The
following reference blocks show the congtructors and methods for Triangulator, Stripifier, and
Normal Generator, in that order. Thisisthe order in which they would be used for aPOLY GON_ARRAY.

The Triangulator utility is only used with POLY GON_ARRAY geometry. Geometrylnfo objects with
other primitive geometry would only use Stripifier and Normal Generator, as appropriate.

The Java 3D Tutorid 311

Getting Started with Java 3D Chapter 3. Easier Content Creation

The default constructor of the Triangulator class simply creates a Triangulation object. See the reference
block for more information.

Triangulator Constructor Summary

Package: com sun. j 3d. util s. geonetry
Extends: j ava. |l ang. Obj ect

Triangulator is a utility for turning arbitrary polygons into triangles so they can be rendered by Java 3D. Polygons
can be concave, nonplanar, and can contain holes (see Geometrylnfo).

Tri angul at or ()
Creates a new instance of the Triangulator.

The only method of the Triangulator classis to triangulate a polygon array Geometrylnfo object.
Triangulator Method Summary
void triangul at e(Geonetryl nfo gi)

This routine converts the Geometrylnfo abject from primitive type POLYGON_ARRAY to primitive type
TRI ANGLE _ARRAY using polygon decomposition techniques.

The only constructor of the Stripifier class creates a stripification object’.
Stripifier Constructor Summary

Package: com sun. j 3d. util s. geonetry
Extends: j ava. |l ang. Obj ect

The Stripifier utility will change the primitive of the Geometrylnfo object to Triangle Strips. The strips are made
by analyzing the triangles in the original data and connecting them together.

For best results Normal Generation should be performed on the Geometrylnfo object before Stripification.

Stripifier()
Creates the Stripifier object.

The only method of the Stripifier classisto stripify the geometry of a Geometrylnfo class.
Stripifier Method Summary

void stripify(Geonetrylnfo gi)
Turn the geometry contained in the Geometrylnfo object into an array of Triangle Strips.

The NormalGenerator class has two constructors. The first constructs a Normal Generator with a default
value for the crease angle. The second constructor alows the specification of a crease angle with the
congtruction of the Normal Generator object. See the reference block below.

® Each paragraph introduces a new word into the English language.

The Java 3D Tutorid 312

Getting Started with Java 3D Chapter 3. Easier Content Creation

NormalGenerator Constructor Summary

Package: com sun. j 3d. util s. geonetry
Extends: j ava. |l ang. Obj ect

The Normal Generator utility will calculate and fill in the normals of a Geometrylnfo object. The calculated
normals are estimated based on an analysis of the indexed coordinate information. If your dataisn't indexed, index
lists will be created.

If two (or more) triangles in the model share the same coordinate index then the normal generator will attempt to
generate one normal for the vertex, resulting in a"smooth" looking surface. If two coordinates don't have the same
index then they will have two separate normals, even if they have the same position. Thiswill result in a"crease"
in your object. If you suspect that your data isn't properly indexed, call Geometrylnfo.recomputel ndexes().

Of course, sometimes your model has acrease init. If two triangles normals differ by more than creaseAngle,
then the vertex will get two separate normals, creating a discontinuous crease in the model. Thisis perfect for the
edge of atable or the corner of a cube, for instance.

Nor mal Gener at or ()
Construct a Normal Generator with the default crease angle (0.76794 radians, or 44°).

Nor mal Gener at or (doubl e radi ans)
Construct a Normal Generator with a specified crease angle in radians.

The methods for the NormalGenerator class include ones for setting and getting the crease angle, and
computing normals for the geometry of a Geometrylnfo object. See the Norma Generator Constructor
Summary reference block for adiscussion of crease angle.

NormalGenerator Method Summary

voi d gener at eNor mal s(Geonetryl nfo geonj
Generate normals for the Geometrylnfo object.

doubl e get CreaseAngl e()
Returns the current value of the crease angle, in radians.

voi d set CreaseAngl e(doubl e radi ans)
Set the crease angle in radians.

3.4 Text2D

There are two ways to add text to a Java 3D scene. One way uses the Text2D class and the other way uses
the Text3D class. Obvioudly, one significant difference is that Text2D objects are two dimensional and
Text3D objects are three dimensional. Another significant difference is how these objects are created.

Text2D objects are rectangular polygons with the text applied as a texture (texturing is the subject of
Chapter 7). Text3D objects are 3D geometric objects created as an extrusion of the text. See Section 3.5
for more information on the Text3D class and related classes.

As a subclass of Shape3D, instances of Text2D can be children of group objects. To place a Text2D
object in a Java 3D scene, simply create the Text2D object and add it to the scene graph. Figure 3-5
presents this smple recipe.

The Java 3D Tutorid 313

Getting Started with Java 3D Chapter 3. Easier Content Creation

1. Create a Text2D object
2. Addit to the scene graph

Figure 3-5 Recipefor Text2D

Text2D objects are implemented using a polygon and atexture. The polygon is transparent so that only the
texture is visible. The texture is of the text string set in the named typeface with the specified font
parameters’. The typefaces available on your system will vary. Typicaly, Courier, Helvetica, and
TimesRoman typefaces will be available, anong others. Any font available in the AWT is available to you
for Text2D (and Text3D) applications. Using a Text2D object is straightforward as demonstrated in the
next section.

3.4.1 Simple Text2D Example

Code Fragment 3-3 shows an example of adding a Text2D object to a scene. The Text2D object is created
on lines 21 through 23. In this constructor, the text string, color, typeface, size, and font style are
specified. The Text2D object is added to the scene graph on line 24. Note the import statement for Font
(line 5) used for the font style constants.

i nport j ava. appl et. Appl et ;
i mport java. awt. Bor der Layout ;

1

2

3 i mport java. awt. Frane;

4. i mport java.awt.event.*;

5. i mport java. awt. Font;

6 i mport comsun.j3d.utils.appl et.MinFrane;
7 i mport comsun.j3d.utils.geonetry. Text 2D,
8 i mport comsun.j3d.utils.universe.*;

9 i mport javax. nmedi a.j 3d. *;

16. i mport javax.vecmath. *;

11.

12. /1 Text 2DApp renders a singl e Text2D object.

13.

14. public class Text 2DApp extends Applet {

15.

16. public BranchG oup createSceneG aph() {

17. /1l Create the root of the branch graph

18. BranchG oup obj Root = new BranchG oup();

19.

20. /1l Create a Text2D | eaf node, add it to the scene graph.
21. Text 2D text 2D = new Text2D("2D text is a textured pol ygon",
22. new Col or 3f (0. 9f, 1.0f, 1.0f),
23. "Hel vetica", 18, Font.ITALIQ));
24. obj Root . addChi | d(t ext 2D);

Code Fragment 3-3 A Text2D Object Created (excer pt from Text2DApp.java)

Text 2DApp. j ava is a complete program that includes the above Code Fragment. In this example, the
Text2D object rotates about the origin in the scene. As the application runs you can see, by default, the
textured polygon is invisible when viewed from behind.

® A font is a specific typeface set at a size with a set of font style attributes. Refer to the glossary for definitions of
font and typeface.

The Java 3D Tutorial 3-14

Getting Started with Java 3D Chapter 3. Easier Content Creation

Figure 3-6 Image from Text2DApp.java

Some attributes of a Text2D object can be changed by modifying the referenced appearance bundle and/or
Geometry NodeComponent. Code Fragment 3-4 shows the code to make t ext 2d, the Text2D object
created in Code Fragment 3-3, two-sided through modification of its appearance bundle.

25. Appear ance text Appear = text2d. get Appear ance();

26.

27. /1 The following 4 Iines of code make the Text 2D object 2-sided.
28. Pol ygonAttri butes pol yAttrib = new Pol ygonAttri butes();

29. pol yAttri b. set Cul | Face(Pol ygonAttri butes. CULL_NONE) ;

30. pol yAttri b. set BackFaceNor mal Fl i p(true);

31. t ext Appear . set Pol ygonAttri but es(pol yAttrib);

Code Fragment 3-4 Making a Two-sided Text2D Object.

The texture created by one Text2D object can be applied to other visual objects as well. Since the
application of texturesto visual objects is the subject of Chapter 7, the details on this are left until then.

3.4.2 ClassesUsed in Creating Text2D Objects

The only class needed is the Text2D class. Asyou can see from Figure 3-7, Text2D is a utility class which
extends Shape3D.

javalang.Object

I

javax.media.j3d.SceneGraphObject

I

javax.mediaj3d.Node

I

javax.mediaj3d.L eaf

I

javax.media.j3d.Shape3D

I

com.sun.j3d.utils.geometry. Text2D

Figure 3-7 The Class Hierar chy for Text2D
In the Text2D constructor, the text string, typeface, font size, and font style are specified.

The Java 3D Tutorial 3-15

Getting Started with Java 3D Chapter 3. Easier Content Creation

Text2D Constructor Summary
Package: com sun. j 3d. util s. geonetry

This class creates a texture-mapped rectangle which displays the text string sent in by the user, given the
appearance parameters also supplied by the user. The size of the rectangle (and its texture map) is determined by
the font parameters passed in to the constructor. The resulting Shape3D object is a transparent (except for the text)
rectangle located at (0, 0, 0) and extending up the positive y-axis and out the positive x-axis.

Text 2D(j ava.l ang. String text, Color3f color, java.lang.String fontNanme, int
fontSize, int fontStyle)
Constructor.

With the Text2D constructor, there is one method. This method sets a scale factor to create Text2D
objects larger or smaller than the specified point size. This method is not useful in version 1.1.x of the
AP, since it is only utilized when the text is specified. In verson 1.2 aset Text () method will be
introduced making the set Rect angl eScal eFact or () useful.

Text2D Method Summary

voi d set Rect angl eScal eFact or (fl oat newScal eFact or)
Sets the scale factor used in converting the image width/height to width/height values in 3D.

3.5 Text3D

Another way to add text to a Java 3D virtual world is to create a Text3D object for the text. Where
Text2D creates text with atexture, Text3D creates text using geometry. The textual geometry of a Text3D
object is an extrusion of the font.

Creating a Text3D object is alittle more involved than creating a Text2D object. Thefirst step isto create
a Font3D object of the desired typeface, size, and font style. Then a Text3D object for a particular string
is made using the Font3D object. Since the Text3D classis a subclass of Geometry, the Text3D object isa
NodeComponent that is referenced by one or more Shape3D object(s). Figure 3-8 summarizes the process
of adding Text3D objects to a scene graph.

1. Create a Font3D object from an AWT Font
2. Create Text3D for a string using the Font3D object, optionally specifying a reference point
3. Reference the object from a Shape3D object added to the scene graph

Figure 3-8 Recipefor Creating a Text3D Object

3.5.1 Smple Text3D Example

Code Fragment 3-5 shows the basic construction of a Text3D object. The Font3D object is created on
lines 19 and 20. The typeface used here is "Helvetica'. Just like with Text2D, any typeface available in
the AWT can be used for Font3D and therefore Text3D objects. This Font3D constructor (lines 19 and 20
of Code Fragment 3-5) also sets the font size to 10 points and uses the default extrusion.

The statement on lines 21 and 22 create a Text3D object using the newly created Font3D object for the
string "3DText" while specifying a reference point for the object. The last two statements create a
Shape3D object for the Text3D object and add it to the scene graph. Note the import statement for Font
(line 5) is necessary since a Font object is used in the Font3D creation.

The Java 3D Tutorial 3-16

Getting Started with Java 3D Chapter 3. Easier Content Creation

1. i nport j ava. appl et. Appl et ;

2. i mport java. awt. Border Layout ;

3. i mport java. awt. Frane;

4. i mport java.awt.event.*;

5. i mport java.awt. Font;

6. i mport comsun.j3d.utils.appl et.MinFrane;

7. i mport comsun.j3d.utils.universe.*;

8. i mport javax. nmedi a.j 3d. *;

9. i mport javax.vecmath. *;

10.

11. /1 Text 3DApp renders a single Text3D object.

12.

13. public class Text 3DApp extends Applet {

14.

15. public BranchG oup createSceneG aph() {

16. /1l Create the root of the branch graph

17. BranchG oup obj Root = new BranchG oup();

18.

19. Font 3D font 3d = new Font 3D(new Font ("Hel vetica", Font.PLAIN, 10),
20. new Font Extrusion());

21. Text 3D t ext Geom = new Text 3D(font3d, new String("3DText"),
22. new Poi nt 3f (-2.0f, 0.0f, 0.0f));
23. Shape3D t ext Shape = new Shape3D(text Geom ;

24. obj Root . addChi | d(t ext Shape) ;

Code Fragment 3-5 Creating a Text3D Visual Object

Figure 3-9 shows a Text3D object illuminated to illustrate the extrusion of the type. In the figure, the
extrusion is shown in gray while the type is shown in black. To recreate this figure in Java 3D, a Material
object and a DirectionalLight is necessary. Since Chapter 6 covers these topics, they are not discussed
here. You can't set the color of the individual vertices in the Text3D object since you don't have access to
the geometry of the Text3D object.

v n Temj i
ooirt trusion

Figure 3-9 The Default Reference Point and Extrusion for a 3DText Object

The text of a Text3D object can be oriented in a variety of ways. The orientation is specified as a path
direction. The choices are right, left, up, and down. See Table 3-2 and the Text3D reference blocks
(beginning on page 3-19) for more information.

Each Text3D object has a reference point. The reference point for a Text3D object is the origin of the
object. The reference point for each object is defined by the combination of the path and alignment of the
text. Table 3-2 shows the effects of path and alignment specification on the orientation of the text and
placement of the reference point.

The placement of the reference point can be defined explicitly overriding the path and alignment
positioning. See the Text3D reference blocks (beginning on page 3-19) for more information.

The Java 3D Tutorial 3-17

Getting Started with Java 3D

Chapter 3. Easier Content Creation

Table 3-2 The Orientation of Text and Position of the Reference Point for Combinations of Text3D

Alignment and Path

ALI GN_FI RST ALI GN_CENTER ALI GN_LAST
(defaul t)
PATH Rl GHT Text3D Teg3D Text3
(defaul t) o L e
PATH LEFT D3txeT. D33<eT pStxeT
PATH DOWN ﬁ' T T
e e e
X & X
t t {
S
PATH_UP t t t
X X X
e ® e
J T T

Text3D objects have normals. The addition of an appearance bundle that includes a Materia object to a
Shape3D object referencing Text3D geometry will enable lighting for the Text3D object.

3.5.2 ClassesUsed in Creating Text3D Objects

This section presents reference material for the three classes used in creating Text3D objects: Text3D,
Font3D, and FontExtrusion, in that order. Figure 3-10 shows the class hierarchy for Text3D class.

javalang.Object

javax.media.j3d.SceneGraphObject

javax.media.j3d.NodeComponent

javax.media3d.Geometry

javax.media,j3d.Text3D

Figure 3-10 Class Hierarchy for Text3D

The Text3D class defines a number of constructors. Each constructor alows you to specify none, some, or
all of the attributes of a Text3D object. The following reference block lists the constructors, aong with the
default values, for Text3D.

The Java 3D Tutorial 3-18

Getting Started with Java 3D Chapter 3. Easier Content Creation

Text3D Constructor Summary

A Text3D object is atext string that has been converted to 3D geometry. The Font3D object determines the
appearance of the Text3D NodeComponent object. Each Text3D object has a position - a reference point placing
the Text3D object. The 3D text can be placed around this position using different alignments and paths.

Text 3D()
Creates an empty Text3D object. The default values used for this, and other constructors as appropriate, are:
font 3D nul |
string nul |
posi tion (0,0, 0)
al i gnnment ALI GN_FI RST
pat h PATH_RI GHT

character spacing 0.0

Text 3D(Font 3D f ont 3D)
Creates a Text3D object with the given Font3D object.

Text 3D(Font 3D font 3D, String string)
Creates a Text3D object given a Font3D object and a string.

Text 3D(Font 3D font 3D, String string, Point3f position)
Creates a Text3D object given a Font3D object and a string. The position point defines a reference point for the
Text3D object. Its position is defined relative to the lower left front corner of the geometry.

Text 3D(Font 3D font 3D, String string, Point3f position,

int alignment, int path)

Creates a Text3D object given a Font3D object and a string.
ALI GN_CENTER alignment: the center of the string is placed on the position point.
ALI GN_FI RST alignment: the first character of the string is placed on the position point.
ALI GN_LAST aignment: the last character of the string is placed on the position point.
PATH DOMN path: succeeding glyphs are placed below the current glyph.
PATH LEFT path: succeeding glyphs are placed to the l€eft of the current glyph.
PATH RI GHT path: succeeding glyphs are placed to the right of the current glyph.
PATH_UP path: succeeding glyphs are placed above the current glyph.

See Table 3-2 for examples.

The Text3D class also defines a number of methods. Each alows you to modify (set) the attributes of the
Text3D object. This class aso defines corresponding get * methods. The following reference block lists
theset * methods for the Text3D class.

The Java 3D Tutorid 3-19

Getting Started with Java 3D Chapter 3. Easier Content Creation

Text3D Method Summary

voi d set Alignment (int alignnent)
Sets the text alignment policy for this Text3D NodeComponent object.

voi d set Char act er Spaci ng(fl oat charact er Spaci ng)
Sets the character spacing to be used when constructing the Text3D string.

voi d set Font 3D(Font 3D f ont 3d)
Sets the Font3D object used by this Text3D NodeComponent object.

voi d setPat h(int path)
Sets the node's path direction.

voi d set Posi tion(Poi nt3f position)
Sets the node's reference point to the supplied parameter.

voi d setString(java.lang.String string)
Copies the character string from the supplied parameter into the Text3D node.

The following reference block lists the Capabilities of the Text3D class.
Text3D Capabilities Summary

ALLOW ALI GNVENT_READ | WRI TE allow reading (writing) the text alignment value.
ALLOW BOUNDI NG_BOX_READ allow reading the text string bounding box value
ALLOW CHARACTER_SPACI NG READ | WRI TE allow reading (writing) the text character spacing value.
ALLOW FONT3D_READ | WRI TE allow reading (writing) Font3D component information.
ALLOW PATH READ | WRI TE allow reading (writing) the text path value.

ALLOW PCSI TI ON_READ | WRI TE allow reading (writing) the text position value.
ALLOW STRI NG READ | WRI TE allow reading (writing) the String object.

Each Text3D object is created from a Font3D object. A single Font3D object can be used to create an
unlimited number of Text3D objects’. A Font3D object holds the extrusion geometry for each glyph in the
typeface. A Text3D object copies the geometry to form the specified string. Font3D objects can be
garbage collected without affecting Text3D objects created from them.

The following reference block shows the constructor for the Font3D class.

" Of course, memory constraints will limit the actual number of Text3D objects to some number significantly less
than infinity.

The Java 3D Tutorial 3-20

Getting Started with Java 3D Chapter 3. Easier Content Creation

Font3D Constructor Summary
Extends: j ava. |l ang. Obj ect

A 3D Font consists of a Java 2D font and an extrusion path. The extrusion path describes how the edge of a glyph
variesin the Z axis. The Font3D object is used to store extruded 2D glyphs. These 3D glyphs can then be used to
construct Text3D NodeComponent objects. Custom 3D fonts as well as methods to store 3D fontsto disk will be
addressed in afuture release.

See Also: java.awt.Font, FontExtrusion, Text3D

Font 3D(j ava. awt . Font font, Font Extrusi on extrudePat h)
Creates a Font3D object from the specified Font object.

The following reference block lists the methods of the Font3D class. Normaly, get * methods are not
listed in reference blocks in this tutorial. However, since the Font3D class has no set * methods, the
Font3D get* methods are listed here. The effect of a set * method would be essentialy the same as
invoking a congtructor, so to keep the class smaller, no set * methods are defined.

Font3D Method Summary

voi d get Boundi ngBox(i nt gl yphCode, Boundi ngBox bounds)
Returns the 3D bounding box of the specified glyph code.

j ava. awm . Font get Font ()
Returns the Java 2D Font used to create this Font3D object.

voi d get Font Ext r usi on(Font Ext r usi on ext r udePat h)
Copies the FontExtrusion object used to create this Font3D abject into the specified parameter.

The Font classis used in creating a Font3D object. The following reference block lists one constructor for
Font. Other constructors and many methods are not listed in this tutorial. See the Java 3D AP
Specification for details.

Font Constructor Summary (partial list)
Package: | ava. awt
An AWT class that creates an internal representation of fonts. Font extends java.lang.Object.
public Font(String name, int style, int size)
Creates a new Font from the specified name, style and point size.
Parameters:

nane - the typeface name. This can be alogical name or atypeface name. A logical hame must be one of:
Dialog, Dialoglnput, Monospaced, Serif, SansSerif, or Symbol.

st yl e - the style constant for the Font. The style argument is an integer bitmask that may be PLAIN, or a
bitwise union of BOLD and/or ITALIC (for example, Font . | TALI Cor Font . BOLD| Font . | TALI C). Any
other bits set in the style parameter are ignored. If the style argument does not conform to one of the expected
integer bitmasks then the styleis set to PLAIN.

Si ze - the point size of the Font

The following reference block lists the constructors for the FontExtrusion class.

The Java 3D Tutorid 321

Getting Started with Java 3D Chapter 3. Easier Content Creation

FontExtrusion Constructor Summary
Extends: j ava. | ang. Obj ect

The FontExtrusion object is used to describe the extrusion path for a Font3D object. The extrusion path is used in
conjunction with a Font2D object. The extrusion path defines the edge contour of 3D text. This contour is
perpendicular to the face of the text. The extrusion hasiits origin at the edge of the glyph with 1.0 being the height
of the tallest glyph. Contour must be monotonic in x. User is responsible for data sanity and must make sure that
extrusionShape does not cause intersection of adjacent glyphs or within single glyph. The output is undefined for
extrusions that cause intersections.

Font Ext r usi on()
Constructs a FontExtrusion object with default parameters.

Font Ext rusi on(j ava. awt . Shape extrusi onShape)
Constructs a FontExtrusion object with the specified shape.

The following reference block lists the methods for the FontExtrusion class.

FontExtrusion Method Summary

j ava. awt . Shape get Ext rusi onShape()
Gets the FontExtrusion's shape parameter.

voi d set Extrusi onShape(j ava. awt . Shape extrusi onShape)
Sets the FontExtrusion's shape parameter.

3.6 Background

By default, the background of a Java 3D virtual universe is solid black. However, you can specify other
backgrounds for your virtual worlds. The Java 3D API provides an easy way to specify a solid color, an
image, geometry, or a combination of these, for a background.

When specifying an image for the background, it overrides a background color specification, if any. When
geometry is specified, it is drawn on top of the background color or image.

The only tricky part is in the specification of a geometric background. All background geometry is
specified as points on a unit sphere. Whether your geometry is a PointArray, which could represent stars
light years away, or a TriangleArray, which could represent mountains in the distance, all coordinates are
specified at a distance of one unit. The background geometry is projected to infinity when rendered.

Background objects have Application bounds which alows different backgrounds to be specified for
different regions of the virtual world. A Background node is active when its application region intersects
the ViewPlatform's activation volume.

If multiple Background nodes are active, the Background node that is "closest” to the eye will be used. If
no Background nodes are active, then the window is cleared to black. However, the definition of "closest”
is not specified. For closest, the background with the innermost application bounds that encloses the
ViewPlatform is chosen.

It is unlikely that your application will need lit background geometry - in reality the human visua system
can't perceive visual detail at great distances. However, a background geometry can be shaded. The
background geometry subgraph may not contain Lights, but Lights defined in the scene graph can influence
background geometry.

The Java 3D Tutorial 3-22

Getting Started with Java 3D Chapter 3. Easier Content Creation

To create a background, follow the smple recipe given in Figure 3-11. Example backgrounds are
presented in the next section.

1. Create Background object specifying a color or an image
2. Add geometry (optional)

3. Provide an Application Boundary or BoundingL eaf

4. Add the Background object to the scene graph

Figure 3-11 Recipe for Backgrounds

3.6.1 Background Examples

As explained in the previous section, a background can have either a color or an image. Geometry can
appear in the background with either the color or image. This section provides an example of a solid white
background. A second example shows adding geometry to a background.

Colored Background Example

As shown in Figure 3-11, the recipe for creating a solid color background is straightforward. The lines of
code in Code Fragment 3-6 correspond to the recipe steps. The besides customizing the color, the only
other possible adjustment to this code would be to define a more appropriate application bounds for the
background (or use a BoundingL esf).

1. Background backg = new Background(1l.0f, 1.0f, 1.0f);
2. /1

3. backg. set Appl i cati onBounds(Boundi ngSphere());

4. cont ent Root . addChi | d(backg) ;

Code Fragment 3-6 Adding a Colored Background

Geometry Background Example

Once again, the lines of code in Code Fragment 3-7 correspond to the background recipe steps shown in
Figure 3-11. In this code fragment, the cr eat eBackG aph() method is invoked to create the
background geometry. This method returns a BranchGroup object. For a more complete example, see
Backgr oundApp. j ava intheexanpl es/ easyCont ent directory.

1. Background backg = new Background(); /1 bl ack background

2. backg. set Geonetry(cr eat eBackG aph()); /1 add BranchG oup of background
3. backg. set Appl i cati onBounds(new Boundi ngSpher e(new Poi nt 3d(), 100.0));

4. obj Root . addChi | d(backg) ;

Code Fragment 3-7 Adding a Geometric Background

BackgroundApp.java

To appreciate a Background, you need to experience it. BackgroundApp.java, a program
included in the exampleseasyContent directory, is a complete working application with a geometric
background. This application allows you to move in the Java 3D virtual world. While moving, you can
see the relative movement between the local geometry and the background geometry.

BackgroundApp uses the KeyNavigatorBehavior class provided in the utility library for viewer motion.
Interaction (as implemented through behaviors) is the subject of Chapter 4, so the details of this
programming is delayed until then.

The Java 3D Tutorial 3-23

Getting Started with Java 3D Chapter 3. Easier Content Creation

KeyNavigatorBehavior responds to the arrow keys, PgUp, and PgDn keys for motion. The Alt key also
plays a role (more details in Chapter 4). When you run BackgroundApp, be sure to rotate to find the
“constellation”, as well astravel far into the distance.

Figure 3-12 Viewing the “ Constellation” in the Background of BackgroundApp.java

3.6.2 Background Class

Figure 3-13 shows the class hierarchy for Background class. As an extension of Leaf class, an instance of
Background class can be a child of a Group object.

javalang.Object

javax.media.j3d.SceneGraphObject

javax.mediaj3d.Node

javax.mediaj3d.L eaf

javax.media.j3d.Background

Figure 3-13 The Class Hierar chy for Background

Background has avariety of constructors. Background constructors with parameters allow the specification
of a color or an image for a background. The following reference block gives more detail. Background
Geometry can only be specified through the appropriate method.

The Java 3D Tutorial 3-24

Getting Started with Java 3D Chapter 3. Easier Content Creation

Background Constructor Summary

The Background leaf node defines either a solid background color or a background image that is used to fill the
window at the beginning of each new frame. It optionally allows background geometry to be referenced.
Background geometry must be pre-tessellated onto a unit sphere and is drawn at infinity. It also specifies an
application region in which this background is active.

Backgr ound()
Constructs a Background node with a default color (black).

Backgr ound(Col or 3f col or)
Constructs a Background node with the specified color.

Background(float r, float g, float b)
Constructs a Background node with the specified color.

Backgr ound(| mageConponent 2D i mage)
Constructs a Background node with the specified image.

Any attribute of a Background can be set through a method. The following reference block lists the
methods of the Background class.

Background Method Summary

voi d set Appl i cati onBoundi ngLeaf (Boundi ngLeaf regi on)
Set the Background's application region to the specified bounding leaf.

voi d set Appl i cati onBounds(Bounds regi on)
Set the Background's application region to the specified bounds.

voi d set Col or (Col or 3f col or)
Sets the background color to the specified color.

void setColor(float r, float g, float Db)
Sets the background color to the specified color.

voi d set Geonet ry(BranchG oup branch)
Sets the background geometry to the specified BranchGroup node.

voi d set | mage(| mageConponent 2D i mage)
Sets the background image to the specified image.

The following reference block lists the capability bits of the Background class.

The Java 3D Tutorid 325

Getting Started with Java 3D Chapter 3. Easier Content Creation

Background Capabilities Summary
ALLOW APPLI| CATI ON_BOUNDS_READ | WRI TE allow read (write) access to its application bounds

ALLOW COLOR READ | WRI TE allow read (write) accessto its color
ALLOW GEOVETRY_READ | WRI TE allow read (write) access to its background geometry
ALLOW | MAGE_READ | WRI TE alow read (write) access to its image

3.7 BoundingL eaf

Bounds are used with lights, behaviors, backgrounds, and a variety of other applications in Java 3D.
Bounds allow the programmer to vary action, appearance, and/or sound over the virtual |landscape. Bounds
specification aso alows the Java 3D rendering system to perform execution culling, thereby improving
rendering performance®.

The typical bounds specification utilizes a Bounds object to specify a bounding region. In the resulting
scene graph the Bounds object moves with the object that referencesit. Thisis fine for many applications;
however, there may be situations in which it is desirable to have the bounding region move independently of
the object using the bounds.

For example, if aworld includes a stationary light source that illuminates moving objects, the bounds for
the light must include the moving object. One way to handle this would be to make the bounds large
enough to include all of the places the object moves. This is not the best answer in most cases. A better
solution is to use a BoundingLeaf. Placed in the scene graph with the visua object, the BoundingL eaf
object moves with the visual abject and independently of the light source. Figure 3-14 shows a scene graph
in which alight uses a BoundingL eaf node.

-

*/ \

Figure 3-14 BoundlingL eaf Moveswith a Visual Object and Independently of a Light Source

While the applications for BoundingLeaf include the ApplicationBounds of Background objects (Section
3.5), the SchedulingBounds of Behaviors (Section 4.2), and the InfluencingBounds of Lights (Section 6.6),
it would not make sense to repeat thisinformation in all three places’.

8 Bounds should be chosen as small as possible, while still achieving the desired effect, to reduce the computation
required to render the Java 3D scene.

° BoundingLeaf nodes are aso useful for fog, clip, sound, and soundscape objects, which are not covered in this
tutorial.

The Java 3D Tutorial 3-26

Getting Started with Java 3D Chapter 3. Easier Content Creation

One interesting application of a BoundingLeaf object places a BoundingLesf in the viewPlatform. This
BoundingLeaf can be used for an "aways on" scheduling bounds for a Behavior, or "always applies’
application bounds for Background or Fog. Code Fragment 3-8 presents an example "adways applies’
BoundingLeaf application used with a Background. Another example application of a BoundingLesf is
presented in Section 6.6.

Code Fragment 3-8 presents an example of adding a BoundingLeaf as a child of the PlatformGeometry to
provide an "aways applies’ bounds for a Background®. In this code, the standard
creat eSceneG aph() method is modified to takes a single parameter, that of the SimpleUniverse
object™. Thisis necessary for creating a PlatformGeometry object.

Lines 2, 3, and 4, create the BoundingLeaf object, create the PlatformGeometry object, and make the
BoundingLeaf object a child of the PlatformGeometry, in that order. If there were to be more to the
PlatformGeometry, it would be added at this point. The PlatformGeometry object is then added to the view
branch graph in line 6.

The BoundingL eaf object is set as the application bounds for the background object on line 11. This same
BoundingLeaf can be used for other purposes in this program. For example, it can also be used for
behaviors. Note that using the BoundingLeaf in this program as the InfluencingBoundingLeaf of a light
would not make the light influence all objectsin the virtual world.

voi d createSceneG aph (Sinpl eUni verse su) {
Boundi ngLeaf boundi ngLeaf = new Boundi ngLeaf () ;
Pl at f or nceonet ry pl at f or mGeom = new Pl at f or mGeonetry();
pl at f or nGeom addChi | d(boundi ngLeaf) ;
pl at f or nGeom conpi | e();
si nmpl eUni v. get Vi ewi ngPl at form(). set Pl at f or mGeonet ry(pl at f or nMceom ;

BranchG oup content Root = new BranchG oup();

CoNoURhwNE

10. Background backg = new Background(1l.0f, 1.0f, 1.0f);
11. backg. set Appl i cati onBoundi ngLeaf (boundi ngLeaf);
12. cont ent Root . addChi | d(backg) ;

Code Fragment 3-8 Adding a BoundingL eaf to the View Platform for an " Always-On" Bounds

3.7.1 BoundingLeaf Class

The BoundingLeaf class extends Leaf class. Figure 3-15 presents the complete class hierarchy for
BoundingL eaf.

19 pyatformGeometry moves with the viewer, so it is the appropriate parent for geometry associated with a viewer.
For example, if the viewer isto be riding in a vehicle, it would be appropriate to make the geometry that represents
the instrumentation of the vehicle a child of PlatformGeometry.

" The createSceneGraph() method is only standard in that is keeps appearing in the examples of this tutorial.

The Java 3D Tutorial 3-27

Getting Started with Java 3D Chapter 3. Easier Content Creation

javalang.Object

4

javax.media.j3d.SceneGraphObject

javax.mediaj3d.Node

javax.mediaj3d.L eaf

4

javax.media.j3d.BoundingL eaf

Figure 3-15 Java 3D API Class Hierarchy for BoundingL eaf

The parameterless constructor for BoundingLeaf creates a bounds of a unit sphere. The other constructor
allows the specification of the bounds for the BoundingLeaf object. The following reference block lists the
two BoundingL eaf constructors.

BoundingL eaf Constructor Summary
The BoundingL eaf node defines a bounding region object that can be referenced by other nodes to define aregion
of influence, an activation region, or a scheduling region.

Boundi ngLeaf ()
Constructs a BoundingL eaf node with a unit sphere object.

Boundi ngLeaf (Bounds regi on)
Constructs a BoundingLeaf node with the specified bounding region.

The following reference block lists the two methods of BoundingLeaf. The get * method is listed since its
parameters are different than that of the corresponding set * method.

BoundingL eaf Method Summary

Bounds get Regi on()
Retrieves this BoundingL eaf's bounding region

voi d set Regi on(Bounds regi on)
Sets this BoundingL eaf node's bounding region.

3.8 User Data

Any SceneGraphObject can reference any object as user data™”. First, you should realize that nearly every
Java 3D APl core class is a descendant of SceneGraphObject. The list of descendants of
SceneGraphObject includes Appearance, Background, Behavior, BranchGroup, Geometry, Lights,
Shape3D, and TransformGroup.

2 Thisis not limited to Java 3D API classes, but any class derived from java.lang.Object.

The Java 3D Tutorial 3-28

Getting Started with Java 3D Chapter 3. Easier Content Creation

The applications for this, the UserData field, are limited only by your imagination. For example, an
application may have a number of pickable objects. Each of these objects could have some text
information stored in the user data object. When a user picks an object, the user data text can be displayed.

Another application could store some calculated value for a scene graph object such as its position in
virtual world coordinates. Yet another application could store some behavior specific information that
could control a behavior applied to avariety of objects.

SceneGraphObject Methods (Partial List - User Data M ethods)

SceneGraphObject is a common superclass for al scene graph component objects. This includes Node, Geometry,
Appearance, €etc.

j ava. | ang. Cbj ect get User Dat a()
Retrieves the userData field from this scene graph object.

voi d set User Dat a(j ava. | ang. Cbj ect user Dat a)
Sets the userData field associated with this scene graph object.

3.9 Chapter Summary

This chapter presents the Java 3D features for easier content creation. Loader utilities and Geometrylnfo
classes are the primary easy content creation techniques. These topics are covered in sections 3.2 and 3.3,
respectively. Text is added to the Java 3D world using Text2D and Text3D classes in sections 3.4 and 3.5.
Background is covered in detail in section 3.6 and BoundinglLesf is covered in section 3.7. Section 3.8
presents the UserData field of the SceneGraphObject class. Y ou are reading section 3.9.

3.10 Self Test

1. Using the wire frame view in the Geonl nf 0App. j ava program, you can see the effect of the
triangulation. Using the example program as a starting point, change the specification of the polygons
to use three polygons (one for each side, and one for the roof, hood, trunk lid and other surfaces). How
does the Triangulator do with this surface?

2. The code to make the Text2D object visible from both sidesisincluded in Text 2DApp. j ava. You
can uncomment the code, recompile and run it. Other experiments with this program include using the
texture from the Text2D object on other visual objects. For example, try adding a geometric primitive
and apply the texture to that object. Of course, you may want to wait until you read Chapter 7 for this
exercise.

3. Using Text 3DApp. j ava as a starting point, experiment with the various aignment and path
settings. Other experiments include changing the appearance of the Text3D object.

4. Playing with the Backgr oundApp. j ava example program, if you move far enough away from the
origin of the virtual world the background disappears. Why does this happen? If you add another
Background object to the BackgroundApp, what will the effect be?

The Java 3D Tutorial 3-29

	Chapter 3: Easier Content Creation
	Table of Contents
	List of Figures
	List of Tables
	List of Code Fragments
	List of Reference Blocks
	Background
	BoundingLeaf
	Font3D
	FontExtrusion
	GeometryInfo
	ObjectFile (loader utility)
	Loader Package
	LoaderBase
	NormalGenerator
	SceneBase
	Stripifier
	Text2D
	Text3D
	Triangulator
	UserData field of SceneGraphObject

	Preface to Chapter 3
	3.1 What is in this Chapter
	3.2 Loaders
	3.2.1 Simple Example of Using a Loader
	3.2.2 Publicly Available Loaders
	3.2.3 Loader Package Intrefaces and Base Classes
	3.2.4 Writing a Loader

	3.3 GeometryInfo
	3.3.1 Simple GeometryInfo Example
	3.3.2 Classes for GeometryInfo

	3.4 Text2D
	3.4.1 Simple Text2D Example
	3.4.2 Classes Used in Creating Text2D Objects

	3.5 Text3D
	3.5.1 Simple Text3D Example
	3.5.2 Classes Used in Creating Text3D Objects

	3.6 Background
	3.6.1 Background Examples
	Colored Background Example
	Geometry Background Example
	BackgroundApp.java

	3.6.2 Background Class

	3.7 BoundingLeaf
	3.7.1 BoundingLeaf Class

	3.8 User Data
	3.9 Chapter Summary
	3.10 Self Test

	Chapter 0: Overview and Appendices
	Chapter 1: Getting Started
	Chapter 2: Creating Geometry
	Chapter 4: Interaction
	Chapter 5: Animation
	Chapter 6: Lights
	Chapter 7: Textures
	Appendix A: Summary of Example Programs
	Appendix B: Reference Material
	Appendix C: Solutions to Seft Test Questions
	Glossary

