
Controlling the position of elements X

Creating site layouts X

Designing for different sized screens X

Layout

15

359 LAYOUT

In this chapter we are going to look at
how to control where each element sits
on a page and how to create attractive
page layouts.

This involves learning about how designing for a screen can be
different to designing for other mediums (such as print). In this
chapter we will:

Explore different ways to position elements using normal ●

flow, relative positioning, absolute positioning and floats.

Discover how various devices have different screen sizes ●

and resolution, and how this affects the design process.

Learn the difference between fixed width and liquid layouts, ●

and how they are created.

Find out how designers use grids to make their page ●

designs look more professional.

360LAYOUT

361 LAYOUT

Key ConCepts in
positioning eLements

Building Blocks

CSS treats each HTML element as if it is in its
own box. This box will either be a block-level
box or an inline box.

Block-level boxes start on a new line and act as the main building blocks
of any layout, while inline boxes flow between surrounding text. You can
control how much space each box takes up by setting the width of the
boxes (and sometimes the height, too). To separate boxes, you can use
borders, margins, padding, and background colors.

Block-level elements
start on a new line
Examples include:
<h1> <p>

inline elements
flow in Between
surrounding text
Examples include:
 <i>

Lorem Ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit.

Lorem ipsum dolor sit•	
Consectetur adipisicing•	
Elit, sed do eiusmod•	

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.

 Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua.

362LAYOUT

Lorem			•			Ipsum			•			Dolor			•			ConsecteturLorem Ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat.

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat.
Duis aute.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

containing ElEmEnts

If one block-level element sits inside another
block-level element then the outer box is
known as the containing or parent element.

It is common to group a number of elements together inside a <div>
(or other block-level) element. For example, you might group together
all of the elements that form the header of a site (such as the logo and
the main navigation). The <div> element that contains this group of
elements is then referred to as the containing element.

A box may be nested inside
several other block-level
elements. The containing
element is always the direct
parent of that element.

The orange lines in this diagram represent <div> elements. The
header (containing the logo and navigation) are in one <div> element,
the main content of the page is in another, and the footer is in a third.
The <body> element is the containing element for these three <div>
elements. The second <div> element is the containing element for two
paragraphs of Latin text and images (represented by crossed squares).

363 LAYOUT

ControLLing the
position of eLements

Lorem Ipsum

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit
in voluptate velit.

Lorem Ipsum

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut.

Ut enim ad minim veniam, quis
nostrud exercitation ullamco
laboris nisi ut aliquip ex ea.

Duis aute irure dolor in reprehenderit
in voluptate velit.

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit
in voluptate velit.

Lorem Ipsum

CSS has the following positioning schemes that allow you to control
the layout of a page: normal flow, relative positioning, and absolute
positioning. You specify the positioning scheme using the position
property in CSS. You can also float elements using the float property.

normal flow
Every block-level element
appears on a new line, causing
each item to appear lower down
the page than the previous one.
Even if you specify the width
of the boxes and there is space
for two elements to sit side-by-
side, they will not appear next
to each other. This is the default
behavior (unless you tell the
browser to do something else).

relative Positioning
This moves an element from the
position it would be in normal
flow, shifting it to the top, right,
bottom, or left of where it
would have been placed. This
does not affect the position of
surrounding elements; they stay
in the position they would be in
in normal flow.

aBsolute Positioning
This positions the element
in relation to its containing
element. It is taken out of
normal flow, meaning that it
does not affect the position
of any surrounding elements
(as they simply ignore the
space it would have taken up).
Absolutely positioned elements
move as users scroll up and
down the page.

The paragraphs appear one
after the other, vertically down
the page.

The second paragraph has been
pushed down and right from
where it would otherwise have
been in normal flow.

The heading is positioned to the
top right, and the paragraphs
start at the top of the screen (as
if the heading were not there).

See page 365 See page 366 See page 367

364LAYOUT

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit
in voluptate velit.

Lorem Ipsum

 Lorem ipsum dolor sit
 amet, consectetur
 adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit
in voluptate velit.

Lorem
Ipsum

To indicate where a box should be positioned, you may also need to use
box offset properties to tell the browser how far from the top or bottom
and left or right it should be placed. (You will meet these when we
introduce the positioning schemes on the following pages.)

fixed Positioning
This is a form of absolute
positioning that positions
the element in relation to the
browser window, as opposed
to the containing element.
Elements with fixed positioning
do not affect the position of
surrounding elements and they
do not move when the user
scrolls up or down the page.

floating elements
Floating an element allows
you to take that element out
of normal flow and position
it to the far left or right of a
containing box. The floated
element becomes a block-level
element around which other
content can flow.

When you move
any element from
normal flow, boxes
can overlap. The
z-index property
allows you to control
which box appears
on top.

The heading has been placed in
the center of the page and 25%
from the top of the screen. (The
rest appears in normal flow.)

The heading has been floated to
the left, allowing the paragraphs
of text to flow around it.

See page 368 See page 370-376

365 LAYOUT

artiCLe

365 LAYOUT

R e s u lt

body {
 width: 750px;
 font-family: Arial, Verdana, sans-serif;
 color: #665544;}
h1 {
 background-color: #efefef;
 padding: 10px;}
p {
 width: 450px;}

In normal flow, each block-level
element sits on top of the next
one. Since this is the default
way in which browsers treat
HTML elements, you do not
need a CSS property to indicate
that elements should appear
in normal flow, but the syntax
would be:

position: static;

I have not specified a width
property for the heading
element, so you can see how it
stretches the width of the entire
browser window by default.

The paragraphs are restricted
to 450 pixels wide. This shows
how the elements in normal flow
start on a new line even if they
do not take up the full width of
the browser window.

All of the examples that
demonstrate positioning will use
a similar HTML structure.

C s s

<body>
 <h1>The Evolution of the Bicycle</h1>
 <p>In 1817 Baron von Drais invented a walking
 machine that would help him get around the
 royal gardens faster...</p>
</body>

chapter-15/normal-flow.html H tM l

normaL fLow
position:static

artiCLe

366LAYOUT 366LAYOUT

Relative positioning moves an
element in relation to where it
would have been in normal flow.

For example, you can move it 10
pixels lower than it would have
been in normal flow or 20% to
the right.

You can indicate that an element
should be relatively positioned
using the position property
with a value of relative.

You then use the offset
properties (top or bottom and
left or right) to indicate how
far to move the element from
where it would have been in
normal flow.

To move the box up or down,
you can use either the top or
bottom properties.

To move the box horizontally,
you can use either the left or
right properties.

The values of the box offset
properties are usually given in
pixels, percentages or ems.

R e s u lt

p.example {
 position: relative;
 top: 10px;
 left: 100px;}

C s s

<body>
 <h1>The Evolution of the Bicycle</h1>
 <p>In 1817 Baron von Drais invented a walking
 machine that would help him get around the
 royal gardens faster...</p>
</body>

chapter-15/position-relative.htmlH tM l

reLative positioning
position:relative

367 LAYOUT

artiCLe

367 LAYOUT

When the position property
is given a value of absolute,
the box is taken out of normal
flow and no longer affects the
position of other elements on
the page. (They act like it is not
there.)

The box offset properties (top
or bottom and left or right)
specify where the element
should appear in relation to its
containing element.

In this example, the heading has
been positioned at the top of the
page and 500 pixels from its left
edge. The width of the heading is
set to be 250 pixels wide.

The width property has
also been applied to the <p>
elements in this example
to prevent the text from
overlapping and becoming
unreadable.

By default, most browsers add
a margin to the top of the <h1>
element. This is why there is
a gap between the top of the
browser and the box containing
the <h1> element. If you wanted
to remove this margin, you could
add the following code to the
<h1> element's style rules:
margin: 0px;

R e s u lt

h1 {
 position: absolute;
 top: 0px;
 left: 500px;
 width: 250px;}
p {
 width: 450px;}

C s s

<body>
 <h1>The Evolution of the Bicycle</h1>
 <p>In 1817 Baron von Drais invented a walking
 machine that would help him get around the
 royal gardens faster...</p>
</body>

chapter-15/position-absolute.html H tM l

absoLute positioning
position:absolute

artiCLe

368LAYOUT 368LAYOUT

Fixed positioning is a type
of absolute positioning that
requires the position property
to have a value of fixed.

It positions the element in
relation to the browser window.
Therefore, when a user scrolls
down the page, it stays in the
exact same place. It is a good
idea to try this example in your
browser to see the effect.

To control where the fixed
position box appears in relation
to the browser window, the box
offset properties are used.

In this example, the heading
has been positioned to the top
left hand corner of the browser
window. When the user scrolls
down the page, the paragraphs
disappear behind the heading.

The <p> elements are in normal
flow and ignore the space that
the <h1> element would have
taken up. Therefore, the
margin-top property has
been used to push the first <p>
element below where the fixed
position <h1> element is sitting.

R e s u lt

h1 {
 position: fixed;
 top: 0px;
 left: 50px;
 padding: 10px;
 margin: 0px;
 width: 100%;
 background-color: #efefef;}
p.example {
 margin-top: 100px;}

C s s

<body>
 <h1>The Evolution of the Bicycle</h1>
 <p class="example">In 1817 Baron von Drais
 invented a walking machine that would help him
 get around the royal gardens faster...</p>
</body>

chapter-15/position-fixed.htmlH tM l

fixed positioning
position:fixed

369 LAYOUT

artiCLe

369 LAYOUT

h1 {
 position: fixed;
 top: 0px;
 left: 0px;
 margin: 0px;
 padding: 10px;
 width: 100%;
 background-color: #efefef;
 z-index: 10;}
p {
 position: relative;
 top: 70px;
 left: 70px;}

chapter-15/z-index.html C s s
When you use relative, fixed, or
absolute positioning, boxes can
overlap. If boxes do overlap, the
elements that appear later in the
HTML code sit on top of those
that are earlier in the page.

If you want to control which
element sits on top, you can use
the z-index property. Its value
is a number, and the higher the
number the closer that element
is to the front. For example, an
element with a z-index of 10
will appear over the top of one
with a z-index of 5.

This example looks similar to
the one on page 368, but it
uses relative positioning for
the <p> elements. Because
the paragraphs are relatively
positioned, by default they
would appear over the top of the
heading as the user scrolls down
the page. To ensure that the
<h1> element stays on top, we
use the z-index property on the
rule for the <h1> element.

The z-index is sometimes
referred to as the stacking
context (as if the blocks have
been stacked on top of each
other on a z axis). If you are
familiar with desktop publishing
packages, it is the equivalent
of using the 'bring to front' and
'send to back' features.

overLapping eLements
z-index

R e s u lt w it H o u t z- i n d e x

R e s u lt w it H z- i n d e x

artiCLe

370LAYOUT 370LAYOUT

The float property allows you
to take an element in normal
flow and place it as far to the
left or right of the containing
element as possible.

Anything else that sits inside
the containing element will
flow around the element that is
floated.

When you use the float
property, you should also use the
width property to indicate how
wide the floated element should
be. If you do not, results can be
inconsistent but the box is likely
to take up the full width of the
containing element (just like it
would in normal flow).

In this example, a
<blockquote> element is
used to hold a quotation. It's
containing element is the
<body> element.

The <blockquote> element
is floated to the right, and the
paragraphs that follow the quote
flow around the floated element.

blockquote {
 float: right;
 width: 275px;
 font-size: 130%;
 font-style: italic;
 font-family: Georgia, Times, serif;
 margin: 0px 0px 10px 10px;
 padding: 10px;
 border-top: 1px solid #665544;
 border-bottom: 1px solid #665544;}

C s s

<h1>The Evolution of the Bicycle</h1>
<blockquote>"Life is like riding a bicycle.
 To keep your balance you must keep moving." -
 Albert Einstein</blockquote>
<p>In 1817 Baron von Drais invented a walking
 machine that would help him get around the royal
 gardens faster: two same-size in-line wheels, the
 front one steerable, mounted in a frame ... </p>

chapter-15/float.htmlH tM l

fLoating eLements
float

R e s u lt

371 LAYOUT

artiCLe

371 LAYOUT

R e s u lt

body {
 width: 750px;
 font-family: Arial, Verdana, sans-serif;
 color: #665544;}
p {
 width: 230px;
 float: left;
 margin: 5px;
 padding: 5px;
 background-color: #efefef;}

C s s

<body>
 <h1>The Evolution of the Bicycle</h1>
 <p>In 1817 Baron von Drais invented a walking
 machine that would help him get around...</p>
</body>

chapter-15/using-float.html H tM l
A lot of layouts place boxes
next to each other. The float
property is commonly used to
achieve this.

When elements are floated, the
height of the boxes can affect
where the following elements sit.

In this example, you can see six
paragraphs, each of which has a
width and a float property set.

The fourth paragraph does not
go across to the left hand edge
of the page as one might expect.
Rather it sits right under the
third paragraph.

The reason for this is that the
fourth paragraph has space to
start under the third paragraph,
but it cannot go any further to
the left because the second
paragraph is in the way.

Setting the height of the
paragraphs to be the same
height as the tallest paragraph
would solve this issue, but it
is rarely suited to real world
designs where the amount of
text in a paragraph or column
may vary. It is more common
to use the clear property
(discussed on the next page) to
solve this issue.

using fLoat to pLaCe
eLements side-by-side

artiCLe

372LAYOUT 372LAYOUT

The clear property allows you
to say that no element (within
the same containing element)
should touch the left or right-
hand sides of a box. It can take
the following values:

left
The left-hand side of the box
should not touch any other
elements appearing in the same
containing element.

right
The right-hand side of the
box will not touch elements
appearing in the same containing
element.

both
Neither the left nor right-hand
sides of the box will touch
elements appearing in the same
containing element.

none
Elements can touch either side.

In this example, the fourth
paragraph has a class called
clear. The CSS rule for this
class uses the clear property
to indicate that nothing should
touch the left-hand side of it. The
fourth paragraph is therefore
moved further down the page
so no other element touches its
left-hand side.

CLearing fLoats
clear

<p class="clear">In 1865, the velocipede (meaning
 "fast foot") attached pedals to the front wheel,
 but its wooden structure made it extremely
 uncomfortable.</p>

chapter-15/clear.htmlH tM l

body {
 width: 750px;
 font-family: Arial, Verdana, sans-serif;
 color: #665544;}
p {
 width: 230px;
 float: left;
 margin: 5px;
 padding: 5px;
 background-color: #efefef;}
.clear {
 clear: left;}

C s s

R e s u lt

373 LAYOUT

artiCLe

373 LAYOUT

R e s u lt

div {
 border: 1px solid #665544;}

C s s

<body>
 <h1>The Evolution of the Bicycle</h1>
 <div>
 <p>In 1817 Baron von Drais invented a walking
 machine that would help him get around the
 royal gardens faster...</p>
 </div>
</body>

chapter-15/float-problem.html H tM l
If a containing element only
contains floated elements, some
browsers will treat it as if it is
zero pixels tall.

As you can see in this example,
the one pixel border assigned
to the containing element has
collapsed, so the box looks like a
two pixel line.

parents of fLoated
eLements: probLem

artiCLe

374LAYOUT 374LAYOUT

div {
 border: 1px solid #665544;
 overflow: auto;
 width: 100%;}

C s s

R e s u lt

<body>
 <h1>The Evolution of the Bicycle</h1>
 <div>
 <p>In 1817 Baron von Drais invented a walking
 machine that would help him get around the
 royal gardens faster...</p>
 </div>
</body>

chapter-15/float-solution.htmlH tM l
Traditionally, developers got
around this problem by adding
an extra element after the
last floated box (inside the
containing element). A CSS
rule would be applied to this
additional element setting the
clear property to have a value
of both. But this meant that an
extra element was added to the
HTML just to fix the height of the
containing element.

More recently, developers have
opted for a purely CSS-based
solution because it means that
there is no need to add an extra
element to the HTML page after
the floated elements. The pure
CSS solution adds two CSS rules
to the containing element (in this
example the <div> element):

The ● overflow property is
given a value auto.

The ● width property is set to
100%.

parents of fLoated
eLements: soLution

375 LAYOUT

artiCLe

375 LAYOUT

R e s u lt

.column1of2 {
 float: left;
 width: 620px;
 margin: 10px;}
.column2of2 {
 float: left;
 width: 300px;
 margin: 10px;}

C s s

<h1>The Evolution of the Bicycle</h1>
<div class="column1of2">
 <h3>The First Bicycle</h3>
 <p>In 1817 Baron von Drais invented a walking
 machine that would help him get around the
 royal gardens faster: two same-size ...</p>
</div>
<div class="column2of2">
 <h3>Bicycle Timeline</h3> ...
</div>

chapter-15/columns-two.html H tM l
Many web pages use multiple
columns in their design. This
is achieved by using a <div>
element to represent each
column. The following three CSS
properties are used to position
the columns next to each other:

width
This sets the width of the
columns.

float
This positions the columns next
to each other.

margin
This creates a gap between the
columns.

A two-column layout like the one
shown on this page would need
two <div> elements, one for the
main content of the page and
one for the sidebar.

Inside each of the <div>
elements there can be headings,
paragraphs, images, and even
other <div> elements.

Creating muLti-CoLumn
Layouts with fLoats

artiCLe

376LAYOUT 376LAYOUT

R e s u lt

.column1of3, .column2of3, .column3of3 {
 width: 300px;
 float: left;
 margin: 10px;}

C s s

<h1>The Evolution of the Bicycle</h1>
<div class="column1of3">
 <h3>The First Bicycle</h3> ...
</div>
<div class="column2of3">
 <h3>Further Innovations</h3> ...
</div>
<div class="column3of3">
 <h3>Bicycle Timeline</h3> ...
</div>

chapter-15/columns-three.htmlH tM l
Similarly, a three column layout
could be created by floating
three <div> elements next to
each other, as shown on this
page.

377 LAYOUT

Different visitors to your site will have different sized screens that show
different amounts of information, so your design needs to be able to
work on a range of different sized screens.

sCreen sizes

When designing for print, you
always know the size of the
piece of paper that your design
will be printed on. However,
when it comes to designing for
the web, you are faced with the
unique challenge that different
users will have different sized
screens.

Since computers have been sold
to the public, the size of screens
has been steadily increasing.
This means that some people
viewing your site might have 13
inch monitors while others may
have 27+ inch monitors.

The size of a user's screen
affects how big they can open
their windows and how much
of the page they will see. There
are also an increasing number
of handheld devices (mobile
phones and tablets) that have
smaller screens.

iPhone 4
Size: 3.5 inches

Resolution: 960 x 640 pixels

iPad 2
Size: 9.7 inches

Resolution: 1024 x 768 pixels

378LAYOUT

Resolution refers to the number of dots a screen shows per inch. Some
devices have a higher resolution than desktop computers and most
operating systems allow users to adjust the resolution of their screens.

sCreen resoLution

Most computers will allow
owners to adjust the resolution
of the display or the number
of pixels that are shown on the
screen. For example, here you
can see the options to change
the screen size from 720 x 480
pixels up to 1280 x 800 pixels.

It is interesting to note that
the higher the resolution, the
smaller the text appears. Many
mobile devices have screens
that are higher resolution than
their desktop counterparts.

13" MacBook
Size: 13.3 inches

Resolution: 1280 x 800 pixels

27" iMac
Size: 27 inches

Resolution: 2560 x 1440 pixels

379 LAYOUT

Judging the height that people
are likely to see on the screen
without scrolling down the page
is much harder. For several
years, designers assumed that
users would see the top 570-
600 pixels of a page without
having to scroll and some tried
to fit all of the key messages in
this area (fearing that people
would not scroll down the page).

As screen sizes have increased
and handheld devices have
become more popular, the
area users will see is far more
variable.

The area of the page that users
would see without scrolling was
often referred as being “above
the fold” (a term newspapers
had originally coined to describe

the area of the front page you
would see if the paper were
folded in half).

It is now recognized that if
someone is interested in the
content of the page, they are
likely to scroll down to see more.
Having said which, usability
studies have shown that visitors
can judge a page in under a
second so it is still important to
let new visitors know that the
site is relevant to them and their
interests.

As a result, many designs still
try to let the user know what the
site is about within the top 570-
600 pixels, as well as hint at
more content below this point.
But do not try to cram too much
into that top area.

Because screen sizes and display resolutions vary so much, web
designers often try to create pages of around 960-1000 pixels wide
(since most users will be able to see designs this wide on their screens).

page sizes

At the time of writing, there was a growing trend for people to create
adaptive or responsive designs that could change depending on the size
of the screen.

380LAYOUT

The shaded area is hidden by
the constraints of the browser
window, so the user must scroll
in order to view the lower region.

However, the user gets a taste
for what is lower on the page
and can tell that there will be
more to see if they scroll down.

5
7
0

 p
x

1000 px

381 LAYOUT

Fixed width layout
designs do not
change size as the
user increases
or decreases
the size of their
browser window.
Measurements tend
to be given in pixels.

fixed width Layouts

Lorem			•			Ipsum			•			Dolor			•			ConsecteturLorem Ipsum

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint
occaecat.

Lorem ipsum dolor
sit amet, consectetur
adipisicing elit, sed
do eiusmod tempor
incididunt ut labore et

advantagEs

Pixel values are accurate ●

at controlling size and
positioning of elements.

The designer has far greater ●

control over the appearance
and position of items on the
page than with liquid layouts.

You can control the lengths ●

of lines of text regardless of
the size of the user's window.

The size of an image will ●

always remain the same
relative to the rest of the
page.

disadvantagEs

You can end up with big gaps ●

around the edge of a page.

If the user's screen is a much ●

higher resolution than the
designer's screen, the page
can look smaller and text can
be harder to read.

If a user increases font sizes, ●

text might not fit into the
allotted spaces.

The design works best on ●

devices that have a site or
resolution similar to that of
desktop or laptop computers.

The page will often take up ●

more vertical space than a
liquid layout with the same
content.

382LAYOUT

Liquid layout designs
stretch and contract
as the user increases
or decreases the
size of their browser
window. They tend to
use percentages.

Liquid Layouts

Lorem			•			Ipsum			•			Dolor			•			ConsecteturLorem Ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat.

Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

advantagEs

Pages expand to fill the entire ●

browser window so there are
no spaces around the page
on a large screen.

If the user has a small ●

window, the page can
contract to fit it without the
user having to scroll to the
side.

The design is tolerant of ●

users setting font sizes larger
than the designer intended
(because the page can
stretch).

disadvantagEs

If you do not control the ●

width of sections of the page
then the design can look very
different than you intended,
with unexpected gaps around
certain elements or items
squashed together.

If the user has a wide ●

window, lines of text can
become very long, which
makes them harder to read.

If the user has a very narrow ●

window, words may be
squashed and you can end up
with few words on each line.

If a fixed width item (such as ●

an image) is in a box that is
too small to hold it (because
the user has made the
window smaller) the image
can overflow over the text.

Because liquid layouts can
stretch the entire width of the
browser, resulting in long lines
of text that are hard to read,
some liquid layouts only let part
of the page expand and contract.
Other parts of the page have
minimum and maximum widths.

383 LAYOUT

artiCLe

383 LAYOUT

To create a fixed width layout,
the width of the main boxes on
a page will usually be specified
in pixels (and sometimes their
height, too).

Here you can see several <div>
elements, each of which uses an
id or class attribute to indicate
its purpose on the page.

In a book like this, the result of
both the fixed and liquid layouts
look similar. To get a real feel for
them, you need to view them in
your browser and see how they
react when you adjust the size of
the browser window.

The fixed width layout will stay
the same width no matter what
size the browser window is,
whereas the liquid layout will
stretch (or shrink) to fill the
screen.

The HTML is the same for both
the fixed width layout example
on this page and the liquid layout
example you see next.

a fixed width Layout

<body>
 <div id="header">
 <h1>Logo</h1>
 <div id="nav">

 Home
 Products
 Services
 About
 Contact

 </div>
 </div>
 <div id="content">
 <div id="feature">
 <p>Feature</p>
 </div>
 <div class="article column1">
 <p>Column One</p>
 </div>
 <div class="article column2">
 <p>Column Two</p>
 </div>
 <div class="article column3">
 <p>Column Three</p>
 </div>
 </div>
 <div id="footer">
 <p>© Copyright 2011</p>
 </div>
</body>

chapter-15/fixed-width-layout.html H tM l

artiCLe

384LAYOUT 384LAYOUT

The rule for the <body> element
is used to fix the width of the
page at 960 pixels, and it is
centered by setting the left and
right margins to auto.

The main boxes on the page
have a margin of 10 pixels to
create a gap between them.

The navigation, feature, and
footer panels stretch to the
width of the containing element
(which in this instance is the
<body> element), so we do not
need to specify a width for them.

The three columns are each 300
pixels wide and use the float
property, which allows them to
sit next to each other.

Sometimes an extra HTML
element is used to contain the
page, rather than fixing the
width of the <body>. This allows
the background of the browser
window to have a different color
than the background of the
content.

R e s u lt

body {
 width: 960px;
 margin: 0 auto;}
#content {
 overflow: auto;
 height: 100%;}
#nav, #feature, #footer {
 background-color: #efefef;
 padding: 10px;
 margin: 10px;}
.column1, .column2, .column3 {
 background-color: #efefef;
 width: 300px;
 float: left;
 margin: 10px;}
li {
 display: inline;
 padding: 5px;}

C s s

385 LAYOUT

artiCLe

385 LAYOUT

The liquid layout uses
percentages to specify the width
of each box so that the design
will stretch to fit the size of the
screen.

When trying this in your
browser, remember to make the
window smaller and larger.

a Liquid Layout

<body>
 <div id="header">
 <h1>Logo</h1>
 <div id="nav">

 Home
 Products
 Services
 About
 Contact

 </div>
 </div>
 <div id="content">
 <div id="feature">
 <p>Feature</p>
 </div>
 <div class="article column1">
 <p>Column One</p>
 </div>
 <div class="article column2">
 <p>Column Two</p>
 </div>
 <div class="article column3">
 <p>Column Three</p>
 </div>
 </div>
 <div id="footer">
 <p>© Copyright 2011</p>
 </div>
</body>

chapter-15/liquid-layout.html H tM l

artiCLe

386LAYOUT 386LAYOUT

There is a rule on the <body>
element to set the width of the
page to 90% so that there is a
small gap between the left and
right-hand sides of the browser
window and the main content.

The three columns are all given
a margin of 1% and a width of
31.3%. This adds up to 99.9%
of the width of the <body>
element, so some browsers
might not perfectly align the
right-hand side of the third
column with other elements on
the page.

The <div> elements that hold
the navigation, feature, and
footer will stretch to fill the
width of the containing <body>
element. They are given a 1%
margin to help them align with
the columns.

If you imagine the browser
window to be very wide or very
narrow, you can see how lines of
text could become very long or
very short.

This is where the min-width
and max-width properties help
create boundaries within which
the layout can stretch (although
Internet Explorer 7 was the first
version of IE to support these
properties).

R e s u lt

body {
 width: 90%;
 margin: 0 auto;}
#content {overflow: auto;}
#nav, #feature, #footer {
 margin: 1%;}
.column1, .column2, .column3 {
 width: 31.3%;
 float: left;
 margin: 1%;}
.column3 {margin-right: 0%;}
li {
 display: inline;
 padding: 0.5em;}
#nav, #footer {
 background-color: #efefef;
 padding: 0.5em 0;}
#feature, .article {
 height: 10em;
 margin-bottom: 1em;
 background-color: #efefef;}

C s s

387 LAYOUT

On the right, you can see a set of
thick vertical lines superimposed
over the top of a newspaper
website to show you how the
page was designed according to
a grid. This grid is called the 960
pixel grid and is widely used by
web designers.

Grids set consistent proportions
and spaces between items which
helps to create a professional
looking design.

If you flick back through the
pages of this book you will see
that it, too, has been constructed
according to a grid (comprising
three columns).

As you will see on pages 389-
390, it is possible to create many
different layouts using this one
versatile grid.

While a grid might seem like a
restriction, in actual fact it:

Creates a continuity between ●

different pages which may
use different designs

Helps users predict where to ●

find information on various
pages

Makes it easier to add new ●

content to the site in a
consistent way

Helps people collaborate ●

on the design of a site in a
consistent way

Composition in any visual art (such as design, painting, or photography)
is the placement or arrangement of visual elements — how they are
organized on a page. Many designers use a grid structure to help them
position items on a page, and the same is true for web designers.

Layout grids

388LAYOUT

exampLe grid

389 LAYOUT

possibLe Layouts:
960 pixeL wide
12 CoLumn grid

940 px

460 px

300 px

220 px

140 px

460 px

300 px 300 px

220 px 220 px 220 px

140 px 140 px 140 px 140 px 140 px

390LAYOUT

These two pages illustrate a 960
pixel wide, 12 column grid. They
demonstrate how it is possible
to create a wide range of column
layouts using this one grid.

The page is 960 pixels wide and
there are 12 equal sized columns
(shown in gray), each of which is
is 60 pixels wide.

Each column has a margin set
to 10 pixels, which creates a a
gap of 20 pixels between each
column and 10 pixels to the left
and right-hand sides of the page.

620 px

220 px

460 px

300 px

220 px

700 px

220 px 220 px

300 px 140 px 140 px

220 px 140 px 140 px 140 px

300 px

391 LAYOUT

CSS frameworks aim to make your life easier by providing the code for
common tasks, such as creating layout grids, styling forms, creating
printer-friendly versions of pages and so on. You can include the CSS
framework code in your projects rather than writing the CSS from scratch.

Css frameworKs

advantages

They save you from ●

repeatedly writing code for
the same tasks.

They will have been tested ●

across different browser
versions (which helps avoid
browser bugs).

disadvantages

They often require that you ●

use class names in your
HTML code that only control
the presentation of the page
(rather than describe its
content).

In order to satisfy a wide ●

variety of needs, they often
contain more code than you
need for your particular web
page (commonly referred to
as code “bloat”).

One of the most popular uses of
CSS frameworks is in creating
grids to layout pages. There
are several grid frameworks
out there, but the one we will
be looking at over the next few
pages is the 960 Grid System
(available at www.960.gs).

960.gs provides a style sheet
that you can include in your
HTML pages. Once our page
links to this style sheet, you can
provide the appropriate classes
to your HTML code and it will
create multiple column layouts
for you. The 960.gs website
also provides templates you can

download to help design your
pages using a 12 column grid. (In
addition, there is a variation on
the grid that uses 16 columns.)

To create a 12 column grid, an
element that contains the entire
page is given a class attibute
whose value is container_12.
This sets the content of the
page to be 960 pixels wide and
indicates that we are using a 12
column grid.

There are different classes for
blocks that take up 1, 2, 3, 4,
and up to 12 columns of the grid.
Each block uses class names

such as grid_3 (for a block that
stretches over three columns),
grid_4 (for a block that
stretches over 4 columns) and
and so on through to grid_12
(for a box that is the full width
of the page). These columns all
float to the left, and there is a 10
pixel margin to the left and the
right of each one.

There are several other grid-
based CSS frameworks available
online, such as those at:
blueprintcss.org
lessframework.com
developer.yahoo.com/yui/
grids/

introduCing the 960.gs Css frameworK

392LAYOUT

Below you can see a sample layout of a page just like the fixed width
page example. On the next page, we will recreate this using the 960.gs
stylesheet. Instead of writing our own CSS to control layout, we will need
to add classes to the HTML indicating how wide each section should be.

using the 960.gs grid

940 px

300 px

940 px

940 px

300 px 300 px

940 px

393 LAYOUT

artiCLe

393 LAYOUT

<head>
 <title>Grid Layout</title>
 <link rel="stylesheet" type="text/css"
 href="css/960_12_col.css" />
 <style>See the right hand page</style>
</head>
<body>
 <div class="container_12 clearfix">
 <div id="header" class="grid_12">
 <h1>Logo</h1>
 <div id="nav">

 Home
 Products
 Services
 About
 Contact

 </div>
 </div>
 <div id="feature" class="grid_12">
 <p>Feature</p>
 </div>
 <div class="article grid_4">
 <p>Column One</p>
 </div>
 <div class="article grid_4">
 <p>Column Two</p>
 </div>
 <div class="article grid_4">
 <p>Column Three</p>
 </div>
 <div id="footer" class="grid_12">
 <p>© Copyright 2011</p>
 </div>
 </div><!-- .container_12 -->
</body>

chapter-15/grid-layout.html H tM l
Let's take a look at an HTML
page and how it has been
marked up to use the 960.gs grid
system.

You can see that we include
the CSS for the grid using the
<link> element inside the
<head> of the page.

The styles we are writing
ourselves are shown on the right
hand page.

The 960_12_col.css stylesheet
contains all of the rules we need
to control the grid layout. The
HTML uses the class names:

container_12 to act as a
container for the whole page and
indicate that we are using a 12
column grid

clearfix to ensure that
browsers know the height of the
containing box, because it only
contains floated elements (this
addresses the issue you met on
pages 371-372)

grid_12 to create a block that is
twelve columns wide

grid_4 to create a block that is
four columns wide

a grid-based Layout
using 960.gs

artiCLe

394LAYOUT 394LAYOUT

R e s u lt

* {
 font-family: Arial, Verdana, sans-serif;
 color: #665544;
 text-align: center;}
#nav, #feature, .article, #footer {
 background-color: #efefef;
 margin-top: 20px;
 padding: 10px 0px 5px 0px;}
#feature, .article {
 height: 100px;}
li {
 display: inline;
 padding: 5px;}

C s s
The 960.gs style sheet has taken
care of the layout, creating the
correct width for the columns
and setting the spaces between
them. Therefore, the only rules
we needed to add are shown on
this page. These rules:

Control the font and the ●

position of the text in the
boxes

Set the background colors for ●

the boxes

Set the height of the feature ●

and article boxes

Add a margin to the top and ●

bottom of each box

395 LAYOUT

artiCLe

395 LAYOUT

<!DOCTYPE html>
<html>
 <head>
 <title>Multiple Style Sheets - Import</title>
 <link rel="stylesheet" type="text/css"
 href="css/styles.css" />
 </head>
 <body>
 <!-- HTML page content here -->
 </body>
</html>

chapter-15/multiple-style-sheets-import.html H tM l
Some web page authors split
up their CSS style rules into
separate style sheets. For
example, they might use one
style sheet to control the layout
and another to control fonts,
colors and so on.

Some authors take an even
more modular approach
to stylesheets, creating
separate stylesheets to control
typography, layout, forms,
tables, even different styles for
each sub-section of a site.

There are two ways to add
multiple style sheets to a page:

1: Your HTML page can link
to one style sheet and that
stylesheet can use the @import
rule to import other style sheets.

2: In the HTML you can use a
separate <link> element for
each style sheet.

The example on this page
uses one <link> element in
the HTML to link to a style
sheet called styles.css. This
stylesheet then uses the
@import rule to import the
typography.css and
tables.css files.

If a styesheet uses the @import
rule, it should appear before the
other rules.

muLtipLe styLe sheets
@import

@import url("tables.css");
@import url("typography.css");
body {
 color: #666666;
 background-color: #f8f8f8;
 text-align: center;}
#page {
 width: 600px;
 text-align: left;
 margin-left: auto;
 margin-right: auto;
 border: 1px solid #d6d6d6;
 padding: 20px;}
h3 {
 color: #547ca0;}

chapter-15/styles.css C s s

artiCLe

396LAYOUT 396LAYOUT

On this page you can see the
other technique for including
multiple style sheets. Inside the
<head> element is a separate
<link> element for each style
sheet.

The contents of site.css are
identical to styles.css on the
left hand page, except the code
does not contain @import rules.

As with all style sheets, if two
rules apply to the same element
then rules that appear later in a
document will take precedence
over previous rules.

In the example on this page,
any rules in typography.css
would take precedence over
rules in site.css (because the
typography rules are included
after the other rules).

In the example on the previous
page, the rules in styles.css
would take precedence over the
rules in typography.css. This
is because when the @import
rule is used, that is the point at
which the browser considers the
rules live.

R e s u lt

muLtipLe styLe sheets
link

<!DOCTYPE html>
<html>
 <head>
 <title>Multiple Style Sheets - Link</title>
 <link rel="stylesheet" type="text/css"
 href="css/site.css" />
 <link rel="stylesheet" type="text/css"
 href="css/tables.css" />
 <link rel="stylesheet" type="text/css"
 href="css/typography.css" />
 </head>
 <body>
 <!-- HTML page content here -->
 </body>
</html>

chapter-15/multiple-style-sheets-link.htmlH tM l

397 LAYOUT

exampLe
Layout

398LAYOUT

Several classes from the 960.gs style sheet have been added to the code
to indicate how many columns of the grid each element should stretch
across. As you saw in this chapter, the 960.gs stylesheet uses the float
property to position the blocks next to each other.

At the start of the page, the header uses fixed positioning (meaning that
it does not move when the user scrolls down the page). The z-index
property is added to the header to keep it on top of the remaining
content as the user scrolls down the page.

Both the header and footer are contained within <div> elements which
stretch the entire width of the page. Inside those container elements sit
other elements that use classes from the 960.gs style sheet to ensure
that the items in the header and footer align with the rest of the content.

The feature article takes up the entire width of the page. The push_7
and push_9 classes are part of the 960.gs style sheet and are used in
the feature article to move the header and the content for this article
over to the right.

Under the main article you can see four blocks, each of which is 3
columns wide. These contain images followed by links to more articles.

This example also uses background images to create a textured
background for the page and header, and also to contain the images for
the feature article. You will learn more about these in the next chapter.

Please note: If you view this example in Internet Explorer 6, the
transparent PNGs used in this design may have a gray background. To
learn more about this issue, visit the website accompanying this book
where you can find a simple JavaScript that fixes this problem.

This example demonstrates a modern
magazine-style layout using the 960.gs grid.
Using this style sheet saves us from having to
create all of the CSS code ourselves.

399 LAYOUT

exampLe
Layout

<!DOCTYPE html
<html>
 <head>
 <title>Layout</title>
 <link rel="stylesheet" type="text/css" href="css/960_12_col.css" />
 <style type="text/css">
 @font-face {
 font-family: 'QuicksandBook';
 src: url('fonts/Quicksand_Book-webfont.eot');
 src: url('fonts/Quicksand_Book-webfont.eot?#iefix') format('embedded-opentype'),
 url('fonts/Quicksand_Book-webfont.woff') format('woff'),
 url('fonts/Quicksand_Book-webfont.ttf') format('truetype'),
 url('fonts/Quicksand_Book-webfont.svg#QuicksandBook') format('svg');
 font-weight: normal;
 font-style: normal;}
 body {
 color: #ffffff;
 background: #413f3b url("images/bg.jpg");
 font-family: Georgia, "Times New Roman", Times, serif;
 font-size: 90%;
 margin: 0px;
 text-align: center;}
 a {
 color: #b5c1ad;
 text-decoration: none;}
 a:hover {
 color: #ffffff;}
 .header {
 background-image: url("images/bg-header.jpg");
 padding: 0px 0px 0px 0px;
 height: 100px;
 position: fixed;
 top: 0px;
 width: 100%;
 z-index: 50;}
 .nav {
 float: right;
 font-family: QuicksandBook, Helvetica, Arial, sans-serif;

400LAYOUT

exampLe
Layout

 padding: 45px 0px 0px 0px;
 text-align: right;}
 .wrapper {
 width: 960px;
 margin: 0px auto;
 background-image: url("images/bg-triangle.png");
 background-repeat: no-repeat;
 background-position: 0px 0px;
 text-align: left;}
 .logo {
 margin-bottom: 20px;}
 h1, h2 {
 font-family: QuicksandBook, Helvetica, Arial, sans-serif;
 font-weight: normal;
 text-transform: uppercase;}
 h1 {
 font-size: 240%;
 margin-top: 140px;}
 .date {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 75%;
 color: #b5c1ad;}
 .intro {
 clear: left;
 font-size: 90%;
 line-height: 1.4em;}
 .main-story {
 background-image: url("images/triangles.png");
 background-repeat: no-repeat;
 background-position: 122px 142px;
 height: 570px;}
 .more-articles {
 border-top: 1px solid #ffffff;
 padding: 10px;}
 .more-articles p {
 border-bottom: 1px solid #807c72;
 padding: 5px 0px 15px 0px;
 font-size: 80%;}

401 LAYOUT

exampLe
Layout

 .more-articles p:last-child {
 border-bottom: none;}
 .footer {
 clear: both;
 background: rgba(0, 0, 0, 0.2);
 padding: 5px 10px;}
 .footer p {
 font-family: Helvetica, Arial, sans-serif;
 font-size: 75%;
 text-align: right;}
 .footer a {
 color: #807c72;}
 </style>
 </head>
 <body>
 <div class="header">
 <div class="container_12">
 <div class="grid_5">
 <img src="images/logo.png" alt="Pedal Faster - The modern bicycle magazine"
 width="216" height="37" class="logo" />

 </div>
 <div class="nav grid_7">
 home / news / archives /
 about / contact
 </div>
 </div>
 </div>
 <div class="wrapper">
 <div class="main-story container_12">
 <div class="grid_6 push_6">
 <h1>Fixed Gear Forever</h1>
 </div>
 <div class="intro grid_3 push_9">
 <p class="date">16 APRIL 2011</p>
 <p>The veloheld combines minimalist design with superb quality. Devoid of
 excessive graphics and gear shift components, the veloheld product range
 delights us with its beauty and simplicity ... </p>

402LAYOUT

exampLe
Layout

 </div>
 </div><!-- .main-story -->
 <div class="more-articles container_12">
 <h2 class="grid_12">More Articles</h2>
 <div class="grid_3">

 <p>On the Road: from the fixed gear fanatic's point of view</p>
 <p>Brand History: Pashley Cycles - hand-built in England</p>
 <p>Frame Wars: Innovations in cycle manufacture and repair</p>
 </div>
 <div class="grid_3">

 <p>Touring Diary: A sketchbook in your basket</p>
 <p>Top Ten Newcomers for 2012: A peek at what's to come</p>
 <p>InnerTube: The best cycling videos on the web</p>
 </div>
 <div class="grid_3">

 <p>Product Review: All baskets were not created equal</p>
 <p>Going Public: Out & About with the founder of Public</p>
 <p>Cycle Lane Defence: Know your rights</p>
 </div>
 <div class="grid_3">

 <p>Bicyle Hall of Fame: The 1958 Schwinn Spitfire</p>
 <p>Reader Survey: Share your thoughts with us!</p>
 <p>Chain Gang: The evolution of the humble bike chain</p>
 </div>
 </div><!-- .more-articles -->
 </div><!-- .wrapper -->
 <div class="footer clearfix">
 <div class="container_12">
 <p class="grid_12">Legal Information | Privacy
 Policy | Copyright © Pedal Faster 2011</p>
 </div>
 </div>
 </body>
</html>

summary
Layout

<div> X elements are often used as containing elements
to group together sections of a page.

Browsers display pages in normal flow unless you X

specify relative, absolute, or fixed positioning.

The X float property moves content to the left or right
of the page and can be used to create multi-column
layouts. (Floated items require a defined width.)

Pages can be fixed width or liquid (stretchy) layouts. X

Designers keep pages within 960-1000 pixels wide, X

and indicate what the site is about within the top 600
pixels (to demonstrate its relevance without scrolling).

Grids help create professional and flexible designs. X

CSS Frameworks provide rules for common tasks. X

You can include multiple CSS files in one page. X

