
11C h a p t e r

W507

advanCed
User
InterfaCes

to use layout managers to arrange
user‑interface components in a container

to become familiar with common user‑interface components, such as
radio buttons, check boxes, and menus

to build programs that handle events generated by user‑interface components

to browse the Java documentation effectively

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

11.1  Layout ManageMent  W508

11.2  ChoiCes  W510

How To 11.1: laying out a User Interface W518
Programming Tip 11.1: Use a GUI Builder W520
Worked Example 11.1: programming a

Working Calculator

11.3  Menus  W521

11.4  expLoring the sWing 
DoCuMentation  W528

11.5  using tiMer events for 
aniMations  W533

11.6  Mouse events  W536

Special Topic 11.1: Keyboard events W539
Special Topic 11.2: event adapters W540
Worked Example 11.2: adding Mouse and

Keyboard support to the Bar Chart Creator
Video Example 11.1: designing a Baby

naming program

Java for Everyone, 2e, Cay Horstmann, Copyright © 2013 John Wiley and Sons, Inc. All rights reserved.

W508

the graphical applications with which you are familiar
have many visual gadgets for information entry: buttons,
scroll bars, menus, and so on. In this chapter, you will learn
how to use the most common user‑interface components
in the Java swing toolkit, and how to search the Java
documentation for information about other components.
You will also learn more about event handling, so you can
use timer events in animations and process mouse events
in interactive graphical programs.

11.1 layout Management
Up to now, you have had limited control over
the layout of user-interface components. You
learned how to add components to a panel, and
the panel arranged the components from left to
right. However, in many applications, you need
more sophisticated arrangements.

In Java, you build up user interfaces by add-
ing components into containers such as panels.
Each con tainer has its own layout manager,
which determines how components are laid out.

By default, a JPanel uses a flow layout.
A flow layout simply arranges its components from left to right and starts a new row
when there is no more room in the current row.

Another commonly used layout manager is the border layout. The border layout
groups components into five areas: center, north, south, west, and east (see Figure 1).
Each area can hold a single component, or it can be empty.

The border layout is the default layout manager for a frame (or, more technically,
the frame’s content pane). But you can also use the border layout in a panel:

panel.setLayout(new BorderLayout());

Now the panel is controlled by a border layout, not the flow layout. When adding a
component, you specify the position, like this:

panel.add(component, BorderLayout.NORTH);

A layout manager arranges user-
interface components.

User‑interface
components are
arranged by
placing them
inside containers.
Containers can be
placed inside larger
containers.

each container has a
layout manager that
directs the
arrangement of its
components.

three useful layout
managers are the
border layout,
flow layout, and
grid layout.

When adding a
component to a
container with the
border layout,
specify the NORTH,
SOUTH, WEST, EAST, or
CENTER position.

figure 1 
Components expand to fill
space in the Border layout

North

West Center East

South

11.1 layout Management W509

figure 2  the Grid layout

The grid layout manager arranges components in a grid with a fixed number of rows
and columns. All components are resized so that they all have the same width and
height. Like the border layout, it also expands each component to fill the entire allot-
ted area. (If that is not desirable, you need to place each component inside a panel.)
Figure 2 shows a number pad panel that uses a grid layout. To create a grid layout,
you supply the number of rows and columns in the constructor, then add the compo-
nents, row by row, left to right:

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 3));
buttonPanel.add(button7);
buttonPanel.add(button8);
buttonPanel.add(button9);
buttonPanel.add(button4);
. . .

Sometimes you want to have a tabular arrangement of the components where col-
umns have different sizes or one component spans multiple columns. A more com-
plex layout manager called the grid bag lay out can handle these situations. The grid
bag layout is quite complex to use, however, and we do not cover it in this book;
see, for example, Cay S. Horstmann and Gary Cornell, Core Java 2 Volume 1: Fun
damentals, 8th edition (Prentice Hall, 2008), for more information. Java 6 introduced
a group layout that is designed for use by interactive tools—see Programming Tip
11.1 on page W520.

Fortunately, you can create acceptable-looking layouts in nearly all situations by
nesting panels. You give each panel an appropriate layout manager. Panels don’t have
visible borders, so you can use as many panels as you need to organize your compo-
nents. Figure 3 shows an example. The keypad buttons are contained in a panel with
grid layout. That panel is itself contained in a larger panel with border layout. The
text field is in the northern position of the larger panel.

the content pane of a
frame has a border
layout by default. a
panel has a flow
layout by default.

figure 3  nesting panels

JTextField
in NORTH position

JPanel
with GridLayout
in CENTER position

W510 Chapter 11 advanced User Interfaces

The following code produces the arrange ment in Figure 3:
JPanel keypadPanel = new JPanel();
keypadPanel.setLayout(new BorderLayout());
buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 3));
buttonPanel.add(button7);
buttonPanel.add(button8);
// . . .
keypadPanel.add(buttonPanel, BorderLayout.CENTER);
JTextField display = new JTextField();
keypadPanel.add(display, BorderLayout.NORTH);

1.  What happens if you place two buttons in the northern position of a border
layout? Try it out with a small program.

2.  How do you add two buttons to the northern position of a frame so that they
are shown next to each other?

3.  How can you stack three buttons one above the other?
4.  What happens when you place one button in the northern position of a border

layout and another in the center position? Try it out with a small program if you
aren’t sure.

5.  Some calculators have a double-wide 0 button, as shown below. How can you
achieve that?

practice it  Now you can try these exercises at the end of the chapter: R11.1, R11.3, P11.1.

11.2 Choices
In the following sections, you will see how to present a finite set of choices to the
user. Which Swing component you use depends on whether the choices are mutually
exclusive or not, and on the amount of space you have for displaying the choices.

11.2.1 radio Buttons

If the choices are mutually exclusive, use a set of
radio buttons. In a radio button set, only one
button can be selected at a time. When the user
selects another button in the same set, the pre-
viously selected button is automatically turned
off. (These buttons are called radio buttons
because they work like the sta tion selector but-
tons on a car radio: If you select a new station,

o n L i n e  e x a M p L e

the code for a
calculator’s user
interface.

s e L f   C h e C k

In an old fashioned radio, pushing down
one station button released the others.

for a small set of
mutually exclusive
choices, use a group
of radio buttons or a
combo box.

11.2 Choices W511

the old station is automatically dese lected.) For example, in Figure 4, the font sizes are
mutually exclusive. You can select small, medium, or large, but not a combination of
them.

To create a set of radio buttons, first create each button individually, and then add
all buttons in the set to a ButtonGroup object:

JRadioButton smallButton = new JRadioButton("Small");
JRadioButton mediumButton = new JRadioButton("Medium");
JRadioButton largeButton = new JRadioButton("Large");

ButtonGroup group = new ButtonGroup();
group.add(smallButton);
group.add(mediumButton);
group.add(largeButton);

Note that the button group does not place the buttons close to each other in the con-
tainer. The purpose of the button group is simply to find out which buttons to turn
off when one of them is turned on. It is still your job to arrange the buttons on the
screen.

The isSelected method is called to find out whether a button is currently selected
or not. For example,

if (largeButton.isSelected()) { size = LARGE_SIZE; }

Unfortunately, there is no convenient way of finding out which button in a group
is currently selected. You have to call isSelected on each button. Because users will
expect one radio button in a radio button group to be selected, call setSelected(true)
on the default radio button before making the enclosing frame visible.

If you have multiple button groups, it is a good idea to group them together visu-
ally. It is a good idea to use a panel for each set of radio buttons, but the panels them-
selves are invisible. You can add a border to a panel to make it visible. In Figure 4, for
example, the panels containing the Size radio buttons and Style check boxes have
borders.

add radio buttons to
a ButtonGroup so that
only one button in
the group is selected
at any time.

You can place a
border around a
panel to group its
contents visually.

figure 4  a Combo Box, Check
Boxes, and radio Buttons

W512 Chapter 11 advanced User Interfaces

There are a large number of border types. We will show only a couple of variations
and leave it to the border enthusiasts to look up the others in the Swing documenta-
tion. The EtchedBorder class yields a bor der with a three-dimensional, etched effect.
You can add a border to any component, but most commonly you apply it to a panel:

JPanel panel = new JPanel();
panel.setBorder(new EtchedBorder());

If you want to add a title to the border (as in Figure 4), you need to construct a Titled-
Border. You make a titled border by supplying a basic border and then the title you
want. Here is a typical example:

panel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));

11.2.2 Check Boxes

A check box is a user-interface component with two states: checked and unchecked.
You use a group of check boxes when one selection does not exclude another. For
example, the choices for “Bold” and “Italic” in Figure 4 are not exclusive. You can
choose either, both, or neither. Therefore, they are imple mented as a set of separate
check boxes. Radio buttons and check boxes have different visual appearances. Radio
buttons are round and have a black dot when selected. Check boxes are square and
have a check mark when selected.

You construct a check box by providing the name in the constructor:

JCheckBox italicCheckBox = new JCheckBox("Italic");

Because check box settings do not exclude each other, you do not place a set of check
boxes inside a but ton group.

As with radio buttons, you use the isSelected method to find out whether a check
box is currently checked or not.

11.2.3 Combo Boxes

If you have a large number of choices, you don’t want to make a set of radio buttons,
because that would take up a lot of space. Instead, you can use a combo box. This
component is called a combo box because it is a combination of a list and a text field.
The text field displays the name of the current selection. When you click on the arrow
to the right of the text field of a combo box, a list of selections drops down, and you
can choose one of the items in the list (see Figure 5).

for a binary choice,
use a check box.

for a large set of
choices, use a
combo box.

figure 5  an open Combo Box

11.2 Choices W513

figure 6  the Components of the FontFrame

JLabel
in CENTER position

JPanel
with GridLayout
in SOUTH position

If the combo box is editable, you can also type in your own selection. To make a
combo box editable, call the setEditable method.

You add strings to a combo box with the addItem method.
JComboBox facenameCombo = new JComboBox();
facenameCombo.addItem("Serif");
facenameCombo.addItem("SansSerif");
. . .

You get the item that the user has selected by calling the getSelectedItem method.
However, because combo boxes can store other objects in addition to strings, the get-
SelectedItem method has return type Object. Hence, in our example, you must cast the
returned value back to String:

String selectedString = (String) facenameCombo.getSelectedItem();

You can select an item for the user with the setSelectedItem method.
Radio buttons, check boxes, and combo boxes generate an ActionEvent whenever

the user selects an item. In the following program, we don’t care which component
was clicked—all components notify the same listener object. Whenever the user
clicks on any one of them, we simply ask each component for its current content,
using the isSelected and getSelectedItem methods. We then redraw the label with the
new font.

Figure 6 shows how the components are arranged in the frame.

section_2/fontviewer.java

1 import javax.swing.JFrame;
2
3 /**
4 This program allows the user to view font effects.
5 */
6 public class FontViewer
7 {

radio buttons, check
boxes, and combo
boxes generate
action events, just
as buttons do.

W514 Chapter 11 advanced User Interfaces

8 public static void main(String[] args)
9 {

10 JFrame frame = new FontFrame();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setTitle("FontViewer");
13 frame.setVisible(true);
14 }
15 }

section_2/fontframe.java

1 import java.awt.BorderLayout;
2 import java.awt.Font;
3 import java.awt.GridLayout;
4 import java.awt.event.ActionEvent;
5 import java.awt.event.ActionListener;
6 import javax.swing.ButtonGroup;
7 import javax.swing.JButton;
8 import javax.swing.JCheckBox;
9 import javax.swing.JComboBox;

10 import javax.swing.JFrame;
11 import javax.swing.JLabel;
12 import javax.swing.JPanel;
13 import javax.swing.JRadioButton;
14 import javax.swing.border.EtchedBorder;
15 import javax.swing.border.TitledBorder;
16
17 /**
18 This frame contains a text sample and a control panel
19 to change the font of the text.
20 */
21 public class FontFrame extends JFrame
22 {
23 private static final int FRAME_WIDTH = 300;
24 private static final int FRAME_HEIGHT = 400;
25
26 private JLabel label;
27 private JCheckBox italicCheckBox;
28 private JCheckBox boldCheckBox;
29 private JRadioButton smallButton;
30 private JRadioButton mediumButton;
31 private JRadioButton largeButton;
32 private JComboBox facenameCombo;
33 private ActionListener listener;
34
35 /**
36 Constructs the frame.
37 */
38 public FontFrame()
39 {
40 // Construct text sample
41 label = new JLabel("Big Java");
42 add(label, BorderLayout.CENTER);
43
44 // This listener is shared among all components
45 listener = new ChoiceListener();
46
47 createControlPanel();
48 setLabelFont();

11.2 Choices W515

49 setSize(FRAME_WIDTH, FRAME_HEIGHT);
50 }
51
52 class ChoiceListener implements ActionListener
53 {
54 public void actionPerformed(ActionEvent event)
55 {
56 setLabelFont();
57 }
58 }
59
60 /**
61 Creates the control panel to change the font.
62 */
63 public void createControlPanel()
64 {
65 JPanel facenamePanel = createComboBox();
66 JPanel sizeGroupPanel = createCheckBoxes();
67 JPanel styleGroupPanel = createRadioButtons();
68
69 // Line up component panels
70
71 JPanel controlPanel = new JPanel();
72 controlPanel.setLayout(new GridLayout(3, 1));
73 controlPanel.add(facenamePanel);
74 controlPanel.add(sizeGroupPanel);
75 controlPanel.add(styleGroupPanel);
76
77 // Add panels to content pane
78
79 add(controlPanel, BorderLayout.SOUTH);
80 }
81
82 /**
83 Creates the combo box with the font style choices.
84 @return the panel containing the combo box
85 */
86 public JPanel createComboBox()
87 {
88 facenameCombo = new JComboBox();
89 facenameCombo.addItem("Serif");
90 facenameCombo.addItem("SansSerif");
91 facenameCombo.addItem("Monospaced");
92 facenameCombo.setEditable(true);
93 facenameCombo.addActionListener(listener);
94
95 JPanel panel = new JPanel();
96 panel.add(facenameCombo);
97 return panel;
98 }
99

100 /**
101 Creates the check boxes for selecting bold and italic styles.
102 @return the panel containing the check boxes
103 */
104 public JPanel createCheckBoxes()
105 {
106 italicCheckBox = new JCheckBox("Italic");
107 italicCheckBox.addActionListener(listener);
108

W516 Chapter 11 advanced User Interfaces

109 boldCheckBox = new JCheckBox("Bold");
110 boldCheckBox.addActionListener(listener);
111
112 JPanel panel = new JPanel();
113 panel.add(italicCheckBox);
114 panel.add(boldCheckBox);
115 panel.setBorder(new TitledBorder(new EtchedBorder(), "Style"));
116
117 return panel;
118 }
119
120 /**
121 Creates the radio buttons to select the font size.
122 @return the panel containing the radio buttons
123 */
124 public JPanel createRadioButtons()
125 {
126 smallButton = new JRadioButton("Small");
127 smallButton.addActionListener(listener);
128
129 mediumButton = new JRadioButton("Medium");
130 mediumButton.addActionListener(listener);
131
132 largeButton = new JRadioButton("Large");
133 largeButton.addActionListener(listener);
134 largeButton.setSelected(true);
135
136 // Add radio buttons to button group
137
138 ButtonGroup group = new ButtonGroup();
139 group.add(smallButton);
140 group.add(mediumButton);
141 group.add(largeButton);
142
143 JPanel panel = new JPanel();
144 panel.add(smallButton);
145 panel.add(mediumButton);
146 panel.add(largeButton);
147 panel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));
148
149 return panel;
150 }
151
152 /**
153 Gets user choice for font name, style, and size
154 and sets the font of the text sample.
155 */
156 public void setLabelFont()
157 {
158 // Get font name
159 String facename = (String) facenameCombo.getSelectedItem();
160
161 // Get font style
162
163 int style = 0;
164 if (italicCheckBox.isSelected())
165 {
166 style = style + Font.ITALIC;
167 }

11.2 Choices W517

168 if (boldCheckBox.isSelected())
169 {
170 style = style + Font.BOLD;
171 }
172
173 // Get font size
174
175 int size = 0;
176
177 final int SMALL_SIZE = 24;
178 final int MEDIUM_SIZE = 36;
179 final int LARGE_SIZE = 48;
180
181 if (smallButton.isSelected()) { size = SMALL_SIZE; }
182 else if (mediumButton.isSelected()) { size = MEDIUM_SIZE; }
183 else if (largeButton.isSelected()) { size = LARGE_SIZE; }
184
185 // Set font of text field
186
187 label.setFont(new Font(facename, style, size));
188 label.repaint();
189 }
190 }

6.  What is the advantage of a JComboBox over a set of radio buttons? What is the
disadvantage?

7.  What happens when you put two check boxes into a button group? Try it out if
you are not sure.

8.  How can you nest two etched borders, like this?

9.  Why do all user-interface components in the FontFrame class share the same
listener?

10.  Why was the combo box placed inside a panel? What would have happened if it
had been added directly to the control panel?

11.  How could the following user interface be improved?

practice it  Now you can try these exercises at the end of the chapter: R11.11, P11.3, P11.4.

s e L f   C h e C k

W518 Chapter 11 advanced User Interfaces

step 1  Make a sketch of your desired component layout.

Draw all the buttons, labels, text fields, and borders on a sheet of paper. Graph paper works
best.

Here is an example—a user interface for ordering
pizza. The user interface contains

• Three radio buttons
• Two check boxes
• A label: “Your Price:”
• A text field
• A border

step 2  Find groupings of adjacent components with the same layout.

Usually, the component arrangement is complex enough that you need to use several panels,
each with its own lay out manager. Start by looking at adjacent components that are arranged
top to bottom or left to right. If several com ponents are surrounded by a border, they should
be grouped together.

Here are the groupings from the pizza user interface:

Size

Pepperoni

Anchovies

Your Price:

Small

Medium

Large

�

�

step 3  Identify layouts for each group.

When components are arranged horizontally, choose a flow layout. When components are
arranged vertically, use a grid layout with one column.

In the pizza user interface example, you would choose
• A (3, 1) grid layout for the radio buttons
• A (2, 1) grid layout for the check boxes
• A flow layout for the label and text field

step 4  Group the groups together.

Look at each group as one blob, and group the blobs together into larger groups, just as you
grouped the compo nents in the preceding step. If you note one large blob surrounded by
smaller blobs, you can group them together in a border layout.

hoW to 11.1 Laying out a user interface

A graphical user interface is made up of components such as buttons and text fields. The Swing
library uses contain ers and layout managers to arrange these components. This How To
explains how to group components into con tainers and how to pick the right layout managers.

Size

Pepperoni

Anchovies

Your Price:

Small

Medium

Large

�

�

11.2 Choices W519

You may have to repeat the grouping again if you have a very complex user interface. You
are done if you have arranged all groups in a single container.

For example, the three component groups of the pizza user interface can be arranged as:
• A group containing the first two component groups, placed in the center of a container

with a border layout.
• The third component group, in the southern area of that container.

in CENTER position

in SOUTH position

In this step, you may run into a couple of complications. The group “blobs” tend to vary in
size more than the indi vidual components. If you place them inside a grid layout, the grid lay-
out forces them all to be the same size. Also, you occasionally would like a component from
one group to line up with a component from another group, but there is no way for you to
communicate that intent to the layout managers.

These problems can be overcome by using more sophisticated layout managers or imple-
menting a custom layout manager. However, those techniques are beyond the scope of this
book. Sometimes, you may want to start over with Step 1, using a component layout that is
easier to manage. Or you can decide to live with minor imperfections of the layout. Don’t
worry about achieving the perfect layout—after all, you are learning programming, not user-
interface design.

step 5  Write the code to generate the layout.

This step is straightforward but potentially tedious, especially if you have a large number of
components.

Start by constructing the components. Then construct a panel for each component group
and set its layout man ager if it is not a flow layout (the default for panels). Add a border to the
panel if required. Finally, add the compo nents to their panels. Continue in this fashion until
you reach the outermost containers, which you add to the frame.

Here is an outline of the code required for the pizza user interface:

JPanel radioButtonPanel = new JPanel();
radioButtonPanel.setLayout(new GridLayout(3, 1));
radioButtonPanel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));
radioButtonPanel.add(smallButton);
radioButtonPanel.add(mediumButton);
radioButtonPanel.add(largeButton);

JPanel checkBoxPanel = new JPanel();
checkBoxPanel.setLayout(new GridLayout(2, 1));
checkBoxPanel.add(pepperoniButton());
checkBoxPanel.add(anchoviesButton());

JPanel pricePanel = new JPanel(); // Uses FlowLayout by default
pricePanel.add(new JLabel("Your Price: "));
pricePanel.add(priceTextField);

W520 Chapter 11 advanced User Interfaces

JPanel centerPanel = new JPanel(); // Uses FlowLayout
centerPanel.add(radioButtonPanel);
centerPanel.add(checkBoxPanel);

// Frame uses BorderLayout by default
add(centerPanel, BorderLayout.CENTER);
add(pricePanel, BorderLayout.SOUTH);

use a gui Builder

As you have seen, implementing even a simple graphical user interface in Java is quite tedious.
You have to write a lot of code for constructing components, using layout managers, and pro-
viding event handlers. Most of the code is repetitive.

A GUI builder takes away much of the tedium. Most GUI builders help you in three ways:
• You drag and drop components onto a panel. The GUI builder writes the layout manage-

ment code for you.
• You customize components with a dialog box, setting properties such as fonts, colors, text,

and so on. The GUI builder writes the customization code for you.
• You provide event handlers by picking the event to process and providing just the code

snippet for the listener method. The GUI builder writes the boilerplate code for attaching
a listener object.

Java 6 introduced GroupLayout, a powerful layout manager that was specifically designed to be
used by GUI builders. The free NetBeans development environment, available from http://
netbeans.org, makes use of this layout man ager—see Figure 7.

programming tip 11.1

figure 7  a GUI Builder

The GroupLayout
manages the components

on this form

Use this dialog box
to edit component

properties

Click here to
view generated

source code

Drag components
from this palette

onto the form

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

11.3 Menus W521

If you need to build a complex user interface, you will find that learning to use a GUI
builder is a very worth while investment. You will spend less time writing boring code, and
you will have more fun designing your user interface and focusing on the functionality of your
program.

11.3 Menus
Anyone who has ever used a graphical user interface is familiar with pull-down
menus (see Figure 8). At the top of the frame is a menu bar that contains the top-level
menus. Each menu is a collection of menu items and submenus.

The sample program for this section builds up a small but typical menu and traps
the action events from the menu items. The program allows the user to specify the
font for a label by selecting a face name, font size, and font style. In Java it is easy to
create these menus.

You add the menu bar to the frame:
public class MyFrame extends JFrame
{
 public MyFrame()
 {
 JMenuBar menuBar = new JMenuBar();
 setJMenuBar(menuBar);
 . . .
 }
 . . .
}

WorKed exaMple 11.1 programming a Working Calculator

In this Worked Example, we implement arithmetic and scientific operations for a calculator.
The sample program in Section 11.1 showed how to lay out the buttons for a simple calculator,
and we use that program as a starting point.

a frame contains a
menu bar. the menu
bar contains menus.
a menu contains
submenus and
menu items.

figure 8 
pull‑down Menus

Menu bar

Submenu

Menu item

Menu

W522 Chapter 11 advanced User Interfaces

A menu provides a list of available choices.

Menus are then added to the menu bar:
JMenu fileMenu = new JMenu("File");
JMenu fontMenu = new JMenu("Font");
menuBar.add(fileMenu);
menuBar.add(fontMenu);

You add menu items and submenus with the add method:
JMenuItem exitItem = new JMenuItem("Exit");
fileMenu.add(exitItem);

JMenu styleMenu = new JMenu("Style");
fontMenu.add(styleMenu); // A submenu

A menu item has no further submenus. When the user selects a menu item, the menu
item sends an action event. Therefore, you want to add a listener to each menu item:

ActionListener listener = new ExitItemListener();
exitItem.addActionListener(listener);

You add action listeners only to menu items, not to menus or the menu bar. When the
user clicks on a menu name and a submenu opens, no action event is sent.

To keep the program readable, it is a good idea to use a separate method for each
menu or set of related menus. For example,

public JMenu createFaceMenu()
{
 JMenu menu = new JMenu("Face");
 menu.add(createFaceItem("Serif"));
 menu.add(createFaceItem("SansSerif"));
 menu.add(createFaceItem("Monospaced"));
 return menu;
}

Now consider the createFaceItem method. It has a string parameter variable for the
name of the font face. When the item is selected, its action listener needs to

1. Set the current face name to the menu item text.
2. Make a new font from the current face, size, and style, and apply it to the label.

We have three menu items, one for each supported face name. Each of them needs to
set a different name in the first step. Of course, we can make three listener classes Ser-
ifListener, SansSerifListener, and MonospacedListener, but that is not very elegant. After
all, the actions only vary by a single string. We can store that string inside the listener
class and then make three objects of the same listener class:

class FaceItemListener implements ActionListener
{
 private String name;

 public FaceItemListener(String newName) { name = newName; }

Menu items generate
action events.

11.3 Menus W523

 public void actionPerformed(ActionEvent event)
 {
 faceName = name; // Sets an instance variable of the frame class
 setLabelFont();
 }
}

Now we can install a listener object with the appropriate name:
public JMenuItem createFaceItem(String name)
{
 JMenuItem item = new JMenuItem(name);
 ActionListener listener = new FaceItemListener(name);
 item.addActionListener(listener);
 return item;
}

This approach is still a bit tedious. We can do better by using a local inner class (see
Special Topic 10.2). When we move the declaration of the inner class inside the cre-
ateFaceItem method, the actionPerformed method can access the name parameter variable
directly. However, we need to observe a technical rule. Because name is a local variable,
it must be declared as final to be accessible from an inner class method.

public JMenuItem createFaceItem(final String name)
// Final variables can be accessed from an inner class method
{
 class FaceItemListener implements ActionListener // A local inner class
 {
 public void actionPerformed(ActionEvent event)
 {
 facename = name; // Accesses the local variable name
 setLabelFont();
 }
 }

 JMenuItem item = new JMenuItem(name);
 ActionListener listener = new FaceItemListener();
 item.addActionListener(listener);
 return item;
}

The same strategy is used for the createSizeItem and createStyleItem methods.

section_3/fontviewer2.java

1 import javax.swing.JFrame;
2
3 /**
4 This program uses a menu to display font effects.
5 */
6 public class FontViewer2
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new FontFrame2();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setTitle("FontViewer");
13 frame.setVisible(true);
14 }
15 }

W524 Chapter 11 advanced User Interfaces

section_3/fontframe2.java

1 import java.awt.BorderLayout;
2 import java.awt.Font;
3 import java.awt.event.ActionEvent;
4 import java.awt.event.ActionListener;
5 import javax.swing.JFrame;
6 import javax.swing.JLabel;
7 import javax.swing.JMenu;
8 import javax.swing.JMenuBar;
9 import javax.swing.JMenuItem;

10
11 /**
12 This frame has a menu with commands to change the font
13 of a text sample.
14 */
15 public class FontFrame2 extends JFrame
16 {
17 private static final int FRAME_WIDTH = 300;
18 private static final int FRAME_HEIGHT = 400;
19
20 private JLabel label;
21 private String facename;
22 private int fontstyle;
23 private int fontsize;
24
25 /**
26 Constructs the frame.
27 */
28 public FontFrame2()
29 {
30 // Construct text sample
31 label = new JLabel("Big Java");
32 add(label, BorderLayout.CENTER);
33
34 // Construct menu
35 JMenuBar menuBar = new JMenuBar();
36 setJMenuBar(menuBar);
37 menuBar.add(createFileMenu());
38 menuBar.add(createFontMenu());
39
40 facename = "Serif";
41 fontsize = 24;
42 fontstyle = Font.PLAIN;
43
44 setLabelFont();
45 setSize(FRAME_WIDTH, FRAME_HEIGHT);
46 }
47
48 class ExitItemListener implements ActionListener
49 {
50 public void actionPerformed(ActionEvent event)
51 {
52 System.exit(0);
53 }
54 }
55
56 /**
57 Creates the File menu.

11.3 Menus W525

58 @return the menu
59 */
60 public JMenu createFileMenu()
61 {
62 JMenu menu = new JMenu("File");
63 JMenuItem exitItem = new JMenuItem("Exit");
64 ActionListener listener = new ExitItemListener();
65 exitItem.addActionListener(listener);
66 menu.add(exitItem);
67 return menu;
68 }
69
70 /**
71 Creates the Font submenu.
72 @return the menu
73 */
74 public JMenu createFontMenu()
75 {
76 JMenu menu = new JMenu("Font");
77 menu.add(createFaceMenu());
78 menu.add(createSizeMenu());
79 menu.add(createStyleMenu());
80 return menu;
81 }
82
83 /**
84 Creates the Face submenu.
85 @return the menu
86 */
87 public JMenu createFaceMenu()
88 {
89 JMenu menu = new JMenu("Face");
90 menu.add(createFaceItem("Serif"));
91 menu.add(createFaceItem("SansSerif"));
92 menu.add(createFaceItem("Monospaced"));
93 return menu;
94 }
95
96 /**
97 Creates the Size submenu.
98 @return the menu
99 */

100 public JMenu createSizeMenu()
101 {
102 JMenu menu = new JMenu("Size");
103 menu.add(createSizeItem("Smaller", -1));
104 menu.add(createSizeItem("Larger", 1));
105 return menu;
106 }
107
108 /**
109 Creates the Style submenu.
110 @return the menu
111 */
112 public JMenu createStyleMenu()
113 {
114 JMenu menu = new JMenu("Style");
115 menu.add(createStyleItem("Plain", Font.PLAIN));
116 menu.add(createStyleItem("Bold", Font.BOLD));

W526 Chapter 11 advanced User Interfaces

117 menu.add(createStyleItem("Italic", Font.ITALIC));
118 menu.add(createStyleItem("Bold Italic", Font.BOLD
119 + Font.ITALIC));
120 return menu;
121 }
122
123 /**
124 Creates a menu item to change the font face and set its action listener.
125 @param name the name of the font face
126 @return the menu item
127 */
128 public JMenuItem createFaceItem(final String name)
129 {
130 class FaceItemListener implements ActionListener
131 {
132 public void actionPerformed(ActionEvent event)
133 {
134 facename = name;
135 setLabelFont();
136 }
137 }
138
139 JMenuItem item = new JMenuItem(name);
140 ActionListener listener = new FaceItemListener();
141 item.addActionListener(listener);
142 return item;
143 }
144
145 /**
146 Creates a menu item to change the font size
147 and set its action listener.
148 @param name the name of the menu item
149 @param increment the amount by which to change the size
150 @return the menu item
151 */
152 public JMenuItem createSizeItem(String name, final int increment)
153 {
154 class SizeItemListener implements ActionListener
155 {
156 public void actionPerformed(ActionEvent event)
157 {
158 fontsize = fontsize + increment;
159 setLabelFont();
160 }
161 }
162
163 JMenuItem item = new JMenuItem(name);
164 ActionListener listener = new SizeItemListener();
165 item.addActionListener(listener);
166 return item;
167 }
168
169 /**
170 Creates a menu item to change the font style
171 and set its action listener.
172 @param name the name of the menu item
173 @param style the new font style
174 @return the menu item
175 */

11.3 Menus W527

176 public JMenuItem createStyleItem(String name, final int style)
177 {
178 class StyleItemListener implements ActionListener
179 {
180 public void actionPerformed(ActionEvent event)
181 {
182 fontstyle = style;
183 setLabelFont();
184 }
185 }
186
187 JMenuItem item = new JMenuItem(name);
188 ActionListener listener = new StyleItemListener();
189 item.addActionListener(listener);
190 return item;
191 }
192
193 /**
194 Sets the font of the text sample.
195 */
196 public void setLabelFont()
197 {
198 Font f = new Font(facename, fontstyle, fontsize);
199 label.setFont(f);
200 }
201 }

12.  Why do JMenu objects not generate action events?
13.  Can you add a menu item directly to the menu bar? Try it out. What happens?
14.  Why is the increment parameter variable in the createSizeItem method declared

as final?
15.  Why can’t the createFaceItem method simply set the faceName instance variable,

like this:
class FaceItemListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 setLabelFont();
 }
}

public JMenuItem createFaceItem(String name)
{
 JMenuItem item = new JMenuItem(name);
 faceName = name;
 ActionListener listener = new FaceItemListener();
 item.addActionListener(listener);
 return item;
}

16.  In this program, the font specification (name, size, and style) is stored in instance
variables. Why was this not necessary in the program of the previous section?

practice it  Now you can try these exercises at the end of the chapter: R11.12, P11.6, P11.7.

s e L f   C h e C k

W528 Chapter 11 advanced User Interfaces

11.4 exploring the swing documentation
In the preceding sections, you saw the
basic properties of the most common user-
interface components. We purposefully
omitted many options and variations to
simplify the discussion. You can go a long
way by using only the simplest properties
of these components. If you want to imple-
ment a more sophisti cated effect, you can
look inside the Swing documentation. You
may find the documentation intimidating
at first glance, though. The purpose of this
section is to show you how you can use the
documentation to your advantage without
being overwhelmed.

As an example, consider a program for mixing colors by specifying the red, green,
and blue values. How can you specify the colors? Of course, you could supply three
text fields, but sliders would be more convenient for users of your program (see
Figure 9).

The Swing user-interface toolkit has a large set of user-interface components. How
do you know if there is a slider? You can buy a book that illustrates all Swing compo-
nents. Or you can run the sample application included in the Java Development Kit
that shows off all Swing components (see Figure 10). Or you can look at the names
of all of the classes that start with J and decide that JSlider may be a good candidate.

Next, you need to ask yourself a few questions:

• How do I construct a JSlider?
• How can I get notified when the user has moved it?
• How can I tell to which value the user has set it?

In order to use the Swing library effectively,
you need to study the API documentation.

You should learn to
navigate the apI
documentation to
find out more about
user‑interface
components.

figure 9  a Color viewer with sliders

11.4 exploring the swing documentation W529

figure 10 
the swingset demo

When you look at the documentation of the JSlider class, you will probably not be
happy. There are over 50 methods in the JSlider class and over 250 inherited methods,
and some of the method descriptions look downright scary, such as the one in
Figure 11. Apparently some folks out there are concerned about the valueIs Adjusting
property, whatever that may be, and the designers of this class felt it necessary to

figure 11  a Mysterious Method description from the apI documentation

W530 Chapter 11 advanced User Interfaces

sup ply a method to tweak that property. Until you too feel that need, your best bet is
to ignore this method. As the author of an introductory book, it pains me to tell you
to ignore certain facts. But the truth of the matter is that the Java library is so large
and complex that nobody understands it in its entirety, not even the designers of Java
themselves. You need to develop the ability to separate fundamental concepts from
ephemeral minutiae. For example, it is important that you understand the concept of
event handling. Once you understand the concept, you can ask the question, “What
event does the slider send when the user moves it?” But it is not important that you
memorize how to set tick marks or that you know how to implement a slider with a
custom look and feel.

Let’s go back to our fundamental questions. In Java 6, there are six constructors for
the JSlider class. You want to learn about one or two of them. You must strike a bal-
ance somewhere between the trivial and the bizarre. Consider

public JSlider()
 Creates a horizontal slider with the range 0 to 100 and an initial value of 50.

Maybe that is good enough for now, but what if you want another range or initial
value? It seems too lim ited.

On the other side of the spectrum, there is
public JSlider(BoundedRangeModel brm)
 Creates a horizontal slider using the specified BoundedRangeModel.

Whoa! What is that? You can click on the BoundedRangeModel link to get a long explana-
tion of this class. This appears to be some internal mechanism for the Swing imple-
mentors. Let’s try to avoid this construc tor if we can. Looking further, we find

public JSlider(int min, int max, int value)
 Creates a horizontal slider using the specified min, max, and value.

This sounds general enough to be useful and simple enough to be usable. You might
want to stash away the fact that you can have vertical sliders as well.

Next, you want to know what events a slider generates. There is no addAction-
Listener method. That makes sense. Adjusting a slider seems different from clicking a
button, and Swing uses a different event type for these events. There is a method

public void addChangeListener(ChangeListener l)

Click on the ChangeListener link to find out more about this interface. It has a single
method

void stateChanged(ChangeEvent e)

Apparently, that method is called whenever the user moves the slider. What is a Change-
Event? Once again, click on the link, to find out that this event class has no methods of
its own, but it inherits the getSource method from its superclass Event Object. The get-
Source method tells us which component generated this event, but we don’t need that
information—we know that the event came from the slider.

Now let’s make a plan: Add a change event listener to each slider. When the slider
is changed, the stat eChanged method is called. Find out the new value of the slider.
Recompute the color value and repaint the color panel. That way, the color panel is
continually repainted as the user moves one of the sliders.

To compute the color value, you will still need to get the current value of the slider.
Look at all the methods that start with get. Sure enough, you find

public int getValue()
 Returns the slider’s value.

11.4 exploring the swing documentation W531

figure 12  the Components of the Color viewer frame

JPanel
in CENTER position

JPanel
with GridLayout
in SOUTH position

Now you know everything you need to write the program. The program uses one
new Swing component and one event listener of a new type. After having mastered
the basics, you may want to explore the capa bilities of the component further, for
example by adding tick marks—see Exercise P11.9.

Figure 12 shows how the components are arranged in the frame.

section_4/Colorviewer.java

1 import javax.swing.JFrame;
2
3 public class ColorViewer
4 {
5 public static void main(String[] args)
6 {
7 JFrame frame = new ColorFrame();
8 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9 frame.setVisible(true);

10 }
11 }

section_4/Colorframe.java

1 import java.awt.BorderLayout;
2 import java.awt.Color;
3 import java.awt.GridLayout;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JSlider;
8 import javax.swing.event.ChangeListener;
9 import javax.swing.event.ChangeEvent;

10
11 public class ColorFrame extends JFrame
12 {
13 private static final int FRAME_WIDTH = 300;
14 private static final int FRAME_HEIGHT = 400;

W532 Chapter 11 advanced User Interfaces

15
16 private JPanel colorPanel;
17 private JSlider redSlider;
18 private JSlider greenSlider;
19 private JSlider blueSlider;
20
21 public ColorFrame()
22 {
23 colorPanel = new JPanel();
24
25 add(colorPanel, BorderLayout.CENTER);
26 createControlPanel();
27 setSampleColor();
28 setSize(FRAME_WIDTH, FRAME_HEIGHT);
29 }
30
31 class ColorListener implements ChangeListener
32 {
33 public void stateChanged(ChangeEvent event)
34 {
35 setSampleColor();
36 }
37 }
38
39 public void createControlPanel()
40 {
41 ChangeListener listener = new ColorListener();
42
43 redSlider = new JSlider(0, 255, 255);
44 redSlider.addChangeListener(listener);
45
46 greenSlider = new JSlider(0, 255, 175);
47 greenSlider.addChangeListener(listener);
48
49 blueSlider = new JSlider(0, 255, 175);
50 blueSlider.addChangeListener(listener);
51
52 JPanel controlPanel = new JPanel();
53 controlPanel.setLayout(new GridLayout(3, 2));
54
55 controlPanel.add(new JLabel("Red"));
56 controlPanel.add(redSlider);
57
58 controlPanel.add(new JLabel("Green"));
59 controlPanel.add(greenSlider);
60
61 controlPanel.add(new JLabel("Blue"));
62 controlPanel.add(blueSlider);
63
64 add(controlPanel, BorderLayout.SOUTH);
65 }
66
67 /**
68 Reads the slider values and sets the panel to
69 the selected color.
70 */
71 public void setSampleColor()
72 {
73 // Read slider values
74

11.5 Using timer events for animations W533

75 int red = redSlider.getValue();
76 int green = greenSlider.getValue();
77 int blue = blueSlider.getValue();
78
79 // Set panel background to selected color
80
81 colorPanel.setBackground(new Color(red, green, blue));
82 colorPanel.repaint();
83 }
84 }

17.  Suppose you want to allow users to pick a color from a color dialog box. Which
class would you use? Look in the API documentation.

18.  Why does a slider emit change events and not action events?

practice it  Now you can try these exercises at the end of the chapter: R11.14, P11.2, P11.9.

11.5 Using timer events for animations
In this section we introduce timer events and show how you can use them to imple-
ment simple animations.

The Timer class in the javax.swing package generates a sequence of action events,
spaced at even time intervals. (You can think of a timer as an invisible button that is
automatically clicked.) This is useful whenever you want to send continuous updates
to a component. For example, in an animation, you may want to update a scene ten
times per second and redisplay the image to give the illusion of movement.

When you use a timer, you specify the frequency of the events and an object of a
class that implements the ActionListener interface. Place whatever action you want to
occur inside the action Performed method. Finally, start the timer.

class MyListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 Action that is executed at each timer event
 }
}

MyListener listener = new MyListener();
Timer t = new Timer(interval, listener);
t.start();

Then the timer calls the actionPerformed method of the
listener object every interval milliseconds.

A Swing timer notifies a listener with each “tick”.

s e L f   C h e C k

a timer generates
action events at
fixed intervals.

W534 Chapter 11 advanced User Interfaces

Our sample program will display a moving rectangle. We first supply a Rectangle-
Component class with a moveRectangleBy method that moves the rectangle by a given
amount.

section_5/rectangleComponent.java

1 import java.awt.Graphics;
2 import javax.swing.JComponent;
3
4 /**
5 This component displays a rectangle that can be moved.
6 */
7 public class RectangleComponent extends JComponent
8 {
9 private static final int RECTANGLE_WIDTH = 20;

10 private static final int RECTANGLE_HEIGHT = 30;
11
12 private int xLeft;
13 private int yTop;
14
15 public RectangleComponent()
16 {
17 xLeft = 0;
18 yTop = 0;
19 }
20
21 public void paintComponent(Graphics g)
22 {
23 g.fillRect(xLeft, yTop, RECTANGLE_WIDTH, RECTANGLE_HEIGHT);
24 }
25
26 /**
27 Moves the rectangle by a given amount.
28 @param dx the amount to move in the x-direction
29 @param dy the amount to move in the y-direction
30 */
31 public void moveRectangleBy(int dx, int dy)
32 {
33 xLeft = xLeft + dx;
34 yTop = yTop + dy;
35 repaint();
36 }
37 }

Note the call to repaint in the moveRectangleBy method. This call is necessary to ensure
that the component is repainted after the position of the rectangle has been changed.
The call to repaint forces a call to the paintComponent method. The paint Component
method redraws the component, causing the rectangle to appear at the updated
location.

The actionPerformed method of the timer listener moves the rectangle one pixel
down and to the right:

scene.moveRectangleBy(1, 1);

Because the action Performed method is called many times per second, the rectangle
appears to move smoothly across the frame.

to make an
animation, the timer
listener should
update and repaint a
component several
times per second.

11.5 Using timer events for animations W535

section_5/rectangleframe.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JFrame;
4 import javax.swing.Timer;
5
6 /**
7 This frame contains a moving rectangle.
8 */
9 public class RectangleFrame extends JFrame

10 {
11 private static final int FRAME_WIDTH = 300;
12 private static final int FRAME_HEIGHT = 400;
13
14 private RectangleComponent scene;
15
16 class TimerListener implements ActionListener
17 {
18 public void actionPerformed(ActionEvent event)
19 {
20 scene.moveRectangleBy(1, 1);
21 }
22 }
23
24 public RectangleFrame()
25 {
26 scene = new RectangleComponent();
27 add(scene);
28
29 setSize(FRAME_WIDTH, FRAME_HEIGHT);
30
31 ActionListener listener = new TimerListener();
32
33 final int DELAY = 100; // Milliseconds between timer ticks
34 Timer t = new Timer(DELAY, listener);
35 t.start();
36 }
37 }

19.  Why does a timer require a listener object?
20.  How can you make the rectangle move backwards?
21.  Describe two ways of modifying the program so that the rectangle moves twice

as fast.
22.  How can you make a car move instead of a rectangle?
23.  How can you make two rectangles move in parallel in the scene?
24.  What would happen if you omitted the call to repaint in the moveRectangleBy

method?

practice it  Now you can try these exercises at the end of the chapter: P11.12, P11.13, P11.14.

s e L f   C h e C k

W536 Chapter 11 advanced User Interfaces

11.6 Mouse events
If you write programs that show drawings, and
you want users to manipulate the drawings
with a mouse, then you need to listen to mouse
events. Mouse listeners are more complex than
action listeners, the listeners that process button
clicks and timer ticks.

A mouse listener must implement the Mouse-
Listener interface, which contains the following
five meth ods:

public interface MouseListener
{
 void mousePressed(MouseEvent event);
 // Called when a mouse button has been pressed on a component
 void mouseReleased(MouseEvent event);
 // Called when a mouse button has been released on a component
 void mouseClicked(MouseEvent event);
 // Called when the mouse has been clicked on a component
 void mouseEntered(MouseEvent event);
 // Called when the mouse enters a component
 void mouseExited(MouseEvent event);
 // Called when the mouse exits a component
}

The mousePressed and mouseReleased methods are called whenever a mouse button is
pressed or released. If a button is pressed and released in quick succession, and the
mouse has not moved, then the mouseClicked method is called as well. The mouseEntered
and mouseExited methods can be used to highlight a user-interface component when-
ever the mouse is pointing inside it.

The most commonly used method is mousePressed. Users generally expect that their
actions are pro cessed as soon as the mouse button is pressed.

You add a mouse listener to a component by calling the addMouseListener method:
public class MyMouseListener implements MouseListener
{
 public void mousePressed(MouseEvent event)
 {
 int x = event.getX();
 int y = event.getY();
 Process mouse event at (x, y)
 }

 // Do-nothing methods
 public void mouseReleased(MouseEvent event) {}
 public void mouseClicked(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
}

MouseListener listener = new MyMouseListener();
component.addMouseListener(listener);

In our sample program, a user clicks on a component containing a rectangle. When-
ever the mouse button is pressed, the rectangle is moved to the mouse location. We

In Swing, a mouse event isn’t a gather-
ing of rodents; it’s notification of a
mouse click by the program user.

You use a mouse
listener to capture
mouse events.

11.6 Mouse events W537

first enhance the RectangleComponent class and add a moveRectangleTo method to move
the rectangle to a new position.

section_6/rectangleComponent2.java

1 import java.awt.Graphics;
2 import java.awt.Rectangle;
3 import javax.swing.JComponent;
4
5 /**
6 This component displays a rectangle that can be moved.
7 */
8 public class RectangleComponent2 extends JComponent
9 {

10 private static final int RECTANGLE_WIDTH = 20;
11 private static final int RECTANGLE_HEIGHT = 30;
12
13 private int xLeft;
14 private int yTop;
15
16 public RectangleComponent2()
17 {
18 xLeft = 0;
19 yTop = 0;
20 }
21
22 public void paintComponent(Graphics g)
23 {
24 g.fillRect(xLeft, yTop, RECTANGLE_WIDTH, RECTANGLE_HEIGHT);
25 }
26
27 /**
28 Moves the rectangle to the given location.
29 @param x the x-position of the new location
30 @param y the y-position of the new location
31 */
32 public void moveRectangleTo(int x, int y)
33 {
34 xLeft = x;
35 yTop = y;
36 repaint();
37 }
38 }

Note the call to repaint in the moveRectangleTo method. As you saw before, this call
causes the component to repaint itself and show the rectangle in the new position.

Now, add a mouse listener to the component. Whenever the mouse is pressed, the
listener moves the rectangle to the mouse location.

class MousePressListener implements MouseListener
{
 public void mousePressed(MouseEvent event)
 {
 int x = event.getX();
 int y = event.getY();
 scene.moveRectangleTo(x, y);
 }
 . . .
}

W538 Chapter 11 advanced User Interfaces

figure 13  Clicking the Mouse Moves the rectangle

It often happens that a particular listener specifies actions only for one or two of the
listener methods. Nevertheless, all five methods of the interface must be imple-
mented. The unused methods are simply implemented as do-nothing methods.

Go ahead and run the RectangleViewer2 program. Whenever you click the mouse
inside the frame, the top-left corner of the rectangle moves to the mouse pointer (see
Figure 13).

section_6/rectangleviewer2.java 

1 import javax.swing.JFrame;
2
3 /**
4 This program displays a rectangle that can be moved with the mouse.
5 */
6 public class RectangleViewer2
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new RectangleFrame2();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setVisible(true);
13 }
14 }

section_6/rectangleframe2.java 

1 import java.awt.event.MouseListener;
2 import java.awt.event.MouseEvent;
3 import javax.swing.JFrame;
4
5 /**
6 This frame contains a moving rectangle.
7 */
8 public class RectangleFrame2 extends JFrame
9 {

11.6 Mouse events W539

10 private static final int FRAME_WIDTH = 300;
11 private static final int FRAME_HEIGHT = 400;
12
13 private RectangleComponent2 scene;
14
15 class MousePressListener implements MouseListener
16 {
17 public void mousePressed(MouseEvent event)
18 {
19 int x = event.getX();
20 int y = event.getY();
21 scene.moveRectangleTo(x, y);
22 }
23
24 // Do-nothing methods
25 public void mouseReleased(MouseEvent event) {}
26 public void mouseClicked(MouseEvent event) {}
27 public void mouseEntered(MouseEvent event) {}
28 public void mouseExited(MouseEvent event) {}
29 }
30
31 public RectangleFrame2()
32 {
33 scene = new RectangleComponent2();
34 add(scene);
35
36 MouseListener listener = new MousePressListener();
37 scene.addMouseListener(listener);
38
39 setSize(FRAME_WIDTH, FRAME_HEIGHT);
40 }
41 }

25.  Why was the moveRectangleBy method in RectangleComponent2 replaced with a
moveRectangleTo method?

26.  Why must the MousePressListener class supply five methods?
27.  How could you change the behavior of the program so that a new rectangle is

added whenever the mouse is clicked?

practice it  Now you can try these exercises at the end of the chapter: R11.21, P11.22, P11.23.

keyboard events

If you program a game, you may want to process keystrokes, such as the arrow keys. Add a
key listener to the component on which you draw the game scene. The KeyListener interface
has three methods. As with a mouse listener, you are most interested in key press events, and
you can leave the other two methods empty. Your key listener class should look like this:

class MyKeyListener implements KeyListener
{
 public void keyPressed(KeyEvent event)
 {
 String key = KeyStroke.getKeyStrokeForEvent(event).toString();
 key = key.replace("pressed ", "");
 Process key.

s e L f   C h e C k

special topic 11.1

W540 Chapter 11 advanced User Interfaces

 }

 // Do-nothing methods
 public void keyReleased(KeyEvent event) {}
 public void keyTyped(KeyEvent event) {}
}

The call KeyStroke.getKeyStrokeForEvent(event).toString()
turns the event object into a text description of the key,
such as "pressed LEFT". In the next line, we eliminate the
"pressed " prefix. The remainder is a string such as "LEFT"
or "A" that describes the key that was pressed. You can
find a list of all key names in the API documentation of the KeyStroke class.

As always, remember to attach the listener to the event source:

KeyListener listener = new MyKeyListener();
scene.addKeyListener(listener);

In order to receive key events, your component must call

scene.setFocusable(true);

event adapters

In the preceding section you saw how to install a mouse listener in a mouse event source and
how the listener methods are called when an event occurs. Usually, a program is not interested
in all listener notifications. For exam ple, a program may only be interested in mouse clicks and
may not care that these mouse clicks are composed of “mouse pressed” and “mouse released”
events. Of course, the program could supply a listener that declares all those methods in which
it has no interest as “do-nothing” methods, for example:

class MouseClickListener implements MouseListener
{
 public void mouseClicked(MouseEvent event)
 {
 Mouse click action
 }

 // Four do-nothing methods
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
 public void mousePressed(MouseEvent event) {}
 public void mouseReleased(MouseEvent event) {}
}

To avoid this labor, some friendly soul has created a MouseAdapter class that implements the
MouseListener interface such that all methods do nothing. You can extend that class, inheriting
the do-nothing methods and over riding the methods that you care about, like this:

class MouseClickListener extends MouseAdapter
{
 public void mouseClicked(MouseEvent event)
 {
 Mouse click action
 }
}

There is also a KeyAdapter that implements the KeyListener interface (see Special Topic 11.1),
providing three do-nothing methods.

Whenever the program user presses
a key, a key event is generated.

o n L i n e  e x a M p L e

a complete program
that uses the arrow
keys to move a
rectangle.

special topic 11.2

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Chapter summary W541

Learn how to arrange multiple components in a container.

• User-interface components are arranged by placing them inside containers.
Containers can be placed inside larger containers.

• Each container has a layout manager that directs the arrangement of its
components.

• Three useful layout managers are the border layout, flow layout, and grid layout.
• When adding a component to a container with the border layout, specify the

NORTH, SOUTH, WEST, EAST, or CENTER position.
• The content pane of a frame has a border layout by default. A panel has a flow

layout by default.

select among the swing components for presenting choices to the user.

• For a small set of mutually exclusive choices, use a group of radio buttons or a
combo box.

• Add radio buttons to a ButtonGroup so that only one button in the group is selected
at any time.

• You can place a border around a panel to group its contents visually.
• For a binary choice, use a check box.
• For a large set of choices, use a combo box.
• Radio buttons, check boxes, and combo boxes generate action events, just as

buttons do.

implement menus in a swing program.

• A frame contains a menu bar. The menu bar contains menus.
A menu contains submenus and menu items.

• Menu items generate action events.

WorKed exaMple 11.2 adding Mouse and keyboard support to the 
Bar Chart Creator

In this Worked Example, we will enhance the bar chart creator of Worked Example 10.1 and
add support for mouse and keyboard operations.

vIdeo exaMple 11.1 Designing a Baby naming program

In this Video Example, you will see how to design a user interface for
a program that suggests baby names.

C h a p t e r s U M M a r Y

W542 Chapter 11 advanced User Interfaces

use the swing documentation.

• You should learn to navigate the API documentation to find out more about
user-interface components.

use timer events to implement animations.

• A timer generates action events at fixed intervals.
• To make an animation, the timer listener should update and

repaint a component several times per second.

Write programs that process mouse events.

• You use a mouse listener to capture mouse events.

s ta n d a r d l I B r a r Y I t e M s I n t r o d U C e d I n t h I s C h a p t e r

java.awt.BorderLayout
 CENTER
 EAST
 NORTH
 SOUTH
 WEST
java.awt.Component
 addKeyListener
 addMouseListener
 setFocusable
java.awt.Container
 setLayout
java.awt.FlowLayout
java.awt.Font
 BOLD
 ITALIC
java.awt.GridLayout
java.awt.event.KeyEvent
java.awt.event.KeyListener
 keyPressed
 keyReleased
 keyTyped
java.awt.event.MouseEvent
 getX
 getY
java.awt.event.MouseListener
 mouseClicked
 mouseEntered
 mouseExited
 mousePressed
 mouseReleased
javax.swing.AbstractButton
 isSelected
 setSelected

javax.swing.ButtonGroup
 add
javax.swing.JCheckBox
javax.swing.JComboBox
 addItem
 getSelectedItem
 isEditable
 setEditable
 setSelectedItem
javax.swing.JComponent
 setBorder
 setFocusable
 setFont
javax.swing.JFrame
 setJMenuBar
javax.swing.JMenu
 add
javax.swing.JMenuBar
 add
javax.swing.JMenuItem
javax.swing.JRadioButton
javax.swing.JSlider
 addChangeListener
 getValue
javax.swing.KeyStroke
 getKeyStrokeForEvent
javax.swing.Timer
 start
 stop
javax.swing.border.EtchedBorder
javax.swing.border.TitledBorder
javax.swing.event.ChangeEvent
javax.swing.event.ChangeListener
 stateChanged

review exercises W543

• r11.1  Can you use a flow layout for the components in a frame? If yes, how?

• r11.2  What is the advantage of a layout manager over telling the container “place this com-
ponent at position (x, y)”?

•• r11.3  What happens when you place a single button into the CENTER area of a container that
uses a border layout? Try it out by writing a small sample program if you aren’t sure
of the answer.

•• r11.4  What happens if you place multiple buttons directly into the SOUTH area, without
using a panel? Try it out by writing a small sample program if you aren’t sure of the
answer.

•• r11.5  What happens when you add a button to a container that uses a border layout and
omit the position? Try it out and explain.

•• r11.6  What happens when you try to add a button to another button? Try it out and
explain.

•• r11.7  The control panel in Section 11.4 uses a grid layout manager. Explain a drawback of
the grid that is apparent in Figure 12. What could you do to overcome this drawback?

••• r11.8  What is the difference between the grid layout and the grid bag layout?

••• r11.9  Can you add icons to check boxes, radio buttons, and combo boxes? Browse the
Java documentation to find out. Then write a small test program to verify your
findings.

• r11.10  What is the difference between radio buttons and check boxes?

• r11.11  Why do you need a button group for radio buttons but not for check boxes?

• r11.12  What is the difference between a menu bar, a menu, and a menu item?

• r11.13  When browsing through the Java documentation for more information about slid-
ers, we ignored the JSlider constructor with no arguments. Why? Would it have
worked in our sample program?

• r11.14  How do you construct a vertical slider? Consult the Swing documentation for an
answer.

•• r11.15  Why doesn’t a JComboBox send out change events?

••• r11.16  What component would you use to show a set of choices, as in a combo box, but so
that several items are visible at the same time? Run the Swing demo applica tion or
look at a book with Swing example programs to find the answer.

•• r11.17  How many Swing user-interface components are there? Look at the Java documen-
tation to get an approximate answer.

•• r11.18  How many methods does the JProgressBar component have? Be sure to count inher-
ited methods. Look at the Java documentation.

• r11.19  What is the difference between an ActionEvent and a MouseEvent?

•• r11.20  What information does an action event object carry? What additional information
does a mouse event object carry? Hint: Check the API documentation.

r e v I e W e x e r C I s e s

W544 Chapter 11 advanced User Interfaces

•• r11.21  Why does the ActionListener interface have only one method, whereas the Mouse -
Listener has five methods?

• p11.1  Write an application with three buttons labeled “Red”, “Green”, and “Blue” that
changes the background color of a panel in the center of the frame to red, green,
or blue.

•• p11.2  Add icons to the buttons of Exercise P11.1. Use a JButton constructor with an Icon
argument and supply an ImageIcon.

• p11.3  Write an application with three radio buttons labeled “Red”, “Green”, and “Blue”
that changes the background color of a panel in the center of the frame to red, green,
or blue.

• p11.4  Write an application with three check boxes labeled “Red”, “Green”, and “Blue”
that adds a red, green, or blue component to the background color of a panel in the
center of the frame. This application can display a total of eight color combinations.

• p11.5  Write an application with a combo box containing three items labeled “Red”,
“Green”, and “Blue” that change the background color of a panel in the center of the
frame to red, green, or blue.

• p11.6  Write an application with a Color menu and menu items labeled “Red”, “Green”,
and “Blue” that change the background color of a panel in the center of the frame to
red, green, or blue.

• p11.7  Write a program that displays a number of rectangles at random positions. Supply
menu items “Fewer” and “More” that generate fewer or more random rectangles.
Each time the user selects “Fewer”, the count should be halved. Each time the user
clicks on “More”, the count should be doubled.

•• p11.8  Modify the program of Exercise P11.7 to replace the buttons with a slider to gener-
ate more or fewer random rectangles.

•• p11.9  Modify the slider program in Section 11.4 to add a set of tick marks to each slider
that show the exact slider position.

••• p11.10  Enhance the font viewer program to allow the user to select different font faces.
Research the API documentation to find out how to find the available fonts on the
user’s system.

••• p11.11  Write a program that lets users design charts such as the following:

Golden Gate

Brooklyn

Delaware Memorial

Mackinac

Use appropriate components to ask for the length, label, and color, then apply them
when the user clicks an “Add Item” button.

p r o G r a M M I n G e x e r C I s e s

programming exercises W545

• p11.12  Write a program that uses a timer to print the current time once a second. Hint: The
following code prints the current time:

Date now = new Date();
System.out.println(now);

The Date class is in the java.util package.

••• p11.13  Change the RectangleComponent for the animation in Section 11.5 so that the rectangle
bounces off the edges of the component rather than simply moving outside.

•• p11.14  Change the rectangle animation in Section 11.5 so that it shows two rectangles
moving in opposite directions.

•• p11.15  Write a program that animates a car so that it moves across a frame.

••• p11.16  Write a program that animates two cars moving across a frame in opposite direc tions
(but at different heights so that they don’t collide.)

••• p11.17  Write a program that displays a scrolling message in a panel. Use a timer for the
scrolling effect. In the timer’s action listener, move the starting position of the mes-
sage and repaint. When the message has left the window, reset the starting position
to the other corner. Provide a user interface to customize the message text, font,
foreground and background colors, and the scrolling speed and direction.

• p11.18  Change the RectangleComponent for the mouse listener program in Section 11.6 so that
a new rectangle is added to the component whenever the mouse is clicked. Hint:
Store all points on which the user clicked, and draw all rectangles in the paint-
Component method.

• p11.19  Write a program that prompts the user to enter the x- and y-positions of a center
point and a radius, using text fields.When the user clicks a “Draw” button, draw a
circle with that center and radius in a component.

•• p11.20  Write a program that allows the user to specify a circle by typing the radius in a text
field and then clicking on the center. Note that you don’t need a “Draw” button.

• p11.21  Write a program that allows the user to specify a circle with two mouse presses,
the first one on the center and the second on a point on the periphery. Hint: In the
mouse press handler, you must keep track of whether you already received the
 center point in a previous mouse press.

••• p11.22  Write a program that allows the user to specify a triangle with three mouse presses.
After the first mouse press, draw a small dot. After the second mouse press, draw a
line joining the first two points. After the third mouse press, draw the entire triangle.
The fourth mouse press erases the old triangle and starts a new one.

••• p11.23  Implement a program that allows two players to play
tic-tac-toe. Draw the game grid and an indication of
whose turn it is (X or O). Upon the next click, check
that the mouse click falls into an empty location, fill
the location with the mark of the current player, and
give the other player a turn. If the game is won, indi-
cate the winner. Also supply a button for starting over.

W546 Chapter 11 advanced User Interfaces

••• p11.24  Write a program that lets users design bar charts with a mouse. When the user clicks
inside a bar, the next mouse click extends the length of the bar to the x-coordinate of
the mouse click. (If it is at or near 0, the bar is removed.) When the user clicks below
the last bar, a new bar is added whose length is the x-coordinate of the mouse click.

•• Business p11.25  Write a program with a graphical interface that allows the user to convert an amount
of money between U.S. dollars (USD), euros (EUR), and British pounds (GBP). The
user interface should have the following elements: a text box to enter the amount to
be converted, two combo boxes to allow the user to select the currencies, a button
to make the conversion, and a label to show the result. Display a warning if the user
does not choose different currencies. Use the following conversion rates:

1 EUR is equal to 1.42 USD.
1 GBP is equal to 1.64 USD.
1 GBP is equal to 1.13 EUR.

•• Business p11.26  Write a program with a graphical interface that implements a login window with text
fields for the user name and password. When the login is successful, hide the login
window and open a new window with a welcome message. Follow these rules for
validating the password:

1. The user name is not case sensitive.
2. The password is case sensitive.
3. The user has three opportunities to enter valid credentials.

Otherwise, display an error message and terminate the program. When the program
starts, read the file users.txt. Each line in that file contains a username and password,
separated by a space. You should make a users.txt file for testing your program.

•• Business p11.27  In Exercise P11.26, the password is shown as it is typed. Browse the Swing docu-
mentation to find an appropriate component for entering a password. Improve the
solution of Exercise P11.26 by using this component instead of a text field. Each
time the user types a letter, show a ■ character.

a n s W e r s t o s e l f ‑ C h e C K Q U e s t I o n s

1.  Only the second one is displayed.
2.  First add them to a panel, then add the panel to

the north end of a frame.
3.  Place them inside a panel with a GridLayout that

has three rows and one column.
4.  The button in the north stretches horizontally

to fill the width of the frame. The height of the
northern area is the normal height.

5.  To get the double-wide button, put it in the
south of a panel with border layout whose
center has a 3 × 2 grid layout with the keys 7, 8,
4, 5, 1, 2. Put that panel in the west of another
border layout panel whose eastern area has a
4 × 1 grid layout with the remaining keys.

6.  If you have many options, a set of radio but-
tons takes up a large area. A combo box can
show many options without using up much
space. But the user cannot see the options as
easily.

7.  If one of them is checked, the other one is
unchecked. You should use radio buttons if
that is the behavior you want.

8.  You can’t nest borders, but you can nest panels
with borders:
JPanel p1 = new JPanel();
p1.setBorder(new EtchedBorder());
JPanel p2 = new JPanel();
p2.setBorder(new EtchedBorder());
p1.add(p2);

answers to self‑Check Questions W547

9.  When any of the component settings is
changed, the program simply queries all of
them and updates the label.

10.  To keep it from growing too large. It would
have grown to the same width and height as
the two panels below it.

11.  Instead of using radio buttons with two
choices, use a checkbox.

12.  When you open a menu, you have not yet
made a selection. Only JMenuItem objects cor-
respond to selections.

13.  Yes, you can—JMenuItem is a subclass of JMenu.
The item shows up on the menu bar.When you
click on it, its listener is called. But the behav-
ior feels unnatural for a menu bar and is likely
to confuse users.

14.  The parameter variable is accessed in a method
of an inner class.

15.  Then the faceName variable is set when the menu
item is added to the menu, not when the user
selects the menu.

16.  In the previous program, the user-interface
components effectively served as storage for
the font specification. Their current settings
were used to construct the font. But a menu
doesn’t save settings; it just generates an action.

17.  JColorChooser.
18.  Action events describe one-time changes, such

as button clicks. Change events describe con-
tinuous changes.

19.  The timer needs to call some method whenever
the time interval expires. It calls the action-
Performed method of the listener object.

20.  Call scene.moveRectangleBy(-1, -1) in the action-
Performed method.

21.  You can cut the timer delay in half (to 50 mil-
liseconds between ticks), or you can double
the distance by which the rectangle moves, by
calling scene.moveRectangleBy(2, 2).

22.  The component class would need to draw a car
at positon (x, y) instead of a rectangle.

23.  There are two entirely different ways:
a. Add a second RectangleComponent to the

frame, using a grid layout. Change the
actionPerformed method of the TimerListener
to call moveRectangleBy on both components.

b. Draw a second rectangle in the paint-
Component method of RectangleComponent.

24.  The moved rectangles won’t be painted, and
the rectangle will appear to be stationary until
the frame is repainted for an external reason.

25.  Because you know the current mouse posi-
tion, not the amount by which the mouse has
moved.

26.  It implements the MouseListener interface,
which has five methods.

27.  The RectangleComponent2 class needs to keep
track of the locations of multiple rectangles. It
can do that with an array list of Point or Rect-
angle objects. The paintComponent method needs
to draw them all. Replace the moveRectangleTo
method with an add RectangleAt method that
adds a rectangle at a given (x, y) position.

