

RESPONSIVE

DESIGN
 WORKFLOW

STEPHEN HAY

RESPONSIVE DESIGN WORKFLOW
Stephen Hay

New Riders
www.newriders.com
To report errors, please send a note to errata@peachpit.com
New Riders is an imprint of Peachpit, a division of Pearson Education.

Copyright © 2013 by Stephen Hay

Project Editor: Michael J. Nolan
Production Editor: Rebecca Winter
Development Editor: Margaret S. Anderson/Stellarvisions
Copyeditor: Gretchen Dykstra
Proofreader: Patricia Pane
Indexer: Jack Lewis
Cover & Interior Designer: Charlene Charles-Will
Compositor: Danielle Foster

NOTICE OF RIGHTS
All rights reserved. No part of this book may be reproduced or transmitted in any form by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. For information on getting permission for reprints and
excerpts, contact permissions@peachpit.com.

NOTICE OF LIABILITY
The information in this book is distributed on an “As Is” basis without warranty. While every
precaution has been taken in the preparation of the book, neither the author nor Peachpit
shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the instructions contained in this book or by
the computer software and hardware products described in it.

TRADEMARKS
Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Peachpit
was aware of a trademark claim, the designations appear as requested by the owner of the
trademark. All other product names and services identified throughout this book are used
in editorial fashion only and for the benefit of such companies with no intention of infringe-
ment of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN 13: 978-0-321-88786-3
ISBN 10: 0-321-88786-7

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.newriders.com

foR maRjolein, colin, chRistopheR, saRah, anD lex.

This page intentionally left blank

ACKNOWLEDGEMENTS v

Acknowledgements
Writing a book is hard (let’s go shopping). And while this isn’t a big book, I’m

amazed at how much work—by so many people—has gone into it.

I’d like to thank Michael Nolan, who saw writing potential in me nine years

ago, and again last year when I finally had the mental space to jump into the

deep end and try. A friendly man with impeccable taste in authors.

A huge thanks to Margaret Anderson, Secret Weapon of Authors™, who

was this book’s emergency power supply. Margaret is half psychologist, half

development editor, half mental coach, and half project manager. But wait,

you say. That’s four ha—yup. Indeed. Margaret made my first trek into book-

writing territory as painless as it could be. It only hurts when I laugh.

Thanks also to copy editor Gretchen Dykstra, who spiced up all my boring

black text by adding red. Lots and lots of red. Gretchen taught me lots about

the English language, especially the fact that I don’t know how to write it. I

think it should become public knowledge that authors are only as good as

their copy editors.

A huge thank you to Charlene Will for this book’s design. Also Rebecca

Winter, Patricia Pane, Danielle Foster, Jack Lewis, and the rest of the

Peachpit/New Riders team. An incredible amount of work done by a bunch of

friendly and talented people.

But that’s not all. Oh, no, that’s not all. Many thanks to . . .

Jake Archibald, eerily talented developer, for agreeing to tech edit this book

for me. I chose him because of his superior knowledge, friendly demeanor,

and politically incorrect humor. He repaid me by telling me that my JavaScript

should be more JavaScripty. What does that even mean? He’s an oracle.

Ana Nelson, author of Dexy, which now plays an important role in my work.

Thanks to Ana for spending suspicious amounts of time with me on Skype

answering all of my questions, and even adding stuff to Dexy so it could

accommodate my bizarre use cases. She even taught me a little Python along

the way. I’m the first official Ana Nelson fanboy; group therapy awaits.

Ethan Marcotte, distinguished gentleman of web design, for his wonderful

foreword. He has inspired me for years.

ACKNOWLEDGEMENTSvi

Tim Kadlec, who had just finished his book and was my big example and

took all my questions gracefully. Bruce Lawson, for recommending the

Secret Weapon™. Aarron Walter, Mike Rohde, and Travis Holmes for their

image contributions.

And all those who have inspired my work—whether they know it or not—

in person, online, during conversations, or through their great work. These

include Stephanie and Bryan Rieger, Jeremy Keith, Scott Jehl, Christian

Heilmann, Remy Sharp, Brad Frost, Lyza Danger Gardner, Karen McGrane,

Jason Grigsby, Kristina Halvorson, Peter-Paul Koch, Krijn Hoetmer, Jennifer

Robbins, Robert Jan Verkade, Marrije Schaake, Bert Bos, Luke Wroblewski,

Vasilis van Gemert, and many, many others. I’m privileged to call some of

these people my friends.

My mother and my sister, of course, who are always encouraging, and to my

father, who would have loved to see this book come to be.

My beautiful, wonderful kids, for having lost some free time with me and for

having put up with some serious moodiness on my part.

And finally, Marjolein, my partner in crime. Her support, advice, love, and

encouragement are ultimately the reason these words are in print.

CONTENTS vii

Contents
Foreword xv
by Ethan Marcotte

1 In Splendid Variety These Changes Come 1

The birth of static hi-fi mockups . 2

The static mockup comfort zone 4

The specialist invasion . 5

We’re all interaction designers . 8

Jump from the waterfall . 8

The straw that broke… . 9

The elephant in the room .10

This is not gospel. .11

This is a challenge .12

2 From the Content Out 13

Microstructure vs. modular structure 14

The lazy person’s content inventory 16

Our universal example: This book’s website 16

Progressive enhancement as design principle:

The zero interface .17

Creating the example content inventory 19

Try it out . .22

CONTENTSviii

3 Content Reference Wireframes 25

Stop making this stuff so complicated. 27

Baby steps: Creating low-fi web-based wireframes 29

Setting up your base markup . .29

Setting up your base styles . .32

Adjusting the wireframe to be “mobile first” 35

Adding navigation .37

Creating variants for larger screen sizes 39

Let’s bust some myths . .46

Interaction designers should make wireframes 46

Wireframes should be detailed47

Do content reference wireframes limit design choices? 47

Isn’t it too early to think about layout? 48

What should I wireframe? .48

When do I involve the client
(a.k.a. “Where’s my fancy deliverable?”)49

Try it out .49

CONTENTS ix

4 Designing in Text 51

It’s all content .52

Starting design with plain text .54

Marking up plain text .55

The book page text in Markdown56

What changes mean at this point. 59

It’s about thinking .61

Converting plain text to HTML .61

Using the command line .62

Converting to HTML . .66

5 Linear Design 69

Developing a design language . .70

Using the Design Funnel .71

Serve your design to actual devices74

Enhancing your structured content76

Introducing templates .78

Your project folder so far . .81

Think and sketch . .81

Playing with type and color. .83

Don’t do too much just yet .87

CONTENTSx

6 Breakpoint Graphs 89

Documentation for breakpoints. 92

Anatomy of a breakpoint . .92

Visualizing breakpoints .95

Breakpoint graph components 95

Creating a simple breakpoint graph97

Major and minor breakpoints . 100

Adding more complexity. . 101

A more complex example: A podcast player 102

What we’ve covered . . 105

7 Designing for Breakpoints 107

First, a bit about sketching. . 108

How to sketch . 109

Sketching on devices . 113

Sketching as a habit . 115

Only sweat the major breakpoints (for now) 116

Think about your content while sketching 118

Text . 119

Navigation . 119

Tables . 120

What to do if you get stuck . 123

CONTENTS xi

8 Creating a Web-Based Design Mockup 125

Hurdles to acceptance . 127

Clients (generally) don’t care . 127

Other people . 128

You. . 130

Presenting your mockups. . 132

Let’s get to work . 132

Evolving your responsive wireframe 133

From static page to static site generator 139

Templating . 139

Choosing an SSG . . 140

Introducing Dexy. . 141

Installing Dexy . . 142

Get your assets in here! . 146

Including style sheets. . 146

Adding content. . 148

Sectioning content . . 148

Dexy’s command center: The dexy.yaml file 151

Finishing your design mockup with CSS 153

Multiple pages . 154

What we’ve covered . . 156

CONTENTSxii

9 Presentation, Round One: Screenshots 157

Why not present in the browser right away? 159

The presentation/realism balance 159

Screenshots: Going from web-based (back) to images 161

How to make screenshots . . 163

Manual screenshots . 163

Automated screenshots . 164

Presenting screenshots . 169

10 Presentation, Round Two: In the Browser 171

You’ll find many bugs in your design 172

Collaboration and communication 173

How to present your interactive mockups 175

Use devices to impress . 175

Explaining your design . 176

Testing and client review . 177

Client review . 178

Take good notes . 179

Using your notes and making revisions 184

CONTENTS xiii

11 Creating Design Guidelines 187

Design manuals and the web . 189

The content and structure of design guidelines. 191

Websites are different . 192

My wish list for design guideline software 193

Creating your design documentation 195

Writing the documentation . 196

Inserting example material . . 198

Creating screenshots . . 199

Making the Dexy configuration file 200

Testing your Dexy project. . 201

Taking screenshots of specific elements 202

Including rendered HTML . 204

Including syntax-highlighted code 206

Making the documentation your own. 210

Now it’s time to go . . 211

Index 213

This page intentionally left blank

FOREWORD xv

Foreword
by Ethan Marcotte
I have to be blunt: this is a wonderful book you’re about to read.

There’s a quote by Ludwig Wittgenstein that I’ve always loved: “The limits of

my language are the limits of my world.” Something’s always seemed magical

about that image: the broader your vocabulary, the broader your horizons.

I think of it often, especially as I remember my first studio job. Because look-

ing back, I realize my introduction to web design was, well, pretty narrow,

framed as it was by four little words: discover, design, develop, and deploy.

Those were, I was taught, the discrete, task-based phases into which each

design project was segmented. Research preceded design, and then coding

followed, leading to site launch. Simple. Straightforward. Linear.

That model of working felt a bit like a relay race: teams would have to finish

their work before the next could begin, handing work down the line before

a site could launch. Of course, the truth was often quite a bit messier. And as

we began designing beyond the desktop, bringing our work to more and more

screens, that old, linear workflow began to show its limitations. Teams need to

collaborate more; research, design, and development are more closely related

than we once thought, and that old waterfall method kept them siloed.

Thankfully, in these pages, Stephen shares his years of thinking about a

more web-native, responsive design process. And as he leads us from design

exercises, to a new mode of wireframing, to introducing clients to responsive

design, one thing becomes clear: this is a better way to work.

If the limits of our world are set by our language, then Stephen’s book is a

veritable dictionary: one full of concepts and techniques to reinvent the way

you think about not only design, but the web in general.

This book is going to make your world so much wider. Enjoy.

This page intentionally left blank

RESPONSIVE DESIGN WORKFLOW51

“Plain text is the underlying
content stream to which

formatting can be applied. […]
Plain text is public, standardized,

and universally readable.”
—THE UNICODE STANDARD, VERSION 6.1

4

RESPONSIVE DESIGN WORKFLOW52

The world’s first web page was practically mobile ready. And that was in a

time when there were no tablets or smartphones. There’s one simple reason

for this: the web page consisted of plain text. Actually, it consisted of struc-
tured text with hyperlinks. This was how the web started, and the premise of

structured content is still the basic foundation of the web (Figure 4.1).

We’ve added to the basic building blocks of the web, which were essentially

(structured) plain text, hyperlinks, and images. We have technologies like

JavaScript and SVG that let us draw on the screen, or even create entire user

interfaces. Many developers advocate creating a distinction between web

apps and web documents, referring to information-based websites, such as

the W3C’s first web page—or your blog—as web documents.

It’s all content
We need not concern ourselves with the heated discussions about apps ver-

sus documents. For our purposes, if it’s on the web, it’s probably both. Most

websites composed of documents are run by an application such as a content

management system that requires a user interface. This tends to be the case

even if the site’s purpose is informational.

Figure 4.1
The world’s first web-
site was essentially
mobile ready.

DESIGNING IN TEXT 53

By the same token, I’ve never seen a web app without content. No app simply

contains buttons with nothing on them, text fields without labels, and abso-

lutely no text on the page.

One of the biggest problems in web accessibility is that many people start with

the advanced user interface, take that as a given, and try to “add accessibility.”

Many websites are designed from the UI in rather than from the content out.

Take a geographical mapping application such as Open Street Maps or Google

Maps as an example. It’s easy for developers to plot out company locations

on a map. When embedding these types of apps within a web page, there

may be a focus on making that interface accessible—ensuring that the user

can navigate with nothing more than a keyboard, for example. This is great,

but there’s a problem: technically complex or advanced user interfaces can’t

be viewed or used on every device. There’s only one type of content that

can be viewed on virtually any web-enabled device, and that is plain text, or

rather, plain text that’s been structured with HTML. Like it or not, HTML is

the way we structure plain text for the web, because HTML is the single most

portable and universally readable format at the time of this writing. Anything

that can show websites can read and display HTML.

This means that there’s an alternative approach to accessibility for complex

interfaces, and for making any content universally available: start with the

text-based foundation of the website or application you’re designing, and

then add the complex interface as a layer on top of this text base.

This might sound weird at first, but when you think about it, a mapping

application does contain actual data and textual content. It’s simply obscured

from the user. We have to deal with a layer of abstraction to get to that infor-

mation. Responsive design starts at the base: the structured content level.

This allows sites and apps to respond to the user’s environment, rather than

expecting the user to respond to the interface (perhaps by grabbing a differ-

ent device so she can actually use what we’ve built).

The way to do this is to start with the data, that is, the plain old textual con-

tent that’s always available somewhere. Don’t bury this under an avalanche of

UI, but expose it from the very beginning. Allow that content to be the base

on which you build.

So what about those company location maps? Well, the base data is probably

a list of company location addresses, and perhaps other data such as phone

Web accessibility

means that all

people can access

web content and

services regardless

of disability. It can

also benefit those

with technological

limitations, such

as an old browser

or slow internet

connection.

RESPONSIVE DESIGN WORKFLOW54

numbers and URLs. My opinion? Don’t hide this data in a map. If you need or

want a map, that’s fine, but leave the textual data open for the user as well,

instead of taking perfectly accessible data and hiding it from some users.

If you think this sounds a lot like progressive enhancement, you’re absolutely

right. That’s what it is. And of course there are exceptions; there always are.

But generally, many web apps are web forms at their core. Many websites are

simply structured text at their core. By starting the design at the core, we can

build websites that are more accessible and more usable by more and larger

groups of people.

Starting design with plain text
Designer Bryan Rieger shares my love of plain text. During some correspon-

dence with me about the subject, he shared these thoughts:

 “One technique I’ve used for years is to
 ‘design in text’… not necessarily describing
everything in textual form […] essentially what
is the message that needs to be communicated
if I was only able to provide the user with
unstyled HTML?” —BRYAN RIEGER

Rieger’s statement embodies most of what this book is all about: creating

from the most basic, important content and working from that point forward.

The technique of designing in text—that is, unstyled HTML—has some abso-

lute benefits:

 � As in content inventory and content reference wireframes, the focus is on

content. In the case of designing in text, it’s all about the structure of the

textual content. Irrelevant content becomes easy to spot, as it’s not hid-

den by the design.

DESIGNING IN TEXT 55

 � Designing in text utilizes one of the most important building blocks of

the web: HTML.

 � The linear form of structured text prepares us for the starting point

for responsive design: the smallest screens with the least capabilities.

(Remember the web’s first page!)

 � Clients familiar with word processors are probably familiar with the idea

of linear, structured content (although some require an explanation of the

difference between visual and structural formatting). It’s relatively easy to

convert word processor documents into structured plain text.

When you create a page with unstyled HTML, you have created a web page

that’s mobile ready. From a design standpoint, it’s also mobile first. With the

default width of 100%, you might say it’s on a single-column, flexible grid.

This is a perfect starting point for responsive design.

Where content reference wireframes get us thinking about content at a

block level, designing in text shifts the focus to the smaller bits of content.

Let’s take a look at how these ideas apply to the book website.

Marking up plain text
As Rieger pointed out, it’s not enough to simply use plain text. We need to

structure our textual content with HTML. There are several ways to do this,

from writing the HTML by hand in a text editor to using a WYSIWYG edi-

tor. However, my preference is plain text markup, for which I use Markdown,

although many other plain text markup languages exist.1

Plain text markup languages like Markdown let you write text in a very

human-readable way (similar to how you would write in a text-based email

program) and offer you tools to convert this human-readable format to HTML

quickly and easily. Simple conventions denote structure. For example, a hash

symbol (#) in Markdown denotes a level 1 heading. A word enclosed in aster-

isks (*hello*) denotes emphasis, in the same way you might use italics in a

word processor.

1 To learn more about Markdown, check out:
http://daringfireball.net/projects/markdown/
http://en.wikipedia.org/wiki/Markdown
http://en.wikipedia.org/wiki/Lightweight_markup_language
(contains information about alternatives).

When I say linear

here, I’m refer-

ring to content in

a specific order,

stacked from top

to bottom, gener-

ally with the most

important piece at

the top.

http://daringfireball.net/projects/markdown/
http://en.wikipedia.org/wiki/Markdown
http://en.wikipedia.org/wiki/Lightweight_markup_language

RESPONSIVE DESIGN WORKFLOW56

The best thing about using plain text markup is this: if your client or another

party has created the content you’ll use in your design, using a plain text

markup syntax means all you have to do is copy the textual content, paste

it into a text editor, and make use of the simple markup conventions. This is

much simpler than, say, turning the text into HTML by hand.

The book page text in Markdown
The following is some text we’ll use for the book site design. This is the

minimum amount of content I’d like to use to communicate with visitors to

the page. Save the following text (or your own example text) to your project

folder and call it whatever you please. Since it represents the content of a

home page, I’m calling it index.markdown.

THE TOOL RULE
In this book, there’s a lot of talk about process, and there’s a lot of talk about tools.
Let’s agree on the Tool Rule: it’s not about the tools. The process is most important.
 I need to use tools to demonstrate the workflow laid out in this book, and the
best way to do that is to demonstrate using the tools I use in real projects when
incorporating this workflow. This doesn’t mean that the tools are right for you.
Admittedly, some are quite geeky, and where I use a command line program,
you might prefer a graphical equivalent. That’s okay. Just remember that for all
the talk of tools in this book, the specific tools used here are not essential for
putting the responsive design workflow into practice. You’ll work most effec-
tively when using tools you’re familiar and comfortable with.
 That said, if you don’t already have appropriate tools for any of the steps
in this workflow, why not try out the ones mentioned in the book? If you’re a
designer, don’t be afraid of text-based tools or the command line. You might
be pleasantly surprised at how quick, effective, and fun they can be!
 So if you prefer Textile or reStructuredText to Markdown, it’s fine to stick
with them. If you prefer you own home-brewed Markdown converter to Pandoc,
more power to you. (You’re missing out, though!)
 You get the idea. Whenever I use a specific tool in this book, remember the
Tool Rule and use a tool that you’re comfortable with, as long as it helps you get
the job done. Tools are the means, not the end.

DESIGNING IN TEXT 57

Responsive Design Workflow

by Stephen Hay

In our industry, everything changes quickly, usually for

the better. We have more and better tools for creating

websites and applications that work across multiple

platforms. Oddly enough, design workflow hasn't changed

much, and what has changed is often for worse. Through the

years, increasing focus on bloated client deliverables

has hurt both content and design, often reducing these

disciplines to fill-in-the-blank and color-by-numbers

exercises, respectively. Old-school workflow is simply

not effective on our multiplatform web.

Responsive Design Workflow explores:

- A content-based approach to design workflow that's

grounded in our multiplatform reality, not fixed-width

Photoshop comps and overproduced wireframes.

– How to avoid being surprised by the realities of

multiplatform websites when practicing responsive web

design.

– How to better manage client expectations and development

requirements.

– A practical approach for designing in the browser.

– A method of design documentation that will prove more

useful than static Photoshop comps.

Purchase the book

Responsive Design Workflow is available in paperback or as

an e-book. The book is available now and can be ordered

through one of the booksellers below.

RESPONSIVE DESIGN WORKFLOW58

– [Order from Amazon.com]

– [Order from Peachpit Press]

– [Order from Barnes & Noble]

Resources

[Lists of resources per chapter?]

Errata

[Lists of errata per chapter?]

Now this is interesting. In previous chapters, we discussed how problems can

arise from insufficient thinking about how content will actually work—think

back to the example where I “forgot” that we might need some sort of naviga-

tion. This may seem an unlikely example, but we’ve all experienced situations

where we realize that things have been omitted or not thought through.

Working in small steps from the content out can expose issues and avoid these

problems. This Markdown document exposes a flaw in my thinking about

resources and errata that becomes clear when we start designing the page in

text. If I have both resources and errata for some of the same chapters, I’ll get

something like this:

Resources

* [Chapter 1](http://www.example.com/resources/chapter1)

* [Chapter 2](http://www.example.com/resources/chapter2)

* [Chapter 3](http://www.example.com/resources/chapter3)

Errata

* [Chapter 1](http://www.example.com/errata/chapter1)

* [Chapter 2](http://www.example.com/errata/chapter2)

* [Chapter 3](http://www.example.com/errata/chapter3)

DESIGNING IN TEXT 59

Although this won’t get us arrested, it’s redundant. It makes more sense to have

a page for each chapter, and having anything relevant to a given chapter on that

particular chapter’s page. This means that I’m going to change my mind at this

point in the process (clients tend to do that, as you probably know).

Keep in mind that any mind-changing going on at this point is not only not a
problem, it’s also a good thing. Better to make content-related and structural

changes now.

Instead of Resources and Errata, I want a list of chapters, with each item

being a link to that particular chapter’s page, which can contain sections for

Resources and Errata. Come to think of it, we’ll need to put up code samples

as well, so the chapter pages are a great place to put those.

What changes mean at this point
Changes at this point in the process entail relatively non-labor-intensive edits

to one or more of three things: the content inventory, the content reference

wireframes, and the structured text design (that is, your Markdown document).

Of course, since our example is currently one page, changing these is simple.

Remember that most websites, no matter how big, are a combination of user

interfaces for interaction and containers for content that’s poured in from

a database. The focus of the first three steps in this workflow is these larger

entities: types of pages, types of user interfaces, and types of content. While

you’re free to use these steps to design individual pages, you probably won’t

want to do that for the individual articles in a site like nytimes.com.

Think in terms of types. Think in terms of components. There are never many

page types, so don’t think too much about pages. One of my most challenging

conversations with a client involved me explaining that I didn’t have to rede-

sign their site’s 10,000 pages. Rather, we had to spend a lot of time analyzing

their content, and then I would design about 10 or 12 pages (plus a battery of

small components). I would be designing a system. Not individual pages.

The change I’ve made to the book page means there’s another page type,

since the content of that page type dictates that it should be different than the
home page. That last point is important. There’s been a lot written about

designing the user interface first. I agree in most cases, but not all. The user

interface serves a purpose and contains content relevant to that purpose.

TIP
It’s easy to forget

that clients don’t

always think the way

we do. We’re influ-

enced by our experi-

ence with technology

and the heavy use of

abstraction in mod-

ern web work. Be

patient with clients

and explain things in

plain language, like a

chef giving a tour of

his kitchen to a guest.

RESPONSIVE DESIGN WORKFLOW60

Both purpose and content are the foundation of the interface. And that

thinking is also part of the whole design process.

Before we make the changes to our example, let’s think about what these

changes mean for us while utilizing the responsive workflow:

1. We need to create a content inventory for the second page type and

change the existing one accordingly. This would have to be done within

any workflow that involves content inventories, not just the workflow

described in this book.

2. We need to create a new wireframe and modify the existing one. In plain

English: we need to remove one box from our existing wireframe and cre-

ate another HTML page with a few boxes on it. Oh, the pain.

3. We need to change the last section of the Markdown document and cre-

ate an additional one. Since we don’t actually have resources or errata yet,

we’ll have to define the “shape” of that content by coming up with a real-

world example we can test and discuss with the client.

These steps are not difficult. If you’re a graphic or visual designer, you may

not find it exciting. In fact, someone else can do these steps. But that person is

absolutely part of design, and as I mentioned previously, all parties should be

involved. Yes, the client, too—especially the client. You’ll reap the benefits later.

Now, contrast this with the waterfall process. In the traditional workflow,

there is no designing in text step. The wireframes are detailed and intricate.

The content inventory may or may not exist. So the problems with changes

start with wireframes. Sure, we need to change the text in the Markdown

document, much as we’d change text in a complex wireframe. But the main

difference is that when designing in text, the changes we make are text-based.
Detailed wireframes contain text, but this text is still presented in a highly

visual form in relation to other elements on the page. There may be no color,

but there is typography. There is layout, to a certain extent. By contrast, plain

text markup is all the same font and denotes only textual structure. Changes

in a Markdown document don’t require typographical changes or changes in

layout. New pages don’t require a new layout. We’re not at that point in our

process yet, so changes are much easier to make.

Content reference wireframes are also very easy to change. After all, they’re

just boxes, aren’t they? They become more important down the line, but for

now, we’re compartmentalizing changes. Content changes should be content

changes, not content-typography-layout changes.

DESIGNING IN TEXT 61

This approach allows us to “help” the content. In return, content will help us

down the line. Because we’ve given it the attention it deserves, it will help us

with layout, with determining breakpoints, and with many other aspects of

the design. There are always cases where huge changes to a project will come

during the final stages of design, and this process is designed to minimize

the chance of those changes occurring—and minimizing the impact of those

changes if they do occur.

It’s about thinking
Again, the book page is a very simple example, but this could just as easily

have been a sign-up page for a product or service (or any other page or com-

ponent), where designing in text might help you make better decisions. As

with content inventory and content reference wireframes, designing in text

gives you an opportunity to change things before doing so endangers the

schedule or results in high costs.

We’re designing in text here simply by putting text down in a Markdown

document. That fact should make it clear that the process of designing in

text is not about Markdown; it’s about thinking. It’s (as in the first two steps)

about content and its structure.

Personally, this is one of my favorite steps in the workflow. The beauty is not

only in its simplicity, but also in the fact that once you convert this document

into HTML, you have a mobile-ready mockup of a web page in structured

text that you can load into virtually any browser that parses HTML. This is a

huge advantage.

Converting plain text to HTML
Practically every plain text markup language has a way to convert struc-

tured text into HTML. In fact, Markdown might be one of the most complex,

because there are so many different versions of Markdown itself. (These

versions are often called flavors. Don’t ask me why—hungry techies, perhaps.)

The original Markdown lacks an equivalent for every single element available

in HTML. This is actually a strong point: it contains equivalents for the most

commonly used text elements, and lets you use plain HTML when needed. In

that sense, Markdown is not a language of its own; it’s a front end for HTML.

TIP
Remember the Tool

Rule. If Markdown

isn’t your thing, or

you’re just interest-

ed in exploring some

other options, see

http://en.wikipedia.

org/wiki/Lightweight_

markup_language

for an overview

of similar markup

languages.

http://en.wikipedia.org/wiki/Lightweight_markup_language
http://en.wikipedia.org/wiki/Lightweight_markup_language
http://en.wikipedia.org/wiki/Lightweight_markup_language

RESPONSIVE DESIGN WORKFLOW62

This means that if you want tables, you can enter them in HTML and that’s a

totally legal Markdown document.

But this makes Markdown just that much more difficult for nontechnical

people (perhaps even your clients) who’ll be preparing the documents for this

step in the workflow. As I was developing this particular workflow, I toyed

with the idea of using a more “complete” text markup language, but I was

already so familiar with Markdown from use in email and other applications

that I wasn’t too keen on switching. Luckily for me, as I mentioned, there are

several different implementations of Markdown.2

I chose an implementation called Pandoc.3 Pandoc supports the original

Markdown and offers extremely useful optional extensions, such as defini-

tion lists, numbered example lists, tables, and more. Pandoc can convert to

and from a bunch of file formats, which is wonderful and has so many uses

beyond web design workflow.

This will be the first of several instances in this workflow when you’ll be

typing things into the command line. In case you’re not familiar with the

command line, you’ll most likely be using the Terminal application on OS X or

Cygwin on Windows. If you use Linux, there’s a good chance you’ve already

used your terminal application at some point.

Using the command line
The command line interface (CLI) provides a simple means of interacting with

your computer. Its design is actually quite elegant: on the screen there’s a

prompt, at which you can tell the computer what you want it to do, and it will

do what you ask (Figure 4.2). If it doesn’t understand your command, it will

tell you so.

People like to bring up the potential drawbacks of the CLI: yes, there are

commands that will erase your entire hard disk or a portion thereof. Just

don’t type those commands. In the graphical interface of your computer you

wouldn’t willingly select all your folders, move them to the trash, and then

empty the trash.

2 http://en.wikipedia.org/wiki/List_of_Markdown_implementations

3 http://johnmacfarlane.net/pandoc/ If you’re interested in Pandoc, you can try it before install-
ing it at http://johnmacfarlane.net/pandoc/try.

Some of the Mark-

down implemen-

tations are simply

conversion tools,

allowing one to

convert Mark-

down into HTML

or vice versa.

Others are both

conversion tools

and extensions

of Markdown

itself, adding the

ability to denote

an expanded set

of elements in

plain text, such as

tables and more.

http://en.wikipedia.org/wiki/List_of_Markdown_implementations
http://johnmacfarlane.net/pandoc/
http://johnmacfarlane.net/pandoc/try

DESIGNING IN TEXT 63

The argument is that it’s easier to do something stupid like that in the com-

mand line. And arguably it is. In fact, many things are easier to do in the com-

mand line, not just stupid things. Commands aren’t difficult, though some of

them can be difficult to remember. But practice helps with memorization, just

as it does when you need to remember which submenu item to choose in a

graphical interface.

So don’t be afraid. The command line is a very useful tool, just as graphical

applications can be. And as with any computer interface, you need to think

about what you’re doing. Just remember that the command line does what you

tell it to, nothing more, nothing less. Don’t tell it to do stupid things and it won’t.

The beauty of the command line is that you don’t need to know everything

about it. It helps to know some basic commands—such as those allowing you

to navigate around your system and create, copy, move, and delete files and

folders—but mostly what you’ll need to know are the commands specific to

the software you’re using.

If you’re skeptical, consider Adobe Photoshop (Figure 4.3). Photoshop—

which this workflow deems unnecessary for creating design mockups for

the web—is one of the most complex and sophisticated pieces of software

available to consumers today. There are hundreds of books on how to use

Photoshop, as well as whole books that cover only a specific functionality. If

you’re a designer, you’ve most likely used Photoshop. So there you are, pro-

ficient in this really advanced piece of software, but worried about the com-

mand line. Believe me, you are absolutely smart enough to learn commands

in the command line. And someday when you discover more command line

tools and are able to do things like resize fifty images in about three seconds,

NOTE
I’m making the

assumption that

you either have a

terminal application

or are capable of

installing one. Linux

and OS X have

terminals built in.

Windows users can

install Cygwin from

www.cygwin.com.

Figure 4.2
The command line
interface is sparse;
you have to tell it
what to do.

http://www.cygwin.com

RESPONSIVE DESIGN WORKFLOW64

you’ll feel the power that your developer friends do. If you’re a developer and

reading this, yes, go ahead and gloat.

I recommend that you consult a resource like Zed Shaw’s CLI Crash Course

to become familiar with the command line. The online version is free, easy to

follow, and you really will learn all the basics.4

That said, there are few commands you should know now: pwd, cd, and ls. Go

on, open up your terminal application. This puts you in a shell. On OS X, the

system I currently work with, the standard shell is called Bash.5

As a web worker, you’ve very likely seen a terminal before, but if you’re not

familiar, that little blurb of text you see to the left of the cursor is called a

prompt. It’s customizable, and it tends to look different depending on both

the system and the user. It may or may not tell you information about the

system or the folder you’re in. No matter. You type commands at the point

where the cursor is. Type one now: pwd. You’ll see something like this:

$ pwd

Now press the Return key. The CLI returns a path. Just like paths on a web

server, this is a path of folders on your computer. The path you see leads from

the root folder of your computer to the folder you’re currently in. pwd means

4 http://cli.learncodethehardway.org

5 Bash stands for “Bourne-again shell”. See http://en.wikipedia.org/wiki/Bash_(Unix_shell)

NOTE
Throughout this

book, the com-

mand line prompt is

denoted with a dollar

sign ($). It represents

your own prompt;

you should not type

it in as part of the

command.

Figure 4.3
Graphical interfaces
like Photoshop’s
provide buttons
and other inputs to
let you tell it what
to do. While visual,
they’re not necessar-
ily simpler than the
command line.

http://cli.learncodethehardway.org
http://en.wikipedia.org/wiki/Bash_(Unix_shell

DESIGNING IN TEXT 65

print working directory. The command tells the computer to print the work-

ing directory, which is the folder you’re currently working in. This is useful

because, in contrast to your system’s graphical interface, you don’t always

have a visual clue of where you are when you’re in the command line. This

is what I get when I execute pwd:

$ pwd

/Users/stephenhay

$

Yours will be different, unless your name is Stephen Hay (in which case, nice

name!). No problem; now you know where you are. Let’s see what’s in this

folder. We can list the files in the current folder with ls:

$ ls

Applications Documents Library Movies

Pictures Desktop Downloads Mail

Music Public

$

Your results might be shown differently, depending on how many files you

have and the width of your terminal window.

You’ll also want to change your directory, which you can do with cd:

$ cd Applications

$

This puts me in the Applications folder. You might not have the same folder;

just enter the same command in one of your own folders.

My own prompt contains information about where I am (it actually contains

the name of the folder I’m in), but I’ve customized it to do so. You needn’t

worry about that at this point. As you become more comfortable with the

command line, you can learn how to customize your environment.6

6 Many years ago I learned how to customize my own prompt by reading Daniel Robbins’s
easy-to-understand article on the subject, which can be found at http://www.ibm.com/
developerworks/linux/library/l-tip-prompt/.

http://www.ibm.com/developerworks/linux/library/l-tip-prompt/
http://www.ibm.com/developerworks/linux/library/l-tip-prompt/

RESPONSIVE DESIGN WORKFLOW66

So moving down is easy: just type ls, note the directory you’d like to move to,

and cd to that directory. Also note that many shells let you use the tab key for

completion. This means that instead of typing the full word Applications in

the previous example, I could type an A or Ap followed by the Tab key, which

would complete the word for me. When the completion matches several

words, these will be shown and you’ll need to add one or more letters accord-

ingly before pressing Tab again. This is a huge time-saver:

$ cd A [press Tab key]

$ cd Applications [press Return key]

$

Now you know how to move down a directory. Moving up is easier. A single

dot is the symbol for the current directory, and two dots is the symbol for the

parent directory. Moving up a directory is done thus:

$ cd ..

followed by pressing the Return key. Moving up two directories would entail:

$ cd ../..

and so forth.

That’s enough to get you started. If you have no previous CLI experience, try

these commands out for a while. You can’t do anything bad to your system,

because these commands don’t alter anything.

Converting to HTML
The first step in using a command line tool—unless it comes with your sys-

tem—is to install it. I’m assuming Pandoc doesn’t come with your system, so

you’ll need to install it if you’re planning to follow along in the book. On Linux,

you might find it and be able install it via your package manager. For OS X or

Windows, there are install packages available.7 Go ahead and install Pandoc

(or your preferred plain text converter) and then come back.

7 http://johnmacfarlane.net/pandoc/installing.html

http://johnmacfarlane.net/pandoc/installing.html

DESIGNING IN TEXT 67

Once you’ve installed Pandoc, use cd to navigate to the folder that contains

your Markdown document. Then type the following command:

$ pandoc index.markdown -o index.html

This says, “run Pandoc on the file index.markdown, convert it to HTML, and

save the output of this command as index.html.” If you run ls, you should

see that index.html has been created (Figure 4.4). Open this file in a web

browser. Your structured content is now HTML. And it works on practically

every device.

It just doesn’t look very pretty yet, so let’s do something about that. In the

following chapter, we’ll start thinking about the more visual aspects of the

design process, using this content as a base.

Figure 4.4
Using a command line
tool like Pandoc, it
takes only a second
to turn plain-text
markup into a basic
HTML page. This can
be a huge time-saver.

This page intentionally left blank

213INDEX

creating low-fi web-based wireframes, 32–35

creating templates, 78

creating variants for larger screen sizes, 42

inserting syntax-highlighted code into design
docs, 208

specifying font stack in, 84

taking notes in browser, 183–184

using for all styles applied to site, 137

_base.html
creating note-taking app, 181

Dexy installation, 143–144

mockups of several pages, 155

sectioning content for screen layout, 149

Bash shell, 64

Big Reveal, avoiding, 159–160

Blockable tables, 121–122

Blocks, breakpoint graphs, 96

body element

creating low-fi web-based wireframes, 30–32

setting up base styles, 32–35

Borders, setting up base styles, 33–34

Bottom-of-page navigation, 37–39

Boulton, Mark, 27, 159, 190

Branding guidelines, 91

Breakpoint graphs

adding major and minor breakpoints to, 100–101

components, 95–97

creating complex, 101–104

creating simple, 97–100

creating web-based design mockups, 136–137

defined, 92

inserting into design documentation, 198–199

visualizing breakpoints with, 92, 95

Breakpoints

anatomy of, 92–94

defined, 40

documentation for, 91–92

in linear design, 88

presenting interactive mockups to client, 176

progressive enhancement using implicit, 94

using separate style sheets for, 43

SYMBOLS
(hash symbol), Markdown, 55

$ (dollar sign)

command line prompt, 64, 143

variables, 78

* (Asterisk), Markdown, 55

*** (Asterisks), comments, 208

NUMBERS
24ways.org, 189

80/20 principle, 48

A
Accessibility

content first for, 53–54

sketching navigation for, 119–120

testing in web-based design mockup, 177–179

Anatomy, breakpoint, 92–94

Anti-aliasing, on static mockups, 4–5

Assembly line approach, avoiding, 174

Assets, linking web-based design docs to, 189–190

Asterisk (*), Markdown, 55

Asterisks (***), comments, 208

Automated screenshots

web-based design guidelines software with, 193

of web-based design mockups, 164–165

B
Background

design guidelines for, 191–192

exporting sketches for image, 114

setting up base styles, 33–34

Bands, breakpoint graph, 96

Base markup, low-fi web-based wireframes, 29–32

Base styles

creating low-fi web-based wireframes, 32–35

sculpting unstyled HTML, 85

web-based design mockups, 134–135

base.css
adding links to style sheets for web-based

mockup, 147

adding style to web-based design mockups, 134

Index

214 INDEX

Breakpoints, designing

creating comps from best rough sketches, 113–116

major breakpoints, 116–118

overview of, 108

rough sketches, 112–113

selecting thumbnail sketches, 111–112

sketching, overview, 108–109

thinking about content while sketching, 118–122

thumbnail sketches, 109–111

what to do if you get stuck, 123

Browser

creating low-fi web-based wireframes, 29–32

creating web-based design mockups, 132

creating working linear design in. See Linear design

developer tools, 136

not presenting web-based mockups to client in,
159–160

not worrying about compatibility of, 138

removing browser chrome from screenshots,
163–164

resizing to check style sheets, 35–37

setting up base styles, 34

showing screenshots of web-based mockups in, 129

support for new CSS layout modules, 40

Browsers, web-based mockup presentation

collaboration and communication, 173–174

finding bugs, 172–173

interactive mockups, 175–176

note-taking app, 181–184

note taking in browser, 179–181

notes and making revisions, 184–185

overview of, 172

testing and client review, 177–179

version control for revisions, 185–186

Bugs, finding/fixing design, 172–173

Bullet graphs, visualizing breakpoints, 95

C
captureSelector() function, CasperJS, 202–204

CasperJS

creating screenshots, 199–200

downloading, 165

making Dexy configuration file, 201

online reference for, 202

taking screenshots of specific elements, 202–204

writing screenshot script, 166–169

casper.then() function block, 203–204

cd command

converting plain text to HTML, 67

Dexy installation, 143

overview of, 65

using template with Pandoc, 79

Chartable tables, 121–122

Chartjunk, 100

class attribute, 31–33

CLI. See Command line interface (CLI)

CLI Crash Course (Shaw), 64

Clickability, designing link, 119

Client presentation. See also Browsers, web-based
mockup presentation

automated screenshots for, 164–165

installing PhantomJS, 165

involving clients from beginning, 158

manual screenshots for, 163–164

not tricking clients, 162

overview of, 158–159

presentation/realism balance, 159–160, 177

psychology of, 132

of screenshots from web-based mockups,
161–162, 169–170

writing screenshot script, 166–169

Clients

involving with wireframes, 49

managing expectations of, 127–129

overloading with detailed wireframes, 47

Code

in design guidelines, 194

design guidelines software features, 193–194

inserting into design documentation, 198–199,
206–210

Collaboration

building into each phase, 8, 173–174

creating content inventories, 23

design guidelines aiding in, 193

Color

content/structure of design guidelines, 191–192

for major changes on breakpoint graphs, 101

rough sketches using shading for, 112

215INDEX

sculpting unstyled HTML, 85

setting up base styles, 33–34

as visual language component, 71

Column width, sketching text, 119

Command line interface (CLI)

converting plain text to HTML, 66–67

reading commands, 79

using template with Pandoc, 79

working with, 62–66

Comments

cutting code into sections using idio, 207–209

inserting rendered HTML into design doc and,
204–205

typing in page being reviewed, 184

Communication

documentation improving team, 196

during each phase, 173–174

Components

breakpoint graph, 95–97

content inventory, 19–22

defined, 15

features for design guidelines software, 193

making changes in terms of, 59–61

microstructure vs. modular structure, 15

visual language, 71

Comps, best rough sketches based on, 113–116

Computed Style view, browser developer tools,
136–137

Configuration file, Dexy, 200–201

Content

adding to web-based design mockups, 148–151

changing at breakpoints, 92–94

client presentation of interactive mockups and, 176

design guidelines starting with, 191–192, 196–198

thinking about when sketching, 118–122

wireframing pages of, 48

Content inventory

creating low-fi web-based wireframes, 30–32

as documentation, 90

as essential throughout project, 174

example of, 19–22

experimenting with, 22–23

as first step, 14

involving client in first draft of, 158

listing only things needed, 16

making changes to, 59–61

microstructure vs. modular structure of, 14–15

this book’s website as example of, 16–17

zero interface and, 17–18

Content reference wireframes

adding navigation, 37–39

adjusting for mobile devices, 35–37

creating low-fi web-based, 29–32

CSS modules for source-order independence, 40

as documentation, 90

experimenting with, 49

implementing media queries, 43

introduction to, 26–27

making changes to, 59–61

as minimal, 27–28

myths about, 46–49

not limiting design choices, 47

setting up base styles, 32–35

variants for larger screen sizes, 39–45

in web-based design mockups, 133–134

contenteditable demo, 180, 182–183

CSS

adjusting in browser, 35–37

for base style setup, 32–35

for evolving responsive wireframes, 134

for implementing changes at breakpoints, 92–94

for inserting syntax-highlighted code into design
docs, 206–210

learning, 86, 130, 154

for low-fi web-based wireframes, 29–32

for navigation, 38

new layout modules in, 40

for own documentation, 210–211

for sculpting unstyled HTML, 85

for showing code in design guidelines, 194

sketching navigation with, 119–120

sketching tables with, 122

variants for larger screen sizes, 39–45

for web-based design mockups, 132–137, 153–154

CTRL-D, stopping web server, 75

Cygwin, 62–63

216 INDEX

D
Debenham, Anna, 189

Deliverables

aiding design process, 90

building communication/collaboration into each
phase, 173–174

in design documentation, 90

screenshots of web-based mockups, 129–130

version control for all, 185–186

for web-based design mockups, 146

Design Funnel, 71–73

Design guidelines

communicating what mockups cannot, 192

content and structure of, 191–192

creating documentation, 195–199

creating screenshots, 199–200

design manuals and web, 189–190

including rendered HTML, 204–206

including syntax-highlighted code, 206–210

making Dexy configuration file, 200–201

making documentation your own, 210–211

overview of, 188

software, 193–194

taking screenshots of specific elements, 202–204

testing Dexy project, 201–202

using code in, 194

for websites, 192–193

Design language

creating with Design Funnel, 71–73

designing for breakpoints, 108

developing, 71

example of, 72

presenting web-based mockups to client as, 160

Designing in text

making changes, 59–61

marking up plain text, 55–59

overview of, 54–55

Detailed wireframes, 26–28, 47

Developer tools, browser, 136

Device classes

linear design based on. See Linear design

major breakpoints and, 117

responsive design working with, 40–41

Dexy

adding navigation between pages, 155

command center, 151–153

creating design documentation, 194, 195–196,
207–210

features of, 141–142

finishing web-based design mockup with CSS,
153–154

installing, 142–145

making configuration file, 200–201

rerunning, 147

taking screenshots of specific elements, 202–204

dexy -r, rerunning Dexy, 147

dexy viewer, 205–206, 208

dexy.conf, 144

dexy.yaml, 144, 149–153, 200–201

Difficult tables, 121–122

Directories, moving to, 65

Discussion, content inventory, 21

Do stuff sites, 5–6

Documentation

breakpoint, 92

creating with Dexy, 141–145

overview of, 90–91

style guide, 186

training, 91

web-based design guidelines. See Design guidelines

Dollar sign ($)

command line prompt, 64, 143

variables, 78

E
Elements

adding on as-needed basis, 9

design guidelines software and, 193

taking screenshots of specific, 202–204

Ems, 99–100, 198

Emulators, 75–76, 79–80

Evolutionary prototypes, 126–127

Exporting

sketches to create detailed mockups, 114

smaller images from image editor, 86

217INDEX

F
Filters, Dexy

defined, 141

inserting rendered HTML into design guidelines,
204–206

using, 143

Flexible Box Layout Module, CSS, 40

Font stack, specifying for page, 84

Fonts

sculpting unstyled HTML, 85

serif vs. sans-serif, 84

setting up base styles, 34–35

sketching text and, 119

Frameworks, constructing pages within, 17

Freeform writable, design guidelines software as, 193

Front-end developers

adding navigation, 37–39

creating content inventories, 23

making wireframes, 46–47

G
Garrett, James, 6

Get stuff sites, 5–6

git, version control system, 185–186

Goals, Design Funnel translating, 72

Gregory, Danny, 116

Grid Layout Module, CSS, 40

guidelines.html file

including rendered HTML, 206

including syntax-highlighted code, 209–210

taking screenshots of specific elements, 204

testing Dexy project, 201

guidelines.markdown file

including rendered HTML, 205–206

including syntax-highlighted code, 208

making Dexy configuration file, 200–201

testing Dexy project, 201

writing design documentation, 196–197

H
Habit, sketching as, 115–116

Hash symbol (#), Markdown, 55

_head.html, 144, 146–147

Headless WebKit browsers, 164–165

Home pages, wireframing, 48

Horizontal line, breakpoint graphs, 95–96, 99–100,
103–104

HTML

adding image content to, 86

best practices for, 135

converting plain text to, 61–67

creating low-fi web-based wireframes, 29–32

creating own documentation with, 210–211

creating page with unstyled, 55

creating web-based design mockups with, 132

design guidelines with rendered, 204–206

enhancing structured content, 77

evolving responsive wireframes, 134

resistance to learning, 130

sculpting unstyled, 85

sectioning content for screen layout in, 148–151

sketching navigation with, 119–120

structuring textual content with, 55–61

testing Dexy project, 201–202

using media queries with, 43

htmlsections filter, Dexy, 204–208

Hybrid HTML/Markdown, 148–149

I
id attributes, 30–31, 150

Identity/branding guidelines, 91

idio comments, 207–209

Illustrator, static mockups on web and, 5

Image editors

creating/editing images with, 86

learning HTML/CSS vs. learning, 130–131

as old school for static mockups, 10–11

Images

adding textual documentation to, 90–92

adding to design, 86

as building blocks of web, 52

in complex breakpoint graph, 104

for design guidelines, 191–192

screenshots of web-based mockups as. See
Screenshots, web-based design mockups

in simple breakpoint graph, 99–100

using exported sketches as background, 114

as visual language component, 71

visualizing breakpoint graph changes, 96

218 INDEX

@import, media queries, 43

index.markdown file

converting plain text to HTML, 67

creating web-based design mockup, 148, 153, 155

as home page of mockup, 144

text for book site design, 56

using template with Pandoc, 79

web documents vs., 52

Information architects, 6

Interaction designers

adding navigation, 37–39

birth of, 5–7

creating content inventories, 19–23

front-end disciplines overlapping with, 28

involving throughout design process, 46–47

as obstacle to web-based mockups, 130

overview of, 6

as visual designers, 8

in waterfall model, 7

interactive mockups, presenting, 175–176

Interface, zero, 17–18

Introduction

birth of specialists, 5–7

birth of static hi-fi mockups, 2–4

creative ways to design on web, 2

interaction designers, 8

leaving waterfall method, 8–9

responsive design vs. static mockups, 10–11

responsive design workflow, 9–10, 12, 212

on static mockups, 4–5

IP address, starting ad hoc web server, 74–75

Iterative design process, 8–9

J
JavaScript

creating web-based design mockups, 132

implementing changes at breakpoints, 92–93

note-taking app, 181–184

sketching navigation, 119–120

sketching tables, 122

using breakpoints in progressive enhancement, 94

writing screenshot script, 166–169

L
Laptop-screen presentations

of interactive mockups, 175–176

of screenshots, 169

taking notes, 184

large.css
adding links to style sheets for web-based

mockup, 147

creating variants for larger screen sizes, 44

as smallest style, 137

Layout. See also Content reference wireframes

content/structure of design guidelines, 191–192

sculpting unstyled HTML, 85

sketching with content reference wireframes, 48

specialists, 8

static hi-fi mockups, 2–4

static mockup comfort zone, 4–5

as visual language component, 71

zero interface design principle, 17–18

Layout viewport, mobile devices, 41

Linear design

adding images to, 86

adding style to web-based design mockups, 134–135

adding type and color to, 83–84

Design Funnel for, 71–73

developing design language for, 70–71

evolving responsive wireframes, 134

form elements and touch devices, 87

overview of, 70

project folder setup, 81

reading commands, 79–80

sculpting unstyled HTML, 85

serving to actual devices, 74

starting ad hoc web server, 74–75

structured content enhancement in, 76–77

summary, 87–88

templates, 78–80

thinking and sketching, 81–82

Linear form, structured content, 55

<link> element, media queries, 43

219INDEX

Links

adding navigation to small screens, 37–39

to assets, from design guidelines, 189–190

designing touchability vs. clickability for, 119

sketching, 119

as web building blocks, 52

localStorage app, 179–184

Login form, 15–16

ls command, 65

M
macros/_footer.html, 144, 149

macros/_head.html, 144

macros/nav.jinja, 144, 155

MailChimp, design language, 72–73

Major breakpoints

creating web-based design mockups, 137–138

minor vs., 100–101

rough sketches of, 116–118

taking screenshots of each screen at, 164

Margins, 34–35, 44–45

Markdown

converting plain text to HTML with, 61

implementations of, 62

making changes to document, 59–61

plain text markup using, 55–59

sectioning content for screen layout, 148–151

testing Dexy project, 201–202

using templates in, 80

writing design documentation with, 196–198

Marker renderers, 3

Markers, breakpoint, 96

Markup

choosing static site generator, 140

plain text, 55–61

setting up base, 29–32

@media, 43

Media queries

implementing, 43

using em-based, 99

medium.css
adding links to style sheets for web-based

mockup, 147

creating variants for larger screen sizes, 42

implementing media queries, 43

for layout changes, 137

Mental Models: Aligning Design Strategy with Human
Behavior (Young), 18

Menu button, adding navigation via, 37–39

meta element, 41, 77

Microstructure

creating content inventory vs., 19–22

modular structure vs., 14–15

Minor breakpoints, 100–101, 118

Mobile devices

checking files first on, 35–37

device classes for, 40–41

linear design on, 87

presenting interactive mockups on multiple,
175–176

sketching designs on, 81–82, 113–115

viewing your design on, 74

viewports, 41

Mockups

birth of hi-fi static, 3–4

creating content inventory, 19–22

creating web-based. See Web-based design
mockups

early wireframes as precursors to, 26, 48

exporting sketches to create detailed, 114

Modules

defined, 15

microstructure vs. modular structure, 15

new CSS layout, 40

Mood boards, involving client in, 159

N
Naming

project files and folders, 81

templates, 78

Nanoc, 139

Navigation

design principle of zero interface for, 18

for larger screens, 41–42

between pages using Dexy, 155

sketching, 119–120

for small screens, 37–39

220 INDEX

New York Transit Authority Graphics Standards Manual
(1970), 191–192

Note taking

app, 181–184

during client review sessions, 179

on mockup page, 179–181

revising mockups using, 184–185

Numbering, content inventory items, 19–22

O
Oblique Strategies (Eno and Schmidt), 123

Old-school wireframes

as content reference wireframes, 27–28

simplicity of, 5–6, 26

Online references

browser support for new CSS layout modules, 40

CasperJS, 202

Cygwin, 63

git (version control system), 185–186

learning CSS, 154

Markdown, 55

markup languages, 61

media queries, 43

mobile viewports, 41

Python installation, 142

simulators and emulators, 76

terminal applications, 63

this book’s website as example, 16–17

P
Page types

making changes, 59–61

wireframe pages representing, 48

Pandoc

command line tool, 62

converting plain text to HTML, 66–67

enhancing structured content, 77

sectioning content for screen layout, 151

using Dexy filters with, 143

using templates with, 79–80

PDFs, for screenshot presentations, 169

PhantomJS, 164–165

Photoshop

learning HTML/CSS vs. learning, 130–132

as old school for static mockups, 10–11

responsive design workflow and, 9–10

sketching with, 83

static hi-fi mockups in, 3, 5

using command line interface vs., 63–64

pip (Python package manager), installing Dexy,
142–143

Pixels

inserting screenshots into design documentation,
198

presenting interactive mockups to client, 176

using ems vs., 99–100

Plain text

benefits of starting design with, 54–55

converting to HTML, 61–67

making changes to, 59–61

marking up, 55–59

Unicode standard on, 51

web accessibility with, 53–54

world’s first website using, 52

Points, breakpoint, 96

Positioning context, 45

Preprocessors, CSS, 133, 138

Presentation. See Client presentation

Presentation board, screenshots, 169

Presentation psychology, 132

“print screen,” manual screenshots, 163–164

Printed manuals, design guidelines vs., 189–190

Programming language, static site generators, 140

Progressive enhancement

for accessible websites, 54

creating complex breakpoint graphs, 104

implicit breakpoints in, 94

visualizing with breakpoint graphs, 95

Projector presentations, of screenshots, 169–170

Prompt, 64

pwd command, 64–65, 79

Pygments, Dexy utilizing, 141

Python

Dexy software written in, 141

installing for Dexy, 142

starting ad hoc web server, 74–75

Python package manager (pip), installing Dexy,
142–143

221INDEX

Q
Quantitative ranges, breakpoint graphs, 96, 99–100

Quantitative scale, breakpoint graphs, 95–96, 99–100

R
Rand, Paul, 14

rdw:mockup template

creating multiple page design manual, 196

creating own documentation, 210–211

installing Dexy, 143

Reference design, 70

Rendered code, inserting into design
documentation, 198–199

Rendered HTML, including in design guidelines,
204–206

Responsive design workflow

birth of, 9–10

challenges of, 11

steps in, 212

this book’s website examples of, 16–17

Revised mockups

notes guiding, 184–185

version control for, 185

Rieger, Bryan, 40, 54, 70, 85, 119

Rieger, Stephanie, 81–82, 114

Rohde, Mike, 110, 112, 115–116

Rough layouts. See Client presentation

Rough sketches

creating comps based on, 113–116

of major breakpoints, 116–118

redrawing winning thumbnail sketches as, 112–113

S
Sans serif fonts, 84

Schematics. See Content reference wireframes;
Wireframes

Screen sizes

adding navigation for small, 37–39

adjusting wireframe to for mobile devices, 35–37

creating variants for larger, 39–45

setting up base styles regardless of, 32–35

thinking/sketching designs for all, 81–82

Screenshots

creating for design documentation, 199–200

making Dexy configuration file, 200–201

taking of specific elements, 202–204

testing Dexy project, 201–202

Screenshots, web-based design mockups

creating automatically, 164–165

creating manually, 163–164

getting client commitment, 161–162

getting images as deliverables using, 129

inserting into design documentation, 198–199

not about tricking clients, 162

writing script, 166–169

Scriptable browsers, for automated screenshots,
164–165

SDKs (software development kits), 76

<section> element, content for screen layout, 148

Sectioning content for screen layout, 148–151

Serif fonts, 84

Shell, command line interface, 64

Simulators, 75–76

Sketching

on actual devices, 81–82

creating comps based on best rough, 113

creating rough sketches, 112–113

on devices, 113–115

as habit, 115–116

helpful practices, 109

not involving clients with results of, 159

overview, 108–109

with Photoshop, 83

selecting thumbnail sketches, 111–112

thinking about content while, 118–122

thumbnail sketches, 109–111

what to do if you get stuck, 123

The Sketchnote Handbook (Rohde), 115

Small-screen-friendly tables, sketching, 121

Software

web-based design documentation, 193–194

web-based design mockup, 133

Software development kits (SDKs), 76

Specifications, writing, 90

Static mockups

comfort zone of, 4–5

image editors as old school for, 10–11

Photoshop comps as, 23

static hi-fi mockups, 2–4

web-based mockups vs., 126–127, 160

222 INDEX

Static site generators (SSGs)

choosing, 140–141

speeding things up with, 138

from static page to, 139

templating language and, 139–140

for web-based design mockups, 133

Sticky note apps, 179–181

Structured content. See also Content inventory

as building blocks of web, 52

creating low-fi web-based wireframes, 30

of design guidelines, 191–192

enhancing, 76–77

making changes, 59–61

overview of, 14

starting with plain text, 53–54

Structured text designs, as documentation, 90

<style> element, using media queries, 43

Style guides

creating. See Design guidelines

providing textual documentation with images, 91

Styles

adjusting wireframe for mobiles first, 35–37

sculpting unstyled HTML, 85

setting up base, 32–35

specifying font, 84

Syntax-highlighted code

design guidelines software for, 194

inserting into design documentation, 206–210

T
Table of contents, design guidelines, 191–192

Tables, sketching for small screen, 120–122

A Tale of Two Viewports (Koch), 41

_template.html, 144, 149–150

Templates

creating with templating language, 139–140

for every language, 79

introduction to, 78

speeding things up with, 138

usefulness of, 80

using with Pandoc, 79–80

Templating language, 139–140

Testing

Dexy project, 201–202

web-based design mockups, 177–179

websites with PhantomJS, 165

Text

annotating rough sketches with, 112

annotating thumbnail sketches with, 111–112

copying all notes into file, 184

creating simple breakpoint graph with, 99–100

labeling and annotating breakpoints, 97

sketching issues, 119

Text, designing in

converting plain text to HTML, 61–67

focus on content, 52–54

marking up plain text, 55–61

overview of, 52

starting design with plain text, 54–55

Unicode standard on plain text, 51

Text editors

creating low-fi web-based wireframes, 29–32

creating web-based design mockups, 132

setting up base styles, 32–35

Text-level semantics, 14–15

Thinking

about content while sketching, 118–122

sketching as visual tool for, 115–116

Thumbnail sketches

exploring ideas quickly with, 109–111

helpful practices for, 109

making selection of, 111–112

redrawing as rough sketch, 112–113

rough sketches vs., 117

Tool Rule, 56, 61, 97

Touchability, designing links for, 119

Touchscreen stylus, sketching with, 114

Training documentation, 91

Typography

content/structure of design guidelines, 191–192

starting design with, 83–84

as visual language component, 71

223INDEX

U
Unicode standard, plain text, 51

Usability, testing web-based design mockups for,
177–179

V
Variables, as placeholders for content, 78

Version control, revised mockups, 185–186

Viewports

mobile device, 41

screenshots of mockups at varying widths of,
162–163

using breakpoint graph for web-based mockups,
136–137

variants for larger screen sizes, 39–45

viewing width of, 137

Visual designers

adding navigation, 37–39

creating content inventories, 22–23

implementing changes at breakpoints, 92–94

interaction designers as, 8

as obstacle to web-based mockups, 130

in waterfall model, 7

Visual language components, 71

Visual viewport, mobile devices, 41

Visual vocabulary, site structure/interaction, 6

Visualizing breakpoints, 95

W
W3C, Media Query specification, 43

Waterfall model of website development

making changes in, 60

multidisciplinary, iterative approach vs., 8–9

overview of, 7

responsive design workflow vs., 10–11

Web accessibility

content first for, 53–54

sketching navigation, 119–120

testing in web-based design mockup, 177–179

Web applications

content and, 52–54

designing for interaction, 6

Web-based design mockups

adding style, 134–135

adding style sheets, 146–147

breakpoint graph, 136–137

choosing SSG, 140–141

Dexy command center, 151–153

Dexy installation, 142–145

Dexy software, 141–142

evolving responsive wireframe, 133–134

finishing with CSS, 153–154

how perfect HTML needs to be, 135

hurdles to acceptance of, 127–132

major breakpoints, 137–138

multiple pages, 154–155

overview of, 126–127

presenting. See Browsers, web-based mockup
presentation

reasons to not involve clients in, 159–160

requirements, 132–133

sectioning content, 148–151

speeding things up, 138

from static page to static site generator, 139

templating, 139–140

Web documents, content and, 52–54

WebKit browsers, 164–165

Wireframes. See also Content reference wireframes

birth of Web design specialists, 7

multidisciplinary, iterative approach to, 9

problems with today’s detailed, 7, 26–27

simplicity of early, 5–6, 26

Workflow, steps in, 212

Writing design documentation, 196–198

Z
Zero interface, 17–18

Zoom, 41

	Contents
	Foreword by Ethan Marcotte
	4 Designing in Text
	It’s all content
	Starting design with plain text

	Marking up plain text
	The book page text in Markdown
	What changes mean at this point
	It’s about thinking

	Converting plain text to HTML
	Using the command line
	Converting to HTML

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

