Getting Started with
the Java 3D™ API

Chapter 4
Interaction

Dennis J Bouvier

&{S:% Su n K Computing

Module2: Interaction and Animation Chapter 4. Interaction

© Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A
All Rights Reserved.

The information contained in this document is subject to change without notice.

SUN M CROSYSTEMS PROVI DES THI' S MATERI AL "AS | S" AND MAKES NO WARRANTY OF ANY KI ND,
EXPRESSED OR | MPLI ED, | NCLUDI NG, BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE. SUN M CROSYSTEMS SHALL NOT BE
LI ABLE FOR ERRORS CONTAI NED HEREI N OR FOR | NCl DENTAL OR CONSEQUENTI AL DAMAGES

(1 NCLUDI NG LOST PROFI TS | N CONNECTI ON W TH THE FURNI SHI NG PERFORMANCE OR USE OF

TH S MATERI AL, WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL THEORY).

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY MADE TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES
IN THE PRODUCT(S) AND/OR PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Some states do not alow the exclusion of implied warranties or the limitations or exclusion of liability for incidental or
consequential damages, so the above limitations and exclusion may not apply to you. This warranty gives you specific legal
rights, and you also may have other rights which vary from state to state.

Permission to use, copy, modify, and distribute this documentation for NON-COMMERCIAL purposes and without fee is
hereby granted provided that this copyright notice appearsin all copies.

This documentation was prepared for Sun Microsystems by K Computing (530 Showers Drive, Suite 7-225, Mountain View,
CA 94040, 770-982-7881, www.kcomputing.com). For further information about course development or course delivery,
please contact either Sun Microsystems or K Computing.

Java, JavaScript, Java 3D, HotJava, Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun
Microsystems, Inc. All other product names mentioned herein are the trademarks of their respective owners.

The Java 3D Tutorial

Module 2: Interaction and Animation Chapter 4. Interaction

Table of Contents

Chapter 4:

1= =" 1o TS 4-1
4.1 Behavior: the Basefor Interaction and ANIMELIONcooiiieiiireiiee e 4-1
411 Applications Of BENAVIOKoiiiiiiiee e et eeneeas 4-2
4.1.2 Overview Of BENAVIOr ClaSSESueiiiieeeiie ettt st 4-3
N ST gt Yo gl == T e S 4-3
421 Writing @BehaVior ClaSSc.oiiiiiiiiee ettt e enee e eneeas 4-4
422 USINGaBENAVION ClESSeiiiiiieiie ettt e e e st e e eneeeeneeas 4-7
4.2.3 BeNAVION CIaSS AP ...ttt 4-10
4.3 Wakeup Conditions: How Behaviorsare Triggeredoooeeeieieiee e 4-12
VG T VIV 2 B o @ o] 1o o IS 4-13
4.3.2 WaKEUPCTITEITON .. .ot eee ettt et e et e e st e e st e e emsee e smteeeaneeeenneeesnseeeaneeeennes 4-13
4.3.3 Specific WakeupCriterion ClaSSESooiiiiiiieeiee et 4-14
4.3.4 WakeupCondition COMPOSITIONcoeiiiieiieeeieeeieeeeie e ete e et e et e e saeeeeaee e smee e e sneeeennes 4-24
4.4 Behavior Utility Classes for Keyboard NaVIgationcccoeieeieerieniieeseesee e 4-25
4.4.1 Simple KeyNavigatorBehavior Example Programcccccoerieeiienienieesee e 4-26
4.4.2 KeyNavigatorBehavior and KeyNavigator ClassesScocvviverieeiienienieesee e 4-28
4.5 Utility Classes for MOUSE INTErBCHIONc.oeiueeiiiiiieiieesiee sttt 4-29
451 Usingthe Mouse BENaVior CIaSSESccociiiiiiiiiie et 4-29
452 Mouse Behavior FOUNEION.ceii it 4-31
4.5.3 Specific Mouse BENAVION ClIASSEScooieiiiiieeiie et 4-32
4.5.4 MOUSE NGVIGELIONeeiiiiiiiiiiieieeeee ettt e e b e e s s e e e neenneesnneenneennes 4-34
T Tt] o U 4-35
4.6.1 UsiNg Picking ULty ClassesScooeieiiieiee e 4-38
4.6.2 Java3D APl Core PICKING ClaSSeS.......cooiuieiiiieiieeeiiie e eee e 4-40
4.6.3 General Picking Package ClaSSeSc.cooieiiiiiieieenecee e 4-44
4.6.4 Specific Picking BENaVIiOr CIASSESccoeeiiiiiieiieieciie e 4-48
4.7 ChAPLEN SUMIMEIYeeeeiiieeieeeie ettt s se e st e s b e e s se e e s e e b e e sheesane e neennnennneenees 4-51
TS L I = RSP PRTUPP PRSP 4-51

The Java 3D Tutoria 4-

Module2: Interaction and Animation Chapter 4. Interaction

List of Figures

Figure 4-1 Hierarchy of SUDCIasSeS Of BENAVIOTcociiiiiiiieicse e 4-4
Figure 4-2 Recipe for Writing a Custom Behavior Class..........ccooiiiriie i 4-5
Figure 4-3 Recipe for USing aBehavior ClaSS.........uoi ittt 4-8
Figure 4-4 Scene Graph Diagram of the Content Branch Graph Created in SimpleBehaviorApp.java......4-8
Figure 4-5 An Alternative Scene Graph Placement for the Behavior Object in SmpleBehaviorApp.......4-10
Figure 4-6 APl Class Hierarchy for BENAVIONcooiiiiiieeeie e 4-11
Figure 4-7 The Java 3D API Class Hierarchy for WakeupCondition and Related Classes. 4-13
Figure 4-10 The Basic View Branch Graph Showing the View Platform Transformcccceieiine 4-26
Figure 4-11Recipe for Using the KeyNavigatorBehavior Utility Class.........ccoccveveeriieniiiecee e 4-26
Figure 4-12 Recipe for Using Mouse Behavior ClaSses.........oooeveiiiiiie e 4-30
Figure 4-13 Projection of PickRay inthe Virtual WOrld.............coooeiiiiiiiieceee e 4-36
Figure 4-14 Scene Graph Diagram for a Cube Composed of Discrete Shape3D Plane Objects.............. 4-36
Figure 4-15 Recipe for Using Mouse Picking Utility Classes.........cccoviereieeiieecee e 4-38
List of Tables

Table 4-1 Applications of Behavior Categorized by Stimulus and Object of Change..........cccccevvveriieenen. 4-2
Table 4-2 The 14 Specific WakeUupCriterion ClaSSES........c.ciiiiiriiie e e s 4-14
Table 4-3 KeyNavigatorBehavior MOVEMENLS..........ceoiiiiiieieeiecee e 4-28
Table 4-4 Summary of Specific MouseBehavior Classes..........ooviveiiieiee e 4-29

List of Code Fragments

Code Fragment 4-1 SimpleBehavior Class in SimpleBehaviorApp.jaVal.........cccoovereeeiieieeiee e 4-6
Code Fragment 4-2 CreateSceneGraph Method in SimpleBehaviorApp.jaVa.........c.ccvevvereeiieeieeneennene 4-8
Code Fragment 4-3 Outline of OpenBehavior Class, an Example of Coordinated Behavior Classes.......4-17
Code Fragment 4-4 Code using OpenBehavior and CloseBehavior, Coordinated Behavior Classes........ 4-17
Code Fragment 4-5 Using the KeyNavigatorBehavior Class (Part 1)c.coeeveeeieeeree e 4-27
Code Fragment 4-6 Using the KeyNavigatorBehavior Class (Part 2)coeoeeeeeeeeiceeeiee e 4-28
Code Fragment 4-7 Using the MouseRotate Utility ClasS.........ooceeiiiiriiiieieeeee e 4-30
Code Fragment 4-8 Using Mouse Behavior Classes for Interactive Navigation of the Virtual World.4-35
Code Fragment 4-9 The createSceneGraph Method of the MousePickApp Example Program. 4-39

List of Reference Blocks

Behavior Method SUMIMEYooiiiiieiee et n e nene e 4-12
ViewPlatform Method Summary (Partial liSt)ceeeeeer i 4-12
WakeupCondition Method SUMIMENYccueiiiiiiiiieiee e 4-13
WakeupCriterion Method SUMIMEIYooiiiiiiiiiieieiee e 4-14
WakeupOnActivation CONSITUCLOr SUMIMEAIYeueieiiiieiieeesieeeieeesieeeseeeeseeeesee e e saeeesnneeesmeeeesneeesneens 4-15
WakeupOnAWTEVENt CONSLIUCION SUMMIBIYeeeiieeeiieeesieeeieeesteeeseeeesseeeseeeesnseessneeesneeeesnsessnneens 4-15
WakeupOnAWTEVENt MethOd SUMMBNYooiiiieiiee et e e e e sneeeeneens 4-16
WakeupOnBehaviorPost CONSLIUCION SUMIMEIYccoueiriieeeiieeeieeeeteeeseeeeeseeeeseeeesneeessneeesneeeesneeesnneens 4-16
WakeupOnBehaviorPost MethOd SUMMEIYooiioiiiiiieieiec e 4-16
WakeupOnCollisionEntry CONSLIUCIOr SUMIMEIYc.vereieerereieeeeeeeseeeeseeeesseeeeseeeesneeessseessseeesnseesnneens 4-18

The Java 3D Tutoria 4

Module2: Interaction and Animation Chapter 4. Interaction

WakeupOnCollisionEXit CONSIIUCLOr SUMIMEAIYoieiiieeieeeiieeeieeesieeeeeesieeesseeesseeeeseeeesneeeenneeeenees 4-19
WakeupOnCollisSionExit Method SUMIMENYcociiiiiiiie et 4-19
WakeupOnCollisionMovement CONStIUCIOr SUMMIBYoeviueeeiiereiieeeneeeeieeeseieeeseeeeseeeeseeeesneeeenees 4-20
WakeupOnCollisonMovement Method SUMMENYcooiiieiiee e e 4-20
WakeupOnDeactivation CONSIIUCIOr SUMIMEIYcoiiuireiieeeiieeeieeesieeeseeeseeeesseeessaeeesreeesneeeenneeeenees 4-21
WakeupOnElapsedFrames CONSIIUCION SUMIMEIYccveiiueerrerieeieesieeseeesieesiee s ssseesiee s ssneesseesneens 4-21
WakeupOnElapsedFrames MethOd SUMMEIYcoeiiiiiiiiiiieeeesee e 4-21
WakeupOnElapsedTime CoNnStruCtor SUMMEIYcc.eeeieeeeieeeeieeeaieeeneeesieeesseeessneeeseeessneeeesneeesnnes 4-21
WakeupOnElapsedTime Method SUMMBYcoiiiiiiiieeiee et eee e e seee e eeee e s e e sneeeenneeeenees 4-22
WakeupOnSensorEntry CONSIUCIOr SUMIMEBIYco.verriiriierieeiieeiee et snee e 4-22
WakeupOnSensorEntry Method SUMIMENYooeiiiiiiieieene e 4-22
WakeupOnSensorExit CONSIIUCION SUMIMEIYeeiiiiiieiiieieeeie e nne e 4-22
WakeupOnSensorExit MethOd SUMMEIYc.ooiieiiiiiieienee e s 4-22
WakeupOnTransformChange CONSIIUCLOr SUMIMEIYcc.eeieirieerieeneerreeieesee e esseesieeseesssee e sneens 4-23
WakeupOnTransformChange Method SUMMENYc.cuiiiieiiiiiieieesees e 4-23
WakeupOnViewPlatformEntry CONStrUCtOr SUMMEYc.ceeiiiieeiieeeeiee e e e 4-23
WakeupOnViewPlatformEntry Method SUMMEIYoooiiiiiiiie e 4-23
WakeupOnViewPlatformExit CONStruCtor SUMMIBIYccoeiieeeiieeeiiee e eieeesee e e e e e 4-24
WakeupOnViewPlatformExit Method SUMMENYcc.oiiiiiriiie e e 4-24
WakeupANnd CONSLIUCION SUMIMEIYveieiieeeiieeaieeeeteeeeeeessteeesteeesneeessseeesseeesnseesaneeesneeesnseeenseeesnnes 4-24
WakeupOr CONSLIUCIOr SUMIMIBIYceeiteerieeiiieiiiesiee st eiee s se e sse e s e sseessneeneesneesnneeneesneesnneeas 4-24
WakeupAndOfOrs CONSIUCIOr SUMIMBIYc..ueirierieerreesiee st st sieeseeesre e s e s sneesseessneeneesneesnneens 4-25
WakeupOrOfANAS CONSITUCIOr SUMIMIBIYcouveeiieiierreeiee st ne e e e snneeneesneesnneens 4-25
KeyNavigatorBehavior CONStrUCIOr SUMIMEIYcoveiiieiieiieeieesiee e sne e nnne e 4-29
KeyNavigatorBehavior Method SUMMEIY...........ooiiieiiieee e 4-29
MouseBehavior MethOO SUMMEIYoouiiiiiiieie et 4-31
Interface MouseBehaviorCallback Method SUMMEAIYcoviiiiiiieiiiieee e 4-31
MouseRotate CONSIIUCIOr SUMIMEIYceeireiiinieeireeesreeessree s e s e e s e e sne e smr e snneesre e snreesneeenanes 4-32
MouseRotate MEthOT SUMIMEIYcoouieiiiiiiiieeiie e sn e n e sneeneneen 4-32
MouseTrang ate CONSIIUCLOr SUMMIBIYcc.veiiueeiieerreeieesiee e e e sseess e sse e e e ssneenneesneennneens 4-33
MouseTrandate Method SUMIMEIYccueiiiiiieiie e e n e e nane e 4-33
MoUSEZ00M CONSIIUCION SUMIMIBIYuveeeiereeesreeereeesreeessneesseeesne e s ssreesneeesne e s snneesaneeesnre e e snreesnneenanes 4-34
MouSEZ00M MEtNOD SUMIMENYoiiieiieiii ettt n e nneennneen 4-34
Node Method (PArtial TISL)eeoeeieeeeee e 4-37
Node Capabilities Summary (Partial liSt)cocveieerieeieiee e 4-37
PICKSNEE. ...t n e nnne e 4-40
PickBounds CONSLIUCION SUMIMBIYcoiuveiuiiiiieiieesee ettt sn e sne e e ssneeneesneennneen 4-40
IMEENOO SUMIMIBIY ...ttt h e bt e e st e bt e s s et s e e e n e e e seenaneeneennnennneen 4-40
PickPoiNt CONSITUCION SUMIMEIYcotiiiieiiieiiesiee sttt n e nn e ne e ssn e e neenneennneen 4-41
PICkPOINt MENOO SUMIMBIY ...ttt n e nnne e 4-41
PickRay CONSITUCION SUMIMEIYviiiieieeiieeiee sttt s e e ne e e e s sn e e s e e nnnennneens 4-41
PICkRay MENOO SUMIMBIYcoiiiiiiiiieiee et n e n e nneennneen 4-41
PickSegment CONSIMUCION SUMIMEIY.......ccuviiiiiiieiiie ettt ss e s e ssneeneesneenineens 4-42
PickSegment MEthOd SUMIMIEIYooiiiiieie e n e nine e 4-42
SCENEGIAPNPAIN OVEIVIEW ...ttt r e ne e s e s n e ne e s 4-42
SceneGraphPath CONSIIUCION SUMIMEIYcocueeiieiiieieeiee e 4-43
SceneGraphPath Method Summary (Partial liSt)coooeiiieeiieie e 4-43
BranchGroup and Locale picking methods for use with PICKShape..............ccoeiiriiiiicncceecee 4-44
PickMouseBehavior Method SUMIMENYcooiiiiiiiieieeiee e 4-45

The Java 3D Tutoria 4-ii

Module2: Interaction and Animation Chapter 4. Interaction

PickObject CONSIIUCION SUMIMEIYeeiiiiiiieiieitie sttt n e s neenneennne e 4-45
PickObject Method Summary (Partial iSt)eeoeeriirieieeie e 4-45
Interface PickingCallback Method SUMMEIYooiiiiieiiiieee e 4-46
INtersect CONSLIUCION SUMIMEIYuveeiieieireeeiniee e e sre e e s e e e e sne e e sne e snn e sneeesare e e snneesnneenanes 4-47
Intersect Method Summary (Partial liSh)......c.coeieee e e 4-47
PickRotateBehavior CONSLIUCIOr SUMIMEIYeeiieieeiiieeiieeeeeeesteeeseteeeseeeesaeeesaeeeesneeesseeesnseeenneeeenees 4-48
PickRotateBehavior Method SUMIMENYcooiiiiiiie e 4-49
PickTrand ateBehavior CONSIIUCOr SUMMIEIY.........ooviiiieieeiieeieesee s nnne e 4-49
PickTrandateBehavior Method SUMMBIYcoiiiiiiiiieiee e 4-50
PickZoomBehavior CONSIIUCIOr SUMIMBIYc.ueeiuriiiieiieiiee sttt n e nneenine e 4-50
PickZoomBehavior Method SUMIMENYoiiiiiiiiiiiie e 4-51

Preface to Chapter 4

This document is one part of atutorial on using the Java 3D API. You should be familiar with Java 3D
APl basicsto fully appreciate the material presented in this Chapter. Additional chapters and the full

preface to this materia are presented in the Module O document available at:
http://java. sun. com products/javamedi a/ 3d/ col | at eral

Cover Image

The cover image represents the interaction possible in Java 3D through the use of the mouse. The mouse
appears to be connected to the window with a visual, the cube, but the wire proceeds to the scene graph
diagram to the Behavior object. The scene graph diagram represents a cube created with six individua
shape objects (each of the six faces of the cube is a plane — of course you don't have to do this). The image
of the application is from an early version of MouseRot at eApp. j ava, an example program included
in the examples jar available with this tutorial. The image of the mouse is from the clip art distributed with
Microsoft Office 97.

The Java 3D Tutoria 4-iv

Module 2: Interaction and Animation

CHAPTER 4
| nteraction

e B

Chapter Objectives
After reading this chapter, you'll be able to:
Appreciate the Behavior Class as the foundation for interaction and animation
Create custom behavior classes
Incorporate behavior objectsinto virtual worlds to provide interaction
Use utility classes for keyboard navigation
Use utility classes for mouse interaction
Use utility picking classes

I n the previous chapters of the tutorial, the Java 3D virtual universes are amost all static. For Java 3D
worlds to be more interesting, and more useful, interaction and animation are necessary. Interaction is
when the imagery changes in response to user action. Animation is defined as changes in the imagery
without direct user action, and usually corresponds with the passage of time.

In Java 3D, both interaction and animations are specified through the use of the Behavior class. This
chapter introduces the Behavior class and explains its use in interactive programs. The next chapter,
Animation, continues with animation examples and explanations.

4.1 Behavior: the Base for Interaction and Animation

Both interaction and animation are specified with Behavior objects. The Behavior classis an abstract class
that provides the mechanism to include code to change the scene graph. The Behavior class, and its
descendants, are links to user code providing changes to the graphics and sounds of the virtual universe.

The purpose of a Behavior object in a scene graph is to change the scene graph, or objects in the scene
graph, in response to some stimulus. A stimulus can be the press of a key, a mouse movement, the
collision of objects, the passage of time, some other event, or a combination of these. Changes produced
include adding objects to the scene graph, removing objects from the scene graph, changing attributes of
objects in the scene graph, rearranging objects in the scene graph, or a combination of these. The
possibilities are only limited by the capabilities of the scene graph objects.

The Java 3D Tutoria 4-1

Module2: Interaction and Animation Chapter 4. Interaction

4.1.1 Applications of Behavior

Since a behavior is a link between a stimulus and an action, considering all the combinations of possible
stimuli and possible actions is to consider the many applications of Behavior objects. The following table
surveys the realm of possibilities with Behavior, listing possible stimuli down the left column and possible
changes across the top.

The table does not list al possible applications of Behavior, only the simple ones (one stimulus results in
one change). Some combinations of stimulus and change only make sense in a specific setting; these are
listed as ‘application specific. Furthermore, combinations of stimuli and combinations of actions are
possible.

Table4-1 Applications of Behavior Categorized by Stimulus and Object of Change

object of change
gimulus TransformGroup Geometry Scene Graph View
(reason for (visual objects change (visua objectschange | (adding, removing, or (change viewing
change) orientation or location) shape or color) switching objects) location or direction)
user interaction application specific | application specific navigation
visua objects visua objects visua objects View changes with
collisons change orientation | change appearance disappear in collison
or location in collison collison
time animation animation animation animation
View location billboard level of detall application specific | application specific
(LOD)

In Table 4-1 some of the possible behaviors are spelled out. For example, collision actions are described.
Others, such as billboard or level of detail (LOD) behaviors, may not be familiar to you. Below are some
quick explanations.

The chart does not include all applications of Behavior; combinations of stimuli and/or changes are not
shown. Picking is aso implemented using behaviors but is not listed in the table. Although listed in Table
4-1 and implemented in Java 3D API, collision detection is not addressed in this tutorial.

Natural things, such as trees, take a tremendous amount of geometry to accurately represent all of the
branches, leaves and bark structure. One alternative is to use a textured polygon instead of the geometry.
This technique is sometime referred to as the billboard approach. Thisis especially true when a behavior is
used to automatically orient the textured polygon orthogonal to the viewer such that only the front textured
faceisviewed. Thisorienting behavior is called billboard behavior.

The billboard approach is effective when the object to be represented by the texture is distant so that the
individual parts of the visual object represented by the texture would not easily be distinguished. For the
tree example, if the viewer is so distant that branches are hardly distinguishable, it is hardly worth the
memory and computation requirements to represent each leaf of the tree. This technique is recommended
for any application requiring visually complex objects in a distance. However, if the viewer were able to

The Java 3D Tutoria 4-2

Module2: Interaction and Animation Chapter 4. Interaction

approach the billboard, at some distance the lack of depth of the textured polygon would be detected by the
viewer.

The level of detail (LOD) behavior has a related application. With LOD, visually complex objects are
represented by multiple visual objects of varying levels of detail (hence the name). The visua object
representation with the least detail is used when the viewer isfar away. The most detailed representation is
used when the viewer is close. The LOD behavior automatically switches between the representations
based on the objects distance to the viewer.

Both the billboard and level of detail behaviors correspond to classes extended from Behavior which
implement these common applications. Other specializations of behavior are possible and several are listed
in Figure 4-1. For example, there are severa MouseBehavior classes that manipulate a transform in
response to mouse movements. Normally the view transform is changed by the mouse behavior to change
the view in response to mouse actions.

Also note how the behaviors can chain. For example, mouse movements or key strokes can be used to
change the view. In response to the movement of the view, billboard, level of detail, and/or other behaviors
may take place. Fortunately, each behavior is specified separately.

Animation Versus I nteraction

Since the distinction between animation and interaction used in this tutorial isfairly fine, hereis an example
to help clarify thisdistinction. If auser navigates in a program where such a behavior is provided, the view
platform will move in response to the keyboard and/or mouse events. The motion of the view platform is
an interaction because it is the direct result of the user action. However, other things may change as a
result of the view platform motion (e.g., billboard and LOD behaviors). Changes as a result of the view
platform motion are indirectly caused by the user and are therefore animations.

4.1.2 Overview of Behavior Classes

The following figure, Figure 4-1, shows specializations of behavior made in the Java 3D API core and
utility packages. User defined specidizations of Behavior are also possible and are only limited in
functionality by the programmer's imagination. This module of the tutorial covers each of the classes in
Figure 4-1. This chapter covers the shaded classes in the figure; Chapter 5 covers the remaining classes.
This figure does not present the total coverage of the Java 3D APl in Chapters 4 and 5; each chapter
presents more than the classes in this figure.

4.2 Behavior Basics

As explained in the previous section, Behavior classes are used in many Java 3D applications and in many
ways. It isimportant to understand the workings and programming considerations of the behavior class.
This section explains the Behavior class, gives a recipe for programming a custom behavior class, and
gives a simple example application using a behavior class.

The Java 3D Tutoria 4-3

Module2: Interaction and Animation Chapter 4. Interaction

Behavior

| Billboard ColorInterpolator

7| Interpolator E

| LOD RotPosPathScal el nterpol ator

|_ Distancel OD

| KeyNavigatorBehavior MouseRotate

| MouseBehavior MouseTrand ate
MouseZoom
PickRotateBehavior

—| PickMouseBehavior PickTranslateBehavior
PickZoomBehavior

Figure 4-1 Hierarchy of Subclasses of Behavior

4.2.1 Writing a Behavior Class

This section explains how to write a custom behavior class. You know from Section 4.1 that there are
behavior classes you can use without writing a class. However, in seeing how to create a Behavior class
you learn how behaviors work. So even if you only plan to use a behavior class, you might want to read
this section. Also, the class written in this section is used in the next section. (If you don't plan to write a
Behavior class you can skip this section for now.)

M echanics of Behaviors

A custom behavior class implements the initiaization and processStimulus methods from the abstract
Behavior class. Of course, the custom behavior class also has at least one constructor and may have other
methods as well.

Most behaviors will act on a scene graph object to affect the behavior. In Table 4-1, the object a behavior
acts upon is refered to as the object of change. It is through this object, or objects, that the behavior
affects the virtual world. While it is possible to have a behavior that does not have an object of change,
most do.

The behavior needs a reference to its object(s) of change to be able to make the behavioral changes. The
congtructor can be used to set the reference to the object of change. If it does not, another method in the
custom behavior class must store this information. In ether case, the reference is made at the time the
scene graph is being constructed, which is the first computation of the behavior.

The Java 3D Tutoria 4-4

Module2: Interaction and Animation Chapter 4. Interaction

The initidization method is invoked when the scene graph containing the behavior class becomes live. The
initialization method is responsible for setting the initial trigger event for the behavior and setting the initial
condition of the state variables for the behavior. The trigger is specified as a WakeupCondition object, or a
combination of WakeupCondition objects.

The processStimulus method is invoked when the trigger event specified for the behavior occurs. The
processStimulus method is responsible for responding to the event. As many events may be encoded into a
single WakeupCondition object (e.g., a variety of keyboard actions may be encoded in a
WakeupOnAWTEvent), this includes decoding the event. The processStimulus method responds to the
stimulus, usually by changing its object of change, and, when appropriate, resets the trigger.

The information in this section, Mechanics of Behaviors, is summarized in a recipe for writing custom
behavior classes. Figure 4-2 presents this recipe.

1. write (at least one) constructor
store areference to the object of change

2. overidepublic void initialization()
specify initial wakeup criteria (trigger)

3. overidepublic void processStinmul us()
decode the trigger condition
act according to the trigger condition
reset trigger as appropriate

Figure 4-2 Recipe for Writing a Custom Behavior Class

The recipe of Figure 4-2 shows the basic steps for creating a custom behavior class. Complex behaviors
may require more programming than is described in the recipe. Using a behavior object is another issue
and is discussed in Section 4.2.2. But before using a behavior, this recipe is used in creating the following
example custom behavior.

Example Custom Behavior Class. SimpleBehavior

As an example of using the custom behavior class recipe of Figure 4-2, this section goes through the
process of writing a custom behavior class. For the example custom behavior, the class will implement a
simple behavior of making something rotate in response to a keyboard key press.

To create such a behavior class, adl that is needed is a reference to a TransformGroup (the object of change
for this class), and an angle variable. In response to a key press, the angle variable is changed and the
angle of the target TransformGroup is set to the angle. Since the behavior will act on a TransformGroup
object, what is being rotated is not an issue.

To create this class nothing more than the three essentia programming ingredients listed in the recipe are
needed: a congtructor, the initialization method, and the processStimulus method. The constructor will
store a reference to the TransformGroup object of change. The initialization method sets the initial trigger
to WakeOnAWTEvent, and sets the rotation angle to zero. As mentioned above, the stimulus to a behavior
is specified as a WakeupCondition object. Section 4.3 introduces WakeupCondition classes.

Since there is only one possible triggering wakeup condition, the processStimulus method does not decode
the triggering wakeup condition. It is possible to further decode the key press event to determine which
key, or combination of keys, was pressed.

The processStimulus method always increments the angle variable, then uses it to adjust the
TransformGroup object of change. The last job of the processStimulus method is to reset the trigger. In
this example, the trigger is aways reset to akey press. Behaviors can change their trigger event over time

The Java 3D Tutoria 4-5

Module2: Interaction and Animation Chapter 4. Interaction

for changing behaviors (another reason for having to decode the trigger event), or not set another trigger for
one time behaviors.

Code Fragment 4-1 presents the SimpleBehavior class which is an implementation of the described custom
behavior class. The import statements listed in Code Fragment 4-1 are necessary for the behavior class.
The java.awt.event import is necessary for the keyboard interaction. The java.util.eumeration import is
necessary for decoding the WakeupCondition; and therefore necessary for virtually any custom behavior
class. The normal Java 3D API import statements are needed in addition to the listed import statements.

Code Fragment 4-1 is annotated with the step numbers from the recipe.

1. i mport java.awt.event.*;

2. i mport java.util.Enuneration;

3.

4. /1 Si npl eBehavi or App renders a single, rotated cube.

5.

6. public class Sinpl eBehavi or App extends Applet {

7.

8. public class Sinpl eBehavi or extends Behavi or{

9.

10. private Transfornm&oup targetTG

11. private TransfornBD rotati on = new Transforn8D();
12. private double angle = 0.0;

13.

14. /1 create SinpleBehavior - set TG object of change
15. (1] Si mpl eBehavi or (Tr ansf or nzr oup target TG {

16. this.target TG = target TG

17. }

18.

19. /1 initialize the Behavior

20. /1 set initial wakeup condition

21. /1 cal | ed when behavi or becones |ive

22. (2] public void initialize(){

23. /1 set initial wakeup condition

24. t hi s. wakeupOn(new WakeupOnAWIEvent (KeyEvent . KEY_PRESSED)) ;
25. }

26.

27. /1 called by Java 3D when appropriate stinmulus occurs
28. (3] public void processStinmulus(Enuneration criteria){
29. /1 do what is necessary in response to stimnulus
30. angle += 0.1;

31. rotation.rotY(angle);

32. target TG set Transform(rotati on);

33. t hi s. wakeupOn(new WakeupOnAWIEvent (KeyEvent . KEY_PRESSED)) ;
34. }

35.

36. } // end of class SinpleBehavior

Code Fragment 4-1 SmpleBehavior Classin SimpleBehavior App.java

This class is used in the Si npl eBehavi or App example found in the exanpl es/ | nt eracti on
directory.

This class only demonstrates the basic programming necessary for this ssimple behavior. Enhancements to
this custom class are possible. For example, the angle of rotation and/or the axis of rotation could be set

The Java 3D Tutoria 4-6

Module2: Interaction and Animation Chapter 4. Interaction

by class methods. The behavior class could be further customizable with a method for setting a specific
key, or set of keys, that it will respond to.

Another definite improvement in the class would prevent overflow of the angle variable. In the current
class, the value of angle could grow without bound even though values of 0.0 to 2P are dl that is
necessary. Although unlikely, it is possible for this variable to overflow and cause a run time exception.

Programming Pitfalls of Writing Behavior Classes
In the three steps of the custom behavior class recipe, the two most likely programming mistakes are:

forgetting to set and reset the behavior trigger, and
not returning from the behavior class methods.

Obvioudly, if an initial trigger is not set in the initialization method, the behavior will never be invoked. A
little less obvious is that the trigger must be set again in the processStimulus method if a repeat behavior is
desired.

Since both the initialization and processStimulus methods are called by the Java 3D system, they must
return to alow the rendering to continue. For example, if a spinning behavior were desired, the angle and
the TransformGroup would need to be updated periodically. If your behavior implemented this behavior
without spawning a thread, nothing further would be rendered. Also, there is a much better way to achieve
this type of behavior.

4.2.2 Using aBehavior Class

Finding or writing the appropriate behavior class for your application is the beginning of writing an
interactive Java 3D program. This section covers the programming issues in adding behavior objects to
programs.

The first step in adding a behavior involves making sure the scene graph makes provisions for the behavior.
For example, to use the SimpleBehavior class from the previous section there must be a TransformGroup
in the scene graph above the object(s) to be rotated. Many behaviors need only a single TransformGroup
object; however, scene graph requirements for a behavior is application and behavior dependent and may be
more complex.

Having established the support for a behavior, an instance of the class must be added to the scene graph.
Without being a part of alive scene graph, there is no way a behavior can be initialized. In fact, a behavior
object that is not part of the scene graph will become garbage and be eliminated on the next garbage
collection.

The last step for adding a behavior is to provide a scheduling bounds for the behavior. To improve
efficiency, Java 3D uses the scheduling bounds to perform execution culling. Behavior is only active when
its scheduling bounds intersects a ViewPlatform's activation volume. Only active behaviors are eligible to
receive stimuli. In thisway, stimuli can be ignored for some behaviors. The programmer has control over
the execution culling through the selection of the scheduling bounds of the behavior.

Figure 4-3 summarizes the steps for using a behavior object in a recipe.

! A behavior based on time alone is an animation, and as such is discussed in Chapter 5.

The Java 3D Tutoria 4-7

Module2: Interaction and Animation Chapter 4. Interaction

1. prepare the scene graph (by adding a TransformGroup or other necessary objects)
2. insert behavior object in the scene graph, referencing the object of change

3. specify a scheduling bounds (or SchedulingBoundingL esf)

4. set write (and read) capabilities for the target object (as appropriate)

Figure 4-3 Recipefor Using a Behavior Class

The following code fragment, Code Fragment 4-2, is annotated with the step numbers from the recipe.
This code fragment is an except from the Si npl eBehavi or App example program found in the
exanpl es/ | nt eracti on directory. In this same application the SmpleBehavior class, found in Code
Fragment 4-2, is defined. Code Fragment 4-2 continues where Code Fragment 4-1 ended and the line
numbers are sequential for the two code fragments.

37. public BranchG oup createSceneG aph() {

38. /1l Create the root of the branch graph

39. BranchG oup obj Root = new BranchG oup();

40.

41. Transf or mM& oup obj Rotate = new Transfor mG oup();

42. O | obj Rot at e. set Capabi | i t y(Transf or n& oup. ALLON TRANSFORM WRI TE) ;
43. ©

44. obj Root . addChi | d(obj Rot ate) ;

45. obj Rot at e. addChi | d(new Col or Cube(0. 4));

46.

47. Si mpl eBehavi or nyRot ati onBehavi or = new Si npl eBehavi or (obj Rot at e) ;
48. © nyRotationBehavi or. set Schedul i ngBounds(new Boundi ngSphere());
49. @ obj Root . addChi | d(myRot at i onBehavi or) ;

50.

51. /1 Let Java 3D performoptim zations on this scene graph.

52. obj Root . conpi |l e() ;

53.

54. return obj Root;

55. } // end of CreateSceneG aph nethod of Sinpl eBehavi or App
Code Fragment 4-2 CreateSceneGraph Method in SimpleBehavior App.java

Very little code is needed to complete the program started in Code Fragment 4-1 and 4-2. The complete
program, Si npl eBehavi or App, is found in the exanpl es/ I nteraction directory. The
complete application renders a ColorCube object in a dtatic scene until a keyboard key is pressed. In
response to any key press, the ColorCube rotates 0.1 radians (about 6°). Figure 4-4 shows the scene graph
diagram for the content branch graph of this application.

objRoot @

myRotationBehavior
objRotate @

ColorCube

Figure 4-4 Scene Graph Diagram of the Content Branch Graph Created in SmpleBehavior App.java.

The Java 3D Tutoria 4-8

Module2: Interaction and Animation Chapter 4. Interaction

The above scene graph diagram clearly shows the relationship between the behavior object and the object
of change, the TransformGroup object. The example rotates a ColorCube, but the behavior class is not
limited to this. It can rotate any visual object, or portion of a scene graph that is a child of a
TransformGroup object.

This simple example is not intended to demonstrate all of the possibilities of behaviors; it is only a starting
point in the exploration of behaviors. Section 4.2.3 presents the Behavior class API. Other behavior class
programming considerations are discussed before that.

Programming Pitfalls of Using Behavior Objects
In the three steps of the using a behavior class recipe, the two most likely programming mistakes are:

not specifying a scheduling bounds (correctly), and
not adding a behavior to the scene graph.

The intersection of the scheduling bounds of a behavior with the activation volume of a view determines
whether or not Java 3D even considers the trigger stimulus for the behavior. Java 3D will not warn you of
a missing scheduling bounds - the behavior will never be triggered. Also, keep the scheduling bounds of
each behavior object as small as possible for the best overall performance.

As mentioned above, a behavior object that is not part of the scene graph will be considered garbage and
eliminated on the next garbage collection cycle. This, too, will happen without error or warning.

Wherein the Scene Graph Should a Behavior Object Go?

Behaviors can be placed anywhere in the scene graph. The issues in picking a scene graph location for a
behavior object are 1) the effect on the scheduling bounds, and 2) code maintenance.

The bounds object referenced by a behavior object is subject to the local coordinate system of the behavior
object's position in the scene graph. In the scene graph created in SimpleBehaviorApp, the SmpleBehavior
object and the ColorCube are not subject to the same local coordinate system. In the example application
this does not create a problem. The TransformGroup object of the example only rotates the ColorCube so
that the scheduling bounds for the myRotationBehavior object always encloses the ColorCube object
adlowing interaction with the ColorCube when it is visible”.

However, if the TransformGroup object were used to trandate the ColorCube object, it would be possible
to move the ColorCube out of the view. Since the bounds object stays with the behavior abject in this
scene, the user would be able to continue to trandate the object. Aslong as the activation volume of aview
till intersects the scheduling bounds for the behavior, the behavior is il active.

Being able to interact with a visua object that is not in the view is not bad (if that is what you want). The
problem lies in that if the view were to change such that the activation volume no longer intersects the
scheduling bounds of the behavior, even to include the visua object, the behavior isinactive. So the visua
object you want to interact with may be in your view but not active. Most users will consider this a
problem (even if it isintentional).

There two solutions to this problem. Oneis to change the scene graph to keep the scheduling bounds of the
behavior with the visual object. Thisis easily accomplished as demonstrated in Figure 4-5. The dternative

2 The typical graphical application allows a user to interact with visible objects (visual objects that are in the view).
If you want a different semantic, that is fine.

The Java 3D Tutoria 4-9

Module2: Interaction and Animation Chapter 4. Interaction

solution uses a BoundingLeaf object for the scheduling bounds. Consult Section 3.7 or the Java 3D API
Specification for information on the BoundingL eaf class.

______ A myRotationBehavior

ColorCube

Figure 4-5 An Alternative Scene Graph Placement for the Behavior Object in SmpleBehavior App.

Behavior Class Design Recommendations

The mechanics of writing a custom behavior are smple. However, you should be aware that a poorly
written behavior can degrade rendering performance®. While there are other considerations in writing a
behavior, two things to avoid are: memory burn and unnecessary trigger conditions.

‘Memory burn' is the term for unnecessarily creating objects in Java. Excessive memory burn will cause
garbage collections. Occasiona pauses in rendering is typical of memory burn since during the garbage
collection, the rendering will stop™®.

Behavior class methods are often responsible for creating memory burn problems. For example, in Code
Fragment 4-1 the processStimulususesa' new in the invocation of wakeupOn (line 24). This causes a
new object to be created each time the method is invoked. That object becomes garbage each time the
behavior is triggered.

Potential memory burn problems are normally easy to identify and avoid. Look for any use of 'new' in the
code to find the source of memory burn problems. Whenever possible, replace the use of the new with code
that reuses an object.

Later, in Section 4.3,the classes and methods used in setting the trigger conditions for a behavior object are
discussed. In that section, you will see it is possible to set a trigger condition that will wake a behavior
every frame of the rendering. If there is nothing for the behavior to do, this is an unnecessary waste of
processor power invoking the behavior's processStimulus method. Not to say that there isn't a good reason
to trigger a behavior on every frame, just make sure you have the reason.

4.2.3 Behavior Class API

This section presents the detail of the Behavior class API. Figure 4-6 shows the Java 3D APl class
hierarchy including the Behavior class. As an abstract class, Behavior must be extended before a behavior

% The amount of performance degradation depends heavily on the execution environment. If you plan to distribute
your applications, consider users with software rendering environments.

* How often and how regular the pause depends on the execution environment.

® You can diagnose a memory burn problem by invoking the Java virtual machine with the -verbose:gc command
line option. If memory burn is the cause for rendering pauses, then the garbage collection report produced to the
console will coinside with the pauses.

The Java 3D Tutoria 4-10

Module2: Interaction and Animation Chapter 4. Interaction

object can be ingtantiated. Of course, you can write your own custom behavior classes. In addition, there
are many existing behaviors in the Java 3D API utility packages. As an extension of Leaf, instances of
classes that extend Behavior can be children of a group in a scene graph.

javalang.Object

I

javax.media.j3d.SceneGraphObject

4

javax.mediaj3d.Node

4

javax.mediaj3d.L eaf

I

javax.media.j3d.Behavior

Figure 4-6 API Class Hierarchy for Behavior

As documented in Section 4.2.1, the processStimulus and initialize methods provide the interface Java 3D
uses to incorporate behaviors in the virtual universe. The other Behavior class methods are discussed
below. All Behavior class methods are listed in the Behavior Method Summary reference block on the next

page.

The wakeupOn method is used in the initidize and processStimulus methods to set the trigger for the
behavior. The parameter to this method is a WakeupCondition object. WakeupCondition, and related
classes, are presented in Section 4.3.

The postld method allows a behavior to communicate with another method. One of the wakeup conditions
is WakeupOnBehaviorPost. Behavior objects can be coordinated to create complex collaborations using
the postld method in conjunction with appropriate WakeupOnBehaviorPost conditions. See page 4-16 for
information on the WakeupOnBehaviorPost class

The setEnable method provides a way to disable a behavior even when the bounds makes it active. The
default istrue (i.e., the behavior object is enabled).

A behavior object is active only when its scheduling bounds intersects the activation volume of a View.
Since it is possible to have multiple views in avirtual universe, a behavior can be made active by more than
one view.

The getView method is useful with behaviors that rely on per-View information (e.g., Billboard, LOD) and
with behaviors in general in regards to scheduling. This method returns a reference to the primary View
object currently associated with the behavior. There is no corresponding setView method. The "primary”
view is defined to be the first View attached to a live ViewPlatform, if there is more than one active View.
So, for instance, Billboard behaviors would be oriented toward this primary view, in the case of multiple
active views into the same scene graph.

The Java 3D Tutoria 4-11

Module2: Interaction and Animation Chapter 4. Interaction

Behavior Method Summary
Behavior is an abstract class that contains the framework for all behavioral componentsin Java 3D.

Vi ew get Vi ew()
Returns the primary view associated with this behavior.

void initialize()
Initialize this behavior.

voi d postld(int postld)
Post the specified 1d.

voi d processStimulus(java.util.Enuneration criteria)
Process a stimulus meant for this behavior.

voi d set Enabl e(bool ean st at e)
Enables or disables this Behavior.

voi d set Schedul i ngBoundi ngLeaf (Boundi ngLeaf regi on)
Set the Behavior's scheduling region to the specified bounding leaf.

voi d set Schedul i ngBounds(Bounds regi on)
Set the Behavior's scheduling region to the specified bounds.

voi d wakeupOn(WakeupCondition criteria)
Defines this behavior's wakeup criteria.

ViewPlatform API

Behaviors are active (able to be triggered) only when their scheduling bounds (or BoundingL eaf) intersects
the activation volume of a ViewPlatform.

ViewPlatform Method Summary (partial list)

These methods of the ViewPlatform class get and set the activation volume (sphere) radius. Default activation
radius = 62.

fl oat getActivati onRadi us()
Get the ViewPlatform's activation radius.

voi d set Activati onRadi us(fl oat activati onRadi us)
Set the ViewPlatform's activation radius which defines an activation volume around the view platform.

4.3 Wakeup Conditions: How Behaviors are Triggered

Active behaviors are triggered by the occurrence of a specified one or more wakeup stimuli. The wakeup
stimuli for a behavior are specified using descendants of the WakeupCondition class.

The abstract class, WakeupCondition, is the base of the al the wakeup classes in the Java 3D API
hierarchy. Five classes extend WakeupCondition, one is the abstract class WakeupCriterion, the other four

The Java 3D Tutoria 4-12

Module2: Interaction and Animation Chapter 4. Interaction

allow the composition of multiple wakeup conditions in a single wakeup condition. Figure 4-7 shows the
class hierarchy for these classes.

javalang.Object

4

javax.media.j3d.WakeupCondition

WakeupOnActivation
WakeupOnAWTEvent

| WakeupOr WakeupOnBehaviorPost
WakeupOnCallisionEntry
WakeupOnCollisionExit
WakeupOnCollisionM ovement
WakeupOnDeactivation

| WakeupAndOfQOrs WakeupOnElapsedFrames
WakeupOnElapsedTime
WakeupOnSensorEntry
WakeupOnSensorExit
WakeupOnTransformChange
WakeupCriterion WakeupOnViewPlatformEntry
WakeupOnViewPlatformExit

| WakeupAnd

| WakeupOrOfAnds

Figure 4-7 The Java 3D API Class Hierarchy for WakeupCondition and Related Classes.

A behavior object's wakeup condition can be specified as one of the specific wakeup criterion or as a
combination of criteria using the wakeup compostion classes. The following sections describe
WakeupCondition and its descendant classes.

4.3.1 WakeupCondition

The WakeupCondition class provides two methods. The first method, alElements, returns the enumeration
list of all wakeup criterion for the WakeupCondition object. The other method, triggeredElements,
enumerates which of the wakeup criterion has caused the behavior to be triggered. This method may be
useful in the processStimulus method of a Behavior object.

WakeupCondition Method Summary

The WakeupCondition abstract class is the base for all wakeup classes. It provides the following two methods.

Enuneration al |l El ement s()
Returns an enumeration of all WakeupCriterion objects in this Condition.

Enuneration triggeredEl enent s()
Returns an enumeration of all triggered WakeupCriterion objects in this Condition.

4.3.2 WakeupCriterion

WakeupCriterion is an abstract method for the 14 specific wakeup criterion classes. WakeupCondition
provides only one method: hasTriggered. You probably don't need to use this method as the
triggeredElements method of WakeupCondition performs this operation for you.

The Java 3D Tutoria 4-13

Modul€e2: Interaction and Animation

bool ean hasTri ggered()

Chapter 4. Interaction

WakeupCriterion Method Summary

Returns true if this criterion triggered the wakeup.

4.3.3 Specific WakeupCriterion Classes

Table 4-2 presents the 14 specific WakeupCriterion classes. These classes are used to specify the wakeup
conditions for behavior objects. Instances of these classes are used individualy or in combinations when
using the wakeup condition composition classes presented in Section 4.3.4.

Table 4-2 The 14 Specific WakeupCriterion Classes

Wakeup Criterion Trigger page
A on first detection of a ViewPlatform's activation volume
WakeupOnActivation intersecting with this object's scheduling region. 415
WakeupOnAWTEvent when a specific AWT event occurs 4-15
WakeupOnBehaviorPost when a specific behavior object posts a specific event 4-16
WakeupOnCaollisionEntry on thefyrst dgtectlon of the specified object colliding with any 417
other object in the scene graph
WakeupOnCollisionExit when t_he specified object no longer collides with any other 4-19
object in the scene graph
s when the specified object moves while in collision with any i
WakeupOnCollisonMovement other ohject in the scene graph 4-20
I when a ViewPlatform's activation volume no longer intersects
WakeupOnDeactivation with this object's scheduling region 4-21
WakeupOnEl apsedFrames when a specific number of frames have elapsed 4-21
WakeupOnElapsedTime when a specific number of milliseconds have elapsed 4-21
WakeupOnSensorEntry on first detection of any sensor intersecting the specified 427
boundary
. when a sensor previously intersecting the specified boundary no | ,
WakeupOnSensorExit longer intersects the specified boundary 4-22
WakeupOnTransformChange m;%ge transform within a specified TransformGroup 4.23
: on first detection of a ViewPlatform activation volume
WakeupOnViewRatformentry | ;o oo ng with the specified boundary 4-23
WakeupOnViewPlatformExit when aView activation volume no longer intersects the 4-24
specified boundary

Reference blocks for the individual WakeupCriterion classes appear on the next ten pages. Some
WakeupCiriterion classes have very smple APIs. For example, the WakeupOnAdcctivation class has just one
congtructor. The scheduling region, a parameter of this wakeup condition, is specified in the behavior

object that uses this criterion.

The Java 3D Tutorial

4-14

Module2: Interaction and Animation Chapter 4. Interaction

General WakeupCriterion Comments

A number of WakeupCriterion classes trigger on the "first detection” of an event. What this means is the
criterion will trigger only once for the event. For example, a WakeupOnAdctivation object will trigger the
intersection of the activation volume of a ViewPlatform and the scheduling region of the associated
behavior object is detected. As long as this intersection persists, the WakeupCondition does not trigger
again. The same is true for each of the sequentially following frames. Not until Java 3D detects that the
volumes no longer intersect can this WakeupCondition trigger again.

Also, there are a number of WakeupCriterion classes in matched pars (Entry/Exit or
Activation/Desactivation). These criteria only trigger in strict alternation beginning with the Entry or
Activation criterion.

WakeupOnActivation

It is possible for a scheduling region to intersect a ViewPlatform's activation volume so briefly that it is not
detected. Consequently, neither the Activation nor Deactivation conditions are triggered. Under these
circumstances, the behavior does not become active either.

WakeupOnActivation Constructor Summary
extends: WakeupCri teri on

Class specifying a wakeup on first detection of a ViewPlatform's activation volume intersection with this object's
scheduling region. WakeupOnActivation is paired with \WakeupOnDeactivation which appears on page 4-21.

WakeupOnActi vati on()
Constructs a new WakeupOnAdctivation criterion.

WakeupOnAWT Event

Severa of the WakeupCriterion classes have trigger dependent constructors and methods. For example,
WakeupOnAWTEvent has two constructors and a method. The constructors alow the specification of
AWT events using AWT class constants. The method returns the array of consecutive AWT events that
caused the trigger.

WakeupOnAWTEvent Constructor Summary
extends: WakeupCri teri on

Class that specifies a Behavior wakeup when a specific AWT event occurs. Consult an AWT reference for more
information.

WakeupOnAWTEvent (i nt AWTI d)

Constructs a new WakeupOnAWTEvent object, where AWT| d is one of KeyEvent . KEY_TYPED,
KeyEvent . KEY_PRESSED, KeyEvent.KEY_RELEASED, MuseEvent. MOUSE CLI CKED,
MouseEvent . MOUSE_PRESSED, MuseEvent. MOUSE_RELEASED, MuseEvent . MOUSE MOVED,

MouseEvent . MOUSE_DRAGGED, or one of many other event values.
WakeupOnAWTEvent (| ong event Mask)

Constructs a new WakeupOnAWTEvent object using ORed EVENT_MASK values. AWT EVENT_MASK values
are: KEY_EVENT_MASK, MOUSE_EVENT_MASK, MOUSE_MOTI ON_EVENT_MASK, or other values.

The Java 3D Tutoria 4-15

Module2: Interaction and Animation Chapter 4. Interaction

WakeupOnAWTEvent Method Summary

AWTEvent [] get AWTEvent ()
Retrieves the array of consecutive AWT events that triggered this wakeup.

WakeupOnBehavior Post

The WakeupOnBehaviorPost condition together with the postiD method of the Behavior class provides a
mechanism through which behaviors can coordinate. A Behavior object can post a particular integer ID
value. Another behavior can specify its wakeup condition, using a WakeupOnBehaviorPost, as the posting
of a particular ID from a specific behavior object. This allows for the creation of parenthetical behavior
objects such as having one behavior open a door and different one closing it. For that matter, even more
complex behaviors can be formulated using behaviors and post coordination.

WakeupOnBehavior Post Constructor Summary
extends: WakeupCri t eri on
Class that specifies a Behavior wakeup when a specific behavior object posts a specific event.

WakeupOnBehavi or Post (Behavi or behavi or, int postld)
Constructs a new WakeupOnBehaviorPost criterion.

Since a WakeupCondition can be composed of a number of WakeupCriterion objects, including more than
one WakeupOnBehaviorPogt, the methods to determine the specifics of the triggering post are necessary to
interpret atrigger event.

WakeupOnBehavior Post Method Summary

Behavi or get Behavi or ()
Returns the behavior specified in this object's constructor.

int getPostld()
Retrieve the WakeupCriterion's specified postld

Behavi or get Tri ggeri ngBehavi or ()
Returns the behavior that triggered this wakeup.

int getTriggeringPostld()
Returns the postld that caused the behavior to wakeup.

Code Fragment 4-3 and Code Fragment 4-4 show a partial code for an example program of using behavior
posting for coordinated behaviors. The exampleisthat of opening and closing adoor. The code fragments
includes one class: OpenBehavior, and code that creates the two behavior objects. The second object is an
instance of CloseBehavior, which is amost and exact duplicate of OpenBehavior. In CloseBehavior, the
condition is swapped in the initialization method (and the opposite behavior performed).

The Java 3D Tutoria 4-16

Module2: Interaction and Animation Chapter 4. Interaction

1. public class OpenBehavi or extends Behavi or{

2.

3. private Transform&oup targetTG

4. private WakeupCriterion pairPostCondition;

5. private WakeupCriterion AWEvent Conditi on;

6.

7. OpenBehavi or (Transf or mG oup target TG {

8. this.target TG = target TG

9. AWEvent Condi ti on = new WakeupOnAWEvent (KeyEvent . KEY_ _PRESSED) ;
10. }

11.

12. public void setBehavi or Qbj ect Part ner (Behavi or behavi or Gbj ect) {
13. pai r Post Condi ti on = new WakeupOnBehavi or Post (behavi or Obj ect, 1);
14. }

15.

16. public void initialize(){

17. t hi s. wakeupOn(AWEvent Condi ti on) ;

18. }

19.

20. public void processStinmul us(Enuneration criteria){

21. if (AWEvent Condi tion. hasTriggered())({

22. /1 make door open - code excl uded

23. t hi s. wakeupOn(pai r Post Condi ti on) ;

24. post1d(1);

25. } else {

26. t hi s. wakeupOn(AWEvent Condi ti on) ;

27. }

28. }

29

30: } // end of class OpenBehavi or

Code Fragment 4-3 Outline of OpenBehavior Class, an Example of Coordinated Behavior Classes

/] inside a nmethod to assenble the scene graph ...

1
2
3 /1 create the relevant objects

4. Tr ansf or mM& oup door TG new Tr ansf or m& oup() ;

5. OpenBehavi or open(bj ect new OpenBehavi or (door TG ;
6
7
8
9

Ol oseBehavi or cl ose(bj ect new Cl oseBehavi or (door TG ;

[/ prepare the behavi or objects
open(bj ect . set Behavi or Obj ect Part ner (cl oseQbj ect) ;

16. cl oseMj ect . set Behavi or bj ect Par t ner (openCbj ect) ;

11.

12. /1 set schedul i ng bounds for behavior objects — code excl uded
13.

14. /| assenbl e scene graph — code excl uded

15.

Code Fragment 4-4 Code using OpenBehavior and CloseBehavior, Coordinated Behavior Classes

Objects of these two classes would respond in strict alternation to key press events. The open behavior
object would trigger in response to the first key press. In its response, it signas the close behavior object
and sets its trigger condition to be a signal from the close object. The open behavior object opens the door
(or whatever) in response to the key press, as well. The close behavior object sets its trigger to be a key
press in response to the signal from the open behavior object. An example program included in the
exanpl es/ | nt er act i on subdirectory, Door App. j ava, utilizes an open and close behavior pair.

The Java 3D Tutoria 4-17

Module2: Interaction and Animation Chapter 4. Interaction

The next key press triggers the close object. The close object now performs the same functions that the
open object just performed: send a signa and reset its own trigger condition. The close object closes the
door (or whatever) in response to the key press. Back to the initial conditions, the next key press would
begin the process again.

WakeupOnCollisionEntry

Java 3D can detect the collision of objects in the virtual world. There are three WakeupCriterion classes
useful in processing the collision of objects: WakeupOnCollisionEntry, WakeupOnCollisonMovement, and
WakeupOnCaollisionExit.

A WakeupOnCollisionEntry criterion will trigger when an object first collides. Then,
WakeupOnCollisonMovement criterion will trigger (potentially multiple triggers) while the two objects are
in collision if thereis relative movement between the objects. Finally, a single WakeupOnCaollisionExit will
trigger when the collision is over.

Java 3D can handle only one collision for an object at atime. Once a collision is detected for an object,
collisons with other objects are not detected until that first collision is over. Also, it is possible for a
collison to occur so briefly that it is not detected. Consequently, neither the CollisonEntry nor
CallisionExit conditions are triggered.

Callision detection is more complex than this discussion of the collision wakeup conditions. However, this
tutorial does not address collision detection in detail. Refer to the Java 3D APl Specification for more
information on collision detection.

WakeupOnCallisonEntry Constructor Summary
extends: WakeupCri teri on

Class specifying awakeup on the first detection of a specified object colliding with any other object in the scene
graph. See also: WakeupOnCollisionMovement, and WakeupOnCollisionExit.

WakeupOnCol | 'i si onEnt ry(Bounds ar m ngBounds)
Constructs a new WakeupOnCollisionEntry criterion.

WakeupOnCol | i si onEnt ry(Node ar m ngNode)
Constructs a new WakeupOnCollisionEntry criterion.

WakeupOnCol | i si onEnt ry(Node arm ngNode, int speedH nt)

Constructs a new WakeupOnCollisionEntry criterion, where speedHint is either:
USE BOQUNDS - Use geometric bounds as an approximation in computing collisions.
USE_GEOMETRY - Use geometry in computing collisions.

WakeupOnCol |'i si onEnt ry(SceneG aphPat h ar m ngPat h)
Constructs a new WakeupOnCaollisionEntry criterion with USE_BOUNDS for a speed hint.

WakeupOnCol | i si onEnt ry(SceneG aphPat h arm ngPat h, int speedH nt)
Constructs a new WakeupOnCollisionEntry criterion, where speedHint is either USE_BOUNDS or
USE_GEQVETRY.

The Java 3D Tutoria 4-18

Module2: Interaction and Animation Chapter 4. Interaction

WakeupOnCaollisionExit

WakeupOnCallisonExit Constructor Summary
extends: WakeupCriterion

Class specifying a wakeup when the specified object no longer collides with any other object in the scene graph.
See also: WakeupOnCollisionMovement, and WakeupOnCollisionEntry.

WakeupOnCol | i si onExi t (Bounds ar m ngBounds)
Constructs a new WakeupOnCollisionExit criterion.

WakeupOnCol | i si onExi t (Node ar m ngNode)
Constructs a new WakeupOnCollisionExit criterion.

WakeupOnCol | i si onExi t (Node arm ngNode, int speedH nt)

Constructs a new WakeupOnCallisionExit criterion, where speedHint is either:
USE BOUNDS - Use geometric bounds as an approximation in computing collisions.
USE_GEQVETRY - Use geometry in computing collisions.

WakeupOnCol | i si onExi t (SceneG aphPat h ar mi ngPat h)
Constructs a new WakeupOnCollisionExit criterion.

WakeupOnCol | i si onExi t (SceneG aphPat h arm ngPat h, int speedH nt)

Constructs a new WakeupOnCaollisionExit criterion, where speedHint is either USE_BOUNDS, or
USE_GEQVETRY.

WakeupOnCaollisonExit Method Summary

Bounds get Armi ngBounds()
Returns the bounds object used in specifying the collision condition.

SceneG aphPat h get Ar mi ngPat h()
Returns the path used in specifying the collision condition.

Bounds get Tri ggeri ngBounds()
Returns the Bounds object that caused the collision

SceneG aphPat h get Tri ggeri ngPat h()
Returns the path describing the object causing the collision.

The Java 3D Tutoria 4-19

Module2: Interaction and Animation Chapter 4. Interaction

WakeupOnCollisionM ovement

WakeupOnCallisonMovement Constructor Summary
extends: WakeupCriterion

Class specifying a wakeup when the specified object moves while in collision with any other object in the scene
graph. See also: WakeupOnCaollisionEntry, and WakeupOnCaollisionExit.

WakeupOnCol | i si onMovenent (Bounds ar m ngBounds)
Constructs a new WakeupOnCollisionM ovement criterion.

WakeupOnCol | i si onMbvenent (Node ar m ngNode)
Constructs a new WakeupOnCollisionM ovement criterion.

WakeupOnCol | i si onMovenent (Node ar mi ngNode, int speedH nt)
Constructs a new WakeupOnCollisionM ovement criterion, where speedHint is either:
USE BOUNDS - Use geometric bounds as an approximation in computing collisions.
USE_GEQVETRY - Use geometry in computing collisions.

WakeupOnCol | i si onMovenent (SceneG aphPat h ar m ngPat h)
Constructs a new WakeupOnCollisionM ovement criterion.

WakeupOnCol | i si onMovenent (SceneG aphPat h arm ngPat h, int speedH nt)
Constructs a new WakeupOnCollisionM ovement criterion, where speedHint is either USE_BOUNDS, or
USE_GEQVETRY.

WakeupOnCollisonM ovement Method Summary

Bounds get Armi ngBounds()
Returns the bounds object used in specifying the collision condition.

SceneG aphPat h get Ar mi ngPat h()
Returns the path used in specifying the collision condition.

Bounds get Tri ggeri ngBounds()
Returns the Bounds object that caused the collision

SceneG aphPat h get Tri ggeri ngPat h()
Returns the path describing the object causing the collision.

The Java 3D Tutoria 4-20

Module2: Interaction and Animation Chapter 4. Interaction

WakeupOnDeactivation

WakeupOnDeactivation Constructor Summary
extends: WakeupCri t eri on
Class specifying awakeup on first detection of a ViewPlatform's activation volume no longer intersecting with this
object's scheduling region. See also: WakeupOnActivation (page 4-15).

WakeupOnDeact i vati on()
Constructs a new WakeupOnDeactivation criterion.

WakeupOnElapsedFrames
WakeupOnElapsedFrames object is used to trigger an active object after the specified number of frames

have elapsed. A frameCount of O specifies awakeup on the next frame.
WakeupOnElapsedFrames Constructor Summary
extends: WakeupCri teri on

Class specifying a wakeup when a specific number of frames have elapsed.

WakeupOnEl apsedFranes(int frameCount)
Constructs a new WakeupOnElapsedFrames criterion.

WakeupOnElapsedFrames Method Summary

i nt get El apsedFr anmeCount ()
Retrieve the WakeupCriterion's elapsed frame count that was used when constructing this object.

WakeupOnElapsedTime

Java 3D can not guarantee the exact timing of the wakeup trigger for a WakeupOnElapsedTime criterion.
A wakeup will occur at the specified time, or shortly thereafter.

WakeupOnElapsedTime Constructor Summary
extends: WakeupCri teri on

Class specifying a wakeup after a specific number of milliseconds have elapsed.

WakeupOnEl apsedTi ne(l ong mi | | i seconds)
Constructs a new WakeupOnElapsedTime criterion.

The Java 3D Tutoria 4-21

Module2: Interaction and Animation Chapter 4. Interaction

WakeupOnElapsedTime Method Summary

| ong get El apsedFranmeTi me()
Retrieve the WakeupCriterion's elapsed time val ue that was used when constructing this object.

WakeupOnSensor Entry

In Java 3D, any input devices other than the keyboard or mouse is a sensor. A sensor is an abstract
concept of an input device. Each sensor has a hotspot defined in the sensor's coordinate system. The
intersection of a sensor's hotspot with a region can be detected with the WakeupOnSensorEntry and
WakeupOnSensorExit classes.

It is possible for a sensor to enter and exit an armed region so quickly that neither the SensorEntry nor
SensorExit conditions are triggered.

WakeupOnSensor Entry Constructor Summary
extends: WakeupCri teri on

Class specifying a wakeup on first detection of the intersection of any sensor with the specified boundary.

WakeupOnSensor Ent r y(Bounds regi on)
Constructs a new WakeupOnEntry criterion.

WakeupOnSensor Entry Method Summary

Bounds get Bounds()
Returns this object's bounds specification

WakeupOnSensor Exit
WakeupOnSensor Exit Constructor Summary

extends: WakeupCri teri on

Class specifying awakeup on first detection of a sensor previously intersecting the specified boundary no longer
intersecting the specified boundary. See also: WakeupOnSensorEntry.

WakeupOnSensor Exi t (Bounds regi on)
Constructs a new WakeupOnExit criterion.

WakeupOnSensor Exit Method Summary

Bounds get Bounds()
Returns this object's bounds specification

The Java 3D Tutoria 4-22

Module2: Interaction and Animation Chapter 4. Interaction

WakeupOnTransformChange

The WakeupOnTransformChange criterion is useful for detecting changes in position or orientation of

visual objects in the scene graph. This criterion offers an aternative to using the postld method for

creating coordinated behaviors. This is especialy useful when the behavior with which you want to

coordinate is already written, such as the behavior utilities presented in sections 4.4 and 4.5.
WakeupOnTransformChange Constructor Summary

extends: WakeupCri teri on

Class specifying a wakeup when the transform within a specified TransformGroup changes

WakeupOnTr ansf or mChange(Tr ansf or m&r oup node)
Constructs a new WakeupOnTransformChange criterion.

WakeupOnTransformChange Method Summary

Transf or m& oup get Tr ansf or m& oup()
Returns the TransformGroup node used in creating this WakeupCriterion

WakeupOnViewPlatformEntry

The detection of the intersection of the ViewPlatform with a specified region is made possible with the
WakeupOnViewPlatfomEntry and WakeupOnViewPl atformExit criterion classes.

It is possible for the specified boundary to intersect a ViewPlatform's activation volume so briefly that it is
not detected. In this case neither the WakeupOnViewPlatformEntry nor WakeupOnViewPlatformExit
conditions are triggered.

WakeupOnViewPlatformEntry Constructor Summary
extends: WakeupCri teri on

Class specifying awakeup on first ViewPlatform intersection with the specified boundary.

WakeupOnVi ewPl at f or nEnt r y(Bounds regi on)
Constructs a new WakeupOnEntry criterion.

WakeupOnViewPlatformEntry Method Summary

Bounds get Bounds()
Returns this object's bounds specification

The Java 3D Tutoria 4-23

Module2: Interaction and Animation Chapter 4. Interaction

WakeupOnViewPlatfor mExit
WakeupOnViewPlatformExit Constructor Summary

extends: WakeupCri teri on

Class specifying awakeup on first detection of a Viewplatform no longer intersecting the specified boundary. See
also WakeupOnViewPlatformEntry.

WakeupOnVi ewPl at f or nExi t (Bounds r egi on)
Constructs a new WakeupOnExit criterion.

WakeupOnViewPlatformExit Method Summary

Bounds get Bounds()
Returns this object's bounds specification

4.3.4 WakeupCondition Composition

Multiple WakeupCriteron objects can be composed into a single WakeupCondition using the four classes
presented in this section. The first two classes allow the composition of a WakeupCondition from a
collection WakeupCriterion objects that are logically ANDed or ORed together, respectively. The third and
forth allow compositions of instances of the first two classes into more complex WakeupCondition objects.

WakeupAnd

WakeupAnd Constructor Summary
extends: WakeupCondi t i on
Class specifying any number of wakeup criterion logically ANDed together.

WakeupAnd(WakeupCriterion[] conditions)
Constructs a new WakeupAnd condition.

WakeupOr

WakeupOr Constructor Summary
extends: WakeupCondi t i on
Class specifying any number of wakeup criterion logically ORed together.

WakeupAnd(WakeupCriterion[] conditions)
Constructs a new WakeupOr condition.

The Java 3D Tutoria 4-24

Modul€e2: Interaction and Animation

WakeupAndOfOrs

WakeupAndOfOrs Constructor Summary
extends: WakeupCondi t i on
Class specifying any humber of WakeupOr condition logically ANDed together.

WakeupAndOr O s(WakeupOr[] conditions)
Constructs a new WakeupAndOfOrs condition.

WakeupOr OfAnds

WakeupOr OfAnds Constructor Summary
extends: WakeupCondi t i on
Class specifying any number of WakeupAnd condition logically ORed together.

WakeupOr sOF Ands(WakeupAnd[] condi tions)
Constructs a new WakeupOrOfAnds condition.

4.4 Behavior Utility Classes for Keyboard Navigation

Chapter 4. Interaction

To this point in the tutorial, the viewer has been in a fixed location with a fixed orientation. Being able to
move the viewer is an important capability in many 3D graphics applications. Java 3D is capable of
moving the viewer. In fact there are Java 3D utility classes which implement this functiondity.

Figure 4-8 shows the basic view branch graph for a Java 3D virtua universe. In this figure, the view
platform transform is seen. If the transform is changed, the effect is to move, or re-orient, or both, the
viewer. From this, you can see that the basic design of keyboard navigation is smple: have a behavior

object change the view platform transform in response to key strokes.

This smple design is exactly how the Java 3D keyboard utility classes work. Of course you could build
your own keyboard navigation behavior. The rest of this section explains how to use the Java 3D keyboard

navigation classes.

The Java 3D Tutoria 4-25

Module2: Interaction and Animation Chapter 4. Interaction

content
branch graph

@ ViewPlatform Transform

/& View g camesan | soreenad
View Platform .
» > |
Physical Body Physical Environment

Figure 4-8 The Basic View Branch Graph Showing the View Platform Transform

How to Navigatein a SimpleUniverse

Y ou might be thinking that needing access to the view platform transform group object means abandoning
the SimpleUniverse utility. However, the SimpleUniverse, and related classes, provide a combination of
method to retrieve the ViewPatformTransform object. Therefore, you can have your SimpleUniverse and
navigate in it too!

Specificaly, the following line of code retrieves the ViewPlatformTransform from a SimpleUniverse object,
Su.

Transform& oup vpt =
su. get Vi ewi ngPl at for () . get Vi ewPl at f or niTr ansf or m() ;

44.1 Simple KeyNavigator Behavior Example Program

It is easy to use the KeyNavigatorBehavior utility class in a Java 3D program. This section demonstrates
using the classin the KeyNavi gat or App example program found in the exanpl es/ I nt eracti on
subdirectory. In this program you can see that the steps involved in using the KeyNavigatorBehavior class
are essentially identical to those of using any behavior class (as discussed in section 4.2.2 on page 4-7).
The stepsfor using KeyNavigatorBehavior are summarized in Figure 4-9.

1. create a KeyNavigatorBehavior object, setting the transform group
2. add the KeyNavigatorBehavior object to the scene graph
3. provide a bounds (or BoundingL eaf) for the KeyNavigatorBehavior object

Figure 4-9Recipe for Using the KeyNavigator Behavior Utility Class

The Java 3D Tutoria 4-26

Module2: Interaction and Animation Chapter 4. Interaction

Like any programming problem, there are a variety of ways to implement the steps of this recipe. One
approach is to incorporate these steps in the createSceneGraph method®. Code Fragment 4-5 shows the
steps of the recipe as implemented for the KeyNavi gat or App example program found in the
exanpl es/ | nt er acti on subdirectory. The code fragment is annotated with the step numbers from
therecipe. Like many of the other recipes, the exact ordering of all stepsis not critical.

1. public BranchG oup createSceneG aph(Si npl eUni verse su) {

2. /1l Create the root of the branch graph

3. Transf orm& oup vpTrans = nul | ;

4.

5. BranchG oup obj Root = new BranchG oup();

6.

7. obj Root . addChi | d(creat eLand());

8.

9. /'l create other scene graph content

10.

11.

12. vpTrans = su. get Vi ewi ngPl atform(). get Vi ewPl at f or mlr ansf or m() ;

13. translate.set(0.0f, 0.3f, 0.0f); /1 3 neter elevation

14. T3D. set Transl ati on(transl ate); /1 set as translation

15. vpTrans. set Transf or m(T3D) ; /1 used for initial position
16. © KeyNavi gat or Behavi or keyNavBeh = new KeyNavi gat or Behavi or (vpTrans);
17. © keyNavBeh. set Schedul i ngBounds(new Boundi ngSpher e(

18. new Poi nt 3d(), 1000.0));
19. O obj Root . addChi | d(keyNavBeh) ;

20.

21. /1 Let Java 3D performoptim zations on this scene graph.

22. obj Root . conpi |l e() ;

23.

24. return obj Root;

25. } // end of CreateSceneG aph nethod of KeyNavi gat or App

Code Fragment 4-5 Using the KeyNavigator Behavior Class (part 1)

Performing step 1 of the recipe in the creasteSceneGraph method requires access to the ViewPlatform
transform group. This implementation passes the SimpleUniverse object (line 34 of Code Fragment 4-6) to
the createSceneGraph method making it available to access the ViewPlatform transform (line 12 of Code
Fragment 4-5).

Passing the SimpleUniverse object to the createSceneGraph method makes it possible to gain access to
other view branch graph features of the SimpleUniverse, such as PlatformGeometry, ViewerAvatar, or
adding a BoundingL eaf to the view branch graph.

Lines 13 through 15 of Code Fragment 4-5 provide an initial position for the viewer. In this case, the
viewer is trandated to a position 0.3 meters above the origin of the virtual world. This is only an initia
position, and in no way limits the viewer's future position or orientation.

® Inthistutorial, cr eat eSceneG aph() isastandard method of the main class of a Java 3D program.

The Java 3D Tutoria 4-27

Module2: Interaction and Animation Chapter 4. Interaction

26. publ i ¢ KeyNavi gat or App() {

27. set Layout (new Bor der Layout ());

28. Canvas3D canvas3D = new Canvas3D(nul |');

29. add("Center", canvas3D);

30.

31. /1 SinpleUniverse is a Convenience Uility class
32. Si nmpl eUni ver se sinpl eU = new Si npl eUni ver se(canvas3D);
33.

34. BranchG oup scene = createSceneG aph(si npl eU);
35.

36. si npl eU. addBr anchG aph(scene) ;

37. } // end of KeyNavigatorApp (constructor)

Code Fragment 4-6 Using the KeyNavigator Behavior Class (part 2)

How to make Universal Application of a Behavior

As with any behavior object, the KeyNavigtorBehavior object is only active when its scheduling bounds
intersects the activation volume of a ViewPlatform. This can be particularly limiting for a navigation
behavior, where the behavior should aways be on. Chapter 3 discusses a solution to this problem using a
BoundingLeaf. Refer to the BoundingLeaf section of Chapter 3 for more information.

4.4.2 KeyNavigatorBehavior and KeyNavigator Classes

The keyboard navigation utility is implemented as two classes. At run time there are two objects. The first
object is the KeyNavigatorBehavior object, the second is a KeyNavigator object. The second class is not
documented here since neither the programmer nor the user need to know that the second class or object
exists.

The KeyNavigatorBehavior object performs all the typical functions of a behavior class, except that it calls
on the KeyNavigator object to perform the processStimulus function. The KeyNavigator class takes the
AWTEvent and processes it down to the individual key stroke level. Table 4-3 shows the effect of the
individual key strokes. KeyNavigator implements motion with acceleration.

Table 4-3 KeyNavigator Behavior M ovements

Key movement Alt-key movement
< rotate left lateral trand ate | eft
-> rotate right lateral trandate right
0 move forward
N move backward

PgUp rotate up trandlation up
PgDn rotate down trandation down
+ restore back clip distance
(and return to the origin)
- reduce back clip distance
= return to center of universe

The Java 3D Tutoria 4-28

Module2: Interaction and Animation Chapter 4. Interaction

The following reference blocks show the API for the KeyNavigatorBehavior utility class.
K eyNavigator Behavior Constructor Summary

Package: com.sun.j3d.utils.behaviors.keyboard
Ext ends: Behavior

This classis a simple behavior that invokes the KeyNavigator to modify the view platform transform.

KeyNavi gat or Behavi or (Tr ansf or m& oup t arget TG
Constructs a new key navigator behavior node that operates on the specified transform group.

KeyNavigator Behavior Method Summary

void initialize()
Override Behavior's initialize method to setup wakeup criteria.

voi d processStinmulus(java.util.Enunmeration criteria)
Override Behavior's stimulus method to handle the event.

4.5 Utility Classes for Mouse Interaction

the mouse utility behavior package (com sun. j 3d. uti | s. behavi or s. nouse) contains behavior
classes in which the mouse is used as input for interaction with visua objects. Included are classes for
trandating (moving in a plane paradld to the image plate), zooming (moving forward and back), and
rotating visual objects in response to mouse movements.

Table 4-4 summarizes the three specific mouse behavior classes included in the package. In addition to
these three classes, there is the abstract MouseBehavior class, and MouseCallback Interface in the mouse
behavior package. This abstract class and the interface are used in the creation of the specific mouse
behavior classes and are useful for creating custom mouse behaviors.

Table 4-4 Summary of Specific MouseBehavior Classes

MouseBehavior class | Action in Responseto Mouse Action Mouse Action
MouseRotate rotate visual object in place left-button held with
mouse movement
MouseTrand ate trandate the visua object in aplane parallel to theimage | right-button held with
plate mouse movement
MoUseZoom Fransl ate the visual abject in a plane orthogonal to the mi ddle-button held
image plate with mouse movement

45.1 Usingthe Mouse Behavior Classes

The specific mouse behavior classes are easy to use. Usage of these class is essentially the same as using
any other behavior class. Figure 4-10 presents the recipe for using Mouse Behavior classes.

The Java 3D Tutoria 4-29

Module2: Interaction and Animation Chapter 4. Interaction

1. provide read and write capabilities for the target transform group
2. create aMouseBehavior object

3. set the target transform group

4. provide a bounds (or BoundingL eaf) for the MouseBehavior object
5. add the MouseBehavior object to the scene graph

Figure 4-10 Recipe for Using M ouse Behavior Classes

As with some other recipes, the steps don't have to be performed strictly in the given order. Step two must
be performed before three, four, and five; the other steps can be performed in any order. Also, steps two
and three can be combined using a different constructor.

Code Fragment 4-7 presents the createSceneGraph method from the MouseRot at eApp example
program included in theexanpl es/ | nt er act i on subdirectory. The scene graph includes ColorCube
object. The user can rotate the ColorCube using the mouse due to the inclusion of a MouseRotate object in
the scene graph. Code Fragment 4-7 is annotated with the step numbers from the recipe of Figure 4-10.

1. public class MuseRot at eApp extends Applet {

2.

3. public BranchG oup createSceneG aph() {

4. /1l Create the root of the branch graph

5. BranchG oup obj Root = new BranchG oup();

6.

7. Transf or mM& oup obj Rotate = new Transf or mG oup();

8. (1 obj Rot at e. set Capabi | i t y(Tr ansf or m& oup. ALLOV TRANSFORM WRI TE) ;
9. (1 obj Rot at e. set Capabi | i t y(Tr ansf or m& oup. ALLOWV TRANSFORM READ) ;
10.

11. obj Root . addChi | d(obj Rot ate) ;

12. obj Rot at e. addChi | d(new Col or Cube(0. 4));

13.

14. (2] MouseRot at e nyMouseRot at e = new MouseRot at e() ;

15. (3] nmyMouseRot at e. set Tr ansf or m& oup(obj Rot at e) ;

16. (4] nmyMouseRot at e. set Schedul i ngBounds(new Boundi ngSphere());
17. © obj Root. addChi | d(nyMbuseRot at e) ;

18.

19. /1 Let Java 3D performoptim zations on this scene graph.
20. obj Root . conpi |l e() ;

21.

22. return obj Root;

23. } // end of CreateSceneG aph nethod of MyuseRot at eApp

Code Fragment 4-7 Using the M ouseRotate Utility Class

The same recipe will work for the other two mouse behavior classes. In fact al three behaviors can be used
in the same application operating on the same visua object. Since each of the mouse behaviors reads the
target transform before writing to it, only one TransformGroup object is needed even with three mouse
behaviors. The MouseBehaviorApp example program does just that. Y ou can find this example program
intheexanpl es/ | nt eracti on subdirectory.

The next example shows how two mouse behaviors work in a single virtual world. The example program
MouseRot at e2App creates a scene graph with two ColorCube objects near each other in the virtua
world. Each of the ColorCubes has a MouseRotate object associated with it. Since both mouse behavior
objects are active, when the user clicks and moves the mouse, both ColorCubes rotate.

If you didn't want both objects to rotate, there are two solutions: 1) change the viewer's position, or change
the behavior scheduling bounds, so that only one behavior is active, or 2) use a picking mechanism to

The Java 3D Tutoria 4-30

Module2: Interaction and Animation Chapter 4. Interaction

isolate the behavior. Picking is discussed in section 4.6. In that section you will find classes that combine
the mouse behaviors described in this section with picking, alowing the user to interact with one visua
object at atime.

45.2 Mouse Behavior Foundation

The specific mouse behavior classes (MouseRotate, MouseTrandate, and MouseZoom) are extensions of
the MouseBehavior abstract class and implement the MouseCallback Interface.

M ouse Behavior Abstract Class

This abstract is presented here in the event you want to extend it to write a custom mouse behavior class.
The setTransformGroup() method is probably the only method users of an instance of MouseBehavior will
use. The other methods are intended for the authors of custom mouse behavior classes.

MouseBehavior Method Summary
Base class for all mouse manipulators (see MouseRotate and M ouseZoom for examples of how to extend this base
class).
void initialize()
Initializes the behavior.

voi d processMuseEvent (j ava. awt . event . MouseEvent evt)
Handles mouse events.

voi d processStimulus(java.util.Enuneration criteria)
All mouse manipulators must implement this method of Behavior (respond to stimuli).

voi d set Tr ansf or m& oup(Tr ansf or m& oup t ransf or & oup)
Set the target TransformGroup for the behavior.

voi d wakeup()
Manually wake up the behavior.

MouseCallback Interface

A class implementing this interface provides the transformChanged method which will be called when the
target transform changes in the specified way. Each of the three specific mouse behavior classes implement
this class. A programmer can simply override the transformChanged method of one of those classes to
specify a method to be called when the transform is changed.

I nterface M ouseBehavior Callback M ethod Summary

Package: com sun. j 3d. uti | s. behavi or s. nouse

voi d transfornChanged(int type, Transforn8D transform

Classes implementing this interface that are registered with one of the MouseBehaviors will be called every time
the behavior updates the Transform. The typeis one of MouseCal | back. ROTATE,

MouseCal | back. TRANSLATE, or MouseCal | back. ZOOM

The Java 3D Tutoria 4-31

Module2: Interaction and Animation Chapter 4. Interaction

45.3 Specific Mouse Behavior Classes

Mouse Rotate

A scene graph that includes a MouseRotate object allows the user to rotate visua objects in the virtua
world. The use of this class is explained in section 4.5.1. The example programs MouseRot at eApp,
MouseRot at e2App, and MouseBehavi or App demonstrate the use of this class.

M ouseRotate Constructor Summary

Package: com sun.j 3d. util s. behavi ors. nouse
Extends: MouseBehavi or

MouseRotate is a Java3D behavior object that lets users control the rotation of an object via a mouse left-button
drag. To usethis utility, first create a transform group that this rotate behavior will operate on. The user can
rotate any child object of the target TransformGroup.

MouseRot at e()
Creates a default mouse rotate behavior.

MouseRot at e(Tr ansf or m& oup t ransf or m& oup)
Creates arotate behavior given the transform group.

MouseRot at e(i nt fl ags)

Creates a rotate behavior with flags set, where the flags are:
MouseBehavi or . | NVERT | NPUT Set thisflag if you want to invert the inputs.
MouseBehavi or . MANUAL WAKEUP Set thisflag if you want to manually wakeup the behavior.

MouseRotate Method Summary

void setFactor (double factor)
Set the x-axis and y-axis movement multiplier with factor.

void setFactor (double xFactor, double yFactor)
Set the x-axis and y-axis movement multiplier with xFactor and yFactor respectively.

void setupCallback (M ouseBehavior Callback callback)
The transformChanged method in the callback class will be called every time the transform is updated

void transformChanged(Transfor m3D transfor m)
Users can overload this method which is called every time the Behavior updates the transform. The default
implementation does nothing.

MouseTrandate

A scene graph that includes a MouseTrandate object alows the user to move visual objects in a plane
paralel to the image plate in the virtual world. The use of this class is explained in section 4.5.1. The
example program MouseBehavi or App demonstrates the use of this class.

The Java 3D Tutoria 4-32

Module2: Interaction and Animation Chapter 4. Interaction

MouseTrandate Constructor Summary

Packege: com sun. j 3d. util s. behavi ors. nouse
Extends: MouseBehavi or

MouseTranslate is a Java3D behavior object that |ets users control the translation (X, Y) of an object viaa mouse
drag motion with the right mouse button.

MouseTr ansl at e()
Creates a default translate behavior.

MouseTr ansl at e(Tr ansf or m& oup transf or m& oup)
Creates a mouse translate behavior given the transform group.

MouseTransl ate(int fl ags)

Creates a trandlate behavior with flags set, where the flags are:
MouseBehavi or . | NVERT_| NPUT Set thisflag if you want to invert the inputs.
MbuseBehavi or . MANUAL_WAKEUP Set this flag if you want to manually wakeup the behavior.

MouseTrandate Method Summary

voi d set Fact or (doubl e factor)
Set the x-axis and y-axis movement multiplier with factor.

voi d set Fact or (doubl e xFactor, doubl e yFactor)
Set the x-axis and y-axis movement multiplier with xFactor and yFactor respectively.

voi d setupCal | back(MouseBehavi or Cal | back cal | back)
The transformChanged method in the callback class will be called every time the transform is updated

voi d transfornChanged(Tr ansf or n8D transf orm
Users can overload this method which is called every time the Behavior updates the transform. The default
implementation does nothing.

M ouseZoom

A scene graph that includes a MouseZoom object alows the user to move visua objects in a plane
orthogonal to the image plate in the virtual world. The use of this class is explained in section 4.5.1. The
example program MbuseBehavi or App demonstrates the use of this class.

The Java 3D Tutoria 4-33

Module2: Interaction and Animation Chapter 4. Interaction

MouseZoom Constructor Summary

Package: com sun.j 3d. util s. behavi ors. nouse
Extends: MouseBehavi or

MouseZoom is a Java3D behavior object that lets users control the Z axis translation of an object via a mouse drag
motion with the second middle button (alt-click on PC with two-button mouse). See MouseRotate for similar usage
info.

MouseZoomn()
Creates a default mouse zoom behavior.

MouseZoon(Tr ansf or N3 oup t ransf or m& oup)
Creates a zoom behavior given the transform group.

MouseZoon(i nt fl ags)

Creates a zoom behavior with flags set, where the flags are:
MouseBehavi or . | NVERT | NPUT Set thisflag if you want to invert the inputs.
MouseBehavi or . MANUAL WAKEUP Set thisflag if you want to manually wakeup the behavior.

MouseZoom Method Summary

voi d set Fact or (doubl e factor)
Set the z-axis movement multiplier with factor.

voi d set upCal | back(MouseBehavi or Cal | back cal | back)
The transformChanged method in the callback class will be called every time the transform is updated

voi d transforntChanged(Tr ansf or n8D t r ansf or n)
Users can overload this method which is called every time the Behavior updates the transform. The default
implementation does nothing.

454 Mouse Navigation

The three specific mouse behavior classes can be used to create a virtual universe in which the mouse is
used for navigation. Each of the specific mouse behavior classes has a constructor that takesasingle i nt
f1 ags parameter. When the MouseBehavi or . | NVERT | NPUTS is used as the argument to this
constructor, the mouse behavior responds in the opposite direction. This reverse behavior is appropriate
for changing the ViewPlatform transform. In other words, the mouse behavior classes can be used for
navigational control.

The example program MouseNavi gat or App uses instances of the three specific mouse behavior
classes for navigationa interaction. The complete source for this example program is in the
exanpl es/ I nteracti on subdirectory. Code Fragment 4-8 shows the createSceneGraph method
from this example program.

The target TransformGroup for each of the mouse behavior objects is the ViewPlatform transform. The
SimpleUniverse object is an argument to the createSceneGraph method so that the ViewPlatform transform
object can be accessed.

The Java 3D Tutoria 4-34

Module2: Interaction and Animation Chapter 4. Interaction

1. public BranchG oup createSceneG aph(Si npl eUni verse su) ({
2. /1l Create the root of the branch graph
3. BranchG oup obj Root = new BranchG oup();
4. Transform& oup vpTrans = nul | ;
5. Boundi ngSpher e nouseBounds = nul | ;
6.
7. vpTrans = su. get Vi ewi ngPl atform(). get Vi ewPl at f or ml'r ansf or m() ;
8.
9. obj Root . addChi | d(new Col or Cube(0. 4));
10. obj Root . addChi | d(new Axi s());
11.
12. nmouseBounds = new Boundi ngSpher e(new Poi nt 3d(), 1000.0);
13.
14. MouseRot at e myMouseRot at e = new
MouseRot at e(MbuseBehavi or . | NVERT_I NPUT) ;

15. nmyMouseRot at e. set Tr ansf or m&a oup(vpTrans);
16. nmyMouseRot at e. set Schedul i ngBounds(nouseBounds) ;
17. obj Root . addChi | d(nyMouseRot at e) ;
18.
19. MouseTr ansl at e nyMouseTransl ate = new

MouseTr ansl at e(MouseBehavi or . | NVERT_I NPUT) ;
20. nmyMouseTr ansl at e. set Tr ansf or nG oup(vpTrans);
21. nmyMouseTr ansl at e. set Schedul i ngBounds(nouseBounds) ;
22. obj Root . addChi | d(nyMouseTr ansl at e) ;
23.
24. MouseZoom nyMbuseZoom = new MouseZoon{ MbuseBehavi or. | NVERT_I NPUT) ;
25. nmyMouseZoom set Tr ansf or N3 oup(vpTrans) ;
26. nmyMouseZoom set Schedul i ngBounds(nouseBounds) ;
27. obj Root . addChi | d(nyMouseZoomn) ;
28.
29. /1 Let Java 3D performoptim zations on this scene graph.
30. obj Root . conpi |l e() ;
31.
32. return obj Root;
33. } // end of createSceneG aph method of MbuseNavi gat or App

Code Fragment 4-8 Using M ouse Behavior Classesfor Interactive Navigation of the Virtual World.

The bounds object for the mouse behavior objects is specified as a BoundingSphere with a radius of 1000
meters. If the viewer moves beyond this sphere, the behavior objects will no longer be active.

4.6 Picking

In the MouseRotate2App example program, both ColorCube objects rotated in response to the actions of
the user. In that application, there is no way to manipulate the cubes separately. Picking gives the user a
way to interact with individual visual objects in the scene.

Picking is implemented by a behavior typically triggered by mouse button events. In picking a visua
object, the user places the mouse pointer over the visual object of choice and presses the mouse button.
The behavior object is triggered by this button press and begins the picking operation. A ray is projected
into the virtual world from the position of the mouse pointer parald with the projection. Intersection of
this ray with the objects of the virtual world is computed. The visual object intersecting closest to the
image plate is selected for interaction’. Figure 4-1 shows a pick ray projected in a virtual world.

" While interacting with the closest visual object is the most common picking application, picking operations are
not limited to selecting the closest visual object. Some picking operations produce alist of al intersected objects.

The Java 3D Tutoria 4-35

Module2: Interaction and Animation Chapter 4. Interaction

N Bt L <lvisual
, S IZZ _________________ object
mousepointer > |~ [TTTTTEeeRe pick ray
<1image plate

Figure 4-11 Projection of PickRay in the Virtual World

In some cases the interaction is not directly with the selected object, but with an object along the scene
graph path to the object. For example, in picking a ColorCube object for rotation, the ColorCube object is
not manipulated; the TransformGroup object above the ColorCube in the scene graph path to the
ColorCube is. On the other hand, if the pick operation selects a visual object for which a color change is
intended, then the visual object selected isindeed required.

The determination of the object for further processing is not always easy. If a cubic visua object that isto
be rotated is composed of six individual Shape3D objects arranged by six TransformGroup objects, as in
the scene graph diagram of Figure 4-12, it is not the TransformGroup object above the intersected
Shape3D object that needs to be modified. The 'cube is rotated by manipulation of the TransformGroup
object that is the child of the BranchGroup object in the scene graph. For this reason, the result of some
picking operationsis to return the scene graph path for further processing.

&9
19

@@?@

S\ /S S\ /S\ /S
Figure 4-12 Scene Graph Diagram for a Cube Composed of Discrete Shape3D Plane Objects.

Intersection testing is computationaly expensive. Therefore, picking is computationally expensive and is
more expensive with increasing complexity of the scene. The Java 3D API provides a number of ways that
a programmer can limit the amount of computation done in picking. One important way is through the
capabilities and attributes of scene graph nodes. Whether or not a scene graph node is pickable is set with
the set Pi ckabl e() method of the class. A node with set Pi ckabl e() set to fal se is not

The Java 3D Tutoria 4-36

Module2: Interaction and Animation Chapter 4. Interaction

pickable and neither are any of its children. Consequently, these nodes are not considered when calculating
intersections.

Another pick related feature of the Node class is the ENABLE Pl CK_REPORTI NG capability. This
capability applies only to Group nodes. When set for a Group, that group object will always be included in
the scene graph path returned by a pick operation. Group nodes not needed for uniqueness in a scene graph
path will be excluded when the capability is not set. Not having the right settings for scene graph nodes is
a common source of frustration in developing applications utilizing picking operations.

The following two reference blocks list Node methods and capabilities, respectively.

Node Method (partial list)

extends: SceneG aphObj ect
subclasses: Gr oup, Leaf

The Node class provides an abstract class for all Group and Leaf Nodes. It provides a common framework for
constructing a Java 3D scene graph, specifically bounding volumes, picking and collision capabilities.

voi d set Bounds(Bounds bounds)

Sets the geometric bounds of a node.

voi d set BoundsAut oConput e(bool ean aut oConput e)
Turns the automatic calcuation of geometric bounds of a node on/off.

set Pi ckabl e(bool ean pi ckabl e)
When set to true this Node can be Picked. Setting to false indicates that this node and it's children are ALL
unpickable.

Node Capabilities Summary (partial list)

ENABLE_PI CK_REPORTI NG

Specifies that this Node will be reported in the pick SceneGraphPath if a pick occurs. This capability is only
specifiable for Group nodes; it isignored for leaf nodes. The default for Group nodes is false. Interior nodes not
needed for uniqueness in a SceneGraphPath that don't have ENABLE_PICK_REPORTING set will be excluded
from the SceneGraphPath.

ALLOW BOQUNDS_READ | WRI TE
Specifies that this Node allows read (write) access to its bounds information.

ALLOW Pl CKABLE _READ | WRI TE
Specifies that this Node allows reading (writing) its pickability state.

Anocther way a programmer can reduce the computation of picking is to use bounds intersection testing
instead of geometric intersection testing. Severa of the pick related classes have congtructors and/or
methods have a parameter, which is set to one of: USE_BOUNDS or USE_GEOVETRY. When the
USE_BOUNDS option is sdlected, the pick is determined using the bounds of the visua objects, not the
actual geometry. The determination of a pick using the bounds is significantly easier (computationally) for
al but the simplest geometric shapes and therefore, results in better performance. Of course, the drawback
isthe picking is not as precise when using bounds pick determination.

The Java 3D Tutoria 4-37

Module2: Interaction and Animation Chapter 4. Interaction

A third programming technique for reducing the computational cost of picking is to limit the scope of the
pick testing to the relevant portion of the scene graph. In each picking utility class a node of the scene
graph is set as the root of the graph for pick testing. This node is not necessarily the root of the content
branch graph. On the contrary, the node passed should be the root of the content subgraph that only
contains pickable objects, if possible. This consideration may be a major factor in determining the
congtruction of the scene graph for some applications.

4.6.1 Using Picking Utility Classes

There are two basic approaches to using the picking features of Java 3D: use objects of picking classes, or
create custom picking classes and use instances of these custom classes. The picking package includes
classes for pick/rotate, pick/trandate, and pick/zoom. That is, a user can pick and rotate an object by
pressing the mouse button when the mouse pointer is over the desired object and then dragging the mouse
(while holding the button down). Each of the picking classes uses a different mouse button making it
possible to use objects of al three picking classin the same application simultaneoudly.

Section 4.6.4 presents the PickRot at eBehavi or, PickTransl ateBehavi or, and
Pi ckZoonBehavi or utility classes. Section 4.6.2 presents classes useful for creating custom picking
classes. This section presents a complete programming example using the PickRotate class.

Since a picking behavior object will operate on any scene graph object (with the appropriate capabilities),
only one picking behavior object is necessary to provide picking. The following two lines of code is just
about al that is needed to include picking viathe picking utility classesin a Java 3D program:

Pi ckRot at eBehavi or behavi or = new Pi ckRot at eBehavi or (root, canvas, bounds);
root . addChi | d(behavi or);

The above behavi or object will monitor for any picking events on the scene graph (below r oot node)
and handle mouse drags on pick hits. Ther oot provides the portion of the scene graph to be checked for
picking, the canvas is the place where the mouse is, and the bounds is the scheduling bounds of the
picking behavi or object.

Figure 4-13 shows the simple recipe for using the mouse picking utility classes.

1. Create your scene graph.

2. Create a picking behavior object with root, canvas, and bounds specification.
3. Add the behavior object to the scene graph.

4. Enable the appropriate capabilities for scene graph objects

Figure 4-13 Recipe for Using Mouse Picking Utility Classes

Programming Pitfalls when Using Picking Objects

Using the picking behavior classes leads to the same programming pitfalls as using other behavior classes.
Common problems include: forgetting to include the behavior object in the scene graph, and not setting an
appropriate bounds for the behavior object. See "Programming Pitfalls of Using Behavior Objects’ on
page 4-9 for more details.

There are pitfalls specific to picking in addition to the pitfalls common to using behavior abjects. The most
common problem is not setting the proper capabilities for scene graph objects. Two other possible
problems are less likely, however you should check for these if your picking application is not working.
One is not setting the root of the scene graph properly. Another potential problem is not setting the canvas
properly. None of these programming mistakes will generate an error or warning message.

The Java 3D Tutoria 4-38

Module2: Interaction and Animation Chapter 4. Interaction

MousePickApp Example Program

Code Fragment 4-9 shows the cr eat eSceneG aph method of MbusePi ckApp. The complete
source code for this example program is included in the exanpl es/ | nt er act i on subdirectory of the
example programs jar. This program uses a PickRotate object to provide interaction. This code is
annotated with the step numbers from the recipe of Figure 4-13.

Note that since the construction of the picking object requires the Canvas3D object, the createSceneGraph
method differs from earlier versions by the inclusion of the canvas parameter. Of course, the invocation of
createSceneGraph changes correspondingly.

1. public BranchG oup createSceneG aph(Canvas3D canvas) {

2. /1l Create the root of the branch graph

3. BranchG oup obj Root = new BranchG oup();

4.

5. Transf or mM&a oup obj Rotate = nul | ;

6. Pi ckRot at eBehavi or pi ckRotate = null;

7. TransfornBD transform = new Transfor n8D() ;

8. Boundi ngSpher e behaveBounds = new Boundi ngSphere();

9.

10. /1 create Col or Cube and Pi ckRot at eBehavi or objects

11. transform set Transl ati on(new Vector 3f(-0.6f, 0.0f, -0.6f));
12. obj Rotate = new Transf or nGroup(transforn;

13. obj Rot at e. set Capabi I i t y(Transf or nG oup. ALLOW TRANSFORM WRI TE) ;
14. O obj Rot at e. set Capabi | i t y(Tr ansf or m& oup. ALLOV TRANSFORM READ) ;
15. obj Rot at e. set Capabi | i t y(Tr ansf or m& oup. ENABLE Pl CK_REPORTI NG) ;
16.

17. obj Root . addChi | d(obj Rot ate) ;

18. obj Rot at e. addChi | d(new Col or Cube(0. 4));

19.

20. @ pi ckRot at e = new Pi ckRot at eBehavi or (obj Root , canvas, behaveBounds);
21. © obj Root . addChi | d(pi ckRot at e) ;

22.

23. /1 add a second Col or Cube object to the scene graph

24. transform set Transl ati on(new Vector3f(0.6f, 0.0f, -0.6f));
25. obj Rotate = new Transf or nGroup(transforn;

26. obj Rot at e. set Capabi I i ty(Transf or nG oup. ALLOW TRANSFORM WRI TE) ;
27. O obj Rot at e. set Capabi | i t y(Tr ansf or m& oup. ALLOV TRANSFORM READ) ;
28. obj Rot at e. set Capabi | i t y(Tr ansf or m& oup. ENABLE Pl CK_REPORTI NG) ;
29.

30. obj Root . addChi | d(obj Rot ate) ;

31. obj Rot at e. addChi | d(new Col or Cube(0. 4));

32.

33. /1 Let Java 3D performoptim zations on this scene graph.

34. obj Root . conpi |l e();

35.

36. return obj Root;

37. } // end of createSceneG aph nethod of MusePi ckApp

Code Fragment 4-9 The createSceneGraph Method of the M ousePick App Example Program.

This code is similar to that of MouseRotate2App, but is different in some very distinct ways. Primarily,
there is only one behavior object used in this program, where the MouseRotate?App used two behavior
objects — one per visua object. While the code is similar, the behavior is very different. This program
allows the user to pick an abject to interact with. MouseRotate?App rotates both objects or neither object.

The Java 3D Tutoria 4-39

Module2: Interaction and Animation Chapter 4. Interaction

4.6.2 Java 3D API CorePicking Classes

There are three 'levels of picking classes provided in Java 3D. The Java 3D API core provides the lowest
level functionality. The picking utility package provides general picking behavior classes, suitable for
customization. The picking utility package aso provides specific picking behavior classes which can be
used directly in Java 3D programs.

The core classes include PickShape and SceneGraphPath classes, and methods of BranchGroup and
Locale. These classes provide the mechanisms for specifying a shape used in testing for intersection with
visua objects. This section presents the APl of the PickShape and SceneGraphPath classes, and related
classes and methods.

The genera picking utility package classes combine basic picking operations in behavior objects. The
specific picking utility classes use the general classes to implement specific picking behaviors.

Pick Shape classes
This abstract class provides neither constructors nor methods. It provides abstraction for four subclasses:

Pi ckBounds, PickRay, PickSegnment, and Pi ckPoint.
Pick Shape
Known Subclasses: Pi ckBounds, PickRay, PickSegrment, and Pi ckPoi nt
A general class for describing a pick shape which can be used with the BranchGroup and Locale pick methods.

PickBounds

PickBounds objects represent a bounds for pick testing. As a subclass of PickShape, PickBounds objects
are used with BranchGroup and Locale pick testing as well as picking package classes.

PickBounds Constructor Summary
extends: Pi ckShape
A bounds to supply to the BranchGroup and L ocale pick methods

Pi ckBounds()
Create a PickBounds.

Pi ckBounds(Bounds boundsObj ect)
Create a PickBounds with the specified bounds.

Method Summary

Bounds get ()
Get the boundsoj ect from this PickBounds.

voi d set (Bounds boundsbj ect)
Set the boundsQbj ect into this PickBounds.

The Java 3D Tutoria 4-40

Module2: Interaction and Animation Chapter 4. Interaction

PickPoint

PickPoint objects represent a point for picking. As a subclass of PickShape, PickPoint objects are used
with BranchGroup and Locale pick testing as well as picking package classes.

PickPoint Constructor Summary
extends: Pi ckShape
A point to supply to the BranchGroup and Locale pick methods

Pi ckPoi nt ()
Create a PickPoint at (0, O, 0).

Pi ckPoi nt (Poi nt 3d | ocat i on)
Create aPickPoint at | ocat i on.

PickPoint Method Summary

voi d set (Poi nt3d | ocati on)
Set the position of this PickPoint. There is a matching get method.

PickRay

PickRay objects represent aray (a point and a direction) for picking. As asubclass of PickShape, PickRay
objects are used with BranchGroup and Locale pick testing as well as picking package classes.

PickRay Constructor Summary
extends: Pi ckShape
PickRay is an encapsulation of aray for passing to the pick methods in BranchGroup and Locale

Pi ckRay/()
Create a PickRay with origin and direction of (0, O, 0).

Pi ckRay(Poi nt 3d origin, Vector3d direction)
Create aray cast from origin in direction di r ect i on.

PickRay Method Summary

voi d set (Point3d origin, Vector3d direction)
Set the ray to point from originin directiondi r ect i on. Thereisamatching get method.

The Java 3D Tutoria 4-41

Module2: Interaction and Animation Chapter 4. Interaction

Pick Segment

PickSegment objects represent a line segment (defined by two points) for picking. As a subclass of
PickShape, PickSegment objects are used with BranchGroup and Locale pick testing as well as picking
package classes.

PickSegment Constructor Summary
extends: Pi ckShape
PickRay is an encapsulation of ray for passing to the pick methods in BranchGroup and Locale

Pi ckSegnent ()
Create a PickSegment.

Pi ckSegnent (Poi nt 3d start, Point3d end)
Create a pick segment from start point to end point.

PickSegment Method Summary

voi d set(Point3d start, Point3d end)
Set the pick segment from start point to end point. There is a matching get method.

SceneGraphPath

The class SceneGraphPath is used in most picking applications. This is because picking usualy involves
finding a scene graph path that the picked object lies in to alow manipulation of the object or a
TransformGroup object in the path.

A SceneGraphPath object represents the scene graph path to the picked object allowing manipulation of the
object or a TransformGroup object in the path to the object. SceneGraphPath is used in the picking
package as well as Java 3D core

SceneGraphPath Overview

A SceneGraphPath object represents the path from a Locale to aterminal node in the scene graph. This path
consists of aLocale, aterminal node, and an array of internal nodes that are in the path from the Locale to the
terminal node. The terminal node may be either a Leaf node or a Group node. A valid SceneGraphPath must
uniquely identify a specific instance of the terminal node. For nodes that are not under a SharedGroup, the
minimal SceneGraphPath consists of the Locale and the terminal node itself. For nodes that are under a
SharedGroup, the minimal SceneGraphPath consists of the Locale, the terminal node, and alist of all Link nodes
in the path from the Locale to the terminal node. A SceneGraphPath may optionally contain other interior nodes
that are in the path. A SceneGraphPath is verified for correctness and unigqueness when it is sent as an argument to
other methods of Java 3D.

In the array of internal nodes, the node at index 0 is the node closest to the Locale. The indices increase along the
path to the terminal node, with the node at index length-1 being the node closest to the terminal node. The array of
nodes does not contain either the Locale (which is not a node) or the terminal node.

The Java 3D Tutoria 4-42

Module2: Interaction and Animation Chapter 4. Interaction

SceneGraphPath Constructor Summary

When a SceneGraphPath is returned from the picking or collision methods of Java 3D, it will also contain the
value of the Local ToVworld transform of the terminal node that was in effect at the time the pick or collision
occurred. Note that ENABLE_PICK_REPORTING and ENABLE_COLLISION_REPORTING are disabled by
default. This means that the picking and collision methods will return the minimal SceneGraphPath by default.

SceneG aphPat h()
Constructs a SceneGraphPath object with default parameters.

SceneG aphPat h(Local e root, Node obj ect)
Constructs a new SceneGraphPath object.

SceneG aphPat h(Local e root, Node[] nodes, Node object)
Constructs a new SceneGraphPath object.

SceneGraphPath Method Summary (partial list)

bool ean equal s(j ava. | ang. Cbj ect 01)
Returnstrue if the Object 01 is of type SceneGraphPath and all of the data members of ol are equal to the
corresponding data members in this SceneGraphPath and if the values of the transforms is equal.

Tr ansf or nBD get Tr ansf or ()
Returns a copy of the transform associated with this SceneGraphPath; returns null if there is no transform.

i nt hashCode()
Returns a hash number based on the data values in this object.

bool ean i sSanePat h(SceneG aphPat h t est Pat h)
Determines whether two SceneGraphPath objects represent the same path in the scene graph; either object might
include a different subset of internal nodes; only the internal link nodes, Locale, and the Node itself are compared.

i nt nodeCount ()
Retrieves the number of nodes in this path.

voi d set (SceneG aphPat h newPat h)
Sets this path's values to that of the specified path.

voi d set Local e(Local e newLocal e)
Sets this path's Locale to the specified Locale.

voi d set Node(int index, Node newNode)
Replaces the node at the specified index with newNode.

voi d set Nodes(Node[] nodes)
Sets this path's node objects to the specified node objects.

voi d set Obj ect (Node obj ect)
Sets this path's terminal node to the specified node object.

The Java 3D Tutoria 4-43

Module2: Interaction and Animation Chapter 4. Interaction

SceneGraphPath Method Summary (partial list - continued)

voi d set Tr ansf or n{ Tr ansf or nBD t r ans)
Sets the transform component of this SceneGraphPath to the value of the passed transform.

java.lang. String toString()
Returns a string representation of this object; the string contains the class names of al Nodesin the
SceneGraphPath, the toString() method of any associated user, and also prints out the transform if it is not null.

BranchGroup and L ocal Picking Methods
Presented in the following reference block are methods of the BranchGroup and Local classes for

intersection testing with PickShape objects. Thisisthe lowest level pick computation provided by the Java
3D API.

BranchGroup and L ocale picking methods for use with PickShape

SceneG aphPat h[] pi ckAl | (Pi ckShape pi ckShape)
Returns an array referencing all the items that are pickable below this BranchGroup that intersect with PickShape.
The resultant array is unordered.

SceneG aphPat h[] pi ckAl | Sort ed(Pi ckShape pi ckShape)

Returns a sorted array of referencesto all the Pickable items that intersect with the pickShape. Element [O]
references the item closest to origin of PickShape, with successive array elements further from the origin. Note: If
pickShape is of type PickBounds, the resultant array is unordered.

SceneG aphPat h pi ckC osest (Pi ckShape pi ckShape)
Returns a SceneGraphPath which references the pickable item which is closest to the origin of pickShape. Note: If
pickShape is of type PickBounds, the return is any pickable node below this BranchGroup.

SceneG aphPat h pi ckAny(Pi ckShape pi ckShape)
Returns a reference to any item that is Pickable below this BranchGroup which intersects with pickShape.

4.6.3 General Picking Package Classes

Includedinthecom sun. j 3d. uti | s. behavi ors. pi cki ng package are genera and specific pick
behavior classes. The general picking classes are useful in creating new picking behaviors. The genera
picking classes include Pi ckMbuseBehavi or, Pi ckObj ect, and Pi ckCal | back. The specific
mouse behavior classes, presented in the next section, are subclasses of the Pi ckMbuseBehavi or
class.

PickM ouseBehavior Class

This is the base class for the specific picking behaviors provided in the package. It is aso useful for
extending to custom picking behavior classes.

The Java 3D Tutoria 4-44

Module2: Interaction and Animation Chapter 4. Interaction

PickM ouseBehavior Method Summary

Package: com sun. j 3d. util s. behavi ors. pi cki ng
Extends. Behavi or

Base class that allows programmers to add picking and mouse manipulation to a scene graph (see
PickDragBehavior for an example of how to extend this base class).

void initialize()
This method should be overridden to provideinitial state and theinitial trigger condition.

voi d processStimulus(java.util.Enuneration criteria)
This method should be overridden to provide the behavior in response to a wakeup condition.

voi d updat eScene(i nt xpos, int ypos)
Subclasses shall implement this update function

PickObject Class

The PickObject class provides methods for determining which object was sdlected by a user pick operation.
A wide variety of methods provide results in various formats for various possible picking applications. It
isuseful in creating custom picking classes.

PickObject Constructor Summary

package: com sun. j 3d. uti | s. behavi or s. pi cki ng
extends: j ava. | ang. Obj ect

Contains methods to aid in picking. A PickObject is created for a given Canvas3D and a BranchGroup.
SceneGraphODbjects under the specified BranchGroup can then be checked to determine if they have been picked.

Pi ckObj ect (Canvas3D ¢, BranchG oup root)
Creates a PickObject.

PickObject Method Summary (partial list)

PickObject has numerous method for computing the intersection of a pickRay with scene graph objects. Some of
the methods differ by only one parameter. For example, the second pickAll method (not listed) exists with the
method signature of: SceneGr aphPat h[] pi ckAl | (i nt xpos, int ypos, int flag),wherefl ag
isoneof: Pi ckObj ect . USE_BOUNDS, or Pi ckCbj ect . USE_GEQVETRY.

This list has been shortened by excluding the methods with the flag parameter. These methods are identical to
methods included in this list with the difference of the flag parameter. These methods are: pi ckAl |
pi ckSort ed, pi ckAny, and pi ckCl osest .

Pi ckShape generat ePi ckRay(i nt xpos, int ypos)

Creates a PickRay that starts at the viewer position and points into the scene in the direction of (Xpos, ypos)
specified in window space.

The Java 3D Tutoria 4-45

Module2: Interaction and Animation Chapter 4. Interaction

PickObject Method Summary (partial list - continued)

SceneG aphPat h[] pi ckAll (int xpos, int ypos)

Returns an array referencing all the items that are pickable below the BranchGroup (specified in the PickObject
constructor) that intersect with aray that starts at the viewer position and points into the scene in the direction of
(xpos, ypos) specified in window space.

SceneG aphPat h[] pi ckAl |l Sorted(int xpos, int ypos)

Returns a sorted array of references to all the Pickable items below the BranchGroup (specified in the PickObject
constructor) that intersect with the ray that starts at the viewer position and points into the scene in the direction of
(xpos, ypos) in the window space.

SceneG aphPat h pi ckAny(i nt xpos, int ypos)

Returns a reference to any item that is Pickable below the specified BranchGroup (specified in the PickObject
constructor) which intersects with the ray that starts at the viewer position and points into the scene in the direction
of (xpos, ypos) in window space.

SceneG aphPat h pi ckd osest (i nt xpos, int ypos)

Returns a reference to the item that is closest to the viewer and is Pickable below the BranchGroup (specified in the
PickObject constructor) which intersects with the ray that starts at the viewer position and points into the scenein
the direction of (xpos, ypos) in the window space.

Node pi ckNode(SceneG aphPat h sgPat h, int node_types)

Returns a reference to a Pickable Node that is of the specified type that is contained in the specified
SceneGraphPath. Where node_types is the logical OR of one or more of: Pi ckObj ect . BRANCH GROUP,
Pi ckObj ect . GROUP, Pi ckOnj ect . LI NK, Pi ckCbj ect . MORPH, Pi ckQhj ect . PRI M TI VE,
PickObject. SHAPE3D, Pi ckObj ect . SW TCH, Pi ckObj ect . TRANSFORM_GROUP.

Node pi ckNode(SceneG aphPat h sgPath, int node_types, int occurrence)

Returns a reference to a Pickable Node that is of the specified type that is contained in the specified
SceneGraphPath. Where node_types is as defined for the above method. The occur r ence parameter indicates
which object to return.

PickingCallback Interface

The PickingCallback Interface provides a framework for extending an existing picking class. In particular,
each of the specific pick classes (in Section 4.6.4) implements this interface alowing the programmer to
provide a method to be called when a pick operation takes place.

I nterface PickingCallback Method Summary
package: com sun. j 3d. uti | s. behavi ors. pi cki ng
voi d transforntChanged(int type, Transfornm&oup tag)
Called by the Pick Behavior with which this callback is registered each time the pick is attempted. Valid values for

t ype are: ROTATE, TRANSLATE, ZOOM or NO_PICK (the user made a selection but nothing was actually
picked).

The Java 3D Tutoria 4-46

Module2: Interaction and Animation Chapter 4. Interaction

I nter sect Class

The Intersect Class provides a number of methods for testing for the intersection of a Pi ckShape (core
class) object and geometry primitives. This classis useful in creating custom picking classes.

Intersect Constructor Summary

package: com sun. j 3d. uti | s. behavi ors. pi cki ng
extends: j ava. | ang. Obj ect

Contains static methods to aid in the intersection test between various PickShape classes and geometry primitives
(such as quad, triangle, line and point).

I ntersect ()
Create an intersect object.

Intersect Method Summary (partial list)

The Intersect class has numerous intersection methods, some of which only differ by one parameter type. For
example, the method: bool ean poi nt AndPoi nt (Pi ckPoi nt poi nt, Point3f pnt) differsfrom the
second listed method here by only the type of the pnt parameter. Most of the methods listed here with a parameter
of type Point3d have a corresponding method with a parameter of type Point3f.

bool ean poi nt AndLi ne(Pi ckPoi nt poi nt, Point3d[] coordinates, int index)
Return true if the PickPoint and Line objects intersect. coordinates/index] and coordinatesindex+1] define the line

bool ean poi nt AndPoi nt (Pi ckPoi nt poi nt, Point3d pnt)
Return true if the PickPoint and Point3d objects intersect.

bool ean rayAndLi ne(Pi ckRay ray, Point3d[] coordinates, int index,
doubl e[] di st)
Return true if the PickRay and Line objects intersect. coordinates[index] and coordinatesindex+1] define the line.

bool ean rayAndPoi nt (Pi ckRay ray, Point3d pnt, double[] dist)
Return true if the PickRay and Point3d objects intersect.

bool ean rayAndQuad(Pi ckRay ray, Point3d[] coordinates, int index,
doubl e[] di st)
Return true if the PickRay and quadrilateral objects intersect.

bool ean rayAndTri angl e(Pi ckRay ray, Point3d[] coordi nates, int index,

doubl e[] di st)
Return true if triangle intersects with ray and the distance, from the origin of ray to the intersection point, is stored
in dist[0]. coordinatesindex], coordinates[index+1], and coordinates[index+2] define the triangle.

bool ean segment AndLi ne(Pi ckSegnment segnment, Poi nt3d[] coordi nates, int index,
doubl e[] di st)

Return true if line intersects with segment; the distance from the start of segment to the intersection point is stored

in dist[0]. coordinateg/index] and coordinatesindex+1] define the line.

The Java 3D Tutoria 4-47

Module2: Interaction and Animation Chapter 4. Interaction

Intersect Method Summary (partial list - continued)

bool ean segnment AndPoi nt (Pi ckSegnent segnent, Poi nt3d pnt, doubl e[] dist)
Return true if the PickSegment and Point3d objects intersect.

bool ean segnent AndQuad(Pi ckSegnent segnent, Poi nt3d[] coordi nates, int index,
doubl e[] di st)

Return true if quad intersects with segment; the distance from the start of segment to the intersection point is

stored in dist[0].

bool ean segnent AndTri angl e(Pi ckSegnent segnent, Poi nt 3d[] coordi nat es,

i nt index, double[] dist)
Return true if triangle intersects with segment; the distance from the start of segment to the intersection point is
stored in dist[0].

4.6.4 Specific Picking Behavior Classes

Included in the com sun. j 3d. util s. behavi ors. pi cki ng package are specific pick behavior
classes: Pi ckRot at eBehavi or, Pi ckTransl at eBehavi or, and Pi ckZoonBehavi or.
These classes allow the user to interact with a picked object with the mouse. The individua behaviors
respond to different mouse buttons (left=rotate, right=trandate, middle=zoom). All three specific mouse
behavior classes are subclasses of the PickMouseBehavior class.

Objects of these classes can be incorporated in Java 3D virtua worlds to provide interaction by following
the recipe provided in Figure 4-13. Since each of these classes implements the PickingCallback Interface,
the operation of the picking can be augmented with a call to a user defined method. Refer to the
PickingCallback Interface documentation in 4.6.2 for more information.

PickRotateBehavior

The PickRotateBehavior allows the user to interactively pick and rotate visua objects. The user uses the
left mouse button for pick selection and rotation. An instance of PickRotateBehavior can be used in
conjunction with other specific picking classes.

PickRotateBehavior Constructor Summary

package: com sun. j 3d. uti | s. behavi ors. pi cki ng
extends: Pi ckMbuseBehavi or
implements: Pi cki ngCal | back

A mouse behavior that allows user to pick and rotate scene graph objects; expandable through a callback.

Pi ckRot at eBehavi or (BranchG oup root, Canvas3D canvas, Bounds bounds)
Creates a pick/rotate behavior that waits for user mouse events for the scene graph.

Pi ckRot at eBehavi or (BranchG oup root, Canvas3D canvas, Bounds bounds,

i nt pi ckivbde)
Creates a pick/rotate behavior that waits for user mouse events for the scene graph. The pickMode parameter is
specified as one of Pi ckChj ect . USE_BOUNDS or Pi ckChj ect . USE_GEQVETRY. Note: If pi ckMode is
set to Pi ckCbj ect . USE_GEQVETRY, al geometry objects in the scene graph intended to be available for
picking must have their ALLOW_| NTERSECT hit set.

The Java 3D Tutoria 4-48

Module2: Interaction and Animation Chapter 4. Interaction

PickRotateBehavior Method Summary

voi d set Pi ckMbde(i nt pi ckiMbde)

Sets the pickM ode component of this PickRotateBehavior to one of Pi ckCbj ect . USE_BOUNDS or

Pi ckQnj ect . USE_GEQVETRY. Note: If pi ckMbde issetto Pi ckObj ect . USE_GEOVETRY, all geometry
objects in the scene graph intended to be available for picking must have their ALLOW | NTERSECT bit set.

voi d setupCal | back(Pi cki ngCal | back cal | back)
Register the class callback to be called each time the picked object moves.

voi d transfornChanged(int type, Transforn8D transform
Callback method from MouseRotate. Thisis used when the Picking callback is enabled.

voi d updat eScene(int xpos, int ypos)
Update the scene to manipulate any nodes.

Pick TrandateBehavior

The PickTrand ateBehavior alows the user to interactively pick and trandate visual objects. The user uses
the right mouse button for pick selection and trandation. An instance of PickTrandateBehavior can be
used in conjunction with other specific picking classes.

PickTrandateBehavior Constructor Summary

package: com sun. j 3d. uti | s. behavi ors. pi cki ng
extends: Pi ckMbuseBehavi or
implements: Pi cki ngCal | back

A mouse behavior that allows user to pick and translate scene graph objects. The behavior is expandable through a
callback.

Pi ckTr ansl at eBehavi or (BranchG oup root, Canvas3D canvas, Bounds bounds)
Creates a pick/translate behavior that waits for user mouse events for the scene graph.

Pi ckTr ansl at eBehavi or (BranchG oup root, Canvas3D canvas, Bounds bounds,

i nt pi ckivbde)
Creates a pick/translate behavior that waits for user mouse events for the scene graph. . The pickMode parameter is
specified as one of Pi ckChj ect . USE_BOUNDS or Pi ckChj ect . USE_GEQOVETRY. Note: If pi ckMode is
set to Pi ckCbj ect . USE_GEQVETRY, al geometry objects in the scene graph intended to be available for
picking must have their ALLOW_| NTERSECT hit set.

The Java 3D Tutoria 4-49

Module2: Interaction and Animation Chapter 4. Interaction

PickTrandateBehavior Method Summary

voi d set Pi ckMbde(i nt pi ckiMbde)
Sets the pickMode component of this PickTransateBehavior to the value of the passed pickM ode.

voi d setupCal | back(Pi cki ngCal | back cal | back)
Register the class callback to be called each time the picked object moves.

voi d transfornChanged(int type, Transforn8D transform
Callback method from MouseTrandate. Thisis used when the Picking callback is enabled.

voi d updat eScene(int xpos, int ypos)
Update the scene to manipulate any nodes.

PickZoomBehavior

The PickZoomBehavior alows the user to interactively pick and zoom visual objects. The user uses the
middle mouse button for pick selection and zooming. An instance of PickZoomBehavior can be used in
conjunction with other specific picking classes.

PickZoomBehavior Constructor Summary

package: com sun. j 3d. uti | s. behavi ors. pi cki ng
extends: Pi ckMbuseBehavi or
implements: Pi cki ngCal | back

A mouse behavior that allows user to pick and zoom scene graph objects. The behavior is expandable through a
callback.

Pi ckZoonBehavi or (BranchG oup root, Canvas3D canvas, Bounds bounds)
Creates a pick/zoom behavior that waits for user mouse events for the scene graph.

Pi ckZoonBehavi or (BranchG oup root, Canvas3D canvas, Bounds bounds,

i nt pi ckivbde)
Creates a pick/zoom behavior that waits for user mouse events for the scene graph. The pi ckMbde parameter is
specified as one of Pi ckChj ect . USE_BOUNDS or Pi ckChj ect . USE_GEQOVETRY. Note: If pi ckMode is
set to Pi ckCbj ect . USE_GEQOVETRY, al geometry objects in the scene graph intended to be available for
picking must have their ALLOW_| NTERSECT hit set.

The Java 3D Tutoria 4-50

Module2: Interaction and Animation Chapter 4. Interaction

PickZoomBehavior Method Summary

voi d set Pi ckMbde(i nt pi ckMode)
Sets the pickM ode component of this PickZoomBehavior to the value of the passed pickMode.

voi d setupCal | back(Pi cki ngCal | back cal | back)
Register the class callback to be called each time the picked object moves.

voi d transfornChanged(int type, TransfornmBD transformn
Callback method from MouseZoom. Thisis used when the Picking callback is enabled.

voi d updat eScene(int xpos, int ypos)
Update the scene to manipulate any nodes.

4.7 Chapter Summary

This chapter begins by explaining the significance of the Behavior class in providing interaction and
animation in the Java 3D virtua universe. This chapter provides a comprehensive view of Java 3D core
and utility classes used in providing interaction for viewer navigation of the virtual world, picking and
interacting with individual visual objects, and how to create new interactive behavior classes.

Section 4.2 shows how custom behavior classes are written and then shows how to incorporate behavior
objects to provide interaction in a Java 3D virtual world. Section 4.3 discusses the various classes used in
the specification of behavior trigger conditions. Section 4.4 discusses the KeyNavigatorBehavior class
which is used for view navigation through key strokes. Section 4.5 presents mouse interaction classes.
Section 4.6 presents the topic of picking in general and discusses utility classes used to provide picking
interaction.

4.8 Self Test

1. Write a custom behavior application that moves visual objects to the left and right when a the left and
right arrow keys are pressed, respectively. Then use the class in an application smilar to
SimpleBehaviorApp.java. Of course, you can use SimpleBehaviorApp.java as a starting point for both
the custom behavior class and the application. What happens as the ColorCube object moves out of
the view? How do you fix the problem?

2. In SimpleBehaviorApp, the rotation is computed using an angle variable of type double. The angle
variable is used to set the rotation of a Transform3D object which sets the transform of the
TransformGroup. An aternative would eliminate the angle variable using only a Transform3D object
to control the angle increment. There are two variations on this approach: one would read the current
transform of the TransformGroup and then multiply, another would store the transform in a loca
Transform3D object. In ether case, the new rotation is found by multiplying the previous
Transform3D with the Transform3D that holds the rotation increment. What problem may occur with
this alternative? What improvement can be made to this approach?

3. Change the trigger condition in the SimpleBehavior classto new El apsedFr ane(0) . Compile and
run the modified program. Note the result. Change the code to remove the memory burn problem from
the class. Then recompile and run the fixed program.

4. Change the scheduling bounds for the KeyNavigatorBehavior object to something smaller (eg., a
bounding sphere with a radius of 10), then run the application again. What happens when you move

The Java 3D Tutoria 4-51

Module2: Interaction and Animation Chapter 4. Interaction

beyond the new bounds? Convert the scheduling bounds for KeyNavigatorApp to a universa
application so that you can't get stuck at the edge of the world. See Chapter 3 for more information on
BoundingL eaf nodes.

5. Use the KeyNavigatorBehavior with a TransformGroup above a visua object in the content branch
graph. What is the effect?

6. Extend the picking behavior in the MousePickApp by providing a calback. You can start by smply
writing a text string (e.g., "picking") to the console. You can also get more ambitious and read the
user data from the target transform group or report the transation and/or rotations of the target
transform group. With the proper capabilities, you can also access the children of the TransformGroup
object.

The Java 3D Tutoria 4-52

	Table of Contents
	List of Figures
	List of Code Fragments
	List of Reference Blocks
	Preface to Chapter 4
	About the Cover Image
	Chapter 4
	4.1 Behavior: the Base for Interaction and Animation
	4.1.1 Applications of Behavior
	Animation Versus Interaction

	4.1.2 Overview of Behavior Classes

	4.2 Behavior Basics
	4.2.1 Writing a Behavior Class
	Mechanics of Behaviors
	Example Custom Behavior Class: SimpleBehavior
	Programming Pitfalls of Writing Behavior Classes
	Using a Behavior Class
	Programming Pitfalls of Using Behavior Objects
	Where is a Scene Graph Should a Behavior Object Go?
	Behavior Class Design Recommendations

	4.2.3 Behavior Class API
	View Platform API

	4.3 Wakeup Conditions: How Behaviors are Triggered
	4.3.1 WakeupCondition
	4.3.2 WakeupCriterion
	4.3.3 Specific WakeupCriterion Classes
	General WakeupCriterion Comments
	WakeupOnActivation
	WakeupOnAWTEvent
	WakeupOnBehaviorPost
	WakeupOnCollisionEntry
	WakeupOnCollisionExit
	WakeupOnCollisionMovement
	WakeupOnDeactivation
	WakeupOnElapsedFrames
	WakeupOnElapsedTime
	WakeupOnSensorEntry
	WakeupOnSensorExit
	WakeupOnTransformChange
	WakeupOnViewPlatformEntry
	WakeupOnViewPlatformExit

	4.3.4 WakeupCondition Composition
	WakeupAnd
	WakeupOr
	WakeupAndOfOrs
	WakeupOrOfAnds

	4.4 Behavior Utility Classes for Keyboard Navigation
	How to Navigate in a SImpleUniverse
	4.4.1 Simple KeyNavigatorBehavior Example Program
	How to Make Universal Application of a Behavior

	4.4.2 KeyNavigatorBehavior and KeyNavigator Classes

	4.5 Mouse Classes for Mouse Interaction
	4.5.1 Using the Mouse Behavior Classes
	4.5.2 Mouse Behavior Foundation
	Mouse Behavior Abstract Class
	Mouse Callback Interface

	4.5.3 Specific Mouse Behavior Classes
	Mouse Rotate
	Mouse Translate
	Mouse Zoom

	4.5.4 Mouse Navigation

	4.6 Picking
	4.6.1 Using Picking Utility Classes
	Programming Pitfalls for Using Picking Objects
	MousePickApp Example Program

	4.6.2 Java 3D API Core Picking Classes
	PickShape classes
	PickBounds
	PickPoint
	PickRay
	PickSegment
	SceneGraphPath
	BranchGroup and Locale Picking Methods

	4.6.3 General Picking Package Classes
	PickMouseBehavior Class
	PickObject Class
	PickCallback Interface
	Intersect Class

	4.6.4 Specific Picking Behavior Classes
	PickRotateBehavior
	PickTranslateBehavior
	PickZoomBehavior

	4.7 Chapter Summary
	4.8 Self Test

	Preface to the Tutorial
	Chapter 0: Overview and Appendices
	Chapter 1: Getting Started
	Chapter 2: Creating Geometry
	Chapter 3: Easier Content Creation
	Chapter 5: Animation
	Chapter 6: Lights
	Chapter 7: Textures
	Appendix A: Summary of Example Progams
	Appendix B: Reference Material
	Appendix C: Solutions to Self Test Questions
	Glossary

