
Build with XHTML. Build
your audience. Build with
Web Standards.Build with

Ajax.Build to be found. Build
with microformats. Build

keyword density. Build with
XHTML & CSS. Build sem
antically meaningful code.
Build with RSS. Build sites
you can track. Build links to
your site. Build hCard con-

tact information. Build a rep-
utation. Build repeat visit
ors. Build a sitemap XML

file. Build content that drives
traffic. Build custom search.
Build to be seen by search

engines. Build findable
blogs. Build with PHP and

MySQL. Build keyword den-

Build with XHTML. Build your
y our site. Build hCard con-

tact information. Build a rep-
utation. Build repeat visit
ors. Build a sitemap XML

file. Build content that
drives traffic. Build custom
search. Build to be seen by
search engines. Build find-
able blogs. Build with PHP
and MySQL. Build keyword
density. Build with JavaS-
cript. Build with XHTML.

Build your audience. Build
search engine friendly URLs.
Build hCalendar event list-
ings. Build meta data. Build

tag clouds. Build consen-
sus in your team. Build with
web standards. Build with

Ajax. Build to be found. Build
with microformats. Build

with CSS. Build with RSS.
Build sites you can track.

11
One of the best ways to spread

the word about your website

is to let your audience do it

for you.

Building Viral
Marketing Tools

22

Search is the primary method by which people
discover the content they’re looking for, and so
we optimize our websites for search engines.
But sometimes people may want content that they
don’t even know exists. It’s pretty hard to search
for something you’ve never heard of.

We probably all have a story about a movie, band, website, or product that
someone recommended, which turned out to be really amazing. Although it
wasn’t something you were actively searching for you were really happy you
found it. Most of the time it’s a friend, colleague, or family member who brings
our attention to an unknown desire. Word-of-mouth recommendations fill a
findability gap that search doesn’t. The Web amplifies word-of-mouth recom-
mendations, which makes it the perfect place to spread your message to
a wide audience. With a little knowledge of basic psychology and the right
tools, you can persuade your users to spread your marketing message like a
virus from one person to the next.

A Virus You’ll Want To Spread
Viruses are simple yet brilliant organisms. Their one goal in life is to locate
hospitable hosts to pass on their genetic code. Once the host is infected, it
will in turn pass the genetic code on to others. It’s a clever system that can
create exponential growth in a very short amount of time.

Ideas can behave in a similar fashion, traveling from one host to the next
conveyed by word of mouth. In 1996 Jeffrey Rayport applied the concept of
self-propagating viruses to marketing in his article in Fast Company magazine
entitled “The Virus of Marketing” (http://www.fastcompany.com/online/06/
virus.html).

Viral marketing is simply network-enhanced word-of-mouth advertising. Follow-
ing a traditional direct-marketing model a company communicates directly to
many consumers, as Figure 11.1 shows.

Viral marketing minimizes direct company-to-consumer communication and
instead relies on consumers to spread the message to people they know. This
model has the potential to reach more people with greater speed than tradi-
tional direct marketing because the communication load is distributed to many
people.

building viral marketing tools    23

As Figure 11.2 shows, with viral marketing one person receives a message
directly from a company, then tells other people, who in turn tell still more peo-
ple. As the process repeats, the message spreads to many people with little
effort from the original source.

Viral messages also tend to be more effective because they come from a
trusted source, and don’t appear to be a marketing message with ulterior
motives. When friends, family, or colleagues tell you about a product or
service, you’re more likely to trust and take their advice than advice from an
advertisement.

Viral campaigns perform exceptionally well on the Web because people
are already connected. Email, social networking sites, and the various other
communication conduits of the Web act as giant amplifiers of viral marketing
messages that help them reach new people at staggering speeds. When you
introduce an interesting idea, product, or service to the Web and provide the
tools to let it spread, you can quickly build your audience base.

There are many techniques you can employ to make your content spread
virally. In this chapter we’ll take a look at what motivates users to spread viral
messages, and build some viral marketing tools that can easily be added to
any site.

Marketing
Company

Marketing
Company

Figure 11.1  Traditional
marketing techniques
require that the message
be communicated to each
consumer directly.

Marketing
Company

Marketing
Company

Figure 11.2  Viral market-
ing spreads a message
quickly by communicating
to a few consumers who
then feel compelled pass it
on to others.

	 Take a look at Kent
	L ewis’ article on Site-
Point entitled “Get the Bug:
Viral Marketing Unmasked”
to learn about the history
of viral marketing and some
common traits of success-
ful campaigns (http://www.
sitepoint.com/article/get-
the-bug-viral-marketing).

24    Chapter 11

Passing the Virus to New Hosts
Compelling content is at the root of any successful viral marketing campaign.
Whether your content is a funny video, a cool product, or an interesting article,
viral marketing campaigns have to tap into your users’ desires and motivations
in order to spread to new hosts. If your content is valuable, compelling, or
entertaining, users will want to pass the message on for you.

YouTube’s Simple Brilliance
Successful viral marketing campaigns also include a clear call to action to
encourage users to pass content on to others. YouTube (http://youtube.
com) does a nice job of this by displaying a “share” button on the screen
after a video has played so users can easily tell their friends about it (see
Figure 11.3). YouTube’s call to action is effective because it is direct, brief,
obvious, and displayed when users are most likely to take action.

Figure 11.3  YouTube
(http://youtube.com)
encourages users to tell
others about their con-
tent with a “share” button
displayed at the end of
each video. This clear call
to action fosters the viral
exchange of content and
increases traffic.

It’s important that your viral marketing tools make it effortless for your message
to spread. When users click YouTube’s “share” button to email friends about a
video, a form is displayed with a quick, pre-populated message field so users
can simply add an email address and send the message with little effort (see
Figure 11.4).

The message itself is also well crafted, though it’s only three words long.
The phrase “This is awesome!” is informal, and sounds like something a user

building viral marketing tools    25

would write, not a corporation. In order for viral messages to work they need to
look like they are coming from a host (user), not from a company.

An address book is displayed on the side so you don’t have to search for
and type in the email addresses of people you’ve already sent videos to. The
address book is quite brilliant because the more users share videos the easier
it becomes to share them in the future. Because Web users move fast and are
easily distracted, an efficient and brief sharing system is essential.

Successful viral marketing campaigns take into consideration what motivates
users to spread a message, and try to use this to their advantage.

Motivating Users To Spread the Virus
Users from all demographics are commonly motivated to share content that

n	 is free or a special promotion

n	 is funny, entertaining, or unique

n	 boosts their ego or helps build their public identity

n	 rewards them for spreading the message

n	 serves their desires

n	 lets them share their perspective

Let’s take a closer look at each of these common motivations to share content
and see some examples of viral marketing campaigns that have made effective
use of them.

Free Stuff and Special Promotions
Hotmail (http://hotmail.com) was one of the first free Web email services,
and it grew to be one of the largest in a very short period of time. The Hotmail
business model was simple and brilliantly viral. They provided a free email

Figure 11.4  YouTube
(http://youtube.com) pro-
vides an efficient system for
sharing videos with others.
You can enter a series of
email addresses or pick
from those you’ve already
sent messages to.

26    Chapter 11

service to attract new users, then included a line at the bottom of each email
message that read “Get your private, free email at http://www.hotmail.com.”
With each email users sent they marketed to every recipient. This generated
new signups that in turn began emailing the message to even more new users.
The exponential spread of the message generated roughly 8.5 million users
in about 18 months. The Hotmail marketing message was disseminated at a
staggeringly fast rate that would have been impossible to achieve using tradi-
tional direct marketing.

You can apply the Hotmail viral marketing technique to all kinds of content and
services. Simply give something valuable away for free and provide users a
convenient method to tell others about it. This will bring in new users to your
site who are likely to browse other sections and possibly complete one of your
business goals, such as sign up for a mailing list, learn about your cause, or
buy a product.

Of course sales, coupons, and great deals can work the same way. Ecom-
merce sites and online services can extend special promotions to users on a
mailing list. These users can then extend the offer to friends and family. Netflix
(http://netflix.com)—the popular online DVD-rental service—uses this tech-
nique to build their customer base. They send coupons to all of their custom-
ers to give one month of free rentals to friends and family. This technique also
makes new customers feel special because the offer is exclusive.

Funny, Entertaining, or Unique
People love to share entertainment. The feelings invoked by funny, entertain-
ing, or unique content are amplified and extended when you share it with oth-
ers. After you email a friend a link to a funny video on YouTube, there’s usually
a good deal of equally entertaining discourse that follows. If the friend who
received the link liked it, they’re likely to pass it on to someone else.

This plays into a basic principle of humanity. There are certain experiences
that are more potent when shared, and humor is one. JibJab (http://jibjab.
com), a popular Flash cartoon site that pokes fun at politicians and current
events, uses this principle to its advantage by encouraging users to tell others
about their cartoons.

Users can share the laughs with their friends on social networking sites, send
out emails to get others to check out cartoons, or even post cartoons on
their own site. Some of their cartoons even allow users to become the star
by uploading their picture and placing it on a character’s body, as shown in
Figure 11.5. Users can then add pictures of friends and family to flesh out the

building viral marketing tools    27

cast of the story. This type of personalized comedy is a brilliantly unique way
of engaging an audience, and inherently encourages users to share the con-
tent with others.

Boost the Users’ Egos or Help Build Their Online Identity
Content and applications that feed users’ egos encourage viral exchanges.
The JibJab Starring You cartoon shown in Figure 9.5 is a great example of an
ego booster. People get a kick out of seeing themselves and will want to show
others the cartoon they’ve created with their picture.

It’s especially alluring to share this ego-boosting cartoon on social networking
sites like MySpace (http://myspace.com) or Facebook (http://facebook.
com) where users construct profile pages and build their online identity.
Though everyone else might have the typical fare on his or her Facebook
page, you could feature your own custom cartoon of which you are the star.

The Simpsons Movie website (http://www.simpsonsmovie.com) launched
an equally successful viral marketing campaign that lets users create a
Simpsons-style avatar of themselves. Once you’ve created your Simpsons ava-
tar you can email it to a friend, or download it so you can use it on other sites
(see Figure 11.6). When the Simpsons Movie site was launched, yellow ava-
tars popped up on websites and instant messaging clients everywhere, creat-
ing an immediate viral awareness of the movie. The portability of avatar images
was the key to spreading the message.

Figure 11.5  JibJab’s
(http://jibjab.com) Star-
ring You cartoons let users
map pictures of themselves,
friends, and family into a
humorous Flash-based nar-
rative. Once you build your
cartoon you can publish it
on various social network-
ing sites, email it to friends,
or embed it in a page on
your site. This cartoon stars
me as a heavily armed,
overzealous action hero
ready to kick some butt.
That’s not so funny, right?

28    Chapter 11

Facebook applications are another great way to spread your content virally by
helping users build their online identity. With 35 million users and counting as
of October 2007, Facebook has become a central collection point for content
mashups. Facebook has created an API (Application Programming Interface)
that lets developers create modules that move content from other Web appli-
cation to Facebook. Users can add these application modules to their profile
to combine their Flickr photos, Last.fm playlist history, Netflix movies, and
much more into one central, online identity.

All of this content from different Web applications says something about the
user. If your site provides services that let users create their own content,
consider making it portable to Facebook so they can display it there too.
When users install Facebook applications they’re prompted to invite friends to
contribute or install the application in their own profile. These applications are
inherently viral, and can spread your content very quickly. In a short period of
time you can generate many new users for your Web application.

Reward Viral Behavior
As history has continually shown us, bribery is an effective tool to get people
to do something for you. It’s also a clever tool to encourage the viral transfer
of your message to others. That probably sounds a bit sketchy, but but it’s not
quite as bad as it might sound.

Figure 11.6  The Simp-
sons Movie website (http://
www.simpsonsmovie.com)
has an avatar design appli-
cation that lets users create
a Simpsons-style avatar
of themselves. Upon its
release users began post-
ing their avatars on other
websites, contributing to
the buzz around the movie.

	 Developing with
	 the Facebook
Platform and PHP

http://www.sitepoint.com/
article/developing-
facebook-platform

	 Check out the official
	 Facebook developer’s
site for the documentation
and tools you’ll need to build
your app http://developers.
facebook.com/.

building viral marketing tools    29

When your audience shares your content with others you can provide vari-
ous rewards to thank them for their efforts. Amazon has done a brilliant job of
this through their affiliates program (https://affiliate-program.amazon.com).
When you sign up for the program you get a code to include within links to
any product Amazon sells. Each time a user clicks the link to buy that product
on Amazon, they log your code and share a percentage of the revenue earned
from sales you’ve generated.

It’s bribery of the moral kind in which all parties get something they want.
Users who promote Amazon products make money, and Amazon dramatically
increases its sales as well as its presence throughout the Web.

Media Temple (http://mediatemple.com)—a popular Web hosting company—
has also tapped into the same principle with great success. With slick, glossy
branding and advanced hosting features, Media Temple quickly caught on
as the serious Web designer’s preferred hosting company. You’ll often find a
Media Temple banner or logo on high-end Web design sites promoting the
company, and providing the Web designer with affiliate revenues in the form of
free hosting.

Media Temple’s affiliates program has become so effective that its promotional
banners are often seen as a badge of quality worn by those in the Web design
“in” crowd. It rewards affiliates monetarily and builds their public image at the
same time.

Serve Your Users’ Desires
You can dramatically increase product sales on your site if you just help peo-
ple communicate their desires. People these days aren’t too subtle with their
gift wish lists. When people find something they want, they tell their friends
and family about it in hopes that they’ll receive it when the next gift-giving
occasion arises.

Make it easier for people to solicit gifts with a “Tell a Friend” feature. This is
simply a form that allows users to email anyone a message and a link to the
products they want. Tell a Friend messages are very likely to generate a sale
because they come from someone the recipient knows, and at the same time
expose new users to your site. Later in this chapter, we’ll learn to build a tool
like this that could be integrated into any site.

30    Chapter 11

Lists are another powerful tool that lets users communicate their desires.
Wish lists and lists of favorite products make it easy and convenient for users
to make a collection of many things they want. Publish an RSS feed of the
list and users can then display the things they want on their personal website
or blog.

Gift registries have a similar affect. When users assemble a gift registry they’ll
probably tell all of their friends and family about the list, which could potentially
create a windfall of sales. It also exposes your site to many new users who
may return in the future to buy more gifts or something for themselves.

If your site has a gift registry system, provide an email tool with which users
can enter a delimited list of addresses to notify all of their friends and family
with one quick message. You might also provide bundles of registry notifica-
tion postcards you can mail to registrants upon request. These can be slipped
into wedding or shower invitations to conveniently notify all guests of the gift
registry. Your users will appreciate the thoughtful gesture that makes their life
easier, and you’ll enjoy the sales it generates.

The return on investment for a gift registry is really amazing. Although it may
cost you thousands of dollars to develop a gift registry system, it may only take
a couple of filled registries to make back your investment. Also, consider the
amazing rate of message dissemination. One gift registrant can spread aware-
ness of your site and its products to hundreds of people very quickly.

Let Your Users Share Their Perspectives
Chapter 4 presented a hypothetical story of a user named Tom, who was
searching for guidance on how to set up a home theater system. In this story
Tom found the answers he needed and the products for his dream system all
on the same site. User reviews of each product helped inform his buying deci-
sions, and inspired confidence in his purchases. Tom later returned to the site
to write his own glowing reviews of the products he purchased, helping reas-
sure other users about the quality of the products.

Although this story is intended to illustrate how quality content can improve
findability in various ways, it also speaks to a basic principle of human nature.
When people truly believe in an idea or product, they want to tell others. Prod-
uct reviews let users evangelize the positive traits of your products. Users are
more likely to take to heart a glowing product review written by a fellow shop-
per than one written by a member of your company. Although you may have
ulterior motives to talk up your products, your users probably don’t.

	 If you’d like to learn
	 how to publish any
content within a database to
an RSS feed, check out Kai
Blankenhorn’s PHP class
http://www.bitfolge.de/
rsscreator-en.html.

building viral marketing tools    31

User reviews don’t have the message mobility that a Tell a Friend system
might, but they can certainly increase sales. Shoppers who may be equivo-
cating over a product can be swayed to buy when a positive user review
dispels doubts.

Be warned that this is a double-edged sword. If your products don’t live up to
consumer expectations, a user-generated review system can also sway shop-
pers to not buy. A small number of negative reviews among many positive ones
can actually help you, though, as it lets users know you’re not filtering out all of
the negative comments.

Later in this chapter we’ll see how to build a simple product review system
that will let help you market your product. Now that you’ve got a foundation in
the concepts of viral marketing, let’s explore practical examples that could be
incorporated into any website.

Building a Viral Product
Any of the viral marketing techniques discussed thus far could be imple-
mented independently or in synchrony in your website to motivate your users
to spread your message. Making it easy for your audience to tell others about
your content, products, or services can increase traffic to your site, and inspire
trust in your content.

Let’s put some of this theory into practice by building a viral product. Imag-
ine we’re creating an ecommerce website for an artist to sell her or his work
online. The product page is certainly one of the most important in the site
because it’s here that users learn about products and decide whether to make
a purchase. It’s a perfect place to include viral marketing tools. 	

We’ll create three viral marketing tools, each motivating the user in a different
way to tell others about the product:

n	 Tell a Friend: lets users communicate their desires to friends and family

n	 Product reviews: lets users communicate their personal perspective about
the product and perhaps convince other users to buy

n	 Social networking links: lets users build their online identity by endorsing
a product—the products they like says something about their beliefs

Each of these tools reaches new users in different ways. The Tell a Friend sys-
tem will connect people who know and trust the sender to the products on the

32    Chapter 11

site. The user-generated product reviews will let total strangers inspire trust in
the products for all new customers. The social networking links will let users
evangelize the product on other sites to both strangers and personal acquain-
tances alike.

Although we’ll be applying these tools to the common scenario of selling
products online, they could also be applied to any number of other situations.
Once you’ve built these tools they can easily be ported to other projects with
minimal setup time. Figure 11.7 shows the product page we’ll build with these
three viral marketing tools.

Figure 11.7  Three dif-
ferent viral marketing
tools—Tell a Friend, user-
generated product reviews,
and social networking
links—will make it easy for
users to tell others about
this product.

The interface for this page can become a bit overwhelming with all three of
these viral marketing tools occupying space and vying for the users’ attention.
To simplify things for users, the Tell a Friend form can be collapsed by default
with JavaScript. The arrow next to the label lets users know they can expand
the Tell a Friend form when needed.

building viral marketing tools    33

Since the code to expand and collapse a <div> was already built in Chapter 7
in the section “Solving Scripted Style Problems,” we’ll skip it here. Because it
was built following unobtrusive scripting principles, adding it to this example
will only require a link to the external JavaScript file and a call to the function
once the page has loaded.

Building a Tell a Friend Feature
The Tell a Friend tool is simply an enhanced contact form that sends an email
to a friend along with a link to the product. The expanded Tell a Friend form is
shown in Figure 11.8.

Like the YouTube Tell a Friend form shown in Figure 11.4, this form also
includes a default message to expedite the sending process. Making the pro-
cess faster and easier increases the chances that your users will actually tell
their friends about your products. The message is kept informal so it reads like
the voice of the user rather than a marketing message.

Building the Form
The first step to building the Tell a Friend tool is to construct the form to send
the message. Create a new file called product.php with a basic HTML struc-
ture, and some product content. Under it add the following form:

<form id=”tellfriend” action=”<?=$_SERVER[‘PHP_SELF’]?>”
method=”post”>
 <fieldset>
 <div class=”notification”>All fields required</div>
 <legend>Your Info</legend>
 <label for=”name”>Your Name</label>

Figure 11.8  The Tell a
Friend tool is an enhanced
contact form that emails a
personal message and a
link to the product page.
The default message expe-
dites the sending process
so users can quickly tell
their friends about the
product.

34    Chapter 11

 <input type=”text” name=”senders-name” id=”sender-name”
value=”<?=$_POST[‘senders-name’]?>” />

 <label for=”name”>Your Email</label>
 <input type=”text” name=”senders-email” id=”sender-email”
value=”<?=$_POST[‘senders-email’]?>” />
 </fieldset>

 <fieldset>
 <legend>Your Friend’s Info</legend>
 <label for=”name”>Friend’s Name</label>
 <input type=”text” name=”friends-name” id=”friends-name”
value=”<?=$_POST[‘friends-name’]?>” />

 <label for=”name”>Friend’s Email</label>
 <input type=”text” name=”friends-email” id=”friends-email”
value=”<?=$_POST[‘friends-email’]?>” />
 </fieldset>

 <fieldset>
 <legend>Your Message</legend>
 <label for=”message”>Message</label>
 <textarea name=”message” id=”message”>I love this thing!
<?=$_POST[‘message’]?></textarea>
 </fieldset>

 <input type=”hidden” name=”product-id” value=”12” />
 <input type=”submit” name=”submit-friend” value=”Send”
class=”btn” />
</form>

This form follows basic accessibility standards so the widest audience pos-
sible can use it. The <input /> and <textarea> tags are all accompanied by
a <label>. The three code sections of the form—the sender’s info, their friend’s
info, and the message—are all grouped with <fieldset> then labeled with
<legend>.

Amidst the HTML is interspersed a bit of PHP, which I’ve highlighted for
your reference. The value of the action attribute in the <form> tag is dynami-
cally defined with <?=$_SERVER[‘PHP_SELF’]?>. This form will submit to itself
in order to send the message or report errors. Rather than hard-coding the
page’s URL I’ve used PHP to find out the file name. This ensures that should
this page be renamed or moved, the script will still work without modification.

	 For some guidance
	 on the elements
used in this form to make it
accessible, read Ian Lloyd’s
three-part tutorial at http://
webstandards.org/learn/
tutorials/accessible-forms/.

building viral marketing tools    35

Inside the value attribute of each <input /> and between the <textarea> tags
PHP will write in the content the user has written once the form has been sub-
mitted. This ensures that even after the user has submitted the form they don’t
lose the text they’ve written. If the user has made some mistake when filling
out the form and the page refreshes with an error message, they won’t have to
retype everything. It will also expedite sending more messages to other friends
because they’ll only have to change the text in the friend’s name and email
fields once they’ve successfully sent a message.

At the end of the form, directly above the submit button, is a hidden <input />
field that contains the product id. This is included in the form so the PHP
script that will receive the input and send the message can build a link to the
product page in the email.

We’ll return to this page shortly to add some more necessary elements,
but first let’s build a PHP function to validate the form input and send the
message.

Building the Tell a Friend Function
Create an include folder called inc, and inside it create a new file called tell-
friend.php. The functionality of the Tell a Friend tool is kept in a separate file
so it can be easily repurposed in other projects if needed.

The tell-friend.php file will contain a single function, which will receive no
arguments, and will contain two key sections to do the following:

n	 Validate all user input

n	 Send the message

Here’s the basic structure to start the function:

<?
function tellFriend(){
 // Validate user input
 $err = array();

 // If no errors send message
}
?>

Any validation errors will be logged in an array called $err. After all of the vali-
dation tests have been run, a conditional will count the number of elements in
this array to determine if any errors were logged. By default this array is empty.

36    Chapter 11

If it contains more than zero elements we’ll know an error was encountered.
If the user did make an error by neglecting to fill out a field or by providing an
invalid email address, the script will stop and return an error message to the
products page.

This user input validation is added to the function directly after the declaration
of the $err variable. The array_push() PHP function is used to append an
error message to the $err array, should a problem be encountered.

// Check for senders name
if(empty($_POST[‘senders-name’])){
 array_push($err,”Please include your name”);
}

// Check validity of senders email address
if(empty($_POST[‘senders-email’])){
 array_push($err,”Please include your email address”);
}elseif(!ereg(“^[a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.([a-zA-
Z]{2,4})$”, $_POST[‘senders-email’])){
 array_push($err,”Your email address is invalid”);
}

// Check for friends name
if(empty($_POST[‘friends-name’])){
 array_push($err,”Please include your friend’s name”);
}

// Check validity of friends email address
if(empty($_POST[‘friends-email’])){
 array_push($err,”Please include your friend’s email address”);
}elseif(!ereg(“^[a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.([a-zA-
Z]{2,4})$”, $_POST[‘friends-email’])){
 array_push($err,”Your friend’s email address is invalid”);
}

// Check for message
if(empty($_POST[‘message’])){
 array_push($err,”No message provided”);
}

A majority of the validation conditionals are simply looking for empty fields. If
the user leaves any field blank, an error will be logged. The email addresses
are a little more advanced, though, and require a regular expression to evalu-
ate the address for a pattern. As discussed in Chapter 3, regular expressions

building viral marketing tools    37

are commonly used in many scripting and programming languages to identify
patterns in strings.

Since email addresses follow a standard structure—numbers and letters
on either side of an @ and a 2–4 character extension at the end—a regular
expression can easily evaluate the validity of an email address.

After validating all user input, the script looks at the $err array to see if any
error messages were recorded. If any error messages are detected within the
array, a for loop runs to build a single error message to be returned for display
on the product’s page.

if(count($err) > 0){
 // Build and return error message
 for($i=0;$i<count($err);$i++){
 $message .= $err[$i] . ‘
’;
 }
 return ‘<div class=”error”>’.$message.’</div>’;
}else{

 // Send the email to friend

}

If no errors were detected, the script moves on to send the email. PHP’s built-
in mail() function makes sending email messages very simple. It accepts the
following four parameters:

n	 to email address

n	 subject

n	 message

n	 optional additional email headers such as a reply-to address

To send the message the script will first assemble the message in a variable:

$message = $_POST[‘message’].”
 Check it out: http://example.com/products/”.$_POST[‘product-
id’].”
 “.$_POST[‘senders-name’];

The URL for the product page is assembled within the message variable
using the product id specified in the HTML form’s hidden field. The URL in
this example assumes that you are using the search engine friendly URL tech-
niques outlined in Chapter 3, but you could just as easily modify this URL to
pass the product id via a query string if necessary.

38    Chapter 11

Once the message is built the mail() function is run from within a conditional.
The mail() function returns true if the message is successfully sent and false
if something went wrong. By running the mail() function inside a conditional
the script can automatically return a success or failure message to let the user
know the outcome of the process.

if(mail($_POST[‘senders-email’],”This is awesome!”,
$message,”From:”.$_POST[‘senders-email’].”\r\nReply-to:”.$_
POST[‘senders-email’])){
 return “Tada! Your message has been sent!”;
}else{
 return “Duoh! Something went awry with your message.”;
}

Let’s take a look at the completed tellFriend() function:

<?php
function tellFriend(){

 // Validation ///
 $err = array(); // will store all errors found in form
submission

 // Check sender info
 if(empty($_POST[‘senders-name’])){
 array_push($err,”Please include your name”); }

 if(empty($_POST[‘senders-email’])){
 array_push($err,”Please include your email address”);
 }elseif(!ereg(“^[a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.([a-zA-
Z]{2,4})$”, $_POST[‘senders-email’])){
 array_push($err,”Your email address is invalid”);
 }

 // Check friend’s info
 if(empty($_POST[‘friends-name’])){
 array_push($err,”Please include your friend’s name”); }

 if(empty($_POST[‘friends-email’])){
 array_push($err,”Please include your friend’s email
address”);
 }elseif(!ereg(“^[a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.([a-zA-
Z]{2,4})$”, $_POST[‘friends-email’])){
 array_push($err,”Your friend’s email address is invalid”);
 }

building viral marketing tools    39

 // Check for blank message
 if(empty($_POST[‘message’])){
 array_push($err,”No message provided”); }

 if(count($err) > 0){
 // Build and return error message
 for($i=0;$i<count($err);$i++){
 $message .= $err[$i] . ‘
’;
 }
 return ‘<div class=”error”>’.$message.’</div>’;

 }else{

 // Send the email to friend
 $message = $_POST[‘message’].”\r\rCheck it out: http://
example.com/products/”.$_POST[‘product-id’].”\r\r”.$_POST[‘senders-
name’];

 if(mail($_POST[‘senders-email’],”This is awesome!”,
$message,”From:”.$_POST[‘senders-email’].”\r\nReply-to:”.$_
POST[‘senders-email’])){
 return “Tada! Your message has been sent!”;
 }else{
 return “Duoh! Something went awry with your message.”;
 }
 }
}
?>

That wraps up the tell-friend.php file. To put the finishing touches on the
system we’ll return to the product.php page.

Calling the tellFriend() Function
When the Tell a Friend form is submitted it will reload itself and run the
tellFriend() function. In order to detect whether the form has been submit-
ted, the product.php page will look for the presence of a value within one of
the $_POST variables automatically created in PHP’s memory when form data
is sent to it via the post method. Any form element with a name and value attri-
bute defined will generate a new $_POST variable. The variable we’ll look for is
the one created by the submit button - $_POST[‘submit-friend’].

Looking for the presence of this variable will allow the page to identify the spe-
cific form that has been submitted rather than just any post form submission.

40    Chapter 11

Preventing Spam

Count on spam bots visiting your site to pollute
your forms with their annoying messages. It’s an
unfortunate reality that requires preventative mea-
sures. You can fend off spam by requiring user
input that is only possible by humans.
	 To solve the spam problem in the simplest fash-
ion, add a spam challenge question field to your
forms. Ask a question like “What color is the sky?”
or “What’s two plus two?” then use a simple condi-
tional in your processing script to see if the answer
provided is valid. A spam bot will have a tough time
correctly filling out this field.
	 Another option is to use a Captcha image. Capt-
chas are those crazy distorted images often seen
accompanying signup forms. The user has to type
the text contents of an image into field to prove they
are not a spam bot, so the form can be processed.

Ed Eliot has created a brilliant PHP Captcha class
(http://www.ejeliot.com/pages/2) that makes
generating Captcha images in your forms very
simple. His class also generates accessible audio
alternatives for the visually impaired.
	 ReCaptcha (http://recaptcha.net/) provides an
easy-to-use Captcha widget you can drop into any
form. It culls text from scanned books, so with each
completed Captcha a book is a few words closer
to being digitized.
	B oth of the form examples in this chapter—Tell a
Friend and Customer Reviews—could be enhanced
with some sort of spam prevention. Choose an
approach that’s easiest for you to implement, and
add it to these examples to keep your inbox a little
less junky.

When the product reviews form is added to the page the script will be smart
enough to discern which of the two forms has been submitted, invoking the
correct function.

Directly above the Tell a Friend form include the tell-friend.php file into the
page. Next, add a <div> tag where the response from the script can be dis-
played—message successfully sent or errors occurred. Within this <div> add
a conditional to call the tellFriend() function if the $_POST[‘submit-friend’]
is set.

<? require_once(“inc/tell-friend.php”); ?>
<div class=”response”><? if(isset($_POST[‘submit-friend’])){echo
tellFriend();}?></div>

Because the tellFriend() function uses the return keyword to send its
response messages back to the location from which it’s called, echo tell-
Friend() will automatically write success or error messages inside of this
<div>.

The product page is now ready to let users tell their friends and family about
the products they want. Let’s move on to the user-generated review system.

building viral marketing tools    41

Building a Product Review Feature
The product review system is a little more complex than the Tell a Friend sys-
tem as it requires some way of vetting the reviews submitted. It’s highly likely
that your site is going to get some spammy or undesirable review submissions.
To solve the problem, an email containing the review will first be sent to the
site administrator. Also included in the email will be a link to accept the review,
and one to delete it. With a single click the admin can approve or delete the
review submission.

To store all of the reviews we’ll use a MySQL database table like the one
shown in table 11.1. The reviewid field will act as the primary key so we can
uniquely identify each record. Set this field to auto-increment so each time
a new record is added a unique number will automatically be stored in the
reviewid field.

Table 11.1  My SQL Database Table

reviewed productid review reviewersname status dateposted

int PK int text text int int

On the product.php page we’ll pull all of the approved reviews from the data-
base and display them directly above the review submission form. Later in the
chapter we’ll add the PHP code to display the reviews, but first let’s build the
HTML form for submissions.

<div id=”reviews-container”>
 <h4>Product Reviews</h4>
 <!-- reviews will be displayed here -->
</div>

<div id=”post-review”>
 <form id=”review-form” action=”<?=$_SERVER[‘PHP_SELF’]?>”
method=”post”>
 <fieldset>
 <div class=”notification”>All fields required</div>
 <legend>Review of This Product</legend>

 <label for=”reviewersname”>Your Name</label>
 <input type=”text” name=”reviewersname” id=”reviewersname”
value=”<?=$_POST[‘reviewersname’]?>” />

42    Chapter 11

 <label for=”review”>Review</label>
 <textarea name=”review” id=”review”><?=$_POST[‘review’]?>
</textarea>
 </fieldset>

 <input type=”hidden” name=”product-id” value=”12” />
 <input type=”submit” name=”submit-review” value=”Save”
class=”btn” />
 </form>
</div>

You may see a lot of similarities here with the previous form example. Like
the Tell a Friend form, the review form also uses <?=$_SERVER[‘PHP_SELF’]?>
to submit the input to the same page where it will be processed by a linked
script. The fields also maintain user input via the $_POST super-global variables
automatically created when the form is submitted. If the user made a mistake,
their review will still be present in the form even after they’ve attempted to sub-
mit it.

This form also includes a hidden product id field just like the Tell a Friend
form. The product id will need to be associated with each review record in the
database so we’re able to grab only the reviews associated with a particular
product.

We’ll make some minor additions to this form just before completing the sys-
tem to connect it to the reviews script that we’ll create next.

Building the Reviews Script
The reviews.php script will contain four functions that will manage all tasks
associated with the reviews. Again, because the core functionality will be kept
externally you could easily plug this script into any project. Each function is
named to describe the task it completes:

n	 storeReview()

n	 getReviews()

n	 confirmReview()

n	 deleteReview()

A task common to each of these four functions is some sort of interaction
with the database. Rather than repeatedly making a connection inside each
function, we’ll establish a database connection before declaring any of the
functions.

building viral marketing tools    43

$con = mysql_connect(‘hostname’,’dbusername’,’dbpassword’);
mysql_select_db(‘dbname’,$con);

Be sure to plug in the correct host, username, password, and database name
for your database server.

storeReview()  The storeReview() function has four primary tasks to
complete:

1.	 Validate all user input.

2.	 Store the review in the database.

3.	 Email the admin so they can delete or confirm the review.

4.	 Let the user know the outcome of the process.

The user input validation in this function will be very much like the validation
created earlier for the Tell a Friend function. It uses an array to log any errors
encountered.

This function will receive no parameters. It begins by declaring a variable to
catch validation errors and a variable to define the email address to which the
review should be sent.

function storeReview(){
 $adminemail = “you@example.com”;
 $err = array();

 // Validation
 if(empty($_POST[‘reviewersname’])){
 array_push($err,”Please include your name”); }

 if(empty($_POST[‘review’])){
 array_push($err,”Don’t forget to write a review!”); }

 if(count($err) > 0){

 // Build and return error message
 for($i=0;$i<count($err);$i++){
 $message .= $err[$i] . ‘
’;
 }

 return ‘<div class=”error”>’.$message.’</div>’;
 }

}

44    Chapter 11

The validation is simply confirming that the user included a name and a review
in their submission. If a problem was encountered, an error message is
returned to product.php page, and the script will stop.

If validation went well the review gets stored in the database. To make sure
the user input is safe for storage, we’ll use some of PHP’s built-in functions
to clean things up. The mysql_real_escape_string() function adds slashes
to quotes within strings to prevent SQL injection attacks—see the section
“Creating a Custom Search Tool” in Chapter 6 for more info on this topic. The
strip_tags() function removes any dangerous HTML and disables JavaScript
that could affect the display of the review on the product.php page.

$reviewersname = mysql_real_escape_string(strip_tags($_
POST[‘reviewersname’]));
$review = mysql_real_escape_string(strip_tags($_POST[‘review’]));
$productid = $_POST[‘product-id’];

With the review ready for storage in the database, an SQL query can be built.
Remember that even though we’re storing the review in the database, it won’t
be visible on the site until the admin has received the review by email and
clicked the link within to approve it. The SQL query will write 0 in the status
field of the record. Any record with status 0 is still waiting for the administrator’s
approval and won’t be pulled by the getReviews() function we’ll create shortly.

$sql = “INSERT INTO reviews SET productid=’$productid’,
review=’$review’, reviewersname=’$reviewersname’, status=’0’,
dateposted=’”.time().”’”;

The date the review was posted is recorded using PHP’s time() function,
which will get the number of seconds since January 1, 1970—known as the
epoch. This assigns a unique number to each second so the dates can be
easily sorted later in the getReviews() function. This large integer can be eas-
ily translated into a textual date users can read using PHP’s date() function
later when we need to display it.

The next step is to run the query, and watch for errors. The function will return
an error message and stop the script if a problem was encountered, otherwise
it will move on to sending the email.

if(!$result = mysql_query($sql)){
 return “Duoh! There was some trouble storing your review.”;
}else{
 // Send email to admin

}

building viral marketing tools    45

Inside the second branch of this conditional the message is assembled
before it’s sent to the admin. Earlier when the database table was set up, the
reviewid field was set as the primary key to auto-increment. Once the query
has been run and the review is saved in the table, it will automatically be
assigned a unique reviewid. PHP has a handy, built-in function called mysql_
insert_id() that will grab the id of the record from your last query. We’ll need
the reviewid to create the confirm and delete links in the email. These links
will use a query string to pass the reviewid and the action to be performed
on it.

Here’s what the message assembly looks like:

// Grab reviewid for inclusion in email
$reviewid = mysql_insert_id();

// Send email to admin for review
$message = “
$reviewersname posted a new product review

$review

Confirm: http://example.com/vet-review.php?action=confirm&reviewid
=$reviewid
Delete: http://example.com/vet-review.php?action=delete&reviewid=$
reviewid
“;

The vet-review.php page alluded to in the confirm and delete links will be
created shortly to help the administrator quickly confirm or delete all reviews
submitted.

All that’s left to complete in the storeReview() function is the email delivery.
As was the case in the Tell a Friend system, the mail() function will run in a
conditional to instantly return a message indicating an error or success.

if(mail($adminemail,”New product review to confirm”,$message,”From
:$adminemail\r\nReply-to:$adminemail”)){

 return “Thanks for posting your review! It will be read by the
site’s head honcho before it will be added to the site.”;

}else{

46    Chapter 11

 return “Duoh! There was some trouble letting the site’s head
honcho know about your review.”;

}

The storeReview() function is all set, and we’re now ready to build the
getReviews() function.

getReviews()  As you might have already guessed, the getReviews() func-
tion will grab all of the reviews for a particular product and return them as a
string product.php page. It expects to receive a product id so it can grab the
right set of reviews.

The function will only retrieve reviews that have the status of 1. This means
they have been reviewed and approved. By default, all new reviews will have a
status of 0, indicating they have not yet been approved. All of the reviews will
be sorted with the newest ones on top of the stack.

After the function queries the database for the reviews, it will check to see if
any errors occurred in the transaction. An error message will be returned if
something went awry.

It’s possible that even if the communication with the database went OK, the
product may not have any reviews written about it yet. In this case a descrip-
tive message will be returned to let the user know.

Once all of the error checking is out of the way, a while loop will build a string
with all of the reviews assembled in <div> tags with CSS classes assigned so
they can be easily styled back on the product.php page.

Let’s take a look at the assembled getReviews() function.

function getReviews($productid){

 $sql = “SELECT * FROM reviews WHERE productid=’$productid’
 AND status=’1’ ORDER BY dateposted DESC”;

 if(!$result = mysql_query($sql)){

 return ‘

 Duoh! There was a problem getting the product reviews.
 ’;

building viral marketing tools    47

 }elseif(mysql_num_rows($result) == 0){

 return ‘No reviews are posted for this product’;

 }else{

 // Grab all reviews
 while($row = mysql_fetch_array($result)){
 $reviews .= ‘
 <div class=”review”>’.stripslashes($row[‘review’]).’
 <div class=”review-meta”>Posted by ‘.$row[‘reviewersn
ame’].’ on ‘.date(“l F j, Y”,$row[‘dateposted’]).’</div>
 </div>’;

 }

 return $reviews;
 }
}

Because the mysql_real_escape_string() function was used to escape
quotes in reviews when stored in the database, the strip_slashes() function
is used here to remove them from the display.

In the storeReview() function we used PHP’s time() function to store the
date and time the review was posted. The date() function is used here to
transform the long integer it created into a textual date.

The getReview() function is now all set. The last two functions in the
reviews.php script—confirmReview() and deleteReview()—will handle the
review vetting process.

confirmReview()  The confirmReview() function will be triggered when
the admin clicks the confirm link in the review notification email. It will simply
update a review record to change the status from 0 to 1, which will cause it to
be displayed on the product.php page. This function will need to be passed
the reviewid so it can locate the review record to be updated.

The function starts by simply confirming that a reviewid has been passed to
it when it was called. If not, it will return an error and exit the script. If no error
is encountered, it will run an UPDATE query to change the review’s status and
display a success or failure message.

It’s a fairly brief function so here it is in its entirety:

	 If you’d like to display
	 the date the review
was posted in a different
format, consult the PHP
documentation for the
date() function http://
www.php.net/manual/en/
function.date.php.

48    Chapter 11

 function confirmReview($reviewid){
 if(!isset($reviewid)){
 return “Sorry, we couldn’t confirm the review because no
review id was supplied”;
 }

 $reviewid = mysql_real_escape_string($reviewid);
 $sql = “UPDATE reviews SET status=’1’ WHERE
reviewid=’$reviewid’”;

 if($result = mysql_query($sql)){
 return “The review has been posted!”;
 }else{
 return “Duoh! There was some trouble when confirming the
review.”;
 }
}

deleteReview()  The deleteReview() function is a lot like the confirmRe-
view() function, and is equally short. It too expects to receive a reviewid as a
parameter, and will display an error if none is provided.

The rest of the function is exactly the same as the confirmReview() function
except that instead of an UPDATE query, it uses DELETE to remove a review from
the database.

function deleteReview($reviewid){
 if(!isset($reviewid)){
 return “Sorry, we couldn’t delete the review because no
review id was supplied”;
 }

 $reviewid = mysql_real_escape_string($reviewid);
 $sql = “DELETE FROM reviews WHERE reviewid=’$reviewid’”;

 if($result = mysql_query($sql)){
 return “The review has been deleted!”;
 }else{
 return “Duoh! There was some trouble when deleting the
review.”;
 }
}

building viral marketing tools    49

The reviews.php script is now finally all wrapped up. Here’s what it looks like
when fully assembled:

<?
// Connect to database
$con = mysql_connect(‘hostname’,’dbusername’,’dbpassword’);
mysql_select_db(‘dbname’,$con);

function getReviews($productid){
 $sql = “SELECT * FROM reviews WHERE productid=’$productid’ AND
status=’1’ ORDER BY dateposted DESC”;
 if(!$result = mysql_query($sql)){
 return ‘Duoh! There was a problem
retrieving the reviews for this product.’;
 }elseif(mysql_num_rows($result) == 0){
 return ‘No reviews are posted for this product’;
 }else{
 while($row = mysql_fetch_array($result)){
 $reviews .= ‘
 <div class=”review”>’.stripslashes($row[‘review’]).’
 <div class=”review-meta”>Posted by ‘.$row[‘reviewersna
me’].’ on ‘.date(“l F j, Y”,$row[‘dateposted’]).’</div>
 </div>’;
 }
 return $reviews;
 }
}

function getReviewsOld($productid){
 $sql = “SELECT * FROM reviews WHERE productid=’$productid’ AND
status=’1’ ORDER BY dateposted DESC”;
 if($result = mysql_query($sql)){

 if(mysql_num_rows($result) > 0){
 $reviews = array();
 while($row = mysql_fetch_array($result)){
 $review = array(‘reviewersname’=>stripslashes($row
[‘reviewersname’]),’review’=>stripslashes($row[‘review’]),’datepos
ted’=>$row[‘dateposted’]);
 array_push($reviews,$review);
 }
 return $reviews;
 }else{
 return “No reviews are posted for this product”;
 }

50    Chapter 11

 }else{
 return “Duoh! There was a problem retrieving the reviews
for this product.”;
 }
}

function storeReview(){
 $adminemail = “you@example.com”;
 $err = array();

 // Validation
 if(empty($_POST[‘reviewersname’])){
 array_push($err,”Please include your name”); }
 if(empty($_POST[‘review’])){
 array_push($err,”Don’t forget to write a review!”); }
 if(count($err) > 0){
 // Build and return error message
 for($i=0;$i<count($err);$i++){
 $message .= $err[$i] . ‘
’;
 }
 return ‘<div class=”error”>’.$message.’</div>’;
 }

 $reviewersname = mysql_real_escape_string(strip_tags($_
POST[‘reviewersname’]));
 $review = mysql_real_escape_string(strip_tags($_
POST[‘review’]));

 $sql = “INSERT INTO reviews SET productid=’$productid’,
review=’$review’, reviewersname=’$reviewersname’, status=’0’,
dateposted=’”.time().”’”;
 if(!$result = mysql_query($sql)){
 return “Duoh! There was some trouble storing your
review.”;
 }else{
 // Grab reviewid for inclusion in email
 $reviewid = mysql_insert_id();

 // Send email to admin for review
 $message = “
 $reviewersname posted a new product review
 --
 $review
 --

building viral marketing tools    51

 Confirm: http://example.com/vet-review.php?action=confirm&
reviewid=$reviewid
 Delete: http://example.com/vet-review.php?action=delete&re
viewid=$reviewid
 “;

 if(mail($adminemail,”New product review to confirm”,$messa
ge,”From:$adminemail\r\nReply-to:$adminemail”)){
 return “Thanks for posting your review! It will be
read by the site’s head honcho before it will be added to the
site.”;
 }else{
 return “Duoh! There was some trouble letting the
site’s head honcho know about your review.”;
 }
 }
}

function confirmReview($reviewid){
 if(!isset($reviewid)){
 return “Sorry, we couldn’t confirm the review because no
review id was supplied”;}

 $reviewid = mysql_real_escape_string($reviewid);
 $sql = “UPDATE reviews SET status=’1’ WHERE
reviewid=’$reviewid’”;
 if($result = mysql_query($sql)){
 return “The review has been posted!”;
 }else{
 return “Duoh! There was some trouble when confirming the
review.”;
 }
}

function deleteReview($reviewid){
 if(!isset($reviewid)){ return “Sorry, we couldn’t delete the
review because no review id was supplied”; }

 $reviewid = mysql_real_escape_string($reviewid);
 $sql = “DELETE FROM reviews WHERE reviewid=’$reviewid’”;
 if($result = mysql_query($sql)){
 return “The review has been deleted!”;
 }else{

52    Chapter 11

 return “Duoh! There was some trouble when deleting the
review.”;
 }
}
?>

To finish the review system we’ll need to create a page to trigger the confirm-
Review() and deleteReview() functions when the admin clicks the links in a
review notification email. Then we’ll put the finishing touches on the product.
php page to call the getReviews() and storeReview() functions.

Handling the Review Vetting Process
The email sent to the admin in the storeReview() function contained two
links to a page called vet-reviews.php where the admin can instantly con-
firm or delete a review. The page toggles between the confirmReview() and
deleteReview() functions by looking at a variable called action within the
query string. Here’s what those links might look like in the email:

http://example.com/vet-review.php?action=confirm&reviewid=12
http://example.com/vet-review.php?action=delete&reviewid=12

In addition to defining the action to take place, the URL also includes the
reviewid of the target record.

Start the vet-reviews.php page with some basic HTML to define the struc-
ture. This page will first include the reviews.php script we’ve just created, then
check to see if it has been supplied an action and reviewid $_GET variable
via the URL. If it has what it needs, the script will run the deleteReview() or
confirmReview() function depending on the action defined in the URL.

...
<div id=”vet-message”>
<?php
require_once(“inc/reviews.php”);
if(!isset($_GET[‘action’]) or !isset($_GET[‘reviewid’])){
 echo “Sorry, this page can only be accessed by the
administrator”;
}else{

 switch($_GET[‘action’]){
 case “confirm”:
 echo confirmReview($_GET[‘reviewid’]); break;

 case “delete”:
 echo deleteReview($_GET[‘reviewid’]); break;

building viral marketing tools    53

 default:
 echo “Whoa, pardner! There’s no way to vet this review
if you don’t provide a valid action.”; break;
 }

}
?>
</div>
...

The switch statement looks for the value confirm or delete in the $_
GET[‘action’] variable. If neither value is in the $_GET[‘action’] variable, the
switch statement goes to the default branch, which will display a message
indicating that a valid action has not been supplied.

Figure 11.10 shows what the admin will see when they click the link in their
email to approve a new review.

That’s all there is to the vet-reviews.php script. Remember, only the admin
will know the page exists. Users aren’t likely to stumble across it because it’s
only linked from the email sent to the admin. Even if they do discover the script
they’d have to supply the correct query string to make it swing into action.

Figure 11.10  When the
admin clicks the confirm
link in an email notifica-
tion, they’ll launch a
browser window where the
vet-reviews.php script can
run and the review will be
added to the site.

Securing the vet-reviews.php Script

It’s a good idea to include some additional security
for the script such as a password to keep things
private. Using a .htaccess file, Apache will require
a username and password to access a file or direc-
tory. I’ll leave this as an exercise for the reader to
implement, but here are some resources that can
get you started.

http://tools.dynamicdrive.com/password/

http://www.elated.com/articles/
password-protecting-your-pages-with-htaccess/

http://www.mattcutts.com/blog/htaccess-101/

54    Chapter 11

Calling the getReviews() and storeReview() Functions
With the various pieces of the reviews system completed, we’ll connect the
product.php page to the review.php script so the current reviews can be dis-
played, and new ones can be stored in the database.

As we began the reviews system, directly above the product review form a
<div> was created to display all of the current reviews. Within that <div> we’ll
first include the reviews.php script.

<div id=”reviews-container”>
 <h4>Product Reviews</h4>
 <? require_once(“inc/reviews.php”); ?>
</div>

Directly after the include we’ll add a new <div> to contain the call to the
storeReview() function. Just like the Tell a Friend system created earlier, the
review system will look to see if a $_POST variable has been created in PHP’s
memory by the submit button. If it has, this indicates the form has been sub-
mitted so we’ll need to call the storeReview() function and display the results
it returns in the page.

<div class=”response”>
 <? if(isset($_POST[‘submit-review’])){echo storeReview();}?>
</div>

Lastly, just before the close of the <div id=”reviews-container”> add
another <div> in which to display the reviews already stored in the database.
Inside, the getReviews() function is called, passing the id of the product so its
reviews can be retrieved.

<div class=”reviews”><?=getReviews(12)?></div>

The user-generated product review system is finally complete and ready to go.
For this example, I’ve hard-coded the product id throughout the product.php
page. Using the search engine friendly URL techniques discussed in Chapter
3, it wouldn’t be difficult to convert this page to pull the product id from the
URL in order to make it flexible enough to accommodate an infinite number of
products. Similarly, you could pull the product content from a database using
the same product id in the URL to quickly transform the product.php page
into the foundation of a practical ecommerce system.

building viral marketing tools    55

Building Social Network Submission Links
The final viral marketing tool on the product.php page is a series of quick links
that let users add this product information to their favorite social networking
applications. The easier you make it for your users to share information about
your product, the greater the exposure it will get.

Social networking sites not only let users submit content directly via their web-
site, but also provide a submission service that lets other websites and appli-
cations submit content via a specially constructed URL that includes certain
variables. Inside the URL you can pass a variety of information including the
title of your page, your URL, a description of your content, and more.

The tricky part of submitting your content to social networking sites using
a URL is that you have to know which variables are required, and there’s no
standard that’s followed. Each site has its own approach.

I’ve compiled a list of submission URLs for some of the most popular social
networking sites. The highlighted text describes the type of content you’ll need
to include in each variable.

Digg
http://digg.com/submit?phase=2&url=URL of your page&topic=Category
to submit to &bodytext=Description of content&title=Page title

Delicious
http://del.icio.us/post?noui&jump=close&url=URL of your
page&title=Page title

Facebook
http://www.facebook.com/sharer.php?u=URL of your page&t=Page title

Technorati
http://technorati.com/faves?add=URL of your page

Twitter
http://twitter.com/home?status=URL of your page plus any
additional descriptive text

Furl
http://furl.net/storeIt.jsp?u=URL of your page&t=Page title

Reddit
http://reddit.com/submit?url=URL of your page&title=Page title

56    Chapter 11

StumbleUpon
http://www.stumbleupon.com/submit?url=URL of your page&title=Page
title

To illustrate how these submission URLs are added to the product.php page,
here’s a simple example of a Facebook submission link. I’ve used some CSS
to display a Facebook icon to the left of the link.

HTML
<a href=”http://www.facebook.com/sharer.php?u=http://example.com/
product.php&t=The Candy Dish” class=”facebook”>Facebook

CSS
.facebook {padding-left:20px; background:url(../i/facebook.gif)
left no-repeat;}

If you find making links to all of these social networking sites a bit tedious you
could take a short cut. AddThis (http://addthis.com) is a free service that
provides a widget to add a wide array of social networking buttons to your
page (see Figure 11.10). It also includes free statistics that will tell you which
pages on your site are bookmarked most often.

That’s a wrap on all three of these practical viral marketing tools. Users will
now be able to share this product with friends and family through the Tell
a Friend form, they can share their perspective on it via the user-generated
reviews form, or share it on their favorite social networking platform.

Figure 11.10  AddThis
(http://addthis.com) makes
it easy to drop links in your
page to social networking
sites.

