
www.it-ebooks.info

http://www.it-ebooks.info/

Learning Django Web
Development

From idea to prototype, a learner's guide for web
development with the Django application framework

Sanjeev Jaiswal

Ratan Kumar

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Django Web Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1150615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-440-4

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
Sanjeev Jaiswal

Ratan Kumar

Reviewers
Michael Giuliano

Danijel Pančić

Martin Pernica

Vikash Verma

Commissioning Editor
Julian Ursell

Acquisition Editors
Nikhil Karkal

Larissa Pinto

Content Development Editor
Arun Nadar

Technical Editor
Abhishek R. Kotian

Copy Editors
Brandt D'mello

Neha Vyas

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Sanjeev Jaiswal is a computer graduate with 5 years of industrial experience. He
basically uses Perl and GNU/Linux for his day-to-day work. He also teaches Drupal
and WordPress CMS to bloggers. He first developed an interest in web application
penetration testing in 2013; he is currently working on projects involving penetration
testing, source code review, and log analysis, where he provides the analysis and
defense of various kinds of web-based attacks.

Sanjeev loves teaching technical concepts to engineering students and IT professionals
and has been teaching for the last 6 years in his leisure time. He founded Alien Coders
(http://www.aliencoders.org), based on the learning through sharing principle for
computer science students and IT professionals in 2010, which became a huge hit in
India among engineering students.

He usually uploads technical videos on YouTube under the Alien Coders tag. He
has got a huge fan base at his site because of his simple but effective way of teaching
and his philanthropic nature toward students. You can follow him on Facebook at
http://www.facebook.com/aliencoders and on Twitter at @aliencoders.

He wrote Instant PageSpeed Optimization, Packt Publishing, and looks forward to
authoring or reviewing more books for Packt Publishing and other publishers.

Ratan Kumar is a computer science and engineering graduate with more than a
year of start-up experience. He received the Technical Excellence Memento from the
Association of Computer Engineering Students (ACES), Cochin University of Science
and Technology.

When he was a product engineer at Profoundis, he worked on an international
project based on services using Django. He was also part of the Microsoft accelerator
program with Profoundis that was responsible for building the product iTestify,
which was built using Django.

www.it-ebooks.info

http://www.aliencoders.org
http://www.facebook.com/aliencoders
http://www.it-ebooks.info/

He then moved to Tracxn!, an organization that works on building platforms that
can help venture capitalists, investment banks, and corporate developers find new
and interesting start-ups in their investment sector. As a software developer and
engineer, he majorly contributed to the development of the core product platform of
Tracxn using Python for the initial scraping work, such as building cron scrappers to
crawl millions of pages daily, cleaning them up, and analyzing them.

He also built the company's first product, which is called Tracxn Extension—a
Chrome extension using AngularJS. He contributed to the Tracxn product
platform using Grails as the framework. He also worked on Bootstrap—a frontend
framework—to design the home page of tracxn.com.

www.it-ebooks.info

tracxn.com
http://www.it-ebooks.info/

About the Reviewers

Michael Giuliano has been programming software in various languages and
technologies for the past 15 years. Having used Python in the fields of web services,
machine learning, and big data since 2008, he finds it to be one of the most versatile,
elegant, and productive programming languages.

Michael is currently based in London, where he leads the Python development team
at Zoopla Property Group Plc.

Danijel Pančić is a JavaScript ninja and a passionate Django enthusiast. He is
currently working at Bitstamp as a senior developer. He also works on various
projects, including online games, and experiments with new approaches and
techniques in search of better ways to achieve the desired results. You can find
him at http://www.panco.si/.

Martin Pernica is currently a lead programmer and a cofounder of a new game
studio called Soulbound Games in Czech Republic. He started programming very
young on old PCs and, after that, he started working mainly as a web developer
on PHP, Python, and Ruby for various companies. After some years of web
development, Martin switched to the game development industry and started his
own game studio. He also started teaching at local universities on mobile, web,
and game development. He always tries to look under the hood of problems and
challenges and then solves and optimizes them, which is still his passion.

www.it-ebooks.info

http://www.panco.si/
http://www.it-ebooks.info/

Vikash Verma is a young and enthusiastic software professional who has had a
wide exposure to open source technologies. His experience involves both client-side
programming and server-side programming through Python, Django, and many
other demanding technologies.

He has been a vital part of interesting projects from start-ups to leading IT companies
as an individual leader. He has experience in the fields of data analytics, web
crawling, web scraping, web application development, automation, ETL, and many
more technical tracks.

I would like to thank my family and peers who always inspired me
to be a go-getter. Not to mention the support and motivation I get
from my soul mate, Smriti, who ensures that my work and life are in
perfect balance with each other.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

[i]

Table of Contents
Preface vii
Chapter 1: Introduction to Django 1

Why web development in the first place? 2
What has changed in web development 2
The MVC pattern in web development 3

Multilingual support 4
Why Django? 4

Inside Django 5
Django is mature 5
Batteries included 5
Tight integration between the component and modular framework 5
Object-relational mapper 6
Clean URL design 6
Automatic administration interface 6
Advanced development environment 6
What's new in Django 1.6 and 1.7 6

Supported databases 7
What you will learn using this book 8
Summary 9

Chapter 2: Getting Started 11
Installing the required software 11

Installing Python 11
Installing Python on Windows 12
Installing Python on Unix/Linux 13
Installing Python on Mac OS X 14

Installing virtualenv 14
Installing Django 17

Django compatibility with operating systems – Windows versus Linux 17
Installing Django on Windows 18
Installing Django on Unix/Linux and Mac OS X 18

Installing a database system 19

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Creating your first project 20
Creating an empty project 20
Setting up the database 21
Launching the development server 25

Summary 26
Chapter 3: Code Style in Django 27

Django coding style 28
Understanding indentation in Python 28

Doing indentation right – do we need four spaces per indentation level? 29
The importance of blank lines 30

Importing a package 31
Grouping imported packages 31

Naming conventions in Python/Django 32
Using IDE for faster development 33
Setting up your project with the Sublime text editor 33
Setting up the PyCharm IDE 36
The Django project structure 37
Best practices – using version control 40

Git – the latest and most popular version control tool 40
How Git works 41
Setting up your Git 41
Branching in Git 42

Setting up the database 44
Launching the development server 46
Faster web development 47

Minimal Bootstrap 47
The Django way 48
Manual installation of Bootstrap 49

Summary 50
Chapter 4: Building an Application Like Twitter 51

A word about Django terminology 52
Setting up a basic template application 52

Creating a virtual environment 52
Installing Django 53

Creating Django's template structure of the project 54
Setting up the basic Twitter Bootstrap for the application 56
URLs and views – creating the main page 60
Introduction to class-based views 62
Django settings for the mytweets project 65
Putting it all together – generating user pages 71

Familiarization with the Django models 71

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Relationships in models 72
Many-to-one relationships 72
One-to-one relationships 73
Many-to-many relationships 73

Models – designing an initial database schema 74
Django's user objects 74
Creating a URL 82
Templates – creating a template for the Main Page 84

Summary 89
Chapter 5: Introducing Hashtags 91

The hashtag data model 92
Django forms 96

Designing the tweet post form 96
Creating a tag page 101
Summary 102

Chapter 6: Enhancing the User Interface with AJAX 103
AJAX and its advantages 104
Using an AJAX framework in Django 105
Using the open source jQuery framework 106

The jQuery JavaScript framework 106
Element selectors 106
jQuery methods 107
Hiding and showing elements 107
Accessing CSS properties and HTML attributes 107
Manipulating HTML documents 108
Traversing the document tree 109
Handling events 110
Sending AJAX requests 111
What next? 111

Implementing the searching of tweets 111
Implementing a searching 112

Implementing the live searching of tweets 118
Editing a tweet in place without loading a separate page 121

Implementing bookmark editing 122
Implementing in-place editing of bookmarks 126

Autocompletion of hashtags while submitting a tweet 133
Summary 136

Chapter 7: Following and Commenting 137
Letting users follow another user 137

The UserFollowers data model 138
The user login model 141
Adding or removing the follower 145

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Displaying the most followed user 147
Summary 148

Chapter 8: Creating an Administration Interface 149
Customizing the administration interface 149
Customizing listing pages 150
Overriding administration templates 154
Users, groups, and permissions 156

User permissions 156
Group permissions 157
Using permissions in views 158

Organizing content into pages – pagination 159
Summary 163

Chapter 9: Extending and Deploying 165
Sending invitation e-mails to friends 165

The invitation data model 168
Handling activation links 172

Internationalization (i18n) – offering the site in multiple languages 174
Marking strings as translatable 174
Creating translation files 178
Enabling and configuring the i18n system 180

Caching – improving the performance of your site during high traffic 183
Enabling caching 184
Configuring caching 185

Caching the whole site 185
Caching specific views 186

Unit testing – automating the process of testing your application 187
The test client 187
Testing the registration view 189

Deploying Django 192
The production web server 192

Summary 193
Chapter 10: Extending Django 195

Custom template tags and filters 195
Class-based generic views 197
Contributed sub-frameworks 198
Flatpages 199

Humanize 199
Sitemap 200
Cross-site request forgery protection 201

The message system 201

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

The subscription system 202
User scores 203
Summary 203

Chapter 11: Database Connectivity 205
SQL versus NoSQL 205

SQL databases 206
MySQL – open source 206
PostgreSQL 207

NoSQL databases 207
MongoDB 207
CouchDB 207
Redis 208

Setting up a database system 208
Setting up MySQL 209

Installing MySQL in Linux – Debian 209
Installing the MySQL plugin for Python 209

Migration and the need for migration 210
The new features in Django migration 211

Backend support 212
How to do migrations? 213

How migrations know what to migrate 216
The migration file 217
Django with NoSQL 222

The single-page application project – URL shortener 223
MongoEngine 223

Connecting MongoDB with Django 223
Authentication in Django 224
Storing sessions 224

Summary 229
Chapter 12: Using Third-party Packages 231

Diving into the world of open source 231
What is an open source software? 232
What's the difference between open source and other software? 232

Using SocialAuth in Django projects 233
How OAuth works 233
Implementing social OAuth 235
Creating a Twitter application 238

Building REST APIs in Django 242
Using Django Tastypie 247

Implementing a simple JSON API 249
Summary 253

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Chapter 13: The Art of Debugging 255
Logging 255
Debugging 258

The Django debug toolbar 259
Installing the Django debug toolbar 259

IPDB – interactive way of busting bugs 270
Summary 271

Chapter 14: Deploying Django Projects 273
The production web server 273
The production database 276
Turning off the debug mode 276
Changing configuration variables 277
Setting error pages 279
Django on cloud 279

EC2 280
Google Compute Engine 285
The open hybrid cloud application platform by Red Hat 285
Heroku 285
Google Application Engine 287

Summary 288
Chapter 15: What's Next? 289

AngularJS meets Django 289
Django search with Elasticsearch 293

Installing an Elasticsearch server 294
Communication between Elasticsearch and Django 294

Summary 301
Index 303

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
Django, written in Python, is a web application framework designed to build
complex web applications quickly without any hassle. It loosely follows the
MVC pattern and adheres to the Don't Repeat ourself principle, which makes a
database-driven application efficient and highly scalable, and is by far the most
popular and mature Python web framework.

This book is a manual that will help you build a simple yet an effective Django web
application. It starts by introducing Django to you and teaches you how to set it
up and code simple programs. You will then learn to build your first Twitter-like
application. Later on, you will be introduced to hashtags, Ajax (to enhance the user
interface), and tweets. You will then move on to create an administration interface,
learn database connectivity, and use third-party libraries. Then, you will learn
to debug and deploy Django projects and will also get a glimpse of Django with
AngularJS and Elasticsearch. By the end of this book, you will be able to leverage the
Django framework to develop a fully functional web application with minimal effort.

What this book covers
Chapter 1, Introduction to Django, gives you an introduction to MVC web development
frameworks and the history of Django and explains why Python and Django are the
best tools to use to achieve the aim of this book.

Chapter 2, Getting Started, shows you how to set up our development environment
on Unix/Linux, Windows, and Mac OS X. We will also see how to create our first
project and connect it to a database.

Chapter 3, Code Style in Django, covers all the basic topics that you need to follow for
building a website, such as coding practices for better Django web development,
which IDE you should use, and version control.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Chapter 4, Building an Application Like Twitter, takes you through a tour of the main
Django components and develops a working prototype for your Twitter application.

Chapter 5, Introducing Hashtags, teaches you how to design the algorithm to build
a hashtag model and the mechanism to use a hashtag in your post.

Chapter 6, Enhancing the User Interface with AJAX, will help you enhance the UI
experience using Ajax with Django.

Chapter 7, Following and Commenting, shows you how to create login, logout, and
registration page templates. It will also show you how to allow another user to
follow you and how to display the most followed user.

Chapter 8, Creating an Administration Interface, shows you the features of administrator
interface using Django's inbuilt features and how we can show tweets in a
customized way with a sidebar or pagination enabled.

Chapter 9, Extending and Deploying, prepares your application for deployment into a
production environment by utilizing various features of the Django framework. It
also shows you how to add support for multiple languages, improve performance by
caching, automate testing, and configure the project for a production environment.

Chapter 10, Extending Django, speaks about how to improve the various aspects of
your application, mainly performance and localization. It also teaches you how to
deploy your project on a production server.

Chapter 11, Database Connectivity, covers the various forms of database connectivity,
such as MySQL, NoSQL, PostgreSQL, and so on, which is required for any
database-based application.

Chapter 12, Using Third-party Packages, talks about open source and how to use and
implement open source third-party packages in your project.

Chapter 13, The Art of Debugging, shows you how to log and debug your code for
better and efficient coding practice.

Chapter 14, Deploying Django Projects, shows you how to move a Django project from
development to a production environment and the things that need to be taken care
of before you go live.

Chapter 15, What's Next?, will take you to the next level where you will be introduced
to the two most important and preferred components, AngularJS and Elasticsearch,
used in the Django project.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

What you need for this book
For this book, you will need the latest (preferably) Ubuntu/Windows/Mac operation
system running on your PC/laptop with Python version 2.7.X installed.

In addition to this, you need Django 1.7.x and any one of your favorite text editors,
such as Sublime Text editor, Notepad++, Vim, Eclipse, and so on.

Who this book is for
This book is for web developers who want to get started with Django for web
development. Basic knowledge of Python programming is required, but no
knowledge of Django is expected.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The username variable is the owner of the tweets that we want to see."

A block of code is set as follows:

#!/usr/bin/env python
import os
import sys
if __name__ == "__main__":
 os.environ.setdefault("DJANGO_SETTINGS_MODULE",
 "django_mytweets.settings")
 from django.core.management import execute_from_command_line
 execute_from_command_line(sys.argv)

Any command-line input or output is written as follows:

Python 2.7.6 (default, Mar 22 2014, 22:59:56)

[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[x]

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: " In that link, we will
find download button, after clicking on download, click on Download Bootstrap."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Introduction to Django
Welcome to version 2.0 of Development with Django!

Django is a web development framework, and web development is a skill. To master
any skill one can follow the famous "10,000 hours" rule, which says that if you practice
anything for that amount of time you will certainly become an expert at it. But that's a
lot of time, and without a proper plan, this can go wrong. Terribly wrong.

So, is there any better way to achieve your goal? Yes! Break the skill you want to
learn into smaller subskills and then master them one at a time. (Programmers call
this the "divide and conquer" rule.) You will need to identify the most important
subskills by researching them. The more the frequent mentions of the subskill, the
more important it becomes to master.

As you have decided to learn a new skill, as the author of this book, I request that
you make a commitment, that you will stick with this book in the early frustrating
hours. Frustration happens when you are learning a new thing, and trust me on this:
when you feel it's too simple, you are doing it right.

In this chapter, we will cover the following topics:

• Why web development in the first place?
• What has changed in web development
• The MVC pattern in web development
• Why Django
• Inside Django

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Django

[2]

Why web development in the first place?
A website makes the first impression about the company or product directly on a
global audience. Every startup now has a website, which helps to pitch their idea to
their potential clients or investors.

Everything is online now, so instead of just sitting and watching the change, why
not participate and learn to code it? Learning web development is one of the most
valuable investments you can make with your time. It will not only benefit you by
getting you a better job, but you will also be able to code your idea into a prototype
in a very simple and straightforward manner.

Must-have ingredients for web development include user interface and user
experience, but they are unfortunately out of the scope of this book.

What has changed in web development
Web development has made great progress during the last few years. Some of the
improvements are listed as follows:

• JavaScript: Evolved from writing complex selectors to manipulating
Document Object Model (DOM). Libraries such as jQuery and AngularJs
have made frontend dynamics much simpler. JavaScript has even evolved to
build a production-ready server-side framework called node.js.

• Browsers: Evolved from being as simplistic as breaking the page across
browsers to now intelligently restoring the connection, telling you which tab
is playing music, or flawlessly rendering a real-time game.

• Open source: Using code written by someone else has finally become
preferable than writing your own code. This helped a lot of projects to stop
reinventing the wheel, Django being one of the best examples.

• API as spinal cord: Web technologies today might not be the same
tomorrow, or data might not be represented in the same way or in the same
place tomorrow. In other words, more devices will come with different
screen sizes. Therefore, its always best to have text separated from visuals.

• User Interface: In the past, the precious time of the development team was
consumed by User Interface design. But frameworks such as Bootstrap and
Foundation have made web development a lot easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

• Agile development: Moving fast in the development cycle is acceptable to
most startup companies. The complete requirement is never asked for at
the beginning of the software development cycle. Therefore, continuous
customer or stakeholder involvement is very important. The Django
framework is the most suitable framework for this kind of development.
As Django's slogan says, "the web framework for perfectionists with deadlines".

• Evolution of cloud computing: This has played a significant role at the
hosting end of web applications and enables faster, more reliable, and
cheaper solutions for getting online.

• Birth of NoSQL: Cutting costs much further, NoSQL gave freedoms such
as Store it Now, Find The Value Later and Store Anything Together to
developers being cloud friendly and more fault tolerant.

The MVC pattern in web development
In this book, you will learn about employing a Model-View-Controller (MVC)
web framework called Django, which is written in Python, a powerful and popular
programming language.

MVC works on the idea of separate presentation. The idea behind separated
presentation is to make a clear division between domain objects that model our
perception of the real world and presentation objects that are the user interface (UI)
elements we see on the screen. Domain objects should be completely self-contained and
should work without reference to the presentation or data-handling logic (controller).
They should also be able to support multiple presentations, possibly simultaneously.

The benefits of this pattern are obvious. With it, designers can work on the interface
without worrying about data storage or management. And developers are able to
program the logic of data handling without getting into the details of presentation.
As a result, the MVC pattern quickly found its way into web languages, and serious
web developers started to embrace it over previous techniques.

This book emphasizes on utilizing Django and Python to create a Web 2.0
microblogging web application with many common features found in today's Web
2.0 sites. The book follows a tutorial style to introduce concepts and explain solutions
to problems. It is not meant to be a reference manual for Python or Django, for both
have plenty of resources already. The book only assumes working knowledge of
standard web technologies (HTML and CSS) and the Python programming language.
Django, on the other hand, will be explained as we build features throughout the
chapters, until we realize our goal of having a working Web 2.0 application.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Django

[4]

Multilingual support
Django supports multilingual websites through its built-in internationalization
system. This can be very valuable for those working on websites with more than one
language. The system makes translating the interface a very simple task.

So, to conclude, Django provides a set of integrated and mature components, with
excellent documentation, at http://www.djangoproject.com/documentation/.

Thanks to its large community of developers and users, there has never been a better
time to start learning a web development framework!

Why Django?
Since the spread of the MVC pattern into web development, and unlike most of
the other languages, Python has enjoyed quite a few choices when it comes to web
frameworks. Although choosing one from many can be confusing at first, having
several competing frameworks can only be a good thing for the Python community.

Django is one of the available frameworks for Python, so the question is: what sets it
apart to become the topic of this book?

First of all, Django provides a set of tightly integrated components. All of these
components are developed by the Django team itself. Django was originally
developed as an in-house framework to manage a series of news-oriented websites.
Later, its code was released on the Internet and the Django team continued
its development using the open source model. Because of its roots, Django's
components were designed for integration, reusability, and speed from the start.

Django's database component, the Object-relational Mapper (ORM), provides a
bridge between the data model and the database engine. It supports a large set of
database systems, and switching from one engine to another is a matter of changing
a configuration file. This gives the developer great flexibility if a decision is made
to change from one database engine to another. If you are in trouble, you can find
the driver (binary Python package) here: http://www.lfd.uci.edu/~gohlke/
pythonlibs/.

In addition, Django provides a neat development environment. It comes with a
lightweight web server for development and testing. When debugging mode is
enabled, Django provides very thorough and detailed error messages with a lot of
debugging information. All of this makes isolating and fixing bugs very easy.

Django supports multilingual websites through its built-in internationalization
system. This can be very valuable for those working on websites with more than one
language. The system makes translating the interface a very simple task.

www.it-ebooks.info

http://www.djangoproject.com/documentation/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.it-ebooks.info/

Chapter 1

[5]

The standard features expected of a web framework are all available in Django.
These include the following:

• A template and text-filtering engine with simple but extensible syntax
• A form generation and validation API
• An extensible authentication system
• A caching system for speeding up the performance of applications
• A feed framework for generating RSS feeds

Even though Django does not provide a JavaScript library to simplify working with
Ajax, choosing one and integrating it with Django is a straightforward matter, as we
will see in later chapters.

So, to conclude, Django provides a set of integrated and mature components with
excellent documentation, thanks to its large community of developers and users.
With Django available, there has never been a better time to start learning a web
development framework!

Inside Django
We will mention some important reasons why we use Django for better web
development. Some of the most important features are explained in the
following subsections.

Django is mature
Many corporations are directly using Django in their production and with constant
contributions from developers around the world. Some famous sites include Pinterest
and Quora. It has established itself as the perfect web development framework.

Batteries included
Django follows Python's batteries included philosophy, which means Django
comes with many extra features and options that are important in solving common
problems faced during web development.

Tight integration between the component and
modular framework
Django is very flexible in terms of its integration with their party module. The
chances of there existing a popular project (for example, mongoDB in database
domain or SocialAuth in OpenID main) that does have an Appliaction Program
Interface (API) or complete plugin for Django integration are very few.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Django

[6]

Object-relational mapper
This is one of the most important parts of the Django project. Django's database
component, the ORM, provides a bridge between the data model and the database
engine. The ORM layer provides features such as encapsulation, portability, safety,
and expressiveness to Django's Modal Class, which are mapped to the configured
database of choice.

Clean URL design
The URL system in Django is very flexible and powerful. It lets you define
patterns for the URLs in your application and to define Python functions to
handle each pattern.

This enables developers to create URLs that are both human-friendly (avoiding URL
ending patterns such as .php, .aspx, and so on) and search engine-friendly.

Automatic administration interface
Django comes with an administration interface that is ready to be used. This interface
makes the management of your application's data a breeze. It is also highly flexible
and customizable.

Advanced development environment
In addition, Django provides a neat development environment. It comes with a
lightweight web server for development and testing. When the debugging mode is
enabled, Django provides very thorough and detailed error messages with a lot of
debugging information. All of this makes isolating and fixing bugs very easy.

What's new in Django 1.6 and 1.7
With the latest release, version 1.6, Django has brought some major changes and
a few of them are as follows:

• Python 3 is officially supported with this release, which means it is stable and
can be used in production.

• The layout is simple. New defaults have been added, the Django Admin
template has been added by default, and the Sites package has been removed.

• Clickjacking prevention has been added.
• The default Database is SQLite3.
• As old APIs are deprecated, the biggest change is that the transactions have

been improved. The DB layer auto-commit is enabled by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

• The DB connection in this release is persistant. Until Django 1.5, a new
connection was made for every HTTP request, but from 1.6, the same
connection will be reused between requests.

• Time zone defaults to UTC.
• Simple application integration.
• Scalable.
• Powerful configuration mechanism.
• There is no need to have a models.py file if you don't have a model.
• A new method has been added for its subclasses.
• It allows a cursor to be used as a context manager.
• Many features have been added for internationalization, form, and file upload.
• It has a better feature to avoid CSRF.
• Apart from these, a binary field has been introduced, as have HTML 5 input

fields (e-mail, URL, and number).
You can read the newly added features in detail here: https://docs.
djangoproject.com/en/1.7/releases/1.7/.

Supported databases
Django has a great and powerful respect for data. Model the data correctly, and the
rest of the site will just fall into place. With the convention that Django was designed
for relational database, unofficial NoSQL implementation exists for Django as well.
Here is the list of relational databases that Django supports:

• SQL: SQLite, MySQL, and PostgreSQL.
• SQLite: This is the default database for Django applications and is mainly

used for testing purposes.
• PostgreSQL: This is an open source, widely used RDBS. We will build our

microblogging example based on this.

MySQL and PostgreSQL are the two most common databases
used in the Django community, and PostgreSQL is the most
popular in the Django community.

www.it-ebooks.info

https://docs.djangoproject.com/en/1.7/releases/1.7/
https://docs.djangoproject.com/en/1.7/releases/1.7/
http://www.it-ebooks.info/

Introduction to Django

[8]

• NoSQL: How about having a single table for your data, whether it contains
user's information or their comments, and so on? In other words, how
about having no rules for the structure of inserted data or nesting data, like
Articles with subdocument array with comments? Sound strange? Yes, it is.
In the early days, people were using the one and only relational database
concept, but since the dawn of the cloud computing era, programmers love
to implement NoSQL architecture for every possible single project. It doesn't
store and doesn't follow any normal forms. You can't use joins, but there are
many other advantages of using it.
App Engine, MongoDB, Elasticsearch, Cassandra, and Redis are some
famous NoSQL DBs that Django supports. MongoDB is getting popular
among the Django community these days.

• MongoDB: This is an open source, widely used NoSQL document-based
database. We will be using it for creating our second small application for
URL shortener.

In this book, we will mainly deal with three databases from the preceding list, but
implementation of others can be almost identical with minimal configuration changes.

There are many famous websites powered by Django. Some of them are as follows:

• Pinterest: A content sharing service, especially for images and videos
• Disqus: A blog comment hosting service
• Quora: A question-and-answer based website
• Bitbucket: A free code hosting site for Git and mercurial
• Mozilla Firefox: The Mozilla support page

What you will learn using this book
This book focuses on building a microblogging web application and adding common
Web 2.0 features to it. Some of these features are as follows:

• Creating Django view, model, and controller: This ideally deals with
learning the Django framework, that is, how requests are handled on
controllers to render the view after making the required manipulations with
models that are stored on the database.

• Tags and tag clouds: In the microblogging site project, every message will
have a hashtag in it (a tag starting with #). The mapping of these tags will be
dealt with in this section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

• Content customization and searching: Searching for messages based on
keywords or hashtags.

• Ajax enhancements: Using Ajax for autocomplete during search or tagging,
and making edits in place for saved messages or tags.

• Friend networks: Listing all the friends of the profile and calculating other
vital statistics.

Instead of concentrating on teaching various Django features, this book uses a
tutorial style to teach how to implement these features using Django. Thus, it works
as a complementary resource to the official Django documentation, which is freely
available online.

Interested? Great! Prepare for the ride, as I guarantee that it will be both fun
and interesting.

Summary
In this chapter, we have learned why web development is getting an edge and what
has changed in the web technologies domain; how to leverage new web technologies
using the Python and Django frameworks; what Django actually is and what we can
achieve using it; and finally, the different kind of databases that support Django.

In the next chapter, we will cover the installation of Python and Django on various
operating systems, such as Windows, Linux, and Mac, and setting up our first project
using the Django platform.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[11]

Getting Started
Python and Django are available for multiple platforms. In this chapter, we will see
how to set up our development environment on UNIX/Linux, Windows, and Mac
OS X. We will also see how to create our first project and connect it to a database.

We will cover the following topics in this chapter:

• Installing Python
• Installing Django
• Installing the database system
• Creating your first project
• Setting up the database
• Launching the development server

Installing the required software
Our development environment consists of Python, Django, and a database system.
In the following sections, we will see how to install these software packages.

Installing Python
Django is written in Python, so naturally, the first step in setting up our development
environment is to install Python. Python is available for a variety of operating
systems, and installing Python is no different from installing other software
packages. The procedure, however, depends on your operating system.

For installation, you need to make sure that you get a recent version of Python.
Django requires Python 2.7 or higher. The latest version of Python is 3.4.2 for 3.x
and 2.7.9 for 2.x versions.

Please read the section relevant to your operating system for installation instructions.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[12]

Installing Python on Windows
Python has a standard installer for Windows users. Simply head to https://www.
python.org/download/ and download the latest version. Next, double-click on the
.exe or .msi file and follow the installation instructions step by step. The graphical
installer will guide you through the installation process and create shortcuts to
Python executables in the Start menu.

Once done with the installation, we need to add the Python directory to the system
path so that we can access Python while using the Command Prompt. To do so,
follow these steps:

1. Open the Control Panel.
2. Double-click on the System and Security icon or text and then look for

System (as seen in Windows 7), as shown in the following screenshot:

3. Click on Advanced System Settings and a pop-up window will appear.
4. Click on the Environment Variables button and a new dialog box will open.
5. Select the Path system variable and edit it.
6. Append the path to where you installed Python as its value (the default path

is usually c:\PythonXX, where XX is your Python version), as shown in the
following screenshot:

www.it-ebooks.info

https://www.python.org/download/
https://www.python.org/download/
http://www.it-ebooks.info/

Chapter 2

[13]

If you want to test your installation, open the Run dialog box, type python, and hit
the Enter button. The Python interactive shell should open.

Don't forget to separate the new path from the one before it
with a semicolon (;).

Installing Python on Unix/Linux
If you use Linux or another flavor of Unix, chances are that you already have Python
installed. To check, open a terminal, type python, and hit the Enter button. If you see
the Python interactive shell, you already have Python installed. You should get the
following output after typing python in the terminal:

Python 2.7.6 (default, Mar 22 2014, 22:59:56)

[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[14]

The first line of the output indicates the version installed on your system (2.7.6, here).

If you receive an error message instead of seeing the preceding output, or have an
old version of Python, please read on.

It is recommended that Unix/Linux users install and update Python through the
system's package manager. Although the actual details vary from system to system,
it won't be any different from installing any other package.

For APT-based Linux distributions, such as Debian and Ubuntu, open a terminal
and type the following:

$ sudo apt-get update

$ sudo apt-get install python

If you have Synaptic Package Manager, simply search for Python, mark its package
for installation, and click on the Apply button.

Users of other Linux distributions should check their system documentation for
information on how to use the package manager to install packages.

Installing Python on Mac OS X
Mac OS X comes with Python preinstalled. However, due to Apple's release cycle,
it's often an old version. If you start the Python interactive shell and find a version
older than 2.3, please visit http://www.python.org/download/mac/ and download
a newer installer for your version of Mac OS X.

Now that Python is up and running, we are almost ready. Next, we will install
virtualenv.

Installing virtualenv
With virtualenv you can create an isolated Python environment. It's not much of a need
in the beginning, but it's a lifesaver for dependency management (for example, if one of
your web applications requires one version of the library and another application, due
to some legacy or compatibility issues, requires another version of the same library, or if
changes made in one library or application break the rest of the applications).

Virtualenv can be used to avoid such problematic situations. It will create its own
environment so that it will not mess with your global settings. It usually creates its
own directories and shared libraries to make virtualenv work without any external
interference. If you have pip 1.3 or greater, install it globally. You can use the
following command to install virtualenv:

$ [sudo] pip install virtualenv

www.it-ebooks.info

http://www.python.org/download/mac/
http://www.it-ebooks.info/

Chapter 2

[15]

Once it has been downloaded fully, virtualenv will look like this:

If you have not installed pip yet, you can install it with
sudo apt-get install python-pip.

That's all! Now you can create your virtual environment by using the following
command:

$ virtualenv ENV

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[16]

Virtualenv has very detailed online documentation, which you must follow for any
kind of issue faced while using virtualenv. The following lines are an excerpt from
that online documentation:

This creates ENV/lib/pythonX.X/site-packages, where any libraries you
install will go. It also creates ENV/bin/python, which is a Python interpreter that
uses this environment. Anytime you use that interpreter (including when a script
has #!/path/to/ENV/bin/python in it) the libraries in that environment will
be used.

We can find the virtualenv online documentation at https://pypi.python.org/
pypi/virtualenv/1.8.2.

A new virtualenv folder also includes the pip installer, so you can use the ENV/
bin/pip command to install additional packages into the environment.

Activate script: In a newly created virtual environment there
will be a bin/activate shell script. For Windows systems,
activate scripts are provided for CMD and Powershell.

You can read more at:

http://virtualenv.readthedocs.org/en/latest/virtualenv.html

On Unix systems, we can use the following command to activate the virtualenv
script:

$ source bin/activate

On Windows, we can use the following command to activate the virtualenv script
on the command prompt:

: > \path\to\env\Scripts\activate

www.it-ebooks.info

https://pypi.python.org/pypi/virtualenv/1.8.2
https://pypi.python.org/pypi/virtualenv/1.8.2
http://virtualenv.readthedocs.org/en/latest/virtualenv.html
http://www.it-ebooks.info/

Chapter 2

[17]

Type deactivate to undo the changes, as shown in the following screenshot:

This changes your $PATH variable.

To know more about activate scripts, such as which environment you are using or
whether you need to activate the script, please visit the following link:

http://virtualenv.readthedocs.org/en/latest/virtualenv.html

Installing Django
Installing Django is very easy, but it depends slightly on your operating system.
Since Python is a platform-independent language, Django has one package that
works everywhere regardless of your operating system.

To download Django, head to http://www.djangoproject.com/download/ and
grab the latest official version. The code in this book is developed on Django 1.7 (the
latest as of this writing), but most of the code should run on later official releases.
Next, follow the instructions related to your platform.

Django compatibility with operating
systems – Windows versus Linux
There are a few points you need to know for when you deal with operating systems.
Many packages and settings need to be tweaked before running Django without any
flaws. Let's take a look at them:

• Some Python packages cannot be installed correctly, or at all in Windows; if
they can, they will create a lot of hassle when you do

• If you need to deploy your Django application, it makes more sense to
use a Unix-flavored system, simply because 99 percent of the time, your
deployment environment is the same

• If your applications are complex, it's easier to get the required dependencies,
be they extensions in Linux, libraries, and so on

www.it-ebooks.info

http://virtualenv.readthedocs.org/en/latest/virtualenv.html
http://www.djangoproject.com/download/
http://www.it-ebooks.info/

Getting Started

[18]

Installing Django on Windows
After you have downloaded the Django archive, extract it to the C drive and open
the command prompt (from Start | Accessories). Now, change the current directory
to where you extracted Django from by issuing the following command:

c:\>cd c:\Django-x.xx

Here, x.xx is your Django version.

Next, install Django by running the following command (you will need
administrative privileges for this):

If you do not have a program to handle the .tar.gz files
on your system, I recommend using 7-Zip, which is free and
available at http://www.7-zip.org/.

c:\Django-x.xx>python setup.py install

If, for some reason, the preceding instructions didn't work, you can manually copy
the django folder inside the archive to the Lib\site-packages folder located in
the Python installation directory. This will do the job of running the setup.py
installation command.

The last step is copying the django-admin.py file from Django-x.xx\django\bin
to somewhere in your system path, such as c:\windows or the folder where you
installed Python.

Once done, you can safely remove the c:\Django-x.xx folder because it is no
longer needed.

That's it! To test your installation, open a command prompt and type the following
command:
c:\>django-admin.py --version

If you see the current version of Django printed on screen, then everything is set.

Installing Django on Unix/Linux and Mac OS X
The installation instructions for all Unix and Linux systems are the same. You need to
run the following commands in the directory where the Django-x.xx.tar.gz archive
is located. These commands will extract the archive and install Django for you:

$ tar xfz Django-x.xx.tar.gz

$ cd Django-x.xx

$ sudo python setup.py install

www.it-ebooks.info

http://www.7-zip.org/
http://www.it-ebooks.info/

Chapter 2

[19]

The preceding instructions should work on any Unix/Linux system, as well as Mac
OS X. However, it may be easier to install Django through your system's package
manager if it has a package for Django. Ubuntu has one; so to install Django on
Ubuntu, simply look for a package called python-django in Synaptic, or run the
following command:

$ sudo apt-get install python-django

You can test your installation by running the following command:

$ django-admin.py --version

If you see the current version of Django printed on screen, then everything is set.

Installing a database system
While Django does not require a database to function, the application we are going to
develop does. So, in the final step of software installation, we are going to make sure
that we have a database system for handling our data.

It's worth noting that Django supports several database engines: MySQL,
PostgreSQL, MS SQL Server, Oracle, and SQLite. Interestingly, however, you only
need to learn one API in order to use any of these database systems. This is possible
because of Django's database layer that abstracts access to the database system.
We will learn about this later, but, for now, you only need to know that, regardless
of what database system you choose, you will be able to run Django applications
developed in this book (or elsewhere) without modification.

If you have Python 2.7 or higher, you don't need to install anything. Python 2.7
comes with the SQLite database management system contained in a module named
sqlite3. Unlike client-server database systems, SQLite does not require a resident
process in memory and it stores the database in a single file, which makes it ideal for
our development environment.

If you don't have Python 2.7, you can install the Python module for SQLite manually
by downloading it at http://www.pysqlite.org/ (Windows users) or through your
package manager (Unix/Linux).

On the other hand, if you already have another Django-supported database server
installed on your system, you can also use this. We will tell Django what database
system to use by editing a configuration file, as we will see in later sections.

www.it-ebooks.info

http://www.pysqlite.org/
http://www.it-ebooks.info/

Getting Started

[20]

Don't I need Apache or some other web server?
Django comes with its own web server, which we are going to
use during the development phase because it is lightweight and
comes pre-configured for Django. However, Django does support
Apache and other popular web servers, such as light tpd, nginx,
and so on. We will see how to configure Django for Apache when
we prepare our application for deployment later in this book.
The same applies to the database manager. During the
development phase, we will use SQLite because it is easy to set
up, but when we deploy the application, we will switch to a
database server such as MySQL.
As I said earlier, regardless of what components we use, our code
will stay the same; Django handles all the communication with
the web and database servers for us.

Creating your first project
Now with the software we need in place, the time has come for the fun part–creating
our first Django project!

If you recall from the Django installation section, we used a command called
django-admin.py to test our installation. This utility is the heart of Django's project
management facilities, as it enables the user to do a range of project management
tasks, including these:

• Creating a new project
• Creating and managing the project's database
• Validating the current project and testing for errors
• Starting the development web server

We will see how to use some of these tasks in the rest of this chapter.

Creating an empty project
To create your first Django project, open a terminal (or Command Prompt for
Windows users; that is, Start | Run | cmd), and type the following command.
Then, hit Enter.

$ django-admin.py startproject django_bookmarks

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

This command will make a folder named django_bookmarks in the current
directory and create the initial directory structure inside it. Let's see what kind of
files are created:

django_bookmarks/
|-- django_bookmarks
| |-- __init__.py
| |-- settings.py
| |-- urls.py
| `-- wsgi.py
`-- manage.py

Here is a quick explanation of what these files are:

• __init__.py: Django projects are Python packages, and this file is required
to tell Python that this folder is to be treated as a package.
A package in Python's terminology is a collection of modules, and they are
used to group similar files together and prevent naming conflicts.

• manage.py: This is another utility script used to manage our project. You can
think of it as your project's version of the django-admin.py file. Actually,
both django-admin.py and manage.py share the same backend code.

• settings.py: This is the main configuration file for your Django project. In
it, you can specify a variety of options, including the database settings, site
language(s), what Django features need to be enabled, and so on. Various
sections of this file will be explained as we progress with building our
application during the next chapters, but for this chapter, we will only see
how to enter the database settings.

• url.py: This is another configuration file. You can think of it as a mapping
between the URLs and Python functions that handle them. This file is one
of Django's powerful features, and we will see how to utilize it in the
next chapter.

When we start writing code for our application, we will create new files inside the
project's folder; so the folder also serves as a container for our code.

Now that you have a general idea of the structure of a Django project, let's configure
our database system.

Setting up the database
In this section, we will start working with setting up the database with various
options and configuration files.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[22]

Okay, now that we have a source code editor ready, let's open the settings.py file
in the project folder and see what it contains:

"""
Django settings for django_bookmarks project.

For more information on this file, see
https://docs.djangoproject.com/en/1.7/topics/settings/

For the full list of settings and their values, see
https://docs.djangoproject.com/en/1.7/ref/settings/
"""

Build paths inside the project like this: os.path.join(BASE_DIR,
...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(__file__))

Quick-start development settings - unsuitable for production
See https://docs.djangoproject.com/en/1.7/howto/deployment/
checklist/

SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = ')9c8g--=vo2*rh$9f%=)=e+@%7e%xe8jptgpfe+(90t7uurfy0'

SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True

TEMPLATE_DEBUG = True

ALLOWED_HOSTS = []

Application definition

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
)

ROOT_URLCONF = 'django_bookmarks.urls'

WSGI_APPLICATION = 'django_bookmarks.wsgi.application'

Database
https://docs.djangoproject.com/en/1.7/ref/settings/#databases

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

Internationalization
https://docs.djangoproject.com/en/1.7/topics/i18n/

LANGUAGE_CODE = 'en-us'

TIME_ZONE = 'UTC'

USE_I18N = True

USE_L10N = True

USE_TZ = True

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/1.7/howto/static-files/

STATIC_URL = '/static/'

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[24]

As you may have already noticed, the file contains a number of variables that control
various aspects of the application. Entering a new value for a variable is as simple as
doing a Python assignment statement. In addition, the file is extensively commented,
and comments explain what variables control in detail.

What concerns us now is configuring the database. As mentioned before, Django
supports several database systems, so first of all, we have to specify what database
system we are going to use. This is controlled by the DATABASE_ENGINE variable. If
you have SQLite installed, set the variable to 'sqlite3'. Otherwise, pick the value
that matches your database engine from the comment next to the variable name.

Next is the database name. Keep the database name default, as it is. On the other
hand, if you are using a database server, you need to do the following:

• Enter the relevant information for the database: username, password, host,
and port. (SQLite does not require any of these.)

• Create the actual database inside the database server, as Django won't do this
by itself. In MySQL, for example, this is done through the mysql command
line utility or phpMyAdmin.

Finally, we will tell Django to populate the configured database with tables. Although
we haven't created any tables for our data yet (and won't do so until the next chapter),
Django requires several tables in the database for some of its features to function
properly. Creating these tables is as easy as issuing the following command:

$ python manage.py syncdb

If everything is correct, status messages will scroll on the screen, indicating that
tables are being created. When prompted for the superuser account, enter your
preferred username, email, and password. If, on the other hand, the database is
misconfigured, an error message will be printed to help you troubleshoot the issue.

With this done, we are ready to launch our application.

Using python manage.py
When running a command that starts with python manage.py,
make sure that you are currently in the project's directory where
manage.py is located.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

Launching the development server
As discussed before, Django comes with a lightweight web server for developing and
testing applications. This server is pre-configured to work with Django, and, more
importantly, it restarts whenever you modify the code.

To start the server, run the following command:

$ python manage.py runserver

Next, open your browser and navigate to this URL: http://localhost:8000/.
You should see a welcome message, as shown in the following screenshot:

Congratulations! You have created and configured your first Django project. This
project will be the base on top of which we will build our bookmarking application.
During the next chapter, we will start developing our application, and the page
displayed by the web server will be replaced by something we wrote ourselves!

As you may have noticed, the web server runs on port 8000 by
default. If you want to change the port, you can specify it on the
command line by using the following command:
$ python manage.py runserver <port number>

Also, the development server is only accessible from the local
machine by default. If you want to access the development
server from another machine on your network, use the following
command-line arguments:
$ python manage.py runserver 0.0.0.0:<port number>

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[26]

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Summary
In this chapter, we have prepared our development environment, created our first
project, and learned how to launch the Django development server. We learned
how to install Django and virtualenv in Windows and Linux. We learned the basic
mechanisms of how Django settings work and even learned how to install a database.

We are now ready to start building our social bookmarking application! The next
chapter takes you through a tour of the main Django components and develops
a working prototype for our bookmark sharing application. It's going to be a fun
chapter with many new things to learn, so keep reading!

www.it-ebooks.info

http://www.it-ebooks.info/

[27]

Code Style in Django
As you are coming from the Python background, you must already have written lots
of code, and, of course have enjoyed it too.

Python code is easy to maintain and works on both small projects or in solving any
competitive programming contest; you can do either by storing Python code locally
or by storing it in a public folder for easier sharing. But, if you are working on a
collaborative project, especially web development, then it makes everything different
from other traditional coding. This not only needs discipline, like following the
project's code syntax, but you may also end up writing extensive documentation for
your code. While working with any version control tools, such as GIT, your commit
messages (which play an important role in making it easier for other developers to
understand what you have been working on or have completed) also broadcast the
current progress of project.

This chapter will cover all the basic topics which you would require to follow, such
as coding practices for better Django web development, which IDE to use, version
control, and so on.

We will learn the following topics in this chapter:

• Django coding style
• Using IDE for Django web development
• Django project structure
• Best practices—using version control
• Django rescue team (where to ask Django questions)
• Faster web development—using Twitter-Bootstrap

www.it-ebooks.info

http://www.it-ebooks.info/

Code Style in Django

[28]

This chapter is based on the important fact that code is read
much more often than it is written. Thus, before you actually
start building your projects, we suggest that you familiarize
yourself with all the standard practices adopted by the Django
community for web development.

Django coding style
Most of Django's important practices are based on Python. Though chances are you
already know them, we will still take a break and write all the documented practices
so that you know these concepts even before you begin. Of course, you can come
back to this chapter for a quick look when you are building your projects.

To mainstream standard practices, Python enhancement proposals are made,
and one such widely adopted standard practice for development is PEP8, the
style guide for Python code–the best way to style the Python code authored by
Guido van Rossum.

The documentation says, "PEP8 deals with semantics and conventions associated
with Python docstrings." For further reading, please visit http://legacy.python.
org/dev/peps/pep-0008/.

Understanding indentation in Python
When you are writing Python code, indentation plays a very important role. It
acts as a block like in other languages, such as C or Perl. But it's always a matter
of discussion amongst programmers whether we should use tabs or spaces, and, if
space, how many–two or four or eight. Using four spaces for indentation is better
than eight, and if there are a few more nested blocks, using eight spaces for each
indentation may take up more characters than can be shown in single line. But,
again, this is the programmer's choice.

The following is what incorrect indentation practices lead to:

>>> def a():

... print "foo"

... print "bar"

IndentationError: unexpected indent

So, which one we should use: tabs or spaces?

www.it-ebooks.info

http://legacy.python.org/dev/peps/pep-0008/
http://legacy.python.org/dev/peps/pep-0008/
http://www.it-ebooks.info/

Chapter 3

[29]

Choose any one of them, but never mix up tabs and spaces in the same project or else
it will be a nightmare for maintenance. The most popular way of indention in Python
is with spaces; tabs come in second. If any code you have encountered has a mixture
of tabs and spaces, you should convert it to using spaces exclusively.

Doing indentation right – do we need four spaces
per indentation level?
There has been a lot of confusion about it, as of course, Python's syntax is all about
indentation. Let's be honest: in most cases, it is. So, what is highly recommended
is to use four spaces per indentation level, and if you have been following the two-
space method, stop using it. There is nothing wrong with it, but when you deal
with multiple third party libraries, you might end up having a spaghetti of different
versions, which will ultimately become hard to debug.

Now for indentation. When your code is in a continuation line, you should wrap
it vertically aligned, or you can go in for a hanging indent. When you are using
a hanging indent, the first line should not contain any argument and further
indentation should be used to clearly distinguish it as a continuation line.

A hanging indent (also known as a negative indent) is a style
of indentation in which all lines are indented except for the
first line of the paragraph. The preceding paragraph is the
example of hanging indent.

The following example illustrates how you should use a proper indentation method
while writing the code:

bar = some_function_name(var_first, var_second,

 var_third, var_fourth)

Here indentation of arguments makes them grouped, and stand clear from
others.

def some_function_name(

 var_first, var_second, var_third,

 var_fourth):

 print(var_first)

This example shows the hanging intent.

www.it-ebooks.info

http://www.it-ebooks.info/

Code Style in Django

[30]

We do not encourage the following coding style, and it will not work in
Python anyway:

When vertical alignment is not used, Arguments on the first line are
forbidden

foo = some_function_name(var_first, var_second,

 var_third, var_fourth)

Further indentation is required as indentation is not distinguishable
between arguments and source code.

def some_function_name(

 var_first, var_second, var_third,

 var_fourth):

 print(var_first)

Although extra indentation is not required, if you want to use extra indentation to
ensure that the code will work, you can use the following coding style:

Extra indentation is not necessary.

if (this

 and that):

 do_something()

Ideally, you should limit each line to a maximum of 79 characters.
It allows for a + or – character used for viewing difference using
version control. It is even better to limit lines to 79 characters for
uniformity across editors. You can use the rest of the space for
other purposes.

The importance of blank lines
The importance of two blank lines and single blank lines are as follows:

• Two blank lines: A double blank lines can be used to separate top-level
functions and the class definition, which enhances code readability.

• Single blank lines: A single blank line can be used in the use cases–for
example, each function inside a class can be separated by a single line, and
related functions can be grouped together with a single line. You can also
separate the logical section of source code with a single line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[31]

Importing a package
Importing a package is a direct implication of code reusability. Therefore, always
place imports at the top of your source file, just after any module comments and
document strings, and before the module's global and constants as variables. Each
import should usually be on separate lines.

The best way to import packages is as follows:

import os

import sys

It is not advisable to import more than one package in the same line, for example:

import sys, os

You may import packages in the following fashion, although it is optional:

from django.http import Http404, HttpResponse

If your import gets longer, you can use the following method to declare them:

from django.http import (

Http404, HttpResponse, HttpResponsePermanentRedirect

)

Grouping imported packages
Package imports can be grouped in the following ways:

• Standard library imports: Such as sys, os, subprocess, and so on.
import re

import simplejson

• Related third party imports: These are usually downloaded from the Python
cheese shop, that is, PyPy (using pip install). Here is an example:
from decimal import *

• Local application / library-specific imports: This included the local modules
of your projects, such as models, views, and so on.
from models import ModelFoo

from models import ModelBar

www.it-ebooks.info

http://www.it-ebooks.info/

Code Style in Django

[32]

Naming conventions in Python/Django
Every programming language and framework has its own naming convention.
The naming convention in Python/Django is more or less the same, but it is worth
mentioning it here. You will need to follow this while creating a variable name or
global variable name and when naming a class, package, modules, and so on.

This is the common naming convention that we should follow:

• Name the variables properly: Never use single characters, for example, 'x'
or 'X' as variable names. It might be okay for your normal Python scripts,
but when you are building a web application, you must name the variable
properly as it determines the readability of the whole project.

• Naming of packages and modules: Lowercase and short names are
recommended for modules. Underscores can be used if their use would
improve readability. Python packages should also have short, all-lowercase
names, although the use of underscores is discouraged.

• Since module names are mapped to file names (models.py, urls.py, and so
on), it is important that module names be chosen to be fairly short as some
file systems are case insensitive and truncate long names.

• Naming a class: Class names should follow the CamelCase naming
convention, and classes for internal use can have a leading underscore in
their name.

• Global variable names: First of all, you should avoid using global variables,
but if you need to use them, prevention of global variables from getting
exported can be done via __all__, or by defining them with a prefixed
underscore (the old, conventional way).

• Function names and method argument: Names of functions should be in
lowercase and separated by an underscore and self as the first argument
to instantiate methods. For classes or methods, use CLS or the objects for
initialization.

• Method names and instance variables: Use the function naming rules—
lowercase with words separated by underscores as necessary to improve
readability. Use one leading underscore only for non-public methods and
instance variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[33]

Using IDE for faster development
There are many options on the market when it comes to source code editors. Some
people prefer full-fledged IDEs, whereas others like simple text editors. The choice is
totally yours; pick up whatever feels more comfortable. If you already use a certain
program to work with Python source files, I suggest that you stick to it as it will
work just fine with Django. Otherwise, I can make a couple of recommendations,
such as these:

• SublimeText: This editor is lightweight and very powerful. It is available
for all major platforms, supports syntax highlighting and code completion,
and works well with Python. The editor is open source and you can find it at
http://www.sublimetext.com/

• PyCharm: This, I would say, is most intelligent code editor of all and has
advanced features, such as code refactoring and code analysis, which makes
development cleaner. Features for Django include template debugging
(which is a winner) and also quick documentation, so this look-up is a must
for beginners. The community edition is free and you can sample a 30-day
trial version before buying the professional edition.

Setting up your project with the Sublime
text editor
Most of the examples that we will show you in this book will be written using
Sublime text editor. In this section, we will show how to install and set up the
Django project.

1. Download and installation: You can download Sublime from the download
tab of the site www.sublimetext.com. Click on the downloaded file option
to install.

2. Setting up for Django: Sublime has a very extensive plug-in ecosystem,
which means that once you have downloaded the editor, you can install
plug-ins for adding more features to it.

www.it-ebooks.info

http://www.sublimetext.com/
www.sublimetext.com
http://www.it-ebooks.info/

Code Style in Django

[34]

After successful installation, it will look like this:

Most important of all is Package Control, which is the manager
for installing additional plugins directly from within Sublime.
This will be your only manual installation of the package. It
will take care of the rest of the package installation ahead.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[35]

Some of the recommendations for Python development using Sublime are as follows:

• Sublime Linter: This gives instant feedback about the Python code as you
write it. It also has PEP8 support; this plugin will highlight in real time the
things we discussed about better coding in the previous section so that you
can fix them.

• Sublime CodeIntel: This is maintained by the developer of SublimeLint.
Sublime CodeIntel have some of advanced functionalities, such as directly
go-to definition, intelligent code completion, and import suggestions.

You can also explore other plugins for Sublime to increase your productivity.

www.it-ebooks.info

http://www.it-ebooks.info/

Code Style in Django

[36]

Setting up the PyCharm IDE
You can use any of your favorite IDEs for Django project development. We will use
pycharm IDE for this book. This IDE is recommended as it will help you at the time
of debugging, using breakpoints that will save you a lot of time figuring out what
actually went wrong.

Here is how to install and set up pycharm IDE for Django:

1. Download and installation: You can check the features and download the
pycharm IDE from the following link:
http://www.jetbrains.com/pycharm/

2. Setting up for Django: Setting up pycharm for Django is very easy. You just
have to import the project folder and give the manage.py path, as shown in
the following figure:

www.it-ebooks.info

http://www.jetbrains.com/pycharm/
http://www.it-ebooks.info/

Chapter 3

[37]

The Django project structure
The Django project structure has been changed in the 1.6 release version. Django
(django-admin.py) also has a startapp command to create an application, so it is
high time to tell you the difference between an application and a project in Django.

A project is a complete website or application, whereas an application is a small,
self-contained Django application. An application is based on the principle that it
should do one thing and do it right.

To ease out the pain of building a Django project right from scratch, Django gives
you an advantage by auto-generating the basic project structure files from which any
project can be taken forward for its development and feature addition.

Thus, to conclude, we can say that a project is a collection of applications, and an
application can be written as a separate entity and can be easily exported to other
applications for reusability.

To create your first Django project, open a terminal (or Command Prompt for
Windows users), type the following command, and hit Enter:

$ django-admin.py startproject django_mytweets

www.it-ebooks.info

http://www.it-ebooks.info/

Code Style in Django

[38]

This command will make a folder named django_mytweets in the current
directory and create the initial directory structure inside it. Let's see what kind
of files are created.

The new structure is as follows:

django_mytweets///
django_mytweets/
manage.py

This is the content of django_mytweets/:

django_mytweets/
__init__.py
settings.py
urls.py
wsgi.py

Here is a quick explanation of what these files are:

• django_mytweets (the outer folder): This folder is the project folder.
Contrary to the earlier project structure in which the whole project was kept
in a single folder, the new Django project structure somehow hints that every
project is an application inside Django.
This means that you can import other third party applications on the same
level as the Django project. This folder also contains the manage.py file,
which include all the project management settings.

• manage.py: This is utility script is used to manage our project. You can
think of it as your project's version of django-admin.py. Actually, both
django-admin.py and manage.py share the same backend code.

Further clarification about the settings will be provided
when are going to tweak the changes.

Let's have a look at the manage.py file:
#!/usr/bin/env python
import os
import sys
if __name__ == "__main__":
 os.environ.setdefault("DJANGO_SETTINGS_MODULE", "django_
mytweets.settings")
 from django.core.management import
 execute_from_command_line
 execute_from_command_line(sys.argv)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

The source code of the manage.py file will be self-explanatory once you read
the following code explanation.
#!/usr/bin/env python

The first line is just the declaration that the following file is a Python file,
followed by the import section in which os and sys modules are imported.
These modules mainly contain system-related operations.
import os
import sys

The next piece of code checks whether the file is executed by the main
function, which is the first function to be executed, and then loads the Django
setting module to the current path. As you are already running a virtual
environment, this will set the path for all the modules to the path of the
current running virtual environment.
if __name__ == "__main__":
 os.environ.setdefault("DJANGO_SETTINGS_MODULE",
 "django_mytweets.settings")
django_mytweets/ (Inner folder)
__init__.py

Django projects are Python packages, and this file is required to tell
Python that this folder is to be treated as a package. A package in Python's
terminology is a collection of modules, and they are used to group similar
files together and prevent naming conflicts.

• settings.py: This is the main configuration file for your Django project.
In it, you can specify a variety of options, including database settings, site
language(s), what Django features need to be enabled, and so on. Various
sections of this file will be explained as we progress with building our
application during the following chapters.
By default, the database is configured to use SQLite Database, which is
advisable to use for testing purposes. Here, we will only see how to enter the
database in the settings file; it also contains the basic setting configuration,
and with slight modification in the manage.py file, it can be moved to
another folder, such as config or conf.
To make every other third-party application a part of the project, we need
to register it in the settings.py file. INSTALLED_APPS is a variable that
contains all the entries about the installed application. As the project grows,
it becomes difficult to manage; therefore, there are three logical partitions for
the INSTALLED_APPS variable, as follows:

 ° DEFAULT_APPS: This parameter contains the default Django installed
applications (such as the admin)

www.it-ebooks.info

http://www.it-ebooks.info/

Code Style in Django

[40]

 ° THIRD_PARTY_APPS: This parameter contains other application like
SocialAuth used for social authentication

 ° LOCAL_APPS: This parameter contains the applications that are
created by you

• url.py: This is another configuration file. You can think of it as a mapping
between URLs and the Django view functions that handle them. This file is
one of Django's more powerful features, and we will see how to utilize it in
the next chapter.
When we start writing code for our application, we will create new files inside
the project's folder. So, the folder also serves as a container for our code.

Now that you have a general idea of the structure of a Django project, let's configure
our database system.

Best practices – using version control
Version control is a system that remembers all the changes you make to your projects
as you keep progressing. At any point of time, you can see the changes made to a
particular file; over a period of time, you can revert it or edit it further.

It makes much more sense for a project that has multiple contributors, mainly for
those working on the same file concurrently. Version control is a lifesaver because it
keeps records of both the versions of files and allows options such as saving both by
merging or discarding any one copy.

We will be using distributed version control, that is, each developer has a complete
copy of the project (contrary to subversion, where repositories are hosted on a
system server).

Git – the latest and most popular version
control tool
Git is a version control tool we will be using for our projects. It is the best available
tool out there for version control and is open source too. Git works well with other
types of files, apart from source code files, life images, PDFs, and so on. You can
download Git from the following URL:

http://git-scm.com/downloads

www.it-ebooks.info

http://git-scm.com/downloads
http://www.it-ebooks.info/

Chapter 3

[41]

Most of the modern IDEs already have built-in version control system support; like
PyCharm, Sublime has a plugin that can integrate Git in the working directory. Git
can be initialized form the terminal using the git command, and you can check out
further options provided by it using the git --help command.

How Git works
We, as developers, have a local copy of the project synchronized with a remote
server (often called repository) and can send it to a remote repository. When the
other developer wants to push changes to the remote repository, they have to pull
your changes first. This minimizes chances of any conflict on the central repository
where every developer is in sync. This whole work flow is shown in the next section.

Setting up your Git
Any project can be added to Git for version control to creating a folder into a Git
repository. To do this, use the following commands:

• $git init: If you want to copy an existing Git repository, which might
be the case if your friend has already hosted it somewhere on GitHub or
Bitbucket, use the following command:

 ° $git clone URL: The URL of the remote repository, like
https://github.com/AlienCoders/web-development.git.

Staging area: The staging area is the place where all your files have to be listed first
before you commit them. In short, staging is needed as an intermediate step, rather
than a direct commit, because, when conflicts occur, they are flagged in the staging
area. Only after the conflicts are resolved can the files be committed.

Let's take a look at the following commands and their uses:

• $git add <file-name> or $git add: For adding all files to the staging area
in bulk.

• $git status: To know the status of your working directory, which files
have been added, and which files have not been added.

• $git diff: To get the status of what is modified and staged, or what is
modified and has not been staged.

• $ git commit -m: To commit the changes made, first you have to add them
to the staging area; then, you have to commit them using this command.

www.it-ebooks.info

https://github.com/AlienCoders/web-development.git
http://www.it-ebooks.info/

Code Style in Django

[42]

• $ git rm <file-name>: If you have mistakenly added any file to the staging
area, you can remove it from the staging area by using this command.

• $git stash: Git doesn't track the renamed files. In other words, if you have
renamed already staged files, you will have to add them again to the staging
and then commit. You can save the changes by not actually committing to the
repository by using the following command.

• $git stash apply: It takes all the current changes and saves it to the stack.
Then, you can continue working with your changes. Once you are in a
position to get your saved changes, you can do so using this command.

Branching in Git
Another concept of version control is branching (Git). A branch is like a path for
your commits, and by default, all commits are made on the master branch. A branch
is mainly used to track the feature in a project. Every feature can be made as branch
to be worked on; once the feature is complete, it can be merged back to the master.

The basic work flow of branch is this: you initially have a master branch and make a
new branch for each new feature. Changes are committed into the new branch, and
once done with the feature, you can merge it back to the master branch. This can be
visually represented as follows:

• $git branch: To list an existing branch using Git, we need to use this command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

• git checkout -b <new-branch-name>: A new branch can be created in the
existing repository using this command. We can see logically how it looks
with the help of the following block diagram:

You will get a message informing you that you have switched to the new
branch. If you want to switch back to the old branch, you can use the
following command:

• $git checkout <old-branch-name>: You will see the message Switched
to branch <old-branch-name>.

• $git merge <branch-name>: After the feature is complete, you can merge it
to the branch of your choice using this command. This will merge the branch
<branch-name> to your current branch. To sync the changes back to the
<branch-name>, you can check out from your current branch to the branch
<branch-name> and merge again. You can also mark the important points in
your commit history by using tags.

• After the commit, you can tag an important commit by using the $git tag
-a v1.0 command.

• To get new changes from the remote server, you can fetch the changes from
Git using the $git fetch command.

• To merge the changes directly to your current branch, you can use the $git
pull command.

• After you are done with your changes, you can commit and push them to the
remote repository using the $git push command.

www.it-ebooks.info

http://www.it-ebooks.info/

Code Style in Django

[44]

Setting up the database
In this section, we will start working with code for the first time. Therefore, we will
have to choose a source code editor to enter and edit code. You can use any of your
favorite source code editors. As mentioned in the previous section, we have used the
Sublime text editor to write code for this book.

OK, now that you have a source code editor ready, let's open settings.py in the
project folder and see what it contains:

Django settings for django_mytweets project.
DEBUG = True
TEMPLATE_DEBUG = DEBUG
ADMINS = (
 # ('Your Name', 'your_email@domain.com'),
)
MANAGERS = ADMINS
DATABASE_ENGINE = '' # 'postgresql_psycopg2', 'postgresql',
 # 'mysql', 'sqlite3' or 'ado_mssql'.
DATABASE_NAME = '' # Or path to database file
 # if using sqlite3.
DATABASE_USER = '' # Not used with sqlite3.
DATABASE_PASSWORD = '' # Not used with sqlite3.
DATABASE_HOST = '' # Set to empty string for localhost.
 # Not used with sqlite3.
DATABASE_PORT = '' # Set to empty string for default.
 # Not used with sqlite3.

There are many more lines in the settings.py file, but we have trimmed the
remaining contents of this file.

As you may have already noticed, the file contains a number of variables that control
various aspects of the application. Entering a new value for a variable is as simple as
doing a Python assignment statement. In addition, the file is extensively commented,
and comments explain what variables control in detail.

What concerns us now is configuring the database. As mentioned before, Django
supports several database systems, so first of all, we have to specify what database
system we are going to use. This is controlled by the DATABASE_ENGINE variable. If
you have SQLite installed, set the variable to sqlite3. Otherwise, pick the value that
matches your database engine from the comment next to the variable name.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

Next is the database name. We will choose a descriptive name for your database; edit
DATABASE_NAME and set it to django_mytweetsdb. If you are using SQLite, this is all
you need to do. On the other hand, if you are using a database server, follow these
instructions:

• Enter the relevant information for the database–the username, password,
host, and port (SQLite does not require any of these).

• Create the actual database inside the database server, as Django won't do this
by itself. In MySQL, for example, this is done through the mysql command-
line utility or phpMyAdmin.

After these simple edits, the database section in settings.py now looks like this:

DATABASE_ENGINE = 'sqlite3'
DATABASE_NAME = 'django_mytweetsdb'
DATABASE_USER = ''
DATABASE_PASSWORD = ''
DATABASE_HOST = ''
DATABASE_PORT = ''

Finally, we will tell Django to populate the configured database with tables. Although
we haven't created any tables for our data yet (and we won't do so until the next
chapter), Django requires several tables in the database for some of its features to
function properly. Creating these tables is as easy as issuing the following command:

$ python manage.py syncdb

If everything is correct, status messages will scroll on the screen, indicating that
tables are being created. When prompted for the superuser account, enter your
preferred username, e-mail, and password. If, on the other hand, the database is
misconfigured, an error message will be printed to help you troubleshoot the issue.

With this done, we are ready to launch our application.

Using python manage.py
When you run a command that starts with python manage.py,
make sure that you are currently in the project's directory where
the manage.py file is located.

www.it-ebooks.info

http://www.it-ebooks.info/

Code Style in Django

[46]

Launching the development server
As discussed before, Django comes with a lightweight web server for developing and
testing applications. This server is pre-configured to work with Django, and more
importantly, it restarts whenever you modify the code.

To start the server, run the following command:

$ python manage.py runserver

Next, open your browser and navigate to this URL: http://localhost:8000/. You
should see a welcome message, as shown in the following screenshot:

Congratulations! You have created and configured your first Django project. This
project will be the basis on top of which we will build our bookmarking application.
In the next chapter, we will start developing our application, and the page displayed
by the web server will be replaced by something we wrote ourselves!

As you may have noticed, the web server runs on port 8000 by default. If you want to
change the port, you can specify it on the command line using the following command:

$ python manage.py runserver <port number>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

Also, the development server is only accessible from the local machine by default. If
you want to access the development server from another machine on your network,
use the following command line arguments:

$ python manage.py runserver 0.0.0.0:<port number>

Faster web development
When it comes to web development, one thing which majorly helps the success of
the web project is its user interface and user experience. Although Django takes care
of all the business logic at the backend, there is undoubtedly a need for an awesome
frontend design framework that not only eases the developer's life while coding,
but also enhances the user experience of the whole web project. Thus, we choose to
explain Twitter Bootstrap here.

Minimal Bootstrap
Bootstrap is a complete frontend framework, and it's beyond the scope of this book
to familiarize you with each and every aspect of it. What you must be wondering
is why we would discuss Bootstrap in Django book. You are being told about a
frontend framework. The idea here is to help you build a web application that you
can directly use in production, and which you will be deploying to clouds such as
AWS and Heroku. You need your project to be of a production grade once you finish
this book. Thus, by keeping Bootstrap as simple as possible, you can still build a
great-looking Django web application.

There are many ways to lay out your web pages based on the permutation and
combination. To help you to get an understanding of that, we will take a look at a
few examples.

Wire-framing is the first step in the web development, which means it has to deal
with the location of the content on the page. If you already know the basics of web
designing, this section will make much more sense to you. If not, first do some reading
to get a basic idea of web development. Look up the difference between div and span,
and then everything will make sense to you. You can learn more from here: https://
developer.mozilla.org/en-US/Learn/HTML. Bootstrap basic page wire-framing is
divided into rows and columns; each column is further divided into 12 sections. With
these subsections, you can use the permutation to get your layout designed.

www.it-ebooks.info

https://developer.mozilla.org/en-US/Learn/HTML
https://developer.mozilla.org/en-US/Learn/HTML
http://www.it-ebooks.info/

Code Style in Django

[48]

When we see a website from a developer's perspective, the first thing we notice is
the wire-frame being used. For example, when you visit www.facebook.com, you see
your news feed in the center of the page and other important links (such as links to
messages, pages, and groups) on the left-hand side of the page. On the right-hand
side, you see your friends who are available to chat.

The same layout can be imagined in Bootstrap as 2-8-2. The column for the left-hand
side links will be a "2 column", the news feed will be an "8 column", and the chat
section will be a "2 column". This is a basic wire-frame.

Remember the sum always has to be 12, as a live fluid grid
system in Bootstrap works on 12-grid column principle for
better and flexible layout.

Now, Bootstrap is not just for making a web page responsive–it has many other
components to make web page look better and cleaner.

To use Bootstrap with Django, there are two ways:

• The Django way: pip install django-bootstrap3
• The Manual way: Downloading the Bootstrap resources and copying them

to a static location

The Django way
If you want to install Bootstrap using a command, then you have to append the
INSTALLED_APPS variable from the settings.py file with bootstrap3.

Here is a sample Django template using this method for a simple HTML form:

{% load bootstrap3 %}
{%# simple HTML form #%}
<form action="action_url">
 {% csrf_token %}
 {% bootstrap_form sample_form %}
 {% buttons %}
 <button type="submit" class="btn btn-primary">
 {% bootstrap_icon "heart" %} SUBMIT
 </button>
 {% endbuttons %}
</form>

www.it-ebooks.info

www.facebook.com
http://www.it-ebooks.info/

Chapter 3

[49]

To learn and explore more, you can refer to the following link:
http://django-bootstrap3.readthedocs.org/

Manual installation of Bootstrap
This method is recommended for beginners, but once you are confident, you can
make shortcuts by following the command method.

Here we will learn the basic inclusion for the project files, and the rest will be
covered in the upcoming chapters. Once you have downloaded the Bootstrap from
the online source (http://getbootstrap.com), the unzipped folder structure looks
something like this:

|-- css

| |-- bootstrap.css

| |-- bootstrap.css.map

| |-- bootstrap.min.css

| |-- bootstrap-theme.css

| |-- bootstrap-theme.css.map

| `-- bootstrap-theme.min.css

|-- fonts

| |-- glyphicons-halflings-regular.eot

| |-- glyphicons-halflings-regular.svg

| |-- glyphicons-halflings-regular.ttf

| `-- glyphicons-halflings-regular.woff

`-- js

 |-- bootstrap.js

 `-- bootstrap.min.js

There are two types of local file conventions used in Django: one is "Static" and
another is "media". Static files refers to the assets of your project, such as CSS,
JavaScript, and so on. Media files are represented by uploaded files in the project,
mainly consisting of images, video for display or download, and so on.

Adding static files to your project can be done by adding following lines to the
setting.py file:

STATICFILES_DIRS = (
 # put absolute path here as string not relative path.
 # forward slash to be used even in windows.
 os.path.join(

www.it-ebooks.info

http://django-bootstrap3.readthedocs.org/
http://getbootstrap.com
http://www.it-ebooks.info/

Code Style in Django

[50]

 os.path.dirname(__file__),
 'static',
),
)

Now, all you have to do is to create a folder inside your project directory and copy
all the Bootstrap resources.

Summary
We prepared our development environment in this chapter, created our first project,
set up the database, and learned how to launch the Django development server. We
learned the best way to write code for our Django project and saw the default Django
project structure. We learned about the naming convention, the significance of blank
lines, and which style of import we should use and where.

We saw which editor and which IDE would be better for Python- and Django-based
web development. We learned how to use Git to keep our code updated at the
repository. We learned a bit about Bootstrap to work on frontend development.

The next chapter will take you through a tour of the main Django components and
will help develop a working prototype for our Twitter application. It's going to be a
fun chapter with many new things to learn, so keep reading!

www.it-ebooks.info

http://www.it-ebooks.info/

[51]

Building an Application
 Like Twitter

In the previous chapters, we learned about better ways to write our code. Keeping
those points in mind, it is high time that we get started with real Django project
development and learn about views, models, and templates.

The first part of each section in this chapter will be about the basics and how things
work in the particular subject it deals with. This will include proper practices,
standard methods, and important terminology.

The second part of each section will be the application of that concept in our
mytweets Django application development. The first parts can be thought of as
chapter descriptions of the subjects and the second parts as exercises in the form of
our Django project, which is really going to be a unique learning experience.

The following topics are covered in this chapter:

• A word about Django terminology
• Setting up the Basic Template Application
• Creating Django's template structure of the project
• Setting up the basic bootstrap for the Application
• Creating the Main Page
• Introduction to class-based views
• Django settings for our mytweets project
• Generating user pages
• Designing an initial database schema
• User registration and account management
• Creating a template for the Main Page

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[52]

A word about Django terminology
Django is an MVC framework. However, throughout the code, the controller is
called view, and the view is called template. The view in Django is the component
which retrieves and manipulates the data, whereas the template is the component
that presents data to the user. For this reason, Django is sometimes called a Model
Template View (MTV) framework. This different terminology neither changes
the fact that Django is an MVC framework, nor does it affect how applications are
developed, but keep the terminology in mind to avoid possible confusion if you have
worked with other MVC frameworks in the past.

You can think of this chapter as an in-depth tour of the main Django components. You
will learn how to create dynamic pages using views, how to store and manage data in
the database using models, and how to simplify page generation using templates.

While learning about these features, you will form a solid idea of how Django
components work and interact with each other. Later chapters will explore these
components more deeply, as we develop more features and add them to our application.

Setting up a basic template application
Our project is going to be a microblogging site, where there will be a public page for
every user, which will have a timeline of the tweets they have posted.

The first thing that comes to mind after seeing the welcome page of the development
server is to ask how we can change it. To create our own welcome page, we need to
define an entry point to our application in the form of a URL and tell Django to call
a particular Python function when a visitor accesses this URL. We will write this
Python function ourselves and make it display our own welcome message.

This section basically is a redo of the configuration we did in the previous chapter,
but the intent is to place all the instructions together here so that the project
bootstrapping requires fewer page look-ups.

Creating a virtual environment
We will set up the virtual environment for Django to work properly by using the
following command:

$ virtualenv django_env

The output will be as follows:

New python executable in django_env/bin/python

Installing setuptools, pip...done.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[53]

We need to activate the virtual environment now and set up all the environment
variables so that all Python installs will be routed to this environment directory
without affecting other settings:

$ source django_env/bin/activate

The output will be as follows:

(django_env)ratan@lenovo:~/code$

Installing Django
Although you have already installed Django, we will do this again because Django
will be managed by virtualenv, which can't be messed up by other projects or users
(or yourself) working elsewhere.

$pip install django

You may get an error as follows:

bad interpreter: No such file or directory

If so, create your virtualenv environment within a path without spaces. It is
most likely that, in the path to the location where you have created your virtual
environment, there exists a directory whose name contains a space, for example,
/home/ratan/folder name with space$virtualenv django_env.

If so, change the directory name to something like the following:

/home/ratan/folder_name_with_no_space$virtualenv django_env

We can proceed with the Django installation using the command pip install
django.

The output will be as follows:

Downloading/unpacking django

Downloading Django-1.6.5-py2.py3-none-any.whl (6.7MB): 6.7MB downloaded

Installing collected packages: django

Successfully installed django

Cleaning up...

Now, before we move to create our Django application, we will make sure Git
is installed. Use the following command to find out the version of Git that we
have installed:

$git --version

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[54]

The output will be as follows:

git version 1.9.1

This confirms that we have Git installed. Of course you must be wondering whether
we are going to use version control in this project. The answer is yes: as we go along,
we will version-control most of the project files.

Creating Django's template structure of
the project
In this section, we will create the structure for the project, for example, creating
a folder called mytweets for our project, installing the required package for our
project, and so on. Run the following command:

$django-admin.py startproject mytweets

This will create the folder called mytweets, which we will be using as our project
directory. In the current folder, we see two subfolders: environment and mytweets.
The question right now is whether we are going to version control our environment
folder. We are not, because those files are very specific to your current system. They
are not going to help anyone to set up the same environment as ours. However,
there is another way of doing this in Python: by using the pip freeze command.
This actually takes a snapshot of all the current libraries installed in your Django
application, and then you can save that list in a text file and version control it. Thus
your fellow developer can download the same version of the libraries. That's really a
Pythonic way of doing it, isn't it?

The most common method for you to install the new packages is by using the pip
command. There are the three versions of the pip install command, they are
as follows:

$ pip install PackageName

This is the default and installs the latest version of the package:

$ pip install PackageName==1.0.4

Using the == parameter, you can install a specific version of the package. In this case,
that is 1.0.4. Use the following command to install the package with a version number:

$ pip install 'PackageName>=1.0.4' # minimum version

Use the above command when you are not sure of the package version you are going
to install but have an idea that you need the minimum version of the library.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[55]

It is very easy to use the pip command to install the libraries. You can do this by just
typing the following into the command line:

$pip install -r requirements.txt

Now we need to freeze the libraries from the current project:

$pip freeze > requirements.txt

This command freezes the current libraries installed in the project along with the
version number, if specified, and stores them in a file named requirements.txt.

At this stage of our project, pip freeze command will look something like this.

Django==1.6.5
argparse==1.2.1
wsgiref==0.1.2

To install these libraries back to your fresh environment along with the project, we
can run the following command:

$pip install -r requirements.txt

Thus we can proceed with initializing only our code directory as a Git repository
and changing the current path to $cd mytweets. Execute the following command to
build a Git repository in your project folder:

$git init

The output will be as follows:

Initialized empty Git repository in /home/ratan/code/mytweets/.git/

If we run all commands on a Linux-based system for detailed directory listing we
can see the following output:

...
drwxrwxr-x 7 ratan ratan 4096 Aug 2 16:07 .git/
...

This is the .git folder, which, as by its naming convention (starting with a dot), is
hidden from the normal listing of the directory, that is, the directory where all Git-
related files such as branches, commits, logs, and so on are stored. Deleting that
particular directory will make your directory Git-free (free of version control) and as
normal as any other directory in your current system.

We can add all our current files in the directory to the staging area by using the
following command:

$git add .

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[56]

Use the following command for our first commit of the project:

$git commit -m "initial commit of the project."

The output will be as follows:

[master (root-commit) 597b6ec] initial commit of the project.
5 files changed, 118 insertions(+)
create mode 100755 manage.py
create mode 100644 mytweets/__init__.py
create mode 100644 mytweets/settings.py
create mode 100644 mytweets/urls.py
create mode 100644 mytweets/wsgi.py

The first line (here, its master) says that we are in the master's branch and the others
that follow are the files being committed.

So far, we have set up the basic Django template and added it to our version control.
The same thing can be verified with the following command:

$git log

The output will be as follows:

commit 597b6ec86c54584a758f482aa5a0f5781ff4b682

Author: ratan <mail@ratankumar.org>

Date: Sat Aug 2 16:50:37 2014 +0530

initial commit of the project.

Instructions on setting up the author and generating SSH keys for a remote repository
push can be found at the following links:

https://help.github.com/articles/set-up-git

https://help.github.com/articles/generating-ssh-keys

Setting up the basic Twitter Bootstrap for
the application
As introduced in the previous chapter, bootstrap is the basic framework for the user
interface design. We will proceed with the second method mentioned, that is, by
manually downloading the bootstrap files and linking them in the static folder.

www.it-ebooks.info

https://help.github.com/articles/set-up-git
https://help.github.com/articles/generating-ssh-keys
http://www.it-ebooks.info/

Chapter 4

[57]

The method we are skipping means that we are not going to execute the following
command:

$pip install django-bootstrap3

Detailed documentation for this implementation can be found at
http://django-bootstrap3.readthedocs.org/.

The method that we will be following is that of downloading the bootstrap files and
placing them in the static folder of our project.

To start with bootstrap, we have to start by downloading the static files from the
following official bootstrap web address:

http://getbootstrap.com/

When you visit this link, you will find a download button. After clicking on
Download, click on Download Bootstrap. This will give you the bootstrap resource
files in zipped format. This downloaded file will have a name something like
bootstrap-3.2.0-dist.zip. Extract the content of this zip file. After extraction,
the folder bootstrap-3.2.0-dist will have a structure as follows:

|-- css
| |-- bootstrap.css
| |-- bootstrap.css.map
| |-- bootstrap.min.css
| |-- bootstrap-theme.css
| |-- bootstrap-theme.css.map
| |-- bootstrap-theme.min.css
|-- fonts
| |-- glyphicons-halflings-regular.eot
| |-- glyphicons-halflings-regular.svg
| |-- glyphicons-halflings-regular.ttf
| |-- glyphicons-halflings-regular.woff
|-- js
|-- bootstrap.js
|-- bootstrap.min.js

Application-specific static files are stored in the static subdirectory within
the application.

Django will also look in any directories listed in the STATICFILES_DIRS setting. Let's
update our project settings to specify a static file directory in the settings.py file.

www.it-ebooks.info

http://django-bootstrap3.readthedocs.org/
http://getbootstrap.com/
http://www.it-ebooks.info/

Building an Application Like Twitter

[58]

We can update our project's setting.py file as follows to use Twitter bootstrap:

STATICFILES_DIRS = (
os.path.join(
os.path.dirname(__file__),
'static',
),
)

Here, the static variable will be the folder we will be keeping our bootstrap files in.
We will create the static folder inside our current project directory and will copy
all bootstrap's unzipped files to that folder.

For development purposes, we will keep most of the settings as there are, for
example, the default database SQLite; we can later move this while deploying our
test application to MySQL or any other database of our choice.

Now, before we actually use bootstrap in our projects, there are some underlying
concepts we must know to understand bootstrap as a front-end framework.

Bootstrap designs the web pages based on the grid system, and there are three main
components of this grid, as follows:

• Container: A container is used for giving a base to the whole web page, that
is, generally, all the components of the bootstrap will be direct or nested
child objects of the container. In other words, containers provide the width
constraints on responsive widths. When the screen resolution changes, it's
the container which is changing its width across the device screen. The rows
and columns are percentage based so they get automatically modified.
The container also provides a padding to the contents from browser edges so
that they do not touch the side of the view area. The default padding is 15 px.
You never need another container inside a container. The following image
shows the structure of the container:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

• Row: A row is placed inside the container and contains the column. The
hierarchy is container | row | column for bootstrap's basic design. The row
also acts like a wrapper for the columns, so in situations where columns are
getting weird due to their default float left property, keep them separately
grouped so that this problem is not reflected outside the row.
Rows have 15 px of negative margin on each side, which pushes them out
over the top of the container's 15 px padding. As a result, they are negated
and the row touches the edge of the container, the negative margin is
overlapped by padding. Thus, the row is not pushed by the container's
padding. Never use a row outside a container.

• Column: Columns have a 15 px padding. This means that the columns
actually touch the edge of the row, which is already touching the edge of the
container because of the negation property with the container discussed in
the previous paragraph.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[60]

Columns again have the 15 px padding, so the content of the columns is
placed 15 px away from the view edge of a container.
Therefore, we don't need a special first and last column with padding on the
left and right. There is now a consistent 15 px gap across all columns.

Content inside the columns are pushed to the columns location and are
also separated by 30 px of gutter between them. We can use rows inside the
column for nested layouts.

Never use a column outside of a row.

With these points in mind, we can go ahead and design our first layout.

URLs and views – creating the main page
A view in Django terminology is a regular Python function that responds to a page
request by generating the corresponding page. To write our first Django view for the
main page, we first need to create a Django application inside our project. You can
think of an application as a container for views and data models. To create it, issue
the following command within our django_mytweets folder:

$ python manage.py startapp tweets

The syntax of application creation is very similar to that of project creation. We used
the startapp command as the first parameter of the python manage.py command,
and provided tweets as the name of our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

After running this command, Django will create a folder named tweets inside the
project folder with these three files:

• __init__.py: This file tells Python that tweets is a Python package
• views.py: This file will contain our views
• models.py: This file will contain our data models

Now let's create the main page view. We will first create a template folder inside the
project to keep all the HTML files:

$mkdir templates

Now create a base HTML file inside it named base.html with the following content:

{% load staticfiles %}
<html>
<head>
<link href="{% static 'bootstrap/css/bootstrap.min.css' %}"
rel="stylesheet" media="screen" />">
</head>

<body>
{% block content %}
<h1 class="text-info">">HELLO DJANGO!</h1>
{% endblock %}

<script src="{% static 'bootstrap/js/bootstrap.min.js' %}"></script>
</body>
</html>

Our directory structure will look something like this now (use the tree command if
you are on Linux OS):

mytweets/
|-- manage.py
|-- mytweets
| |-- __init__.py
| |-- __init__.pyc
| |-- settings.py
| |-- settings.pyc
| |-- urls.py
| |-- urls.pyc
| |-- wsgi.py
| `-- wsgi.pyc
|-- static

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[62]

| |-- css
| | |-- bootstrap.css
| | |-- bootstrap.css.map
| | |-- bootstrap.min.css
| | |-- bootstrap-theme.css
| | |-- bootstrap-theme.css.map
| | `-- bootstrap-theme.min.css
| |-- fonts
| | |-- glyphicons-halflings-regular.eot
| | |-- glyphicons-halflings-regular.svg
| | |-- glyphicons-halflings-regular.ttf
| | `-- glyphicons-halflings-regular.woff
| `-- js
| |-- bootstrap.js
| `-- bootstrap.min.js
|-- templates
| `-- base.html
`-- tweets
|-- admin.py
|-- __init__.py
|-- models.py
|-- tests.py
`-- views.py

Introduction to class-based views
Class-based views are the new way of defining views in Django. They do not replace
function-based views. They are just an alternative way to implement views as Python
objects instead of functions. There are two advantages they have over function-
based views. With a class-based view, different HTTP requests can be mapped to a
different function, as opposed to a function-based view where the branching takes
place based on the request.method parameter. Object-oriented techniques can be
used to reuse the code component, such as mixins (multiple inheritance).

Although we will be using class-based views for our project, to understand the exact
difference between the two, here we will present the code for both.

We will have to update the url.py file of our project so that the base.html file will
be served if the user requests the website.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

Function-based view:

Update the view.py file as follows:

from django.http import HttpResponse

def index(request):
if request.method == 'GET':
return HttpResponse('I am called from a get Request')
elif request.method == 'POST':
return HttpResponse('I am called from a post Request')

Update the urls.py file as follows:

from django.conf.urls import patterns, include, url
from django.contrib import admin
from tweets import views
admin.autodiscover()

urlpatterns = patterns('',
url(r'^$', views.index, name='index'),
url(r'^admin/', include(admin.site.urls)),
)

Run the development server by using the following command:

$python manage.py runserver

We will see a response saying I am called from a get Request.

Class-based view:

Update the views.py file as follows:

from django.http import HttpResponse
from django.views.generic import View

class Index(ViewV iew):
def get(self, request):
return HttpResponse('I am called from a get Request')
def post(self, request):
return HttpResponse('I am called from a post Request')

urls.py
from django.conf.urls import patterns, include, url
from django.contrib import admin
from tweets.views import Index
admin.autodiscover()

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[64]

urlpatterns = patterns('',
url(r'^$', Index.as_view()),
url(r'^admin/', include(admin.site.urls)),
)

This will also generate the same result on the browser after the development server is
hit. We will be using class-based views throughout the project.

What we have rendered is just a string, which was kind of simple. We have created a
base.html file in our template folder and will now move ahead with our class-based
view and render our base.html file.

In Django, there is more than one way to render our page. We can render our
page using any of these three functions: render(), render_to_response(), or
direct_to_template(). However, let us first see what the difference between
them is and which one we should be using:

• render_to_response(template[, dictionary][, context_instance]
[, mimetype]): The render_to_response command is the standard render
function, and to use RequestContext, we will have to specify context_inst
ance=RequestContext(request).

• render(request, template[, dictionary][, context_instance][,
content_type][, status][, current_app]). This is the new shortcut
for the render_to_response command and is available from version 1.3 of
Django. This will automatically use RequestContext.

• direct_to_template(): This is a generic view. It automatically uses
RequestContext and all its context_processor parameters.

However, the direct_to_template command should be avoided as function-based
generic views are deprecated.

We will choose the second one, the render() function, for rendering our
base.html template.

The next step is the inclusion of the template folder in our Django application
(the template folder we have created with the base file named base.html). To
include the template, we will update the settings.py file in the following manner:

TEMPLATE_DIRS = (
BASE_DIR + '/templates/'
)
TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.Loader',
'django.template.loaders.app_directories.Loader',
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

This defines the template directory and initializes the basic TEMPLATE_LOADER
parameters.

Django settings for the mytweets project
Let's update the settings.py file with the minimal settings that we need for our
mytweets project. Before starting our mytweets application we will add many
settings which we will see with the following changes. For more information on this
file, visit https://docs.djangoproject.com/en/1.6/topics/settings/.

For the full list of settings and their values, visit https://docs.djangoproject.
com/en/1.6/ref/settings/.

Update the settings.py file of our project with the following content:

Build paths inside the project like this: os.path.join(BASE_DIR,
...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(__file__))

Quick-start development settings - unsuitable for production
See https://docs.djangoproject.com/en/1.6/howto/deployment/
checklist/

SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'XXXXXXXXXXXXXXXXXXXXXXXXXX'

SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
TEMPLATE_DEBUG = True
ALLOWED_HOSTS = []

Application definition
INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
)

MIDDLEWARE_CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',

www.it-ebooks.info

https://docs.djangoproject.com/en/1.6/topics/settings/
https://docs.djangoproject.com/en/1.6/ref/settings/
https://docs.djangoproject.com/en/1.6/ref/settings/
http://www.it-ebooks.info/

Building an Application Like Twitter

[66]

'django.middleware.clickjacking.XFrameOptionsMiddleware',
)

ROOT_URLCONF = 'mytweets.urls'
WSGI_APPLICATION = 'mytweets.wsgi.application'

Database
https://docs.djangoproject.com/en/1.6/ref/settings/#databases

DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}

#static file directory inclusion
STATICFILES_DIRS = (
os.path.join(
os.path.dirname(__file__),
'static',
),
)

TEMPLATE_DIRS = (
BASE_DIR + '/templates/'
)

List of callables that know how to import templates from various
sources.
TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.Loader',
'django.template.loaders.app_directories.Loader',
'django.template.loaders.eggs.Loader',
)

Internationalization
https://docs.djangoproject.com/en/1.6/topics/i18n/

LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/1.6/howto/static-files/

STATIC_URL = '/static/'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

Now if we start our development server, our screen will look like the following
screenshot:

In our base.html file, we have written class="h1" instead
of <h1></h1>. This was knowingly done to check at runtime
whether the bootstrap files are being loaded, that is, with the
Header 1 properties.

As you may have noticed, we haven't passed any variables to the template, which
is what roughly differentiates static pages and dynamic pages. Let's get ahead and
do that too. All we need is some changes in the views.py and base.html files,
as follows:

• Changes in the views.py file:
from django.views.generic import View
from django.shortcuts import render
class Index(View):
def get(self, request):
params = {}
params["name"] = "Django"
return render(request, 'base.html', params)

• Changes in the base.html file
{% load staticfiles %}
<html>
<head>
<link href="{% static 'bootstrap/css/bootstrap.min.css' %}"

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[68]

rel="stylesheet" media="screen">
</head>

<body>
{% block content %}
<h1>Hello {{name}}!</h1>
{% endblock %}

<script src="{% static 'bootstrap/js/bootstrap.min.js' %}"></
script>
</body>
</html>

We can see how simple it is. All we did is just create a map (called dictionary in
Python) and assigned the name property to it as Django and added it in the render()
function as a new parameter. It gets rendered to the base of the HTML and is easily
called {{name}}. When it is rendered, it replaces itself with Django.

We will be committing all the changes we have made until now. Before we do that,
let's create a .gitignore file. What this does is, whatever content there is in this file
(or wildcard for the files that we have written inside the .gitignore file), it will
prevent all of them from committing and will send them to the repository server.

How does it help? It helps in many important use cases. Suppose we don't want to
put any local configuration files onto the production server. The .gitignore file can
be a savior in such situations, as also in a case when .py files generate their .pyc
files, which are compiled at runtime. We don't need those binary files on the server,
as they will be separately generated each time the code changes.

On the Linux command line, just type the $vim .gitignore command in the root
folder of the project directory and write *.pyc. Then, save and exit in the usual way.

Now, if we execute the $git status command, we will not see any file with the
.pyc extension, which means that Git has ignored tracking files that end with the
.pyc extension.

The result of the $git status command is as follows:

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working
directory)

modified: mytweets/settings.py
modified: mytweets/urls.py

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
static/
templates/
tweets/

This is quite clear, as it should be. We have previously committed the settings.py
and urls.py files, and now we've made some changes in them and the mentioned
untracked files are not even added to Git for tracking.

We can use the git add . command to add all the changes to the directory. However,
to avoid any unwanted files being pushed to Git tracking, it is recommended that
files be added one by one when we are in an advanced phase of development. For
the current situation, adding files all in one go is fine. To add the required file to our
project, use the following command:

$git add .

The output will be as follows:

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: .gitignore

modified: mytweets/settings.py

modified: mytweets/urls.py

new file: static/css/bootstrap-theme.css

new file: static/css/bootstrap-theme.css.map

new file: static/css/bootstrap-theme.min.css

new file: static/css/bootstrap.css

new file: static/css/bootstrap.css.map

new file: static/css/bootstrap.min.css

new file: static/fonts/glyphicons-halflings-regular.eot

new file: static/fonts/glyphicons-halflings-regular.svg

new file: static/fonts/glyphicons-halflings-regular.ttf

new file: static/fonts/glyphicons-halflings-regular.woff

new file: static/js/bootstrap.js

new file: static/js/bootstrap.min.js

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[70]

new file: templates/base.html

new file: tweets/__init__.py

new file: tweets/admin.py

new file: tweets/models.py

new file: tweets/tests.py

new file: tweets/views.py

Commit the changes with proper messages, such as "basic bootstrap template added":

$git commit -m "basic bootstap template added"

The output will be as follows:

[master 195230b] basic bootstap template added

21 files changed, 9062 insertions(+), 1 deletion(-)

create mode 100644 .gitignore

create mode 100644 static/css/bootstrap-theme.css

create mode 100644 static/css/bootstrap-theme.css.map

create mode 100644 static/css/bootstrap-theme.min.css

create mode 100644 static/css/bootstrap.css

create mode 100644 static/css/bootstrap.css.map

create mode 100644 static/css/bootstrap.min.css

create mode 100644 static/fonts/glyphicons-halflings-regular.eot

create mode 100644 static/fonts/glyphicons-halflings-regular.svg

create mode 100644 static/fonts/glyphicons-halflings-regular.ttf

create mode 100644 static/fonts/glyphicons-halflings-regular.woff

create mode 100644 static/js/bootstrap.js

create mode 100644 static/js/bootstrap.min.js

create mode 100644 templates/base.html

create mode 100644 tweets/__init__.py

create mode 100644 tweets/admin.py

create mode 100644 tweets/models.py

create mode 100644 tweets/tests.py

create mode 100644 tweets/views.py

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

Putting it all together – generating user
pages
So far, we have covered a lot of material, such as introduction to the concepts of
views and templates. In the final section, we will write another view and make use of
all the information that we have learned so far. This view will display a list of all the
tweets that belong to a certain user.

Familiarization with the Django models
Models are the standard Python classes with some added features. They are subclasses
of django.db.models.Model. In the background, an Object-Relational Mapper
(ORM) gets bound with these classes and their objects. This makes them communicate
with the underlying database. ORM is one of the important features of Django, without
which we will end up writing our own queries (SQL, if its MySQL) to access the
database content. Each attribute of a model is represented by a database field. Without
its fields, a model will be just like an empty container, with no meaning whatsoever.

The following are Django's model attributes explained with their intended
use. A complete list of fields can be found on the stranded documentation at
https://docs.djangoproject.com/en/dev/ref/models/fields/.

Following is a partial table of these types:

Field type Description
IntegerField An integer
TextField A large text field
DateTimeField A date-and-time field
EmailField An e-mail field with 75 characters maximum
URLField A URL field with 200 characters maximum
FileField A file-upload field

Each model field takes a set of field-specific arguments. For example, if we want
a field to be a CharField field, we must pass its max_length parameter as its
argument, which is mapped to the field size in varchar to the database.

The following are the arguments that can be applied to all the field types (they
are optional):

• null: By default, it is set to false. When set to true, the associated field is
allowed to have a value of null stored in the database.

www.it-ebooks.info

https://docs.djangoproject.com/en/dev/ref/models/fields/
http://www.it-ebooks.info/

Building an Application Like Twitter

[72]

• blank: By default, it is set to false. When set to true, the associated field is
allowed to have a value of blank stored in the database.

The difference between the null and blank parameters is
that the null parameter is mainly database-related, whereas
the blank parameter is used for validating the field. In
other words, if the attribute is set to false, the empty value
(blank) for the attribute will not get saved.

• choices: This can be a list or a tuple and must be iterable. If this is in the
form of a tuple, the first element is the value that will get stored to the
database and the second value is used for display in widget-like forms or
ModelChoiceField.
For example:
USER_ROLE = (
('U', 'USER'),
('S', 'STAFF'),
('A', 'ADMIN')
)
user_role = models.CharField(max_length=1,
choices=USER_ROLE)

• default: Values that are assigned to the attribute every time an object of the
class is instantiated.

• help_text: Help text displayed in the form of a widget.
• primary_key: If set to True, this field is made primary key for the model. If

there is no primary key in the model, Django will create an integer field and
mark that as the primary key.

Relationships in models
There are three major types of relationships: many-to-one, many-to-many, and
one-to-one.

Many-to-one relationships
In Django, the django.db.models.ForeignKey parameter is used to define a model
as a foreign key to another model's attribute, which results in a many-to-many
relationship.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

It is used as any other attribute of a model class, after including the class in which it
is present. For example, if students study in a particular school, the relationship is
that the school has many students but a student goes to only one school, making this
a many-to-one relationship. Let's take a look at the following code snippet:

from django.db import models
class School(models.Model):
...
ass
class Student(models.Model):
school = models.ForeignKey(School)
…

One-to-one relationships
One-to-one relationships are very similar to many-to-one relationships. The only
difference is that reverse mapping results in a single object in the case of one-to-one
as opposed to many-to-one relationships.

For example:

class EntryDetail(models.Model):
entry = models.OneToOneField(Entry)
details = models.TextField()

In the preceding example, the EntryDetail() class has an attribute called entry,
which is mapped one-to-one with the Entry model. This means that every Entry
object has been mapped to the EntryDetail model.

Many-to-many relationships
As the name itself suggests, model attributes with many-to-many relationships
provide access to both the models it's been pointed to (like backward one-to-many
relationships). Attribute naming is the only significant difference between the two
relationships.

This will be clearer if we go through the following example:

class Product(models.Model):
name = models.CharField(_(u"Name"), max_length=50)
class Category(models.Model):
name = models.CharField(_(u"Name"), max_length=50)
products = models.ManyToManyField("Product", blank=True,
null=True)

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[74]

With the idea of attribute and primary relationships, we can now straightaway create
our projects model, which we will soon be doing in the coming sections.

If we are going to design the model for an application, we should break up the
applications if it has too many models. If we have more than roughly 15 models in
our application, we should think about the ways in which to break our application
into smaller applications. This is because, with the existing 15-model application,
we are probably doing way too many things. This doesn't go with the Django
philosophy of an app should do one thing and do it right.

Models – designing an initial database
schema
Coming back to our project, we will need two models in the initial phase: the user
model and the tweet model. The user model will be used for storing the basic user
details of the users that have accounts in our project.

Then comes the tweet model, which will store data related to the tweet, such as the
tweet text, the user who has created that tweet, and other important details such as
the timestamps of the tweet posted, and so on.

To list the tweets of a user, it will be better if we create a separate user application
specific to all the users of our project. Our user models will be created by extending
Django's AbstractBaseUser user model class.

Changing the actual user class in your Django source
tree and/or copying and altering the auth module is
never recommended.

This will be the first application of using a framework for web development instead
of writing the whole authentication by ourselves, which is pretty common to all web
development scenarios. Django comes with predefined libraries so that we don't
have to reinvent the wheel. It comes with both authentication and authorization
together and is called the authentication system.

Django's user objects
An additional configurable user model is shipped with Django 1.5, which is the
easier method for storing user-specific data in the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

We will create a user application and then import the Django's default user model
into it:

$python manage.py startapp user_profile

We will extend the Django user model according to our need in the current project
by creating a custom User() class that inherits from the AbstractBaseUser class.
Therefore, our models.py file will look like this:

from django.db import models
from django.contrib.auth.models import AbstractBaseUser

class User(AbstractBaseUser):

Custom user class.

Now that we have created our custom user class for the project, we can add all the
basic attributes to this user class that we would like to be in the user model.

Now models.py looks like this:

from django.db import models
from django.contrib.auth.models import AbstractBaseUser

class User(AbstractBaseUser):

Custom user class.

username = models.CharField('username', max_length=10,
unique=True, db_index=True)
email = models.EmailField('email address', unique=True)
joined = models.DateTimeField(auto_now_add=True)
is_active = models.BooleanField(default=True)
is_admin = models.BooleanField(default=False)

In the preceding code snippet, the custom user model email field has a property
unique that is set to True. This means that a user can only register once with the
given e-mail address, the verification can be done on the registration page. You will
see a db_index option also in the username attribute with value True, which will
index the user table on the username attribute.

joined is the dateTimeField parameter populated automatically when a new user
profile is created; the is_active field is set to True by default when a new user
account is created, and the is_admin field is initialized to False at the same time.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[76]

One more field is needed to make this almost the same as the default Django user
model, which is the username field.

Add the USERNAME_FIELD field in the models.py file as follows:

USERNAME_FIELD = 'username'
def __unicode__(self):
return self.username

USERNAME_FIELD also works as the unique identifier for a user model in Django. We
have mapped our username parameter with Django's username field. This field must
be unique (unique=True) in its definition, which our username field already is.

The __unicode__() method is also added as the definition that displays a
human-readable representation of our user model object.

Thus, the final models.py file will look like this:

from django.db import models
from django.contrib.auth.models import AbstractBaseUser

class User(AbstractBaseUser):
"""
Custom user class.
"""
username = models.CharField('username', max_length=10,
unique=True, db_index=True)
email = models.EmailField('email address', unique=True)
joined = models.DateTimeField(auto_now_add=True)
is_active = models.BooleanField(default=True)
is_admin = models.BooleanField(default=False)

USERNAME_FIELD = 'username'
def __unicode__(self):
return self.username

Now, after defining our user model, we can move ahead to design the tweet model.
This is the same application that we created to check out the basic class-based view.
We will add content to its models.py file, as follows:

from django.db import models
from user_profile import User
class Tweet(models.Model):
"""
Tweet model
"""

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

user = models.ForeignKey(User)
text = models.CharField(max_length=160)
created_date = models.DateTimeField(auto_now_add=True)
country = models.CharField(max_length=30)
is_active = models.BooleanField(default=True)

The tweet model is designed as to be as simplistic as possible for the user. The
attribute parameter is a foreign key to the User object we have already created.
The text attribute is the tweet content and it will mostly consist of plain text. The
created_Date attribute, which is automatically added to the database when the
tweet object is uninitialized, stores the name of the country from where the tweet
has actually been posted. In most cases, it will be the same as the user's country. The
is_active flag is used to represent the tweet's current status, whether it's active and
can be displayed or has been deleted by the user.

We need to create the tables in the database for both the models we just created,
user_profile and tweet. We will have to update the INSTALLED_APPS variable of
your project's settings.py file to tell Django to include these two applications in the
Django project.

Our updated INSTALLED_APPS variable will be as follows:

INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'user_profile',
'tweet'
)

You can see the last two entries we made to add our models.

Now to create the database table for our project, we will run the command from our
root project folder in the terminal:

$python manage.py syncdb

The output will be as follows:

Creating tables ...
Creating table django_admin_log
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[78]

Creating table auth_user_groups
Creating table auth_user_user_permissions
Creating table auth_user
Creating table django_content_type
Creating table django_session
Creating table user_profile_user
Creating table tweet_tweet

You just installed Django's auth system, which means you don't have any superusers
defined. You can see the following on the terminal:

Would you like to create one now? (yes/no): yes
Username (leave blank to use 'ratan'):
Email address: mail@ratankumar.org
Password: XXXX
Password (again): XXXX
Superuser created successfully.
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

As a result, our database has been populated with a table. There will appear
a database file for our project called db.sqlite3.

As with Django 1.6, the administrator panel comes by default. All we need for our
models to be available in Django's admin panel is to add the admin.site.register
parameter with the model name as argument for both the applications.

Thus, after addition of admin.site.register(parameter) to both the admin.py,
that is, under mytweets and user_profile files will look as the following:

• The admin.py file of the tweet application would look as follows:
from django.contrib import admin
from models import Tweet

admin.site.register(Tweet)

• The admin.py file of the user_profile application would look as follows:
from django.contrib import admin
from models import User
admin.site.register(User)

Start the server using the following command:

$python manage.py runserver

Then visit the URL http://127.0.0.1:8000/admin; it will ask for login information.
As you may remember, we have created the default user at the time of running the
$python manage.py syncdb command; use the same username and password.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

After successful login, the admin dashboard looks like the following screenshot:

Let's play with the admin dashboard and create a user and a tweet object that we
will be using next for home page views. To add a new user to the project just click on
the Add button in front of the user model box as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[80]

Then fill up the details and save it. You will see a "user successfully created"
message as shown in the following screenshot:

We will follow a similar process for creating a tweet. First go back to
http://127.0.0.1:8000/admin/. Then, click on the Add button in front
of the tweet box.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

Compose a new tweet by filling out the boxes and selecting the user from the
dropdown. This user list is already populated as we have mapped the user to the
user object. As we keep on adding users, the dropdown will get populated with all
the user objects.

Finally, after composing the tweet, click on the Save button. You will see the same
screen shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[82]

If you look closely, the administrator listing page says every tweet is a tweet object,
which is not very human-friendly. It can easily be customized for this case. In fact,
the same rule is applicable for all the model base representations in the Django
admin view or wherever they are displayed.

Add the following code snippet in the admin.py file of our project:

def __unicode__(self):
return self.text

Our admin view will now show the exact text instead of writing tweet object.

Creating a URL
Every user in our project will have a profile with a unique URL in the following
format: http://127.0.0.1:8000/user/<username>. Here, the username variable is
the owner of the tweets that we want to see. This URL is different from the first URL
we added earlier because this contains a dynamic portion, so we will have to employ
the power of regular expressions in order to express this URL. Open the urls.py file
and edit it so that the URL table looks like this:

url(r'^user/(\w+)/$', Profile.as_view()), urls.py
from django.conf.urls import patterns, include, url
from django.contrib import admin
from tweet.views import Index,Profile
admin.autodiscover()

urlpatterns = patterns('',
url(r'^$', Index.as_view()),
url(r'^user/(\w+)/$', Profile.as_view()),
url(r'^admin/', include(admin.site.urls)),
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

The pattern here looks more complicated than the first one. The annotation \w
means an alphanumeric character or the underscore. The + sign after it causes the
regular expression to match one or more repetitions of what precedes the sign. So,
in effect,\w+ means any string that consists of alphanumeric characters and possibly
the underscore. We have surrounded this portion of the regular expression with
parentheses. This will cause Django to capture the string that matches this portion
and pass it to the view.

One last thing needs explaining before we see the view in action. The regular
expression that we used will look a bit strange if you haven't used regular
expressions before. It is a raw string that contains two characters, ^ and $. The
annotation r'' is the Python syntax for defining raw strings. If Python encounters
such a raw string, backslashes and other escape sequences are retained in the string,
rather than being interpreted in any way. In this syntax, backslashes are left in the
string without change and escape sequences are not interpreted. This is useful while
working with regular expressions because they often contain backslashes.

In regular expressions, ^ means the beginning of the string and $ means the end of
the string. So ^$ basically means a string that doesn't contain anything, that is, an
empty string. Given that we are writing the view of the main page, the URL of the
page is the root URL and it should indeed be empty.

Python documentation of the re module covers regular expressions in detail. I
recommend reading it if you want a thorough treatment of regular expressions. You
can find the documentation online at http://docs.python.org/lib/module-re.
html. Here is a table that summarizes regular expression syntax for those who want
a quick refresher:

Symbol /expression Matched string
. (Dot) Any character
^ (Caret) Start of string
$ End of string
* 0 or more repetitions
+ 1 or more repetitions
? 0 or 1 repetitions
| A | B means A or B
[a-z] Any lowercase character
\w Any alphanumeric character or _
\d Any digit

www.it-ebooks.info

http://docs.python.org/lib/module-re.html
http://docs.python.org/lib/module-re.html
http://www.it-ebooks.info/

Building an Application Like Twitter

[84]

We will now be creating a Profile() class with GET functions in the view.py file of our
tweet application. The important thing to learn here is how the get() function handles
the dynamic parameter passed through the URL, which is the username variable.

The view.py of our tweet application would look as follows:

class Profile(View):
"""User Profile page reachable from /user/<username> URL"""
def get(self, request, username):
params = dict()()()
user = User.objects.get(username=username)
tweets = Tweet.objects.filter(user=user)
params["tweets"] = tweets
params["user"] = user
return render(request, 'profile.html', params)

Templates – creating a template for the
Main Page
We are almost done with the model creation for our project. We will now move
ahead and create the view page.

The first page we are going to create is the basic page which will list out all the
tweets posted by a user. This can be a so-called public profile page that can be
accessed without any authentication.

As you might have noticed, we have used a profile.html file in the Profile class
of the views.py file, which belongs to our tweet application.

The views.py file of our project will look as follows:

class Profile(View):
"""User Profile page reachable from /user/<username> URL"""
def get(self, request, username):
params = dict()
user = User.objects.get(username=username)
tweets = Tweet.objects.filter(user=user)
params["tweets"] = tweets
params["user"] = user
return render(request, 'profile.html', params)

We will use the Bootstrap framework, which we have already imported in our base.
html file, to design the Profile.html file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

We will first restructure the base.html file which we created for our application. Now
this base.html file will be used as a template or theme of our project. We will import
this file across the project, which results in constant user interface across the project.

We will just remove the div tag we placed inside the block content from our
base.html file.

We also need jQuery, which is a JavaScript library for complete functioning of
bootstrap. It can be downloaded from http://jquery.com/download/. For our
current project, we will download the latest version of jQuery in production-ready
phase. We will be adding it before bootstrap's JavaScript import.

The base.html file should look like this now:

{% load staticfiles %}
<html>
<head>
<link href="{% static 'bootstrap/css/bootstrap.min.css' %}"
rel="stylesheet" media="screen">
</head>

<body>
{% block content %}
{% endblock %}

<script src="{% static 'js/jquery-2.1.1.min.js' %}"></script>
<script src="{% static 'bootstrap/js/bootstrap.min.js'
%}"></script>
</body>
</html>

In this case the block is as follows:

{% block content %}
{% endblock %}

This means that, whichever template we are going to extend the base.html file,
currently in the profile.html file, the content of the profile.html file will be
rendered between these block quotes. To understand this better, consider this: you
have a header (in some cases, navigation bar) and footer on every page and the
page content changes depending upon the view. With the preceding template, we
generally need to place the header code before the block content and footer content
below the block content.

www.it-ebooks.info

http://jquery.com/download/
http://www.it-ebooks.info/

Building an Application Like Twitter

[86]

Using a header is much easier now as we have the advantage of frontend framework.
We will first choose the layout of our project. For simplicity, we will divide the
whole page into three sections. The first will be the header, which will be constant as
we navigate throughout the project. The same will apply to the bottom of the page,
which is our footer.

To achieve the preceding layout, our bootstrap code will be built in this way: we will
use bootstrap's navbar for our header section as well as for the footer section. Then
we will place the container div tag. Our updated code for the base.html file will be
changed to the following:

{% load staticfiles %}
<html>
<head>
<link href="{% static 'css/bootstrap.min.css' %}"
rel="stylesheet" media="screen">
</head>
<body>
<nav class="navbar navbar-default navbar-fixed-top"
role="navigation">
MyTweets
<p class="navbar-text navbar-right">User Profile Page</p>
</nav>
<div class="container">
{% block content %}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

{% endblock %}
</div>
<nav class="navbar navbar-default navbar-fixed-bottom"
role="navigation">
<p class="navbar-text navbar-right">Footer </p>

</nav>
<script src="{% static 'js/bootstrap.min.js' %}"></script>
</body>
</html>

The navbar parameter will start in the body, but before the container, so that it can
wrap the whole container. We use Django block content to render the rows which we
will define in the extended templates, in this case, the profile.html file. The footer
section comes in last, which is after the endblock statement.

This will render the following page:

Note that if you do not get the static file included, replace
the STATICFILES_DIRS variable with the following in
your settings.py file:

STATICFILES_DIRS = (
BASE_DIR + '/static/',
)

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Application Like Twitter

[88]

The design for the profile page is as follows:

This can easily be designed again with the help of a bootstrap component called
well. The well or wellbox components are used with an element to give it an inset
effect. The profile.html file will just extend the base.html file and only contain
rows and further elements.

The profile.html file of our project would look as follows:

{% extends "base.html" %}
{% block content %}
<div class="row clearfix">
<div class="col-md-12 column">
{% for tweet in tweets %}
<div class="well">
{{ tweet.text }}
</div>
{% endfor %}
</div>
</div>
{% endblock %}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

This will show the tweets of a user we pass via a parameter in the URL. The example
we have taken is the user ratancs, who we created during the initial setup. You can
see their tweets in the following screenshot:

Summary
We learned the basic terminology related to our Django project, what we need to set
up the basic template structure of our project, and how to set up the bootstrap for
our tweet-like application. We also saw how MVC works here and the role of URL
and views while creating the main page.

Then, we introduced class-based views to generate user pages. We saw how models
work in Django and how to design the database schema for the project. We also
learned to build a user registration page, an account management page, and a
template for the main page.

We will learn to design the algorithm for building a hashtag model and the
mechanism to use hashtags in your post in the following chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[91]

Introducing Hashtags
Tags are one of the most prominent features in Web 2.0 applications. A tag is a
keyword associated with a piece of information, such as an article, image, or link.
Tagging is the process of assigning tags to content. It is usually done by the author
or users and allows for user-defined categorization of content.

We will also be using tags in our project, and we will be calling it hashtags. Tags
have become very popular in web applications because they enable users to
classify, view, and share content easily. If you are not familiar with tags, you can
see examples by visiting social sites such as Twitter, Facebook, or Google Plus,
where tags are pinned to each status or conversation to help us find trending topics.
Since we are going to build a micro blogging site, tags will help us to categorize the
conversations between users.

To introduce tags into our system, we need a mechanism that enables users to submit
tweets to the database along with hashtags. Later, we will also need a method for
browsing tweets classified under a certain tag.

In this chapter, you will learn about the following:

• Designing a hashtag data model
• Building an algorithm that separates hashtags from a tweet form
• Creating pages for listing tweets under a certain hashtag
• Building a tag cloud

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Hashtags

[92]

The hashtag data model
Hashtags need to be stored in the database and associated with tweets. So, the first
step to introducing tags into our project is to create a data model for hashtags. A
hashtag object will only hold one piece of data, a string that represents the hashtag. In
addition, we need to maintain the list of hashtags associated with a particular tweet.

You may recall from Chapter 4, Building an Application Like Twitter, that we used foreign
keys to associate tweets with users, and we called this a one-to-many relationship.
However, the relationship between hashtags and tweets is not one-to-many, because
one hashtag can be associated with many tweets, and one tweet can also have many
hashtags associated with it. This is called a many-to-many relationship, and it is
represented in Django models using the models.ManyToManyField parameter.

You should be well aware by now that data models go into the mytweet | models.
py file. So, open the file and add the following HashTag class to it:

class HashTag(models.Model):
 """
 HashTag model
 """
 name = models.CharField(max_length=64, unique=True)
 tweet = models.ManyToManyField(Tweet)
 def __unicode__(self):
 return self.name

Pretty straightforward, isn't it? We simply defined a data model for hashtags. This
model holds the tag name and its tweet in its ManyToManyField parameter. When
you have finished entering the code, don't forget to run the following command in
order to create a table for the model in the database:

$ python manage.py syncdb

output:

 Creating tables ...

 Creating table tweet_hashtag_tweet

 Creating table tweet_hashtag

 Installing custom SQL ...

 Installing indexes ...

 Installed 0 object(s) from 0 fixture(s)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[93]

Now, to see the detailed SQL query of how Django creates and implements all
the relationships, and also how it creates the table for them, we can just issue the
command sql with the model name to manage.py. It will show the SQL queries
it will run to create the instance of the object. Those who are already familiar with
SQL know that many-to-many relationships are usually implemented in SQL by
creating a third table that connects the two related tables. Now, let's see how Django
implements this type of relationship. In the terminal, issue the following command:

$ python manage.py sql tweet

output:

 BEGIN;

 CREATE TABLE "tweet_tweet" (

 "id" integer NOT NULL PRIMARY KEY,

 "user_id" integer NOT NULL REFERENCES "user_profile_user" ("id"),

 "text" varchar(160) NOT NULL,

 "created_date" datetime NOT NULL,

 "country" varchar(30) NOT NULL,

 "is_active" bool NOT NULL

)

 ;

 CREATE TABLE "tweet_hashtag_tweet" (

 "id" integer NOT NULL PRIMARY KEY,

 "hashtag_id" integer NOT NULL,

 "tweet_id" integer NOT NULL REFERENCES "tweet_tweet" ("id"),

 UNIQUE ("hashtag_id", "tweet_id")

)

 ;

 CREATE TABLE "tweet_hashtag" (

 "id" integer NOT NULL PRIMARY KEY,

 "name" varchar(64) NOT NULL UNIQUE

)

 ;

 COMMIT;

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Hashtags

[94]

The output may slightly differ depending on your database engine. Indeed, Django
automatically creates an extra table called tweet_hashtag_tweet to maintain the
many-to-many relationship.

It is worth noting that when we define a many-to-many relationship in Django's
model API, the models.ManyToMany field can be placed in either of the two related
models. We could have put this field in the tweet model instead of hashtag; since we
created the hashtag model later, we put the models.ManyToMany field in it.

For testing purposes, we will move to the admin panel and create a tweet with
hashtags, as we did for both user and tweet creation. But, first, we will have to
register the hashtags for the administration panel in the admin.py file.

The modified admin.py file will look like this:

 from django.contrib import admin
 from models import Tweet,Hashtag
 # Register your models here.
 admin.site.register(Tweet)
 admin.site.register(HashTag)

Now we can move to the administration panel with /administration URL.

Before we create a hashtag for a tweet, we need to create a tweet with a hashtag.
Later, we will write a program that will parse the tweet and automatically create the
hashtag instance associated with it.

Refer to the demo diagram for creating the tweet that we have shown in Chapter 4,
Building an Application Like Twitter, and create a tweet with the following text:

Hello, #Django! you are awesome.

With the same user we used, ratancs, then move on to the hashtag model and create
the hashtag #Django and associate it with the tweet we created. This will give you an
idea of how we assign a hashtag to the tweet.

Let us create a proper tweet submission form, which will ask users to write the
tweet as input. It will create all the hashtags associated with the tweet and will
save the tweet.

Have a look at the user profile page we have created. At the top center of the page,
there will be an input box already associated with the user; thus, when he writes a
tweet and hits the button to submit, the tweet will be saved with his ID.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[95]

Now, visit this URL: http://localhost:8000/user/ratancs/. You will see both
the tweets we created earlier.

We will go back to the profile.html code and append a text area with a submit
button to post a tweet for the user. The design will be the same as we chose to
display the tweet–that is, we will be using the same well box of Twitter bootstrap.

Our profile.html file template is as follows:

 {% extends "base.html" %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-12 column">
 {% for tweet in tweets %}
 <div class="well">
 {{ tweet.text }}
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

This {%for ...} block is used to represent multiple tweets, one below each other, as
they have the div tag.

Now we will create a div tag just above the {% for ...} block, and will add our
tweet submission form.

Before we write out the form, let us understand about Django forms and how they
can be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Hashtags

[96]

Django forms
Creating, validating and processing forms is an all-too-common task. Web
applications receive input and collect data from users by means of web forms.
So, naturally, Django comes with its own library to handle these tasks. All you
have to do is to import the library and start writing your forms:

from django import forms

The Django forms library handles three common tasks:

• HTML form generation
• Server-side validation of user input
• HTML form redisplay in case of input errors

The way in which this library works is similar to the way in which Django's data
models work. You start by defining a class that represents your form. This class must
be derived from the forms.Form base class. Attributes in this class represent form
fields. The forms package provides many field types.

When you create an object from a class that is derived from the forms.Form base class,
you can interact with it using a variety of methods. There are methods for HTML code
generation, methods to access the input data, and methods to validate the form.

We will learn about the forms library by creating a tweet post form in the next section.

Designing the tweet post form
Let's start by creating our first Django form. Create a new file in the tweets
application folder and call it forms.py. Then, open the file in your code editor and
enter the following code:

 from django import forms
 class TweetForm(forms.Form):
 text = forms.CharField(widget=forms.Textarea(attrs={'rows': 1,
 'cols': 85}), max_length=160)
 country = forms.CharField(widget=forms.HiddenInput())

After examining the code, you will notice that the way in which we defined this
class is similar to the way in which we defined the model classes. We derived the
TweetForm class from forms.Form. All form classes need to inherit from this class.
Next, we define the fields that this form contains:

 text = forms.CharField(widget=forms.Textarea(attrs={'rows': 1,
 'cols': 85}), max_length=160)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

The form contains a text field which will have an HTML tag for text area, an
additional attribute for rows and column, and a maximum size limit for input,
which is same as the maximum length of the tweet.

 country = forms.CharField(widget=forms.HiddenInput())

Please note that the form also contains a hidden field called country, which will be a
char field.

There are many field types in the forms package. There are several parameters, listed
as follows, which can be passed to the constructor of any field type. Some specialized
field types can take other parameters in addition to these ones.

• label: The label of the field when HTML code is generated.
• required: Whether the user must enter a value or not. It is set to True by

default. To change it, pass required=False to the constructor.
• widget: This parameter lets you control how the field is rendered in HTML.

We used it just now to make the CharField parameter of the password
become a password input field.

• help_text: A description of the field will be displayed when the form is
rendered.

The following is a table of commonly used field types:

Field type Description
CharField Returns a string.
IntegerField Returns an integer.
DateField Returns a Python datetime.date object.
DateTimeField Returns a Python datetime.datetime object.
EmailField Returns a valid e-mail address as a string.
URLField Returns a valid URL as a string.

Here is a partial list of available form widgets:

Widget type Description
PasswordInput A password text field.
HiddenInput A hidden input field.
Textarea A text area that enables text entry on multiple lines.
FileInput A file upload field.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Hashtags

[98]

Now, we need to modify the profile.html file as per the form.py file. Update the
profile.html file as follows:

 {% extends "base.html" %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-12 column">
 <form method="post" action="post/">{% csrf_token %}
 <div class="col-md-8 col-md-offset-2 fieldWrapper">
 {{ form.text.errors }}
 {{ form.text }}
 </div>
 {{ form.country.as_hidden }}
 <div>
 <input type="submit" value="post">
 </div>
 </form>
 </div>
 <h3> </h3>
 <div class="col-md-12 column">
 {% for tweet in tweets %}
 <div class="well">
 {{ tweet.text }}
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

Posting the tweet is achieved by a simple form, which is <form method="post"
action="post/">{% csrf_token %}. The method with which the form will be
posted is "post" and the relative URL to post a tweet form will be post/,

 {% csrf_token %}

This code generated the CSRF token, which actually addresses a security issue; it
protects this post URL from attacks from another server; details on this will be
explained in a later section in this chapter.

We have added a div tag just before the tweet <div>, and this div tag contains a
form that will save the tweets when the post button is clicked on.

<div class="col-md-8 col-md-offset-2 fieldWrapper">
 {{ form.text.errors }}
 {{ form.text }}
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

This fieldWrapper class in the div tag is used by Django's form library to render
the HTML tag that we have mentioned for text in form class (which is Text area),
followed by the cases of form renders for any error.

This will render the form as shown in the following screenshot:

Now, we need to do two things to make this form work:

1. We have to define a method in a controller that is going to take this form
submission request and save the tweet data to our tweet model class object.

2. We have to define a URL pattern to which this form will be submitted with
the tweet as content.

To handle the request, we will add a new class which will accept the tweet from the
form. We will name this class PostTweet. This class is added in tweet/view.py with
an import dependency from tweet.forms import TweetForm.

 class PostTweet(View):
 """Tweet Post form available on page /user/<username> URL"""
 def post(self, request, username):
 form = TweetForm(self.request.POST)
 if form.is_valid():
 user = User.objects.get(username=username)
 tweet = Tweet(text=form.cleaned_data['text'],
 user=user,
 country=form.cleaned_data['country'])
 tweet.save()
 words = form.cleaned_data['text'].split(" ")
 for word in words:
 if word[0] == "#":
 hashtag, created =
 HashTag.objects.get_or_create(name=word[1:])
 hashtag.tweet.add(tweet)
 return HttpResponseRedirect('/user/'+username)

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Hashtags

[100]

We only need to define the post method as we only need this class to accept the data.
This logic is pretty clear here; if the form is valid, only then will the data be persisted.
Redirection always happens. The code also does one more special task; that is, the
separation of all the hashtags from a tweet. This is done in a similar way to splitting
all the words in a tweet, and if the word starts with # (hash), it will create a hashtag
of that word (think of a regular expression here). For the second part, we are going to
add an entry in our urls.py file, as follows:

from django.conf.urls import patterns, include, url
from django.contrib import admin
from tweet.views import Index, Profile, PostTweet

admin.autodiscover()

urlpatterns = patterns('',
 url(r'^$', Index.as_view()),
 url(r'^user/(\w+)/$', Profile.as_view()),
 url(r'^admin/', include(admin.site.urls)),
 url(r'^user/(\w+)/post/$', PostTweet.as_view())
)

If you look carefully at the last line, we have:

 url(r'^user/(\w+)/post/$', PostTweet.as_view())

This means that all the requests of the form /user/<username>/post will be
rendered by PostTweet.

With this, we have made a simple Django form that can make the user post the tweet
from his Twitter page, as shown in the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

Once the tweet is posted, the page will show all tweets, as shown in the
following image:

Creating a tag page
Next, we will create a page that is similar to the Twitter listing for hashtags. For
this task, we will almost follow the same architecture that we followed for the user
profile. Let's start by adding a URL entry for the hashtag page. Open the urls.py file
and insert the following entry (preferably below the user page entry so as to keep the
table organized):

 url(r'^hashTag/(\w+)/$', HashTagCloud.as_view()),

The captured part of this regular expression is the same as that of the user page.
We will only allow alphanumeric characters in a hashtag.

We will define the hashtag class in the controller as follows:

 class HashTagCloud(View):
 """Hash Tag page reachable from /hastag/<hashtag> URL"""
 def get(self, request, hashtag):
 params = dict()
 hashtag = HashTag.objects.get(name=hashtag)
 params["tweets"] = hashtag.tweet
 return render(request, 'hashtag.html', params)

The HTML template page we will use will be almost the same as that of the profile,
except for the form part that we used for posting the tweet.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Hashtags

[102]

We need to create the hashtag.html file with the following code:

 {% extends "base.html" %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-12 column">
 {% for tweet in tweets.all %}
 <div class="well">
 {{ tweet.text }}
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

This will list all the tweets with the hashtag passed from the URL.

Summary
We have learned how to design a hashtag data model and an algorithm required to
separate hashtags from a tweet form. Then, we created pages for listing tweets under
a certain hashtag. We saw a code snippet for how to build a tweet with hashtag like a
tag cloud seen in many blogging sites.

In the next chapter, we will see how to enhance the UI experience using AJAX
with Django.

www.it-ebooks.info

http://www.it-ebooks.info/

[103]

Enhancing the User
Interface with AJAX

The coming of AJAX was an important landmark in the history of Web 2.0. AJAX
is a group of technologies that enables developers to build interactive, feature-rich
Web applications. Most of these technologies were available many years before
AJAX itself. However, the advent of AJAX represents the transition of the Web from
static pages that needed to be refreshed whenever data was exchanged to dynamic,
responsive, and interactive user interfaces.

Since our project is a Web 2.0 application, it should be heavily focused on user
experience. The success of our application depends on getting users to post and share
content on it. Therefore, the user interface of our application is one of our major
concerns. This chapter will improve the interface of our application by introducing
AJAX features, making it more user-friendly and interactive.

In this chapter, you will learn about the following topics:

• AJAX and its advantages
• Using AJAX in Django
• How to use the open source jQuery framework
• Implementing the searching of tweets
• Editing a tweet in place without loading a separate page
• Auto completion of hashtags while submitting a tweet

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[104]

AJAX and its advantages
AJAX, which stands for Asynchronous JavaScript and XML, consists of the
following technologies:

• HTML and CSS to structure and style information
• JavaScript to access and manipulate information dynamically
• An XMLHttpRequest object, which is an object provided by modern browsers

to exchange data with the server without reloading the current web page
• A format to transfer data between the client and server

XML is used sometimes, but it could be in the HTML, plain text, or JavaScript-based
format called JSON.

AJAX technologies let you code the client-side exchange data with the server behind
the scenes, without reloading the entire page each time the user makes a request. By
using AJAX, Web developers are able to increase the interactivity and usability of
Web pages.

AJAX offers the following advantages when implemented in the right places:

• Better user experience: With AJAX, the user can do a lot without
refreshing the page, which brings Web applications closer to the
regular desktop applications

• Better performance: By exchanging only the required data with the server,
AJAX saves the bandwidth and increases the application's speed

There are numerous examples of Web applications that use AJAX. Google Maps and
Gmail are perhaps two of the most prominent examples. In fact, these two applications
played an important role in spreading the use of AJAX because of the success that they
enjoyed. What sets Gmail apart from other webmail services is its user interface, which
enables users to manage their e-mails interactively without waiting for a page to reload
after every action. This creates a better user experience and makes Gmail feel like a
responsive and feature-rich application rather than a simple website.

This chapter explains how to use AJAX with Django, so as to make our application
more responsive and user-friendly. We are going to implement three of the most
common AJAX features found in web applications today. However, before that, we
will learn about the benefits of using an AJAX framework, as opposed to working
with raw JavaScript functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

Using an AJAX framework in Django
As we have already used Bootstrap in our project, we need not configure it
separately for AJAX and jQuery.

There are many advantages of using an AJAX framework:

• JavaScript implementations vary from browser to browser. Some browsers
provide more complete and feature-rich implementations, whereas others
contain implementations that are incomplete or don't adhere to standards.
Without an AJAX framework, developers must keep track of browser
support for the JavaScript features that they are using and must work
around the limitations that are present in some browsers for the
implementation of JavaScript.
On the other hand, when using an AJAX framework, the framework takes
care of this for us; it abstracts access to the JavaScript implementation and
deals with the differences and quirks of JavaScript across browsers. This
way, we can concentrate on developing features instead of worrying about
browser differences and limitations.

• The standard set of JavaScript functions and classes is a bit lacking for full-
fledged web application development. Various common tasks require many
lines of code even though they could be wrapped in simple functions.
Therefore, even if you decide not to use an AJAX framework, you will find
yourself writing a library of functions that encapsulates JavaScript facilities
and makes them more usable. However, why reinvent the wheel when there
are many excellent open source libraries already available?

AJAX frameworks available in the market today range from comprehensive
solutions that provide server-side and client-side components to light-weight client-
side libraries that simplify working with JavaScript. Given that we are already using
Django on the server side, we only want a client-side framework. In addition to
this, the framework should be easy to integrate with Django without requiring any
additional dependencies. Finally, it is preferable to pick a light and fast framework.
There are many excellent frameworks that fulfill our requirements, such as
Prototype, the Yahoo! UI Library, and jQuery.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[106]

However, for our application, I'm going to pick jQuery because it's the lightest of
the three. It also enjoys a very active development community and a wide range of
plugins. If you already have experience with another framework, you can continue
using it during this chapter. It is true that you will have to adapt the JavaScript code
in this chapter to your framework, but Django code on the server side will remain
the same no matter which framework you choose.

You need to import Bootstrap and jQuery as well. Thus, no
specific installation or import is needed to use the AJAX
feature in our Django project.

Using the open source jQuery framework
Before we start implementing AJAX enhancements in our project, let's go through a
quick introduction to the jQuery framework.

The jQuery JavaScript framework
jQuery is a library of JavaScript functions that facilitates interaction with HTML
documents and manipulates them. The library is designed to reduce the time and
effort spent on writing code and achieving cross-browser compatibility, while at the
same time it takes full advantage of what JavaScript offers to build interactive and
responsive web applications.

The general workflow of using jQuery consists of the following two steps:

1. Selecting an HTML element or a group of elements to work on.
2. Applying a jQuery method to the selected group.

Element selectors
jQuery provides a simple approach to select elements: it works by passing a CSS
selector string to a function called $(). Here are some examples that illustrate the
usage of this function:

• If you want to select all anchor (<a>) elements on a page, you can use the
$("a") function call

• If you want to select anchor elements that have the .title CSS class, use
$("a.title")

• To select an element whose ID is #nav, you can use $("#nav")
• To select all the list item () elements inside #nav, use $("#nav li")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[107]

The $() function constructs and returns a jQuery object. After that, you can call
methods on this object to interact with the selected HTML elements.

jQuery methods
jQuery offers a variety of methods to manipulate HTML documents. You can hide or
show elements, attach event handlers to events, modify CSS properties, manipulate
the page structure, and, most importantly, perform AJAX requests.

To debug, we are choosing the Chrome browser as the browser of our choice.
Chrome is one of the most advanced JavaScript debugger in the form of its Chrome
developer's tools. To launch it, press Ctrl+Shift+J on the keyboard.

To experiment with the methods outlined in this section, launch the development
server and navigate to the user profile page (http://127.0.0.1:8000/user/ratan/).
Open the Chrome developer tool (by pressing Ctrl+Shift+J on your keyboard) console
by pressing F12, and try selecting the elements and manipulating them.

Hiding and showing elements
Let's start with something simple. To hide an element on the page, call the hide()
method on it. To show it again, call the show() method. For example, try this on the
navigation menu called navbar in Bootstrap of your application:

>>> $(".navbar").hide()

>>> $(".navbar").show()

You can also animate the element while hiding and showing it. Try the fadeOut(),
fadeIn(), slideUp(), or slideDown() methods to see two of these animated effects.

Of course, these methods (like all other jQuery methods) also work if you select
more than one element at once. For example, if you open a user profile and enter
the following method call into the Chrome developers tools console, all of the tweets
will disappear:

>>> $('.well').slideUp()

Accessing CSS properties and HTML attributes
Next, we will learn how to change the CSS properties of elements. jQuery offers a
method called css() to perform CSS operations. If you call this method with a CSS
property name passed as a string, it returns the value of this property:

>>> $(".navbar").css("display")

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[108]

The result of this is as follows:

block

If you pass a second argument to this method, it sets the specified CSS property of
the selected element to the additional argument:

>>> $(".navbar").css("font-size", "0.8em")

The result of this is as follows:

<div id="nav" style="font-size: 0.8em;">

In fact, you can manipulate any HTML attribute and not just CSS properties. To
do so, use the attr() method, which works in a similar way as the css() method.
Calling it with an attribute name returns the attribute value, whereas calling it with
an attribute name or value pair sets the attribute to the passed value:

>>> $("input").attr("size", "48")

This results in the following:

<input type="hidden" name="csrfmiddlewaretoken" value="xxx" size="48">

<input id="id_country" name="country" type="hidden" value="Global"
size="48">

<input type="submit" value="post" size="48">

This will change the size of all the input elements on the page at once to 48.

In addition to this, there are shortcut methods to get and set commonly used
attributes, such as val(), which returns the value of an input field when called
without arguments and sets this value to an argument if you pass one. There is also
the html() method that controls the HTML code inside an element.

Finally, there are two methods that can be used to attach or detach a CSS class to an
element: they are the addClass() and removeClass() methods. A third method is
provided to toggle a CSS class and it is called as the toggleClass() method. All of
these class methods take the name of the class to be changed as a parameter.

Manipulating HTML documents
Now that you are comfortable with manipulating HTML elements, let's see how to add
new elements or remove the existing elements. To insert HTML code before an element,
use the before() method, and to insert code after an element, use the after() method.
Note how jQuery methods are well named and very easy to remember!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

Let's test these methods by inserting parentheses around tag lists on the user page.

Open your user page and enter the following in the Chrome developer tools console:

>>> $(".well span").before("(")

>>> $(".well span").after(")")

You can pass any string you want to, the before() or after() methods. The string
may contain plain text, one HTML element, or more. These methods offer a very
flexible way to dynamically add HTML elements to an HTML document.

If you want to remove an element, use the remove() method. For example:

$("#navbar").remove()

Not only does this method hide the element, it also removes it completely from
the document tree. If you try to select the element again after using the remove()
method, you will get an empty set:

>>> $("#nav")

The result of this is as follows:

[]

Of course, this only removes the elements from the current instance of the page. If
you reload the page, the elements will appear again.

Traversing the document tree
Although CSS selectors offer a very powerful way to select elements, there are times
when you want to traverse the document tree starting from a particular element.

For this, jQuery provides several methods. The parent() method returns the
parent of the currently selected element. The children() method returns all the
immediate children of the selected element. Finally, the find() method returns all the
descendants of the currently selected element. All of these methods take an optional
CSS selector string to limit the result to elements that match the selector. For example,
$(".column").find("span") returns all the descendants of a class column.

If you want to access an individual element of a group, use the get() method, which
takes the index of the element as a parameter. The $("span").get(0) method, for
example, returns the first element out of the selected group.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[110]

Handling events
Next we will learn about event handlers. An event handler is a JavaScript function
that is invoked when a particular event happens, for example, when a button is
clicked or a form is submitted. jQuery provides a large set of methods to attach
handlers to events; events of particular interest in our application are mouse clicks
and form submissions. To handle the event of clicking on an element, we select this
element and call the click() method on it. This method takes an event handler
function as a parameter. Let's try this in our Chrome developer console.

Open the user profile page of the application and insert a button after the tweet:

>>> $(".well span").after("<button id=\"test-button\">Click me!</
button>")

Note that we had to escape the quotations in the strings
passed to the after() method.

If you try to click on this button, nothing will happen, so let's attach an event
handler to it:

>>> $("#test-button").click(function () { alert("You clicked me!"); })

Now, when you click on the button, a message box will appear. How did this work?

The argument that we passed to the click() method may look a bit complicated, so
let's examine it again:

function () { alert("You clicked me!"); }

This appears to be a function declaration, but without a function name. Indeed, this
construct creates what is called an anonymous function in JavaScript terminology
and it is used when you need to create a function on the fly and pass it as an
argument to another function. We could have avoided using anonymous functions
and declared the event handler as a regular function:

>>> function handler() { alert("You clicked me!"); }

>>> $("#test-button").click(handler)

The preceding code achieves the same effect, but the first one is more concise and
compact. I highly recommend you to get used to anonymous functions in JavaScript
(if you are not already), as I'm sure you will appreciate this construct and find it
more readable after using it for a while.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

Handling form submissions is very similar to handling mouse clicks. First you select
the form, then you call the submit() method on it, and then you pass the handler as
an argument. We will use this method many times while adding AJAX features to
our project in later sections.

Sending AJAX requests
Before we finish this section, let's talk about AJAX requests. jQuery provides
many ways to send AJAX requests to the server. There is, for example, the load()
method that takes a URL and loads the page at this URL into the selected element.
There are also methods to send the GET or POST requests and to receive the results.
We will examine these methods in more depth while implementing AJAX features in
our project.

What next?
This wraps up our quick introduction to jQuery. The information provided in
this section will be enough to continue with this chapter, and once you finish this
chapter, you will be able to implement many interesting AJAX features on your own.
However, please keep in mind that this jQuery introduction is only the tip of the
iceberg. If you want a comprehensive treatment of the jQuery framework, I highly
recommend you read Learning jQuery from Packt Publishing, as it covers jQuery in
much more detail. You can find out more about this book at http://www.packtpub.
com/jQuery.

Implementing the searching of tweets
We will start introducing AJAX in our application by implementing live searches.
The idea behind this feature is simple: when the user types a few keywords into a
text field and clicks on search, a script works behind the scenes to fetch the search
results and presents them on the same page. The search page does not reload, thus
saving bandwidth, and provides a better and more responsive user experience.

Before we start implementing this, we need to keep in mind an important rule while
working with AJAX: write your application so that it works without AJAX and then
introduce AJAX to it. If you do so, you ensure that everyone will be able to use your
application, including users who don't have JavaScript enabled and those who use
browsers without AJAX support.

www.it-ebooks.info

http://www.packtpub.com/jQuery
http://www.packtpub.com/jQuery
http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[112]

Implementing a searching
So, before we work with AJAX, let's write a simple view that searches bookmarks by
title. First of all, we need to create a search form, so open the tweets/forms.py file
and add the following class to it:

class SearchForm(forms.Form):
query = forms.CharField(label='Enter a keyword to search for',
widget=forms.TextInput(attrs={'size': 32, 'class':'form-
control'}))

As you can see, it's a pretty straightforward form class with only one text field.
This field will be used by the user to enter search keywords. Next, let's create a
view to conduct the search. Open the tweets/views.py file and enter the following
code into it:

class Search(View):
 """Search all tweets with query /search/?query=<query> URL"""
 def get(self, request):
 form = SearchForm()
 params = dict()
 params["search"] = form
 return render(request, 'search.html', params)

 def post(self, request):
 form = SearchForm(request.POST)
 if form.is_valid():
 query = form.cleaned_data['query']
 tweets = Tweet.objects.filter(text__icontains=query)
 context = Context({"query": query, "tweets": tweets})
 return_str = render_to_string('partials/_tweet_search.html',
 context)
 return HttpResponse(json.dumps(return_str),
 content_type="application/json")
 else:
 HttpResponseRedirect("/search")

Apart from a couple of method calls, the view should be very easy to understand.
If you look at the get request, it is pretty simple, as it prepares the search form and
then renders it.

The post() method is where all the magic happens. When we are rendering the
search result, it is just a layout rendering with the search form, that is, if you take a
look at the new file we created called search.html, you can see the following:

{% extends "base.html" %}
{% load staticfiles %}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

{% block content %}

<div class="row clearfix">
 <div class="col-md-6 col-md-offset-3 column">
 <form id="search-form" action="" method="post">{% csrf_token
 %}
 <div class="input-group input-group-sm">
 {{ search.query.errors }}
 {{ search.query }}

 <button class="btn btn-search"
 type="submit">search</button>

 </div><!-- /input-group -->
 </form>
 </div>
 <div class="col-md-12 column tweets">
 </div>
</div>
{% endblock %}
{% block js %}
 <script src="{% static 'js/search.js' %}"></script>
{% endblock %}

If you look carefully, you will see the inclusion of a new section named {% block js
%}. The concept used here is the same as of the {% block content %} block, that is,
what is declared here will be rendered in the base.html file. Taking it further, and
looking at the modified base.html file, we can see the following:

{% load staticfiles %}
 <html>
 <head>
 <link href="{% static 'css/bootstrap.min.css' %}"
 rel="stylesheet" media="screen">
 {% block css %}
 {% endblock %}
 </head>
 <body>
 <nav class="navbar navbar-default" role="navigation">
 MyTweets
 <p class="navbar-text navbar-right">User Profile Page</p>
 </nav>
 <div class="container">
 {% block content %}
 {% endblock %}

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[114]

 </div>
 <nav class="navbar navbar-default navbar-fixed-bottom"
 role="navigation">
 <p class="navbar-text navbar-right">Footer </p>
 </nav>
 <script src="{% static 'js/jquery-2.1.1.min.js'
 %}"></script>
 <script src="{% static 'js/bootstrap.min.js' %}"></script>
 <script src="{% static 'js/base.js' %}"></script>
 {% block js %}
 {% endblock %}
 </body>
 </html>

The preceding code clearly shows the two new content blocks, which are as follows:

{% block css %}
 {% endblock %}
 {% block js %}
{% endblock %}

They are used to include the respective file types and to render the file types with the
base, so that maintaining the project becomes much simpler using the simple rule of
declaring just one CSS and JavaScript file per page. We will implement this later in
the book with the concepts that call assets pipeline.

Now, coming back to our AJAX search feature, you will see that this search.html
file is similar to the tweet.html file.

For the search feature, we will create a new URL, which we need to append to the
following urls.py file:

url(r'^search/$', Search.as_view()),
urls.py
from django.conf.urls import patterns, include, url
from django.contrib import admin
from tweet.views import Index, Profile, PostTweet, HashTagCloud,
Search

admin.autodiscover()

urlpatterns = patterns('',
url(r'^$', Index.as_view()),
url(r'^user/(\w+)/$', Profile.as_view()),
url(r'^admin/', include(admin.site.urls)),
url(r'^user/(\w+)/post/$', PostTweet.as_view()),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

url(r'^hashTag/(\w+)/$', HashTagCloud.as_view()),
url(r'^search/$', Search.as_view()),
)

In the search.html file, we defined the search.js method; let's create this
JavaScript file, which actually makes the AJAX request:

search.js

$('#search-form').submit(function(e){
$.post('/search/', $(this).serialize(), function(data){
$('.tweets').html(data);
});
e.preventDefault();
});

This JavaScript code gets triggered when the form is submitted, it makes an AJAX
post request to the /search user with the serialized form data, and it gets the
response. Then, with the response it gets, it appends the data to the element that has
the class tweets.

If we open the user search in the browser, it will look like the following screenshot:

Now, wait! What happens when this form is submitted?

The AJAX request goes to the post() method of the search class, which is as follows:

def post(self, request):
 form = SearchForm(request.POST)
 if form.is_valid():
 query = form.cleaned_data['query']
 tweets = Tweet.objects.filter(text__icontains=query)
 context = Context({"query": query, "tweets": tweets})

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[116]

 return_str = render_to_string('partials/_tweet_search.html',
 context)
 return HttpResponse(json.dumps(return_str),
 content_type="application/json")
 else:
 HttpResponseRedirect("/search")

We are checking the form validation after we extract from the request.POST
method; if the form is valid, the query is extracted from the form object.

Then, the tweets = Tweet.objects.filter(text__icontains===query) method
searches for the substring match for the given query term.

Searches are conducted using a method called filter in the Tweets.objects
module. You can think of it as the equivalent of the SELECT statements in Django
models. It receives the search criteria in its arguments and returns the search results.
The name of each argument must adhere to the following naming convention:

field__operator

Note that the field and operator variables are separated by two underscores: the
field, which is the name of the field that we want to search by, and operator, which is
the lookup method that we want to use. Here is a list of the commonly used operators:

• exact: This is the value of the argument that is an exact match of the field
• contains: This field contains the value of the argument
• startswith: This field starts with the value of the argument
• lt: This field is less than the value of the argument
• gt: This field is greater than the value of the argument

Also, there are case-insensitive versions of the first three operators: iexact,
icontains, and istartswith that can be included in the list as well.

One thing that we are doing is totally different now, which is the following:

context = Context({"query": query, "tweets": tweets})
return_str = render_to_string('partials/_tweet_search.html',
context)
return HttpResponse(json.dumps(return_str),
content_type="application/json")

Our goal was to load the search results without reloading or refreshing the search
page. If so, how our previous render method will help us? It can't. We need some
methods that can help us send the date to the browser without reloading it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

We widely use the concepts in web development called partials. They are generally
small snippets of HTML code generated on the server side, are rendered as JSON,
and then they get appended to the existing DOM with the help of JavaScript.

To implement this method, we will first create a folder called partials in the existing
template folder, a _tweet_search.html file with the following content:

{% for tweet in tweets %}
 <div class="well">
 {{ tweet.text }}
 </div>
{% endfor %}
{% if not tweets %}
 <div class="well">
 No Tweet found.
 </div>
{% endif %}

The code will render the entire tweet object within a well box or, if no tweet object is
found, it will render No tweet Found inside the well box.

The preceding concept is to render a partial as a string in the view, and if we need to
pass any parameters for the render, we need to pass them in the first place with the
call to generate the string from partials. To pass the parameters for partials, we need
to create a context object and then pass our parameters:

context = Context({"query": query, "tweets": tweets})
return_str = render_to_string('partials/_tweet_search.html',
context)

First, we will create the context with the query (which we will use later) and tweets
parameters and use the render_to_string() function. Then, we can use JSON to
dump the string to the HttpResponse() function with the following:

return HttpResponse(json.dumps(return_str),
content_type="application/json")

The list of imports are as follows:

from django.views.generic import View
from django.shortcuts import render
from user_profile.models import User
from models import Tweet, HashTag
from tweet.forms import TweetForm, SearchForm
from django.http import HttpResponseRedirect
from django.template.loader import render_to_string
from django.template import Context
from django.http import HttpResponse
import json

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[118]

That's it! We completed a basic AJAX-based search for our tweets. Searching for
django listed the two tweets we created, as shown in the following screenshot:

Go ahead and play with the search engine, and I'm sure you will fall more in love
with Django.

We now have a functional (albeit very basic) search page. The search functionality
itself will be improved during later chapters, but what matters to us now is
introducing AJAX to the search form, so that results are fetched behind the scenes
and are presented to the user without reloading the page. Thanks to our modular
code, this task will turn out to be much simpler than it may seem.

Implementing the live searching of tweets
As we conducted a simple search in the previous section, we will now implement the
live search, which is technically the same, but the only difference is that the search form
will be submitted with every key stroke and the results will be loaded in real, time.

To implement live searches, we need to do the following two things:

• We need to intercept and handle the event of submitting the search form.
This can be done using the submit() method of jQuery.

• We need to use AJAX to load the search results in the background and insert
them in the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[119]

jQuery offers a method called load() that retrieves a page from the server and
inserts its contents into the selected element. In its simplest form, the function takes
the URL of the remote page to be loaded as a parameter.

We will implement the live search on hashtags, that is, we will create a new page that
is the same as the search page that we just created, but this will be for hashtags and
we will use a live hashtag suggestion (autocomplete for hashtag). Before we begin,
we need the Twitter typeahead JavaScript library for the same.

Download the latest version of this library from http://twitter.github.io/
typeahead.js/.

For this chapter, we downloaded the version 10.05 of the library. Download it and
save it to your current JavaScript folder.

First of all, let's modify our search view a little, so that it only returns the search
results without the rest of the search page when it receives an additional GET
variable called AJAX. We do so to enable the JavaScript code on the client side to
easily retrieve search results without the rest of the search page HTML format.
This can be done by simply using the bookmark_list.html template instead of the
search.html template when requested.

GET contains the key AJAX parameter. Open the bookmarks/views.py file and
modify the search_page parameter (toward the end), so that it becomes as follows:

def search_page(request):
 [...]
 variables = RequestContext(request, {
 'form': form,
 'bookmarks': bookmarks,
 'show_results': show_results,
 'show_tags': True,
 'show_user': True
 })
 if request.GET.has_key('AJAX'):):):
 return render_to_response('bookmark_list.html', variables)
 else:
 return render_to_response('search.html', variables)

Next, create a file called search.js in the site_media directory and link it to the
templates/search.html file like this:

{% extends "base.html" %}
 {% block external %}
 <script type="text/javascript" src="/site_media/search.js">
 </script>
 {% endblock %}

www.it-ebooks.info

http://twitter.github.io/typeahead.js/
http://twitter.github.io/typeahead.js/
http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[120]

{% block title %}Search Bookmarks{% endblock %}
{% block head %}Search Bookmarks{% endblock %}
[...]

Now for the fun part! Let's create a function that loads the search results and inserts
them into the corresponding div tag. Write the following code in the site_media/
search.js file:

function search_submit() {
 var query = $("#id_query").val();
 $("#search-results").load(
 "/search/?AJAX&query=" + encodeURIComponent(query)
);
return false;
}

Let's go through this function line by line:

• The function first gets the query string from the text field using the
val() method.

• We use the load() method to get the search results from the search_page
view and to insert the search results into the #search-results div. The
request URL is constructed by first calling the encodeURIComponent
parameter on query, which works exactly like the urlencode filter we used
in the Django templates. Calling this function is important to ensure that the
constructed URL remains valid even if the user enters special characters into
the text field, such as &. After the escape query, we concatenate it with the
/search/?AJAX&query= parameter. This URL invokes the search_page
view and passes the GET variable's AJAX parameter and query to it. The
view returns the search results and the load() method in turn loads the
results into the #search-results div.

• We return False from the function to tell the browser not to submit the
form after calling our handler. If we don't return False in the function, the
browser will continue to submit the form as usual and we don't want that.

One little detail remains: where and when should you attach the search_submit
parameter to the submit event of the search form? A rule of thumb when writing
JavaScript is that we cannot manipulate elements in the document tree before the
document finishes loading. Therefore, our function must be invoked as soon as
the search page is loaded. Fortunately for us, jQuery provides a method to execute
a function when the HTML document is loaded. Let's utilize it by appending the
following code to the site_media/search.js file:

$(document).ready(function () {
 $("#search-form").submit(search_submit);
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[121]

The $(document) function selects the document element of the current page. Note
that there are no quotations around the document variable; it's a variable provided
by the browser, not a string.

The ready() method takes a function and executes it as soon as the selected element
finishes loading. So, in effect, we are telling jQuery to execute the passed function
as soon as the HTML document is loaded. We pass an anonymous function to the
ready() method, and this function simply binds the search_submit parameter to
the submit event of the #search-form form.

That's it. We've implemented live searches with less than fifteen lines of code. To
test the new functionality, navigate to http://127.0.0.1:8000/search/, submit
queries, and note how the results are displayed without reloading the page.

The information covered in this section can be applied to any form that needs to
be processed in the background without reloading the page. You can, for example,
create a comment form with a preview button that loads the preview in the same
page without reloading. In the next section, we will enhance the user page to let
users edit their bookmarks in place without navigating away from the user page.

Editing a tweet in place without loading a
separate page
Editing posted content is a very common task on websites. It's usually implemented
by offering an edit link next to the content. When clicked on, this link takes the user
to a form located at another page, where the content can be edited. When the user
submits the form, they are redirected back to the content page.

Imagine, on the other hand, that you could edit content without navigating away
from the content page. When you click on the edit button, the content is replaced
with a form. When you submit the form, it disappears and the updated content
appears in its place. Everything happens on the same page; editing the form's
rendering and submissions are done using JavaScript and AJAX. Wouldn't such a
workflow be more intuitive and responsive?

The preceding technique described is called in-place editing. It now finds its way in
Web applications and becomes more common. We will implement this feature in our
application by letting the user edit their bookmarks in place on the user page.

Since our application doesn't support the editing of bookmarks yet, we will
implement this first and then modify the editing procedure to work in place.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[122]

Implementing bookmark editing
We already have most of the parts that are needed to implement bookmark editing.
If you recall from the previous chapter, in the bookmarks/views.py file, we
implemented the bookmark_save_page view in such a way that if the user tries to
save the same URL more than once, the same bookmark is updated rather than being
duplicated. This was easy to do thanks to the get_or_create() method provided
by data models. This little detail greatly simplifies the implementation of bookmark
editing. Here is what we need to do:

• We pass the URL of the bookmark that we want to edit as a GET variable
named URL to the bookmark_save_page view.

• We modify the bookmark_save_page view, so that it populates the fields
of the bookmark form if it receives the GET variable. The form is populated
with the data of the bookmark that corresponds to the passed URL.

When the populated form is submitted, the bookmark will be updated, as we
explained earlier, because it will seem to be that the user submitted the same URL
another time.

Before we implement the preceding described technique, let's reduce the size of
the bookmark_save_page view by moving the part that saves a bookmark to a
separate function. We will call this function _bookmark_save. The underscore at
the beginning of the name tells Python not to import this function when the views
module is imported. The function expects a request and a valid form object as
parameters; it saves a bookmark out of the form data and returns this bookmark.

Open the bookmarks/views.py file and create the following function; you can cut
and paste the code from the bookmark_save_page view if you like, as we will not
make any changes to it except for the return statement at the end:

def _bookmark_save(request, form):
 # Create or get link.
 link, dummy = \
 Link.objects.get_or_create(url=form.clean_data['url'])
 # Create or get bookmark.
 bookmark, created = Bookmark.objects.get_or_create(
 user=request.user,
 link=link
)
 # Update bookmark title.
 bookmark.title = form.clean_data['title']
 # If the bookmark is being updated, clear old tag list.
 if not created:
 bookmark.tag_set.clear()
 # Create new tag list.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[123]

 tag_names = form.clean_data['tags'].split()
 for tag_name in tag_names:
 tag, dummy = Tag.objects.get_or_create(name=tag_name)
 bookmark.tag_set.add(tag)
 # Save bookmark to database and return it.
 bookmark.save()
 return bookmark
 Now in the same file, replace the code that you removed from
 bookmark_save_page
 with a call to _bookmark_save :
 @login_required
 def bookmark_save_page(request):
 if request.method == 'POST':
 form = BookmarkSaveForm(request.POST)
 if form.is_valid():
 bookmark = _bookmark_save(request, form)
 return HttpResponseRedirect(
 '/user/%s/' % request.user.username
)
 else:
 form = BookmarkSaveForm()
 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('bookmark_save.html', variables)

The current logic in the bookmark_save_page view works like this:

[Pseudo Code]

if there is POST data:
 Validate and save bookmark.
 Redirect to user page.
else:
 Create an empty form.
Render page.

To implement bookmark editing, we need to slightly modify the logic, as follows:

[Pseudo Code]

if there is POST data:
 Validate and save bookmark.
 Redirect to user page.
 else if there is a URL in GET data:
 Create a form an populate it with the URL's bookmark.
 else:
 Create an empty form.
Render page.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[124]

Let's translate the preceding pseudo code into Python. Modify the bookmark_save_
page view in the bookmarks/views.py file, so that it looks like the following code
(the new code is highlighted):

from django.core.exceptions import ObjectDoesNotExist
@login_required
def bookmark_save_page(request):
 if request.method == 'POST':
 form = BookmarkSaveForm(request.POST)
 if form.is_valid():
 bookmark = _bookmark_save(request, form)
 return HttpResponseRedirect(
 '/user/%s/' % request.user.username
)
 elif request.GET.has_key('url'):):):
 url = request.GET['url']
 title = ''
 tags = ''
 try:
 link = Link.objects.get(url=url)
 bookmark = Bookmark.objects.get(
 link=link,
 user=request.user
)
 title = bookmark.title
 tags = ' '.join(
 tag.name for tag in bookmark.tag_set.all()
)
 except ObjectDoesNotExist:
 pass
 form = BookmarkSaveForm({
 'url': url,
 'title': title,
 'tags': tags
 })
 else:
 form = BookmarkSaveForm()
 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('bookmark_save.html',
 variables)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[125]

This new section of the code first checks whether a GET variable called URL exists.
If this is the case, it loads the corresponding Link and Bookmark objects of this URL
and binds all the data to a bookmark saving form. You may wonder why we load the
Link and Bookmark objects in a try-except construct that silently ignores exceptions.

Indeed, it's perfectly valid to raise an HTTP 404 exception if no bookmark was found
for the requested URL. However, our code chooses to only populate the URL field in
this situation, leaving the title and tags fields empty.

Now, let's add edit links next to each bookmark in the user page. Open the
templates/bookmark_list.html file and insert the highlighted code:

{% if bookmarks %}
 <ul class="bookmarks">
 {% for bookmark in bookmarks %}

 {{ bookmark.title|escape }}
 {% if show_edit %}
 <a href="/save/?url={{ bookmark.link.url|urlencode }}"
 class="edit">[edit]
 {% endif %}

 {% if show_tags %}
 Tags:
 {% if bookmark.tag_set.all %}
 <ul class="tags">
 {% for tag in bookmark.tag_set.all %}

 {{ tag.name|escape }}
 {% endfor %}

 {% else %}
 None.
 {% endif %}

[...]

Note how we constructed edit links by appending the bookmark's URL to /
save/?url= {{ bookmark.link.url|urlencode }}.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[126]

Also, since we only want to show edit links on the user's page, the template renders
these links only when the show_edit flag is set to True. Otherwise, it wouldn't make
sense to let the user edit other people's links. Now open the bookmarks/views.py
file and add the show_edit flag to the template variables in the user_page flag:

def user_page(request, username):
 user = get_object_or_404(User, username=username)
 bookmarks = user.bookmark_set.order_by('-id')
 variables = RequestContext(request, {
 'bookmarks': bookmarks,
 'username': username,
 'show_tags': True,
 'show_edit': username == request.user.username,
 })
return render_to_response('user_page.html', variables)

The username == request.user.username expression evaluates to True only when
users view their own page, and this is precisely what we want.

Finally, I suggest you reduce the font size of the edit links a little. Open the
site_media/style.css file and append the following to its end:

ul.bookmarks .edit {
 font-size: 70%;
}

And we are done! Feel free to navigate to your user page and experiment with
editing your bookmarks before we continue.

Implementing in-place editing of bookmarks
Now that we have bookmark editing implemented, let's move to the exciting part:
adding in-place editing with AJAX!

Our approach to this task will be as follows:

• We will intercept the event of clicking on an edit link and use AJAX to load a
bookmark editing form from the server. Then we will replace the bookmark
on the page with the editing form.

• When the user submits the edit form, we will intercept the submission event
and use AJAX to send the updated bookmark to the server.

• The server saves the bookmark and returns the HTML representation of
the new bookmark. We will then replace the edit form on the page with the
markup returned by the server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[127]

We will implement the preceding procedure using an approach very similar to live
searching. First, we will modify the bookmark_save_page view, so that it responds
to AJAX requests when a GET variable called AJAX exits. Next, we will write
JavaScript code to retrieve an edit form from the view, which posts bookmark data
back to the server when the user submits this form.

Since we want to return the markup of an edit form to the AJAX script from the
bookmark_save_page view, let's restructure our templates a little. Create a file called
bookmark_save_form.html in templates and move the bookmark saving form from
the bookmark_save.html file to this new file:

<form id="save-form" method="post" action="/save/">
 {{ form.as_p }}
 <input type="submit" value="save" />
</form>

Note that we also changed the action attribute of the form to /save/ and gave it
an ID. This is necessary for the form to work on the user page as well as on the
bookmark submission page.

Next, include this new template in the bookmark_save.html file:

{%extends "base.html" %}
{%block title %}Save Bookmark{% endblock %}
{%block head %}Save Bookmark{% endblock %}
{%block content %}
{%include 'bookmark_save_form.html' %}
{%endblock %}

Ok, now we have the form in a separate template. Let's update the bookmark_save_
page view to handle both the normal and AJAX requests. Open the bookmarks/
views.py file and update the view, so that it looks like the following (modified with
the new lines that are highlighted):

def bookmark_save_page(request):
 AJAX = request.GET.has_key('AJAX')))
 if request.method == 'POST':
 form = BookmarkSaveForm(request.POST)
 if form.is_valid():
 bookmark = _bookmark_save(form)
 if AJAX:
 variables = RequestContext(request, {
 'bookmarks': [bookmark],
 'show_edit': True,
 'show_tags': True
 })

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[128]

 return render_to_response('bookmark_list.html', variables)
 else:
 return HttpResponseRedirect(
 '/user/%s/' % request.user.username
)
 else:
 if AJAX:
 return HttpResponse('failure')
 elif request.GET.has_key('url'):
 url = request.GET['url']
 title = ''
 tags = ''
 try:
 link = Link.objects.get(url=url)
 bookmark = Bookmark.objects.get(link=link,
 user=request.user)
 title = bookmark.title
 tags = ' '.join(tag.name for tag in
 bookmark.tag_set.all())
 except:::
 pass
 form = BookmarkSaveForm({
 'url': url,
 'title': title,
 'tags': tags
 })
 else:
 form = BookmarkSaveForm()
 variables = RequestContext(request, {
 'form': form
 })
 if AJAX:
 return render_to_response(
 'bookmark_save_form.html',
 variables
)
 else:
 return render_to_response(
 'bookmark_save.html',
 variables
)

Let's examine each highlighted section separately:

AJAX = request.GET.has_key('AJAX')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[129]

At the beginning of the method, we will check whether a GET variable named AJAX
exists. We will store the result in a variable called AJAX. Later in the method, we can
check whether we are handling an AJAX request or not, using this variable:

if condition:
 if form.is_valid():
 bookmark = _bookmark_save(form)
 if AJAX:
 variables = RequestContext(request, {
 'bookmarks': [bookmark],
 'show_edit': True,
 'show_tags': True
 })
 return render_to_response('bookmark_list.html', variables)
 else:
 return HttpResponseRedirect('/user/%s/' %
 request.user.username)
 else:
 if AJAX:
 return HttpResponse('failure')

If we receive a POST request, we check whether the submitted form is valid or not.
If it is valid, we save the bookmark. Next, we check whether this is an AJAX request.
If it is, we render the saved bookmark using the bookmark_list.html template and
return it to the requesting script. Otherwise, it is a normal form submission, so we
redirect the user to their user page. On the other hand, if the form is not valid, we
only act as if it's an AJAX request by returning the string 'failure', which we will
respond to by displaying an error dialog in JavaScript. We don't need to do anything
if it's a normal request because the page will be reloaded and the form will display
any errors in the input:

if AJAX:
 return render_to_response('bookmark_save_form.html', variables)
 else:
 return render_to_response('bookmark_save.html', variables)

This is checked at the end of the method. The execution reaches this point if there is
no POST data, which means that we should render a form and return it. We use the
bookmark_save_form.html template if it's an AJAX request and the bookmark_save
method, otherwise save it as an HTML file.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[130]

Our view is now ready to serve AJAX requests as well as normal page requests. Let's
write the JavaScript code that will take advantage of the updated view. Create a new
file called bookmark_edit.js in the site_media profile. However, before we add
any code to it, let's link the bookmark_edit.js file to the user_page.html template.
Open the user_page.html file and modify it as follows:

{% extends "base.html" %}
 {% block external %}
 <script type="text/javascript"
 src="/site_media/bookmark_edit.js">
 </script>
 {% endblock %}
 {% block title %}{{ username }}{% endblock %}
 {% block head %}Bookmarks for {{ username }}{% endblock %}
 {% block content %}
 {% include 'bookmark_list.html' %}
 {% endblock %}

We have to write two functions in the bookmark_edit.js file:

• bookmark_edit: This function handles the clicks on edit links. It loads an edit
form from the server and replaces the bookmark with this form.

• bookmark_save: This function handles the submissions of edit forms. It
sends form data to the server and replaces the form with the bookmark
HTML returned by the server.

Let's start with the first function. Open the site_media/bookmark_edit.js file and
write the following code in it:

function bookmark_edit() {
 var item = $(this).parent();
 var url = item.find(".title").attr("href");
 item.load("/save/?AJAX&url=" + escape(url), null, function () {
 $("#save-form").submit(bookmark_save);
 });
 return false;
}

Because this function handles click events on an edit link, the this variable refers to
the edit link itself. Wrapping it in the jQuery $() function and calling the parent()
function returns the parent of the edit link, which is the element of the
bookmark (try it in the Firebug console to see the same for yourself).

After retrieving a reference to the bookmark's element, we obtain a reference to
the bookmark's title and extract the bookmark's URL from it using the attr() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[131]

Next, we use the load() method to put an editing form in place of the bookmark's
HTML file. This time, we are calling the load() method with two extra arguments in
addition to the URL. The load() function takes two optional parameters, which are
as follows:

• It takes an object of key or value pairs if we are sending a POST request.
Since we get the edit form from the server-side view using a GET request,
we pass null for this parameter.

• It takes a function that is called when jQuery finishes loading the URL
into the selected element. The function we are passing attaches the
bookmark_save() method (which we are going to write next) to the form
that we've just retrieved.

Finally, the function returns False to tell the browser not to follow the edit link.
Now we need to attach the bookmark_edit() function to the event of clicking an
edit link using $(document).ready():

$(document).ready(function () {
 $("ul.bookmarks .edit").click(bookmark_edit);
});

If you try to edit a bookmark in the user page after writing this function, an edit form
should appear, but you should also get a JavaScript error message in the Firebug
console because the bookmark_save()function is not defined, so let's write it:

function bookmark_save() {
 var item = $(this).parent();
 var data = {
 url: item.find("#id_url").val(),
 title: item.find("#id_title").val(),
 tags: item.find("#id_tags").val()
 };
 $.post("/save/?AJAX", data, function (result) {
 if (result != "failure") {
 item.before($("li", result).get(0));
 item.remove();
 $("ul.bookmarks .edit").click(bookmark_edit);
 }
 else {
 alert("Failed to validate bookmark before saving.");
 }
 });
 return false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[132]

Here, the this variable refers to the edit form because we handle the event of
submitting a form. The function starts by retrieving a reference to the form's parent,
which is again the bookmark's element. Next, the function retrieves the
updated data from the form using the ID of each form field and the val() method.

Then it uses a method called $.post() to send data back to the server. Finally, it
returns False to prevent the browser from submitting the form.

As you may have guessed, the $.post() function is a jQuery method that sends
POST requests to the server. It takes three parameters, which are as follows:

• The URL of the target of the POST request.
• An object of key/value pairs that represents POST data.
• A function that is invoked when the request is done. The server response is

passed to this function as a string parameter.

It's worth mentioning that jQuery provides a method called $.get() to send a GET
request to the server. It takes the same types of parameters as the $.post() function.
We use the $.post() method to send the updated bookmark data to the bookmark_
save_page view. As discussed a few paragraphs ago, the view returns the update
bookmark HTML if it succeeds in saving it. Otherwise, it returns the failure string.

Therefore, we check whether the result returned from the server is failure or not.
If the request succeeds, we insert the new bookmark before the old one using the
before() method and remove the old bookmark from the HTML document using
the remove() method. If, on the other hand, the request fails, we display an alert box
displaying the failure.

Several little things remain before we finish this section. Why do we insert the
$("li",result).get(0) method instead of the result itself? If you check the
bookmark_save_page view, you will see that it uses the bookmark_list.html
template to construct the bookmark's HTML. However, the bookmark_list.html
template returns the bookmark element wrapped in an tag. Basically,
the $("li", result).get(0) method tells jQuery to extract the first element
in the result and this is the element that we want. As you see from the preceding
snippet, you can use the jQuery $() function to select the elements from an HTML
string by passing this string as a second argument to the function.

The bookmark_submit template is attached to its event from within the bookmark_
edit template, so we don't need to do anything about it in the $(document).
ready() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[133]

Lastly, after loading the updated bookmark into the page, we call the $("ul.
bookmarks.edit").click(bookmark_edit) method again to attach the bookmark_
edit template to the newly loaded edit link. If you don't do so and try to edit a
bookmark twice, the second click on the edit link will take you to a separate form page.

When you finish writing the JavaScript code, open your browser and go to your user
page to experiment with the new feature. Edit the bookmarks, save them, and note
how the changes are immediately reflected on the page without any reloading.

Now that you have completed this section, you should have a good understanding
of how in-place editing is implemented. There are many other scenarios where this
feature can be useful, for example, it can be used to edit an article or a comment on
the same page without navigating away to a form located on a different URL.

In the next section, we will implement a third common AJAX feature that helps the
user enter tags while submitting a bookmark.

Autocompletion of hashtags while
submitting a tweet
The last AJAX enhancement that we are going to implement in this chapter is
autocompletion of tags. The concept of autocompletion found its way into web
applications when Google released their Suggest searching interface. Suggest works
by displaying the most popular search queries below the search input field based
on what the user has typed so far. It's also similar to how code editors in integrated
development environments offer code completion suggestions based on what you
type. This feature saves time by letting the user type a few characters of the word they
want and then lets them select it from a list without having to type it in completely.

We will implement this feature by offering suggestions when the user enters tags
while submitting a bookmark, but instead of writing this feature from scratch, we are
going to use a jQuery plugin to implement it. jQuery enjoys a large and continually
growing list of plugins that provides a variety of features. Installing a plugin is no
different from installing jQuery itself. You download one (or more) files and link
them to your template and then you write a few lines of JavaScript code to activate
the plugin.

You can browse the list of the available jQuery plugins by navigating to
http://docs.jquery.com/Plugins. Search for the autocomplete plugin in the list
and download it, or you can directly grab it from http://bassistance.de/jquery-
plugins/jquery-plugin-autocomplete/.

www.it-ebooks.info

http://docs.jquery.com/Plugins
http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[134]

You will get a zip archive with many files in it. Extract the following files
(which can be found in the jquery/autocomplete/scroll directory) to the
site_media directory:

• jquery.autocomplete.css
• dimensions.js
• jquery.bgiframe.min.js
• jquery.autocomplete.js

Since we want to offer the autocomplete feature on the bookmark submission page,
create an empty file called tag_autocomplete.js in the site_media folder. Then
open the templates/bookmark_save.html file and link all of the preceding files to it:

{% extends "base.html" %}
 {% block external %}
 <link rel="stylesheet"
 href="/site_media/jquery.autocomplete.css" type="text/css" />
 <script type="text/javascript"
 src="/site_media/dimensions.js"> </script>
 <script type="text/javascript"
 src="/site_media/jquery.bgiframe.min.js"> </script>
 <script type="text/javascript"
 src="/site_media/jquery.autocomplete.js"> </script>
 <script type="text/javascript"
 src="/site_media/tag_autocomplete.js"> </script>
 {% endblock %}
 {% block title %}Save Bookmark{% endblock %}
 {% block head %}Save Bookmark{% endblock %}
[...]

We now finished installing the plugin. If you read its documentation, you will
find that this plugin is activated by calling a method named autocomplete()
on a selected input element. The autocomplete() function takes the following
parameters:

• A server-side URL: For this, the plugin sends a GET request to this URL
with what has been typed so far and expects the server to return a set of
suggestions.

• An object that can be used to specify various options: Options that are of
interest to us are multiple. This option has a Boolean variable that tells the
plugin that the input field is used to enter multiple values (remember that we
use the same text field to enter all the tags) and multiple separators that are
used to tell the plugin which string separates multiple entries. In our case, it's
a single space character.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[135]

So before activating the plugin, we need to write a view that receives user input and
returns a set of suggestions. Open the bookmarks/views.py file and append the
following to its end:

def AJAX_tag_autocomplete(request):
 if request.GET.has_key('q'):):):
 tags = \
 Tag.objects.filter(name__istartswith=request.GET['q'])[:10]
 return HttpResponse('\n'.join(tag.name for tag in tags))
return HttpResponse()

The autocomplete() plugin sends user input in a GET variable named q. Therefore,
we can verify that this variable exists and build a list of tags whose names begin
with the value of this variable. This is done using the filter() method and the
istartswith operator that we learned about earlier in this chapter. We only take the
first ten results to avoid overwhelming the user with suggestions and to reduce the
bandwidth and performance costs. Finally, we join the suggestions into a single string
separated by newlines, wrap the string into an HttpResponse object, and return it.

With the suggestion view ready, add a URL entry to the plugin in the urls.py file,
as follows:

urlpatterns = patterns('',
 # AJAX
 (r'^AJAX/tag/autocomplete/$', AJAX_tag_autocomplete),
)

Now activate the plugin on the tags input field by entering the following code in the
site_media/tag_autocomplete.js file:

$(document).ready(function () {
 $("#id_tags").autocomplete(
 '/AJAX/tag/autocomplete/',
 {multiple: true, multipleSeparator: ' '}
);
});

The code passes an anonymous function to the $(document).ready() method. This
function invokes the autocomplete() function on the tags input field, passing the
arguments that we talked about earlier.

These few lines of code are all that we need in order to implement autocompletion
of tags. To test the new feature, navigate to the bookmark submission form at
http://127.0.0.1:8000/save/ and try to enter a character or two in the tags field.
Suggestions should appear based on the tags available in your database.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing the User Interface with AJAX

[136]

With this feature, we finish this chapter. We covered a lot of material and learned
about many exciting technologies and techniques. After reading the chapter, you
should be able to think of and implement many other enhancements to the user
interface, such as the ability to delete bookmarks from the user page or to do live
browsing of bookmarks by tags among, many other things.

The next chapter will shift to a different topic: we will let users vote and comment
on their favorite bookmarks and the front page of our application won't remain as
empty as it is now!

Summary
Phew! This was a long chapter, but hopefully you learned a lot from it! We started
the chapter with learning about the jQuery framework and how to integrate it in
to our Django project. After that, we implemented three exciting features in our
bookmarking application: live searching, in-place editing, and autocompletion.

The next chapter is going to be another exciting one. We will let users submit
bookmarks to the front page and vote for their favorite bookmarks. We will also
enable users to comment on bookmarks. So, read on!

www.it-ebooks.info

http://www.it-ebooks.info/

[137]

Following and Commenting
The main idea behind our application is to provide a platform for users to share
their thoughts via tweets. Just letting the user create a new tweet is only one part of
it, and the application is said to be incomplete if users are not able to interact with
the existing tweet. In this chapter, we will do the other part, which is enabling users
to follow a particular user and comment on an existing tweet. You will also learn
several new Django features while working through it.

In this chapter, you will learn about:

• Letting users follow another user
• Displaying the most followed user

Letting users follow another user
So far, our users are able to discover new tweets by browsing hashtags and user
pages. Let's provide a method for users to follow another user so that they can
see, on their individual homepages, the aggregated tweets from all users they are
following. Let's also enable users to comment on a new tweet.

We will also create a page where users can list popular users by the number of
followers. This feature is important for our application because it will change the
main page from a basic welcome page to a frequently updated list of users, where
users will be able to find trending users and their interesting tweets.

Our strategy for implementing this feature consists of the following:

• Creating a data model to store a user and their followers. This model will
keep track of various pieces of information related to the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Following and Commenting

[138]

• Giving each user a follow button next to their title. We will also create a
view that shows counts, such as the number of tweets a user has made and
their follower count. This involves a considerable amount of work, but the
results will be worth it and we will learn a lot of useful information during
the process.

Let's get started!

At first, what we are going to add is a retweet count to every tweet and to keep track
of all the tweets voted up by the user. To implement this, we need to create a new
UserFollowers data model.

The UserFollowers data model
When a user is followed by another user, we need to store the following information
in the database:

• The date on which the user was followed. We need this in order to display the
user who has the highest number of followers over a certain period of time.

• The number of followers a user has.
• The list of users who are following our user.

This is needed to prevent users from following the same user twice.

For this purpose, we will create a new data model called UserFollowers. Open
user_profile/model.py and add the following class to it:

class UserFollowers(models.Model):
 user = models.ForeignKey(User, unique=True))
 date = models.DateTimeField(auto_now_add=True)
 count = models.IntegerField(default=1))
 followers = models.ManyToManyField(User,
 related_name='followers')
 def __str__(self):
 return '%s, %s' % self.user, self.count

This data model utilizes some important features, so we will go through its fields
one by one. The user field is a foreign key that refers back to the user that is being
followed. We want it to be unique so that the same user cannot be followed more
than once.

The date field is of the type models.DateTimeField. As its name suggests, you can
use this field to store a date/time value. The argument auto_now_add tells Django
to automatically set this field to the current date/time when an object of this data
model is first created.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[139]

The count field is of the type models.IntegerField. This field holds an integer
value. By using the default=1 parameter with this field, we tell Django to set the
field's value to 1 when an object of this data model is first created.

The following ManyToManyField parameter contains the list of users who followed
this user.

Here, the related_name='followers' parameter must be
given as the second parameter. Both user and follower point to
the same class user, which if distinguished by related name,
can give an error such as this, Accessor for field user clashes
with related m2m field User.userfollowers_set.

After entering the data model code into user_profile/models.py file, run the
following command to create its corresponding tables in the database:

$ python manage.py syncdb

With this, we can store all the information that we need to maintain followers.

Next, we are going to to create a view in which users can follow other users by
clicking on the follow button next to their profile name.

Modify the user profile page accordingly if the visited user is not the same who has
already followed you, then there should be a button to follow the user. If the user is
already being followed, the same button should allow unfollowing.

Let us edit the existing user profile, profile.html.

Adding a user icon against the username, we can use the following Bootstrap
glyphicons. This is the set of icons that is shipped with the default Bootstrap.

 {% block navbar %}
 <p class="navbar-text navbar-right">

 {{ user.username }}
 </p>
 {% endblock %}

We will also design a new tweet post textbox on the profile page. The updated
user_profile.html file is as follows:

 {% extends "base.html" %}
 {% block navbar %}
 <p class="navbar-text navbar-right">

 {{ user.username }}

www.it-ebooks.info

http://www.it-ebooks.info/

Following and Commenting

[140]

 </p>
 {% endblock %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-6 col-md-offset-3 column">
 <form id="search-form" action="post/" method="POST">{%
 csrf_token %}
 <div class="input-group">
 {{ form.text.errors }}
 {{ form.text }}
 {{ form.country.as_hidden }}

 <button class="btn btn-default"
 type="submit">Post</button>

 </div><!-- /input-group -->
 </form>
 </div>
 <h1> </h1>
 <div class="col-md-12 column">
 {% for tweet in tweets %}
 <div class="well">
 {{ tweet.text }}
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

Update the forms.py file to render a new form:

class TweetForm(forms.Form):
 text = forms.CharField(widget=forms.Textarea(attrs={'rows': 1,
 'cols': 85, 'class':'form-control', 'placeholder': 'Post a new
 Tweet'}), max_length=160)
 country = forms.CharField(widget=forms.HiddenInput())

The updated UI for the form will look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[141]

To add the functionality to follow a user, we need to first create another user. We
will follow the same method we used before, that is, via Django Administrator.

One very important thing we have been postponing is user login and registration.
The follow functionality can't be used without it. We will implement Django login
first, and then we will move to the follow functionality.

The user login model
To implement user login, we need to add default URLs for login and registration. We
will add the following URL patterns in the urls.py file:

 url(r'^login/$', 'django.contrib.auth.views.login'),
 url(r'^logout/$', 'django.contrib.auth.views.logout')

Now, our urls.py file will look like this:

 from django.conf.urls import patterns, include, url
 from django.contrib import admin
 from tweet.views import Index, Profile, PostTweet, HashTagCloud,
 Search, SearchHashTag, HashTagJson
 admin.autodiscover()

 urlpatterns = patterns('',
 url(r'^$', Index.as_view()),
 url(r'^user/(\w+)/$', Profile.as_view()),
 url(r'^admin/', include(admin.site.urls)),
 url(r'^user/(\w+)/post/$', PostTweet.as_view()),
 url(r'^hashTag/(\w+)/$', HashTagCloud.as_view()),
 url(r'^search/$', Search.as_view()),
 url(r'^search/hashTag$', SearchHashTag.as_view()),
 url(r'^hashtag.json$', HashTagJson.as_view()),
 url(r'^login/$', 'django.contrib.auth.views.login'),
 url(r'^logout/$', 'django.contrib.auth.views.logout')
)

Both the login and logout views have default template names, registration/login.
html and registration/logged_out.html respectively. Because these views are
specific to the user and not our reusable application, we'll create a new template/
registration directory inside the mytweets project using the following command:

 $ mkdir -p mytweets/templates/registration

www.it-ebooks.info

http://www.it-ebooks.info/

Following and Commenting

[142]

Then, create a simple login and logout page. Use the following code snippet in the
login.html file:

 {% extends "base.html" %}
 {% block content %}
 {% if form.errors %}
 <p>Your username and password didn't match. Please try
 again.</p>
 {% endif %}
 <form method="post" action="{% url
 'django.contrib.auth.views.login' %}">
 {% csrf_token %}
 <table>
 <tr>
 <td>{{ form.username.label_tag }}</td>
 <td>{{ form.username }}</td>
 </tr>
 <tr>
 <td>{{ form.password.label_tag }}</td>
 <td>{{ form.password }}</td>
 </tr>
 </table>
 <input type="submit" value="login"/>
 <input type="hidden" name="next" value="{{ next }}"/>
 </form>
 {% endblock %}

Use the following code snippet in the logout.html file:

 {% extends "base.html" %}
 {% block content %}
 You have been Logged out!
 {% endblock %}

We have just enabled Django's default authentication system. As this does basic
authorization, it has its predefined URLs for certain redirections. For example, we
already know that /login will take a user to the /registration/login.html page.
Similarly, once the user is authenticated, they are redirected to the URL accounts/
profile. In our project, we have a custom URL for each user. We will update these
entries in the settings.py file

LOGIN_REDIRECT_URL = '/profile'
LOGIN_URL = 'django.contrib.auth.views.login'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[143]

To keep things simple, we will just create a view, which will take an authenticated
user to the profile, which will then redirect the user to their profile page. Basically,
we will construct the parameter of the username after valid authentication; in other
words, /profile | /profile/<username> will be generated in a separate class
view. For this, we also need to create a URL entry as follows:

 url(r'^profile/$', UserRedirect.as_view()),

And Profile redirect class with a get() method as:

class UserRedirect(View):
 def get(self, request):
 return HttpResponseRedirect('/user/'+request.user.username)

This is it. Now every logged-in user will be redirected to his profile page.

Now, coming back to the original problem, when a user visits another user's profile,
they will have the option to follow this user's profile; this means the follower will get
updates about all the posted tweets on their home page.

Once following a user, the follower will have the option to unfollow the user, and if
the user visits their own profile, they should see nothing at all.

The updated code for the user profile is as follows:

 {% extends "base.html" %}
 {% block navbar %}
 <p class="navbar-text navbar-left">

 {{ profile.username }}'s Profile Page
 {% if profile.username != user.username %}
 <span class="btn btn-xs btn-default follow-btn" title="Click
 to follow {{ profile.username }}">
 <input id="follow" type="hidden" name="follow" value="{{
 profile.username }}">
 {% if
 following %} Unfollow {% else %} Follow {% endif %}
 {% endif %}
 </p>
 <p class="navbar-text navbar-right">

 {{ user.username }}
 </p>
 {% endblock %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-6 col-md-offset-3 column">

www.it-ebooks.info

http://www.it-ebooks.info/

Following and Commenting

[144]

 <form id="search-form" action="post/" method="POST">{%
 csrf_token %}
 <div class="input-group">
 {{ form.text.errors }}
 {{ form.text }}
 {{ form.country.as_hidden }}

 <button class="btn btn-default"
 type="submit">Post</button>

 </div>
 <!-- /input-group -->
 </form>
 </div>
 <h1> </h1>
 <div class="col-md-12 column">
 {% for tweet in tweets %}
 <div class="well">
 {{ tweet.text }}
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

The following code checks whether the user is viewing their own profile; if so, they
will not be shown the follow button. It also checks whether the user logged in is
following the profile they've visited; if so, the unfollow button will be shown, and if
not, the follow button will be shown.

 {% if profile.username != user.username %}
 <span class="btn btn-xs btn-default follow-btn" title="Click to
 follow {{ profile.username }}">
 <input id="follow" type="hidden" name="follow" value="{{
 profile.username }}">

 {% if following %} Unfollow {% else %} Follow {% endif %}
 {% endif %}

To render the updated view, class Profile() has also been updated as follows:

class Profile(LoginRequiredMixin, View):
 """User Profile page reachable from /user/<username> URL"""
 def get(self, request, username):
 params = dict()
 userProfile = User.objects.get(username=username))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[145]

 userFollower = UserFollower.objects.get(user=userProfile)
 if userFollower.followers.filter
 (username=request.user.username).exists():
 params["following"] = True
 else:
 params["following"] = False
 form = TweetForm(initial={'country': 'Global'})
 search_form = SearchForm()
 tweets = Tweet.objects.filter(user=userProfile)
 .order_by('-created_date')
 params["tweets"] = tweets
 params["profile"] = userProfile
 params["form"] = form
 params["search"] = search_form
 return render(request, 'profile.html', params)

The following code checks whether the logged-in user is a follower of the user whose
profile they are visiting:

 if userFollower.followers.filter
 (username=request.user.username).exists():

Adding or removing the follower
Let's create a post() method for the profile to add or remove followers based
on parameters:

 def post(self, request, username):
 follow = request.POST['follow']
 user = User.objects.get(username= request.user.username)))
 userProfile === User.objects.get(username=username)
 userFollower, status = UserFollower.objects.get_or_create
 (user=userProfile)
 if follow=='true':
 #follow user
 userFollower.followers.add(user)
 else:
 #unfollow user
 userFollower.followers.remove(user)
 return HttpResponse(json.dumps(""),
 content_type="application/json")

This is a simple function that checks the parameters to add or remove users to or
from the followers list.

www.it-ebooks.info

http://www.it-ebooks.info/

Following and Commenting

[146]

The follow button part of the profile.html file should be updated with the class
names so that we can trigger the JavaScript event functionalism, as follows:

<p class="navbar-text navbar-left">

 {{ profile.username }}'s Profile Page
 {% if profile.username != user.username %}
 <span class="btn btn-xs btn-default follow-btn" title="Click
 to follow {{ profile.username }}" value="{{ following }}"
 username="{{ profile.username }}">
 <span
 class="follow-text">
 {{ following|yesno:"Unfollow,Follow" }}

 {% endif %}
</p>

Finally, let us create the profile.js file which has the post() method whenever the
follow/unfollow button is clicked:

Create a JavaScript file named as profile.js and add the following code:

$(".follow-btn").click(function () {
 var username = $(this).attr('username');
 var follow = $(this).attr('value') != "True";
 $.ajax({
 type: "POST",
 url: "/user/"+username+"/",
 data: { username: username , follow : follow },
 success: function () {
 window.location.reload();
 },
 error: function () {
 alert("ERROR !!");
 }
 })
});

Don't forget to add this JavaScript file in the profile.html file at the bottom of the
page, as shown in the following code:

 {% block js %}
 <script src="{% static 'js/profile.js' %}"></script>
 {% endblock %}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[147]

Displaying the most followed user
After we have implemented the feature for following users, we can move ahead with
a new page design where we will list the most followed user. The logic of this page
can be reused to design the page that has the highest number of comments.

The basic components for this page design are:

• View: The users.html file
• Controller: The most followed user
• URL mapping

Add the following content in the view.html file:

 {% extends "base.html" %}
 {% load staticfiles %}
 {% block navbar %}
 <p class="navbar-text navbar-right">

 {{ user.username }}
 </p>
 {% endblock %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-12 column">
 {% for userFollower in userFollowers %}
 <div class="well">
 {{ userFollower.user.username
 }}
 ({{ userFollower.count
 }} followers)
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

Add the following class in the controller:

class MostFollowedUsers(View):
 def get(self, request):
 userFollowers = UserFollower.objects.order_by('-count')
 params = dict()
 params['userFollowers'] = userFollowers
 return render(request, 'users.html', params)

www.it-ebooks.info

http://www.it-ebooks.info/

Following and Commenting

[148]

This following line orders the followers in the order of who has the most followers:

 userFollowers = UserFollower.objects.order_by('-count')

We need to update the URL mapping as well, as follows:

 url(r'^mostFollowed/$', MostFollowedUsers.as_view()),

That's all! We are done with a page where all the users are listed by follower count. If
the count gets too high, you can also limit it using this basic Python list syntax:

 userFollowers = UserFollower.objects.order_by('-count')[:10]

This will list only the top 10 users.

Summary
In this chapter, we have learned to create login, logout, and registration page
templates. We also learned how to allow the following of another user and
displaying the most followed users.

The next chapter switches to new topics. Sooner or later, you will need an
administration interface for your application to manage your data models. Fortunately,
Django comes with a full-fledged administration interface ready to be used. We will
learn how to enable and customize this interface in the next chapter, so keep reading!

www.it-ebooks.info

http://www.it-ebooks.info/

[149]

Creating an Administration
Interface

In this chapter, we will learn the features of the administrator interface using
Django's inbuilt features. We will also cover how to show tweets in a customized
way, with sidebar or pagination enabled. We will deal with the following topics in
this chapter:

• Customizing the administration interface
• Customizing listing pages
• Overriding administration templates
• Users, groups, and permissions

 ° User permissions
 ° Group permissions
 ° Using permissions in views

• Organizing content into pages (pagination)

Customizing the administration interface
The administration interface provided by Django is very powerful and flexible, and
from the version 1.6, it comes activated by default. This will give you a fully featured
administration kit for your site. Although the administration application should be
sufficient for most needs, Django offers several ways to customize and enhance it.
In addition to specifying which models are available in the administration interface,
you can also specify how listing pages are presented and even override the templates
used to render the administration pages. So, let's learn about these features.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Administration Interface

[150]

Customizing listing pages
As we saw in the previous chapter, we registered our model classes to the
administration interface using the following methods:

• admin.site.register (Tweet)
• admin.site.register (Hashtag)
• admin.site.register (UserFollower)

We can also customize several aspects of the administration pages. Let's learn about
this by example. The tweet listing page displays the string representation of each
tweet, as we can see in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[151]

Wouldn't this page be more useful if it were to display the name of the user who has
posted the tweet, as well as the time of posting, in separate columns? It turns out that
implementing this functionality only requires adding a few lines of code.

Edit the tweet model in tweet/admin.py file as follows:

 from django.contrib import admin
 from models import Tweet, HashTag
 from user_profile.models import UserFollower
 # Register your models here.
 admin.site.register(Tweet)
 admin.site.register(HashTag)
 admin.site.register(UserFollower)

Add new lines of code above #Register your models here and the updated code
will look like this:

 from django.contrib import admin
 from models import Tweet, HashTag
 from user_profile.models import UserFollower
 class TweetAdmin(admin.ModelAdmin):
 list_display = ('user', 'text', 'created_date')
 # Register your models here.
 admin.site.register(Tweet, TweetAdmin)))
 admin.site.register(HashTag)
 admin.site.register(UserFollower)

This code adds the extra column in the administrator view for the TweetAdmin()
class:

 class TweetAdmin(admin.ModelAdmin):
 list_display = ('user', 'text', 'created_date')

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Administration Interface

[152]

Moreover, we have passed an extra parameter to register calls for the administrator
tweet; that is, admin.site.register(Tweet) becomes admin.site.
register(Tweet, TweetAdmin) now. Refresh the same page and note the changes,
as shown in the following screenshot:

The table is now better organized! We simply defined a tuple attribute called
list_display in the TweetAdmin() class of the Tweet model. This tuple contains
the names of the fields to be used in the listing page.

There are other attributes that we can define in the Admin class; each one should be
defined as a tuple of one or more field names.

• list_filter: If defined, this creates a sidebar with links that can be used to
filter objects according to one or more fields in the model.

• ordering: The fields that are used to order objects in the listing page.
• search_fields: If defined, it creates a search field that can be used to

search. The field name is preceded by a minus sign, and descending order is
used instead of ascending order for the available objects in the data model
according to one or more fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[153]

Let's utilize each of the preceding attributes in the tweet listing page. Again, edit the
Tweet model in the tweet/admin.py file and append the following highlighted lines:

 from django.contrib import admin
 from models import Tweet, HashTag
 from user_profile.models import UserFollower

 class TweetAdmin(admin.ModelAdmin):
 list_display = ('user', 'text', 'created_date')
 list_filter = ('user',)
 ordering = ('-created_date',)
 search_fields = ('text',)

 # Register your models here.
 admin.site.register(Tweet, TweetAdmin)
 admin.site.register(HashTag)
 admin.site.register(UserFollower)

This is how it looks after using these attributes:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Administration Interface

[154]

As you can see, we were able to customize and enhance the tweet listing page with
only a few lines of code. Next, we will learn about customizing the templates used
to render administration pages, which will give us even greater control over the
administration interface.

Overriding administration templates
There are times when you want to change the look and feel of the administration
interface or to move the elements on the various administration pages and rearrange
them. Fortunately, the administration interface is flexible enough to do all of this
and more by allowing us to override its templates. The process of customizing
an administration template is simple. First, you copy the template from the
administration application folder to your project's templates folder, and then you
edit this template and customize it to your liking. The location of the administration
templates depends on where Django is installed. Here is a list of the default
installation paths of Django under the major operating systems:

• Windows: C:\PythonXX\Lib\site-packages\django
• UNIX and Linux: /usr/lib/pythonX.X/site-packages/django
• Mac OS X: /Library/Python/X.X/site-packages/django

(Here, X.X is the version of Python on your system. The site-packages folder can
also be found as dist-packages.)

If you cannot find Django in the default installation path for your operating system,
perform a file system search for django-admin.py. You will get multiple hits, but
the one that you want will be under the Django installation path, inside a folder
called bin.

After locating the Django installation path, open django/contrib/admin/
templates/ and you will find the templates used by the administration application.

There are many files in this directory, but the most important ones are these:

• admin/base_site.html: This is the base template for the administration.
This template generates the interface. All pages inherit from this template in
the following model.

• admin/change_list.html: This template generates a list of available objects.
• admin/change_form.html: This template generates a form for adding or

editing an object.
• admin/delete_confirmation.html: This template generates the

confirmation page when an object is deleted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[155]

Let's try to customize one of these templates. Suppose that we want to change the
string Django administration located at the top of all admin pages. To do so, create
a folder called admin inside the templates folder of our project, and copy the
admin/base_site.html file to it. After that, edit the file to change all instances of
Django to Django Tweet:

 {% extends "admin/base.html" %}
 {% load i18n %}
 {% block title %}{{ title|escape }} |
 {% trans 'Django Tweet site admin' %}{% endblock %}
 {% block branding %}
 <h1 id="site-name">{% trans 'Django Tweet administration'
 %}</h1>
 {% endblock %}
 {% block nav-global %}{% endblock %}

The result will look like this:

Because of the modular design of the admin templates, it is usually neither necessary
nor advisable to replace an entire template. It is almost always better to override only
the section of the template that you need to change.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Administration Interface

[156]

The process was pretty simple, wasn't it? Feel free to experiment with other templates.
For example, you may want to add a help message to a listing or edit pages.

The administration templates make use of many advanced features of the Django
template system, so if you see a template tag that you are not familiar with, you can
refer to the Django documentation.

Users, groups, and permissions
So far, we have been logged in to the administration interface using the superuser
account that we created with the manage.py syncdb command. In reality, however,
you may have other trusted users who need access to the administration page. In this
section, we will see how to allow other users to use the administration interface, and
we will learn more about the Django permissions system in the process.

However, before we continue, I want to emphasize this: only trusted users should
be given access to the administration pages. The administration interface is a very
powerful tool, so only those whom you know well should be granted access to it.

User permissions
If you don't have users in the database other than the superuser, create a new
user account using the registration form that we built in Chapter 7, Following and
Commenting. Alternatively, you could use the administration interface itself by
clicking on Users and then Add User.

Next, return to the users list and click on the name of the newly created user. You
will get a form that can be used to edit various aspects of the user account, such as
name and e-mail information. Under the Permissions section of the edit form, you
will find a checkbox labelled Staff status. Enabling this checkbox will let the new
user enter the administration interface. However, they won't be able to do much after
they log in because this checkbox only grants access to the administration area; it
does not give the ability to see or change data.

To give the new user enough permissions to change data models, you can enable the
Superuser status checkbox, which will grant the new user full permission to perform
any function that they want. This option makes the account as powerful as the
superuser account created by the manage.py syncdb command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[157]

On the whole, however, it's not desirable to grant a user full access to everything.
Therefore, Django gives you the ability to have fine control over what users can do
through the permissions system. Below the Superuser status checkbox, you will find
a list of permissions that you can grant to the user. If you examine this list, you will
find that each data model has three types of permissions:

• Adding an object to the data model
• Changing an object in the data model
• Deleting an object from the data model

These permissions are automatically generated by Django for data models that
contain an Admin class. Use the arrow button to grant some permissions to the
account that we are editing. For example, give the account the ability to add, edit,
and delete tweets and hashtags. Next, log out and then log in to the administration
interface again using the new account. You will notice that you will only be able to
manage the tweets and hashtags data models.

The permissions section of the user edit page also contains a checkbox called
Active. This checkbox can be used as a global switch to enable and disable the
account. When unchecked, the user won't be able to log in to the main site or the
administration area.

Group permissions
If you have a considerable number of users who share the same permissions, it
would be a tedious and error-prone task to edit each user's account and assign the
same permissions to them. Therefore, Django provides another user management
facility: groups. To put it simply, groups are a way of categorizing users who share
the same permissions. You can create a group and assign permissions to it. When
you add a user to the group, this user is granted all of the group's permissions.

Creating a group is not very different from other data models. Click on Groups on
the main page of the administration interface, and then click on Add Group. Next,
enter a group name and assign some permissions to the group; finally, click on Save.

To add a user to a group, edit the user account, scroll to the Groups section in the
edit form, and select whichever group you want to add the user to.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Administration Interface

[158]

Using permissions in views
Although we have only used permissions in the administration interface so far,
Django also lets us utilize the permission system while writing views. It is possible
to use permissions while programming a view to grant a group of users access to
a particular feature or page, such as private content. We will learn about the
methods that can be used to do so in this section. We won't actually make changes to
the code of our application, but feel free to do so if you want to experiment with the
methods explained.

If you wanted to check whether a user has a particular permission, you could use the
has_perm() method on the User object. This method takes a string that represents
the permission in the following format:

app.operation_model

The app parameter specifies the name of the application where the model is located;
the operation parameter could be add, change or delete; the model parameter
specifies the name of the model.

For example, to check whether the user can add tweets, use this:

 user.has_perm('tweets.add_tweet')

To check if the user can change tweets, use this:

 user.has_perm('tweets.change_tweet')

Furthermore, Django provides a function named decorator that can be used to restrict
a view to users who have a particular permission. The decorator is called permission_
required, and it is located in the django.contrib.auth.decorators package.

Using this decorator is similar to how we used the login_required function. The
decorator function is to restrict pages to logged in users. Let's say we want to restrict
the tweet_save_page view (in the tweets/views.py file) to users who have the
tweet.add_tweet permission. To do so, we can use the following code:

from django.contrib.auth.decorators import permission_required
@permission_required('tweets.add_tweet', login_url="/login/")
def tweet_save_page(request):
 # [...]

This decorator takes two parameters: the permission to check for and where to
redirect the user if they don't have the required permission.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[159]

The question of whether to use the has_perm method or the permission_required
decorator depends on the level of control that you want. If you need to control access
to a view as a whole, use the permission_required decorator. However, if you
need finer control over permissions inside a view, use the has_perm method. These
two approaches should be sufficient for any permission-related needs.

Organizing content into pages –
pagination
In previous chapters, we have covered things such as listing down the tweets of
users and listing down most followed users, but consider a use case when these
small numbers scale up and we start getting a large number of results for each type
of query. To cover such a situation, we should manipulate our code so as to make it
support pagination.

The page would increase in size, and finding an item within the page would become
difficult. Fortunately, there is a simple and intuitive solution to this: pagination.
Pagination is the process of breaking content into pages. And, as always, Django
already has a component that implements this functionality, ready for us to use!

If we have a large set of tweets, we split the set into pages with ten (or so) items on
each page, present the first page to the user, and provide links to browse other pages.

The Django pagination functionality is encapsulated in a class called Paginator,
which is located in the django.core.paginator package. Let's learn the interface of
this class using the interactive console:

 from tweet.models import *
 from django.core.paginator import Paginator
 query_set = Tweet.objects.all()
 paginator = Paginator(query_set, 10)

Open the Django shell with the python
manage.py shell command.

Here we import some classes, build a query set containing all bookmarks, and
instantiate an object called Paginator. The constructor of this class takes the query
set to be paginated, and the number of items on each page is set.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Administration Interface

[160]

Let's see how to retrieve information from the Paginator object (of course, the
results will vary depending on the amount of bookmarks that you have):

>>> paginator.num_pages # Number of pages

1

>>> paginator.count # Total number of items

5

Items in first page (index is zero-based)

>>> paginator.object_list

[<Tweet: #django is awesome.>, <Tweet: I love Django too.>, <Tweet:
Django makes my day.>, <Tweet: #Django is fun.>, <Tweet: #Django is
fun.>]

Does the first page have a previous page?

>>> page1 = paginator.page(1)

Stores the first page object to page1

>>> page1.has_previous()

False

Does the first page have a next page?

>>> page1.has_next()

True

As you can see, Paginator does the heavy lifting for us. It takes a query set, breaks it
into pages, and enables us to render the query set into multiple pages.

Let's implement pagination into one of our views, the tweet page for example. Open
tweet/views.py and modify the user_page view as follows:

We have our user profile page listing with the following class:

 class Profile(LoginRequiredMixin, View):
 """User Profile page reachable from /user/<username> URL"""
 def get(self, request, username):
 params = dict()
 userProfile = User.objects.get(username=username)
 userFollower = UserFollower.objects.get(user=userProfile)
 if userFollower.followers.filter
 (username=request.user.username).exists():
 params["following"] = True
 else:
 params["following"] = False
 form = TweetForm(initial={'country': 'Global'})
 search_form = SearchForm()
 tweets = Tweet.objects.filter(user=userProfile).
 order_by('-created_date')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[161]

 params["tweets"] = tweets
 params["profile"] = userProfile
 params["form"] = form
 params["search"] = search_form
 return render(request, 'profile.html', params)

We need to modify the preceding code to use pagination:

 class Profile(LoginRequiredMixin, View):
 """User Profile page reachable from /user/<username> URL"""
 def get(self, request, username):
 params = dict()
 userProfile = User.objects.get(username=username)
 userFollower = UserFollower.objects.get(user=userProfile)
 if userFollower.followers.filter
 (username=request.user.username).exists():
 params["following"] = True
 else:
 params["following"] = False
 form = TweetForm(initial={'country': 'Global'})
 search_form = SearchForm()
 tweets = Tweet.objects.filter(user=userProfile).
 order_by('-created_date')
 paginator = Paginator(tweets, TWEET_PER_PAGE)
 page = request.GET.get('page')
 try:
 tweets = paginator.page(page)
 except PageNotAnInteger:
 # If page is not an integer, deliver first page.
 tweets = paginator.page(1)
 except EmptyPage:
 # If page is out of range (e.g. 9999), deliver last page
 of results.
 tweets = paginator.page(paginator.num_pages)
 params["tweets"] = tweets
 params["profile"] = userProfile
 params["form"] = form
 params["search"] = search_form
 return render(request, 'profile.html', params)

The following code snippet mainly works the pagination magic in the
preceding code:

 tweets = Tweet.objects.filter(user=userProfile).
 order_by('-created_date')
 paginator = Paginator(tweets, TWEET_PER_PAGE)
 page = request.GET.get('page')
 try:
 tweets = paginator.page(page)
 except PageNotAnInteger:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Administration Interface

[162]

 # If page is not an integer, deliver first page.
 tweets = paginator.page(1)
 except EmptyPage:
 # If page is out of range (e.g. 9999), deliver last page
 of results.
 tweets = paginator.page(paginator.num_pages)

To make this code work, add the TWEET_PER_PAGE = 5 parameter in the settings.
py file, and, in the preceding code, just add the import settings.py statement at
the top of the code.

We read a get variable called page from the request, which tells Django which page
has been requested. We also set the TWEET_PER_PAGE parameter in the settings.py
file to show the number of tweets on a single page. For this specific case, we choose it
to be 5.

The paginator = Paginator(tweets, TWEET_PER_PAGE) method creates a
pagination object that holds all the information about the query.

Now, just with a URL user/<username>/?page=<page_numer>, the page will look
as shown in the following screenshot. The first image shows the user's tweet with the
page number in the URL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[163]

The following screenshot shows the tweet list of a user on their homepage:

Summary
Although this chapter is relatively short, we learned how to implement a lot of
things. This emphasizes the fact that Django lets you do a lot with only a few lines
of code. You learned how to utilize Django's powerful administration interface, how
to customize it, and how to take advantage of the comprehensive permission system
offered by Django.

In the next chapter, you will learn about several exciting features found in almost
every Web 2.0 application nowadays.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[165]

Extending and Deploying
In this chapter, we will prepare our application for deployment in production by
utilizing various Django framework features. We will add support for multiple
languages, improve performance by caching and automated testing, and configure
the project for a production environment. There is a lot of interesting and useful
information in this chapter, so make sure you go through it before publishing your
application online!

In this chapter, you will learn about the following topics:

• Sending invitation e-mails to friends
• Internationalization (i18n)—offering the site in multiple languages
• Caching—improving the performance of your site during high traffic
• Unit testing—automating the process of testing your application

Sending invitation e-mails to friends
Enabling our users to invite their friends carries many benefits. People are more likely
to join our site if their friends already use it. After they join, they will also invite their
friends, and so on, which means more and more users for our application. Therefore,
it is a good idea to include an "invite a friend" feature in our app.

Building this feature requires the following components:

• An invitation data model to store invitations in the database
• A form in which users can type the e-mail IDs of their friends and

send invitations
• An invitation e-mail with an activation link
• A mechanism to process activation links sent in e-mails

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[166]

Throughout this section, we will implement each of these components. However,
because this section involves sending e-mails, we first need to configure Django
to send e-mails by adding some options to the settings.py file. So, open the
settings.py file and add the following lines:

 SITE_HOST = '127.0.0.1:8000'
 DEFAULT_FROM_EMAIL = 'MyTwitter <noreply@mytwitter.com>'
 EMAIL_HOST = 'mail.yourisp.com'
 EMAIL_PORT = ''
 EMAIL_HOST_USER = 'username+mail.yourisp.com'
 EMAIL_HOST_PASSWORD = ''

Let's see what each variable in the preceding code does:

• SITE_HOST: This is the hostname of your server. Leave it as 127.0.0.1:8000
for now. When we deploy our server in the next chapter, we will change this.

• DEFAULT_FROM_EMAIL: This is the e-mail address that appears in the From
field of the outgoing e-mail server. For the host username, input your
username plus your e-mail server, as shown in the preceding code snippet.
Leave the fields empty if your ISP does not require them.

• EMAIL_HOST: This is the hostname of your e-mail server.
• EMAIL_PORT: This is the port number of the outgoing e-mail server. If you

leave it empty, the default value (25) will be used. You also need to obtain
this from your ISP.

• EMAIL_HOST_USER and EMAIL_HOST_PASSWORD: This is the username and
password for e-mails sent by Django.

If your development machine doesn't run a mail server, most likely this is the case,
then you need to enter your ISP's outgoing e-mail server. Contact your ISP for more
information.

To verify that your settings are correct, launch the interactive shell and enter the
following:

>>> from django.core.mail import EmailMessage

>>> email = EmailMessage('Hello', 'World', to=['your_email@example.com'])

>>> email.send()

Replace the your_email@example.com parameter with your actual e-mail address. If
the preceding call to send mail does not raise an exception and you receive the e-mail,
then all is set. Otherwise, you need to verify your settings with your ISP and try again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[167]

But wait, what if you don't get any information from the ISP? We then try the
alternate way: using Gmail to send a mail (of course, not as noreply@mytweet.com,
but from your real e-mail ID). Let's look at the changes you will have to make in the
settings.py file of MyTweeets project for the same.

Remove the previous settings.py file entries entirely and add the following:

 EMAIL_USE_TLS = True
 EMAIL_HOST = 'smtp.gmail.com'
 EMAIL_HOST_USER = 'your-gmail-email-id'
 EMAIL_HOST_PASSWORD = 'your-gmail-application-password'
 EMAIL_PORT = 587
 SITE_HOST = '127.0.0.1:8000'

If you are getting an error such as:

 (534, '5.7.9 Application-specific password required. Learn more at\
n5.7.9 http://support.google.com/accounts/bin/answer.py?answer=185833
zr2sm8629305pbb.83 - gsmtp')

This means that the EMAIL_HOST_PASSWORD parameter needs a application
authorization password that is not your e-mail password. Follow the link mentioned
in the host section to get more details on how to create one.

After setting the things up, try sending the mail again from the shell using the
following commands:

>>> from django.core.mail import EmailMessage

>>> email = EmailMessage('Hello', 'World', to=['your_email@example.com'])

>>> email.send()

Here, the your_email@example.com parameter is any e-mail address that you want
to send a mail to. The from address of the mail will be the Gmail e-mail address that
we passed to the following variable:

 EMAIL_HOST_USER = 'your-gmail-email-id'

Now, once the settings are correct, sending an e-mail in Django is a piece of cake! We
will use the EmailMessage function to send the invitation e-mail, but first, let's create
a data model to store invitations.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[168]

The invitation data model
An invitation consists of the following information:

• The recipient name
• The recipient e-mail
• The user object of the sender

We also need to store an activation code for the invitation. This code will be sent in
the invitation e-mail. The code will serve two purposes:

• Before accepting the invitation, we can use the code to verify that the
invitation actually exists in the database

• After accepting the invitation, we can use the code to retrieve the invitation
information from the database and to follow relationships between the
sender and recipient

With the preceding information in mind, let's create the invitation data model. Open
the user_profile/models.py file and append the following code to it:

 class Invitation(models.Model):
 name = models.CharField(maxlength=50)
 email = models.EmailField()
 code = models.CharField(maxlength=20)
 sender = models.ForeignKey(User)
 def __unicode__(self):
 return u'%s, %s' % (self.sender.username, self.email)

There shouldn't be anything new or difficult to understand in this model. We have
simply defined fields for the recipient name, recipient e-mail, activation code, and the
sender of the invitation. We also created a __unicode__ method for debugging and
enabled the model in the administration interface. Do not forget to run the python
manage.py syncdb command to create the new model's table in the database.

We will also create the invitation form for this. Create a file called forms.py in the
user_profile directory and update it with the following code:

from django import forms

class InvitationForm(forms.Form):
 email = forms.CharField(widget=forms.TextInput(attrs={'size':
 32, 'placeholder': 'Email Address of Friend to invite.',
 'class':'form-control search-query'}))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[169]

Creating the view page from where the invitations will be sent is similar to creating
the other pages that we created for search and tweets forms that we made by creating
a new file called template/invite.html:

 {% extends "base.html" %}
 {% load staticfiles %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-6 col-md-offset-3 column">
 {% if success == "1" %}
 <div class="alert alert-success" role="alert">Invitation
 Email was successfully sent to {{ email }}</div>
 {% endif %}
 {% if success == "0" %}
 <div class="alert alert-danger" role="alert">Failed to
 send Invitation Email to {{ email }}</div>
 {% endif %}
 <form id="search-form" action="" method="post">{%
 csrf_token %}
 <div class="input-group input-group-sm">
 {{ invite.email.errors }}
 {{ invite.email }}

 <button class="btn btn-search"
 type="submit">Invite</button>

 </div>
 </form>
 </div>
 </div>
 {% endblock %}

The URL entry for this is as follows:

 url(r'^invite/$', Invite.as_view()),

Now, we need to create get and post methods to send an invitation mail with
this form.

As sending an e-mail is more specific to a user than a tweet, we will create this
method in user_profile views, contrary to the tweet view that we used before.

Update the user_profile/views.py file with the following code:

from django.views.generic import View
from django.conf import settings
from django.shortcuts import render
from django.template import Context

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[170]

from django.template.loader import render_to_string
from user_profile.forms import InvitationForm
from django.core.mail import EmailMultiAlternatives
from user_profile.models import Invitation, User
from django.http import HttpResponseRedirect
import hashlib

class Invite(View):
 def get(self, request):
 params = dict()
 success = request.GET.get('success')
 email = request.GET.get('email')
 invite = InvitationForm()
 params["invite"] = invite
 params["success"] = success
 params["email"] = email
 return render(request, 'invite.html', params)

 def post(self, request):
 form = InvitationForm(self.request.POST)
 if form.is_valid():
 email = form.cleaned_data['email']
 subject = 'Invitation to join MyTweet App'
 sender_name = request.user.username
 sender_email = request.user.email
 invite_code = Invite.generate_invite_code(email)
 link = 'http://%s/invite/accept/%s/' % (settings.SITE_HOST,
 invite_code)
 context = Context({"sender_name": sender_name,
 "sender_email": sender_email, "email": email, "link": link})
 invite_email_template =
 render_to_string('partials/_invite_email_template.html',
 context)
 msg = EmailMultiAlternatives(subject, invite_email_template,
 settings.EMAIL_HOST_USER, [email],
 cc=[settings.EMAIL_HOST_USER])
 user = User.objects.get(username=request.user.username)
 invitation = Invitation()
 invitation.email = email
 invitation.code = invite_code
 invitation.sender = user
 invitation.save()
 success = msg.send()
 return HttpResponseRedirect('/invite?success='+str(success)
 +'&email='+email)

 @staticmethod

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[171]

 def generate_invite_code(email):
 secret = settings.SECRET_KEY
 if isinstance(email, unicode):
 email = email.encode('utf-8')
 activation_key = hashlib.sha1(secret+email).hexdigest()
 return activation_key

Here, the get() method is as simple as rendering the invite.html file with the
invite form as a parameter and a flag called the success and email variable is
initially unset.

The post() method uses the usual form check and variable extraction concept; the
code you will see for the first time is as follows:

 invite_code = Invite.generate_invite_code(email)

This is actually a static function call that generated the activation token with a
unique key for every invited user. The render_to_string() method works when
you load a template called _invite_email_template.html and pass the following
variables to it:

• sender_name: This is the name of the person who has invited or is the sender
of the e-mail

• sender_email: This is the e-mail address of the sender
• email: This is the e-mail address of the person who has been invited
• link: This is the invitation acceptance link

The template is then used to render the body of the invitation e-mail. After that, we
use the EmailMultiAlternatives() method to send the e-mail, as we did during
the interactive session in the previous section.

There are several observations to be made here:

• The format of the activation link is http://SITE_HOST/invite/accept/
CODE/. We will write a view to handle such URLs later in this section.

• This is the first time we used a template to render something other than a
web page. As you can see, the template system is quite flexible and allows us
to build e-mails, as well as web pages, or any other text for that matter.

• We used the render_to_string() and render() methods to build the
message body as opposed to the usual render_to_response call. If you
remember, this is how we rendered templates earlier in this book. We are
doing this here because we are not rendering a web page.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[172]

Since the send method loads a template called _invite_email_template.html,
create a file with this name in the templates folder and insert the following content:

 Hi,
 {{ sender_name }}({{ sender_email }}) has invited you to join
 Mytweet.
 Please click {{ link }} to join.
This email was sent to {{ email }}. If you think this is a mistake
Please ignore.

We are halfway through the implementation of the "invite a friend" feature. At the
moment, clicking on the activation link produces a 404 page not found error, so, next,
we will write a view to handle it.

Handling activation links
We have made good progress; users are now able to send invitations to their friends
via e-mail. The next step is to build a mechanism that handles activation links in
invitations. Here is an outline of what we are going to do.

We will build a view that handles activation links. This view verifies that the invitation
code actually exists in the database, and that the user who registers automatically
follows the user who sent the link and gets redirected to the registration page.

Let's start by writing a URL entry for the view. Open the urls.py file and add the
highlighted line to it:

 url(r'^invite/accept/(\w+)/$', InviteAccept.as_view()),

Create a class in the user_profile/view.py file with thename of the class
as InviteAccept().

Logically, InviteAccept will work as the users will be asked to register for the
application, and if they have already registered, they will be asked to follow the user
who invited them.

For the sake of simplicity, we will redirect the user to the registration page with the
activation code so that when they register, they automatically become followers.
Let's take a look at the following code:

class InviteAccept(View):
 def get(self, request, code):
 return HttpResponseRedirect('/register?code='+code)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[173]

Then, we will write the registration page with the following code:

class Register(View):
 def get(self, request):
 params = dict()
 registration_form = RegisterForm()
 code = request.GET.get('code')
 params['code'] = code
 params['register'] = registration_form
 return render(request, 'registration/register.html', params)

 def post(self, request):
 form = RegisterForm(request.POST)
 if form.is_valid():
 username = form.cleaned_data['username']
 email = form.cleaned_data['email']
 password = form.cleaned_data['password']
 try:
 user = User.objects.get(username=username)
 except:
 user = User()
 user.username = username
 user.email = email
 commit = True
 user = super(user, self).save(commit=False)
 user.set_password(password)
 if commit:
 user.save()
 return HttpResponseRedirect('/login')

As you can see, the view follows the URL format sent in invitation e-mails. The
activation code is captured from the URL using a regular expression and is, then,
passed to the view as a parameter.

This was a bit time-consuming, but we were able to put our Django knowledge to
good use while implementing it. You can now click on the invitation link that you
received via e-mail to see what happens. You will be redirected to the registration
page; you can create a new account there, log in, and note how the new account, and
your original one, became followers of the sender.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[174]

Internationalization (i18n) – offering the
site in multiple languages
People won't use our application if they cannot read its pages. So far, we have been
concerned with English-speaking users only. However, there are people all over the
world who do not know English or prefer to use their native language. To appeal
to those people, it would be a good idea to offer the interface of our application
in multiple languages. This would overcome the language barrier and open new
frontiers for our application, especially in regions where English is not common.

As you may have guessed, Django provides all the components needed to translate
a project into multiple languages. The system that is responsible for providing this
feature is called the internationalization system (i18n). The process of translating a
Django project is quite simple.

You follow these three steps:

1. Specify which strings should be translated in your application—for example,
status and error messages are translatable, whereas usernames are not.

2. Create a translation file for each language you want to support.
3. Enable and configure the i18n system.

We will go through each step in detail in the following subsections. By the end of this
section of the chapter, our application will support multiple languages and you will
be able to translate any other Django project with ease.

Marking strings as translatable
The first step in translating an application is telling Django which strings should be
translated. Generally speaking, strings that are part of views and templates need to
be translated, while strings that are entered by the user do not need to be. Marking a
string as translatable is done with a function call. The name of the function and how it
is called depends on where the string is located: in a view, template, model, or form.

This step is much easier than it initially looks. Let's learn about it with an example.
We will translate the "invite follower" functionality in our application. The process
of translating the rest of the application will be exactly the same. Open the user_
profile/views.py file and make the highlighted changes to the invite view:

from django.utils.translation import ugettext as _
from django.views.generic import View
from django.conf import settings
from django.shortcuts import render
from django.template import Context

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[175]

from django.template.loader import render_to_string
from user_profile.forms import InvitationForm
from django.core.mail import EmailMultiAlternatives
from user_profile.models import Invitation, User
from django.http import HttpResponseRedirect
import hashlib

class Invite(View):
 def get(self, request):
 params = dict()
 success = request.GET.get('success')
 email = request.GET.get('email')
 invite = InvitationForm()
 params["invite"] = invite
 params["success"] = success
 params["email"] = email
 return render(request, 'invite.html', params)

 def post(self, request):
 form = InvitationForm(self.request.POST)
 if form.is_valid():
 email = form.cleaned_data['email']
 subject = _('Invitation to join MyTweet App')
 sender_name = request.user.username
 sender_email = request.user.email
 invite_code = Invite.generate_invite_code(email)
 link = 'http://%s/invite/accept/%s/' % (settings.SITE_HOST,
 invite_code)
 context = Context({"sender_name": sender_name,
 "sender_email": sender_email, "email": email, "link": link})
 invite_email_template =
 render_to_string('partials/_invite_email_template.html',
 context)
 msg = EmailMultiAlternatives(subject, invite_email_template,
 settings.EMAIL_HOST_USER, [email],
 cc=[settings.EMAIL_HOST_USER])
 user = User.objects.get(username=request.user.username)
 invitation = Invitation()
 invitation.email = email
 invitation.code = invite_code
 invitation.sender = user
 invitation.save()
 success = msg.send()
 return HttpResponseRedirect('/invite?success='+str(success)
 +'&email='+email)

 @staticmethod

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[176]

 def generate_invite_code(email):
 secret = settings.SECRET_KEY
 if isinstance(email, unicode):
 email = email.encode('utf-8')
 activation_key = hashlib.sha1(secret+email).hexdigest()
 return activation_key

Note that the subject string starts with a "_"; alternatively, you can also write it as:

from django.utils.translation import ugettext
 subject = ugettext('Invitation to join MyTweet App')

Either way, it works well.

As you can see, the changes are minimal:

• We imported a function called ugettext from django.utils.translation.
• We used as a keyword to assign a shorter name to the function (the

underscore character). We did so because this function will be used to mark
strings as translatable in views, and since this is a very common task, it's a
good idea to give the function a shorter name.

• We marked a string as translatable simply by passing it to the _ function.

That was pretty simple, wasn't it? However, there is one little observation that we
need to make here. The first message uses string formatting, and we applied the
% operator after calling the _() function. This is necessary to avoid translating the
e-mail address. It's also preferable to use named formats, which give you greater
control while doing the actual translation later. So, you may want to define the
following code:

message= \
_('An invitation was sent to %(email)s.') % {
'email': invitation.email}

Now that we know how to mark strings as translatable in views, let's move to
templates. Open the invite.html file in the templates folder and modify it as follows:

{% extends "base.html" %}
{% load staticfiles %}
{% load i18n %}
{% block content %}
<div class="row clearfix">
 <div class="col-md-6 col-md-offset-3 column">
 {% if success == "1" %}
 <div class="alert alert-success" role="alert">
 {% trans Invitation Email was successfully sent to %}{{
 email }}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[177]

 </div>
 {% endif %}
 {% if success == "0" %}
 <div class="alert alert-danger" role="alert">Failed to send
 Invitation Email to {{ email }}</div>
 {% endif %}
 <form id="search-form" action="" method="post">{%
 csrf_token %}
 <div class="input-group input-group-sm">
 {{ invite.email.errors }}
 {{ invite.email }}

 <button class="btn btn-search"
 type="submit">Invite</button>

 </div>
 </form>
 </div>
 </div>
 {% endblock %}

Here, we placed the {% load i18n %} parameter at the beginning of the template to
give it access to translation tags. The <load> tag is generally used to enable additional
template tags that are not available by default. You need to place it at the top of every
template that uses translation tags. i18n is shorthand for internationalization, which is
the name of the Django framework that provides translation features.

Next, we used a template tag called trans to mark strings as translatable. This
template tag works exactly the same as the gettext function in views. It's worth
noting that the trans tag does not work if the string contains a template variable.
In this case, you would need to use the blocktrans tag like:

{% blocktrans %}

You can pass a variable block, that is, {{ variable }} also inside
{% endblocktrans %} block to make it more meaningful for the readers.

Now you know how to deal with translatable strings in templates too. So, let's move
to forms and models. Marking a string as translatable in a form or model is slightly
different from views. To learn how it is done, open the user_profile/forms.py file
and modify the invite form, as follows:

from django.utils.translation import gettext_lazy as _
class InvitationForm(forms.Form):
 email = forms.CharField(widget=forms.TextInput(attrs={'size':
 32, 'placeholder': _('Email Address of Friend to invite.'),
 'class':'form-control'}))

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[178]

The only difference here is that we imported the gettext_lazy function instead
of gettext . gettext_lazy, which delays translating the string until its return
value is accessed. This is needed here because the attributes of the form are created
only once: when the application is started. If we use the normal gettext function,
the translated labels will be stored in the form attributes using the default language
(usually English) and will never be translated again. However, if we use the
gettext_lazy function, the function will return a special object that will translate
the string every time it is accessed and, hence, the translation will be done correctly.
This feature makes the gettext_lazy function ideal for form and model attributes.

With this, we finish marking the strings of the "invite friend" view for translation.
To help you remember what's covered in this subsection, here is a quick summary
of the techniques used to mark the translatable strings:

• In views, mark the translatable strings using the gettext function
(usually imported as _)

• In templates, mark the translatable strings using the trans template tag for
strings that do not contain variables and the blocktrans tag for the strings
that do

• In forms and models, mark the translatable strings using the gettext_lazy
function (usually imported as _)

Of course, there are special cases that may need to be handled separately. For
example, you may want to translate default parameter values in views using the
gettext_lazy function instead of the gettext function. As long as you understand
the difference between these two functions, you should be able to decide when you
need to do so.

Creating translation files
Now that we have finished marking strings for translation, the next step is to create
a translation file for each language that we want to support. This file contains all
the translatable strings along with their translations and is created using a utility
provided by Django.

Let's create a translation file. First, you need to locate a file named make-messages.py
in the bin directory inside your Django installation folder. The easiest way to find it is
by using the search functionality in your operating system. Once you find it, copy it to
your system path (/usr/bin/ in Linux and Mac OS X and. c:\windows\ in Windows).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[179]

Also, make sure that it is executable by running the following command in Linux
and Mac OS X (this step is not needed for Windows users):

$ sudo chmod +x /usr/bin/make-messages.py

The make-messages.py utility uses a software package called GNU gettext to extract
the translatable strings from the source code. So, you need to install this package.
For Linux, search for the package in your package manager and install it. Windows
users will find an installer for the package at http://gnuwin32.sourceforge.net/
packages/gettext.htm.

Finally, Mac OS X users will find a version of the package for their operating system
along with the installation instructions at http://gettext.darwinports.com/.

Once you have the GNU gettext package installed, open a terminal, go to your project
folder, create a folder called locale there, and then run the following command:

$ make-messages.py -l de

This command creates a translation file for the German language. The de variable
is the language code for German. If you want to target another language, put its
language code instead of de and continue to do so for the rest of the chapter. In
addition to this, if you want to support more than one language, run the previous
command for each language and apply the instructions to the rest of this section to
all languages.

Once you run the preceding command, it will create a file called django.po at
locale/de/LC_MESSAGES/. This is the translation file for the German language.
Open it in a text editor to see what it looks like. The file starts with some metadata,
such as the creation date and a character set. After that, you will find an entry for
each translatable string. Each entry consists of the filename and line number of the
string, the string itself, and an empty string below it where the translation should go.
Here is a sample entry from the file:

#: user_profile/forms.py
msgid "Friend's Name"
msgstr ""

To translate the string, simply use your text editor to type the translation in the
empty string on the third line. You can also use a specialized translation editor, such
as Poedit (available for all major operating systems at http://www.poedit.net/),
but for our simple file, a regular text editor should suffice. Make sure that you set a
valid character in the metadata section of the file. I recommend that you use UTF-8:

"Content-Type: text/plain; charset=UTF-8\n"

www.it-ebooks.info

http://gnuwin32.sourceforge.net/packages/gettext.htm
http://gnuwin32.sourceforge.net/packages/gettext.htm
http://gettext.darwinports.com/
http://www.poedit.net/
http://www.it-ebooks.info/

Extending and Deploying

[180]

You may note that the translation file contains some strings from the admin interface.
This is because the admin/base_site.html admin template uses the trans template
tag to mark its strings as translatable. There is no need to translate these strings;
Django already comes with translation files for them.

Once you're done translating, you need to compile the translation file into a format
that Django can use. This is done using another utility provided by Django called the
compile-messages.py command. Locate and move this file to your system path and
make sure that it is executable by following the same procedure as we did with the
make-messages.py command.

Next, run the following command from within your project folder:

$ compile-messages.py

If the utility complains about an error in the file (such as a missing quotation mark),
correct the error and try again. Once it is successful, the utility will create a compiled
translation file called django.mo in the same folder and everything will be set for the
next step in this section.

Enabling and configuring the i18n system
Django comes with the i18n system enabled by default. You can verify this by
searching for the following line in the settings.py file:

USE_I18N = True

There are two ways to configure the i18n system. You can either set the language
globally for all users or let users specify their preferred languages individually.
We will see how to do both in this subsection.

To set the active language globally, find the variable called LANGUAGE_CODE in the
settings.py file and assign your preferred language code to it. For example, if you
want to set German as the default language for our project, change the language
code as follows:

LANGUAGE_CODE = 'de'

Now, start the development server if it's not already running, and navigate to the
"invite friend" page. There, you will find that the strings have changed according
to what you entered in the German translation file. Now, change the value of the
LANGUAGE_CODE variable to 'en' and note how the page reverts back to English.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[181]

The second configuration method is to let users choose the language. To do so, we
should enable a class called LocaleMiddleware. To put it simply, a middleware is a
class that processes a request or response object. Many components of Django make
use of middleware classes to implement features. To see this, open the settings.
py file and search for the MIDDLEWARE_CLASSES variable. You will find a list of
strings there, and one of them will be django.contrib.sessions.middleware.
SessionMiddleware, which attaches session data to the request object. We don't
need to learn how middleware classes are implemented before using them. To enable
LocaleMiddleware, simply add its classpath to the MIDDLEWARE_CLASSES list. Make
sure that you put LocaleMiddleware after SessionMiddleware because the locale
middleware utilizes the session API, as we will see next. Open the settings.py file
and modify the file as highlighted in the following code snippet:

MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.middleware.doc.XViewMiddleware',
'django.middleware.locale.LocaleMiddleware',
)

The locale middleware determines the active language for the user by following
these steps:

1. It looks for a key named django_language in the session data.
2. If the key does not exist, it looks for a cookie called django_language.
3. If the cookie does not exist, it looks at the language code in the

Accept-Language HTTP header. This header is sent by the browser
to the web server indicating which languages you would prefer to
receive content in.

4. If all else fails, the LANGUAGE_CODE variable in the settings.py file is used.

In all the preceding steps, Django looks for a language code that matches one of
the available translation files. To effectively utilize the locale middleware, we need
a view that enables the user to choose a language and updates the session data
accordingly. Fortunately, Django already comes with such a view for us to use. The
view is called setlanguage, and it expects a language code in a GET variable called
language. It updates the session data using this variable and redirects the user to the
originating page. To enable this view, edit the urls.py file and add the following
highlighted lines to it:

urlpatterns = patterns('',
i18n
(r'^i18n/', include('django.conf.urls.i18n')),
)

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[182]

Adding the preceding lines is similar to how we added URL entries for the admin
interface. If you recall from a previous chapter, the include() function can be used to
include URL entries from another application under a specific path. Now, we can let
the user change the language to German by providing a link, such as /i18n/setlang/
language=de. We will modify the base template to add such links to all pages. Open
the templates/base.html file and add the following highlighted lines to it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 [...]
 </head>
 <body>
 [...]
 <div id="footer">
 Django Mytweets

 Languages:
 en
 de
 [218]Chapter 11
 </div>
 </body>
</html>

Additionally, we will style the new footer by appending the following CSS code to
the site_media/style.css file:

#footer {
margin-top: 2em;
text-align: center;
}

Now, the i18n functionality of our application is ready. Point your browser to the
"invite friend" page and try the new language links at the bottom of the page. The
language should change according to which link is clicked.

Before we conclude this section, there are a few observations to be made here:

• You can access the currently active language in views using the request
LANGUAGE_CODE attribute.

• Django itself is translated in a number of languages. You can see this by
triggering a form error while a language other than English is active. Error
messages will appear in the selected language even though you didn't
translate them yourself.

• In templates, when the RequestContext variable is used, the currently active
language is accessible using the LANGUAGE_CODE template variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[183]

This section was a bit long, but you learned a very important feature from it. By
offering our application in multiple languages, we make it accessible to a broader
audience, which gives it greater potential to attract more and more users. This
actually applies to any web application, and, now, we will be able to translate any
Django project in multiple languages with ease.

In the next section, we will shift to a different topic. When the user base of your
application grows, the load on your server will increase and you will start to look for
ways to improve the performance of your application. This is where caching comes
to rescue.

So, please read on to learn about this very useful technique!

Caching – improving the performance of
your site during high traffic
Pages of web applications are dynamically generated. Code is executed to process
user input and generate output every time a page is requested. There are a lot of
overheads involved in generating dynamic pages, especially when compared to
serving static HTML files. The code may connect to a database, perform expensive
calculations, process files, and so on. At the same time, being able to generate pages
with code is exactly what makes a website dynamic and interactive.

Wouldn't it be great if we could get the best of both worlds? This is what caching
does, and it's a feature that is implemented on most the sites with medium to
high traffic. When a page is requested, caching stores the generated HTML of the
page and reuses it later when the same page is requested again. This cuts a lot of
overheads by avoiding the generation of the same page over and over again. Of
course, cached pages are not stored forever. When a page is cached, an expiration
period is set for the cache. When the cached page expires, it is deleted and the page is
generated and cached again. The expiration period is usually between a few seconds
and a few minutes, depending on the traffic of the site. The expiration period ensures
that the cache is updated periodically and that users receive content updates, while,
at the same time, reducing the overhead of generating pages.

Although caching is particularly useful for medium to high traffic sites, sites with
low traffic can also benefit from it. If the site happens to receive a surge of high traffic
suddenly, perhaps because it was featured on a major news site, you can enable
caching to reduce the server load and help your website survive the surge of high
traffic. Later, when the traffic calms down, you can turn off caching. So, caching
is also useful for small websites. You never know when you may need it, so you'd
better have this information ready.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[184]

Enabling caching
We will start this section by enabling the caching system. To use caching, you
first need to choose a caching backend and specify your choice in a variable called
CACHE_BACKEND in the settings.py file. The contents of this variable depend on the
caching backend you choose. Some of the available options are:

• Simple Caching: For this, the cache data is stored in process memory. This is
only useful to test the caching system during development and must not be
used in production. To enable it, add the following to the settings.py file:
CACHE_BACKEND = 'simple:///'

• Database Caching: For this, the cache data is stored in a database table. To
create the cache table, run the following command:
$ python manage.py createcachetable cache_table

Then, add the following to the settings.py file:
CACHE_BACKEND = 'db://cache_table'

Here, the cache table was called cache_table. You can call it whatever you
want as long as it doesn't conflict with an existing table.

• Filesystem Caching: Here, the cache data is stored in the local filesystem. To
use it, add the following to the settings.py file:
CACHE_BACKEND = 'file:///tmp/django_cache'

Here, the /tmp/django_cache variable is used to store cache files. You can
specify another path if you like.

• Memcached: Memcached is an advanced, highly efficient, and fast caching
framework. Installing and configuring it is beyond the scope of this book, but
if you already have a Memcached server available, you can specify its IP and
port in the settings.py file, as follows:
CACHE_BACKEND = 'memcached://ip:port/'

If you are not sure which backend to choose for this section, go with simple caching.
In reality, however, if you are caught in a sudden surge of traffic and want to improve
server performance, go with Memcached or database caching, depending on what's
available to you on the server. On the other hand, if you have a website with medium
to high traffic, I highly recommend you to use Memcached, as it is definitely the
fastest caching solution available for Django. The information presented in this section
works the same regardless of which caching backend you choose.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[185]

So, decide on a caching backend and insert the corresponding CACHE_BACKEND
variable in the settings.py file. Next, you should specify the expiration duration of
cached pages in seconds. Add the following to the settings.py file to cache pages
for five minutes:

CACHE_MIDDLEWARE_SECONDS = 60 * 5

Now, we are done with enabling the caching system. Continue reading to learn how
to utilize caching to improve the performance of your application.

Configuring caching
You can configure Django to cache your whole site or specific views. We will learn
how to do both in this subsection.

Caching the whole site
To cache your whole site, add the CacheMiddleware class to your MIDDLEWARE_
CLASSES class in the settings.py file:

MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.middleware.cache.CacheMiddleware',
'django.middleware.doc.XViewMiddleware',
'django.middleware.locale.LocaleMiddleware',
)

Order matters here as it did when we added the locale middleware. The caching
middleware class should be added after the session and authentication middleware
classes and before the locale middleware class.

This is all that you need to cache your Django site. From now on, whenever a page
is requested, Django will store the generated HTML and reuse it later. It's important
to realize that the caching system only caches pages that do not have GET and POST
variables. So, our users will still be able to post tweets and follow friends because the
views of these pages expect GET or POST variables. On the other hand, pages such
as tweets and hashtag listings will be cached.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[186]

Caching specific views
Sometimes, you will want to cache only specific pages of your website—perhaps a
high-traffic site linked to a page of yours, so that most of the traffic will be directed
to this particular page. In this case, it would make sense to cache this page only.
Another good candidate for caching is a page that is expensive to generate, so you
would only want it to be generated once every five minutes or so. The tag cloud
page in our application fits the latter case. Every time the page is requested, Django
iterates through all the tags in the database and counts the number of tweets for each
tag. This is an expensive operation because it requires a large number of database
queries. Therefore, caching this view is a good idea.

To cache the view based on the hashtag class, you simply apply a method called
cache_page and the caching parameter with it. Try this by editing the mytweets/
urls.py file as highlighted in the following code:

from django.views.decorators.cache import cache_page
...
...
url(r'^search/hashTag$', cache_page(60 * 15)(SearchHashTag.as_
view())),
...
...

Using the cache_page() method is straightforward. It lets you specify which views
to cache. The rules mentioned in site caching also apply to view caching. If the view
receives GET or POST parameters, Django won't cache it.

With this information, we finish this section. Caching won't be necessary when you
first release your website to the public. However, when your website grows, or if you
suddenly receive a surge of high traffic, the caching system will certainly become
handy. So, keep it in mind while monitoring the performance of your application.

Next, we are going to learn about the Django testing framework. Testing can
sometimes be a tedious task. Wouldn't it be great if you could run a single command
and it took care of testing your site? Django lets you do this, and we will learn about
it in the next section.

Template fragments can be cached in the following manner:

 % load cache %}
 {% cache 500 sidebar %}
 .. sidebar ..
 {% endcache %}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[187]

Unit testing – automating the process of
testing your application
During the course of this book, we sometimes modified a view that we wrote
previously. This actually happens quite often while developing software. One may
modify or even rewrite a function to change the implementation details, because the
requirements have changed, or simply to refactor the code and make it more readable.

When you modify a function, you have to test it again to make sure that your
changes didn't introduce bugs. However, testing will become a boring task if you
have to repeat the same tests over and over every time you modify a function. You
may also forget to test all aspects of the function if they are not well documented.
Clearly, this is not an ideal situation; we definitely need a better mechanism to
handle testing.

Fortunately, a solution already exists for this. It is called unit testing. The idea is that
you write code to test your code. The testing code calls your functions and verifies
that they behave as expected and then prints a report of the results. You only have to
write the testing code once. Later, whenever you want to test, you can simply run the
testing code and examine the resulting report.

Python comes with a framework for unit testing. It is located in the unit test module.
Django extends this framework to add support for view testing. We will learn how to
use the Django unit testing framework in this section.

The test client
In order to interact with views, Django provides a class that emulates browser
functionality. You can use it to send requests to your application and receive the
responses. Let's learn about it using the interactive console. Launch the console using
this command:

$ python manage.py shell

Import the Client() class, create a Client object, and retrieve the homepage of the
application using a GET request:

>>>from django.test.client import Client

client = Client()

>>> response = client.get('/')

>>> print response

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[188]

X-Frame-Options: SAMEORIGIN

Content-Type: text/html; charset=utf-8

<html>

 <head>

 <link href="/static/css/bootstrap.min.css"

 rel="stylesheet" media="screen">

 </head>

 <body>

 <nav class="navbar navbar-default" role="navigation">

 MyTweets

 </nav>

 <div class="container">

 </div>

 <nav class="navbar navbar-default navbar-fixed-bottom"
 role="navigation">

 <p class="navbar-text navbar-right">Footer </p>

 </nav>

 <script src="/static/js/jquery-2.1.1.min.js"></script>

 <script src="/static/js/bootstrap.min.js"></script>

 <script src="/static/js/base.js"></script>

 </body>

</html>

>>>

Try to send a POST request to the login view. The output will vary depending on
whether you provide correct credentials or not:

>>> print client.post('/login/',{'username': 'your_username',
'password': 'your_password'})

Finally, if there is a view that is restricted only to the users that are logged in, you
can send a request to it like this:

>>> print client.login('/friend/invite/', 'your_username',
'your_password')

As you can see from the interactive session, the Client() class provides three methods:

• get: This method sends a GET request to a view. It takes the URL of the
view as a parameter. You can pass an optional dictionary of GET variables
to this method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[189]

• post: This method sends sends a POST request to a view. It takes the URL of
the view and a dictionary of POST variables as parameters.

• login: This method sends a GET request to a view that is restricted to
logged in users only. It takes the URL of the view, a username, and
password as parameters.

The Client() class is stateful, which means that it retains its state across requests. Once
you log in, later requests will be handled while you are logged in. The response object
returned by the Client() class's methods contains the following attributes:

• status_code: This is the HTTP status of the response
• content: This is the body of the response page
• template: This is the Template instance used to render the page; if multiple

templates were used, this attribute would be a list of Template objects
• context : This is the Context object used to render the template

These fields are useful to check whether the test succeeded or failed, as we will
see next. Feel free to experiment more with the Client() class. It's important to
understand how it works before you continue to the next subsection, where we will
create the first unit test.

Testing the registration view
Now that you are comfortable with the Client() class, let's write our first test. Unit
tests should reside in a module named tests.py inside the application folder. Each
test should be a method in a class derived from the django.test.TestCase module.
The name of the method must start with the word test. With this in mind, we will
write a test method that tries to register a new user account. So, create a file named
tests.py inside the bookmarks folder and type the following content in it:

from django.test import TestCase
from django.test.client import Client
class ViewTest(TestCase):
def setUp(self):
self.client = Client()
def test_register_page(self):
data = {
'username': 'test_user',
'email': 'test_user@example.com',
'password1': 'pass123',
'password2': 'pass123'
}
response = self.client.post('/register/', data)
self.assertEqual(response.status_code, 302)

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[190]

Let's go through the code line by line:

• First, we imported the TestCase and Client classes.
• Next, we defined a class called ViewTest(), which is derived from the

TestCase class. As I said earlier, all test classes must be derived from this
base class.

• After that, we defined a method called setUp(). This method is called when
the testing process starts. Here, we created a Client object.

• Finally, we defined a method called test_register_page. The name of the
method starts with the word test, indicating that it is a test method. The method
sends a POST request to the registration view and checks the status code for
equality with the number 302. This number is the HTTP status for a redirect.

If you recall from a previous chapter, the registration view redirects the user if the
request succeeds.

We checked the response object using a method called assertEqual(). This
method is inherited from the TestCase class. It raises an exception if the two passed
arguments are not equal. If an exception is raised, the testing framework knows that
the test failed; otherwise, if no exception is raised, it assumes that the test succeeded.

The TestCase class provides a set of methods to be used in testing. Here is a list of
the important ones:

• assertEqual: This expects two values to be equal
• assertNotEquals: This expects two values to be unequal
• assertTrue: This expects a value to be True
• assertFalse: This expects a value to be False

Now that you understand the test class, let's run the actual test by issuing
the command:

$ python manage.py test

The output will be similar to the following:

Creating test database...

Creating table auth_message

Creating table auth_group

Creating table auth_user

Creating table auth_permission

[...]

Loading 'initial_data' fixtures...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[191]

No fixtures found.

.

Ran 1 test in 0.170s

OK

Destroying test database...

So, what has happened here? The testing framework starts by creating a test database
with tables similar to those in the real database. Next, it runs the tests found in the
tests module. Finally, it prints a report of the results and destroys the test database.

Here, our single test succeeded. To see what the output would be like if the test fails,
modify the test_register_page view in the tests.py file by removing a required
form field:

def test_register_page(self):
data = {
'username': 'test_user',
'email': 'test_user@example.com',
'password1': '1',
'password2': '1'
}
response = self.client.post('/register/', data)
self.assertEqual(response.status_code, 302)

Now, run the python manage.py test command again to see the results:

===

FAIL: test_register_page (mytweets.user_profile.tests.ViewTest)

Traceback (most recent call last):

File "mytweets/user_profile/tests.py", line 19, in test_

register_page

self.assertEqual(response.status_code, 302)

AssertionError: 200 != 302

Ran 1 test in 0.170s

FAILED (failures=1)

Our test is working! Django detected an error and gave us the exact details of what
happened. Don't forget to return the test to its original form once you're done. Now,
let's write another test, a slightly more advanced one, to understand the testing
framework better.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Deploying

[192]

There are many other scenarios for which you can write unit tests:

• Checking whether registration fails if the two password fields do not match
• Testing the "add friend" and "invite friend" views
• Testing the "edit bookmark" functionality
• Testing that a search returns correct results

The preceding list shows just examples. Writing unit tests to cover as many use cases
as possible is important to maintain a healthy application and to minimize bugs
and regressions. The more unit tests you write, the more confident you can be when
your application passes all the tests. Django makes it extremely easy to unit test your
application, so make use of this fact.

At some point in the application's life, it will move from the development mode
to production. The next section explains how to prepare your Django project for a
production environment.

Deploying Django
So, you have done a lot of work on your web application, and now it is the time
to go live. To make sure that the transition from development to production goes
smoothly, there are a number of changes that must be made to the application before
it goes live. This section covers these changes to help make the launch of your web
application successful.

The production web server
We have been using the development web server that comes with Django
throughout this book. While this server is perfect for the development process, it's
definitely not intended to be a production web server, as it wasn't developed with
security or performance in mind. Therefore, it is certainly not suitable for production.

There are several options to choose from when it comes to a web server, but Apache
is by far the most popular choice, and the Django development team actually
recommends it. The details of how to set up Django with Apache depends on your
hosting solution. Some hosting plans offer preconfigured Django hosting, where you
only have to copy your project files to the server, whereas other hosting plans give
you the freedom to configure everything yourself.

The details of setting up Apache can vary depending on a number of factors and
are beyond the scope of this book. If you end up having to configure Apache
yourself, consult the Django documentation at http://www.djangoproject.com/
documentation/apache_auth/ for detailed instructions.

www.it-ebooks.info

http://www.djangoproject.com/documentation/apache_auth/
http://www.djangoproject.com/documentation/apache_auth/
http://www.it-ebooks.info/

Chapter 9

[193]

Summary
This chapter covered a variety of interesting topics. We developed an important set
of features for our project in this chapter. A follower's networks are very important
to help users socialize and share interests together. We learned about several Django
frameworks that are useful while deploying Django. We also learned how to move
a Django project from a development to a production environment. Notably, the
frameworks that we learned about are all very easy to use, so you will be able to
effectively utilize them in your future projects. These features are common in web 2.0
applications, and, now, you will be able to incorporate them in any Django website.

In the next chapter, we will learn about improving various aspects of our application,
mainly performance and localization. We will also learn how to deploy our project
on a production server. The next chapter comes with a lot of useful information, so
read on!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[195]

Extending Django
It's been a long journey so far, and we've dealt with lots of code and basic concepts
related to Django's functionalities. In this chapter, we will discuss Django a little
more, but we will discuss, in brief, different parameters, such as custom tags, filters,
sub-frameworks, message system, and so on. The following are the topics that we
will deal with in this chapter:

• Custom template tags and filters
• Class-based generic views
• Contributed sub-frameworks
• A message system
• The subscription system
• User scores

Custom template tags and filters
The Django template system comes with many template tags and filters that make
writing templates an easy and flexible job. Sometimes, however, you may wish to
extend the template system with your own tags and filters. This usually happens
when you find yourself repeating the same tag structure many times, when you wish
to wrap the structure in a single tag, or even when there is a filter that you want to
add to the template system.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Django

[196]

Guess what? Django already allows you to do this, and it is quite easy too! You
basically add a new package to your application called templatetags and put
modules that contain tags and filters in it. Let's learn about this by adding a filter
that capitalizes a string. Add a templatetags folder to the mytweets parent folder
and put an empty file called __init__.py in it, so that Python treats the folder as a
package. Now, create a module called mytweet_filters in it. We are going to write
our filter in this module. Here is an illustration of the directory structure:

templatetags/
 |-- __init__.py
 -- mytweet_filters.py

Now, add the following code to the mytweet_filters.py file:

 from django import template
 register = template.Library()

 @register.filter
 def capitalize(value):
 return value.capitalize()

The register variable is an object that can be used to introduce new tags and filters
to the template system. Here, we used the register.filter decorator to add the
capitalize function as a filter.

To use the new filter from within a template, put the following line at the beginning
of your template file:

{% load mytweet_filters %}

Then, you can use the new filter just like any other filter offered by Django:

Hi {{ name|capitalize }}!

Adding custom template tags works in a similar way with filters. Basically, you
define methods to process the tag and then register the tag to make it available
for templates. The process is slightly more involved because tags can be more
complicated than filters. Further information about custom template tags is available
in the Django online documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[197]

While writing a custom filter, you have to take care of Django's auto-escaping
behavior with the filter. There are three type of strings that can be passed to the filter:

• Raw string: This string is prepared either by the str command or is formed
with the unicode. They are automatically escaped if auto-escaping is enabled.

• Safe strings: These strings are the strings that are marked safe from further
escaping. They don't need any further escaping. To mark the output as a safe
string, use the django.utils.safestring.mark_safe() module.

• Strings marked as "needing escaping": As the name suggests, they always
need to escape.

Class-based generic views
While working with Django, you will note that there are certain types of views that
are always needed regardless of the project that you are working on. For this reason,
Django comes with a set of views that can be used in any project. These views are
called generic views.

Django offers generic views for the following purposes:

• To create simple views for tasks, such as redirecting to another URL or
rendering a template

• Listing and forming detail views to display objects from a data model - these
views are similar to how the admin page displays lists and detail pages for
data models

• To generate date-based archive pages; these can be particularly useful
for blogs

• To create, edit, and delete objects in data models

Django's class-based view can be configured by defining subclasses, or by passing
arguments directly in the URL conf.

The subclasses are full of conventions that remove the hassle to rewrite templates
of common situations. When you use the subclass, you can actually override the
attribute or methods of the main class by providing a new value:

app_name/views.py
from django.views.generic import TemplateView

class ContactView(TemplateView):
 template_name = "contact.html"

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Django

[198]

We will also add its entry to the urls.py file to get it redirected:

project/urls.py
from django.conf.urls.defaults import *
from some_app.views import ContactView

urlpatterns = patterns('',
 (r'^connect/', ContactView.as_view()),
)

Interestingly, we can achieve the same with the on file change, and in a few lines, by
adding the following to the urls.py file:

from django.conf.urls.defaults import *
from django.views.generic import TemplateView

urlpatterns = patterns('',
 (r'^contact/', TemplateView.as_view
 (template_name="contact.html")),
)

Contributed sub-frameworks
The django.contrib package contains Django's standard library. We used the
following sub-frameworks from this package in the earlier chapters in this book:

• admin: This is the Django admin interface
• auth: This is the user authentication system
• sessions: This is the Django session framework
• syndication: This is the feed generation framework

These sub-frameworks greatly simplify our work irrespective of whether we create
registration and authentication facilities, build an administration page, or provide
feeds for our content. The django.contrib package is a very important part of
Django. Knowing its subpackages and how to use them will save you a lot of time
and effort.

This section will provide you a brief introduction of other frameworks in this
package. You won't get into the details of how to use each framework, but you
will learn enough to know when to use the framework. Once you want to use
a framework in a project, you can read the online documentation to learn more
about it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[199]

Flatpages
Web applications may contain pages that are static in nature. For example, your
website may include a set of help pages that rarely change. Django provides an
application called flatpages to serve static pages. The application is pretty simple;
it provides you a data model to store various bits of information about each page,
including the following:

• The URL
• The title
• The content
• The template name
• Whether registration is required to view the page

To use the application, you can simply enable it in the INSTALLED_APPS variable in
the settings.py file and add its middleware to the MIDDLEWARE_CLASSES variable.
After that, you can store and manage your static pages using a data model provided
by the flatpages application.

Humanize
The humanize application offers a set of filters to add a human touch to your pages.

Here is a list of the available filters:

• apnumber: For numbers 1-9, this returns the number spelled out. Otherwise,
it returns the number. In other words, 1 becomes 'one', 9 becomes 'nine', and
so on, whereas 10 remains 10.

• intcomma: This takes an integer and converts it into a string with a comma,
for example:
4500 becomes 4,500.
45000 becomes 45,000.
450000 becomes 450,000.
4500000 becomes 4,500,000.

• intword: This converts an integer into an easy-to-read form, for example:
1000000 becomes 1.0 million.
1200000 becomes 1.2 million.
1200000000 becomes 1.2 billion.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Django

[200]

• naturalday: Based on the range the date is in, if a given date is in the
(+1,0,-1) range, this shows the date as "tomorrow", "today", and "yesterday"
respectively, for example, (if today is January 26, 2007):
25 Jan 2007 becomes yesterday.

26 Jan 2007 becomes today.
27 Jan 2007 becomes tomorrow.

• naturaltime: This returns a string representing how many seconds, minutes,
or hours ago the date event occurred, for example, (If now is January 26,
2007 16:30:00):
26 Jan 2007 16:30:00 becomes now.

26 Jan 2007 16:29:31 becomes 29 seconds ago.
26 Jan 2007 16:29:00 becomes a minute ago.
26 Jan 2007 16:25:35 becomes 4 minutes ago.
26 Jan 2007 15:30:29 becomes 59 minutes ago.
26 Jan 2007 15:30:01 becomes 59 minutes ago.
26 Jan 2007 15:30:00 becomes an hour ago.
26 Jan 2007 13:31:29 becomes 2 hours ago.
25 Jan 2007 13:31:29 becomes 1 day, 2 hours ago.
25 Jan 2007 13:30:01 becomes 1 day, 2 hours ago.
25 Jan 2007 13:30:00 becomes 1 day, 3 hours ago.
26 Jan 2007 16:30:30 becomes 30 seconds from now.
26 Jan 2007 16:30:29 becomes 29 seconds from now.
26 Jan 2007 16:31:00 becomes a minute from now.
26 Jan 2007 16:34:35 becomes 4 minutes from now.
26 Jan 2007 17:30:29 becomes an hour from now.
26 Jan 2007 18:31:29 becomes 2 hours from now.
27 Jan 2007 16:31:29 becomes 1 day from now.

• ordinal: This converts an integer to its ordinal form. Here, 1 becomes '1st',
and so on between every three digits.

Sitemap
Sitemap is a framework to generate sitemaps, which are XML files that help
search engine indexers to find dynamic pages on your site. It tells the indexer how
important a page is and how often it changes. This information makes the indexing
process more accurate and efficient.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[201]

The sitemaps framework lets you express the preceding information in Python
code and then generates an XML document that represents the sitemap of your site.
This covers the most commonly used sub-frameworks from the django.contrib
package. The package contains additional applications that are not as important as
the preceding ones and it is updated from time to time with new applications. To
learn about any application from the django.contrib package, you can always read
its documentation, which is available online.

Cross-site request forgery protection
We discussed how to prevent two types of web attacks in Chapter 5, Introducing
Hashtags, namely, SQL injection and cross-site scripting. Django provides protection
against another type of attack called cross-site request forgery. In this attack, a
malicious site tries to manipulate your application by tricking a user who is logged
in on your website to open a specially crafted page. This page usually contains
JavaScript code that tries to submit a form to your website. CSRF protection works
by embedding a token (that is a secret code) into all forms and verifies the token
when the form is submitted. This effectively makes CSRF attacks infeasible.

To activate CSRF protection, you just need to add the 'django.contrib.csrf.
middleware.CsrfMiddleware' parameter to the MIDDLEWARE_CLASSES variable, and
this will work, transparently, to prevent CSRF attacks.

The message system
Our application allows users to add each other as friends and monitor friend
bookmarks. Although these two forms of communication are related to the nature of
our bookmarking application, sometimes users want the flexibility of sending private
messages to each other. This feature is especially useful for enhancing the social
aspect of our website.

The message system can be implemented in a variety of ways. It can be as simple as
providing each user a contact form, which works by sending its content to the user's
e-mail when it is submitted. You already have all of the information needed to build
the components of this functionality:

• A message form with a text field for the subject and a text area for the body
of the message

• A view that displays the message form of a user and sends the contents of the
form to the user via the send_mail() function

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Django

[202]

When allowing users to send e-mails via your site, you need to be careful in order
to prevent abuse of the feature. Here, you can restrict the contact forms only to the
logged-in users or friends only.

Another approach to implement the message system is by storing and managing
messages in the database. This way, users can send and view messages using our
application itself instead of using e-mail. While this approach is more bound to our
application, and therefore keeps users on our website, it involves more work to
get implement. However, as in the previous approach, you already have all of the
information needed to implement this approach too. The components needed here
are as follows:

• A data model to store messages. It should contain fields for the sender,
recipient, subject, and body. You can also add fields for the date, read status,
and so on.

• A form to create messages. The fields for the subject and body are needed.
• A view to list the available messages.
• A view to display a message.

The preceding list is just one way that is used to implement the message system.
You can, for example, join the list and message views into a single view, or provide a
view to display the sent messages in addition to the received ones. The possibilities
are numerous and depend on how advanced you want the feature to be.

The subscription system
We offer several web feeds that enable users to monitor updates on our website.
However, some users may still prefer the old way of monitoring updates via e-mail.
For those users, you may want to implement an e-mail subscription system to the
application. For example, you can let users receive notifications when a bookmark is
posted by a friend, or when a bookmark is posted under a certain tag.

Furthermore, you can group such notifications and send them in batches to avoid
sending a large number of e-mails. The implementation details of this feature
greatly depends on how you want it to work. It can be as simple as a data model
that stores the tags that each user is subscribed to. It would have a loop that goes
through all users who are subscribed to a particular tag and sends notifications to
them when a bookmark is posted under this tag. This approach, however, is too basic
and generates a lot of e-mails. A more sophisticated approach may involve storing
notifications in a data model and sending them in one e-mail on a daily basis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[203]

User scores
Some websites (such as Slashdot.org and reddit.com) track the activity of users
by assigning a score to each user. This score is incremented whenever the user
contributes to the website in some way. Users' scores can be utilized in a variety
of ways. For example, you can release new features to your most active users first,
or provide other advantages to active users, which will motivate other users to
contribute more to your website.

Implementing user scores is pretty simple. You need a data model to maintain
scores in the database. After that, you can use the Django model API to access and
manipulate scores from within views.

Summary
The purpose of this chapter is to prepare you for tasks that are not covered in this
book. It introduced you to a number of topics. When a need arises for a certain
feature, you now know where to look in order to find a framework that helps you to
implement the feature quickly and cleanly.

This chapter also gave you some ideas that you may want to implement into
our bookmarking application. Working on these features will give you more
opportunities to experiment with Django and extend your knowledge of its
frameworks and inner workings.

In the next chapter, we are going to cover various ways of database connectivity,
such as MySQL, NoSQL, PostgreSQL and so on, which is required for any
database-based application.

www.it-ebooks.info

Slashdot.org
reddit.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[205]

Database Connectivity
Django is a database-agnostic framework, which means that the database fields
provided by Django are designed to work across different databases, such as SQLite,
Oracle, MySQL, and PostgreSQL. In fact, they also work on several third-party
database backends. PostgreSQL is a great database for Django in production, whereas
SQLite is used for a development environment, and you will end up doing a lot of
work if you don't want to use RDBMS for your project. This chapter will give you the
detailed difference between the two types and will show you which is a better fit for
Django, and, also, how we can actually implement them in our Django project.

The following are the topics that we will deal with in this chapter:

• SQL versus NoSQL
• Django with relational databases
• Django with NoSQL
• Setting up a database system
• The single-page application project—URL shortener

First of all, let's see the difference between SQL and NoSQL.

SQL versus NoSQL
SQL databases, or relational databases, have been around for a very long time; in
fact, the databases were roughly assumed as SQL databases until the new term was
coined—which is NoSQL.

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[206]

Well, we are talking about the high-level differences between SQL and NoSQL. The
following are the differences between them:

SQL database (RDBMS) NoSQL database
SQL databases are relational databases
(RDBMS)

NoSQL databases are nonrelational or
distributed databases

SQL databases are based on tables and its
relationship with other tables

NoSQL are document based, key-value pairs,
graph database, or wide column stores

A SQL database stores its data in rows of
a table

NoSQL is a collection of key-value pairs,
documents, graph database, or wide
column stores

SQL databases have a predefined schema NoSQL has a dynamic schema
SQL databases are vertically scalable NoSQL databases are horizontally scalable
SQL database examples are MySQL,
Oracle, SQLite, PostgreSQL, and MS SQL

NoSQL database examples are MongoDB,
BigTable, Redis, RavenDB, Cassandra, HBase,
Neo4j, and CouchDB

Let's try to understand the basic features of some of the famous SQL and NoSQL
databases.

SQL databases
The following sections deal with different SQL databases and their usage.

MySQL – open source
Being one of the most popular databases in the world, MySQL has some benefits
that make it suitable for all kinds of business problems. The following are a few
important benefits of MySQL:

• Replication: MySQL supports replication, that is, by replicating a MySQL
database, the work load can be significantly reduced from one machine, and
an application can be easily scaled

• Sharding: When the number of write operations are very high, sharding
helps by partitioning the application server that divides the database into
small chunks

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[207]

PostgreSQL
As mentioned before, PostgreSQL is the most popular database within the Django
community. It also has the widest feature set of the core-supported databases.

Evolved PostgresSQL's advanced queries and features have made it possible to
achieve the complex line of conventional SQL query into much simpler lines to write
query. However, the implementation of arrays, hstore, JSON, and so on is kind of
tricky with the conventional SQL databases.

NoSQL databases
This concept was introduced when horizontal scaling was tough and RDBMS-based
databases were not able to scale as much as they were expected to. It is often termed
as Not only SQL. It provides a mechanism to store and retrieve data other than the
traditional SQL methods.

MongoDB
MongoDB is one of the most popular document-based NoSQL databases, as it
stores data in JSON-like documents. It is a nonrelational database with a dynamic
schema. It was developed by the founders of DoubleClick. It is written in C++ and is
currently used by some big companies, such as The New York Times, Craigslist, and
MTV Networks. The following are some of the benefits and strengths of MongoDB:

• Speed: For simple queries, it gives good performance, as all the related data
is in a single document that eliminates join operations

• Scalability: It is horizontally scalable, that is, you can reduce the workload
by increasing the number of servers in your resource pool instead of relying
on a standalone resource

• Manageable: It is easy to use for both developers and administrators. This
also gives MondoDB the ability to share databases

• Dynamic schema: It gives you the flexibility to evolve your data schema
without modifying the existing data

CouchDB
CouchDB is also a document-based NoSQL database. It stores data in the form of
JSON documents. The following are some of the benefits and strengths of CouchDB:

• Schema less: As a member of the NoSQL family, it also has a schema-less
property that makes it more flexible, as it has the form of JSON documents
to store data

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[208]

• HTTP query: You can access your database documents using your
web browser

• Conflict resolution: It has automatic conflict, which is useful when you are
going to use a distributed database

• Easy replication: Replicating is fairly straightforward

Redis
Redis is another open source NoSQL database that is mainly used because of its
lightening speed. It is written in the ANSI C language. The following are some of the
benefits and strengths of Redis:

• Data structures: Redis provides efficient data structures to such an extent
that it is sometimes called as a data structure server. The keys stored in a
database can be hashes, lists, and strings, and can be sorted or unsorted sets.

• Redis as cache: You can use Redis as a cache by implementing keys with
limited time to improve the performance.

• Very fast: It is considered as one of the fastest NoSQL servers, as it works
with the in-memory dataset.

Setting up a database system
Django supports several database engines. Interestingly, however, you only need to
learn one API in order to use any of these database systems.

This is possibly because of Django's database layer that abstracts access to the
database system.

You will learn about this later, but, for now, you only need to know that regardless
of which database system you choose, you will be able to run the Django applications
developed in this book (or elsewhere) without modification.

Unlike client-server database systems, SQLite does not require a resident process
in memory, and it stores the database in a single file, making it ideal for our
development environment. That is why we have used this database throughout
this project, until now. Of course, you are free to use your preferred database
management system. We can tell Django which database system to use by editing
a configuration file. It is also worth noting that if you want to use MySQL, you will
need to install MySQL, which is the MySQL driver for Python.

Installing a database system in Django is really simple; all your need to do is install
the database you want to configure first, then add a few configuration lines in the
settings.py file, and you are done with the database setup.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[209]

Setting up MySQL
We will install and configure MySQL and its related plugins step by step in the
following sections.

Installing MySQL in Linux – Debian
Execute the following command to install MySQL in Linux (Debian here):

sudo apt-get install mysql-server

After executing this command, you will be asked to set up MySQL and configure the
database with a username and password.

Installing the MySQL plugin for Python
To install the MySQL-related plugins that you require, use the following command:

pip install MySQL-python

Now, open the settings.py file and add the following lines for Django to connect
with MySQL:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'django_db',
 'USER': 'your_username',
 'PASSWORD': 'your_password',
 }
}

That's it, all you need to do now is to recreate all the tables in the new database that
you just configured and run the following command:

python manage.py syncdb

You will get the django.db.utils.ConnectionDoesNotExist
exception if you have not defined the database that you are trying
to access.

The advantage of Django is that you can use it with multiple databases at once.

However, you may think, what is the need of multiple databases in the same project?

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[210]

Until the NoSQL database came into existence, in most of the cases, the same
database was often used to keep the records of all types of data, from critical data,
such as user details, to dump data, such as logs; all were kept in the same database
and the system faced challenges while scaling up the system.

For a multiple database system, an ideal solution could be to store the relational
information, such as users, their role, and other account information, in an SQL
database, such as MySQL. The application data, which is independent, can be stored
in a NoSQL database, such as MongoDB.

We need to define multiple databases through a configuration file. Django needs to
be told when you want to use more than one database with the database servers you
use. So, in the settings.py file, you need to change the DATABASES setting with the
database aliases map.

An appropriate example of the multiple database configuration can be written
as follows:

DATABASES = {
 'default': {
 'NAME': 'app_data',
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'USER': 'postgres_user',
 'PASSWORD': 's3krit'
 },
 'users': {
 'NAME': 'user_data',
 'ENGINE': 'django.db.backends.mysql',
 'USER': 'mysql_user',
 'PASSWORD': 'priv4te'
 }
}

The preceding example uses two databases, which are PostgreSQL and MySQL with
the required credentials.

Migration and the need for migration
Migration allows you to update, change, and delete models by creating migration
files that represent the model changes and which can be run on any development,
staging, or production database.

Schema migration with Django has had a long and complex history; for the last
few years, the third-party application South was the only go-to choice. If you think
about the importance of migration, Django 1.7 was released with an inbuilt support
of migration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[211]

We need to know about South versus Django migrations as well. For those who are
familiar with South, this should feel pretty familiar and probably a little bit cleaner.
For easy reference, the following table compares the old South workflow to the new
Django migrations workflow:

Steps South Django migration
Initial migration Run syncdb and then ./manage.py

schemamigration <appname>
--initial

./manage.py
makemigrations
<appname>

Apply migration ./manage.py migrate
<appname>

./manage.py migrate
<appname>

Non-first migration ./manage.py schemamigration
<appname> --auto

./manage.py
makemigration
<appname>

So, from the table, we can see that Django migrations basically follow the same
process as South, at least for the standard migration process—this just simplifies
things a bit.

The new features in Django migration
The new migration code will be in the improved version of South, but will be based
on the same concepts, which are as follows:

• Migration per application
• Auto detection of the changes
• Data migration alongside schema migration

Let's take a look at the following term list to understand the advantages of
Django migration:

• Improved migration format: The much improved migration format is
readable, and can thus be optimized or examined without actual execution

• Rebasing: In this, there is no need to keep or execute the whole history of
migration every time, as it will now be possible to create new first migrations
as the project grows

• Improved auto detection: New and custom field changes will be detected
more easily, as migration will be built in with the improved field API

• Better merge detection: The new migration format will automatically resolve
the merging between different VCS branches, which will no longer need any
work if we are able to merge the changes

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[212]

Once you set up your project and start the application, that is, your application
has generated the necessary tables in your database, you are not supposed to
make complex changes to your Django models, that is, you should not delete your
attributes from a class. However, practically, that is not possible, as you might
need to change your model classes accordingly. In such cases, we have a solution
to fix these kind of problems. The process is called migration, and, in Django, these
migrations are done with a module called South.

Until the 1.7 version of Django, which is the latest one, you have to separately install
the south module. However, since Django's 1.7 migration, the south module is a
built-in module. You might have always been doing it, for example, when you
changed (changes such as adding new attributes) your model classes using the
following command:

$python manage.py syncdb

With the newer version, manage.py syncdb has been deprecated for migration, but
if you still like the old way, this works for now.

Backend support
This is very important for any Django application that is used in production to get
migration support. Thus, choosing a database that is primarily supported by the
migration module will always be a better decision.

A few of the most compatible databases are as follows:

• PostgreSQL: In terms of migration or schema support, PostgresSQL is the
most compatible database out there.

You can initialize your new column with null=True, as
this will be added much faster.

• MySQL: MySQL is a widely used database, as Django supports it seamlessly.
The catch here is that there is no support for transaction when schema
alteration operations are done, that is, if an operation fails, you will have to
manually revert the changes. Also, for every schema update, all the tables are
rewritten, and this could take a lot of time, and getting your application up
again can take a lot of time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[213]

• SQLite: This is the default database that comes with Django and is mainly
used for development purposes. Thus, it has little schema alteration support
that is limited to the following cases:

 ° Creation of a new table
 ° Data copying
 ° Dropping an old table
 ° Renaming a table

How to do migrations?
Migration is done mainly with the first three commands, which are as follows:

• makemigrations: This is based on the changes you made to the models that
prepare the migration query

• migrate: This applies the changes prepared by the makemigrations query
and lists their status

• sqlmigrate: This displays the SQL query that the makemigrations
query prepared

Thus, the flow for Django's schema migration can be stated as follows:

$python manage.py makemigrations 'app_name'

This will prepare the migration file, which will look similar to the following:

Migrations for 'app_name':
 0003_auto.py:
 - Alter field name on app_name

Then, after the file has been created, you can check the directory structure. You
will see a file named 0003_auto.py under the migration folder; you can apply
the changes with the following command:

$ python manage.py migrate app_name

The following are the operations that you need to perform:

Synchronize non migrated apps: sessions, admin, messages, auth,
staticfiles, contenttypes
Apply all migrations: app_name
Synchronizing apps without migrations:
Creating tables...
Installing custom SQL...
Installing indexes...

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[214]

Installed 0 object(s) from 0 fixture(s)
Running migrations:
Applying app_name.0003_auto... OK

The OK message says that the migration has been applied successfully.

To make it more understandable, the migration can be explained with the
following diagram:

There are three separate entities:

• Source code
• Migration files
• Database

A developer makes changes in the source code, mainly in the models.py file, and
alters the previously defined schema. For example, when they create a new field as
per the business requirements, or update max_length from 50 to 100.

We will complete a proper migration of our project to see how this migration
actually works.

First, we have to create an initial migration of the application:

$ python manage.py makemigrations tweet

The output of which is as follows:

Migrations for 'tweet':

0001_initial.py:

- Create model HashTag

- Create model Tweet

- Add field tweet to hashtag

This shows that the initial migration has been created.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[215]

Now, let's change our tweet modal, which is now as follows:

text = models.CharField(max_length=160, null=False, blank=False)

We will change the preceding tweet modal to:

text = models.CharField(max_length=140, null=False, blank=False)

As we have changed our schema, we now have to do the migration to run the
application properly.

From the migration flow, we understood that, now, we have to run the
makemigrations command, which is as follows:

$python manage.py makemigrations tweet

The output of which is as follows:
Migrations for 'tweet':

0002_auto_20141215_0808.py:

- Alter field text on tweet

As you can see, it has detected the change in our field.

Just for verification, we will open our SQL database and check the current schema of
our tweet table.

Login to MySQL as:
$mysql -u mysql_username -pmysql_password mytweets

In the MySQL console, write:
$mysql> desc tweet_tweet;

This will show you the schema of the tweet table, as follows:
+-------------------+-------------+------+-----+---------+--------------
--+

| Field | Type | Null | Key | Default | Extra |

+--------------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| user_id | int(11) | NO | MUL | NULL | |

| text | varchar(160) | NO | | NULL | |

| created_date | datetime | NO | | NULL | |

| country | varchar(30) | NO | | NULL | |

| is_active | tinyint(1) | NO | | NULL | |

+--------------+--------------+------+-----+---------+----------------+

6 rows in set (0.00 sec)

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[216]

As we have not applied our migration yet, the database clearly displays the text as
160 in the character field:

text | varchar(160) | NO | | NULL

We will do the exact same thing after we apply our migration:

$python manage.py migrate tweet

The following are the operations that we need to perform:

Apply all migrations: tweet

Running migrations:

Applying tweet.0002_auto_20141215_0808... OK

Our migration has been successfully applied; let's verify the same from the database.

To run the same MySQL desc command on the tweet_tweet table, use the
following:

mysql> desc tweet_tweet;

+--------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| user_id | int(11) | NO | MUL | NULL | |

| text | varchar(140) | YES | | NULL | |

| created_date | datetime | NO | | NULL | |

| country | varchar(30) | NO | | NULL | |

| is_active | tinyint(1) | NO | | NULL | |

+--------------+--------------+------+-----+---------+----------------+

6 rows in set (0.00 sec)

Indeed! Our migration was successfully applied:

| text | varchar(140) | YES | | NULL | |

How migrations know what to migrate
Django will never run a migration more than once on the same database, which
means that it persists this information. This information is managed by a table called
django_migrations, which is created the very first time the Django application is
started, and for every migration thereafter, a new row is inserted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[217]

For example, here is what the table might look like after running our migration:

mysql> select * from django_migrations;

+----+-------+-------------------------+---------------------+

| id | app | name | applied |

+----+-------+-------------------------+---------------------+

| 1 | tweet | 0001_initial | 2014-12-15 08:02:34 |

| 2 | tweet | 0002_auto_20141215_0808 | 2014-12-15 08:13:19 |

+----+-------+-------------------------+---------------------+

The preceding table shows that there are two migrations with tagged information,
and that every time you migrate, it will skip these changes, as there is already an
entry in this table corresponding to that migration file.

This means that even if you change the migration file manually, it will be skipped.

This makes sense, as you generally don't want to run migrations twice.

However, if for some reason you really want to apply the migration twice, you can
simply delete the table entry "THIS IS NOT A OFFICIALLY RECOMMENDED WAY"
and it will work fine.

Conversely, if you want to undo all the migrations for a particular application, you
can migrate to a special migration called zero.

For example, if you type, all the migrations for the tweet application will be reversed:

$python manage.py migrate tweet zero

In addition to using zero, you can also use any arbitrary migration, and if that
migration is in the past, then the database will be rolled back to the state of that
migration, or will be rolled forward if the migration hasn't yet been run.

The migration file
So, what does the migration file contain and what exactly happens when we run the
following command?

$python manage.py migrate tweet

After you run this, you can see a directory called migrations, where all the
migration files are stored. Let's have a look at them. As they are Python files, they
might be easy to understand.

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[218]

Open the tweet/migrations/0001_initial.py file, as this is the file where the
initial migration code is created. It should look similar to the following:

-*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations

class Migration(migrations.Migration):
dependencies = [
 ('user_profile', '__first__'),
]

operations = [
 migrations.CreateModel(
 name='HashTag',
 fields=[
 ('id', models.AutoField(verbose_name='ID', serialize=False,
 auto_created=True, primary_key=True)),
 ('name', models.CharField(unique=True, max_length=64)),
],
 options = {
 },
 bases=(models.Model,),
),
 migrations.CreateModel(
 name='Tweet',
 fields=[
 ('id', models.AutoField(verbose_name='ID', serialize=False,
 auto_created=True, primary_key=True)),
 ('text', models.CharField(max_length=160)),
 ('created_date', models.DateTimeField(auto_now_add=True)),
 ('country', models.CharField(default=b'Global',
 max_length=30)),
 ('is_active', models.BooleanField(default=True)),
 ('user', models.ForeignKey(to='user_profile.User')),
],
 options = {
 },
 bases=(models.Model,),
),
 migrations.AddField(
 model_name='hashtag',
 name='tweet',
 field=models.ManyToManyField(to='tweet.Tweet'),
 preserve_default=True,
),
]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[219]

For migration to actually work, there must be a class called Migration() that
inherits from the django.db.migrations.Migration module. This is the main class
that is used for a migration framework, and this migration class contains two main
lists, which are as follows:

• Dependencies: This is the list of other migrations that must run before the
migration starts. In cases where there is a dependency, such as in the case of
a foreign key relationship, the foreign key model must exist before its key
is added here. In the preceding case, we have such a dependency on the
user_profile parameter.

• Operations: This list contains the list of migrations to be applied, and the
whole migration operation can be of the following categories:

 ° CreateModel: From the name itself, it's very clear that this will create a
new model. From the preceding model file, you can see lines such as:

migrations.CreateModel(
name='HashTag',....
migrations.CreateModel(
name='Tweet',..

These migration lines create the new model with the defined
attributes.

 ° DeleteModel: This will contain the statement to delete the model from
the database. These are the opposite to the CreateModel method.

 ° RenameModel: This renames the model with the given new name
from the old name.

 ° AlterModelTable: This will change the name of the associated table
with the model.

 ° AlterUniqueTogether: This is the unique constraints of the table
that is changed.

 ° AlteIndexTogether: This changes the custom index set of the model.
 ° AddField: This simply adds a new field to the existing model.
 ° RemoveField: This drops the field from the model.
 ° RenameField: This renames the field name from the old name to the

new name for a model.

The migration of a schema is not the only thing that needs to be migrated while
updating the application; there is another important thing called data migration.
This is the data that is already stored in the database by previous operations and,
thus, also needs to be migrated.

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[220]

Data migration can be used in many situations. Among them, the most logical
situations are:

• Loading an external data to the application
• When there is a change in the model schema and the dataset needs to be

updated as well

Let's play with our project by loading a tweet from the username.txt file. Create an
empty migration for our project using the following command:

$python manage.py makemigrations --empty tweet

This will generate a migration file named mytweets/migrations/003_auto<date_
time_stamp>.py.

Open this file; it will look something like the following:

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations

class Migration(migrations.Migration):

dependencies = [
 ('tweet', '0002_auto_20141215_0808'),
]

operations = [
]

This is nothing but the basic structure of the Django migration tool, and to do data
migration, we have to add the RunPython() function in the operations, as follows:

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations

def load_data(apps, schema_editor):
 Tweet(text='This is sample Tweet',
 created_date=date(2013,11,29),
 country='India',
 is_active=True,
).save()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[221]

class Migration(migrations.Migration):

dependencies = [
 ('tweet', '0002_auto_20141215_0808'),
]

operations = [
 migrations.RunPython(load_data)
]

That is all. Now, run the migrate command:

$python manage.py migrate

These are the operations that you need to perform as follows:

Synchronize unmigrated apps: user_profile

Apply all migrations: admin, contenttypes, tweet, auth, sessions

Synchronizing apps without migrations:

Creating tables...

Installing custom SQL...

Installing indexes...

Running migrations:

Applying contenttypes.0001_initial... FAKED

Applying auth.0001_initial... FAKED

Applying admin.0001_initial... FAKED

Applying sessions.0001_initial... FAKED

Applying tweet.0003_auto_20141215_1349... OK

After executing the preceding command, the command migrated all the applications
and finally applied our migration in which we created the new tweet from the
loaded data:
mysql> select * from tweet_tweet;

+----+---------+---+-----------
----------+---------+-----------+

| id | user_id | text | created_date | country | is_active |

+----+---------+---+-----------
----------+---------+-----------+

| 1 | 1 | This Tweet was uploaded from the file. | 2014-12-15 14:17:42 |
India | 1 |

+----+---------+---+-----------
----------+---------+-----------+

2 rows in set (0.00 sec)

That's awesome, right?

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[222]

This kind of a solution is much needed when you have external data in the form of a
JSON or XML file.

The ideal solution will be to use the command-line argument to get the file path and
to load the data as:

$python load data tweet/initial_data.json

Don't forget to add your migration folders to Git, as they are as important as your
source code.

Django with NoSQL
Django does not officially support the NoSQL database, but with such a great
community of developers, Django does have a fork that has MongoDB as a
backend database.

For the purpose of illustration, we will use the Django-Norel project to configure
Django with the MongoDB database.

You can find the detailed information regarding this at http://django-nonrel.org/.

MongoDB can be installed by following the steps mentioned at http://docs.
mongodb.org/manual/installation/ as per the configuration you have.

Here, we will set up MongoDB for the Debian version of Linux (specifically, Ubuntu).

Import the MongoDB public GPG Key:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
7F0CEB10

Create a list file for MongoDB:

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist
10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

Reload the local package database:

sudo apt-get update

Install the MongoDB packages:

sudo apt-get install -y mongodb-org

Start MongoDB:

sudo service mongod start

www.it-ebooks.info

http://django-nonrel.org/
http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/installation/
http://www.it-ebooks.info/

Chapter 11

[223]

The single-page application project –
URL shortener
There are two ways in which MongoDB can be used with Django, which are as
follows:

• MongoEngine: This is a Document-object Mapper (think of ORM, but for
document databases) that is used to work with MongoDB from Python

• Django non-rel: This is a project to support Django on nonrelational
(NoSQL) databases; currently it supports MongoDB

MongoEngine
Installation of MongoEngine is required before we move further and show you
how to configure MongoEngine with Django. Install MongoEngine by typing the
following command:

sudo pip install mongoengine

In order to protect the previous project we created, and to better understand, we
will create a separate new project for MongoDB configuration, and we will use our
existing project to configure MySQL:

$django-admin.py startproject url_shortner

$cd url_shortner

$python manage.py startapp url

This will create the basic structure of the project, as we very well know.

Connecting MongoDB with Django
We will have to modify the settings.py file, and if we are only using MognoDB
for the project, which is true in this case, then we can ignore the standard database
setting. All we have to do is to call the connect() method on the settings.py file.

We will place a dummy backend for MongoDB. Just replace the following code in the
settings.py file, which is as follows:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[224]

Replace the preceding code with the following:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.dummy'
 }
}

Authentication in Django
The advantage of MongoEngine is that it includes a Django authentication backend.

A user model becomes a MongoDB document and implements most of the methods
and attributes that a normal Django user model does, which makes MongoEngine
compatible with Django. We can also use the authentication infrastructure and
decorators, such as the login_required() and authentication() methods. The
auth module also contains the get_user() method, which takes a user ID as an
argument and returns the user object.

To enable this backend for MognoEngine, add the following in the settings.py file:

AUTHENTICATION_BACKENDS = (
 'mongoengine.django.auth.MongoEngineBackend',
)

Storing sessions
In Django, you can use different databases to store a session for an application. To
enable the MongoEngine session that is stored in MongoDB, there must be an entry
of the django.contrib.sessions.middleware.SessionMiddleware parameter
in MIDDLEWARE_CLASSES in the settings.py file. There must also be an entry of
django.contrib.sessions in INSTALLED_APPS, which are there as we started the
project from Django's basic structure.

Now, all you need to do is add the following line in the settings.py file:

SESSION_ENGINE = 'mongoengine.django.sessions'
SESSION_SERIALIZER = 'mongoengine.django.sessions.BSONSerializer'

We are now all set up to get started with a small demo project, where we will
implement the URL short project in MongoDB.

Let's create a URL modal first, which is where we will store all the long URLs and
their corresponding short URLs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[225]

Go to the following url/models.py file:

from django.db import models
from mongoengine import *
connect('urlShortener')

You are already familiar with the first two lines of the preceding code, which imports
the modules.

The third line, that is, connect('urlShortener'), connects Django with the
MongoDB database named urlShortener.

MongoDB gives many connection mechanisms that you can choose from, which are
as follows:

from mongoengine import connect
connect('project1')

The method that we are using takes MongoDB from its default port, which is 27017; if
you are running MongoDB on an other port, use the connect() method to connect it:

connect('project1', host='192.168.1.35', port=12345)

If you configured a password to MongoDB, you can pass the parameters as:

connect('project1', username='webapp', password='pwd123')

Like Django's default model fields, MongoDB also gives you different fields,
which are:

• BinaryField: This field is used to store raw binary data.
• BooleanField: This is a Boolean field type.
• DateTimeField: This is a datetime field.
• ComplexDateTimeField: This handles microseconds exactly the way they

are instead of rounding them up like DateTimeField does.
• DecimalField: This is a fixed point decimal number field.
• DictField: This is a dictionary field that wraps a standard Python

dictionary. This is similar to an embedded document, but the structure
is not defined.

• DynamicField: This is a truly dynamic field type capable of handling
different and varying types of data.

• EmailField: This is a field that validates input as an e-mail address.
• FileField: This is a GridFS storage field.
• FloatField: This is a floating point number field.

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[226]

• GeoPointField: This is a list that stores the longitude and latitude
coordinates.

• ImageField: This is the image file storage field.
• IntField: This is a 32-bit integer field.
• ListField: This is a list field that wraps a standard field, allowing multiple

instances of the field to be used as a list in the database.
• MapField: This is a field that maps a name to a specified field type. This is

similar to DictField, except that the 'value' of each item must match the
specified field type.

• ObjectIdField: This is a field wrapper around MongoDB's object IDs.
• StringField: This is a unicode string field.
• URLField: This is a field that validates input as a URL and more.

By default, fields are not required. To make a field
mandatory, set the required keyword argument of a field
to True. Fields also may have validation constraints
available (such as, max_length in the preceding example).
Fields may also take default values, which will be used if a
value is not provided. Default values may optionally be a
callable, which will be called to retrieve the value (as in the
preceding example).

The full list of different fields can be seen at http://docs.mongoengine.org/en/
latest/apireference.html.

Now, we will create our Url() class, which will be similar to other models that we
created so far, such as tweets and so on:

class Url(Document):
full_url = URLField(required=True)
short_url = StringField(max_length=50, primary_key=True,
unique=True)
date = models.DateTimeField(auto_now_add=True)

Let's take a look at the following term list:

• full_url: This is a URL field that will store the full URL, and the same URL
where the request will be redirected when its short URL is trigged

• short_url: This is the short URL for the corresponding long URL
• date: This will store the date when the Url object was created

www.it-ebooks.info

http://docs.mongoengine.org/en/latest/apireference.html
http://docs.mongoengine.org/en/latest/apireference.html
http://www.it-ebooks.info/

Chapter 11

[227]

Now, we will move to view and create two classes:

• Index: Here, a user can generate short URLs. This will also have a post()
method that saves every long URL.

• Link: This is the short URL redirection controller. When a short URL is
queried, this controller redirects the request to a long URL, such as shown in
the following code snippet:
class Index(View):
def get(self, request):
return render(request, 'base.html')

def post(self, request):
long_url = request.POST['longurl']
short_id = str(Url.objects.count() + 1)
url = Url()
url.full_url = long_url
url.short_url = short_id
url.save()
params = dict()
params["short_url"] = short_id
params['path'] = request.META['HTTP_REFERER']
return render(request, 'base.html', params)

Let's take a look at the following term list:

• The get() method is simple: it forwards the request to the base.html file
(which we will create soon)

• The post() method takes the long URL from the request's POST variable and
sets the object count, just as the short URL saves the Url object to the database:
params['path'] = request.META['HTTP_REFERER']

This is used to pass the current path to the view so that the short URL can be made
clickable with the anchor tag.

This is how this URL object is saved in DB:

{ "_id" : ObjectId("548d6ec8e389a24f5ea44258"), "full_url" :
"http://sample_long_url", "short_url" : "short_url" }

Now, we will move on to the Link() class, which will take the short URL request
and redirect to the long URL:

class Link(View):
def get(self, request, short_url):
url = Url.objects(short_url=short_url)
result = url[0]
return HttpResponseRedirect(result.full_url)

www.it-ebooks.info

http://www.it-ebooks.info/

Database Connectivity

[228]

The short_url parameter is the short_url code from the requested URL:

url = Url.objects(short_url=short_url)

The preceding line queries the database to check whether the matching long URL
exists for the given short URL:

return HttpResponseRedirect(result.full_url)

This redirects the request to find the long URL from the database.

For the view, all we need to create is the base.html file.

As the aim of this project is not to teach you user interface, we will not include any
library and will make the page with as little HTML as possible.

The code for the base.html file is as follows:

<!DOCTYPE html>
 <html>
 <head lang="en">
 <meta charset="UTF-8">
 <title>URL Shortner</title>
 </head>
 <body>
 <form action="" method="post">
 {% csrf_token %}
 Long Url:

 <textarea rows="3" cols="80" name="longurl"></textarea>

 <input type="submit" value="Get short Url">
 </form>

 <div id="short_url">
 {% if short_url %}

 <a href="{{ path }}link/{{ short_url }}"
 target="_blank">{{ path }}link/{{ short_url }}

 {% endif %}
 </div>
 </body>
 </html>

This shows a text area with the form, and after submitting the form, it shows the
short link beneath the long URL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[229]

This is how the minimalistic URL shortner home page looks:

To make this work, all we need to do now is to create the required URL mapping,
which is as follows:

url_shortner/urlmapping.py

from django.conf.urls import patterns, url
from url.views import Index, Link
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
url(r'^$', Index.as_view()),
url(r'^link/(\w+)/$', Link.as_view()),
)

Summary
The purpose of this chapter is to prepare you to create your project with different
databases, and also to give you a basic idea about database migration and how these
migrations work. This will not only help you to debug your migration, but also you
can create your own data migration scripts to load the data from a JSON file, or any
other file format, directly to the Django application to initialize it.

The chapter also gave you a basic idea of how to set up Django with MongoDB, and
we also saw a small project demonstration followed by the real-world application of
scaling the Django system with MongoDB here.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[231]

Using Third-party Packages
It's time to combine all the theories and principles that we learned so far and try
to understand how we can utilize third-party packages to achieve lots of possible
projects, such as the Twitter API, the use of Social Auth, and so on.

You will learn the following topics in this chapter:

• Diving into the world of open source
• Using Social Auth in Django projects
• Building REST APIs in Django

Apart from the core modules required to build a website using Django and Python,
we need some third-party packages as well. There are many third-party packages
freely available over the Internet; you can find many useful packages at https://
www.djangopackages.com/. We will try to use open source third-party packages for
our project(s).

Diving into the world of open source
When we see the word open source, the first question that comes to our mind is what
does open source actually mean?

Well, open source is a term that refers to something whose design is publicly
accessible and can be modified by anyone as per their need, without requiring any
prior permission.

Okay then, let's move on, and dive deep into the aspects of the open source world.

www.it-ebooks.info

https://www.djangopackages.com/
https://www.djangopackages.com/
http://www.it-ebooks.info/

Using Third-party Packages

[232]

What is an open source software?
Open source software means that the software's source code is publicly accessible,
thus it can be modified in any possible way. Also, anyone can contribute to the
source code, which often leads to enhancement of the software.

Now, most software users don't ever see source code, which programmers can
modify to get the result as per their need; this basically means that having the source
code in the programmer's hand gives them total control over the software.

A programmer can then move forward with the software either by fixing any bugs or
by adding any new feature to it.

What's the difference between open source
and other software?
If the source code is not released for public access, or the code is accessible only
to the particular group of people who created it, this type of software is called
proprietary software or closed source software. Examples of closed source software
are Microsoft products, such as Microsoft Windows, Word, Excel, PowerPoint,
Adobe Photoshop, and so on.

To use proprietary software, users must agree (usually by signing a license that is
displayed the first time they run this software) that they will not do anything with
the software that the software's authors have not expressly permitted.

Whereas open source software is different. Authors of open source software make its
code available to others who would like to view that code, copy it, learn from it, alter
it, or share it. Python and Django programs are examples of open source software.

Just as there are licenses for proprietary software, open source software also has a
license, but a much different one. These licenses promote open source development;
they allow modification and bug fixes to their own source code.

Doesn't open source just mean that something is free of charge?

"Open source doesn't just mean getting access to the source code." As explained by Open
Source Initiative, it means that anyone should be able to modify the source code to
suit a programmer's need.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[233]

There can be a misconception about what an open source ecosystem can be thought
of as. Programmers can charge the open source software they create, but that will not
make any sense, as the person buying it has the full right to modify it and distribute
it free of cost. Instead of charging for the open source software, programmers charge
for the services they build around it, such as support, or other secondary components
that add much value to the original software. Companies such as Red Hat charge by
giving support to their open source Red Hat operating system. Elasticsearch charges
for a component called marvel that monitors Elasticsearch, which helps a lot when
Elasticsearch runs in production.

A lot of people think that only Internet-famous rock star programmers can contribute
to open source projects, but, in fact, open source communities thrive on contributions
from beginners to experts, and even nonprogrammers.

Using SocialAuth in Django projects
Every website needs to store user data to give them a better and exclusive
experience, but to do this, the website needs you to register by filling out the user
details form, where they ask you to enter your basic information. Filling these can
be boring and tedious. One practical solution to such a problem is Social Auth,
where you get registered to a site by a single click that fills up your basic information
automatically from the social site that you are already registered on.

For example, you might have seen many sites while browsing the Web that give you
the option of a couple of social buttons, such as, Google, Facebook, Twitter, and so
on, to login or register on their website. If you login or register using any of these
social buttons, they will pull up your basic details, such as e-mail, gender, and so on,
from that social site where the information is already updated, so that you don't need
to fill out the form manually.

Building the complete end-to-end implementation of this alone could be a project in
Django, and if you want your site to have the same functionality, you don't need to
reinvent the wheel. We can just import a third-party library, which, with minimal
configuration changes in the settings.py file, will make users log in or register with
the help of their existing social account.

How OAuth works
To understand how OAuth works, let's consider the following example.

OAuth is like a valet key for the Web. Most luxury cars come with a valet key, which
the owner hands down to the parking attendant. With that key, the car is not allowed
to travel longer distance, and other features, such as trunk on board luxury features,
are disabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Third-party Packages

[234]

In the same way, the login button you see on a website does not give the site full
access to your social account; it will simply pass on the details that you grant, or the
default information, such as an e-mail, gender, and so on.

In order to access this information, sites used to ask for a user's username and
password, which increased the risk of getting your personal information exposed or
account hacked. The possibility of people having the same username and password
for their banking account makes it more dangerous.

Thus, the aim of OAuth is to provide a method for users to grant third-party access to
their information without sharing the passwords. By following this method, limited
access can also be granted (such as, e-mail, permission to create a post, and so on).

For example, for a login register site, it will be very weird if they ask for access to
your personal photos. So, at the time of giving permission to the application using
OAuth, permission can actually be reviewed.

The following diagram gives you the overview of the OAuth mechanism:

In the preceding figure, you can see the client application that needs your credentials
asking you to either login or register using any of the social accounts. This is shown in
the first part of the figure, where the client asks the user for social account authorization.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[235]

Once you decide to login via a social account and you grant the client application
permission to access your social account, the client application that is already
registered with the same social site with an API key of its own, asks the social site
for your user details with its API request. At this stage, you might have seen the list
of the records that the client application will access. Some sites may also let you edit
these access rights. After the server grants authorization to the client application, the
client gets an access token for your social account access.

Client application may store this access token for future use or, as it is popularly
called, offline access.

The difference between registering and logging in with this social OAuth method
is that when you are already registered, chances are that the client application will
store your access token, so that the next time you try to log in, you don't have to go
through the same social site authorization page, as you have already given them
your authorization credentials.

Implementing social OAuth
In this section, we will learn to implement social OAuth in our existing project. To
implement social authentication for our application, we will use a third-party library
called python-social-auth. We will use Twitter social Auth to authenticate our
users. Let's take a look at the following steps:

1. First, we will install the third-party app called Python-Social-Auth.
The installation of python-social-auth can be done simply using the
following command:
$pip install python-social-auth

2. Once we have completed the installation of this third-party library, we will
move to our mytweet application and make the configuration changes in the
settings.py file.
We are including this third-party library as an application in our application, so
we have to create the entry of this application in the INSTALLED_APPS variable.
So, add the 'social.apps.django_app.default' parameter to the
INSTALLED_APPS variable, as follows:
INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',

www.it-ebooks.info

http://www.it-ebooks.info/

Using Third-party Packages

[236]

'django.contrib.staticfiles',
'user_profile',
'tweet',
'social.apps.django_app.default',
)

3. Next, we need to add the AUTHENTICATION_BACKEND variable in the
settings.py file, which enlists all social login sites that we want to support.
For this demonstration, we will add only Twitter social Auth, but as per
the use case, you can add any or as many Twitter social Auth as you want.
The AUTHENTICATION_BACKENDS parameter is the list of the Python class
paths, which knows how to authenticate the user. The default points to the
'django.contrib.auth.backends.ModelBackend' parameter. We will
add the 'social.backends.twitter.TwitterOAuth' parameter to the
AUTHENTICATION_BACKENDS variable:
AUTHENTICATION_BACKENDS = (
 'social.backends.twitter.TwitterOAuth',
 'django.contrib.auth.backends.ModelBackend',
)

4. We need to add the TEMPLATE_CONTEXT_PROCESSORS parameter, which will
add backends and associated data in the template's context, which will in
turn load the backend key with three entries, as follows:

 ° Associated: If the user is logged in, this will be a list of
UserSocialAuth instances; otherwise, it will be empty.

 ° Not_associated: If the user is logged in, this will be a list of
nonassociated backends; otherwise, it will contain a list of all the
available backends.

 ° Backends: This is a list of all the available backend names. Let's take
a look at the following code snippet:

TEMPLATE_CONTEXT_PROCESSORS = (
'django.contrib.auth.context_processors.auth',
'django.core.context_processors.debug',
'django.core.context_processors.i18n',
'django.core.context_processors.media',
'django.contrib.messages.context_processors.messages',
'social.apps.django_app.context_processors.backends',
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[237]

5. Our mytweet application already has a user model through which users are
able to log in and post tweets. We will use the same model class to create a
user from social Auth. For this, we need to add this line that tells python-
social-auth to use the existing user_profile parameter:
SOCIAL_AUTH_USER_MODEL = 'user_profile.User'

6. Now, we will add custom URLs that will be used for social Auth:
SOCIAL_AUTH_LOGIN_REDIRECT_URL = '/profile/'
SOCIAL_AUTH_LOGIN_ERROR_URL = '/login-error/'
SOCIAL_AUTH_LOGIN_URL = '/login/'
SOCIAL_AUTH_DISCONNECT_REDIRECT_URL = '/logout/'

Adding these to the settings.py file tells social Auth to fall for the
corresponding URLs in the following situation:

 ° SOCIAL_AUTH_LOGIN_REDIRECT_URL: This URL will be triggered
when the social authentication is successful. We will use this URL to
send the logged-in user his profile page.

 ° SOCIAL_AUTH_LOGIN_ERROR_URL: This URL will be triggered when
there is an error during social authentication.

 ° SOCIAL_AUTH_LOGIN_URL: This is the URL from where social Auth
will be done.

 ° SOCIAL_AUTH_DISCONNECT_REDIRECT_URL: After the user has logged
out, he/she will be redirected to this URL.

7. As we have added a new application to our existing project, we need to
create the corresponding tables in our database, which we have already
learned in the previous chapters.
Now, we need to migrate our database:
$ python manage.py makemigrations

Migrations for 'default':

0002_auto_XXXX_XXXX.py:

- Alter field user on user_profile

$ python manage.py migrate

Operations to perform:

Apply all migrations: admin, default, contenttypes, auth, sessions

Running migrations:

Applying default.0001_initial... OK

Applying default.0002_auto_XXXX_XXXX... OK

www.it-ebooks.info

http://www.it-ebooks.info/

Using Third-party Packages

[238]

8. For the last configuration change, we need to add an entry to the social
Auth URLs:
url('', include('social.apps.django_app.urls',
namespace='social'))

The updated URL patterns will look like this:
urlpatterns = patterns('',
....
url('', include('social.apps.django_app.urls',
namespace='social'))
)

Creating a Twitter application
Now, we will move ahead and create a Twitter application that will give us the API
keys to make this social Auth work:

1. Log into your Twitter account and open https://apps.twitter.com/app/
new.
The page will look somewhat like this:

2. Fill up the details and create your Twitter application.
As we are locally testing our app, place http://127.0.0.1:8000/
complete/twitter as the callback URL, and also check the Allow this
application to be used to Sign in with Twitter checkbox.

www.it-ebooks.info

https://apps.twitter.com/app/new
https://apps.twitter.com/app/new
http://127.0.0.1:8000/complete/twitter
http://127.0.0.1:8000/complete/twitter
http://www.it-ebooks.info/

Chapter 12

[239]

When it is successfully created, your application will look like this:

3. Move ahead with the Keys and Access Tokens tab and copy the Consumer
Key (API key) and Consumer Secret (API secret) keys, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Third-party Packages

[240]

4. Add the following lines to the settings.py file:
SOCIAL_AUTH_TWITTER_KEY = 'your_key'
SOCIAL_AUTH_TWITTER_SECRET = 'your_secret'

5. Update our user class to use the Auth appropriately:
class User(AbstractBaseUser, PermissionsMixin):
"""
Custom user class.
"""
 username = models.CharField('username', max_length=10,
 unique=True, db_index=True)
 email = models.EmailField('email address', unique=True)
 date_joined = models.DateTimeField(auto_now_add=True)
 is_active = models.BooleanField(default=True)
 is_admin = models.BooleanField(default=False)
 is_staff = models.BooleanField(default=False)

 USERNAME_FIELD = 'username'
 objects = UserManager()
 REQUIRED_FIELDS = ['email']
 class Meta:
 db_table = u'user'
 def __unicode__(self):
 return self.username

importing the PermissionsMixin as from
|django.contrib.auth.models import AbstractBaseUser,
PermissionsMixin

6. Now, start the server or open http://127.0.0.1:8000/login/twitter/.
This will take you to the following authorization page:

www.it-ebooks.info

http://127.0.0.1:8000/login/twitter/
http://www.it-ebooks.info/

Chapter 12

[241]

7. Click on the Sign In button as we will use this Twitter application to sign
into our app.
After this, it will redirect the request back to the mytweet app with your
basic information, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Third-party Packages

[242]

If the username does not exist in our database, it will create the user profile
with the Twitter username.

8. Let's create two tweets and save them.

Now, just to check whether social Auth works, we will log out and try to open the URL
again. You will get redirected to the same preceding profile page after redirection.

So, we learned how to create a Twitter API step by step by registering your
application with Twitter to set your keys in your program. Then, we saw how our
application sends you to the Twitter site for authentication, and how it redirects you
to our site after the authentication done from the Twitter website.

Building REST APIs in Django
Representational State Transfer (REST) is the underlying architectural principle of
the Web. Any API that follows REST principles is designed so that the client who is
the browser here does not need to know anything about the structure of the API. The
API server only needs to respond to the request made by clients.

HTTP works on the verbs that get applied to the resources. Some of the verbs that
are very popular are GET and POST, but there exists other important verbs, such as
PUT, DELETE, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[243]

For example, we will use our Twitter database, which is managed by a web service
as the REST API. For all REST communication, the media type is the main thing
that an API server has to care about, and the format in which it has to respond to
the client's request. Our API service uses a custom hypermedia based on JSON, for
which we will assign the /json+tweetdb MIME type application.

A request for the base resource will return something as follows:

Request
GET /
Accept: application/json+tweetdb
Response
200 OK
Content-Type: application/json+tweetdb
{
 "version": "1.0",
 "links": [
 {
 "href": "/tweets",
 "rel": "list",
 "method": "GET"
 },
 {
 "href": "/tweet",
 "rel": "create",
 "method": "POST"
 }
]
}

We can observe the output by referring to the href links through which we are
trying to send or retrieve the information, which are nothing but Hypermedia
controls. We can get the user list by sending another request through the /user
command with the GET request:

Request
GET /user
Accept: application/json+tweetdb
 Response
 200 OK
 Content-Type: application/json+tweetdb

 {
 "users": [
 {
 "id": 1,
 "name": "Ratan",
 "country: "India",

www.it-ebooks.info

http://www.it-ebooks.info/

Using Third-party Packages

[244]

 "links": [
 {
 "href": "/user/1",
 "rel": "self",
 "method": "GET"
 },
 {
 "href": "/user/1",
 "rel": "edit",
 "method": "PUT"
 },
 {
 "href": "/user/1",
 "rel": "delete",
 "method": "DELETE"
 }
]
 },
 {
 "id": 2,
 "name": "Sanjeev",
 "country: "India",
 "links": [
 {
 "href": "/user/2",
 "rel": "self",
 "method": "GET"
 },
 {
 "href": "/user/2",
 "rel": "edit",
 "method": "PUT"
 },
 {
 "href": "/user/2",
 "rel": "delete",
 "method": "DELETE"
 }
]
 }
],
 "links": [
 {
 "href": "/user",
 "rel": "create",
 "method": "POST"
 }
]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[245]

Seeing the preceding generated output, we can guess who all the users are, and
which are the requests that we can send, such as the DELETE or PUT request. In the
same way, we can even create a new user by sending a POST request to /user, as
shown in the following code snippet:

Request
POST /user
Accept: application/json+tweetdb
 Content-Type: application/json+tweetdb
 {
 "name": "Zuke",
 "country": "United States"
 }
 Response
 201 Created
 Content-Type: application/json+tweetdb
 {
 "user": {
 "id": 3,
 "name": "Zuke",
 "country": "United States",
 "links": [
 {
 "href": "/user/3",
 "rel": "self",
 "method": "GET"
 },
 {
 "href": "/user/3",
 "rel": "edit",
 "method": "PUT"
 },
 {
 "href": "/user/3",
 "rel": "delete",
 "method": "DELETE"
 }
]
 },
 "links": {
 "href": "/user",
 "rel": "list",
 "method": "GET"
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Using Third-party Packages

[246]

We can also update the existing data:
Request
PUT /user/1
Accept: application/json+tweetdb
 Content-Type: application/json+tweetdb
 {
 "name": "Ratan Kumar",
 "country": "United States"
 }
 Response
 200 OK
 Content-Type: application/json+tweetdb
 {
 "user": {
 "id": 1,
 "name": "Ratan Kumar",
 "country": "United States",
 "links": [
 {
 "href": "/user/1",
 "rel": "self",
 "method": "GET"
 },
 {
 "href": "/user/1",
 "rel": "edit",
 "method": "PUT"
 },
 {
 "href": "/user/1",
 "rel": "delete",
 "method": "DELETE"
 }
]
 },
 "links": {
 "href": "/user",
 "rel": "list",
 "method": "GET"
 }
 }

As you can easily note, we are using different HTTP verbs (GET, PUT, POST, DELETE,
and so on) to manipulate these resources.

Now, you have the basic idea of how REST works, so we will move ahead and use a
third-party library called Tastypie to play with our mytweets application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[247]

Using Django Tastypie
Django Tastypie makes developing RESTful APIs for web applications easier.

To install Tastypie, run the following command:

$pip install django-tastypie

Add the tastypie parameter to the INSTALLED_APPS variable in the settings.py file.

There are many other configurable settings that an API needs, such as a limit on API
calls and so on, but by default, they are set to default initially. You can either change
this, or leave it like that.

Some of the API settings that you should know about, and can modify as per your
need, are as follows:

• API_LIMIT_PER_PAGE (optional): This option controls the default number
of records that Tastypie will return in the view.applies list when a user
does not specify a limit to the GET parameter. The number of results to be
returned are not overridden by the resource subclass.
For example:
API_LIMIT_PER_PAGE = 15

The default limit here is 20 though.

• TASTYPIE_FULL_DEBUG (optional): When an exception occurs, this controls
the behavior of whether to show the REST response or the 500 error page.
If set to True and settings.DEBUG = True, the 500 Error page is displayed.
If it is not set or set to False, Tastypie returns a serialized response.
If settings.DEBUG is True, you'll get the actual exception message plus a
trace back.
If settings.DEBUG is False, Tastypie will call the mail_admins() function
and provide a canned error message (which you can override with
TASTYPIE_CANNED_ERROR) in the response.
For example:
TASTYPIE_FULL_DEBUG = True

The default is False though.

• TASTYPIE_CANNED_ERROR (optional): You can write your customized
error messages when an unhandled exception is raised and
settings.DEBUG is False.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Third-party Packages

[248]

For example:
TASTYPIE_CANNED_ERROR = "it's not your fault, it's our we
will fix it soon."

The default here is "Sorry, this request could not be processed. Please try
again later."

• TASTYPIE_ALLOW_MISSING_SLASH (optional): You can call the REST API
without giving the final slashes, which are mainly used to iterate the API
with other systems.
You must also have settings.APPEND_SLASH = False, so that Django does
not emit HTTP 302 redirects.
For example:
TASTYPIE_ALLOW_MISSING_SLASH = True

The default here is False.

• TASTYPIE_DATETIME_FORMATTING (optional): This setting configures the
global datetime/date/time data for the API.
The valid options for this are:

 ° iso-8601
 ° DateTime::ISO8601
 ° ISO-8601 (example: 2015-02-15T18:37:01+0000)
 ° iso-8601-strict, which is the same as iso-8601 but trips the

microseconds
 ° rfc-2822
 ° DateTime::RFC2822
 ° RFC 2822 (for example, Sun, 15 Feb 2015 18:37:01 +0000)

Take the following code as an example:
TASTYPIE_DATETIME_FORMATTING = 'rfc-2822'

The default here is iso-8601.

• TASTYPIE_DEFAULT_FORMATS (optional): This globally configures the list of
serialization formats for your entire site.
For example:
TASTYPIE_DEFAULT_FORMATS = [json, xml]

This defaults to [json, xml, yaml,html, plist].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[249]

Implementing a simple JSON API
To make REST-style architecture, we need to define the resource class for our tweets,
so let's create a api.py file in the tweets folder with the following content:

from tastypie.resources import ModelResource
from tweet.models import Tweet

class TweetResource(ModelResource):
class Meta:
queryset = Tweet.objects.all()
resource_name = 'tweet'

We also need a URL where all the API requests will be made for this Tweet resource,
so let's add an entry for this in the urls.py file:

from tastypie.api import Api
from tweet.api import TweetResource

v1_api = Api(api_name='v1')
v1_api.register(TweetResource())

urlpatterns = patterns('',
...
url(r'^api/', include(v1_api.urls)),
)

That's all that we need to create a basic REST API for tweets.

Now, we will see the various outputs based on the variations of the REST URL. In a
browser, open the URLs, as follows, and observe the output in the .json format.

The first URL will display the Tweet API details in the .json format:

http://127.0.0.1:8000/api/v1/?format=json

{
 "tweet": {
 "list_endpoint": "/api/v1/tweet/",
 "schema": "/api/v1/tweet/schema/"
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Using Third-party Packages

[250]

Based on the first output, we will call our tweet API, which would give us details of
the tweet info and other details, shown as follows:

http://127.0.0.1:8000/api/v1/tweet/?format=json

{
 "meta": {
 "limit": 20,
 "next": null,
 "offset": 0,
 "previous": null,
 "total_count": 1
 },
 "objects": [
 {
 "country": "Global",
 "created_date": "2014-12-28T20:54:27",
 "id": 1,
 "is_active": true,
 "resource_uri": "/api/v1/tweet/1/",
 "text": "#Django is awesome"
 }
]
}

Our basic REST API is ready, which lists all tweets. If you look at the schema, it gives
us many details about the API, such as which HTTP methods are allowed, which
format the output will be in, and other different fields. This actually helps us to
understand what we can do using our API:

http://127.0.0.1:8000/api/v1/tweet/schema/?format=json

{
 "allowed_detail_http_methods": [
 "get",
 "post",
 "put",
 "delete",
 "patch"
],
 "allowed_list_http_methods": [
 "get",
 "post",
 "put",
 "delete",
 "patch"
],
 "default_format": "application/json",
 "default_limit": 20,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[251]

 "fields": {
 "country": {
 "blank": false,
 "default": "Global",
 "help_text": "Unicode string data. Ex: \"Hello World\"",
 "nullable": false,
 "readonly": false,
 "type": "string",
 "unique": false
 },
 "created_date": {
 "blank": true,
 "default": true,
 "help_text": "A date & time as a string. Ex: \"2010-11-
 10T03:07:43\"",
 "nullable": false,
 "readonly": false,
 "type": "datetime",
 "unique": false
 },
 "id": {
 "blank": true,
 "default": "",
 "help_text": "Integer data. Ex: 2673",
 "nullable": false,
 "readonly": false,
 "type": "integer",
 "unique": true
 },
 "is_active": {
 "blank": true,
 "default": true,
 "help_text": "Boolean data. Ex: True",
 "nullable": false,
 "readonly": false,
 "type": "boolean",
 "unique": false
 },
 "resource_uri": {
 "blank": false,
 "default": "No default provided.",
 "help_text": "Unicode string data. Ex: \"Hello World\"",
 "nullable": false,
 "readonly": true,
 "type": "string",
 "unique": false
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Using Third-party Packages

[252]

 "text": {
 "blank": false,
 "default": "No default provided.",
 "help_text": "Unicode string data. Ex: \"Hello World\"",
 "nullable": false,
 "readonly": false,
 "type": "string",
 "unique": false
 }
 }
}

Some APIs might need authorized access, such as a user profile, account details, and
so on. Basic HTTP authorization can be added to the Tastypie API by just adding a
basic authorization line:

authentication = BasicAuthentication()

Basic HTTP authorization can be added with a header file as:
from tastypie.authentication import BasicAuthentication

This will ask for authentication via a basic HTTP request, which looks like the
following screenshot. Once this is successful, all requests in the current session are
authenticated.

This, followed by a demonstration, shows the real-world application of how to scale
the Django system with MongoDB.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[253]

Summary
In this chapter, you learned about open source and how to use and implement
open source third-party packages in our project. Now, you will be comfortable
to implement social Auth from Twitter. You can try the same for Facebook and
Google+ by yourself as well.

In the next chapter, you will learn more about the debugging techniques that we
need to use when we face any errors or warnings in our code, or some configuration
issues. You will also learn the tools for product development, such as Git, the
Sublime Text editor, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[255]

The Art of Debugging
In this chapter, you will learn three important things about Django's web
development, which every programmer should know about. These are the concepts
and techniques that you would need when your code goes wrong:

• Logging
• Debugging
• IPDB – interactive way of busting bugs

Logging
Every application that runs on production must have some logging enabled; if not,
then it will be very difficult to figure out what and where something went wrong.

Django uses Python's basic logging, thus we will go through the Python logging
in detail in the following section and see how we can use the logging service to
log in Django.

The formal definition of logging is the tracking of events in a software. Developers
call the logging service to state that an event has occurred, or is going to occur.
Logging can consist of some description or value of any important variable that
needs to be tracked.

The logging module of Python comes with five logging functions that are
categorized based on the severity of an event. These are debug(), info(),
warning(), error(), and critical().

www.it-ebooks.info

http://www.it-ebooks.info/

The Art of Debugging

[256]

These are categorized in a tabular form in order of their severity (starting from the
least severe to the most severe):

• debug(): This is used while fixing bugs and generally has detailed
information of the data.

• info(): This makes a log when things work as they are supposed to.
This basically tells whether an execution was successful or not.

• warning(): This is raised when some unexpected event occurs. This does
not actually halt the execution, but it might stop the execution in future. For
example, 'low disk space'.

• error(): This is the next level of warning, which states that the execution of
some function might have halted.

• critical(): This is the highest level of any logging function. This is raised
when a very serious error occurs, which might stop the execution of an
entire program.

The logging module is divided into the following four categories:

• Loggers: Logger is the entry point for the log message of a system. Programs
write logging information to loggers, which then process whether it has to be
given to a console for output or should be written to file.
Every logger comprises of the preceding five logging functions. Every
message that is written to the logger is called a log record. A log record
contains the severity of the log as well as the important log variable or
details, such as an error code or a complete stack trace.
Loggers themselves have a log level, which works as: if the log level of the log
message is greater than or equal to the log level of the logger, then the message
will be further processed for logging; otherwise, it will be ignored by the logger.
When a logger's preprocessing for a log's evaluation is done and the resulting
log has to be processed, then the message is passed to the handler.

• Handlers: Handlers actually decide what to do with the log message. They
are responsible for taking actions for the log record, such as writing to the
console or to a file, or sending it over the network.
The same as loggers, handlers also have a log level. Log messages are
ignored by the handler if the log level of a log record is not greater than or
equal to the level of handler.
Multiple handlers can be binned to a logger, for example, there can be a
handler for a logger that sends ERROR and CRITICAL messages over an
e-mail, whereas another handler can write the same log to a file for a later
debug analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[257]

• Filters: A filter adds an extra evaluation when a log record is passed from
a logger to handler. The default behavior is that it will start processing the
mails when a log message level has met the level of a handler.
This process can be interrupted further for extra evaluation by applying filter.
For example, a filter allows only one source to log the ERROR message
to a handler.
A filter can also be used to alter the priority of the log record, so that the
logger and handler are triggered accordingly.

• Formatters: The final step before the log message actually gets logged, which
will be in a text format, is that the formatter actually formats the log record
that consists of the Python formatting string.
To enable logging in our application, we will create a logger first. We need
to create the LOGGING dictionary in the settings.py file, which describes
loggers, handlers, filters, and formatters.
The full documentation about the logging setup can be found at
https://docs.python.org/2/library/logging.config.html.

The following is an example of a simple logging setup:
settings.py
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 'simple': {
 'format': '%(levelname)s %(message)s'
 },
 },
 'handlers': {
 'file':{
 'level':'DEBUG',
 'class': 'logging.FileHandler',
 'formatter': 'simple',
 'filename': 'debug.log',
 }
 },
 'loggers': {
 'django': {
 'handlers':['file'],
 'propagate': True,
 'level':'INFO',
 },
 }
}

www.it-ebooks.info

https://docs.python.org/2/library/logging.config.html
http://www.it-ebooks.info/

The Art of Debugging

[258]

This logger setup defines one logger (Django) that is for Django request, and a
handler (file) that writes to the log file with a formatter.

We will use the same to test the logging for our mytweet project.

Now, we need to make the logger's entry to the view, where we want to track
the event.

To test the project, we will update our user profile redirection class to make a log
whenever an unauthorized user tries to access it, and, also, when a registered user
tries to open the URL.

Open the tweet/view.py file and change the UserRedirect class to the following:

class UserRedirect(View):
 def get(self, request):
 if request.user.is_authenticated():
 logger.info('authorized user')
 return HttpResponseRedirect('/user/'+request.user.username)
 else:
 logger.info('unauthorized user')
 return HttpResponseRedirect('/login/')

Also, initialize the logger with an import statement and add the following code to
the preceding code:

import logging
logger = logging.getLogger('django')

That is it. Now, open the browser and click on the URL http://localhost:8000/
profile.

You will be redirected to the login page if you're not already logged in.

Now, open the debug.log file. It contains INFO of an unauthorized user, which
means that our logger is working perfectly fine:

INFO unauthorized user

Debugging
Debugging is the process of finding and removing bugs (error). When we develop
the web application with Django, we often need a case where we need to know the
variables submitted in an Ajax request.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[259]

The tools for debugging are:

• The Django debug toolbar
• IPDB (interactive debugger)

The Django debug toolbar
This is a set of panels that is used to display various information about the current
page's request/response, and in more detail when the panel is clicked on.

Rather than simply displaying the debug information in HTML comments, the
Django debug tool displays it in a more advanced way.

Installing the Django debug toolbar
To install the Django debug toolbar, run the following command:

$ pip install django-debug-toolbar

After the installation, we need to do basic configuration changes to see the Django
debug toolbar.

Add the debug_toolbar parameter to the INSTALLED_APPS variable in the
settings.py file:

Application definition
INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'user_profile',
 'tweet',
 'social.apps.django_app.default',
 'tastypie',
 'debug_toolbar',
)

This is more than enough for a simple Django project. The Django debug toolbar will
automatically adjust itself when a server runs in development mode.

www.it-ebooks.info

http://www.it-ebooks.info/

The Art of Debugging

[260]

Restart the server to see the Django debug toolbar, as shown in the following
screenshot:

As you can see, there is a toolbar on the right-hand side of the profile page. The
Django debug toolbar has many panels, of which a few are installed as default,
which you can see in the preceding screenshot, and other third-party panels can also
be installed here as well.

Now, we will discuss the panels that are enabled by default:

• VersionPath: debug_toolbar.panels.versions.VersionsPanel. This
panel shows the basic information, such as the versions of Python, Django,
and of other installed applications, if the information is available:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[261]

• TimerPath: debug_toolbar.panels.timer.TimerPanel

www.it-ebooks.info

http://www.it-ebooks.info/

The Art of Debugging

[262]

This panel contains some very important stats for the Django development.
It shows two tables, as you can see in the preceding screenshot, which are
Resource usage and Browser timing.

 ° Resource usage: This shows the Django resource consumption on the
server machine.

 ° Browser timing: This shows the details on the client-side. The request
and response times are vital for knowing whether a piece of code
can be optimized, and domLoading can be looked up if too much of
rendering slows the page from getting loaded.

• SettingsPath: debug_toolbar.panels.settings.SettingsPanel. A list of
settings that are defined in the settings.py file are headers

• Path: debug_toolbar.panels.headers.HeadersPanel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[263]

This panel shows the HTTP request and response headers and variables from
the WSGI environment.

• Request Path: debug_toolbar.panels.request.RequestPanel

This panel shows the variables from the framework, starting from the view
variables, which also has the ratancs argument variable; then, the Cookies,
Session, and GET, and POST variables, as these are very helpful to debug the
form submission.

www.it-ebooks.info

http://www.it-ebooks.info/

The Art of Debugging

[264]

• SQL Path: debug_toolbar.panels.sql.SQLPanel

This panel is also very important as it shows the SQL queries made to the
database for the page's response. This helps a lot at the time of scaling the
application, as queries can be thoroughly examined and combined together
to reduce database hits and improve the page response performance.
This also shows the code snippet that makes that SQL call, which is also very
helpful while debugging the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[265]

• Static files Path: debug_toolbar.panels.staticfiles.StaticFilesPanel

This will list all the static files used from the static files location that we had
set in the settings.py file.

www.it-ebooks.info

http://www.it-ebooks.info/

The Art of Debugging

[266]

• Template Path: debug_toolbar.panels.templates.TemplatesPanel

This will list down the templates and context used for the current request.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[267]

• Cache Path: debug_toolbar.panels.cache.CachePanel

If we enable the cache, then this will show the details of the cache hit for the
given URL.

www.it-ebooks.info

http://www.it-ebooks.info/

The Art of Debugging

[268]

• Signal Path: debug_toolbar.panels.signals.SignalsPanel

This panel shows the list of signals and their args and receivers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[269]

• Logging Path: debug_toolbar.panels.logging.LoggingPanel
If you have enabled logging, then this panel will show the log's messages, as
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

The Art of Debugging

[270]

• Redirects Path: debug_toolbar.panels.redirects.RedirectsPanel
When there is a page redirection on a URL, enable this to debug the
intermediate page. Generally, you don't debug the redirect URL, so, by
default, this is disabled.

IPDB – interactive way of busting bugs
Ipdb is an interactive source code debugger for Python programs.

Run the following command to install Ipdb:

$pip install ipdb

Ipdb is the interactive way of debugging Python application. After installing Ipdb, to
use it in any function, just write the following code:

import ipdb;ipdb.set_trace()

This magical line will halt the whole Django execution at the point where this code
is present, and will give you an active console, where you can find out the bugs or
check the variable's value in real time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[271]

The shortcuts for ipdb (when you are in the active console) are:

• n: This refers to next
• ENTER: This refers to repeat previous
• q: This refers to quit
• p <variable>: This is the print value
• c: This refers to continue
• l: This is the list where you are
• s: This is to step into a subroutine
• r: This means to continue till the end of the subroutine
• ! <python command>: To run Python command inside the active console

Summary
There is more to do than what is covered in this chapter. These were just the basics of
debugging that we are going to use in our Django projects. You learned how to log
and debug our code for a better and more efficient coding practice. We also saw how
to use Ipdb for more debugging.

In the next chapter, you will learn the various ways to deploy our Django projects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[273]

Deploying Django Projects
So, you have done a lot of work on your web application and now it is time to
make it live. To make sure that the transition from development to production goes
smoothly, there are a number of changes that must be made to the application before
it goes live. This chapter covers the changes to be made to the following topics to
help make the launch of your web application successful:

• The production web server
• The production database
• Turning off the debug mode
• Changing configuration variables
• Setting error pages
• Django on cloud

The production web server
We have been using the development web server that comes with Django
throughout this book. While this server is perfect for the development process, it's
definitely not intended to be a production web server, as it wasn't developed with
security or performance in mind. Therefore, it is certainly not suitable for production.

There are several options to choose from when it comes to the web server, but
Apache is by far, the most popular choice and the Django development team actually
recommends it. The details of how to set up Django with Apache depends on your
hosting solution. Some hosting plans offer a preconfigured Django hosting solution,
where you only have to copy your project files to the server, whereas other hosting
plans give you the freedom to configure everything yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying Django Projects

[274]

The details of how to set up Apache varies depending on a number of factors that
are beyond the scope of this book. If you want to configure Apache yourself, consult
the Django documentation online at https://docs.djangoproject.com/en/1.8/
howto/deployment/wsgi/apache-auth/ for detailed instructions.

In this section, we are going to deploy our Django application on Apache and the
mod_wsgi module. So, let's install these two first.

Run the following command to install Apache:

$sudo apt-get install apache2

The mod_wsgi parameter is an Apache HTTP server module that provides a Web
Server Gateway Interface (WSGI) compliant interface to host web applications
based on Python 2.3+ under Apache.

Run the following command to install the mod_wsgi module:

$sudo aptitude install libapache2-mod-wsgi

Django with Apache and the mod_wsgi module is the most popular way of
deploying Django in production.

In most of the cases, the development machine and the deployment machine are
different. Thus, it is advised that you copy the project folder to the /var/www/html/
folder, so that your deployment files have limited permission and access.

As you have installed the Apache server, try visiting localhost in your browser,
that is, 127.0.0.1. By doing this, you should see the default Apache page, as shown
in the following screenshot:

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/apache-auth/
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/apache-auth/
http://www.it-ebooks.info/

Chapter 14

[275]

We have to make the Apache server our Django project. For that, we need to create
the configuration file for Apache.

To do so, create a mytweets.conf file in the sites-available folder that you can
find by navigating to /etc/apache2/sites-available with the following content:

<VirtualHost *:80>
 ServerAdmin mail@ratankumar.org
 ServerName mytweets.com
 ServerAlias www.mytweets.com
 WSGIScriptAlias / /var/www/html/mytweets/mytweets/wsgi.py
 Alias /static/ /var/www/html/mytweets/static/
 <Location "/static/">
 Options -Indexes
 </Location>
</VirtualHost>

Let's take a look at the following term list that describes the various parameters used
in the preceding code snippet:

• ServerAdmin: This e-mail address will be shown if you have not configured
your custom error page, which will tell users to contact this e-mail address.

• ServerName: This is the name of the server you would like to run your
project on.

• ServerAlias: This is the name of the site you want to run the project on.
• WSGIScriptAlias: This is the location of the wsgi.py file of the project, which

was already there when we ran the first command to create the Django project.
• Alias: This is the path alias, the actual location of the folder on the disk is

mapped like a project directory.

Now, we need to enable this site configuration with the a2ensite command, and to
disable an existing site configuration, you can use the a2dissite command.

Let's enable the mytweets.conf file for Apache by using the following command:

$a2ensite mytweets.conf

This will enable our mytweets.conf file. You can also disable the
default 000-default.conf configuration by using the following command:

$a2dissite 000-default.conf

Verify the file permission of the static files of the project.
Don't forget to write an entry in allowed host in the
settings.py file.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying Django Projects

[276]

Now, restart the server:

$sudo service apache2 restart

That's all, Django now runs on the deployment mode, that is, it is now
production ready.

The production database
So far, we have been using SQLite as our database engine. It is simple and does not
require a resident server in memory. SQLite will perform fine in the production
mode for small websites. However, it is highly recommended that you switch to a
database engine that uses the client-server model in production. As we saw in an
earlier chapter, Django supports several database engines, including all the popular
ones. The Django team recommends you to use PostgreSQL, but MySQL should be
fine as well. Regardless of your choice, you only have to change the database options
in the settings.py file to switch to a different database engine.

If you want to use MySQL, create a database, username, and password for Django.
Then, change the DATABASE_* variables accordingly. Everything else should remain
the same. This is the whole point of the Django database layer.

Turning off the debug mode
Whenever an error occurs during development, Django presents a detailed error
page with a lot of useful information. However, when the application goes into
production, you don't want your users to see such information. Apart from
confusing your users, you risk exposing your website to security problems if you let
strangers see such information.

In the beginning when we used the django-admin.py mytweets command, which
created all the basic configuration for the project for which we used the debug=True
parameter in the settings.py file when this mode was True. The following extra
work is done by Django to help you debug the problem faster. The memory usage of
Django is more, as all the queries are stored as django.db.connection.queries in
the database.

For every error message, a proper stack trace of the message gets displayed, which
is not recommended when you run in the production mode, as this may contain
sensitive information and may weaken the security of the entire web application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[277]

Turning off the debug mode is pretty easy. Open the settings.py file and change
the DEBUG variable to False:

DEBUG = False

Disabling debug information carries an additional benefit; you improve the
performance of the website because Django doesn't have to keep track of the
debug data in order to display it.

Changing configuration variables
There are many configuration variables that need to be created or updated for
production. The production environment is a very hostile environment. The
following is the checklist that you should go through for deployment. Check the
setting.py file properly, as each setting must be defined in the right way to keep
the project secure.

Settings can be environment-specific, such as when you run the settings locally.
The database credentials might change and even the database can change according
to the environment. While conducting the process of deployment, enable the optional
security features.

Enable performance optimizations. The first step to do so is to disable debug, which
enhances the performance of the website. If you have a proper error reporting
mechanism, once DEBUG is False, it's difficult to know what went wrong, so you
better have your logs prepared once you disable debug mode.

The following are the critical settings that must be taken care of while going for
Django's deployment:

• SECRET_KEY: This key must be chosen large and randomly and should be
kept as a secret. In fact, it is recommended that you should never keep this
information in the settings.py file or in the version control repository.
Instead, keep this information somewhere safe in a nonversion controlled file
or in the environment path:
import os
SECRET_KEY = os.environ['SECRET_KEY']

This imports the key from the current operating system's environment. An
alternate suggested method is to import it from a file, which can be done using:
with open('/etc/secret_key.txt') as f:
 SECRET_KEY = f.read().strip()

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying Django Projects

[278]

• ALLOWED_HOSTS: This must have a valid host configuration. When the debug
mode is switched off, this is used to protect the CSRF attacks:
ALLOWED_HOSTS = [
 '.example.com', # Allow domain and subdomains
 '.example.com.', # Also allow FQDN and subdomains
]

• ADMIN: The ADMIN key holds the names and e-mail addresses of the site
administrators. You will find it in the settings.py file, commented out
as follows:
ADMINS = (
('Your Name', 'your_email@domain.com'),
)

Insert your name and e-mail address here and remove the # symbol to
uncomment it in order to receive e-mail notifications of code errors when
they occur.
When DEBUG=False and a view raises an exception, Django will e-mail these
people with the full exception information.

• EMAIL: Since the e-mail server of your production server most likely differs
from your development machine, you may want to update your e-mail
configuration variables. Look for the following variables in the settings.py
file and update them:

 ° EMAIL_HOST

 ° EMAIL_PORT

 ° EMAIL_HOST_USER

 ° EMAIL_HOST_PASSWORD

Also, your web application now has its own domain name, so you need to update
the following settings to reflect this: SITE_HOST and DEFAULT_FROM_EMAIL.

Finally, if you use caching, make sure that you have the correct settings in the
CACHE_BACKEND parameter (ideally, the memcached parameter); you don't want the
development backend to be here while you are in production.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[279]

Setting error pages
With the debug mode disabled, you should create templates for the error pages,
particularly these two files:

• 404.html: This template will be displayed when the requested URL
does not exist; in other words, when a page is not found, such as an
uncaught exception.
Create the two files with whatever content you like. You can, for example,
put a "Page not found" message in the 404.html template or a search form.

• 500.html: This template will be displayed when an internal server
error occurs.

It is recommended that you give these templates a consistent look by deriving them
from the base template of your site. Put the templates at the top in your templates
folder and Django will automatically use them.

This should cover the configuration changes that are essential for production. Of
course, this section is not conclusive and there are other settings that you may
be interested in. You can, for example, configure Django to notify you via e-mail
when a requested page is not found or provide a list of IP addresses that can see
debug information. For these and more, refer to the Django documentation in the
settings.py file.

Hopefully, this section will help you make your transition from development to
production much smoother.

Django on cloud
Deployment in web development has changed over the course of time. Most of
the start-ups are moving to a cloud setup and away from traditional VPS hosting
methods, due to reliability, performance, and ease of scalability.

The most popular cloud platforms that provide IAS (Infrastructure As a Service) are
Amazon EC2 and Google Compute Engine.

Then, we have other well-known options, such as Platform as a Service (PaaS),
where you push your code, such as you push it to a normal repository so that is gets
deployed automatically. These include Google App Engine, Heroku, and so on.

Let's get introduced to them one by one.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying Django Projects

[280]

EC2
Deployment on EC2 is simple. Follow the given steps to deploy your desired settings
on EC2:

1. Create an account for AWS. Follow http://aws.amazon.com and click on
Create a Free Account, as shown in the following screenshot:

2. Sign up and add your credit card for the billing details. Once you are done,
log in and you will see a dashboard. For deployment, we need to create a
server called EC2 instances (it can be treated as a server) on AWS.

www.it-ebooks.info

http://aws.amazon.com
http://www.it-ebooks.info/

Chapter 14

[281]

3. Click on EC2 (in the top-left corner), as shown in the following screenshot:

As you can see in the preceding screenshot, I already have an instance
running (1 Running Instances). Click on Launch instance to create a new
instance. This will show you the available AWS images (which is like a
screenshot in VMware or the last backup disk available) for the instance:

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying Django Projects

[282]

4. Scroll down to choose the Ubuntu 64-bit instance (the Ubuntu server).
Next, choose an instance type; initially, choose the free tier, which is given to
every new account that AWS calls the t2.micro instance type. Check for other
settings as most of them are kept at default. Move to the Tag instance and
give a name to your instance:

5. The next important thing to do is to choose a security group. AWS has this
feature to protect your server from attacks. Here, you can configure which
specific ports will be publicly accessible. Basically, you need to open two
ports to make the tweets publicly accessible.

6. You should use SSH (Port 22) to connect the system from a local machine to
deploy the code.

7. HTTP (Port 80) is used to run your Django server.

As the database we will use runs on the same instance, we
are not going to add the MySQL port to the security group.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[283]

Make sure that you have configured something like the following:

Next, review and launch the instance. Also, you must create a key pair to access your
AWS machine through SSH. The key is a .pem file that you will use with SSH to log
into your machine remotely. Create a key pair and download the .pem file.

Make sure that the PEM file has a specific permission of 400.
Your key file must not be publicly viewable if you want SSH to
work. Use this command if needed: chmod 400 mykey.pem.
It will take a while and will appear back on your dashboard as
a running instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying Django Projects

[284]

Click on the instances to the left of your screen. Then, you can see your running
instance. Click on the instance row to get more details at the bottom of the screen,
as shown in the following figure:

On the right-hand side of the details, you can see the public DNS: <public DNS> and
the public IP: <public IP>. That is all you need (and the .pem file, of course, to log
in to your instance).

On your machine, go to the folder from the terminal where you downloaded the PEM
file and type $ssh -i <pemfilename>.pem ubuntu@<pubic IP> on your terminal.

Otherwise, type the following:

$ssh -i <pemfilename>.pem ubuntu@<public Dns>.

By doing this, you will be logged in to the remote server.

This is your online system from scratch. If you want to deploy the website on
your own from your local machine, then you can go to the previous chapters and
install everything required for a virtual environment. Django and Apache perform
deployment on this server.

Once you have deployed, use the public IP we used for SSH and you should see the
deployed server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[285]

Google Compute Engine
Google Compute Engine works on the same concept as AWS EC2. Google Compute
Engine, at present, does not give a free tier.

Google servers are known for their reliability and performance. So, if you are
thinking of a project with such a need, go for them.

Google Cloud gives you a cloud SDK to use its instances, and most of its initial
configuration can be done from the terminal.

To create an instance on Google Compute Engine go to:

https://cloud.google.com/compute/docs/quickstart.

This link will help you set up the instance that runs on an Apache server.

The open hybrid cloud application platform
by Red Hat
Red Hat gives another solution for cloud deployment, which is free upto some usage
limit, with a service called OpenShift.

You can create an OpenShift account and get a free basic 3 dynamo-based cloud
server from https://www.openshift.com/app/account/new.

After you create your account, you can go to https://openshift.redhat.com/
app/console/applications and add your account.

OpenShift gives a Django repository all set up for you with the version control
pre-configured.

All you need is to make your changes and push the code. It will automatically
deploy the code.

OpenShift also gives you the SSH feature to log in to your cloud server and some
basic troubleshooting as well.

Heroku
This is also a good platform for deploying your Django code to the cloud smoothly.
Like Google Compute Engine, Heroku also gives you an SDK tool to install and
perform the configurational changes from a local terminal. You need to get a toolbelt
(an SDK for Heroku).

www.it-ebooks.info

https://cloud.google.com/compute/docs/quickstart
https://www.openshift.com/app/account/new
https://openshift.redhat.com/app/console/applications
https://openshift.redhat.com/app/console/applications
http://www.it-ebooks.info/

Deploying Django Projects

[286]

Create an account on Heroku at https://signup.heroku.com.

The following are the steps taken from https://devcenter.heroku.com/
articles/getting-started-with-python. Check it out for the latest updates.
The following steps explain how to create and use Heroku:

1. First, we need to install Heroku Toolbelt. This provides you access to the
Heroku command-line utility:
$wget -qO- https://toolbelt.heroku.com/install-ubuntu.sh | sh

The following screen will appear:

2. It will install Heroku Toolbelt on your local machine. Log in to Heroku from
the command line:
$heroku login

www.it-ebooks.info

https://signup.heroku.com
https://devcenter.heroku.com/articles/getting-started-with-python
https://devcenter.heroku.com/articles/getting-started-with-python
http://www.it-ebooks.info/

Chapter 14

[287]

3. Use the same username and password as you did for the Web login. Let's
take a look at the following screenshot:

4. Now, go to https://devcenter.heroku.com/articles/getting-
started-with-django to deploy Django on Heroku.

Google Application Engine
Google Application Engine works differently, it does not work on the traditional
database, instead it has its own database. Thus, to deploy Django on Google
Application Engine, we will use a separate project called Django-nonrel.

Django-nonrel is a project that allows developers to run native Django projects
(including Django's ORM) on nonrelational databases, one of which is Google
Application Engine's datastore. This is all in addition to the standard traditional SQL
databases that were always supported by Django. Google Application Engine does
come with some Django support, but the support is mainly regarding templating
and views. For other tools that allow rapid development, such as forms, the built-
in administration interface or Django authentication just won't run out of the box.
Django-nonrel changes this for Django developers.

www.it-ebooks.info

https://devcenter.heroku.com/articles/getting-started-with-django
https://devcenter.heroku.com/articles/getting-started-with-django
http://www.it-ebooks.info/

Deploying Django Projects

[288]

Summary
This chapter covered a variety of interesting topics. You learned about several
Django-based deployment options that are useful while deploying Django. You
also learned how to move a Django project from a development environment to a
production environment. Notably, the frameworks that you learned about are all
very easy to use, so you will be able to effectively utilize them in your future projects.

www.it-ebooks.info

http://www.it-ebooks.info/

[289]

What's Next?
Web development has evolved over time and so have the devices where users
consume information. The Web was designed for large-screen devices earlier, but
recent trends show that consumption of the devices with small screen size and the
devices that can be held in hand has increased. Thus, here arises the need to mold the
Web to serve small-screen devices, but these devices are very power sensitive. So, there
is the need to separate the backend functions from the frontend functions in Django.

One such most widely used solution is to use Django backend with an API enabled
at the frontend to use it with Django. Using AngularJS for such a situation is
most suited.

REST has been the future of web development and REST APIs are rather an integral
part of the modern Web. As the fragmentation across a device increases, there
arises a need of single minimal endpoint, which does not perform any presentation
operation. For instance, the information retrieval or commutation could be as fast as
possible and could also be scaled, and the presentation or business logic for this is
left in the hands of modern browsers using a frontend framework.

AngularJS meets Django
AngularJS is a modern JavaScript framework used to create complex web
applications within a browser.

Since the birth of AngularJS in 2009, it has been evolving very fast and is being
widely accepted as a production-grade frontend framework. It is now maintained
by Google.

AngularJS has a very interesting birth story. It got its big attention when one of the
creators of angular recreated a web application in 3 weeks, which initially took 6
months to develop, by reducing the number of lines of code from 17,000 to 1,000.

www.it-ebooks.info

http://www.it-ebooks.info/

What's Next?

[290]

AngularJS has many features over conventional web development frameworks. Among
them, a few unique and innovative features are two-way data bindings, dependency
injection, easy-to-test code, and extending the HTML dialect using directives.

For the server side, we can use the Django REST Framework or Tastypie for REST
endpoints. Then, we can use AngularJS, which focuses on the MVC model, to
encourage the creation of easily maintainable modules.

Web technologies have evolved from synchronous to asynchronous, that is, the
website requests now heavily use asynchronous calls to refresh its content without
reloading the page, an example of which is your Facebook wall.

AngularJS is one of the solutions for the asynchronous need in a better way for
Django web development.

In the following example, we will use AngularJS to create a single page, which uses
the tweet's API that we already created.

We will use AngulaJS to list all the tweets, but before that, we need to get
familiarized with AngularJS's key terms:

• Directives: For this, the HTML file is extended with custom attributes and
elements. AngularJS extends the HTML with ng-directives. The ng-app
directive is used to define AngularJS's application. The ng-model directive
binds the value of HTML controls (input, checkbox, radio, select, and text
area) to the application. The data.ng-bind directive binds the application
data to the HTML view.

• Model: This is the data shown to the user in the view and with which the
user interacts.

• Scope: This is the context where the model is stored, so that controllers,
directives, and expressions can access it.

• Controller: This is the main business logic behind views.

When we design an API-based web application, there is a high chance that both
(the API's backend and the webapp frontend) of them reside on different servers.
Thus, there arises a need to configure Django for Cross-origin resource sharing.

From the definition explained on Wikipedia:

Cross-origin resource sharing (CORS) is a mechanism that allows many resources
(for example, fonts, JavaScript, and so on) on a web page to be requested from
another domain outside the domain from which the resource originated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

[291]

We need to alter our Django API to allow requests from other servers as well. We
will now update the api.py file of the tweets application to allow the requests to
the server cross-site request:

class CORSResource(object):
 """
 Adds CORS headers to resources that subclass this.
 """
 def create_response(self, *args, **kwargs):
 response = super(CORSResource, self).create_response(*args,
 **kwargs)
 response['Access-Control-Allow-Origin'] = '*'
 response['Access-Control-Allow-Headers'] = 'Content-Type'
 return response

 def method_check(self, request, allowed=None):
 if allowed is None:
 allowed = []

 request_method = request.method.lower()
 allows = ','.join(map(unicode.upper, allowed))
 if request_method == 'options':
 response = HttpResponse(allows)
 response['Access-Control-Allow-Origin'] = '*'
 response['Access-Control-Allow-Headers'] = 'Content-Type'
 response['Allow'] = allows
 raise ImmediateHttpResponse(response=response)

 if not request_method in allowed:
 response = http.HttpMethodNotAllowed(allows)
 response['Allow'] = allows
 raise ImmediateHttpResponse(response=response)
 return request_method

After adding this class, we can create a subclass of any resource that we want to
expose for a cross-domain request. We will now change our Tweet class to make it
available for cross-site access.

Let's update the Tweet class to the following:

class TweetResource(CORSResource, ModelResource):
 class Meta:
 queryset = Tweet.objects.all()
 resource_name = 'tweet'

www.it-ebooks.info

http://www.it-ebooks.info/

What's Next?

[292]

Now, the tweet resource is ready for access from different domains.

The following is a basic AngularJS example:

Create a single HTML file called app.html (as this file is independent of our existing
Django project, we can create it outside the project folder) with the following content.
Currently, this page uses AngularJS from a local disk, you can import the page from
a CDN as well:

<html ng-app="tweets">
 <head>
 <title>Tweets App</title>
 <script src="angular.min.js"></script>
 </head>
 <body>
 <div ng-controller="tweetController">
 <table>
 <tr ng-repeat="tweet in tweets">
 <td>{{ tweet.country }}</td>
 <td>{{ tweet.text }}</td>
 </tr>
 </table>
 </div>
 <script src="app.js"></script>
 </body>
</html>

In the following code, the ng-controller directive is triggered at its render time,
which processes any business logic and injects the calculated models inside the scope.

The <div ng-controller="tweetController"> tag is one example where the
tweetController parameter is processed before its div is rendered.

We have our business logic completely in JavaScript in the app.js file:

var app = angular.module('tweets', []);
app.controller("tweetController", function($scope,$http) {
 $http({ headers: {'Content-Type': 'application/json;
 charset=utf-8'},
 method: 'GET',
 url: "http://127.0.0.1:8000/api/v1/tweet/?format=json"
 })
 .success(function (data) {
 $scope.tweets = data.objects;
 })
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

[293]

This app.js file makes a request to the API endpoint of tweets and injects the
tweets object to the scope, which is rendered by the AngularJS in view (app.html)
with the ng-repeat loop directive:

 <tr ng-repeat="tweet in tweets">
 <td>{{ tweet.country }}</td>
 <td>{{ tweet.text }}</td>
 </tr>

The output of the preceding code is shown in the following figure, which shows the
country and tweets:

This is just a basic AngularJS application, as advanced web development has moved
from backend to frontend completely. An AngularJS-based application is best suited
for a complete single-page application.

Django search with Elasticsearch
Search has become an integral part of most of the applications we deal with
nowadays. From Facebook, to search for a friend, to Google, where you search the
whole Web, everything from blog to log needs a search capability to unlock the
hidden information on a website.

The Web is evolving at an exponential rate. A GB of data is now obsolete
and hundreds of terabytes of both structured and unstructured data is generated
every day.

Elasticsearch (ES) is better than other alternatives because, in addition to providing
full-text search, it provides meaningful real-time data analytics and is highly scalable
with a strong support for clustered data infrastructure.

Elasticsearch also gives you a simple REST API that can easily integrate with
any custom application and a Django (and more broadly, Python) development
environment gives a lot of cool, out-of-the-box tools to implement Elasticsearch.

www.it-ebooks.info

http://www.it-ebooks.info/

What's Next?

[294]

The Elasticsearch website (http://www.elasticsearch.org/) contains a thorough
documentation and there are lots of great examples online that will help you build
any kind of search you need. By making full use of Elasticsearch, you can probably
build your own "Google" with it.

Installing an Elasticsearch server
First, install Java. Then, download and extract Elasticsearch. You can either run ES as
a service or you can start an ES server using the following Shell commands (change
paths in accordance with your system):

set JAVA_HOME=\absolute\path\to\Java

\absolute\path\to\ES\bin\elasticsearch

If it is done correctly, you can call the following URL in your browser:

http://127.0.0.1:9200/

It will give you a response in the following way, but with a different build_hash
parameter:

{
 "status" : 200,
 "name" : "MN-E (Ultraverse)",
 "cluster_name" : "elasticsearch",
 "version" : {
 "number" : "1.4.1",
 "build_hash" : "89d3241d670db65f994242c8e8383b169779e2d4",
 "build_timestamp" : "2014-11-26T15:49:29Z",
 "build_snapshot" : false,
 "lucene_version" : "4.10.2"
 },
 "tagline" : "You Know, for Search"
}

Elasticsearch comes with basic configurations for basic deployment. However, if you
want to tweak the configuration, then refer to its online documents and change the
Elasticsearch configuration in the elasticsearch.yml file.

Communication between Elasticsearch and Django
Django can be seamlessly integrated with Elasticsearch using basic Python
programming. In this example, we will use the Python requests library to make
the request from Django to Elasticsearch We can install requests by typing
the following code:

$pip install requests

www.it-ebooks.info

http://www.elasticsearch.org/
http://www.it-ebooks.info/

Chapter 15

[295]

For the search functionality, there are mainly three operations that we need
to execute:

1. Create an Elasticsearch index.
2. Feed the index with data.
3. Retrieve the search results.

Creating an Elasticsearch index
Before loading an Elasticsearch index with text and retrieving the search results,
Elasticsearch has to know some details about your content and how data should
be treated. Therefore, we create an ES index that consists of settings and mappings.
Mappings are the ES equivalents of Django's models—data field definitions for
your content.

Although mappings are completely optional, as Elasticsearch dynamically creates a
mapping from the information that it has got for indexing, but it is advised that you
predefine the data map for indexing.

A Python example for creating an ES index is as follows:

 data = {
 "settings": {
 "number_of_shards": 4,
 "number_of_replicas": 1
 },
 "mappings": {
 "contacts": {
 "properties": {
 "name": { "type": "string" },
 "email": { "type": "string" },
 "mobile": { "type": "string" }
 },
 "_source": {
 "enabled": "true"
 }
 }
 }
 }
}

import json, requests
response = requests.put('http://127.0.0.1:9200/contacts/', data=json.
dumps(data))
print response.text

www.it-ebooks.info

http://www.it-ebooks.info/

What's Next?

[296]

The output of the preceding code is shown in the following figure:

For every operation done with Elasticearch, it gives a response message such as
{"acknowledged":true}, which means that our index has been created successfully
by Elasticsearch.

We can check whether the mapping has actually been updated or not by making a
query command such as:

mapping_response =
requests.get('http://127.0.0.1:9200/contacts/_mappings')

print mapping_response.text

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

[297]

The following figure shows that Elasticsearch has been updated with the new
mapping:

After we created our first Elasticsearch index, we created the JSON dictionary with
the information and dumped this information into Elasticsearch via Python requests.
The "contacts" parameter is the index name we have choosen and we will use this
name to feed and retrieve data from the Elasticsearch server. The "mappings" key
describes what data your index will hold. We can have as many different mappings
as we like. Every mapping contains a field in which data is stored, exactly, like a
Django model. Some of the basic core fields are string, number, data, Boolean, and
so on. The full list is given in the Elasticsearch documentation. The "shards" and
"replicas" parameters are explained in the ES glossary. Without the "settings" key, ES
would simply use the default values—which in most cases is perfectly fine.

Feeding the index with data
Now that you have created an index, let's store content inside it. An example Python
code for our imaginary BlogPost model that contains a title, description, and content
as text fields is as follows:

import json, requests
data = json.dumps(
 {"name": "Ratan Kumar",
 "email": "mail@ratankumar.org",
 "mobile": "8892572775"})
response = requests.put
('http://127.0.0.1:9200/contacts/contact/1', data=data)
print response.text

www.it-ebooks.info

http://www.it-ebooks.info/

What's Next?

[298]

You will see the output, which is shown as follows:

This acknowledgment shows that our contact data has been indexed. Of course,
indexing a single data and searching it does not makes much sense, so we will index
more contacts before we make a retrieval query.

Elasticsearch also provides bulk indexing, which can be used as follows:

import json, requests
contacts = [{"name": "Rahul Kumar",
 "email": "rahul@gmail.com",
 "mobile": "1234567890"},
 {"name": "Sanjeev Jaiswal",
 "email": "jassics@gmail.com",
 "mobile": "1122334455"},
 {"name": "Raj",
 "email": "raj@gmail.com",
 "mobile": "0071122334"},
 {"name": "Shamitabh",
 "email": "shabth@gmail.com",
 "mobile": "9988776655"}
]

for idx, contact in enumerate(contacts):
 data += '{"index": {"_id": "%s"}}\n' % idx
 data += json.dumps({
 "name": contact["name"],
 "email": contact["email"],
 "mobile": contact["mobile"]
 })+'\n'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

[299]

Let's take a look at the following screenshot:

As you can see in the preceding screenshot, the "status": 201 parameter, which in the
HTTP status means that the record is successfully created. Elasticsearch reads data
line by line, so we used "\n" at the end of every dataset. Bulk operations are much
faster than running the multiple single request.

This example is a simple JSON example. When we use Elasticsearch with our Django
application, the same JSON object can be replaced by the Django model and to index the
model, you can get all the Django model objects from the ModelName.objects.all()
query and then parse and save it. Also, in the case of the manual ID, as we used in the
preceding example, which is the index count, it will be much more convenient if you
use a primary key to index it as an Elasticsearch ID. This will help us to directly query
for a result object if we are not passing the object information as a payload.

www.it-ebooks.info

http://www.it-ebooks.info/

What's Next?

[300]

Retrieving search results from the index
Searching an index is rather simple. Again, we use Python requests to send a
JSON-encoded data string to our ES endpoint:

data = {
 "query": {
 "query_string": { "query": "raj" }
 }
}

response = requests.post
('http://127.0.0.1:9200/contacts/contact/_search',
data=json.dumps(data))
print response.json()

This gives a result, as shown in the following figure:

In the example, we are looking for the term "raj" in our contacts index. ES returns
all the hits ordered by relevancy in the JSON-encoded format. Each of these hits
contains an "_id" field that gives you the primary key of the concerned blog post.
Using Django's ORM, it's now simple to retrieve the actual objects from the database.

The ES search endpoint offers an unlimited set of options
and filters; fast retrieval from huge datasets, pagination, and
everything you need to build a powerful search engine.

This is just the tip of the iceberg. When you will build your Django application with
Elasticsearch, you will explore many interesting features, such as aggregation, which
can be used in the preceding example. It lists all the contact information of Ratan
and autocomplete, which will be used to suggest a user the complete name from
Elasticsearch, as they start typing in the search box for a contact.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

[301]

Summary
In this chapter, we learned about the two important components that are used most
often when the Django project is involved, namely, AngularJS and Elasticsearch.
As frontend framework, AngularJS not only decreases the load from the server by
pushing the render logic to a browser, it also gives a rich experience to the users
when using an AngularJS-powered application.

Elasticsearch, on the other hand, is one of the most popular search engines used,
which is open source as well. The ease of setting up and scaling Elasticsearch is what
makes it the choice for any search engine requirement. You learnt a bit about Django
as well. As the chapter started, we're sure that you'll had the aim of learning a skill
and of becoming experts in it. Well, this is just the beginning; there are more things
that you need to explore to reach at the expert level in each topic that was discussed
in this chapter. We have reached at the end of this book. In this book, we went
through the process of building a micro blogging application from scratch using
Django as our framework. We covered a lot of topics related to Web 2.0 and social
applications, as well as many Django components. You can always refer to the online
documentation of Django. If you want to learn more about a particular feature or
component, visit https://docs.djangoproject.com.

Thanks for choosing this book to learn the Django web development basics. We wish
you all the success in your professional life.

www.it-ebooks.info

https://docs.djangoproject.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[303]

Index
Symbols
7-Zip

URL 18
404.html template 279
500.html template 279
$() function 107
$git branch command 42
$git checkout <old-branch-name>

command 43
$git checkout -b <new-branch-name>

command 43
$git merge <branch-name> command 43

A
activate script 16
activation links

handling 172, 173
administration interface

customizing 149
administration templates

overriding 154-156
admin.py files

defining 78
AJAX

about 103
advantages 104, 105
using, in Django 105, 106

AngularJS
about 289, 290
controller 290
directives 290
Django, working with 289-293
model 290

scope 290
Apache

about 273
using 192

Application Program Interface (API) 5
arguments, field types

blank 72
choices 72
default 72
help_text 72
null 71
primary_key 72

asynchronous JavaScript and XML. See
AJAX

attributes, Admin class
list_filter 152, 153
ordering 152, 153
search_fields 152, 153

authentication 224
autocompletion, of hashtags

implementing 133-136
AWS 47

B
backend support 212
benefits, MySQL

replication 206
sharding 206

Bitbucket 8, 41
blank lines, indentation

single blank line 30
two blank lines 30

bookmark editing
implementing 122-126

www.it-ebooks.info

http://www.it-ebooks.info/

[304]

Bootstrap
about 2, 47
manual installation 49, 50
URL 57
using, with Django 48

branching, Git 42

C
C 28
C++ 207
caching

configuring 185
configuring, for specific views 186
configuring, for whole site 185
enabling 184, 185
used, for improving site performance 183

caching backend, options
Database Caching 184
Filesystem Caching 184
Memcached 184
Simple Caching 184

CamelCase naming convention 32
class-based generic views

about 197
using 197, 198

class-based views
defining 62-64

Client() class
get method 188
login method 189
post method 189

closed source software 232
CMD 16
coding style

about 28
imported packages, grouping 31
indentation, in Python 28, 29
naming conventions 32
package, importing 31

commands, Git
$git add 41
$git add <file-name> 41
$git commit -m 41
$git diff 41
$git rm <file-name> 42
$git stash 42

$git stash apply 42
$git status 41

commands, migration
makemigrations 213
migrate 213
sqlmigrate 213

compatible databases
MySQL 212
PostgreSQL 212
SQLite 213

components, grid
column 59, 60
container 58
row 59

configuration variables
changing 277, 278

content
organizing, into pages 159-163

contributed sub-frameworks 198
CouchDB

about 207
benefits 207
strengths 207

critical() function 256
Cross-origin resource sharing (CORS) 290
cross-site request forgery (CSRF)

protection 201
custom filters

creating 195-197
escape string 197
raw string 197
safe string 197

custom template tags
creating 195-197

D
database

setting up 44, 45
database system

installing 19
setting up 208

data migration 219
data.ng-bind directive 290
Debian 14
debug() function 256

www.it-ebooks.info

http://www.it-ebooks.info/

[305]

debugging
about 258
with Django debug toolbar 259

debug mode
disabling 276

default field types
CharField 97
DateField 97
DateTimeField 71, 97
EmailField 71, 97
FileField 71
IntegerField 71, 97
TextField 71
URLField 71, 97

development server
launching 46

Disqus 8
Django

about 1, 2, 52, 205
advanced development environment 6
AJAX framework, using 105, 106
authentication 224
automatic administration interface 6
batteries included philosophy 5
best practices 40
clean URL design 6
deploying 192
features 4, 5
integration, between component/modular

framework 5
MongoDB, connecting with 223
ORM layer 6
perfect web development framework 5
production web server, using 192
searching, with Elasticsearch 293
supported databases 7, 8
URL, for documentation 192, 274
with NoSQL 222

Django 1.6
features 6, 7

Django debug toolbar
about 259
installing 259, 260
panels 260
SQL Path 263, 264

Django forms
defining 96
tasks, defining 96

Django installation
about 17
compatibility, with operating system 17
download link 17
on Mac OS X 19
on Unix/Linux 18
on Windows 18

Django migration
advantages 211, 212
new features 211

Django models
defining 71, 72

Django-nonrel 223, 287
Django on cloud

about 279
EC2 280
Google Application Engine 287
Google Compute Engine 285
Heroku 285, 286
OpenShift 285
Red Hat 285

Django project
__init__.py file 21
creating 20
database, setting up 21-24
development server, launching 25
empty project, creating 20, 21
manage.py file 21
settings.py file 21
setting up, Sublime text editor used 33-35
structure 37-39
url.py file 21

Django REST Framework 290
Django settings, for mytweets project

defining 65-70
references 65
URL 65

Document-object Mapper 223
Document Object Model (DOM) 2
DoubleClick 207

www.it-ebooks.info

http://www.it-ebooks.info/

[306]

E
EC2 280-284
Elasticsearch

about 233, 293
communication, with Django 294, 295
installing 294
URL 294

Elasticsearch index
creating 295, 296
feeding, with data 297-299
search results, retrieving from 300

error() function 256
error pages

setting 279
event handler 110

F
fields, MongoDB

BinaryField 225
BooleanField 225
ComplexDateTimeField 225
DateTimeField 225
DecimalField 225
DictField 225
DynamicField 225
EmailField 225
FileField 225
FloatField 225
GeoPointField 226
ImageField 226
IntField 226
ListField 226
MapField 226
ObjectIdField 226
reference link 226
StringField 226
URLField 226

flatpages
about 199
cross-site request forgery (CSRF)

protection 201
humanize application 199, 200
sitemap 200

follower
adding 145, 146
removing 145, 146

form widgets
FileInput 97
HiddenInput 97
PasswordInput 97
Textarea 97

Foundation 2
function-based view

defining 62, 63

G
generic views 197
Git

about 40
branching in 42
setting up 41
URL 40
working 41

GitHub 41
GNU gettext

about 179
URL 179

Google Compute Engine 285
group permissions 157

H
hashtag data model

about 92-95
Django forms 96

hashtags
about 91
autocompletion, implementing 133-136
tag page, creating 101

Heroku 47, 285, 286
Heroku Toolbelt

about 286
URL 286

humanize application
about 199
apnumber filter 199
intcomma filter 199
intword filter 199
naturalday filter 200
naturaltime filter 200
ordinal filter 200

www.it-ebooks.info

http://www.it-ebooks.info/

[307]

I
IAAS (Infrastructure as a Service) 279
IDE

using 33
imported packages, grouping

local application / library-specific
imports 31

related third party imports 31
standard library imports 31

indentation, in Python
about 28, 29
importance, of blank lines 30
recommendations 29, 30

info() function 256
initial database schema

designing 74
template, creating for main page 84-89
URL, creating 82-84
user objects, Django 74-82

in-place editing
about 121
bookmark editing, implementing 122-126
implementing 121
implementing, of bookmarks 126-132

installation
database system 19
Django 17
Python 11
virtualenv 14

internationalization (i18n)
configuring 180-182
enabling 180-182
for multiple language support 174
strings, specifying for translation 174-178
translation files, creating 178-180

invitation e-mails
activation links, handling 172, 173
invitation data model, creating 168-172
sending 165-167

Ipdb
about 270
installing 270
shortcuts 271

J
jQuery

about 105, 106
AJAX requests, sending 111
CSS properties, accessing 107, 108
document tree, traversing 109
elements, hiding 107
elements, selecting 106
elements, showing 107
events, handling 110
HTML attributes, accessing 107, 108
HTML documents, manipulating 108, 109
methods, using 107
plugins, URL 133
reference link 111
using 106

JSON API
implementing 249-252

L
Linux

MySQL, installing in 209
listing pages

customizing 150-154
live search, of tweets

implementing 118-120
logging

about 255
critical() function 256
debug() function 256
error() function 256
example 257, 258
info() function 256
URL, for documentation 257
using 255-257
warning() function 256

logging module
filters 257
formatters 257
handlers 256
loggers 256

log record 256

www.it-ebooks.info

http://www.it-ebooks.info/

[308]

M
Mac OS X

Django, installing 19
Python, installing 14

main page
creating 60, 61
template, creating for 84-89

many-to-many relationship 73, 74, 92
many-to-one relationships 73
mappings 295
message system

implementing 201, 202
migration

about 210-212
advantages 211, 212
commands 213
need for 210, 211
new features 211
performing 213-216
working 216, 217

migration class
dependencies list 219
operations list 219

migration file 217-222
mixins 62
Modal Class 6
model, migration operation

AddField 219
AlteIndexTogether 219
AlterModelTable 219
AlterUniqueTogether 219
CreateModel 219
DeleteModel 219
RemoveField 219
RenameField 219
RenameModel 219

Model Template View (MTV)
framework 52

Model-View-Controller (MVC)
web framework 3

mod_wsgi parameter 274
MongoDB

about 5, 8, 207, 222
benefits 207
connecting, with Django 223

strengths 207
URL, for installing 222

MongoEngine 223
most followed user

displaying 147
MS SQL Server 19
multilingual support 4
MySQL

about 19, 205, 212
benefits 206
installing, in Linux 209
plugins, installing for Python 209, 210
setting up 209

N
naming convention 32
ng-app directive 290
ng-directives 290
ng-model directive 290
node.js 2
NoSQL databases

about 207
CouchDB 207
MongoDB 207
Redis 208
versus SQL databases 205, 206

O
OAuth 233-235
Object-Relational Mapper (ORM) 71
offline access 235
one-to-many relationship 92
one-to-one relationships 73
OpenID 5
OpenShift

about 285
URL 285

open source 231
open source software

about 232
versus other software 232, 233

operators
contains 116
exact 116
gt 116

www.it-ebooks.info

http://www.it-ebooks.info/

[309]

lt 116
startswith 116

Oracle 19, 205

P
pages

rendering 64
pagination 159
panels, Django debug toolbar

Cache Path 266, 267
Logging Path 269
Path 262, 263
Redirects Path 270
Request Path 263
SettingsPath 262
Signal Path 267, 268
Static files Path 264, 265
Template Path 265, 266
TimerPath 262
VersionPath 260

parameters, field type
help_text 97
label 97
required 97
widget 97

partials 117
Perl 28
permissions

about 156
group permissions 157
user permissions 156, 157
using, in views 158

Pinterest 5, 8
Platform as a Service (PaaS) 279
Poedit

about 179
URL 179

PostgreSQL 7, 19, 205, 207, 212
Powershell 16
production database 276
production web server

using 192, 273-275
project 37
project structure

about 37
django_mytweets folder 38

manage.py file 38
settings.py file 39
url.py file 40

proprietary software 232
Prototype 105
PyCharm

about 33
setting up 36

Python
about 3
download link 12
installing, on Mac OS X 14
installing, on Unix/Linux 13, 14
installing, on Windows 12
MySQL plugin, installing for 209, 210

Python-Social-Auth 235

Q
Quora 5, 8

R
Red Hat 233, 285
Redis

about 208
benefits 208
strengths 208

registration view
testing 189-192

regular expression syntax
about 83
URL 83

relationship types, model
many-to-many relationships 73, 74
many-to-one relationships 72
one-to-one relationships 73

replication 206
Representational State Transfer (REST)

APIs
about 242
building 242-246
building, Tastypie used 247, 248

S
schema migration 210

www.it-ebooks.info

http://www.it-ebooks.info/

[310]

search, of tweets
implementing 111-118

sessions
storing 224-228

setlanguage 181
sharding 206
single-page application project 223
sitemap 200
Social Auth

about 233
OAuth 233-235
Twitter application, creating 238-242
using 233

social OAuth
implementing 235-238

SQL databases
about 206
MySQL 206
PostgreSQL 207
versus NoSQL databases 205, 206

SQLite 7, 19, 205, 213
SSH keys

URL 56
staging area 41
Sublime CodeIntel 35
Sublime Linter 35
SublimeText

about 33
URL 33

subscription system
implementing 202

supported databases
about 7
MongoDB 8
NoSQL 8
PostgreSQL 7
SQL 7
SQLite 7

Synaptic Package Manager 14

T
tag 91
tagging 91
Tastypie 290

about 246
JSON API, implementing 249-252

used, for building REST APIs 247, 248
template 52
template application

project structure, creating 54-56
setting up 52
virtual environment, creating 52, 54

templatetags 196
translation files

creating 178-180
tweet post form

designing 96-100
Twitter

URL 238
Twitter application

creating 238-242
Twitter bootstrap

setting up, for application 56-60
typeahead JavaScript library

about 119
URL 119

U
Ubuntu 14
unit testing

performing 187
registration view, testing 189-192
test client 187

Unix/Linux
Django, installing 18
Python, installing 13

URLs
defining 60

UserFollowers data model
creating 138-141

user interface (UI) elements 3
user login model 141-144
user objects 74-82
user pages

Django models, defining 71, 72
generating 71
relationship types 72

user scores
implementing 203

users
following, another user 137, 138
permissions 156, 157

www.it-ebooks.info

http://www.it-ebooks.info/

[311]

V
version control

using 40
views

about 52
defining 60

virtualenv
about 14
installing 14-17
script, activating 16
script, deactivating 17
URL, for online documentation 16
virtual environment, creating 52-54

W
warning() function 256
web development

about 2
improvements 2, 3
multilingual support 4
MVC pattern 3

Web Server Gateway Interface (WSGI) 274
Windows

Django, installing 18
Python, installing 12

wire-framing 47

Y
Yahoo! UI Library 105

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Learning Django Web Development

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Django Essentials
ISBN: 978-1-78398-370-4 Paperback: 172 pages

Develop simple web applications with the powerful
Django framework

1. Get to know MVC pattern and the structure
of Django.

2. Create your first webpage with
Django mechanisms.

3. Enable user interaction with forms.

4. Program extremely rapid forms with
Django features.

5. Explore the best practices to develop
applications of a superior quality.

Python Tools for Visual Studio
ISBN: 978-1-78328-868-7 Paperback: 122 pages

Leverage the power of the Visual Studio IDE to
develop better and more efficient Python projects

1. Learn how you can take advantage of IDE for
debugging and testing Python applications.

2. Enhance your efficiency in Django development
with Visual Studio IntelliSense.

3. Venture into the depths of Python programming
concepts, presented in a detailed and clear
manner.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Object-oriented Python
ISBN: 978-1-78328-097-1 Paperback: 634 pages

Grasp the intricacies of object-oriented programming
in Python in order to efficiently build powerful
real-world applications

1. Create applications with flexible logging,
powerful configuration and command-line
options, automated unit tests, and good
documentation.

2. Use the Python special methods to integrate
seamlessly with built-in features and the
standard library.

3. Design classes to support object persistence
in JSON, YAML, Pickle, CSV, XML, Shelve,
and SQL.

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization.

2. Understand the topics such as importing
data for visualization and formatting data
for visualization.

3. Understand the underlying data and how to
use the right visualizations.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Django
	Why web development in the first place?
	What has changed in web development
	The MVC pattern in web development
	Multilingual support

	Why Django?
	Inside Django
	Django is mature
	Batteries included
	Tight integration between component and modular framework
	Object-relational Mapper
	Clean URL design
	Automatic administration interface
	Advanced development environment
	What's new in Django 1.6 and 1.7

	Supported databases
	What you will learn using this book
	Summary

	Chapter 2: Getting Started
	Installing the required software
	Installing Python
	Installing Python on Windows
	Installing Python on Unix/Linux
	Installing Python on Mac OS X

	Installing virtualenv
	Installing Django
	Django compatibility with operating
systems – Windows versus Linux:
	Installing Django on Windows
	Installing Django on Unix/Linux and Mac OS X

	Installing a database system

	Creating your first project
	Creating an empty project
	Setting up the database
	Launching the development server

	Summary

	Chapter 3: Code Style in Django
	Django coding style
	Understanding indentation in Python
	Doing indentation right – do we need four spaces per indentation level?
	The importance of blank lines

	Importing a package
	Grouping imported packages

	Naming conventions in Python/Django

	Using IDE for faster development
	Setting up your project with the Sublime text editor
	Setting up the pycharm IDE
	The Django project structure
	Best practices – using version control
	Git – the latest and most popular version control tool
	How Git works
	Setting up your Git
	Branching in Git

	Setting up the database
	Launching the development server
	Faster web development
	Minimal Bootstrap
	The Django way
	Manual installation of Bootstrap

	Summary

	Chapter 4: Building Applications
such as Twitter
	A word about Django terminology
	Setting up a basic template application
	Creating a virtual environment

	Installing Django
	Creating Django's template structure of
the project

	Setting up the basic Twitter bootstrap for the application
	URLs and views – creating the Main Page
	Introduction to class-based views
	Django settings for the mytweets project
	Putting it all together – generating User Pages
	Familiarization with the Django models
	Relationships in models
	Many-to-one relationships
	One-to-one relationships
	Many-to-many relationships

	Models – designing an initial database schema
	Django's user objects
	Creating a URL
	Templates – creating a template for the
Main Page

	Summary

	Chapter 5: Introducing Hashtags
	The hashtag data model
	Django forms

	Designing the tweet post form
	Creating a tag page
	Summary

	Chapter 6: Enhancing the User
Interface with AJAX
	AJAX and its advantages
	Using an AJAX framework in Django
	Using the open source jQuery framework
	The jQuery JavaScript framework
	Element selectors
	jQuery methods
	Hiding and showing elements
	Accessing CSS properties and HTML attributes
	Manipulating HTML documents
	Traversing the document tree
	Handling events
	Sending AJAX requests
	What next?

	Implementing the searching of tweets
	Implementing searching

	Implementing the live searching of tweets
	Editing a tweet in place without loading a separate page
	Implementing bookmark editing
	Implementing in-place editing of bookmarks

	Autocompletion of hashtags while submitting a tweet
	Summary

	Chapter 7: Following and Commenting
	Letting users follow another user
	The UserFollowers data model
	The user login model
	Adding or removing the follower

	Displaying the most followed user
	Summary

	Chapter 8: Creating an Administration Interface
	Customizing the administration interface
	Customizing listing pages
	Overriding administration templates
	Users, groups, and permissions
	User permissions
	Group permissions
	Using permissions in views

	Organizing content into pages – pagination
	Summary

	Chapter 9: Extending and Deploying
	Sending invitation e-mails to friends
	The invitation data model
	Handling activation links

	Internationalization (i18n) – offering the site in multiple languages
	Marking strings as translatable
	Creating translation files
	Enabling and configuring the i18n system

	Caching – improving the performance of your site during high traffic
	Enabling caching
	Configuring caching
	Caching the whole site
	Caching specific views

	Unit testing – automating the process of testing your application
	The test client
	Testing the registration view

	Deploying Django
	The production web server

	Summary

	Chapter 10: Extending Django
	Custom template tags and filters
	Class-based generic views
	Contributed sub-frameworks
	Flatpages
	Humanize
	Sitemap
	Cross-site request forgery protection

	The message system
	The subscription system
	User scores
	Summary

	Chapter 11: Database Connectivity
	SQL versus NoSQL
	SQL databases
	MySQL – open source
	PostgreSQL

	NoSQL databases
	MongoDB
	CouchDB
	Redis

	Setting up a database system
	Setting up MySQL
	Installing MySQL in Linux – Debian
	Installing the MySQL plugin for Python

	Migration and the need for migration
	The new features in Django migration

	Backend support
	How to do migrations?
	How migrations know what to migrate

	The migration file
	Django with NoSQL

	The single-page application project – URL shortener
	MongoEngine
	Connecting MongoDB with Django
	Authentication in Django
	Storing sessions

	Summary

	Chapter 12: Using Third-party Packages
	Diving into the world of open source
	What is an open source software?
	What's the difference between open source and other software?

	Using Social Auth in Django projects
	How OAuth works
	Implementing social OAuth
	Creating a Twitter application

	Building REST APIs in Django
	Using Django Tastypie
	Implementing a simple JSON API

	Summary

	Chapter 13: The Art of Debugging
	Logging
	Debugging
	The Django debug toolbar
	Installing the Django debug toolbar

	IPDB – interactive way of busting bugs
	Summary

	Chapter 14: Deploying Django Projects
	The production web server
	The production database
	Turning off the debug mode
	Changing configuration variables
	Setting error pages
	Django on cloud
	EC2
	Google Compute Engine
	The open hybrid cloud application platform
by Red Hat
	Heroku
	Google Application Engine

	Summary

	Chapter 15: What's Next
	AngularJS meets Django
	Django search with Elasticsearch
	Installing an Elasticsearch server
	Communication between Elasticsearch and Django

	Summary

	Index

