
13C h a p t e r

W585

reCursion

to learn to “think recursively”

to be able to use recursive  
helper methods

to understand the relationship between recursion and iteration

to understand when the use of recursion affects the efficiency of an algorithm

to analyze problems that are much easier to solve by recursion than by iteration

to process data with recursive structures using mutual recursion

C h a p t e r  G o a l s

C h a p t e r  C o n t e n t s

13.1  Triangle numbers revisiTed  W586

Common Error 13.1: infinite recursion W590

13.2  Problem solving: 
Thinking recursively  W590

Worked Example 13.1: Finding Files 

13.3  recursive helPer meThods  W594

13.4  The efficiency of recursion  W596

13.5  PermuTaTions  W601

Random Fact 13.1: the limits of 
Computation W604

13.6  muTual recursion  W606

13.7  backTracking  W612

Worked Example 13.2: towers of hanoi 

Java for Everyone, 2e, Cay Horstmann, Copyright © 2013 John Wiley and Sons, Inc. All rights reserved.



W586

the method of recursion is a powerful technique for 
breaking up complex computational problems into simpler, 
often smaller, ones. the term “recursion” refers to the fact 
that the same computation recurs, or occurs repeatedly, 
as the problem is solved. recursion is often the most 
natural way of thinking about a problem, and there are 
some computations that are very difficult to perform 
without recursion. this chapter shows you both simple and 
complex examples of recursion and teaches you how to 
“think recursively”.

13.1 triangle numbers revisited
Chapter 5 contains a simple introduction to 
writing recursive methods—methods that call 
themselves with simpler inputs. In that chapter, 
you saw how to print triangle patterns such as 
this one:

[]
[][]
[][][]
[][][][]

The key observation is that you can print a trian-
gle pattern of a given side length, provided you 
know how to print the smaller triangle pattern 
that is shown in blue.

In this section, we will modify the example slightly and use recursion to compute 
the area of a triangle shape of side length n, assuming that each [] square has area 1. 
This value is sometimes called the nth triangle number. For example, as you can tell 
from looking at the above triangle, the third triangle number is 6 and the fourth tri-
angle number is 10.

We will develop an object-oriented solution that gives another perspective on 
recursive problem solving. Instead of calling a method with simpler values, we will 
construct a simpler object.

Here is the outline of the class that we will develop:
public class Triangle
{
   private int width; 

   public Triangle(int aWidth)
   {
      width = aWidth;
   }

   public int getArea()
   {
      . . .
   }
} 

Using the same method as the one 
described in this section, you can com-
pute the volume of a Mayan pyramid.
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If the width of the triangle is 1, then the triangle consists of a single square, and its area 
is 1. Let’s take care of this case first:

public int getArea()
{
   if (width == 1) { return 1; }
   . . .
}

To deal with the general case, consider this picture:
[] 
[][] 
[][][] 
[][][][]

Suppose we knew the area of the smaller, colored triangle. Then we could easily com-
pute the area of the larger triangle as

smallerArea + width

How can we get the smaller area? Let’s make a smaller triangle and ask it!
Triangle smallerTriangle = new Triangle(width - 1);
int smallerArea = smallerTriangle.getArea();

Now we can complete the getArea method:
public int getArea()
{
   if (width == 1) { return 1; }
   else
   {
      Triangle smallerTriangle = new Triangle(width - 1);
      int smallerArea = smallerTriangle.getArea();
      return smallerArea + width;
   }
}

Here is an illustration of what happens when we compute the area of a triangle of 
width 4.

• The getArea method makes a smaller triangle of width 3.
• It calls getArea on that triangle.

• That method makes a smaller triangle of width 2.
• It calls getArea on that triangle.

• That method makes a smaller triangle of width 1.
• It calls getArea on that triangle.

• That method returns 1.
• The method returns smallerArea + width = 1 + 2 = 3.

• The method returns smallerArea + width = 3 + 3 = 6.
• The method returns smallerArea + width = 6 + 4 = 10.

This solution has one remarkable aspect. To solve the area problem for a triangle of 
a given width, we use the fact that we can solve the same problem for a lesser width. 
This is called a recursive solution.

The call pattern of a recursive method looks complicated, and the key to the 
successful design of a recursive method is not to think about it. Instead, look at the 

a recursive 
computation solves  
a problem by using 
the solution to the 
same problem with 
simpler inputs.
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getArea method one more time and notice how utterly reasonable it is. If the width is 
1, then, of course, the area is 1. The next part is just as reason able. Compute the area 
of the smaller triangle and don’t think about why that works. Then the area of the 
larger triangle is clearly the sum of the smaller area and the width.

There are two key requirements to make sure that the recursion is successful:

• Every recursive call must simplify the computation in some way.
• There must be special cases to handle the simplest computations directly.

The getArea method calls itself again with smaller and smaller width values. Eventu-
ally the width must reach 1, and there is a special case for computing the area of a 
triangle with width 1. Thus, the getArea method always succeeds.

Actually, you have to be careful. What happens when you call the area of a triangle 
with width –1? It computes the area of a triangle with width –2, which computes the 
area of a triangle with width –3, and so on. To avoid this, the getArea method should 
return 0 if the width is ≤ 0.

Recursion is not really necessary to compute the triangle numbers. The area of a 
triangle equals the sum

1 + 2 + 3 + . . . + width

Of course, we can program a simple loop:
double area = 0;
for (int i = 1; i <= width; i++)
{
   area = area + i;
}

Many simple recursions can be computed as loops. However, loop equivalents for 
more complex recur sions—such as the one in our next example—can be complex. 

Actually, in this case, you don’t even need a loop to compute the answer. The sum 
of the first n integers can be computed as

1 2 1 2+ + + = × +� n n n( )
Thus, the area equals 

width * (width + 1) / 2

Therefore, neither recursion nor a loop is required to solve this problem. The recur-
sive solution is intended as a “warm-up” to introduce you to the concept of recursion.

section_1/Triangle.java 

1 /**
2    A triangular shape composed of stacked unit squares like this: 
3    [] 
4    [][] 
5    [][][] 
6    . . . 
7 */
8 public class Triangle
9 {

10    private int width;
11 
12    /**
13       Constructs a triangular shape. 
14       @param aWidth the width (and height) of the triangle 
15    */

For a recursion to 
terminate, there must 
be special cases for 
the simplest values.

A N I M AT I O N
Tracing a Recursion
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16    public Triangle(int aWidth)
17    {
18       width = aWidth;
19    }
20 
21    /**
22       Computes the area of the triangle. 
23       @return the area 
24    */
25    public int getArea()
26    {
27       if (width <= 0) { return 0; }
28       else if (width == 1) { return 1; }
29       else
30       {
31          Triangle smallerTriangle = new Triangle(width - 1);
32          int smallerArea = smallerTriangle.getArea();
33          return smallerArea + width;
34       }
35    }
36 }

section_1/TriangleTester.java 

1 public class TriangleTester
2 {
3    public static void main(String[] args)
4    {
5       Triangle t = new Triangle(10);
6       int area = t.getArea();
7       System.out.println("Area: " + area);
8       System.out.println("Expected: 55");
9    }

10 }

Program run

Area: 55
Expected: 55

1.  Why is the statement else if (width == 1) { return 1; } in the final version of the 
getArea method unnecessary?

2.  How would you modify the program to recursively compute the area of a 
square?

3.  In some cultures, numbers containing the digit 8 are lucky numbers. What is 
wrong with the follow ing method that tries to test whether a number is lucky?
public static boolean isLucky(int number)
{
   int lastDigit = number % 10;
   if (lastDigit == 8) { return true; }
   else 
   { 
      return isLucky(number / 10); // Test the number without the last digit
   }
}

s e l f   c h e c k
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4.  In order to compute a power of two, you can take the next-lower power and 
double it. For example, if you want to compute 211 and you know that 210 = 
1024, then 211 = 2 × 1024 = 2048. Write a recursive method public static int 
pow2(int n) that is based on this observation.

5.  Consider the following recursive method: 
public static int mystery(int n)
{
   if (n <= 0) { return 0; }
   else
   {
      int smaller = n - 1;
      return mystery(smaller) + n * n;
   }
}

What is mystery(4)?

Practice it  Now you can try these exercises at the end of the chapter: P13.1, P13.2, P13.10.

infinite recursion

A common programming error is an infinite recursion: a method calling itself over and over 
with no end in sight. The computer needs some amount of memory for bookkeeping for each 
call. After some number of calls, all mem ory that is available for this purpose is exhausted. 
Your program shuts down and reports a “stack overflow”.

Infinite recursion happens either because the arguments don’t get simpler or because a 
special terminating case is missing. For example, suppose the getArea method was allowed to 
compute the area of a triangle with width 0. If it weren’t for the special test, the method would 
construct triangles with width –1, –2, –3, and so on.

13.2 problem solving: thinking recursively
How To 5.2 in Chapter 5 tells you how to solve a 
problem recursively by pretending that “someone 
else” will solve the problem for simpler inputs and by 
focusing on how to turn the simpler solutions into a 
solution for the whole problem.

In this section, we walk through these steps with 
a more complex problem: testing whether a sentence 
is a palindrome—a string that is equal to itself when 
you reverse all characters. Typical examples are

• A man, a plan, a canal—Panama!
• Go hang a salami, I’m a lasagna hog
and, of course, the oldest palindrome of all:
• Madam, I’m Adam

When testing for a palindrome, we match upper- and lowercase letters, and ignore all 
spaces and punctuation marks.

Common error 13.1 

Thinking recursively is easy if 
you can recognize a subtask that 
is similar to the original task.
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We want to implement the following isPalindrome method:
/**
   Tests whether a text is a palindrome. 
   @param text a string that is being checked
   @return true if text is a palindrome, false otherwise
*/
public static boolean isPalindrome(String Text)
{
   . . .
}

step 1  Consider various ways to simplify inputs.

In your mind, focus on a particular input or set of inputs for the problem that you 
want to solve. Think how you can simplify the inputs in such a way that the same 
problem can be applied to the simpler input. 

When you consider simpler inputs, you may want to remove just a little bit from 
the original input—maybe remove one or two characters from a string, or remove a 
small portion of a geometric shape. But sometimes it is more useful to cut the input in 
half and then see what it means to solve the problem for both halves. 

In the palindrome test problem, the input is the string that we need to test. How 
can you simplify the input? Here are several possibilities: 

• Remove the first character.
• Remove the last character.
• Remove both the first and last characters.
• Remove a character from the middle.
• Cut the string into two halves.

These simpler inputs are all potential inputs for the palindrome test.

step 2  Combine solutions with simpler inputs into a solution of the original problem.

In your mind, consider the solutions for the simpler inputs that you discovered in 
Step 1. Don’t worry how those solutions are obtained. Simply have faith that the 
solutions are readily available. Just say to your self: These are simpler inputs, so some-
one else will solve the problem for me. 

Now think how you can turn the solution for the simpler inputs into a solution 
for the input that you are cur rently thinking about. Maybe you need to add a small 
quantity, perhaps related to the quantity that you lopped off to arrive at the simpler 
input. Maybe you cut the original input in half and have solutions for each half. Then 
you may need to add both solutions to arrive at a solution for the whole. 

Consider the methods for simplifying the inputs for the palindrome test. Cutting 
the string in half doesn’t seem like a good idea. If you cut 

"Madam, I'm Adam"

in half, you get two strings:
"Madam, I"

and
"'m Adam"

The first string isn’t a palindrome. Cutting the input in half and testing whether the 
halves are palindromes seems a dead end.
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The most promising simplification is to remove the first and last characters. 
Removing the M at the front and the m at the back yields

"adam, I'm Ada"

Suppose you can verify that the shorter string is a palindrome. Then of course the 
original string is a palindrome—we put the same letter in the front and the back. 
That’s extremely promising. A word is a palindrome if

• The first and last letters match (ignoring letter case).
and
• The word obtained by removing the first and last letters is a palindrome.

Again, don’t worry how the test works for the shorter string. It just works.
There is one other case to consider. What if the first or last letter of the word is not 

a letter? For example, the string
"A man, a plan, a canal, Panama!"

ends in a ! character, which does not match the A in the front. But we should ignore 
non-letters when testing for pal indromes. Thus, when the last character is not a letter 
but the first character is a letter, it doesn’t make sense to remove both the first and the 
last characters. That’s not a problem. Remove only the last character. If the shorter 
string is a palindrome, then it stays a palindrome when you attach a nonletter.

The same argument applies if the first character is not a letter. Now we have a com-
plete set of cases. 

• If the first and last characters are both letters, then check whether they match. If 
so, remove both and test the shorter string. 

• Otherwise, if the last character isn’t a letter, remove it and test the shorter string.
• Otherwise, the first character isn’t a letter. Remove it and test the shorter string.

In all three cases, you can use the solution to the simpler problem to arrive at a solu-
tion to your problem.

step 3  Find solutions to the simplest inputs.

A recursive computation keeps simplifying its inputs. Eventually it arrives at very 
simple inputs. To make sure that the recursion comes to a stop, you must deal with 
the simplest inputs separately. Come up with special solutions for them, which is 
usually very easy. 

However, sometimes you get into philosophical questions dealing with degener-
ate inputs: empty strings, shapes with no area, and so on. Then you may want to 
investigate a slightly larger input that gets reduced to such a trivial input and see what 
value you should attach to the degenerate inputs so that the simpler value, when used 
according to the rules you discovered in Step 2, yields the correct answer. 

Let’s look at the simplest strings for the palindrome test:

• Strings with two characters
• Strings with a single character
• The empty string

We don’t have to come up with a special solution for strings with two characters. Step 
2 still applies to those strings—either or both of the characters are removed. But we 
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do need to worry about strings of length 0 and 1. In those cases, Step 2 can’t apply. 
There aren’t two characters to remove.

The empty string is a palindrome—it’s the same string when you read it back-
wards. If you find that too artificial, consider a string "mm". According to the rule 
discovered in Step 2, this string is a palindrome if the first and last char acters of that 
string match and the remainder—that is, the empty string—is also a palindrome. 
Therefore, it makes sense to consider the empty string a palindrome.

A string with a single letter, such as "I", is a palindrome. How about the case in 
which the character is not a letter, such as "!"? Removing the ! yields the empty 
string, which is a palindrome. Thus, we conclude that all strings of length 0 or 1 are 
palindromes.

step 4  Implement the solution by combining the simple cases and the reduction step.

Now you are ready to implement the solution. Make separate cases for the simple 
inputs that you considered in Step 3. If the input isn’t one of the simplest cases, then 
implement the logic you discovered in Step 2.

Here is the isPalindrome method:
public static boolean isPalindrome(String text)
{
   int length = text.length();

   // Separate case for shortest strings. 
   if (length <= 1) { return true; }
   else
   {
      // Get first and last characters, converted to lowercase. 
      char first = Character.toLowerCase(text.charAt(0));
      char last = Character.toLowerCase(text.charAt(length - 1));

      if (Character.isLetter(first) && Character.isLetter(last))
      {
         // Both are letters. 
         if (first == last)
         {
            // Remove both first and last character. 
            String shorter = text.substring(1, length - 1);
            return isPalindrome(shorter);
         }
         else
         {
            return false;
         }
      }
      else if (!Character.isLetter(last))
      {
         // Remove last character. 
         String shorter = text.substring(0, length - 1); 
         return isPalindrome(shorter);
      }
      else
      {
         // Remove first character. 
         String shorter = text.substring(1); 
         return isPalindrome(shorter);
      }
   }
}

o n l i n e  e x a m P l e

the Palindromes 
class.
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6.  Consider the task of removing all punctuation marks from a string. How can we 
break the string into smaller strings that can be processed recursively? 

7.  In a recursive method that removes all punctuation marks from a string, we 
decide to remove the last character, then recursively process the remainder. How 
do you combine the results?

8.  How do you find solutions for the simplest inputs when removing punctuation 
marks from a string?

9.  Provide pseudocode for a recursive method that removes punctuation marks 
from a string, using the answers to Self Checks 6–8.

Practice it  Now you can try these exercises at the end of the chapter: R13.3, P13.3, P13.6.

13.3 recursive helper Methods
Sometimes it is easier to find a recursive 
solution if you change the original problem 
slightly. Then the original problem can be 
solved by calling a recursive helper method. 

Here is a typical example: Consider the 
palindrome test of Section 13.2. It is a bit 
inefficient to con struct new string objects 
in every step. Now consider the following 
change in the problem. Rather than test-
ing whether the entire sentence is a palin-
drome, let’s check whether a substring is a 
palindrome:

/** 
   Tests whether a substring is a palindrome. 
   @param text a string that is being checked
   @param start the index of the first character of the substring 
   @param end the index of the last character of the substring 
   @return true if the substring is a palindrome 
*/
public static boolean isPalindrome(String text, int start, int end)

This method turns out to be even easier to implement than the original test. In the 
recursive calls, simply adjust the start and end parameter variables to skip over match-
ing letter pairs and characters that are not letters. There is no need to construct new 
String objects to represent the shorter strings.

public static boolean isPalindrome(String text, int start, int end)
{

s e l f   c h e c k

Worked exaMple 13.1 finding files

In this Worked Example, we find all files with a given extension 
in a directory tree.

Sometimes, a task can be solved by handing 
it off to a recursive helper method.

sometimes it is easier 
to find a recursive 
solution if you make 
a slight change to the 
original problem.
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   // Separate case for substrings of length 0 and 1. 
   if (start >= end) { return true; }
   else
   {
      // Get first and last characters, converted to lowercase. 
      char first = Character.toLowerCase(text.charAt(start));
      char last = Character.toLowerCase(text.charAt(end));

      if (Character.isLetter(first) && Character.isLetter(last))
      {
         if (first == last)
         {
            // Test substring that doesn’t contain the matching letters. 
            return isPalindrome(text, start + 1, end - 1);
         }
         else
         {
            return false;
         }
      }
      else if (!Character.isLetter(last))
      {
         // Test substring that doesn’t contain the last character. 
         return isPalindrome(text, start, end - 1);
      }
      else
      {
         // Test substring that doesn’t contain the first character. 
         return isPalindrome(text, start + 1, end);
      }
   }
}

You should still supply a method to solve the whole problem—the user of your 
method shouldn’t have to know about the trick with the substring positions. Simply 
call the helper method with positions that test the entire string:

public static boolean isPalindrome(String text)
{
   return isPalindrome(text, 0, text.length() - 1);
}

Note that this call is not a recursive method call. The isPalindrome(String) method 
calls the helper method isPalindrome(String, int, int). In this example, we use over-
loading to declare two methods with the same name. The isPalindrome method with 
just a String parameter variable is the method that we expect the public to use. The 
second method, with one String and two int parameter variables, is the recursive 
helper method. If you prefer, you can avoid overloaded methods by choosing a dif-
ferent name for the helper method, such as substringIsPalindrome. 

Use the technique of recursive helper methods whenever it is easier to solve a 
recursive problem that is equivalent to the original problem—but more amenable to 
a recursive solution. 

10.  Do we have to give the same name to both isPalindrome methods?
11.  When does the recursive isPalindrome method stop calling itself?
12.  To compute the sum of the values in an array, add the first value to the sum of the 

remaining values, computing recursively. Of course, it would be inefficient to set 

o n l i n e  e x a m P l e

the Palindromes 
class with a helper 
method.

s e l f   c h e c k
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up an actual array of the remaining values. Which recursive helper method can 
solve the problem?

13.  How can you write a recursive method public static void sum(int[] a) without 
needing a helper function?

Practice it  Now you can try these exercises at the end of the chapter: P13.4, P13.7, 13.11.

13.4 the efficiency of recursion
As you have seen in this chapter, recursion can be a 
powerful tool to implement complex algorithms. On 
the other hand, recursion can lead to algorithms that 
perform poorly. In this section, we will analyze the 
question of when recursion is beneficial and when it is 
inefficient.

Consider the Fibonacci sequence: a sequence of 
numbers defined by the equation 

f

f

f f fn n n

1

2

1 2

1

1

=

=

= +− −

That is, each value of the sequence is the sum of the two preceding values. The first 
ten terms of the sequence are 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

It is easy to extend this sequence indefinitely. Just keep appending the sum of the last 
two values of the sequence. For example, the next entry is 34 + 55 = 89. 

We would like to write a method that computes fn for any value of n. Here we 
translate the definition directly into a recursive method: 

section_4/recursivefib.java 

1 import java.util.Scanner;
2 
3 /**
4    This program computes Fibonacci numbers using a recursive method.
5 */ 
6 public class RecursiveFib
7 { 
8    public static void main(String[] args)
9    { 

10       Scanner in = new Scanner(System.in);
11       System.out.print("Enter n: ");
12       int n = in.nextInt();
13 
14       for (int i = 1; i <= n; i++)
15       {
16          long f = fib(i);
17          System.out.println("fib(" + i + ") = " + f);
18       }

In most cases, iterative and 
recursive approaches have 
comparable efficiency.
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19    }
20 
21    /**
22       Computes a Fibonacci number.
23       @param n an integer
24       @return the nth Fibonacci number
25    */
26    public static long fib(int n)
27    { 
28       if (n <= 2) { return 1; }
29       else { return fib(n - 1) + fib(n - 2); }
30    }
31 }

Program run

Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
. . .
fib(50) = 12586269025

That is certainly simple, and the method will work correctly. But watch the output 
closely as you run the test program. The first few calls to the fib method are fast. For 
larger values, though, the program pauses an amazingly long time between outputs. 

That makes no sense. Armed with pencil, paper, and a pocket calculator you could 
calculate these numbers pretty quickly, so it shouldn’t take the computer anywhere 
near that long.

To find out the problem, let us insert trace messages into the method: 

section_4/recursivefibTracer.java 

1 import java.util.Scanner;
2 
3 /**
4    This program prints trace messages that show how often the
5    recursive method for computing Fibonacci numbers calls itself.
6 */ 
7 public class RecursiveFibTracer
8 {
9    public static void main(String[] args)

10    { 
11       Scanner in = new Scanner(System.in);
12       System.out.print("Enter n: ");
13       int n = in.nextInt();
14 
15       long f = fib(n);
16 
17       System.out.println("fib(" + n + ") = " + f);   
18    }
19 
20    /**
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21       Computes a Fibonacci number.
22       @param n an integer
23       @return the nth Fibonacci number
24    */
25    public static long fib(int n)
26    {
27       System.out.println("Entering fib: n = " + n);
28       long f;
29       if (n <= 2) { f = 1; }
30       else { f = fib(n - 1) + fib(n - 2); }
31       System.out.println("Exiting fib: n = " + n
32             + " return value = " + f);
33       return f;
34    }
35 }

Program run

Enter n: 6
Entering fib: n = 6
Entering fib: n = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Exiting fib: n = 5 return value = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Exiting fib: n = 6 return value = 8
fib(6) = 8

Figure 1 shows the pattern of recursive calls for computing fib(6). Now it is becom-
ing apparent why the method takes so long. It is computing the same values over and 
over. For example, the computation of fib(6) calls fib(4) twice and fib(3) three times. 
That is very different from the computation we would do with pencil and paper. 
There we would just write down the values as they were computed and add up the 
last two to get the next one until we reached the desired entry; no sequence value 
would ever be computed twice.
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figure 1  Call pattern of the recursive fib Method

fib(6)

fib(5) fib(4)

fib(4) fib(3) fib(3) fib(2)

fib(3) fib(2) fib(2) fib(1) fib(2) fib(1)

fib(2) fib(1)

If we imitate the pencil-and-paper process, then we get the following program:

section_4/loopfib.java 

1 import java.util.Scanner;
2 
3 /**
4    This program computes Fibonacci numbers using an iterative method.
5 */ 
6 public class LoopFib
7 { 
8    public static void main(String[] args)
9    { 

10       Scanner in = new Scanner(System.in);
11       System.out.print("Enter n: ");
12       int n = in.nextInt();
13 
14       for (int i = 1; i <= n; i++)
15       {
16          long f = fib(i);
17          System.out.println("fib(" + i + ") = " + f);
18       }
19    }
20 
21    /**
22       Computes a Fibonacci number.
23       @param n an integer
24       @return the nth Fibonacci number
25    */
26    public static long fib(int n)
27    { 
28       if (n <= 2) { return 1; }
29       else
30       {
31          long olderValue = 1;
32          long oldValue = 1;
33          long newValue = 1;
34          for (int i = 3; i <= n; i++)
35          { 
36             newValue = oldValue + olderValue;
37             olderValue = oldValue;
38             oldValue = newValue;
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39          }
40          return newValue;
41       }
42    }
43 }

Program run

Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
. . .
fib(50) = 12586269025

This method runs much faster than the recursive version. 
In this example of the fib method, the recursive solution was easy to program 

because it exactly fol lowed the mathematical definition, but it ran far more slowly 
than the iterative solution, because it com puted many intermediate results multiple 
times. 

Can you always speed up a recursive solution by changing it into a loop? Fre-
quently, the iterative and recursive solution have essentially the same performance. 
For example, here is an iterative solution for the palindrome test:

public static boolean isPalindrome(String text)
{
   int start = 0;
   int end = text.length() - 1;
   while (start < end)
   {
      char first = Character.toLowerCase(text.charAt(start));
      char last = Character.toLowerCase(text.charAt(end));

      if (Character.isLetter(first) && Character.isLetter(last))
      {
         // Both are letters. 
         if (first == last)
         {
            start++;
            end--;
         }
         else
         {
            return false;
         }
      }
      if (!Character.isLetter(last)) { end--; }
      if (!Character.isLetter(first)) { start++; }
   }
   return true;
}

This solution keeps two index variables: start and end. The first index starts at the 
beginning of the string and is advanced whenever a letter has been matched or a 

occasionally, a 
recursive solution 
runs much slower 
than its iterative 
counterpart. however, 
in most cases, the 
recursive solution is 
only slightly slower.

o n l i n e  e x a m P l e

the LoopPalindromes 
class.
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nonletter has been ignored. The second index starts at the end of the string and moves 
toward the beginning. When the two index variables meet, the iteration stops.

Both the iteration and the recursion run at about the same speed. If a palindrome 
has n characters, the iteration executes the loop between n/2 and n times, depending 
on how many of the characters are letters, because one or both index variables are 
moved in each step. Similarly, the recursive solution calls itself between n/2 and n 
times, because one or two characters are removed in each step. 

In such a situation, the iterative solution tends to be a bit faster, because each recur-
sive method call takes a certain amount of processor time. In principle, it is possible 
for a smart compiler to avoid recur sive method calls if they follow simple patterns, 
but most Java compilers don’t do that. From that point of view, an iterative solution 
is preferable. 

However, many problems have recursive solutions that are easier to understand 
and implement cor rectly than their iterative counterparts. Sometimes there is no 
obvious iterative solution at all—see the example in the next section. There is a cer-
tain elegance and economy of thought to recursive solutions that makes them more 
appealing. As the computer scientist (and creator of the GhostScript interpreter for 
the PostScript graphics description language) L. Peter Deutsch put it: “To iterate is 
human, to recurse divine.” 

14.  Is it faster to compute the triangle numbers recursively, as shown in Section 13.1, 
or is it faster to use a loop that computes 1 + 2 + 3 + . . . + width?

15.  You can compute the factorial function either with a loop, using the defini-
tion that n! = 1 × 2 × . . . × n, or recursively, using the definition that 0! = 1 and 
n! = (n – 1)! × n. Is the recur sive approach inefficient in this case?

16.  To compute the sum of the values in an array, you can split the array in the 
middle, recursively com pute the sums of the halves, and add the results. Com-
pare the performance of this algorithm with that of a loop that adds the values.

Practice it  Now you can try these exercises at the end of the chapter: R13.7, R13.9. P13.5, 
P13.25.

13.5 permutations
In this section, we will study a more complex example of recur-
sion that would be difficult to program with a simple loop. (As 
Exercise P13.11 shows, it is possible to avoid the recursion, but 
the resulting solu tion is quite complex, and no faster).

We will design a method that lists all permutations of a string. 
A permutation is simply a rearrangement of the letters in the 
string. For example, the string "eat" has six permutations (includ-
ing the original string itself):

"eat"
"eta"
"aet"
"ate"
"tea"
"tae"

in many cases, a 
recursive solution is 
easier to understand 
and implement 
correctly than an 
iterative solution.

s e l f   c h e c k

Using recursion, 
you can find all 
arrangements of  
a set of objects.

the permutations  
of a string can be 
obtained more 
naturally through 
recursion than  
with a loop.
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Now we need a way to generate the permutations recursively. Consider the string 
"eat". Let’s simplify the problem. First, we’ll generate all permutations that start 
with the letter 'e', then those that start with 'a', and finally those that start with 
't'. How do we generate the permutations that start with 'e'? We need to know 
the permutations of the substring "at". But that’s the same problem—to generate all 
permu tations—with a simpler input, namely the shorter string "at". Thus, we can use 
recursion. Generate the permutations of the substring "at". They are

"at"
"ta"

For each permutation of that substring, prepend the letter 'e' to get the permutations 
of "eat" that start with 'e', namely

"eat"
"eta"

Now let’s turn our attention to the permutations of "eat" that start with 'a'. We need 
to produce the per mutations of the remaining letters, "et". They are:

"et"
"te"

We add the letter 'a' to the front of the strings and obtain
"aet"
"ate"

We generate the permutations that start with 't' in the same way.
That’s the idea. The implementation is fairly straightforward. In the permutations 

method, we loop through all positions in the word to be permuted. For each of them, 
we compute the shorter word that is obtained by removing the ith letter:

String shorter = word.substring(0, i) + word.substring(i + 1);

We compute the permutations of the shorter word:
ArrayList<String> shorterPermutations = permutations(shorter);

Finally, we add the removed letter to the front of all permutations of the shorter word.
for (String s : shorterPermutations)
{
   result.add(word.charAt(i) + s);
}

As always, we have to provide a special case for the simplest strings. The simplest 
possible string is the empty string, which has a single permutation—itself.

Here is the complete Permutations class:

section_5/Permutations.java 

1 import java.util.ArrayList;
2 
3 /**
4    This class computes permutations of a string. 
5 */
6 public class Permutations
7 {
8    public static void main(String[] args)
9    {

10       for (String s : permutations(“eat”))
11       {
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12          System.out.println(s);
13       }
14    }
15 
16    /**
17       Gets all permutations of a given word. 
18       @param word the string to permute
19       @return a list of all permutations
20    */
21    public static ArrayList<String> permutations(String word)
22    {
23       ArrayList<String> result = new ArrayList<String>();
24 
25       // The empty string has a single permutation: itself
26       if (word.length() == 0) 
27       { 
28          result.add(word); 
29          return result; 
30       }
31       else
32       {
33          // Loop through all character positions
34          for (int i = 0; i < word.length(); i++)
35          {
36             // Form a shorter word by removing the ith character 
37             String shorter = word.substring(0, i) + word.substring(i + 1);
38 
39             // Generate all permutations of the simpler word 
40             ArrayList<String> shorterPermutations = permutations(shorter)
41 
42             // Add the removed character to the front of 
43             // each permutation of the simpler word 
44             for (String s : shorterPermutations)
45             {
46                result.add(word.charAt(i) + s);
47             }
48          }
49          // Return all permutations
50          return result;
51       }
52    }
53 }

Program run

eat
eta
aet
ate
tea
tae

Compare the Permutations and Triangle classes. Both of them work on the same princi-
ple. When they work on a more complex input, they first solve the problem for a sim-
pler input. Then they combine the result for the simpler input with additional work 
to deliver the results for the more complex input. There really is no particular com-
plexity behind that process as long as you think about the solution on that level only. 
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However, behind the scenes, the simpler input creates even simpler input, which cre-
ates yet another simplification, and so on, until one input is so simple that the result 
can be obtained without further help. It is interesting to think about this process, but 
it can also be confusing. What’s important is that you can focus on the one level that 
matters—putting a solution together from the slightly simpler problem, ignoring the 
fact that the simpler problem also uses recursion to get its results.

have you ever won-
dered how your 
instructor or grader 

makes sure your programming home-
work is correct? in all likelihood, they 
look at your solution and perhaps run it 
with some test inputs. But usually they 
have a correct solu tion available. that 
suggests that there might be an easier 
way. perhaps they could feed your pro-
gram and their cor rect program into 
a “program comparator”, a computer 
program that analyzes both programs 
and determines whether they both 
compute the same results. of course, 
your solution and the program that is 
known to be correct need not be identi-
cal—what matters is that they produce 
the same output when given the same 
input.

how could such a program com-
parator work? Well, the Java compiler 
knows how to read a program and 
make sense of the classes, methods, 
and statements. so it seems plausible 
that someone could, with some effort, 
write a program that reads two Java 
programs, analyzes what they do, and 
determines whether they solve the 
same task. of course, such a program 
would be very attractive to instructors, 
because it could automate the grad-
ing process. thus, even though no 
such program exists today, it might be 
tempting to try to develop one and sell 
it to universities around the world. 

however, before you start raising 
venture capital for such an effort, you 
should know that theoretical computer 
scientists have proven that it is impos-
sible to develop such a program, no 
matter how hard you try. 

there are quite a few of these 
unsolvable problems. the first one, 

called the halting problem, was dis-
covered by the British researcher alan 
turing in 1936. Because his research 
occurred before the first actual com-
puter was con structed, turing had to 
devise a theoretical device, the Tur-
ing machine, to explain how comput-
ers could work. the turing machine 
consists of a long magnetic tape, a 
read/write head, and a program that 
has numbered instructions of the form: 
“if the current symbol under the head 
is x, then replace it with y, move the 
head one unit left or right, and con-
tinue with instruction n” (see figure 
below). interestingly enough, with 
only these instructions, you can pro-
gram just as much as with Java, even 
though it is incredibly tedious to do so. 
theoretical computer scientists like 
turing machines because they can be 
described using nothing more than the 
laws of mathematics.   

expressed in terms of Java, the halt-
ing problem states: “it is impossible 
to write a program with two inputs, 
namely the source code of an arbi-
trary Java program P and a string I, 
that decides whether the program P, 
when executed with the input I, will 
halt—that is, the program will not get 
into an infinite loop with the given 
input”. of course, for some kinds of 
programs and inputs, it is possible to 
decide whether the program halts with 
the given input. the halting problem 
asserts that it is impossible to come 
up with a single decision-making algo-
rithm that works with all programs and 
inputs. note that you can’t simply run 
the program P on the input I to settle 
this ques tion. if the program runs for 
1,000 days, you don’t know that the 
program is in an infinite loop. Maybe 

you just have to wait another day for 
it to stop.

such a “halt checker”, if it could be 
written, might also be useful for grad-
ing homework. an instructor could use 
it to screen student submissions to see 
if they get into an infinite loop with a 
particular input, and then stop check-
ing them. however, as turing dem-
onstrated, such a program cannot be 
written. his argument is ingenious and 
quite simple. 

suppose a “halt checker” program 
existed. let’s call it H. From H, we will 
develop another program, the “killer” 
program K. K does the following com-
putation. its input is a string contain-
ing the source code for a program R. 
it then applies the halt checker on the 
input program R and the input string R. 
that is, it checks whether the program 
R halts if its input is its own source 
code. it sounds bizarre to feed a pro-
gram to itself, but it isn’t impossible.

Alan Turing

Random Fact 13.1 the limits of Computation
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17.  What are all permutations of the four-letter word beat?
18.  Our recursion for the permutation generator stops at the empty string. What 

simple modification would make the recursion stop at strings of length 0 or 1?
19.  Why isn’t it easy to develop an iterative solution for the permutation generator?

Practice it  Now you can try these exercises at the end of the chapter: P13.11, P13.12, P13.13.

s e l f   c h e c k

For exam ple, the Java compiler is writ-
ten in Java, and you can use it to com-
pile itself. or, as a simpler example, a 
word counting program can count the 
words in its own source code.

When K gets the answer from H 
that R halts when applied to itself, it is 
programmed to enter an infinite loop. 
otherwise K exits. in Java, the program 
might look like this:

public class Killer
{
   public static void main(
      String[] args)
   {
      String r = read program input;
      HaltChecker checker = 
         new HaltChecker();
      if (checker.check(r, r))
      {
         while (true) 
         { // Infinite loop
         } 
      }
      else 
      { 
         return;
      }
   }
} 

now ask yourself: What does the halt 
checker answer when asked whether 
K halts when given K as the input? 
Maybe it finds out that K gets into an 
infinite loop with such an input. But 
wait, that can’t be right. that would 
mean that checker.check(r, r) returns 
false when r is the program code of K. 
as you can plainly see, in that case, the 
killer method returns, so k didn’t get 
into an infinite loop. that shows that 
K must halt when analyzing itself, so 

checker.check(r, r) should return true. 
But then the killer method doesn’t ter-
minate—it goes into an infinite loop. 
that shows that it is logically impos-
sible to implement a program that can 
check whether every program halts on 
a particular input.

it is sobering to know that there are 
limits to computing. there are prob-
lems that no computer program, no 
mat ter how ingenious, can answer. 

theoretical computer scientists are 
working on other research involving 
the nature of computation. one impor-
tant question that remains unsettled 

to this day deals with problems that 
in practice are very time-consuming to 
solve. it may be that these problems 
are intrinsically hard, in which case it 
would be pointless to try to look for 
bet ter algorithms. such theoretical 
research can have important practical 
applications. For example, right now, 
nobody knows whether the most com-
mon encryption schemes used today 
could be broken by discovering a new 
algorithm. knowing that no fast algo-
rithms exist for breaking a particular 
code could make us feel more comfort-
able about the security of encryption. 
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13.6 Mutual recursion
In the preceding examples, a method called itself to solve a simpler problem. Some-
times, a set of cooper ating methods calls each other in a recursive fashion. In this sec-
tion, we will explore such a mutual recursion. This technique is significantly more 
advanced than the simple recursion that we discussed in the preceding sections. 

We will develop a program that can compute the values of arithmetic expressions 
such as

3+4*5
(3+4)*5
1-(2-(3-(4-5)))

Computing such an expression is complicated by the fact that * and / bind more 
strongly than + and -, and that parentheses can be used to group subexpressions.

Figure 2 shows a set of syntax diagrams that describes the syntax of these expres-
sions. To see how the syntax diagrams work, consider the expression 3+4*5:

• Enter the expression syntax diagram. The arrow points directly to term, giving 
you no alternative.

• Enter the term syntax diagram. The arrow points to factor, again giving you no 
choice.

• Enter the factor diagram. You have two choices: to follow the top branch or the 
bottom branch. Because the first input token is the number 3 and not a (, follow 
the bottom branch.

• Accept the input token because it matches the number. The unprocessed input is 
now +4*5.

• Follow the arrow out of number to the end of factor. As in a method call, you 
now back up, returning to the end of the factor element of the term diagram.

in a mutual recursion, 
a set of cooperating 
methods calls each 
other repeatedly.

figure 2  syntax diagrams for evaluating an expression

termexpression

+

–

factorterm

*

/

expression

number

factor

( )
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• Now you have another choice—to loop back in the term diagram, or to exit. The 
next input token is a +, and it matches neither the * or the / that would be required 
to loop back. So you exit, returning to expression.

• Again, you have a choice, to loop back or to exit. Now the + matches one of the 
choices in the loop. Accept the + in the input and move back to the term element. 
The remaining input is 4*5. 

In this fashion, an expression is broken down into a sequence of terms, separated by + 
or -, each term is broken down into a sequence of factors, each separated by * or /, and 
each factor is either a parenthesized expression or a number. You can draw this break-
down as a tree. Figure 3 shows how the expressions 3+4*5 and (3+4)*5 are derived from 
the syntax diagram.  

Why do the syntax diagrams help us compute the value of the tree? If you look at 
the syntax trees, you will see that they accurately represent which operations should 
be carried out first. In the first tree, 4 and 5 should be multiplied, and then the result 
should be added to 3. In the second tree, 3 and 4 should be added, and the result 
should be multiplied by 5. 

At the end of this section, you will find the implementation of the Evaluator 
class, which evaluates these expressions. The Evaluator makes use of an Expression-   
Tokenizer class, which breaks up an input string into tokens—numbers, operators, 
and parentheses. (For simplicity, we only accept positive integers as numbers, and we 
don’t allow spaces in the input.) 

When you call nextToken, the next input token is returned as a string. We also sup-
ply another method, peekToken, which allows you to see the next token without con-
suming it. To see why the peekToken method is necessary, consider the syntax diagram 
of the term type. If the next token is a "*" or "/", you want to continue adding and 
subtracting terms. But if the next token is another character, such as a "+" or "-", you 
want to stop without actually consuming it, so that the token can be considered later. 

To compute the value of an expression, we implement three methods: 
getExpressionValue, getTerm Value, and getFactorValue. The getExpressionValue method 
first calls getTermValue to get the value of the first term of the expression. Then it 

figure 3  syntax trees for two expressions
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checks whether the next input token is one of + or -. If so, it calls get Term  Value again 
and adds or subtracts it. 

public int getExpressionValue()
{
   int value = getTermValue();
   boolean done = false;
   while (!done)
   {
      String next = tokenizer.peekToken();
      if ("+".equals(next) || "-".equals(next))
      {
         tokenizer.nextToken(); // Discard "+" or "-"
         int value2 = getTermValue();
         if ("+".equals(next)) { value = value + value2; }
         else { value = value - value2; }
      }
      else 
      {
         done = true;
      }
   }
   return value;
}

The getTermValue method calls getFactorValue in the same way, multiplying or dividing 
the factor values.

Finally, the getFactorValue method checks whether the next input is a number, or 
whether it begins with a ( token. In the first case, the value is simply the value of the 
number. However, in the second case, the getFactorValue method makes a recursive 
call to getExpressionValue. Thus, the three methods are mutually recursive. 

public int getFactorValue()
{
   int value;
   String next = tokenizer.peekToken();
   if ("(".equals(next))
   {
      tokenizer.nextToken(); // Discard "("
      value = getExpressionValue();
      tokenizer.nextToken(); // Discard ")"
   }
   else
   {
      value = Integer.parseInt(tokenizer.nextToken());
   }
   return value;
}

To see the mutual recursion clearly, trace through the expression (3+4)*5:

• getExpressionValue calls getTermValue
• getTermValue calls getFactorValue

• getFactorValue consumes the ( input
• getFactorValue calls getExpressionValue

• getExpressionValue returns eventually with the value of 7, 
having consumed 3 + 4. This is the recursive call.

• getFactorValue consumes the ) input
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• getFactorValue returns 7
• getTermValue consumes the inputs * and 5 and returns 35

• getExpressionValue returns 35

As always with a recursive solution, you need to ensure that the recursion termi-
nates. In this situation, that is easy to see when you consider the situation in which 
get ExpressionValue calls itself. The second call works on a shorter subexpression than 
the original expression. At each recursive call, at least some of the tokens of the input 
string are consumed, so eventually the recursion must come to an end.

section_6/evaluator.java 

1 /**
2    A class that can compute the value of an arithmetic expression. 
3 */
4 public class Evaluator
5 {
6     private ExpressionTokenizer tokenizer;
7 
8    /**
9       Constructs an evaluator. 

10       @param anExpression a string containing the expression 
11       to be evaluated 
12    */
13    public Evaluator(String anExpression)
14    {
15       tokenizer = new ExpressionTokenizer(anExpression);
16    }
17 
18    /**
19       Evaluates the expression. 
20       @return the value of the expression 
21    */
22    public int getExpressionValue()
23    {
24       int value = getTermValue();
25       boolean done = false;
26       while (!done)
27       {
28          String next = tokenizer.peekToken();
29          if ("+".equals(next) || "-".equals(next))
30          {
31             tokenizer.nextToken(); // Discard "+" or "-"
32             int value2 = getTermValue();
33             if ("+".equals(next)) { value = value + value2; }
34             else { value = value - value2; }
35          }
36          else 
37          {
38             done = true;
39          }
40       }
41       return value;
42    }
43    
44    /**
45       Evaluates the next term found in the expression. 
46       @return the value of the term 
47    */



W610 Chapter 13  recursion

48    public int getTermValue()
49    {
50       int value = getFactorValue();
51       boolean done = false;
52       while (!done)
53       {
54          String next = tokenizer.peekToken();
55          if ("*".equals(next) || "/".equals(next))
56          {
57             tokenizer.nextToken();
58             int value2 = getFactorValue();
59             if ("*".equals(next)) { value = value * value2; }
60             else { value = value / value2; }
61          }
62          else 
63          {
64             done = true;
65          }
66       }
67       return value;
68    }
69 
70    /**
71       Evaluates the next factor found in the expression. 
72       @return the value of the factor 
73    */
74    public int getFactorValue()
75    {
76       int value;
77       String next = tokenizer.peekToken();
78       if ("(".equals(next))
79       {
80          tokenizer.nextToken(); // Discard "("
81          value = getExpressionValue();
82          tokenizer.nextToken(); // Discard ")" 
83       }
84       else
85       {
86          value = Integer.parseInt(tokenizer.nextToken());
87       }
88       return value;
89    }
90 }

section_6/expressionTokenizer.java 

1 /**
2    This class breaks up a string describing an expression 
3    into tokens: numbers, parentheses, and operators. 
4 */
5 public class ExpressionTokenizer
6 {
7    private String input;
8    private int start; //  The start of the current token
9    private int end; // The position after the end of the current token

10 
11    /**
12       Constructs a tokenizer. 
13       @param anInput the string to tokenize 
14    */
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15    public ExpressionTokenizer(String anInput)
16    {
17       input = anInput;
18       start = 0;
19       end = 0;
20       nextToken(); //  Find the first token
21    }
22 
23    /**
24       Peeks at the next token without consuming it. 
25       @return the next token or null if there are no more tokens 
26    */
27    public String peekToken()
28    {
29       if (start >= input.length()) { return null; }
30       else { return input.substring(start, end); }     
31    }
32 
33    /**
34       Gets the next token and moves the tokenizer to the following token. 
35       @return the next token or null if there are no more tokens 
36    */
37    public String nextToken()
38    {
39       String r = peekToken();
40       start = end;
41       if (start >= input.length()) { return r; }
42       if (Character.isDigit(input.charAt(start)))
43       {
44          end = start + 1;
45          while (end < input.length() 
46                && Character.isDigit(input.charAt(end)))
47          {
48             end++;
49          }
50       }
51       else
52       {
53          end = start + 1;
54       }
55       return r;      
56    }
57 }

section_6/expressioncalculator.java 

1 import java.util.Scanner;
2 
3 /**
4    This program calculates the value of an expression 
5    consisting of numbers, arithmetic operators, and parentheses.
6 */
7 public class ExpressionCalculator
8 {
9    public static void main(String[] args)

10    {
11       Scanner in = new Scanner(System.in);
12       System.out.print("Enter an expression: ");
13       String input = in.nextLine();
14       Evaluator e = new Evaluator(input);
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15       int value = e.getExpressionValue();
16       System.out.println(input + "=" + value);
17    }
18 }

Program run

Enter an expression: 3+4*5
3+4*5=23

20.  What is the difference between a term and a factor? Why do we need both 
concepts? 

21.  Why does the expression evaluator use mutual recursion? 
22.  What happens if you try to evaluate the illegal expression 3+4*)5? Specifically, 

which method throws an exception? 

Practice it  Now you can try these exercises at the end of the chapter: R13.11, P13.16.

13.7 Backtracking
Backtracking is a problem solving technique that builds up partial solutions that get 
increasingly closer to the goal. If a partial solution cannot be completed, one aban-
dons it and returns to examining the other candidates. 

Backtracking can be used to solve crossword puzzles, escape from mazes, or find 
solutions to systems that are constrained by rules. In order to employ backtracking 
for a particular problem, we need two characteristic properties:

1. A procedure to examine a partial solution and determine whether to
• Accept it as an actual solution.
• Abandon it (either because it violates some rules or because it is clear that it 

can never lead to a valid solution).
• Continue extending it.

2. A procedure to extend a partial solution, generating one or more solutions that 
come closer to the goal.

s e l f   c h e c k

Backtracking 
examines partial 
solutions,  
abandoning 
unsuitable ones and 
returning to consider 
other candidates.

In a backtracking algorithm, one  
explores all paths towards a solution.  
When one path is a dead end, one needs  
to backtrack and try another choice.
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figure 4   
a solution to the  
eight Queens problem
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Backtracking can then be expressed with the following recursive algorithm:

Solve(partialSolution)
 Examine(partialSolution).
 If accepted
  Add partialSolution to the list of solutions.
 Else if not abandoned
  For each p in extend(partialSolution)
   Solve(p).

Of course, the processes of examining and extending a partial solution depend on the 
nature of the problem.

As an example, we will develop a program that finds all solutions to the eight 
queens problem: the task of positioning eight queens on a chess board so that none of 
them attacks another according to the rules of chess. In other words, there are no two 
queens on the same row, column, or diagonal. Figure 4 shows a solution. 

In this problem, it is easy to examine a partial solution. If two queens attack 
another, reject it. Otherwise, if it has eight queens, accept it. Otherwise, continue.

It is also easy to extend a partial solution. Simply add another queen on an empty 
square.

However, in the interest of efficiency, we will be a bit more systematic about the 
extension process. We will place the first queen in row 1, the next queen in row 2, and 
so on.

We provide a class PartialSolution that collects the queens in a partial solution, and 
that has methods to examine and extend the solution:

public class PartialSolution
{
   private Queen[] queens;
   
   public int examine() { . . . }
   public PartialSolution[] extend() { . . . }
}

The examine method simply checks whether two queens attack each other:
public int examine()
{
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   for (int i = 0; i < queens.length; i++)
   {
      for (int j = i + 1; j < queens.length; j++)
      {
         if (queens[i].attacks(queens[j])) { return ABANDON; }
      }
   }
   if (queens.length == NQUEENS) { return ACCEPT; }
   else { return CONTINUE; }
}

The extend method takes a given solution and makes eight copies of it. Each copy gets 
a new queen in a different column.

public PartialSolution[] extend()
{
   // Generate a new solution for each column
   PartialSolution[] result = new PartialSolution[NQUEENS];
   for (int i = 0; i < result.length; i++)
   {
      int size = queens.length;

      // The new solution has one more row than this one
      result[i] = new PartialSolution(size + 1);

      // Copy this solution into the new one
      for (int j = 0; j < size; j++)
      {
         result[i].queens[j] = queens[j];
      }

      // Append the new queen into the ith column
      result[i].queens[size] = new Queen(size, i);
   }
   return result;
}

You will find the Queen class at the end of the section. The only challenge is to deter-
mine when two queens attack each other diagonally. Here is an easy way of checking 
that. Compute the slope and check whether it is ±1. This condition can be simplified 
as follows:

row row column column 1

row row column column

row row column column

2 1 2 1

2 1 2 1

2 1 2 1

) )
)

( (
(

− − = ±

− = ± −

− = −

Have a close look at the solve method in the EightQueens class on page W617. The method 
is a straightforward translation of the pseudocode for backtracking. Note how there 
is nothing specific about the eight queens problem in this method—it works for any 
partial solution with an examine and extend method (see Exercise P13.19).

Figure 5 shows the solve method in action for a four queens problem. Starting 
from a blank board, there are four partial solutions with a queen in row 1 1 . When 
the queen is in column 1, there are four partial solutions with a queen in row 2 2 . 
Two of them are immediately abandoned immediately. The other two lead to partial 
solutions with three queens 3  and 4 , all but one of which are abandoned. One par-
tial solution is extended to four queens, but all of those are abandoned as well 5 . 
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figure 5  Backtracking in the Four Queens problem
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Then the algorithm backtracks, giving up on a queen in position a1, instead extending 
the solution with the queen in position b1 (not shown).

When you run the program, it lists 92 solutions, including the one in Figure 4. 
Exercise P13.21 asks you to remove those that are rotations or reflections of another.

section_7/Partialsolution.java

1 /**
2    A partial solution to the eight queens puzzle.
3 */
4 public class PartialSolution
5 {
6    private Queen[] queens;
7    private static final int NQUEENS = 8;
8 
9    public static final int ACCEPT = 1;

10    public static final int ABANDON = 2;
11    public static final int CONTINUE = 3;
12    
13    /**
14       Constructs a partial solution of a given size.
15       @param size the size
16    */
17    public PartialSolution(int size)
18    {
19       queens = new Queen[size];
20    }
21 
22    /**
23       Examines a partial solution.
24       @return one of ACCEPT, ABANDON, CONTINUE
25    */
26    public int examine()
27    {
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28       for (int i = 0; i < queens.length; i++)
29       {
30          for (int j = i + 1; j < queens.length; j++)
31          {
32             if (queens[i].attacks(queens[j])) { return ABANDON; }
33          }
34       }
35       if (queens.length == NQUEENS) { return ACCEPT; }
36       else { return CONTINUE; }
37    }
38 
39    /**
40       Yields all extensions of this partial solution.
41       @return an array of partial solutions that extend this solution.
42    */
43    public PartialSolution[] extend()
44    {
45       // Generate a new solution for each column
46       PartialSolution[] result = new PartialSolution[NQUEENS];
47       for (int i = 0; i < result.length; i++)
48       {
49          int size = queens.length;
50 
51          // The new solution has one more row than this one
52          result[i] = new PartialSolution(size + 1);
53 
54          // Copy this solution into the new one
55          for (int j = 0; j < size; j++)
56          {
57             result[i].queens[j] = queens[j];
58          }
59 
60          // Append the new queen into the ith column
61          result[i].queens[size] = new Queen(size, i);
62       }
63       return result;
64    }
65 
66    public String toString() { return Arrays.toString(queens); }
67 }

section_7/Queen.java

1 /**
2    A queen in the eight queens problem.
3 */
4 public class Queen
5 {
6    private int row;
7    private int column;
8 
9    /**

10       Constructs a queen at a given position.
11       @param r the row 
12       @param c the column
13    */
14    public Queen(int r, int c)
15    {
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16       row = r;
17       column = c;
18    }
19 
20    /**
21       Checks whether this queen attacks another.
22       @param other the other queen
23       @return true if this and the other queen are in the same
24       row, column, or diagonal
25    */
26    public boolean attacks(Queen other)
27    {
28       return row == other.row
29          || column == other.column
30          || Math.abs(row - other.row) == Math.abs(column - other.column);
31    }
32 
33    public String toString() 
34    { 
35       return "" + "abcdefgh".charAt(column) + (row + 1) ; 
36    }
37 }

section_7/eightQueens.java

1 import java.util.Arrays;
2 
3 /**
4    This class solves the eight queens problem using backtracking.
5 */
6 public class EightQueens
7 {
8    public static void main(String[] args)
9    {

10       solve(new PartialSolution(0));
11    }
12 
13    /**
14       Prints all solutions to the problem that can be extended from 
15       a given partial solution.
16       @param sol the partial solution
17    */
18    public static void solve(PartialSolution sol)
19    {
20       int exam = sol.examine();
21       if (exam == PartialSolution.ACCEPT) 
22       { 
23          System.out.println(sol); 
24       }
25       else if (exam != PartialSolution.ABANDON)
26       {
27          for (PartialSolution p : sol.extend())
28          {
29             solve(p);
30          }
31       }
32    }
33 }
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 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Program run

[a1, e2, h3, f4, c5, g6, b7, d8]
[a1, f2, h3, c4, g5, d6, b7, e8]
[a1, g2, d3, f4, h5, b6, e7, c8]
 . . .
[f1, a2, e3, b4, h5, c6, g7, d8]
 . . .
[h1, c2, a3, f4, b5, e6, g7, d8]
[h1, d2, a3, c4, f5, b6, g7, e8]

(92 solutions)

23.  Why does j begin at i + 1 in the examine method?
24.  Continue tracing the four queens problem as shown in Figure 5. How many 

solutions are there with the first queen in position a2?
25.  How many solutions are there altogether for the four queens problem?

Practice it  Now you can try these exercises at the end of the chapter: P13.19, P13.23, P13.24.

understand the control flow in a recursive computation.

• A recursive computation solves a problem by using the solution to the same 
problem with simpler inputs.

• For a recursion to terminate, there must be special cases for the simplest values.

design a recursive solution to a problem.

identify recursive helper methods for solving a problem.

• Sometimes it is easier to find a recursive solution if you 
make a slight change to the original problem.

s e l f   c h e c k

Worked exaMple 13.2 Towers of hanoi

No discussion of recursion would be 
com plete without the “Towers of Hanoi”. 
In this Worked Example, we solve the classic 
puzzle with an elegant recursive solution.

C h a p t e r  s u M M a r y
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contrast the efficiency of recursive and non-recursive algorithms.

• Occasionally, a recursive solution runs much slower than its iterative counterpart. 
However, in most cases, the recursive solution is only slightly slower.

• In many cases, a recursive solution is easier to understand and implement cor-
rectly than an iterative solution.

review a complex recursion example that cannot be solved with a simple loop.

• The permutations of a string can be obtained more naturally through 
recursion than with a loop.

recognize the phenomenon of mutual recursion in an expression evaluator.

• In a mutual recursion, a set of cooperating methods calls each other repeatedly.

use backtracking to solve problems that require trying out multiple paths.

• Backtracking examines partial solutions, abandoning unsuitable ones and return-
ing to consider other candidates.

• r13.1  Define the terms 
a. Recursion
b. Iteration
c. Infinite recursion
d. Recursive helper method

•• r13.2  Outline, but do not implement, a recursive solution for finding the smallest value in 
an array.

•• r13.3  Outline, but do not implement, a recursive solution for sorting an array of num bers. 
Hint: First find the smallest value in the array.

•• r13.4  Outline, but do not implement, a recursive solution for generating all subsets of the 
set {1, 2, . . . , n}.

••• r13.5  Exercise P13.15 shows an iterative way of generating all permutations of the 
sequence (0, 1, . . . , n – 1). Explain why the algorithm produces the correct result.

• r13.6  Write a recursive definition of xn, where n ≥ 0, similar to the recursive definition of 
the Fibonacci numbers. Hint: How do you compute xn from xn – 1? How does the 
recursion terminate?

•• r13.7  Improve upon Exercise R13.6 by computing xn as (xn/2)2 if n is even. Why is this 
approach significantly faster? Hint: Compute x1023 and x1024 both ways.

r e v i e W  e x e r C i s e s
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• r13.8  Write a recursive definition of n! = 1 × 2 × . . . × n, similar to the recursive definition 
of the Fibonacci numbers.

•• r13.9  Find out how often the recursive version of fib calls itself. Keep a static variable 
fibCount and increment it once in every call to fib. What is the relationship between 
fib(n) and fibCount? 

••• r13.10  Let moves(n) be the number of moves required to solve the Towers of Hanoi prob-
lem (see Worked Example 13.2). Find a formula that expresses moves(n) in terms of 
moves(n – 1). Then show that moves(n) = 2n – 1. 

•• r13.11  Trace the expression evaluator program from Section 13.6 with inputs 3 – 4 + 5, 
3 – (4 + 5), (3 – 4) * 5, and 3 * 4 + 5 * 6.

• P13.1  Given a class Rectangle with instance variables width and height, provide a recursive 
getArea method. Construct a rectangle whose width is one less than the original and 
call its getArea method.

•• P13.2  Given a class Square with instance variable width, provide a recursive getArea method. 
Construct a square whose width is one less than the original and call its getArea 
method.

• P13.3  Write a recursive method String reverse(String text) that reverses a string. For 
example, reverse("Hello!") returns the string "!olleH". Implement a recursive solution 
by removing the first character, reversing the remaining text, and combining the two.

•• P13.4  Redo Exercise P13.3 with a recursive helper method that reverses a substring of the 
message text.

• P13.5  Implement the reverse method of Exercise P13.3 as an iteration.

•• P13.6  Use recursion to implement a method 
public static boolean find(String text, String str) 

that tests whether a given text contains a string. For example, find("Mississippi", 
"sip") returns true.
Hint: If the text starts with the string you want to match, then you are done. If not, 
consider the text that you obtain by removing the first character.

•• P13.7  Use recursion to implement a method 
public static int indexOf(String text, String str) 

that returns the starting position of the first substring of the text that matches str. 
Return –1 if str is not a substring of the text. 
For example, s.indexOf("Mississippi", "sip") returns 6.
Hint: This is a bit trickier than Exercise P13.6, because you must keep track of how 
far the match is from the beginning of the text. Make that value a parameter variable 
of a helper method.

• P13.8  Using recursion, find the largest element in an array. 
Hint: Find the largest element in the subset containing all but the last element. Then 
compare that maxi mum to the value of the last element. 

p r o G r a M M i n G  e x e r C i s e s
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• P13.9  Using recursion, compute the sum of all values in an array. 

•• P13.10  Using recursion, compute the area of a polygon. Cut off a 
triangle and use the fact that a triangle with corners (x1, y1), 
(x2, y2), (x3, y3) has area

x y x y x y y x y x y x1 2 2 3 3 1 1 2 2 3 3 1

2

+ + − − −

•• P13.11  The following method was known to the ancient Greeks for computing square 
roots. Given a value x > 0 and a guess g for the square root, a better guess is 
(x + g/x) / 2. Write a recursive helper method public static squareRootGuess(double x, 
double g). If g2 is approximately equal to x, return g, otherwise, return squareRootGuess 
with the better guess. Then write a method public static squareRoot(double x) that 
uses the helper method.

••• P13.12  Implement a SubstringGenerator that generates all substrings of a string. For example, 
the substrings of the string "rum" are the seven strings

"r", "ru", "rum", "u", "um", "m", ""

Hint: First enumerate all substrings that start with the first character. There are n of 
them if the string has length n. Then enumerate the substrings of the string that you 
obtain by removing the first character.

••• P13.13  Implement a SubsetGenerator that generates all subsets of the characters of a string. 
For example, the subsets of the characters of the string "rum" are the eight strings

"rum", "ru", "rm", "r", "um", "u", "m", ""

Note that the subsets don’t have to be substrings—for example, "rm" isn’t a substring 
of "rum".

••• P13.14  In this exercise, you will change the permutations method of Section 13.4 (which 
computed all permutations at once) to a PermutationIterator (which computes them 
one at a time).

public class PermutationIterator
{
   public PermutationIterator(String s) { . . . }
   public String nextPermutation() { . . . }
   public boolean hasMorePermutations() { . . . }
}

Here is how you would print out all permutations of the string "eat":
PermutationIterator iter = new PermutationIterator("eat");
while (iter.hasMorePermutations())
{
   System.out.println(iter.nextPermutation());
}

Now we need a way to iterate through the permutations recursively. Consider the 
string "eat". As before, we’ll generate all permutations that start with the letter 'e', 
then those that start with 'a', and finally those that start with 't'. How do we gener-
ate the permutations that start with 'e'? Make another PermutationIterator object 
(called tailIterator) that iterates through the permutations of the substring "at". In 
the nextPermutation method, simply ask tailIterator what its next permutation is, 
and then add the 'e' at the front. However, there is one special case. When the tail 
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generator runs out of permutations, all permutations that start with the current letter 
have been enumerated. Then 

• Increment the current position.
• Compute the tail string that contains all letters except for the current one.
• Make a new permutation iterator for the tail string.

You are done when the current position has reached the end of the string. 

••• P13.15  The following class generates all permutations of the numbers 0, 1, 2, . . ., n – 1, 
without using recursion.

public class NumberPermutationIterator
{
   private int[] a;

   public NumberPermutationIterator(int n)
   {
      a = new int[n];
      done = false;
      for (int i = 0; i < n; i++) { a[i] = i; }
   }

   public int[] nextPermutation()
   {
      if (a.length <= 1) { return a; }

      for (int i = a.length - 1; i > 0; i--)
      {
         if (a[i - 1] < a[i]) 
         {
            int j = a.length - 1;
            while (a[i - 1] > a[j]) { j--; }
            swap(i - 1, j);
            reverse(i, a.length - 1);
            return a;
         } 
      }
      return a;
   }

   public boolean hasMorePermutations()
   {
      if (a.length <= 1) { return false; }
      for (int i = a.length - 1; i > 0; i--)
      {
         if (a[i - 1] < a[i]) { return true; }
      }
      return false;
   }

   public void swap(int i, int j)
   {
      int temp = a[i];
      a[i] = a[j];
      a[j] = temp;
   }

   public void reverse(int i, int j)
   {
      while (i < j) { swap(i, j); i++; j--; }



programming exercises W623

   }
}

The algorithm uses the fact that the set to be permuted consists of distinct numbers. 
Thus, you cannot use the same algorithm to compute the permutations of the char-
acters in a string. You can, however, use this class to get all permutations of the char-
acter positions and then compute a string whose ith character is word.charAt(a[i]). 
Use this approach to reimplement the PermutationIterator of Exercise P13.14 without 
recursion.

•• P13.16  Extend the expression evaluator in Section 13.6 so that it can handle the % operator 
as well as a “raise to a power” operator ̂ . For example, 2 ̂  3 should evaluate to 8. As 
in mathematics, raising to a power should bind more strongly than multiplication: 
5 * 2 ̂  3 is 40.

••• P13.17  Implement an iterator that produces the moves for the Towers of Hanoi puzzle 
described in Worked Example 13.2. Provide methods hasMoreMoves and nextMove. The 
nextMove method should yield a string describing the next move. For example, the 
following code prints all moves needed to move five disks from peg 1 to peg 3:

DiskMover mover = new DiskMover(5, 1, 3);
while (mover.hasMoreMoves())
{
   System.out.println(mover.nextMove());
}

Hint: A disk mover that moves a single disk from one peg to another simply has a 
nextMove method that returns a string

Move disk from peg source to target

A disk mover with more than one disk to move must work harder. It needs another 
DiskMover to help it move the first d – 1 disks. The nextMove asks that disk mover for its 
next move until it is done. Then the nextMove method issues a command to move the 
dth disk. Finally, it constructs another disk mover that generates the remaining 
moves.
It helps to keep track of the state of the disk mover:

• BEFORE_LARGEST: A helper mover moves the smaller pile to the other peg.
• LARGEST: Move the largest disk from the source to the destination.
• AFTER_LARGEST: The helper mover moves the smaller pile from the other peg to 

the target.
• DONE: All moves are done.

••• P13.18  Escaping a Maze. You are currently located inside a maze. The walls of the maze are 
indicated by asterisks (*). 

* *******
*     * *
* ***** *
* * *   *
* * *** *
*   *   *
*** * * *
*     * *
******* *

Use the following recursive approach to check whether you can escape from the 
maze: If you are at an exit, return true. Recursively check whether you can escape 
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from one of the empty neighboring locations without visiting the current location. 
This method merely tests whether there is a path out of the maze. Extra credit if you 
can print out a path that leads to an exit.

•• P13.19  The backtracking algorithm will work for any problem whose partial solutions can 
be examined and extended. Provide a PartialSolution interface type with methods 
examine and extend, a solve method that works with this interface type, and a class 
EightQueensPartialSolution that implements the interface.

•• P13.20  Using the PartialSolution interface and solve method from Exercise P13.19, provide a 
class MazePartialSolution for solving the maze escape problem of Exercise P13.18.

••• P13.21  Refine the program for solving the eight queens problem so that rotations and reflec-
tions of previously displayed solutions are not shown. Your program should display 
twelve unique solutions.

••• P13.22  Refine the program for solving the eight queens problem so that the solutions are 
written to an HTML file, using tables with black and white background for the 
board and the Unicode character ♕ '\u2655' for the white queen.

•• P13.23  Generalize the program for solving the eight queens problem to the n queens prob-
lem. Your program should prompt for the value of n and display the solutions.

•• P13.24  Using backtracking, write a program that solves summation puzzles in which each 
letter should be replaced by a digit, such as

send + more = money

Other examples are base + ball = games and kyoto + osaka = tokyo.

•• P13.25  The recursive computation of Fibonacci numbers can be speeded up significantly 
by keeping track of the values that have already been computed. Provide an imple-
mentation of the fib method that uses this strategy. Whenever you return a new 
value, also store it in an auxiliary array. However, before embarking on a computa-
tion, consult the array to find whether the result has already been computed. Com-
pare the running time of your improved implementation with that of the original 
recursive implementation and the loop implementation.

••• graphics P13.26  The Koch Snowflake. A snowflake-like shape is recursively defined as follows. Start 
with an equilateral triangle:

Next, increase the size by a factor of three and replace each straight line with four 
line segments:

Repeat the process:
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1.  Suppose we omit the statement. When com-
puting the area of a triangle with width 1, we 
compute the area of the triangle with width 
0 as 0, and then add 1, to arrive at the correct 
area.

2.  You would compute the smaller area recur-
sively, then return 
smallerArea + width + width - 1.

[][][][]
[][][][]
[][][][]
[][][][]

Of course, it would be simpler to compute the 
area simply as width * width. The results are 
identical because

n n
n n n n

n
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3.  There is no provision for stopping the 
recursion. When a number < 10 isn’t 8, then 
the method should return false and stop.

4.  public static int pow2(int n) 
{
   if (n <= 0) { return 1; } // 20 is 1
   else { return 2 * pow2(n - 1); }
}

5.  mystery(4) calls mystery(3)
   mystery(3) calls mystery(2)
      mystery(2) calls mystery(1)
         mystery(1) calls mystery(0)
            mystery(0) returns 0.
         mystery(1) returns 0 + 1 * 1 = 1
      mystery(2) returns 1 + 2 * 2 = 5
   mystery(3) returns 5 + 3 * 3 = 14
mystery(4) returns 14 + 4 * 4 = 30

6.  In this problem, any decomposition will work 
fine. We can remove the first or last character 
and then remove punctuation marks from the 
remainder. Or we can break the string in two 

substrings, and remove punctuation marks 
from each.

7.  If the last character is a punctuation mark, 
then you simply return the shorter string with 
punctuation marks removed. Otherwise, you 
reattach the last character to that result and 
return it.

8.  The simplest input is the empty string. It 
contains no punctuation marks, so you simply 
return it.

9.  If str is empty, return str.
last = last letter in str
simplerResult = removePunctuation(
  str with last letter removed)
If (last is a punctuation mark)
 Return simplerResult.
Else
 Return simplerResult + last.

10.  No—the second one could be given a differ-
ent name such as substringIsPalindrome.

11.  When start >= end, that is, when the investi-
gated string is either empty or has length 1.

12.  A sumHelper(int[] a, int start, int size). The 
method calls sumHelper(a, start + 1, size).

13.  Call sum(a, size - 1) and add the last element, 
a[size - 1].

14.  The loop is slightly faster. It is even faster to 
simply compute width * (width + 1) / 2.

15.  No, the recursive solution is about as efficient 
as the iterative approach. Both require n – 1 
multiplications to compute n!.

16.  The recursive algorithm performs about as 
well as the loop. Unlike the recursive Fibo-
nacci algorithm, this algorithm doesn’t call 
itself again on the same input. For example, 
the sum of the array 1 4 9 16 25 36 49 64 is 
computed as the sum of 1 4 9 16 and 25 36 49 
64, then as the sums of 1 4, 9 16, 25 36, and 49 
64, which can be com puted directly. 

17.  They are b followed by the six permutations 
of eat, e followed by the six permuta tions of 

Write a program that draws the iterations of the snowflake shape. Supply a button 
that, when clicked, produces the next iteration. 
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bat, a followed by the six permutations of bet, 
and t followed by the six per mutations of bea.

18.  Simply change if (word.length() == 0) to 
if (word.length() <= 1), because a word with a 
single letter is also its sole permutation.

19.  An iterative solution would have a loop whose 
body computes the next permuta tion from the 
previous ones. But there is no obvious mecha-
nism for getting the next permutation. For 
example, if you already found permutations 
eat, eta, and aet, it is not clear how you use 
that information to get the next permutation. 
Actually, there is an ingenious mechanism for 
doing just that, but it is far from obvious—see 
Exercise P13.15.

20.  Factors are combined by multiplicative opera-
tors (* and /); terms are combined by additive 
operators (+, -). We need both so that multipli-
cation can bind more strongly than addition.

21.  To handle parenthesized expressions, such as 
2+3*(4+5). The subexpression 4+5 is handled by 
a recursive call to getExpressionValue.

22.  The Integer.parseInt call in getFactorValue 
throws an exception when it is given the 
string ")".

23.  We want to check whether any queen[i] 
attacks any queen[j], but attacking is sym-
metric. That is, we can choose to compare 
only those for which i < j (or, alternatively, 
those for which i > j). We don’t want to call 
the attacks method when i equals j; it would 
return true. 

24.  One solution:

25.  Two solutions: The one from Self Check 24, 
and its mirror image.


