
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Programming	Arduino™

	

Getting	Started	with	Sketches
Simon	Monk

	

	

www.allitebooks.com

http://www.allitebooks.org

Copyright	 ©	 2012	 by	 The	 McGraw-Hill	 Companies.	 All	 rights	 reserved.	 Except	 as
permitted	under	the	United	States	Copyright	Act	of	1976,	no	part	of	this	publication	may
be	 reproduced	 or	 distributed	 in	 any	 form	 or	 by	 any	 means,	 or	 stored	 in	 a	 database	 or
retrieval	system,	without	the	prior	written	permission	of	the	publisher.

ISBN:	978-0-07-178423-8

MHID:							0-07-178423-3

The	material	in	this	eBook	also	appears	in	the	print	version	of	this	title:	ISBN:	978-0-07-
178422-1,	MHID:	0-07-178422-5.

All	 trademarks	 are	 trademarks	 of	 their	 respective	 owners.	 Rather	 than	 put	 a	 trademark
symbol	 after	 every	 occurrence	 of	 a	 trademarked	 name,	 we	 use	 names	 in	 an	 editorial
fashion	only,	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement
of	 the	 trademark.	Where	 such	 designations	 appear	 in	 this	 book,	 they	 have	 been	 printed
with	initial	caps.

McGraw-Hill	eBooks	are	available	at	special	quantity	discounts	 to	use	as	premiums	and
sales	 promotions,	 or	 for	 use	 in	 corporate	 training	 programs.	To	 contact	 a	 representative
please	e-mail	us	at	bulksales@mcgraw-hill.com.

All	 trademarks	 or	 copyrights	 mentioned	 herein	 are	 the	 possession	 of	 their	 respec-tive
owners	and	McGraw-Hill	makes	no	claim	of	ownership	by	 the	mention	of	products	 that
contain	these	marks.

“Arduino”	is	a	trademark	of	the	Arduino	team.

Information	 has	 been	 obtained	 by	 McGraw-Hill	 from	 sources	 believed	 to	 be	 reliable.
However,	 because	 of	 the	 possibility	 of	 human	 or	 mechanical	 error	 by	 our	 sources,
McGraw-Hill,	 or	 others,	 McGraw-Hill	 does	 not	 guarantee	 the	 accuracy,	 adequacy,	 or
completeness	of	any	information	and	is	not	responsible	for	any	errors	or	omissions	or	the
results	obtained	from	the	use	of	such	information.

TERMS	OF	USE

This	is	a	copyrighted	work	and	The	McGraw-Hill	Companies,	Inc.	(“McGraw-Hill”)	and
its	 licensors	 reserve	 all	 rights	 in	 and	 to	 the	work.	 Use	 of	 this	 work	 is	 subject	 to	 these
terms.	 Except	 as	 permitted	 under	 the	Copyright	Act	 of	 1976	 and	 the	 right	 to	 store	 and
retrieve	 one	 copy	 of	 the	 work,	 you	may	 not	 decompile,	 disassemble,	 reverse	 engineer,
reproduce,	modify,	create	derivative	works	based	upon,	 transmit,	distribute,	disseminate,
sell,	publish	or	sublicense	the	work	or	any	part	of	it	without	McGraw-Hill’s	prior	consent.
You	may	use	the	work	for	your	own	noncommercial	and	personal	use;	any	other	use	of	the
work	 is	 strictly	 prohibited.	Your	 right	 to	 use	 the	work	may	be	 terminated	 if	 you	 fail	 to
comply	with	these	terms.

THE	WORK	IS	PROVIDED	“AS	IS.”	McGRAW-HILL	AND	ITS	LICENSORS	MAKE
NO	GUARANTEES	OR	WARRANTIES	AS	TO	THE	ACCURACY,	ADEQUACY	OR
COMPLETENESS	OF	OR	RESULTS	TO	BE	OBTAINED	FROM	USING	THE	WORK,
INCLUDING	 ANY	 INFORMATION	 THAT	 CAN	 BE	 ACCESSED	 THROUGH	 THE
WORK	 VIA	 HYPERLINK	 OR	 OTHERWISE,	 AND	 EXPRESSLY	 DISCLAIM	 ANY

www.allitebooks.com

http://www.allitebooks.org

WARRANTY,	 EXPRESS	 OR	 IMPLIED,	 INCLUDING	 BUT	 NOT	 LIMITED	 TO
IMPLIED	 WARRANTIES	 OF	 MERCHANTABILITY	 OR	 FITNESS	 FOR	 A
PARTICULAR	 PURPOSE.	McGraw-Hill	 and	 its	 licensors	 do	 not	 warrant	 or	 guarantee
that	the	functions	contained	in	the	work	will	meet	your	requirements	or	that	its	operation
will	be	uninterrupted	or	error	free.	Neither	McGraw-Hill	nor	its	licensors	shall	be	liable	to
you	or	anyone	else	for	any	inaccuracy,	error	or	omission,	regardless	of	cause,	in	the	work
or	for	any	damages	resulting	therefrom.	McGraw-Hill	has	no	responsibility	for	the	content
of	 any	 information	 accessed	 through	 the	work.	Under	 no	 circumstances	 shall	McGraw-
Hill	 and/or	 its	 licensors	 be	 liable	 for	 any	 indirect,	 incidental,	 special,	 punitive,
consequential	or	similar	damages	that	result	from	the	use	of	or	inability	to	use	the	work,
even	if	any	of	them	has	been	advised	of	the	possibility	of	such	damages.	This	limitation	of
liability	shall	apply	to	any	claim	or	cause	whatsoever	whether	such	claim	or	cause	arises
in	contract,	tort	or	otherwise.

www.allitebooks.com

http://www.allitebooks.org

To	my	boys,	Stephen	and	Matthew,
from	a	very	proud	Dad.

www.allitebooks.com

http://www.allitebooks.org

About	the	Author
Simon	Monk	has	a	bachelor’s	degree	in	cybernetics	and	computer	science	and	a	doctorate
in	software	engineering.	He	has	been	an	active	electronics	hobbyist	since	his	school	days
and	 is	 an	 occasional	 author	 in	 hobby	 electronics	 magazines.	 He	 is	 also	 author	 of	 30
Arduino	 Projects	 for	 the	 Evil	 Genius	 and	 15	 Dangerously	 Mad	 Projects	 for	 the	 Evil
Genius.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CONTENTS
	
Acknowledgments

Introduction

1	This	Is	Arduino

Microcontrollers

Development	Boards

A	Tour	of	an	Arduino	Board

Power	Supply

Power	Connections

Analog	Inputs

Digital	Connections

Microcontroller

Other	Components

The	Origins	of	Arduino

The	Arduino	Family

Uno,	Duemilanove,	and	Diecimila

Mega

Nano

Bluetooth

Lilypad

Other	“Official”	Boards

Arduino	Clones	and	Variants

Conclusion

2	Getting	Started

Powering	Up

Installing	the	Software

Uploading	Your	First	Sketch

The	Arduino	Application

Conclusion

3	C	Language	Basics

www.allitebooks.com

http://www.allitebooks.org

Programming

What	Is	a	Programming	Language?

Blink—Again!

Variables

Experiments	in	C

Numeric	Variables	and	Arithmetic

Commands

if

for

while

The	#define	Directive

Conclusion

4	Functions

What	Is	a	Function?

Parameters

Global,	Local,	and	Static	Variables

Return	Values

Other	Variable	Types

floats

boolean

Other	Data	Types

Coding	Style

Indentation

Opening	Braces

Whitespace

Comments

Conclusion

5	Arrays	and	Strings

Arrays

Morse	Code	SOS	Using	Arrays

String	Arrays

String	Literals

www.allitebooks.com

http://www.allitebooks.org

String	Variables

A	Morse	Code	Translator

Data

Globals	and	Setup

The	loop	function

The	flashSequence	Function

The	flashDotOrDash	Function

Putting	It	All	Together

Conclusion

6	Input	and	Output

Digital	Outputs

Digital	Inputs

Pull-up	Resistors

Internal	Pull-up	Resistors

Debouncing

Analog	Outputs

Analog	Input

Conclusion

7	The	Standard	Arduino	Library

Random	Numbers

Math	Functions

Bit	Manipulation

Advanced	I/O

Generating	Tones

Feeding	Shift	Registers

Interrupts

Conclusion

8	Data	Storage

Constants

The	PROGMEM	Directive

EEPROM

Storing	an	int	in	EEPROM

Storing	a	float	in	EEPROM	(Unions)

Storing	a	String	in	EEPROM

Clearing	the	Contents	of	EEPROM

Compression

Range	Compression

Conclusion

9	LCD	Displays

A	USB	Message	Board

Using	the	Display

Other	LCD	Library	Functions

Conclusion

10	Arduino	Ethernet	Programming

Ethernet	Shields

Communicating	with	Web	Servers

HTTP

HTML

Arduino	as	a	Web	Server

Setting	Arduino	Pins	over	the	Network

Conclusion

11	C++	and	Libraries

Object	Orientation

Classes	and	Methods

Built-in	Library	Example

Writing	Libraries

The	Header	File

The	Implementation	File

Completing	Your	Library

Conclusion

Index

ACKNOWLEDGMENTS
	
I	thank	Linda	for	giving	me	the	time,	space,	and	support	to	write	this	book	and	for	putting
up	with	the	various	messes	my	projects	create	around	the	house.

	
I	also	thank	Stephen	and	Matthew	Monk	for	taking	an	interest	in	what	their	Dad	is	up	to

and	their	general	assistance	with	project	work.

Finally,	I	would	like	to	thank	Roger	Stewart,	Sapna	Rastogi,	and	everyone	involved	in
the	production	of	this	book.	It’s	a	pleasure	to	work	with	such	a	great	team.

INTRODUCTION
	
Arduino	 interface	 boards	 provide	 a	 low-cost,	 easy-to-use	 technology	 to	 create
microcontroller-based	projects.	With	a	little	electronics,	you	can	make	your	Arduino	do	all
sorts	of	 things,	 from	controlling	 lights	 in	an	art	 installation	 to	managing	 the	power	on	a
solar	energy	system.

There	 are	 many	 project-based	 books	 that	 show	 you	 how	 to	 connect	 things	 to	 your
Arduino,	including	30	Arduino	Projects	for	the	Evil	Genius	by	this	author.	However,	the
focus	of	this	book	is	on	programming	the	Arduino.

This	book	will	explain	how	to	make	programming	the	Arduino	simple	and	enjoyable,
avoiding	the	difficulties	of	uncooperative	code	that	so	often	afflict	a	project.	You	will	be
taken	 through	 the	 process	 of	 programming	 the	 Arduino	 step	 by	 step,	 starting	 with	 the
basics	of	the	C	programming	language	that	Arduinos	use.

So,	What	Is	Arduino?

	
Arduino	is	a	small	microcontroller	board	with	a	universal	serial	bus	(USB)	plug	to	connect
to	 your	 computer	 and	 a	 number	 of	 connection	 sockets	 that	 can	 be	 wired	 to	 external
electronics	such	as	motors,	relays,	light	sensors,	laser	diodes,	loudspeakers,	microphones,
and	more.	They	can	either	be	powered	 through	 the	USB	connection	 from	 the	computer,
from	a	9V	battery,	or	from	a	power	supply.	They	can	be	controlled	from	the	computer	or
programmed	by	the	computer	and	then	disconnected	and	allowed	to	work	independently.

The	board	design	is	open	source.	This	means	that	anyone	is	allowed	to	make	Arduino-
compatible	boards.	This	competition	has	lead	to	low	costs	for	the	boards.

The	basic	boards	are	supplemented	by	accessory	shield	boards	that	can	be	plugged	on
top	of	the	Arduino	board.	In	this	book,	we	will	use	two	shields—an	LCD	display	shield
and	an	Ethernet	shield—that	will	allow	us	to	turn	our	Arduino	into	a	tiny	web	server.

The	software	for	programming	your	Arduino	is	easy	to	use	and	also	freely	available	for
Windows,	Mac,	and	LINUX	computers.

What	Will	I	Need?

	
This	is	a	book	intended	for	beginners,	but	it	is	also	intended	to	be	useful	to	those	who	have
used	Arduino	for	a	while	and	want	to	learn	more	about	programming	the	Arduino	or	gain
a	better	understanding	of	the	fundamentals.

You	do	not	need	to	have	any	programming	experience	or	a	technical	background,	and
the	 book’s	 exercises	 do	 not	 require	 any	 soldering.	 All	 you	 need	 is	 the	 desire	 to	 make
something.

If	you	want	to	make	the	most	of	the	book	and	try	out	some	of	the	experiments,	then	it	is
useful	to	have	the	following	on	hand:

•	A	few	lengths	of	solid	core	wire

•	A	cheap	digital	multimeter

Both	are	readily	available	for	a	few	dollars	from	a	hobby	electronics	shop	such	as	Radio
Shack.	You	will	of	course	also	need	an	Arduino	Uno	board.

If	you	want	to	go	a	step	further	and	experiment	with	Ethernet	and	the	liquid	crystal	display
(LCD)	shield,	then	you	will	need	to	buy	shields	that	are	available	from	online	stores.	See
Chapters	9	and	10	for	details.

Using	this	Book

	
This	book	 is	structured	 to	get	you	started	 in	a	 really	simple	way	and	gradually	build	on
what	you	have	 learned.	You	may,	however,	 find	yourself	skipping	or	skimming	some	of
the	early	chapters	as	you	find	the	right	level	to	enter	the	book.

The	book	is	organized	into	the	following	chapters:

•	Chapter	 1:	 This	 Is	 Arduino	 An	 introduction	 to	 the	 Arduino	 hardware,	 this	 chapter
describes	 what	 it	 is	 capable	 of,	 and	 the	 various	 types	 of,	 Arduino	 boards	 that	 are
available.

•	Chapter	2:	Getting	Started	Here	you	conduct	your	first	experiments	with	your	Arduino
board:	installing	the	software,	powering	it	up,	and	uploading	your	first	sketch.

•	Chapter	3:	C	Language	Basics	This	chapter	covers	 the	basics	of	 the	C	 language;	 for
complete	 programming	 beginners,	 the	 chapters	 also	 serves	 as	 an	 introduction	 to
programming	in	general.

•	 Chapter	 4:	 Functions	 This	 chapter	 explains	 the	 key	 concept	 of	 using	 and	 writing
functions	 in	 Arduino	 sketches.	 These	 sketches	 are	 demonstrated	 throughout	 with
runnable	code	examples.

•	Chapter	5:	Arrays	and	Strings	Here	you	learn	how	to	make	and	use	data	structures	that
are	 more	 advanced	 than	 simple	 integer	 variables.	 A	 Morse	 code	 example	 project	 is
slowly	developed	to	illustrate	the	concepts	being	explained.

•	Chapter	6:	Input	and	Output	You	learn	how	to	use	the	digital	and	analog	inputs	and
outputs	on	the	Arduino	in	your	programs.	A	multimeter	will	be	useful	to	show	you	what
is	happening	on	the	Arduino’s	input/output	connections.

•	Chapter	7:	The	Standard	Arduino	Library	This	chapter	explains	how	to	make	use	of
the	standard	Arduino	functions	that	come	in	the	Arduino’s	standard	library.

•	Chapter	8:	Data	Storage	Here	you	 learn	how	 to	write	 sketches	 that	 can	 save	data	 in
electrically	 erasable	 read-only	 memory	 (EEPROM)	 and	 make	 use	 of	 the	 Arduino’s
built-in	flash	memory.

•	Chapter	9:	LCD	Displays	In	this	chapter,	you	program	with	the	LCD	Shield	library	to
make	a	simple	USB	message	board	example.

•	Chapter	 10:	Arduino	Ethernet	 Programming	 You	 learn	 how	 to	make	 the	 Arduino
behave	like	a	web	server	as	you	get	a	little	background	on	HyperText	Markup	Language
(HTML)	and	the	HyperText	Transfer	Protocol	(HTTP).

•	Chapter	11:	C++	and	Libraries	You	go	beyond	C,	looking	at	adding	object-orientation
and	writing	your	own	Arduino	libraries.

Resources

	
This	book	is	supported	by	an	accompanying	website:

www.arduinobook.com

There	you	will	find	all	the	source	code	used	in	this	book	as	well	as	other	resources,	such
as	errata.

http://www.arduinobook.com

1
This	Is	Arduino

	
Arduino	 is	 a	microcontroller	 platform	 that	 has	 captured	 the	 imagination	 of	 electronics
enthusiasts.	 Its	 ease	 of	 use	 and	 open	 source	 nature	 make	 it	 a	 great	 choice	 for	 anyone
wanting	to	build	electronic	projects.

	
Ultimately,	 it	 allows	you	 to	connect	 electronics	 through	 its	pins	 so	 that	 it	 can	control

things—for	 instance,	 turn	 lights	 or	motors	 on	 and	 off	 or	 sense	 things	 such	 as	 light	 and
temperature.	This	is	why	Arduino	is	sometimes	given	the	description	physical	computing.
Because	Arduinos	 can	 be	 connected	 to	 your	 computer	 by	 a	 universal	 serial	 bus	 (USB)
lead,	this	also	means	that	you	can	use	the	Arduino	as	an	interface	board	to	control	those
same	electronics	from	your	computer.

This	chapter	is	an	introduction	to	the	Arduino,	including	the	history	and	background	of
the	Arduino,	as	well	as	an	overview	of	the	hardware.

Microcontrollers

	
The	heart	of	your	Arduino	is	a	microcontroller.	Pretty	much	everything	else	on	the	board
is	concerned	with	providing	 the	board	with	power	and	allowing	 it	 to	communicate	with
your	desktop	computer.

A	microcontroller	really	is	a	little	computer	on	a	chip.	It	has	everything	and	more	than
the	 first	 home	 computers	 had.	 It	 has	 a	 processor,	 a	 kilobyte	 or	 two	 of	 random	 access
memory	 (RAM)	 for	 holding	 data,	 a	 few	 kilobytes	 of	 erasable	 programmable	 read-only
memory	(EPROM)	or	flash	memory	for	holding	your	programs	and	it	has	input	and	output
pins.	These	input/output	(I/O)	pins	link	the	microcontroller	to	the	rest	of	your	electronics.

Inputs	can	read	both	digital	(is	the	switch	on	or	off?)	and	analog	(what	is	the	voltage	at
a	pin?).	This	opens	up	 the	opportunity	of	connecting	many	different	 types	of	 sensor	 for
light,	temperature,	sound,	and	more.

Outputs	can	also	be	analog	or	digital.	So,	you	can	set	a	pin	to	be	on	or	off	(0	volts	or	5
volts)	and	 this	can	 turn	 light-emitting	diodes	(LEDs)	on	and	off	directly,	or	you	can	use
the	 output	 to	 control	 higher	 power	 devices	 such	 as	 motors.	 They	 can	 also	 provide	 an
analog	output	voltage.	That	is,	you	can	set	the	output	of	a	pin	to	some	particular	voltage,
allowing	you	to	control	the	speed	of	a	motor	or	the	brightness	of	a	light,	rather	than	simply
turning	it	on	or	off.

The	microcontroller	on	an	Arduino	board	 is	 the	28-pin	chip	fitted	 into	a	socket	at	 the
center	of	the	board.	This	single	chip	contains	the	memory	processor	and	all	the	electronics
for	 the	input/output	pins.	It	 is	manufactured	by	the	company	Atmel,	which	is	one	of	 the
major	microcontroller	manufacturers.	Each	of	the	microcontroller	manufacturers	actually

www.allitebooks.com

http://www.allitebooks.org

produces	 dozens	 of	 different	 microcontrollers	 grouped	 into	 different	 families.	 The
microcontrollers	are	not	all	created	for	the	benefit	of	electronics	hobbyists	like	us.	We	are
a	 small	 part	 of	 this	 vast	market.	 These	 devices	 are	 really	 intended	 for	 embedding	 into
consumer	products,	including	cars,	washing	machines,	DVD	players,	children’s	toys,	and
even	air	fresheners.

The	great	thing	about	the	Arduino	is	that	it	reduces	this	bewildering	array	of	choices	by
standardizing	 on	 one	 microcontroller	 and	 sticking	 with	 it.	 (Well,	 as	 we	 see	 later,	 this
statement	is	not	quite	true,	but	it’s	close	enough.)

This	means	 that	when	 you	 are	 embarking	 on	 a	 new	project,	 you	 do	 not	 first	 need	 to
weigh	all	the	pros	and	cons	of	the	various	flavors	of	microcontroller.

Development	Boards

We	have	established	that	the	microcontroller	is	really	just	a	chip.	A	chip	will	not	just	work
on	its	own	without	some	supporting	electronics	to	provide	it	with	a	regulated	and	accurate
supply	 of	 electricity	 (microcontrollers	 are	 fussy	 about	 this)	 as	 well	 as	 a	 means	 of
communicating	with	the	computer	that	is	going	to	program	the	microcontroller.

This	 is	 where	 development	 boards	 come	 in.	 An	 Arduino	 board	 is	 really	 a
microcontroller	 development	 board	 that	 happens	 to	 be	 an	 independent	 open	 source
hardware	design.	This	means	that	the	design	files	for	the	printed	circuit	board	(PCB)	and
the	schematic	diagrams	are	all	publicly	available,	and	everyone	is	free	to	use	the	designs
to	make	and	sell	his	or	her	own	Arduino	boards.

All	the	microcontroller	manufacturers—including	Atmel,	which	makes	the	ATmega328
microcontroller	 used	 in	 an	Arduino	 board—also	 provide	 their	 own	 development	 boards
and	programming	software.	Although	they	are	usually	fairly	inexpensive,	these	tend	to	be
aimed	 at	 professional	 electronics	 engineers	 rather	 than	 hobbyists.	 This	means	 that	 such
boards	and	software	are	arguably	harder	to	use	and	require	a	greater	learning	investment
before	you	can	get	anything	useful	out	of	them.

A	Tour	of	an	Arduino	Board

	
Figure	1-1	shows	an	Arduino	board.	Let’s	take	a	quick	tour	of	the	various	components	on
the	board.

	
Figure	1-1	An	Arduino	Uno	board

	

Power	Supply

Referring	 to	 Figure	 1-1,	 directly	 below	 the	 USB	 connector	 is	 the	 5-volt	 (5V)	 voltage
regulator.	 This	 regulates	 whatever	 voltage	 (between	 7V	 and	 12V)	 is	 supplied	 from	 the
power	socket	into	a	constant	5V.

The	5V	voltage	regulator	chip	is	actually	quite	big	for	a	surface	mount	component.	This
is	 so	 that	 it	 can	 dissipate	 the	 heat	 required	 to	 regulate	 the	 voltage	 at	 a	 reasonably	 high
current.	This	is	useful	when	driving	external	electronics.

Power	Connections

Next	let	us	look	at	the	connectors	at	the	bottom	of	Figure	1-1.	You	can	read	the	connection
names	next	 to	 the	 connectors.	The	 first	 is	Reset.	This	does	 the	 same	 thing	 as	 the	Reset
button	on	 the	Arduino.	Rather	 like	 rebooting	a	PC,	using	 the	Reset	connector	 resets	 the
microcontroller	 so	 that	 it	begins	 its	program	 from	 the	 start.	To	 reset	 the	microcontroller
with	the	Reset	connector,	you	momentarily	set	this	pin	low	(connecting	it	to	0V).

The	rest	of	the	pins	in	this	section	just	provide	different	voltages	(3.5V,	5V,	GND,	and
9V),	as	they	are	labeled.	GND,	or	ground,	just	means	zero	volts.	It	is	the	reference	voltage
to	which	all	other	voltages	on	the	board	are	relative.

Analog	Inputs

The	six	pins	labeled	as	Analog	In	A0	to	A5	can	be	used	to	measure	the	voltage	connected
to	them	so	that	the	value	can	be	used	in	a	sketch.	Note	that	they	measure	a	voltage	and	not
a	current.	Only	a	tiny	current	will	ever	flow	into	them	and	down	to	ground	because	they
have	a	very	large	internal	resistance.	That	is,	the	pin	having	a	large	internal	resistance	only
allows	a	tiny	current	to	flow	into	the	pin.

Although	 these	 inputs	 are	 labeled	 as	 analog,	 and	 are	 analog	 inputs	 by	 default,	 these
connections	can	also	be	used	as	digital	inputs	or	outputs.

Digital	Connections

We	now	switch	to	the	top	connector	and	start	on	the	right-hand	side	in	Figure	1-1.	Here	we
find	pins	labeled	Digital	0	to	13.	These	can	be	used	as	either	inputs	or	outputs.	When	used
as	 outputs,	 they	 behave	 rather	 like	 the	 power	 supply	 voltages	 discussed	 earlier	 in	 this
section,	except	that	these	are	all	5V	and	can	be	turned	on	or	off	from	your	sketch.	So,	if
you	turn	them	on	from	your	sketch	they	will	be	at	5V,	and	if	you	turn	them	off	they	will	be
at	 0V.	 As	 with	 the	 power	 supply	 connectors,	 you	 must	 be	 careful	 not	 to	 exceed	 their
maximum	current	capabilities.	The	first	two	of	these	connections	(0	and	1)	are	also	labeled
RX	 and	 TX,	 for	 receive	 and	 transmit.	 These	 connections	 are	 reserved	 for	 use	 in
communication	and	are	indirectly	the	receive	and	transmit	connections	for	your	USB	link
to	your	computer.

These	 digital	 connections	 can	 supply	 40	 mA	 (milliamps)	 at	 5V.	 That	 is	 more	 than
enough	to	light	a	standard	LED,	but	not	enough	to	drive	an	electric	motor	directly.

Microcontroller

Continuing	 our	 tour	 of	 the	 Arduino	 board,	 the	 microcontroller	 chip	 itself	 is	 the	 black
rectangular	device	with	28	pins.	This	is	fitted	into	a	dual	inline	(DIL)	socket	so	that	it	can
be	easily	replaced.	The	28-pin	microcontroller	chip	used	on	the	Arduino	Uno	board	is	the
ATmega328.	Figure	1-2	is	a	block	diagram	showing	the	main	features	of	this	device.

The	 heart—or,	 perhaps	 more	 appropriately,	 the	 brain—of	 the	 device	 is	 the	 central
processing	 unit	 (CPU).	 It	 controls	 everything	 that	 goes	 on	within	 the	 device.	 It	 fetches
program	 instructions	stored	 in	 the	 flash	memory	and	executes	 them.	This	might	 involve
fetching	data	from	working	memory	(RAM),	changing	it,	and	then	putting	it	back.	Or,	it
may	mean	changing	one	of	the	digital	outputs	from	0V	to	5V.

The	EEPROM	memory	is	a	little	like	the	flash	memory	in	that	it	is	nonvolatile.	That	is,
you	can	turn	the	device	off	and	on	and	it	will	not	have	forgotten	what	is	in	the	EEPROM.
Whereas	 the	 flash	memory	 is	 intended	 for	 storing	program	 instructions	 (from	sketches),
the	EEPROM	is	used	to	store	data	that	you	do	not	want	to	lose	in	the	event	of	a	reset	or
the	power	being	turned	off.

	
Figure	1-2	ATmega328	block	diagram

	

Other	Components

Above	 the	 microcontroller	 is	 a	 small,	 silver,	 rectangular	 component.	 This	 is	 a	 quartz
crystal	 oscillator.	 It	 ticks	 16	 million	 times	 a	 second,	 and	 on	 each	 of	 those	 ticks,	 the
microcontroller	 can	 perform	 one	 operation—addition,	 subtraction,	 or	 another
mathematical	operation.

To	 the	 right	 of	 the	 crystal	 is	 the	Reset	 switch.	 Clicking	 on	 this	 switch	 sends	 a	 logic
pulse	 to	 the	 Reset	 pin	 of	 the	 microcontroller,	 causing	 the	 microcontroller	 to	 start	 its
program	afresh	and	clear	its	memory.	Note	that	any	program	stored	on	the	device	will	be
retained,	 because	 this	 is	 kept	 in	 non-volatile	 flash	 memory—that	 is,	 memory	 that
remembers	even	when	the	device	is	not	powered.

To	the	right	of	the	Reset	button	is	the	Serial	Programming	Connector.	It	offers	another
means	of	programming	the	Arduino	without	using	 the	USB	port.	Because	we	do	have	a
USB	connection	and	software	that	makes	it	convenient	to	use,	we	will	not	avail	ourselves
of	this	feature.

In	 the	 top-left	 corner	of	 the	board	next	 to	 the	USB	socket	 is	 the	USB	 interface	 chip.
This	chip	converts	the	signal	levels	used	by	the	USB	standard	to	levels	that	can	be	used
directly	by	the	Arduino	board.

The	Origins	of	Arduino

	
Arduino	was	originally	developed	as	an	aid	for	teaching	students.	It	was	subsequently	(in
2005)	developed	commercially	by	Massimo	Banzi	and	David	Cuartielles.	It	has	since	gone
on	to	become	enormously	successful	with	makers,	students,	and	artists	for	its	ease	of	use
and	durability.

Another	key	factor	in	its	success	is	that	all	the	designs	for	Arduino	are	freely	available

under	a	Creative	Commons	license.	This	has	allowed	many	lower-cost	alternatives	to	the
boards	 to	 appear.	 Only	 the	 name	 Arduino	 is	 protected,	 so	 such	 clones	 often	 have
“*dunino”	 names,	 such	 as	 Boarduino,	 Seeeduino,	 and	 Freeduino.	 However,	 the	 official
boards	 manufactured	 in	 Italy	 still	 sell	 extremely	 well.	Many	 big	 retailers	 sell	 only	 the
official	boards,	which	are	nicely	packaged	and	of	high	quality.

Yet	another	reason	for	the	success	of	Arduino	is	that	it	is	not	limited	to	microcontroller
boards.	There	are	a	huge	number	of	Arduino-compatible	shield	boards	that	plug	directly
into	 the	 top	 of	 an	 Arduino	 board.	 Because	 shields	 are	 available	 for	 almost	 every
conceivable	 application,	 you	 often	 can	 avoid	 using	 a	 soldering	 iron	 and	 instead	 plug
together	shields	that	can	be	stacked	one	upon	another.	The	following	are	just	a	few	of	the
most	popular	shields:

•	Ethernet,	which	gives	an	Arduino	web-serving	capabilities

•	Motor,	which	drives	electric	motors

•	USB	Host,	which	allows	control	of	USB	devices

•	Relays,	which	switches	relays	from	your	Arduino

Figure	1-3	shows	an	Arduino	Uno	with	an	Ethernet	shield	attached.

	
Figure	1-3	Arduino	Uno	with	an	Ethernet	shield

	

The	Arduino	Family

	
It	is	useful	to	have	a	little	background	on	the	various	Arduino	boards.	We	will	be	using	the
Arduino	Uno	as	our	standard	device.	Indeed,	this	is	by	far	the	most	used	of	the	Arduino
boards,	but	the	boards	are	all	programmed	using	the	same	language	and	largely	have	the
same	connections	to	the	outside	world,	so	you	can	easily	use	a	different	board.

Uno,	Duemilanove,	and	Diecimila

The	Arduino	Uno	is	 the	 latest	 incarnation	of	 the	most	popular	series	of	Arduino	boards.
The	 series	 includes	 the	Diecimila	 (Italian	 for	 10,000)	 and	 the	Duemilanove	 (Italian	 for
2011).	Figure	1-4	shows	an	Arduino	clone.	By	now	you	may	have	guessed	that	Arduino	is
an	Italian	invention.

These	 older	 boards	 look	 very	 similar	 to	 the	Arduino	Uno.	 They	 both	 have	 the	 same
connectors	and	a	USB	socket	and	are	generally	compatible	with	each	other.

The	most	significant	difference	between	the	Uno	and	the	earlier	boards	is	that	the	Uno
uses	a	different	USB	chip.	This	does	not	affect	how	you	use	the	board,	but	it	does	make
installation	 of	 the	Arduino	 software	 easier	 and	 allows	 higher	 speeds	 of	 communication
with	the	computer.

The	Uno	can	also	supply	more	current	on	its	3.3V	supply	and	always	comes	equipped
with	the	ATmega328.	The	earlier	boards	will	have	either	an	ATmega328	or	ATmega168.
The	ATmega328	has	more	memory,	but	unless	you	are	creating	a	 large	 sketch,	 this	will
make	no	difference.

	
Figure	1-4	The	Arduino	Duemilanove

	

Mega

The	Arduino	Mega	 (Figure	 1-5)	 is	 the	muscle	 car	 of	Arduino	 boards.	 It	 boasts	 a	 huge
collection	of	input	output	ports,	but	cleverly	adds	these	as	extra	connectors	at	one	end	of
the	board,	allowing	it	to	remain	pin-compatible	with	the	Arduino	Uno	and	all	the	shields
available	for	Arduino.

It	uses	a	processor	with	more	 input	output	pins,	 the	ATmega1280,	which	 is	a	 surface
mount	 chip	 that	 is	 fixed	permanently	 to	 the	board.	So,	unlike	with	 the	Uno	and	 similar
boards,	you	cannot	replace	the	processor	if	you	accidentally	damage	it.

The	extra	connectors	are	arranged	at	 the	end	of	 the	board.	Extra	 features	provided	by
the	Mega	include	the	following:

•	54	input/output	pins

•	 128KB	 of	 flash	memory	 for	 storing	 sketches	 and	 fixed	 data	 (compared	 to	 the	 Uno’s
32KB)

•	8KB	of	RAM	and	4KB	of	EEPROM

Nano

The	 Arduino	 Nano	 (Figure	 1-6)	 is	 a	 very	 useful	 device	 for	 use	 with	 a	 solderless
breadboard.	If	you	fit	pins	to	it,	it	can	just	plug	into	the	breadboard	as	if	it	were	a	chip.

	
Figure	1-5	An	Arduino	Mega	board

	

	
Figure	1-6	Arduino	Nano

	
The	downside	of	the	Nano	is	that	because	it	is	so	much	smaller	than	an	Uno,	it	cannot

accept	Uno-sized	shields.

Bluetooth

The	 Arduino	 Bluetooth	 (Figure	 1-7)	 is	 an	 interesting	 device	 as	 it	 includes	 Bluetooth
hardware	in	place	of	the	USB	connector.	This	allows	the	device	to	even	be	programmed
wirelessly.

The	Arduino	Bluetooth	 is	not	a	cheap	board,	and	 it	 is	often	cheaper	 to	attach	a	 third-
party	Bluetooth	module	to	a	regular	Arduino	Uno.

Lilypad

The	Lilypad	(Figure	1-8)	is	a	tiny,	thin	Arduino	board	that	can	be	stitched	into	clothing	for
applications	that	have	become	known	as	wearable	computing.

The	Lilypad	does	not	have	a	USB	connection,	and	you	must	use	a	separate	adaptor	to
program	it.	It	has	an	exceptionally	beautiful	design.

	
Figure	1-7	Arduino	Bluetooth

	

	
Figure	1-8	Arduino	Lilypad

	

Other	“Official”	Boards

The	previously	described	Arduino	boards	are	the	most	useful	and	popular	ones.	However,
the	range	of	Arduino	boards	constantly	changes,	so	for	a	complete	and	up-to-date	picture
of	 the	 Arduino	 family,	 see	 the	 official	 Arduino	 website	 list	 at
www.arduino.cc/en/Main/Hardware.

Arduino	Clones	and	Variants

	
Unofficial	 boards	 fall	 into	 two	 categories.	 Some	 just	 take	 the	 standard	 open	 source
hardware	designs	of	Arduino	 and	build	 a	 cheaper	 one.	Some	names	you	 can	 search	 for
boards	of	this	nature	include	the	following:

•	Roboduino

•	Freeduino

•	Seeeduino	(yes,	with	three	e’s)

http://www.arduino.cc/en/Main/Hardware

More	interestingly,	some	Arduino-compatible	designs	are	intended	to	extend	or	improve
the	Arduino	in	some	way.	New	variants	are	appearing	all	the	time,	and	far	too	many	exist
to	mention	them	all.	However,	the	following	are	some	of	the	more	interesting	and	popular
variants:

•	Chipkit,	a	high-speed	variant	based	on	a	PIC	processor,	but	which	is	fairly	compatible
with	Arduino

•	Femtoduino,	a	very	small	Arduino

•	Ruggeduino,	with	is	an	Arduino	board	with	built-in	I/O	protection

•	Teensy,	a	low-cost	nano-type	device

Conclusion

	
Now	that	you	have	explored	the	Arduino	hardware	a	little,	it’s	time	to	set	up	your	Arduino
software.

www.allitebooks.com

http://www.allitebooks.org

2
Getting	Started

	
Having	 introduced	 the	 Arduino,	 and	 learnt	 a	 little	 about	 what	 it	 is	 that	 we	 are
programming,	 it	 is	 time	 to	 learn	 how	 install	 the	 software	 that	 we	 will	 need	 on	 our
computer	and	to	start	working	on	some	code.

	

Powering	Up

	
When	you	buy	an	Arduino	board,	it	 is	usually	preinstalled	with	a	sample	Blink	program
that	will	make	the	little	built-in	light-emitting	diode	(LED)	flash.

The	LED	marked	L	is	wired	up	to	one	of	the	digital	input	output	sockets	on	the	board.	It
is	 connected	 to	 digital	 pin	 13.	 This	 limits	 pin	 13	 to	 being	 the	 one	 used	 as	 an	 output.
However,	 the	LED	uses	 only	 a	 small	 amount	 of	 current,	 so	 you	 can	 still	 connect	 other
things	to	that	connector.

All	you	need	to	do	to	get	your	Arduino	up	and	running	is	supply	it	with	some	power.
The	easiest	way	to	do	this	is	to	plug	in	it	 into	the	USB	port	on	your	computer.	You	will
need	a	type-A-to-type-B	USB	lead.	This	is	the	same	type	of	lead	that	is	normally	used	to
connect	a	computer	to	a	printer.

If	 everything	 is	working	OK,	 the	LED	should	blink.	New	Arduino	boards	come	with
this	Blink	sketch	already	installed	so	that	you	can	verify	that	the	board	works.

Installing	the	Software

	
To	be	 able	 to	 install	 new	 sketches	onto	your	Arduino	board,	 you	need	 to	 do	more	 than
supply	power	to	it	over	the	USB.	You	need	to	install	the	Arduino	software	(Figure	2-1).

Full	 and	 comprehensive	 instructions	 for	 installing	 this	 software	 on	Windows,	 Linux,
and	Mac	computers	can	be	found	at	the	Arduino	website	(www.arduino.cc).

Once	 you	 have	 successfully	 installed	 the	 Arduino	 software	 and,	 depending	 on	 your
platform,	USB	drivers,	you	should	now	be	able	to	upload	a	program	to	the	Arduino	board.

http://www.arduino.cc

	
Figure	2-1	The	Arduino	application

	

Uploading	Your	First	Sketch

	
The	blinking	LED	is	the	Arduino	equivalent	to	the	“Hello	World”	program	used	in	other
languages	as	the	traditional	first	program	to	run	when	learning	a	new	language.	Let’s	test
out	the	environment	by	installing	this	program	on	your	Arduino	board	and	then	modifying
it.

When	 you	 start	 the	 Arduino	 application	 on	 your	 computer,	 it	 opens	 with	 an	 empty
sketch.	Fortunately,	the	application	ships	with	a	wide	range	of	useful	examples.	So	from
the	File	menu,	open	the	Blink	example	as	shown	in	Figure	2-2.

	
Figure	2-2	The	Blink	sketch

	
You	now	need	 to	 transfer	or	upload	 that	 sketch	 to	your	Arduino	board.	So	plug	your

Arduino	board	 into	your	 computer	using	 the	USB	 lead.	You	 should	 see	 the	green	 “On”
LED	on	the	Arduino	light	up.	The	Arduino	board	will	probably	already	be	flashing,	as	the
boards	 are	 generally	 shipped	with	 the	Blink	 sketch	 already	 installed.	 But	 let’s	 install	 it
again	and	then	modify	it.

When	you	plug	the	board	in,	if	you	are	using	a	Mac,	you	may	get	the	message,	“A	new
network	interface	has	been	detected.”	Just	click	Cancel;	your	Mac	is	confused	and	thinks
that	the	Uno	is	a	USB	modem.

Before	 you	 can	 upload	 a	 sketch,	 you	must	 tell	 the	Arduino	 application	what	 type	 of
board	you	are	using	and	which	serial	port	you	are	connected	to.	Figures	2-3	and	2-4	show
how	you	do	this	from	the	Tools	menu.

	
Figure	2-3	Selecting	the	board	type

	

	
Figure	2-4	Selecting	the	serial	port	(in	Windows)

	
On	a	Windows	machine,	the	serial	port	is	always	COM3.	On	Macs	and	Linux	machines,

you	will	see	a	much	longer	list	of	serial	devices	(see	Figure	2-5).	The	device	will	normally

be	the	top	selection	in	the	list,	with	a	name	similar	to	/dev/tty.usbmodem621.

Now	click	on	the	Upload	icon	in	the	toolbar.	This	is	shown	highlighted	in	Figure	2-6.

After	you	click	the	button,	there	is	a	short	pause	while	the	sketch	is	compiled	and	then
the	transfer	begins.	If	it	is	working,	then	there	will	be	some	furious	blinking	of	LEDs	as
the	sketch	is	transferred,	after	which	you	should	see	the	message	“Done	Uploading”	at	the
bottom	 of	 the	 Arduino	 application	 window	 and	 a	 further	 message	 similar	 to	 “Binary
sketch	size:	1018	bytes	(of	a	14336	byte	maximum).”

	
Figure	2-5	Selecting	the	serial	port	(on	a	Mac)

	
Once	uploaded,	the	board	automatically	starts	running	the	sketch	and	you	will	see	the

LED	start	to	blink.

If	this	did	not	work,	then	check	your	serial	and	board	type	settings.

Now	let’s	modify	the	sketch	to	make	the	LED	blink	faster.	To	do	this,	let’s	alter	the	two
places	in	the	sketch	where	there	is	a	delay	for	1,000	milliseconds	so	that	the	delay	is	500
milliseconds.	Figure	2-7	shows	the	modified	sketch	with	the	changes	highlighted.

	
Figure	2-6	Uploading	the	sketch

	
Click	on	the	Upload	button	again.	Then,	once	the	sketch	has	uploaded,	you	should	see

your	LED	start	to	blink	twice	as	fast	as	it	did	before.

Congratulations,	you	are	now	ready	to	start	programming	your	Arduino.	First,	though,
let’s	take	a	mini-tour	of	the	Arduino	application.

	
Figure	2-7	Modifying	the	Blink	sketch

	

The	Arduino	Application

	
Sketches	in	Arduino	are	like	documents	in	a	word	processor.	You	can	open	them	and	copy
parts	 from	 one	 to	 another.	 So	 you	 see	 options	 to	Open,	 Save,	 and	 Save	As	 in	 the	 File
menu.	You	will	not	normally	use	Open	because	the	Arduino	application	has	the	concept	of
a	Sketchbook	where	all	your	sketches	are	kept	carefully	organized	into	folders.	You	gain
access	 to	 the	 Sketchbook	 from	 the	 File	 menu.	 As	 you	 have	 just	 installed	 the	 Arduino
application	 for	 the	 first	 time,	 your	 Sketchbook	 will	 be	 empty	 until	 you	 create	 some
sketches.

As	you	have	seen,	the	Arduino	application	comes	with	a	selection	of	example	sketches
that	can	be	very	useful.	Having	modified	the	Blink	example	sketch,	if	you	try	and	save	it,
you	get	a	message	that	says,	“Some	files	are	marked	read-only	so	you	will	need	to	save
this	sketch	in	a	different	location.”

Try	 this	 now.	 Accept	 the	 default	 location,	 but	 change	 the	 filename	 to	 MyBlink,	 as
shown	in	Figure	2-8.

Now	if	you	go	to	 the	File	menu	and	then	click	on	Sketches,	you	will	see	MyBlink	as
one	of	the	sketches	listed.	If	you	look	at	your	computer’s	file	system,	on	a	PC,	you	will
find	that	the	sketch	has	been	written	into	My	Documents\Arduino,	and	on	Mac	or	Linux,
they	are	in	Documents/Arduino.

All	 of	 the	 sketches	 used	 in	 this	 book	 can	 be	 downloaded	 as	 a	 zip	 file
(Programming_Arduino.zip)	from	www.arduinobook.com.	I	suggest	 that	now	is	 the	 time
to	download	 this	 file	 and	unzip	 it	 into	 the	Arduino	 folder	 that	 contains	 the	 sketches.	 In
other	 words,	 when	 you	 have	 unzipped	 the	 folder,	 there	 should	 be	 two	 folders	 in	 your
Arduino	folder:	one	for	the	newly	saved	MyBlink	and	one	called	Programming	Arduino
(see	Figure	2-9).	The	Programming	Arduino	folder	will	contain	all	the	sketches,	numbered
according	to	chapter,	so	that	sketch	03-01,	for	example,	is	sketch	1	of	Chapter	3.

http://www.arduinobook.com

	
Figure	2-8	Saving	a	copy	of	Blink

	
These	 sketches	will	 not	 appear	 in	 your	 Sketchbook	menu	 until	 you	 quit	 the	Arduino

application	and	restart	it.	Do	so	now.	Then	your	Sketchbook	menu	should	look	similar	to
that	shown	in	Figure	2-10.

	
Figure	2-9	Installing	the	sketches	from	the	book

	

	

Figure	2-10	Sketchbook	with	the	book’s	sketches	installed

	

Conclusion

	
Your	environment	is	all	set	up	and	ready	to	go.

In	the	next	chapter,	we	will	look	at	some	of	the	basic	principles	of	the	C	language	that
the	Arduino	uses	and	start	writing	some	code.

www.allitebooks.com

http://www.allitebooks.org

3
C	Language	Basics

	
The	programming	 language	 used	 to	 program	Arduinos	 is	 a	 language	 called	C.	 In	 this
chapter,	you	get	to	understand	the	basics	of	the	C	language.	You	will	use	what	you	learn
here	 in	 every	 sketch	 you	 develop	 as	 an	 Arduino	 programmer.	 To	 get	 the	 most	 out	 of
Arduino,	you	need	to	understand	these	fundamentals.

	

Programming

	
It	 is	 not	 uncommon	 for	people	 to	 speak	more	 than	one	 language.	 In	 fact,	 the	more	you
learn,	the	easier	it	seems	to	learn	spoken	languages	as	you	start	to	find	common	patterns	of
grammar	 and	 vocabulary.	The	 same	 is	 true	 of	 programming	 languages.	 So,	 if	 you	 have
used	any	other	programming	language,	you	will	quickly	pick	up	C.

The	good	news	 is	 that	 the	vocabulary	of	 a	programming	 language	 is	 far	 smaller	 than
that	of	a	spoken	language,	and	because	you	write	it	rather	than	say	it,	 the	dictionary	can
always	be	at	hand	whenever	you	need	to	look	things	up.	Also,	the	grammar	and	syntax	of
a	programming	 language	are	extremely	 regular,	 and	once	you	come	 to	grips	with	a	 few
simple	concepts,	learning	more	quickly	becomes	second	nature.

It	is	best	to	think	of	a	program—or	a	sketch,	as	programs	are	called	in	Arduino—as	a
list	of	instructions	to	be	carried	out	in	the	order	that	they	are	written	down.	For	example,
suppose	you	were	to	write	the	following:

	
These	three	lines	would	each	do	something.	The	first	line	would	set	the	output	of	pin	13	to
HIGH.	This	is	the	pin	with	an	LED	built	in	to	the	Arduino	board,	so	at	this	point	the	LED
would	light.	The	second	line	would	simply	wait	for	500	milliseconds	(half	a	second)	and
then	the	third	line	would	turn	the	LED	back	off	again.	So	these	three	lines	would	achieve
the	goal	of	making	the	LED	blink	once.

You	 have	 already	 seen	 a	 bewildering	 array	 of	 punctuation	 used	 in	 strange	ways	 and
words	that	don’t	have	spaces	between	them.	A	frustration	of	many	new	programmers	is,	“I
know	what	 I	want	 to	 do,	 I	 just	 don’t	 know	what	 I	 need	 to	write!”	Fear	 not,	 all	will	 be
explained.

First	of	all,	let’s	deal	with	the	punctuation	and	the	way	the	words	are	formed.	These	are
both	part	of	what	is	termed	the	syntax	of	the	language.	Most	languages	require	you	to	be
extremely	precise	about	syntax,	and	one	of	the	main	rules	is	that	names	for	things	have	to
be	 a	 single	word.	That	 is,	 they	 cannot	 include	 spaces.	So,	digitalWrite	 is	 the	 name	 for

something.	 It’s	 the	 name	of	 a	 built-in	 function	 (you’ll	 learn	more	 about	 functions	 later)
that	will	do	the	job	of	setting	an	output	pin	on	the	Arduino	board.	Not	only	do	you	have	to
avoid	spaces	in	names,	but	also	names	are	case	sensitive.	So	you	must	write	digitalWrite,
not	DigitalWrite	or	Digitalwrite.

The	function	digitalWrite	needs	to	know	which	pin	to	set	and	whether	to	set	 that	pin
HIGH	or	LOW.	These	two	pieces	of	information	are	called	arguments,	which	are	said	to
be	passed	to	a	function	when	it	is	called.	The	parameters	for	a	function	must	be	enclosed
in	parentheses	and	separated	by	commas.

The	convention	 is	 to	place	 the	opening	parenthesis	 immediately	after	 the	 last	 letter	of
the	 function’s	 name	 and	 to	 put	 a	 space	 after	 the	 comma	 before	 the	 next	 parameter.
However,	you	can	sprinkle	space	characters	within	the	parentheses	if	you	want.

If	the	function	only	has	one	argument,	then	there	is	no	need	for	a	comma.

Notice	 how	 each	 line	 ends	with	 a	 semicolon.	 It	 would	 be	more	 logical	 if	 they	were
periods,	 because	 the	 semicolon	marks	 the	 end	 of	 one	 command,	 a	 bit	 like	 the	 end	 of	 a
sentence.

In	the	next	section,	you	will	find	out	a	bit	more	about	what	happens	when	you	press	the
Upload	button	on	the	Arduino	integrated	development	environment	(IDE).	Then	you	will
be	able	to	start	trying	out	a	few	examples.

What	Is	a	Programming	Language?

	
It	is	perhaps	a	little	surprising	that	we	can	get	to	Chapter	3	in	a	book	about	programming
without	defining	exactly	what	a	programming	language	is.	We	can	recognize	an	Arduino
sketch	and	probably	have	a	rough	idea	of	what	it	is	trying	to	do,	but	we	need	to	look	a	bit
deeper	 into	how	some	programming	language	code	goes	from	being	words	on	a	page	to
something	that	does	something	real,	like	turn	an	LED	on	and	off.

Figure	3-1	summarizes	the	process	involved	from	typing	code	into	the	Arduino	IDE	to
running	the	sketch	on	the	board.

	
Figure	3-1	From	code	to	board

	
When	you	press	the	Upload	button	on	your	Arduino	IDE,	it	launches	a	chain	of	events

that	 results	 in	 your	 sketch	 being	 installed	 on	 the	Arduino	 and	 being	 run.	This	 is	 not	 as
straightforward	as	simply	taking	the	text	that	you	typed	into	the	editor	and	moving	it	to	the
Arduino	board.

The	 first	 step	 is	 to	 do	 something	 called	 compilation.	 This	 takes	 the	 code	 you	 have
written	 and	 translates	 it	 into	 machine	 code—the	 binary	 language	 that	 the	 Arduino
understands.	 If	 you	 click	 the	 triangular	Verify	 button	 on	 the	Arduino	 IDE,	 this	 actually
attempts	 to	 compile	 the	C	 that	 you	 have	written	without	 trying	 to	 send	 the	 code	 to	 the
Arduino	IDE.	A	side-effect	of	compiling	the	code	is	that	it	is	checked	to	make	sure	that	it
conforms	to	the	rules	of	the	C	language.

If	you	type	Ciao	Bella	into	your	Arduino	IDE	and	click	on	the	Play	button,	the	results
will	be	as	shown	in	Figure	3-2.

	
Figure	3-2	Arduinos	don’t	speak	Italian

	
The	 Arduino	 has	 tried	 to	 compile	 the	 words	 “Ciao	 Bella,”	 and	 despite	 its	 Italian

heritage,	it	has	no	idea	what	you	are	talking	about.	This	text	is	not	C.	So,	the	result	is	that
at	 the	bottom	of	 the	 screen	we	have	 that	 cryptic	message	 “error:	Ciao	does	not	 name	a
type.”	What	this	actually	means	is	that	there	is	a	lot	wrong	with	what	you	have	written.

Let’s	try	another	example.	This	time	we	will	try	compiling	a	sketch	with	no	code	at	all
in	it	(see	Figure	3-3).

This	 time,	 the	 compiler	 is	 telling	 you	 that	 your	 sketch	 does	 not	 have	 setup	 or	 loop

functions.	As	you	know	from	the	Blink	example	 that	you	ran	 in	Chapter	2,	you	have	 to
have	 some	 “boilerplate”	 code,	 as	 it	 is	 called,	 before	 you	 can	 add	your	 own	code	 into	 a
sketch.	In	Arduino	programming	the	“boilerplate”	code	takes	the	form	of	the	“setup”	and
“loop”	functions	that	must	always	be	present	in	a	sketch.

	
Figure	3-3	No	setup	or	loop

	
You	will	 learn	much	more	about	 functions	 later	 in	 the	book,	but	 for	now,	 let’s	accept

that	 you	 need	 this	 boilerplate	 code	 and	 just	 adapt	 your	 sketch	 so	 it	 will	 compile	 (see
Figure	3-4).

The	 Arduino	 IDE	 has	 looked	 at	 your	 efforts	 at	 writing	 code	 and	 found	 them	 to	 be
acceptable.	 It	 tells	 you	 this	 by	 saying	 “Done	 Compiling”	 and	 reporting	 the	 size	 of	 the
sketch	 to	 you:	 450	bytes.	The	 IDE	 is	 also	 telling	 you	 that	 the	maximum	 size	 is	 32,256
bytes,	so	you	still	have	lots	of	room	to	make	your	sketch	bigger.

Let’s	examine	this	boilerplate	code	that	will	form	the	starting	point	for	every	sketch	that
you	ever	write.	There	are	some	new	things	here.	For	example,	there	is	the	word	void	and
some	curly	braces.	Let’s	deal	with	void	first.

	
Figure	3-4	A	sketch	that	will	compile

	
The	line	void	setup()	means	that	you	are	defining	a	function	called	setup.	In	Arduino,

some	functions	are	already	defined	for	you,	such	as	digitalWrite	and	delay,	whereas	you
must	or	 can	define	others	 for	yourself.	 setup	 and	 loop	 are	 two	 functions	 that	 you	must
define	for	yourself	in	every	sketch	that	you	write.

The	important	thing	to	understand	is	that	here	you	are	not	calling	setup	or	loop	like	you
would	call	digitalWrite,	but	you	are	actually	creating	these	functions	so	that	the	Arduino
system	itself	can	call	them.	This	is	a	difficult	concept	to	grasp,	but	one	way	to	think	of	it	is
as	being	similar	to	a	definition	in	a	legal	document.

Most	 legal	 documents	 have	 a	 “definitions”	 section	 that	 might	 say,	 for	 example,
something	like	the	following:

	
By	 defining	 a	 term	 in	 this	 way—for	 example,	 simply	 using	 the	 word	 “author”	 as

shorthand	 for	 “The	 person	 or	 persons	 responsible	 for	 creating	 the	 book”—lawyers	 can
make	 their	 documents	 shorter	 and	 more	 readable.	 Functions	 work	 much	 like	 such
definitions.	You	define	a	function	that	you	or	the	system	itself	can	then	use	elsewhere	in
your	sketches.

Going	back	to	void,	these	two	functions	(setup	and	loop)	do	not	return	a	value	as	some
functions	 do,	 so	 you	 have	 to	 say	 that	 they	 are	 void,	 using	 the	 void	 keyword.	 If	 you
imagine	a	function	called	sin	that	performed	the	trigonometric	function	of	that	name,	then

this	function	would	return	a	value.	The	value	returned	to	use	from	the	call	would	be	the
sin	of	the	angle	passed	as	its	argument.

Rather	like	a	legal	definition	uses	words	to	define	a	term,	we	write	functions	in	C	that
can	then	be	called	from	C.

After	the	special	keyword	void	comes	the	name	of	the	function	and	then	parentheses	to
contain	any	arguments.	 In	 this	case,	 there	are	no	arguments,	but	we	still	have	to	 include
the	parentheses	there.	There	is	no	semicolon	after	the	closing	parenthesis	because	we	are
defining	 a	 function	 rather	 than	 calling	 it,	 so	 we	 need	 to	 say	 what	 will	 happen	 when
something	does	call	the	function.

Those	 things	 that	 are	 to	 happen	when	 the	 function	 is	 called	must	 be	 placed	 between
curly	braces.	Curly	braces	and	 the	code	 in	between	 them	are	known	as	a	block	 of	 code,
and	this	is	a	concept	that	you	will	meet	again	later.

Note	that	although	you	do	have	to	define	both	the	functions	setup	and	loop,	you	do	not
actually	have	 to	put	 any	 lines	of	 code	 in	 them.	However,	 failing	 to	add	code	will	make
your	sketch	a	little	dull.

Blink—Again!

	
The	reason	that	Arduino	has	the	two	functions	setup	and	loop	is	to	separate	the	things	that
only	need	to	be	done	once,	when	the	Arduino	starts	running	its	sketch,	from	the	things	that
have	to	keep	happening	continuously.

The	function	setup	will	just	be	run	once	when	the	sketch	starts.	Let’s	add	some	code	to
it	 that	will	 blink	 the	 LED	 built	 onto	 the	 board.	Add	 the	 lines	 to	 your	 sketch	 so	 that	 it
appears	as	follows	and	then	upload	them	to	your	board:

	
The	setup	function	itself	calls	two	built-in	functions,	pinMode	and	digitalWrite.	You

already	 know	 about	 digitalWrite,	 but	 pinMode	 is	 new.	 The	 function	 pinMode	 sets	 a
particular	pin	to	be	either	an	input	or	an	output.	So,	turning	the	LED	on	is	actually	a	two-
stage	process.	First,	you	have	to	set	pin	13	to	be	an	output,	and	second,	you	need	to	set
that	output	to	be	high	(5V).

When	you	run	this	sketch,	on	your	board	you	will	see	that	the	LED	comes	on	and	stays
on.	This	is	not	very	exciting,	so	let’s	at	least	try	to	make	it	flash	by	turning	it	on	and	off	in
the	loop	function	rather	than	in	the	setup	function.

You	can	leave	the	pinMode	call	in	the	setup	function	because	you	only	need	to	call	it
once.	The	project	would	still	work	if	you	moved	it	into	the	loop,	but	there	is	no	need	and	it
is	a	good	programming	habit	to	do	things	only	once	if	you	only	need	to	do	them	once.	So
modify	your	sketch	so	that	it	looks	like	this:

	
Run	 this	 sketch	and	see	what	happens.	 It	may	not	be	quite	what	you	were	expecting.

The	LED	is	basically	on	all	the	time.	Hmm,	why	should	this	be?

Try	stepping	through	the	sketch	a	line	at	a	time	in	your	head:

1.	Run	setup	and	set	pin	13	to	be	an	output.

2.	Run	loop	and	set	pin	13	to	high	(LED	on).

3.	Delay	for	half	a	second.

4.	Set	pin	13	to	low	(LED	off).

5.	Run	loop	again,	going	back	to	step	2,	and	set	pin	13	to	high	(LED	on).

The	problem	 lies	between	steps	4	and	5.	What	 is	happening	 is	 that	 the	LED	 is	being
turned	 off,	 but	 the	 very	 next	 thing	 that	 happens	 is	 that	 it	 gets	 turned	 on	 again.	 This
happens	so	quickly	that	it	appears	that	the	LED	is	on	all	the	time.

The	 microcontroller	 chip	 on	 the	 Arduino	 can	 perform	 16	 million	 instructions	 per
second.	That’s	not	16	million	C	language	commands,	but	it	is	still	very	fast.	So,	our	LED
will	only	be	off	for	a	few	millionths	of	a	second.

To	fix	the	problem,	you	need	to	add	another	delay	after	you	turn	the	LED	off.	Your	code
should	now	look	like	this:

	
Try	again	and	your	LED	should	blink	away	merrily	once	per	second.

You	may	have	noticed	 the	comment	at	 the	 top	of	 the	 listing	saying	“sketch	3-01.”	To
save	you	some	typing,	we	have	uploaded	to	the	book’s	website	all	the	sketches	with	such	a
comment	at	the	top.	You	can	download	them	from	http://www.arduinobook.com.

Variables

	
In	this	Blink	example,	you	use	pin	13	and	have	to	refer	to	it	in	three	places.	If	you	decided
to	use	a	different	pin,	then	you	would	have	to	change	the	code	in	three	places.	Similarly,	if
you	wanted	to	change	the	rate	of	blinking,	controlled	by	the	argument	to	delay,	you	would
have	to	change	500	to	some	other	number	in	more	than	one	place.

Variables	can	be	thought	of	as	giving	a	name	to	a	number.	Actually,	 they	can	be	a	lot
more	powerful	than	this,	but	for	now,	you	will	use	them	for	this	purpose.

When	defining	a	variable	 in	C,	you	have	to	specify	 the	 type	of	 the	variable.	We	want
our	 variables	 to	 be	whole	 numbers,	which	 in	C	 are	 called	 ints.	 So	 to	 define	 a	 variable
called	ledPin	with	a	value	of	13,	you	need	to	write	the	following:

	
Notice	that	because	ledPin	is	a	name,	the	same	rules	apply	as	those	of	function	names.

So,	there	cannot	be	any	spaces.	The	convention	is	to	start	variables	with	a	lowercase	letter
and	 begin	 each	 new	 word	 with	 an	 uppercase	 letter.	 Programmers	 will	 often	 call	 this
“bumpy	case”	or	“camel	case.”

Let’s	fit	this	into	your	Blink	sketch	as	follows:

http://www.arduinobook.com

	
We	have	also	sneaked	in	another	variable	called	delayPeriod.

Everywhere	in	the	sketch	where	you	used	to	refer	to	13,	you	now	refer	to	ledPin,	and
everywhere	you	used	to	refer	to	500,	you	now	refer	to	delayPeriod.

If	 you	 want	 to	 make	 the	 sketch	 blink	 faster,	 you	 can	 just	 change	 the	 value	 of
delayPeriod	in	one	place.	Try	changing	it	to	100	and	running	the	sketch	on	your	Arduino
board.

There	are	other	cunning	things	that	you	can	do	with	variables.	Let’s	modify	your	sketch
so	 that	 the	 blinking	 starts	 really	 fast	 and	 gradually	 gets	 slower	 and	 slower,	 as	 if	 the
Arduino	 is	 getting	 tired.	 To	 do	 this,	 all	 you	 need	 to	 do	 is	 to	 add	 something	 to	 the
delayPeriod	variable	each	time	that	you	do	a	blink.

Modify	 the	 sketch	by	adding	 the	 single	 line	at	 the	end	of	 the	 loop	 function	 so	 that	 it
appears,	as	 in	 the	following	listing,	and	then	run	the	sketch	on	the	Arduino	board.	Press
the	Reset	button	and	see	it	start	from	a	fast	rate	of	flashing	again.

www.allitebooks.com

http://www.allitebooks.org

	
Your	Arduino	 is	 doing	 arithmetic	 now.	 Every	 time	 that	 loop	 is	 called,	 it	 will	 do	 the

normal	 flash	of	 the	LED,	but	 then	 it	will	 add	100	 to	 the	variable	delayPeriod.	We	will
come	back	to	arithmetic	shortly,	but	first	you	need	a	better	way	than	a	flashing	LED	to	see
what	the	Arduino	is	up	to.

Experiments	in	C

	
You	need	a	way	to	test	your	experiments	in	C.	One	way	is	to	put	the	C	that	you	want	to
test	out	into	the	setup	function,	evaluate	them	on	the	Arduino,	and	then	have	the	Arduino
display	any	output	back	to	something	called	the	Serial	Monitor,	as	shown	in	Figures	3-5
and	3-6.

The	 Serial	 Monitor	 is	 part	 of	 the	 Arduino	 IDE.	 You	 access	 it	 by	 clicking	 on	 the
rightmost	 icon	 in	 the	 toolbar.	 Its	purpose	 is	 to	act	as	a	communication	channel	between
your	computer	and	the	Arduino.	You	can	type	a	message	in	the	text	entry	area	at	the	top	of
the	Serial	Monitor	and	when	you	press	Return	or	click	Send,	it	will	send	that	message	to
the	 Arduino.	 Also	 if	 the	 Arduino	 has	 anything	 to	 say,	 this	 message	 will	 appear	 in	 the
Serial	Monitor.	In	both	cases,	the	information	is	sent	through	the	USB	link.

	
Figure	3-5	Writing	C	in	setup

	

	
Figure	3-6	The	Serial	Monitor

	
As	you	would	expect,	 there	 is	a	built-in	function	that	you	can	use	 in	your	sketches	 to

send	 a	message	 back	 to	 the	 Serial	Monitor.	 It	 is	 called	Serial.println	 and	 it	 expects	 a
single	argument,	which	consists	of	the	information	that	you	want	to	send.	This	information
is	usually	a	variable.

You	will	use	this	mechanism	to	test	out	a	few	things	that	you	can	do	with	variables	and
arithmetic	in	C;	frankly,	it’s	the	only	way	you	can	see	the	results	of	your	experiments	in	C.

Numeric	Variables	and	Arithmetic

The	last	thing	you	did	was	add	the	following	line	to	your	blinking	sketch	to	increase	the
blinking	period	steadily:

	
Looking	 closely	 at	 this	 line,	 it	 consists	 of	 a	 variable	 name,	 then	 an	 equals	 sign,	 then

what	is	called	an	expression	(delayPeriod	+	100).	The	equals	sign	does	something	called
assignment.	 That	 is,	 it	 assigns	 a	 new	 value	 to	 a	 variable,	 and	 the	 value	 it	 is	 given	 is
determined	by	what	comes	after	the	equals	sign	and	before	the	semicolon.	In	this	case,	the
new	value	 to	be	given	 to	 the	delayPeriod	variable	 is	 the	old	value	of	delayPeriod	plus
100.

Let’s	 test	 out	 this	 new	mechanism	 to	 see	what	 the	Arduino	 is	 up	 to	 by	 entering	 the
following	sketch,	running	it,	and	opening	the	Serial	Monitor:

	
Figure	3-7	shows	what	you	should	see	in	the	Serial	Monitor	after	this	code	runs.

To	take	a	slightly	more	complex	example,	the	formula	for	converting	a	temperature	in
degrees	Centigrade	into	degrees	Fahrenheit	is	to	multiply	it	by	5,	divide	by	9,	and	then	add
32.	So	you	could	write	that	in	a	sketch	like	this:

	
Figure	3-7	Simple	arithmetic

	

	
There	are	a	few	things	to	notice	here.	First,	note	the	following	line:

	
When	we	write	 such	 a	 line,	we	 are	 actually	 doing	 two	 things:	We	 are	 declaring	 an	 int
variable	called	degC,	and	we	are	saying	that	its	initial	value	will	be	20.	Alternatively,	you
could	separate	these	two	things	and	write	the	following:

	
You	must	declare	any	variable	 just	once,	essentially	 telling	 the	compiler	what	 type	of

variable	 it	 is—in	 this	 case,	 int.	However,	 you	 can	 assign	 the	 variable	 a	 value	 as	many
times	as	you	want:

	
So,	 in	 the	 Centigrade	 to	 Fahrenheit	 example,	 you	 are	 defining	 the	 variable	 degC	 and
giving	it	an	initial	value	of	20,	but	when	you	define	degF,	it	does	not	get	an	initial	value.
Its	value	gets	assigned	on	the	next	line,	according	to	the	conversion	formula,	before	being
sent	to	the	Serial	Monitor	for	you	to	see.

Looking	at	 the	expression,	you	can	see	that	you	use	the	asterisk	(*)	for	multiplication
and	 the	 slash	 (/)	 for	 division.	 The	 arithmetic	 operators	+,	 −,	 *,	 and	 /	 have	 an	 order	 of
precedence—that	 is,	 multiplications	 are	 done	 first,	 then	 divisions,	 then	 additions	 and
subtractions.	This	is	in	accordance	with	the	usual	use	of	arithmetic.	However,	sometimes	it
makes	 it	clearer	 to	use	parentheses	 in	 the	expressions.	So,	 for	example,	you	could	write
the	following:

	
The	expressions	that	you	write	can	be	as	long	and	complex	as	you	need	them	to	be,	and

in	addition	to	the	usual	arithmetic	operators,	there	are	other	less	commonly	used	operators
and	a	big	collection	of	various	mathematical	functions	that	are	available	to	you.	You	will
learn	about	these	later.

Commands

	
The	C	language	has	a	number	of	built-in	commands.	In	this	section,	we	explore	some	of
these	and	see	how	they	can	be	of	use	in	your	sketches.

if

In	our	sketches	so	far,	we	have	assumed	that	your	lines	of	programming	will	be	executed
in	order	one	after	 the	other,	with	no	exceptions.	But	what	 if	you	don’t	want	 to	do	 that?
What	if	you	only	want	to	execute	part	of	a	sketch	if	some	condition	is	true?

Let’s	return	to	our	gradually	slowing-down	Blinking	LED	example.	At	the	moment,	it
will	gradually	get	slower	and	slower	until	each	blink	is	lasting	hours.	Let’s	look	at	how	we
can	change	 it	 so	 that	once	 it	has	slowed	down	to	a	certain	point,	 it	goes	back	 to	 its	 fast
starting	speed.

To	do	this,	you	must	use	an	if	command;	the	modified	sketch	is	as	follows.	Try	it	out.

	
The	 if	 command	 looks	 a	 little	 like	 a	 function	definition,	 but	 this	 resemblance	 is	 only

superficial.	The	word	in	the	parenthesis	is	not	an	argument;	it	is	what	is	called	a	condition.
So	in	this	case,	 the	condition	is	 that	 the	variable	delayPeriod	has	a	value	 that	 is	greater
than	3,000.	If	this	is	true,	then	the	commands	inside	the	curly	braces	will	be	executed.	In
this	case,	the	code	sets	the	value	of	delayPeriod	back	to	100.

If	the	condition	is	not	true,	then	the	Arduino	will	just	continue	on	with	the	next	thing.	In
this	case,	there	is	nothing	after	the	“if”,	so	the	Arduino	will	run	the	loop	function	again.

Running	through	the	sequence	of	events	in	your	head	will	help	you	understand	what	is
going	on.	So,	here	is	what	happens:

1.	Arduino	runs	setup	and	initializes	the	LED	pin	to	be	an	output.

2.	Arduino	starts	running	loop.

3.	The	LED	turns	on.

4.	A	delay	occurs.

5.	The	LED	turns	off.

6.	A	delay	occurs.

7.	Add	100	to	the	delayPeriod.

8.	If	the	delay	period	is	greater	than	3,000	set	it	back	to	100.

9.	Go	back	to	step	2.

We	 used	 the	 symbol	<,	which	means	 less	 than.	 It	 is	 one	 example	 of	what	 are	 called
comparison	operators.	These	operators	are	summarized	in	the	following	table:

	
To	compare	two	numbers,	you	use	the	==	command.	This	double	equals	sign	is	easily

confused	with	the	character	=,	which	is	used	to	assign	values	to	variables.

There	is	another	form	of	if	that	allows	you	to	do	one	thing	if	the	condition	is	true	and
another	if	it	is	false.	We	will	use	this	in	some	practical	examples	later	in	the	book.

for

In	addition	to	executing	different	commands	under	different	circumstances,	you	also	often
will	want	to	run	a	series	of	commands	a	number	of	times	in	a	program.	You	already	know
one	way	of	doing	this,	using	the	loop	function.	As	soon	as	all	the	commands	in	the	loop
function	have	been	 run,	 it	will	 start	 again	 automatically.	However,	 sometimes	you	need
more	control	than	that.

So,	 for	 example,	 let’s	 say	 that	 you	want	 to	write	 a	 sketch	 that	 blinks	 20	 times,	 then
paused	for	3	seconds,	and	then	started	again.	You	could	do	that	by	just	repeating	the	same
code	over	and	over	again	in	your	loop	function,	like	this:

	
But	 this	requires	a	 lot	of	 typing	and	there	are	several	much	better	ways	to	do	this.	Let’s
start	by	looking	at	how	you	can	use	a	for	 loop	and	then	look	at	another	way	of	doing	it
using	a	counter	and	an	if	statement.

The	sketch	to	accomplish	this	with	a	for	loop	is,	as	you	can	see,	a	lot	shorter	and	easier
to	maintain	than	the	previous	example:

	
The	for	loop	looks	a	bit	like	a	function	that	takes	three	arguments,	although	here	those

arguments	are	separated	by	semicolons	rather	than	the	usual	commas.	This	is	just	a	quirk
of	the	C	language.	The	compiler	will	soon	tell	you	when	you	get	it	wrong.

The	 first	 thing	 in	 the	 parentheses	 after	 for	 is	 a	 variable	 declaration.	 This	 specifies	 a
variable	to	be	used	as	a	counter	variable	and	gives	it	an	initial	value—in	this	case,	0.

The	second	part	is	a	condition	that	must	be	true	for	you	to	stay	in	the	loop.	In	this	case,
you	will	stay	in	the	 loop	as	long	as	 i	 is	 less	 than	20,	but	as	soon	as	 i	 is	20	or	more,	 the
program	will	stop	doing	the	things	inside	the	loop.

The	final	part	is	what	to	do	every	time	you	have	done	all	the	things	in	the	loop.	In	this
case,	that	is	to	increment	i	by	1	so	that	it	can,	after	20	trips	around	the	loop,	cease	to	be
less	than	100	and	cause	the	program	to	exit	the	loop.

Try	entering	this	code	and	running	it.	The	only	way	to	get	familiar	with	the	syntax	and
all	 that	pesky	punctuation	is	 to	 type	 it	 in	and	have	the	compiler	 tell	you	when	you	have
done	something	wrong.	Eventually	it	will	all	start	to	make	sense.

One	potential	downside	of	this	approach	is	that	the	loop	function	is	going	to	take	a	long
time.	This	is	not	a	problem	for	this	sketch,	because	all	it	is	doing	is	flashing	an	LED.	But
often,	the	loop	function	in	a	sketch	will	also	be	checking	that	keys	have	been	pressed	or
that	serial	communications	have	been	received.	If	the	processor	is	busy	inside	a	for	loop,
it	will	not	be	able	to	do	this.	Generally,	it	is	a	good	idea	to	make	the	loop	function	run	as
fast	as	possible	so	that	it	can	be	run	as	frequently	as	possible.

The	following	sketch	shows	how	to	achieve	this:

	
You	may	have	noticed	the	following	line:

	
This	is	just	C	shorthand	for	the	following:

	
So	now	each	time	that	loop	is	run,	it	will	take	just	a	bit	more	than	200	milliseconds,	unless
it’s	the	20th	time	round	the	loop,	in	which	case	it	will	take	the	same	plus	the	three	seconds
delay	 between	 each	 batch	 of	 20	 flashes.	 In	 fact,	 for	 some	 applications,	 even	 this	 is	 too
slow,	and	purists	would	say	that	you	should	not	use	delay	at	all.	The	best	solution	depends
on	the	application.

while

Another	way	of	looping	in	C	is	to	use	the	while	command	in	place	of	the	for	command.
You	can	accomplish	the	same	thing	as	the	preceding	for	example	using	a	while	command
as	follows:

	
The	expression	in	parentheses	after	while	must	be	true	to	stay	in	the	loop.	When	it	is	no

longer	true,	then	the	sketch	continues	running	the	commands	after	the	final	curly	brace.

The	#define	Directive

	
For	constant	values	like	pin	assignments	that	do	not	change	during	the	running	of	a	sketch,
there	 is	 an	 alternative	 to	 using	 a	 variable.	You	 can	 use	 a	 command	 called	#define	 that
allows	you	to	associate	a	value	with	a	name.	Everywhere	that	 this	name	appears	in	your
sketch,	the	value	will	be	substituted	before	the	sketch	is	compiled.

As	an	example,	you	could	define	a	pin	assignment	for	a	LED	like	this:

	
Note	that	the	#define	directive	does	not	use	an	“=”	between	the	name	and	the	value.	It

does	 not	 even	 need	 a	 “;”	 on	 the	 end.	 This	 is	 because	 it	 is	 not	 actually	 part	 of	 the	 C
language	itself;	but	is	called	a	pre-compiler	directive	that	is	run	before	compilation.

This	approach,	in	the	author’s	opinion,	is	less	easy	to	read	than	using	a	variable,	but	it
does	have	 the	advantage	 that	you	do	not	use	any	memory	 to	 store	 it.	 It	 is	 something	 to
consider	if	memory	is	at	a	premium.

Conclusion

	
This	 chapter	 has	 got	 you	 started	with	C.	You	 can	make	LEDs	blink	 in	 various	 exciting
ways	 and	 get	 the	 Arduino	 to	 send	 results	 back	 to	 you	 over	 the	 USB	 by	 using	 the
Serial.println	function.	You	also	worked	out	how	to	use	if	and	for	commands	to	control
the	 order	 in	 which	 your	 commands	 are	 executed,	 and	 learned	 a	 little	 about	making	 an
Arduino	do	some	arithmetic.

In	 the	 next	 chapter,	 you	 will	 look	 more	 closely	 at	 functions.	 The	 chapter	 will	 also
introduce	the	variable	types	other	than	the	int	type	that	you	used	in	this	chapter.

www.allitebooks.com

http://www.allitebooks.org

4
Functions

	
This	chapter	 focuses	mostly	on	 the	 type	of	 functions	 that	you	can	write	yourself	 rather
than	the	built-in	functions	such	as	digitalWrite	and	delay	that	are	already	defined	for	you.

	
The	reason	that	you	need	to	be	able	to	write	your	own	functions	is	that	as	sketches	start

to	get	a	 little	complicated,	 then	your	setup	and	loop	 functions	will	grow	and	grow	until
they	are	long	and	complicated	and	it	becomes	difficult	to	see	how	they	work.

The	biggest	problem	in	software	development	of	any	sort	is	managing	complexity.	The
best	programmers	write	software	that	is	easy	to	look	at	and	understand	and	requires	very
little	in	the	way	of	explanation.

Functions	 are	 a	 key	 tool	 in	 creating	 easy-to-understand	 sketches	 that	 can	 be	 changed
without	difficulty	or	risk	of	the	whole	thing	falling	into	a	crumpled	mess.

What	Is	a	Function?

	
A	function	is	a	little	like	a	program	within	a	program.	You	can	use	it	to	wrap	up	some	little
thing	that	you	want	to	do.	A	function	that	you	define	can	be	called	from	anywhere	in	your
sketch	and	contains	its	own	variables	and	its	own	list	of	commands.	When	the	commands
have	been	 run,	execution	 returns	 to	 the	point	 just	after	wherever	 it	was	 in	 the	code	 that
called	the	function.

By	 way	 of	 an	 example,	 code	 that	 flashes	 a	 light-emitting	 diode	 (LED)	 is	 a	 prime
example	of	some	code	that	should	be	put	in	a	function.	So	let’s	modify	our	basic	“blink	20
times”	sketch	to	use	a	function	that	we	will	create	called	flash:

	
So,	all	we	have	really	done	here	 is	 to	move	 the	four	 lines	of	code	 that	 flash	 the	LED

from	the	middle	of	the	for	loop	to	be	in	a	function	of	their	own	called	flash.	Now	you	can
make	the	LED	flash	any	time	you	like	by	just	calling	the	new	function	by	writing	flash().
Note	the	empty	parentheses	after	the	function	name.	This	indicates	that	the	function	does
not	 take	 any	 parameters.	 The	 delay	 value	 that	 it	 uses	 is	 set	 by	 the	 same	 delayPeriod
function	that	you	used	before.

Parameters

	
When	dividing	your	sketch	up	into	functions,	it	is	often	worth	thinking	about	what	service
a	 function	could	provide.	 In	 the	case	of	 flash,	 this	 is	 fairly	obvious.	But	 this	 time,	 let’s
give	this	function	parameters	that	tell	it	both,	how	many	times	to	flash	and	how	short	or
long	the	flashes	should	be.	Read	through	the	following	code	and	then	I	will	explain	just
how	parameters	work	in	a	little	more	detail.

	
Now,	 if	we	 look	at	our	 loop	 function,	 it	has	only	 two	 lines	 in	 it.	We	have	moved	 the

bulk	of	the	work	off	to	the	flash	function.	Notice	how	when	we	call	flash	we	now	supply
it	with	two	arguments	in	parentheses.

Where	we	define	the	function	at	the	bottom	of	the	sketch,	we	have	to	declare	the	type	of
variable	 in	 the	parameters.	 In	 this	 case,	 they	are	both	 ints.	We	 are	 in	 fact	 defining	new
variables.	However,	these	variables	(numFlashes	and	d)	can	only	be	used	within	the	flash
function.

This	 is	 a	good	 function	because	 it	wraps	up	everything	you	need	 in	order	 to	 flash	an
LED.	The	only	information	that	it	needs	from	outside	of	the	function	is	to	which	pin	the
LED	 is	 attached.	 If	 you	wanted,	 you	 could	make	 this	 a	 parameter	 too—something	 that
would	be	well	worth	doing	if	you	had	more	than	one	LED	attached	to	your	Arduino.

Global,	Local,	and	Static	Variables

	
As	was	mentioned	before,	parameters	to	a	function	can	be	used	only	inside	that	function.
So,	if	you	wrote	the	following	code,	you	would	get	an	error:

	
On	the	other	hand,	suppose	you	wrote	this:

	
This	 code	 would	 not	 result	 in	 a	 compilation	 error.	 However,	 you	 need	 to	 be	 careful,
because	you	now	actually	have	 two	variables	 called	x	 and	 they	 can	 each	have	different
values.	The	one	that	you	declared	on	the	first	line	is	called	a	global	variable.	It	 is	called
global	 because	 it	 can	 be	 used	 anywhere	 you	 like	 in	 the	 program,	 including	 inside	 any
functions.

However,	because	you	use	the	same	variable	name	x	inside	the	function,	as	a	parameter,
you	cannot	use	 the	global	variable	x	 simply	because	whenever	you	 refer	 to	x	 inside	 the
function,	the	“local”	version	of	x	has	priority.	The	parameter	x	is	said	to	shadow	the	global
variable	 of	 the	 same	 name.	 This	 can	 lead	 to	 some	 confusion	 when	 trying	 to	 debug	 a
project.

In	addition	to	defining	parameters,	you	can	also	define	variables	that	are	not	parameters
but	are	just	for	use	within	a	function.	These	are	called	local	variables.	For	example:

	
The	local	variable	timesToFlash	will	only	exist	while	the	function	is	running.	As	soon	as
the	 function	 has	 finished	 its	 last	 command,	 it	 will	 disappear.	 This	 means	 that	 local
variables	are	not	accessible	from	anywhere	in	your	program	other	than	in	the	function	in
which	they	are	defined.

So,	for	instance,	the	following	example	will	cause	an	error:

	

Seasoned	 programmers	 generally	 treat	 global	 variables	with	 suspicion.	 The	 reason	 is
that	they	go	against	the	principal	of	encapsulation.	The	idea	of	encapsulation	 is	that	you
should	wrap	up	 in	 a	 package	 everything	 that	 has	 to	 do	with	 a	 particular	 feature.	Hence
functions	are	great	for	encapsulation.	The	problem	with	“globals”	(as	global	variables	are
often	called)	is	that	they	generally	get	defined	at	the	beginning	of	a	sketch	and	may	then
be	used	all	over	the	sketch.	Sometimes	there	is	a	perfectly	legitimate	reason	for	this.	Other
times,	 people	 use	 them	 in	 a	 lazy	 way	 when	 it	 would	 be	 far	 more	 appropriate	 to	 pass
parameters.	In	our	examples	so	far,	ledPin	is	a	good	use	of	a	global	variable.	It’s	also	very
convenient	and	easy	to	find	up	at	the	top	of	the	sketch,	making	it	easy	to	change.	Actually,
ledPin	is	really	a	constant,	because	although	you	may	change	it	and	then	recompile	your
sketch,	 you	 are	 unlikely	 to	 allow	 the	 variable	 to	 change	 while	 the	 sketch	 is	 actually
running.	 For	 this	 reason,	 you	may	 prefer	 to	 use	 the	#define	 command	we	 described	 in
Chapter	3.

Another	feature	of	local	variables	is	that	their	value	is	initialized	every	time	the	function
is	run.	This	is	nowhere	more	true	(and	often	inconvenient)	than	in	the	loop	function	of	an
Arduino	sketch.	Let’s	try	and	use	a	local	variable	in	place	of	global	variable	in	one	of	the
examples	from	the	previous	chapter:

	
Sketch	4-03	is	based	on	the	sketch	3-09,	but	attempts	to	use	a	local	variable	instead	of

the	global	variable	to	count	the	number	of	flashes.

This	 sketch	 is	 broken.	 It	will	 not	work,	 because	 every	 time	 loop	 is	 run,	 the	 variable
count	will	be	given	the	value	0	again,	so	count	will	never	reach	20	and	the	LED	will	just
keep	flashing	forever.	The	whole	reason	that	we	made	count	a	global	in	the	first	place	was
so	 that	 its	 value	 would	 not	 be	 reset.	 The	 only	 place	 that	 we	 use	 count	 is	 in	 the	 loop
function,	so	this	is	where	it	should	be	placed.

Fortunately,	 there	 is	 a	 mechanism	 in	 C	 that	 gets	 around	 this	 conundrum.	 It	 is	 the
keyword	static.	When	you	use	 the	keyword	static	 in	 front	of	a	variable	declaration	 in	a
function,	it	has	the	effect	of	initializing	the	variable	only	the	first	time	that	the	function	is
run.	Perfect!	That’s	just	what	is	required	in	this	situation.	We	can	keep	our	variable	in	the
function	 where	 it’s	 used	 without	 it	 getting	 set	 back	 to	 0	 every	 time	 the	 function	 runs.
Sketch	4-04	shows	this	in	operation:

	

Return	Values

	
Computer	 science,	 as	 an	 academic	 discipline,	 has	 as	 its	 parents	 mathematics	 and
engineering.	This	heritage	lingers	on	in	many	of	the	names	associated	with	programming.
The	word	function	is	itself	a	mathematical	term.	In	mathematics,	the	input	to	the	function
(the	argument)	completely	determines	the	output.	We	have	written	functions	that	take	an
input,	but	none	that	give	us	back	a	value.	All	our	functions	have	been	“void”	functions.	If
a	function	returns	a	value,	then	you	specify	a	return	type.

Let’s	 look	 at	 writing	 a	 function	 that	 takes	 a	 temperature	 in	 degrees	 Centigrade	 and
returns	the	equivalent	in	degrees	Fahrenheit:

	
The	function	definition	now	starts	with	 int	 rather	 than	void	 to	 indicate	 that	 the	function
will	return	an	int	to	whatever	calls	it.	This	might	be	a	bit	of	code	that	looks	like	this:

	
Any	non-void	function	has	to	have	a	return	statement	in	it.	If	you	do	not	put	one	in,	the

compiler	will	tell	you	that	it	is	missing.	You	can	have	more	than	one	return	 in	the	same
function.	This	might	 arise	 if	 you	have	 an	 if	 statement	with	 alternative	 actions	based	on
some	condition.	Some	programmers	frown	on	this,	but	if	your	functions	are	small	(as	all
functions	should	be),	then	this	practice	will	not	be	a	problem.

The	value	after	return	can	be	an	expression;	it	does	not	have	to	just	be	the	name	of	a
variable.	So	you	could	compress	the	preceding	example	into	the	following:

	
If	 the	 expression	 being	 returned	 is	more	 than	 just	 a	 variable	 name,	 then	 it	 should	 be

enclosed	in	parentheses	as	in	the	preceding	example.

Other	Variable	Types

	
All	 our	 examples	 of	 variables	 so	 far	 have	 been	 int	 variables.	 This	 is	 by	 far	 the	 most
commonly	used	variable	type,	but	there	are	some	others	that	you	should	be	aware	of.

floats

One	such	type,	which	is	relevant	to	the	previous	temperature	conversion	example,	is	float.
This	 variable	 type	 represents	 floating	 point	 numbers—that	 is,	 numbers	 that	may	have	 a
decimal	point	in	them,	such	as	1.23.	You	need	this	variable	type	when	whole	numbers	are
just	not	precise	enough.

Note	the	following	formula:

	
If	you	give	c	the	value	17,	then	f	will	be	17	*	9	/	5	+	32	or	62.6.	But	if	f	is	an	int,	then	the
value	will	be	truncated	to	62.

The	 problem	 becomes	 even	 worse	 if	 we	 are	 not	 careful	 of	 the	 order	 in	 which	 we
evaluate	things.	For	instance,	suppose	that	we	did	the	division	first,	as	follows:

	
Then	in	normal	math	terms,	the	result	would	still	be	62.6,	but	if	all	the	numbers	are	ints,
then	the	calculation	would	proceed	as	follows:

1.	17	is	divided	by	5,	which	gives	3.4,	which	is	then	truncated	to	3.

2.	3	is	then	multiplied	by	9	and	32	is	added	to	give	a	result	of	59—which	is	quite	a	long
way	from	62.6.

For	 circumstances	 like	 this,	 we	 can	 use	 floats.	 In	 the	 following	 example,	 our
temperature	conversion	function	is	rewritten	to	use	floats:

	
Notice	how	we	have	added	.0	to	the	end	of	our	constants.	This	ensures	that	the	compiler
knows	to	treat	them	as	floats	rather	than	ints.

boolean

Boolean	values	are	logical.	They	have	a	value	that	is	either	true	or	false.

In	the	C	language,	Boolean	 is	spelled	with	a	lowercase	b,	but	 in	general	use,	Boolean
has	an	uppercase	initial	letter,	as	it	is	named	after	the	mathematician	George	Boole,	who
invented	the	Boolean	logic	that	is	crucial	to	computer	science.

You	may	not	realize	it,	but	you	have	already	met	Boolean	values	when	we	were	looking
at	the	if	command.	The	condition	in	an	if	statement,	such	as	(count	==	20),	is	actually	an
expression	that	yields	a	boolean	result.	The	operator	==	is	called	a	comparison	operator.
Whereas	+	 is	an	arithmetic	operator	that	adds	two	numbers	together,	==	 is	a	comparison
operator	that	compares	two	numbers	and	returns	a	value	of	either	true	or	false.

You	can	define	Boolean	variables	and	use	them	as	follows:

	
Boolean	values	can	be	manipulated	using	Boolean	operators.	So,	similar	to	how	you	can

perform	arithmetic	on	numbers,	you	can	also	perform	operations	on	Boolean	values.	The
most	commonly	used	Boolean	operators	are	and,	which	is	written	as	&&,	and	or,	which
is	written	as	||.

Figure	4-1	shows	truth	tables	for	the	and	and	or	operators.

From	the	truth	tables	in	Figure	4-1,	you	can	see	that	for	and,	if	both	A	and	B	are	true,

then	the	result	will	be	true;	otherwise,	the	result	will	be	false.

On	the	other	hand,	with	the	or	operator,	if	either	A	or	B	or	both	A	and	B	are	true,	then
the	result	will	be	true.	The	result	will	be	false	only	if	neither	A	nor	B	is	true.

In	 addition	 to	 and	 and	 or,	 there	 is	 the	 not	 operator,	 written	 as	 !.	 You	 will	 not	 be
surprised	to	learn	that	“not	true”	is	false	and	“not	false”	is	true.

	
Figure	4-1	Truth	tables

	
You	can	combine	these	operators	into	Boolean	expressions	in	your	if	statements,	as	the

following	example	illustrates:

	

Other	Data	Types

As	you	have	seen,	the	int	and	occasionally	the	float	data	types	are	fine	for	most	situations;
however,	 some	 other	 numeric	 types	 can	 be	 useful	 under	 some	 circumstances.	 In	 an
Arduino	 sketch,	 the	 int	 type	 uses	 16	 bits	 (binary	 digits).	 This	 allows	 it	 to	 represent
numbers	between	−32767	and	32768.

Other	data	types	available	to	you	are	summarized	in	Table	4-1.	This	 table	 is	provided
mainly	for	reference.	You	will	use	some	of	these	other	types	as	you	progress	through	the
book.

www.allitebooks.com

http://www.allitebooks.org

	
Table	4-1	Data	Types	in	C

	
One	 thing	 to	 consider	 is	 that	 if	 data	 types	 exceed	 their	 range,	 then	 strange	 things

happen.	So,	if	you	have	a	byte	variable	with	255	in	it	and	you	add	1	to	it,	you	get	0.	More
alarmingly,	 if	you	have	an	 int	variable	with	32767	and	you	add	1	 to	 it,	you	will	end	up
with	−32768.

Until	 you	 are	 completely	 comfortable	 with	 these	 different	 data	 types,	 I	 would
recommend	sticking	to	int,	as	it	works	for	pretty	much	everything.

Coding	Style

	
The	C	compiler	does	not	really	care	about	how	you	lay	out	your	code.	For	all	it	cares,	you
can	write	everything	on	a	single	line	with	semicolons	between	each	statement.	However,
well-laid-out,	neat	code	is	much	easier	to	read	and	maintain	than	poorly	laid-out	code.	In
this	sense,	reading	code	is	just	like	reading	a	book:	Formatting	is	important.

To	some	extent,	formatting	is	a	matter	of	personal	 taste.	No	one	likes	to	 think	that	he
has	bad	 taste,	 so	arguments	about	how	code	 should	 look	can	become	personal.	 It	 is	not
unknown	for	programmers,	on	being	required	to	do	something	with	someone	else’s	code,
to	start	by	reformatting	all	the	code	into	their	preferred	style	of	presentation.

As	 an	 answer	 to	 this	 problem,	 coding	 standards	 are	 often	 laid	 down	 to	 encourage
everyone	 to	 lay	 out	 his	 or	 her	 code	 in	 the	 same	way	 and	 adopt	 “good	 practice”	 when
writing	programs.

The	C	language	has	a	de	facto	standard	that	has	evolved	over	the	years,	and	this	book	is
generally	faithful	to	that	standard.

Indentation

In	the	example	sketches	that	you	have	seen,	you	can	see	that	we	often	indent	the	program
code	 from	 the	 left	 margin.	 So,	 for	 example	 when	 defining	 a	 void	 function,	 the	 void
keyword	is	at	the	left	margin,	as	is	the	opening	curly	brace	on	the	next	line,	but	then	all	the
text	within	the	curly	braces	is	indented.	The	amount	of	indentation	does	not	really	matter.
Some	people	use	two	spaces,	some	four.	You	can	also	press	Tab	to	indent.	In	this	book,	we
use	two	spaces	for	indentation.

If	 you	were	 to	have	 an	 if	 statement	 inside	 a	 function	definition,	 then	once	 again	you
would	add	two	more	spaces	for	the	lines	within	the	curly	braces	of	the	if	command,	as	in
the	following	example:

	
You	might	 include	another	 if	 inside	 the	 first	 if,	which	would	add	yet	another	 level	of

indentation,	making	six	spaces	from	the	left	margin.

All	of	this	might	sound	a	bit	trivial,	but	if	you	ever	sort	through	someone	else’s	badly
formatted	sketches,	you	will	find	it	very	difficult.

Opening	Braces

There	 are	 two	 schools	 of	 thought	 as	 to	where	 to	 put	 the	 first	 curly	 brace	 in	 a	 function
definition,	if	statement,	or	for	loop.	One	way	is	to	place	the	curly	brace	on	the	line	after
the	rest	of	the	command,	as	we	have	in	all	the	examples	so	far,	or	put	it	on	the	same	line,
like	this:

	
This	style	is	most	commonly	used	in	the	Java	programming	language,	which	shares	much
of	 the	 same	 syntax	 as	 C.	 I	 prefer	 the	 first	 form,	 which	 seems	 to	 be	 the	 form	 most
commonly	used	in	the	Arduino	world.

Whitespace

The	 compiler	 ignores	 spaces	 tabs	 and	 new	 lines,	 apart	 from	 using	 them	 as	 a	 way	 of
separating	the	“tokens”	or	words	in	your	sketch.	Thus	the	following	example	will	compile
without	a	problem:

	
This	will	work,	but	good	luck	trying	to	read	it.

Where	assignments	are	made,	some	people	will	write	the	following:

	
But	others	will	write	the	following:

	
Which	 of	 these	 two	 styles	 you	 use	 really	 does	 not	 matter,	 but	 it	 is	 a	 good	 idea	 to	 be
consistent.	I	use	the	first	form.

Comments

Comments	are	 text	 that	 is	kept	 in	your	sketch	along	with	all	 the	 real	program	code,	but
which	 actually	 performs	 no	 programming	 function	 whatsoever.	 The	 sole	 purpose	 of
comments	 is	 to	be	a	 reminder	 to	you	or	others	as	 to	why	 the	code	 is	written	as	 it	 is.	A
comment	line	may	also	be	used	to	present	a	title.

The	compiler	will	completely	 ignore	any	text	 that	 is	marked	as	being	a	comment.	We
have	included	comments	as	titles	at	the	top	of	many	of	the	sketches	in	the	book	so	far.

There	are	two	forms	of	syntax	for	comments:

•	The	single	line	comment	that	starts	with	//	and	finishes	at	the	end	of	the	line

•	The	multiline	comment	that	starts	with	a	/*	and	ends	with	a	*/

The	following	is	an	example	using	both	forms	of	comments:

	
In	this	book,	I	mostly	stick	to	the	single-line	comment	format.

Good	comments	help	explain	what	 is	happening	in	a	sketch	or	how	to	use	the	sketch.
They	are	useful	if	others	are	going	to	use	your	sketch,	but	equally	useful	to	yourself	when
you	are	looking	at	a	sketch	that	you	have	not	worked	on	for	a	few	weeks.

Some	people	are	told	in	programming	courses	that	the	more	comments,	the	better.	Most
seasoned	programmers	will	tell	you	that	well-written	code	requires	very	little	in	the	way
of	comments	because	 it	 is	 self-explanatory.	You	should	use	comments	 for	 the	 following
reasons:

•	To	explain	anything	you	have	done	that	is	a	little	tricky	or	not	immediately	obvious

•	 To	 describe	 anything	 that	 the	 user	 needs	 to	 do	 that	 is	 not	 part	 of	 the	 program;	 for
example,	//	this	pin	should	be	connected	to	the	transistor	controlling	the	relay

•	To	leave	yourself	notes;	for	example,	//	todo:	tidy	this	-	it’s	a	mess

This	last	point	illustrates	a	useful	technique	of	todos	in	comments.	Programmers	often
put	todos	in	their	code	to	remind	themselves	of	something	they	need	to	do	later.	They	can
always	use	the	search	facility	in	their	 integrated	development	environment	(IDE)	to	find
all	occurrences	of	//	todo	in	their	program.

The	following	are	not	good	examples	of	reasons	you	should	use	comments:

•	To	state	the	blatantly	obvious;	for	example,	a	=	a	+	1;	//	add	1	to	a.

•	 To	 explain	 badly	written	 code.	 Don’t	 comment	 on	 it;	 just	 write	 it	 clearly	 in	 the	 first
place.

Conclusion

	
This	has	been	a	bit	 of	 a	 theoretical	 chapter.	You	have	had	 to	 absorb	 some	new	abstract

concepts	 concerned	with	 organizing	 our	 sketches	 into	 functions	 and	 adopting	 a	 style	 of
programming	that	will	save	you	time	in	the	long	run.

In	the	next	chapter,	you	can	start	to	apply	some	of	what	you	have	learned	and	look	at
better	ways	of	structuring	your	data	and	using	text	strings.

5
Arrays	and	Strings

	
After	reading	Chapter	4,	you	have	a	reasonable	appreciation	as	to	how	to	structure	your
sketches	to	make	your	life	easier.	If	there	is	one	thing	that	a	good	programmer	likes,	it’s	an
easy	life.	Now	our	attention	is	going	to	turn	to	the	data	that	you	use	in	your	sketches.

	
The	book	Algorithms	+	Data	Structures	=	Programs	by	Niklaus	Wirth	has	been	around

for	a	good	while	now,	but	still	manages	to	capture	the	essences	of	computer	science	and
programming	in	particular.	I	can	strongly	recommend	it	 to	anyone	who	finds	themselves
bitten	by	the	programming	bug.	It	also	captures	the	idea	that	to	write	a	good	program,	you
need	to	think	about	both	the	algorithm	(what	you	do)	and	the	structure	of	the	data	you	use.

You	have	 looked	 at	 loops,	 if	 statements,	 and	what	 is	 called	 the	 “algorithmic”	 side	 of
programming	an	Arduino;	you	are	now	going	to	turn	to	how	you	structure	your	data.

Arrays

	
Arrays	are	a	way	of	containing	a	list	of	values.	The	variables	that	you	have	met	so	far	have
contained	 only	 a	 single	 value,	 usually	 an	 int.	 By	 contrast,	 an	 array	 contains	 a	 list	 of
values,	and	you	can	access	any	one	of	those	values	by	its	position	in	the	list.

C,	in	common	with	the	majority	of	programming	languages,	begins	its	index	positions
at	0	rather	than	1.	This	means	that	the	first	element	is	actually	element	zero.

To	illustrate	 the	use	of	arrays,	we	could	create	an	example	application	 that	 repeatedly
flashes	“SOS”	in	Morse	code	using	the	Arduino	board’s	built-in	LED.

Morse	code	used	to	be	a	vital	method	of	communication	in	the	19th	and	20th	centuries.
Because	of	its	coding	of	letters	as	a	series	of	long	and	short	dots,	Morse	code	can	be	sent
over	telegraph	wires,	over	a	radio	link,	and	using	signaling	lights.	The	letters	“SOS”	(an
acronym	for	“save	our	souls”)	is	still	recognized	as	an	international	signal	of	distress.

The	 letter	 “S”	 is	 represented	 as	 three	 short	 flashes	 (dots)	 and	 the	 letter	 “O”	 by	 three
long	flashes	(dashes).	You	are	going	to	use	an	array	of	 ints	 to	hold	the	duration	of	each
flash	that	you	are	going	to	make.	You	can	then	use	a	for	loop	to	step	through	each	of	the
items	in	the	array,	making	a	flash	of	the	appropriate	duration.

First	 let’s	have	 a	 look	at	 how	you	are	going	 to	 create	 an	 array	of	 ints	 containing	 the
durations.

	
You	indicate	that	a	variable	contains	an	array	by	placing	[]	after	the	variable	name.

In	this	case,	you	are	going	to	set	the	values	for	the	durations	at	the	time	that	you	create
the	array.	The	syntax	for	doing	this	is	to	use	curly	braces	and	then	values	each	separated
by	commas.	Don’t	forget	the	semicolon	on	the	end	of	the	line.

You	can	access	any	given	element	of	the	array	using	the	square	bracket	notation.	So,	if
you	want	to	get	the	first	element	of	the	array,	you	can	write	the	following:

	
To	 illustrate	 this,	 let’s	 create	 an	 array	 and	 then	 print	 out	 all	 its	 values	 to	 the	 Serial

Monitor:

	

	
Upload	the	sketch	to	your	board	and	then	open	the	Serial	Monitor.	If	all	is	well,	you	will

see	something	like	Figure	5-1.

This	 is	 quite	 neat,	 because	 if	 you	wanted	 to	 add	more	 durations	 to	 the	 array,	 all	 you
would	need	to	do	is	add	them	to	the	list	inside	the	curly	braces	and	change	“9”	in	the	for
loop	to	the	new	size	of	the	array.

	
Figure	5-1	The	Serial	Monitor	Showing	the	Output	of	Sketch	5-01

	
You	have	 to	be	a	 little	careful	with	arrays,	because	 the	compiler	will	not	 try	and	stop

you	from	accessing	elements	of	data	that	are	beyond	the	end	of	the	array.	This	is	because
the	array	is	really	a	pointer	to	an	address	in	memory,	as	shown	in	Figure	5-2.

Programs	 keep	 their	 data,	 both	 ordinary	 variables	 and	 arrays,	 in	memory.	 Computer
memory	 is	arranged	much	more	 rigidly	 than	 the	human	kind	of	memory.	 It	 is	easiest	 to
think	of	 the	memory	 in	an	Arduino	as	a	collection	of	pigeonholes.	When	you	define	an
array	of	nine	elements,	for	example,	the	next	available	nine	pigeonholes	are	reserved	for
its	use	and	the	variable	is	said	to	point	at	the	first	pigeonhole	or	element	of	the	array.

Going	back	to	our	point	about	access	being	allowed	beyond	the	bounds	of	your	array,	if
you	decided	to	access	durations[10],	then	you	would	still	Memory	get	back	an	int,	but	the
value	 of	 this	 int	 could	 be	 anything.	 This	 is	 in	 itself	 fairly	 harmless,	 except	 that	 if	 you
accidentally	get	a	value	outside	of	the	array,	you	are	likely	to	get	confusing	results	in	your
sketch.

	
Figure	5-2	Arrays	and	Pointers

	
However,	what	 is	 far	worse	 is	 if	 you	 try	 changing	 a	 value	 outside	 of	 the	 size	 of	 the

array.	For	instance,	if	you	were	to	include	something	like	the	following	in	your	program,
the	results	could	simply	make	your	sketch	break:

	
The	pigeonhole	durations[10]	may	be	in	use	as	some	completely	different	variable.	So

always	make	sure	that	you	do	not	go	outside	of	the	size	of	the	array.	If	your	sketch	starts
behaving	strangely,	then	check	for	this	kind	of	problem.

Morse	Code	SOS	Using	Arrays

Sketch	5-02	shows	how	you	can	use	an	array	to	make	your	emergency	signal	of	SOS:

	
An	obvious	advantage	of	this	approach	is	that	it	is	very	easy	to	change	the	message	by

simply	altering	the	durations	array.	In	sketch	5-05,	you	will	take	the	use	of	arrays	a	stage
further	to	make	a	more	general-purpose	Morse	code	flasher.

String	Arrays

	
In	the	programming	world,	the	word	string	has	nothing	to	do	with	long	thin	stuff	that	you
tie	knots	in.	A	string	is	a	sequence	of	characters.	It’s	the	way	you	can	get	your	Arduino	to
deal	with	 text.	For	example,	 the	sketch	5-03	will	 repeatedly	send	the	 text	“Hello”	 to	 the
Serial	Monitor	one	time	per	second:

	

String	Literals

String	literals	are	enclosed	in	double	quotation	marks.	They	are	literal	in	the	sense	that	the
string	is	a	constant,	rather	like	the	int	123.

As	you	would	expect,	you	can	put	strings	in	a	variable.	There	is	also	an	advanced	string
library,	but	for	now	you	will	use	standard	C	strings,	such	as	the	one	in	sketch	5-03.

In	C,	a	string	literal	is	actually	an	array	of	the	type	char.	The	type	char	is	a	bit	like	int
in	that	it	is	a	number,	but	that	number	is	between	0	and	127	and	represents	one	character.
The	character	may	be	a	letter	of	the	alphabet,	a	number,	a	punctuation	mark,	or	a	special
character	such	as	a	tab	or	a	line	feed.	These	number	codes	for	letters	use	a	standard	called
ASCII;	Some	of	the	most	commonly	used	ASCII	codes	are	shown	in	Table	5-1.

	
Table	5-1	Common	ASCII	Codes

	
The	string	literal	“Hello”	is	actually	an	array	of	characters,	as	shown	in	Figure	5-3.

Note	that	the	string	literal	has	a	special	null	character	at	the	end.	This	character	is	used
to	indicate	the	end	of	the	string.

String	Variables

As	you	would	expect,	string	variables	are	very	similar	to	array	variables,	except	that	there
is	a	useful	shorthand	method	for	defining	their	initial	value.

	
This	defines	an	array	of	characters	and	initializes	it	to	the	word	“Hello.”	It	will	also	add

a	final	null	value	(ASCII	0)	to	mark	the	end	of	the	string.

	
Figure	5-3	The	String	Literal	“Hello”

	
Although	the	preceding	example	is	most	consistent	with	what	you	know	about	writing

arrays,	it	would	be	more	common	to	write	the	following:

	
This	is	equivalent,	and	the	*	indicates	a	pointer.	The	idea	is	that	name	points	to	the	first

char	element	of	the	char	array.	That	is	the	memory	location	that	contains	the	letter	H.

You	can	rewrite	sketch	5-03	to	use	a	variable	as	well	as	a	string	constant,	as	follows:

	

A	Morse	Code	Translator

	
Let’s	put	together	what	you	have	learned	about	arrays	and	strings	to	build	a	more	complex
sketch	that	will	accept	any	message	from	the	Serial	Monitor	and	flash	it	out	on	the	built-in
LED.

The	letters	in	Morse	code	are	shown	in	Table	5-2.

Some	of	the	rules	of	Morse	code	are	that	a	dash	is	three	times	as	long	as	a	dot,	the	time
between	each	dash	or	dot	is	equal	to	the	duration	of	a	dot,	the	space	between	two	letters	is
the	same	length	as	a	dash,	and	the	space	between	two	words	is	the	same	duration	as	seven
dots.

For	 this	 project,	 we	 will	 not	 worry	 about	 punctuation,	 although	 it	 would	 be	 an
interesting	exercise	for	you	to	try	adding	this	to	the	sketch.	For	a	full	list	of	all	the	Morse
characters,	see	en.wikipedia.org/wiki/Morse_code.

http://www.en.wikipedia.org/wiki/Morse_code

	
Table	5-2	Morse	Code	Letters

	

Data

You	are	going	to	build	this	example	a	step	at	a	time,	starting	with	the	data	structure	that
you	are	going	to	use	to	represent	the	codes.

It	 is	 important	 to	 understand	 that	 there	 is	 no	 one	 solution	 to	 this	 problem.	Different
programmers	will	come	up	with	different	ways	to	solve	it.	So,	it	 is	a	mistake	to	think	to
yourself,	 “I	would	 never	 have	 come	 up	with	 that.”	Well,	 no,	 quite	 possibly	 you	would
come	up	with	something	different	and	better.	Everyone	thinks	in	different	ways,	and	this
solution	happens	to	be	the	one	that	first	popped	into	the	author’s	head.

Representing	the	data	is	all	about	finding	a	way	of	expressing	Table	5-2	in	C.	In	fact,
you	are	going	to	split	the	data	into	two	tables:	one	for	the	letters,	and	one	for	the	numbers.
The	data	structure	for	the	letters	is	as	follows:

	
What	you	have	here	is	an	array	of	string	literals.	So,	because	a	string	literal	is	actually

an	 array	 of	 char,	what	 you	 actually	 have	 here	 is	 an	 array	 of	 arrays—something	 that	 is
perfectly	legal	and	really	quite	useful.

This	means	that	to	find	Morse	for	A,	you	would	access	letters[0],	which	would	give	you
the	string	 .-.	This	 approach	 is	not	 terribly	efficient,	because	you	are	using	a	whole	byte

(eight	bits)	of	memory	to	represent	a	dash	or	a	dot,	which	could	be	represented	in	a	bit.
However,	you	can	easily	justify	this	approach	by	saying	that	the	total	number	of	bytes	is
still	only	about	90	and	we	do	have	2K	to	play	with.	Equally	importantly,	it	makes	the	code
easy	to	understand.

Numbers	use	the	same	approach:

	

Globals	and	Setup

You	need	to	define	a	couple	of	global	variables:	one	for	the	delay	period	for	a	dot,	and	one
to	define	which	pin	the	LED	is	attached	to:

	
The	setup	function	is	pretty	simple;	you	just	need	to	set	the	ledPin	as	an	output	and	set

up	the	serial	port:

	

The	loop	function

You	are	now	going	to	start	on	the	real	processing	work	in	the	loop	function.	The	algorithm
for	this	function	is	as	follows:

•	If	there	is	a	character	to	read	from	USB:

•	If	it’s	a	letter,	flash	it	using	the	letters	array

•	If	it’s	a	number,	flash	it	using	the	numbers	array

•	If	it’s	a	space,	flash	four	times	the	dot	delay

That’s	all.	You	should	not	think	too	far	ahead.	This	algorithm	represents	what	you	want
to	do,	or	what	your	intention	is,	and	this	style	of	programming	is	called	programming	by
intention.

If	you	write	this	algorithm	in	C,	it	will	look	like	this:

	
There	are	a	 few	things	here	 that	need	explaining.	First,	 there	 is	Serial.available().	To

understand	this,	you	first	need	to	know	a	little	about	how	an	Arduino	communicates	with
your	computer	over	USB.	Figure	5-4	summarizes	this	process.

In	 the	 situation	 where	 the	 computer	 is	 sending	 data	 from	 the	 Serial	 Monitor	 to	 the
Arduino	 board,	 then	 the	USB	 is	 converted	 from	 the	USB	 signal	 levels	 and	 protocol	 to
something	that	the	microcontroller	on	the	Arduino	board	can	use.	This	conversion	happens
in	a	special-purpose	chip	on	the	Arduino	board.	The	data	is	then	received	by	a	part	of	the
microcontroller	 called	 the	 Universal	 Asynchronous	 Receiver/Transmitter	 (UART).	 The
UART	places	the	data	it	receives	into	a	buffer.	The	buffer	is	a	special	area	of	memory	(128
bytes)	that	can	hold	data	that	is	removed	as	soon	as	it	is	read.

	
Figure	5-4	Serial	communication	with	an	Arduino

	
This	communication	happens	regardless	of	what	your	sketch	is	doing.	So,	even	though

you	may	be	merrily	flashing	LEDs,	data	will	still	arrive	in	the	buffer	and	sit	there	until	you
are	ready	to	read	it.	You	can	think	of	the	buffer	as	being	a	bit	like	an	e-mail	inbox.

The	 way	 that	 you	 check	 to	 see	 whether	 you	 “have	 mail”	 is	 to	 use	 the	 function
Serial.available().	This	function	returns	the	number	of	bytes	of	data	in	the	buffer	that	are
waiting	 for	 you	 to	 read.	 If	 there	 are	 no	messages	waiting	 to	 be	 read,	 then	 the	 function
returns	0.	This	 is	why	the	 if	 statement	checks	 to	see	 that	 there	are	more	 than	zero	bytes
available	 to	 read,	and	 if	 they	are,	 then	 the	 first	 thing	 that	 the	 statement	does	 is	 read	 the
next	available	char,	 using	 the	 function	Serial.read().	This	 function	gets	 assigned	 to	 the
local	variable	ch.

Next	is	another	if	to	decide	what	kind	of	thing	it	is	that	you	want	to	flash:

	
At	first,	this	might	seem	a	bit	strange.	You	are	using	<=	and	>=	to	compare	characters.

You	 can	 do	 that	 because	 each	 character	 is	 actually	 represented	 by	 a	 number	 (its	ASCII
code).	So,	if	the	code	for	the	character	is	somewhere	between	a	and	z	(97	and	122),	then
you	know	that	 the	character	 that	has	come	from	the	computer	 is	a	 lowercase	 letter.	You
then	call	a	function	that	you	have	not	written	yet	called	flashSequence,	to	which	you	will
pass	 a	 string	 of	 dots	 and	 dashes;	 for	 example,	 to	 flash	 a,	 you	 would	 pass	 it	 .-	 as	 its
argument.

You	are	devolving	responsibility	to	this	function	for	actually	doing	the	flashing.	You	are
not	trying	to	do	it	inside	the	loop.	This	lets	us	keep	the	code	easy	to	read.

Here	is	the	C	that	determines	the	string	of	dashes	and	dots	that	you	need	to	send	to	the
flashSequence	function:

	
Once	 again,	 this	 looks	 a	 little	 strange.	 The	 function	 appears	 to	 be	 subtracting	 one

character	 from	 another.	 This	 is	 actually	 a	 perfectly	 reasonable	 thing	 to	 do,	 because	 the
function	is	actually	subtracting	the	ASCII	values.

Remember	that	you	are	storing	the	codes	for	the	letters	in	an	array.	So	the	first	element
of	 the	 array	 contains	 a	 string	 of	 dashes	 and	 dots	 for	 the	 letter	 A,	 the	 second	 element
includes	the	dots	and	dashes	for	B,	and	so	on.	So	you	need	to	find	the	right	position	in	the
array	 for	 the	 letter	 that	 you	 have	 just	 fetched	 from	 the	 buffer.	 The	 position	 for	 any
lowercase	letter	will	be	the	character	code	for	the	letter	minus	the	character	code	for	a.	So,
for	example,	a	–	a	is	actually	97	–	97	=	0.	Similarly,	c	–	a	is	actually	99	–	97	=	2.	So,	in

the	following	statement,	if	ch	is	the	letter	c,	then	the	bit	inside	the	square	brackets	would
evaluate	to	2,	and	you	would	get	element	2	from	the	array,	which	is	-.-:

What	this	section	has	just	described	is	concerned	with	lowercase	letters.	You	also	have
to	deal	with	uppercase	letters	and	numbers.	These	are	both	handled	in	a	similar	manner.

The	flashSequence	Function

We	have	assumed	a	function	called	flashSequence	and	made	use	of	it,	but	now	you	need
to	write	it.	We	have	planned	for	it	to	take	a	string	containing	a	series	of	dashes	and	dots
and	to	make	the	necessary	flashes	with	the	correct	timings.

Thinking	about	the	algorithm	for	doing	this,	you	can	break	it	into	the	following	steps:

•	For	each	element	of	the	string	of	dashes	and	dots	(such	as	.-.-)

•	 flash	 that	 dot	 or	 dash	Using	 the	 concept	 of	 programming	 by	 intention,	 let’s	 keep	 the
function	as	simple	as	that.

The	Morse	codes	are	not	the	same	length	for	all	letters,	so	you	need	to	loop	around	the
string	until	you	encounter	the	end	marker,	\0.	You	also	need	a	counter	variable	called	i	that
starts	at	0	and	is	incremented	as	the	processing	looks	at	each	dot	and	dash:

	
Again,	you	delegate	the	actual	job	of	flashing	an	individual	dot	or	dash	to	a	new	method

called	 flashDotOrDash,	 which	 actually	 turns	 the	 LED	 on	 and	 off.	 Finally,	 when	 the
program	has	flashed	the	dots	and	dashes,	it	needs	to	pause	for	three	dots	worth	of	delay.
Note	the	helpful	use	of	a	comment.

The	flashDotOrDash	Function

The	 last	 function	 in	 your	 chain	 of	 functions	 is	 the	 one	 that	 actually	 does	 the	 work	 of
turning	 the	LED	on	and	off.	As	 its	 argument,	 the	 function	has	a	 single	character	 that	 is
either	a	dot	(.)	or	a	dash	(–).

All	the	function	needs	to	do	is	turn	the	LED	on	and	delay	for	the	duration	of	a	dot	if	it’s
a	 dot	 and	 three	 times	 the	 duration	 of	 a	 dot	 if	 it’s	 a	 dash,	 then	 turn	 the	 LED	 off	 again.
Finally	it	needs	to	delay	for	the	period	of	a	dot,	to	give	the	gap	between	flashes.

	

Putting	It	All	Together

Putting	all	this	together,	the	full	listing	is	shown	in	sketch	5-05.	Upload	it	to	your	Arduino
board	and	try	it	out.	Remember	that	to	use	it,	you	need	to	open	the	Serial	Monitor	and	type
some	 text	 into	 the	 area	 at	 the	 top	 and	 click	 Send.	 You	 should	 then	 see	 that	 text	 being
flashed	as	Morse	code.

	

	

	
This	sketch	includes	a	loop	function	that	is	called	automatically	and	repeatedly	calls	a

flashSequence	 function	 that	 you	 wrote,	 which	 itself	 repeatedly	 calls	 a	 flashDotOrDash
function	that	you	wrote,	which	calls	digitalWrite	and	delay	functions	that	are	provided	by
Arduino!

This	is	how	your	sketches	should	look.	Breaking	things	up	into	functions	makes	it	much
easier	to	get	your	code	working	and	makes	it	easier	when	you	return	to	it	after	a	period	of
not	using	it.

Conclusion

	
In	addition	to	looking	at	strings	and	arrays	in	this	chapter,	you	have	also	built	 this	more
complex	Morse	translator	that	I	hope	will	also	reinforce	the	importance	of	building	your
code	with	functions.

In	 the	 next	 chapter,	 you	 learn	 about	 input	 and	 output,	 by	which	we	mean	 input	 and
output	of	analog	and	digital	signals	from	the	Arduino.

6
Input	and	Output

	
The	Arduino	 is	 about	 physical	 computing,	 and	 that	means	 attaching	 electronics	 to	 the
Arduino	 board.	 So	 you	 need	 to	 understand	 how	 to	 use	 the	 various	 options	 for	 your
connection	pins.

	
Outputs	 can	 be	 digital,	which	 just	means	 switched	 between	 being	 at	 0V	 or	 at	 5V,	 or

analog,	which	allows	you	to	set	the	voltage	to	any	voltage	between	0V	and	5V—although
it’s	not	quite	as	simple	as	that,	as	we	shall	see.

Likewise,	 inputs	 can	 either	 be	 digital	 (for	 example,	 determining	 whether	 a	 button
pressed	or	not)	or	analog	(such	as	from	a	light	sensor).

In	a	book	that	is	essentially	about	software	rather	than	hardware,	we	are	going	to	try	and
avoid	being	dragged	into	too	much	discussion	of	electronics.	However,	it	will	help	you	to
understand	what	is	happening	in	this	chapter	if	you	can	find	yourself	a	multimeter	and	a
short	length	of	solid	core	wire.

Digital	Outputs

	
In	 earlier	 chapters,	 you	 have	 made	 use	 of	 the	 LED	 attached	 to	 digital	 pin	 13	 of	 the
Arduino	 board.	 For	 example,	 in	 Chapter	 5,	 you	 used	 it	 as	 a	Morse	 code	 signaler.	 The
Arduino	board	has	a	whole	load	of	digital	pins	available.

Let’s	experiment	with	one	of	the	other	pins	on	the	Arduino.	You	will	use	digital	pin	4,
and	to	see	what	is	going	on,	you	will	fix	some	wire	to	your	multimeter	leads	and	attach
them	to	your	Arduino.	Figure	6-1	shows	the	arrangement.	If	your	multimeter	has	crocodile
clips,	strip	the	insulation	off	the	ends	of	some	short	lengths	of	solid	core	wire	and	attach
the	clip	to	one	end,	fitting	the	other	end	into	the	Arduino	socket.	If	your	multimeter	does
not	have	crocodile	clips	then	wrap	one	of	the	stripped	wire	ends	around	the	probe.

	
Figure	6-1	Measuring	outputs	with	a	multimeter

	
The	multimeter	 needs	 to	 be	 set	 to	 its	 0–20V	direct	 current	 (DC)	 range.	The	 negative

lead	 (black)	 should	be	 connected	 to	 the	ground	 (GND)	pin	 and	 the	positive	 to	D4.	The
wire	is	just	connected	to	the	probe	lead	and	poked	into	the	socket	headers	on	the	Arduino
board.

Load	sketch	6-01:

	
At	 the	 top	 of	 the	 sketch,	 you	 can	 see	 the	 command	 pinMode.	 You	 should	 use	 this

command	for	every	pin	that	you	are	using	in	a	project	so	that	Arduino	can	configure	the
electronics	 connected	 to	 that	 pin	 to	 be	 either	 an	 input	 or	 an	 output,	 as	 in	 the	 following
example:

	
As	you	might	have	guessed,	pinMode	is	a	built-in	function.	Its	first	argument	is	the	pin

number	in	question	(an	int),	and	the	second	argument	is	the	mode,	which	must	be	either
INPUT	or	OUTPUT.	Note	that	the	mode	name	must	be	all	uppercase.

This	loop	waits	for	a	command	of	either	1	or	0	to	come	from	the	Serial	Monitor	on	your
computer.	It	it’s	a	1,	then	pin	4	will	be	turned	on;	otherwise,	it	will	be	turned	off.

Upload	the	sketch	to	your	Arduino	and	then	open	the	Serial	Monitor	(shown	in	Figure
6-2).

So,	with	the	multimeter	turned	on	and	plugged	into	the	Arduino,	you	should	be	able	to
see	its	reading	change	between	0V	and	about	5V	as	you	send	commands	to	the	board	from
the	Serial	Monitor	by	either	pressing	1	and	then	Return	or	pressing	0	and	 then	Return.
Figure	6-3	shows	the	multimeter	reading	after	a	1	has	been	sent	from	the	Serial	Monitor.

If	there	are	not	enough	pins	labeled	“D”	for	your	project,	you	can	actually	use	the	pins
labeled	“A”	(for	analog)	as	digital	outputs	too.	To	do	this,	you	just	have	to	add	14	to	the

analog	pin	number.	You	could	try	this	out	by	modifying	the	first	line	in	sketch	6-01	to	use
pin	14	and	moving	your	positive	multimeter	lead	to	pin	A0	on	the	Arduino.

That	is	really	all	there	is	to	digital	outputs,	so	let’s	move	on	swiftly	to	digital	inputs.

	
Figure	6-2	The	Serial	Monitor

	

	

Figure	6-3	Setting	the	output	to	High

	

Digital	Inputs

	
The	most	 common	 use	 of	 digital	 inputs	 is	 to	 detect	when	 a	 switch	 has	 been	 closed.	A
digital	input	can	either	be	on	or	off.	If	the	voltage	at	the	input	is	less	than	2.5V	(halfway	to
5V),	it	will	be	0	(off),	and	if	it	is	above	2.5V,	it	will	be	1	(on).

Disconnect	your	multimeter	and	upload	the	sketch	6-02	onto	your	Arduino	board:

	
As	with	using	an	output,	you	need	to	tell	the	Arduino	in	the	setup	function	that	you	are

going	to	use	a	pin	as	an	input.	You	get	the	value	of	a	digital	input	using	the	digitalRead
function.	This	returns	0	or	1.

Pull-up	Resistors

The	sketch	reads	the	input	pin	and	writes	its	value	to	the	Serial	Monitor	once	per	second.
So	upload	the	sketch	and	open	the	Serial	Monitor.	You	should	see	a	value	appear	once	per
second.	Push	one	end	of	your	bit	of	wire	into	the	socket	for	D5	and	pinch	the	end	of	the
wire	between	your	finger,	as	shown	in	Figure	6-4.

Continue	pinching	for	a	few	seconds	and	watch	the	text	appear	on	the	Serial	Monitor.
You	should	see	a	mixture	of	ones	and	zeros	appear	in	the	Serial	Monitor.	The	reason	for
this	is	that	the	inputs	to	the	Arduino	board	are	very	sensitive.	You	are	acting	as	an	antenna,
picking	up	electrical	interference.

Take	the	end	of	the	wire	that	you	were	holding	and	push	it	into	the	socket	for	+5V	as
shown	in	Figure	6-5.	The	stream	of	text	in	the	Serial	Monitor	should	change	to	ones.

	
Figure	6-4	A	digital	input	with	a	human	antenna

	

	
Figure	6-5	Pin	5	connected	to	+5V

	

Now	take	the	end	that	was	in	+5V	and	put	it	into	one	of	the	GND	connections	on	the
Arduino.	As	you	would	expect,	the	Serial	Monitor	should	now	display	zeros.

A	typical	use	 for	an	 input	pin	 is	 to	connect	a	switch	 to	 it.	Figure	6-6	shows	how	you
might	be	expecting	to	connect	your	switch.

The	 problem	 with	 this	 is	 that	 if	 the	 switch	 is	 not	 closed,	 then	 the	 input	 pin	 is	 not
connected	to	anything.	It	is	said	to	be	floating,	and	could	easily	give	you	a	false	reading.
You	need	your	input	to	be	more	predictable,	and	the	way	to	do	this	is	with	what	is	called	a
pull-up	resistor.	Figure	6-7	shows	 the	standard	use	of	a	pull-up	resistor.	 It	has	 the	effect
that	 if	 the	 switch	 is	 open,	 then	 the	 resistor	pulls	 up	 the	 floating	 input	 to	5V.	When	you
press	 the	 switch	 and	 close	 the	 contact,	 the	 switch	 overrides	 the	 effect	 of	 the	 resistor,
forcing	the	input	to	0V.	One	side-effect	of	 this	 is,	while	the	switch	is	closed,	5V	will	be
across	the	resistor,	causing	a	current	to	flow.	So,	the	value	of	the	resistor	is	selected	to	be
low	enough	to	make	it	immune	from	any	electrical	interference,	but	at	the	same	time	high
enough	to	prevent	excessive	current	drain	when	the	switch	is	closed.

	
Figure	6-6	Connecting	a	switch	to	an	Arduino	board

	

	
Figure	6-7	Switch	with	a	pull-up	resistor

	

Internal	Pull-up	Resistors

Fortunately,	 the	Arduino	board	has	 software-configurable	pull-up	 resistors	built	 into	 the
digital	pins.	By	default,	 they	are	 turned	off.	So	all	you	need	 to	do	 to	enable	 the	pull-up
resistor	on	pin	5	for	sketch	6-02	is	to	add	the	following	line:

	
This	 line	goes	 in	 the	setup	 function	 right	after	you	define	 the	pin	as	an	 input.	 It	may

seem	a	little	strange	to	do	a	digitalWrite	to	an	input,	but	this	is	just	the	way	it	works.

Sketch	 6-03	 is	 the	modified	 version.	Upload	 it	 to	 your	Arduino	 board	 and	 test	 it	 by
acting	like	an	antenna	again.	You	should	find	that	this	time	the	input	stays	at	1	in	the	Serial
Monitor.

	

Debouncing

When	you	press	a	pushbutton,	you	would	expect	that	you	would	just	get	a	single	change
from	1	(with	a	pull-up	resistor)	to	0	as	the	button	is	depressed.	Figure	6-8	shows	what	can
happen	when	 you	 press	 a	 button.	 The	metal	 contacts	 in	 the	 button	 bounce.	 So	 a	 single
button	press	becomes	a	series	of	presses	that	eventually	stabilize.

All	this	happens	very	quickly;	the	total	time	span	of	the	button	press	on	the	oscilloscope
trace	is	only	200	milliseconds.	This	is	a	very	“ropey”	old	switch.	A	new	tactile,	click-type
button	may	not	even	bounce	at	all.

Sometimes	bouncing	does	not	matter	at	all.	For	instance,	sketch	6-04	will	light	the	LED
while	 the	button	 is	pressed.	 In	 reality,	you	would	not	use	an	Arduino	 to	do	 this;	we	are
firmly	in	the	realms	of	theory	rather	than	practice	here.

	
Figure	6-8	Oscilloscope	trace	of	a	button	press

	

	
Looking	 at	 the	 loop	 function	 of	 sketch	 6-04,	 the	 function	 reads	 the	 digital	 input	 and

assigns	its	value	to	a	variable	switchOpen.	This	is	a	0	if	the	button	is	pressed	and	a	1	if	it
isn’t	(remember	that	the	pin	is	pulled	up	to	1	when	the	button	is	not	pressed).

When	you	program	digitalWrite	 to	 turn	 the	LED	on	or	 off,	 you	need	 to	 reverse	 this
value.	You	do	this	using	the	!	or	not	operator.

If	you	upload	this	sketch	and	connect	your	wire	between	D5	and	GND	(see	Figure	6-9),
you	should	see	the	LED	light.	Bouncing	may	be	going	on	here,	but	it	is	probably	too	fast
for	you	to	see	and	does	not	matter.

One	 situation	 where	 key	 bouncing	 would	matter	 is	 if	 you	 were	making	 your	 switch
toggle	the	LED	on	and	off.	That	is,	if	you	press	the	button,	the	LED	comes	on	and	stays
on,	and	when	you	press	 the	button	again,	 it	 turns	off.	 If	you	had	a	button	 that	bounced,
then	whether	the	LED	was	on	or	off	would	just	depend	on	whether	you	had	an	odd	or	even
number	of	bounces.

Sketch	6-05	just	toggles	the	LED	without	any	attempt	at	“debouncing.”	Try	it	out	using
your	wire	as	a	switch	between	pin	D5	and	GND:

	
You	will	probably	find	that	sometimes	the	LED	toggles,	but	other	times	it	appears	not	to

toggle.	This	is	bouncing	in	action!

A	simple	way	to	tackle	this	problem	is	simply	to	add	a	delay	after	you	detect	the	first
button	press,	as	shown	in	sketch	6-06:

	

	
Figure	6-9	Using	a	wire	as	a	switch

	
By	putting	a	delay	here,	nothing	else	can	happen	for	500	milliseconds,	by	which	time

any	bouncing	will	have	subsided.	You	should	find	that	this	makes	the	toggling	much	more
reliable.	An	interesting	side-effect	is	that	if	you	hold	the	button	down,	the	LED	just	keeps
flashing.

If	that	is	all	there	is	to	the	sketch,	then	this	delay	is	not	a	problem.	However,	if	you	do
more	in	the	loop,	then	using	a	delay	can	be	a	problem;	for	example,	the	program	would	be
unable	to	detect	the	press	of	any	other	button	during	that	500	milliseconds.

So,	 this	 approach	 is	 sometimes	 not	 good	 enough	 and	 you	will	 need	 to	 be	 a	 bit	more
sophisticated.	You	can	write	your	own	advanced	debouncing	code	by	hand,	but	doing	so
gets	complicated	and	fortunately	some	fine	folks	have	done	all	the	work	for	you.

	
Figure	6-10	Adding	the	Bounce	library	in	Windows

	
After	downloading	the	file,	unzip	it	and	place	the	unzipped	folder,	called	Bounce,	into

the	libraries	subfolder	in	the	folder	where	all	your	sketches	are	saved.	On	Windows,	this
folder	 is	My	Documents\Arduino,	 and	 on	Mac	 and	 Linux,	 it	 is	 Documents/Arduino.	 If
there	 is	 no	 libraries	 subfolder,	 then	 you	will	 need	 to	 create	 one.	 Figure	6-10	 shows	 the
folder	structure	in	Windows	after	a	library	has	been	added.

After	adding	the	library,	you	need	to	restart	the	Arduino	application	for	the	changes	to
take	effect.	Once	you	do	so,	you	can	use	the	Bounce	library	in	any	sketches	that	you	write.

Sketch	6-07	shows	how	you	can	use	the	Bounce	library.	Upload	it	to	your	board	and	see
how	reliable	the	LED	toggling	has	become.

	
Using	 the	 library	 is	 pretty	 straightforward.	The	 first	 thing	 that	 you	will	 notice	 is	 this

line:

	
This	is	necessary	to	tell	the	compiler	to	use	the	Bounce	library.

You	then	have	the	following	line:

	
Do	not	worry	about	the	syntax	of	this	line	at	the	moment;	it	is	actually	C++	rather	than	C
syntax,	and	you	will	not	be	meeting	C++	until	Chapter	11.	For	now,	you	will	just	have	to
be	 content	 to	 know	 that	 this	 sets	 up	 a	 bouncer	 object	 for	 the	 pin	 specified,	 with	 a
debounce	period	of	5	milliseconds.

From	now	on,	you	use	that	bouncer	object	to	find	out	what	the	key	is	doing	rather	than
reading	 the	 digital	 input	 directly.	 It	 has	 put	 a	 kind	 of	 debouncing	wrapper	 around	 your
input	pin.	So,	deciding	whether	a	button	has	been	pressed	is	wrapped	up	in	this	line:

	
The	function	update	returns	true	if	something	has	changed	with	the	bouncer	object	and
the	second	part	of	the	condition	checks	whether	the	button	went	LOW.

Analog	Outputs

	
A	few	of	the	digital	pins—namely	digital	pins	3,	5,	6,	9,	10,	and	11—can	provide	variable
output	other	than	just	5V	or	nothing.	These	are	the	pins	on	the	board	with	a	~	or	“PWM”
next	 to	 them.	 PWM	 stands	 for	 Pulse	Width	Modulation,	 which	 refers	 to	 the	 means	 of
controlling	the	amount	of	power	at	the	output.	It	does	so	by	rapidly	turning	the	output	on
and	off.

The	 pulses	 are	 always	 delivered	 at	 the	 same	 rate	 (roughly	 500	 per	 second),	 but	 the
length	 of	 the	 pulses	 is	 varied.	 If	 you	were	 to	 use	 PWM	 to	 control	 the	 brightness	 of	 an
LED,	 then	 if	 the	pulse	were	 long,	your	LED	would	be	on	all	 the	 time.	 If,	 however,	 the
pulses	 are	 short,	 then	 the	LED	 is	 actually	 lit	 only	 for	 a	 small	 portion	 of	 the	 time.	This
happens	too	fast	for	the	observer	even	to	tell	that	the	LED	is	flickering,	and	it	just	appears
that	the	LED	is	lighter	or	dimmer.

Before	 you	 try	 using	 an	 LED,	 you	 can	 test	 this	 out	 with	 your	 multimeter.	 Set	 the
multimeter	up	to	measure	the	voltage	between	GND	and	pin	D3	(see	Figure	6-11).

Now	upload	sketch	6-08	to	your	board	and	open	the	Serial	Monitor	(see	Figure	6-12).
Enter	 the	single	digit	3	and	press	Return.	You	should	see	your	volt	meter	 register	about
3V.	You	can	then	try	any	other	number	between	0	and	5.

	

	
Figure	6-11	Measuring	the	analog	output

	

	
Figure	6-12	Setting	the	voltage	at	an	analog	output

	
The	program	determines	the	value	of	PWM	output	between	0	and	255	by	multiplying

the	desired	voltage	 (0	 to	5)	by	51.	 (Readers	may	wish	 to	 refer	 to	Wikipedia	 for	a	 fuller
description	of	PWM.)

You	can	set	the	value	of	the	output	by	using	the	function	analogWrite,	which	requires
an	output	value	between	0	and	255,	where	0	is	off	and	255	is	full	power.	This	is	actually	a
great	way	to	control	the	brightness	of	an	LED.	If	you	were	to	try	to	control	the	brightness
by	varying	the	voltage	across	 the	LED,	you	would	find	that	nothing	would	happen	until
you	got	to	about	2V;	then	the	LED	would	very	quickly	get	quite	bright.	By	controlling	the
brightness	using	PWM	and	varying	the	average	amount	of	 time	that	 the	LED	is	on,	you
achieve	much	more	linear	control	of	the	brightness.

Analog	Input

	
Digital	inputs	just	give	you	an	on/off	answer	as	to	what	is	happening	at	a	particular	pin	on
the	 Arduino	 board.	 Analog	 inputs,	 however,	 give	 you	 a	 value	 between	 0	 and	 1023
depending	on	the	voltage	at	the	analog	input	pin.

The	 program	 reads	 the	 analog	 input	 using	 the	 analogRead	 function.	 Sketch	 6-09
displays	 the	reading	and	actual	voltage	at	 the	analog	pin	A0	in	 the	Serial	Monitor	every
half	second,	so	open	the	Serial	Monitor	and	watch	the	readings	appear.

	
When	you	run	this	sketch,	you	will	notice	that	the	readings	change	quite	a	bit.	As	with

the	digital	inputs,	this	is	because	the	input	is	floating.

Take	one	end	of	the	wire	and	put	it	into	a	GND	socket	so	that	A0	is	connected	to	GND.
Your	readings	should	now	stay	at	0.	Move	the	end	of	the	lead	that	was	in	GND	and	put	it
into	5V	and	you	should	get	a	reading	of	around	1023,	which	is	the	maximum	reading.	So,
if	 you	were	 to	 connect	A0	 to	 the	 3.3V	 socket	 on	 the	Arduino	 board,	 the	Arduino	 volt

meter	should	tell	you	that	you	have	about	3.3V.

Conclusion

	
This	concludes	our	chapter	on	the	basics	of	getting	signals	into	and	out	of	the	Arduino.	In
the	next	chapter,	we	will	 look	at	 some	of	 the	 features	provided	 in	 the	 standard	Arduino
library.

7
The	Standard	Arduino	Library

	
This	 library	 is	 where	 all	 the	 goodies	 live.	 You	 can	 only	 get	 so	 far	 with	 the	 core	 C
language;	what	you	really	need	 is	a	big	collection	of	 functions	 that	you	can	use	 in	your
sketches.

	
You	 have	 already	 met	 a	 fair	 few	 of	 these,	 such	 as	 pinMode,	 digitalWrite,	 and

analogWrite.	But	actually,	there	are	many	more.	There	are	functions	that	you	can	use	for
doing	math,	making	random	numbers,	manipulating	bits,	detecting	pulses	on	an	input	pin,
and	using	something	called	interrupts.

The	Arduino	language	is	based	on	an	earlier	library	called	Wiring	and	it	complements
another	library	called	Processing.	The	Processing	library	is	very	similar	to	Wiring,	but	it	is
based	on	the	Java	language	rather	than	C	and	is	used	on	your	computer	to	link	to	Android
over	USB.	 In	 fact,	 the	Arduino	 application	 that	 you	 run	 on	 your	 computer	 is	 based	 on
Processing.	If	you	find	yourself	wanting	to	write	some	fancy	interface	on	your	computer
to	talk	to	an	Arduino,	then	take	a	look	at	Processing	(www.processing.org).

Random	Numbers

	
Despite	 the	 experience	 of	 anyone	 using	 a	 PC,	 computers	 are	 in	 actual	 fact	 very
predictable.	 Occasionally	 it	 is	 useful	 to	 be	 able	 to	 deliberately	 make	 your	 Arduino
unpredictable.	For	example,	you	might	want	to	make	a	robot	take	a	“random”	path	around
a	room,	heading	for	a	random	amount	of	time	in	one	direction,	turning	a	random	number
of	 degrees,	 and	 then	 setting	 off	 again.	 Or,	 you	 might	 be	 contemplating	 making	 an
Arduino-based	die	that	gives	you	a	random	number	between	one	and	six.

The	 Arduino	 standard	 library	 provides	 you	 with	 a	 feature	 to	 do	 just	 this.	 It	 is	 the
function	 called	random.	random	 returns	 an	 int	 and	 it	 can	 take	 either	 one	 argument	 or
two.	If	it	just	takes	one	argument,	then	it	will	return	a	random	number	between	zero	and
the	argument	minus	one.

The	 two	 argument	 version	 produces	 a	 random	 number	 between	 the	 first	 argument
(inclusive)	and	the	second	argument	minus	one.	Thus	random(1,	10)	produces	a	random
number	between	one	and	nine.

Sketch	7-01	pumps	out	numbers	between	one	and	six	to	the	Serial	Monitor.

http://www.processing.org

	
If	 you	 upload	 this	 sketch	 to	 your	Arduino	 and	 open	 the	Serial	Monitor,	 you	will	 see

something	like	Figure	7-1.

If	you	run	this	a	few	times	you	will	probably	be	surprised	to	see	that,	every	time	you
run	the	sketch,	you	get	the	same	series	of	‘random’	numbers.

The	 output	 is	 not	 really	 random;	 the	 numbers	 are	 called	 pseudo-random	 numbers
because	 they	have	 a	 random	distribution.	That	 is,	 if	 you	 ran	 this	 sketch	 and	collected	 a
million	numbers,	you	would	get	pretty	much	the	same	number	of	ones,	twos,	threes,	and
so	on.	The	numbers	are	not	 random	in	 the	sense	of	being	unpredictable.	 In	 fact,	 it	 is	 so
against	the	workings	of	a	microcontroller	to	be	random	that	it	just	plain	can’t	do	it	without
some	intervention	from	the	real	world.

	
Figure	7-1	Random	numbers

	
You	can	provide	this	intervention	to	make	your	sequence	of	numbers	less	predictable	by

seeding	 the	random	number	generator.	This	basically	just	gives	it	a	starting	point	for	the
sequence.	 But,	 if	 you	 think	 about	 it,	 you	 cannot	 just	 use	 random	 to	 seed	 the	 random
number	 generator.	 A	 commonly	 used	 trick	 is	 to	 use	 the	 fact	 that	 (as	 discussed	 in	 the
previous	chapter)	an	analog	input	will	float.	So	you	can	use	the	value	read	from	an	analog
input	to	seed	the	random	number	generator.

The	function	that	does	this	is	called	randomSeed.	Sketch	7-02	shows	how	you	can	add

a	bit	more	randomness	to	your	random	number	generator.

	
Try	 pressing	 the	 Reset	 button	 a	 few	 times.	 You	 should	 now	 see	 that	 your	 random

sequence	is	different	every	time.

This	type	of	random	number	generation	could	not	be	used	for	any	kind	of	lottery.	For
much	 better	 random	 number	 generation,	 you	 would	 need	 hardware	 random	 number
generation,	which	is	sometimes	based	on	random	events,	such	as	cosmic	ray	events.

Math	Functions

	
On	rare	occasions,	you	will	need	to	do	a	lot	of	math	on	an	Arduino,	over	and	above	the
odd	 bit	 of	 arithmetic.	But,	 should	 you	 need	 to,	 there	 is	 a	 big	 library	 of	math	 functions
available	 to	 you.	 The	 most	 useful	 of	 these	 functions	 are	 summarized	 in	 the	 following
table:

	

Bit	Manipulation

	
A	 bit	 is	 a	 single	 digit	 of	 binary	 information,	 that	 is,	 either	 0	 or	 1.	 The	 word	 bit	 is	 a
contraction	of	binary	digit.	Most	of	the	time,	you	use	int	variables	that	actually	comprise
16	bits	This	is	a	bit	wasteful	if	you	only	need	to	store	a	simple	true/false	value	(1	or	0).
Actually,	unless	you	are	running	short	of	memory,	being	wasteful	is	less	of	a	problem	than
creating	difficult-to-understand	 code,	 but	 sometimes	 it	 is	 useful	 to	be	 able	 to	pack	your
data	tightly.

Each	bit	 in	the	 int	can	be	 thought	of	as	having	a	decimal	value,	and	you	can	find	the
decimal	value	of	the	int	by	adding	up	the	values	of	all	the	bits	that	are	a	1.	So	in	Figure	7-
2,	 the	decimal	value	of	 the	 int	would	be	38.	Actually,	 it	 gets	more	 complicated	 to	 deal
with	negative	numbers,	but	that	only	happens	when	the	leftmost	bit	becomes	a	1.

When	you	are	 thinking	about	 individual	bits,	 decimal	values	do	not	 really	work	very
well.	It	 is	very	difficult	 to	visualize	which	bits	are	set	in	a	decimal	number	such	as	123.
For	 that	 reason,	 programmers	 often	 use	 something	 called	 hexadecimal,	 or,	 more
commonly,	just	hex.	Hex	is	number	base	16.	So	instead	of	having	digits	0	to	9,	you	have
six	extra	digits,	A	to	F.	This	means	that	each	hex	digit	represents	four	bits.	The	following
table	shows	the	relationship	among	decimal,	hex,	and	binary	with	the	numbers	0	to	15:

	

	
So,	 in	 hex,	 any	 int	 can	 be	 represented	 as	 a	 four-digit	 hex	 number.	 Thus,	 the	 binary

number	10001100	would	in	hex	be	8C.	The	C	language	has	a	special	syntax	for	using	hex
numbers.	You	can	assign	a	hex	value	to	an	int	as	follows:

	
The	Arduino	 standard	 library	provides	 some	 functions	 that	 let	 you	manipulate	 the	16

bits	within	an	int	individually.	The	function	bitRead	returns	the	value	of	a	particular	bit	in
an	int;	so,	for	the	following	example	would	assign	the	value	0	to	the	variable	called	bit:

	
In	the	second	argument,	the	bit	position	starts	at	0	and	goes	up	to	15.	It	starts	with	the	least
significant	bit.	So	the	rightmost	bit	is	bit	0,	the	next	bit	to	the	left	is	bit	1,	and	so	on.

As	 you	 would	 expect,	 the	 counterpart	 to	 bitRead	 is	 bitWrite,	 which	 takes	 three
arguments.	The	first	 is	 the	number	 to	manipulate,	 the	second	 is	 the	bit	position,	and	 the
third	is	the	bit	value.	The	following	example	changes	the	value	of	the	int	from	2	to	3	(in
decimal	or	hex):

	

	
Figure	7-2	An	int

	

Advanced	I/O

	
There	 are	 some	 useful	 little	 functions	 that	 you	 can	 use	 to	 make	 your	 life	 easier	 when
performing	various	input/output	tasks.

Generating	Tones

The	tone	function	allows	you	to	generate	a	square-wave	signal	(see	Figure	7-3)	on	one	of
the	digital	output	pins.	The	most	common	reason	to	do	this	is	to	generate	an	audible	tone
using	a	loudspeaker	or	buzzer.

The	function	takes	either	two	or	three	arguments.	The	first	argument	is	always	the	pin
number	on	which	the	tone	is	to	be	generated,	the	second	argument	is	the	frequency	of	the
tone	 in	 hertz	 (Hz),	 and	 the	 optional	 final	 argument	 is	 the	 duration	 of	 the	 tone.	 If	 no
duration	 is	 specified,	 then	 the	 tone	 will	 continue	 playing	 indefinitely,	 as	 is	 the	 case	 in
sketch	7-03.	This	 is	why	we	have	put	 the	 tone	 function	call	 in	setup	 rather	 than	 in	 the
loop	function.

	
Figure	7-3	A	square-wave	signal

	

	
To	stop	a	tone	that	is	playing,	you	use	the	function	noTone.	This	function	has	just	one

argument,	which	is	the	pin	on	which	the	tone	is	playing.

Feeding	Shift	Registers

Sometimes	the	Arduino	Uno	just	doesn’t	have	enough	pins.	When	driving	a	large	number
of	LEDs,	for	example,	a	common	technique	is	to	use	a	shift	register	chip.	This	chip	reads
data	one	bit	at	a	time,	and	then	when	it	has	enough,	it	latches	all	those	bits	onto	a	set	of
outputs	(one	per	bit).

To	help	you	use	this	technique,	there	is	a	handy	function	called	shift-Out.	This	function
takes	four	arguments:

•	The	number	of	the	pin	on	which	the	bit	to	be	sent	will	appear.

•	The	number	of	the	pin	to	be	used	as	a	clock	pin.	This	toggles	every	time	a	bit	is	sent.

•	A	flag	to	determine	whether	the	bits	will	be	sent	starting	with	the	least	significant	bit	or
the	most	significant.	This	should	be	one	of	the	constants	MSBFIRST	or	LSBFIRST.

•	The	byte	of	data	to	be	sent.

Interrupts

	
One	of	the	things	that	tend	to	frustrate	programmers	used	to	“programming	in	the	large”	is
that	 the	Arduino	 can	do	only	one	 thing	 at	 a	 time.	 If	 you	 like	 to	have	 lots	 of	 threads	of
execution	 all	 running	 at	 the	 same	 time	 in	 your	 programs,	 then	 you	 are	 out	 of	 luck.
Although	a	few	people	have	developed	projects	 that	can	execute	multiple	 threads	 in	 this
way,	 generally	 this	 capability	 is	 unnecessary	 for	 the	 type	 of	 uses	 that	 an	 Arduino	 is
normally	put	to.	The	closest	an	Arduino	gets	to	such	execution	is	the	use	of	interrupts.

Two	of	the	pins	on	the	Arduino	(D2	and	D3)	can	have	interrupts	attached	to	them.	That
is,	 these	 pins	 act	 as	 inputs	 that,	 if	 the	 pins	 receive	 a	 signal	 in	 a	 specified	 way,	 the
Arduino’s	processor	will	suspend	whatever	it	was	doing	and	run	a	function	attached	to	that
interrupt.

Sketch	 7-04	 blinks	 an	 LED,	 but	 then	 changes	 the	 blink	 period	 when	 an	 interrupt	 is
received.	You	can	simulate	an	interrupt	by	connecting	your	wire	between	pin	D2	and	GND
and	using	the	internal	pull-up	resistor	to	keep	the	interrupt	high	most	of	the	time.

	
The	following	is	the	key	line	in	the	setup	function	of	this	sketch:

	

	
Figure	7-4	Types	of	interrupt	signals

	
The	 first	 argument	 specifies	 which	 of	 the	 two	 interrupts	 you	 want	 to	 use.	 Rather

confusingly,	a	0	here	means	you	are	using	pin	2,	while	a	1	means	you	are	using	pin	3.

The	 next	 argument	 is	 the	 name	 of	 the	 function	 that	 is	 to	 be	 called	when	 there	 is	 an
interrupt,	and	the	final	argument	is	a	constant	that	will	be	one	of	CHANGE,	RISING,	or
FALLING.	Figure	7-4	summarizes	these	options.

If	 the	 interrupt	mode	 is	CHANGE,	 then	either	a	RISING	from	0	 to	1	or	a	FALLING
from	1	to	0	will	both	trigger	an	interrupt.

You	 can	 disable	 interrupts	 using	 the	 function	noInterrupts.	 This	 stops	 all	 interrupts
from	 both	 interrupt	 channels.	 You	 can	 resume	 using	 interrupts	 again	 by	 calling	 the
function	interrupts.

Conclusion

	
In	this	chapter,	you	have	looked	at	some	of	the	handy	features	that	the	Arduino	standard
library	provides.	These	 features	will	 save	you	 some	programming	 effort,	 and	 if	 there	 is
one	thing	that	a	good	programmer	likes,	it	is	being	able	to	use	high-quality	work	done	by
other	people.

In	the	next	chapter,	we	will	extend	what	we	learned	about	data	structures	in	Chapter	5
and	look	at	how	you	go	about	remembering	data	on	the	Arduino	after	the	power	goes	off.

8
Data	Storage

	
When	you	give	values	to	variables,	the	Arduino	board	will	remember	those	values	only	as
long	as	the	power	is	on.	The	moment	that	you	turn	the	power	off	or	reset	the	board,	all	that
data	is	lost.

	
In	this	chapter,	we	look	at	some	ways	to	hang	on	to	that	data.

Constants

	
If	the	data	that	you	want	to	store	does	not	change,	then	you	can	just	set	the	data	up	each
time	that	the	Arduino	starts.	An	example	of	this	approach	is	the	case	in	the	letters	array	in
your	Morse	code	translator	of	Chapter	5	(sketch	5-05).

You	used	the	following	code	to	define	a	variable	of	the	correct	size	and	fill	it	with	the
data	that	you	needed:

	
You	may	remember	that	you	did	the	calculation	and	decided	that	you	had	plenty	of	your

meager	2K	to	spare.	However,	if	memory	was	a	bit	tight,	it	would	be	far	better	to	be	able
to	store	this	data	in	the	32K	of	flash	memory	used	to	store	programs,	rather	than	the	2K	of
RAM.	There	 is	 a	means	of	doing	 this.	 It	 is	 a	directive	called	PROGMEN;	 it	 lives	 in	 a
library	and	is	a	bit	awkward	to	use.

The	PROGMEM	Directive

	
To	 store	 your	 data	 in	 flash	 memory,	 you	 have	 to	 include	 the	 PROGMEM	 library	 as
follows:

	

The	purpose	of	this	command	is	to	tell	the	compiler	to	use	the	pgmspace	library	for	this
sketch.	In	this	case,	a	library	is	a	set	of	functions	that	someone	else	has	written	and	that
you	 can	 use	 in	 your	 sketches	without	 having	 to	 understand	 all	 the	 details	 of	 how	 those
functions	work.

Because	you	are	using	this	library,	the	PROGMEM	keyword	and	the	pgm_read_word
function	are	available.	You	will	use	both	in	the	sketches	that	follow.

This	 library	 is	 included	as	part	of	 the	Arduino	software	and	 is	an	officially	supported
Arduino	 library.	 A	 good	 collection	 of	 such	 official	 libraries	 is	 available,	 and	 many
unofficial	 libraries,	 developed	 by	 people	 like	 you	 and	made	 for	 others	 to	 use,	 are	 also
available	 on	 the	 Internet.	 Such	 unofficial	 libraries	 must	 be	 installed	 into	 your	 Arduino
environment.	You	will	learn	more	about	these	libraries,	as	well	as	how	to	write	your	own
libraries,	in	Chapter	11.

When	using	PROGMEM,	you	have	 to	make	sure	 that	you	use	special	PROGMEM-
friendly	 data	 types.	 Unfortunately,	 that	 does	 not	 include	 an	 array	 of	 char	 arrays.	 You
actually	have	to	define	a	variable	for	each	string	using	a	PROGMEM	string	type	and	then
put	them	all	in	a	PROGMEM	array	type,	like	this:

	
I	have	not	listed	sketch	8-01	here,	as	it	 is	a	little	lengthy,	but	you	may	wish	to	load	it

and	verify	that	it	works	the	same	way	as	the	RAM-based	version.

In	addition	to	creating	the	data	in	a	special	way,	you	also	have	to	read	the	data	back	a
special	way.	Your	code	to	get	the	code	string	for	a	Morse	letter	from	the	array	has	to	be
modified	to	look	like	this:

	
This	uses	a	buffer	variable	into	which	the	PROGMEM	string	is	copied,	so	that	it	can

be	used	as	a	regular	char	array.	This	needs	to	be	defined	as	a	global	variable	as	follows:

	
This	approach	works	only	if	the	data	is	constant—that	is,	you	are	not	going	to	change	it

while	the	sketch	is	running.	In	the	next	section,	you	will	learn	about	using	the	EEPROM
memory	that	is	intended	for	storing	persistent	data	that	can	be	changed.

EEPROM

	
The	ATMega328	 at	 the	 heart	 of	 an	Arduino	Uno	 has	 a	 kilobyte	 of	 electrically	 erasable
read-only	memory	(EEPROM).	EEPROM	is	designed	to	remember	its	contents	for	many
years.	Despite	its	name,	it	is	not	really	read-only.	You	can	write	to	it.

The	Arduino	commands	for	reading	and	writing	to	EEPROM	are	just	as	awkward	to	use
as	the	ones	for	using	PROGMEM.	You	have	to	read	and	write	to	and	from	EEPROM	one
byte	at	a	time.

The	example	of	sketch	8-02	allows	you	to	enter	a	single-digit	letter	code	from	the	Serial
Monitor.	The	 sketch	 then	 remembers	 the	digit	 and	 repeatedly	writes	 it	out	on	 the	Serial
Monitor.

	
To	try	this	sketch,	open	the	Serial	Monitor	and	enter	a	new	character.	Then	unplug	the

Arduino	and	plug	 it	back	 in.	When	you	reopen	 the	Serial	Monitor,	you	will	see	 that	 the
letter	has	been	remembered.

The	function	EEPROM.write	 takes	 two	arguments.	The	 first	 is	 the	address,	which	 is
the	 memory	 location	 in	 EEPROM	 and	 should	 be	 between	 0	 and	 1023.	 The	 second
argument	 is	 the	data	 to	write	at	 that	 location.	This	must	be	a	single	byte.	A	character	 is
represented	as	eight	bits,	so	this	is	fine,	but	you	cannot	directly	store	a	16-bit	int.

Storing	an	int	in	EEPROM

To	store	a	two-byte	int	in	locations	0	and	1	of	the	EEPROM,	you	would	have	to	do	this:

	
The	 functions	highByte	 and	 lowByte	 are	 useful	 for	 separating	 an	 int	 into	 two	bytes.

Figure	8-1	shows	how	this	int	is	actually	stored	in	the	EEPROM.

	
Figure	8-1	Storing	a	16-bit	integer	in	EEPROM

	
To	 read	 the	 int	 back	 out	 of	 EEPROM,	 you	 need	 to	 read	 the	 two	 bytes	 from	 the

EEPROM	and	reconstruct	the	int,	as	follows:

	
The	<<	operator	is	a	bit	shift	operator	that	moves	the	eight	high	bytes	to	the	top	of	the

int	and	then	adds	in	the	low	byte.

Storing	a	float	in	EEPROM	(Unions)

Storing	a	float	in	EEPROM	is	a	little	more	tricky.	To	do	this,	you	can	use	a	feature	of	C
called	unions.	These	data	structures	are	interesting	in	that	they	can	be	thought	of	as	a	way
to	make	 the	 same	 area	 of	memory	 accessible	 to	more	 than	one	variable.	What	 is	more,
these	variables	are	allowed	 to	be	of	different	 types	as	 long	as	 they	are	 the	 same	size	 in
bytes.

The	following	union	definition	allows	both	a	float	and	an	int	to	refer	to	the	same	two
bytes	of	memory:

	

You	can	then	put	a	float	into	the	union	as	follows:

	
Then	you	can	separate	an	integer	into	its	two	bytes	for	storage	in	EEPROM	as	follows:

	
Reading	the	float	back	out	again	requires	you	to	do	the	reverse.	First	you	assemble	the

two	bytes	into	a	single	int,	 then	you	put	the	int	into	the	union	and	pull	 it	out	again	as	a
float.

	

Storing	a	String	in	EEPROM

Writing	 and	 reading	 character	 strings	 into	 the	EEPROM	are	 pretty	 straightforward;	 you
just	have	to	write	each	character	at	a	time,	as	in	the	following	example:

	
To	read	the	string	back	into	a	character	array,	you	can	do	something	like	this:

	

Clearing	the	Contents	of	EEPROM

When	writing	to	EEPROM,	remember	that	even	uploading	a	new	sketch	will	not	clear	the
EEPROM,	so	you	may	have	leftover	values	in	there	from	a	previous	project.	Sketch	8-03
resets	all	the	contents	of	EEPROM	to	zeros:

	
Also	be	 aware	 that	 you	 can	write	 to	 an	EEPROM	 location	only	 about	 100,000	 times

before	it	will	become	unreliable.	So	only	write	a	value	back	to	EEPROM	when	you	really
need	to.	EEPROM	is	also	quite	slow,	taking	about	3	milliseconds	to	write	a	byte.

Compression

	
When	saving	data	to	EEPROM	or	when	using	PROGMEM,	you	will	sometimes	find	that
you	 have	more	 to	 save	 than	 you	 have	 room	 to	 save	 it.	When	 this	 happens,	 it	 is	 worth
finding	the	most	efficient	way	of	representing	the	data.

Range	Compression

You	may	have	a	value	for	which	on	the	face	of	it	you	need	an	int	or	a	float	that	are	both
16-bit.	For	example,	to	represent	a	temperature	in	degrees	Celsius,	you	might	use	a	float
value	 such	 as	 20.25.	When	 you	 are	 storing	 that	 into	EEPROM,	 life	would	 be	 so	much
easier	 if	you	could	fit	 it	 into	a	single	byte,	and	you	could	store	 twice	as	much	as	 if	you
used	a	float.

One	way	that	you	can	do	this	is	to	change	the	data	before	you	store	it.	Remember	that	a
byte	will	allow	you	to	store	a	positive	number	between	0	and	255.	So	if	you	only	cared
about	 the	 temperature	 to	 the	 nearest	 degree	Celsius,	 then	 you	 could	 simply	 convert	 the
float	to	an	int	and	discard	the	part	after	the	decimal	point.	The	following	example	shows
how	to	do	this:

	
The	variable	tempFloat	contains	the	floating	point	value.	The	(int)	command	is	called

a	type	cast	and	is	used	to	convert	a	variable	from	one	type	to	another	compatible	type.	In
this	case,	the	type	cast	converts	the	float	of	(for	example)	20.25	to	an	int	that	will	simply
truncate	the	number	to	20.

If	you	know	that	the	highest	temperature	that	you	care	about	is	60	degrees	Celsius	and
that	 the	 lowest	 is	 0	 degrees	 Celsius,	 then	 you	 could	 multiply	 every	 temperature	 by	 4
before	 converting	 it	 to	 a	 byte	 and	 saving	 it.	 Then	 when	 you	 read	 the	 data	 back	 from
EEPROM,	you	can	divide	by	4	to	get	a	value	that	has	a	precision	of	0.25	of	a	degree.

The	 following	 code	 example	 (sketch	 8-04)	 saves	 such	 a	 temperature	 into	 EEPROM,
then	reads	it	back	and	displays	it	in	the	Serial	Monitor	as	proof:

	
There	are	other	means	of	compressing	data.	For	instance,	if	you	are	taking	readings	that

change	slowly—again,	changes	in	temperature	are	a	good	example	of	this—then	you	can
record	 the	 first	 temperature	 at	 full	 resolution	 and	 then	 just	 record	 the	 changes	 in
temperature	 from	 the	previous	 reading.	This	 change	will	generally	be	 small	 and	occupy
fewer	bytes.

Conclusion

	
You	now	know	a	little	about	how	to	make	your	data	hang	around	after	the	power	has	gone
off.	In	the	next	chapter,	you	will	look	at	LCD	displays.

9
LCD	Displays

	
In	this	 chapter,	 you	 look	 at	 how	 to	write	 software	 to	 control	LCD	displays.	 Figure	9-1
shows	the	kind	of	LCD	display	used.

	
This	is	a	book	about	software,	not	hardware,	but	in	this	chapter,	we	will	have	to	explain

a	 little	 about	how	 the	 electronics	of	 these	displays	work	 so	 that	you	understand	how	 to
drive	them.

The	LCD	module	that	we	use	is	a	prebuilt	Arduino	shield	that	can	just	be	plugged	on
top	of	an	Arduino	board.	In	addition	to	its	display,	it	also	has	some	buttons.	There	are	a
number	of	different	shields,	but	nearly	all	of	them	use	the	same	LCD	controller	chip	(the
HD44780),	so	look	for	a	shield	that	uses	this	controller	chip.

I	 used	 the	 DFRobot	 LCD	 Keypad	 Shield	 for	 Arduino.	 This	 module	 supplied	 by
DFRobot	 (www.robotshop.com)	 is	 inexpensive	 and	 provides	 an	 LCD	 display	 that	 is	 16
characters	by	2	rows	and	also	has	six	pushbuttons.

The	shield	comes	assembled,	so	no	soldering	is	required;	you	just	plug	it	on	top	of	your
Arduino	board	(see	Figure	9-2).

The	LCD	 shield	 uses	 seven	 of	 the	Arduino	 pins	 to	 control	 the	LCD	display	 and	 one
analog	pin	for	the	buttons.	So	we	cannot	use	these	Arduino	pins	for	any	other	purpose.

	
Figure	9-1	An	Alphanumeric	LCD	shield

	

http://www.robotshop.com

	
Figure	9-2	LCD	shield	attached	to	an	Arduino	board

	

A	USB	Message	Board

	
For	a	simple	example	of	a	simple	use	of	the	display,	we	are	going	to	make	a	USB	message
board.	This	will	display	messages	sent	from	the	Serial	Monitor.

The	Arduino	 IDE	 comes	with	 an	LCD	 library.	 This	 greatly	 simplifies	 the	 process	 of
using	an	LCD	display.	The	library	gives	you	useful	functions	that	you	can	call:

•	clear	clears	the	display	of	any	text.

•	setCursor	sets	the	position	in	row	and	column	where	the	next	thing	that	you	print	will
appear.

•	print	writes	a	string	at	that	position.

This	example	is	listed	in	sketch	9-01:

	

	
As	with	 all	Arduino	 libraries,	 you	 have	 to	 start	 by	 including	 the	 library	 to	make	 the

compiler	aware	of	it.

The	next	line	defines	which	Arduino	pins	are	used	by	the	shield	and	for	what	purpose.
If	 you	 are	 using	 a	 different	 shield,	 then	 you	may	well	 find	 that	 the	 pin	 allocations	 are
different,	so	check	in	the	documentation	for	the	shield.

In	this	case,	the	six	pins	used	to	control	the	display	are	D4,	D5,	D6,	D7,	D8,	and	D9.

The	purpose	of	each	of	these	pins	is	described	in	Table	9-1.

	
Table	9-1	LCD	shield	pin	assignments

	
The	setup	function	is	straightforward.	You	start	serial	communications	so	that	the	Serial

Monitor	 can	 send	 commands	 and	 initialize	 the	LCD	 library	with	 the	 dimensions	 of	 the
display	being	used.	You	also	display	the	message	“Arduino	Rules”	on	two	lines	by	setting
the	cursor	to	top-left,	printing	“Arduino,”	then	moving	the	cursor	to	the	start	of	the	second
row	and	printing	“Rules.”

Most	 of	 the	 action	 takes	 place	 in	 the	 loop	 function,	 which	 checks	 for	 any	 incoming
characters	from	the	Serial	Monitor.	The	sketch	deals	with	characters	one	at	a	time.

Apart	 from	 ordinary	 characters	 that	 the	 sketch	 will	 simply	 display,	 there	 are	 also	 a
couple	 of	 special	 characters.	 If	 the	 character	 is	 a	 #,	 then	 the	 sketch	 clears	 the	 whole
display,	 and	 if	 the	 character	 is	 a	 /,	 the	 sketch	moves	 to	 the	 second	 line.	Otherwise,	 the
sketch	 simply	 displays	 the	 character	 at	 the	 current	 cursor	 position	 using	 write.	 The
function	write	 is	 like	print,	 but	 it	 prints	 only	 a	 single	 character	 rather	 than	 a	 string	 of
characters.

Using	the	Display

	
Try	out	sketch	9-01	by	uploading	it	to	the	board	and	then	attaching	the	shield.	Note	that
you	should	always	unplug	the	Arduino	board	so	that	it	is	off	before	you	plug	in	a	shield.

Open	up	the	Serial	Monitor	and	try	typing	in	the	text	shown	in	Figure	9-3.

	
Figure	9-3	Sending	commands	to	the	display

	

Other	LCD	Library	Functions

	
In	addition	to	the	functions	that	you	have	used	in	this	example,	there	are	a	number	of	other
functions	that	you	can	use:

•	home	is	the	same	as	setCursor(0,0):	it	moves	the	cursor	to	top-left.

•	cursor	displays	a	cursor.

•	noCursor	specifies	not	to	display	a	cursor.

•	blink	makes	the	cursor	blink.

•	noBlink	stops	the	cursor	from	blinking.

•	noDisplay	turns	off	the	display	without	removing	the	content.

•	display	turns	the	display	back	on	after	noDisplay.

•	scrollDisplayLeft	moves	all	the	text	on	the	display	one	character	position	to	the	left.

•	scrollDisplayRight	moves	all	the	text	on	the	display	one	character	position	to	the	right.

•	 autoscroll	 activates	 a	mode	 in	which,	 as	 new	 characters	 are	 added	 at	 the	 cursor,	 the
existing	 text	 is	 pushed	 in	 the	 direction	 determined	 by	 the	 functions	 leftToRight	 and
rightToLeft.

•	noAutoscroll	turns	autoscroll	mode	off.

Conclusion

	
You	can	see	that	programming	shields	is	not	hard,	particularly	when	there	is	a	library	that
can	do	a	lot	of	the	work.

In	the	next	chapter,	you	will	use	an	Ethernet	shield	that	will	allow	you	to	connect	 the

Arduino	to	the	Internet.

10
Arduino	Ethernet	Programming

	
In	this	chapter,	you	will	use	an	Ethernet	shield	to	enable	your	Arduino	to	work	over	your
home	network	(see	Figure	10-1).

	

	
Figure	10-1	Arduino	with	Ethernet

	

Ethernet	Shields

	
When	 buying	 an	 Ethernet	 shield,	 you	 need	 to	 take	 a	 little	 care,	 as	 you	 need	 to	 use	 an
“official”	shield	based	on	the	Wiznet	chipset	and	not	one	of	the	cheaper	but	more	difficult
to	use	unofficial	boards	based	on	the	ENC28J60	Ethernet	controller	chip.

The	Ethernet	shields	are	quite	power	hungry,	so	you	will	also	need	a	9V	or	12V	power
supply	rated	at	1A	or	more.	This	supply	will	be	attached	to	the	Arduino	power	socket.

Communicating	with	Web	Servers

	
Before	looking	at	how	the	Arduino	deals	with	communication	between	a	browser	and	the
web	server	that	it	uses,	you	need	some	understanding	of	the	HyperText	Transfer	Protocol

(HTTP)	and	the	HyperText	Markup	Language	(HTML).

HTTP

The	HyperText	 Transport	 Protocol	 is	 the	method	 by	which	web	 browsers	 communicate
with	a	web	server.

When	you	go	to	a	page	using	a	web	browser,	the	browser	sends	a	request	to	the	server
hosting	 that	 page,	 saying	what	 it	wants.	What	 the	 browser	 asks	 for	may	 be	 simply	 the
contents	of	 a	page	 in	HTML.	The	web	server	 is	 always	 listening	 for	 such	 requests,	 and
when	it	receives	one,	it	processes	it.	In	this	simple	case,	processing	the	request	just	means
sending	back	HTML	that	you	have	specified	in	the	Arduino	sketch.

HTML

The	HyperText	Markup	Language	is	a	way	of	adding	formatting	to	ordinary	text	so	that	it
looks	good	when	the	browser	displays	it.	For	example,	the	following	code	is	HTML	that
displays	on	a	browser	page	as	shown	in	Figure	10-2:

	
The	HTML	contains	tags.	Tags	have	a	start	and	an	end	and	usually	contain	other	tags.

The	start	of	a	tag	has	a	<	and	then	the	tag	name,	and	then	a	>;	for	example,	<html>.	The
end	 of	 a	 tag	 is	 similar	 except	 that	 it	 has	 a	 /	 after	 the	<.	 In	 the	 preceding	 example,	 the
outermost	 tag	 is	<html>	 that	 contains	 a	 tab	 called	<body>.	All	web	 pages	 should	 start
with	such	tags,	and	you	can	see	the	corresponding	ends	for	those	tags	at	the	end	of	the	file.
Note	that	you	have	to	put	the	end	tags	in	the	right	order,	so	the	body	tag	must	be	closed
before	the	html	tag.

Now	we	get	to	the	interesting	bit	in	the	middle,	the	h1	and	p	tags.	These	are	the	parts	of
the	example	that	are	actually	displayed.

The	h1	 tag	 indicates	a	 level	1	header.	This	has	 the	effect	of	displaying	 the	 text	 that	 it
contains	 in	a	 large	bold	font.	The	p	 tag	 is	a	paragraph	 tag,	and	so	all	 the	 text	contained
within	it	is	displayed	as	a	paragraph.

This	really	just	scratches	the	surface	of	HTML.	Many	books	and	Internet	resources	are
available	for	learning	about	HTML.

	
Figure	10-2	An	HTML	example

	

Arduino	as	a	Web	Server

	
The	first	example	sketch	simply	uses	the	Arduino	and	Ethernet	shield	to	make	a	small	web
server.	It’s	definitely	not	a	Google	server	farm,	but	it	will	allow	you	to	send	a	web	request
to	your	Arduino	and	view	the	results	in	a	browser	on	your	computer.

Before	 uploading	 the	 sketch	 10–01,	 there	 are	 a	 couple	 of	 changes	 that	 you	 need	 to
make.	If	you	look	at	the	top	of	the	sketch,	you	will	see	the	following	lines:

	
The	first	of	these,	the	mac	address,	must	be	unique	among	all	the	devices	connected	to

your	network.	The	second	one	is	the	IP	address.	Whereas	most	devices	that	you	connect	to
your	home	network	will	have	IP	addresses	assigned	to	 them	automatically	by	a	protocol
called	 Dynamic	 Host	 Configuration	 Protocol	 (DHCP),	 this	 is	 not	 true	 for	 the	 Ethernet
shield.	For	this	device,	you	have	to	define	an	IP	address	manually.	This	address	cannot	be
any	four	numbers;	they	must	be	numbers	that	qualify	as	being	internal	IP	addresses	and	fit
in	 the	 range	 of	 IP	 addresses	 expected	 by	 your	 home	 router.	 Typically,	 the	 first	 three
numbers	will	be	something	like	10.0.1.x	or	192.168.1.	x,	where	x	 is	a	number	between	0
and	255.	Some	of	these	IP	addresses	will	be	in	use	by	other	devices	on	your	network.	To
find	 an	 unused	 but	 valid	 IP	 address,	 connect	 to	 the	 administration	 page	 for	 your	 home
router	and	look	for	an	option	that	says	“DHCP.”	You	should	find	a	list	of	devices	and	their
IP	addresses,	similar	to	that	shown	in	Figure	10-3.	Select	a	final	number	to	use	in	you	IP
address.	In	this	case,	192.168.1.30	looked	like	a	good	bet,	and	indeed	it	worked	fine.

Attach	 the	Arduino	 to	your	computer	using	 the	USB	lead	and	upload	 the	sketch.	You
can	 now	 disconnect	 the	USB	 lead	 and	 attach	 the	 power	 supply	 to	 the	Arduino	 and	 the
Ethernet	lead.

Open	a	connection	on	your	computer’s	browser	to	the	IP	address	that	you	assigned	for
the	Ethernet	shield.	Something	very	much	like	Figure	10-4	should	appear.

	
Figure	10-3	Finding	an	unused	IP	address

	

	
Figure	10-4	A	Simple	Arduino	server	example

	
The	listing	for	sketch	10-01	is	as	follows:

	

	
As	with	the	LCD	library	discussed	in	Chapter	9,	a	standard	Arduino	library	takes	care

of	interfacing	with	the	Ethernet	shield.

The	setup	function	initializes	the	Ethernet	library	using	the	mac	and	IP	addresses	that
you	set	earlier.

The	loop	function	is	responsible	for	servicing	any	requests	that	come	to	the	web	server
from	a	browser.	 If	a	 request	 is	waiting	for	a	response,	 then	calling	server.available	will

return	a	client.	A	client	 is	an	object;	you	will	 learn	a	bit	more	about	what	 this	means	 in
Chapter	11.	But	for	now,	all	that	you	need	to	know	is	that	whether	a	client	exists	(tested	by
the	 first	 if	 statement);	 then	 you	 can	 then	 determine	whether	 it	 is	 connected	 to	 the	web
server	by	calling	client.connected.

The	next	three	lines	of	code	print	out	a	return	header.	This	just	tells	the	browser	what
type	of	content	to	display.	In	this	case,	the	browser	is	to	display	HTML	content.

Once	the	header	has	been	written,	all	that	remains	is	to	write	the	remaining	HTML	back
to	the	browser.	This	must	include	the	usual	<html>	and	<body>	tags,	and	also	includes	a
<h1>	header	tag	and	two	<p>	tags	that	will	display	the	value	on	the	analog	input	A0	and
the	value	returned	by	 the	millis	 function;	 that	value	 is	 the	number	of	milliseconds	since
the	Arduino	was	last	reset.

Finally,	client.stop	 tells	 the	 browser	 that	 the	message	 is	 complete.	 The	 browser	 then
displays	the	page.

Setting	Arduino	Pins	over	the	Network

	
This	second	example	of	using	an	Ethernet	shield	allows	you	to	turn	the	Arduino	pins	D3
to	D7	on	and	off	using	a	web	form.

Unlike	the	simple	server	example,	you	are	going	to	have	to	find	a	way	to	pass	the	pin
settings	to	the	Arduino.

The	method	for	doing	this	is	called	posting	data	and	is	part	of	the	HTTP	standard.	For
this	method	to	work,	you	have	to	build	the	posting	mechanism	into	the	HTML	so	that	the
Arduino	returns	HTML	to	the	browser,	which	renders	a	form.	This	form	(shown	in	Figure
10-5)	has	a	selection	of	On	and	Off	for	each	pin	and	an	Update	button	that	will	send	the
pin	settings	to	the	Arduino.

	
Figure	10-5	The	message	sending	form

	
When	the	Update	button	is	pressed,	a	second	request	is	sent	to	the	Arduino.	This	will	be

just	like	the	first	request,	except	that	the	request	will	contain	request	parameters	that	will
contain	the	values	of	the	pins.

A	request	parameter	is	similar	in	concept	to	a	function	parameter.	A	function	parameter
enables	you	to	get	information	to	a	function,	such	as	the	number	of	times	to	blink,	and	a
request	parameter	enables	you	to	pass	data	to	the	Arduino	that	is	going	to	handle	the	web
request.	When	the	Arduino	receives	 the	web	request,	 it	can	extract	 the	pin	settings	from
the	request	parameter	and	change	the	actual	pins.

The	code	for	the	second	example	sketch	follows:

	

	

	

	

	

	
The	sketch	uses	two	arrays	to	control	the	pins.	The	first,	pins,	just	specifies	which	pins

are	to	be	used.	The	pinState	array	holds	the	state	of	each	pin:	either	0	or	1.

To	get	 the	 information	coming	from	the	browser	form	about	which	pins	should	be	on
and	which	should	be	off,	 it	 is	necessary	 to	read	 the	header	coming	from	the	browser.	 In
fact,	all	you	need	is	contained	in	the	first	line	of	the	header.	You	will	use	a	character	array
line1	to	contain	the	first	line	of	the	header.

When	the	user	clicks	on	the	Update	button	and	submits	the	form	from	the	browser,	the
URL	for	the	page	will	look	something	like	this:

	
The	request	parameters	come	after	the	?	and	are	each	separated	by	an	&.	Looking	at	the

first	parameter	(0=1),	 this	means	 that	 the	first	pin	 in	 the	array	(pins[0])	should	have	 the
value	 1.	 If	 you	were	 to	 look	 at	 the	 first	 line	 of	 the	 header,	 you	would	 see	 those	 same
request	parameters	there:

	
Before	the	parameters,	there	is	the	text	GET/.	This	specifies	the	page	requested	by	the

browser.	In	this	case,	/	indicates	the	root	page.

In	the	loop	of	the	sketch,	you	call	the	readHeader	function	to	read	the	first	line	of	the
header.	You	 then	use	 the	pageNameIs	 function	 to	check	 that	 the	page	 request	 is	 for	 the
root	page	/.

The	 sketch	 then	 generates	 the	 header	 and	 the	 start	 of	 the	 HTML	 form	 that	 is	 to	 be
displayed.	 Before	 writing	 the	 HTML	 for	 each	 of	 the	 pins,	 the	 sketch	 calls	 the
setValuesFromParams	 function	 to	 read	 each	 of	 the	 request	 parameters	 and	 set	 the
appropriate	values	in	the	pinStates	array.	This	array	is	then	used	to	set	the	values	of	the
pin	 outputs	 before	 the	writeHTMLforPin	 function	 is	 called	 for	 each	 of	 the	 pins.	 This
function	generates	a	selection	list	for	each	pin.	It	has	to	build	this	list	part	by	part.	The	if
statements	ensure	that	the	appropriate	options	are	selected.

The	 functions	 readHeader,	 pageNameIs,	 and	 valueOfParam	 are	 useful	 general-
purpose	functions	that	you	can	make	use	of	in	your	own	sketches.

You	can	use	your	multimeter	as	you	did	in	Chapter	6	to	verify	that	the	pins	are	indeed

turning	on	and	off.	If	you	are	feeling	more	adventurous,	you	could	attach	LEDs	or	relays
to	the	pins	to	control	things.

Conclusion

	
Having	 used	 shields	 and	 associated	 libraries	 in	 the	 last	 two	 chapters,	 it	 is	 now	 time	 to
investigate	the	features	that	enable	libraries	to	be	written	and	learn	how	to	write	libraries
of	your	own.

11
C++	and	Libraries

	
Arduinos	 are	 simple	 microcontrollers.	 Most	 of	 the	 time,	 Arduino	 sketches	 are	 quite
small,	so	using	the	C	programming	language	works	just	fine.	However,	the	programming
language	 for	 Arduino	 is	 actually	 C++	 rather	 than	 C.	 C++	 is	 an	 extension	 to	 the	 C
programming	language	that	adds	something	called	object	orientation.

	

Object	Orientation

	
This	is	only	a	short	book,	so	an	in-depth	explanation	of	the	C++	programming	language	is
beyond	its	scope.	The	book	can,	however,	cover	the	basics	of	C++	and	object	orientation.
But	the	main	goal	is	to	increase	the	encapsulation	of	your	programs.	Encapsulation	keeps
relevant	things	together,	something	that	makes	C++	very	suitable	for	writing	libraries	such
as	those	that	you	have	used	for	the	Ethernet	and	LCD	sketches	in	earlier	chapters.

There	 are	many	 good	 books	 on	 the	 topics	 of	C++	 and	 object-oriented	 programming.
Look	for	the	higher-rated	books	on	the	topic	in	your	favorite	online	bookstore.

Classes	and	Methods

Object	orientation	uses	a	concept	called	classes	to	aid	encapsulation.	Generally,	a	class	is
like	a	section	of	a	program	that	 includes	both	variables—called	member	variables—and
methods,	which	 are	 like	 functions	 but	 apply	 to	 the	 class.	 These	 functions	 can	 either	 be
public,	in	which	case	the	methods	and	functions	may	be	used	by	other	classes,	or	private,
in	which	case	the	methods	can	be	called	only	by	other	methods	within	the	same	class.

Whereas	an	Arduino	sketch	is	contained	in	a	single	file,	when	you	are	working	in	C++,
you	tend	to	use	more	than	one	file.	In	fact,	there	are	generally	two	files	for	every	class:	A
header	 file,	 which	 has	 the	 extension	 .h,	 and	 the	 implementation	 file,	 which	 has	 the
extension	.cpp.

Built-in	Library	Example

	
The	LCD	library	has	been	used	 in	 the	 two	previous	chapters,	 so	 let’s	 look	more	closely
and	see	what	is	going	on	in	a	little	more	detail.

Referring	back	 to	 sketch	9-01	 (open	 this	 in	 your	Arduino	 IDE),	 you	 can	 see	 that	 the
include	command	includes	the	file	LiquidCrystal.h:

	
This	file	is	the	header	file	for	the	class	called	LiquidCrystal.	This	file	 tells	 the	Arduino
sketch	what	it	needs	to	know	to	be	able	to	use	the	library.	You	can	actually	retrieve	this
file	 if	 you	 go	 to	 your	 Arduino	 installation	 folder	 and	 file	 and	 find	 the	 file
libraries/LiquidCrystal.	You	will	need	to	open	the	file	in	a	text	editor.	If	you	are	using	a
Mac,	then	right-click	on	the	Arduino	app	itself	and	select	the	menu	option	Show	Package
Contents.	Then	navigate	to	Contents/Resources/Java/libraries/LiquidCrystal.

The	file	LiquidCrystal.h	contains	lots	of	code,	as	this	is	a	fairly	large	library	class.	The
code	for	the	actual	class	itself,	where	the	nuts	and	bolts	of	displaying	a	message	actually
reside,	are	in	the	file	LiquidCrystal.cpp.

In	the	next	section,	a	simple	example	library	will	be	created	that	should	put	the	concepts
behind	a	library	into	context.

Writing	Libraries

	
Creating	 an	 Arduino	 library	 might	 seem	 like	 the	 kind	 of	 thing	 that	 only	 a	 seasoned
Arduino	veteran	should	attempt,	but	actually	it	is	pretty	straight-forward	to	make	a	library.
For	example,	you	can	convert	into	a	library	the	flash	function	from	Chapter	4	that	causes
an	LED	to	flash	for	a	specified	number	of	times.

To	create	the	C++	files	that	are	needed	to	do	this,	you	will	need	a	text	editor	for	your
computer—something	like	TextPad	on	Windows	or	Text-Mate	on	Mac.

The	Header	File

Start	 by	 creating	 a	 folder	 to	 contain	 all	 the	 library	 files.	 You	 should	 create	 this	 folder
inside	 the	 libraries	folder	of	your	Arduino	documents	folder.	 In	Windows,	your	 libraries
folder	 will	 be	 in	My	 Documents\Arduino.	 On	 the	Mac,	 you	 will	 find	 it	 in	 your	 home
directory,	Documents/Arduino/,	 and	 on	Linux,	 it	will	 be	 in	 the	 sketchbook	 directory	 of
your	home	directory.	If	there	is	no	libraries	folder	in	your	Arduino,	then	create	one.

This	 libraries	 folder	 is	 where	 any	 libraries	 you	 write	 yourself,	 or	 any	 “unofficial”
contributed	libraries,	must	be	installed.

Call	the	folder	Flasher.	Start	the	text	editor	and	type	the	following	into	it:

	
Save	this	file	in	the	Flasher	folder	with	the	name	Flasher.h.	This	is	 the	header	file	for

the	 library	class.	This	 file	 specifies	 the	different	parts	of	 the	class.	As	you	can	see,	 it	 is
divided	into	public	and	private	parts.

The	 public	 part	 contains	what	 looks	 like	 the	 start	 of	 two	 functions.	 These	 are	 called
methods	and	differ	from	functions	only	insofar	as	 they	are	associated	with	a	class.	They
can	be	used	only	as	part	of	the	class.	Unlike	functions,	they	cannot	be	used	on	their	own.

The	 first	 method,	Flasher,	 begins	 with	 an	 uppercase	 letter,	 which	 is	 something	 you
would	not	use	with	a	function	name.	It	also	has	the	same	name	as	the	class.	This	method	is
called	 a	 constructor,	 which	 you	 can	 apply	 to	 create	 a	 new	Flasher	 object	 to	 use	 in	 a
sketch.

For	example,	you	could	put	the	following	in	a	sketch:

	
This	would	create	a	new	Flasher	called	slowFlasher	that	would	flash	on	pin	D13	with	a
duration	of	500	milliseconds.

The	second	method	in	the	class	is	called	flash.	This	method	takes	a	single	argument	of
the	number	of	times	to	flash.	Because	it	is	associated	with	a	class,	when	you	want	to	call
it,	you	have	to	refer	to	the	object	that	you	created	earlier,	as	follows:

	
This	 would	 cause	 the	 LED	 to	 flash	 ten	 times	 at	 the	 period	 that	 you	 specified	 in	 the
constructor	to	the	Flasher	object.

The	private	section	of	 the	class	contains	two	variable	definitions:	one	for	 the	pin,	and
one	 for	 the	 duration,	which	 is	 simply	 called	d.	 Every	 time	 that	 you	 create	 an	 object	 of
class	Flasher,	 it	will	have	 these	 two	variables.	This	enables	 it	 to	 remember	 the	pin	and
duration	when	a	new	Flasher	object	is	created.

These	 variables	 are	 called	member	 variables	 because	 they	 are	members	 of	 the	 class.
Their	 names	 generally	 are	 unusual	 in	 that	 they	 start	 with	 an	 underscore	 character;

however,	 this	 is	 just	 a	 common	 convention,	 not	 a	 programming	 necessity.	 Another
commonly	used	naming	convention	is	to	use	a	lowercase	m	(for	member)	as	the	first	letter
of	the	variable	name.

The	Implementation	File

The	header	 file	has	 just	defined	what	 the	class	 looks	 like.	You	now	need	a	separate	 file
that	actually	does	 the	work.	This	 is	called	the	 implementation	file	and	has	 the	extension
.cpp.

So,	create	a	new	file	containing	the	following	and	save	it	as	Flasher.cpp	in	the	Flasher
folder:

	
There	 is	 some	unfamiliar	 syntax	 in	 this	 file.	The	method	names	 are	both	prefixed	by

Flasher::.	This	indicates	that	the	methods	belong	to	the	Flasher	class.

The	constructor	method	(Flasher)	just	assigns	each	of	its	parameters	to	the	appropriate
private	member	variable.	The	duration	parameter	is	divided	by	two	before	being	assigned
to	the	member	variable	_d.	This	 is	because	 the	delay	 is	called	 twice,	and	 it	 seems	more
logical	for	the	duration	to	be	the	total	duration	of	the	flash	and	the	gap	between	flashes.

The	 flash	 function	 actually	 carries	 out	 the	 business	 of	 flashing;	 it	 loops	 for	 the
appropriate	number	of	times,	turning	the	LED	on	and	off	for	the	appropriate	delay.

Completing	Your	Library

You	have	now	seen	all	of	the	essentials	for	completing	the	library.	You	could	now	deploy
this	 library	 and	 it	 would	work	 just	 fine.	 However,	 there	 are	 two	 further	 steps	 that	 you
should	take	to	complete	your	library.	One	is	to	define	the	keywords	used	in	the	library	so

that	the	Arduino	IDE	can	show	them	in	the	appropriate	color	when	users	are	editing	code.
The	other	is	to	include	some	examples	of	how	to	use	the	library.

Keywords

To	define	the	keywords,	you	have	to	create	a	file	called	keywords.txt,	which	goes	into	the
Flasher	directory.	This	file	contains	just	the	two	following	lines:

	
This	 is	essentially	a	 two-column	table	in	a	 text	file.	The	left	column	is	 the	keyword	and
the	 right	 column	 an	 indication	 of	 the	 type	 of	 keyword	 it	 is.	 Class	 names	 should	 be	 a
KEYWORD1	and	methods	should	be	KEYWORD2.	It	does	not	matter	how	many	spaces
or	tabs	you	put	between	the	columns,	but	each	keyword	should	start	on	a	new	line.

Examples

The	other	thing	that	you,	as	a	good	Arduino	citizen,	should	include	as	part	of	the	library	is
a	 folder	 of	 examples.	 In	 this	 case,	 the	 library	 is	 so	 simple	 that	 a	 single	 example	 will
suffice.

The	examples	must	all	be	placed	in	a	folder	called	examples	inside	the	Flasher	folder.
The	example	 is	 in	 fact	 just	an	Arduino	sketch,	 so	you	can	create	 the	example	using	 the
Arduino	 IDE.	 But	 first,	 you	 have	 to	 quit	 and	 then	 reopen	 the	Arduino	 IDE	 to	make	 it
aware	of	the	new	library.

After	 restarting	 the	Arduino	 IDE,	 from	 the	Arduino	 IDE’s	menu,	 select	File	and	 then
New	to	create	a	new	sketch	window.	Then	from	the	Menu,	select	Sketch	and	the	Import
Library	option.	The	Options	should	look	something	like	Figure	11-1.

The	libraries	above	the	line	in	the	submenu	are	the	official	libraries;	below	this	line	are
the	“unofficial”	contributed	 libraries.	 If	all	has	gone	well,	you	should	see	Flasher	 in	 the
list.

If	Flasher	is	not	in	the	list,	it	is	very	likely	that	the	Flasher	folder	is	not	in	the	libraries
folder	of	your	sketches	folder,	so	go	back	and	check.

	
Figure	11-1	Importing	the	Flasher	library

	
Type	the	flowing	into	the	sketch	window	that	has	just	been	created:

	
The	 Arduino	 IDE	 will	 not	 allow	 you	 to	 save	 the	 example	 sketch	 directly	 into	 the

libraries	 folder,	 so	 save	 it	 somewhere	else	under	 the	name	Simple	Flasher	Example	and
then	move	the	whole	Simple	Flasher	Example	folder	that	you	just	saved	into	the	examples
folder	in	your	library.

If	 you	 restart	 your	 Arduino	 IDE,	 you	 should	 now	 see	 that	 you	 are	 able	 to	 open	 the
example	sketch	from	the	menu	as	shown	in	Figure	11-2.

	
Figure	11-2	Opening	the	example	sketch

	

Conclusion

	
There	 is	more	 to	C++	and	to	writing	libraries,	but	 this	chapter	should	get	you	started.	It
should	 also	be	 sufficient	 for	most	 of	what	 you	 are	 likely	 to	 do	with	 an	Arduino.	These
Arduinos	are	small	devices	and	the	temptation	is	often	to	overengineer	solutions	that	could
otherwise	be	very	simple	and	straightforward.

That	 concludes	 the	main	 body	 of	 this	 book.	 For	 further	 information	 on	Arduino	 and
where	 to	 go	 next,	 a	 good	 starting	 point	 is	 always	 the	 official	 Arduino	 website	 at

www.arduino.cc.	Also,	please	refer	to	the	book’s	website	at	www.arduinobook.com,	where
you	will	find	errata	and	other	useful	resources.

If	 you	 are	 looking	 for	 help	 or	 advice,	 the	 Arduino	 community	 on
www.arduino.com/forum	is	extremely	helpful.	You	will	also	find	the	author	on	there	with
the	username	Si.

http://www.arduino.cc
http://www.arduinobook.com
http://www.arduino.com

Index
	
Please	note	that	index	links	point	to	page	beginnings	from	the	print	edition.	Locations	are
approximate	 in	 e-readers,	 and	 you	 may	 need	 to	 page	 down	 one	 or	 more	 times	 after
clicking	a	link	to	get	to	the	indexed	material.

Symbols

	
>=	(greater	than	or	equal	to)	comparison	operator,	44

<=	(less	than	or	equal	to)	comparison	operator,	44

−	(minus)	operator,	42

!=	(not	equal	to)	comparison	operator,	44

/	(slash),	as	division	operators,	42

;	(semicolon),	in	programming	syntax,	29

||	(or)	operator,	60

+	(plus),	as	addition	operator,	42

=	(assignment)	operator,	assigning	values	to	variables,	40

==	(equal	to)	comparison	operator,	44,	60

&&	(and)	operator,	manipulating	values,	60

*	(asterisk),	as	multiplication	operator,	42

[]	(square	brackets),	in	array	syntax,	68

<<	(bit	shift	operator),	119

<	(less	than)	comparison	operator,	44

>	(greater	than)	comparison	operator,	44

A

abs	function,	math	functions	in	library,	108

addition	(+)	operator,	42

Algorithms	+	Data	Structures	=	Programs	(Wirth),	67

alphanumeric	LCD	Shield,	126

analog	inputs,	4–5,	102–103

analog	outputs,	100–102

analogRead	function,	102

analogWrite	function,	102

and	(&&)	operator,	manipulating	values,	60

Arduino	Bluetooth,	11–12

Arduino	Diecimila,	9

Arduino	Duemilanove,	9

Arduino	Lilypad,	11–12

Arduino	Mega,	10

Arduino	Nano,	10–11

Arduino,	origins	of,	7

Arduino	Uno

in	Arduino	family	of	development	boards,	9

ATMega328	processor	in,	117

arguments

passing	to	functions,	28–29

of	random	function,	106

of	tone	function,	111

arithmetic

numeric	variables	and,	40–42

operators,	42

arrays

overview	of,	67–71

PROGMEM	and,	116–117

SOS	signal	example,	71–72

string	arrays.	See	strings

for	translating	Morse	code.	See	Morse	code	translator

ASCII	code,	73

assignment	(=)	operator,	assigning	values	to	variables,	40

asterisk	(*),	as	multiplication	operator,	42

ATmega1280,	Mega	and,	10

ATmega168,	Uno	and,	9

ATmega328

Uno	and,	9,	117

use	on	Arduino	boards,	3

autoscroll	function,	LCD	library,	130

B

binary	language,	compiling	code	into,	30

binary	values,	hexadecimal	and	decimal	equivalents,	109–110

bit	manipulation	functions,	108–110

bit	shift	operator	(<<),	119

bitRead	function,	110

bits,	109

bitWrite	function,	110

blink	function,	LCD	library,	130

Blink	sketch

default,	17–18

LEDs	and,	15

modifying,	20–22

running,	35–36

setup	and	loop	functions	in,	34–35

blocks,	of	code,	34

Bluetooth,	11–12

body	tags,	HTML,	137

Booleans

data	types	in	C	language,	61

manipulating	values,	59–61

buffer	variables,	when	using	char	array	with	PROGMEM,	117

byte	data	type,	61

C

C++	language

classes	and	methods,	143–144

creating	examples	for	library,	148–150

creating	header	file	for	library	class,	145–146

creating	implementation	file	for	library	class,	146–147

defining	keywords	for	library,	148

example	using	built	in	library,	144

object	orientation	in,	143

writing	libraries,	144–145

C	language

C++	as	extension	to,	143

coding	styles,	62

for	command,	45–48

commands,	42

compilation	process,	30–32

data	types	in,	61–62

#define	directive,	48–49

examining	functions	in	boilerplate	code,	32–34

if	command,	42–44

numeric	variables	and	arithmetic	processes	in,	40–42

running	Blink	sketch,	35–36

setup	and	loop	functions	in	Blink	sketch,	34–35

testing	experiments	in,	38–40

variables,	36–38

while	command,	48

zero	as	index	in,	68

calling	functions,	28

case	sensitivity,	syntax	of	programming	languages	and,	28

CHANGE	constant,	types	of	interrupt	signals,	114

char

data	types	in	C	language,	61

PROGMEM	and,	116–117

string	literals	and,	72

character	sequences.	See	strings

Chipkit	board,	13

classes,	C++,	143–144

clear	function,	LCD	library,	127

code

blocks	of,	34

compilation	of,	30–32

formatting	styles	or	standards,	62

translating	to	board,	29–30

COM3	ports,	as	serial	port	for	Windows	computers,	18–19

commands,	C	language

for	command,	45–48

if	command,	42–44

overview	of,	42

while	command,	48

comments

code	formatting	styles	or	standards,	64–65

reasons	for	using	or	not	using,	65–66

comparison	operators

comparing	values	with	equal	to	(==),	60

types	of,	44

compilation	process

arrays	and,	70

translating	code	into	machine	code,	30–32

compression,	data	storage	and,	121–123

computer	memory,	data	in,	70

conditions,	if	command	and,	43

constants

defining,	55

storing,	115–116

constrain	function,	math	functions	in	library,	108

constructor	methods,	146–147

controller	chip,	for	use	with	LCD	shield,	125

cos,	math	functions	in	library,	108

Creative	Commons	license,	for	Arduino	designs,	7

curly	braces	({})

code	formatting	styles	or	standards,	63

in	syntax	of	blocks	of	code,	34

cursor	function,	LCD	library,	130

D

data,	representation	of	numbers	and	letters,	75–76

data	storage

clearing	EEPROM	contents,	121

compression	and,	121–123

constants,	115–116

EEPROM,	117–118

overview	of,	115

PROGMEM	directive,	116–117

storing	floats	in	EEPROM,	119–120

storing	ints	in	EEPROM,	118–119

storing	strings	in	EEPROM,	120

data	types,	in	C	language,	61–62

debouncing,	button	presses	and,	94–100

decimal	value,	hexadecimal	and	binary	equivalents,	109–110

#define	directive

for	associating	a	value	with	a	name,	48–49

for	defining	constants,	55

delayPeriod	variable

conditions	used	with,	43

example	of	use	of,	37–38

development	boards

analog	and	digital	connections,	4–5

in	Arduino	family,	8

Bluetooth,	11–12

components	on,	3

crystal,	Reset	switch,	Serial	Programming	Connector,	and	USB	connection,	6–7

Lilypad,	11–13

Mega,	10

microcontrollers	on,	5–6

Nano,	10–11

overview	of,	2–3

power	connections,	4

power	supply,	4

selecting	type	of,	18

Uno,	Duemilanove,	and	Diecimila,	9

DFRRobot	LCD	Keypad	Shield,	125

DHCP	(Dynamic	Host	Configuration	Protocol),	134

Diecimila,	9

digital	connections,	on	Arduino	boards,	4–5

digital	inputs

button	presses	and	debouncing,	94–100

internal	pull-up	resistors,	93–94

overview	of,	89–90

pull-up	resistors	and,	90–93

digital	outputs

measuring	with	multimeter,	85–87,	89

overview	of,	85

pinMode	function	for	configuring	pin	electronics,	87–88

digitalRead	function,	90

digitalWrite	function,	34–35,	93

DIL	(dual	inline)	socket,	4

display	function,	LCD	library,	130

division	(/)	operator,	42

doubles,	data	types	in	C	language,	61

dual	inline	(DIL)	socket,	4

Duemilanove,	9

Dynamic	Host	Configuration	Protocol	(DHCP),	134

E

EEPROM	(electrically	erasable	read-only	memory)

clearing	contents	of,	121

compressing	data	and,	121

floats	stored	in,	119–120

ints	stored	in,	118–119

reading	to/writing	from,	117–118

strings	stored	in,	120

elements,	of	arrays,	70

ENC28J60	Ethernet	controller	chip,	132

encapsulation

global	variables	and,	55

object	orientation	increasing,	143

EPROM	(erasable	programmable	read-only	memory),	1

equal	to	(==)	comparison	operator,	44,	60

Ethernet

Arduino	shields,	7–8,	131

communicating	with	web	servers,	132–133

passing	pin	settings	over	the	network,	137–142

selecting	official	Wiznet-based	shield,	132

using	Arduino	as	web	server,	134–137

examples,	creating	for	C++	library,	148–150

F

FALLING	constant,	types	of	interrupt	signals,	114

Femtoduino,	unofficial	Arduino	boards,	13

File	menu,	accessing	Sketchbook	from,	22–23

flash	memory

on	microcontroller,	1

storing	data	in,	116–117

flashDotOrDash	function,	81

flashSequence	function,	79–80

floating	point	numbers.	See	floats

floats

data	types	in	C	language,	61

overview	of,	59

range	compression	and,	121–122

storing	in	EEPROM,	119–120

for	command,	45–48

Freeduino,	unofficial	Arduino	boards,	13

functions

Booleans	and,	59–61

calling	and	passing	arguments	to,	28–29

coding	styles	or	standards	for	formatting,	62

collection	of.	See	libraries,	Arduino

commenting,	64–66

data	types	in	C	language,	61–62

defining	vs.	predefined,	51

examining	in	boilerplate	code,	32–34

floats,	59

global,	local,	and	static	variables	and,	54–57

indentation,	62–63

opening	braces,	63

overview	of,	51–52

parameters,	53–54

pre-defined	vs.	defining,	33

returning	values,	57–58

setup	and	loop	functions	in	Blink	sketch,	34–35

for	use	with	LCD	displays,	130

variable	types,	58

whitespaces,	64

G

global	variables,	54–56,	76

greater	than	(>)	comparison	operator,	44

greater	than	or	equal	to	(>=)	comparison	operator,	44

H

HD44780,	controller	chip	used	with	LCD	shield,	125

header	(.h)	files

creating	for	library	class,	145–146

needed	for	each	C++	class,	144

header	tags,	HTML,	133,	137

hexadecimal	values,	decimal	and	binary	equivalents,	109–110

highByte	function,	118

home	function,	LCD	library,	130

HTML	(HyperText	Markup	Language),	132,	137,	142

HTTP	(HyperText	Transport	Protocol),	132,	137

I

I/O	(input/output)

advanced	functions	for,	111–114

analog	inputs,	102–103

analog	outputs,	100–102

button	presses	and	debouncing,	94–100

digital	inputs,	89–90

digital	outputs,	85–89

internal	pull-up	resistors,	93–94

overview	of,	85

pins	on	microcontroller,	1–2

pull-up	resistors	and,	90–93

if	command,	42–44,	60

implementation	(.cpp)	file

creating	for	library	class,	146–147

needed	for	each	C++	class,	144

indentation,	code	formatting	styles	or	standards,	62–63

input/output.	See	I/O	(input/output)

interference,	pull-up	resistors	and,	90

interrupts,	112–114

ints

16	bits	used	in	numeric	representation,	61

data	types	in	C	language,	61

decimal	value	of,	109

declaring,	53–54

hex	value	of,	110

random	function	returning,	106

range	compression	and,	121–122

return	values	and,	58

storing	in	EEPROM,	118–119

IP	addresses,	using	Arduino	as	web	server	and,	134–136

K

keywords,	defining	for	C++	library,	148

L

LCD	displays

functions	that	can	be	used	with,	130

overview	of,	125–126

sending	messages	to,	129

USB	message	board,	127–129

ledPin	variable,	37

LEDs	(light-emitting	diodes),	15–16

less	than	(<)	comparison	operator,	44

less	than	or	equal	to	(<=)	comparison	operator,	44

letters,	data	representation	in	Morse	code	translator,	75–76

libraries,	Arduino

bit	manipulation	functions	in,	108–110

interrupts,	112–114

math	functions,	108

overview	of,	105

PROGMEM	library,	116–117

random	numbers,	105–108

shift-Out	function,	112

tone	function,	111–112

libraries,	C++

creating	examples	for	library,	148–150

creating	header	file	for	library	class,	145–146

creating	implementation	file	for	library	class,	146–147

defining	keywords	for,	148

example	using	built	in,	144

writing,	144–145

light-emitting	diodes	(LEDs),	15–16

Lilypad,	11–12

local	variables,	55–56

log,	math	functions	in	library,	108

long	data	type,	in	C	language,	61

loop	function

in	Blink	sketch	example,	34–35

defining,	33

for	Ethernet	shield,	137

if	command	and,	43–44

for	LCD	shield,	129

for	loops,	45–48

for	Morse	code	translator,	76–80

required	in	all	sketches,	31

while	loops,	48

lowByte	function,	118

LSBFIRST	constant,	112

M

mac	addresses,	using	Arduino	as	web	server	and,	134

Mac	computers

creating	C++	libraries	and,	145

TextMate	as	text	editor,	145

map,	math	functions	in	library,	108

math	functions,	in	Arduino	library,	108

max,	math	functions	in	library,	108

Mega,	10

member	variables,	C++,	143,	146

memory

data	in	computer	memory,	70

flash	memory,	1,	116–117

methods,	C++,	143–144

microcontrollers

on	Arduino	development	board,	2–3

overview	of,	1–2

processing	speed	of,	35

min,	math	functions	in	library,	108

minus	(−)	operator,	42

Morse	code

history	of,	68

SOS	example	using	arrays,	71–72

Morse	code	translator

data	representation,	75–76

flashDotOrDash	function,	81

flashSequence	function,	80

global	variables	and	setup	function	for,	76

loop	function	for,	76–80

overview	of,	74–75

storing	constants	used	in,	115–116

testing	in	Serial	Monitor,	81–83

Motor	shield,	7

MSBFIRST	constant,	112

multimeter,	measuring	outputs	with,	85–87,	100–102

multiplication	operator	(*),	42

N

naming	conventions,	for	variables,	146

Nano,	10–11

noAutoscroll	function,	LCD	library,	130

noBlink	function,	LCD	library,	130

noCursor	function,	LCD	library,	130

noDisplay	function,	LCD	library,	130

noInterrupts	function,	114

not	equal	to	(!=)	comparison	operator,	44

numbers,	data	representation	in	Morse	code	translator,	75–76

numeric	variables,	40–42

O

object	orientation,	in	C++,	143

objects,	creating,	146

operators,	59–61

arithmetic,	42

assignment	(=),	40

bit	shift	(<<),	119

comparison,	44

or	(||)	operator,	60

output.	See	I/O	(input/output)

P

pageNameIs	function,	142

paragraph	tags,	HTML,	133,	137

parameters

adding	to	functions,	53–54

global	variables	and,	54–55

syntax	of	programming	languages,	28

PCB	(printed	circuit	board),	3

pgm_read_word	function,	116

physical	computing,	Arduino	described	as,	1

pinMode	function

for	configuring	pin	electronics,	87–88

setup	function	calling,	34–35

pins

controlling	LCD	display,	125

I/O	pins	on	microcontroller,	1–2

interrupts	attached	to,	113

LCD	shield	pin	assignments,	128

passing	pin	settings	over	the	network,	137–142

shift-Out	function	feeding	shift	registers,	112

pinState	arrays,	141–142

plus	(+),	as	addition	operator,	42

posting	data,	HTTP	and,	137

pow,	math	functions	in	library,	108

power	connections,	4

power	supply

on	Arduino	board,	4

required	by	Ethernet	shield,	132

powering	up	Arduino	boards,	15–16

print	function,	LCD	library,	127

printed	circuit	board	(PCB),	3

private	methods,	C++,	144

Processing	library,	105

PROGMEM	directive

compressing	data	and,	121

storing	data	in	flash	memory,	116–117

programming	by	intention,	77

programming	languages

C++	language.	See	C++	language

C	language.	See	C	language

syntax	of,	28–29

translating	code	to	board,	29–30

vocabulary	of,	27

programs.	See	sketches

pseudo-random	numbers,	106

public	methods,	C++,	144

pull-up	resistors

enabling	internal,	93–94

overview	of,	90–93

simulation	of	interrupt	using,	113

Pulse	Width	Modulation	(PWM),	100–102

punctuation,	syntax	of	programming	languages,	28

push	buttons,	debouncing,	94

PWM	(Pulse	Width	Modulation),	100–102

Q

quartz	crystal	oscillator,	on	Arduino	boards,	6–7

R

RAM	(random	access	memory),	1

random	function,	105–108

random	number	generator,	107–108

randomSeed	function,	107

range	compression,	121–123

readHeader	function,	142

relays,	Arduino	shields,	7

Reset	connector,	power	connections,	4

Reset	switch,	on	Arduino	board,	6

resistors,	pull-up.	See	pull-up	resistors

return	values,	functions	and,	57–58

RISING	constant,	types	of	interrupt	signals,	114

Roboduino,	unofficial	Arduino	boards,	13

Ruggeduino,	unofficial	Arduino	boards,	13

S

scrollDisplayLeft	function,	LCD	library,	130

scrollDisplayRight	function,	LCD	library,	130

Seeeduino,	unofficial	Arduino	boards,	13

Serial	Monitor

displaying	messages	sent	from,	127

example	using	numeric	variables	and	arithmetic,	40–41

reading	electrical	interference,	90–92

testing	experiments	in	C,	38–40

testing	Morse	code	translator	in,	81–83

viewing	array	in,	68–69

serial	port,	selecting	from	Tool	menu,	18–20

Serial	Programming	Connector,	6

Serial.available(),	77–78

setCursor	function,	LCD	library,	127

setup	function

in	Blink	sketch	example,	34–35

defining,	33

for	Ethernet	shield,	137

for	LCD	shield,	129

in	Morse	code	translator,	76

required	in	all	sketches,	31

setValuesFromParams	function,	142

shield	boards

for	Ethernet,	131

for	LCD	display,	125

list	of	popular,	7

selecting	official	Wiznet-based	shield,	132

shift-Out	function,	112

shift	registers,	112

sin,	math	functions	in	library,	108

Sketchbook,	22–25

sketches

accessing	from	File	menu,	22–23

boilerplate	code	for,	31

collection	of	functions	for.	See	libraries,	Arduino

downloading,	23–25

as	programs,	28

uploading	first,	17–22

slash	(/),	as	division	operators,	42

software,	installing,	16

sqrt,	math	functions	in	library,	108

square	brackets	([]),	in	array	syntax,	68

static	variables,	56–57

string	arrays.	See	strings

string	literals,	72–73,	76

string	variables,	73–74

strings

overview	of,	72

storing	in	EEPROM,	120

string	literals,	72–73

string	variables,	73–74

for	translating	Morse	code.	See	Morse	code	translator

subtraction	(–)	operator,	42

switches

connecting	to	input	pin	on	board,	92

pull-up	resistors	and,	93

using	wire	as,	95,	97

syntax,	of	programming	languages,	28–29

T

tags,	HTML,	133,	137

tan,	math	functions	in	library,	108

Teensy,	unofficial	Arduino	boards,	13

tempFloat	variable,	122

text	editors,	for	creating	C++	files,	145

text,	HTML	formatting,	132–133

TextMate	(Mac	computers),	145

TextPad	(Windows	computers),	145

threads,	executing	single,	112–113

todos,	commenting	on	code,	65–66

tone	function,	111–112

Tools	menu,	18–20

truth	tables,	using	with	values,	60

type	casts,	converting	float	to	int,	122

U

UART	(Universal	Asynchronous	Receiver/Transmitter),	78

unions,	storing	floats	in	EEPROM,	119–120

Universal	Asynchronous	Receiver/Transmitter	(UART),	78

Uno

in	Arduino	family	of	development	boards,	9

ATMega328	processor	in,	117

unsigned	int,	data	types	in	C	language,	61

unsigned	long,	data	types	in	C	language,	61

USB

communicating	via,	77–78

component	on	Arduino	development	boards,	6–7

connecting	via,	1

installing	drivers	for,	16

plugging	Arduino	board	into	USB	port,	15

USB	Host	shield,	7

USB	message	board,	127–129

V

valueOfParam	function,	142

values

assigning	to	variables,	40

#define	directive	for	associating	with	a	name,	48–49

functions	returning,	57–58

list	of	values	in	arrays,	67

manipulating	values,	59–61

storing.	See	data	storage

variables

Booleans	and,	59–61

C++	member	variables,	143

data	types	in	C	language,	61–62

defining	in	C	language,	36–38

for	Flasher	object,	146

floats,	59

global,	54–55

local,	55–56

numeric,	40–42

static,	56–57

types	of,	58

Verify	button,	for	checking	code,	30

vocabulary,	of	programming	languages,	27

void	keyword,	32–33

W

web	browsers

communicating	via	HTTP,	132

text	formatted	using	HTML,	132–133

web	servers

communicating	with,	132–133

using	Arduino	as,	134–137

while	command,	48

whitespace,	code	formatting	styles	or	standards,	64

Windows	computers

creating	C++	libraries,	145

serial	port	for,	18–19

TextPad	as	text	editor,	145

Wiring	library,	Arduino	library	based	on,	105

Wiznet	chipset,	132

write	function,	LCD	library,	129

writeHTMLforPin	function,	142

	Acknowledgments
	Introduction
	1 This Is Arduino
	Microcontrollers
	Development Boards

	A Tour of an Arduino Board
	Power Supply
	Power Connections
	Analog Inputs
	Digital Connections
	Microcontroller
	Other Components

	The Origins of Arduino
	The Arduino Family
	Uno, Duemilanove, and Diecimila
	Mega
	Nano
	Bluetooth
	Lilypad
	Other “Official” Boards

	Arduino Clones and Variants
	Conclusion
	2 Getting Started
	Powering Up
	Installing the Software
	Uploading Your First Sketch
	The Arduino Application
	Conclusion
	3 C Language Basics
	Programming
	What Is a Programming Language?
	Blink—Again!
	Variables
	Experiments in C
	Numeric Variables and Arithmetic

	Commands
	if
	for
	while

	The #define Directive
	Conclusion
	4 Functions
	What Is a Function?
	Parameters
	Global, Local, and Static Variables
	Return Values
	Other Variable Types
	floats
	boolean
	Other Data Types

	Coding Style
	Indentation
	Opening Braces
	Whitespace
	Comments

	Conclusion
	5 Arrays and Strings
	Arrays
	Morse Code SOS Using Arrays

	String Arrays
	String Literals
	String Variables

	A Morse Code Translator
	Data
	Globals and Setup
	The loop function
	The flashSequence Function
	The flashDotOrDash Function
	Putting It All Together

	Conclusion
	6 Input and Output
	Digital Outputs
	Digital Inputs
	Pull-up Resistors
	Internal Pull-up Resistors
	Debouncing

	Analog Outputs
	Analog Input
	Conclusion
	7 The Standard Arduino Library
	Random Numbers
	Math Functions
	Bit Manipulation
	Advanced I/O
	Generating Tones
	Feeding Shift Registers

	Interrupts
	Conclusion
	8 Data Storage
	Constants
	The PROGMEM Directive
	EEPROM
	Storing an int in EEPROM
	Storing a float in EEPROM (Unions)
	Storing a String in EEPROM
	Clearing the Contents of EEPROM

	Compression
	Range Compression

	Conclusion
	9 LCD Displays
	A USB Message Board
	Using the Display
	Other LCD Library Functions
	Conclusion
	10 Arduino Ethernet Programming
	Ethernet Shields
	Communicating with Web Servers
	HTTP
	HTML

	Arduino as a Web Server
	Setting Arduino Pins over the Network
	Conclusion
	11 C++ and Libraries
	Object Orientation
	Classes and Methods

	Built-in Library Example
	Writing Libraries
	The Header File
	The Implementation File
	Completing Your Library

	Conclusion
	Index

