
12C h a p t e r

W549

ObjeCt-
Oriented
design

to learn how to discover new classes
and methods

to use CrC cards for class discovery

to understand the concepts of cohesion and coupling

to identify inheritance, aggregation, and
dependency relationships between classes

to describe class relationships using UML class diagrams

to apply object-oriented design techniques to building
complex programs

to use packages to organize programs

C h a p t e r g O a L s

C h a p t e r C O n t e n t s

12.1  Classes and Their 
responsibiliTies  W550

12.2  relaTionships beTWeen 
Classes  W554

How To 12.1: Using CrC Cards and UML diagrams
in program design W558

Special Topic 12.1: attributes and Methods in
UML diagrams W559

Special Topic 12.2: Multiplicities W560
Special Topic 12.3: aggregation, association,

and Composition W560

Programming Tip 12.1: Make parallel arrays
into arrays of Objects W561

Programming Tip 12.2: Consistency W562

12.3  appliCaTion: prinTing 
an invoiCe  W562

Worked Example 12.1: simulating an automatic
teller Machine

12.4  paCkages  W574

Java for Everyone, 2e, Cay Horstmann, Copyright © 2013 John Wiley and Sons, Inc. All rights reserved.

W550

successfully implementing a software system—as simple as
your next homework project or as complex as the next air
traffic monitoring system—requires a great deal of planning
and design. in fact, for larger projects, the amount of time
spent on planning and design is much greater than the
amount of time spent on programming and testing.

do you find that most of your homework time is spent in
front of the computer, keying in code and fixing bugs? if
so, you can probably save time by focusing on a better
design before you start coding. this chapter tells you how
to approach the design of an object-oriented program in a
systematic manner.

12.1 Classes and their responsibilities
When you design a program, you work from a requirements specification, a descrip-
tion of what your program should do. The designer’s task is to discover structures
that make it possible to implement the requirements in a computer program. In the
following sections, we will examine the steps of the design process.

12.1.1 discovering Classes

When you solve a problem using objects and classes, you need to determine the
classes required for the implementation. You may be able to reuse existing classes, or
you may need to implement new ones.

One simple approach for discovering classes and methods is to look for the nouns
and verbs in the requirements specification. Often, nouns correspond to classes, and
verbs correspond to methods.

For example, suppose your job is to print an invoice such as the one in Figure 1.
Obvious classes that come to mind are Invoice, LineItem, and Customer. It is a good idea
to keep a list of can didate classes on a whiteboard or a sheet of paper. As you brain-
storm, simply put all ideas for classes onto the list. You can always cross out the ones
that weren’t useful after all.

In general, concepts from the problem domain, be it science, business, or a game,
often make good classes. Exam ples are

• Cannonball
• CashRegister
• Monster

The name for such a class should be a noun that describes the concept.
Not all classes can be discovered from the program requirements. Most complex

programs need classes for tactical purposes, such as file or database access, user inter-
faces, control mechanisms, and so on.

Some of the classes that you need may already exist, either in the standard library
or in a program that you developed previously. You also may be able to use inheri-
tance to extend existing classes into classes that match your needs.

to discover classes,
look for nouns in the
problem description.

Concepts from the
problem domain
are good candidates
for classes.

12.1 Classes and their responsibilities W551

Figure 1  an invoice

I N V O I C E

Sam’s Small Appliances
100 Main Street
Anytown, CA 98765

Item Qty Price Total

Toaster 3 $29.95 $89.85

Hair Dryer 1 $24.95 $24.95

Car Vacuum 2 $19.99 $39.98

AMOUNT DUE: $154.78

What might not be a good class? If you can’t tell from the class name what an
object of the class is sup posed to do, then you are probably not on the right track. For
example, your homework assignment might be to write a program that prints pay-
checks. Suppose you start by trying to design a class PaycheckProgram. What would an
object of this class do? An object of this class would have to do everything that the
homework needs to do. That doesn’t simplify anything. A better class would be Pay-
check. Then your program can manipulate one or more Paycheck objects.

Another common mistake, often made by students who are used to writing pro-
grams that consist of static methods, is to turn an action into a class. For example, if
your homework assignment is to compute a paycheck, you may consider writing a
class ComputePaycheck. But can you visualize a “ComputePaycheck” object? The fact
that “ComputePaycheck” isn’t a noun tips you off that you are on the wrong track.
On the other hand, a Paycheck class makes intuitive sense. The word “paycheck” is a
noun. You can visualize a paycheck object. You can then think about useful methods
of the Paycheck class, such as computeTaxes, that help you solve the assignment.

In a class scheduling system, potential
classes from the problem domain include
Class, LectureHall, Instructor, and Student.

W552 Chapter 12 Object-Oriented design

Finally, a common error is to overdo the class discovery process. For example,
should an address be an object of an Address class, or should it simply be a string?
There is no perfect answer—it depends on the task that you want to solve. If your
software needs to analyze addresses (for example, to determine shipping costs), then
an Address class is an appropriate design. However, if your software will never need
such a capability, you should not waste time on an overly complex design. It is your
job to find a balanced design; one that is neither too limiting nor excessively general.

12.1.2 the CrC Card Method

Once you have identified a set of classes, you define the behavior for each class. Find
out what methods you need to provide for each class in order to solve the program-
ming problem. A simple rule for finding these methods is to look for verbs in the
task description, then match the verbs to the appropriate objects. For example, in
the invoice program, a class needs to compute the amount due. Now you need to fig-
ure out which class is responsible for this method. Do customers compute what they
owe? Do invoices total up the amount due? Do the items total themselves up? The
best choice is to make “compute amount due” the responsibility of the Invoice class.

An excellent way to carry out this task is the “CRC card method.” CRC stands
for “classes”, “respon sibilities”, “collaborators”, and in its simplest form, the method
works as follows: Use an index card for each class (see Figure 2). As you think about
verbs in the task description that indicate methods, you pick the card of the class that
you think should be responsible, and write that responsibility on the card.

For each responsibility, you record which other classes are needed to fulfill it.
Those classes are the col laborators.

For example, suppose you decide that an invoice should compute the amount due.
Then you write “compute amount due” on the left-hand side of an index card with
the title Invoice.

If a class can carry out that responsibility by itself, do nothing further. But if the
class needs the help of other classes, write the names of these collaborators on the
right-hand side of the card.

To compute the total, the invoice needs to ask each line item about its total price.
Therefore, the LineItem class is a collaborator.

a CrC card
describes a class,
its responsibilities,
and its collaborating
classes.

Figure 2  a CrC Card

compute amount due LineItem

Invoice

Class

Responsibilities Collaborators

12.1 Classes and their responsibilities W553

This is a good time to look up the index card for the LineItem class. Does it have a
“get total price” method? If not, add one.

How do you know that you are on the right track? For each responsibility, ask
yourself how it can actually be done, using the responsibilities written on the various
cards. Many people find it helpful to group the cards on a table so that the collabora-
tors are close to each other, and to simulate tasks by mov ing a token (such as a coin)
from one card to the next to indicate which object is currently active.

Keep in mind that the responsibilities that you list on the CRC card are on a high
level. Sometimes a single responsibility may need two or more Java methods for car-
rying it out. Some researchers say that a CRC card should have no more than three
distinct responsibilities.

The CRC card method is informal on purpose, so that you can be creative and
discover classes and their properties. Once you find that you have settled on a good
set of classes, you will want to know how they are related to each other. Can you find
classes with common properties, so that some responsibilities can be taken care of by
a common superclass? Can you organize classes into clusters that are independent of
each other? Finding class relationships and documenting them with diagrams is the
topic of Section 12.2.

12.1.3 Cohesion

A class should represent a single concept. The public methods and constants that the
public interface exposes should be cohesive. That is, all interface features should be
closely related to the single concept that the class represents.

If you find that the public interface of a class refers to multiple concepts, then that
is a good sign that it may be time to use separate classes instead. Consider, for exam-
ple, the public interface of a CashRegister class:

publicclassCashRegister
{
publicstaticfinaldoubleNICKEL_VALUE=0.05;
publicstaticfinaldoubleDIME_VALUE=0.1;
publicstaticfinaldoubleQUARTER_VALUE=0.25;
...
publicvoidenterPayment(intdollars,intquarters,
intdimes,intnickels,intpennies){...}
...
}

There are really two concepts here: a cash register that holds coins and computes
their total, and the val ues of individual coins. (For simplicity, we assume that the cash
register only holds coins, not bills. Exercise P12.2 discusses a more general solution.)

It makes sense to have a separate Coin class and have coins responsible for knowing
their values.

publicclassCoin
{
...
publicCoin(doubleaValue,StringaName){...}
publicdoublegetValue(){...}
...
}

the public interface
of a class is cohesive
if all of its features
are related to the
concept that the
class represents.

W554 Chapter 12 Object-Oriented design

Then the CashRegister class can be simplified:
publicclassCashRegister
{
...
publicvoidenterPayment(intcoinCount,CoincoinType){...}
...
}

Now the CashRegister class no longer needs to know anything about coin values. The
same class can equally well handle euros or zorkmids!

This is clearly a better solution, because it separates the responsibilities of the cash
register and the coins.

1.  What is the rule of thumb for finding classes?
2.  Your job is to write a program that plays chess. Might ChessBoard be an appropri-

ate class? How about MovePiece?
3.  Suppose the invoice is to be saved to a file. Name a likely collaborator.
4.  Looking at the invoice in Figure 1, what is a likely responsibility of the Customer

class?
5.  What do you do if a CRC card has ten responsibilities?

practice it  Now you can try these exercises at the end of the chapter: R12.4, R12.5, R12.12.

12.2 relationships between Classes
When designing a program, it is useful to document the relationships between classes.
This helps you in a number of ways. For example, if you find classes with common
behavior, you can save effort by placing the common behavior into a superclass. If
you know that some classes are not related to each other, you can assign different
programmers to implement each of them, without worrying that one of them has to
wait for the other.

In the following sections, we will describe the most common types of relationships.

12.2.1 dependency

Many classes need other classes in order to do their jobs. For example, in Section
12.1.3, we described a design of a CashRegister class that depends on the Coin class to
determine the value of the payment.

The dependency relationship is sometimes nicknamed the “knows about” rela-
tionship. The cash register in Section 12.1.3 knows that there are coin objects. In con-
trast, the Coin class does not depend on the CashRegister class. Coins have no idea that
they are being collected in cash registers, and they can carry out their work without
ever calling any method in the CashRegister class.

To visualize relationships, such as dependency between classes, programmers
draw class diagrams. In this book, we use the UML (“Unified Modeling Language”)
notation for objects and classes. UML is a notation for object-oriented analysis and

o n l i n e  e x a m p l e

a sample program
using the Coinand
CashRegister classes.

s e l F   C h e C k

a class depends on
another class if it
uses objects of
that class.

12.2 relationships between Classes W555

design invented by Grady Booch, Ivar Jacobson, and James Rumbaugh, three

Figure 3 
dependency relationship
between the CashRegister
and Coin Classes

CashRegister

Coin

leading
researchers in object-oriented software development. The UML notation dis-
tinguishes between object diagrams and class diagrams. An object diagram shows
individual objects, their attributes, and the relationships between them. Chapter 8
has several object diagrams. A class diagram shows classes and the relationships
between them. In Chapter 9, you saw class diagrams that show inheritance relation-
ships. In the UML notation, we underline the names of classes in object diagrams but
not in class diagrams.

In a class diagram, you denote dependency by a dashed line with a -shaped open
arrow tip. The arrow tip points to the class on which the other class depends. Figure 3
shows a class diagram indicating that the CashRegister class depends on the Coin class.

If many classes of a program depend on each other, then we say that the coupling
between classes is high. Conversely, if there are few dependencies between classes,
then we say that the coupling is low (see Figure 4).

Why does coupling matter? If the Coin class changes in the next release of the pro-
gram, all the classes that depend on it may be affected. If the change is drastic, the
coupled classes must all be updated. Fur thermore, if we would like to use a class in
another program, we have to take with it all the classes on which it depends. Thus, we
want to remove unnecessary coupling between classes.

it is a good practice
to minimize the
coupling (i.e.,
dependency)
between classes.

Figure 4  high and Low Coupling between Classes

Low couplingHigh coupling

W556 Chapter 12 Object-Oriented design

12.2.2 aggregation

Another fundamental relationship between classes is the “aggregation” relationship
(which is informally known as the “has-a” relationship).

The aggregation relationship states that objects of one class contain objects of
another class. Consider a quiz that is made up of questions. Because each quiz has one
or more questions, we say that the class Quiz aggregates the class Question. In the UML
notation, aggregation is denoted by a line with a diamond-shaped symbol attached to
the aggregating class (see Figure 5).

Finding out about aggregation is very helpful for deciding how to implement classes.
For example, when you implement the Quiz class, you will want to store the questions
of a quiz as an instance variable.

Because a quiz can have any number of questions, an array or array list is a good
choice for collecting them:

publicclassQuiz
{
privateArrayList<Question>questions;
...
}

Aggregation is a stronger form of dependency. If a class has objects of another class, it
certainly knows about the other class. However, the converse is not true. For exam-
ple, a class may use the Scanner class without ever declaring an instance variable of class
Scanner. The class may simply construct a local variable of type Scanner, or its meth-
ods may receive Scanner objects as arguments. This use is not aggregation because the
objects of the class don’t contain Scanner objects—they just create or receive them for
the duration of a single method.

Generally, you need aggregation when an object needs to remember another object
between method calls.

a class aggregates
another if its objects
contain objects of the
other class.

Figure 5 
Class diagram
showing aggregation

Quiz Question

o n l i n e  e x a m p l e

the complete Quiz
and Question classes.

A car has a motor and tires.
In object-oriented design,
this “has-a” relationship
is called aggregation.

12.2 relationships between Classes W557

12.2.3 inheritance

Inheritance is a relationship between a more general class (the superclass) and a more
specialized class (the subclass). This relationship is often described as the “is-a” rela-
tionship. Every truck is a vehicle. Every savings account is a bank account.

Inheritance is sometimes abused. For example, consider a Tire class that describes
a car tire. Should the class Tire be a subclass of a class Circle? It sounds convenient.
There are quite a few useful methods in the Circle class—for example, the Tire class
may inherit methods that compute the radius, perimeter, and center point, which
should come in handy when drawing tire shapes. Though it may be convenient for
the programmer, this arrangement makes no sense conceptually. It isn’t true that
every tire is a circle. Tires are car parts, whereas circles are geometric objects. There
is a relationship between tires and circles, though. A tire has a circle as its boundary.
Use aggregation:

publicclassTire
{
privateStringrating;
privateCircleboundary;
...
}

Here is another example: Every car is a vehicle. Every car has a tire (in fact, it typi-
cally has four or, if you count the spare, five). Thus, you would use inheritance from
Vehicle and use aggregation of Tire objects:

publicclassCarextendsVehicle
{
privateTire[]tires;
...
}

See Figure 6 for the UML diagram.

inheritance (the
is-a relationship) is
some times inappro-
priately used when
the has-a relation-
ship would be more
appropriate.

aggregation (the
has-a relationship)
denotes that objects
of one class contain
references to objects
of another class.

Figure 6 
UML notation for
inheritance and aggregation

Vehicle

Car

Tire

W558 Chapter 12 Object-Oriented design

The arrows in the UML notation can get confusing. Table 1 shows a summary of
the four UML rela tionship symbols that we use in this book.

table 1 UML relationship symbols

relationship symbol Line style arrow tip

Inheritance Solid Triangle

Interface Implementation Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

6.  Consider the CashRegisterTester class of Chapter 8. On which classes does it
depend?

7.  Consider the Question and ChoiceQuestion objects of Chapter 9. How are
they related?

8.  Consider the Quiz class described in Section 12.2.2. Suppose a quiz contains a
mixture of Question and ChoiceQuestion objects. Which classes does the Quiz class
depend on?

9.  Why should coupling be minimized between classes?
10.  In an e-mail system, messages are stored in a mailbox. Draw a UML diagram

that shows the appro priate aggregation relationship.
11.  You are implementing a system to manage a library, keeping track of which

books are checked out by whom. Should the Book class aggregate Patron or the
other way around?

12.  In a library management system, what would be the relationship between classes
Patron and Author?

practice it  Now you can try these exercises at the end of the chapter: R12.8, R12.9, R12.13.

step 1  Discover classes.

Highlight the nouns in the problem description. Make a list of the nouns. Cross out those that
don’t seem to be rea sonable candidates for classes.

You need to be able
to distinguish the
UML notation for
inheritance, interface
implementation,
aggregation, and
dependency.

s e l F   C h e C k

hOW tO 12.1 Using CrC Cards and Uml diagrams in program design

Before writing code for a complex problem, you need to design a solution. The methodology
introduced in this chapter suggests that you follow a design process that is composed of the
following tasks:
• Discover classes.
• Determine the responsibilities of each class.
• Describe the relationships between the classes.
CRC cards and UML diagrams help you discover and record this information.

12.2 relationships between Classes W559

step 2  Discover responsibilities.

Make a list of the major tasks that your system needs to fulfill. From those tasks, pick one
that is not trivial and that is intuitive to you. Find a class that is responsible for carrying out
that task. Make an index card and write the name and the task on it. Now ask yourself how
an object of the class can carry out the task. It probably needs help from other objects. Then
make CRC cards for the classes to which those objects belong and write the responsibilities
on them.

Don’t be afraid to cross out, move, split, or merge responsibilities. Rip up cards if they
become too messy. This is an informal process.

You are done when you have walked through all major tasks and are satisfied that they can
all be solved with the classes and responsibilities that you discovered.

step 3  Describe relationships.

Make a class diagram that shows the relationships between all the classes that you discovered.
Start with inheritance—the is-a relationship between classes. Is any class a specialization of

another? If so, draw inheritance arrows. Keep in mind that many designs, especially for simple
programs, don’t use inheritance exten sively.

The “collaborators” column of the CRC card tells you which classes are used by that class.
Draw dependency arrows for the col laborators on the CRC cards.

Some dependency relationships give rise to aggregations. For each of the dependency rela-
tionships, ask yourself: How does the object locate its collaborator? Does it navigate to it
directly because it stores a reference? In that case, draw an aggregation arrow. Or is the collab-
orator a method parameter variable or return value? Then simply draw a depen dency arrow.

attributes and methods in Uml diagrams

Sometimes it is useful to indicate class attributes and methods in a class diagram. An attribute
is an externally observable property that objects of a class have. For example, name and price
would be attributes of the Product class. Usually, attributes correspond to instance variables.
But they don’t have to—a class may have a different way of organizing its data. For example,
a GregorianCalendar object from the Java library has attributes day, month, and year, and it would
be appropriate to draw a UML diagram that shows these attributes. However, the class doesn’t
actually have instance variables that store these quantities. Instead, it internally represents all
dates by counting the millisec onds from January 1, 1970—an implementation detail that a
class user certainly doesn’t need to know about.

You can indicate attributes and methods in a class diagram by dividing a class rectangle into
three compartments, with the class name in the top, attributes in the middle, and methods in
the bottom (see the figure below). You need not list all attributes and methods in a particular
diagram. Just list the ones that are helpful for understanding whatever point you are making
with a particular diagram.

Also, don’t list as an attribute what you also draw as an aggregation. If you denote by
aggregation the fact that a Car has Tire objects, don’t add an attribute tires.

Attributes and Methods
in a Class Diagram

Attributes

balance

deposit()
withdraw()

BankAccount

Methods

special topic 12.1

W560 Chapter 12 Object-Oriented design

multiplicities

Some designers like to write multiplicities at the end(s) of an aggregation relationship to denote
how many objects are aggregated. The notations for the most common multiplicities are:

• any number (zero or more):*
• one or more:1..*
• zero or one:0..1
• exactly one:1

The figure below shows that a customer has one or more bank accounts.

An Aggregation Relationship with Multiplicities

Customer BankAccount
1..*

aggregation, association, and Composition

Some designers find the aggregation or has-a terminology unsatisfactory. For example, con-
sider customers of a bank. Does the bank “have” customers? Do the customers “have” bank
accounts, or does the bank “have” them? Which of these “has” relationships should be mod-
eled by aggregation? This line of thinking can lead us to premature imple mentation decisions.

Early in the design phase, it makes sense to use a more general relationship between classes
called association. A class is associated with another if you can navigate from objects of one
class to objects of the other class. For exam ple, given a Bank object, you can navigate to Customer
objects, perhaps by accessing an instance variable, or by making a database lookup.

The UML notation for an association relationship is a solid line, with optional arrows that
show in which direc tions you can navigate the relationship. You can also add words to the line
ends to further explain the nature of the relationship. The figure below shows that you can
navigate from Bank objects to Customer objects, but you cannot navigate the other way around.
That is, in this particular design, the Customer class has no mechanism to determine in which
banks it keeps its money.

An Association Relationship

Bank Customer
serves

The UML standard also recognizes a stronger form of the aggregation relationship called com-
position, where the aggregated objects do not have an existence independent of the containing
object. For example, composition models the relationship between a bank and its accounts.
If a bank closes, the account objects cease to exist as well. In the UML notation, composition
looks like aggregation with a filled-in diamond.

special topic 12.2

special topic 12.3

12.2 relationships between Classes W561

A Composition Relationship

Bank BankAccount

Frankly, the differences between aggregation, association, and composition can be confusing,
even to experienced designers. If you find the distinction helpful, by all means use the rela-
tionship that you find most appropriate. But don’t spend time pondering subtle differences
between these concepts. From the practical point of view of a Java programmer, it is useful to
know when objects of one class have references to objects of another class. The aggregation or
has-a relationship accurately describes this phenomenon.

make parallel arrays into arrays of objects

Sometimes, you find yourself using arrays or array lists of the same length, each of which
stores a part of what con ceptually should be an object. In that situation, it is a good idea to
reorganize your program and use a single array or array list whose elements are objects.

For example, suppose an invoice contains a series of item descriptions and prices. One
solution is to keep two arrays:

String[]descriptions;
double[]prices;

Each of the arrays will have the same length, and the ith slice, consisting of descriptions[i]
and prices[i], contains data that need to be processed together. These arrays are called parallel
arrays (see Figure 7).

Parallel arrays become a headache in larger programs. The programmer must ensure that
the arrays always have the same length and that each slice is filled with values that actually
belong together. Moreover, any method that operates on a slice must get all values of the slice
as arguments, which is tedious to program.

The remedy is simple. Look at the slice and find the concept that
it represents. Then make the concept into a class. In this example,
each slice contains the description and price of an item; turn this into
a class:

publicclassItem
{
privateStringdescription;
privatedoubleprice;
...
}

programming tip 12.1

avoid parallel arrays
by changing them
into arrays of objects.

Figure 7 
parallel arrays

[i]

descriptions =

[i]

prices =

A slice

W562 Chapter 12 Object-Oriented design

You can now eliminate the parallel arrays and replace them with a single array:

Item[]items;

Each slot in the resulting array corresponds to a slice in the set of parallel arrays (see Figure 8).

Consistency

In this chapter you learned of two criteria for improving the quality of the public interface of
a class. You should max imize cohesion and remove unnecessary coupling. There is another
criterion that we would like you to pay attention to—consistency. When you have a set of
methods, follow a consistent scheme for their names and parameter variables. This is simply a
sign of good craftsmanship.

Sadly, you can find any number of inconsistencies in the standard Java library. Here is an
example. To show an input dialog box, you call

JOptionPane.showInputDialog(promptString)

To show a message dialog box, you call

JOptionPane.showMessageDialog(null,messageString)

What’s the null argument? It turns out that the showMessageDialog method needs an argument
to specify the parent window, or null if no parent window is required. But the showInputDialog
method requires no parent window. Why the inconsistency? There is no reason. It would have
been an easy matter to supply a showMessageDialog method that exactly mirrors the showInput-
Dialog method.

Inconsistencies such as these are not fatal flaws, but they are an annoyance, particularly
because they can be so easily avoided.

12.3 application: printing an invoice
In this book, we discuss a five-part program development process that is particularly
well suited for beginning programmers:

1. Gather requirements.
2. Use CRC cards to find classes, responsibilities, and collaborators.
3. Use UML diagrams to record class relationships.
4. Use javadoc to document method behavior.
5. Implement your program.

Figure 8 
eliminating
parallel arrays Parallel arrays An array of objects

programming tip 12.2

12.3 application: printing an invoice W563

There isn’t a lot of notation to learn. The class diagrams are simple to draw. The deliv-
erables of the design phase are obviously useful for the implementation phase—you
simply take the source files and start add ing the method code. Of course, as your
projects get more complex, you will want to learn more about formal design meth-
ods. There are many techniques to describe object scenarios, call sequencing, the
large-scale structure of programs, and so on, that are very beneficial even for rel-
atively simple projects. The Unified Modeling Language User Guide gives a good
overview of these techniques.

In this section, we will walk through the object-oriented design technique with
a very simple example. In this case, the methodology may feel overblown, but it is a
good introduction to the mechanics of each step. You will then be better prepared for
the more complex programs that you will encounter in the future.

12.3.1 requirements

Before you begin designing a solution, you should gather all
requirements for your program in plain English. Write down
what your program should do. It is helpful to include typical
scenarios in addition to a general description.

The task of our sample program is to print out an invoice.
An invoice describes the charges for a set of products in cer-
tain quantities. (We omit complexities such as dates, taxes, and
invoice and customer num bers.) The program simply prints
the billing address, all line items, and the amount due. Each
line item contains the description and unit price of a product,
the quantity ordered, and the total price.

INVOICE

Sam'sSmallAppliances
100MainStreet
Anytown,CA98765

DescriptionPriceQtyTotal
Toaster29.95389.85
Hairdryer24.95124.95
Carvacuum19.99239.98

AMOUNTDUE:$154.78

Also, in the interest of simplicity, we do not provide a user interface. We just supply a
test program that adds line items to the invoice and then prints it.

12.3.2 CrC Cards

When designing an object-oriented program, you need to discover classes. Classes
correspond to nouns in the requirements specification. In this problem, it is pretty
obvious what the nouns are:

InvoiceAddressLineItem
ProductDescriptionPrice
QuantityTotalAmountdue

An invoice lists the
charges for each item
and the amount due.

start the develop-
ment process by
gathering and
documenting
program
requirements.

Use CrC cards to
find classes,
responsibilities,
and collaborators.

W564 Chapter 12 Object-Oriented design

(Of course, Toaster doesn’t count—it is the description of a LineItem object and there-
fore a data value, not the name of a class.)

Description and price are attributes of the Product class. What about the quantity?
The quantity is not an attribute of a Product. Just as in the printed invoice, let’s have a
class LineItem that records the product and the quantity (such as “3 toasters”).

The total and amount due are computed—not stored anywhere. Thus, they don’t
lead to classes.

After this process of elimination, we are left with four candidates for classes:
Invoice
Address
LineItem
Product

Each of them represents a useful concept, so let’s make them all into classes.
The purpose of the program is to print an invoice. However, the Invoice class won’t

necessarily know whether to display the output in System.out, in a text area, or in a file.
Therefore, let’s relax the task slightly and make the invoice responsible for formatting
the invoice. The result is a string (containing multiple lines) that can be printed out or
displayed. Record that responsibility on a CRC card:

format the invoice

Invoice

How does an invoice format itself? It must format the billing address, format all
line items, and then add the amount due. How can the invoice format an address? It
can’t—that really is the responsibility of the Address class. This leads to a second CRC
card:

format the address

Address

Similarly, formatting of a line item is the responsibility of the LineItem class.

12.3 application: printing an invoice W565

The format method of the Invoice class calls the format methods of the Address and
LineItem classes. Whenever a method uses another class, you list that other class as a
collaborator. In other words, Address and LineItem are collaborators of Invoice:

format the invoice Address

LineItem

Invoice

When formatting the invoice, the invoice also needs to compute the total amount due.
To obtain that amount, it must ask each line item about the total price of the item.

How does a line item obtain that total? It must ask the product for the unit price,
and then multiply it by the quantity. That is, the Product class must reveal the unit
price, and it is a collaborator of the LineItem class.

get description
get unit price

Product

format the item Product

get total price

LineItem

Finally, the invoice must be populated with products and quantities, so that it makes
sense to format the result. That too is a responsibility of the Invoice class.

W566 Chapter 12 Object-Oriented design

format the invoice Address

LineItemadd a product and quantity
Product

Invoice

We now have a set of CRC cards that completes the CRC card process.

12.3.3 UML diagrams

After you have discovered classes and their relationships with CRC cards, you should
record your find ings in a UML diagram. The dependency relationships come from
the collaboration column on the CRC cards. Each class depends on the classes with
which it collaborates. In our example, the Invoice class col laborates with the Address,
LineItem, and Product classes. The LineItem class collaborates with the Product class.

Now ask yourself which of these dependencies are actually aggregations. How
does an invoice know about the address, line item, and product objects with which it
collaborates? An invoice object must hold references to the address and the line items
when it formats the invoice. But an invoice object need not hold a reference to a prod-
uct object when adding a product. The product is turned into a line item, and then it is
the item’s responsibility to hold a reference to it.

Therefore, the Invoice class aggregates the Address and LineItem classes. The LineItem
class aggregates the Product class. However, there is no has-a relationship between an
invoice and a product. An invoice doesn’t store products directly—they are stored in
the LineItem objects.

There is no inheritance in this example.
Figure 9 shows the class relationships that we discovered.

Use UML diagrams to
record class
relationships.

Figure 9  the relationships between the invoice Classes

Invoice Address

Product LineItem

12.3 application: printing an invoice W567

12.3.4 Method documentation

The final step of the design phase is to write the documentation of the discovered
classes and methods. Simply write a Java source file for each class, write the method
comments for those methods that you have discovered, and leave the bodies of the
methods blank.

/**
Describes an invoice for a set of purchased products.
*/
publicclassInvoice
{
/**
Adds a charge for a product to this invoice.
@paramaProductthe product that the customer ordered
@paramquantitythe quantity of the product
*/
publicvoidadd(ProductaProduct,intquantity)
{
}

/**
Formats the invoice.
@returnthe formatted invoice
*/
publicStringformat()
{
}
}

/**
Describes a quantity of an article to purchase.
*/
publicclassLineItem
{
/**
Computes the total cost of this line item.
@returnthe total price
*/
publicdoublegetTotalPrice()
{
}

/**
Formats this item.
@returna formatted string of this item
*/
publicStringformat()
{
}
}

/**
Describes a product with a description and a price.
*/
publicclassProduct
{

Use javadoc
comments (with the
method bodies left
blank) to record the
behavior of classes.

W568 Chapter 12 Object-Oriented design

/**
Gets the product description.
@returnthe description
*/
publicStringgetDescription()
{
}

/**
Gets the product price.
@returnthe unit price
*/
publicdoublegetPrice()
{
}
}

/**
Describes a mailing address.
*/
publicclassAddress
{
/**
Formats the address.
@returnthe address as a string with three lines
*/
publicStringformat()
{
}
}

Figure 10 
Class documentation
in htML Format

12.3 application: printing an invoice W569

Then run the javadoc program to obtain a neatly formatted version of your documen-
tation in HTML format (see Figure 10).

This approach for documenting your classes has a number of advantages. You can
share the HTML documentation with others if you work in a team. You use a format
that is immediately useful—Java source files that you can carry into the implementa-
tion phase. And, most importantly, you supply the comments for the key methods—
a task that less prepared programmers leave for later, and often neglect for lack of time.

12.3.5 implementation

After you have completed the object-oriented design, you are ready to implement the
classes.

You already have the method parameter variables and comments from the previ-
ous step. Now look at the UML diagram to add instance variables. Aggregated classes
yield instance variables. Start with the Invoice class. An invoice aggregates Address and
LineItem. Every invoice has one billing address, but it can have many line items. To
store multiple LineItem objects, you can use an array list. Now you have the instance
variables of the Invoice class:

publicclassInvoice
{
privateAddressbillingAddress;
privateArrayList<LineItem>items;
...
}

A line item needs to store a Product object and the product quantity. That leads to the
following instance variables:

publicclassLineItem
{
privateintquantity;
privateProducttheProduct;
...
}

The methods themselves are now easy to implement. Here is a typical example. You
already know what the getTotalPrice method of the LineItem class needs to do—get the
unit price of the product and multiply it with the quantity.

/**
Computes the total cost of this line item.
@returnthe total price
*/
publicdoublegetTotalPrice()
{
returntheProduct.getPrice()*quantity;
}

We will not discuss the other methods in detail—they are equally straightforward.
Finally, you need to supply constructors, another routine task.
The entire program is shown below. It is a good practice to go through it in detail

and match up the classes and methods against the CRC cards and UML diagram.
In this chapter, you learned a systematic approach for building a relatively com-

plex program. However, object-oriented design is definitely not a spectator sport.
To really learn how to design and implement programs, you have to gain experience
by repeating this process with your own projects. It is quite possi ble that you don’t

after completing the
design, implement
your classes.

W570 Chapter 12 Object-Oriented design

immediately home in on a good solution and that you need to go back and reorganize
your classes and responsibilities. That is normal and only to be expected. The purpose
of the object-ori ented design process is to spot these problems in the design phase,
when they are still easy to rectify, instead of in the implementation phase, when mas-
sive reorganization is more difficult and time consum ing.

section_3/invoiceprinter.java

1 /**
2 This program demonstrates the invoice classes by
3 printing a sample invoice.
4 */
5 publicclassInvoicePrinter
6 {
7 publicstaticvoidmain(String[]args)
8 {
9 AddresssamsAddress

10 =newAddress("Sam’sSmallAppliances",
11 "100MainStreet","Anytown","CA","98765");
12
13 InvoicesamsInvoice=newInvoice(samsAddress);
14 samsInvoice.add(newProduct("Toaster",29.95),3);
15 samsInvoice.add(newProduct("Hairdryer",24.95),1);
16 samsInvoice.add(newProduct("Carvacuum",19.99),2);
17
18 System.out.println(samsInvoice.format());
19 }
20 }

section_3/invoice.java

1 importjava.util.ArrayList;
2
3 /**
4 Describes an invoice for a set of purchased products.
5 */
6 publicclassInvoice
7 {
8 privateAddressbillingAddress;
9 privateArrayList<LineItem>items;

10
11 /**
12 Constructs an invoice.
13 @paramanAddressthe billing address
14 */
15 publicInvoice(AddressanAddress)
16 {
17 items=newArrayList<LineItem>();
18 billingAddress=anAddress;
19 }
20
21 /**
22 Adds a charge for a product to this invoice.
23 @paramaProductthe product that the customer ordered
24 @paramquantitythe quantity of the product
25 */
26 publicvoidadd(ProductaProduct,intquantity)
27 {
28 LineItemanItem=newLineItem(aProduct,quantity);

12.3 application: printing an invoice W571

29 items.add(anItem);
30 }
31
32 /**
33 Formats the invoice.
34 @returnthe formatted invoice
35 */
36 publicStringformat()
37 {
38 Stringr="INVOICE\n\n"
39 +billingAddress.format()
40 +String.format("\n\n%-30s%8s%5s%8s\n",
41 "Description","Price","Qty","Total");
42
43 for(LineItemitem:items)
44 {
45 r=r+item.format()+"\n";
46 }
47
48 r=r+String.format("\nAMOUNTDUE:$%8.2f",getAmountDue());
49
50 returnr;
51 }
52
53 /**
54 Computes the total amount due.
55 @returnthe amount due
56 */
57 privatedoublegetAmountDue()
58 {
59 doubleamountDue=0;
60 for(LineItemitem:items)
61 {
62 amountDue=amountDue+item.getTotalPrice();
63 }
64 returnamountDue;
65 }
66 }

section_3/lineitem.java

1 /**
2 Describes a quantity of an article to purchase.
3 */
4 publicclassLineItem
5 {
6 privateintquantity;
7 privateProducttheProduct;
8
9 /**

10 Constructs an item from the product and quantity.
11 @paramaProductthe product
12 @paramaQuantitythe item quantity
13 */
14 publicLineItem(ProductaProduct,intaQuantity)
15 {
16 theProduct=aProduct;
17 quantity=aQuantity;
18 }
19

W572 Chapter 12 Object-Oriented design

20 /**
21 Computes the total cost of this line item.
22 @returnthe total price
23 */
24 publicdoublegetTotalPrice()
25 {
26 returntheProduct.getPrice()*quantity;
27 }
28
29 /**
30 Formats this item.
31 @returna formatted string of this line item
32 */
33 publicStringformat()
34 {
35 returnString.format("%-30s%8.2f%5d%8.2f",
36 theProduct.getDescription(),theProduct.getPrice(),
37 quantity,getTotalPrice());
38 }
39 }

section_3/product.java

1 /**
2 Describes a product with a description and a price.
3 */
4 publicclassProduct
5 {
6 privateStringdescription;
7 privatedoubleprice;
8
9 /**

10 Constructs a product from a description and a price.
11 @paramaDescriptionthe product description
12 @paramaPricethe product price
13 */
14 publicProduct(StringaDescription,doubleaPrice)
15 {
16 description=aDescription;
17 price=aPrice;
18 }
19
20 /**
21 Gets the product description.
22 @returnthe description
23 */
24 publicStringgetDescription()
25 {
26 returndescription;
27 }
28
29 /**
30 Gets the product price.
31 @returnthe unit price
32 */
33 publicdoublegetPrice()
34 {
35 returnprice;
36 }
37 }

 Available online in WileyPLUS and at www.wiley.com/college/horstmann.

12.3 application: printing an invoice W573

section_3/address.java

1 /**
2 Describes a mailing address.
3 */
4 publicclassAddress
5 {
6 privateStringname;
7 privateStringstreet;
8 privateStringcity;
9 privateStringstate;

10 privateStringzip;
11
12 /**
13 Constructs a mailing address.
14 @paramaNamethe recipient name
15 @paramaStreetthe street
16 @paramaCitythe city
17 @paramaStatethe two-letter state code
18 @paramaZipthe ZIP postal code
19 */
20 publicAddress(StringaName,StringaStreet,
21 StringaCity,StringaState,StringaZip)
22 {
23 name=aName;
24 street=aStreet;
25 city=aCity;
26 state=aState;
27 zip=aZip;
28 }
29
30 /**
31 Formats the address.
32 @returnthe address as a string with three lines
33 */
34 publicStringformat()
35 {
36 returnname+"\n"+street+"\n"
37 +city+","+state+""+zip;
38 }
39 }

13.  Which class is responsible for computing the amount due? What are its collabo-
rators for this task?

14.  Why do the format methods return String objects instead of directly printing to
System.out?

practice it  Now you can try these exercises at the end of the chapter: R12.18, P12.6, P12.7.

s e l F   C h e C k

WOrked exaMpLe 12.1 simulating an automatic Teller machine

This Worked Example applies the object-oriented design method-
ology to the simulation of an automatic teller machine that works
with both a console-based and graphical user interface.

W574 Chapter 12 Object-Oriented design

12.4 packages
A Java program consists of a collection of classes. So far, most of your programs have
consisted of a small number of classes. As programs get larger, however, simply dis-
tributing the classes over multiple files isn’t enough. An additional structuring mech-
anism is needed.

In Java, packages provide this structuring mechanism. A Java package is a set of
related classes. For example, the Java library consists of dozens of packages, some
of which are listed in Table 2. The follow ing sections show how you can make use of
packages in your programs.

table 2 important packages in the java Library

package purpose sample Class

java.lang Language support Math

java.util Utilities Scanner

java.io Input and output PrintStream

java.awt Abstract Windowing Toolkit Color

java.net Networking Socket

java.sql Database access through Structured Query Language ResultSet

javax.swing Swing user interface JButton

org.w3c.dom Document Object Model for XML documents Document

12.4.1 Organizing related Classes into pack ages

To put a class in a package, you must place
packagepackageName;

as the first statement in its source file. A package name consists of one or more identi-
fiers separated by periods. (See Section 12.4.3 for tips on constructing package names.)

For example, let’s put a BankAccount class into a package named com.horstmann. The
BankAccount.java file must start as follows:

packagecom.horstmann;

publicclassBankAccount
{
...
}

In addition to the named packages (such as java.util or com.horstmann), there is a spe-
cial package, called the default package, which has no name. If you did not include
any package statement at the top of your source file, the class is placed in the default
package.

a package is a set of
related classes.

12.4 packages W575

12.4.2

In Java, related classes
are grouped into packages.

importing packages

If you want to use a class from a package, you can refer to it by its full name (package
name plus class name). For example, java.util.Scanner refers to the Scanner class in the
java.util package:

java.util.Scannerin=newjava.util.Scanner(System.in);

Naturally, that is somewhat inconvenient. You can instead import a name with an
import statement:

importjava.util.Scanner;

Then you can refer to the class as Scanner without the package prefix.
You can import all classes of a package with an import statement that ends in .*. For

example, you can use the statement
importjava.util.*;

to import all classes from the java.util package. That statement lets you refer to
classes like Scanner or ArrayList without a java.util prefix.

However, you never need to import the classes in the java.lang package explicitly.
That is the package containing the most basic Java classes, such as Math and Object.
These classes are always available to you. In effect, an automatic importjava.lang.*;
statement has been placed into every source file.

Finally, you don’t need to import other classes in the same package. For example,
in the source code of the class problem1.Tester, you don’t need to import the class
problem1.BankAccount. The compiler will find the BankAccount class without an import
statement because it is located in the same package, problem1.

12.4.3 package names

Placing related classes into a package is clearly a convenient way to organize classes.
However, there is a more important reason for packages: to avoid name clashes. In
a large project, it is inevitable that two people will come up with the same name for
the same concept. This even happens in the stan dard Java class library (which has
now grown to thousands of classes). There is a class Timer in the java.util package and
another class called Timer in the javax.swing package. You can still tell the Java com-
piler exactly which Timer class you need by referring to them as java.util.Timer and
javax.swing.Timer.

the import directive
lets you refer to a
class from a package
by its class name,
without the
package prefix.

W576 Chapter 12 Object-Oriented design

Of course, for the package-naming convention to work, there must be some way
to ensure that pack age names are unique. It wouldn’t be good if the car maker BMW
placed all its Java code into the package bmw, and some other programmer (perhaps
Britney M. Walters) had the same bright idea. To avoid this problem, the inventors of
Java recommend that you use a package-naming scheme that takes advantage of the
uniqueness of Internet domain names.

For example, I have a domain name horstmann.com, and there is nobody else on the
planet with the same domain name. (I was lucky that the domain name horstmann.com
had not been taken by anyone else when I applied. If your name is Walters, you will
sadly find that someone else beat you to walters.com.) To get a package name, turn the
domain name around to produce a package name prefix, such as com.horstmann.

If you don’t have your own domain name, you can still create a package name that
has a high probabil ity of being unique by writing your e-mail address backwards. For
example, if Britney Walters has an e-mail address walters@cs.sjsu.edu, then she can use
a package name edu.sjsu.cs.walters for her own classes.

Some instructors will want you to place each of your assignments into a separate
package, such as problem1, problem2, and so on. The reason is again to avoid name col-
lision. You can have two classes, problem1.BankAccount and problem2.BankAccount, with
slightly different properties.

12.4.4 how Classes are Located

A package is located in a subdirectory that matches the package name. For example, a
package homework1 is located in a directory homework1. If the package name has multiple
parts, such as com.horstmann.javabook, then you use a subdirectory for each part: com/
horstmann/javabook.

For example, if you do your homework assignment in a base directory /home/brit-
ney/assignments, then you can place the class files for the problem1 package into the
directory /home/britney/assignments/problem1, as shown in Figure 11. (Here, we are
using UNIX-style file names. Under Windows, you would use a directory such as c:\
Users\Britney\assignments\problem1.)

15.  Which of the following are packages?
a.  java
b. java.lang
c.  java.util
d. java.lang.Math

16.  Is a Java program without import statements limited to using the default and
java.lang packages?

Use a domain name
in reverse to
construct an
unambiguous
package name.

the path of a class
file must match its
package name.

o n l i n e  e x a m p l e

the complete
BankAccount and
BankAccountTester
classes, with the
proper directory
structure.

Figure 11 
base directories
and subdirectories
for packages

Directory matches
package name

Base directory

Source file starts with
package problem1;

s e l F   C h e C k

Chapter summary W577

17.  Suppose your homework assignments are located in the directory /home/me/
cs101 (c:\Users\me\cs101 on Windows). Your instructor tells you to place your
homework into packages. In which directory do you place the class hw1.problem1.
TicTacToeTester?

practice it  Now you can try these exercises at the end of the chapter: R12.19, P12.15, P12.16.

recognize how to discover classes and their responsibilities.

• To discover classes, look for nouns in the problem description.
• Concepts from the problem domain are good candidates for classes.
• A CRC card describes a class, its responsibilities, and its collaborating classes.
• The public interface of a class is cohesive if all of its features are related to the

concept that the class represents.

Categorize class relationships and produce Uml diagrams that describe them.

• A class depends on another class if it uses objects of that class.
• It is a good practice to minimize the coupling (i.e., dependency) between classes.
• A class aggregates another if its objects contain objects of the other class.
• Inheritance (the is-a relationship) is sometimes inappropriately used when the

has-a relationship would be more appropriate.
• Aggregation (the has-a relationship) denotes that objects of one class contain

references to objects of another class.
• You need to be able to distinguish the UML notation for inheritance, interface

implementation, aggregation, and dependency.
• Avoid parallel arrays by changing them into arrays of objects.

apply an object-oriented development process to designing a program.

• Start the development process by gathering and documenting program
requirements.

• Use CRC cards to find classes, responsibilities, and collaborators.
• Use UML diagrams to record class relationships.
• Use javadoc comments (with the method bodies left blank) to record the

behavior of classes.
• After completing the design, implement your classes.

Use packages to structure the classes in your program.

• A package is a set of related classes.
• The import directive lets you refer to a class from a package by its class name,

without the package prefix.
• Use a domain name in reverse to construct an unambiguous package name.
• The path of a class file must match its package name.

C h a p t e r s U M M a r Y

W578 Chapter 12 Object-Oriented design

•• r12.1  List the steps in the process of object-oriented design that this chapter recommends
for student use.

• r12.2  Give a rule of thumb for how to find classes when designing a program.

• r12.3  Give a rule of thumb for how to find methods when designing a program.

•• r12.4  After discovering a method, why is it important to identify the object that is respon-
sible for carrying out the action?

•• r12.5  Look at the public interface of the java.lang.System class and discuss whether or not it
is cohesive.

•• r12.6  On which classes does the class Integer in the Java standard library depend?

•• r12.7  On which classes does the class java.awt.Rectangle in the standard library depend?

• r12.8  What relationship is appropriate between the following classes: aggregation, inher-
itance, or neither?

a. University—Student
b. Student—TeachingAssistant
c. Student—Freshman
d. Student—Professor
e. Car—Door
f.  Truck—Vehicle
g. Traffic—TrafficSign
h. TrafficSign—Color

•• r12.9  Every BMW is a vehicle. Should a class BMW inherit from the class Vehicle? BMW is a
vehicle manufacturer. Does that mean that the class BMW should inherit from the class
VehicleManufacturer?

•• r12.10  Some books on object-oriented programming recommend using inheritance so that
the class Circle extends the class java.awt.Point. Then the Circle class inherits the
setLocation method from the Point superclass. Explain why the setLocation method
need not be overridden in the subclass. Why is it nevertheless not a good idea to have
Circle inherit from Point? Conversely, would inheriting Point from Circle fulfill the
is-a rule? Would it be a good idea?

• r12.11  Write CRC cards for the Coin and CashRegister classes described in Section 12.1.3.

• r12.12  Write CRC cards for the Quiz and Question classes in Section 12.2.2.

•• r12.13  Draw a UML diagram for the Quiz, Question, and ChoiceQuestion classes. The Quiz class
is described in Section 12.2.2.

••• r12.14  A file contains a set of records describing countries. Each record consists of the name
of the country, its population, and its area. Suppose your task is to write a program
that reads in such a file and prints

• The country with the largest area
• The country with the largest population
• The country with the largest population density (people per square kilometer)

r e v i e W e x e r C i s e s

programming exercises W579

Think through the problems that you need to solve. What classes and methods
will you need? Produce a set of CRC cards, a UML diagram, and a set of javadoc
comments.

••• r12.15  Discover classes and methods for generating a student report card that lists all
classes, grades, and the grade point average for a semester. Produce a set of CRC
cards, a UML diagram, and a set of javadoc comments.

•• r12.16  Consider the following problem description:

Users place coins in a vending machine and select a product by pushing a button. If the inserted coins
are sufficient to cover the purchase price of the product, the product is dispensed and change is given.
Otherwise, the inserted coins are returned to the user.

What classes should you use to implement a solution?

•• r12.17  Consider the following problem description:

Employees receive their biweekly paychecks. They are paid their hourly rates for each hour worked;
however, if they worked more than 40 hours per week, they are paid overtime at 150 percent of
their regular wage.

What classes should you use to implement a solution?

•• r12.18  Consider the following problem description:

Customers order products from a store. Invoices are generated to list the items and quantities ordered,
payments received, and amounts still due. Products are shipped to the shipping address of the cus-
tomer, and invoices are sent to the billing address.

Draw a UML diagram showing the aggregation relationships between the classes
Invoice, Address, Customer, and Product.

•• r12.19  Every Java program can be rewritten to avoid import statements. Explain how, and
rewrite BabyNames.java from Worked Example 7.1 to avoid import statements.

• r12.20  What is the default package? Have you used it before this chapter in your
 programming?

•• p12.1  Modify the giveChange method of the CashRegister class in the sample code for Section
12.1 so that it returns the number of coins of a particular type to return:

intgiveChange(CoincoinType)

The caller needs to invoke this method for each coin type, in decreasing value.

• p12.2  Real cash registers can handle both bills and coins. Design a single class that
expresses the commonality of these concepts. Redesign the CashRegister class and
provide a method for entering payments that are described by your class. Your
pri mary challenge is to come up with a good name for this class.

• p12.3  Enhance the invoice-printing program by providing for two kinds of line items: One
kind describes products that are purchased in certain numerical quantities (such as
“3 toasters”), another describes a fixed charge (such as “shipping: $5.00”). Hint: Use
inheritance. Produce a UML diagram of your modified implementation.

p r O g r a M M i n g e x e r C i s e s

W580 Chapter 12 Object-Oriented design

•• p12.4  The invoice-printing program is somewhat unrealistic because the formatting of the
LineItem objects won’t lead to good visual results when the prices and quantities have
varying numbers of digits. Enhance the format method in two ways: Accept an int[]
array of column widths as an argument. Use the NumberFormat class to format the cur-
rency values.

•• p12.5  The invoice-printing program has an unfortunate flaw—it mixes “application logic”
(the computation of total charges) and “presentation” (the visual appearance of the
invoice). To appreciate this flaw, imagine the changes that would be necessary to
draw the invoice in HTML for presentation on the Web. Reimplement the pro gram,
using a separate InvoiceFormatter class to format the invoice. That is, the Invoice and
LineItem methods are no longer responsible for formatting. However, they will
acquire other responsibilities, because the InvoiceFormatter class needs to query them
for the values that it requires.

••• p12.6  Write a program that teaches arithmetic to a young child. The program tests addition
and subtraction. In level 1, it tests only addition of numbers less than 10 whose sum
is less than 10. In level 2, it tests addition of arbitrary one-digit numbers. In level 3, it
tests subtraction of one-digit numbers with a nonnegative difference.
Generate random problems and get the player’s input. The player gets up to two
tries per problem. Advance from one level to the next when the player has achieved a
score of five points.

••• p12.7  Implement a simple e-mail messaging system. A message has a recipient, a sender,
and a message text. A mailbox can store messages. Supply a number of mailboxes for
different users and a user interface for users to log in, send messages to other users,
read their own messages, and log out. Follow the design process that was described
in this chapter.

•• p12.8  Write a program that simulates a vending machine. Products can be purchased by
inserting coins with a value at least equal to the cost of the product. A user selects a
product from a list of available products, adds coins, and either gets the product or
gets the coins returned. The coins are returned if insufficient money was supplied
or if the product is sold out. The machine does not give change if too much money
was added. Products can be restocked and money removed by an operator. Follow
the design process that was described in this chapter. Your solution should include a
class VendingMachine that is not coupled with the Scanner or PrintStream classes.

••• p12.9  Write a program to design an appointment calendar. An appointment includes the
date, starting time, ending time, and a description; for example,

Dentist2012/10/117:3018:30
CS1class2012/10/208:3010:00

Supply a user interface to add appointments, remove canceled appointments, and
print out a list of appointments for a particular day. Follow the design process that
was described in this chapter. Your solution should include a class Appointment-
Calendar that is not coupled with the Scanner or PrintStream classes.

•• p12.10  Modify the implementation of the classes in the ATM simulation in Worked Exam-
ple 12.1 so that the bank manages a collection of bank accounts and a separate collec-
tion of customers. Allow joint accounts in which some accounts can have more than
one customer.

programming exercises W581

••• p12.11  Write a program that administers and grades quizzes. A quiz consists of questions.
There are four types of questions: text questions, number questions, choice ques-
tions with a single answer, and choice questions with multiple answers. When grad-
ing a text question, ignore leading or trailing spaces and letter case. When grading a
numeric question, accept a response that is approximately the same as the answer.
A quiz is specified in a text file. Each question starts with a letter indicating the
question type (T, N, S, M), followed by a line containing the question text. The next
line of a non-choice question contains the answer. Choice questions have a list of
choices that is terminated by a blank line. Each choice starts with + (correct) or
- (incorrect). Here is a sample file:

T
WhichJavareservedwordisusedtodeclareasubclass?
extends
S
WhatistheoriginalnameoftheJavalanguage?
-*7
-C--
+Oak
-Gosling

M
WhichofthefollowingtypesaresupertypesofRectangle?
-PrintStream
+Shape
+RectangularShape
+Object
-String

N
Whatisthesquarerootof2?
1.41421356

Your program should read in a quiz file, prompt the user for responses to all ques-
tions, and grade the responses. Follow the design process that was described in this
chapter.

•• p12.12  Produce a requirements document for a program that allows a company to send out
personalized mailings, either by e-mail or through the postal service. Template files
contain the message text, together with variable fields (such as Dear [Title] [Last
Name] . . .). A database (stored as a text file) contains the field values for each recip-
ient. Use HTML as the output file format. Then design and implement the pro gram.

••• p12.13  Write a tic-tac-toe game that allows a human player to play against the computer.
Your program will play many turns against a human opponent, and it will learn.
When it is the computer’s turn, the computer randomly selects an empty field,
except that it won’t ever choose a losing combination. For that purpose, your pro-
gram must keep an array of losing combinations. Whenever the human wins, the
immediately preceding combination is stored as losing. For example, suppose that
X = computer and O = human. Suppose the current combination is

X

O

XO

W582 Chapter 12 Object-Oriented design

Now it is the human’s turn, who will of course choose

X

O

XO

O

The computer should then remember the preceding combination

X

O

XO

as a losing combination. As a result, the computer will never again choose that
combination from

X

O

O

or

O

XO

Discover classes and supply a UML diagram before you begin to program.

• p12.14  Place the CashRegister and Coin classes of the sample program in Section 12.1 into the
package com.horstmann. Keep the CashRegisterTester class in the default package.

• p12.15  Place all classes of the sample program in Section 12.3 into the package com.horstmann.
How do you start the program in your programming environment?

• p12.16  Place the classes from Worked Example 12.1 in a package whose name is derived
from your e-mail address, as described in Section 12.4.3.

••• business p12.17  Implement a program that prints paychecks for a group of student assistants. Deduct
federal income and Social Security taxes. (You may want to use the tax computation
used in Chapter 3. Find out about Social Security taxes on the Internet.) Your pro-
gram should prompt for the name, hourly wage, and hours worked for each student.

••• business p12.18  Airline seating. Write a program that assigns seats on an airplane. Assume the
airplane has 20 seats in first class (5 rows of 4 seats each, separated by an aisle) and
90 seats in economy class (15 rows of 6 seats each, separated by an aisle). Your pro-
gram should take three commands: add passengers, show seating, and quit. When
passengers are added, ask for the class (first or economy), the number of passengers
traveling together (1 or 2 in first class; 1 to 3 in economy), and the seating prefer-
ence (aisle or window in first class; aisle, center, or window in economy). Then try
to find a match and assign the seats. If no match exists, print a message. Your solu-
tion should include a class Airplane that is not coupled with the Scanner or PrintStream
classes. Follow the design process that was described in this chapter.

answers to self-Check Questions W583

••• business p12.19  In an airplane, each passenger has a touch screen for ordering a drink and a snack.
Some items are free and some are not. The system prepares two reports for speeding
up service:

1. A list of all seats, ordered by row, showing the charges that must be collected.
2. A list of how many drinks and snacks of each type must be prepared for the

front and the rear of the plane.
Follow the design process that was described in this chapter to identify classes, and
implement a program that simulates the system.

••• graphics p12.20  Implement a program to teach a young child to read the clock. In the game, present
an analog clock, such as the one shown at left. Generate random times and display
the clock. Accept guesses from the player. Reward the player for correct guesses.
After two incorrect guesses, display the correct answer and make a new random
time. Implement several levels of play. In level 1, only show full hours. In level 2,
show quarter hours. In level 3, show five-minute multiples, and in level 4, show any
number of minutes. After a player has achieved five correct guesses at one level,
advance to the next level.

••• graphics p12.21  Write a program that can be used to design a suburban scene, with houses, streets,
and cars. Users can add houses and cars of various colors to a street. Write more spe-
cific requirements that include a detailed description of the user interface. Then, dis-
cover classes and methods, provide UML diagrams, and implement your pro gram.

••• graphics p12.22  Write a simple graphics editor that allows users to add a mixture of shapes (ellipses,
rectangles, and lines in different colors) to a panel. Supply commands to load and
save the picture. Discover classes, supply a UML diagram, and implement your
program.

An Analog Clock

a n s W e r s t O s e L F - C h e C k Q U e s t i O n s

1.  Look for nouns in the problem description.
2.  Yes (ChessBoard) and no (MovePiece).
3.  PrintStream

4.  To produce the shipping address of the
customer.

5.  Reword the responsibilities so that they are at
a higher level, or come up with more classes to
handle the responsibilities.

6.  The CashRegisterTester class depends on the
CashRegister and System classes.

7.  The ChoiceQuestion class inherits from the
Question class.

8.  The Quiz class depends on the Question class
but probably not ChoiceQuestion, if we assume
that the methods of the Quiz class manipu-
late generic Question objects, as they did in
Chapter 9.

9.  If a class doesn’t depend on another, it is not
affected by interface changes in the other class.

10. 

11.  Typically, a library system wants to track
which books a patron has checked out, so it
makes more sense to have Patron aggregate Book.
However, there is not always one true answer
in design. If you feel strongly that it is impor-
tant to identify the patron who checked out a
particular book (perhaps to notify the patron
to return it because it was requested by some-
one else), then you can argue that the aggrega-
tion should go the other way around.

12.  There would be no relationship.

Mailbox Message

W584 Chapter 12 Object-Oriented design

13.  The Invoice class is responsible for comput-
ing the amount due. It collaborates with the
LineItem class.

14.  This design decision reduces coupling. It
enables us to reuse the classes when we want
to show the invoice in a dialog box or on a
web page.

15.  (a) No; (b) Yes; (c) Yes; (d) No
16.  No—you simply use fully qualified names for

all other classes, such as java.util.Random and
java.awt.Rectangle.

17.  /home/me/cs101/hw1/problem1 or, on Windows,
c:\Users\me\cs101\hw1\problem1.

