

Summary of Contents

Preface . xix

1. Welcome to Cloud Computing . 1

2. Amazon Web Services Overview . 21

3. Tooling Up . 37

4. Storing Data with Amazon S3 . 61

5. Web Hosting with Amazon EC2 . 101

6. Building a Scalable Architecture with Amazon SQS 143

7. EC2 Monitoring, Auto Scaling, and Elastic Load Balancing 181

8. Amazon SimpleDB: A Cloud Database . 227

9. Amazon Relational Database Service . 263

10. Advanced AWS . 289

11. Putting It All Together: CloudList . 335

Index . 359

HOST YOUR
WEB SITE IN
THE CLOUD

AMAZON WEB SERVICES MADE EASY
BY JEFF BARR

Host Your Web Site in the Cloud: Amazon Web Services Made Easy
by Jeff Barr

Copyright © 2010-2011 Amazon Web Services, LLC, a Delaware limited liability

company, 410 Terry Avenue North, Seattle, WA 98109, USA

Chief Technical Officer: Kevin YankProgram Director: Lisa Lang

Indexer: Fred BrownTechnical Editor: Andrew Tetlaw

Cover Design: Alex WalkerTechnical Editor: Louis Simoneau

Editor: Kelly Steele

Expert Reviewer: Keith Hudgins

Latest Update: February 2011Printing History:

First Edition: September 2010

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, without the prior written permission of the copyright holder, except in

the case of brief quotations embedded in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty Ltd, nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of

the trademark.

Helmet image on the cover is a Davida Jet and was kindly provided by http://motociclo.com.au.

Published by SitePoint Pty Ltd

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9805768-3-2

Printed and bound in the United States of America

iv

About the Author

Jeff Barr is currently the Senior Evangelist at Amazon Web Services. In this role, Jeff speaks

to developers at conferences and user groups all over the world. Jeff joined Amazon.com in

2002 when he realized it was destined to become the next great developer platform, and that

he could help make it so. Before coming to Amazon, Jeff ran his own consulting practice,

and has also held management and development positions at Microsoft, eByz, KnowNow,

and Visix Software.

Jeff earned a Bachelor’s degree in Computer Science from the American University in

Washington DC and also took some graduate classes at George Washington University in the

same city. Jeff resides in Sammamish, Washington with his wife and their five children. In

his spare time he enjoys the great outdoors, electronics, and welding.

About the Technical Editors

Andrew Tetlaw has been tinkering with web sites as a web developer since 1997. He’s ded-

icated to making the world a better place through the technical editing of SitePoint books,

kits, articles, and newsletters. Andrew’s also a busy father of five, enjoys receiving beer

showbags, and often neglects his blog at http://tetlaw.id.au/.

Louis Simoneau joined SitePoint in 2009, after traveling from his native Montréal to Calgary

and finally Melbourne. He now gets to spend his days learning about cool web technologies,

an activity that had previously been relegated to nights and weekends. He enjoys hip-hop,

spicy food, and all things geeky. His personal web site is http://louissimoneau.com/.

About the Chief Technical Officer

As Chief Technical Officer for SitePoint, Kevin Yank keeps abreast of all that is new and

exciting in web technology. Best known for his book, Build Your Own Database Driven Web

Site Using PHP & MySQL, he also co-authored Simply JavaScript with Cameron Adams and

Everything You Know About CSS Is Wrong! with Rachel Andrew. In addition, Kevin hosts

the SitePoint Podcast and co-writes the SitePoint Tech Times, a free email newsletter that

goes out to over 240,000 subscribers worldwide.

Kevin lives in Melbourne, Australia and enjoys speaking at conferences, as well as visiting

friends and family in Canada. He’s also passionate about performing improvised comedy

theater with Impro Melbourne (http://www.impromelbourne.com.au/) and flying light aircraft.

Kevin’s personal blog is Yes, I’m Canadian (http://yesimcanadian.com/).

v

http://louissimoneau.com/

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

podcasts, and community forums.

vi

To Carmen,

Thanks for all of your love,

support, and encouragement. I

couldn’t have done it without you!

Table of Contents

Preface . xix

Who Should Read This Book? . xxi

What’s Covered in This Book? . xxi

The Book’s Web Site . xxiii

The Code Archive . xxiii

Updates and Errata . xxiii

The SitePoint Forums . xxiv

The SitePoint Newsletters . xxiv

The SitePoint Podcast . xxiv

Your Feedback . xxiv

Acknowledgments . xxv

Conventions Used in This Book . xxv

Markup Samples . xxv

Tips, Notes, and Warnings . xxvi

Chapter 1 Welcome to Cloud Computing 1

Avoiding a Success Disaster . 2

Tell Me about Cloud Computing! . 3

What’s a Cloud? . 4

The Programmable Data Center . 5

Characterizing the Cloud . 8

Some Common Misconceptions . 10

Cloud Usage Patterns . 13

Cloud Use Cases . 13

Hosting Static Web Sites and Complex Web Applications 14

Software Development Life Cycle Support . 14

Training . 15

Demos . 16

Data Storage . 16

Disaster Recovery and Business Continuity . 16

Media Processing and Rendering . 17

Business and Scientific Data Processing . 17

Overflow Processing . 18

Just Recapping . 18

Chapter 2 Amazon Web Services
Overview . 21

Amazon and AWS Overview . 21

Building Blocks . 22

Protocols . 22

Dollars and Cents . 24

Key Concepts . 25

AWS Infrastructure Web Services . 28

Amazon Simple Storage Service . 28

Amazon CloudFront . 29

Amazon Simple Queue Service . 30

Amazon SimpleDB . 30

Amazon Relational Database Service . 31

Amazon Elastic Compute Cloud . 32

Amazon Elastic MapReduce . 33

Amazon Route 53 . 33

AWS Identity and Access Management . 34

AWS Elastic Beanstalk . 34

Amazon Simple Email Service . 34

Other Services . 34

What We’ve Covered . 35

x

Chapter 3 Tooling Up . 37

Technical Prerequisites . 37

Skills Expectations . 37

Hardware and Software Expectations . 38

Optional but Recommended . 39

Tools and Libraries . 40

Tool Considerations . 40

Language Libraries . 41

Command Line Tools . 42

Visual Tools . 43

Creating an AWS Account . 51

Obtaining Your AWS Keys . 53

Running the PHP Code in This Book . 55

Installing the AWS SDK for PHP . 57

Where We’ve Been . 59

Chapter 4 Storing Data with Amazon S3 61

S3 Overview . 61

The S3 Pricing Model . 64

CloudFront Overview . 65

The CloudFront Pricing Model . 66

Programming S3 and CloudFront . 66

Creating an S3 Bucket . 66

Listing Your S3 Buckets . 70

Bucket Listing as a Web Page . 71

Listing Objects in a Bucket . 72

Processing Complex SDK Data Structures . 74

Listing Objects in a Bucket as a Web Page . 77

Uploading Files to S3 . 82

Creating and Storing Thumbnail Images . 86

xi

Creating a CloudFront Distribution . 92

Listing CloudFront Distributions . 93

Listing S3 Files with Thumbnails . 94

Finally . 99

Chapter 5 Web Hosting with Amazon EC2 101

The Programmable Data Center . 101

Amazon EC2 Overview . 102

Persistent and Ephemeral Resources . 103

Amazon EC2 Terminology . 104

All Together Now . 109

The Amazon EC2 Pricing Model . 109

Instance Use . 110

Data Transfer . 110

AMI Storage . 111

IP Address Reservations . 111

Elastic Block Store . 111

Launching Your First Amazon EC2 Instance . 111

Creating and Preparing an SSH Key . 112

Touring the AWS Management Console . 114

Launching Your First Instance . 114

Enabling SSH Access . 117

Connecting to the Instance . 118

Assigning an IP Address . 122

Creating an EBS Volume . 123

Testing Apache . 125

Running Some Code . 126

Shutting Down . 128

You Did It! . 129

All about AMIs . 129

xii

The AMI Catalog . 129

Choosing an AMI . 131

Creating a Custom AMI . 131

Planning . 133

Image Preparation . 134

Image Scrubbing . 135

Image Creation . 136

Reusing and Sharing the AMI . 137

Using the EC2 API . 138

Closing Thoughts . 141

Chapter 6 Building a Scalable Architecture
with Amazon SQS . 143

Why Asynchronous Messaging? . 143

Asynchronous Messaging Patterns . 145

Amazon SQS Overview . 148

Terminology and Concepts . 148

Watch Out For … . 149

Operations . 150

Pricing Model . 150

Programming Amazon SQS . 150

Creating a Queue . 151

Listing Queues . 152

Inserting Items into Queues . 153

Extracting Items from Queues . 154

Introducing JSON . 157

Building an Image Crawler . 158

Hosting the Image Crawler . 159

Definitions and Utility Functions . 160

Crawl Queue Status Command . 162

xiii

Crawl Loader Command . 163

The Feed Processing Pipeline . 164

Running the Code . 178

Wrapping Up . 180

Chapter 7 EC2 Monitoring, Auto Scaling, and
Elastic Load Balancing 181

Introduction . 181

Vertical Scaling . 182

Horizontal Scaling . 182

Monitoring, Scaling, and Load Balancing . 183

Installing the Command Line Tools . 184

Monitoring EC2 Data with Amazon CloudWatch 188

Amazon CloudWatch Concepts . 188

Amazon CloudWatch Operation . 189

Amazon CloudWatch Pricing . 190

Amazon CloudWatch from the Command Line 190

Programming Amazon CloudWatch . 192

Learning and Using Apache JMeter . 203

Why JMeter? . 203

Installing and Running JMeter . 204

Creating a Test Plan . 205

Running the Test . 206

Viewing the Results . 207

Going Further with JMeter . 209

Scaling EC2 Instances with Elastic Load Balancing 209

Elastic Load Balancing Concepts . 209

Elastic Load Balancing Processing Model . 210

Elastic Load Balancing Pricing . 212

Elastic Load Balancing in Operation . 213

xiv

Programming Elastic Load Balancing . 217

Auto Scaling . 218

Auto Scaling Concepts . 218

Auto Scaling Processing Model . 219

Auto Scaling Pricing . 221

Auto Scaling in Operation . 221

Off the Scale . 225

Wrapping It Up . 225

Chapter 8 Amazon SimpleDB: A Cloud
Database . 227

Introduction . 227

Amazon SimpleDB . 228

Amazon SimpleDB Concepts . 228

Amazon SimpleDB Programming Model . 230

Amazon SimpleDB Pricing . 231

Programming Amazon SimpleDB . 232

Creating a Domain . 233

Listing Domains . 234

Storing Data . 234

Storing Multiple Items Efficiently . 236

Running a Query . 239

Advanced Queries . 241

Augmenting Items with Additional Data . 244

Storing Multiple Values for an Attribute . 245

Accessing Attribute Values . 246

Deleting Attributes . 247

Deleting Items . 248

Monitoring Domain Statistics . 249

Processing and Storing RSS Feeds with Amazon SimpleDB 251

xv

All Stored . 261

Chapter 9 Amazon Relational Database
Service . 263

Introduction . 263

Amazon Relational Database Service . 265

Amazon RDS Concepts . 265

Amazon RDS Programming Model . 270

Amazon RDS Pricing . 270

Using Amazon RDS . 272

Signing Up . 272

Tour the Console . 273

Launching a DB Instance . 274

Configure a DB Security Group . 276

Access the DB Instance . 278

Import Some Data . 279

Administering RDS . 280

Monitor Instance Performance . 280

Initiate a Snapshot Backup . 281

Scale-up Processing . 282

Scale-up Storage . 284

Create a DB Instance from a DB Snapshot or to a Point in

Time . 285

Convert to Multi-AZ . 285

Delete DB Instances . 286

And That’s a Wrap . 286

Chapter 10 Advanced AWS . 289

Accounting and Tracking . 289

xvi

Account Activity . 289

Access to Usage Data . 291

Importing Usage Data . 292

Querying Account Data . 298

Retrieving and Displaying Usage Data . 300

Elastic Block Storage . 306

EBS from the Command Line . 306

EBS Snapshots . 308

EBS Public Data Sets . 312

EBS RAID . 313

EC2 Instance Metadata . 317

Dynamic Diagramming . 321

Conclusion . 333

Chapter 11 Putting It All Together:
CloudList . 335

Designing the Application . 335

Utility Functions and Programs . 336

The Web Front End . 348

The New Item Submission Form . 353

And That’s It . 358

Index . 359

xvii

Preface
In the spring of 2002, I logged in to my Amazon Associates account one day and

saw a little box on the landing page with the magic words: “Amazon Now Has

XML!” Amazon had exposed many aspects of its product catalog in XML form.

Coupled with the Amazon Associates program, enterprising developers could

download the data, use it to create a marketing site, and then earn commissions by

sending traffic to the main Amazon.com site.

I thought this was fairly interesting and dived right in. I downloaded the documen-

tation, wrote some code, and was impressed. I saw plenty of promise, but also plenty

of room for improvement, so I wrote it all up and sent it to a feedback email address

that they’d provided for this purpose.

One situation led to another and by early summer I was Amazon’s guest at a very

exclusive conference held at their headquarters. They had invited five or six outside

developers to Seattle in order to gain some direct customer feedback on their service

and talk about their plans for the future. As I sat there and listened, I was definitely

impressed. It was clear they were thinking big. They hinted at their plans to open

up the Amazon technology platform and invite developers to participate.

Having worked at Microsoft for three years, I had a real appreciation for a platform’s

power and my mind raced forward. They were going to need a developer program,

sample code, more documentation, and all sorts of material in order to make this

happen. I thought I could make a contribution, and stepped out to chat with the

person who’d extended the invitation to me; I told her I wanted to interview for a

role at Amazon to work on this new web services effort!

In order to demonstrate my interest in Amazon, I wrote a set of PHP wrappers for

that very first version of AWS and called it PIA, the PHP Interface to Amazon.

Amusingly enough, my now quaint announcement can still be found on the AWS

Discussion Forums.1

I went through the interview process, and before the end of the summer I was hired

as a senior member of the Amazon Associates team. My official duty was to write

1 http://solutions.amazonwebservices.com/connect/thread.jspa?threadID=183

http://solutions.amazonwebservices.com/connect/thread.jspa?threadID=183
http://solutions.amazonwebservices.com/connect/thread.jspa?threadID=183

business analytical tools using Perl; however, my manager also indicated that I

should devote 10-20% of my time to helping out on the web services effort in

whatever way seemed appropriate.

Just a few weeks after I started, the manager of the Amazon Associates team asked

me if I would mind speaking at a conference. She explained that they had intended

to hire a “real” speaker when she accepted the invitation, but it was taking longer

than expected to find the right person. I did a lot of public speaking earlier in my

career and was happy to take care of this for them. That first event went really well,

and before too long they tossed another one my way, and then another. The 10-20%

of time allocated to the web services effort quickly grew to 40-50%; I kept busy

writing sample code, answering questions on the AWS forums, and doing whatever

I could to help the first members of our developer community succeed.

A few months passed and management approached me. “We’ve been planning to

hire an evangelist to take on these speaking gigs, but it appears that you’re already

doing most of the job. Do you want it?” After some consultation with my family, I

decided that I did, and in April of 2003 it was made official. I was the world’s first

(as far as I know) Web Services Evangelist!

In this role I travel the world and speak at a range of forums: conferences, user

groups, college classes, and corporate technology teams. I arrange one-on-one

meetings with developers in each city, and use these meetings to learn about what

the developers are doing and how we can better serve them.

Over the last couple of years we’ve released a number of infrastructure services,

including the Elastic Compute Cloud (EC2), the Simple Storage Service (S3), the

Simple Queue Service (SQS), and the Simple Database (SimpleDB). It has been a

real privilege to watch firsthand as the AWS team has designed, implemented, de-

livered, and operated service after service and to see our developer community grow

to include hundreds of thousands of developers.

When I was asked to consider writing a book about AWS earlier this year, I thought

it would be the perfect opportunity to share some of what I’ve learned in the last

seven years.

xx

Thanks for Reading
I hope that you enjoy reading this book as much as I’ve enjoyed writing it. Please

feel free to look me up and let me know what you think.

Who Should Read This Book?
This book is aimed at web developers who have built a web application or two, and

are ready to leap into the world of cloud computing using Amazon Web Services.

This book makes use of the PHP language, but if you have experience in any server-

side scripting language, you’ll find the examples clear and easy to understand. It’s

also assumed that you know the fundamentals of HTML and CSS, and that you’re

comfortable with the Linux command line. Knowledge of basic system administration

tasks, such as creating and mounting file systems, will also be helpful.

By the end of this book, you can expect to have a firm grasp of the concept of cloud

computing and its role in enabling a whole new class of scalable and reliable web

applications. You’ll also have gained a clear understanding of the range of Amazon

Web Services, such as the Simple Storage Service, the Elastic Compute Cloud, the

Simple Queue Service, and SimpleDB. You’ll be able to make use of all these services

in your web applications as you write commands, tools, and processes in PHP.

What’s Covered in This Book?
The book comprises 11 chapters. Chapters 3 through to 10 detail specific Amazon

Web Services, and the final chapter explores building a sample application. I would

recommend that you read the book from start to finish on your first go, but keep it

by your side to dip in and out of the chapters if you need a refresher on a particular

web service.

Chapter 1: Welcome to Cloud Computing

In this chapter, you’ll learn the basics of cloud computing, and how it both

builds on but differs from earlier hosting technologies. You will also see how

organizations and individuals are putting it to use.

xxi

Chapter 2: Amazon Web Services Overview

This chapter moves from concept to reality, where you’ll learn more about the

fundamentals of each of the Amazon Web Services. Each web service is explained

in detail and key terminology is introduced.

Chapter 3: Tooling Up

By now you’re probably anxious to start. But before you jump in and start pro-

gramming, you’ll need to make sure your tools are in order. In Chapter 3, you’ll

install and configure visual and command line tools, and the AWS SDK for

PHP.

Chapter 4: Storing Data with Amazon S3

In Chapter 4, you will write your first PHP scripts. You will dive head-first into

Amazon S3 and Amazon CloudFront, and learn how to store, retrieve, and dis-

tribute data on a world scale.

Chapter 5: Web Hosting with Amazon EC2

Chapter 5 is all about the Elastic Compute Cloud infrastructure and web service.

You’ll see how to use the AWS Management Console to launch an EC2 instance,

create and attach disk storage space, and allocate IP addresses. For the climax,

you’ll develop a PHP script to do it all in code. To finish off, you’ll create your

very own Amazon Machine Image.

Chapter 6: Building a Scalable Architecture with Amazon SQS

In this chapter, you will learn how to build applications that scale to handle

high or variable workloads, using message-passing architecture constructed

using the Amazon Simple Queue Service. As an example of how powerful this

approach is, you’ll build an image downloading and processing pipeline with

four queues that can be independently assigned greater or lesser resources.

Chapter 7: EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

Chapter 7 will teach you how to use three powerful EC2 features—monitoring,

auto scaling, and load balancing. These hardy features will aid you in keeping

a watchful eye on system performance, scaling up and down in response to

load, and distributing load across any number of EC2 instances.

Chapter 8: Amazon SimpleDB: A Cloud Database

In Chapter 8, you’ll learn how to store and retrieve any amount of structured

or semi-structured data using Amazon SimpleDB. You will also construct an

xxii

application for parsing and storing RSS feeds, and also make use of Amazon

SQS to increase performance.

Chapter 9: Amazon Relational Database Service

In Chapter 9, we’ll look at Amazon Relational Database Service, which allows

you to use relational databases in your applications, and query them using SQL.

Amazon RDS is a powerful alternative to SimpleDB for cases in which the full

query power of a relational database is required. You’ll learn how to create

database instances, back them up, scale them up or down, and delete them when

they’re no longer necessary.

Chapter 10: Advanced AWS

In this introspective chapter, you’ll learn how to track your AWS usage in

SimpleDB. You’ll also explore Amazon EC2’s Elastic Block Storage feature, see

how to do backups, learn about public data sets, and discover how to increase

performance or capacity by creating a RAID device on top of multiple EBS

volumes. Finally, you will learn how to retrieve EC2 instance metadata, and

construct system diagrams.

Chapter 11: Putting It All Together: CloudList

Combining all the knowledge gained from the previous chapters, you’ll create

a classified advertising application using EC2 services, S3, and SimpleDB.

The Book’s Web Site
Located at http://www.sitepoint.com/books/cloud1/, the web site that supports this

book will give you access to the following facilities.

The Code Archive
As you progress through this book, you’ll note file names above many of the code

listings. These refer to files in the code archive, a downloadable ZIP file that contains

all of the finished examples presented in this book. Simply click the Code Archive

link on the book’s web site to download it.

Updates and Errata
No book is error-free, and attentive readers will no doubt spot at least one or two

mistakes in this one. The Corrections and Typos page on the book’s web site will

xxiii

http://www.sitepoint.com/books/cloud1/

provide the latest information about known typographical and code errors, and will

offer necessary updates for new releases of browsers and related standards.2

The SitePoint Forums
If you’d like to communicate with other developers about this book, you should

join SitePoint’s online community.3 The forums offer an abundance of information

above and beyond the solutions in this book, and a lot of interesting and experienced

web developers hang out there. It’s a good way to learn new tricks, have questions

answered in a hurry, and just have a good time.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, such

as The SitePoint Tribune, The SitePoint Tech Times, and The SitePoint Design View.

Reading them will keep you up to date on the latest news, product releases, trends,

tips, and techniques for all aspects of web development. Sign up to one or more

SitePoint newsletters at http://www.sitepoint.com/newsletter/.

The SitePoint Podcast
Join the SitePoint Podcast team for news, interviews, opinions, and fresh thinking

for web developers and designers. They discuss the latest web industry topics,

present guest speakers, and interview some of the best minds in the industry. You

can catch up on all the podcasts at http://www.sitepoint.com/podcast/, or subscribe

via iTunes.

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have an

email support system set up to track your inquiries, and friendly support staff

members who can answer your questions. Suggestions for improvements, as well

as notices of any mistakes you may find, are especially welcome.

2 http://www.sitepoint.com/books/cloud1/errata.php
3 http://www.sitepoint.com/forums/

xxiv

http://www.sitepoint.com/books/cloud1/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/podcast/

Acknowledgments
First and foremost, I need to thank my loving wife, Carmen. When I told her that I

was considering an offer to write a book, she offered her enthusiastic support, and

wondered why I hadn’t taken her advice to do this a decade or more earlier.

Next, my amazing children, Stephen, Andy, Tina, Bianca, and Grace. Your support

in the form of patience, peace and quiet, constant encouragement, and healthy

snacks and meals has been without par. Now I can take care of all of those things

that I promised to do “after the book is done!”

My colleagues at Amazon Web Services deserve more than a passing mention. My

then-manager, Steve Rabuchin, championed this project internally and asked for

nothing in return—save a mention in the acknowledgements. Jeff Bezos created an

amazing company, one that allows innovation and good ideas like AWS to flourish.

For my peers in AWS Developer Relations, here's what I’ve been working on; I hope

that it lives up to your expectations! To all of the internal reviewers, your careful

and detailed feedback was incredibly helpful.

And finally, thanks to Keith Hudgins (expert reviewer) and Andrew Tetlaw (tech-

nical editor) for all your assistance and feedback.

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Markup Samples
Any markup—be that HTML or CSS—will be displayed using a fixed-width font,

like so:

<h1>A perfect summer's day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the markup forms part of the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

xxv

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, a vertical ellipsis will be displayed

(rather than repeat all the code):

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

xxvi

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xxvii

Chapter1
Welcome to Cloud Computing
One or two office moves ago, I was able to see Seattle’s football and baseball stadiums

from the window of my seventh-floor office. Built side-by-side during an economic

boom, these expensive and high-capacity facilities sit empty for the most part. By

my calculations, these buildings see peak usage one percent of the time at most. On

average, they’re empty. Hundreds of millions of dollars of capital sit idle. I use this

stadium analogy—and have done so many times over the last few years—to help

my audiences understand the business value of cloud computing.

Now, instead of a stadium, think of a large-scale corporate data center. It’s packed

with expensive, rapidly depreciating servers that wait, unutilized, for batch pro-

cessing jobs, large amounts of data, and a flood of visitors to the company web site.

That’s because matching predictions and resources for web traffic has historically

been problematic. Conservative forecasts lead to under-provisioning and create the

risk of a “success disaster,” where a surge of new users receive substandard service

as a result. Overly optimistic forecasts lead to over-provisioning, increased costs,

and wasted precious company resources.

As you’ll see in this book, cloud computing provides a cost-effective and technically

sophisticated solution to this problem. Returning to my opening analogy for a

minute, it’s as if a stadium of precisely the right size was built, used, and then

destroyed each week. The stadium would have just enough seats, parking spaces,

restrooms, and additional facilities needed to accommodate the actual number of

attendees. With this scenario, a stadium fit for 50 people would be just as cost-ef-

fective as one built for 50,000.

Of course, such a situation is impractical with stadiums; custom, just-in-time re-

source instantiation is, on the other hand, perfectly reasonable and practical with

cloud computing. Data processing infrastructure—servers, storage, and bandwidth

—can be procured from the cloud, consumed as needed, and then relinquished back

to the cloud, all in a matter of minutes. This is a welcome and much-needed change

from yesterday’s static, non-scalable infrastructure model. Paying for what you ac-

tually need instead of what you think you might need can change your application’s

cost profile for the better, enabling you to do more with less.

Avoiding a Success Disaster
Imagine you’re a budding entrepreneur with limited resources. You have an idea

for a new web site, one you’re sure will be more popular than Facebook1 or Twitter2

before too long. You start to put together your business plan and draw a chart to

predict your anticipated growth for the first six months. Having already run proto-

types of your application and benchmarked its performance, you realize that you’ll

have to purchase and install one new server every month if all goes according to

plan. You never want to run out of capacity, so you allow for plenty of time to order,

receive, install, and configure each new server. Sufficient capacity in reserve is vital

to handle the users that just might show up before your next server arrives; hence,

you find you’re always spending money you lack in order to support users who

may or may not actually decide to visit your site.

You build your site and put it online, and patiently await your users. What happens

next? There are three possible outcomes: your traffic estimates turn out to be way

too low, just right, or way too high.

Perhaps you were thinking smallish, and your estimate was way too low. Instead

of the trickle of users that you anticipated, your growth rate is far higher. Your initial

1 http://facebook.com/
2 http://twitter.com/

Host Your Web Site in the Cloud2

http://facebook.com/
http://twitter.com/

users quickly consume available resources. The site becomes overloaded and too

slow, and potential users go away unsatisfied.

Then again, maybe you were thinking big and you procured more resources than

you actually needed. You geared up for a big party, and it failed to materialize. Your

cost structure is out of control, because there are only enough users to keep your

servers partially occupied. Your business may fail because your fixed costs are too

high.

Of course, you might have guessed correctly and your user base is growing at the

rate you expected. Even then you’re still in a vulnerable position. Early one morning

you wake up to find that a link to your web site is now on the front page of Digg,3

Reddit,4 or Slashdot.5 Or, a CNN commentator has mentioned your site in an offhand

way and your URL is scrolling across the headline crawl at the bottom of the screen.

This was the moment you’ve been waiting for, your chance at fame and fortune!

Unfortunately, your fixed-scale infrastructure fails to be up to the task, so all those

potential new users go away unhappy. The day, once so promising, ends up as yet

another success disaster.

As you can see, making predictions about web traffic is a very difficult endeavor.

The odds of guessing wrong are very high, as are the costs.

Cloud computing gives you the tools needed to prepare and cope with a traffic on-

slaught, such as the ones I have just described. Providing you’ve put the time in

up-front to architect your system properly and test it for scalability, a solution based

on cloud computing will give you the confidence to withstand a traffic surge without

melting your servers or sending you into bankruptcy.

Tell Me about Cloud Computing!
Let’s dig a bit deeper into the concept of cloud computing now. I should warn you

up-front that we’ll be talking about business in this ostensibly technical book. There’s

simply no way to avoid the fact that cloud computing is more than just a new

technology; it’s a new business model as well. The technology is certainly interesting

and I’ll have plenty to say about it, but a complete discussion of cloud computing

3 http://digg.com/
4 http://reddit.com/
5 http://slashdot.org/

3Welcome to Cloud Computing

http://digg.com/
http://reddit.com/
http://slashdot.org/

will include business models, amortization, and even (gasp) dollars and cents. When

I was young I was a hard-core geek and found these kinds of discussions irrelevant,

perhaps even insulting. I was there for the technology, not to talk about money!

With the benefit of 30 years of hindsight, I can now see that a real entrepreneur is

able to use a mix of business and technical skills to create a successful business.

What’s a Cloud?
Most of us have seen architecture diagrams like the one in Figure 1.1.

Figure 1.1. The Internet was once represented by a cloud

Host Your Web Site in the Cloud4

The cloud was used to indicate the Internet. Over time the meaning of “the Internet”

has shifted, where it now includes the resources usually perceived as being on the

Internet as well as the means to access them.

The term cloud computing came into popular use just a few years before this book

was written. Some were quick to claim that, rather than a new concept, the term

was simply another name for an existing practice. On the other hand, the term has

become sufficiently powerful for some existing web applications have to magically

turned into examples of cloud computing in action! Such is the power of marketing.

While the specifics may vary from vendor to vendor, you can think of the cloud as

a coherent, large-scale, publicly accessible collection of compute, storage, and net-

working resources. These are allocated via web service calls (a programmable inter-

face accessed via HTTP requests), and are available for short- or long-term use in

exchange for payment based on actual resources consumed.

The cloud is intrinsically a multi-user environment, operating on behalf of a large

number of users simultaneously. As such, it’s responsible for managing and verifying

user identity, tracking allocation of resources to users, providing exclusive access

to the resources owned by each user, and preventing one user from interfering with

other users. The software that runs each vendor’s cloud is akin to an operating

system in this regard.

Cloud computing builds on a number of important foundation-level technologies,

including TCP-IP networking, robust internet connectivity, SOAP- and REST-style

web services, commodity hardware, virtualization, and online payment systems.

The details of many of these technologies are hidden from view; the cloud provides

developers with an idealized, abstracted view of the available resources.

The Programmable Data Center
Let’s think about the traditional model for allocation of IT resources. In the para-

graphs that follow, the resources could be servers, storage, IP addresses, bandwidth,

or even firewall entries.

If you’re part of a big company and need additional IT resources, you probably find

you’re required to navigate through a process that includes a substantial amount of

person-to-person communication and negotiation. Perhaps you send emails, create

an online order or ticket, or simply pick up the phone and discuss your resource

5Welcome to Cloud Computing

requirements. At the other end of the system there’s some manual work involved

to approve the request; locate, allocate, and configure the hardware; deal with cables,

routers, and firewalls; and so forth. It is not unheard of for this process to take 12–18

months in some organizations!

If you are an entrepreneur, you call your ISP (Internet Service Provider), have a

discussion, negotiate and then commit to an increased monthly fee, and gain access

to your hardware in a time frame measured in hours or sometimes days.

Once you’ve gone through this process, you’ve probably made a long-term commit-

ment to operate and pay for the resources. Big companies will charge your internal

cost center each month, and will want to keep the hardware around until the end

of its useful life. ISPs will be more flexible, but it is the rare ISP that is prepared to

make large-scale changes on your behalf every hour or two.

The cloud takes the human response out of the loop. You (or more likely a manage-

ment application running on your behalf) make web service requests (“calls”) to

the cloud. The cloud then goes through the following steps to service your request:

1. accepts the request

2. confirms that you have permission to make the request

3. validates the request against account limits

4. locates suitable free resources

5. attaches the resources to your account

6. initializes the resources

7. returns identifiers for the resources to satisfy the request

Your application then has exclusive access to the resources for as much time as

needed. When the application no longer needs the resources, the application is re-

sponsible for returning them to the cloud. Here they are prepared for reuse (reformat-

ted, erased, or rebooted, as appropriate) and then marked as free.

Since developers are accustomed to thinking in object oriented terms, we could

even think of a particular vendor’s cloud as an object. Indeed, an idealized definition

for a cloud might look like this in PHP:6

6 This doesn’t map to any actual cloud; the method and parameter names are there only to illustrate my

point.

Host Your Web Site in the Cloud6

class Cloud
{

 public function getDataCenters()
 {
 ⋮
 }

 public function allocateServer($dataCenter, $count)
 {
 ⋮
 }

 public function releaseServer($server)
 {
 ⋮
 }

 public function allocateDiskStorage($dataCenter, $gb)
 {
 ⋮
 }

 public function releaseDiskStorage($storage)
 {
 ⋮
 }

 ⋮
}

Here’s how this idealized cloud would be used. First, we retrieve a list of available

data centers ($d), and store a reference to the first one in the list ($d1):

$c = new Cloud();
$d = $c->getDataCenters();
$d1 = $d[0];

We can then allocate a server ($server) to the data center and create some storage

space ($storage):

$server = $c->allocateServer($d1, 1);
$storage = $c->allocateDiskStorage($d1, 100);

7Welcome to Cloud Computing

The important point is that you can now write a program to initiate, control, mon-

itor, and choreograph large-scale resource usage in the cloud. Scaling and partitioning

decisions (such as how to add more server capacity or allocate existing capacity)

that were once made manually and infrequently by system administrators with great

deliberation can now be automated and done with regularity.

Characterizing the Cloud
Now that you have a basic understanding of what a cloud is and how it works, let’s

enumerate and dive in to some of its most useful attributes and characteristics. After

spending years talking about Amazon Web Services in public forums, I’ve found

that characterization is often more effective than definition when it comes to con-

veying the essence of the Amazon Web Services, and what it can do.

General Characteristics
Here are some general characteristics of the Amazon Web Services.

Elastic

The cloud allows scaling up and scaling down of resource usage on an as-needed

basis. Elapsed time to increase or decrease usage is measured in seconds or

minutes, rather than weeks or months.

Economies of scale

The cloud provider is able to exploit economies of scale and can procure real

estate, power, cooling, bandwidth, and hardware at the best possible prices.

Because the provider is supplying infrastructure as a commodity, it’s in its best

interest to drive costs down over time. The provider is also able to employ

dedicated staffers with the sometimes elusive skills needed to operate at world-

scale.

Pay-as-you-go

This is a general characteristic rather than a business characteristic for one very

good reason: with cloud-based services, technical people will now be making

resource allocation decisions that have an immediate effect on resource con-

sumption and the level of overall costs. Running the business efficiently becomes

everyone’s job.

Host Your Web Site in the Cloud8

Business Characteristics
Here are some of the defining characteristics of the Amazon Web Services from a

business-oriented point of view:

No up-front investment

Because cloud computing is built to satisfy usage on-demand for resources,

there’s no need to make a large one-time investment before actual demand occurs.

Fixed costs become variable

Instead of making a commitment to use a particular number of resources for the

length of a contract (often one or three years), cloud computing allows for re-

source consumption to change in real time.

CAPEX becomes OPEX

Capital expenditures are made on a long-term basis and reflect a multi-year

commitment to using a particular amount of resources. Operation expenditures

are made based on actual use of the cloud-powered system and will change in

real time.

Allocation is fine-grained

Cloud computing enables minimal usage amounts for both time and resources

(for example: hours of server usage, bytes of storage).

The business gains flexibility

Because there’s no long-term commitment to resources, the business is able to

respond rapidly to changes in volume or the type of business.

Business focus of provider

The cloud provider is in the business of providing the cloud for public use. As

such, it has a strong incentive to supply services that are reliable, applicable,

and cost-effective. The cloud reflects a provider’s core competencies.

Costs are associative

Due to the flexible resource allocation model of the cloud, it’s just as easy to

acquire and operate 100 servers for one hour as it is to acquire and operate one

server for 100 hours. This opens the door to innovative thinking with respect

to ways of partitioning large-scale problems.

9Welcome to Cloud Computing

Technical Characteristics
Here are some of the defining characteristics of the Amazon Web Services from the

technical standpoint:

Scaling is quick

New hardware can be brought online in minutes to deal with unanticipated

changes in demand, either internally (large compute jobs) or externally (traffic

to a web site). Alternatively, resources can be returned to the cloud when no

longer needed.

Infinite scalability is an illusion

While not literally true, each consumer can treat the cloud as if it offers near-

infinite scalability. There’s no need to provision ahead of time; dealing with

surges and growth in demand is a problem for the cloud provider, instead of

the consumer.

Resources are abstract and undifferentiated

Cloud computing encourages a focus on the relevant details—results and the

observable performance—as opposed to the technical specifications of the

hardware used. Underlying hardware will change and improve over time, but

it’s the job of the provider to stay on top of these issues. There’s no longer a

need to become personally acquainted with the intimate details of a particular

dynamic resource.

Clouds are building blocks

The cloud provides IT resources as individual, separately priced, atomic-level

building blocks. The consumer can choose to use none, all, or some of the ser-

vices offered by the cloud.

Experimentation is cheap

The cloud removes the economic barrier to experimentation. You can access

temporary resources to try out a new idea without making long-term commit-

ments to hardware.

Some Common Misconceptions
After talking to thousands of people over the last few years, I’ve learned that there

are a lot of misconceptions floating around the cloud. Some of this is due to the

Host Your Web Site in the Cloud10

inherent unease that many feel with anything new. Other misconceptions reflect

the fact that all the technologies are evolving rapidly, with new services and features

appearing all the time. What’s true one month is overtaken the next by a new and

improved offering. With that said, here are some of the most common misconcep-

tions. Parts of this list were adapted from work done at the University of California,

Berkeley.7

“The cloud is a fad”

Given the number of once-promising technologies that have ended up on his-

tory’s scrap heap, there’s reason to be skeptical. It’s important to be able to re-

spond quickly and cost-effectively to changes in one’s operating environment;

this is a trend that’s unlikely to reverse itself anytime soon, and the cloud is a

perfect fit for this new world.

“Applications must be re-architected for the cloud”

I hear this one a lot. While it’s true that some legacy applications will need to

be re-architected to take advantage of the benefits of the cloud, there are also

many existing applications using commercial or open source stacks that can be

moved to the cloud more or less unchanged. They won’t automatically take

advantage of all the characteristics enumerated above, but the benefits can still

be substantial.

“The cloud is inherently insecure”

Putting valuable corporate data “somewhere else” can be a scary proposition

for an IT manager accustomed to full control. Cloud providers are aware of this

potential sticking point, taking this aspect of the cloud very seriously. They’re

generally more than happy to share details of their security practices and policies

with you. Advanced security systems, full control of network addressing and

support for encryption, coupled with certifications such as SAS 70,8 FISMA

Low, and PCI DSS, can all instill additional confidence in skeptical managers.

I’ll address the ways that AWS has helped developers, CIOs, and CTOs to get

comfortable with the cloud in the next chapter.

7 Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew Konwinski,

Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia, Above the Clouds: A

Berkeley View of Cloud Computing (Berkeley: University of California, 2009), at

http://d1smfj0g31qzek.cloudfront.net/abovetheclouds.pdf.
8 http://www.sas70.com/

11Welcome to Cloud Computing

http://www.sas70.com/
http://d1smfj0g31qzek.cloudfront.net/abovetheclouds.pdf

“The cloud is a single point of failure”

Some developers wonder what happens if the cloud goes down? Unlike tradi-

tional data centers, the AWS cloud offers a wide variety of options for functional

and geographic redundancy to ensure high availability.

“The cloud promotes lock-in”

Because you can run existing applications on the cloud, they can be moved off

as easily as they can be moved on. Operating systems, middleware, and applic-

ations can often be run in a cloud environment with little or no change. Of

course, applications can be updated to take advantage of services offered by the

cloud and that’s what we’ll be exploring in this book.

“The cloud is only good for running open source code”

This argument no longer holds water. Commercial operating system and appli-

cation software vendors now recognize the cloud as a legitimate software envir-

onment and have worked to ensure that their applications have the proper

cloud-friendly licenses. Forward-thinking vendors are now making their licensed

software available on an hourly, pay-as-you-go basis. Instead of buying, for ex-

ample, a database license for tens or even hundreds of thousands of dollars,

you can gain access to the same database for a few dollars per hour.

“Cloud resources are too expensive”

Making a genuine comparison between internal IT resources and equivalent

cloud computing resources has proven to be a difficult task.9 Establishing the

complete, all-inclusive cost of internal resources requires a level of tracking

and accounting that’s absent in most large- or mid-sized organizations. It’s far

too easy to neglect obvious costs, or to compare internal resources at a permanent

hourly cost to scalable cloud resources that cost nothing when idle.

You’ll find more detailed explanations in the remaining chapters of this book as to

why these are indeed misconceptions.

9 See, for example, James Hamilton’s blog post: McKinsey Speculates that Cloud Computing May Be

More Expensive than Internal IT at http://perspectives.mvdirona.com/2009/04/21/McKinseySpecu-

latesThatCloudComputingMayBeMoreExpensiveThanInternalIT.aspx .

Host Your Web Site in the Cloud12

http://perspectives.mvdirona.com/2009/04/21/McKinseySpeculatesThatCloudComputingMayBeMoreExpensiveThanInternalIT.aspx
http://perspectives.mvdirona.com/2009/04/21/McKinseySpeculatesThatCloudComputingMayBeMoreExpensiveThanInternalIT.aspx

Cloud Usage Patterns
Let’s now examine some common cloud usage patterns. Armed with this information,

you should be in a good position to decide whether your application or workload

is a good fit for AWS. Although all these patterns essentially represent usage over

time, there are a number of important nuances. In the cases below, “usage” generally

represents a combination of common cloud resources—servers, storage, and band-

width.

Constant usage over time

common for internal applications where there’s little variation in usage or load

from day to day or hour to hour

Cyclic internal load

characteristic for batch or data processing applications run on a predictable

cycle, such as close of business for the day or month; the load, both in time and

expected resource consumption, is highly predictable.

Cyclic external load

often applies to web sites that serve a particular market demand; sites related

to entertainment and sporting events often fit this pattern.

Spiked internal load

typical in environments where researchers or analysts can submit large-scale,

one-time jobs for processing; the demand is usually unpredictable.

Spiked external load

seen on the Web when an unknown site suddenly becomes popular, often for

a very short time

Steady growth over time

usually for a mature application or web site; as additional users are added,

growth and resources track accordingly.

Cloud Use Cases
Given that you’ve read this far, you might be wondering how other people are putting

clouds to use. In this section I’ve collected some (but definitely not all) of the most

common use cases, starting simple and building to the more complex.

13Welcome to Cloud Computing

Hosting Static Web Sites and Complex Web
Applications
The cloud can easily host a static web site built from static HTML pages, CSS style

sheets, and images. In fact, the simplest of such sites can be hosted using only cloud

storage, perhaps aided by a content distribution system.

More complex web sites, often with substantial server-side processing and access

to a relational database, can also be hosted in the cloud. These sites make use of

cloud storage and processing, and often require substantial processing and storage

resources to attain the required scale.

Software Development Life Cycle Support
The cloud is a good match for the resource requirements of each phase of the software

development life cycle.

During development, using the cloud can ensure that developers have adequate

resources for their work. Suppose that a team of developers are building a classic

three-tier web application with web, application, and database tiers, each destined

to reside on a separate physical server at deployment time. Without AWS, each

developer would be supplied with three complete servers, each of which would sit

idle for much of the day. Costs grow quickly when new developers are added to the

project. Moving to the cloud means that each developer can spin up servers in the

morning, develop and test all day, and then return the servers to the cloud at the

end of the working day.

The cloud is also valuable during software testing. Developers can spin up testing

servers and run unit tests on them without burdening their development servers.

If there are numerous unit tests, multiple parallel servers can be used to spread the

load around.

The cloud can be used to support a continuous integration environment. In such

an environment, each source code commit operation initiates a multistep process

of rebuilding, unit testing, and functional testing. If the code is being written for

multiple target environments (several different versions or variants of Linux) or

platforms (Windows and Linux), the cloud can be a very cost-effective alternative

to owning your own infrastructure.

Host Your Web Site in the Cloud14

Load and performance testing can be done throughout each development cycle using

cloud computing resources. If the application itself will run on the cloud, the testing

will ensure that it performs well under a heavy load, adding additional resources

as the load grows and removing them as it dissipates.

Testing the performance of a web application intended for public or enterprise de-

ployment becomes easier when the cloud can supply the resources needed to conduct

a test at a scale representative of the expected load. Several companies use cloud

resources to generate loads that are the equivalent to hundreds of thousands of

simultaneous users.

Once the application has been deployed (perhaps also to the cloud), the cloud can

supply the resources needed to perform compatibility tests when application mid-

dleware layers or common components are updated. Thorough testing can help es-

tablish the confidence needed to make substantial upgrades to a production system

without the risk of downtime.

Training
The cloud can supply the short-term resources needed to support various types of

training programs.

If students are learning how to install, run, and monitor the three-tier application

described in the previous section, they can use their own laptops to access cloud

resources allocated for the duration of the class. When the class is over for the day

the resources are returned to the cloud. The students can start from a single “master”

machine image and avoid wasting time (theirs or the instructor’s) installing and

configuring required packages and applications.

Traditional training classes must impose limits on class size corresponding to the

restricted amount of physical hardware that they have available. Leading companies

are now conducting online training seminars, backed by per-student cloud-based

resources where an additional server is launched as each new student joins the

class. This technique has been used by application and database software vendors

with impressive results.

15Welcome to Cloud Computing

Demos
Resources drawn from the cloud can be used to host and deliver demos and trial

versions of packaged software applications. Vendors can place demos into the hands

of potential customers while the lead is “hot,” rather than after the usual protracted

delay while a suitable test environment is prepared. Application vendors can create

and provide access to a server hosted in the cloud at low cost and on short notice.

The sales cycle is shortened and customers have a good experience with the use of

cloud-based resources. In some cases, cloud-based demos actually lead to cloud-

based deployment.

Data Storage
The cloud is a good place to store private or public data. Scalability, long-term

durability, and economy of scale are of paramount importance for this use case.

The stored data could be as simple and compact as a few personal files for backup,

or it could be as large and complex as a backup of a company’s entire digital assets,

or anything in between.

Often, use of storage in the cloud turns out to be an excellent first step, a step that

inspires confidence and soon leads to considering the cloud for other, more complex,

use cases.

Disaster Recovery and Business Continuity
Enterprises with a mission-critical dependence on IT resources must have a plan

in place to deal with any setback, be it a temporary or permanent loss of the resources

or access to them. The plan must take into account the potential for fires, floods,

earthquakes, and terrorist acts to disrupt a company’s operations. Many businesses

maintain an entire data center in reserve; data is replicated to the backup center on

occasion and the entire complex stands ready to be activated at a moment’s notice.

Needless to say, the cost of building and running a duplicate facility is considerable.

Cloud computing, once again, offers a different way to ensure business continuity.

Instead of wasting capital on hardware that will never be put to use under normal

circumstances, the entire corporate network can be modeled as a set of cloud re-

sources, captured in template form, and then instantiated when trouble strikes. In

this particular use case, you’ll need to work with your cloud provider to ensure that

the necessary resources will be available when you need them.

Host Your Web Site in the Cloud16

Once the corporate network has been modeled for business continuity purposes,

other interesting uses come to mind. Traditionally, widespread deployment of up-

dated versions of middleware and shared applications components require substan-

tial compatibility and performance testing. This task is fraught with peril! Many

companies find themselves slowly slipping behind: they’re unable to deploy the

newest code due to limitations in their ability to fully test before deployment, and

unwilling to risk facing the consequences of a failed deployment.

Imagine spinning up a full copy (or a representative, scaled-down subset) of the

corporate network, along with specified versions of the application components to

be tested, and then running compatibility and load tests on it, all in the cloud, and

at a very reasonable cost.

Media Processing and Rendering
A number of popular web sites support uploading of media files: music, still images,

or videos. Once uploaded the files undergo a number of processing steps, which

can be compute-intensive, I/O intensive, or both. Files of all types are scanned for

viruses and other forms of malware. Music is fingerprinted (to check for copyright

violations) and then transcoded to allow for playback at different bit rates. Images

are scaled, watermarked, checked for duplication, and rendered in different formats.

Videos are also transcoded and scaled, and sometimes broken into shorter chunks.

Finally, the finished objects are stored and made available for online viewing or

downloading.

Rendering uses a scene description to generate frames for an animated movie. Each

frame can be rendered independently of the others. There’s comparatively little

input data, but plenty of output data. The process is compute-intensive, since each

pixel of each frame must be computed, taking into account light, shadow, color,

and motion.

Cloud computing is ideal for processing and rendering use cases due to the amount

of storage, processing, and internet bandwidth they can consume.

Business and Scientific Data Processing
Scientific and business data processing often involves extremely large-scale data

sets and can consume vast amounts of CPU power. Analysis is often done on an on-

demand basis, leading to over-commitments of limited internal resources. In fact,

17Welcome to Cloud Computing

I’m told that many internal scientific compute grids routinely flip between 0% usage

(absolutely no work to be done) and 100% usage (every possible processor is in

use). This is a particularly acute problem on university campuses, where usage

heats up before the end of the semester and before major conferences.

Business data processing can be ad hoc (unscheduled) or more routine; monthly

payroll processing and daily web log processing come to mind as very obvious use

cases for cloud computing. A large, busy web site is capable of generating tens of

gigabytes of log file data in each 24-hour period. Due to the amount of business in-

telligence that can be mined from the log files, analysis is a mission-critical function.

Gaining access to the usage data on a more timely basis enables better site optimi-

zation and a quicker response to changes and trends. The daily analysis process

starts to take long and longer, and at some point begins to take almost 24 hours.

Once this happens, heavily parallel solutions are brought to bear on the problem,

consuming more resources for a shorter amount of time—a perfect case for cloud

computing.

Overflow Processing
As companies begin to understand the benefits that cloud computing brings, they

look for solutions that allow them to use their existing IT resources for routine work,

while pushing the extra work to the cloud. It’s like bringing in temporary workers

to handle a holiday rush.

Overflow processing allows companies to become comfortable with the cloud. They

find more and more ways to use the cloud as their confidence level increases, and

as the amount of vital corporate data already present in the cloud grows.

Just Recapping
As you can see, there are a number of different ways to use the cloud to host existing

applications, build creative new ones, and improve the cost-effectiveness and effi-

ciency of organizations large and small.

In this chapter we’ve learned the fundamentals of cloud computing. Using a sporting-

venue analogy, we’ve seen how cloud computing allows individuals and organiza-

tions to do a better job of matching available resources to actual demand. We’ve

learned about the notion of a “success disaster” and aim to avoid having one of our

own—with the assistance of AWS, of course. From there we covered the character-

Host Your Web Site in the Cloud18

istics of a cloud, and proposed that the cloud could be thought of as a programmable

data center. We examined the cloud from three sides: general, technical, and busi-

ness, and enumerated some common misconceptions. Finally, we took a quick look

at usage patterns and an extended look at actual use cases.

In the next chapter we’ll learn more about the Amazon Web Services, and we’ll get

ready to start writing some code of our own.

19Welcome to Cloud Computing

Chapter2
Amazon Web Services Overview
In the previous chapter we discussed the concept of cloud computing in general

terms. We listed and discussed the most interesting and relevant characteristics of

the cloud. With that information as background, it’s now time to move from concept

to reality.

In this chapter I’ll introduce Amazon Web Services, or AWS for short. After a review

of some key concepts I’ll talk about each AWS service.

Amazon and AWS Overview
You’ve probably made a purchase at the Amazon.com1 site. Perhaps you even bought

this book from Amazon.com. One of my first purchases, way back in November

1996, was a book on Perl programming.

Amazon.com Inc. was founded in 1994 and launched in 1995. In order to attain the

scale needed to create a profitable online business, the company made strategic in-

vestments in world-scale internet infrastructure, including data centers in multiple

locations around the world, high-speed connectivity, a plethora of servers, and the

1 http://www.amazon.com/

http://www.amazon.com/

creation of a world-class system architecture. With an active customer base in the

tens of millions, each and every system component must be reliable, efficient, cost-

effective, and highly scalable.

Realizing that developers everywhere could benefit from access to the services that

support Amazon’s web site, Amazon decided to create a new line of business. In

early 2006, the company launched the Amazon Simple Storage Service (S3). Since

then Amazon has brought a broad line of infrastructure, payment, workforce, mer-

chant, and web analytic services to market under Amazon Web Services (AWS). In

this book I’ll focus on the infrastructure services. If you’d like to learn about the

other services, please visit the AWS home page.2

Building Blocks
AWS consists of a set of building-block services. The services are designed to work

independently, so that you can use one without having to sign up for or know

anything at all about the others. They are, however, also designed to work well to-

gether. For example, they share a common naming convention and authentication

system. So, much of what you learn as you use one service is applicable to some or

all the other services! This building-block approach also minimizes internal connec-

tions and dependencies between the services, which gives Amazon the ability to

improve each service independently so that each works as efficiently as possible.

Every function in AWS can be accessed by making a web service call. Starting a

server, creating a load balancer, allocating an IP address, or attaching a persistent

storage volume (to name just a few actions) are all accomplished by making web

service calls to AWS. These calls are the down-to-the-metal, low-level interface to

AWS. While it’s possible (and simple enough) to make the calls yourself, it’s far

easier to use a client library written specifically for the programming language of

your choice.

Protocols
The web service calls use one of two popular protocols SOAP (once short for Simple

Object Access Protocol, but now just a pseudo-acronym) and REST (an assimilation

of Representational State Transfer). Because this book will focus on building useful

applications and utilities, I will access AWS using a client library rather than

2 http://aws.amazon.com/

Host Your Web Site in the Cloud22

http://aws.amazon.com/

spending much time at the web service protocol layer. Suffice it to say that SOAP

and REST are two different ways to initiate a call (or request) to a web service.

Libraries and tools are layered on top of the AWS APIs (Application Programming

Interfaces) to simplify the process of accessing the services.

I guess I have to mention XML here too! XML is a fundamental part of the SOAP

protocol. If you access AWS using a SOAP-based library you’ll have no dealings

with XML tags or elements. However, if you use a REST-based library, you’ll have

to do some parsing to access the data returned by each call. The examples in this

book will use PHP’s SimpleXML parser.3

Figure 2.1 shows how all the parts that I’ve outlined in this section fit together.

We’ll be focusing on building AWS-powered Applications (top-left corner):

Figure 2.1. Putting the pieces together

The command line tools and visual tools communicate with AWS using the open,

published APIs. So, you’re able to duplicate what you see any tool do in your own

applications. As a consequence of this strict layering of behavior, all developers are

on an equal footing.

3 http://www.php.net/simplexml/

23Amazon Web Services Overview

http://www.php.net/simplexml/

In the section called “Key Concepts” below, I’ll discuss the basic functions (for ex-

ample, RunInstances) and the associated command line tools (ec2-run-instances).

Keep in mind that the same functionality can be accessed using visual tools supplied

by Amazon or by third parties, and that you can always build your own tools using

the same APIs.

Dollars and Cents
Because AWS is a pay-as-you-go web service, there’s a separate cost for the use of

each service. You can model your AWS costs during development time to gain a

better understanding of what it will cost to operate your site at scale. With sufficient

attention to detail you should be able to compute the actual cost of serving a single

web page, or performing some other action initiated by one of your users. You can

also use the AWS Simple Monthly Calculator4 to estimate your costs.

With that in mind, let’s talk about pricing, metering, accounting, presentment, and

billing before we look at the services themselves.

Pricing involves deciding what to charge for, how often to charge, and how much

to charge. AWS charges for resource usage at a very granular level. Here are some

of the pricing dimensions that AWS uses:

■ Time—an hour of CPU time.
■ Volume—a gigabyte of transferred data.
■ Count—number of messages queued.
■ Time and space—a gigabyte-month of data storage.

Most services have more than one pricing dimension. If you use an Amazon EC2

(Elastic Compute Cloud) server to do a web crawl, for example, you’ll be charged

for the amount of time that the server is running and for the data that you fetch.

The web site detail page for each AWS service shows the cost of using the service.

Each AWS service is published and visible to everyone. The pricing for many of

the services reflects volume discounts based on usage; that is, the more you use the

service, the less it costs per event. Pricing for the services tends to decline over time

4 http://calculator.s3.amazonaws.com/calc5.html

Host Your Web Site in the Cloud24

http://calculator.s3.amazonaws.com/calc5.html

due to the effects of Moore’s Law and economies of scale.5 Pricing also reflects the

fact that operating costs can vary from country to country.

Metering refers to AWS measuring and recording information about your use of

each service. This includes information about when you called the service, which

service you called, and how many resources you consumed in each of the service’s

pricing dimensions.

Accounting means that AWS tabulates the metered information over time, adding

up your usage and tracking your overall resource consumption. You can use the

AWS Portal to access detailed information about your resource consumption.

Presentment involves making your AWS usage available so that you can see what

you’ve used and the cost you’ve incurred. This information is also available from

the AWS portal.

Billing indicates that AWS will charge your credit card at the beginning of each

month for the resources you consumed in the previous month.

Does any of this seem a little familiar? Indeed, your utility supplier (phone, water,

or natural gas) takes on a very similar set of duties. This similarity causes many

people to correctly observe that an important aspect of cloud computing is utility

pricing.

Key Concepts
Let’s review some key concepts and AWS terms to prepare to talk about the services

themselves. In the following sections, I include lists of some of the functions and

commands that you can use to access the relevant parts of AWS mentioned below.

These lists are by no means complete; my intention is to give you a better sense of

the level of abstraction made possible by AWS, and also to hint at the types of

functions that are available within the AWS API.

5 Moore’s Law refers to the long-term trend where the number of transistors placed on an integrated

circuit doubles every two years. It has since been generalized to reflect technology doubling in power

and halving in price every two years.

25Amazon Web Services Overview

Availability Zone
An AWS Availability Zone represents a set of distinct locations within an AWS

Region. Each Availability Zone has independent power grid and network connections

so that it’s protected from failures in other Availability Zones. The zones within a

Region are connected to each other with inexpensive, low-latency connections. The

Region name is part of the zone name. For example, us-east-1a is one of four zones

in the us-east-1 Region.

The mapping of a zone name to a particular physical location is different yet con-

sistent for each AWS account. For example, my us-east-1a is possibly different than

your us-east-1a, but my us-east-1a is always in the same physical location. This per-

user mapping is intentional and was designed to simplify expansion and load

management.

The DescribeAvailabilityZones function and the ec2-describe-availability-

zones command return the list of Availability Zones for a Region.

Region
An AWS Region represents a set of AWS Availability Zones that are located in one

geographic area. Each AWS Region has a name that roughly indicates the area it

covers, but the exact location is kept secret for security purposes. The current Regions

are us-east-1 (Northern Virginia), us-west-1 (Northern California), eu-west-1

(Ireland), and ap-southeast-1 (Signapore). Over time, additional Regions will be-

come available. The DescribeRegions function and the ec2-describe-regions

command return the current list of Regions. You may choose to make use of multiple

Regions for business, legal, or performance reasons.

Access Identifiers
AWS uses a number of different access identifiers to identify accounts. The identi-

fiers use different forms of public key encryption and always exist in pairs. The

first element of the pair is public, can be disclosed as needed, and serves to identify

a single AWS account. The second element is private, should never be shared, and

is used to create a signature for each request made to AWS. The signature, when

transmitted as part of a request, ensures the integrity of the request and also allows

AWS to verify that the request was made by the proper user. AWS can use two dif-

ferent sets of access identifiers. The first comprises an Access Key ID and a Secret

Host Your Web Site in the Cloud26

Access Key. The second is an X.509 certificate with public and private keys in-

side. You can view your access identifiers from the AWS portal.6

Amazon Machine Image
An Amazon Machine Image (AMI) is very similar to the root drive of your computer.

It contains the operating system and can also include additional software and layers

of your application such as database servers, middleware, web servers, and so forth.

You start by booting up a prebuilt AMI, and before too long you learn how to create

custom AMIs for yourself or to share, or even sell. Each AMI has a unique ID; for

example, the AMI identified by ami-bf5eb9d6 contains the Ubuntu 9.04 Jaunty

server. The DescribeImages function and the ec2-describe-images command return

the list of registered instances. The AWS AMI catalog7 contains a complete list of

public, registered AMIs.

Instance
An instance represents one running copy of an AMI. You can launch any number

of copies of the same AMI. Instances are launched using RunInstances and the ec2-

run-instances command. Running instances are listed using DescribeInstances

and ec2-describe-instances, and terminated using the TerminateInstances

function or the ec2-terminate-instances command. Before long you will also

learn about the AWS Management Console, which is a visual tool for managing EC2

instances.

Elastic IP Address
AWS allows you to allocate fixed (static) IP addresses and then attach (or route)

them to your instances; these are called Elastic IP Addresses. Each instance can

have at most one such address attached. The “Elastic” part of the name indicates

that you can easily allocate, attach, detach, and free the addresses as your needs

change. Addresses are allocated using the AllocateAddress function or the ec2-

allocate-address command, and attached to an instance using the

AssociateAddress function or the ec2-associate-address command.

6 http://aws.amazon.com/account
7 http://aws.amazon.com/amis

27Amazon Web Services Overview

http://aws.amazon.com/account
http://aws.amazon.com/amis

Elastic Block Store Volume
An Elastic Block Store (EBS) volume is an addressable disk volume. You (or your

application, working on your behalf) can create a volume and attach it to any running

instance in the same Availability Zone. The volume can then be formatted, mounted,

and used as if it were a local disk drive. Volumes have a lifetime independent of

any particular instance; you can have disk storage that persists even when none of

your instances are running. Volumes are created using the CreateVolume function

or the ec2-create-volume command, and then attached to a running instance using

the AttachVolume function or the ec2-attach-volume command.

Security Group
A Security Group defines the allowable set of inbound network connections for an

instance. Each group is named and consists of a list of protocols, ports, and IP address

ranges. A group can be applied to multiple instances, and a single instance can be

regulated by multiple groups. Groups are created using the CreateSecurityGroup

function and the ec2-add-group command. The AuthorizeSecurityGroupIngress

function and the ec2-authorize command add new permissions to an existing se-

curity group.

Access Control List
An Access Control List (ACL) specifies permissions for an object. An ACL is a list

of identity/permission pairs. The GetObjectAccessControlPolicy function retrieves

an object’s existing ACL and the SetObjectAccessControlPolicy function sets a

new ACL on an object.

AWS Infrastructure Web Services
Now that you know the key concepts, let’s look at each of the AWS infrastructure

web services.

Amazon Simple Storage Service
The Amazon Simple Storage Service (S3) is used to store binary data objects for

private or public use. The S3 implementation is fault-tolerant and assumes that

hardware failures are a common occurrence.

Host Your Web Site in the Cloud28

There are multiple independent S3 locations: the United States Standard Region,

Northern California Region,8 Europe, and Asia.

S3 automatically makes multiple copies of each object to achieve high availability,

as well as for durability. These objects can range in size from one byte to five tera-

bytes. All objects reside in buckets, in which you can have as many objects as you

like. Your S3 account can accommodate up to 100 buckets or named object contain-

ers. Bucket names are drawn from a global namespace, so you’ll have to exercise

some care and have a sound strategy for generating bucket names. When you store

an object you provide a key that must be unique to the bucket. The combination of

the S3 domain name, the globally unique bucket name, and the object key form a

globally unique identifier. S3 objects can be accessed using an HTTP request,

making S3 a perfect place to store static web pages, style sheets, JavaScript files,

images, and media files. For example, here’s an S3 URL to a picture of Maggie, my

Golden Retriever: http://sitepoint-aws-cloud-book.s3.amazonaws.com/maggie.jpg.

The bucket name is sitepoint-aws-cloud-book and the unique key is maggie.jpg.

The S3 domain name is s3.amazonaws.com.

Each S3 object has its own ACL. By default, each newly created S3 object is private.

You can use the S3 API to make it accessible to everyone or specified users, and

you can grant them read and/or write permission. I set Maggie’s picture to be publicly

readable so that you can see her.

Other AWS services use S3 as a storage system for AMIs, access logs, and temporary

files.

Amazon S3 charges accrue based on the amount of data stored, the amount of data

transferred in and out of S3, and the number of requests made to S3.

Amazon CloudFront
Amazon CloudFront is a content distribution service designed to work in conjunction

with Amazon S3. Because all Amazon S3 data is served from central locations in

the US, Europe, and Asia, access from certain parts of the world can take several

hundred milliseconds. CloudFront addresses this “speed of light” limitation with

8 The Northern California location provides optimal performance for requests originating in California

and the Southwestern United States.

29Amazon Web Services Overview

a global network of edge locations (16 at press time) located near your end users in

the United States, Europe, and Asia.

After you have stored your data in an S3 bucket, you can create a CloudFront Dis-

tribution. Each distribution contains a unique URL, which you use in place of the

bucket name and S3 domain to achieve content distribution. Maggie’s picture is

available at the following location via CloudFront:

http://d1iodn8r1n0x7w.cloudfront.net/maggie.jpg.

As you can see, the object’s name is preserved, prefixed with a URL taken from the

bucket’s distribution. The HTTP, HTTPS, and RTMP protocols can be used to access

content that has been made available through CloudFront.

CloudFront charges accrue based on the amount of data transferred out of CloudFront

and the number of requests made to CloudFront.

Amazon Simple Queue Service
You use the Simple Queue Service (SQS) to build highly scalable processing

pipelines using loosely coupled parts. Queues allow for flexibility, asynchrony, and

fault tolerance. Each step in the pipeline retrieves work units from an instance of

the queue service, processes the work unit as appropriate, and then writes completed

work into another queue for further processing. Queues work well when the require-

ments—be it time, CPU, or I/O speed—for each processing step for a particular work

unit vary widely.

Like S3, there are separate instances of SQS running in the US and in Europe.

SQS usage is charged based on the amount of data transferred and the number of

requests made to SQS.

Amazon SimpleDB
Amazon SimpleDB supports storage and retrieval of semi-structured data. Unlike

a traditional relational database, SimpleDB does not use a fixed database schema.

Instead, SimpleDB adapts to changes in the “shape” of the stored data on the fly,

so there’s no need to update existing records when you add a new field. SimpleDB

also automatically indexes all stored data so it’s unnecessary to do your own profiling

or query optimization.

Host Your Web Site in the Cloud30

The SimpleDB data model is flexible and straightforward. You group similar data

into domains. Each domain can hold millions of items, each with a unique key.

Each item, in turn, can have a number of attribute/value pairs. The attribute names

can vary from item to item as needed.

Like the other services, SimpleDB was built to handle large amounts of data and

high request rates. So there’s no need to worry about adding additional disk drives

and implementing complex data replication schemes as your database grows. You

can grow your application to world-scale while keeping your code clean and your

architecture straightforward.

SimpleDB charges accrue based on the amount of data stored, the amount of data

transferred, and the amount of CPU time consumed by query processing.

Amazon Relational Database Service
The Amazon Relational Database Service (RDS) makes it easy for you to create,

manage, back up, and scale MySQL database instances. RDS calls these DB Instances,

and that’s the terminology I’ll be using in this book.

RDS handles the tedious and bothersome operational details associated with running

MySQL so that you can focus on your application. You don’t have to worry about

procuring hardware, installing and configuring an operating system or database

engine, or finding storage for backups. You can scale the amount of processing

power up or down, and increase the storage allocation in a matter of minutes, so

you can respond to changing circumstances with ease. You can back up your DB

Instance to Amazon S3 with a single call or click, and create a fresh DB Instance

from any of your snapshots.

RDS has a Multi-AZ (or Multi-Availability Zone) option that allows you to run a

redundant backup copy of your DB Instance for extra availability and reliability.

You can also use RDS’s Read Replica feature to distribute database read operations

to additional DB Instances for greater scalability.

Amazon RDS charges accrue based on the amount of time that each DB Instance is

running, and the amount of storage allocated to the instance.

31Amazon Web Services Overview

Amazon Elastic Compute Cloud
The Elastic Compute Cloud (Amazon EC2) infrastructure gives you the ability to

launch server instances running the AMI (Amazon Machine Image) of your choice.

Instance types are available with a wide range of memory, processing power, and

local disk storage. You can launch instances in any EC2 Region and you can choose

to specify an Availability Zone if needed. Once launched, the instances are attached

to your account and should remain running until you shut them down.

Each instance is protected by a firewall which, by default, blocks all internal and

external connectivity. When you launch instances you can associate any number

of security groups with them. The security groups allow you to control access to

your instances on a very granular basis.

The EC2 infrastructure provides instances with an IP address and a DNS entry when

they’re launched. The address and the entry are transient: when the instance shuts

down or crashes they are disassociated from the instance. If you need an IP address

that will survive a shutdown or that can be mapped to any one of a number of ma-

chines, you can use an Elastic IP Address. These addresses are effectively owned

by your AWS account rather than by a particular EC2 instance. Once allocated, the

addresses are yours until you decide to relinquish them.

The instances have an ample amount of local disk storage for temporary processing.

Like the standard IP address and DNS name, this storage is transient and is erased

and reused when you’re finished with the instance.

Elastic Block Store (EBS) volumes can be used for long-term and more durable

storage. You can create a number of EBS volumes, attach them to your instances,

and then format the volumes with the file system of your choice. You can make

snapshot backups to S3, and you can restore the snapshots to the same volume or

use them to create new volumes.

EC2 charges accrue based on the number of hours the instance runs and the amount

of data transferred in and out. There is no charge to transfer data to and from other

AWS services in the same Region. The charges for EBS volumes are based on the

size of the volume (regardless of how much data is actually stored) and there are

also charges for I/O requests. To prevent hoarding, you are charged for Elastic IP

addresses that you allocate but don’t use.

Host Your Web Site in the Cloud32

The EC2 CloudWatch feature provides monitoring within EC2. It collects and stores

information about the performance (CPU load average, disk I/O rate, and network

I/O rate) of each of your EC2 instances. The data is stored for two weeks and can

be retrieved for analysis or visualization.

The EC2 Elastic Load Balancer allows you to distribute web traffic across any

number of EC2 instances. The instances can be in the same Availability Zone or

they can be scattered across several zones in a Region. The elastic load balancer

performs periodic health checks on the instances that it manages, and will stop

sending traffic to any instances it determines to be unhealthy. The health check

consists of a configurable ping to each EC2 instance.

Finally, the EC2 Auto Scaling feature uses the data collected by CloudWatch to help

you build a system that can scale out (adding more EC2 instances) and scale in

(shutting down EC2 instances) within a defined auto scaling group. Auto scaling

lets you define triggers for each operation. For example, you can use Auto Scaling

to scale out by 10% when the average CPU utilization across the auto scaling group

exceeds 80%, and then scale in by 10% when the CPU utilization drops below 40%.

Amazon Elastic MapReduce
The Elastic MapReduce service gives you the ability to use a number of EC2 instances

running in parallel for large-scale data processing jobs. This service uses the open

source Hadoop framework,9 an implementation of the MapReduce paradigm. Inven-

ted by Google, MapReduce isolates you from many of the issues that arise when

you need to launch, monitor, load (with data), and terminate dozens or even hun-

dreds of instances. Elastic MapReduce works just as well for pedestrian tasks, such

as log file processing, as it does for esoteric scientific applications, such as gene

sequencing.

Amazon Route 53
Amazon Route 53 is a Domain Name System (DNS) web service. Designed to be

highly scalable and highly reliable, Route 53 translates a human readable name

such as www.jeff-barr.com into a numeric IP address like 75.101.154.199. Like every

other part of AWS, Route 53 is programmable—you can manipulate the information

for your domain using the code of your choice.

9 http://hadoop.apache.org/mapreduce/

33Amazon Web Services Overview

http://hadoop.apache.org/mapreduce/

AWS Identity and Access Management
You can use IAM to create multiple Users and to manage permissions for them

within your AWS account. Each IAM User is a distinct identity and has its own

unique set of security credentials. IAM users can be organized into Groups. Using

IAM, Users and Groups can be granted permission to access specific AWS resources

and to access specific AWS API functions. This is not a service per se, but rather a

free feature that’s part of each AWS account.

AWS Elastic Beanstalk
AWS Elastic Beanstalk makes it even easier to build and deploy applications on

AWS. You simply upload your application, and Elastic Beanstalk automatically

handles the deployment details of capacity provisioning, load balancing, auto-

scaling, and application health monitoring. The current version of Elastic Beanstalk

supports uploading of Java applications. Other languages and application platforms

will likely be supported in the future.

Amazon Simple Email Service
The Amazon Simple Email Service (SES) lets you send bulk and transaction email

in a scalable and cost-effective fashion. SES uses a number of techniques to ensure

the highest possible deliverability, and also provides you with feedback so that you

can tune and optimize your email sending practices over time.

Other Services
AWS gains new features and services with great regularity. To stay up to date with

the latest and greatest happenings, you should check the AWS home page and the

AWS Blog10 (written by yours truly) from time to time.

10 http://aws.typepad.com/

Host Your Web Site in the Cloud34

http://aws.typepad.com/

What We’ve Covered
In this chapter, we took a closer look at each of the AWS infrastructure services,

reviewing their usage characteristics and pricing models. We also examined a

number of key AWS concepts. In the next chapter, we’ll tool up in preparation for

building our first scripts that make use of all these capabilities.

35Amazon Web Services Overview

Chapter3
Tooling Up
Now that you’re familiar with the range of Amazon Web Services and what they’re

capable of, you may be wondering how we start using them. Before we start coding,

however, we’ll need to tool up. I’ll spend some time on the visual tools (user inter-

faces and consoles) and command line tools. I’ll also discuss the level below the

tools: the libraries available for a particular programming language. This book will

focus on PHP, but I’ll provide some general rules for library selection. This chapter

will also lead you through creating of your AWS account, installing the AWS SDK

for PHP, and the necessary command line tools.

Technical Prerequisites
Before we go too much further, I want to ensure that my expectations regarding

your programming and system management skills are correct. It’s also important

that you have the right hardware and software at your disposal.

Skills Expectations
Because this book is targeted at mid-level PHP programmers, I assume that you can

already read and write PHP with some skill. I’ll avoid using any esoteric features

of PHP, but I’ll also avoid explaining the error_reporting function or the detailed

behavior of foreach loops. I also expect you to know the mechanics of writing, de-

bugging, and running PHP code.

On the web technology side, I expect you to know HTML and some CSS, and a tiny

bit of JavaScript.

On the systems side, I assume that you’re comfortable with the Linux/Unix command

line, as there’s no time to explain ls, scp, or grep. I assume that you’ve mastered

the ins and outs of your text editor, be it vi, emacs, Notepad, or otherwise.

These days, developers in small organizations are expected to know a thing or two

about system administration. I assume that you, too, are quite the “devministrator”

and that common system administration tasks, such as installing packages and ex-

amining log files, are part of your skill repertoire.

Hardware and Software Expectations
In the sections that follow, I expect you to have a Mac or a PC that is connected to

the Internet. Your PC can be running Windows, or it can be running the Linux dis-

tribution of your choice.

It’s often useful to run some PHP code locally. Packages like WAMP for Windows1

or MAMP for the Mac2 make it easy to install and configure PHP, MySQL, and an

Apache web server for local development. I’ll be talking about this again in the

section called “Running the PHP Code in This Book”.

You need a web browser. If all you have is Internet Explorer, that’s fine—but some

of the visual tools take the form of Firefox extensions.

You’ll need a good SSH (Secure Shell) client. For Windows use, my personal favorite

is PuTTY,3 which is fast and reliable, and its terminal emulation is flawless. For

Mac OS X and Linux, you can use the command line SSH clients that come with

your operating system.

1 http://www.wampserver.com/en/
2 http://www.mamp.info/en/index.html
3 http://www.chiark.greenend.org.uk/~sgtatham/putty/

Host Your Web Site in the Cloud38

http://www.wampserver.com/en/
http://www.mamp.info/en/index.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/

If you work in a corporate setting and your desktop has been locked down, the cloud

actually gives you a really interesting new option. You can launch an EC2 instance

running Windows, access it using the Windows Remote Desktop, and use that for

development while leaving your desktop machine untouched.

Optional but Recommended
My final three recommendations are that you have some spare domain names, a

DNS service, and a source code control system.

Back when I was young, domain names were expensive ($75 per year) and complex

to register. These days they’re cheap to acquire and registration is very simple. I

recommend that you have at least one or two freely available as you work through

the examples in this book.

You should also have access to a DNS provider, so that you can map your domain

names to IP addresses. When I was merely middle-aged I used to run my own DNS

server. Since 2004 I’ve been a very happy customer of ZoneEdit.4 You can have

DNS service for up to five domains at no charge. My newest domains are now

managed by Amazon Route 53.

You may want to think about a source code control system for your application as

well. A source code control system hosted in the cloud will let you keep track of

all the bits and pieces of your application, and will allow you to retrieve the newest

code at any time. I have been using Codesion (formerly CVS Dude5) as my CVS host

since 2004. Since CVS is even more archaic than I am,6 they also host the more

modern Subversion system. Depending on the needs of your project, you may also

want to consider GitHub,7 Google Code,8 or SourceForge.9 Some of the free systems

require you to use a specific open source license, so read the fine print first.

4 http://www.zoneedit.com/
5 http://www.cvsdude.org/
6 In case you haven’t noticed, I enjoy poking fun at myself and making a big deal of the fact that I’m not

exactly a spring chicken. I hope you enjoy my peculiar brand of humor.
7 http://github.com/
8 http://code.google.com/hosting/
9 http://sourceforge.net/

39Tooling Up

http://www.zoneedit.com/
http://www.cvsdude.org/
http://github.com/
http://code.google.com/hosting/
http://sourceforge.net/

Tools and Libraries
Now that we’ve reviewed the AWS infrastructure services and made sure that you

have the right skills and some technical prerequisites mastered, it’s time to gear up

and do some work.

In this section I will tell you about the programming libraries, command line tools,

and visual tools that are available to you as an AWS developer. In each case I will

provide several alternatives in order to make clear that you have a number of reas-

onable options. Some of the items I’ll describe were created and are maintained by

Amazon; others are the work of independent developers.

Tool Considerations
Here are some points to consider when choosing your tools:

Documentation

Are the tools backed by some good documentation? Does the documentation

match the current release? Does the maintainer strive to create a complete

product or is documentation always lagging behind the code?

Popularity and Reputation

What comes up when you do a web search for the name of the tool? Can you

locate the tool’s community without too much trouble?

Community Support

Check to see if the tools have a strong community behind them. Is there a dis-

cussion forum? See what other developers have to say and whether they’re

contributing or complaining. Also, see if the original creators or current main-

tainers are participating in the community, or if they’re in hands-off mode. Do

they enjoy interacting with their users, or has it become a chore?

Update Frequency

Take a look at the release and patch history for the tool. Are updates released

in sync with new releases of AWS? Does the creator release patches on a timely

basis in response to problems? Is there a fixed release schedule?

Host Your Web Site in the Cloud40

Style

Is the tool a good fit for your working style? Are the command, function, or data

structure names consistent and logical? Are your educated guesses correct more

often than not?10

Security

You’ll be trusting these tools with your AWS public and secret keys, so caution

is advised. At the very least, you should understand how and where the tool

stores your keys and how it protects them from accidental disclosure or casual

discovery.

Language Libraries
Language libraries occupy the space between your application and the web service

calls. The libraries provide an adapter that matches the structure and style of the

language, so that your application code will look and feel native. Some libraries

provide an object oriented interface to AWS. All the libraries take care of the details

involved in making a call, including handling of default parameter values, managing

private and public keys, signing the requests, making the web service calls, checking

for error conditions, and parsing returned values into native objects. Some libraries

also provide functions to retry calls that have failed due to a transient error; others

will accumulate data returned by multiple calls into a single return value.

In this book we’ll be using the AWS SDK for PHP. This library is based on the

CloudFusion library written by Ryan Parman. This library supports all the AWS

services. The AWS SDK supports multi-threaded access and bulk operations, and

is supplied in open source form under the Apache license. The AWS SDK also in-

cludes a number of high-level utility functions to make AWS even easier to use.

10 I could write an entire book on why I’ll never use the word “intuitive” to describe this property, but

I have to finish this one first.

41Tooling Up

Here’s some code to illustrate how you can use the AWS SDK to create an S3

bucket. I’m including this code to show you that the SDK is clean and easy to use:

#!/usr/bin/php
<?php

error_reporting(E_ALL);
require_once('sdk.class.php');

$s3 = new AmazonS3();
$res = $s3->create_bucket("jeff-barr-bucket",
➥AmazonS3::REGION_US_E1);

if ($res->isOK())
{
 print("Bucket created\n");
}
else
{
 print("Error creating bucket\n");
}
?>

First, we create a new AmazonS3 object from which we can access the functions we

need. Creating a bucket involves a single method call to the create_bucket function,

supplying the new bucket’s name and the desired AWS region. We can then test to

ensure that there were no errors by using the isOK method.

No need to worry about the details right now—we’ll be jumping in before too long.

We’ll dive deeper into the AWS SDK for PHP in the section called “Installing the

AWS SDK for PHP” at the end of this chapter, so it’s unnecessary to download or

configure it just yet.

Command Line Tools
Not so long ago, typing commands into a shell window was considered the state of

the art in human-computer interaction. Although visual tools have obviated much

of the need to do this on a routine basis, there are still a good number of reasons to

use the command line from time to time. Command line tools are easier to use as

part of a script. Routine operations that involve a sequence of commands and some

Host Your Web Site in the Cloud42

decision-making can be automated. The output from two or more command line

tools can be blended together. All things considered, these tools still serve a purpose.

Amazon supplies a number of command line tools. The first set is called API tools

because there’s one tool for each function in the EC2 API. For example, the ec2-

run-instances command is a wrapper around the EC2 RunInstances function. The

tools are written in Java; the source, however, is unavailable. The EC2 API tools are

divided into four packages:

1. The Amazon EC2 API Tools11 provide access to the core EC2 API functions.

2. The Amazon CloudWatch API Tools12 provide access to the CloudWatch API

functions.

3. The Auto Scaling API Tools13 provide access to the Auto Scaling API functions.

4. The Elastic Load Balancing API Tools14 provide access to the Elastic Load Balan-

cing API functions.

Amazon also supplies a set of AMI tools.15 More special-purpose in nature, you use

these tools to create, upload, and register customized Amazon Machine Images

(AMIs).

Members of the AWS developer community have created a number of command

line tools. Some of these focus on providing access to a single service; others aim

to be all-encompassing. A good example of the latter is Tim Kay’s top-rated aws

command.16 This aspiring Swiss Army Knife now provides functions for EC2 ser-

vices, S3, and SQS. Written in Perl, this script runs on Linux and Windows.

Visual Tools
At the top of the stack we find the visual tools. Developers have really exercised

their creativity in this area and there are many tools to choose from; I’ll cover a few

of my favorites here. There are at least four types of tools:

11 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351&categoryID=251
12 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2534&categoryID=251
13 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2535&categoryID=251
14 http://developer.amazonwebservices.com/connect/entry.jspa?
15 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=368
16 http://timkay.com/aws/

43Tooling Up

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351&categoryID=251
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2534&categoryID=251
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2535&categoryID=251
http://developer.amazonwebservices.com/connect/entry.jspa?
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=368
http://timkay.com/aws/
http://timkay.com/aws/

1. Dynamic Ajax-powered applications—the AWS Management Console is a good

example of this type of application.

2. Browser extensions—ElasticFox and S3Fox are both extensions to the Firefox

web browser.

3. Standalone desktop applications—CloudBerry Explorer, Bucket Explorer, and

the SimpleDB Explorer are all in this category.

4. Device-specific applications—the iPhone applications from Ylastic and Direct

Thought are both in this category.

AWS Management Console
The AWS Management Console17 is effectively part of AWS. Because it’s part of

the AWS site, there’s no configuration work required. Once you’ve logged in, you

have full access to a number of AWS services including EC2 and the Virtual Private

Cloud, S3, RDS, SNS, CloudFront, and Elastic MapReduce. You can see your running

instances and launch new ones. You can manage security groups, Elastic Block

Store volumes, Elastic IP addresses, and identity key pairs. Figure 3.1 shows what

it looks like.

Figure 3.1. The AWS Management Console

17 http://console.aws.amazon.com

Host Your Web Site in the Cloud44

http://console.aws.amazon.com

ElasticFox
ElasticFox18 is a Firefox extension available for free. After installing the extension

and restarting your browser, you can access ElasticFox through the Tools menu.

ElasticFox is an open source tool and has a SourceForge project of its very own.

Figure 3.2 shows ElasticFox listing available AMIs.

Figure 3.2. ElasticFox displaying a list of available AMIs

18 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=609

45Tooling Up

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=609

S3Fox
S3Fox19 is a free S3 and CloudFront extension for Firefox, and a product of Suchi

Software Solutions. This too makes it easy to copy files from your desktop to Amazon

S3 (and vice versa) using a two-paned interface. Figure 3.3 shows what the S3Fox

looks like; the local disk is in the left pane, while the S3 bucket is on the right.

Figure 3.3. The S3Fox Organizer with its dual-paned approach

19 http://www.s3fox.net/

Host Your Web Site in the Cloud46

http://www.s3fox.net/

CloudBerry Explorer
CloudBerry Explorer20 is a free, standalone desktop application and a product of

CloudBerry Lab. You can manage your S3 buckets, copy files into and out of Amazon

S3, and create CloudFront distributions. There’s also a professional version that

supports file encryption, data compression, and access to FTP servers. A screenshot

from the free version is shown in Figure 3.4.

Figure 3.4. CloudBerry Explorer displaying the S3 bucket (left) and local disk (right)

20 http://cloudberrylab.com/

47Tooling Up

http://cloudberrylab.com/

Bucket Explorer
Bucket Explorer21 is a commercial desktop application from Chambal.com. You

can download free trial versions for Windows, Mac, and Linux. In addition to

managing S3 buckets and objects, Bucket Explorer supports shared buckets, local

and remote synchronization, and versioning. Figure 3.5 shows a screenshot of

Bucket Explorer in action.

Figure 3.5. Bucket Explorer with a bucket list on top and contents at the bottom

21 http://www.bucketexplorer.com/

Host Your Web Site in the Cloud48

http://www.bucketexplorer.com/

SimpleDB Explorer
SimpleDB Explorer,22 shown in Figure 3.6, is also produced by Chambal.com and

is available in versions for Windows, Mac, and Linux. It features complete read-

write access to SimpleDB domains and metadata, along with querying, sorting, and

pagination through large result sets.

Figure 3.6. The SimpleDB Explorer interface

22 http://www.sdbexplorer.com/

49Tooling Up

http://www.sdbexplorer.com/

Ylastic
Ylastic23 supports complete management of EC2 services, SQS, S3, CloudFront,

and SimpleDB on Apple iPhone and phones based on the Google Android operating

system (the latter can be seen in Figure 3.7). While it’s advisable to use a more

capable device as your primary AWS management tool, it can certainly be useful

to have a portable management tool at hand.

Figure 3.7. Ylastic on the Android phone

23 http://ylastic.com/

Host Your Web Site in the Cloud50

http://ylastic.com/

DirectEC2
The Direct Thought company has created DirectEC2,24 a native interface to EC2

services for the iPhone and the iPod Touch. The application features complete

control of each aspect of EC2 functionality: AMIs, running instances, EBS volumes,

EBS volume snapshots, Security Groups, IP addresses, and Keypairs. Figure 3.8

demonstrates what it looks like.

Figure 3.8. DirectEC2 on the iPhone

Creating an AWS Account
You’re going to need an AWS account in order to run the code in this book. The

accounts are free and you’ll only be charged for the services that you actually use,

but you’ll need an email address and credit card in order to create your account.

You can skip this section if you already have an active AWS account.

24 http://www.directthought.com/launch.html#directEC2

51Tooling Up

http://www.directthought.com/launch.html#directEC2

Start by visiting http://aws.amazon.com and click on the button labeled Sign Up

Now, as shown in Figure 3.9.

Figure 3.9. The Sign Up Now button

On the next page, enter your email address and select the I am a new user option,

then click on the Sign in using our secure server button. Proceed to the registration

page. Fill in your name, enter your email address a second time (for verification),

choose a secure password, and click on the Create account button.

Enter your contact information (including your street address) on the next page,

then scroll down a bit so that the AWS license agreement is visible. Read all the

fine print and check the checkbox to indicate that you’ve read and agree to the terms

of the license. Scroll down some more and enter the security check code, and click

the Continue button.

Figure 3.10. This page confirms you’ve successfully created your AWS account

Host Your Web Site in the Cloud52

http://aws.amazon.com

Once you’ve done this, you’ll see a page like the one shown in Figure 3.10, indicating

that you now have an AWS account. Congratulations, and welcome to the club!

There’s still a little more left to do, though. We’ve yet to reach the part where you

enter your credit card number. The next step is to sign up for an actual AWS service.

Click on the Amazon Elastic Compute Cloud button, and then click on the Sign Up For

Amazon EC2 button. You may need to enter your email address and password to

access the next page.

The next page includes complete pricing information on EC2 services and S3; you

need to use S3 to store your Amazon Machine Images, so this form covers both.

Review the pricing information, then scroll down to the bottom of the page and

enter your credit card information.25 Click the Continue button and on the next page,

select Use This Address if the address you already entered is also the billing address

for your credit card. Otherwise, enter the appropriate address and click on the

Continue button. Finally, scroll down to the bottom of the confirmation page and

click on the Complete Sign Up button.

You’ll see the “Thank you for signing up …” page and a notice informing you that

you’ll receive a sequence of confirmation emails after the sign-up process:

1. the “Welcome to Amazon” email that indicates that you now have an Amazon

account

2. the “Welcome to AWS” email that indicates that you now have an AWS account

3. the final pair of emails indicating that you’ve signed up for EC2 services and S3

Obtaining Your AWS Keys
Once you’ve created an AWS account, the next step is to access your public and

private AWS keys.

Go to the AWS portal at http://aws.amazon.com and select Security Credentials from

the Account menu, as shown in Figure 3.11.

25 You may want to review the section on Payment Safety and Security on the Amazon web site at

http://www.amazon.com/gp/help/customer/display.html?ie=UTF8&nodeId=518224&#safe.

53Tooling Up

http://aws.amazon.com
http://www.amazon.com/gp/help/customer/display.html?ie=UTF8&nodeId=518224&#safe

Figure 3.11. Account menu

Enter your email address and password again if necessary. You’ll now see the Security

Credentials page. Scroll down to find the section labeled Your Access Keys, as shown

in Figure 3.12.

Figure 3.12. Your Access Keys

You’re going to need this key in the next section, so select your Access Key ID and

then copy and paste it into a scratch file (Notepad or TextEdit is always good for

this).

Now click on the Show link to see your Secret Access Key, like the one shown in

Figure 3.13. Again, select it, copy it, and paste it to your scratch file.

Figure 3.13. The Secret Access Key

With this information in hand, you’re all set to download and install the AWS SDK

for PHP in the next section.

Host Your Web Site in the Cloud54

Running the PHP Code in This Book
All the code in this book is PHP code. We’ll be running PHP on the command line

and on a web server. Along with the book’s assumption about your PHP knowledge,

is the assumption that you can install and run PHP and a web server on your specific

platform. However, there’s just enough room in this chapter to provide a nudge in

the right direction.

If you use Windows, look no further than the WampServer package26 to have you

up and running in no time at all. Similarly, MAMP27 is a one-click installer for Mac

OS X. Most Linux distributions already have Apache and PHP installed, but they’re

also available via your distribution’s package manager. If you need more information,

have a look at Chapter 1 of Kevin Yank’s book Build Your Own Database Driven

Web Site Using PHP and MySQL, freely available on sitepoint.com.28

GD Not Included in Mac OS X

Some of the code in the next chapter makes extensive use of PHP’s GD library29

for image manipulation. Unfortunately, while PHP is included as part of Mac OS

X, the GD extension is excluded. To remedy this situation you can either use

MAMP, mentioned above, or install the Mac OS X PHP package linked from the

PHP web site under the heading Binaries for other systems.30

We’re about to get serious with PHP, but before we do I have to mention this vital

information. The PHP programs in this book that commence with a shebang

(#!/usr/bin/php) are meant to be run from the command line, for example:

#!/usr/bin/php
<?php

 ⋮ php script

?>

26 http://www.wampserver.com/en/
27 http://www.mamp.info/
28 http://articles.sitepoint.com/article/php-amp-mysql-1-installation/
29 http://www.php.net/gd/
30 http://www.php.net/downloads.php

55Tooling Up

http://www.wampserver.com/en/
http://www.mamp.info/
http://articles.sitepoint.com/article/php-amp-mysql-1-installation/
http://articles.sitepoint.com/article/php-amp-mysql-1-installation/
http://www.php.net/gd/
http://www.php.net/downloads.php
http://www.php.net/downloads.php

Running PHP scripts from the command line takes the form:

$ path_to_php_executable php_script_file [php_script_arguments]

The $ in this example represents the command prompt and is not typed in. Here’s

an example of running a PHP script on a Linux machine:

$ /usr/bin/php list_buckets.php

Here’s another example, this time on a Mac OS X machine using MAMP:

$ /Applications/MAMP/bin/php5/bin/php list_buckets.php

Here’s an example of running these scripts on a Windows machine from the Windows

Command Prompt:

C:\> C:\PHP5\php list_buckets.php

Further details about running PHP from the Windows command line can be found

in the PHP Manual.31

Running PHP as a Shell Script

If you’re running these scripts on a Linux or Mac OS X machine you can run them

like a shell script, but you need to make the files executable first. You can do so

using the chmod command:

$ chmod +x list_buckets.php

After doing that you can run your scripts like so:

$./list_buckets.php

In order for this to work, the shebang line in all your scripts must indicate the

location of the PHP executable on your system.

Scripts that are meant to be run on your web server will have no shebang:

31 http://www.php.net/manual/en/install.windows.commandline.php

Host Your Web Site in the Cloud56

http://www.php.net/manual/en/install.windows.commandline.php
http://www.php.net/manual/en/install.windows.commandline.php

<?php

 ⋮ php script

?>

PHP 5.3.0 and Time Zones

If you’re using PHP 5.3.0, there is an important change from previous versions.

PHP 5.3.0 will now issue a warning-level log message whenever you use a date-

related function without specifying a time zone. PHP has always defaulted to the

time zone of the machine it’s running on, but that behavior is now deemed to be

unreliable and so the warning is emitted.

To avoid seeing the warning messages you must specify a time zone when using

date functions, or else set a default time zone.32 The easiest way to set a default

time zone is to edit your php.ini file, specifically the following line:

; Defines the default timezone used by the date functions
;date.timezone =

Uncomment the line and add a valid time zone value. You can find a list of time

zone values on the PHP web site.33 Here’s an example:

; Defines the default timezone used by the date functions
date.timezone = America/Los_Angeles

Installing the AWS SDK for PHP
Many of the examples in this book can be run locally—that is, from your PHP-

equipped desktop machine running Windows, Mac OS, or Linux—or remotely on

a server or an EC2 instance. Wherever you plan to run them from, that’s where you’ll

need to install the AWS SDK for PHP, which I’ll call “the SDK” from here on out.

Here are the steps involved:

32 http://www.php.net/manual/en/migration52.datetime.php
33 http://www.php.net/manual/en/timezones.php

57Tooling Up

http://www.php.net/manual/en/migration52.datetime.php
http://www.php.net/manual/en/migration52.datetime.php
http://www.php.net/manual/en/timezones.php
http://www.php.net/manual/en/timezones.php

1. As at the time of writing, the latest version of the SDK was 1.2.0. You can

download it at http://aws.amazon.com/sdkforphp/. Unzip the downloaded file

archive and move the resulting directory (mine was named sdk-1.2.0) to the

location where you’d like to install the SDK.

2. Modify the PHP include_path setting in your php.ini file; this is to include the

full path to the location of the SDK.

On a Linux system, this file is found in the /etc directory (as well as on Mac

OS X). I put the SDK in the /mnt/aws_sdk directory, so I edited the include_path

to look like this:

include_path = ".:/php/includes:/mnt/aws_sdk"

If you’re on a Windows machine your php.ini file will be found in your PHP

installation folder. If you’ve placed the SDK files in c:\aws_sdk, this is what

your include_path statement will look like:

include_path = ".;c:\php\includes;c:\aws_sdk"

You should also create a folder for the source code for all the examples in this

book; then, download the code and append that directory name to the in-

clude_path as well.

3. Now turn your attention to the directory where you installed the SDK. Copy

the file config-sample.inc.php, rename it config.inc.php, and open this new file

for editing. Locate the following statements:

define('AWS_KEY', '');
define('AWS_SECRET_KEY', '');

Edit the first statement so that your access key ID is between the quotes. Edit

the second statement so that your secret access key is between quotes, like so:

define('AWS_KEY', 'your_access_key_id');
define('AWS_SECRET_KEY', 'your_secret_access_key');

If other people can access the computer where you’ve stored your keys, take

appropriate steps to protect both the computer and this file from disclosure.

Host Your Web Site in the Cloud58

http://aws.amazon.com/sdkforphp/

4. Delete your scratch file.

Where We’ve Been
In this chapter we talked about the technical prerequisites that you’ll need in order

to gain the most possible value from the rest of the book. We started tooling up, re-

viewing a few of the many programming libraries, command line tools, and visual

tools available for AWS. We stepped through the AWS registration process and

obtained an account with a key to access the web services. We also installed the

AWS SDK for PHP. We’re now ready to begin coding.

59Tooling Up

Chapter4
Storing Data with Amazon S3
In this chapter, we’ll dive headfirst into Amazon S3, the Simple Storage Service.

After a quick overview of the most important S3 concepts, we’ll spend the greater

part of this chapter reviewing the code needed to manipulate buckets and objects

in S3 and its content-distribution sibling, CloudFront.

S3 Overview
S3 is an Internet-scale data storage service. All data is stored redundantly to guard

against problems brought on by temporary connectivity issues or permanent hard-

ware failures. S3 can scale to handle vast amounts of data and deal with a very large

number of concurrent accesses. At the time of writing, S3 held over 200 billion ob-

jects and was handling over one trillion requests per year.

S3 lets you store your data in containers called buckets. A bucket is a named storage

entity attached to a particular AWS account. You can create up to 100 buckets in

your AWS account. The bucket names must be globally unique, so you’ll have to

choose with care and keep on trying until you find available names.

Buckets are used to group any number of S3 objects. When I say any number, I really

mean it—it is perfectly reasonable to store millions or tens of millions of objects in

a single S3 bucket. Depending on your needs, you may choose to use a number of

buckets for a single application, or you may choose to use a single bucket for each

application.

You can store any type of data you like in S3. It could be text files such as HTML

pages, CSS style sheets, or C source code, or binary files such as JPEG images, tar

backup files, or even encrypted data (you can encrypt sensitive data before storing

it in S3, if you’d like). S3 is ideal for storing web data. Each S3 object has its own

URL and S3 can handle a very high request rate.

S3 can store objects of up to 5TB in size. This is a limit that you’ll probably never

approach in practice, due to various factors. Depending on the speed of your internet

connection, it could take days or even weeks to upload an object of this size. S3’s

multipart upload feature allows you to break large files into chunks and to upload

several chunks at the same time for greater efficiency. Every S3 object has a unique

URL formed by concatenating these components:

■ protocol (http:// or https://)
■ bucket name ending with “.”
■ S3 endpoint (s3.amazonaws.com)
■ object key starting with “/”

The object key can itself contain “/” characters. These characters are simply part

of the object’s name and have no special meaning to S3. S3 is not a hierarchical file

system and has no concept of a subfolder. The S3 tools listed in Chapter 3 maintain

the polite fiction that the “/” is special and allows the user to traverse of the contents

of an S3 bucket as if it contained actual subfolders.

S3 can be accessed using either one of two APIs. The SOAP API contains functions

such as ListAllMyBuckets, CreateBucket, and DeleteBucket. The HTTP API uses

the standard HTTP verbs (GET, PUT, HEAD, and DELETE) as the basis for all operations.

The GET operation retrieves the contents of a bucket or an object, the PUT operation

creates a new bucket or object, the DELETE operation removes a bucket or an object,

and the HEAD operation retrieves information about an object.

Host Your Web Site in the Cloud62

You can attach metadata in the form of key-value pairs when you create a new S3

object. The metadata is returned in the form of HTTP headers when the object is

retrieved using an HTTP GET request.

Access to each S3 bucket and object is regulated by an ACL or Access Control List.

An ACL contains a series of up to 100 grants, with each grant consisting of a grantee

and a permission. Using the ACL, you can grant access to specific users or to groups

of users.

Specific users represent an individual AWS account. The account can be specified

using an email address or a canonical user ID, but it is always returned as a

CanonicalUser object—the email address is simply a convenience.

Groups represent predefined classes of users, any AWS user, or anonymous users

(anyone at all).

The permission component of a grant in an ACL specifies the access given to the

related grantee. You can grant permissions to buckets or to objects—but be aware

that the semantics are slightly different for each, as described in Table 4.1.

Table 4.1. S3 Permission Grants When Applied to Buckets and Objects

When applied to an objectWhen applied to a bucketPermission

Permission to read the object or its

metadata

Permission to list the contents of the

bucket

READ

Unsupported for objectsPermission to create, replace, or delete

any object in the bucket

WRITE

Permission to read the object’s ACLPermission to read the bucket’s ACLREAD_ACP

Permission to overwrite the object’s ACLPermission to overwrite the bucket’s ACLWRITE_ACP

All of the aboveAll of the aboveFULL_CONTROL

The owner of a bucket or an object always has implicit READ_ACP permission; you can

always access the ACL of your own objects. Similarly, the owner also has implicit

WRITE_ACP permission, so you can always change the ACL of your own object too.

The FULL_CONTROL permission is provided for convenience and has the same effect

as applying the READ, WRITE, READ_ACP, and WRITE_ACP permissions.

63Storing Data with Amazon S3

Permissions on buckets and objects are distinct. The bucket’s permissions have no

influence on the permissions of newly uploaded objects; ACLs must be set separately

for each new object.

The S3 Pricing Model
Your S3 usage is charged in three dimensions:

■ amount of data stored
■ amount of data transferred in and out of S3
■ the number of requests made to S3

Let’s examine each of these dimensions in detail.

Your S3 storage charges are based on a unit known as a gigabyte-month. If you store

exactly one gigabyte for exactly one month, you’ll be charged for one gigabyte-month,

which is $0.14 (fourteen cents).1 Time and space can be traded for one another, so

you could also store two gigabytes for half of a month for $0.14, or even 30 gigabytes

for one day if you’d like. Internally, S3 uses a more fine-grained billing unit, a byte-

hour. This allows AWS to measure your usage with a very high degree of accuracy

and to bill you accordingly.

Your data transfer charges are based on the amount of data transferred in (uploaded)

and out (downloaded) from S3. Data transferred in to S3 is charged at a rate of $0.10

per gigabyte. Once again, this amount is prorated. Data transferred out of S3 is

charged on a sliding scale starting at $0.15 per gigabyte and decreasing based on

volume, reaching $0.08 per gigabyte for all outgoing data transfer in excess of 150

terabytes per month. As an important special case, there is no charge to transfer

data between S3 and an Amazon EC2 instance in the same Region.

There are also nominal (yet important) charges for each request made to S3. HTTP

GET requests are charged at the rate of $0.01 for every 10,000 requests. PUT, COPY,

LIST, and POST requests are charged at the rate of $0.01 for every 1,000 requests.

Putting it all together, this pricing model means that you can probably prototype

and then run your S3-powered application for next to nothing, paying for more

storage and more data transfer only as your application becomes popular.

1 All AWS prices are subject to change. The latest prices for S3 can be found at http://aws.amazon.com/s3.

Host Your Web Site in the Cloud64

http://aws.amazon.com/s3

Watch That Meter!

You need to keep in mind that the meter is always running! If you write a program

to poll one of your S3 buckets every second (a LIST request) you’ll be spending

86 cents every day, whether there’s anything new in the bucket or otherwise. You

should also check your loop terminating conditions with extreme care. It’s better

to avoid writing an infinite loop which costs you money with every iteration.

You can (and should) check your S3 usage at any point during the month to verify

that it’s in accord with your expectations. You can do this by logging into the AWS

portal and selecting the Account Activity option from the Your Account menu.

CloudFront Overview
CloudFront is a web service for content delivery, allowing you to distribute web

content at high speed with low latency. CloudFront integrates with S3, making it

very easy to distribute any public S3 object to CloudFront’s network of 17 global

edge locations.2 As of this writing, the edge locations are spread through the United

States, Europe, and Asia, as shown in Table 4.2.

Table 4.2. Edge Locations in the CloudFront Network

AsiaEuropeUnited States

■■■ Hong KongAmsterdamAshburn, Virginia

■ ■■Dallas/Fort Worth, Texas SingaporeDublin

■■ ■FrankfurtLos Angeles, California Tokyo

■■ LondonMiami, Florida

■ Newark, New Jersey

■ New York, New York

■ Palo Alto, California

■ Seattle, Washington

■ St. Louis, Missouri

■ Jacksonville, Florida

CloudFront is very easy to use. You simply create a distribution for any of your S3

buckets and CloudFront does the rest.

2 The number of edge locations, and the locations themselves, may change over time.

65Storing Data with Amazon S3

The CloudFront Pricing Model
Your CloudFront usage is charged in two dimensions:

■ data transfer
■ the number of requests made to CloudFront

Data transferred in and out of CloudFront is charged on a sliding scale. Starting at

a rate of $0.15 per gigabyte, it decreases according to volume, reaching $0.03 per

gigabyte for all outgoing data transfer in excess of 1,000 terabytes per month. You’re

also charged for the data transfer from S3 to CloudFront. The latest prices for

CloudFront can be found at http://aws.amazon.com/cloudfront.

There’s a charge of $0.013 for every 10,000 HTTP GET requests processed by

CloudFront.

Programming S3 and CloudFront
With the preliminaries out of the way, it’s time to start on the fun part—the code!

In this section, you’ll learn how to list your buckets, create new buckets, and list

the objects in a bucket in several different ways. We’ll also cover how to process

the contents of a bucket (performing some simple image processing along the way),

and how to distribute your content using CloudFront.

Running the Code

As we mentioned in the section called “Running the PHP Code in This Book” in

Chapter 3, the programs in this section that start with a shebang (#!/usr/bin/php)

are meant to be run from the command line. The others are meant to be run via a

web server.

Creating an S3 Bucket
Moving right along, let’s go ahead and create a new bucket. Before we begin, though,

we’ll create a new PHP file and call it book.inc.php. This will contain a lot of common

definitions and functions we’ll be using throughout this book. I’ve placed it in a

subfolder called include.

The first definition we’ll add to our book.inc.php file is the name of our S3 bucket:

Host Your Web Site in the Cloud66

http://aws.amazon.com/cloudfront

chapter_04/include/book.inc.php (excerpt)

<?php

define('BOOK_BUCKET', 'sitepoint-aws-cloud-book');

?>

Here we’ve created a new constant named BOOK_BUCKET and given it the value

sitepoint-aws-cloud-book. Of course, you’ll need to decide on your own distinct

bucket name; as I mentioned earlier bucket names must be globally unique, and

I’ve already nabbed this one!

Here’s the code for creating a new S3 bucket:

chapter_04/create_bucket.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$s3 = new AmazonS3();
$res = $s3->create_bucket(BOOK_BUCKET, AmazonS3::REGION_US_E1);

if ($res->isOK())
{
 print("'${bucket}' bucket created\n");
}
else
{
 print("Error creating bucket '${bucket}'\n");
}
?>

Let’s examine the code statement by statement:

67Storing Data with Amazon S3

We begin by setting the error reporting level. This statement instructs PHP to

report all errors and potential errors. This important programming discipline

lets you know about problems sooner rather than later. You’ll win in the long

term because most of the potential bugs will have been shaken out earlier in

the development process.

Next we include the required files. The first statement pulls the sdk.class.php

file into memory. This file contains the SDK library used throughout this book.

The second statement pulls the book.inc.php file into memory.

Now we come to the main part of our script. First, we create a new AmazonS3

object and then call the create_bucket method—the key statement in this

script—to create a new bucket. If you’ve customized the definition of

BOOK_BUCKET in book.inc.php, it will create a bucket just for you (assuming that

the bucket doesn’t already exist). The second argument to create_bucket de-

notes the AWS where the bucket is to be created. The SDK’s AmazonS3 class

contains constants for each region, as follows:

■ REGION_US_E1—US Standard
■ REGION_US_W1—US Northern California
■ REGION_EU_W1—Ireland
■ REGION_APAC_SE1—APAC-Singapore

One point you should be aware of, is that the SDK is using your AWS key ID

and secret key to access the web service. We configured these values back in

the section called “Installing the AWS SDK for PHP” in Chapter 3.

The last statement checks that the call was made to S3, and that S3 returned

a status code indicating that the operation was processed successfully. If the

bucket exists and you own it, the create_bucket call will succeed. If the

bucket exists but it belongs to another user, the create_bucket call will fail

and the isOK method will return FALSE. Our statement prints an appropriate

status message to indicate success or failure.

We can make this script a little bit more useful by allowing the specification of a

bucket name on the command line, like so:

Host Your Web Site in the Cloud68

chapter_04/create_bucket.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

if ($argc != 2)
{
 exit("Usage: " . $argv[0] . " bucket name\n");
}

$bucket = ($argv[1] == '-') ? BOOK_BUCKET : $argv[1];

$s3 = new AmazonS3();
$res = $s3->create_bucket($bucket, AmazonS3::REGION_US_E1);

if ($res->isOK())
{
 print("'${bucket}' bucket created\n");
}
else
{
 print("Error creating bucket '${bucket}'\n");
}

?>

First, we check to see how many arguments are supplied. If there are not exactly

two, we exit the script and display a helpful usage message.

This program expects the first argument to be a bucket name. If the bucket

name is a dash character (-), the default bucket (BOOK_BUCKET) is used instead.

Running this script with the default bucket’s name gives the following output:

$php create_bucket.php -
'sitepoint-aws-cloud-book' bucket created

69Storing Data with Amazon S3

Listing Your S3 Buckets
Here’s how to list your S3 buckets:

chapter_04/list_buckets.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');

$s3 = new AmazonS3();
$buckets = $s3->get_bucket_list();

foreach ($buckets as $bucket)
{
 print($bucket . "\n");
}

exit(0);
?>

The above code should be relatively easy to understand:

This is the key statement that retrieves the list of buckets associated with your

account. The method returns an array with one string element for each bucket.

Once we have the list, we can loop through the array and print the name of

each bucket using the print statement. If you’re running this for the first time,

you may only see one name: the name of the bucket you created in the last

section.

Here’s what I see when I run this program from my personal AWS account:

$php list_buckets.php
andybarr
aws-dev-relations
biancabarr
carmenbarr

⋮ many more buckets

Host Your Web Site in the Cloud70

sitepoint-aws-cloud-book
sitepoint-aws-cloud-book-thumbs

This is a simple yet powerful piece of code. In a few statements we established a

connection to S3, retrieved a list of buckets, iterated over the result, and printed

the name of each bucket on a line of its own. If all this makes sense, you’re well on

your way to mastering S3.

Bucket Listing as a Web Page
Since this is a book about web programming, let’s get a bit fancier and output the

list of buckets as a web page. This version of the script is very similar to the previous

list_buckets.php script, as we’re still using the get_bucket_list method:

chapter_04/list_buckets_page.php (excerpt)

<?php

error_reporting(E_ALL);

require_once('sdk.class.php');

$s3 = new AmazonS3();
$buckets = $s3->get_bucket_list();

$output_title = 'Chapter 4 Sample - List of S3 Buckets';
$output_message = 'A simple HTML list of your S3 Buckets';
include 'include/list_buckets.html.php';

exit(0);
?>

The last three statements are new. We set two variables, $output_title and

$output_message with informative content that will be appearing on the web page.

The final include statement includes the HTML template for our bucket list:

71Storing Data with Amazon S3

chapter_04/include/list_buckets.html.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title><?php echo $output_title ?></title>
</head>
<body>
 <h1><?php echo $output_title ?></h1>
 <p><?php echo $output_message ?></p>

 <?php foreach($buckets as $bucket): ?>
 <?php echo $bucket ?>
 <?php endforeach ?>

</body>
</html>

In the code above, $output_title becomes the page title and top-level heading,

while $output_message is output as an informative note at the top of the page

within a HTML paragraph. The list of buckets in the $buckets array is output as an

HTML unordered list, as shown in Figure 4.1, with the help of a foreach loop.

Figure 4.1. A simple list of S3 buckets

Listing Objects in a Bucket
Now that you know how to create buckets and list these buckets from the command

line and from a web page, let’s look at the contents of a particular bucket. In this

Host Your Web Site in the Cloud72

script we list all the objects within the first bucket we created (using the constant

BOOK_BUCKET):

chapter_04/list_bucket_objects.php (excerpt)

#!/usr/bin/php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('book.inc.php');

$s3 = new AmazonS3();
$objects = $s3->get_object_list(BOOK_BUCKET);

if($objects) {
 foreach ($objects as $object)
 {
 print($object . "\n");
 }
} else {
 print("No objects found in " . BOOK_BUCKET . "\n");
}

exit(0);
?>

Here’s the key statement in the above example:

$objects = $s3->get_object_list(BOOK_BUCKET);

The get_object_list method is a simple shortcut method. When given no extra

parameters, it will return a list of all of the object keys in a bucket. Optional para-

meters can be used to start returning keys alphabetically after a given key or to filter

the list of keys after they’ve been retrieved from S3. Like get_bucket_list, this

method returns an array with one key in string form per element.

Of course, your newly created bucket has no objects in it at this time, so this script

will do little more than alert you to that fact. To give it a more complete test run,

you can either add some objects to your bucket using one of the tools we saw in the

section called “Visual Tools” in Chapter 3 (such as S3Fox or CloudBerry Explorer),

or skip ahead to the section called “Uploading Files to S3” later in this chapter.

73Storing Data with Amazon S3

Finally, here’s a challenge: based on the create_bucket.php script we developed

above, it should be fairly easy for you to change the list_bucket_objects.php script,

so that you can specify a bucket name on the command line.

Processing Complex SDK Data Structures
It’s time to take a little detour.

The SDK functions that I have told you about thus far all return simple data struc-

tures—arrays of strings. However, the functions that I will use later in this chapter

return a more complex data structure called a CFResponse. S3 returns its results in

the form of an XML document; the SDK parses the XML using PHP’s SimpleXML

package and includes the parsed objects in the response where they can be referenced

by name.3

The following code calls S3 to list the first 1,000 objects in the bucket BOOK_BUCKET,

and then calls PHP’s handy print_r function to display the resulting object tree:

chapter_04/list_bucket_objects_raw.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$s3 = new AmazonS3();
$res = $s3->list_objects(BOOK_BUCKET);

print_r($res);
exit(0);
?>

The resulting output is far too long to display in its entirety (465 lines for my

buckets). Let’s look at some excerpts instead. Here’s the first part:

3 Complete documentation for SimpleXML can be found at http://www.php.net/simplexml.

Host Your Web Site in the Cloud74

http://www.php.net/simplexml

$php list_bucket_objects_raw.php
CFResponse Object
(
 [header] => Array
 (
 [x-amz-id-2] => qJI4ekem/3g50WpypnlLEdXJkORrYb0t5TW/msWqlRrGl
➥cBjRPSbyipCsgSUheZ4
 [x-amz-request-id] => C5481E919CC1D8F7
 [date] => Sat, 20 Nov 2010 01:30:32 GMT
 [content-type] => application/xml
 [transfer-encoding] => chunked
 [connection] => close
 [server] => AmazonS3
 [_info] => Array
 (
 [url] => https://sitepoint-aws-cloud-book.s3.amazonaws.com/
 [content_type] => application/xml
 ⋮

The first line indicates that the data is of type CFResponse. Further on, we find some

standard PHP arrays. If we need to, we can access the data like this:

$res->header['transfer-encoding']
$res->header['_info']['url']

$res is an object and header is one of the object’s instance variables, so it’s accessed

using the -> operator. The header instance variable is a PHP array, so its members

are accessed using the array syntax.

In the second line the _info member of header is itself an array, so a second set of

brackets are used to access the url value inside.

A little bit further down in the output, we find the following:

[body] => CFSimpleXMLElement Object
(
 [Name] => sitepoint-aws-cloud-book
 ⋮

The body instance variable is of type CFSimpleXMLElement. It starts out with a Name

instance variable, which can be accessed as $res->body->Name.

75Storing Data with Amazon S3

Even further down we finally find what we came here for—the list of objects in the

bucket:

[Contents] => Array
(
 [0] => CFSimpleXMLElement Object
 (
 [Key] => images/2008_shiller_housing_projection.jpg
 [LastModified] => 2009-05-22T23:44:58.000Z
 [ETag] => "e2d335683226059e7cd6e450795f3485"
 [Size] => 236535
 [Owner] => SimpleXMLElement Object
 (
 [ID] => 7769a42be4e57a034eeb322aa8450b3536b6ca56037c06ef19b1e1
➥eabfeaab9c
 [DisplayName] => jeffbarr
)
 [StorageClass] => STANDARD
)
 ⋮

You can see that body contains an instance variable called Contents, which is an-

other array containing all the files in the bucket. Each file in the bucket is represented

by a CFSimpleXMLElement object; each has Key, ETag, Size, Owner, and StorageClass

members, accessed like this:

$res->body->Contents[0]->Key
$res->body->Contents[0]->ETag
$res->body->Contents[0]->Size
$res->body->Contents[0]->Owner->ID
$res->body->Contents[0]->Owner->DisplayName
$res->body->Contents[0]->StorageClass

Of course, you’re free to use intermediate variables to make this code shorter or

more efficient.

You may be wondering where the object names (Contents, Key, Size, and so forth)

come from. The list_objects method makes an HTTP GET request to S3 to fetch

a list of the objects in the bucket. The request returns an XML document, and the

SDK parses and returns it as the body object. The object names are taken directly

from the XML tags in the document.

Host Your Web Site in the Cloud76

If we were to modify the previous script to print out some of these values, it may

look like this example:

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$s3 = new AmazonS3();
$res = $s3->list_objects(BOOK_BUCKET);

print("Bucket Url: " . $res->header['_info']['url'] . "\n");
print("Bucket Name: " . $res->body->Name . "\n");
print("First Key: " . $res->body->Contents[0]->Key . "\n");
print("Second Key: " . $res->body->Contents[1]->Key . "\n");
exit(0);
?>

In the above example we output the bucket’s URL and name, followed by the keys

of the first two items in the bucket.

We have now come to the end of the detour. I hope that the ride was scenic, yet

educational. Next, we will use this newfound knowledge to create a very handy

utility function.

Listing Objects in a Bucket as a Web Page
Before we can write a script that outputs a list of all the objects in a bucket within

a web page, we first have to write a rather complex function. We’ll add this function

to our book.inc.php file and call it getBucketObjects:

77Storing Data with Amazon S3

chapter_04/include/book.inc.php (excerpt)

function getBucketObjects($s3, $bucket, $prefix = '')
{
 $objects = array();
 $next = '';

 do
 {
 $res = $s3->list_objects($bucket,
 array('marker' => urlencode($next),
 'prefix' => $prefix)
);

 if (!$res->isOK())
 {
 return null;
 }

 $contents = $res->body->Contents;
 foreach ($contents as $object)
 {
 $objects[] = $object;
 }

 $isTruncated = $res->body->IsTruncated == 'true';

 if ($isTruncated)
 {
 $next = $objects[count($objects) - 1]->Key;
 }
 }
 while ($isTruncated);

 return $objects;
}

This function is more complex than anything you’ve seen so far, but there’s no need

to worry. The list_objects function will return at most 1,000 keys, regardless of

how many keys are in the bucket. Our getBucketObjects function simply calls

list_objects again and again until S3 says that there are no more objects to return:

Our function accepts three arguments: an AmazonS3 object, an S3 bucket, and

a prefix value that defaults to an empty string.

Host Your Web Site in the Cloud78

We use a do … while loop, so that the body of the loop always runs at least

once.

Each time I call list_objects, I pass in a value called $next. The first time

through the loop, $next is an empty string, and list_objects starts at the be-

ginning (alphabetically speaking) of the bucket. On subsequent loop iterations,

$next is set to the final key returned on the previous iteration. This tells S3 to

start retrieving keys alphabetically following the previous iteration’s final key.

If the list_objects call fails, the function returns null.

We retrieve the Contents array from the body of the response returned to our

list_objects call, then loop through the values storing each one in the

$objects array. This array will eventually be our return value.

The data returned by a call to list_objects includes an element named

IsTruncated. If this value is the string "true", the listing is incomplete and

there are more objects to be found. This condition is also used to control the

loop.

If the list is incomplete, we set the $next value ready to begin the next iteration.

When the loop terminates, the $objects array is returned.

Put it together and this function fetches all the objects in the bucket, puts them all

into one array, and returns the array.

Avoid Going Loopy

I will freely admit that I failed to correctly state the termination condition when

I first wrote this code. I knew that this would be tricky, so I used a print statement

at the top to ensure that I avoided creating a non-terminating loop that would spin

out of control and run up my S3 bill. I advise you to do the same when you’re

building and testing any code that costs you money to execute.

With this function in hand, creating a list of the objects in the bucket becomes easy.

Here’s all we have to do:

79Storing Data with Amazon S3

chapter_04/list_bucket_objects_page.php (excerpt)

<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$bucket = IsSet($_GET['bucket']) ? $_GET['bucket'] : BOOK_BUCKET;

$s3 = new AmazonS3();

$objects = getBucketObjects($s3, $bucket);

$fileList = array();

foreach ($objects as $object)
{
 $key = $object->Key;
 $url = $s3->get_object_url($bucket, $key);
 $fileList[] = array('url' => $url, 'name' => $key,
 'size' => number_format((int)$object->Size));
}

$output_title = "Chapter 4 Sample - List of S3 Objects in Bucket' .
 '${bucket}'";
$output_message = "A simple HTML table displaying of all the' .
 ' objects in the '${bucket}' bucket.";
include 'include/list_bucket_objects.html.php';

exit(0);
?>

This code generates a web page and can accept an optional bucket argument in the

URL query string. Let’s rip this one apart and see how it works:

This code checks to see if the bucket argument was supplied. If it was, then

it’s used as the value of $bucket. Otherwise, the default value, the BOOK_BUCKET

constant, is used.

Here we call our custom getBucketObjects function that fetches the list of

objects in the given bucket and stores them in the $objects array.

Host Your Web Site in the Cloud80

The next step is to iterate over the array and process each one.

We store three values for each object in the $fileList array: the object’s URL,

key (which we store as name), and size (converted to an integer and formatted

like a number).

We include our HTML template to output the values in the $fileList array.

Here’s what the list_bucket_objects.html.php HTML template looks like:

chapter_04/include/list_bucket_objects.html.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title><?php echo $output_title ?></title>
</head>
<body>
 <h1><?php echo $output_title ?></h1>
 <p><?php echo $output_message ?></p>
 <table>
 <thead>
 <tr><th>File</th><th>Size</th></tr>
 </thead>
 <tbody>
 <?php foreach($fileList as $file): ?>
 <tr>
 <td><a href="<?php echo $file['url'] ?>">
 <?php echo $file['name'] ?>
 </td>
 <td><?php echo $file['size'] ?></td>
 </tr>
 <?php endforeach ?>
 </tbody>
 </table>
</body>
</html>

The template iterates over the $fileList array and creates a table row for each file,

placing a link to the file in the first column and the file size in the second column.

81Storing Data with Amazon S3

Figure 4.2 shows what it looks like (I had already uploaded some files to my bucket).

Figure 4.2. Listing objects in an S3 bucket

You may have spotted the fact that we now have all the parts needed to make a

simple S3 file browser. I’ll leave that as a challenge to you. With just a little bit of

work you should be able to connect list_buckets_page.php and

list_bucket_objects_page.php.

Uploading Files to S3
Now that we know how to obtain information about buckets and their objects from

S3, let’s figure out how to put new objects into S3. This is quite easy; we just need

two more utility functions that we’ll add to our book.inc.php file.

The first function is called uploadObject:

chapter_04/include/book.inc.php (excerpt)

function uploadObject($s3, $bucket, $key, $data,
 $acl = AmazonS3::ACL_PRIVATE, $contentType = "text/plain")
{
 $res = $s3->create_object($bucket,
 $key,
 array(
 'body' => $data,
 'acl' => $acl,

Host Your Web Site in the Cloud82

 'contentType' => $contentType
));
 return $res->isOK();
}

The uploadObject function accepts between four and six parameters. The first four

specify the S3 access object, the destination bucket, the desired object key, and the

data to be stored in the object. The final two specify a non-default ACL and a content

type for the stored object.

Web browsers use the object’s content type to figure out how to display the object.

For example, a content type of image/png tells the browser that the object is an

image and that it is in PNG format.

As you can see, the uploadObject function simply calls the create_object method

and checks the returned value to ensure that the object was actually stored in S3.

If S3 is unable to store the object, it will return an HTTP 500 (internal server error)

code. This is almost always a recoverable condition; the proper response is to make

several attempts with increasing time delays between attempts (sometimes known

as exponential backoff). Here’s a more sophisticated version of the uploadObject

function, this one with a retry mechanism:

function uploadObject($s3, $bucket, $key, $data,
 $acl = S3_ACL_PRIVATE, $contentType = "text/plain")
{
$try = 1;

 $sleep = 1;
 do
 {
 $res = $s3->create_object($bucket,
 $key,
 array(
 'body' => $data,
 'acl' => $acl,
 'contentType' => $contentType
));

if ($res->isOK()) {
 return true;
 }

83Storing Data with Amazon S3

 sleep($sleep);
 $sleep *= 2;
 }
 while(++$try < 6);
 return false;
}

This version of our function will try up to six times to create a new object in a

bucket. Each time it tries, the length of the pause (before the next try) doubles.

Our next function helps us determine a file’s content type:

chapter_04/include/book.inc.php (excerpt)

function guessType($file)
{
 $info = pathinfo($file, PATHINFO_EXTENSION);
 switch (strtolower($info))
 {
 case "jpg":
 case "jpeg":
 return "image/jpg";

 case "png":
 return "image/png";

 case "gif":
 return "image/gif";

 case "htm":
 case "html":
 return "text/html";

 case "txt":
 return "text/plain";

 default:
 return "text/plain";
 }
}

Given a filename, this function uses the file’s extension to make a very simple guess

as to the content type of the file. There’s no inspection of the file’s content at all,

Host Your Web Site in the Cloud84

and the function expects the file extension to accurately reflect the contents. To

serve its purpose for this chapter the function handles just a few types.

Putting it all together with some argument processing, looping, and error checking,

we have a handy command to upload one or more files to S3:

chapter_04/upload_file.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

if ($argc < 3)
{
 exit("Usage: " . $argv[0] . " bucket files...\n");
}

$bucket = ($argv[1] == '-') ? BOOK_BUCKET : $argv[1];

$s3 = new AmazonS3();

for ($i = 2; $i < $argc; $i++)
{
 $file = $argv[$i];
 $data = file_get_contents($file);
 $contentType = guessType($file);

 if (uploadObject($s3, $bucket, $file, $data,
 AmazonS3::ACL_PUBLIC, $contentType))
 {
 print("Uploaded file '${file}' to bucket '{$bucket}'\n");
 }
 else
 {
 exit("Could not upload file '${file}'" .
 " to bucket '{$bucket}'\n");
 }
}

85Storing Data with Amazon S3

exit(0);
?>

This script is designed to be run from the command line like so:

$php upload_file.php bucket_name file_name […]

Let’s take a closer look:

First, we check to see if there are any arguments supplied; if there are none we

display a helpful usage message and exit the script.

This program expects the first argument to be a bucket name. If the bucket

name is a dash character (-), the default bucket (BOOK_BUCKET) is used instead.

The remaining arguments are considered to be the files to upload. We then

loop through all the inputted filenames.

Within each loop we call our uploadObject function. I chose to use the path

name to each object exactly as supplied, to enable usage of key names with

embedded slash characters.

Here’s what this program looks like in action:

$php upload_file.php - images/catatonia_album.jpg
Uploaded file 'images/catatonia_album.jpg' to bucket
➥'sitepoint-aws-cloud-book'

We have really covered quite a bit of ground in just a few pages. You should now

understand how to upload images to an S3 bucket, browse the bucket, and then

view the images by clicking on a link. In the next section, you will learn how to

generate thumbnail versions of all the images in a bucket.

Creating and Storing Thumbnail Images
Our next utility function will take an in-memory image, figure out the appropriate

height and width for a thumbnail, and then create the thumbnail.

Host Your Web Site in the Cloud86

Firstly, in our book.inc.php file, we need to create two constants; one to store the

desired thumbnail size, and one to store the default name for the bucket that will

store our thumbnails. I want the thumbnail images to be 200 pixels on the longest

side, and I want to define a suffix to add to my default bucket name in order to

create the thumbnail bucket name, so I’ll add the following:

chapter_04/include/book.inc.php (excerpt)

define('THUMB_SIZE', 200);
define('THUMB_BUCKET_SUFFIX', '-thumbs');

Of course, before we can use the thumbnail bucket we have to make sure it exists!

You can use the create_bucket.php script we developed earlier to do that.

Here’s the code for the thumbnailImage function; once again, this goes into our

book.inc.php file:

chapter_04/include/book.inc.php (excerpt)

function thumbnailImage($imageBitsIn, $contentType)
{

 $imageIn = ImageCreateFromString($imageBitsIn);
 $inX = ImageSx($imageIn);
 $inY = ImageSy($imageIn);

 if ($inX > $inY)
 {
 $outX = THUMB_SIZE;
 $outY = (int) (THUMB_SIZE * ((float) $inY / $inX));
 }
 else
 {
 $outX = (int) (THUMB_SIZE * ((float) $inX / $inY));
 $outY = THUMB_SIZE;
 }

 $imageOut = ImageCreateTrueColor($outX, $outY);
 ImageFill($imageOut, 0, 0,
 ImageColorAllocate($imageOut, 255, 255, 255));
 ImageCopyResized($imageOut, $imageIn,
 0, 0, 0, 0,
 $outX, $outY, $inX, $inY);

87Storing Data with Amazon S3

 $fileOut = tempnam("/tmp", "aws") . ".aws";

 switch ($contentType)
 {
 case "image/jpg":
 $ret = ImageJPEG($imageOut, $fileOut, 100);
 break;

 case "image/png":
 $ret = ImagePNG($imageOut, $fileOut, 0);
 break;

 case "image/gif":
 $ret = ImageGIF($imageOut, $fileOut);
 break;

 default:
 unlink($fileOut);
 return false;
 }

 if (!$ret)
 {
 unlink($fileOut);
 return false;
 }

 $imageBitsOut = file_get_contents($fileOut);
 unlink($fileOut);
 return $imageBitsOut;
}

I’ll refrain from going through this code in detail—this chapter focuses on S3, rather

than graphics programming. The code makes extensive use of PHP’s GD library.4

Put simply, it creates a copy of an image and resizes it so that its longest dimension

is equal to the number of pixels specified in the THUMB_SIZE constant, while pre-

serving the width-height ratio of the image.

Generating the thumbnail for a good-sized image can take a substantial fraction of

a second due to the number of pixels to be moved around; also, the ThumbNailImage

4 http://www.php.net/gd

Host Your Web Site in the Cloud88

http://www.php.net/gd

function must write the new image to a temporary file and then read it back into

memory.

With this code in hand it’s now a simple matter to do some argument processing

and thumbnail each image in the given bucket. Here’s how to do it:

chapter_04/thumbnail_bucket.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

if ($argc != 3)
{
 exit("Usage: " . $argv[0] . "in-bucket out-bucket\n");
}

$bucketIn = ($argv[1] == '-')
 ? BOOK_BUCKET
 : $argv[1];

$bucketOut = ($argv[2] == '-')
 ? $bucketIn . THUMB_BUCKET_SUFFIX
 : $argv[2];

print("Thumbnailing '${bucketIn}' to '${bucketOut}'\n");

$s3 = new AmazonS3();
$objectsIn = getBucketObjects($s3, $bucketIn);

foreach ($objectsIn as $objectIn)
{
 $key = $objectIn->Key;
 print("Processing item '${key}':\n");

 if (substr(guessType($key), 0, 6) == "image/")
 {
 $startTime = microtime(true);
 $dataIn = $s3->get_object($bucketIn, $key);
 $endTime = microtime(true);
 $contentType = guessType($key);

89Storing Data with Amazon S3

 printf("\tDownloaded from S3 in %.2f seconds.\n",
 ($endTime - $startTime));

 $startTime = microtime(true);
 $dataOut = thumbnailImage($dataIn->body, $contentType);
 $endTime = microtime(true);

 printf("\tGenerated thumbnail in %.2f seconds.\n",
 ($endTime - $startTime));

 $startTime = microtime(true);
 if (uploadObject($s3, $bucketOut, $key, $dataOut,
 AmazonS3::ACL_PUBLIC, $contentType))
 {
 $endTime = microtime(true);

 printf("\tUploaded thumbnail to S3 in %.2f seconds.\n",
 ($endTime - $startTime));
 }
 else
 {
 print("\tCould not upload thumbnail.\n");
 }
 }
 else
 {
 print("\tSkipping - not an image\n");
 }
 print("\n");
}
exit(0);
?>

Let’s go through this code step by step:

First, we need to ensure that we have the minimum requirement of three argu-

ments: the name of the script, the image bucket name, and the thumbnail

bucket name.

Much like the previous example, this code allows the input and output buckets

to be set to default values by using the “-” character for the first two command

line arguments.

Host Your Web Site in the Cloud90

The default bucket name for our thumbnail bucket will be our default bucket

name plus the suffix we defined earlier.

Here we use our getBucketObjects function to retrieve all the objects in our

bucket.

We’ll make use of our guessType function to ensure we only process objects

that have a content type beginning with “image/”.

This code might look a bit cluttered because I’ve wrapped each major operation

in timing code like this:

$startTime = microtime(true);
⋮ code operation
$endTime = microtime(true);

This allows us to print useful time-related information as our script runs.

Subtracting $startTime from $endTime will provide us with the elapsed time

that we can format for output:

printf("Completed in %.2f seconds.\n", ($endTime - $startTime));

There’s just one new S3 call here:

$dataIn = $s3->get_object($bucketIn, $key);

The get_object method downloads the object from S3 and returns its data as

a string.

Here our thumbnailImage function generates a thumbnail and stores it in

$dataOut.

Our uploadObject function uploads the generated thumbnail to our thumbnail

bucket.

Here’s an example of the output produced when a single file is “thumbnailed”:

91Storing Data with Amazon S3

$php thumbnail_bucket.php - -
Processing item 'images/a380_factory.jpg':
 Downloaded from S3 in 0.78 seconds.
 Generated thumbnail in 0.19 seconds.
 Uploaded thumbnail to S3 in 0.09 seconds.

The combination of S3, PHP, and GD lets you do some powerful graphics processing

without a whole lot of work. You could easily modify the thumbnail code to reduce

the quality of the image, paint a watermark over it, or map colors to grayscale values.

Creating a CloudFront Distribution
Before we can work with CloudFront Distributions, you have to make sure you’ve

activated the feature in your AWS account. Visit http://aws.amazon.com/cloudfront/

and then click the Sign Up for Amazon CloudFront button, activation is only one more

click away.

Although it’s possible to write code to create a CloudFront distribution for an S3

bucket (and you’re welcome to, of course), I’m choosing to sidestep it. Instead, it’s

easier to just use a graphical interface to create your distribution. You will be able

to do this in any of the tools mentioned in the section called “Visual Tools” in

Chapter 3. The AWS Management Console5 makes it very simple; select the Amazon

CloudFront tab and click the Create Distribution button, as shown in Figure 4.3.

Figure 4.3. Click the Create Distribution button

Once set up, you’ll have to wait several minutes while the CloudFront distribution

is created.

5 http://console.aws.amazon.com

Host Your Web Site in the Cloud92

http://aws.amazon.com/cloudfront/
http://console.aws.amazon.com

Let’s wrap up this chapter by making an image browser. We’ll use CloudFront for

efficient global distribution of the original and thumbnailed images.

Listing CloudFront Distributions
Here’s a simple script to list all of your CloudFront distributions:

chapter_04/list_distributions.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$cf = new AmazonCloudFront();
$res = $cf->list_distributions();

if (!$res->isOK())
{
 exit("Could not retrieve list of CloudFront distributions\n");
}

$distributions = $res->body->DistributionSummary;

printf("%-16s %-32s %-40s\n", "ID", "Domain Name", "Origin");
printf("%'=-16s %'=-32s %'=40s\n", "", "", "");

foreach ($distributions as $distribution)
{
 $id = $distribution->Id;
 $domainName = $distribution->DomainName;
 $origin = $distribution->S3Origin->DNSName;

 printf("%-16s %-32s %-40s\n", $id, $domainName, $origin);
}
exit(0);
?>

The code structure should be familiar to you by now. The list_distributions

method returns an array of objects, which are then iterated over and printed. Notice,

though, that we instantiate a new AmazonCloudFront object instead of an AmazonS3

93Storing Data with Amazon S3

object like the previous scripts, and the list_distributions method to retrieve

the details of the distributions.

The response object can be queried in the same way as our previous S3 scripts. In

the response returned to the list_distributions method, the

$res->body->DistributionSummary property will contain an array of

SimpleXMLElement objects, one for each CloudFront distribution. The script above

simply iterates over this array and extracts the Id, DomainName, and DNSName property

of each for display in the output, formatted into a table similar to the following:

$php list_distributions.php
Id Domain Name Origin
================ ================================ ==============
➥==========================
nnnnnnnnnnnnnn nnnnnnnnnnnnnn.cloudfront.net sitepoint-aws-
➥cloud-book.s3.amazonaws.com

When you run this script with your AWS account, the ID and Domain Name columns

will show your unique values.

Listing S3 Files with Thumbnails
Okay, time for the last script in this chapter! We first need one more utility function

to make this work: the findDistributionForBucket function that will return the

CloudFront distribution for a given S3 bucket. You guessed it, we’ll put this one in

our book.inc.php file:

chapter_04/include/book.inc.php (excerpt)

function findDistributionForBucket($cf, $bucket)
{

 $res = $cf->list_distributions();

 if (!$res->isOK())
 {
 return null;
 }

 $needle = $bucket . ".";
 $distributions = $res->body->DistributionSummary;

Host Your Web Site in the Cloud94

 foreach ($distributions as $distribution)
 {
 if (substr($distribution->Origin, 0, strlen($needle)) ==
 $needle)
 {
 return $distribution;
 }
 }

 return null;
}

This function accepts a CloudFront access object and the name of a bucket. It fetches

the list of CloudFront distributions and attempts to match each one to the supplied

bucket name. If a match is made, the distribution object is returned.

The code below is an enhanced version of list_bucket_objects_page.php, as seen

earlier in this chapter. It adds a thumbnail to the table for all the image objects in

the bucket that also have a corresponding image in the thumbnail bucket. It also

uses the CloudFront URL if available:

chapter_04/list_bucket_objects_page_thumbs.php (excerpt)

<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$bucket = IsSet($_GET['bucket']) ? $_GET['bucket'] : BOOK_BUCKET;
$bucketThumbs = $bucket . THUMB_BUCKET_SUFFIX;

$s3 = new AmazonS3();
$cf = new AmazonCloudFront();

$dist = findDistributionForBucket($cf, $bucket);
$thumbsDist = findDistributionForBucket($cf, $bucketThumbs);

$objects = getBucketObjects($s3, $bucket);
$objectThumbs = getBucketObjects($s3, $bucketThumbs);

$thumbs = array();

95Storing Data with Amazon S3

foreach ($objectThumbs as $objectThumb)
{
 $key = (string) $objectThumb->Key;

 if ($thumbsDist != null)
 {
 $thumbs[$key] = 'http://' . $thumbsDist->DomainName
 . "/" . $key;
 }
 else
 {
 $thumbs[$key] = $s3->get_object_url($bucketThumbs, $key);
 }
}

$fileList = array();
foreach ($objects as $object)
{
 $key = (string) $object->Key;

 if ($dist != null)
 {
 $url = 'http://' . $dist->DomainName . "/" . $key;
 }
 else
 {
 $url = $s3->get_object_url($bucket, $key);
 }

 $thumbURL = IsSet($thumbs[$key]) ? $thumbs[$key] : '';
 $fileList[] = array('thumb' => $thumbURL, 'url' => $url,
 'name' => $key, 'size' => number_format((int)$object->Size));
}

$output_title = "Chapter 4 Sample - List of S3 Objects in Bucket"
 . " '${bucket}'";
$output_message = "A simple HTML table displaying of all the objects"
 . "in the '${bucket}' bucket with thumbnails.";

include 'include/list_bucket_objects_thumbs.html.php';

exit(0);
?>

Host Your Web Site in the Cloud96

Let’s take a look at this code:

First, we instantiate new AmazonS3 and AmazonCloudFront objects.

Here we determine whether there’s a CloudFront distribution for each of our

buckets.

Once again we use our getBucketObjects function to retrieve all the objects

from our two buckets.

We iterate through all the objects in our thumb bucket, and populate the

$thumbs array using the object keys as array keys and storing their URLs.

If there’s a CloudFront distribution for our thumbnails, we use its URL; other-

wise, we use the standard S3 URL.

We do the same operation for all the objects in the specified bucket; this is

stored in the $fileList array and will be used in the HTML output.

This is a new addition from the list_bucket_objects_page.php script to the

$fileList array. The thumbnail URL is saved if there’s a matching thumbnail,

otherwise an empty string is stored.

Here’s the HTML template that generates the output:

97Storing Data with Amazon S3

chapter_04/list_bucket_objects_thumbs.html.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title><?php echo $output_title ?></title>
</head>
<body>
 <h1><?php echo $output_title ?></h1>
 <p><?php echo $output_message ?></p>
 <table>
 <thead>
 <tr><th>File</th><th>Size</th></tr>
 </thead>
 <tbody>
 <?php foreach($fileList as $file): ?>
 <tr>
 <td>
 <?php if($file['thumb'] != ''): ?>
 <a href="<?php echo $file['url'] ?>">
 <img src="<?php echo $file['thumb'] ?>"/>
 <?php endif ?>
 </td>
 <td><a href="<?php echo $file['url'] ?>">
 <?php echo $file['name'] ?>
 </td>
 <td><?php echo $file['size'] ?></td>
 </tr>
 <?php endforeach ?>
 </tbody>
 </table>
</body>
</html>

There’s a couple of interesting points in the code above:

This template iterates over the $fileList array, adding a table row for each

element of the array, and a table cell for the thumbnail image, the filename,

and file size.

The contents of the thumbnail table cell are only added if there’s a thumbnail

URL specified for that file, otherwise the cell is left empty.

Host Your Web Site in the Cloud98

Figure 4.4 shows what the output looks like.

Figure 4.4. Object listing with thumbnails

Finally
This has been a long and code-heavy chapter. Starting from scratch you’ve learned

how to create S3 buckets, list your buckets, and upload files to S3. You have dis-

covered how to process the contents of one bucket into another, and how to use

CloudFront for efficient content distribution. With all these new skills in hand, you

should be ready to create some intriguing S3 applications of your very own.

99Storing Data with Amazon S3

Chapter5
Web Hosting with Amazon EC2
In this chapter, you will learn all about the Amazon Elastic Compute Cloud (Amazon

EC2) infrastructure. We’ll take one more look at the concept of the programmable

data center, and then we’ll review the key Amazon EC2 concepts, including the

pricing model. We’ll use the AWS Management Console to do the setup work needed

to actually launch an EC2 instance, and then we’ll launch one and get it all set up.

After that we will talk about the Amazon Machine Image (AMI) in depth, and we

will even create one of our own. We’ll wrap up by writing a short (but very cool)

program to manipulate Amazon EC2 resources using the API.

The Programmable Data Center
In Chapter 1, I described the concept of a programmable data center as central to

cloud computing. Manual labor and hands-on system building are replaced by

automated provisioning, dynamic resource allocation, and a model where every

function of the data center is accessible through an API call.

To illustrate the difference between a traditional, human-powered internet hosting

provider and a modern, programmable data center, let’s list the steps needed for a

single server to be up and running:

1. locate or acquire suitable server hardware

2. acquire and attach adequate disk storage

3. ensure adequate rack space, power, and cooling

4. arrange for internet connectivity

5. procure and set up networking gear such as switches, routers, and load balancers

6. install the hardware

7. boot the server

8. install the operating system

9. configure necessary applications

10. allocate and route IP addresses

11. make firewall entries for access and protection

12. configure monitoring to verify that the system is functional

13. scale all of the above components in response to increasing traffic

Each of these steps is time-consuming and the labor involved expensive when done

by hand. A programmable data center replaces each step with equivalent API calls

and shrinks the time needed to complete each step from hours, days, or weeks to

seconds. This rapid-response, mass production model is a key aspect of cloud

computing.

Programmable configuration control also simplifies growth and evolution, since

additional resources are readily available.

Amazon EC2 Overview
The Amazon EC2 infrastructure exhibits all the concepts of the programmable data

center that I listed above. In fact, Amazon EC2 services provide access to multiple

data centers (Availability Zones) in multiple geographic regions and are really a

collection of programmable data centers. You simply make web service requests

“to the cloud” and Amazon EC2 capabilities do the rest. Servers, operating system

images, firewall entries, load balancers, IP addresses, and disk storage volumes are

all available in a matter of seconds. In this section, we’ll address the difference

between persistent and ephemeral resources, cover the key Amazon EC2 concepts,

review the pricing model, and discuss the ways the EC2 infrastructure works with

other AWS infrastructure services.

Host Your Web Site in the Cloud102

Persistent and Ephemeral Resources
Amazon EC2 resources can be grouped into two classes—persistent and ephemeral

—and it’s important that you understand the differences between the two.

Persistent resources, once allocated to your account, can be expected to remain

operational in the face of transient or permanent hardware or software failures. The

Amazon implementation of a persistent resource makes uses of redundancy, auto-

mated failover, and automatic recovery to provide you with stable resources. The

following EC2 resources are persistent:

■ Elastic IP Addresses
■ Elastic Block Storage (EBS) Volumes
■ Elastic Load Balancers
■ Security Groups
■ Amazon Machine Images (AMIs) stored in Amazon S3 or as Amazon EBS snap-

shots

Ephemeral resources, on the other hand, are without built-in redundancy and will

eventually fail. When they fail, stored data and state information is generally lost.

Therefore, you’re expected to use other EC2 facilities to implement your own re-

dundancy, failover, and recovery. The following EC2 resources are ephemeral:

■ Amazon EC2 Instances

At this point you may be thinking, “What? The instances can crash at any point and

take my local data with them?” This is true, but, as developers often say, this is a

feature, rather than a bug. One of the most important architectural aspects of a large-

scale internet site (Amazon.com is a great example, of course) is that you can think

of the individual servers as if they were all transient and extremely unreliable, and

that you can use software to build a reliable system from unreliable parts.

Practically speaking, Amazon EC2 servers are actually fairly durable. One of my

personal EC2 instances has been running without a hitch for 907 days. When it ul-

timately fails, I’ll simply boot up another copy of my custom AMI, restore my data

from S3, and keep going.

Once you start to think of all your servers as fundamentally unreliable (Amazon

EC2 or otherwise), which sounds a lot worse than it actually is, you start to realize

103Web Hosting with Amazon EC2

that you can build a system in such a way that loss of a particular server is really

no big deal. The cloud also makes it easy for you to simulate a number of failure

scenarios so that you can ensure that your recovery logic works as expected. Once

you’ve been through a few of these exercises you can sleep better at night, confident

that recovery from a system failure is easy, and in some cases even automatic.

Speaking from experience, I can tell you that making the mental shift from “I’m

scared, it could go away at any time” to “I’m confident that it could go away at any

time and nothing bad will happen” is when you know that your thinking has become

truly cloud-friendly.

Amazon EC2 Terminology
The most important EC2 concept is the instance. Using a virtualization technique,

the EC2 infrastructure runs machine instances on behalf of several EC2 users on

the same physical hardware. The virtualization software ensures that each logical

instance receives a guaranteed share of memory space and CPU time, and makes

sure that instances running on the same hardware avoid interfering with each other

in any way.

An instance can be running any one of a number of operating systems, including

Linux (multiple distributions are available), Windows Server (multiple versions are

available), or OpenSolaris.

When you start up an Amazon EC2 instance you must specify the instance type.

There are currently eleven EC2 instance types, as shown in Table 5.1.1

The costs listed in Table 5.1 are current as of publication time and reflect the charges

for Linux or OpenSolaris instances running in the United States. Prices for instances

running in Europe or Asia, for Windows instances, and for Windows instances

running in Europe or Asia, are higher.

The speed of each core is measured in terms of EC2 Compute Units; each unit is

roughly the equivalent of a 1.0 to 1.2 GHz 2007-era AMD Opteron or Intel Xeon

processor.

1 The set of instance types is expected to grow and change over time. You can always find the latest list

of instance types on the EC2 home page at http://aws.amazon.com/ec2.

Host Your Web Site in the Cloud104

http://aws.amazon.com/ec2

Table 5.1. Amazon EC2 Instance Types

Cost/HourLocal DiskRAMCPU Core
Speed (EC2
Compute
Units)

CPU Virtual
Cores

CPU Word
Size

Name

$0.02None613MBUp to 2 (in

short bursts)

132-bit or

64-bit

Micro

$0.085160GB1.7GB1132-bitSmall

$0.34850GB7.5GB2264-bitLarge

$0.681,690GB15GB2464-bitExtra Large

$0.17350GB1.7GB2.5232-bitHigh-CPU

Medium

$0.681,690GB7GB2.5864-bitHigh-CPU

Extra Large

$0.50420GB17.1GB3.25264-bitHigh

Memory

Extra Large

$1.00850GB34.2GB3.25264-bitHigh

Memory

Double

Extra Large

$2.001,690GB68.4GB3.25864-bitHigh

Memory

Quadruple

Extra Large

$1.601,690GB23GBTotal of 33.58 (two

processors,

each with 4

cores)

64-bitCluster

Compute

$2.101,690GB22GBTotal of 33.58 (two

processors,

each with 4

cores) plus 2

NVidia Tesla

GPUs

64-bitCluster GPU

105Web Hosting with Amazon EC2

All instance types besides the Micro and the Small have more than one virtual core.

The virtual cores are independent processing units that run concurrently. You can

take advantage of this power by running more than one CPU-bound program at

once, or by writing your programs with its multi-core capabilities in mind. The

latter method, though, is an advanced topic, and beyond the scope of this book.

As you can see from the table, the larger instance types have faster cores and more

of them.

You need to consider a number of factors when you choose the EC2 instance types

for your application. First, you’ll need to make sure that your application is compat-

ible with the CPU word size. A number of high-end database products run only on

64-bit hardware. Once you’ve built an AMI, it’s specific to the CPU word size; it’s

impossible to run AMIs built for a 32-bit instance type on a 64-bit instance type, or

vice versa. Next, you’ll need to think about the resource demands of your application.

Applications that need a lot of processing power relative to the amount of memory

may run best on the High-CPU instances. Within the 32-bit and 64-bit product lines,

there is plenty of room to move up and down to optimize your resource usage. Ex-

perienced EC2 users generally benchmark their application on two or three different

instance types and then choose the one that provides the best price/performance

level. Finally, you’ll need to decide whether you want to have lots of small instances

or fewer large ones. This scale-out versus scale-up decision is, once again, very

specific to your application’s needs. Complex, multi-tier applications will often use

multiple instance types. For example:

■ Small instances for the web tier
■ Extra Large instances for the relational database tier
■ High-CPU Extra Large instances for a CPU-intensive application tier

Using a larger number of smaller instances also gives you the flexibility to distribute

them across two or more Availability Zones for better fault tolerance. Extremely

large-scale applications can even span more than one EC2 region, running some

instances in the United States, some in Europe, and others in Asia. It’s actually

quite easy to create these complex, multi-homed topologies using EC2 capabilities.

When you build an application that literally spans the world, cloud computing will

become even more compelling. You can build “follow-the-sun” applications, adding

resources when and where your users are busiest and removing them when they’re

Host Your Web Site in the Cloud106

asleep. You can add functional redundancy and geographic dispersion without

having to deal with additional data center or bandwidth suppliers.

When you launch an instance you always run a particular AMI (Amazon Machine

Image). As we discussed in Chapter 2, the AMI contains your operating system and

can also contain other layers and parts of your application. You can choose from a

number of predefined AMIs or you can build your own. You have a lot of flexibility

in how you configure and customize your AMIs. You can build a set of distinct

AMIs for each tier of your application, or you can create a generic AMI that self-

customizes at startup time according to its role. AMIs can be stored in Amazon S3

or as Elastic Block Storage snapshots. The newer, snapshot-based model is faster

and more flexible. Instances that have been booted from an EBS snapshot can be

shut down and then restarted at will, on the same instance type or on another one

with different specifications; however, you can’t migrate between instance types

with different word sizes without rebuilding the AMI.

Each of your EC2 instances can be included in any number of EC2 security groups

when the instance is launched. The security groups are part of your AWS account

and can be applied to any number of instances. Each group defines a set of allowable

inbound connections using rules that contain a protocol, a port, and an IP address

range. Once an instance is launched, the set of groups attached to it cannot be

changed. However, the group itself can be changed (rules added or deleted) and the

changes will take effect immediately. Groups can be used to implement fine-grained

access control logic for multi-tier applications. For instance, Table 5.2 describes

one way to set up your security groups.

Table 5.2. Sample Security Groups

RulesGroup Name

web_access ■ allow HTTP access (port 80) from anywhere

■ allow SSH access (port 22) from corporate network

db_access ■ allow access to MySQL database (port 3306)

■ allow SSH access (port 22) from corporate network

app_access ■ allow access to application server (port 5000)

■ allow SSH access (port 22) from corporate network

107Web Hosting with Amazon EC2

The security groups would then be applied to the instances as listed in Table 5.3.

Table 5.3. Instances and Security Groups

Security GroupInstance Role

web_accessweb server

db_accessdatabase server

app_accessapplication server

With a clean and properly factored set of groups as a base, it becomes possible to

think about making changes dynamically. For example, a scheduling utility built

around the AuthorizeSecurityGroupIngress and RevokeSecurityGroupIngress

AWS functions could make periodic changes to the app_access group to implement

rotating, remote access by backup system administrators for emergency access. Or,

the rules in the db_access group could be made more selective by dynamically

adding permissions based on the IP addresses of the servers in the web tier.

Instances within a single security group can communicate freely with each other.

Therefore, it would be imprudent to use, for example, a single ssh_access group

to allow SSH access to instances in more than one tier of the previous example.

A public IP address is assigned to each instance as part of the launch process.

However, because the instances are ephemeral, the IP address will have the same

lifetime as the instance. The EC2 Elastic IP address feature supports allocation of

public IP addresses that are stable and that have a lifetime independent of any

particular EC2 instance. The addresses are allocated to your AWS account. Once

allocated they remain under your control until relinquished, regardless of whether

you use them or not. You can attach (route) any of your IP addresses to any of your

EC2 instances.

As noted earlier in this section, the local disk storage included with each EC2 in-

stance is ephemeral. The storage will remain intact if a running instance is rebooted,

but it’s scrubbed and then reused after the instance has been terminated. The EC2

Elastic Block Store (EBS) provides persistent storage with high reliability and

availability. You can create an EBS volume and then attach it to any of your instances

in the same Availability Zone. You can create point-in-time snapshot backups to

Amazon S3 and then restore the backups to the same volume, or you can use them

Host Your Web Site in the Cloud108

to create a fresh volume. EBS volumes can be formatted and used to store files, or

they can be used as unformatted “raw” storage.

The Amazon DevPay system lets you use Amazon’s subscription and billing infra-

structure for your own EC2-based applications. DevPay gives you the ability to

create your own payment plan with any combination of up-front, recurring, and

usage-based fees. Once you’ve attached the payment plan to an AMI of your creation,

your customers can sign up for it and launch one or more copies of the AMI. They’ll

pay for usage via their Amazon account.

All Together Now
Amazon EC2 functionality becomes even more powerful when it’s used in conjunc-

tion with the other AWS infrastructure services. We’ve already talked about the use

of Amazon S3 for storage of AMIs and EBS snapshots. And, as we saw in the last

chapter, you can call the S3 APIs using PHP code running on an EC2 instance. S3

is ideal for storage of any amount of unstructured application data—binary or string.

In a similar fashion, code running on an EC2 instance can use Amazon SimpleDB

for structured data store, the Relational Database Service for storage of relational

data, and the Amazon Simple Queue Service as a scalable inter-instance or inter-

process buffer. Elastic MapReduce runs on EC2 services and can be used to process

large amounts of data.

Adding to the appeal of this architectural model is the fact that latency between

EC2 services and these services is very low, since they’re running in the same Region.

The Amazon EC2 Pricing Model
Your Amazon EC2 usage is charged in a number of dimensions that include instance

use, data transfer, AMI storage, IP address reservations, EBS data storage, and EBS

I/O. These prices will change over time, so you should consult the Amazon EC2

home page2 for the latest information.

2 http://aws.amazon.com/ec2

109Web Hosting with Amazon EC2

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2

Instance Use
Hourly (on-demand) pricing for each of the EC2 instance types is shown earlier in

Table 5.1. Instance usage begins when the instance starts running, and is billed in

whole-hour increments. These are base prices, and several factors can affect the final

price:

■ It’s more expensive to run EC2 instances in the Europe and Asia Pacific Regions.
■ It costs more to run Windows than it does to run Linux or OpenSolaris.
■ AMIs accessed via DevPay are charged at the rates set by the AMI’s creator.
■ You can arrange for a lower hourly rate by purchasing reserved instances.

Taking all these factors into consideration, you should plan on watching your AWS

account with care during the first hours and weeks of operation.

If you plan to keep a number of EC2 instances running over time, you should also

investigate the reserved instance option. With this option you pay an up-front fee

to reserve an instance for a period of one or three years, and then pay a smaller per-

hour charge when you’re actually using the instance. The final per-hour cost is

lower than it would be for on-demand usage. At current rates, a three-year reserved

instance is less expensive than an on-demand instance if the instance is used at

least 19% of the time. Purchase of a reserved instance will also ensure that you can

allocate an EC2 instance when you need it.

Data Transfer
Your data transfer charges are based on the amount of data transferred in and out

of your EC2 instances. Data transferred into your instances is charged at a rate of

$0.10 per gigabyte. Once again, this amount is prorated. Data transferred out of your

instances is charged on a sliding scale that starts at $0.15 per gigabyte and decreases

according to volume, reaching $0.08 per gigabyte for all outgoing data transfer in

excess of 150 terabytes per month.

There are some important special cases for data transfer:

■ There’s no charge for data transfers within an AWS Availability Zone.
■ Data transferred between regions is charged at internet rates as described at the

beginning of this section. You’ll be charged for both sides of the transfer (out of

one region and into the other).

Host Your Web Site in the Cloud110

■ Data transferred between Availability Zones in the same region is charged at the

rate of $0.01 per gigabyte.
■ No charges apply to transfer data back and forth between EC2 and other AWS

services in the same region.

AMI Storage
The AMIs that you create are stored directly in Amazon S3 or as EBS snapshots

(which are also stored in S3), and you pay the usual S3 rates for doing so. My own

customized Linux AMIs typically consume 500 to 700 megabytes of space. Windows

AMIs are generally larger, often weighing in at more than five gigabytes. If you create

and retain multiple versions of your AMIs, or if you create separate AMIs for each

tier of your application, it’d be wise to pay attention to your storage costs.

IP Address Reservations
You can allocate Elastic IP addresses and attach them to an EC2 instance at no

charge. However, if you allocate an address but fail to attach it to an instance, you’ll

be charged $0.01 per hour for it. You can do up to 100 remap (attach or detach)

operations per month at no charge. After that you will pay $0.10 for each remap.

Elastic Block Store
The storage consumed by your Elastic Block Store volumes is charged at the rate of

$0.10 per gigabyte per month. Because this is raw storage that you can use in any

desired way, you’re charged based on how much you allocate, rather than on how

much you use.

You’re also charged $0.10 for each million I/O requests you make to EBS. Like all

other AWS charges, this amount will be prorated based on actual usage, so you’d

pay $0.05 for 500,000 I/O requests.

Launching Your First Amazon EC2 Instance
Now that we’ve taken care of the concepts and the pricing, it’s time to actually use

EC2 functionality. We’ll prepare our SSH keys, become familiar with the AWS

Management Console, then launch an instance. Once the instance is running we’ll

allocate and attach an IP address to it, and then we’ll create, attach, and format an

111Web Hosting with Amazon EC2

EBS volume. We’ll rev up Apache and put some code into place, then we’ll shut it

all down.

Creating and Preparing an SSH Key
We’ll need to be able to connect to our instances using SSH, but before we can do

that we need to create one or more Amazon EC2 key pairs. This is a way to prove

our identity to the Amazon EC2 instance when we connect.

Point your browser at http://console.aws.amazon.com and log in if necessary. Click

on the Amazon EC2 tab. If you’ve yet to sign up for EC2 services you’ll need to do

that, supplying a credit card to take care of your charges.

If you’re in Europe or Asia, you may prefer to use the local EC2 region for this exer-

cise. You can do this by selecting it from the Region menu shown in Figure 5.1.

Figure 5.1. The AWS Management Console’s Region menu

Once the AWS Management Console is visible, click on Key Pairs and then press the

Create Key Pair button. This will display the dialog shown in Figure 5.2.

Figure 5.2. Creating and naming a new key pair

Enter a name for your key pair (I chose “Jeff’s Keys”) and press the Create button.

After you press the button, the AWS Management Console will initiate a file

download. Depending on your browser settings, you’ll either be prompted to save

a file or the file will be saved to your local disk.

Host Your Web Site in the Cloud112

http://console.aws.amazon.com

Save the .pem to a safe and secure place. Why safe? If you lose the file you’ll have

to regenerate it. Once you do so you’ll no longer have SSH access to your existing

EC2 instances. Why secure? If an unauthorized person finds the file, they’ll have

access to your running instances.

Preparing PuTTY on Windows
As I mentioned in the section called “Hardware and Software Expectations” in

Chapter 3, I highly recommend the PuTTY SSH client. Before we can use it to con-

nect, though, we need to convert the private key into a format that PuTTY can use.

If you’ve yet to do so, obtain a copy of PuTTY and the associated PuTTYgen utility.3

You can download the self-contained executable files or the handy installer. You’ll

be using PuTTY a lot so consider creating a desktop shortcut for it.

Launch PuTTYgen, click on the Conversions menu, and choose Import key. Locate

the .pem file you saved earlier and open it. You can add a passphrase (a local pass-

word) to make the key more secure if you’d like, as I’m doing in Figure 5.3. You’ll

have to supply the passphrase each time you use the key. Go to PuTTYgen’s File

menu and choose Save private key. Once again, put this key in a safe and secure

location on your local desktop.

Figure 5.3. Adding a passphrase during key conversion

3 http://www.chiark.greenend.org.uk/~sgtatham/putty/

113Web Hosting with Amazon EC2

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Preparing Your Key Pair on Mac OS X or Linux
Open a terminal window in the directory where you saved your key pair file. Our

first important task is to set the correct file permissions, otherwise we’ll be unable

to use it to connect; we’ll receive a big WARNING: UNPROTECTED PRIVATE KEY FILE!

error message. Use the chmod command to restrict read and write permissions to

the file owner (replace your_key_file.pem with the name of your file):

$ chmod 600 your_key_file.pem

If you like, you can also set up a passphrase by using the following command:

$ ssh-keygen -p

You’ll be prompted for the location of your key pair file, and asked to enter in the

passphrase twice for confirmation.

Touring the AWS Management Console
You already have the AWS Management Console open in your browser, so take a

few minutes to explore the Navigation pane under the Amazon EC2 tab. As you can

see, there are links for each of the EC2 resources described in this chapter. We’ll be

using the console quite a bit from here on in. You can also use the Help button in

the top-right corner, as shown in Figure 5.4, to learn more about each feature of the

console.

Figure 5.4. The AWS Management Console’s Help Button

Launching Your First Instance
At this point you’re all revved up and are at the starting line. It’s time to actually

launch an instance. For this exercise we’ll launch the LAMP Web Starter. This AMI

Host Your Web Site in the Cloud114

incorporates the Fedora Core 8 Linux distribution, along with PHP, Apache, and

MySQL.

Click on Instances in the Navigation pane, press the Launch Instance button, and select

the Community AMIs tab. Enter the search term “phpquickstart” and wait for the AMI

to be displayed. The Request Instances Wizard will be displayed with the AMI selected,

as Figure 5.5 illustrates.

Figure 5.5. The Request Instances Wizard

Click the Select button next to the AMI with the highest version number in the

Manifest column.. The second page, Instance Details, we can leave as is, so click the

Continue button. On the third page of the wizard (Create Keypair), choose your key

pair from the menu and click the Continue button. On the wizard’s fourth page

(Configure Firewall), make sure that the default security group is selected and click

the Continue button.

On the fifth and final page of the wizard (Launch), review your settings, as shown

in Figure 5.6.

115Web Hosting with Amazon EC2

Figure 5.6. Take a deep breath and press Launch

Take a deep breath and press the Launch button. Congratulations, you’ve just initiated

the launch of your first EC2 instance!

Close the final page of the wizard, and keep an eye on the My Instances list. Behind

the scenes the EC2 infrastructure is preparing your instance for use, which involves:

1. finding an available server

2. copying the AMI to the boot disk of the server for an S3-backed instance, or cre-

ating an EBS volume from the AMI for an EBS-backed instance

3. booting the server

4. applying security settings

5. starting the metering process to track your usage

Linux and OpenSolaris instances typically launch in a minute or two. Windows

instances can take a bit longer, sometimes up to five minutes.

When your instance changes to a running status, it’s ready for use. In Figure 5.7 I

have two instances running, so there are two rows and two status indicators.

Host Your Web Site in the Cloud116

Figure 5.7. The instances are running

Enabling SSH Access
Before connecting to the new instance, you need to make sure that the EC2 security

group named default allows SSH (port 22) access and HTTP (port 80) access. Older

AWS accounts allowed access on these ports by default, so there’s no need for

concern if you check your group and it’s already there.

Click on Security Groups, then on the group named default, and take a look at the

list of Allowed Connections. Make sure that the list includes SSH in the Connection

Method column with From Port and To Port set to 22. If there’s no entry like this,

change the Custom… select menu on the bottom row to SSH and press the Save button

(the other fields will fill in automatically). If you know the IP address of your desktop

computer, you can use it as the Source IP, along with a "/32" suffix.4

Do the same for HTTP on port 80 if it’s missing from the list. Figure 5.8 illustrates

adding a new entry for HTTP, after already adding an entry for SSH.

Figure 5.8. Adding connection methods to the default security group

4 If you choose to do this, be sure to update the group if the IP address of your desktop computer changes.

You could also add multiple SSH rules to enable access from more than one IP address.

117Web Hosting with Amazon EC2

Connecting to the Instance
There’s a lot of useful information in the My Instances list. Of particular interest is

the column labeled Public DNS, as shown in Figure 5.9.

Figure 5.9. The console showing the Public DNS name of each running instance

Copy the public DNS name for your instance, as you’ll need it to connect via SSH.

Connecting with PuTTY on Windows
Launch PuTTY and paste the Public DNS name into the Host Name field, as shown

in Figure 5.10.

Figure 5.10. Configuring PuTTY for Windows

Now click the Auth tree item (nested inside of the SSH item) shown in Figure 5.11

and use the Browse… button to locate the private key that you saved from PuTTYgen.

Host Your Web Site in the Cloud118

Figure 5.11. Configuring SSH authentication on PuTTY

Click the Open button and PuTTY will connect to your instance, authenticating itself

using the public portion of your private key. PuTTY will then ask you to confirm

your request to use the key, as depicted in Figure 5.12.

Figure 5.12. PuTTY confirming use of new key

Click Yes, and then enter root when your instance prompts you to log in. Since

you’ve already identified yourself using your key, a password is unnecessary for

the root account. However, if you’ve set up a passphrase for your key you’ll be

prompted for it. Figure 5.13 shows a successful login.

119Web Hosting with Amazon EC2

Figure 5.13. Successful login to a fresh EC2 instance

Connecting with the Mac OS X or Linux Terminal
Open a new terminal window and enter the following command:

$ ssh -i jeffskeys.pem root@ec2-nnn-nnn-nn-nnn.compute-1.amazonaws.
➥com

Replace jeffskeys.pem with your own key pair file and ec2-nnn-nnn-nn-nnn with

the public DNS name of your instance. You’ll receive the following response:

The authenticity of host 'ec2-nnn-nnn-nnn-nnn.compute-1.amazonaws.
➥com (nnn.nnn.nnn.nnn)' can't be established.
RSA key fingerprint is cd:79:eb:e3:e9:2e:d6:b2:9c:79:65:2a:27:c5:
➥1b:ba.
Are you sure you want to continue connecting (yes/no)?

Of course, the host information and RSA key fingerprint details will be different to

those above. If you enter yes to the question above, you will be logged in and will

receive the following output:

Warning: Permanently added 'ec2-nnn-nnn-nnn-nnn.compute-1.amazonaws.
➥com,nnn.nnn.nnn.nnn' (RSA) to the list of known hosts.

 __| __|_) Fedora 8
 _| (/ 32-bit

Host Your Web Site in the Cloud120

 ___|___|___|

 Welcome to an EC2 Public Image
 :-)

 Base

 --[see /etc/ec2/release-notes]--

[root@domU-12-31-38-00-2E-18 ~]#

If you had set a passphrase on your key pair file, you’ll be prompted to enter it as

well. Again, the host and prompt information will differ to those above.

Now We’re Connected
Congratulations, you now have full control of your very own EC2 instance! If you

plan to start up more than one EC2 instance, you should make sure that you can

tell them apart by making the shell prompt more distinct. Here’s how to set the shell

prompt to the string “<dev>: ” to indicate that the shell is on a development (as

opposed to production) server:

[root@domU-12-31-38-00-2E-18 ~]# export PS1="<dev>: "

Run the following command to see which packages have already been installed:

<dev>: yum list | grep installed

You should see a long list. Feel free to spend some time exploring your new EC2

instance. Try out your favorite Linux commands and verify that they work as you

expect them to. You can install new packages using the yum command. If you prefer

emacs to vim, install it like this:

<dev>: yum -y install emacs

If you decide to pause at this point, remember that your instance is now running

and that you’re paying for it by the hour. If there’s no need to keep it running, return

to the AWS Management Console, select the instance, and choose Terminate from

the Instance Actions menu. When you do this, all data stored on the instance will be

lost.

121Web Hosting with Amazon EC2

If you launched an EBS-backed AMI, you have an additional option. You can choose

Stop from the Instance Actions menu. The operating system will be cleanly shut down,

and the status of the instance will change to stopped. Later, you can choose to start

the instance again and it will boot up with all the files on the root file system re-

maining intact. This additional flexibility is among one of the many reasons to prefer

EBS-backed AMIs over their older S3-backed cousins.

Assigning an IP Address
Let’s give this instance a permanent IP address of its own. Close your SSH session

with the exit command, and then return to the AWS Management Console. Click

on Elastic IPs in the Navigation pane and press the Allocate New Address button. Press

the Yes, Allocate button in the dialog to confirm your wish to allocate a new IP ad-

dress. After a very brief pause, your newly allocated address will be listed in the

Addresses list.

At this point the address is yours, but is still unassociated with any particular EC2

instance. Let’s remedy that. Click on the address in the list to select it, and then

press the Associate button, which will bring up the dialog shown in Figure 5.14.

Figure 5.14. Associating an Elastic IP Address with an EC2 instance

Select the appropriate instance ID in the menu, and press the Associate button in

the dialog. Now create a new SSH session using the Elastic IP address instead of

the host name. If you happen to have a spare domain name and a DNS provider,

you can map the domain name to the public IP address.

Recall that you’re charged for allocated but unmapped IP addresses. If you decide

to terminate your instance and have no need for the IP address anymore, be sure to

release it using the AWS Management Console.

Host Your Web Site in the Cloud122

Creating an EBS Volume
Now that you have an instance and an IP address, let’s create, attach, and format a

storage volume.

Once created, you can attach an EBS volume to any of the instances that are in the

same Availability Zone as the volume. Since our instance is already running, let’s

figure out which zone it’s running in. Return to the AWS Management Console, and

select the Instances view. Click on the row of your instance and inspect the detailed

instance properties displayed at the bottom, as shown in Figure 5.15.

Figure 5.15. Finding the instance’s Availability Zone

My instance is in zone us-east-1a. Click on Volumes in the Navigation pane, press

the Create Volume button, and you will be presented with the dialog box shown in

Figure 5.16.

Figure 5.16. Creating an EBS Volume

123Web Hosting with Amazon EC2

The dialog form accepts values in units of gibibytes (GiB) and Tebibytes (TiB). These

are the power-of-two analogs of the more familiar gigabytes (GB) and terabytes (TB),

both of which represent powers of ten. One gibibyte is 1,073,741,824 bytes, whereas

one gigabyte is 1,000,000,000 bytes.

Enter the desired volume size (10GiB is a good value) and select the Availability

Zone of your instance. Leave the other fields as they are and press the Create button.

The new volume will appear in the EBS Volumes list, with a creating status. Wait

a few seconds, press the Refresh button, and the status should change to available.

Now select the volume and press the Attach button (or right-click on it and choose

Attach Volume) to reveal the Attach Volume dialog shown in Figure 5.17.

Figure 5.17. Attaching an EBS Volume to an Amazon EC2 instance

Select your instance, keep a record of the value in the Device field, and press the

Attach button. Refresh the EBS Volumes list until the Attachment Information column

contains the word “attached.”

At this point the new EBS volume is attached to your instance, but not yet ready to

store files. Head over to your SSH session and put a file system on the newly attached

volume:

<dev>: mkfs -F /dev/sdf

After this command completes, /dev/sdf is ready to store files. Create a mount point

and mount the file system on it like this:

Host Your Web Site in the Cloud124

<dev>: mkdir /data
<dev>: mount /dev/sdf /data

You now have a persistent, high-performance disk volume running on EBS. Keep

in mind that you’ll be charged for the storage allocated to the EBS volume whether

you put files on it or not.

Testing Apache
The Apache web server The Apache web server is already installed, configured,

and running on the LAMP Web Starter AMI. Take your IP address, put an http://

prefix on it, and visit the resulting URL in your browser. Figure 5.18 shows what

you’ll see.

Figure 5.18. Apache and PHP up and running

You’ll probably recognize this as the output of the PHP phpinfo function.

125Web Hosting with Amazon EC2

Running Some Code
The default home page is stored at /home/webuser/helloworld/htdocs/index.php. You

can make some simple changes to it now if you’d like; the text editors vim5 and

nano6 are available by default, or if you installed emacs7 previously you can use

that. For example, change the first <h1> tag:

<h1>Jeff’s PHP Test</h1>

Insert your own name, if you’d like. Refresh the page and confirm that the page

changes accordingly.

The new EC2 instance needs a little bit of tweaking before it can run the PHP code

from the previous chapter. Create a directory on the EBS volume:

<dev>: mkdir /data/src
<dev>: cd /data/src

You Can Install More than One Package at a Time

You can use yum to install several packages concurrently. This can be handy when

you’re preparing a new AMI from scratch, as it’s more efficient than installing

them individually. For example, I use the command yum –y install emacs

cvs svn to install emacs, CVS, and Subversion in one fell swoop.

Now we can download and unzip the AWS SDK for PHP:

<dev>: wget http://pear.amazonwebservices.com/get/
➥sdk-1.2.0.zip
--21:48:17-- http://pear.amazonwebservices.com/get/
➥sdk_1.2.0.zip
Resolving pear.amazonwebservices.com... 216.137.45.25...
Connecting to pear.amazonwebservices.com|216.137.45.25|:80...
➥connected.
HTTP request sent, awaiting response... 200 OK
Length: 1832957 (1.7M) [application/x-zip]

5 http://vim.sourceforge.net/
6 http://www.nano-editor.org/
7 http://www.gnu.org/software/emacs/

Host Your Web Site in the Cloud126

http://vim.sourceforge.net/
http://www.nano-editor.org/
http://www.gnu.org/software/emacs/

Saving to: `sdk-1.2.0.zip'

100%[======================================>] 184,441
➥89.7K/s in 2.0s

2010-07-26 00:42:05 (236 KB/s) - `sdk-1.2.0.zip'
➥saved [1832957/1832957]

<dev>: unzip sdk-1.2.0.zip
Archive: sdk-1.2.0.zip
 creating: sdk-1.2.0/
 inflating: sdk-1.2.0/package.xml
 ⋮
 inflating: sdk-1.2.0/sdk-1.2.0/utilities/utilities.class.php

<dev>: mv sdk-1.2.0/sdk-1.2.0/ sdk
<dev>: rm -f sdk-1.2.0.zip
<dev>: rm -rf sdk-1.2.0

This will install the AWS SDK for PHP in directory /data/src/sdk.

Now you’ll need to follow the same procedure we went through in the section called

“Installing the AWS SDK for PHP” in Chapter 3. The PHP include_path setting

needs to be updated to include the path /data/src/sdk. The php.ini file can be found

at /etc/php.ini. And the /data/src/sdk/config-sample.inc.php file needs to be copied to

config.inc.php, and your AWS account key information added.

Create a new directory /data/src/book and create a new PHP file called index.php

with the following contents:

<?php
error_reporting(E_ALL);

require_once('sdk.class.php');

$s3 = new AmazonS3();
$buckets = $s3->get_bucket_list();
?>
<html>
 <head>
 <title>S3 Buckets</title>
 </head>
 <body>

127Web Hosting with Amazon EC2

 <h1>S3 Buckets</h1>

 <?php foreach($buckets as $bucket): ?>
 <?php echo $bucket ?>
 <?php endforeach ?>

 </body>
</html>

Make sure that the index.php file is world-readable:

<dev>: chmod 644 index.php

Now create a symbolic link from Apache’s htdocs directory to the /data/src/book

directory where our index.php file resides:

<dev>: cd /home/webuser/helloworld/htdocs
<dev>: ln -s /data/src/book book

Append /book to the URL that you used at the start of this section and visit the

resulting address in your browser. You should see a list of the S3 buckets you set

up in Chapter 4. Otherwise, make sure you’ve edited the php.ini file and added the

correct include_path, and edited the SDK’s config.inc.php file with your AWS key

ID and secret key values. You might also try editing the php.ini file and setting

display_errors to On; then examine the PHP error message, and try to diagnose

your problem from there.

Shutting Down
You can leave the instance running as long as you’d like, or you can shut it down

now. As we discussed earlier, you can also stop an EBS-backed instance and then

start it up again at a later time.

If you plan to shut down the instance but want to keep the EBS volume around for

later, be sure to sync and unmount it so that no data is lost and the file system re-

mains uncorrupted. Here’s what you need to do:

<dev>: sync
<dev>: umount /dev/sdf

Host Your Web Site in the Cloud128

You can shut the instance down from the AWS Management Console, or you can

simply halt it from within:

<dev>: halt

You Did It!
Well, now you know how to launch an EC2 instance, set it up with an Elastic IP

address, and create, attach, and format an Elastic Block Store volume. As you can

probably see for yourself, it is actually quite easy to start and configure a basic EC2

instance.

All about AMIs
Now we’re going to learn more about Amazon Machine Images (AMIs). We’ll take

a look at the AMI catalog and discuss the origins of the AMIs found there. We’ll

talk about the factors to consider when choosing an AMI, and then spend some time

learning how to create a new AMI.

The AMI Catalog
The EC2 AMI catalog8 is shown in Figure 5.19.

Figure 5.19. The Amazon EC2 AMI Catalog

8 http://aws.amazon.com/amis

129Web Hosting with Amazon EC2

http://aws.amazon.com/amis

The AMI catalog lists and categorizes all the public EC2 AMIs. The center column,

Browse by Category, allows you to view AMIs based on provider, operating system,

or region. The last category is present because AMIs are local to a particular EC2

region. The first category, Amazon Web Services, contains the AMIs provided by

Amazon. The second category, Community, contains AMIs built by members of the

AWS developer community. The remaining categories list AMIs provided by com-

panies such as Oracle, Sun, and IBM.

Click on a category to see a list of AMIs, and then click on an item in the list to learn

more about a particular AMI. Figure 5.20 illustrates the amount of information

available for the Ubuntu 9.04 Jaunty Server AMI Listing.

Figure 5.20. The Ubuntu 9.04 Jaunty Server AMI Listing

The AMI listing contains essential information about the AMI, including the AMI

ID for each region where it’s available, the AMI’s provenance—who created it and

what is inside—along with reviews, ratings, and discussion. Some of this information

can also be obtained programmatically through the DescribeImages function or

from the command line with the ec2-describe-images command.

Host Your Web Site in the Cloud130

Choosing an AMI
You should consider a number of factors before choosing an AMI for a project. The

AMI model provides you with lots of choices and plenty of flexibility. It’s up to you

to make responsible and productive use of this important aspect of Amazon EC2.

You must choose a CPU word size, an operating system, and (in some instances)

an operating system distribution.

In most cases you need to work backwards, starting with your application layer and

making choices that ensure compatibility. In a complex architecture you may find

that the best solution is heterogeneous, incorporating instances with more than one

CPU word size, operating system, or operating system distribution.

EC2 AMIs are available with a very wide variety of Linux distributions, including

Fedora, Debian, Ubuntu, openSUSE, Red Hat Enterprise Linux, Oracle Enterprise

Linux, and Gentoo. Choosing the right distribution is a complex topic and beyond

the scope of this section. Factors to consider include:

■ compatibility with existing systems
■ reputation of the distribution
■ features specific to each distribution, such as package management
■ availability of commercial support
■ support for specific applications

Because it is so simple to start up EC2 instances, you can do compatibility and

performance testing quite easily. You can explore the features of each distribution

and make sure that it will meet your needs without spending much money.

Creating a Custom AMI
Why would you want to create an AMI of your own? You might want to freeze your

system configuration so that you can launch additional instances that are identical

to the first. You may like to share the configuration with your partners or customers,

or share it with the entire EC2 community.

Before we describe the AMI creation process, let’s take a quick look at some of the

alternatives. Far from dissuading you from creating an AMI, I do want you to be

aware that there are other ways to customize your EC2 instances. Here are some of

the alternatives:

131Web Hosting with Amazon EC2

■ No Configuration—Perhaps you can do your work with a totally stock AMI. If

you’re doing short-term experimental development, a predefined AMI may in-

clude everything you need. You can store your source code in an external source

code control system or on an EBS volume. You can launch an instance when

you arrive at the office, mount the volume, spend your day coding, and then

unmount the volume and terminate the instance at the end of the day.

■ Manual Configuration—If there’s no need for you to launch multiple copies of

the same AMI and if the configuration procedure is short and simple, perhaps

you can take a basic approach and manually configure your AMI after you start

it. On Linux systems you can install all required packages with a single command.

You can even create a shell script, store it in Amazon S3, and simply download

and run it each time. Because you can stop and later restart an EBS-backed in-

stance, manual configuration is sufficient in many situations.

■ Automated Configuration—You have the ability to pass a string (up to about

10,000 characters) of user data to each EC2 instance when you launch it. This

data could be a reference to a script stored in Amazon S3, or it could be the script

itself.9 The script can perform the final customization of the instance, including

retrieval of other scripts and configuration data from a source code repository.

■ Automated Role-based Configuration—If your system incorporates multiple tiers

with distinct system configurations for each tier, you can extend the Automated

Configuration model to customize each tier—installing different packages and

making other changes based on a parameter that describes the role of the instance.

The roles are arbitrary and will depend on the application. For example, a three-

tier application could have “web server,” “database master,” “database slave,”

and “application server” roles.

If none of the above options meet your needs, go ahead and make your own AMI.

The process is quick and simple, and you’ll walk away with an even better appreci-

ation of the power of cloud computing and AWS.

The AMI creation process has become significantly simpler with the introduction

of EBS-backed AMIs, and that’s what we’ll describe in this section. If you need to

create an S3-backed AMI, you’ll need to study the EC2 documentation to learn more

about the bundling, uploading, and registration steps.

9 You can pass up to 16,384 bytes of data to an EC2 instance in this way.

Host Your Web Site in the Cloud132

Here are the steps involved in creating an AMI:

1. Planning—deciding what you want to do.

2. Image preparation—creating a reusable image.

3. Image creation—creating an EBS snapshot of the image.

4. Reusing—launching multiple copies of the AMI.

5. Sharing—making the AMI accessible to others.

Planning
In this step you need to identify the purpose and content of your AMI, starting with

the base operating system. From there you can load additional packages. You can

also pre-populate the AMI with any special code or data that you’d like to make

available to the users of your AMI.

For the purposes of this example I’ll use the Basic Fedora Core 8 AMI augmented

with Apache, MySQL, CVS, Subversion, and emacs. The result will be a web devel-

opment AMI that’s ready to use.

If you’ll be making your AMI available to other users of EC2, you should take care

to document the contents so that potential users know exactly what’s inside.

If you aspire to be a prolific builder of public AMIs, you should think about ways

to automate the production process to reduce manual labor and give you the ability

to regenerate an AMI on demand. As a builder, you also need to stay abreast of

system updates and patches, so that you can provide your user base with fresh AMIs

on a timely basis. A script and an accompanying checklist can make this process

simple, efficient, and reliable.

Make Lists!

I’ve been a list maker for a very long time. I find that writing things down keeps

my mind free of clutter and ensures that I remember any obvious steps. The system

rebuild process for one of my older web projects is 29 steps long. Even though I

last rebuilt the system four or five years ago, I’m confident that I have enough in-

formation in my checklist to do it with ease.

133Web Hosting with Amazon EC2

Image Preparation
The image is simply the set of files that you want to package up in the AMI. You

can prepare this set of files on a local (non-EC2) machine, or you can prepare them

on an EC2 instance. If you’re using an EC2 instance, you can use the root file system

of the running machine as the basis for your image, or you can create a large but

empty file and do a system installation inside it. I will use the root file system of

the running machine.

The image creation process scoops up all the files on the root file system. It excludes

files on other file systems (local or EBS) and it does not capture any state information

external to the running instance—in particular, information about elastic IP addresses

or EBS volumes. If your AMI requires this information in order to be fully functional,

you’ll need to arrange for addresses to be assigned and/or volumes to be attached

and mounted as part of the startup process.

Let’s prepare an image! Start by booting up a fresh copy of the Basic Fedora Core 8

AMI and make sure to reference your Key Pair. Log in to the instance in the usual

way and install all required packages:

<dev>: yum -y install httpd mysql cvs svn emacs

There’ll be a delay while all these are downloaded. Make any other desired changes.

For example, make arrangements to start Apache when the system boots up. Go to

the /etc/rc4.d directory and create a symbolic link to the proper init script:

<dev>: cd /etc/rc4.d
<dev>: ln -s ../init.d/httpd S15httpd

Once you have the system set up the way you’d like it, reboot it to make sure that

it comes up in the desired state. Simply right-click on the instance in the AWS

Management Console and choose the Reboot option, as shown in Figure 5.21.

Host Your Web Site in the Cloud134

Figure 5.21. Rebooting the EC2 instance

You can also run the reboot command from the command prompt if you’re logged

in as root.

Verify that all desired services are running, and make further changes or customiza-

tions until you have the image working the way you want it. If you change low-level

aspects of the boot process you may find that you’ve created an unbootable image.

Just as is the case with a system running on real hardware, there’s no way to recover

from this. You may want to start up a pair of instances and make each preferred

change on the test instance, rebooting after each change. After a successful reboot

you can apply the same change to the instance that you’ll use to create the reusable

image. You can also bundle and upload snapshot versions of the image during the

process. If you create an unbootable AMI you can back up a step or two, figure out

what went wrong, and proceed from there. As I noted earlier, a good checklist will

be of tremendous value here.

Resist the urge to go hog-wild and install every package that you might need some

day. Larger AMIs take longer to create and to boot. Adding extraneous packages to

your system also increases its attack surface—anything that can be accessed by an

unauthenticated user in an attempt to locate a security flaw. Install what you need

and no more.

Image Scrubbing
The image creation process copies all the files from the root file system, so you need

to think about the files that you don’t want to include. You’d probably want to ex-

clude log files, shell history files, and your AWS keys. Once again, a good checklist

can avoid embarrassment and potential security issues.

Shut down any unneeded services, remove shell history files such as .bash_history,

empty out log files, and make sure that your AWS keys are stored elsewhere than

the root file system. Here’s an example:

135Web Hosting with Amazon EC2

<dev>: rm ~/.bash_history
rm: remove regular file `/root/.bash_history'? y
<dev>: cd /var/log
<dev>: > cron
<dev>: > maillog
<dev>: > secure
<dev>: > spooler
<dev>: > yum.log
<dev>: > httpd/error_log
<dev>: > httpd/access_log

Image Creation
After you have scrubbed your root file system, you can create an image by right-

clicking on the instance in the AWS Management Console and choosing the option

labeled Create Image (EBS AMI). The Create Image dialog will be displayed, as shown

in Figure 5.22.

Figure 5.22. The Create Image dialog

Give your instance a name and a description, and click the Create This Image button.

Your instance will be rebooted as part of the image creation process, so don’t be

Host Your Web Site in the Cloud136

alarmed when you lose touch with it. The time that the image creation process takes

is proportional to the size of your instance’s root file system. The instance’s state

will be displayed as available during the creation process, but you won’t be able to

log in until the process has concluded.

Reusing and Sharing the AMI
Now that you’ve created your AMI, you can use the My AMIs tab of the Launch Instance

Wizard to find and launch instances of it. Until you give the say-so, you’re the only

one with permission to do this; the AMI’s visibility is set to Private.

You can choose to share your new AMI with selected AWS users or with the entire

AWS community. If you elect to share with selected users you’ll need their AWS

account numbers.

Right-click on your AMI in the console’s AMIs view, then choose the Edit Permissions

option to launch the dialog shown in Figure 5.23.

Figure 5.23. Launching the Set AMI Permissions dialog box

Under Add Launch Permission, enter the account number of a particular AWS user

to share it with them. Click the add additional user link each time you need to enter

another account number. You can select Public to share the AMI with the entire

AWS community.

137Web Hosting with Amazon EC2

Using the EC2 API
Key to the concept of the programmable data center is the fact that every resource

can be manipulated by an external program. In this section we’ll take a look at a

program that does exactly that. In just over 100 lines (including comments and error

checking) the program does the following:

1. launches an EC2 instance

2. waits for the instance to transition to the “running” state

3. allocates a public IP address

4. attaches the IP address to the EC2 instance

5. allocates a pair of 1GB EBS volumes

6. attaches the volumes to the EC2 instance

The program starts out in the usual way:

chapter_05/ec2_setup.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$ec2 = new AmazonEC2();

Like the S3 and CloudFront access objects that we used in Chapter 4, the EC2 access

object provides a complete set of methods for access to the EC2 functionality.

Launching an instance is a lot easier than buying and installing new hardware:

chapter_05/ec2_setup.php (excerpt)

$options = array('KeyName' => "Jeff's Keys",
 'InstanceType' => "m1.small");

$res = $ec2->run_instances("ami-48aa4921", 1, 1, $options);

if (!$res->isOK())
{

Host Your Web Site in the Cloud138

 exit("Could not launch instance: " .
 $res->body->Errors->Error->Message . "\n");
}

After forming an options array to specify the key pair and desired instance type,

this code simply calls the run_instance method and checks for errors.

We’ll need the instance ID and the instance’s Availability Zone, so let’s fetch and

print them:

chapter_05/ec2_setup.php (excerpt)

$instances = $res->body->instancesSet;
$instanceId = (string)$instances->item->instanceId;
$availabilityZone = (string)$instances->item->placement->
➥availabilityZone;

print("Launched instance ${instanceId} " .
 "in availability zone ${availabilityZone}.\n");

The next step is to poll the instance state every ten seconds until it’s actually up

and running. EC2 services will stop an EBS volume from being attached to an in-

stance while the instance is still in the process of booting up. A simple loop does

the trick:

chapter_05/ec2_setup.php (excerpt)

do
{
 $options = array('InstanceId.1' => $instanceId);
 $res = $ec2->describe_instances($options);
 $instances = $res->body->reservationSet->item->instancesSet;
 $state = $instances->item->instanceState->name;
 $running = ($state == 'running');

 if (!$running)
 {
 print("Instance is currently in " .
 "state ${state}, waiting 10 seconds\n");
 sleep(10);
 }
}
while (!$running);

139Web Hosting with Amazon EC2

The describe_instances method returns the state of the instance passed in via the

$options array. The actual instance state is deeply nested within the returned result,

so a pair of statements are used to fetch it. The loop iterates until the instance state

is the string "running".

Okay, now we need an Elastic IP address. Let’s allocate it and display it like this:

chapter_05/ec2_setup.php (excerpt)

$res = $ec2->allocate_address();
if (!$res->isOK())
{
 exit("Could not allocate public IP address.\n");
}

$publicIP = (string)$res->body->publicIp;
print("Assigned IP address ${publicIP}.\n");

The allocate_address method does the heavy lifting, and the assigned address is

extracted from the returned result in the usual way.

With the address in hand it’s time to attach it to the instance, like so:

chapter_05/ec2_setup.php (excerpt)

$res = $ec2->associate_address($instanceId, $publicIP);
if (!$res->IsOK())
{
 exit("Could not associate IP address ${publicIP} " .
 "with instance ${instanceId}.\n");
}

print("Associated IP address ${publicIP} " .
 "with instance ${instanceId}.\n");

So far, so good! Now we can create a pair of 1GB EBS volumes and display their

IDs:

chapter_05/ec2_setup.php (excerpt)

$res1 = $ec2->create_volume(1, $availabilityZone, array('Size' => 1));
$res2 = $ec2->create_volume(1, $availabilityZone, array('Size' => 1));

Host Your Web Site in the Cloud140

if (!$res1->isOK() || !$res2->isOK())
{
 exit("Could not create EBS volumes.\n");
}

$volumeId1 = (string)$res1->body->volumeId;
$volumeId2 = (string)$res2->body->volumeId;

print("Created EBS volumes ${volumeId1} and ${volumeId2}.\n");

Notice that the volumes are created in the instance’s Availability Zone, as is required.

The final step is to attach the volumes to the instance, and that’s fairly easy using

the attach_volume method:

chapter_05/ec2_setup.php (excerpt)

$res1 = $ec2->attach_volume($volumeId1, $instanceId, '/dev/sdf');
$res2 = $ec2->attach_volume($volumeId2, $instanceId, '/dev/sdg');

if (!$res1->isOK() || !$res2->isOK())
{
 exit("Could not attach EBS volumes " .
 "${volumeId1} and ${volumeId2} " .
 "to instance ${instanceId}.\n");
}

print("Attached EBS volumes ${volumeId1} and ${volumeId2} " .
 "to instance ${instanceId}.\n");

?>

And there you have it. We just instantiated a Linux server with an Elastic IP address

and a pair of disk volumes attached, with just eight calls to the EC2 API.

Closing Thoughts
We’ve learned a lot in this chapter. We’ve learned about persistent and ephemeral

EC2 resources, security groups, and the EC2 pricing model. We then prepared our

keys and launched our very first EC2 instance. We gave it a public IP address and

created an EBS volume, then verified that the Apache web server was running as

expected. From there we downloaded and installed the AWS SDK for PHP and ran

141Web Hosting with Amazon EC2

a test script. We learned all about AMIs—where to find them, how to choose them,

and how to create them from scratch. Along the way we became familiar with many

aspects of the AWS Management Console, and we learned how to allocate and ma-

nipulate EC2 resources using the actual EC2 APIs.

Before wrapping up this chapter I would like to leave you with a few closing

thoughts.

The ease with which you can start, configure, and terminate instances should make

you start to think about them in a different way. Instead of looking at your server

as a one-off, very precious piece of hardware, you can see it as an expendable,

temporary resource. If you need a second server to test a new version of your code,

just go ahead and launch it. If you want to see how your code performs with a dif-

ferent Linux distribution or with a newer version of MySQL, again, just go ahead

and launch an instance.

I’m fairly sure that you’ll have gained an appreciation for the richness and power

embodied in the AWS Management Console. As you saw in the code sample

presented at the end of this chapter, all this power is available through the EC2 APIs

as well.

Host Your Web Site in the Cloud142

Chapter6
Building a Scalable Architecture
with Amazon SQS
In this chapter you’ll learn all about Amazon SQS. We’ll start by addressing the

concept of asynchronous messaging in the context of large-scale system architecture,

and then we’ll take a look at Amazon SQS and the associated programming model.

Next we’ll examine some of the instances where Amazon SQS can be used as a

central component of a highly scalable system architecture, considering some im-

portant design patterns along the way. Then we’ll put our knowledge to good use

by using Amazon SQS to construct a simple image crawler and processor.

Why Asynchronous Messaging?
Asynchronous messaging refers to an architectural style dictating that applications

should be built in a modular fashion. The application is composed of two or more

processing steps, often arranged in a processing pipeline. The steps are loosely

coupled to each other, passing work through the pipeline by sending messages from

step to step. Adjacent processing steps might run on the same server, on different

servers in the same local area network, or on servers owned and operated by separate

organizations.

There are many advantages to this style of architecture:

■ Each step runs at its own speed. Temporary slowdowns at one stage of the

pipeline simply result in work piling up, instead of stalling the entire pipeline.

■ No work is lost if a particular step locks up, crashes, or is temporarily overloaded.

Once again, work simply piles up until processing resources are available.

■ The independent nature of the steps allow them to be allocated to more than

one server if necessary.

■ Running steps on separate servers means that it’s possible to scale the system

to accommodate an increased load by simply adding more servers.

■ Decomposition of complex applications into independent steps results in oppor-

tunities for reuse, and can also simplify testing, maintenance, and enhancement.

■ Steps can be allocated to servers in such a way so that demands on resources

such as CPU cycles, I/O bandwidth, and memory are balanced.

Each step in a processing pipeline resembles a worker on a factory assembly line.

The steps simply await the arrival of a work item, process it, and then pass the work

along to the next step. Here’s some pseudocode for the central loop of a step in a

processing pipeline:

while (true)
{
 M = ReceiveMessage(INPUT_QUEUE);
 P = ProcessMessage(M);
 SendMessage(P);
}

This particular example shows a 1:1 relationship between input and output messages,

but there can be variations on this. Processing one message could result in zero,

one, or many messages being sent. However, the other case, receiving multiple

messages and then sending just one, is relatively rare. This is because the messages

in the input queue are independent of each other and can generally be processed

in any order. We’ll consider other models in the next section.

Host Your Web Site in the Cloud144

Asynchronous Messaging Patterns
In this section, we’ll take a look at some effective ways to decompose a complex

processing system by using a series of processes connected to each other with

message queues.

The first pattern is the linear processing pipeline. The first process passes work

onto the second using a single queue, as depicted in Figure 6.1.

Figure 6.1. A linear processing pipeline

This pattern decouples Process 1 and Process 2, so that they can make progress in-

dependently. If Process 1 produces more results than Process 2 can absorb, they

simple accumulate in Queue 1. If Process 2 has no work to do it simply idles,

checking the queue for new work from time to time. This is a good starting point,

but what if there is so much work to do that Process 2 is unable to keep up, and the

size of the queue keeps on growing? The easiest solution is to simply start an addi-

tional copy of Process 2, as shown in Figure 6.2.

Figure 6.2. A scalable linear processing pipeline

145Building a Scalable Architecture with Amazon SQS

This is a very scalable model. You can start additional instances of Process 2 to

cope with the load, adjusting the number of processes to balance overall throughput,

cost per hour (assuming that the processes are running on an EC2 instance), and

customer satisfaction.

The scalable linear pipeline is the most common pattern and can be used in many

different types of applications. Each stage of the pipeline typically performs work

of a particular type, such as transforming an image, checking a data record for con-

sistency, or changing the format of a data file.

The next pattern lets us route different types of messages to different queues.

Routing could be based on the type of the message. A web crawler could have sep-

arate queues for HTML pages and for PDF documents. Alternatively, multiple queues

could be used to provide better service for premium customers. This can be done

in two distinct ways. A separate (and presumably lightly loaded) instance can handle

the premium work, or a single instance can check and process the premium queue

before handling any work in the regular one.

In any case, the first process makes some type of decision and routes the message

accordingly, leading to the pattern shown in Figure 6.3.

Figure 6.3. Routing work to multiple queues

Of course, you can run more than one instance of Process 2 or Process 3 to handle

the workload. Because the processes are connected only by queues, you can easily

add resources to cope with demand.

Several processes can write to the same queue. Perhaps they’re taking data derived

from different sources and extracting common elements. Figure 6.4 depicts the flow.

Host Your Web Site in the Cloud146

Figure 6.4. Two processes feeding a single queue

The patterns we’ve examined thus far have been linear, proceeding from beginning

to end. However, some kinds of applications may actually need to route original

data (or, more likely, other information derived from the original data) back to the

beginning. This pattern is often found in web crawlers, which examine web pages

for links that are then themselves crawled. Used in this way, the queues are effec-

tively implementing a recursive processing pattern, as can be seen in Figure 6.5.

Figure 6.5. Feeding work back to earlier stages

You can combine these patterns as needed in order to implement arbitrarily complex

workflows. Once you become accustomed to thinking of your application in terms

of loosely coupled, autonomous work units, you’ll see many different ways to put

queues to work. Your applications will be modular and more flexible, and you’ll

be able to adapt to changing conditions more quickly.

147Building a Scalable Architecture with Amazon SQS

Amazon SQS Overview
Reflecting the fundamental role of asynchronous messaging in the construction of

highly scalable systems, Amazon SQS was one of the first Amazon infrastructure

services to be released. Let’s take a look at the terminology, operations, and pricing

model in this section. As you’ll soon see, Amazon SQS is fairly simple when com-

pared to the other Amazon Web Services; however, refrain from thinking that such

simplicity means there’s less value in SQS. On the contrary, many of the most suc-

cessful AWS applications make very heavy use of SQS.

Terminology and Concepts
You can create any number of SQS queues within the scope of your AWS account;

however, Amazon does reserve the right to delete queues if no messages have been

posted or retrieved for 30 consecutive days.

Each queue has a name, which must be unique within a particular instance of SQS

(there are currently instances of SQS in the US and in Europe). Queue names can

be up to 80 characters long and can contain alphanumeric characters, dashes, and

underscores.

Every queue is identified by a unique queue URL. The URL is assigned when the

queue is created. All the operations on a queue require the specification of a queue

URL.

Queues are used to store messages. Messages can be up to 8,192 bytes long by default;

this limit can be raised to 65,536 on a per-queue basis using the

set_queue_attributes function. Due to this low limit, messages should generally

be used to pass pointers (for example, URLs) to data stored elsewhere. Amazon S3

is often a good place to store data while it’s being passed through a complex pro-

cessing pipeline.

Instead of being automatically deleted, a message retrieved from SQS becomes

temporarily invisible so that it’s unable to be retrieved a second time. Once your

code retrieves a message, you have a certain amount of time—the visibility

timeout—to process and then delete the message. If the message is retained (or if

your application crashes while processing it), the message becomes visible once

again. This model allows you to build applications that avoid data loss as a result

Host Your Web Site in the Cloud148

of an application failure. The default value for the visibility timeout is 30 seconds

and the maximum value is 12 hours.

When you retrieve a message from SQS, you also gain a receipt handle. You need

to hold on to this handle in order to delete the message after you’ve processed it.

You can also use the handle to change message attributes such as its visibility

timeout.

Queues have a time limit: unprocessed messages will be silently deleted from the

queue after four days. You can set this value as low as one hour and as high as two

weeks using the set_queue_attributes function.

You can choose to allow other applications and developers to access your queues

by using an access policy. The access policy gives you very granular control over

access to each aspect of SQS.

Watch Out For …
SQS is implemented as a distributed queue and runs on multiple servers. There are

a few very interesting consequences when using this design with respect to message

order, message delivery, and message sampling. Let’s review these consequences

now so that you’re fully aware of them when you’ve built your application.

Message Order

Because the queue is distributed, there’s no guarantee that SQS will return the

messages in the same order that they were sent. Your application logic must be

written so that it avoids relying on receiving messages in any particular order.

Message Delivery

Under very rare circumstances, SQS can return the same message more than

once. Your application can either treat messages as idempotent (so that pro-

cessing the same one more than once has no ill affect), or it can store a state

indicator in another location, such as Amazon SimpleDB.

Message Sampling

When your application asks SQS to return a message from a queue, SQS checks

a subset of the actual set of servers used to store the queue. If a queue contains

less than 1,000 items, the first retrieval may return no items but a second one

will.

149Building a Scalable Architecture with Amazon SQS

Be sure to keep all these in mind as you develop and debug your application.

Operations
As you’ll soon see, the SQS programming model is very simple. You can:

■ create and delete queues from your account, and list your queues
■ send, receive, and delete messages, and change message attributes such as the

visibility timeout
■ control a queue’s access permissions on a very fine-grained basis

Stay tuned, we’ll write some code in a little while.

Pricing Model
Your SQS usage is charged in two dimensions: requests and bandwidth.

You pay $0.01 (one cent) for every 10,000 SQS requests that you make. This is

equivalent to a price of $0.000001 per request. Although the per-request price is

very low, you still need to be careful. In particular, your application should avoid

polling an SQS queue for new messages in a tight loop. Instead, you should use a

time delay and consider a back-off scheme.

Your data transfer charges are based on the amount of data transferred in and out

of SQS. Data transferred into SQS is charged at a rate of $0.10 per gigabyte. Once

again, this amount is prorated. Data transferred out of SQS is charged on a sliding

scale starting at $0.15 per gigabyte and decreasing with volume, reaching $0.08 per

gigabyte for all outgoing data transfer in excess of 150 terabytes per month.

There’s no charge for data transferred within a Region. For example, you can

transfer data from an EC2 instance in the us-east Region to an SQS queue in the

same Region at no charge.

Programming Amazon SQS
Okay, time for some code. Before we can begin, though, you’ll need to make sure

you’ve enabled the service on your AWS account. Visit the SQS home page at

http://aws.amazon.com/sqs/ and click the Sign Up For Amazon SQS button. After

signing in you can view the pricing and credit card information on the next screen,

and then click the Complete Sign Up button to enable the service.

Host Your Web Site in the Cloud150

http://aws.amazon.com/sqs/

Like the code samples in the previous chapters, the programs that start with the

shebang (#!/usr/bin/php) are meant to be run from the command line.

Creating a Queue
Let’s start by creating some queues using this code:

chapter_06/create_queues.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');

if (count($argv) < 2)
{
 exit("Usage: " . $argv[0] . " QUEUE...\n");
}

$sqs = new AmazonSQS();

for ($i = 1; $i < count($argv); $i++)
{
 $queue = $argv[$i];

 $res = $sqs->create_queue($queue);

 if ($res->isOK())
 {
 print("Created queue '${queue}'\n");
 }
 else
 {
 $error = (string) $res->body->Error->Message;
 print("Could not create queue '${queue}': ${error}.\n");
 }
}

exit(0);
?>

151Building a Scalable Architecture with Amazon SQS

This script accepts queue names on the command line, creates a new AmazonSQS

object, calls the create_queue method for each queue name, and prints some

helpful messages. Here’s an example of the output:

<dev>: php create_queues.php A B C
Created queue 'A'
Created queue 'B'
Created queue 'C'

If the queue is unable to be created, the error message is extracted from the returned

data and then printed.

Creating a queue that already exists does not raise an error and will have no effect

on the queue in any way.

Listing Queues
That was quite easy, so let’s go ahead and list our queues:

chapter_06/list_queues.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');

$sqs = new AmazonSQS();

$res = $sqs->list_queues();

if ($res->isOK())
{
 $queues = $res->body->ListQueuesResult->QueueUrl;
 for ($i = 0; $i < count($queues); $i++)
 {
 print($queues[$i] . "\n");
 }
}
else
{
 print("Could not retrieve list of SQS queues\n");

Host Your Web Site in the Cloud152

}

exit(0);
?>

This program calls the list_queues method and then displays the resulting array.

If you have more than 1,000 queues, it’s impossible to list them all using this or any

other SQS function. Instead, you must supply a prefix argument to list_queues,

processing the results in chunks delimited by the prefix. Realistically, applications

that need more than 1,000 queues are few and far between, so this restriction should

be harmless in practice.

Inserting Items into Queues
The next step is to load some items into the queue. Here’s a program to insert one

or more items into a queue; both the queue URL and the items are specified on the

command line:

chapter_06/post_queue.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');

if ($argc < 3)
{
 exit("Usage: " . $argv[0] . " QUEUE_NAME ITEM...\n");
}

$sqs = new AmazonSQS();
$queueName = $argv[1];

$queueURL = $sqs->create_queue($queueName)->body->CreateQueueResult
➥->QueueUrl;

for ($i = 2; $i < $argc; $i++)
{
 $message = $argv[$i];

153Building a Scalable Architecture with Amazon SQS

 $res = $sqs->send_message($queueURL, $message);

 if ($res->isOK())
 {
 print("Posted '${message}' to queue '${queueName}'\n");
 }
 else
 {
 $error = $res->body->Error->Message;
 print("Could not post message to queue: ${error}\n");
 }
}

exit(0);
?>

As you can see, this is fairly easy—the send_message method does all the work; all

we need to do is supply the queue URL and the message to insert into the queue.

The create_queue function is used to obtain the URL for the queue with the given

name.

Here’s how to run the script, and some example output:

<dev>: php post_queue.php queue_name A B C
Posted 'A' to queue queue_name
Posted 'B' to queue queue_name
Posted 'C' to queue queue_name

Extracting Items from Queues
Now let’s see how to pull items from the queue. The next script will poll for new

items, waiting one second and trying again when the receive_message method

fails to return any messages:

chapter_06/pull_queue.php (excerpt)

#!/usr/bin/php

error_reporting(E_ALL);

require_once('sdk.class.php');

Host Your Web Site in the Cloud154

if ($argc != 2)
{
 exit("Usage: " . $argv[0] . " QUEUE_NAME\n");
}

$sqs = new AmazonSQS();
$queueName = $argv[1];

$queueURL = $sqs->create_queue($queueName)->body->CreateQueueResult
➥->QueueUrl;

while (true)
{
 $res = $sqs->receive_message($queueURL);

 if ($res->isOK())
 {
 if (isset($res->body->ReceiveMessageResult->Message))
 {
 $message = $res->body->ReceiveMessageResult->Message;
 $messageBody = $message->Body;
 $receiptHandle = (string)$message->ReceiptHandle;

 print("Message: '${messageBody}'\n");

 $sqs->delete_message($queueURL, $receiptHandle);
 }
 else
 {
 sleep(1);
 }
 }
 else
 {
 $error = $res->body->Error->Message;
 print("Could not pull message from queue: ${error}\n");
 }
}

exit(0);
?>

155Building a Scalable Architecture with Amazon SQS

Using an infinite while loop the script calls the receive_messagemethod repeatedly.

After calling the receive_message method, the code checks to see if it returned a

message:

if (IsSet($res->body->ReceiveMessageResult->Message))

The sleep(1) function call makes the script pause for a second, keeping it from

making excessive and wasteful calls to SQS. Even with this call in place, you should

be aware that polling SQS just once per second will cost you about 8.5 cents per

day, around $2.60 per month. That’s a tiny amount of cash and you probably spend

more than that each day at your local coffee shop; the important point to realize is

that these calls do cost money.

As we discussed earlier in this chapter, it’s possible for a single receive_message

call to SQS to indicate by return value that no messages are present, even when

they are. This is only occasional in practice but it’s worth looking out for.

Let’s test our suite of queue manipulation scripts. For best results, open up a second

terminal or PuTTY window so that you can have your choice of two separate shell

prompts. In the first window, create a queue with this command:

$ php create_queues.php my_queue

In the second window, start polling for messages from the new queue:

$ php pull_queue.php my_queue

The queue is empty, so the program will just loop quietly. Now go back to your first

window and put some messages in the queue:

$ php post_queue.php my_queue 1 2 3 4 5

Return to the second window and you’ll see your messages arrive:

Message: '3'
Message: '4'
Message: '1'
Message: '5'
Message: '2'

Host Your Web Site in the Cloud156

Odds are that the messages will show up in a different order to what you posted.

This is to be expected, and is a consequence of the distributed implementation of

SQS (as we discussed earlier).

Experiment until you gain a sense of how the sender and receiver work together.

For example, you could pass ‘*’ to post_queue.php to post the names of all the files

in the current directory to the queue. Once you’ve finished playing with your new

toy, be sure to kill the first process by typing Ctrl+c in the terminal window.

This handful of simple calls forms the foundation on which we can build very

complex system architectures. We’ll take a look at some of the most common patterns

in the next section. But first, let’s take a short detour and learn about a new and

very useful data format known as JSON.

Introducing JSON
Later in this chapter you’ll learn how to build message-based systems using Amazon

SQS. Each process will pull a message from an SQS queue, process it, and quite

possibly write it to another queue for further processing. We will want to be able

to pass complex, structured data from process to process, so it makes sense to decide

on a common data format. This format should be compact, simple to generate, and

easy to process. Ideally, it would also be human-readable to simplify debugging.

Two good candidates are XML and JSON. We’ve already discussed XML, so you

should know what it is and what it looks like.

Designed for lightweight data interchange, JSON (JavaScript Object Notation) is a

relatively new format. JSON is a text format, and it’s very clean and easy to read.

Implementations of JSON are available for virtually every programming language,

from ASP to Visual FoxPro.1

PHP has had JSON support built in since version 5.2.0. The json_encode function

returns the JSON representation of any PHP value. The json_decode function accepts

this JSON representation and returns the PHP value.

1 You can find more information on JSON at http://www.json.org/.

157Building a Scalable Architecture with Amazon SQS

http://www.json.org/

The JSON encoding for integers and strings is trivial, and the encoding for arrays

is nice and compact. For example, let’s create a multidimensional array in PHP and

then print the JSON representation like so:

$values = array(1,"one",
 array(1, 2, 3),
 array(1, 2, array('a' => 'Uno', 'b' => 'Dos'))
);
print(json_encode($values) . "\n");

The above code will produce the following output:

[1,"one",[1,2,3],[1,2,{"a":"Uno","b":"Dos"}]]

To create the PHP array from the JSON data is just as simple:

$decoded = json_decode(
 '[1,"one",[1,2,3],[1,2,{"a":"Uno","b":"Dos"}]]', true);

As you can see, the JSON format is easy to use, readable, and also compact. We’ll

use these functions later in the chapter.

Building an Image Crawler
Now it’s time to put what we’ve learned to use, and build an actual application.

The application will be an image crawler. Given the URL of a web page, the crawler

will download the page and store it in Amazon S3. It will then parse the page,

looking for HTML image tags, downloading all the images on the page to S3, and

scaling them to a common size. After all the images on the page have been down-

loaded, they’ll be used to draw a single, composite image. The composite image

will contain all the scaled images from the original page.

Figure 6.6 illustrates the processing flow.

Host Your Web Site in the Cloud158

Figure 6.6. The pipeline for the image crawler

This may look complex and even a bit scary, but there’s no need to worry. As you’ll

soon see, it’s easy to build complex systems like this in modular fashion. We learned

how to access Amazon S3 in Chapter 3 and we’ll make use of that knowledge as we

put this application together. We know how to create and work with queues, so all

we need to do is write four scripts. Let’s take it step by step.

Hosting the Image Crawler
You’ll probably want to run the image crawler pipeline on an EC2 instance. After

Chapter 5, you should have no trouble getting one up and running. If you’ve kept

the EBS volume from that chapter, you should be able to mount it again and have

the SDK library files available in /data/src/sdk. Be careful to avoid running the mkfs

command, because you’ll erase the existing file system.

Create a new directory named /data/src/crawler for our image crawler files to reside

in. Also create a /data/src/include directory in which to put our book.inc.php.

By the way, if you’re using the LAMP Web Starter AMI you may notice an error

when running the image processing scripts, due to the fact that the PHP GD library

is absent. A quick command will fix that problem for you:

<dev>: yum -y install php-gd

159Building a Scalable Architecture with Amazon SQS

We’ll be writing some utility commands and some pipeline function scripts shortly.

The utility commands can be run locally, because they shun the hard labor—they

only query the queues. The commands can also be executed at any time because

they only function for a limited period before they terminate. The pipeline function

scripts should be run on the EC2 instance, because they will be doing a lot of

crawling, downloading, and uploading, as well as storing files in and retrieving

files from S3, and some image processing.

Definitions and Utility Functions
Because each queue will be referenced by several processes, let’s define some

symbolic names for them in our book.inc.php file:

chapter_06/include/book.inc.php (excerpt)

define('URL_QUEUE', 'c_url');
define('PARSE_QUEUE', 'c_parse');
define('IMAGE_QUEUE', 'c_image');
define('RENDER_QUEUE', 'c_render');

We can now create the queues using the create_queue command like this:

<dev>: ./create_queues.php c_url c_parse c_image
➥c_render
Created queue 'c_url'
Created queue 'c_parse'
Created queue 'c_image'
Created queue 'c_render'

Now let’s create a utility function to pull the next message from a queue without

deleting it:

chapter_06/include/book.inc.php (excerpt)

function pullMessage($sqs, $queue)
{
 while (true)
 {
 $res = $sqs->receive_message($queue);

 if ($res->isOk())
 {

Host Your Web Site in the Cloud160

 if (IsSet($res->body->ReceiveMessageResult->Message))
 {
 $message = $res->body->ReceiveMessageResult->Message;
 $messageBody = $message->Body;
 $messageDetail = json_decode($messageBody, true);
 $receiptHandle = (string)$message->ReceiptHandle;

 return array(
 'QueueURL' => $queue,
 'Timestamp' => date('c'),
 'Message' => $message,
 'MessageBody' => $messageBody,
 'MessageDetail' => $messageDetail,
 'ReceiptHandle' => $receiptHandle
);
 }
 else
 {
 sleep(1);
 }
 }
 else
 {
 print("Could not pull message from queue '${queue}': " .
 $res->body->Error->Message . "\n");
 return null;
 }
 }
}

This function pauses (sleeps) for one second if no message is returned from the

receive_message method. As we’ve already discussed, this could happen even if

a message is available; there’ll be no problems for our application, however, since

it will undoubtedly be returned a second or two later.

The function returns an array with all sorts of interesting information: the queue

URL that produced the message, the raw message, the message body, the decoded

message body, a timestamp, and the all-important receipt handle. We’ll need the

receipt handle in order to delete the message after it has been processed.

A more elaborate implementation of this function could execute a more complex

polling strategy, but I’ll leave that up to you.

161Building a Scalable Architecture with Amazon SQS

Crawl Queue Status Command
We need to have some visibility into the status of our system. Here’s a small utility

that shows how many items are in each queue:

chapter_06/crawl_queue_status.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$sqs = new AmazonSQS();
$queues = array(URL_QUEUE, PARSE_QUEUE, IMAGE_QUEUE, RENDER_QUEUE);

$underlines = '';
foreach ($queues as $queue)
{
 printf("%-12s ", $queue);
 $underlines .= str_repeat('-', strlen($queue)) .
 str_repeat(' ', 12 - strlen($queue)) . " ";
}
print("\n");
print($underlines . "\n");

foreach ($queues as $queue)
{
 $res = $sqs->create_queue($queue);
 if ($res->isOK())
 {
 $size = $sqs->get_queue_size($res->body->
➥CreateQueueResult->QueueUrl);
 printf("%-12s ", number_format($size));
 }
}
print("\n");

exit(0);
?>

Host Your Web Site in the Cloud162

This script iterates over the array of our queue names and retrieves the queue size.

This number is documented as being approximate (once more, the distributed nature

of SQS is the cause of this lack of accuracy here).

Most of the remaining code is simply there to make the output look decent. Here’s

the output that this script produces:

<dev>: php crawl_queue_status.php
c_url c_parse c_image c_render
----- ------- ------- --------
0 18 0 0

This indicates that there are 18 items in the c_parse queue but none in the other

three queues.

Crawl Loader Command
We need a way to load a URL into the first stage of the pipeline. Here’s a command

line tool to do just that:

chapter_06/load_crawl_urls.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

if ($argc < 2)
{
 exit('Usage: ' . $argv[0] . " URL...\n");
}

$sqs = new AmazonSQS();

$queueURL = $sqs->create_queue(URL_QUEUE)->body->
➥CreateQueueResult->QueueUrl;

for ($i = 1; $i < $argc; $i++)
{

163Building a Scalable Architecture with Amazon SQS

 $histItem = array('Posted by ' . $argv[0] . ' at ' . date('c'));
 $message = json_encode(array('Action' => 'FetchPage',
 'Origin' => $argv[0],
 'Data' => $argv[$i],
 'History' => $histItem));
 $res = $sqs->send_message($queueURL, $message);

 if ($res->isOK())
 {
 print("Posted '${message}' to queue " . URL_QUEUE . "\n");
 }
 else
 {
 $error = $res->body->Error->Message;
 print("Could not post message to queue: ${error}\n");
 }
}
?>

The URL and some additional information are bundled as an array. We then call

the json_encode function to convert the array into a JSON value—the message

stored in the variable $message—and the send_message method to post it to the

URL_QUEUE queue. Here’s how to use this tool:

$ php load_crawl_urls.php http://www.sitepoint.com

The Feed Processing Pipeline
Now we have the tools needed to implement the four stages of our processing

pipeline:

1. fetch the HTML

2. parse the HTML and extract the image URLs

3. fetch the images and create thumbnails

4. render the final mosaic image

Stage 1: Fetching the HTML
This stage is fairly simple. It pulls a URL from the URL_QUEUE queue and fetches the

HTML at the URL. It stores the HTML in Amazon S3 and then passes the work along

to the next stage in the pipeline by writing a message to the PARSE_QUEUE queue.

Host Your Web Site in the Cloud164

Let’s review the code section by section. We start out by locating the input and

output queues:

chapter_06/fetch_page.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$sqs = new AmazonSQS();
$s3 = new AmazonS3();

$queueURL_URL = $sqs->create_queue(URL_QUEUE)->body->
➥CreateQueueResult->QueueUrl;
$queueURL_Parse = $sqs->create_queue(PARSE_QUEUE)->body->
➥CreateQueueResult->QueueUrl;

Then we create a loop, processing messages as they become available. Here’s the

loop outline, with the most interesting part replaced by “⋮”:

chapter_06/fetch_page.php (excerpt)

while (true)
{
 $message = pullMessage($sqs, $queueURL_URL);

 if ($message != null)
 {
 ⋮ the interesting bit…
 }
}
?>

Okay, so what’s in the interesting bit? Glad you asked. Here we go. First we dig into

the message to access the page URL and the receipt handle:

165Building a Scalable Architecture with Amazon SQS

chapter_06/fetch_page.php (excerpt)

 $messageDetail = $message['MessageDetail'];
 $receiptHandle = $message['ReceiptHandle'];
 $pageURL = $messageDetail['Data'];

This is the message format that we created in our load_crawl_urls.php utility command

script.

Now that we have a URL, we can go fetch the HTML using the PHP

file_get_contents function:

chapter_06/fetch_page.php (excerpt)

 print("Processing URL '${pageURL}':\n");
 $html = file_get_contents($pageURL);
 print(" Retrieved " . strlen($html) . " bytes of HTML\n");

With the HTML in hand we can store it in S3 using the uploadObject function that

we developed in Chapter 4:

chapter_06/fetch_page.php (excerpt)

 $key = 'page_' . md5($pageURL) . '.html';
 if (uploadObject($s3, BOOK_BUCKET, $key, $html,
➥AmazonS3::ACL_PUBLIC))
 {
 $s3URL = $s3->get_object_url(BOOK_BUCKET, $key);
 print(" Uploaded page to S3 as '${key}'\n");

This code uses PHP’s md5 function to turn the page URL into a 32-character hexa-

decimal string. This string will make a convenient unique key for the page.2

We then upload the HTML to S3, and store the new object’s S3 URL in $s3URL.

With the page successfully stored in S3, it’s time to create a message that contains

the information needed by the next stage in the pipeline. Here’s the code:

2 There’s a very small chance that multiple URLs could have the same MD5 value. If this is a valid concern,

you can simply append another unique value, such as the current time in microseconds.

Host Your Web Site in the Cloud166

chapter_06/fetch_page.php (excerpt)

 $origin = $messageDetail['Origin'];
 $history = $messageDetail['History'];
 $history[] = 'Fetched by ' . $argv[0] . ' at ' . date('c');

 $message = json_encode(array('Action' => 'ParsePage',
 'Origin' => $origin,
 'Data' => $s3URL,
 'PageURL' => $pageURL,
 'History' => $history));

The Data element of the message contains the S3 URL of the HTML that will be

parsed in the next step. The PageURL is the URL of the original page, and the History

element is a timestamped array of all the processing steps that have been performed

on the data as it passes through the pipeline. The Action elements indicate the next

action to be performed on the data. Strictly speaking, the S3 URL is the only element

that must be passed from stage to stage. I included the other values in order to show

you how to create more complex messages.

The message is then inserted into the next queue, the parser queue, effectively

handing responsibility for the page to the parser stage:

chapter_06/fetch_page.php (excerpt)

 $res = $sqs->send_message($queueURL_Parse, $message);
 print(" Sent page to parser\n");

If all went well, the message is deleted from the input queue:

chapter_06/fetch_page.php (excerpt)

 if ($res->isOK())
 {
 $sqs->delete_message($queueURL_URL, $receiptHandle);
 print(" Deleted message from URL queue\n");
 }
 print("\n");

We also add an else clause to the if statement we began previously, with if (up-

loadObject($s3, BOOK_BUCKET, $key, $html)). This prints a message if the upload

fails:

167Building a Scalable Architecture with Amazon SQS

chapter_06/fetch_page.php (excerpt)

 }
 else
 {
 print("Error uploading HTML to S3\n");
 }

And our loop is complete. As all the interesting bits are within the main loops in

the rest of the code you’ll find in this chapter, I’ll focus on the code inside the while

loops. You can find the complete code in the code archive for the book.

Stage 2: Parsing HTML and Extracting Image URLs
Let’s work on the second stage of the pipeline. This stage pulls the raw HTML from

S3, parses it using a third-party HTML parser, extracts some of the image links, and

passes those links on to the next stage. To simplify this example, we’ll only process

images that have an absolute URL.

We’ll use the PHP Simple HTML DOM Parser3 to parse the HTML. Download the

file from the site and put it in your include folder. The script setup and loop outline

look like this:

chapter_06/parse_page.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/simple_html_dom.php');
require_once('include/book.inc.php');

$sqs = new AmazonSQS();
$s3 = new AmazonS3();

$queueURL_Parse = $sqs->create_queue(PARSE_QUEUE)->body->
➥CreateQueueResult->QueueUrl;
$queueURL_Image = $sqs->create_queue(IMAGE_QUEUE)->body->
➥CreateQueueResult->QueueUrl;

3 http://simplehtmldom.sourceforge.net/

Host Your Web Site in the Cloud168

http://simplehtmldom.sourceforge.net/

while (true)
{
 $message = pullMessage($sqs, $queueURL_Parse);

 if ($message != null)
 {
 ⋮ process the message…
 }
}
?>

Let’s examine what happens inside the loop for each message pulled from the parse

queue. The first step is to access the page from S3. The parser allows us to combine

fetching and parsing, so this is really simple:

chapter_06/parse_page.php (excerpt)

 $messageDetail = $message['MessageDetail'];
 $receiptHandle = (string)$message['ReceiptHandle'];
 $pageURL = $messageDetail['Data'];

 print("Processing URL '${pageURL}':\n");
 $dom = new simple_html_dom();
 $dom->load_file($pageURL);

Using the DOM, it’s very easy to locate and process individual HTML tags or collec-

tions of tags. Here’s how to extract the page title:

chapter_06/parse_page.php (excerpt)

 $pageTitle = $dom->find('title', 0)->innertext();
 print(" Retrieved page '${pageTitle}'\n");

This is a handy value to have, so we’ll save it in the $pageTitle variable so that we

can pass it along the processing pipeline.

Now it’s time to process the image links. We’ll capture up to 16 of them:

169Building a Scalable Architecture with Amazon SQS

chapter_06/parse_page.php (excerpt)

 $imageURLs = array();
 foreach ($dom->find('img') as $image)
 {
 $imageURL = $image->src;
 if (preg_match('!^http://!', $imageURL))
 {
 print(" Found absolute URL '${imageURL}'\n");
 $imageURLs[] = $imageURL;
 if (count($imageURLs) == 16)
 {
 break;
 }
 }
 }

In the code above, the expression $dom->find('img') retrieves an array that contains

all the HTML tags from the page. The expression $image->src retrieves the

src attribute from the tag; this is the URL of the image.

If the URL begins with the string "http://" it’s added to the $imageURLs array.

When the array has 16 images, the loop is terminated.

At this point we have an array of up to 16 image URLs, ready to be sent along to the

next stage, the image fetcher. It’s time to construct the message, like this:

chapter_06/parse_page.php (excerpt)

 if (count($imageURLs) > 0)
 {
 $origin = $messageDetail['Origin'];
 $history = $messageDetail['History'];
 $history[] = 'Processed by ' . $argv[0] . ' at ' . date('c');

 $message = json_encode(array('Action' => 'FetchImages',
 'Origin' => $origin,
 'Data' => $imageURLs,
 'History' => $history,
 'PageTitle' => $pageTitle));

 $res = $sqs->send_message($queueURL_Image, $message);
 print(" Sent page to image fetcher\n");

Host Your Web Site in the Cloud170

 if ($res->isOK())
 {
 $sqs->delete_message($queueURL_Parse, $receiptHandle);
 print(" Deleted message from parse queue\n");
 }

 print("\n");
 }

This code represents the final part of the inside of our loop. If the parser has found

any images, we construct a message to the image-fetching queue, passing the array

of image URLs as the message data, and also including the page title, since we’ll be

able to use that later.

At this point we’ve parsed the page. We extracted the image title and have also

located URLs for up to 16 images. The image fetcher is handed everything it will

need in order to do its job.

Stage 3: Fetching Image URLs
It’s time to build the third stage. This one will use the now familiar processing loop.

This stage takes the array of image URLs from the previous stage, and fetches each

one. It then uses the thumbnailImage function that we wrote in Chapter 4 to scale

the image to a smaller size, as defined by the THUMB_SIZE constant.

At this point you could probably write the code for this stage yourself, but let’s take

a quick look anyway. As in the previous stages, we obtain references to the queues

we need and begin the loop:

chapter_06/fetch_images.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$sqs = new AmazonSQS();
$s3 = new AmazonS3();

171Building a Scalable Architecture with Amazon SQS

$queueURL_Image = $sqs->create_queue(IMAGE_QUEUE)->body->
➥CreateQueueResult->QueueUrl;
$queueURL_Render = $sqs->create_queue(RENDER_QUEUE)->body->
➥CreateQueueResult->QueueUrl;

while (true)
{
 $message = pullMessage($sqs, $queueURL_Image);

 if ($message != null)
 {
 ⋮ process the message…
 }
}
?>

Within the loop, the code reads the array of image URLs from the queue message,

fetches all the images, and stores them in S3:

chapter_06/fetch_images.php (excerpt)

 $messageDetail = $message['MessageDetail'];
 $receiptHandle = (string)$message['ReceiptHandle'];
 $imageURLs = $messageDetail['Data'];

 print("Processing message with " .
 count($imageURLs) .
 " images:\n");

 $s3ImageKeys = array();
 foreach ($imageURLs as $imageURL)
 {
 print(" Fetch image '${imageURL}'\n");
 $image = file_get_contents($imageURL);
 print(" Retrieved " . strlen($image) . " byte image\n");

 $imageThumb = thumbnailImage($image, 'image/png');

 $key = 'image_' . md5($imageURL) . '.png';

 if (uploadObject($s3, BOOK_BUCKET, $key, $imageThumb))
 {
 print(" Stored image in S3 using key '${key}'\n");

Host Your Web Site in the Cloud172

 $s3ImageKeys[] = $key;
 }
 }

The above code uses the file_get_contents function to download the images, our

thumbnailImage function to create the thumbnails, and our uploadObject function

to upload the new image thumbnails to the S3 bucket.

The message is then passed along the pipeline in the usual fashion:

chapter_06/fetch_images.php (excerpt)

 if (count($imageURLs) == count($s3ImageKeys))
 {
 $origin = $messageDetail['Origin'];
 $history = $messageDetail['History'];
 $pageTitle = $messageDetail['PageTitle'];

 $history[] = 'Processed by ' . $argv[0] . ' at ' . date('c');

 $message = json_encode(array('Action' => 'RenderImages',
 'Origin' => $origin,
 'Data' => $s3ImageKeys,
 'History' => $history,
 'PageTitle' => $pageTitle));

 $res = $sqs->send_message($queueURL_Render, $message);
 print(" Sent page to image renderer\n");

 if ($res->isOK())
 {
 $sqs->delete_message($queueURL_Image, $receiptHandle);
 print(" Deleted message from fetch queue\n");
 }
 print("\n");
 }

The $s3ImageKeys array stores all the keys to our thumbnails, so we test that the

number of thumbnail keys matches the number of images we’re processing. If they

match it means we’ve successfully processed all the images, and the message for

this site can be sent to the next queue. If the message is successfully sent to the next

queue, the message in the image-fetching queue can be deleted.

173Building a Scalable Architecture with Amazon SQS

Our crawler is now three-quarters complete; there’s just one more stage left.

Stage 4: Rendering Images
The fourth and final stage takes the S3 object keys and fetches each object from S3

before generating a thumbnail mosaic image. This code uses a number of functions

from PHP’s GD library.

The setup and loop outline look almost identical to the other stages, except that we

create a set of constants to govern the rendering process, and only a reference to

one queue is needed. Since this is the last stage, there are no more queues to send

messages to:

chapter_06/render_images.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

define('BORDER_LEFT', 12);
define('BORDER_RIGHT', 12);
define('BORDER_TOP', 12);
define('BORDER_BOTTOM', 12);
define('IMAGES_ACROSS', 4);
define('IMAGES_DOWN', 4);
define('GAP_SIZE', 6);

$sqs = new AmazonSQS();
$s3 = new AmazonS3();
$queueURL_Render = $sqs->create_queue(RENDER_QUEUE)->body->
➥CreateQueueResult->QueueUrl;

while (true)
{
 $message = pullMessage($sqs, $queueURL_Render);

 if ($message != null)
 {
 ⋮ process the message…

Host Your Web Site in the Cloud174

 }
}
?>

The constants that start with BORDER_ control the amount of space between each

edge of the main image and thumbnails. IMAGE_ACROSS and IMAGES_DOWN control

the number of images in the mosaic grid. GAP_SIZE is the amount of space between

thumbnails.

The code inside the loop begins in the usual way—retrieving the message data from

the queue—and then we create the base mosaic image. The constants are used to

figure out how big the final image should be:

chapter_06/render_images.php (excerpt)

 $messageDetail = $message['MessageDetail'];
 $receiptHandle = (string)$message['ReceiptHandle'];
 $imageKeys = $messageDetail['Data'];
 $pageTitle = $messageDetail['PageTitle'];

 print("Processing message with " .
 count($imageKeys) .
 " images:\n");

 $outX = BORDER_LEFT + BORDER_RIGHT +
 (IMAGES_ACROSS * THUMB_SIZE) +
 ((IMAGES_ACROSS - 1) * GAP_SIZE);

 $outY = BORDER_TOP + BORDER_BOTTOM +
 (IMAGES_DOWN * THUMB_SIZE) +
 ((IMAGES_DOWN - 1) * GAP_SIZE);

 $imageOut = ImageCreateTrueColor($outX, $outY);

The image is filled white and outlined with a black border:

chapter_06/render_images.php (excerpt)

 ImageFill($imageOut, 0, 0,
 ImageColorAllocate($imageOut, 255, 255, 255));
 ImageRectangle($imageOut, 0, 0,
 $outX - 1, $outY - 1,
 ImageColorAllocate($imageOut, 0, 0, 0));

175Building a Scalable Architecture with Amazon SQS

We need to track the position where the next thumbnail will be drawn. We’ll do

this using $nextX and $nextY, and we’ll set them to the top-left corner to start off:

chapter_06/render_images.php (excerpt)

 $nextX = BORDER_LEFT;
 $nextY = BORDER_TOP;

Now we must process each thumbnail image in turn, so we’ll loop over the set of

S3 keys like this:

chapter_06/render_images.php (excerpt)

 foreach ($imageKeys as $imageKey)
 {

With this superstructure in place, it’s easy to retrieve each thumbnail image and

draw it on the destination image:

chapter_06/render_images.php (excerpt)

 print(" Fetch image '${imageKey}'\n");
 $image = $s3->get_object(BOOK_BUCKET, $imageKey);

 $imageBits = ImageCreateFromString($image->body);

 print(" Render image at ${nextX}, ${nextY}\n");
 ImageCopy($imageOut, $imageBits, $nextX, $nextY,
 0, 0, ImageSx($imageBits), ImageSy($imageBits));

To make the image look attractive, we’ll also draw a border around each thumbnail:

chapter_06/render_images.php (excerpt)

 ImageRectangle($imageOut, $nextX, $nextY,
 $nextX + ImageSx($imageBits),
 $nextY + ImageSy($imageBits),
 ImageColorAllocate($imageOut, 0, 0, 0));

The last step when processing each thumbnail is to update the output position, and

that closes our foreach loop:

Host Your Web Site in the Cloud176

chapter_06/render_images.php (excerpt)

 $nextX += THUMB_SIZE + GAP_SIZE;
 if (($nextX + THUMB_SIZE) > $outX)
 {
 $nextX = BORDER_LEFT;
 $nextY += THUMB_SIZE + GAP_SIZE;
 }
 }

Once all the thumbnail images have been rendered, we can upload the final image

to S3:

chapter_06/render_images.php (excerpt)

 $imageFileOut = tempnam('/tmp', 'aws') . '.png';
 ImagePNG($imageOut, $imageFileOut, 0);
 $imageBitsOut = file_get_contents($imageFileOut);
 unlink($imageFileOut);

 $key = 'page_image_' . md5($pageTitle) . '.png';

 if (uploadObject($s3, BOOK_BUCKET, $key, $imageBitsOut,
 AmazonS3::ACL_PUBLIC))
 {

There’s just a little bit of cleanup work left, and we’re done. First of all, we need to

report on the location of the final image. Then the message has to be deleted, and

we can also display the processing history that we’ve maintained as the message

has moved from stage to stage:

chapter_06/render_images.php (excerpt)

 print(" Stored final image in S3 using key '${key}'\n");
 print_r($messageDetail['History']);

 $sqs->delete_message($queueURL_Render, $receiptHandle);
 print(" Deleted message from render queue\n");
 }

 print("\n");

Here’s an example of what the message history looks like:

177Building a Scalable Architecture with Amazon SQS

Array(
 [0] => Posted by load_crawl_urls.php at 2009-06-29T09:28:10-04:00
 [1] => Fetched by fetch_page.php at 2009-06-29T09:28:11-04:00
 [2] => Processed by parse_page.php at 2009-06-29T09:28:12-04:00
 [3] => Processed by fetch_images.php at 2009-06-29T09:28:15-04:00
)

You can see how long the message spent in each stage. This output was generated

when I ran the URL http://www.sitepoint.com through our processing pipeline.

Figure 6.7 shows the image it generated.

Figure 6.7. Image generated by our processing pipeline

The final image represents the cooperative work of four processing stages and the

loader program. Each stage can run at its own speed, with work accumulating in

the queues as necessary. The application can easily scale up to handle dozens or

even hundreds of requests per minute without too much trouble.

Running the Code
You’ll need to be good at window manipulation if you’d like to run the code in this

chapter. First, create five terminal windows—each will represent a stage, with the

final window for loading the URLs. Connect to your AMI and run one command in

Host Your Web Site in the Cloud178

each. If possible, arrange the windows in order so that you can see the processing

pipeline in action. Here’s what you need to do:

1. Window 1—fetch and store a page:

<dev>: php fetch_page.php

2. Window 2—parse a page:

<dev>: php parse_page.php

3. Window 3—fetch thumbnail images:

<dev>: php fetch_images.php

4. Window 4—render the final image:

<dev>: php render_images.php

5. Window 5—load URLs into the pipeline. You can do this connected to your

AMI or locally:

<dev>: php load_crawl_urls.php http://www.sitepoint.com

As soon as you start this command, you’ll see each stage of the pipeline come

to life in turn. You can run this command more than once, or you can simply

list multiple URLs on the command line.

You can also run the crawl_queue_status.php command at any time to check on

the queue status:

<dev>: php rawl_queue_status.php

You may also like to experiment with running more than one copy of each pipeline

stage at a time. Stage 3 is a good candidate for this, since it spends a few seconds

179Building a Scalable Architecture with Amazon SQS

downloading the images, generating the thumbnails, and uploading the thumbnails

to S3.

When you’re done with the pipeline, be sure to return to windows 1 through 4 to

kill each processing stage using ctrl+c. This way, you’ll avoid incurring SQS request

charges for no good reason.

Wrapping Up
Amazon SQS is a simple yet powerful service. Once you have mastered the basics

of queues and messages, you can use them to build programs in a new way, as we

just saw.

In this chapter we took a process, broke it down into parts, and implemented each

part as a standalone program, connecting the programs with Amazon SQS queues.

When writing this book the program was actually built and tested in small parts.

In fact, I wrote the code at each stage as I wrote the corresponding section of the

chapter. I left messages sitting in queues until the code was ready.

The architectural models discussed in this chapter will allow you to build large,

complex, and highly scalable applications. As is always the case, investing some

time on up-front design will pay considerable dividends at implementation and

runtime.

Host Your Web Site in the Cloud180

Chapter7
EC2 Monitoring, Auto Scaling,
and Elastic Load Balancing
In this chapter, you will learn how to use three powerful Amazon EC2 features:

monitoring, auto scaling, and elastic load balancing. You’ll see how these features

can be used separately or together to build scalable and powerful web applications.

Along the way you’ll also learn how to leverage the AWS SDK for PHP to make use

of these features. We’ll then take a short detour to learn how to use the Apache

JMeter application to generate a predictable test load. Finally, we’ll wrap up the

chapter by learning how to load test an actual application to make sure that it scales

as desired.

Introduction
The monitoring, auto scaling, and elastic load balancing features of the Amazon

EC2 services give you easy on-demand access to capabilities that once required a

complicated system architecture and a large hardware investment.

Any real-world web application must have the ability to scale. This can take the

form of vertical scaling, where larger and higher capacity servers are rolled in to

replace the existing ones, or horizontal scaling, where additional servers are placed

side-by-side (architecturally speaking) with the existing resources. Vertical scaling

is sometimes called a scale-up model, and horizontal scaling is sometimes called a

scale-out model.

Vertical Scaling
At first, vertical scaling appears to be the easiest way to add capacity. You start out

with a server of modest means and use it until it no longer meets your needs. You

purchase a bigger one, move your code and data over to it, and abandon the old

one. Performance is good until the newer, larger system reaches its capacity. You

purchase again, repeating the process until your hardware supplier informs you

that you’re running on the largest hardware that they have, and that you’ve no more

room to grow. At this point you’ve effectively painted yourself into a corner.

Vertical scaling can be expensive. Each time you upgrade to a bigger system you

also make a correspondingly larger investment. If you’re actually buying hardware,

your first step-ups cost you thousands of dollars; your later ones cost you tens or

even hundreds of thousands of dollars. At some point you may have to invest in a

similarly expensive backup system, which will remain idle unless the unthinkable

happens and you need to use it to continue operations.

Horizontal Scaling
Horizontal scaling is slightly more complex, but far more flexible and scalable in

the long term. Instead of upgrading to a bigger server, you obtain another one (pre-

sumably of the same size, although there’s no requirement for this to be the case)

and arrange to share the storage and processing load across two servers. When two

servers no longer meet your needs, you add a third, a fourth, and so on. This scale-

out model allows you to add resources incrementally and economically. As your

fleet of servers grow, you can actually increase the reliability of your system by

eliminating dependencies on any particular server.

Of course, sharing the storage and processing load across a fleet of servers is some-

times easier said than done. Loosely coupled systems tied together with SQS message

queues like those we saw and built in the previous chapter can usually scale easily.

Systems with a reliance on a traditional relational database or another centralized

storage can be more difficult.

Host Your Web Site in the Cloud182

Monitoring, Scaling, and Load Balancing
We’ll need several services in order to build a horizontally scaled system that

automatically scales to handle load.

First, we need to know how hard each server is working. We have to establish how

much data is moving in and out across the network, how many disk reads and writes

are taking place, and how much of the time the CPU (Central Processing Unit) is

busy. This functionality is provided by Amazon CloudWatch. After CloudWatch

has been enabled for an EC2 instance or an elastic load balancer, it captures and

stores this information so that it can be used to control scaling decisions.

Second, we require a way to observe the system performance, using it to make de-

cisions to add more EC2 instances (because the system is too busy) or to remove

some running instances (because there’s too little work for them to do). This func-

tionality is provided by the EC2 auto scaling feature. The auto scaling feature uses

a rule-driven system to encode the logic needed to add and remove EC2 instances.

Third, we need a method for routing traffic to each of the running instances. This

is handled by the EC2 elastic load balancing feature. Working in conjunction with

auto scaling, elastic load balancing distributes traffic to EC2 instances located in

one or more Availability Zones within an EC2 region. It also uses configurable health

checks to detect failing instances and to route traffic away from them.

Figure 7.1 depicts how these features relate to each other.

An incoming HTTP load is balanced across a collection of EC2 instances. Cloud-

Watch captures and stores system performance data from the instances. This data

is used by auto scale to regulate the number of EC2 instances in the collection.

As you’ll soon see, you can use each of these features on their own or you can use

them together. This modular model gives you a lot of flexibility and also allows you

to learn about the features in an incremental fashion.

183EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

Figure 7.1. The relationship between elastic load balancing, CloudWatch, and auto scale

Installing the Command Line Tools
We’ll be using the Amazon command line tools in this chapter, so let’s take a moment

to install them and have them working. Start by downloading the appropriate .zip

file(s):

■ Amazon EC2 API Tools1

■ Amazon CloudWatch API Tools2

■ Auto Scaling API Tools3

■ Elastic Load Balancing API Tools4

Unzip the files into separate top-level directories without spaces in the names.

The command line tools are written in Java, so you’ll need to have the Java Runtime

Environment (JRE) installed; otherwise, download it from http://www.java.com and

install. Again, a directory name without spaces is preferable.

The CloudWatch, elastic load balancing, and auto scaling tools will need your AWS

account access key ID and secret key. Again, these values are accessible on your

1 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351
2 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2534
3 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2535
4 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2536

Host Your Web Site in the Cloud184

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2534
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2535
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2536
http://www.java.com

AWS account page at http://aws.amazon.com when you select Security Credentials

from the Your Account menu, or else they’re in your SDK config.inc.php file.

Copy the file credentials-file-template in the directory where you installed the

CloudWatch tools to credentials.txt in the same directory. Open credentials.txt with

your favorite text editor and insert your keys.

You’ll also need the X.509 certificate associated with the private key. You can access

this file by logging into http://aws.amazon.com, clicking onto Account, and selecting

Security Credentials. Select the X.509 Certificates tab and click on the Create a New

Certificate link. This will reveal a dialog from which you can download the certificate

files to your local machine. Click the Download Private Key File and the Download

X.509 Certificate buttons to download the two required files. Make sure you put them

in a safe and private place.

We now should set a long list of environment variables. In the following examples

you’ll have to adjust the paths as appropriate to your environment. The Windows

examples include my own environment settings.

Start by adding some commands to set up the HOME environment variables. On

Windows you set them up as follows:

C:\> set EC2_HOME=C:\ec2-api-tools-1.3-36506
C:\> set AWS_ELB_HOME=C:\ElasticLoadBalancing-1.0.1.23
C:\> set AWS_CLOUDWATCH_HOME=C:\CloudWatch-1.0.0.24
C:\> set AWS_AUTO_SCALING_HOME=C:\AutoScaling-1.0.4.4

On Mac OS X and Linux the syntax is slightly different:

$ export EC2_HOME=path_to_tools
$ export AWS_ELB_HOME=path_to_tools
$ export AWS_CLOUDWATCH_HOME=path_to_tools
$ export AWS_AUTO_SCALING_HOME=path_to_tools

Next, we need to set the full paths to the key and the certificate. On Windows:

C:\> set EC2_PRIVATE_KEY=U:\jeff\pk-5NFGWY … DRPFFK3.pem
C:\> set EC2_CERT=U:\jeff\cert-5NFGWY … DRPFFK3.pem

On Mac OS X and Linux:

185EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

http://aws.amazon.com
http://aws.amazon.com

$ export EC2_PRIVATE_KEY=path_to_private_key.pem
$ export EC2_CERT=path_to_certificate.pem

We also have to tell the tools where to find your credentials. On Windows:

C:\> set AWS_CREDENTIAL_FILE=C:\CloudWatch-1.0.0.24\credentials.txt

And on Mac OS X and Linux:

$ export AWS_CREDENTIAL_FILE=path_to_credentials.txt

Now set up the PATH environment variable so that the shell can find the command

line tools. On Windows:

C:\> set PATH=%PATH%;%EC2_HOME%\bin
C:\> set PATH=%PATH%;%AWS_ELB_HOME%\bin
C:\> set PATH=%PATH%;%AWS_CLOUDWATCH_HOME%\bin
C:\> set PATH=%PATH%;%AWS_AUTO_SCALING_HOME%\bin

On Mac OS X and Linux:

$ export PATH=$PATH:$EC2_HOME/bin
$ export PATH=$PATH:$AWS_ELB_HOME/bin
$ export PATH=$PATH:$AWS_CLOUDWATCH_HOME/bin
$ export PATH=$PATH:$AWS_AUTO_SCALING_HOME/bin

The tools also need the location of the Java runtime executable. On Windows:

C:\> set JAVA_HOME=C:\Java\jre1.5.0_09

On Mac OS X and Linux:

$ export JAVA_HOME=path_to_java

Mac OS X users should set the JAVA_HOME environment variable to

/System/Library/Frameworks/JavaVM.framework/Home.

If your instances are in a region other than the default, you can set the region to be

used by the command line tools by setting the EC2_URL environment variable. If

Host Your Web Site in the Cloud186

you don’t do this, you’ll need to specify the --region parameter each time you use

the command line tools. On Windows:

C:\> set EC2_URL=https://eu-west-1.ec2.amazonaws.com

On Mac OS X and Linux:

$ export EC2_URL=https://eu-west-1.ec2.amazonaws.com

And you’ve done it.

I find the best way to do this is to write a batch file and include all the above state-

ments. For example, if you’re using Windows, create a batch file named

ec2-tool-setup.bat and run it to set up all the variables. On Mac OS X or Linux, put

all the above statements in a file called ec2-tool-setup and run this command:

$ source ec2-tool-setup

Verify that you have everything right by running one or more of the following

commands. On Windows:

C:\> mon-cmd --help
C:\> ec2-describe-images
C:\> elb-describe-lbs

On Mac OS X or Linux:

$ mon-cmd --help
$ ec2-describe-images
$ elb-describe-lbs

If you see connection errors or Java stack traces (my favorite), you’ll need to retrace

your steps and figure out what went wrong.

With any luck, you have succeeded in setting up the AWS command line tools.

Otherwise, your next step is to visit the EC2 forum5 and politely ask for help.

5 http://developer.amazonwebservices.com/connect/forum.jspa?forumID=30

187EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

http://developer.amazonwebservices.com/connect/forum.jspa?forumID=30

Monitoring EC2 Data with Amazon
CloudWatch
It’s time to learn about Amazon CloudWatch concepts and its pricing model, and

then write some code to retrieve and display the collected data.

Amazon CloudWatch Concepts
Amazon CloudWatch collects, aggregates, stores, and dispenses data from a number

of AWS resources. The current release of Amazon CloudWatch collects data from

EC2 instances and elastic load balancers; support for additional services may be

added in the future.

There are a number of terms and concepts associated with Amazon CloudWatch.

These terms build on each other and are essential to understanding the CloudWatch

model.

A namespace represents a source of data. The “AWS/EC2” namespace is associated

with data collected from the Amazon EC2 infrastructure and the “AWS/ELB”

namespace is associated with data collected from the Elastic Load Balancer.

A measure is a raw, observed data value. Measures are accumulated and rolled up

to represent one minute’s worth of observation. A measure is always part of a

namespace and has a unit such as bit, byte, or percent. Each measure has a name

and a timestamp. Measures can be aggregated across one or more dimensions. The

combination of the namespace, measure name, and zero or more dimensions is the

complete measure name. Measures, once observed, are retained for two weeks (14

days).

A unit is an attribute of a measure. CloudWatch supports the following units: none,

seconds, percent, bytes, bits, count, bytes/second, bits/second, and count/second.

The unit is optional and the default is none. Some numbers, like ratios, have no

units.

A dimension is a refined view of a certain type of data. CloudWatch supports the

following dimensions: AvailabilityZone, ImageType (an AMI Id), InstanceId,

InstanceType, and AutoScaleGroup.

Host Your Web Site in the Cloud188

A metric is a stored, processed measure. The CloudWatch API provides a function

to retrieve metrics based on namespace, measure, unit, period, statistic, and dimen-

sion parameters.

Metrics without dimensions represent highly aggregated data; for instance, this

could be disk activity or average CPU utilization across all EC2 instances of a par-

ticular instance type (or even for all instances in the account).

A period is used to specify a time granularity, in seconds, when requesting metrics

from CloudWatch.

A statistic is a computed attribute of a metric and reflects the attributes of the

measures that compose the metric. CloudWatch supports the following metrics:

minimum, maximum, average, and sum. A fifth statistic, samples, denotes the

number of measurements used to compute the value for the statistics.

Amazon CloudWatch Operation
You must enable CloudWatch for each of your EC2 instances in order to start the

data collection process. Once enabled, the process starts within a minute and metrics

become available within a few minutes. You can enable CloudWatch when you

launch the instances. You can also enable or disable CloudWatch for any EC2 in-

stances that are already running. The enable and disable operations are part of the

EC2 API. There is a per-instance hourly charge for the use of CloudWatch; this

covers the overhead of collecting and storing the data.

Each elastic load balancer automatically forwards certain measurements to Cloud-

Watch. There’s no need to enable monitoring for these load balancers and there’s

no charge for storing or using the collected metrics.

CloudWatch stores accumulated data for two weeks; older data is automatically

discarded.

After CloudWatch has been enabled, you can retrieve the list of measures and the

actual metrics using the command line tools or the CloudWatch API. Viewed in

this way, CloudWatch appears a lot simpler than it actually is. In fact, the real power

of CloudWatch manifests itself in the parameters used to access the data.

189EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

Amazon CloudWatch Pricing
There are two levels of CloudWatch monitoring for EC2: Basic and Detailed.

Basic monitoring is provided at no additional charge and is enabled automatically.

Metrics are collected every five minutes.

Detailed monitoring costs $0.015 (1.5 cents) per hour per EC2 instance. Metrics are

collected every minute when Detailed monitoring is enabled for a particular EC2

instance. You can enable Detailed monitoring when you launch an EC2 instance or

at later time, as desired.

There’s no charge for the storage or use of elastic load balancer data in CloudWatch.

Amazon CloudWatch from the Command Line
You can access and display CloudWatch metrics from the AWS Management Console

or the command line. We’ll focus on the command line in this chapter. If you use

the command line, there’s one interesting twist that you need to be aware of. The

EC2 tools are used to enable or disable CloudWatch for an EC2 instance. The

CloudWatch tools are used to access the collected data.

Here is how to enable CloudWatch Detailed monitoring for a single EC2 instance.

The first step is to determine the instance’s ID using the ec2-describe-instances

command:

$ ec2-describe-instances
INSTANCE i-aaba69c3 ami-2b5fba42 ec2-75-101-154-199.compute-1.amazon
➥aws.com domU-12-31-38-00-A0-01.compute-1.internal running gsg-keyp
➥air 0 m1.small 2008-07-13T03:44:43+0000 us-east-1a aki-a71cf9ce
➥ari-a51cf9cc monitoring-disabled

In this case the instance ID is i-aaba69c3. With this value in hand, the ec2-monitor-

instances command is used to enable CloudWatch (substituting the ID of your own

instance, of course):

$ ec2-monitor-instances i-aaba69c3
i-aaba69c3 monitoring-pending

Host Your Web Site in the Cloud190

This command can be run again (after a short delay) to confirm that Detailed mon-

itoring has been enabled for the specified instance:

$ ec2-monitor-instances i-aaba69c3
i-aaba69c3 monitoring-enabled

The mon-list-metrics command (from the CloudWatch tools) displays the list of

available metrics:

$ mon-list-metrics
CPUUtilization AWS/EC2 {ImageId=ami-3c47a355}
CPUUtilization AWS/EC2 {InstanceType=m1.small}
CPUUtilization AWS/EC2
CPUUtilization AWS/EC2 {InstanceId=i-aaba69c3}
⋮ a big long list…

The results are broken down by metric (DiskReadBytes, DiskReadOps, NetworkIn,

NetworkOut, DiskWriteBytes, DiskWriteOps, and so on) and denote the dimensions

(ImageId, InstanceId, InstanceType, and so on) that may be requested from

CloudWatch. Metrics are retained and can be retrieved for instances that you’ve

recently terminated. Witness the following dimensions for CPU utilization below.

Here is the dimension for the CPU utilization of all your running or recently termin-

ated EC2 instances:

CPUUtilization AWS/EC2

And this denotes the CPU utilization of running/recently terminated EC2 instances

of type m1.small:

CPUUtilization AWS/EC2 {InstanceType=m1.small}

This is the same again, only it’s for those launched using the indicated AMI:

CPUUtilization AWS/EC2 {ImageId=ami-3c47a355}

And here it’s for the specific running or recently terminated EC2 instance:

CPUUtilization AWS/EC2 {InstanceId=i-aaba69c3}

191EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

Once you have chosen a dimension, you can use the mon-get-stats command to

retrieve any metrics that you’d like. For example, all CPU utilization, by hour, for

the last 24 hours:

$ mon-get-stats CPUUtilization --statistics Average
➥ --start-time 2010-07-27 --end-time 2009-07-28 --period 3600
➥ --namespace AWS/EC2
2009-07-18 00:00:00 60.0 5.9479999999999995 Percent
2009-07-18 01:00:00 60.0 6.910833333333331 Percent
2009-07-18 02:00:00 60.0 6.614666666666667 Percent
⋮ a big long list…

The first two columns represent the date and time of the aggregated data. The third

column is the number of samples that CloudWatch aggregated to produce the metric.

In this case we asked for results by the hour (--period 3600), so CloudWatch used

60 samples (taken one per minute) for each result. The next column is the requested

metric, average CPU utilization over the hour. The final column is the units (percent

CPU utilization).

You should experiment with a variety of parameters to mon-get-stats to obtain a

better feel for the metrics and the associated units.

Programming Amazon CloudWatch
Now that we’ve seen how to access CloudWatch from the command line, let’s have

a look at the functions the SDK has to offer, and use its AmazonCloudWatch class to

draw some cool charts.

Listing Available Metrics
Here’s a program to list all the available metrics:

chapter_07/list_metrics.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);
require_once('sdk.class.php');

$cW = new AmazonCloudWatch();
$res = $cW->list_metrics();

Host Your Web Site in the Cloud192

if ($res->isOK())
{
 $metrics = $res->body->ListMetricsResult->Metrics->member;
 $metricsRows = array();
 foreach ($metrics as $metric)
 {
 $metricsRows[] =
 array('MeasureName' => (string) $metric->MeasureName,
 'Namespace' => (string) $metric->Namespace,
 'Name' => (string) $metric->Dimensions->member->Name,
 'Value' => (string) $metric->Dimensions->member->Value);
 }

 usort($metricsRows, 'CmpMetrics');

 printf("%-16s %-16s %-16s %-16s\n",
 "Namespace", "Measure Name", "Name", "Value");

 printf("%-16s %-16s %-16s %-16s\n",
 "=========", "============", "====", "=====");

 foreach ($metricsRows as $metricsRow)
 {
 printf("%-16s %-16s %-16s %-16s\n",
 $metricsRow['Namespace'],
 $metricsRow['MeasureName'],
 $metricsRow['Name'],
 $metricsRow['Value']);
 }
}
else
{
 $error = $res->body->Error->Message;
 exit("Could not list metrics: ${error}\n");
}

function CmpMetrics($m1, $m2)
{
 $k1 = $m1['Namespace'] . $m1['MeasureName'] . $m1['Name'];
 $k2 = $m2['Namespace'] . $m2['MeasureName'] . $m2['Name'];

 return strcmp($k1, $k2);

193EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

}

?>

This program calls the list_metricsmethod and then copies the results into a PHP

array. PHP’s usort function is used to sort the array so that the elements are grouped

by Namespace, then Measure, then Name, as indicated by the CmpMetrics function

in the code above.

The program produces the following output:

Namespace Measure Name Name Value
========= ============ ==== =====
AWS/EC2 CPUUtilization
AWS/EC2 CPUUtilization ImageId ami-3c47a355
AWS/EC2 CPUUtilization InstanceId i-aaba69c3
AWS/EC2 CPUUtilization InstanceType m1.small
⋮ a long list…

This is, of course, very similar to the output produced by the mon-list-metrics

command.

Charting Multiple Metrics
Let’s build a web page with charts of some CloudWatch metrics. The code to do

this will be fairly involved, so we’ll build it in sections. The program in this section

will generate a web page, so you’ll want to run it on your web server.

This program will use the Google Chart API,6 and will draw seven charts on the

same page, like the example in Figure 7.2.

6 http://code.google.com/apis/chart/

Host Your Web Site in the Cloud194

http://code.google.com/apis/chart/

Figure 7.2. The Network In chart

Our script begins in the usual way:

chapter_07/statistics_chart_page.php (excerpt)

<?php

error_reporting(E_ALL);

require_once('sdk.class.php');

We will need to do some data processing. By default, the program will report on

the metrics collected in the preceding 24 hours. The $startDate_DT variable will

represent the starting date and time, while the $endDate_DT variable will represent

the ending date and time. Let’s declare them and set them up:

chapter_07/statistics_chart_page.php (excerpt)

$startDate_DT = new DateTime('now');
$endDate_DT = new DateTime('now');
$startDate_DT->modify('-1 day');

CloudWatch expresses all dates in terms of GMT (Greenwich Mean Time). You’ll

have to adjust your queries if you want to express your dates and date ranges in

local time.

The next step is to convert the date values into the format needed to use them in

CloudWatch queries. This is done using the format method of PHP’s DateTime class,

like this:

195EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

chapter_07/statistics_chart_page.php (excerpt)

$startDate = $startDate_DT->format('Y-m-d');
$endDate = $endDate_DT->format('Y-m-d');

If parameters were supplied as part of the request, go ahead and fetch them. Other-

wise, we’ll use reasonable default values:

chapter_07/statistics_chart_page.php (excerpt)

$period = IsSet($_GET['period']) ? $_GET['period'] : 15;
$start = IsSet($_GET['start']) ? $_GET['start'] : $startDate;
$end = IsSet($_GET['end']) ? $_GET['end'] : $endDate;
$period *= 60;

Note how handy and concise the ternary (? :) operator turns out to be in this situ-

ation? With proper formatting, it becomes easy to recognize this construct and to

mentally process it as a very compact if-then-else.

The period parameter is specified in minutes for convenience, but CloudWatch

needs it in seconds so we adjust it.

The program will produce a series of seven charts, driven by the information in the

$charts array. It looks like this:

chapter_07/statistics_chart_page.php (excerpt)

$charts = array(
 array('M' => 'NetworkIn',
 'U' => 'Bytes',
 'L' => 'Network In (Bytes)'),

 array('M' => 'NetworkOut',
 'U' => 'Bytes',
 'L' => 'Network Out (Bytes)'),

 array('M' => 'CPUUtilization',
 'U' => 'Percent',
 'L' => 'CPU Utilization (Percent)'),

 array('M' => 'DiskReadBytes',
 'U' => 'Bytes',
 'L' => 'Disk Read Bytes'),

Host Your Web Site in the Cloud196

 array('M' => 'DiskReadOps',
 'U' => 'Count',
 'L' => 'Disk Read Operations/Second'),

 array('M' => 'DiskWriteBytes',
 'U' => 'Bytes',
 'L' => 'Disk Write Bytes'),

 array('M' => 'DiskWriteOps',
 'U' => 'Count',
 'L' => 'Disk Write Operations/Second'),

);

Each element of the array contains three strings. The M element specifies the

CloudWatch measure for the chart, the U element specifies the CloudWatch units,

and the L element specifies the chart title.

With all that completed, it’s time to create an instance of the AmazonCloudWatch

class:

chapter_07/statistics_chart_page.php (excerpt)

$cW = new AmazonCloudWatch();

$opt = array('Namespace' => 'AWS/EC2', 'Period' => $period);
$statistics = array('Average','Minimum','Maximum','Sum');

We’ll also need an array of optional parameters. These will stay the same from call

to call, so we can set them up now in the $opt array above. The same holds true for

the desired statistics, which we put in a $statistics array.

Now let’s return to the $charts array that we just set up. In the code below we start

a simple loop through the elements to provide us with the information needed to

generate our charts. We’ve also created the $chartImages array to hold the source

URLs for our charts that we’ll use in the HTML template to follow:

197EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

chapter_07/statistics_chart_page.php (excerpt)

$chartImages = array();
foreach ($charts as &$chart)
{
 $measure = $chart['M'];
 $unit = $chart['U'];
 $label = $chart['L'];

This code sets up the loop and fetches the measure, unit, and label for each chart.

With this information in hand it’s time to fetch the desired metrics from CloudWatch,

like this:

chapter_07/statistics_chart_page.php (excerpt)

 $res = $cW->get_metric_statistics($measure,
 $statistics,
 $unit,
 $start,
 $end,
 $opt);

 if ($res->isOK())
 {

There is no dimension specified in this request; instead, it retrieves information

about all running and recently terminated EC2 instances. As always, we need to

ensure that this request succeeded before processing the results.

The metrics are returned in an unpredictable order. Since we’re planning to use

them to draw a chart, we’ll need to capture them all and then sort them. Let’s dig

into the returned value and find the Datapoints item:

chapter_07/statistics_chart_page.php (excerpt)

 $datapoints =
 $res->body->GetMetricStatisticsResult->Datapoints->member;

Now we create an empty array and then extract the metrics from Datapoints, storing

them in $dataRows, indexed by the returned timestamp:

Host Your Web Site in the Cloud198

chapter_07/statistics_chart_page.php (excerpt)

 $dataRows = array();
 foreach ($datapoints as $datapoint)
 {
 $timestamp = (string) $datapoint->Timestamp;

 $dataRows[$timestamp] =
 array('Timestamp' => (string) $datapoint->Timestamp,
 'Units' => (string) $datapoint->Unit,
 'Samples' => (string) $datapoint->Samples,
 'Average' => (float) $datapoint->Average,
 'Minimum' => (float) $datapoint->Minimum,
 'Maximum' => (float) $datapoint->Maximum,
 'Sum' => (float) $datapoint->Sum);
 }
 ksort ($dataRows);

At the end of the code above we sort the metrics by the array key (the timestamp

for each metric).

The metrics are now sorted. Since we’ll be producing a chart, we actually need to

have four separate arrays, one for each statistic to be graphed. The following code

takes the $dataRows array and produces these separate arrays:

chapter_07/statistics_chart_page.php (excerpt)

 $averages = array();
 $minimums = array();
 $maximums = array();
 $sums = array();

 foreach ($dataRows as $dataRow)
 {
 $averages[] = $dataRow['Average'];
 $minimums[] = $dataRow['Minimum'];
 $maximums[] = $dataRow['Maximum'];
 $sums[] = $dataRow['Sum'];
 }

There are several different ways to specify the data values for the Google Chart API.

The simplest one restricts the values to the range 0 to 100, inclusive. So, the next

199EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

step is to compute the scale factor needed to map all the statistics to this range, and

with it in hand, scale each of the arrays:

chapter_07/statistics_chart_page.php (excerpt)

 $chartMax = max(max($averages), max($minimums),
 max($maximums), max($sums));
 $scale = 100.0 / $chartMax;

 for ($i = 0; $i < count($averages); $i++)
 {
 $averages[$i] = (int) ($averages[$i] * $scale);
 $minimums[$i] = (int) ($minimums[$i] * $scale);
 $maximums[$i] = (int) ($maximums[$i] * $scale);
 $sums[$i] = (int) ($sums[$i] * $scale);
 }

The chart API accepts the data values for each line in the chart as a comma-separated

string. The values for the lines are separated by the pipe or vertical bar character.

Here’s the code to set this up:

chapter_07/statistics_chart_page.php (excerpt)

 $average = implode(',', $averages);
 $minimum = implode(',', $minimums);
 $maximum = implode(',', $maximums);
 $sum = implode(',', $sums);

 // Combine arrays for use in chart
 $series = $average . '|' .
 $minimum . '|' .
 $maximum . '|' .
 $sum;

Hang in there, we’re almost ready to generate the charts! The next step is to replace

embedded spaces in the chart title with plus (+) signs and to set up the colors:

chapter_07/statistics_chart_page.php (excerpt)

 $label = str_replace(' ', '+', $label);
 $colors = 'ff0000,00ff00,0000ff,800080';

Host Your Web Site in the Cloud200

With all the information at our disposal, we can now compose the URL for the chart.

Here’s the code:

chapter_07/statistics_chart_page.php (excerpt)

 $chartURL = "http://chart.apis.google.com/chart";
 $chartURL .= '?chs=300x180'; // Chart size
 $chartURL .= '&cht=lc'; // Line chart
 $chartURL .= '&chtt=' . $label; // Label
 $chartURL .= '&chdlp=b'; // Legend at bottom
 $chartURL .= '&chdl=Avg|Min|Max|Sum'; // Legend
 $chartURL .= '&chco=' . $colors; // Colors
 $chartURL .= '&chd=t:' . $series; // Data series

The Google Chart API includes many advanced formatting and labeling options,

but I kept this example fairly minimal so as to leave room for you to improve it.

The final step is to store the URL in the $chartImages array:

chapter_07/statistics_chart_page.php (excerpt)

$chartImages[] = $chartURL;

The final step, after the URLs of all the charts have been saved, is to include our

HTML template and then exit:

chapter_07/statistics_chart_page.php (excerpt)

$output_title = 'Chapter 7 Sample - Charts of CloudWatch ' .
 'Statistics';
$output_message = "Charts of CloudWatch Statistics from ${start}" .
 " to ${end}";

include 'include/statistics.html.php';

Finally, here’s the simple HTML template for our page:

chapter_07/statistics_chart_page.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

201EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

 <title><?php echo $output_title ?></title>
</head>
<body>
 <h1><?php echo $output_title ?></h1>
 <p><?php echo $output_message ?></p>
 <?php foreach($chartImages as $image): ?>
 <img src="<?php echo $image ?>"/>
 <?php endforeach ?>
</body>
</html>

The important point to realize is that this program never does any actual drawing.

Instead, it creates an HTML page that asks Google to do the work. When the browser

renders the page it will make a call to the Google Chart API for each chart on the

page. A server at Google will process the URL, draw the chart, and return it to the

browser; then the browser will draw the chart as part of the page.

Figure 7.3 shows what the finished page looks like.

Figure 7.3. Seven CloudWatch metrics in chart form

Remember that this page accepts some parameters. You can experiment with the

period parameter to aggregate metrics over different periods of time. You can set

the start and end parameters to dates (use values like 2009-07-07) or dates with

times (values like 2009-07-07T12:00:00). Simply append the parameters to the

page URL. Here’s a sample:

statistics_chart_page.php?period=60&start=2009-07-20T12:00:00&end=
➥2009-07-20T18:00:00

Host Your Web Site in the Cloud202

If your page fails to show any data, you might have to experiment with the date

values. For example, if you only enabled monitoring an hour ago, restrict the time

range to the last hour while you test. If you do reduce the time span to, say, an hour,

reduce the period value so that your graphs will have some detail. Finally, make

sure dates are expressed in Greenwich Mean Time, or else you may see wildly inac-

curate results depending on your local time zone.

The Google Chart API imposes a limit on the overall length of the chart URL. Small

values or broad time ranges will generate more metrics (and an overly long URL),

and the chart will fail to draw. You can maneuver around this by adjusting the

parameters or by modifying the code to draw fewer statistics per chart. You could

also use a more powerful charting package, such as JpGraph.7

You can extend this program in various ways, such as combining it with the previous

one and creating a user interface to allow the user to choose the dimension to be

displayed. You might let the user choose the date range using two copies of the

jQuery Datepicker.8 Also, you could embed this program into a larger monitoring

or system control program. It can be as useful as you make it.

We’ve learned a lot in this section. We covered the fundamental concepts of

CloudWatch, and saw how to enable Amazon CloudWatch for an EC2 instance and

how to access the collected metrics. We also used the SDK to list the available

CloudWatch metrics and to generate charts.

Learning and Using Apache JMeter
Let’s take a short detour to learn more about a very useful program, the Apache

JMeter.

Why JMeter?
If you’re running the charting program from the previous section and monitoring a

nearly idle EC2 instance, you’ll see little in the way of highs and lows. You can

generate a system load manually by doing tasks such as:

■ copying large files from place to place (generates disk read and write operations)

7 http://www.aditus.nu/jpgraph/
8 http://docs.jquery.com/UI/Datepicker

203EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

http://www.aditus.nu/jpgraph/
http://docs.jquery.com/UI/Datepicker

■ downloading large files from the Internet (generates a load that’s reflected in the

Network In metric)
■ placing large files on the server and downloading them externally (generates a

load that’s reflected in the Network Out metric)
■ sorting very large files (increases CPU utilization, and disk read and disk write

operations)

Unless you write some sophisticated test scripts, you’ll quickly tire of doing this.

Also, since generating a load is often the first step in a system optimization effort,

you’ll need to be able to reproduce the load with some degree of precision.

The Apache JMeter application simplifies the process of stress-testing a web-based

application. Once a test plan has been created, it can be run at any time with a single

click. The results are measured and stored for analysis.

In order to keep this section to a reasonable length, I’m going to provide a straight-

forward set of steps for the use of JMeter. Space definitely precludes a complete

description of the entire JMeter feature set.

Installing and Running JMeter
JMeter9 is a free, open source program. Download the binary file and choose a di-

rectory so that the resulting path will exclude any spaces.10

Now go into the bin subdirectory of the installation directory and run jmeter if

you’re on Mac OS X or Linux; jmeter.bat if you’re on Windows. On Windows it’s

best to run the batch file from a command because some of JMeter’s reports (also

known as listeners) will produce their output there.

The main window is shown in Figure 7.4.

9 http://jakarta.apache.org/site/downloads/downloads_jmeter.cgi
10 It’s hard to believe that this particular Java shortcoming is still present. I was bitten by it for the first

time in 1996.

Host Your Web Site in the Cloud204

http://jakarta.apache.org/site/downloads/downloads_jmeter.cgi

Figure 7.4. JMeter’s main window

Creating a Test Plan
The next step is to create a JMeter test plan. The test plan specifies the number of

parallel threads to run, the HTTP requests to make in each thread, and a disposition

for the results.

Here’s how to create a simple test plan:

1. Right-click on the Test Plan node and choose Add > Threads (Users) > Thread

Group.

2. Configure the thread group with four threads, a ramp-up period of ten seconds,

and a loop count of 16.

3. Right-click on the new Thread Group node and choose Add > Sampler > HTTP

Request.

4. Enter your server host name or IP address (mine is www.captaincloud.com—

omit the http:// protocol prefix) and port (80 should be fine).

5. Enter “/” for the path to retrieve the home page from the site.

205EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

6. Repeat the previous step for other pages on the same server. And enter a different

name for each one.

7. Right-click on the Test Plan node once again. Add the following listener nodes:

Generate Summary Results, Aggregate Report, and Graph Results.

The completed test plan should look similar to Figure 7.5.

Figure 7.5. The completed test plan

Once you’re happy with the plan, choose File > Save.

Running the Test
Make sure that your server is ready to go. Log in to your server via SSH, and go to

the Apache log file directory—if you’re running the LAMP Web Starter AMI, this

will be /home/webuser/helloworld/logs—and run tail:

$ cd /home/webuser/helloworld/logs
$ tail -f access_log

Return to JMeter and choose Run > Start. Watch your server log to verify that the

requests are arriving as expected.

While the test is running, click on the Aggregate Report or Graph Results nodes to

see the request statistics measured by JMeter.

Continue to watch your server log file. You may also want to use the w command

to check your server’s load average:

Host Your Web Site in the Cloud206

<dev>: w
19:17:15 up 373 days, 1:24, 4 users, load average: 0.01, 0.02, 0.09
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root pts/0 71.112.36.28 Mon17 2:47m 6.90s 6.88s emacs
➥ -u jeff
root pts/2 71.112.36.28 Mon19 0.00s 0.00s 0.00s w
root pts/4 71.112.36.28 14:46 3:02m 0.03s 0.03s -bash
root pts/3 71.112.36.28 Mon19 4:30m 0.00s 0.00s –bash

The higher the load average—the last three numbers on the first line (representing

system load for the past minute, five minutes, and 15 minutes, respectively)—the

busier the system.11

Viewing the Results
The summary results are displayed in the command window where JMeter was

launched. One line is written at the conclusion of each test run. Here’s what mine

looked like after I did some experimentation with various parameter values:

Generate Summary Results + 68 in 4.9s = 13.8/s Avg: 432 Min:
➥ 215 Max: 793 Err: 0 (0.00%)
Generate Summary Results = 192 in 11.9s = 16.1/s Avg: 419 Min:
➥ 214 Max: 821 Err: 0 (0.00%)
Generate Summary Results = 576 in 25.1s = 23.0/s Avg: 455 Min:
➥ 216 Max: 3294 Err: 0 (0.00%)
Generate Summary Results = 864 in 30.8s = 28.0/s Avg: 535 Min:
➥ 216 Max: 3424 Err: 0 (0.00%)
Generate Summary Results + 454 in 12.7s = 35.8/s Avg: 596 Min:
➥ 226 Max: 3332 Err: 0 (0.00%)
Generate Summary Results + 620 in 42.6s = 14.6/s Avg: 782 Min:
➥ 217 Max: 40502 Err: 3 (0.48%)
Generate Summary Results = 1074 in 53.1s = 20.2/s Avg: 704 Min:
➥ 217 Max: 40502 Err: 3 (0.28%)

The field ending in “/s” indicates the average number of requests per second issued

during the test.

The Aggregate Report, shown in Figure 7.6, includes one detail line for each distinct

HTTP request node in the test plan, followed by a line of totals.

11 This is the actual output from one of my EC2 instances. As you can see, it has been running for 373

days (more than a year).

207EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

Figure 7.6. JMeter’s Aggregate Report

The Graph Results report, shown in Figure 7.7, charts various statistics over time.

Figure 7.7. JMeter’s Graph Results

You can use the checkboxes and the Configure window to control the content and

appearance of the graph results.

Host Your Web Site in the Cloud208

Going Further with JMeter
JMeter can place a heavy load on your desktop system and internet connection. The

number of request threads and the number of HTTP request objects in your test plan

directly affect the amount of memory and bandwidth needed to run the plan. If you

find yourself limited by your desktop system’s capacity, you can turn to the EC2

web service for help. In fact, you can do this in two different ways:

■ Launch an EC2 instance running Windows, access it using Remote Desktop, in-

stall JMeter on this instance, and run your tests from there. If you launch the

test driver instance in the same Availability Zones as your test subject (the EC2-

powered server that you’re stress-testing), there’ll be no bandwidth charges.

■ Install the JMeter engine on an EC2 server (a Linux server will do just fine and

will cost you less) and then control it from the JMeter instance running on your

desktop. There’s more information about this in the Remote Testing section of

the JMeter manual.12

I hope that this brief introduction has given you a hint of what you can do with

JMeter. If so, you may want to spend some time reading the user’s manual13 to learn

more about this powerful tool.

Scaling EC2 Instances
with Elastic Load Balancing
In this section, you’ll learn about the elastic load balancing feature. We’ll review

the process model and the pricing, and then we’ll put the service to use, creating a

load balancer for a couple of EC2 instances. We’ll do a quick review of the program-

ming model (without writing any code) and then you’ll be ready to use this feature

in your own applications.

Elastic Load Balancing Concepts
By using EC2’s elastic load balancing feature, you can create software load balancers

in any AWS region. Each load balancer listens on one or more network ports and

routes traffic to one or more EC2 instances, possibly spread across more than one

12 http://jakarta.apache.org/jmeter/usermanual/remote-test.html
13 http://jakarta.apache.org/jmeter/usermanual/index.html

209EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

http://jakarta.apache.org/jmeter/usermanual/remote-test.html
http://jakarta.apache.org/jmeter/usermanual/remote-test.html
http://jakarta.apache.org/jmeter/usermanual/index.html

Availability Zone. The load balancers check the health of each instance and route

traffic only to healthy instances, while also seeking to equalize the amount of traffic

sent to each instance.

A load balancer is an entity specific to a particular AWS region. When you create

the load balancer you will supply a reference name, such as LoadBal. Each load

balancer is represented externally by a fully qualified host name; for example,

LoadBal-79377590.us-east-1.elb.amazonaws.com. This name is assigned when the

load balancer is created. A list of EC2 instances is attached to each load balancer.

Each instance has an associated health (healthy or unhealthy). Each load balancer

also has a list of Availability Zones and will route traffic only to healthy EC2 in-

stances in those zones.

Each load balancer must have one or more listeners. Each listener accepts requests

on a specific network port and forwards them to a specific port on an EC2 instance.

Listeners can listen on ports 80, 443, and 1024 through 65,535, and can forward

requests to any port.

A health check is attached to each load balancer. The health check provides the

load balancer with a target (a port, a protocol, and (for HTTP checks) a URL fragment)

to be checked, along with thresholds representing the number of checks to be made

before changing the state of the instance.

Elastic Load Balancing Processing Model
The processing model is very straightforward. Here’s what you need to do:

1. Create an elastic load balancer by providing a reference name, an initial list of

Availability Zones, the parameters for the health check, and the list of listeners.

You will receive an externally visible host name in return; for example:

LoadBal-79377590.us-east-1.elb.amazonaws.com. With this name in hand you

can use a CNAME entry in your application’s DNS record to make the load-balanced

cluster a part of your application’s web namespace.14

14 For reasons that are far too complex to explain in this footnote, you can’t use a CNAME record to define

the root of your domain. You can map www.example.com to your load balancer using a CNAME, but

you can’t map example.com.

Host Your Web Site in the Cloud210

2. Add one or more EC2 instances to the load balancer using their instance IDs after

ensuring that they’re prepared to respond to health checks and actual requests.

The load balancer will begin to track the state (InService or OutOfService) of

each instance.

3. Start to route traffic to the load balancer using the externally visible host name.

4. Add additional EC2 instances (and possibly Availability Zones) to the load bal-

ancer as traffic increases.

5. Delete the load balancer when you no longer need it.

As usual, all these operations can be performed using the command line tools or

through the elastic load balancing API. You can also use CloudWatch to monitor

the overall state of the load balancer.

The load balancer will perform health checks (or probes) on each instance under

its care using the parameters that you supplied when you created it. Let’s say that

a load balancer is configured with the following health check parameters (which

happen to be the default values):

UnitsValueParameter

probes3HealthyThreshold

probes3UnhealthyThreshold

seconds30Interval

seconds5Timeout

Here’s what happens:

1. A probe is started every 30 seconds. If the instance responds as expected within

five seconds then the probe succeeded, otherwise it failed.

2. If the instance’s state is InService and three successive probes fail, the state is

changed to OutOfService and no further traffic is routed to the instance.

3. If the state of the instance is OutOfService and is found to be healthy for three

successive probes, the state is changed to InService and traffic is once again

routed to the instance.

211EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

Health probes can be set to be TCP-style or HTTP-style:

■ A TCP-style probe attempts to open a connection to a specified port on the target

instance. If the connection is made, it’s immediately closed and the instance is

considered healthy.

■ HTTP-style probes are more involved. The connection is opened and then a GET

request is made for the URL fragment. If the target is HTTP:80/check.html, the

HTTP GET request will be made on port 80 for page /check.html. If the server

replies with a 200 OK response, it’s deemed healthy. Any other response (or no

response altogether) is considered unhealthy. These requests will show up in

your web server’s log files; you may want to arrange to filter them out if you’re

collecting statistics on visits to your site.

You can use the HTTP-style probe in some creative ways. The simplest and most

obvious task to perform is to refer to a static page. If the server is up and the web

server is running, the page will be available and the instance will receive traffic.

However, what if it’s a dynamic page? Then your application could, for example,

take itself offline for periodic database backups by returning a response like 503

Service Unavailable. If you do this, you’d want to make sure that there are other

instances available to handle the load rather than all the instances going offline at

the same time.

Elastic Load Balancing Pricing
Pricing for this feature is fairly simple. You pay for your load balancers by the hour.

You also pay for all data transfer through your load balancers. You’ll be charged

$0.025 (2.5 cents) per hour per load balancer and $0.008 (slightly less than a cent)

for each gigabyte of data transferred through any of your load balancers. This is in

addition to the normal EC2 bandwidth charges.

This is definitely more economical than purchasing a hardware load balancer or

running a software load balancer on an EC2 instance. You could run an elastic load

balancer for several years before the hourly costs approached the purchase price of

a similarly featured hardware load balancer.

Host Your Web Site in the Cloud212

Elastic Load Balancing in Operation
Setting up a traditional hardware load balancer is an expensive, complicated, and

time-consuming task. You need to acquire and install the hardware, attach it to your

network, and then learn how to set it up. Once you have it up and running, the last

thing you want to do is experiment with the settings in a way that could destabilize

your production system.

EC2’s elastic load balancing is inexpensive to use and can be set up in a matter of

minutes. It’s easy to create test configurations, so that experimentation becomes

risk-free and affordable.

In this section we’ll set up an elastic load balancer and then use it to direct traffic

to a pair of EC2 instances. We’ll alter some of the health check parameters along

the way and retrieve some statistics using CloudWatch.

You’ll need to have the API Tools installed in order to do this yourself. You can

also set up and manage an elastic load balancer through the AWS Management

Console.

In the rest of this section, commands with the $ prompt were run from my local

desktop. Commands with the <lb1>: prompt were run on an EC2 instance.

Use the AWS Management Console to launch an instance of the LAMP Web Starter

AMI in Availability Zone us-east-1a. Wait for the instance to launch, and then

open up an SSH session to it. Write down the instance ID; you’ll need it soon.

Edit the file /home/webuser/helloworld/htdocs/index.php. Find the following statement:

<h2>PHP Information</h2>

Change it to read as follows:

<h2>PHP Information For First Instance!</h2>

Leave the SSH window open as you’ll need it later.

Visit the instance’s public IP address in a browser and confirm that you see the new

message and the output from the phpinfo function.

213EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

Now create a load balancer named LoadBal using this command:

$ elb-create-lb LoadBal --availability-zones us-east-1a
➥ --listener "protocol=HTTP,lb-port=80,instance-port=80"

This load balancer will direct HTTP traffic on port 80 to EC2 instances running in

Availability Zone us-east-1a.

The command will create the load balancer, and then it will display a key piece of

information—the host name of the load balancer:

DNS-NAME LoadBal-79377590.us-east-1.elb.amazonaws.com

At this point the load balancer is running. The next step is to have it manage the

EC2 instance. Here’s all you need to do (replace the instance ID with your own):

$ elb-register-instances-with-lb LoadBal --instances i-0f414766
INSTANCE-ID i-0f414766

Now take the host name of the load balancer and visit it in your browser. You should

see the same output you saw when you used the name of the EC2 instance. In fact,

visit that name once again to see that the load balancer avoids interfering with direct

access to the instance.15

We’ve just set up the minimal load balancer configuration: one load balancer and

one EC2 instance. If a single EC2 instance can handle your off-peak traffic, you can

actually use the load balancer in this fashion. That way, you can easily place addi-

tional EC2 instances to deal with more traffic. Let’s go ahead and see how to do

that.

Create a second EC2 instance using the same AMI you used to create the first one,

but create this one in Availability Zone us-east-1b. While you’re waiting for it to

start, go ahead and add the zone to the load balancer like this:

$ elb-enable-zones-for-lb LoadBal --availability-zones us-east-1b
AVAILABILITY_ZONES us-east-1b, us-east-1a

15 On a production system you can remove entries from the appropriate security group to block direct

external access to the instance on port 80.

Host Your Web Site in the Cloud214

After the instance has started, edit its /home/webuser/helloworld/htdocs/index.php

file to emit the message “PHP Information For Second Instance!” (or another

exciting and distinctive phrase of your choice). Leave the SSH window to this in-

stance running; you’re going to need it again soon.

Add the instance to the load balancer, and Bob’s your uncle:

$ elb-register-instances-with-lb LoadBal --instances i-c95650a0
INSTANCE-ID i-0f414766
INSTANCE-ID i-c95650a0

Refresh your browser once or twice and (if you’re lucky) you should see the message

from the second instance.

If you’re out of luck and the message fails to change, there’s no need to worry. The

current version of the elastic load balancer provides no guarantee that successive

requests from the same IP address or browser will be routed to the same EC2 instance,

but this seems to happen more often than not. You could try to access the page from

another computer or from your cell phone, or perhaps email the URL to a close

friend and ask them what they see.

So far, so good. One load balancer and a pair of instances. If one of the instances

(or an instance’s entire Availability Zone) were to fail, the load balancer would

notice this and route all the traffic to the other instance. Let’s make that happen!

Return to the SSH window connected to your first EC2 instance and shut down

Apache:

<lb1>: /home/webuser/helloworld/bin/stop_apache

Refresh your browser a couple of times, pausing for a sip of a tasty beverage per-

haps,16 to allow time for the load balancer to detect that the instance is no longer

passing its health check. Once this happens you’ll see the web page from the other

instance.

16 The weather in Seattle is uncharacteristically warm as I write these words in the middle of the evening.

I’ve consumed well over two liters of water today!

215EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

You can confirm that the load balancer is aware that the first instance is unhealthy

with the elb-describe-instance-health command:

$ elb-describe-instance-health LoadBal --headers
INSTANCE-ID INSTANCE-ID STATE
INSTANCE-ID i-c95650a0 InService
INSTANCE-ID i-0f414766 OutOfService

Now start up Apache on the first instance:

<lb1>: /home/webuser/helloworld/bin/run_apache

Have another sip of your beverage and then check the instance health again:

$ elb-describe-instance-health LoadBal --headers
INSTANCE-ID INSTANCE-ID STATE
INSTANCE-ID i-c95650a0 InService
INSTANCE-ID i-0f414766 InService

Recall that the elastic load balancer uses a health check to ascertain the state of each

instance. The default health check has some fairly long delays and also checks three

times before deciding that an instance is unhealthy. Let’s be more aggressive:

$ elb-configure-healthcheck LoadBal --target HTTP:80/ --interval 5
➥ --timeout 2 --healthy-threshold 2 --unhealthy-threshold 2
HEALTH-CHECK HTTP:80/ 5 2 2 2

This command changes the interval from the default (30 seconds) to the minimum

(five seconds). It also reduces the HealthyThreshold from three to two and does

the same for the UnhealthyThreshold. We’ll increase the number of health checks

sixfold, but the load balancer will be able to detect and respond to changes that

much quicker as a result of the changes to the interval and the thresholds.

After making this change, spend some time starting and stopping Apache; you’ll

observe that the load balancer is now more responsive to changes in the health of

the instances.

As I mentioned before, the load balancers automatically report their statistics to

CloudWatch. You can use the mon-list-metrics command to view the available

Host Your Web Site in the Cloud216

metrics—they’ll have the AWS/ELB namespace. You’ll find the following metrics:

HealthyHostCount, Latency, RequestCount, and UnHealthyHostCount.

Here’s an example of how to obtain the average and maximum latency for requests

handled by the load balancer:

$ mon-get-stats Latency --namespace "AWS/ELB" --period 3600
➥ --start-time 2009-07-22 --statistics Average,Maximum

Once you’re done testing and experimenting shut down all your test instances,

either from the AWS Management Console or by means of the halt command.

You can verify that the load balancer has noticed the missing instances by checking

the instance health one last time:

$ elb-describe-instance-health LoadBal --headers
INSTANCE-ID INSTANCE-ID STATE
INSTANCE-ID i-c95650a0 OutOfService
INSTANCE-ID i-0f414766 OutOfService

Wrap up by deleting the load balancer:

$ elb-delete-lb LoadBal

You’ll be asked to confirm your intention to delete the load balancer.

Programming Elastic Load Balancing
As is the case with all the Amazon Web Services, you can access the elastic load

balancing functionality through the programming interface. The AWS SDK for PHP

includes complete support for this service.

There are nine elastic load balancing API calls. Here’s a quick summary:

create_load_balancer creates new load balancers and delete_load_balancer

deletes old ones. configure_health_check sets up a non-default health check that

will be used for all the instances.

register_instances_with_load_balancer attaches a list of EC2 instances to a load

balancer and deregister_instances_from_load_balancer does the opposite.

217EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

describe_load_balancers returns detailed information about each extant load

balancer and describe_instance_health returns the health of all or selected EC2

instances.

enable_availability_zones_for_load_balancer allows the load balancer to access

instances in additional Availability Zones, while the opposite is achieved with

disable_availability_zones_for_load_balancer.

Now that you know how to create, monitor, and destroy elastic load balancers with

some simple commands, you’re one big step closer to creating highly scalable and

available applications.

Auto Scaling
In this section you’ll learn about Amazon EC2’s Auto Scaling feature. We’ll review

key terminology and concepts, address pricing, and then we’ll put the service

through its paces using the command line tools. We’ll review the programming

model, once again leaving the actual code up to you.

Auto Scaling Concepts
You can create auto scaling groups in any EC2 region using EC2’s auto scaling feature.

Each auto scaling group has a reference name and can span one or more Availability

Zones. An auto scaling group relies on a launch configuration to provide the infor-

mation needed to launch EC2 instances. A trigger attached to the group supplies

the information needed to initiate a scaling activity. A scaling activity is generated

each time an auto scaling group launches or terminates EC2 instances. Instances

are added as part of a scale-out event and terminated as part of a scale-in event.

Each group also has a minimum size and a maximum size.

An Auto Scaling launch configuration includes an AMI ID, the name of an EC2 key

pair, a list of EC2 security groups, an EC2 instance type, and other information

needed to launch EC2 instances as needed.

An auto scaling trigger references a CloudWatch metric such as EC2 CPUUtilization

or elastic load balancing HealthyHostCount. The trigger also includes upper and

lower threshold values and scaling increments. The scaling increments can be ab-

solute (“add 1 more instance”) or relative (“add 50% more instances”). The trigger’s

Host Your Web Site in the Cloud218

breach duration specifies the time period over which the trigger’s thresholds are

evaluated against the metrics.

Auto Scaling Processing Model
Although auto scaling is independent of elastic load balancing, the two features

were designed to work hand-in-glove to allow you to easily load balance large

numbers of requests across an automatically scaled cluster of EC2 instances. Once

everything is set up, you can simply route all your traffic to the load balancer and

AWS will take care of the rest.

The auto scaling processing model is clean and easy to understand. You need the

following elements in order to get started:

1. an elastic load balancer for one or more Availability Zones

2. a launch configuration, specifying the ID of the AMI to be launched, the instance

type, and other sought parameters

3. an auto scaling group for the desired set of Availability Zones, supplying the

names of the load balancer and the launch configuration, the desired minimum

and maximum size of each group, and a reference name for the group

4. a trigger for the group

Then sit back and relax as the auto scaling process ensures that you have sufficient

EC2 instances in place to meet your application’s requirements, as expressed in the

group size and in the trigger.

Once an auto scaling group is up and running, it operates as follows:

1. The CloudWatch metrics specified in the group’s trigger are retrieved using the

parameters (Namespace, Dimension, Measure, Statistic, and Unit) for a time

range that extends back in time by the trigger’s BreachDuration value.

2. The metrics are checked against the trigger’s thresholds. If the metrics are larger

than the UpperThreshold, and the number of EC2 instances in the group is less

than the MaxSize, a scale-out event is initiated. One or more EC2 instances is

launched using the group’s launch configuration parameters. The number of in-

stances launched depends on the trigger’s UpperBreachScaleIncrement. If the

219EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

value of this parameter ends with a percent sign (“%”) then sufficient instances

are launched to raise the total number in the group by that percentage. Otherwise,

the value is used as the actual number of instances to launch. New instances are

automatically added to the load balancer (if any) associated with the group.

In similar fashion, if the metric is smaller than the LowerThreshold, and the number

of instances in the group is more than MinSize, a scale-in event is initiated. One or

more EC2 instances are terminated, again using the parameters from the group’s

launch configuration. The number of instances terminated depends on the trigger’s

LowerBreachScaleIncrement, which can be a percentage value or a number. In

either case the numeric value should be negative. The excess instances are removed

from the load balancer (if any) before they’re terminated.

After a scale-in or scale-out event, no further automatic scaling actions will be

triggered until after the group’s cool-down period has passed. All the scale-in and

scale-out events are logged and can be retrieved for later analysis.

In most cases you’ll configure the trigger to use minimum or maximum values as

the basis for scaling decisions. Here are some examples:

StatisticMetricNamespace

AverageCPUUtilizationAWS/EC2

Scale up or scale down when the average CPU utilization (across all the instances

in the group) exceeds UpperThreshold. Scale down when it is less than Lower-

Threshold.

StatisticMetricNamespace

MaximumNetworkInAWS/EC2

Scale up when the incoming network traffic exceeds UpperThreshold. Scale down

when it is less than LowerThreshold.

StatisticMetricNamespace

MinimumHealthyHostCountAWS/ELB

Host Your Web Site in the Cloud220

Scale down when the number of healthy hosts exceeds UpperThreshold. Scale up

when the number of healthy hosts is less than LowerThreshold.17

You can also create an auto scale group without a trigger. In this case the group will

start out by creating enough EC2 instances to reach the minimum number specified

for the group. You can increase the instance count programmatically at any time

using the SetDesiredCapacity function or the as-set-desired-capacity command.

There are a couple of important aspects to this model that you need to take into

account as you consider ways to put elastic load balancing to use in your application:

■ The EC2 instances are run as needed and are immediately put into service.

Therefore, the specified AMI is responsible for all startup chores, including the

ones that you sometimes do manually in more traditional environments. Put a

different way, there’s no opportunity for you to log in to the newly launched

instances and tweak them between the time they’re launched and put into service.

■ The EC2 instances are shut down when they are no longer needed and any infor-

mation stored on them is lost, including log files. If you need to retain log files,

you should use an elastic block storage volume.

Auto Scaling Pricing
There is no charge for the use of this feature. EC2 usage is charged at the standard

rates. Because the auto scaling groups are launching instances per your rules, you

should pay close attention to your “burn rate” for the first hours and days to make

sure that the overall cost is in line with your expectations.

Auto Scaling in Operation
In this section we’ll set up a load balancer, named LoadBal, and an auto scaling

group. The first step is to create a load balancer:

$ elb-create-lb LoadBal --listener "lb-port=80,instance-port=80,
➥protocol=HTTP" --availability-zones us-east-1b
DNS-NAME LoadBal-1395306781.us-east-1.elb.amazonaws.com

17 In order to implement this behavior, the UpperBreachScaleIncrementmust be a negative value

and the LowerBreachScaleIncrement must be a negative value.

221EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

As we saw earlier in this chapter, this command returns the host name of the load

balancer—in this case LoadBal-1395306781.us-east-1.elb.amazonaws.com.

The next step is to create an auto scaling group launch configuration:

$ as-create-launch-config Config --image-id ami-60da3d09
➥ --instance-type m1.small
OK-Created launch config

This configuration, named Config, specifies the use of the LAMP Web Starter AMI

on a small EC2 instance. This AMI is ideal for testing purposes because it’s precon-

figured to launch Apache and return a default page.

Now we’re ready to create the auto scaling group. Here’s all it takes:

$ as-create-auto-scaling-group AutoScale --launch-configuration
➥ Config --availability-zones us-east-1b --min-size 1 --max-size 5
➥ --load-balancers LoadBal
OK-Created AutoScalingGroup

The group, called AutoScale, references the load balancer (LoadBal) and the launch

configuration (Config). It’ll run up to five instances in Availability Zone us-east-

1b. Now we need a trigger. Here’s the command to create a trigger named Trigger1:

$ as-create-or-update-trigger Trigger1 --auto-scaling-group
➥ AutoScale --namespace "AWS/EC2" --measure CPUUtilization
➥ --statistic Average --dimensions "AutoScalingGroupName=AutoScale"
➥ --units "Percent" --period 60 --lower-threshold 30
➥ --upper-threshold 70 --lower-breach-increment="-1"
➥ --upper-breach-increment "1" --breach-duration 120
OK-Created/Updated trigger

Triggers or Alarms?

When you run this command you may receive a message indicating that triggers

have been deprecated in favor of a newer CloudWatch concept called alarms. The

triggers are safe to use for this example, but alarms should be used for longer-term

projects.

Host Your Web Site in the Cloud222

That’s a fairly long command, so let’s break it down. It’s driven by the EC2 metric

CPUUtilization. It will initiate a scale-out action when average CPU utilization for

the set of EC2 instances in the group exceeds 70% over a two-minute interval. It

will initiate a scale-in operation when the average CPU utilization falls below 30%,

also over a two-minute interval. It will add one new instance on scale-out and remove

one instance on scale-in.

Once the trigger has been set, the group becomes active. Here’s how to see what’s

happening:

$ as-describe-scaling-activities AutoScale
ACTIVITY a479869e-14d8-4b02-98f5-33e9a8b7afda 2009-07-25T04:53:33Z
➥ Successful "At 2009-07-25 04:50:57Z a user request created an
➥ AutoScalingGroup changing the desired capacity from 0 to 1.
➥ At 2009-07-25 04:52:05Z an instance was started in response to a
➥ difference between desired and actual capacity, increasing the
➥ capacity from 0 to 1."

The as-describe-scaling-activities command displays the most recent scaling

activities in reverse chronological order.

You should shut the group down cleanly once you’re done with it. Here’s how to

do that. Start by deleting the trigger (you’ll be asked to confirm):

$ as-delete-trigger Trigger1 --auto-scaling-group AutoScale

Next, set the minimum and maximum size of the group to zero to force all its in-

stances to terminate:

$ as-update-auto-scaling-group AutoScale --min-size 0 --max-size 0

Now, watch for a scaling activity that actually terminates the instances. Run this

command:

$ as-describe-scaling-activities AutoScale

Run it a couple of times over the course of a minute or two, until you see an entry

like this:

223EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

ACTIVITY fb0aa624-6480-4da8-99d0-40c9135c20be 2009-07-25T05:47:14Z
➥ Successful "At 2009-07-25 05:45:32Z a user request update of
➥ AutoScalingGroup constraints to min: 0, max: 0 changing the
➥ desired capacity from 1 to 0. At 2009-07-25 05:45:33Z an
➥ instance was terminated in response to a difference between
➥ desired and actual capacity, shrinking the capacity from 1 to 0.
➥ At 2009-07-25 05:45:33Z instance i-9f9f9ff6 was selected for
➥ termination."

Now you can go ahead and delete the group (as usual, you’ll be asked to confirm):

$ as-delete-auto-scaling-group AutoScale

Finally, delete the load balancer:

$ elb-delete-lb LoadBal

And we’re done!

Programming Auto Scaling
As is always the case with AWS, all of the auto scaling functionality is available

through a set of APIs. The current version of the AWS SDK does not provide support

for auto scaling.

The Auto Scaling API consists of five groups of functions:

■ The CreateAutoScalingGroup, DeleteAutoScalingGroup,

DescribeAutoScalingGroups, SetDesiredCapacity, and

UpdateAutoScalingGroup functions operate on auto scaling groups; the operations

should be self-evident from the names. The update function allows you to change

the group’s parameters while it’s operational.

■ The CreateLaunchConfiguration, DeleteLaunchConfiguration, and

DescribeLaunchConfigurations functions operate on launch configurations.

■ The CreateOrUpdateScalingTrigger is used to create a new scaling trigger or

to update an existing one. DescribeTriggers returns a list of triggers for an auto

scale group, and DeleteTrigger deletes a trigger.

Host Your Web Site in the Cloud224

■ The DescribeScalingActivities function returns a list of scaling activities for

an auto scale group.

■ The TerminateInstanceInAutoScaleGroup explicitly terminates an instance.

Off the Scale
And with that, we are done with our description of Amazon EC2’s Auto Scaling.

You have all the information to start utilizing this feature in your own applications.

Wrapping It Up
We’ve covered a lot of ground in this chapter! We started out by taking a look at

Amazon CloudWatch, and saw how to interact with it using the AWS SDK for PHP.

We then took a short (but worthwhile) detour to learn how to create an artificial

load on your system using JMeter. From there we examined the Elastic Load Balan-

cing and Auto Scaling features.

Now that you have a good understanding of these features, you should be able to

create applications that are both scalable and fault-tolerant.

225EC2 Monitoring, Auto Scaling, and Elastic Load Balancing

Chapter8
Amazon SimpleDB: A Cloud Database
In this chapter you’ll discover how to use Amazon SimpleDB to store data for your

application. Amazon SimpleDB is a refreshingly simple alternative to the traditional

(and very complex) relational database. We’ll review the conceptual basis behind

Amazon SimpleDB, then learn how to use it with a number of self-contained code

samples and a more complex real-world example. We’ll finish with a quick look at

a browser-based tool for SimpleDB.

Introduction
Many web applications would use a general purpose relational database such as

Oracle or MySQL to store user data: account names, passwords, file lists, preferences,

links, and so forth. Because they’re general purpose, these products have become

very complex over time, with thousands of pages of documentations, layers of librar-

ies and tools, and an entire industry devoted to training and support.

Amazon SimpleDB is a cloud-based database. There’s no need to buy, install, or

maintain any hardware or configure any software. You only spend half the time

designing the database schema ahead of schedule because changes are easy to make

and there’s no requirement to take the database offline to do so.

Building a highly scalable system and then actually scaling it becomes much simpler.

SimpleDB itself makes sure that sufficient disk space and CPU power are available,

automatically taking advantage of parallelism by spreading the load across multiple

disks and servers as needed. This intrinsic, under-the-covers scaling and redundancy

provides for fault tolerance and high availability without the need for monitoring

or manual intervention.

The data storage model is clean, simple, and easy to learn, as is the programming

model. SimpleDB excels at storing semi-structured data where the items (rows) are

similar but not necessarily identical to each other.

All data stored in Amazon SimpleDB is automatically indexed, so you’re free from

having to make any indexing decisions. Your existing knowledge of SQL (Structured

Query Language) will still be relevant; you can retrieve data using SQL select

queries. There are no software upgrade issues, because you’re always running the

current version of the code.

The Amazon SimpleDB model lacks support for joins across domains (roughly

equivalent to relational tables); instead, you can store data in non-normalized form

for more efficient access.

As you’ll soon see, Amazon SimpleDB’s model supports the data storage needs of

many types of applications. You can spend your time focusing on your application

and on meeting the needs of your users, instead of worrying about low-level database

issues.

Amazon SimpleDB
The Amazon SimpleDB model encompasses a small number of concepts and a

compact programming interface. You can learn the basics of SimpleDB and have

some code up and running in an hour or two. In this section, we’ll review the con-

cepts that comprise SimpleDB, take a peek at the programming model, and then

examine the SimpleDB pricing model.

Amazon SimpleDB Concepts
An Amazon SimpleDB domain is roughly analogous to a table in a relational data-

base. Each domain exists within the scope of a particular AWS account and has a

readable name, such as employees or feeds. Each domain can store up to 10GB of

Host Your Web Site in the Cloud228

data. Applications with a need to store more than ten gigabytes can easily spread

the data across multiple domains. Each AWS account is allotted 100 domains.1

Each item in a SimpleDB domain has a name (unique to the domain) and up to 256

attributes (name-value pairs). Item names, attribute names, and attribute values can

each be up to 1,024 bytes long. Each domain can store up to one billion attributes.

Item attributes can be multivalued. In fact, each attribute can have up to 256 values.

For example, the attribute Size could be three distinct values "8", "10", and "12".

Each value in an attribute counts toward the limit of 256 attributes per item. All

attribute values are treated as strings. This has some important and less obvious

implications when storing and querying numerical values. All values are automat-

ically indexed.

Inserts, deletes, and updates to SimpleDB items are done using the API. Queries

are done using SQL select queries through the API.

Let’s take a look at some of the ways that SimpleDB’s data model can be used to

store complex data sets in a single domain.

Imagine that we need to store data about some people (I’ll refer to this as the People

domain in the SQL examples below). We start off with a simple model like this:

SexAgeLastNameFirstNameItem Name

M12BasicTomRec1

F15HackerNancyRec2

Later, we decide to store middle names if known. We start storing this attribute for

newly added records:

MiddleSexAgeLastNameFirstNameItem Name

M12BasicTomRec1

F15HackerNancyRec2

KF44HughesJoanRec3

1 You can request additional domains if you require more than 100 for your application.

229Amazon SimpleDB: A Cloud Database

There’s no need to update records Rec1 and Rec2 (but this can be done, of course).

The attribute Middle simply doesn’t exist for those records. Next, we decide to store

the states where each person has lived. Again, we just start storing this new attribute:

StateMiddleSexAgeLastNameFirstNameItem

Name

M12BasicTomRec1

MDF15HackerNancyRec2

NY, NJ,

DC, IL,

MD, PA

KraftF44HughesJoanRec3

As you can see, this could easily be extended to store other one-to-many relationships

such as children, parents, job titles, and so forth.

Amazon SimpleDB Programming Model
We’ll dive into some real code shortly. The Amazon SimpleDB programming model

consists of just nine calls:

■ At the domain level, CreateDomain creates a new domain, ListDomains returns

a list of existing domains, and DeleteDomain deletes a domain. DomainMetadata

returns usage information about the domain.

■ At the item level, PutAttributes creates new items and adds or replaces (your

choice) additional attributes to existing items. BatchPutAttributes is an exten-

ded version of this call that handles multiple items at once. DeleteAttributes

removes attributes from an item and GetAttributes retrieve specified attributes.

Select issues a SQL query.

And that’s it! A complete data storage system.

Amazon SimpleDB’s SQL language takes the form of a standard select statement

with extensions to handle multi-valued attributes. Here are some samples:

select * from People where FirstName="Tom"

The above query would retrieve Rec1 in the previous table.

Host Your Web Site in the Cloud230

select FirstName,Middle,LastName from People where LastName >= "H"

The above query retrieves Rec2 and Rec3.

select * from People where every(State)="MD"

While this query retrieves Rec2.

select * from People where State="PA"

And here, Rec3 is retrieved.

Amazon SimpleDB Pricing
Your Amazon SimpleDB usage is charged based on three usage dimensions: data

transfer, data storage, and machine utilization.

Your data transfer charges are based on the amount of data transferred in and out

of SimpleDB. Data transferred into SimpleDB is charged at a rate of $0.10 per giga-

byte. Once again, this amount is prorated. Data transferred out of SimpleDB is

charged on a sliding scale starting at $0.15 per gigabyte and reduces based on volume,

reaching $0.08 per gigabyte for all outgoing data transfer in excess of 150 terabytes

per month. There’s no charge for data transferred within a Region; you pay nothing

to transfer data between an EC2 instance and a SimpleDB domain in the same Region.

You pay $0.25 (a quarter) per gigabyte per month to store data in SimpleDB, prorated

on time and on the actual amount stored. There’s an overhead of 45 bytes per item,

45 bytes per attribute name, and 45 bytes per name-value pair.

Finally, you pay $0.14 per hour for the machine time used to process each SimpleDB

request. Complex requests (for instance, more items, more attributes, or sophisticated

select queries) will take more time than simple ones. SimpleDB returns the time

used by each request in the BoxUsage field.

As of this writing (but subject to change), there’s a free tier of usage for SimpleDB.

The first 25 hours of machine time, the first gigabyte of data storage, and the first

gigabyte of data transfer are all free.

231Amazon SimpleDB: A Cloud Database

Programming Amazon SimpleDB
In this section you’ll see how you can use the AWS SDK for PHP to access all of

SimpleDB’s functionality. Because the SDK already includes support for Amazon

SimpleDB, we’ll be able to jump right into the code.

We’ll create domains and list them, then populate them with items. Then we’ll see

how to deal with numeric data and run some queries. We’ll update existing items

with additional data, and then delete some items and item attributes. We’ll see how

to monitor domain statistics and then wrap up with a real-world example: fetching,

parsing, and storing RSS feeds in SimpleDB.

I will be using three SimpleDB domains in this chapter. Here are the definitions

we’ll add to book.inc.php:

chapter_08/include/book.inc.php (excerpt)

define('BOOK_FILE_DOMAIN', 'files');
define('BOOK_FEED_DOMAIN', 'feeds');
define('BOOK_FEED_ITEM_DOMAIN', 'feed_items');

BOOK_FILE_DOMAIN will be used to store information about files.

BOOK_FEED_DOMAIN will be used to store information about RSS feeds, and

BOOK_FEED_ITEM_DOMAIN will be used to store information about the items found

in the RSS feeds.

You’ll need to sign up for SimpleDB2 before you begin to use it. Simply visit the

site and click on the Sign Up for Amazon SimpleDB button.

2 http://aws.amazon.com/simpledb/

Host Your Web Site in the Cloud232

http://aws.amazon.com/simpledb/

Creating a Domain
Here’s a script that creates all the SimpleDB domains needed for the examples in

this chapter:

chapter_08/create_domain.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$sdb = new AmazonSDB();

foreach (array(BOOK_FILE_DOMAIN,
 BOOK_FEED_DOMAIN,
 BOOK_FEED_ITEM_DOMAIN) as $domain)
{
 $res = $sdb->create_domain($domain);
 if (!$res->isOK())
 {
 exit("Create domain operation failed for domain ${domain}\n");
 }

 print("Domain ${domain} created.\n");
}
exit(0);
?>

The program simply creates a new AmazonSDB object, iterates through an array of

domain names, and calls the create_domain method for each one. create_domain

will do nothing (and return a successful result) if the domain already exists.

If you’d like a challenge, you should easily be able to modify the above script to

accept new domain names on the command line.

233Amazon SimpleDB: A Cloud Database

Listing Domains
The next step is to list the domains. Here’s how to do that:

chapter_08/list_domains.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');

$sdb = new AmazonSDB();
$res = $sdb->list_domains();

if (!$res->isOK())
{
 exit("List domain operation failed\n");
}

foreach ($res->body->ListDomainsResult->DomainName as $domainName)
{
 print($domainName . "\n");
}
exit(0);
?>

The list_domains method returns an array of domain names. The code iterates

through the list and prints each one.

Here’s the output from the command:

$ php list_domains.php
feed_items
feeds
files

Storing Data
The next step is to store some data in a domain. This is done using the

put_attributes method. This method can be used to create new items or to add

additional attributes to existing items.

Host Your Web Site in the Cloud234

The following program creates an item for each file in the current directory with a

name that matches the regular expression /^[a-zA-Z0-9_-]*\.php$/—all the PHP

files with reasonable names. It uses the file’s name as the item name and creates

three attributes:

■ Name (the file’s name)
■ Hash (the MD5 hash of the file’s contents)
■ Size (the size of the file in bytes)

Here’s the code:

chapter_08/insert_items.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$sdb = new AmazonSDB();

$dir = opendir(".");
while (($file = readdir($dir)) !== false)
{
 if (preg_match("/^[a-zA-Z0-9_-]*\.php$/", $file))
 {
 $data = file_get_contents($file);
 $hash = md5($data);
 $size = filesize($file);

 $attrs = array('Name' => $file,
 'Hash' => $hash,
 'Size' => $size);

 $res = $sdb->put_attributes(BOOK_FILE_DOMAIN, $file,
 $attrs, true);

 if ($res->isOK())
 {
 print("Inserted item $file\n");
 }
 else

235Amazon SimpleDB: A Cloud Database

 {
 $error = $res->body->Errors->Error->Message;
 print("Could not insert item: ${error}\n");
 }
 }
}
closedir($dir);
exit(0);
?>

PHP’s opendir and readdir are used to access the list of files in the current

directory (“.”).

Each file’s name is read and checked against the regular expression.

If the file’s name matches the regular expression, the file’s contents are read

using file_get_contents, and then the MD5 hash of the contents is computed

using the md5 function. With this information in hand, the $attrs array is set

up with the name-value pairs of attributes.

The put_attributes method is called to store the information in the SimpleDB

domain denoted by BOOK_FILE_DOMAIN. The final parameter (true) in the call

to put_attributes indicates that any existing values for an attribute will be

removed and then replaced with the new ones. If this parameter is set to false

the new values will augment the existing ones, resulting in an attribute that’s

multivalued.

Finally, we close the directory and exit the script.

Storing Multiple Items Efficiently
Another SimpleDB function, BatchPutAttributes, can be used to perform multiple

PutAttributes calls with a single request. This can be faster and more efficient

than making a long series of individual requests. Here's a modified version of the

previous example that uses the batch requests:

Host Your Web Site in the Cloud236

chapter_08/batch_insert_items.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$sdb = new AmazonSDB();

$items = array();

$dir = opendir(".");
while (($file = readdir($dir)) !== false)
{
 if (preg_match("/^[a-zA-Z0-9_-]*\.php$/", $file))
 {
 $data = file_get_contents($file);
 $hash = md5($data);
 $size = filesize($file);

 $items[$file] = array('Name' => $file,
 'Hash' => $hash,
 'Size' => $size);
 }

 if (count($items) == 25)
 {
 WriteBatch($sdb, $items);
 $items = array();
 }
}
closedir($dir);

if (count($items) > 0)
{
 WriteBatch($sdb, $items);
}

The main difference between this and the previous version of the insert script

is that each array of attribute name-value pairs is added to an $items array,

instead of immediately being inserted into SimpleDB.

237Amazon SimpleDB: A Cloud Database

When the $items array reaches 25 elements, we call a custom function called

WriteBatch.

Finally, we call the WriteBatch function if there are any remaining items.

Here’s the custom WriteBatch function:

chapter_08/batch_insert_items.php (excerpt)

function WriteBatch($sdb, &$items)
{
 $res = $sdb->batch_put_attributes(BOOK_FILE_DOMAIN, $items, true);

 if ($res->isOK())
 {
 print("Inserted " . count($items) . " items\n");
 return true;
 }
 else
 {
 $error = $res->body->Errors->Error->Message;
 print("Could not insert items: ${error}\n");
 return false;
 }
}
?>

The WriteBatch function uses the batch_put_attributes method to insert all the

items in the $items array in one operation.

When doing performance testing, I found that the first insert script inserts 99 files

in 8.6 seconds, while the batch script inserts the same files in just 0.88 seconds, or

ten times faster. Structuring your program to take advantage of SimpleDB is clearly

worthwhile.

Host Your Web Site in the Cloud238

Handling Numeric Data

SimpleDB stores all data as strings. When the data is the subject of a select query,

a lexicographic comparison is used. This can lead to some surprising results when

numerical values are stored. For example, the string "10" is less than the string

"2". Leading minus signs are also problematic.

Numeric values should be left-padded with zeros to create fixed-length strings.

This can be done using PHP’s sprintf function and an appropriate format string.

In our previous scripts, we should update the item value for the Size attribute

to use left-padding:

array('Name' => $file,
 'Hash' => $hash,
 'Size' => sprintf("%08s", $size));

If your numeric values can be negative, you should offset them by a large positive

number when you store them, and then compensate for this offset when you re-

trieve them. Choose an offset value that ensures the smallest expected negative

value will end up as a positive value. For example, if your values will range from

-32,768 to 32,767, add 50,000 to adjust the range to 17,232 to 82,767 (stored as

"17232" through "82767").

Running a Query
With the data stored, running queries is simple:

chapter_08/query_domain.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$query = "select * from " .
 BOOK_FILE_DOMAIN .
 " where Name like '%items%'";

$sdb = new AmazonSDB();

239Amazon SimpleDB: A Cloud Database

$res = $sdb->select($query);

if (!$res->isOK())
{
 exit("Select operation failed\n");
}

foreach ($res->body->SelectResult->Item as $item)
{
 foreach ($item->Attribute as $attribute)
 {
 print($attribute->Name . ": " . $attribute->Value . ", ");
 }
 print("\n");
}
exit(0);
?>

The above script uses the select method to run a query that will return all items

with a Name attribute containing the string "items". It’ll then loop through all the

returned items and output their attributes and values. Here’s an example of the

output if the database contained file information about all the files in the chapter_08

folder from the code archive:

$ php query_domain.php
Hash: a446a0c1d252042cf065e7bc4d743336, Name:
➥ augment_items.php, Size: 00001191,
Hash: 280434b0478b68aecacef61e329d337e, Name:
➥ batch_insert_items.php, Size: 00001337,
Hash: 49cb20ea103caeb654ce4aad307ecdcd, Name:
➥ delete_items.php, Size: 00001003,
Hash: e77f57f95676ac156318123c4e428c40, Name:
➥ insert_items.php, Size: 00000937,

By default, the select call returns 100 items (or 1MB worth, whichever is smaller)

at a time. The limit clause can be used to request the return of up to 2,500 items,

although this is still limited to 1MB.

If a select call has failed to return all the items due to these limits, a NextToken

value will be included in the response. This can be passed to subsequent, repeated

calls to select to receive additional results. Here’s a hypothetical representation

Host Your Web Site in the Cloud240

of a loop that takes advantage of the NextToken value to make repeated select calls

until there are no more results returned:

$next = null;
do
{
 $attrs = ($next == null) ? null : array('NextToken' => $next);
 $res = $sdb->select($query, $attrs);
 $next = (string) $res->body->SelectResult->NextToken;

 ⋮ Process results here…
}
while ($next != null);

We’ll see more of this kind of loop in the remaining chapters.

Advanced Queries
Let’s alter the previous script so that the query comes from the command line by

adding the following code:

chapter_08/query_domain_cmd.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$query = "select * from " . BOOK_FILE_DOMAIN;

if ($argc > 1)
{
 $query .= " where ";

 for ($i = 1; $i < $argc; $i++)
 {
 $query .= ' ' . $argv[$i] . ' ';
 }
}

print("Final query: ${query}\n");

241Amazon SimpleDB: A Cloud Database

$sdb = new AmazonSDB();
$res = $sdb->select($query);

⋮ process the results…

?>

Now we can run arbitrary queries, like so:

$ php query_domain_cmd.php

The above command will retrieve all the records—the default action for this script.

We specify a query like so:

$ php query_domain_cmd.php "Size < '00000900'"

This command will find all files smaller than 900 bytes.

The special field itemName() can be used to refer to the item’s name in a select

query:

$ php query_domain_cmd.php "itemName() like '%items%'"

The above command will retrieve items with names containing "items".

And finally, this command is used to retrieve items with the specified names:

$ php query_domain_cmd.php "itemName() in
➥('disable_mon.php', 'list_metrics.php')"

SimpleDB queries have the following general form:

select output_list
from domain_name
[where expression]
[order by clause]
[limit clause]

Host Your Web Site in the Cloud242

Let’s take a look at these. The output_list can be * for all attributes, itemName() for

the name of the item, or a list of attribute names, or count(*) to retrieve an item

count instead of items. The domain_name refers to the SimpleDB domain, of course.

The optional where expressions are a combination of attribute names, constant

values, itemName(), and operators. The following table shows the operators that

can be used in the where expression.

Table 8.1. Available Operators

DescriptionOperator

Equal to=

Not equal to!=

Greater than>

Greater than or equal to>=

Less than<

Less than or equal to<=

Both conditions must be trueand

Either condition can be trueor

Returns results that appear in a pair of independent queriesintersection

Contains the specified constant, with “%” as a wildcardlike

Does not contain the specified constantnot like

In a specified rangebetween/and

Matches an item from a listin

Attribute does not existis null

Attribute existsis not null

Every value of a multi-valued attribute satisfies the expressionevery()

The optional order by clause can be used to order the results by a single attribute

or item name. All sorts are performed in lexicographical order and the sort attribute

must be mentioned by name in the associated expression. It’s impossible to sort

against null values.

The optional limit clause can be used to limit the number of results to a given

value.

243Amazon SimpleDB: A Cloud Database

Augmenting Items with Additional Data
Once an item has been created, additional calls to the put_attributes method can

be used to create additional attributes or additional values for an existing attribute.

Let’s augment each item in the BOOK_FILE_DOMAIN with the file’s modification time

using this script:

chapter_08/augment_items.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$sdb = new AmazonSDB();
$res1 = $sdb->select("select Name from " . BOOK_FILE_DOMAIN);

if ($res1->isOK())
{
 foreach ($res1->body->SelectResult->Item as $item)
 {
 $itemName = $item->Name;
 $file = $item->Attribute[0]->Value;

 $modTime = filemtime($file);
 if ($modTime !== false)
 {
 $attrs = array('ModTime' => sprintf("%010s", $modTime));

 $res2 = $sdb->put_attributes(BOOK_FILE_DOMAIN, $itemName,
 $attrs, false);

 if ($res2->isOK())
 {
 print("Updated item $itemName\n");
 }
 else
 {
 $error = $res2->body->Errors->Error->Message;
 print("Could not update item: ${error}\n");
 }

Host Your Web Site in the Cloud244

 }
 }
}
else
 {
 $error = $res1->body->Errors->Error->Message;
 exit("Could not run query: ${error}\n");
}
exit(0);
?>

It’s as simple as calling the put_attributes method again for each item supplying

the new attribute and value data.

This program illustrates another useful programming model. A SimpleDB query is

used to obtain the list of items to be processed. Each item is processed in turn: the

file name is extracted from the query results, the file’s modification time is fetched,

and the item is updated.

The code I just showed you took one slightly cheesy shortcut:

 $file = $item->Attribute[0]->Value;

The above line accesses the first returned attribute using a positional index. Code

like this is fragile and hard to maintain. There’s a better way to do this, and I’ll show

you what it is in just a minute.

Storing Multiple Values for an Attribute
Storing multiple values for a single attribute is very easy; there are two ways to do

this.

If you’re storing the values one at a time and want them to accumulate over time,

you can simply pass the value false for the replace parameter. You can store

multiple modification times using the code from the last section, with repeated

calls like so:

$attrs = array('ModTime' => sprintf("%010s", $modTime));
$res2 = $sdb->put_attributes(BOOK_FILE_DOMAIN, $itemName,
 $attrs, false);

245Amazon SimpleDB: A Cloud Database

You can store several values at the same time like this:

$attrs2 = array('Flavors' => array('Vanilla', 'Chocolate'));
$res2 = $sdb->put_attributes(BOOK_FILE_DOMAIN, $itemName,
 $attrs2, false);

Accessing Attribute Values
Let’s improve on the cheesy attribute access code above. Here’s a function to turn

the array of SimpleXML nodes in the returned response into a PHP associative array:

chapter_08/include/book.inc.php (excerpt)

function getItemAttributes($item)
{
 $attrs = array();

 foreach ($item->Attribute as $attribute)
 {
 $name = (string) $attribute->Name;
 $value = (string) $attribute->Value;

 if (IsSet($attrs[$name]))
 {
 if (is_array($attrs[$name]))
 {
 $attrs[$name][] = $value;
 }
 else
 {
 $attrs[$name] = array($attrs[$name], $value);
 }
 }
 else
 {
 $attrs[$name] = $value;
 }
 }
 return $attrs;
}

Host Your Web Site in the Cloud246

Here’s what the returned data looks like:

Array
(
 [Hash] => c7158ad4d0961016fb3f531ccc90da5e
 [Size] => 00001535
 [Name] => query_domain_cmd.php
 [ModTime] => 1249514406
 [Flavors] => Array
 (
 [0] => Chocolate
 [1] => Vanilla
)
)

Deleting Attributes
If you’ve no more need for an attribute, you can use the delete_attributesmethod

to delete it like this:

chapter_08/delete_attrs.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$sdb = new AmazonSDB();

$attrs = array('ModTime', 'Flavor');

$res1 = $sdb->select("select Name from " . BOOK_FILE_DOMAIN);
if ($res1->isOK())
{
 foreach ($res1->body->SelectResult->Item as $item)
 {
 $itemName = (string)$item->Name;

 $res2 = $sdb->delete_attributes(BOOK_FILE_DOMAIN,
 $itemName, $attrs);

247Amazon SimpleDB: A Cloud Database

 if ($res2->isOK())
 {
 print("Updated item $itemName\n");
 }
 else
 {
 $error = $res2->body->Errors->Error->Message;
 print("Could not update item: ${error}\n");
 }
 }
}
else
{
 $error = $res1->body->Errors->Error->Message;
 exit("Could not run query: ${error}\n");
}
exit(0);
?>

In the above code we delete the ModTimeand Flavor attributes with one call to the

delete_attributes method per item.

Deleting Items
You can also use the delete_attributesmethod to delete an entire item, by deleting

all the attributes. Here’s how to do it:

chapter_08/delete_items.php (excerpt)

#!/usr/bin/php
<?

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$sdb = new AmazonSDB();

$res1 = $sdb->select("select * from " . BOOK_FILE_DOMAIN);
if ($res1->isOK())
{
 foreach ($res1->body->SelectResult->Item as $item)
 {

Host Your Web Site in the Cloud248

 $itemName = (string)$item->Name;

 $res2 = $sdb->delete_attributes(BOOK_FILE_DOMAIN);

 if ($res2->isOK())
 {
 print("Deleted item $itemName\n");
 }
 else
 {
 $error = $res2->body->Errors->Error->Message;
 print("Could not delete item: ${error}\n");
 }
 }
}
else
{
 $error = $res1->body->Errors->Error->Message;
 exit("Could not run query: ${error}\n");
}
exit(0);
?>

The delete_attributes function deletes the item and all of the attributes associated

with it.

Monitoring Domain Statistics
The domain_metadata method returns information about a domain. Here’s a script

that calls the method and displays what it returns:

chapter_08/metadata.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

$sdb = new AmazonSDB();

foreach (array(BOOK_FILE_DOMAIN,

249Amazon SimpleDB: A Cloud Database

 BOOK_FEED_DOMAIN,
 BOOK_FEED_ITEM_DOMAIN) as $domain)
{
 $res = $sdb->domain_metadata($domain);
 if ($res->isOK())
 {
 $metadata = $res->body->DomainMetadataResult;

 $itemCount = (int) $metadata->ItemCount;
 $attributeNameCount = (int) $metadata->AttributeNameCount;
 $attributeValueCount = (int) $metadata->AttributeValueCount;
 $itemNamesSize = (int) $metadata->ItemNamesSizeBytes;
 $attributeNamesSize = (int) $metadata->AttributeNamesSizeBytes;
 $attributeValuesSize =
 (int) $metadata->AttributeValuesSizeBytes;

 printf($domain . ":\n" .
 "\tItem Count: " .
 number_format($itemCount) . "\n" .
 "\tAttrs: " .
 number_format($attributeNameCount) . "\n" .
 "\tValues: " .
 number_format($attributeValueCount) . "\n" .
 "\tName Size: " .
 number_format($itemNamesSize) . "\n" .
 "\tAttr Name Size: " .
 number_format($attributeNamesSize) . "\n" .
 "\tAttr Value Size: " .
 number_format($attributeValuesSize) . "\n" .
 "\n");
 }
}
exit(0);
?>

The script above fetches and then prints information about each domain used in

this chapter’s examples. The columns have the following meanings:

■ Domain is the name of the domain, of course.
■ Items is the number of items in the domain.
■ Attrs is the number of unique attribute names in the domain.
■ Values is the number of attribute name-value pairs in the domain.
■ Name Size is the total size of all the item names in the domain, in bytes.

Host Your Web Site in the Cloud250

■ Attr Name Size is the total size of all the unique attribute names in the domain,

in bytes.
■ Attr Value Size is the total size of all the attribute values in the domain, in

bytes.

The sum of the last three values is the amount of storage used by the domain. Here’s

an example of the output:

$ php metadata.php
files:
 Item Count: 12
 Attrs: 3
 Values: 36
 Name Size: 201
 Attr Name Size: 12
 Attr Value Size: 681

Processing and Storing RSS
Feeds with Amazon SimpleDB
Let’s wrap up this chapter with a real-world example. SimpleDB is great for storing

semi-structured data, where the items are similar to each other, but some variation

exists at the detailed level.

In this section, the program will process a list of RSS feeds, typically representing

blogs or another type of news or information source. Each feed is represented by a

URL, such as http://www.jeff-barr.com/?feed=rss2. A feed starts out with some

header data fields such as a title, a link, a publication date, and a description. Most

of these fields are optional. The remainder of the feed is occupied by the individual

news or blog items. Each one can have (among other things) a title, a link, a descrip-

tion, and a GUID (a globally unique identifier).

The program uses the Magpie RSS parser3 open source library.

To make the program more flexible, it will be able to obtain its list of feeds from

one of two sources. The first source will be a file named feeds.txt. The file should

have one feed URL per line. The second source will be an SQS queue identified by

3 http://magpierss.sourceforge.net/

251Amazon SimpleDB: A Cloud Database

http://magpierss.sourceforge.net/

FEED_QUEUE. The code is going to store status information about each fetched feed,

so we’ll set up a couple of handy constants for status values. Let’s add all these

constants to our book.inc.php file:

chapter_08/include/book.inc.php (excerpt)

define('FEEDS', 'feeds.txt');
define('FEED_QUEUE', 'c_feed');

define('FEED_NO_FETCH', 'NoFetch');
define('FEED_YES_FETCH', 'Fetched');

Here’s how the program starts out:

chapter_08/rss_process.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');
require_once('include/rss_fetch.inc');

define('MAGPIE_CACHE_ON', 0);

The define statement turns off Magpie’s cache of recently fetched feeds.

The first task is to determine whether the program will process the feed file (signified

by the –f command line argument) or the queue (signified by the –q argument).

Here’s the code:

chapter_08/rss_process.php (excerpt)

$doFile = false;
$doQueue = false;

if (($argc != 2) ||
 (($argv[1] != '-f') && ($argv[1] != '-q')))
{
 exit("Usage:\n".
 $argv[0] . " -f\n" .

Host Your Web Site in the Cloud252

 $argv[0] . " -q\n");
}

switch ($argv[1])
{
 case '-f':
 $doFile = true;
 break;

 case '-q':
 $doQueue = true;
 break;
}

The program will access SimpleDB and SQS, so we’ll need to create access objects

for both services:

chapter_08/rss_process.php (excerpt)

$sdb = new AmazonSDB();
$sqs = new AmazonSQS();

After each feed has been parsed, we’ll store the most interesting fields. Here they

are at the item and feed levels:

chapter_08/rss_process.php (excerpt)

$feedFields = array('link',
 'title',
 'pubdate',
 'tagline',
 'language',
 'generator',
 'description');

$itemFields = array('guid',
 'link',
 'title',
 'description');

Because none of the item fields are guaranteed to exist, we’ll have to go to some

effort to figure out which field can be used to form the item’s unique key. We can

set that up with a simple array:

253Amazon SimpleDB: A Cloud Database

chapter_08/rss_process.php (excerpt)

$itemKeyFields = array('guid',
 'link',
 'title');

Now the code diverges into two parallel branches. The first branch deals with a file-

based feed list:

chapter_08/rss_process.php (excerpt)

if ($doFile)
{
 $urls = file(FEEDS);
 print("Begin processing " . count($urls) . " feeds\n");

 foreach ($urls as $url)
 {
 $url = trim($url);

 if (updateFeed($sdb, $url))
 {
 print($url . " - updated.\n");
 }
 else
 {
 print($url . " - not updated.\n");
 }
 }
}

The code simply extracts the list of feeds from the file and calls updateFeed, a

custom function we’ll write where most of the interesting work happens.

Here’s the code to handle the queue-based feed list:

chapter_08/rss_process.php (excerpt)

if ($doQueue)
{
 while (true)
 {
 $queueURL = $sqs->create_queue(FEED_QUEUE)->body->
➥CreateQueueResult->QueueUrl;

Host Your Web Site in the Cloud254

 $message = pullMessage($sqs, $queueURL);

 if ($message != null)
 {
 $messageDetail = $message['MessageDetail'];
 $receiptHandle = (string)$message['ReceiptHandle'];

 $url = $messageDetail['FeedURL'];

 if (updateFeed($sdb, $url))
 {
 print($url . " - updated.\n");
 }
 else
 {
 print($url . " - not updated.\n");
 }

 $sqs->delete_message($queueURL, $receiptHandle);
 }
 }
}

This code uses the pullMessage function that we developed for our image crawler

application in Chapter 6. Again, most of the interesting work happens in updateFeed.

Let’s take a look at it now. It’s fairly long, so we’ll examine it piece by piece.

The function starts by attempting to fetch the feed URL using the Magpie RSS

parser:

chapter_08/rss_process.php (excerpt)

function updateFeed($sdb, $url)
{
 global $stats;
 global $feedFields;
 global $itemFields;
 global $itemKeyFields;

 $rss = fetch_rss($url);

255Amazon SimpleDB: A Cloud Database

If the fetch succeeds, then BOOK_FEED_DOMAIN and BOOK_FEED_ITEM_DOMAIN will be

updated. Before doing this, it’s important to see if the fetch did succeed:

chapter_08/rss_process.php (excerpt)

 if ($rss !== false)
 {

The success case comes first. updateFeed builds up an attribute array for eventual

storage into the domain using this code:

chapter_08/rss_process.php (excerpt)

 $key = $url;
 $attrs = array('feed_url' => $url,
 'fetch_date' => date('c'),
 'status' => FEED_YES_FETCH);

 foreach ($feedFields as $field)
 {
 if (IsSet($rss->channel[$field])
 && ($rss->channel[$field] != ''))
 {
 $attrs[$field] = $rss->channel[$field];
 }
 }

The attribute array always has the feed’s URL, the date of the fetch, and the status

value. It also has any of the feed’s fields that were listed in the $feedFields array

and actually present in the parsed feed. Once this array has been built, it’s a simple

matter to store the item in SimpleDB:

chapter_08/rss_process.php (excerpt)

 $res = $sdb->put_attributes(BOOK_FEED_DOMAIN, $key,
 $attrs, true);

 if (!$res->isOK())
 {
 return false;
 }

Host Your Web Site in the Cloud256

The next task is to step through and process each of the individual items in the

feed:

chapter_08/rss_process.php (excerpt)

 foreach ($rss->items as $item)
 {

Once again, the code extracts fields and constructs an attributes array, like this:

chapter_08/rss_process.php (excerpt)

 $attrs = array();
 foreach ($itemFields as $field)
 {
 if (IsSet($item[$field]) && ($item[$field] != ''))
 {
 $attrs[$field] = $item[$field];
 }
 }

The next step is to figure out a good unique key. Ideally, one of the fields in the

$itemKeyFields array will exist, so we can use it:

chapter_08/rss_process.php (excerpt)

 $itemKey = null;
 foreach ($itemKeyFields as $field)
 {
 if (IsSet($item[$field]) && ($item[$field] != ''))
 {
 $itemKey = $item[$field];
 break;
 }
 }

If that fails to work, the MD5 hash of all the item’s fields will have to do:

chapter_08/rss_process.php (excerpt)

 if ($itemKey == null)
 {
 $all = '';

257Amazon SimpleDB: A Cloud Database

 foreach ($attrs as $key => $value)
 {
 $all .= $key . '_' . $value . '__';
 }
 $key = md5($all);
 }

Finally, the item is stored in SimpleDB:

chapter_08/rss_process.php (excerpt)

 $res = $sdb->put_attributes(BOOK_FEED_ITEM_DOMAIN, $itemKey,
 $attrs, true);

 if (!$res->isOK())
 {
 return false;
 }
 }
 return true;

If the feed failed to be fetched or parsed, the following code will update its status:

chapter_08/rss_process.php (excerpt)

 }
 else
 {
 $key = $url;
 $attrs = array('feed_url' => $url,
 'fetch_date' => date('c'),
 'status' => FEED_NO_FETCH);

 $res = $sdb->put_attributes(BOOK_FEED_DOMAIN, $key,
 $attrs, true);

 if (!$res->isOK())
 {
 return false; // We failed at failing!
 }

 return false;
 }
}

Host Your Web Site in the Cloud258

And that’s all it takes to store variable RSS feed data in Amazon SimpleDB.

To make this program more useful, we need a script to stuff the queue with feeds.

Here we go:

chapter_08/load_feed_urls.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

if ($argc < 2)
{
 exit('Usage: ' . $argv[0] . " [URL] [-f FILE] ...\n");
}

$sqs = new AmazonSQS();

for ($i = 1; $i < $argc; $i++)
{
 if ($argv[$i] == '-f')
 {
 $urls = file($argv[++$i]);

 foreach ($urls as $url)
 {
 LoadURL($sqs, FEED_QUEUE, trim($url));
 }
 }
 else
 {
 LoadURL($sqs, $queue, $argv[i]);
 }
}

function LoadURL($sqs, $queue, $url)
{

 $message = json_encode(array('FeedURL' => $url));
 $res = $sqs->send_message($queue, $message);

259Amazon SimpleDB: A Cloud Database

 if ($res->isOK())
 {
 print("Posted '${message}' to queue '${queue}'\n");
 }
 else
 {
 $error = $res->body->Error->Message;
 print("Could not post message to queue: ${error}\n");
 }
}

?>

This program will stuff the FEED_QUEUE with URLs specified on the command line

or in a file specified by –f and the file name. Here’s how to process a file:

$ php load_feed_urls.php -f feeds.txt

And here’s how to specify the feed URLs directly:

$ php load_feed_urls.php http://arden.blogs.com/swn/index.rdf

The best way to see this program in action is to host it on an EC2 instance. Launch

several terminal windows simultaneously. First, load up the queue with some feeds:

<dev>: php load_feed_urls.php -f feeds.txt
Posted '{"FeedURL":"http:\/\/angrybethshortbread.blogspot.com\/
➥atom.xml"}' to queue 'https://queue.amazonaws.com/c_feed'
Posted '{"FeedURL":"http:\/\/secondlife.blogs.com\/change\/index.rdf
➥"}' to QueueURL 'https://queue.amazonaws.com/c_feed'
⋮

Start up the feed processor in another window:

<dev>: php rss_process.php -q
http://blogs.electricsheepcompany.com/chris/?feed=rss2 - updated.
http://www.catherineomega.com/feed/ - updated.
⋮

Now, let’s make it more interesting. The feed processor pulls feeds from SQS and

writes data to SimpleDB. It has no persistent state of its own. Therefore, we can

Host Your Web Site in the Cloud260

start up as many additional copies as we would like in order to perform the work

more quickly. I actually ran 40 (yes, forty) copies of rss_process.php in parallel and

processed over 50 feeds per second on my m1.small EC2 instance.

Here’s the script that I used to start up 40 copies of the RSS processor:

chapter_08/start_rss_procs.bash (excerpt)

start_rss_procs.bash
Count=40
Pids=''
for ((i = 1; i <= Count; i++));
do
 Log=parse_out_$i.txt
 echo $Log
 ./rss_process.php -q > $Log 2>&1 &
 Pids="$Pids $!"
done
echo $Pids

The script starts the processes and then displays their PIDs (Process IDs) so that

they can be easily killed when you no longer need them.

I did all this to illustrate an important point—that parallelism is often the key to

high performance when dealing with cloud-based web services such as RSS feeds

and SimpleDB. I can easily add more processes (and more EC2 instances) to speed

up the job or to deal with an increased load. I can trade off time and processing

power any way that I like.

All Stored
Okay, that about wraps up the chapter!

We took a look at the issues that make relational databases difficult to create,

maintain, and scale, and then we took a look at SimpleDB. We reviewed the most

important SimpleDB concepts and then we learned how to create, list, populate,

and query domains using PHP and the AWS SDK for PHP. We wrapped up with a

highly parallelizable example and learned a bit about RSS feeds in the process.

261Amazon SimpleDB: A Cloud Database

Chapter9
Amazon Relational Database Service
In Chapter 8, I told you why your application might have no need for the full power

of a relational database. That’s all well and good, but what if you want to move an

existing MySQL-powered application to the cloud? Or, what if you need to perform

complex queries or join data stored in two or more tables?

In this chapter, we’ll take a look at the Amazon Relational Database Service (RDS).

We’ll see how it lets you take advantage of MySQL’s power, while keeping you

shielded from many of the more complex and time-consuming operational issues.

Introduction
The Relational Database Service makes it easy for you to set up, operate, and scale

a relational database in the cloud. You can use MySQL without spending time

provisioning a server, installing an operating system, installing MySQL, watching

for and installing operating system or database patches, upgrading the server and

storage as your needs change, configuring failover, or scheduling backups and

managing backup files. Amazon RDS handles many of these chores automatically,

and packages the rest of them as simple web service calls. For example, you can

create an RDS DB Instance with a single web service call. The instance will be up

and running and ready for use within a few minutes.

After you finish reading this chapter, I think you’ll agree that Amazon RDS can ac-

tually change the way you think about a relational database. You can create, use,

terminate, and restore your DB Instances on an as-needed basis.

Perhaps you’re moving an application to the cloud and each installation of the ap-

plication requires a private MySQL database. You can automate the entire installation

and provisioning process. Each time a new customer signs up for your service, your

code can call the RDS CreateDBInstance API operation to create a new DB Instance.

Maybe you have a multi-tier application and you want to set up a fully automated

test environment. Again, using the Amazon RDS APIs (or the command line tools),

you can create, use, and terminate DB Instances as part of your testing process.

Or, consider this: say your application accumulates data slowly but consistently

throughout the month, and provides access to the data through some simple, low-

overhead queries. At the end of each month, however, your application initiates a

day-long billing run, during which the queries become complex and time-consuming.

Using Amazon RDS, you can host the database on a system of moderate power for

95% of the month, scale up once per month to support the billing run, and then

scale back down afterwards. You could do this on a daily, weekly, or even seasonal

basis as your needs change. You can also add extra storage space to your database

as your needs grow.

Sound interesting? Let’s learn more!

MySQL Code Ahead

This chapter assumes that you have some basic familiarity with MySQL. If you

know how to use the mysql command from the command line, you’re in good

shape. Of course, you’ll need to have MySQL installed on your system; chances

are you’re already good to go, as you’ve likely installed it along with PHP. If that’s

not the case, Chapter 1 of Kevin Yank’s Build Your Own Database Driven Web

Site Using PHP and MySQL is freely available on sitepoint.com,1 and contains

detailed installation instructions for every platform.

1 http://articles.sitepoint.com/article/php-amp-mysql-1-installation

Host Your Web Site in the Cloud264

http://articles.sitepoint.com/article/php-amp-mysql-1-installation

Amazon Relational Database Service
As we’ve seen time and time again throughout this book, AWS takes care of many

of the underlying details so that you can focus on your application. Amazon RDS

handles much of the operational complexity associated with the creation and

maintenance of a relational database. Despite this, everything that you already know

about MySQL still applies. You can use your existing tools, code, data, and queries.

In this section we’ll examine some key Amazon RDS and MySQL concepts, take a

peek at the Amazon RDS programming model, and wrap up with a look at the

Amazon RDS pricing model.

Amazon RDS Concepts
Most of the operations involving Amazon RDS are centered around a DB Instance.

You can create the DB Instance as a Single-AZ or as a Multi-AZ Deployment (recall

that, as we saw in the section called “Availability Zone” in Chapter 2, AZ is short

for Availability Zone, and that AWS is designed so that failures affecting one AZ

will not affect the others). The Multi-AZ Deployment offers increased availability

and durability by synchronously replicating database updates between multiple

Availability Zones, with automatic failover to a standby in the event of a failure.2

You must specify the DB Instance Class when you create a DB Instance. There are

currently five DB Instance Classes, as shown in Table 9.1.3Unlike EC2, which offers

a choice of 32-bit and 64-bit instance classes, all of the RDS DB Instance Classes are

64-bit.

2 This is a great example of the ability of AWS to turn a very complex system-building task (setting up

a MySQL database with a hot spare, automated failover, and automated recovery) into a very simple and

straightforward menu option.
3 As was the case with Amazon EC2, the set of available DB Instance Classes is expected to grow and

change over time. You can always find the latest list of DB Instance types at http://aws.amazon.com/rds.

265Amazon Relational Database Service

http://aws.amazon.com/rds

Table 9.1. Amazon RDS DB Instance Classesa

Cost/HourRAMCPU Core Speed
(EC2 Compute

Units)

CPU Virtual
Cores

Name

$0.111.7GB11Small

$0.447.5GB22Large

$0.8815GB24Extra Large

$1.3034GB3.254Double Extra Large

$2.6068GB3.258Quadruple Extra Large

a As is the case with all prices mentioned in this book, these are subject to change over time.

You can change the class of a DB Instance in a matter of minutes, so avoid spending

too much time trying to decide which one you’ll need up-front. The costs in Table 9.1

reflect the cost of the Single-AZ deployment for a DB Instance. For Multi-AZ deploy-

ments, the cost for the DB Instance is double that for a Single-AZ deployment.

The DB Instances have no fixed amount of storage. Instead, you specify an initial

storage allocation of 5GB to 1,024GB when you create the DB Instance. You can add

more space (up to the limit of 1,024GB) as your needs (and data) expand. The amount

of space that you specify is known as the allocated storage for the DB Instance.

Additional storage allocation can be added to your DB Instance on the fly without

incurring downtime.

You must specify a DB Instance identifier when you create a DB Instance. This is

a string that must start with a lower-case letter and can contain up to 63 lower-case

letters, digits, and hyphens. The identifier cannot end with a hyphen, nor contain

consecutive hyphens. The identifier must be unique within your account.

Each DB Instance hosts a single copy of a particular database engine. The only

supported engine at press time is version 5.1 of MySQL; the corresponding database

engine identifier is MySQL5.1.

Host Your Web Site in the Cloud266

Storage Engines

MySQL uses the word “engine” to refer to storage engines such as InnoDB and

MyISAM. Each table in a MySQL instance uses a particular storage engine. The

automated backup feature of Amazon RDS (which we’ll get to in a minute) is

currently supported only for InnoDB tables, since InnoDB supports reliable crash

recovery. If you must use MyISAM tables with RDS, it’s vital that you stop all

activity on each table, lock it, and then flush it before backing it up.4

A DB Instance is always in a particular state. The principal states are creating,

backing-up, available, modifying, and deleting. The DB Instance will spend most of

its life in the available state; the other states are transient.

Your application program and database tools must be able to establish a network

connection with your DB Instances. In order to make this possible, you must asso-

ciate a DB Security Group with the DB Instance, and you must authorize ingress

(inbound access) to the DB Instance from a network address range or EC2 Security

Group. Once you’ve done this, you can configure your program and tools to use the

DB Instance’s Endpoint to establish a connection.

Amazon RDS gives you the ability to control the parameters that affect low-level

aspects of the database engine’s performance and behavior using DB Parameter

Groups. Each group contains a list of configuration variables specific to the database

engine. For the MySQL database, the DB Parameter Group will include values such

as innodb_additional_mem_pool_size and innodb_buffer_pool_size. Some of

the values are absolute, and others are specified using a formula; for example, in-

nodb_buffer_pool_size is specified by the formula {DBInstanceClassMemory*3/4}.

This allows the Parameter Group to apply to all of the DB Instance Classes—as the

value will be adjusted based on the features of the Instance Class. If a particular

Parameter Group has no value for a parameter, then a default value that’s specific

to RDS or the database engine is used. Your AWS account contains a default DB

Parameter Group that you can use until you need to change a parameter. When you

modify a parameter group you can choose to apply the update immediately, or on

the next reboot of the DB Instance or Instances associated with the group. Some

4 The Amazon Relational Database Service Developer Guide contains more information about this

topic; you can find it at http://docs.amazonwebservices.com/AmazonRDS/latest/DeveloperGuide/.

267Amazon Relational Database Service

http://docs.amazonwebservices.com/AmazonRDS/latest/DeveloperGuide/

parameters are dynamic and can be applied straight away. Others are static and re-

quire a reboot of the DB Instance.

When you create a new DB Instance you must supply a master user name and a

master user password. Amazon RDS will create an account on the database engine

using the supplied values, which must then be used to create a connection to the

database. This user is given the following MySQL permissions: SELECT, INSERT,

UPDATE, DELETE, CREATE, DROP, RELOAD, PROCESS, REFERENCES, INDEX, ALTER, SHOW

DATABASES, CREATE TEMPORARY TABLES, LOCK TABLES, EXECUTE, CREATE VIEW, SHOW

VIEW, CREATE ROUTINE, ALTER ROUTINE, CREATE USER, EVENT, and TRIGGER.

The Master User also has the GRANT option, so that they can grant permissions to

user accounts that are created after the DB Instance is up and running.

You can optionally supply a database name when you create a new DB Instance. If

you supply a name, Amazon RDS will create an empty database with that name on

the DB Instance.

Each DB Instance has an associated maintenance window. The maintenance window

gives you the flexibility to control when DB Instance modifications (such as scaling

to a different DB Instance Class) and software patching occur. If a maintenance event

is scheduled for a given week, it will be initiated and completed at some point

during the four-hour maintenance window that you specify. Amazon RDS will apply

any pending patches and parameter updates during the weekly four-hour period.

By default, the window is set to a “quiet” time specific to each AWS Region. You

can set the window to any desired part of the week if you have more insight into

the best time (when the least number of users will be affected) for your particular

application. The only maintenance events that require Amazon RDS to take your

DB Instance offline are scale compute operations (which generally take a few minutes

from start to finish) and required software patching. Required patching is automat-

ically scheduled only for patches that affect security or durability. Such patching

occurs infrequently (typically every few months) and should seldom require more

than a fraction of the time in the maintenance window.

The Amazon RDS APIs make the process of backing up a DB Instance simple and

painless. RDS will initiate an automatic backup each day during the DB Instance’s

backup window. The backup files will be retained for the number of days specified

by the instance’s backup retention period. You can also create a DB Snapshot at

Host Your Web Site in the Cloud268

any time, which will be retained until you decide to delete it. You must assign a

unique name to each DB Snapshot. Amazon RDS also stores the change logs for

each database. The logs give you the ability to restore the database to the way it was

at any point in time that’s within the backup retention period, yet older than the

DB Instance’s latest restorable time. This time is typically within five minutes of

the current time.

In any of the cases described above, restoring the database actually means creating

a new DB Instance from the associated backup files. If you think creatively, you

should be able to come up with some really interesting ways to use this feature.

What if your production application starts to misbehave and you want to dig into

the database to see what’s going on? Take a snapshot, restore it to a new DB Instance,

and analyze it in depth without impacting the production system. Deploying a new

version of your code? Take a snapshot of the database first, and you can easily roll

it back if you make a big mistake.

Amazon RDS keeps track of events related to the following sources: DB Instances,

DB Snapshots, DB Security Groups, and DB Parameter Groups. Each event includes

a date and time, a source type, a source name, and a message. You can retrieve

events by source type, source name, and date range.

Each DB Instance reports the following metrics to CloudWatch:

■ CPU utilization
■ free storage
■ number of DB connections
■ number of read operations per second
■ number of write operations per second
■ read latency
■ write latency
■ read throughput
■ write throughput

You can use these metrics to track the overall status and performance of each of

your DB Instances. You can monitor the CPU utilization to drive your decision to

scale to a larger or smaller DB Instance type, and you can watch the Free Storage

to let you know when it’s time to allocate more storage to one of your DB Instances.

269Amazon Relational Database Service

Amazon RDS Programming Model
As is always the case with AWS, each aspect of the Amazon Relational Database

Service is available through web service APIs. You can also use command line tools

and the AWS Management Console to access and manipulate your RDS resources.

The AWS SDK for PHP includes complete support for RDS.

Here’s a quick overview of the available functions:

The create_db_instance function is used to create a new DB Instance. Other

functions that operate on DB Instances include describe_db_instances,

modify_db_instance, reboot_db_instance, and delete_db_instance.

Another set of functions are used to create and manipulate DB Snapshots. These

include create_db_snapshot, describe_db_snapshots, delete_db_snapshot,

restore_db_instance_from_db_snapshot, and

restore_db_instance_to_point_in_time.

Functions for manipulating DB Parameter Groups include

create_db_paramter_group, delete_db_parameter_group,

describe_engine_default_parameters, and modify_db_parameter_group.

Similarly, the functions for manipulating DB Security Groups include

create_db_security_group, describe_db_security_groups,

delete_db_security_group, authorize_db_security_group_ingress, and

revoke_db_security_group_ingress.

The describe_events function is used to gain access to the events produced by

each of your RDS resources.

Amazon RDS Pricing
Your use of the Amazon Relational Database Service is charged based on five usage

dimensions: DB Instance hours, provisioned storage, storage I/O, backup storage,

and data transfer.

DB Instance Hours
Hourly pricing for the use of Single-AZ RDS DB Instances ranges from $0.11 to $2.60

per hour, as we saw in Table 9.1. Pricing for Multi-AZ DB Instances is double what’s

Host Your Web Site in the Cloud270

shown in the table, but this price covers both your primary DB Instance and the

associated standby.

Billing begins when you create the DB Instance and continues, hour by hour, until

you terminate the DB Instance. Note that this is a different model than that used by

SimpleDB, so avoid confusing the two. As mentioned previously, you can change

the class of a DB Instance in a matter of minutes, so don’t be afraid to scale up and

down as your needs dictate.

Provisioned Storage
The provisioned storage associated with a DB Instance is billed at $0.10 per GB per

month for a Single-AZ instance, and twice that for a Multi-AZ instance. You’ll pay

for the amount that you provision, even if you fail to use it. It’s easy (and quick) to

provision additional storage, so there’s no need to over-provision in advance. You

can watch the free storage metric for each of your DB Instances to know when it’s

time to add additional storage.

Storage I/O
You’re charged $0.10 for each million I/O requests you make to the storage provi-

sioned for a DB Instance. Like all other AWS charges, this amount will be prorated

based on actual usage. A Multi-AZ instance will accumulate write requests twice

as fast as a Single-AZ instance, since the data is synchronously replicated as it’s

written.

Backup Storage
Backup storage is used for automated daily backups and for any snapshot backups

that you initiate.

There’s no charge for backup storage up to 100% of the amount of storage that you’ve

provisioned for an active DB Instance. If you exceed this level, or if you terminate

the instance, additional backup storage is priced at $0.15 per GB per month.

Data Transfer
This one is a little bit more complicated. Here are the rules:

■ The first gigabyte of data transfer in and out of Amazon RDS is free.

271Amazon Relational Database Service

■ If you transfer data back and forth between an EC2 Instance and a DB Instance

in different Availability Zones of the same Region, you pay only for the EC2 side

of the data transfer ($0.01 per GB).

■ There’s no charge for the zone-to-zone data transfer that occurs as part of a Multi-

AZ deployment.

■ There’s no charge for data transfer between an EC2 Instance and a DB Instance

in the same Availability Zone.

■ Data transferred into Amazon RDS that isn’t coming from an EC2 Instance is

charged at $0.10 per GB.

■ Data transferred out of Amazon RDS that isn’t going to an EC2 Instance is charged

on a sliding scale that starts at $0.15 per GB.

Using Amazon RDS
With the preliminaries out of the way, let’s now start playing with Amazon RDS.

In this section you’ll sign up to use the Amazon Relational Database Service, take

a tour of the AWS Management Console’s RDS support, and launch a Single-AZ DB

Instance. We’ll configure the DB Instance’s DB Security Group, connect to the DB

Instance from a remote client, and import some data. Once the DB Instance is up

and running, we’ll monitor its performance, initiate a backup, and then learn how

to scale up both processing and storage. We’ll create a DB Instance from a snapshot,

and then terminate both of the DB Instances. You’ll be all set to use RDS in your

own application.

I’ll be using some test data for the exercises in this section, and I will size my DB

Instance accordingly. If you already know how you’ll put Amazon RDS to use, feel

free to adjust the parameters to suit.

Signing Up
If you’ve yet to do so, you’ll need to go to the Amazon RDS page6 and click on the

button labeled Sign Up For Amazon RDS.

6 http://aws.amazon.com/rds

Host Your Web Site in the Cloud272

http://aws.amazon.com/rds

Tour the Console
Once you’re signed up for Amazon RDS, open up the AWS Management Console

at http://aws.amazon.com/, logging in to your AWS account again if necessary. To

avoid having to log in to the console so frequently, click on the Settings item and

uncheck the Sign out on inactivity option, as shown in Figure 9.1.

Figure 9.1. Disabling automatic sign-out

Click on the Amazon RDS tab. Select the nearest AWS Region from the drop-down

menu, and your screen will look like Figure 9.2.

Figure 9.2. The Amazon RDS Console

273Amazon Relational Database Service

http://aws.amazon.com/

Launching a DB Instance
Let’s create a Single-AZ DB Instance using the Launch DB Instance Wizard. Click

on DB Instances in the Navigation area, and then click on the Launch DB Instance button.

Fill in the first page of the wizard as shown in Figure 9.3.

Figure 9.3. The Launch DB Instance Wizard

Leave the DB Instance Class and the Multi-AZ Deployment values as they are. Enter

5GB for the Allocated Storage, set the DB Instance Identifier to mydb, set the Master User

Name to dbuser, and set the Master User Password to dbpass. Press the Continue

button, and fill in the second page of the wizard as in Figure 9.4.

Host Your Web Site in the Cloud274

Figure 9.4. Page two of the launch wizard

Set the Database Name to mydata and leave the other fields as they are. Press the

Continue button and move onto completing page three of the wizard as shown in

Figure 9.5.

Figure 9.5. And to page three of the wizard

275Amazon Relational Database Service

Set the Backup Retention Period to 3 days. Leave the other fields as they come. Click

on the Continue button and verify that you’ve entered the values as desired, as shown

in Figure 9.6.

Figure 9.6. Reviewing your settings

When everything looks good, press the Launch DB Instance button to create your DB

Instance. Close the status page, and return to the DB Instances page of the console.

The status of your DB Instance should be creating. It will stay in this status for a

couple of minutes. If the spinner at the beginning of the row disappears and the

status of your new instance is still creating, click the refresh button every minute

or so until the status changes to available.

Configure a DB Security Group
The next step is to configure the DB Security Group to accept connections from

your client system. There are two separate cases to consider:

Host Your Web Site in the Cloud276

■ Connection from an EC2 Instance running on the same AWS account—if you

already have an EC2 Instance up and running, you can use it as your client ma-

chine. You’ll need to know the name of one of the Security Groups associated

with the EC2 Instance. You’ll also need your twelve-digit AWS Account ID.6

■ Connection from a desktop PC or a server—if your MySQL client application

runs on your desktop or on an existing server, you can also use it as your client

machine. You’ll need to know the machine’s IP address. If your desktop machine

is part of a network that uses network address translation (NAT), use an online

service such as http://www.whatsmyip.org/ to determine the IP address your

network presents to the outside world. Use the ifconfig command to determine

the IP address of your Linux server, or the ipconfig command to determine

your Windows server’s IP address.

With the necessary information in hand, return to the AWS Management Console

and click on DB Security Groups. Click on the DB Security Group named default and

focus your attention on the bottom half of the page.

If you’re planning to connect to your DB Instance from your EC2 Instance, select

EC2 Security Group and fill in the form appropriately; then press the Add button, as

seen in Figure 9.7.

Figure 9.7. Adding an EC2 Security Group authorization

Otherwise, select CIDR/IP and enter an IP address or IP address range in CIDR

notation. If you’re connecting from a single address, simply enter that address fol-

lowed by /32 (this will ensure that only your machine will have access). If you’re

going to be connecting from a range of addresses, you’ll need to ask for the CIDR

address from your network administrator. Once you’ve entered the address, press

the Add button, as shown in Figure 9.8.

6 Log in to the AWS Management Console at http://aws.amazon.com. Your AWS Account ID is labeled

Account Number and can be found on any of the pages linked from the Account section of the console

(Security Credentials, Account Activities, or Usage Reports).

277Amazon Relational Database Service

http://www.whatsmyip.org/
http://aws.amazon.com

Figure 9.8. Adding a CIDR/IP authorization

Access the DB Instance
Okay, where were we? Ah, right. You’ve launched a DB Instance, and it’s up and

running. You’ve added a rule to the DB Security Group and you should be able to

access the database from an application. The next step is to retrieve the information

needed to connect to the database. Return to the console and click on DB Instances.

Click on your instance and focus your attention on the bottom half of the page.

Locate the field labeled Endpoint. Select the name and copy it to your clipboard.

Mine is shown in Figure 9.9.

Figure 9.9. My DB Instance Endpoint

mydb is the DB Instance identifier that I specified when I created the DB Instance.

us-east-1.rds.amazonaws.com indicates that I’m accessing a DB Instance located

in the us-east-1 (Northern Virginia) Region. cykjykynyvvn is a unique identifier

(and not, as you might otherwise assume, the Welsh word for “chicken”).

Now head over to your client, and start up the mysql command like this:

$mysql -u dbuser -p -h mydb.cykjykynyvvn.us-east-1.rds.amazonaws.com

Replace dbuser with the master user name that you specified when you created the

DB instance. Replace the string after –h with the value that you just copied from

the console.

When the mysql command prompts you for a password, enter the master user

password that you specified, and log in:

Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 27

Host Your Web Site in the Cloud278

Server version: 5.1.45-log MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Congratulations, you did it! You’ve launched a DB Instance and connected to it.

Now you can verify that RDS created an empty database for you:

mysql>show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| innodb |
| mydata |
| mysql |
+--------------------+
4 rows in set (0.00 sec)

mysql>use mydata;
Database changed
mysql>show tables;
Empty set (0.00 sec)

Import Some Data
The next step is to populate the database with some data. I happened to have a file

with the URLs of about 200,000 RSS feeds handy, so I used that. First, I created a

table for the data:

mysql>create table feeds (feedid int(11), url varchar(255));
Query OK, 0 rows affected (0.08 sec)

Then I imported the data into the DB Instance:

mysql>load data local infile "feeds.txt" into table feeds fields
➥terminated by "," enclosed by '"';
Query OK, 215825 rows affected (4.53 sec)
Records: 215825 Deleted: 0 Skipped: 0 Warnings: 0

And verified that it was present:

279Amazon Relational Database Service

mysql>select * from feeds order by rand() limit 10;
+--------+---+
| feedid | url |
+--------+---+
333143	http://www.livejournal.com/users/so_delicate/data/atom/
166339	http://www.vivat.be/rss_nl.asp?section=7
422894	http://sociable.blogspot.com/atom.xml
276630	http://www.livejournal.com/users/faizmagic/data/atom/
530872	http://blogs.guardian.co.uk/games/index.xml
423608	http://rss-lebanon.com/blogs/xmlsrv/rss2.php?blog=2
547146	http://faboffer.com/articles/dwi-law/rss.xml
213177	http://randomnumbers.us/wp-rss2.php
500848	http://feeds.healthywomen.org/nwhrc_newshcp
347547	http://www.livejournal.com/users/_clearblur_/data/atom/
+--------+---+
10 rows in set (1.08 sec)

You probably have some interesting data of your own, so feel free to use it for this

step.

Administering RDS
Now that you know how to interact with your DB Instance, let’s have a quick look

at the various ways in which you can administer your instances.

Monitor Instance Performance
Head back over to the console and click on the instance. Then head towards the

bottom of the page and click on the Monitoring tab. Figure 9.10 shows what my

screen looked like.

Host Your Web Site in the Cloud280

Figure 9.10. Monitoring the DB Instance

You can see that I loaded enough data to move the line on the graph labeled Avg

Free Storage. The other graphs show momentary blips which correspond to the in-

creased system load or network traffic related to the data that I loaded and then

queried.

Initiate a Snapshot Backup
Let’s make a snapshot backup before moving forward. Right-click on the DB Instance

and choose Take Snapshot, as Figure 9.11 shows.

281Amazon Relational Database Service

Figure 9.11. Taking a snapshot backup

Enter a name for the DB Snapshot and press the Yes, Take Snapshot button.

The console will automatically switch to the DB Snapshots page and your new

snapshot should be present, with a status of creating. The status will change to

available after a few minutes.

The snapshots always reflect the state of the database at the time the snapshot was

started. There’s no need to flush data to disk or to suspend the application. You can

click on the Recent Events tab in the lower half of the console to see the events gen-

erated when the snapshot was taken, as shown in Figure 9.12.

Figure 9.12. Recent events pertaining to our snapshot

Scale-up Processing
Let’s pretend that you’ve used this DB Instance for testing, and you’re now ready

to move it into production. You’re really happy with the system and expect to see

a veritable flood of users on the first day. Because you’ll be drinking champagne

and eating cake while this is happening, you decide to scale up the processing

Host Your Web Site in the Cloud282

power in advance of the flood. Right-click the DB Instance and select the Modify

option; you’ll be led to the screen shown in Figure 9.13.

Figure 9.13. Scaling up a DB Instance

Select the new DB Instance Class and check Apply Immediately, then press the OK

button. The state of the DB Instance will change to modifying, and a new entry will

appear in the Recent Events tab to indicate that the Instance Class is being modified.

Once the modification is complete, the state will be available and a corresponding

event will appear. As you can see from my event log—shown in Figure 9.14—the

entire scaling operation took just six minutes.

283Amazon Relational Database Service

Figure 9.14. The event log resulting from modifying the DB Instance

If you receive less traffic than you expected, you can scale down to a smaller and

less expensive DB Instance type in the same way.

You can increase the amount of storage allocated to the instance using the same

Modify operation, but you can never decrease it.

Scale-up Storage
After you return from your champagne and cake, you check your RDS monitoring

and see that your free storage is now down to less than 1GB. Time to add more!

Right-click the DB Instance and choose Modify. This time, change the Allocated

Storage to a larger value, as shown in Figure 9.15. Remember to check Apply Imme-

diately.

Figure 9.15. Scaling up the DB Instance’s allocated storage

Your instance will remain operational and accessible while Amazon RDS adds more

storage, so you can do this at any time. Again, use the Recent Events tab to check on

the progress of the modification. My event log showed that increasing allocated

Host Your Web Site in the Cloud284

storage from 5GB to 8GB took less than five minutes. The increased storage allocation

is visible in the Monitoring tab, as you can see in Figure 9.16.

Figure 9.16. The Monitoring tab shows the increase in allocated storage

Create a DB Instance from a DB Snapshot or to a
Point in Time
The AWS Management Console also allows you to create a DB Instance from any

of your DB Snapshots or to the exact state in which it was at any point in time

within the backup retention period. You can initiate these operations from the DB

Snapshots and DB Instances pages, respectively.

Convert to Multi-AZ
You can convert your Single-AZ DB Instance to a Multi-AZ DB Instance (and vice

versa) at any time. You can initiate this process from the console by invoking the

Modify operation and changing the value of the Multi-AZ Deployment setting, as shown

in Figure 9.17.

Figure 9.17. Changing a DB Instance to Multi-AZ Deployment

285Amazon Relational Database Service

The conversion from Single-AZ to Multi-AZ took just seven minutes for my sample

instance with 8GB of allocated storage. The state of the DB Instance will transition

from available to modifying (and back) during the modification process, but the DB

Instance remains online.

Delete DB Instances
The final step in the life cycle of a DB Instance is deletion. Amazon RDS allows you

to take a final snapshot of your instance so that you can capture its state just before

you terminate it, as Figure 9.18 shows.

Figure 9.18. Creating a snapshot before deleting an instance

The state of the DB Instance will transition from available to deleting before the in-

stance disappears entirely.

And That’s a Wrap
At this point you should know enough about Amazon RDS to start migrating your

existing MySQL-powered application. You can export the data from your existing

database and then import it into a new DB Instance using the information in the

section called “Access the DB Instance” and the section called “Import Some Data”.

You’ll need to alter your existing code to use the new connection string, and you’ll

have to set up your DB Security Group to allow network access from your application

layer.

Host Your Web Site in the Cloud286

You can remove your existing backup regimen, and set up automated backups using

the console.

Once everything is working as desired, you can start to take advantage of additional

Amazon RDS features such as the ability to change DB Instance types on demand

or Multi-AZ deployment. From there you can think about how to incorporate Amazon

RDS into your development and testing process in new and unique ways.

287Amazon Relational Database Service

Chapter10
Advanced AWS
In this chapter we’ll build on what we’ve already learned. We’ll take a look at some

advanced topics including accounting and tracking of your AWS usage, use of

elastic block storage volumes, access to EC2’s instance metadata, and dynamic

diagramming of your AWS-powered system.

Accounting and Tracking
The dynamic nature of AWS—the ease with which you can store more data in

Amazon S3, create and populate domains in SimpleDB, and launch EC2 in-

stances—means that you should stay aware of your usage (and the associated costs).

Account Activity
You can track your account activity manually by visiting http://aws.amazon.com

and selecting Account Activity from the Your Account menu. After logging in you’ll

be able to see detailed usage and cost information for each of the services that you

use. You can expand each section using the + icon next to the name of the service.

Figure 10.1 shows my account activity for August of 2009:

Figure 10.1. A month’s worth of account activity for the author

Host Your Web Site in the Cloud290

If your AWS usage varies from day to day you should make a point of checking your

account activity. This is doubly true if you’re serving up large amounts of content

or using the auto scale feature to launch additional EC2 instances in response to

increased system load or traffic.

Access to Usage Data
The raw data used to generate account activity can be downloaded from the AWS

portal by selecting the Usage Reports option from the menu. You can download re-

ports for any service—with control of the time period, usage types, and data format

(XML or CSV)—as depicted in Figure 10.2.

Figure 10.2. Downloading AWS usage reports

Since we’ve already learned how to process XML, let’s work with a CSV (Comma-

Separated Value) file this time so that we have the opportunity to learn a new skill.

We’ll access the data, store it in SimpleDB, and then retrieve and visualize it.

Start by downloading data for any (or all) of the services that you’ve used. Set the

Report Granularity to Days, choose a Time Period that will represent your recent AWS

usage (I started from January 1, 2009 and downloaded almost eight full months of

data), and then click Download report (CSV).

291Advanced AWS

Depending on how your browser is configured, you may end up with a screen full

of data or a new file in your download history. Either way, do what you need to do

to transfer the data to your running EC2 instance. I opened the file in a local copy

of Notepad, selected and copied the text, and then pasted it into an emacs buffer

running on my EC2 instance. I named my EC2 usage file ec2_usage.csv, but you can

use any name that you want.

Importing Usage Data
Here are the first few lines of my ec2_usage.csv file:

Service, Operation, UsageType, StartTime, EndTime, UsageValue
AmazonEC2,PublicIP-In,DataTransfer-Regional-Bytes,01/01/09 00:00:00,
➥01/02/09 00:00:00,97625
AmazonEC2,RunInstances,BoxUsage,01/01/09 00:00:00,01/02/09 00:00:00,
➥24
AmazonEC2,ElasticIP-Out,DataTransfer-Regional-Bytes,01/01/09 00:00:0
➥0,01/02/09 00:00:00,558960
AmazonEC2,ElasticIP-In,DataTransfer-Regional-Bytes,01/01/09 00:00:00
➥,01/02/09 00:00:00,24449
⋮

The first line of the file provides the field names, while the other lines contain data:

one record per line, with values separated by commas. PHP’s fgetcsv function

makes it easy to deal with CSV files. The function reads a line from a file, separates

the fields at comma boundaries (respecting quoted strings), and returns an array of

values. Here’s what it returns for the first line of my file:

Array
(
 [0] => Service
 [1] => Operation
 [2] => UsageType
 [3] => StartTime
 [4] => EndTime
 [5] => UsageValue
)

The usage data files for each AWS service contain some common fields and some

that are specific to a particular service. For example, the usage data files for S3 also

contain a Resource field. This field associates the usage data with an S3 bucket.

Host Your Web Site in the Cloud292

Similarly, the usage data files for Amazon CloudFront use the Resource field to

identify the account data associated with a particular CloudFront distribution.

Because the data format contains common elements and some service-specific

variants, Amazon SimpleDB makes an ideal storage system for it. We will need a

domain:

chapter_10/include/book.inc.php (excerpt)

define('BOOK_AWS_USAGE_DOMAIN', 'aws_usage');

We can use a modified version of the domain creation program from Chapter 8 to

create this domain:

chapter_10/create_domain.php (excerpt)

⋮
$res = $sdb->create_domain(BOOK_AWS_USAGE_DOMAIN);
⋮

Let’s put together a program to import data from one or more CSV files specified

on the command line. Here’s what we need to start off:

chapter_10/import_usage.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

if ($argc == 1)
{
 exit("Usage: " . $argv[0] . " CSV_FILE ...\n");
}

The script expects to find one or more CSV files on the command line and the code

above performs this check. It then outputs a helpful message if there are too few

command line arguments.

293Advanced AWS

We’ll be storing data in SimpleDB, so we’ll need an access object:

chapter_10/import_usage.php (excerpt)

$sdb = new AmazonSDB();

Then we can process each file using the custom ImportCSV function we’ll be writing

soon:

chapter_10/import_usage.php (excerpt)

for ($i = 1; $i < $argc; $i++)
{
 $file = $argv[$i];

 if (($ret = ImportCSV($sdb, $file)) !== false)
 {
 print("Imported ${file}: ${ret} records\n");
 }
 else
 {
 print("Did not import ${file}\n");
 }
}

Let’s take a look at the ImportCSV function. The first step is to try to open the file;

this will return false if it’s unable to be opened:

chapter_10/import_usage.php (excerpt)

function ImportCSV($sdb, $file)
{
 $fp = fopen($file, 'r');
 if ($fp === false)
 {
 return false;
 }

Since the first line of a CSV file contains the field names, we read it into the $fields

array. We’ll need these names as we process and store each line of data. We’ll also

track the number of lines of data that have been read and processed:

Host Your Web Site in the Cloud294

chapter_10/import_usage.php (excerpt)

$fields = fgetcsv($fp);
$recordCount = 0;

Now we can process each of the data lines:

chapter_10/import_usage.php (excerpt)

 while (($data = fgetcsv($fp)) !== false)
 {
 $recordCount++;

As I discussed in Chapter 8, there’s an art to the choice of SimpleDB keys. When I

built this tool I wanted to be able to import the same data file, or multiple data files

with overlapping dates, while retaining the integrity of the data. After some exper-

imentation, I composed a key by concatenating the name of the service and the MD5

hash of the non-data fields (everything except the UsageValue). My algorithm pro-

duced keys like this:

AmazonS3_c8e3df29d22bca8b7e73fd3b35152133
AmazonS3_2efdc1f3ab71d5b11cb3aa5cb738909d
AmazonEC2_2a88d9d6945f7d081714f31abe610400
AmazonEC2_11ebe64d3b6b0cab959a6d91edaad8cb

Let’s proceed. We start out with Key and KeyData variables:

chapter_10/import_usage.php (excerpt)

 $key = '';
 $keyData = '';

Then each field of each line is processed. Recall that the $fields variable contains

the field names for the file. I also altered the format of the date fields (StartTime

and EndTime) to allow for better range-based queries later. Here’s the field processing

code:

295Advanced AWS

chapter_10/import_usage.php (excerpt)

 $attrs = array();
 for ($i = 0; $i < count($fields); $i++)
 {
 if (($fields[$i] == 'StartTime') ||
 ($fields[$i] == 'EndTime'))
 {
 $data[$i] = date_create($data[$i])->format('c');
 }

 $attrs[$fields[$i]] = $data[$i];

 if ($fields[$i] == 'Service')
 {
 $key = $data[$i];
 }

 if ($fields[$i] != 'UsageValue')
 {
 $keyData .= $data[$i];
 }
 }

At the conclusion of this loop, the $attrs array contains the data to be written to

SimpleDB, $key contains the prefix for the key, and $keyData contains the data to

be hashed to form the remainder of the key. Here’s a dump of the $attrs array for

my data:

Array
(
 [Service] => AmazonEC2
 [Operation] => ElasticIP-Out
 [UsageType] => DataTransfer-Regional-Bytes
 [StartTime] => 2009-08-01T00:00:00-04:00
 [EndTime] => 2009-08-02T00:00:00-04:00
 [UsageValue] => 4982241
)

Host Your Web Site in the Cloud296

I should probably pad the UsageValue field to a fixed length. I had no plans to do

any queries against this field, hence why I left off doing so.1 Note how the field

names from the input file directly control the way data is stored in SimpleDB.

Putting everything together, here’s how to form the SimpleDB key:

chapter_10/import_usage.php (excerpt)

 $key = $key . '_' . md5($keyData);

Finally, we store the data in SimpleDB, taking care to specify that any existing at-

tributes with the same name should be replaced:

chapter_10/import_usage.php (excerpt)

 $res = $sdb->put_attributes(BOOK_AWS_USAGE_DOMAIN,
 $key, $attrs, true);

A quick error check, and we’re almost there:

chapter_10/import_usage.php (excerpt)

 if (!$res->isOK())
 {
 $error = $res->body->Errors->Error->Message;
 print("Could not insert ${key}: ${error}\n");
 }
 }

The final step, after all the lines have been processed, is to close the file and return

the record count:

chapter_10/import_usage.php (excerpt)

 fclose($fp);
 return $recordCount;
}
?>

1 This is probably short-sighted on my part, but I do need to leave some coding as an exercise for you

to do yourself!

297Advanced AWS

After you’ve downloaded all usage files to your EC2 instance, run the import program

like this:

<dev>: php import_usage.php *.csv

It will process each file in turn, reporting on the record count for each one:

Imported cf_usage_year.csv: 242 records
Imported ec2_usage.csv: 138 records

Importing large files may take some time. You can run several instances of this

program in parallel, one per data file, if you like.

Querying Account Data
With the data stored, the next step is to look at interesting ways of querying the

account data. I took the simple query command (query_usage_cmd.php) from Chapter 8

and enhanced it so that it could retrieve all the results, rather than stopping after

the first batch. I did this by tracking and using the NextToken value returned from

each select call. Here’s the main loop structure:

chapter_10/query_usage_cmd.php (excerpt)

⋮
$next = null;
do
{
 $attrs = ($next == null) ? null : array('NextToken' => $next);
 $res = $sdb->select($query, $attrs);
 $next = (string) $res->body->SelectResult->NextToken;

 if (!$res->isOK())
 {
 exit("Select operation failed\n");
 }

 foreach ($res->body->SelectResult->Item as $item)
 {
 $recordCount++;
 foreach ($item->Attribute as $attribute)
 {
 print($attribute->Name . ": " . $attribute->Value . ", ");

Host Your Web Site in the Cloud298

 if ($attribute->Name == 'UsageValue')
 {
 $totalUsage += (int) $attribute->Value;
 }
 }
 print("\n");
 }
}
while ($next != null);
⋮

Here’s the command in action.2 The first command simply retrieves all the usage

data:

<dev>: php query_usage_cmd.php
Final query: select * from aws_usage
EndTime: 2009-08-02T00:00:00-04:00, UsageType: DataTransfer-Regional
➥-Bytes, UsageValue: 4982241, Operation: ElasticIP-Out, StartTime:
➥ 2009-08-01T00:00:00-04:00, Service: AmazonEC2,
EndTime: 2009-08-02T00:00:00-04:00, UsageType: BoxMonitoringUsage,
➥ UsageValue: 24, Operation: RunInstances, StartTime: 2009-08-01T00
➥:00:00-04:00, Service: AmazonEC2,
EndTime: 2009-08-02T00:00:00-04:00, UsageType: DataTransfer-Regional
➥-Bytes, UsageValue: 308692, Operation: ElasticIP-In, StartTime:
➥ 2009-08-01T00:00:00-04:00, Service: AmazonEC2,

Additional command arguments are added to the query, with a single where prefix.

Here’s how to retrieve usage data for a single service (note that the command line

contains both double and single quotes):

<dev>: php query_usage_cmd.php "Service='AmazonS3'"
Final query: select * from aws_usage where Service='AmazonS3'
EndTime: 2009-06-05T00:00:00-04:00, UsageType: StorageObjectCount,
➥ UsageValue: 2, Operation: StandardStorage, StartTime:
➥ 2009-06-04T00:00:00-04:00, Service: AmazonS3, Resource:
➥ aws-dev-relations,
⋮

Retrieving usage data for a single day for a single service:

2 This looks a lot better on a wide-screen monitor, with no line wrapping.

299Advanced AWS

<dev>: php query_usage_cmd.php "Service='AmazonS3' and
➥ StartTime like '2009-08-01%'"
Final query: select * from aws_usage where Service='AmazonS3'
➥ and StartTime like '2009-08-01%'
EndTime: 2009-08-02T00:00:00-04:00, UsageType: Requests-Tier1,
➥ UsageValue: 291, Operation: PutObject, StartTime: 2009-08-01T00:
➥00:00-04:00, Service: AmazonS3, Resource: wsdot-bridges,
⋮

And finally, a month’s worth of data for a single operation on a single service:3

<dev>: php query_usage_cmd.php "Service='AmazonS3' and
➥ StartTime like '2009-08%' and UsageType='DataTransfer-Out-Bytes'
➥ order by StartTime
Final query: select * from aws_usage where Service='AmazonS3'
➥ and StartTime like '2009-08%'
➥and UsageType='DataTransfer-Out-Bytes' order by StartTime
EndTime: 2009-08-02T00:00:00-04:00, UsageType:
➥ DataTransfer-Out-Bytes, UsageValue: 57360567, Operation:
➥ GetObject, StartTime: 2009-08-01T00:00:00-04:00, Service:
➥ AmazonS3, Resource: jeffbarr-public,
⋮

So now we can slice and dice our usage data any way that we’d like. Although this

section is focused on processing the usage data, it’s worth mentioning how easy it

was to import and query the data using SimpleDB. As new services (and associated

usage reports) become available, no code changes will be needed to accommodate

them.

Retrieving and Displaying Usage Data
Okay, the final step of our exercise is to display the data. Let’s put together a little

program to pull it out of SimpleDB and render it as an HTML table. Here’s how it

starts—the first step is to specify the usage value to be retrieved and displayed:

chapter_10/bucket_usage_page.php (excerpt)

<?php

error_reporting(E_ALL);

3 This little utility also turns out to be the ideal vehicle for experimenting with SimpleDB’s SQL.

Host Your Web Site in the Cloud300

require_once('sdk.class.php');
require_once('include/book.inc.php');

$usage = "DataTransfer-Out-Bytes";

I’ll display outbound data transferred. This represents the number of bytes of S3

object data transferred from S3 to the outside world. Of course, feel free to replace

the value in quotes with another type of usage such as DataTransfer-In-Bytes

(the number of bytes of data transferred from the outside world to S3) or

StorageObjectCount (the number of objects stored in the bucket), or even

TimedStorage-ByteHrs (the number of byte-hours consumed by the data stored in

the bucket).

By the way, a byte-hour is totally unrelated to the amount of time you spend in a

dentist’s chair. It represents the sum of the number of bytes stored multiplied by

the number of hours they were stored. One of my buckets has a bytes-hour usage

value of 14,597,270,160. This means that the bucket held about 608 megabytes for

the 24-hour period starting August 18th, 2009.

The script will report on the usage for each S3 bucket, so we create the usual access

objects and fetch the list of buckets:

chapter_10/bucket_usage_page.php (excerpt)

$s3 = new AmazonS3();
$sdb = new AmazonSDB();

$buckets = $s3->get_bucket_list();

Now we need to do some date arithmetic. We’ll report on the range of dates starting

from the previous day and going back six days before that, or a full week’s worth

of data. The following code sets up $firstDay and $lastDay for a date range query,

and also creates the $days array, with a year-month-day representation of each date

in the range. Here we go:

301Advanced AWS

chapter_10/bucket_usage_page.php (excerpt)

$today = date_create("now");
$lastDay = $today->format("Y-m-d");

$days = array();
for ($i = 0; $i < 7; $i++)
{
 date_modify($today, "-1 day");
 $days[] = $today->format("Y-m-d");
}

$firstDay = $days[6];

We’ll be using the $days array to generate the HTML table column headers.

Okay, now we reach the good part—fetching the usage data for each bucket and

storing it in the $rows array for eventual generation of the table rows. The loop

simply iterates over each bucket and calls a custom GetUsage function to retrieve

the S3 usage data from SimpleDB. It looks like this:

chapter_10/bucket_usage_page.php (excerpt)

$rows = array();

foreach ($buckets as $bucket)
{
 $dailyUsage = GetUsage($sdb,$usage,$bucket,$firstDay,$lastDay);

GetUsage will return an empty array if there’s no usage data for the bucket within

the given date interval. To keep the output compact, the code below simply skips

such buckets. The usage data array is stored in the $rows array with the bucket name

as the key. If there’s no data for a given day an empty string is stored in the array.

Finally, the daily total is also stored as the last array element for the bucket data

array:

chapter_10/bucket_usage_page.php (excerpt)

 if (count($dailyUsage) > 0)
 {
 $rows[$bucket] = array();

Host Your Web Site in the Cloud302

 foreach ($days as $day)
 {
 if (IsSet($dailyUsage[$day]))
 {
 $rows[$bucket][] = $dailyUsage[$day];
 }
 else
 {
 $rows[$bucket][] = '';
 }
 }
 $rows[$bucket][] = array_sum($dailyUsage);
 }
}

The remaining complexity resides within the GetUsage function. Here’s what it

looks like:

chapter_10/bucket_usage_page.php (excerpt)

function GetUsage($sdb, $usage, $bucket, $firstDay, $lastDay)
{
 $query =
 "select StartTime, UsageValue " .
 " from " . BOOK_AWS_USAGE_DOMAIN .
 " where" .
 " Service='AmazonS3' and " .
 " StartTime >= '${firstDay}' and " .
 " StartTime <= '${lastDay}' and " .
 " Resource='${bucket}' and " .
 " UsageType='${usage}'";

 $res = $sdb->select($query);
 if (!$res->isOK())
 {
 return null;
 }

 $dailyUsage = array();
 foreach ($res->body->SelectResult->Item as $item)
 {
 $attrs = getItemAttributes($item);
 $startTime = substr($attrs['StartTime'], 0, 10);
 $usage = $attrs['UsageValue'];

303Advanced AWS

 $dailyUsage[$startTime] = $usage;
 }

 return $dailyUsage;
}

This looks long but it’s really simple. It builds the query, runs it, checks the result,

and builds an array of the usage indexed by day. The array’s returned as the value

of the function.

The HTML template is the final component of our report page. It begins in the

usual way:

chapter_10/bucket_usage_page.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title><?php echo $output_title ?></title>
 </head>
 <body>
 <h1><?php echo $output_title ?></h1>
 <p><?php echo $output_message ?></p>

There are two parts to this template so let’s look at them separately. First, we need

to generate the table header row by iterating over the $days array:

chapter_10/bucket_usage_page.php (excerpt)

 <table>
 <thead>
 <tr>
 <th>Bucket</th>
 <?php foreach($days as $day): ?>
 <th><?php echo $day ?></th>
 <?php endforeach ?>
 <th>Total For Bucket</th>
 </tr>
 </thead>

Next, we generate the table body and finish the page:

Host Your Web Site in the Cloud304

chapter_10/bucket_usage_page.php (excerpt)

 <tbody>
 <?php foreach($rows as $bucket => $cells): ?>
 <tr>
 <td><?php echo $bucket ?></td>
 <?php foreach($cells as $cell): ?>
 <td>
 <?php echo ($cell == '') ? ' '
 : number_format($cell); ?>
 </td>
 <?php endforeach ?>
 </tr>
 <?php endforeach ?>
 </tbody>
 </table>
 </body>
</html>

With nested foreach loops, we iterate over the array of buckets and the array of cell

data for each bucket. The number_format function adds commas to make the numbers

look presentable. Empty table cells are filled with a single non-breaking space

(). Figure 10.3 displays an example of the resulting table.

Figure 10.3. Outbound data transfer of each bucket per day

You should be able to modify this program to display other types of S3 usage with

just a minute or two’s worth of work. You could chart the data or flag outliers. With

a little more work you could report on EC2, SimpleDB, CloudFront, or SQS usage

as well.

305Advanced AWS

Elastic Block Storage
We covered the basics of Amazon EC2’s Elastic Block Storage feature in Chapter 5,

where we learned how to create, attach, format, and mount EBS volumes on an EC2

instance. In this section you’ll learn more about EBS. We’ll cover command line

usage, see how to do backups, learn about public data sets, and see how to increase

performance or capacity by creating a RAID device on top of multiple EBS volumes.

EBS from the Command Line
You can perform all the EBS functions from the command line. You can create, at-

tach, snapshot (back up), detach, and delete EBS volumes.

An EBS volume can be attached to any EC2 instance in the same Availability Zone.

If you have a running instance, you can determine its Availability Zone from the

AWS Management Console or from the command line. You can also retrieve this

information (and a lot more) from the EC2 instance metadata, which we’ll talk about

later in this chapter.

With the Availability Zone in hand, here’s how you create a new EBS volume from

the command line:

$ ec2-create-volume -z us-east-1b -s 50
VOLUME vol-73d4211a 50 us-east-1b creating
➥ 2009-08-20T19:12:09+0000

The volume status is reported as “creating” immediately after execution of this

command. The command also displays the volume ID (vol-73d4211a in my case).

You’ll need this ID later.

You need to wait (ordinarily just a matter of seconds) until the volume becomes

available before proceeding. Here’s how to check it:

$ ec2-describe-volumes vol-73d4211a
VOLUME vol-73d4211a 50 us-east-1b available
➥ 2009-08-20T19:12:09+0000

Now you need to attach the volume to your instance. You’ll need the instance’s ID,

the volume ID, and a device name. Although Linux disk device names are essentially

Host Your Web Site in the Cloud306

arbitrary, by convention they reside in the /dev directory and have names that start

with sd, followed by another letter. The EC2 system disk is /dev/sda and the other

local disks (on the larger-sized instances) are sdb, sdc, and so forth. /dev/sdf is a

good device name for the first EBS volume attached to the instance (as “f” is far

enough down the alphabet to avoid colliding with another device). Here’s how to

attach it:

$ ec2-attach-volume vol-73d4211a -i i-da8f6db2 -d /dev/sdf
ATTACHMENT vol-73d4211a i-da8f6db2 /dev/sdf
➥attaching 2009-08-20T19:26:08+0000

The command accepts the volume ID, followed by -i and the instance ID, and -d

and the device name. The volume status changes to “attaching.” It will stay in this

state for a few seconds before transitioning to “attached”:

$ ec2-describe-volumes vol-73d4211a
ATTACHMENT vol-73d4211a i-da8f6db2 /dev/sdf
➥attached 2009-08-20T19:26:08+0000

At this point, we have done the cloud computing equivalent of procuring a disk

drive, plugging it into a server, and attaching the data cable. The disk is physically

connected and running; the operating system is aware of it, but the disk is raw

(unformatted) and yet to be part of the file system.

The next step is to create a file system on the new volume and an attachment (mount

point), and we can logically mount the volume on the instance’s root file system.

We’ll follow the same procedure from the section called “Creating an EBS Volume”

in Chapter 5 (you’ll need to log in to your EC2 instance to run these commands):

<dev>: mkfs -F /dev/sdf
<dev>: mkdir /data
<dev>: mount /dev/sdf /data

You can mount an EBS volume on any location in your instance’s file system. If

you’re planning to create and use a large number of volumes, you should take the

time to plan out a logical name structure beforehand.

The volume is now ready for use. You can create directories, store files, and do

whatever you need to inside of the /data directory hierarchy. I’m going to need some

307Advanced AWS

data in my /data directory for the examples in the next section, so I’m going to copy

the contents of /usr/lib (about 250MB) over:

<dev>: cp -r /usr/lib /data

EBS Snapshots
Let’s say that I want to create a backup of my EBS volume as it exists at this point.

The first step is to make sure that any in-memory data has been written to disk:

<dev>: sync

If you’re using the EBS volume to store database files, you should probably shut

the database server down before you create the backup. This will ensure that the

backup is complete and logically consistent.

Creating the backup—a snapshot in EBS terms—is very easy:

$ ec2-create-snapshot vol-73d4211a
SNAPSHOT snap-c7e849ae vol-73d4211a pending
➥ 2009-08-20T19:52:35+0000

Once the snapshot has been initiated, it’s safe to resume writing data to the volume.

The snapshot may take some time to complete, but it will always represent the state

of the volume at the time the snapshot was initiated.

You can check on the status of your snapshot like this:

$ ec2-describe-snapshots
SNAPSHOT snap-c7e849ae vol-73d4211a pending
➥ 2009-08-20T19:52:35+0000

The first snapshot for an EBS volume is similar to a traditional, full backup. It

contains all the information written to the volume. Second and subsequent snapshots

are similar to traditional incremental backups. They contain only the information

that’s been changed since the previous backup. EBS takes care of all the details of

this behind the scenes. Even if you delete the first snapshot, sufficient data will be

retained to allow you to create new volumes from any of the other snapshots.

Host Your Web Site in the Cloud308

Snapshots are stored in Amazon S3 and take on all the desirable attributes that

you’d expect. In particular, they’re stored at low cost with high reliability.

The snapshot’s state will eventually transition to “completed.” The volume has

been backed up:

$ ec2-describe-snapshots
SNAPSHOT snap-c7e849ae vol-73d4211a completed
➥ 2009-08-20T19:52:35+0000 100%

EBS snapshots can be used to create new volumes in the same or different availability

zone. This is achieved by including the snapshot ID (snap-c7e849ae in my example)

when the volume is created. I can create a new volume, with contents identical to

the original at the time that I created the snapshot, as follows:

$ ec2-create-volume -z us-east-1b -s 50 --snapshot
➥ snap-c7e849ae
VOLUME vol-00d72269 50 snap-c7e849ae us-east-1b
➥ creating 2009-08-20T20:17:35+0000

Once the new volume’s state turns to available, I need to attach it to an instance

(in this case I’ll use the same one that I started with, but they can be attached to any

EC2 instance in the same Availability Zone), create a mount point, and then mount

it, all in one fell swoop this time:

$ ec2-attach-volume vol-00d72269 -i i-da8f6db2 -d /dev/sdg
ATTACHMENT vol-00d72269 i-da8f6db2 /dev/sdg
➥ attaching 2009-08-20T20:21:18+0000

Next, create a mount point:

<dev>: mkdir /data2
<dev>: mount /dev/sdf /data2

At this point /data and /data2 are exact duplicates of each other.

I can add more data to /data and then create another snapshot:

<dev>: cp -r /usr/java /data

309Advanced AWS

$ ec2-create-snapshot vol-73d4211a
SNAPSHOT snap-b1ed4cd8 vol-73d4211a pending
➥ 2009-08-20T20:27:04+0000

I now have two snapshots (with different contents) of the same volume. I can create

new volumes from either one:

$ ec2-describe-snapshots
SNAPSHOT snap-c7e849ae vol-73d4211a completed
➥ 2009-08-20T19:52:35+0000 100%
SNAPSHOT snap-b1ed4cd8 vol-73d4211a completed
➥ 2009-08-20T20:27:04+0000 100%

On a production system you’ll probably have lots and lots of snapshots. Take care

to track the reason for each snapshot (for example, “Snapshot of development volume

on Mack’s instance before beta release 1.5”). You could write this on a sticky note

and keep it under your keyboard, or you could write a little AWS program to capture

the data in SimpleDB.

In fact, we can combine the snapshot and the logging. We will need a SimpleDB

domain:

chapter_10/include/book.inc.php (excerpt)

define('BOOK_SNAP_LOG_DOMAIN', 'snapshot_log');

Make sure you create this SimpleDB domain before you run the next script. You

can use the create_domain.php script again. Here’s all it takes:

chapter_10/snap_and_log.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/book.inc.php');

if ($argc < 3)
{

Host Your Web Site in the Cloud310

 exit("Usage: " . $argv[0] . " \"message\" VOLUMEID...\n");
}

$message = $argv[1];

$sdb = new AmazonSDB();
$ec2 = new AmazonEC2();

for ($i = 2; $i < $argc; $i++)
{
 $volId = $argv[$i];

 // Create snapshot
 $res1 = $ec2->create_snapshot($volId, $message);

 if ($res1->isOK())
 {
 $snapId = $res1->body->snapshotId;
 $startTime = $res1->body->startTime;

 $key = $volId . '_' . $startTime;

 $attrs = array('VolId' => $volId,
 'Message' => $message,
 'StartTime' => $startTime);

 $res2 = $sdb->put_attributes(BOOK_SNAP_LOG_DOMAIN, $key,
 $attrs, true);
 }
}
exit(0);
?>

The create_snapshot method initiates the snapshotting activity on the specified

volume. The snapshot ID and the start time are extracted from the data that it returns,

and the information is stored in SimpleDB.

Running the script is easy:

$ php snap_and_log.php "Important Backup" vol-73d4211a

Just to be clear, this tiny program creates a near-instantaneous backup of a volume

that can be up to one terabyte in size, stores the backup in Amazon S3 for safekeep-

311Advanced AWS

ing, and logs the salient information to SimpleDB. That’s cloud computing (and the

power of complete programmability) in action!

The EBS snapshots are stored in S3, but it’s impossible to reach them using the S3

APIs. You can access them through the ec2-describe-snapshots command or you

can write a program to call the SDK’s describe_volumes method.

EBS Public Data Sets
You can also create EBS volumes from the EBS Public Data Sets. The data sets (listed

at http://aws.amazon.com/publicdatasets/) contain public information for use with

AWS. There’s census data, genome data, economic data, and much more. Each data

set is provided in the form of an EBS snapshot. Instead of spending hours or even

days downloading and unpacking this data (some of the data sets contain hundreds

of gigabytes of information), you can simply create a volume and start processing

the data right away.

For example, the Wikipedia Page Traffic Statistics data set contains 320 gigabytes

of hourly page statistics for the popular Wikipedia site.4 Here’s how to use it:

$ ec2-create-volume -z us-east-1b --snapshot snap-753dfc1c
VOLUME vol-42d1242b 320 snap-753dfc1c us-east-1b
➥ creating 2009-08-20T21:19:26+0000
$ ec2-attach-volume vol-42d1242b -i i-da8f6db2 -d /dev/sdh
ATTACHMENT vol-42d1242b i-da8f6db2 /dev/sdh
➥ attaching 2009-08-20T21:20:08+0000

<dev>: mkdir /wikipedia
<dev>: mount /dev/sdh /wikipedia

The data was available to me—in directory /wikipedia—in 20 seconds (quite literally,

as fast as I could type).

A volume of this size will cost about $30 per month, so be sure to umount, detach,

and destroy it when you no longer need it. Here’s all it takes:

<dev>: umount /dev/sdh
<dev>: mount /dev/sdh /wikipedia

4 http://www.wikipedia.org

Host Your Web Site in the Cloud312

http://aws.amazon.com/publicdatasets/
http://www.wikipedia.org

$ ec2-detach-volume vol-42d1242b
$ ec2-delete-volume vol-42d1242b

I don’t know about you, but the ability to materialize hundreds of gigabytes5 of disk

space on demand, seemingly out of thin air, is what I find really awe-inspiring and

more than a little bit cool. Sure, at some point it’s “just a bunch of hardware,” and

“just a few lines of code,” but when you put it all together just right you can make

some fairly cool stuff!

EBS RAID
In this section, you will learn how to assemble a set of EBS volumes into a single

virtual volume known as a RAID array.6 By doing so, you can create a virtual volume

with some or all of the following attributes:

Increased Storage Capacity

A single EBS volume can be no larger than one terabyte. You can create a RAID

array which spans any number of EBS volumes.7

Increased I/O Capacity

A RAID array can increase the overall I/O (input/output) throughput beyond

what’s possible with a single EBS volume by distributing accesses across multiple

volumes.

Increased Redundancy

A RAID array can store multiple copies of the same data to ensure that a copy

is still available if a hardware device fails. This RAID feature is inapplicable to

EBS because EBS stores data redundantly “under the covers.”

RAID arrays can be created in a number of different configurations, also known as

levels. Here are some of the simpler and more popular configurations:

5 Or even terabytes, since each EC2 account can create up to 20 times one-terabyte volumes by default.
6 The example used draws information from Eric Hammond’s post at

http://alestic.com/2009/06/ec2-ebs-raid.
7 A modern file system on a 64-bit system can theoretically handle a RAID array of any conceivable size.

Practical considerations (such as the time to perform a disk repair using the fsck command) will come

into play long before reaching any intrinsic limits of the file system.

313Advanced AWS

http://alestic.com/2009/06/ec2-ebs-raid

■ RAID level 0 supports increased I/O capacity and increased storage capacity by

striping data across multiple volumes. There is no additional redundancy.

■ RAID level 1 supports increased storage capacity and also increases redundancy

by mirroring data across multiple volumes.

■ RAID levels 2 through 6 support increased storage and I/O capacity and also

provide increased redundancy. The higher levels can even tolerate failure of

multiple volumes or physical devices, generally at the cost of increased storage

and retrieval time.

In this section we’ll set up a RAID 0 volume. This is one of the simplest RAID levels,

but the basic steps are the same regardless of the level. Here’s what we need to do:

1. create the necessary EBS volumes

2. attach the EBS volumes to the EC2 instance

3. create the RAID volume on top of the EBS volumes

4. create a file system on top of the RAID volume

The first step is to create the volumes. As we’ve already seen, this is really easy

once we know the desired Availability Zone and volume size. This example will

use tiny (ten gigabyte) volumes, but you can use any size you would like up to the

EBS limit of one terabyte. Let’s create four lots of ten gigabyte EBS volumes in

Availability Zone us-east-1b:

$ ec2-create-volume -z us-east-1b -s 10
VOLUME vol-891de8e0 10 us-east-1b creating
➥ 2009-08-23T17:19:39+0000
$ ec2-create-volume -z us-east-1b -s 10
VOLUME vol-8b1de8e2 10 us-east-1b creating
➥ 2009-08-23T17:19:57+0000
$ ec2-create-volume -z us-east-1b -s 10
VOLUME vol-8a1de8e3 10 us-east-1b creating
➥ 2009-08-23T17:20:07+0000
$ ec2-create-volume -z us-east-1b -s 10
VOLUME vol-811de8e8 10 us-east-1b creating
➥ 2009-08-23T17:20:18+0000

Now attach the EBS volumes to the instance:

Host Your Web Site in the Cloud314

$ ec2-attach-volume vol-891de8e0 -i i-d830dfb0 -d /dev/sdh1
ATTACHMENT vol-891de8e0 i-d830dfb0 /dev/sdh1
➥ attaching 2009-08-23T17:22:54+0000
$ ec2-attach-volume vol-8b1de8e2 -i i-d830dfb0 -d /dev/sdh2
ATTACHMENT vol-8b1de8e2 i-d830dfb0 /dev/sdh2
➥ attaching 2009-08-23T17:23:15+0000
$ ec2-attach-volume vol-8a1de8e3 -i i-d830dfb0 -d /dev/sdh3
ATTACHMENT vol-8a1de8e3 i-d830dfb0 /dev/sdh3
➥ attaching 2009-08-23T17:23:35+0000
$ ec2-attach-volume vol-811de8e8 -i i-d830dfb0 -d /dev/sdh4
ATTACHMENT vol-811de8e8 i-d830dfb0 /dev/sdh4
➥ attaching 2009-08-23T17:23:58+0000

Now we can glue the EBS volumes together into a RAID. We can make a bigger (in

this case 40GB) volume using RAID 0:

<dev>: mdadm --create /dev/md0 --level 0 --metadata=1.1
➥ --raid-devices 4 /dev/sdh1 /dev/sdh2 /dev/sdh3 /dev/sdh4
mdadm: array /dev/md0 started.

We also need to add the following line to the /etc/mdadm.conf file (creating it if

necessary):

DEVICES /dev/sdh1 /dev/sdh2 /dev/sdh3 /dev/sdh4

Then run the following command to add additional configuration information to

the file:

<dev>: mdadm --detail --scan >> /etc/mdadm.conf

At this point the RAID volume (/dev/md0) has been created. It encapsulates the four

EBS volumes (/dev/sdh1, /dev/sdh2, /dev/sdh3, and /dev/sdh4).

The next step is to create a file system on the RAID volume:

<dev>: mkfs /dev/md0

The mkfs command will produce a lot of output. Here’s the most interesting part

for our present endeavor:

315Advanced AWS

Block size=4096 (log=2)
⋮
5242880 inodes, 10485696 blocks

Multiplying the block size (4096) by the block count (10,485,696) results in the

value 42,949,410,816. We’ve created a 40 gigabyte RAID volume. As is the case with

any file system, we wrap up by creating a mount point and mounting the volume

on it:

<dev>: mkdir /data
<dev>: mount /dev/md0 /data

When using RAID volumes in production-level systems, you should keep a few

things in mind:

1. An ext3 file system on a 32-bit Linux system is limited to a maximum size of

eight terabytes (if the default 4K block size is used). You can use the xfs file system

if you need to create larger file systems.

2. The larger the file system, the more time the fsck command will need to check

and repair the disk after a crash or an unclean reboot.

3. Take extreme care when creating snapshots of the volumes used to create a RAID

array. Be sure to defer all write activity, run the sync command, and initiate all

the snapshots in succession. Track the snapshot IDs with care in case you need

to put the volume back together later. If you do find that you have to put the

volume back together, be sure that the ordering of the volumes within the RAID

is preserved across the entire operation.

4. The mdadm command has many options. Spend some time studying it to learn

even more about what you can do with RAID volumes. For example, you can add

additional devices to a RAID 0 volume in order to increase its capacity. If you

do this, you also need to do a logical resize on the file system.

Host Your Web Site in the Cloud316

EC2 Instance Metadata
Each EC2 instance can access run-time data about itself by making HTTP requests

to the special address 169.254.169.254. The set of available metadata items has in-

creased with each release of EC2. A GET request to the special address will return

a list of versions and the special version latest.

The wget command can be used to make HTTP requests from the command line.

Here’s how to retrieve the list of available metadata versions:

<dev>: wget -r -q http://169.254.169.254
<dev>: cat 169.254.169.254/index.html
1.0
2007-01-19
2007-03-01
⋮
2009-04-04
latest

Retrieving one of these items returns a list of the available metadata:

<dev>: wget -q http://169.254.169.254/latest/meta-data
<dev>: cat index.html
ami-id
ami-launch-index
ami-manifest-path
⋮
security-groups

Table 10.1 shows what you can access.

317Advanced AWS

Table 10.1. Available Metadata

DescriptionMetadata Item

the ID of the AMI used to launch the instanceami-id

the numerical index of the instance within its reservation

(the group of instances launched with a single request)

ami-launch-index

the S3 path to the AMI used to launch the instanceami-manifest-path

the ID of the AMIs used to bundle this instance’s AMIancestor-ami-ids

mapping of logical device names to actual device namesblock-device-mapping

the instance’s assigned host namehostname

the instance’s IDinstance-id

the instance’s type (m1.small, and so on)instance-type

the ID of the kernel used to launch the instancekernel-id

the host name of the instance on the EC2 internal network

(EC2 instances can use this host name to refer to other

instances)

local-hostname

the instance’s local IP address on the EC2 internal network

(EC2 instances can use this address to communicate with

other instances)

local-ipv4

the Availability Zone where the instance residesplacement/availabilityzone

the instance’s publicly visible host namepublic-hostname

the instance’s public IP addresspublic-ipv4

the public keys used to start the instancepublic-keys

the RAM disk (if any) used to start the instanceramdisk-id

the ID of the reservation which contains this instance—a

reservation collects all the EC2 instances launched with a

single request

reservation-id

the security groups attached to the instancesecurity-groups

Here’s how to retrieve some of the more useful values—the instance ID, its public

IP address, and its Availability Zone:

Host Your Web Site in the Cloud318

<dev>: wget -q http://169.254.169.254/latest/meta-data/instance-id
<dev>: wget -q http://169.254.169.254/latest/meta-data/public-ipv4
<dev>: wget -q http://169.254.169.254/latest/meta-data/placement/
➥availability-zone

Note that these requests (and all other requests for instance metadata) must be made

from within the instance itself. Here is the resulting metadata:

<dev>: cat public-ipv4
174.129.84.219
<dev>: cat instance-id
i-d830dfb0
<dev>: cat availability-zone
us-east-1b

You can also supply your own metadata when you launch an EC2 instance. This

data is called user data. The AWS Management Console, the ElasticFox tool, and

the ec2-run-instances command line tool each provide a way to specify this data.

The AWS Management Console supports this function as an advanced option, as

shown in Figure 10.4.

Figure 10.4. Launch an EC2 instance with user data

319Advanced AWS

In this example, “Role=Server,Size=Small,Name=MainServer,Input=Queue1” is

the string contained in my user data. I can retrieve this information immediately

after my instance has launched, and use it to control the behavior of my instance.

Once launched, the user data can be retrieved like this:

<dev>: wget -q http://169.254.169.254/latest/user-data
<dev>: cat user-data
Role=Server,Size=Small,Name=MainServer,Input=Queue1

Of course, we can also retrieve and process the user metadata using a simple PHP

program:

chapter_10/ec2_user_data.php (excerpt)

#!/usr/bin/php
<?php

$userData = file_get_contents(
 'http://169.254.169.254/latest/user-data');
$options = array();

foreach (explode(",", $userData) as $userDataItem)
{
 if (preg_match("!^([a-zA-Z]{1,})=([a-zA-Z0-9]{1,})$!",
 $userDataItem, $parts))
 {
 $name = $parts[1];
 $value = $parts[2];

 $options[$name] = $value;
 }
}

print_r($options);
?>

The file_get_contents function fetches the user metadata. The string is broken

up at comma boundaries using PHP’s explode function, producing name-value

pairs in the form Role=Server.

You can use the user metadata facility any way you’d like. You can pass server

names, server roles, SQS queue names, sizes, limits, and so forth. You’ll need to

Host Your Web Site in the Cloud320

create your own AMI. To go even further, you could have your custom AMI treat

the user metadata as the URL of a script to be run when the instance starts.

Dynamic Diagramming
In this section we’ll use the EC2 APIs to retrieve the list of running instances, the

EBS volumes attached to each of the instances, and the snapshots of those instances,

and draw a simple system diagram. You should be able to take this program and

extend it in many different ways without too much trouble.

Let’s make a start. The application is going to do a lot of drawing. I sketched out

my layout on a piece of graph paper and then encoded the critical sizes as PHP

constants:

chapter_10/ec2_diagram.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);
require_once('sdk.class.php');
require_once('include/book.inc.php');

// Define shape geometry
define('LEFT_MARGIN', 16);
define('RIGHT_MARGIN', 16);
define('TOP_MARGIN', 16);
define('BOTTOM_MARGIN', 16);
define('TEXT_MARGIN', 4);
define('TEXT_LINE_HEIGHT', 14);
define('INSTANCE_WIDTH', 128);
define('INSTANCE_HEIGHT', 64);
define('VOLUME_WIDTH', 96);
define('VOLUME_HEIGHT', 64);
define('SNAP_WIDTH', 96);
define('SNAP_HEIGHT', 64);
define('VOLUME_GAP', 16);
define('SNAP_GAP', 16);

I decided to represent each running instance of EC2, the EBS volumes attached to

the instance, and the snapshots for each volume as a series of connected rectangles.

321Advanced AWS

I stacked the instances vertically, the volumes in a horizontal row, and the snapshots

in a vertical column. Figure 10.5 shows a cleaned-up version of my sketch.

Figure 10.5. Design sketch for layout purposes

Each instance and its attached parts occupies a rectangular space on the final image,

with a surrounding margin represented by LEFT_MARGIN, RIGHT_MARGIN, TOP_MARGIN,

and BOTTOM_MARGIN. The instances, volumes, and snapshots are drawn as rectangles

of size INSTANCE_WIDTH by INSTANCE_HEIGHT, VOLUME_WIDTH by VOLUME_HEIGHT,

and SNAP_WIDTH by SNAP_HEIGHT, respectively. TEXT_MARGIN allows for some space

between the edge of each rectangle and the text inside, and TEXT_LINE_HEIGHT is

the space between lines of text. VOLUME_GAP is the horizontal space between volume

rectangles and SNAP_GAP is the vertical space between snapshot rectangles.

As always, we need to create the objects that let us access EC2 and S3:

chapter_10/ec2_diagram.php (excerpt)

$ec2 = new AmazonEC2();
$s3 = new AmazonS3();

Next we fetch the list of EC2 instances, EBS volumes, and EBS volume snapshots

like this:

Host Your Web Site in the Cloud322

chapter_10/ec2_diagram.php (excerpt)

$resInstances = $ec2->describe_instances();
$resVolumes = $ec2->describe_volumes();
$resSnapshots = $ec2->describe_snapshots();

This tiny code fragment retrieves all the important information about our system

configuration. It never hurts to check for errors before proceeding, so let’s do that

now:

chapter_10/ec2_diagram.php (excerpt)

if (!$resInstances->isOK() ||
 !$resVolumes->isOK() ||
 !$resSnapshots->isOK())
{
 exit("Error retrieving system information.");
}

Unlike most of the other (and much simpler) programs in this book, I’m taking an

object oriented approach here. I created classes to represent EC2 Regions, instances,

volumes, and snapshots. Each class contains references to the objects that it logically

owns or contains:

1. Regions contain instances

2. instances contain volumes

3. volumes contain snapshots

I chose to omit storing information about volumes that are unattached to instances

or snapshots for non-existent volumes (which are perfectly legitimate situations).

The Region is the top-level object, so it’s created first:

chapter_10/ec2_diagram.php (excerpt)

$Region = new Region('us-east-1');

323Advanced AWS

Next we can iterate through the list of instances, gathering the interesting attributes

for each instance, using them to create an Instance object, and then adding the new

object to the Region. Here’s how to do that:

chapter_10/ec2_diagram.php (excerpt)

foreach ($resInstances->body->reservationSet->item as $itemSet)
{
 foreach ($itemSet->instancesSet->item as $item)
 {
 $instanceId = (string) $item->instanceId;
 $state = (string) $item->instanceState->name;
 $instanceType = (string) $item->instanceType;
 $availabilityZone = (string) $item->placement->availabilityZone;

 if ($state != 'terminated')
 {
 $Region->AddInstance(new Instance($availabilityZone,
 $instanceId,
 $state,
 $instanceType));
 }
 }
}

The code skips instances in the terminated state since they’ve been shut down.

Next, we can do the same sort of processing for each EBS volume:

chapter_10/ec2_diagram.php (excerpt)

foreach ($resVolumes->body->volumeSet->item as $item)
{
 $volumeId = (string) $item->volumeId;
 $size = (string) $item->size;
 $availabilityZone = (string) $item->availabilityZone;

 if ($item->attachmentSet->item)
 {
 $instanceId = (string) $item->attachmentSet->item->instanceId;
 $device = (string) $item->attachmentSet->item->device;

 $Region->AddVolume(new Volume($availabilityZone,
 $volumeId,

Host Your Web Site in the Cloud324

 $instanceId,
 $size,
 $device));
 }
}

And the same for each snapshot:

chapter_10/ec2_diagram.php (excerpt)

foreach ($resSnapshots->body->snapshotSet->item as $item)
{
 $snapshotId = (string) $item->snapshotId;
 $volumeId = (string) $item->volumeId;
 $startTime = (string) $item->startTime;

 $Region->AddSnapshot(new Snapshot($snapshotId,
 $volumeId,
 $startTime));
}

At this point the data structure is built. If you want to see what it looks like for

yourself, dump it out like this:

print_r($Region);

My Region class has a Draw method. This method uses the GD library to render the

instances, volumes, and snapshots to an in-memory image and then returns it:

chapter_10/ec2_diagram.php (excerpt)

$image = $Region->Draw();

The final step is to write the in-memory image to the file system in GIF format, read

the GIF into memory, and then store it in Amazon S3:

chapter_10/ec2_diagram.php (excerpt)

$imageOut = tempnam("/tmp", "aws") . ".gif";
ImageGIF($image, $imageOut);

$imageOutBits = file_get_contents($imageOut);

325Advanced AWS

$imageKey = 'ec2_diagram_' . date('Y_m_d_H_i_s') . '.gif';
if (uploadObject($s3, BOOK_BUCKET, $imageKey, $imageOutBits,
 AmazonS3::ACL_PUBLIC, "image/gif"))
{
 $imageURL = $s3->get_object_url(BOOK_BUCKET, $imageKey);

 print("EC2 diagram is at ${imageURL}\n");
}

The image must be written to the file system because there’s no direct way to turn

an in-memory GD image into an in-memory GIF image. The prefix ec2_diagram_ is

appended with the current date and time, and the .gif file extension.

When I ran this program I had three instances running. Three EBS volumes were

attached to one of the instances and I had four EBS snapshots. Figure 10.6 shows

the resulting image.

Figure 10.6. Diagram of actual instances, volumes, and snapshots

Host Your Web Site in the Cloud326

A 500-line PHP program can access your entire inventory of AWS assets, create re-

lationships between the assets, and draw this nice picture. I think that’s kind of

cool!

Now that we’ve taken a high-level look at this program, let’s examine each classes.

Here’s the basic structure of the Region class:

chapter_10/ec2_diagram.php (excerpt)

class Region
{
 var $name;
 var $instances;

 public function __construct($name)
 {
 $this->Name = $name;
 $this->Instances = array();
 }

The constructor simply stores the given Region name in a PHP instance variable

and creates an empty array to track the EC2 instances. The array will be indexed

by the ID of the instance.

Three simple methods are used to add Instance, Volume, and Snapshot objects to

the Region object. The AddSnapshot method searches through the instances until

it finds the one with the volume associated with the snapshot:

chapter_10/ec2_diagram.php (excerpt)

 public function AddInstance($instance)
 {
 $this->Instances[$instance->InstanceId()] = $instance;
 }

 public function AddVolume($volume)
 {
 $this->Instances[$volume->InstanceId()]->AddVolume($volume);
 }

 public function AddSnapshot($snapshot)
 {

327Advanced AWS

 foreach ($this->Instances as $instance)
 {
 if ($instance->HasVolume($snapshot->VolumeId))
 {
 $instance->AddSnapshot($snapshot);
 }
 }
 }

The most interesting part of this class is found in the Draw method:

chapter_10/ec2_diagram.php (excerpt)

 public function Draw()
 {
 $totalW = 0;
 $totalH = 0;

 foreach ($this->Instances as $instance)
 {
 $thisW = $instance->GetDrawWidth();
 $thisH = $instance->GetDrawHeight();

 $totalW = max($totalW, $thisW);
 $totalH += $thisH;
 }

 $image = ImageCreate($totalW, $totalH);
 ImageFilledRectangle($image, 0, 0,
 $totalW - 1, $totalH - 1,
 ImageColorAllocate($image, 255, 255, 255));
 ImageRectangle($image, 0, 0,
 $totalW - 1, $totalH - 1,
 ImageColorAllocate($image, 0, 0, 0));

 $startY = 0;
 foreach ($this->Instances as $instance)
 {
 $instance->Draw($image, 0, $startY);
 $startY += $instance->GetDrawHeight();
 }

 return $image;
 }
}

Host Your Web Site in the Cloud328

The code makes two passes through the $instances array. The first pass asks each

instance for its width and height. This information is used to create a GD image of

the appropriate size. The second pass asks each image to render itself to the appro-

priate location on the image.

Let’s dive into the Instance class. Like the Region class, the instance variables and

the constructor are very simple:

chapter_10/ec2_diagram.php (excerpt)

class Instance
{
 var $availabilityZone;
 var $instanceId;
 var $state;
 var $instanceType;
 var $volumes;

 public function __construct($availabilityZone, $instanceId,
 $state, $instanceType)
 {
 $this->AvailabilityZone = $availabilityZone;
 $this->InstanceId = $instanceId;
 $this->State = $state;
 $this->InstanceType = $instanceType;
 $this->Volumes = array();
 }

As you can see, this code tracks a number of attributes for each EC2 instance. Each

Instance object also tracks the attached EBS volumes, indexed by the volume’s ID.

The outer levels of code need access to the ID of the EC2 instance, so we need an

accessor method and access to the number of volumes attached to the instance:

chapter_10/ec2_diagram.php (excerpt)

 public function InstanceId()
 {
 return $this->InstanceId;
 }

 public function VolumeCount()

329Advanced AWS

 {
 return count($this->Volumes);
 }

The AddVolume method is used to add a new volume to the instance, while the

HasVolume method is used to see if a particular volume is attached to the instance:

chapter_10/ec2_diagram.php (excerpt)

 public function AddVolume($volume)
 {
 $this->Volumes[$volume->VolumeId()] = $volume;
 }

 public function HasVolume($volumeId)
 {
 return IsSet($this->Volumes[$volumeId]);
 }

The code to draw an instance looks long but is quite simple. It outlines a rectangle

representing the instance, fills it in, draws some text, and then asks each volume

to draw itself:

chapter_10/ec2_diagram.php (excerpt)

 public function Draw($image, $startX, $startY)
 {
 ImageRectangle($image,
 $startX + LEFT_MARGIN,
 $startY + TOP_MARGIN,
 $startX + LEFT_MARGIN + INSTANCE_WIDTH,
 $startY + TOP_MARGIN + INSTANCE_HEIGHT,
 ImageColorAllocate($image, 0, 0, 0));

 ImageFill($image,
 $startX + LEFT_MARGIN + 1,
 $startY + TOP_MARGIN + 1,
 ImageColorAllocate($image, 0x66, 0xff, 0xcc));

 ImageString($image,
 2,
 $startX + LEFT_MARGIN + TEXT_MARGIN,
 $startY + TOP_MARGIN + TEXT_MARGIN,

Host Your Web Site in the Cloud330

 "EC2 Instance",
 ImageColorAllocate($image, 0, 0, 0));

 ImageString($image,
 2,
 LEFT_MARGIN + TEXT_MARGIN,
 $startY + TOP_MARGIN + TEXT_MARGIN + TEXT_LINE_HEIGHT,
 $this->InstanceId,
 ImageColorAllocate($image, 0, 0, 0));

 ImageString($image,
 2,
 $startX + LEFT_MARGIN + TEXT_MARGIN,
 $startY + TOP_MARGIN + TEXT_MARGIN + (2 * TEXT_LINE_HEIGHT),
 $this->InstanceType,
 ImageColorAllocate($image, 0, 0, 0));

 $startX += LEFT_MARGIN + INSTANCE_WIDTH;
 foreach ($this->Volumes as $volume)
 {
 $volume->Draw($image, $startX, $startY);
 $startX += VOLUME_GAP + VOLUME_WIDTH;
 }
 }

As you can see, some basic integer math is used to compute the proper position for

each item.

The following pair of methods are central to the size computation process. They

return the amount of space (width and height) needed to draw the instance, volumes,

and snapshots. The width is dependent on the number of volumes and the height

is dependent on the maximum number of snapshots found on any volume of the

instance.

331Advanced AWS

Here’s the width calculation code:

chapter_10/ec2_diagram.php (excerpt)

 public function GetDrawWidth()
 {
 $volumeCount = $this->VolumeCount();

 return
 LEFT_MARGIN +
 INSTANCE_WIDTH +
 ($volumeCount * (VOLUME_GAP + VOLUME_WIDTH)) +
 RIGHT_MARGIN;
 }

And here’s the height calculation code:

chapter_10/ec2_diagram.php (excerpt)

 public function GetDrawHeight()
 {
 $maxSnapCount = $this->MaxSnapCount();

 return
 TOP_MARGIN +
 INSTANCE_HEIGHT +
 ($maxSnapCount * (SNAP_GAP + SNAP_HEIGHT)) +
 BOTTOM_MARGIN;
 }

Another simple method figures out the maximum number of snapshots found on

any of the instance’s volumes:

chapter_10/ec2_diagram.php (excerpt)

 public function MaxSnapCount()
 {
 $maxSnapCount = 0;
 foreach ($this->Volumes as $volume)
 {
 $snapCount = $volume->SnapCount();
 $maxSnapCount = max($maxSnapCount, $snapCount);
 }

Host Your Web Site in the Cloud332

 return $maxSnapCount;
 }
}

The Volume and Snapshot classes are quite similar to the Instance class so I’ll avoid

presenting them here. They are available in the code archive for this book on

http://sitepoint.com.

The code, as presented here, draws a very simple diagram and there’s plenty of

room to extend it. Here are some ideas to start you off:

1. Draw additional attributes such as the Availability Zone of each instance (I left

this out on purpose to give you a task).

2. Draw an appropriate icon with each item.

3. Retrieve and draw additional items, such as elastic IP addresses.

4. Partition the Region by Availability Zone and put each EC2 instance in the

proper zone.

5. Capture the metadata at regular instances, store it in SimpleDB, and then use it

to draw an animated version of the diagram (assuming that you’re adding and

removing instances, volumes, or snapshots over time).

6. Capture and graph CloudFront metrics for the instances as part of the diagram.

Conclusion
I hope that this chapter served as a good introduction to some of the more advanced

aspects of AWS. We managed to use SimpleDB, EC2, S3, and the GD library in this

chapter and we also learned a thing or two about processing CSV files. I’ve always

tried to find a way to learn new skills as part of every project. In this case I could

have chosen to process the data in XML format, but thought that I’d give PHP’s CSV

handling function a try. Over the course of my career this willingness to explore

new functions, libraries, systems, and languages has led me in some interesting and

unexpected directions. I’d encourage you to do the same!

333Advanced AWS

http://sitepoint.com

Chapter11
Putting It All Together: CloudList
In this chapter, we’ll create a classified advertising application that I’ve named

CloudList, using the Amazon EC2 infrastructure, S3, and SimpleDB. The sections

of this chapter reflect my development efforts, so you should be able to see how I

put the application together.

Designing the Application
Our project is to create a simple classified advertising application. The application

will allow users in a number of cities to submit and view classified ads.

We need to track the following kinds of data:

■ locations—a list of cities and states
■ categories—a list of classified ad categories
■ items—a list of classified ads

We’ll store the following fields for each ad:

■ City

■ State

■ Date

■ Price

■ Category

■ Title

■ Description

■ Image (full-sized and thumbnail)

Since each SimpleDB attribute value is limited to 1,024 bytes, we will store the

descriptions, images, and thumbnails in S3. In the pursuit of simplicity we’ll avoid

including any contact information (email address or phone number), but feel free

to extend the application yourself.

Each type of data will need its own SimpleDB domain, so let’s choose some good

names:

cloudlist/include/cloudfunctions.inc.php (excerpt)

define('CL_CITY_DOMAIN', 'cl_cities');
define('CL_CAT_DOMAIN', 'cl_categories');
define('CL_ITEM_DOMAIN', 'cl_items');

We’ll put these constant definitions in the common file cloudfunctions.inc.php, to be

included in all the CloudList application files. At this point we’ve yet to make any

decisions about how the application will look or behave, but these considerations

will have no effect on the data model.

Utility Functions and Programs
The next step is to create some command line utility programs to populate the

SimpleDB domains with initial data.

To create the SimpleDB domains we will be using, we can simply modify the

create_domain.php script from Chapter 8:

Host Your Web Site in the Cloud336

cloudlist/create_domain.php (excerpt)

⋮
$sdb = new AmazonSDB();

foreach (array(CL_CITY_DOMAIN,
 CL_CAT_DOMAIN,
 CL_ITEM_DOMAIN) as $domain)
{
 $res = $sdb->create_domain($domain);

 if (!$res->isOK())
 {
 exit("Create domain operation failed for domain ${domain}\n");
 }

 print("Domain ${domain} created.\n");
}
⋮

Now here’s a script to add a new city—actually a city/state pair:

cloudlist/add_city.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/cloudfunctions.inc.php');

if ($argc < 3)
{
 exit("Usage: " . $argv[0] . " CITY STATE\n");
}

$city = $argv[1];
$state = $argv[2];

$Key = $state . '_' . $city;
$attrs = array('City' => $city,
 'State' => $state);

$sdb = new AmazonSDB();

337Putting It All Together: CloudList

$res = $sdb->put_attributes(CL_CITY_DOMAIN, $Key, $attrs, true);

if ($res->isOK())
{
 print("Added city ${city} in ${state}\n");
}
else
{
 $error = $res->body->Errors->Error->Message;
 print("Could not add city: ${error}\n");
}
?>

We’ll also need a script to add a list of one or more categories:

cloudlist/add_category.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/cloudfunctions.inc.php');

if ($argc < 2)
{
 exit("Usage: " . $argv[0] . " CATEGORY ...\n");
}

$sdb = new AmazonSDB();

for ($i = 1; $i < $argc; $i++)
{
 $category = $argv[$i];

 $Key = $category;
 $attrs = array('Category' => $category);

 $res = $sdb->put_attributes(CL_CAT_DOMAIN, $Key, $attrs, true);

 if ($res->isOK())
 {
 print("Added category ${category}\n");
 }

Host Your Web Site in the Cloud338

 else
 {
 $error = $res->body->Errors->Error->Message;
 print("Could not add category: ${error}\n");
 }
}
?>

Now we can use these command scripts to set up some sample data. First, we set

up the domains:

$ create_domain.php
Domain cl_cities created.
Domain cl_categories created.
Domain cl_items created.

Then, we add some cities:

$ php add_city.php Bethesda MD
Added city Bethesda in MD
$ php add_city.php Redmond WA
Added city Redmond in WA
$ php add_city.php Boise ID
Added city Boise in ID
$ php add_city.php "San Francisco" CA
Added city San Francisco in CA

And then, we add the categories:

$ php add_category.php Cars Trucks Homes Furniture
Added category Cars
Added category Trucks
Added category Homes
Added category Furniture

If you remember from Chapter 8, each call to SimpleDB’s select method can return

up to 2,500 results, depending on the size and number of attributes returned.

However, it is likely that we’ll have to run SimpleDB queries that might produce

long lists of results. So, let’s create a function to make it easier to capture and process

result sets of any size. Here’s the code for the runQuery function:

339Putting It All Together: CloudList

cloudlist/include/cloudfunctions.inc.php (excerpt)

function runQuery($sdb, $query)
{
 $next = '';
 $results = array();

 do
 {
 $res = $sdb->select($query, array('NextToken' => $next));
 if (!$res->isOK())
 {
 return null;
 }

 $next = IsSet($res->body->SelectResult->NextToken) ?
 (string) $res->body->SelectResult->NextToken
 : '';

 foreach ($res->body->SelectResult->Item as $item)
 {
 $attributes = array();
 foreach ($item->Attribute as $attribute)
 {
 $attributes[(string) $attribute->Name] =
 (string) $attribute->Value;
 }

 $Key = (string) $item->Name;
 $results[$Key] = $attributes;
 }
 }
 while ($next != '');

 return $results;
}

This function accepts a SimpleDB query as a string, makes a series of calls to the

select method to retrieve all the results, and then returns a PHP associative array

that contains all the results. We can then write some very simple wrappers around

this function to return arrays of all cities and categories:

Host Your Web Site in the Cloud340

cloudlist/include/cloudfunctions.inc.php (excerpt)

function getCities($sdb)
{
 $query = "select * from " . CL_CITY_DOMAIN;
 return runQuery($sdb, $query);
}

function getCategories($sdb)
{
 $query = "select * from " . CL_CAT_DOMAIN;
 return runQuery($sdb, $query);
}

The getCities function returns the city data like this:

Array
(
 [WA_Seattle] => Array
 (
 [State] => WA
 [City] => Seattle
)
 [WA_Redmond] => Array
 (
 [State] => WA
 [City] => Redmond
)
 ⋮
)

Of course, adding a new classified listing is a bit more complicated than cities and

categories. It would be useful to be able to do this from the command line or from

a web form. So, we will create a single (if a little complex) function named

addCloudListItem to add a new item that can be called from the command line or

a web page script.

In the addCloudListItem function, we’ll make use of our thumbnailImage function

from Chapter 4. Make sure you copy that function into the cloudfunctions.inc.php

file. The thumbnailImage function also uses the value in the THUMB_NAIL constant

to determine the thumbnail size, so we’ll need to add that to our cloudfunctions.inc.php

file as well:

341Putting It All Together: CloudList

cloudlist/include/cloudfunctions.inc.php (excerpt)

define('THUMB_SIZE', 200);

We’ll also reuse our uploadObject function from Chapter 4 to upload the image

files to our S3 bucket, so copy that function into the cloudfunctions.inc.php file too.

Let’s take the addCloudListItem code apart and examine it step by step. Here’s how

it begins:

cloudlist/include/cloudfunctions.inc.php (excerpt)

function addCloudListItem($sdb, $s3, $city, $state, $date,
 $price, $category, $title, $description,
 $imagePath)
{

We need a unique key since the data is destined for SimpleDB. Let’s take some of

the fields, put them together into a string, and then compute the MD5 hash of the

string, like this:

cloudlist/include/cloudfunctions.inc.php (excerpt)

 $Key = md5($city . $state . $date . $price . $category . $title);

The next step (and it’s a big one) is to process the image associated with the listing.

The $imagePath argument to the function can be a URL to a remote image or a fully

qualified path name to a local one. This is made possible by the PHP function

file_get_contents. If there’s no image associated with the listing, we’ll pass null

for the argument. Here’s the code we need to download the image, create a thumbnail

version, and store both images in S3:

cloudlist/include/cloudfunctions.inc.php (excerpt)

 if ($imagePath !== null)
 {
 $imageIn = file_get_contents($imagePath);
 $imageMem = ImageCreateFromString($imageIn);

 $fileOut = tempnam("/tmp", "aws") . ".aws";
 $ret = ImageJPEG($imageMem, $fileOut, 100);
 $imageOut = file_get_contents($fileOut);

Host Your Web Site in the Cloud342

 $thumbOut = thumbnailImage($imageOut, "image/jpg");

 $imageKey = $Key . '.jpg';
 $thumbKey = $Key . '_thumb.jpg';

 if (!uploadObject($s3, CL_BUCKET,
 $imageKey, $imageOut,
 AmazonS3::ACL_PUBLIC, "image/jpeg") ||
 !uploadObject($s3, CL_BUCKET,
 $thumbKey, $thumbOut,
 AmazonS3::ACL_PUBLIC, "image/jpeg"))
 {
 return false;
 }

 $imageURL = $s3->get_object_url(CL_BUCKET, $imageKey);
 $thumbURL = $s3->get_object_url(CL_BUCKET, $thumbKey);
 }
 else
 {
 $imageURL = null;
 $thumbURL = null;
 }

We’ll use the unique key we generated at the start of this function (in the variable

$Key) for the SimpleDB item as the key for our images in S3 with a slight modifica-

tion. We’ll use $Key . '.jpg' for the full size image and $Key . '_thumb.jpg'

for the thumbnail. This is convenient, but it means we’re unable to handle more

than one image per classified ad. That’s fine for now; if we want to support more

images per item in the future, it’ll be easy to change.

The item description must also be stored in S3 (we’ll use that $Key value again):

cloudlist/include/cloudfunctions.inc.php (excerpt)

 if (uploadObject($s3,
 CL_BUCKET,
 $Key,
 $description,
 AmazonS3::ACL_PUBLIC))
 {
 $descriptionURL =

343Putting It All Together: CloudList

 $s3->get_object_url(CL_BUCKET, $Key);
 }
 else
 {
 return false;
 }

Now that the two images and the description have been stored in S3, the next step

is to store the classified ad itself in SimpleDB:

cloudlist/include/cloudfunctions.inc.php (excerpt)

 $attrs = array(
 'City' => $city,
 'State' => $state,
 'Date' => $date,
 'Price' => $price,
 'Category' => $category,
 'Title' => $title,
 'Description' => $descriptionURL);

 if ($imageURL !== null)
 {
 $attrs['Image'] = $imageURL;
 $attrs['Thumb'] = $thumbURL;
 }

 $res = $sdb->put_attributes(CL_ITEM_DOMAIN, $Key, $attrs, true);

In the above code, we avoid creating Image or Thumb array items if the classified ad

has no image, as there’s no need.

The function should return true if all goes well or false if something goes wrong,

so the final step is to check the status of the put_attributes call:

cloudlist/include/cloudfunctions.inc.php (excerpt)

 return $res->isOK();
}

Our addCloudListItem function is done.

Here’s the command line wrapper around the function:

Host Your Web Site in the Cloud344

cloudlist/add_item.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/cloudfunctions.inc.php');

if (($argc < 8) || ($argc > 9))
{
 exit("Usage: " . $argv[0] .
 " CITY STATE DATE PRICE CATEGORY \"TITLE\" \"DESCRIPTION\"
➥ [IMAGEURL]\n");
}

// Get item info
$city = $argv[1];
$state = $argv[2];
$date = $argv[3];
$price = $argv[4];
$category = $argv[5];
$title = $argv[6];
$description = $argv[7];
$imageURL = null;

if ($argc > 8)
{
 $imageURL = $argv[8];
}

$s3 = new AmazonS3();
$sdb = new AmazonSDB();

if (addCloudListItem($sdb, $s3,
 $city, $state, $date, $price,
 $category, $title, $description,
 $imageURL))
{
 print("Added item ${title} in ${city}, ${state}\n");
}
else
{

345Putting It All Together: CloudList

 print("Could not add item!\n");
}
?>

The add_item.php script allows us to add an item like so:

$ php add_item.php city state date price category
➥ "Title" "Description" [image_url]

We need to create one more Get function; this one retrieves the entire list of classified

ads for a given city and state:

cloudlist/include/cloudfunctions.inc.php (excerpt)

function getItems($sdb, $city, $state)
{
 $query =
 "select * from " . CL_ITEM_DOMAIN .
 " where City=\"${city}\" and State=\"${state}\"";

 return runQuery($sdb, $query);
}

In the interests of testing and monitoring, we’ll write a utility script to call all three

of our Get functions. This allows us to verify that the rest of our application is

working as desired:

cloudlist/dump.php (excerpt)

#!/usr/bin/php
<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/cloudfunctions.inc.php');

$sdb = new AmazonSDB();

print("Cities\n");
print("======\n");
$cities = getCities($sdb);
print_r($cities);

Host Your Web Site in the Cloud346

print("Categories\n");
print("==========\n");
$categories = getCategories($sdb);
print_r($categories);

print("Items\n");
print("=====\n");
$items = getItems($sdb, "Redmond", "WA");
print_r($items);

?>

The dump.php script will print all the cities and categories, and all the items from

a specific city.

With all this infrastructure in place, we can now insert an item using our command

line utility:

$ php add_item.php Redmond WA 2008-08-29 11000.00 Cars "Scion XB"
➥ "Mint condition Toyota Scion XB, all accessories runs great,
➥ amazing car, hate to sell it." http://upload.wikimedia.org/wikipe
➥dia/commons/thumb/c/c1/2006_Scion_xB_.jpg/800px-2006_Scion_xB_.jpg

If we use our dump.php to output the data stored for this new item, here’s what we

see:

[8195daf1582a87084faf975d34e591e8] => Array
(
 [Title] => Scion XB
 [Price] => 11000.00
 [City] => Redmond
 [Description] => http://sitepoint-aws-cloud-book.s3.amazonaws.com
➥/8195daf1582a87084faf975d34e591e8
 [State] => WA
 [Date] => 2008-08-29
 [Category] => Cars
 [Thumb] => http://sitepoint-aws-cloud-book.s3.amazonaws.com
➥/8195daf1582a87084faf975d34e591e8_thumb.jpg
 [Image] => http://sitepoint-aws-cloud-book.s3.amazonaws.com
➥/8195daf1582a87084faf975d34e591e8.jpg
)

347Putting It All Together: CloudList

Because the Image, Thumb, and Description are all URLs that link to data stored in

Amazon S3, we can paste each one into the address bar of our web browser to

verify the content.

The Web Front End
Now that we’ve designed the data format and created some code to read and write

items, it’s quite easy to wrap it all up with a web front end. Our controller script is

cloudlist.php. First, it’ll assemble an array of all cities and states. Then, it will look

for a city and state specified in the URL query string. If it finds one, it will assemble

an array of all classified items for that location. Let’s take it step by step:

cloudlist/cloudlist.php (excerpt)

<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/cloudfunctions.inc.php');

// Get city and state from request
if (IsSet($_GET['city']) &&
 isSet($_GET['state']) &&
 preg_match("/^[A-Za-z\+]{1,}$/", $_GET['city']) &&
 preg_Match("/^[A-Z]{2}$/", $_GET['state']))
{
 $currentCity = urldecode($_GET['city']);
 $currentState = urldecode($_GET['state']);
}
else
{
 $currentCity = null;
 $currentState = null;
}

This web page will accept city and state parameters in the URL query string, so

the first task is to validate and capture them. The preg_match function is used to

make sure that the city and state parameters only contain valid characters. This

Host Your Web Site in the Cloud348

validation is a crucial step toward ensuring that the program avoids being compro-

mised by bad input data.1

The code will access SimpleDB, so we need to create the access object:

cloudlist/cloudlist.php (excerpt)

$sdb = new AmazonSDB();

Even though the images and descriptions are stored in S3, an S3 object is unneces-

sary. That’s because we’ll access them using GET requests to the appropriate URLs.

We’ll also need a list of cities for the menu:

cloudlist/cloudlist.php (excerpt)

$cities = getCities($sdb);

Next, we have to assemble an array of items ($itemCat) that match the city and state

specified. If no city or state are specified, the array will be empty. We also reorganize

the array so that the items are categorized by their category value:

cloudlist/cloudlist.php (excerpt)

$itemCat = array();
if ($currentCity != '' && $currentState != '')
{
 $items = getItems($sdb, $city, $state);
 foreach ($items as $Key => $attrs)
 {
 $category = $attrs['Category'];
 if (!IsSet($itemCat[$category]))
 {
 $itemCat[$category] = array();
 }
 $itemCat[$category][$Key] = $attrs;
 }
}

The final job for our controller script is to include the HTML template:

1 Because SimpleDB’s select function only accepts a single statement, classic SQL injection attacks

should be impossible. However, it’s always best to verify critical input data.

349Putting It All Together: CloudList

cloudlist/cloudlist.php (excerpt)

include 'cloudlist.html.php'
?>

Out template needs to generate three main items: a location menu, a link to add a

new item, and a list of classified items by category. Firstly, let’s look at the menu

and new item link:

cloudlist/include/cloudlist.html.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>CloudList Classified Ad System</title>
 <link rel="stylesheet" type="text/css" media="all"
 href="css/styles.css" />
 </head>
 <body>
 <h1>CloudList Classified Ad System</h1>
 <div id="menu">

 <?php foreach ($cities as $Key => $attrs):
 $menuCity = $attrs['City'];
 $menuState = $attrs['State'];
 $link = "?city=" . urlencode($menuCity) . "&state=" .
 urlencode($menuState);
 $menuClass = (($currentCity == $menuCity) &&
 ($currentState == $menuState)) ? "activemenu" : "menu";
 ?>
 <li class="<?php echo $menuClass; ?>">
 <a href="<?php echo $link; ?>"><?php
 echo "${menuCity}, ${menuState}"; ?>

 <? endforeach ?>

 <p id="newitemlink">
 Add new item …
 </p>
 </div>

The above code uses a foreach loop to output all the cities as an unordered list,

with each item containing a link like so:

Host Your Web Site in the Cloud350

Redmond, WA

We also assign a special activemenu class value to the menu item if the current

city matches; that way, we can add a visual style to indicate the currently viewed

city in the menu.

The last element is a link to the form used to add a new classified listing. We will

tackle that part of the application soon.

All that’s left to do is output a list of items and format appropriately:

cloudlist/include/cloudlist.html.php (excerpt)

 <div id="items">
 <?php foreach ($itemCat as $category => $items): ?>
 <div class="category">
 <h2><?php echo $category; ?></h2>
 <?php foreach ($items as $Key => $attrs): ?>
 <div class="item">
 <h3><?php echo $attrs['Title']; ?></h3>
 <?php if (IsSet($attrs['Thumb'])): ?>
 <a href="<?php echo $attrs['Image']; ?>" target=\"new\">
 <img src="<?php echo $attrs['Thumb']; ?>"/>

 <?php endif ?>
 <p class="date">Listed <?php echo $attrs['Date']; ?></p>
 <p class="price">Priced at
 $<?php echo number_format($attrs['Price']); ?></p>
 <p class="desc">
 <?php echo file_get_contents($attrs['Description']); ?>
 </p>
 </div>
 <? endforeach ?>
 <div class="clear"></div>
 </div>
 <? endforeach ?>

 </body>
</html>

The above code uses two nested foreach loops to list all the items, categorized by

their categories. The array of items is dependent on the presence of the city and

351Putting It All Together: CloudList

state arguments in the URL. Of course, if the arrays are empty we’ll only see the

city menu.2

I used file_get_contents to retrieve the description from S3. I could have used

the S3 API, but there’s really no reason to do so here.

That’s our HTML sorted—feel free to add a few CSS styles. If you need a head start,

you can find a CSS file (cloudlist/css/styles.css) in the code archive for this book that

should have it looking good.3

Figure 11.1 shows what the finished page looks like.

Figure 11.1. The CloudList page for Redmond, WA

2 A relatively basic modification of the code presented in this chapter would allow for a two-level

presentation, viewing the classifieds either by state or by city within a state. I’ll leave that change up to

you!
3 “Looking good” is a relative term here, since my sense of artistry is limited to selecting colors from a

range of earth tones. I’m sure you can do better!

Host Your Web Site in the Cloud352

The New Item Submission Form
The Add new item … link links to the add_form.php script. The script is invoked via

HTTP GET or HTTP POST, and behaves differently for each method. When invoked

via GET, it generates an empty form. When invoked via POST, it stores the new item

form values in SimpleDB and S3.

Here’s how it looks:

cloudlist/add_form.php (excerpt)

<?php

error_reporting(E_ALL);

require_once('sdk.class.php');
require_once('include/cloudfunctions.inc.php');

$s3 = new AmazonS3();
$sdb = new AmazonSDB();

if (isset($_POST['formsubmit']))
{
 ⋮ process POST data…
}
else
{
 $cities = getCities($sdb);
 $categories = getCategories($sdb);
 include 'include/addform.html.php';
 exit(0);
}

?>

The script looks for a submitted value called formsubmit. If present, the form must

have been submitted and we can proceed to process the form data; otherwise, we

display the empty form. We’ll examine the form processing code in a moment.

To respond to a GET request, the code above retrieves all the cities and categories

from the database and then outputs the HTML template. Let’s have a look at the

template:

353Putting It All Together: CloudList

cloudlist/include/addform.html.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>CloudList Classified Ad System -- Add Item</title>
 <link rel="stylesheet" type="text/css" media="all"
 href="css/styles.css" />
 </head>
 <body>
 <h1>CloudList Classified Ad System -- Add Item</h1>
 <p>Please enter the new item information.</p>
 <form method="post" enctype="multipart/form-data" action="?">
 <input type="hidden" name="formsubmit" value="1"/>
 <input type="hidden" name="MAX_FILE_SIZE" value="2048000"/>

The form needs to have an enctype value of multipart/form-data, since it’ll be

processing an uploaded file. We need to add the formsubmit hidden field because,

as we’ve mentioned, this acts as our trigger for form processing. We also include a

MAX_FILE_SIZE hidden field to ensure the maximum accepted file size is 2MB. Note

that there’s a separate PHP limit—the variable upload_max_filesize in the php.ini

—that must be at least as large as the limit in this file in order for a maximally sized

upload to be accepted.

The remainder of the HTML displays all the form fields, including <select> menus

for the location and category fields:

cloudlist/include/addform.html.php (excerpt)

 <div>
 <label for="title">Title:</label>
 <input type="text" name="title" id="title" />
 </div>
 <div>
 <label for="price">Price:</label>
 <input type="text" name="price" id="price" />
 </div>
 <div>
 <label for="desc">Description:</label>
 <textarea rows="8" cols="40" name="description"
 name="desc"></textarea>
 </div>

Host Your Web Site in the Cloud354

 <div>
 <label for="category">Category:</label>
 <select name="category" id="category">
 <?php foreach ($categories as $Key => $attrs): ?>
 <option value="<?php echo $Key; ?>">
 <?php echo $Key; ?>
 </option>
 <?php endforeach ?>
 </select>
 </div>
 <div>
 <label for="statecity">Location:</label>
 <select name="statecity">
 <?php foreach ($cities as $Key => $attrs):
 $city = $attrs['City'];
 $state = $attrs['State'];
 ?>
 <option value="<?php echo $Key; ?>">
 <?php echo "${city}, ${state}"; ?>
 </option>
 <?php endforeach ?>
 </select>
 </div>
 <div>
 <label for="statecity">Photo (optional):</label>
 <input type="file" name="image"/>
 </div>
 <div>
 <input type="submit" value="Add"/>
 Cancel & return ...
 </div>
 </form>
 </body>
</html>

Figure 11.2 shows the form: clean, no-nonsense, and ripe for some better styling.

355Putting It All Together: CloudList

Figure 11.2. The Add Item form

The form processing code is simple to build, since we’ve already written our

addCloudListItem function to handle the heavy lifting. Here’s the submission

handling code:

cloudlist/add_form.php (excerpt)

⋮
if (isset($_POST['formsubmit']))
{
 $stateCity = $_POST['statecity'];
 $price = $_POST['price'];
 $category = $_POST['category'];
 $title = $_POST['title'];
 $description = $_POST['description'];

 $date = date('Y-m-d');

 $state = substr($stateCity, 0, 2);
 $city = substr($stateCity, 3);

 if (isset($_FILES['image']) &&
 is_uploaded_file($_FILES['image']['tmp_name']))
 {

Host Your Web Site in the Cloud356

 $imagePath = $_FILES['image']['tmp_name'];
 }
 else
 {
 $imagePath = null;
 }

 $success = addCloudListItem($sdb, $s3,
 $city, $state, $date, $price,
 $category, $title, $description,
 $imagePath);

 include 'include/addthanks.html.php';
 exit(0);
}
⋮

There’s no magic here. The form sends the city and state as a single string, so we

break it apart using the substr function. The form contains a file chooser for the

optional photo. If a file was specified, it’s available as a local file as named by

$_FILES['Image']['tmp_name']. Recall that we built addCloudListItems to handle

a URL or a local file? In this case a local file will be used.

Admittedly, the data validation and error reporting leaves a little bit to be desired

here. A more sophisticated application would validate the form parameters and

then regenerate the form (with appropriate error messages). I will leave that as an

enhancement project for you.

Once the form submission has been processed, all that remains is to display a thank-

you message if the submission was successful:

cloudlist/include/addthanks.html.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>CloudList Classified Ad System -- Add Item</title>
 <link rel="stylesheet" type="text/css" media="all"
 href="css/styles.css" />
 </head>
 <body>

357Putting It All Together: CloudList

 <h1>CloudList Classified Ad System -- Add Item</h1>
 <?php if ($success): ?>
 <p>New item accepted. Thanks!</p>
 <?php else: ?>
 <p>New item not accepted!</p>
 <?php endif ?>
 <p>Add another...</p>
 <p>Home</p>
 </body>
</html>

And That’s It
I set out to create a simplified classified ad system, rather than a fully featured one,

and I’m sure you’ll agree that I did so! I believe that you can do a lot with approx-

imately 500 lines of PHP, backed up by the power of AWS. Because the storage is

handled by a combination of Amazon SimpleDB and S3, this application should

be able to deal with hundreds of thousands of users and millions of items without

too much effort. If the request rate were to grow too high for a single SimpleDB do-

main,4 it would be very easy to spread the items across multiple domains, perhaps

one per state or (when it’s really busy) one per city. S3 has ample capacity and

performance to serve up images directly, but I’d advise the use of CloudFront for

production applications, since users will see the images more quickly.

The operational complexity of a large version of this application would be fairly

minimal and you’d be able to spend your time adding features, doing marketing, or

keeping the userbase happy. I think this is a wonderful example of cloud computing

in action!

4 A single SimpleDB domain can generally handle several thousand read or write requests per second.

This is, of course, dependent on the complexity of the items.

Host Your Web Site in the Cloud358

Index

A
access identifiers, AWS, 26

accounting, AWS, 25, 289–305

ACL (Access Control List), defined, 28

AllocateAddress function, 27

Amazon DevPay, 109

Amazon EC2 (see EC2)

Amazon RDS (see RDS)

Amazon Web Services (see AWS)

AMIs (Amazon Machine Images), 129–

137

catalog, 130

choosing, 131

defined, 27

storage, 111

Apache JMeter (see JMeter)

Apache web server, testing, 125

APIs

EC2 API, 43, 138–141

elastic load balancing API calls, 217

Google Chart API, 199

S3, 62

app_access security group, 107

application server, security group, 108

as-describe-scaling-activities command,

223

as-set-desired-capacity command, 221

AssociateAddress function, 27

asynchronous messaging, SQS, 143–147

AttachVolume function, 28

attributes

deleting, 247

SimpleDB, 229, 245–248

virtual volumes, 313

AuthorizeSecurityGroupIngress function,

28

auto scaling

API tools, 43

EC2, 33, 218–225

launch configurations, 218

pricing, 221

Availability Zones, AWS, 26

AWS (Amazon Web Services), 21–35,

289–333

about, 21–28

accounting and tracking, 289–305

dynamic programming, 321–333

EC2 instance metadata, 317

elastic block storage, 306–316

infrastructure web services, 28–34

AWS accounts, creating, 51

AWS infrastructure web services, 28–34

CloudFront, 29

EC2, 32

Elastic Beanstalk service, 34

Elastic MapReduce service, 33

RDS, 31

Route 53 service, 33

S3, 28

SES, 34

SimpleDB, 30

SQS, 30

AWS keys, 53

AWS Management Console, 44, 114, 273

AWS SDK for PHP, 41

complex data structures, 74

installing, 57

programming CloudWatch, 192–203

programming SimpleDB, 232–251

B
backups, RDS, 268, 271, 281

BatchPutAttributes function, 236

billing, AWS, 25

block storage (see EBS)

browser extensions, visual tools, 44

Bucket Explorer, 48

buckets

about, 61

programming S3 and CloudFront, 66–

74

building-block services, AWS, 22

business continuity

and disaster recovery, 16

resources in the cloud, 16

business data processing, resources in

the cloud, 17

business model, cloud computing tech-

nology, 3, 9

byte-hours, S3, 64

C
c2-describe-instances command, 27

capital versus operation expenditures, 9

catalogs, AMI, 130

charting

Google Chart API, 199

multiple metrics in CloudWatch, 194–

203

classes, RDS DB Instances, 265

cloud computing, 1–19

about, 4

attributes, characteristics and miscon-

ceptions, 8–12

programmable data centers, 5

usage patterns, 13

use cases, 13–18

cloud, the, 5

CloudBerry Explorer, 47

CloudFront

about, 29, 65

pricing, 66

programming, 66–92

CloudFront Distributions, creating, 92–

99

CloudList example application, 335–358

CloudWatch

monitoring EC2, 188–203

pricing, 190

programming, 192–203

CloudWatch API Tools, 43

code samples

markup samples, xxv

running PHP code from book, 55

command line

CloudWatch, 190

EBS, 306

command line tools

about, 42

installing, 184–187

community support, for tools, 40

configuring DB Security Groups, 276

console, RDS, 273

cost

(see also pricing)

CloudFront, 30

EC2, 32

economies of scale, 8

efficiencies of cloud computing, 1

fixed versus variable, 9

of non-terminating loops, 79

360

S3, 64

SDB, 31

vertical scaling, 182

create_snapshot method, 311

CreateSecurityGroup function, 28

CreateVolume function, 28

creating

AWS accounts, 51

CloudFront Distributions, 92–99

JMeter test plans, 205

queues, 151

S3 buckets, 66

SimpleDB domains, 233

thumbnail images, 86–92

D
data

importing in RDS, 279

numeric, 239

data center, programmable, 101

data storage

(see also S3)

resources in the cloud, 16

RSS feed with SimpleDB, 251–261

in SimpleDB, 234–239, 244–247

data transfer

EC2, 110

RDS, 271

database engines, DB Instances, 266

database server, security group, 108

DB instance hours, 270

DB Instances

about, 265

accessing, 278

deleting, 286

launching, 274

DB Security Groups, configuring, 276

DB snapshots

backups, 281

creating instances from, 285

db_access security group, 107

deleting

attributes, 247

items in SimpleDB, 248

delivery, messages, 149

demos, resources in the cloud, 16

describe_volumes method, 312

DescribeAvailabilityZones function, 26

DescribeImages function, 27

DescribeInstances function, 27

DescribeRegions function, 26

desktop applications, visual tools, 44

DevPay, 109

dimensions, defined, 188

DirectEC2 iPhone/iPod interface, 51

disaster recovery, resources in the cloud,

16

disk device names, Linux, 306

displaying, AWS usage data, 300–305

documentation of tools, 40

domain statistics, SimpleDB, 249

domains, SimpleDB, 228, 233–234

dynamic Ajax, visual tools, 44

dynamic programming, AWS (Amazon

Web Services), 321–333

E
EBS (Elastic Block Store)

command line, 306

defined, 28

Public Data Sets, 312

RAID, 313

snapshots, 308–312

361

EBS volumes

creating, 123

mounting, 307

snapshots, 308

EC2 (Elastic Compute Cloud), 101–142

about, 32, 102–109

AMIs, 129–137

API, 138–141

API tools, 43

auto scaling, 218–225

custom AMIs, 131–137

instance metadata, 317

launching first EC2 instance, 111–129

monitoring with CloudWatch, 188–

203

pricing model, 109

programmable data center, 101

scaling with elastic load balancing,

209–218

EC2 API Tools, 43

EC2 Elastic Block Store (EBS), 108

ec2-add-group command, 28

ec2-allocate-address command, 27

ec2-associate-address command, 27

ec2-attach-volume command, 28

ec2-authorize command, 28

ec2-create-volume command, 28

ec2-describe-availability-zones com-

mand, 26

ec2-describe-images command, 27

ec2-describe-instances command, 190

ec2-describe-regions command, 26

ec2-describe-snapshots command, 312

ec2-monitor-instances command, 190

ec2-run-instances command, 27

ec2-terminate-instances command, 27

economies of scale, 8

edge locations, CloudFront network, 65

Elastic Beanstalk service

about, 34

elastic block storage, 306–316

Elastic Block Store, 111 (see EBS)

Elastic Compute Cloud (see EC2)

elastic IP addresses, AWS, 27

Elastic Load Balancer, EC2, 33

elastic load balancing

pricing, 212

scaling EC2, 209–218

Elastic Load Balancing API Tools, 43

Elastic MapReduce service

about, 33

ElasticFox, 45

elb-describe-instance-health command,

216

ephemeral resources, 103

events, RD Instances, 269

examples

markup samples, xxv

running PHP code from book, 55

extracting

images in image crawler application

example, 168

items from queues, 154

F
fetching

HTML in image crawler application

example, 164

image URLs in image crawler applica-

tion example, 171

file_get_contents function, 342

files

listing, 94

uploading to S3, 82–86

362

fixed versus variable costs, 9

foreach command, 305, 350

functions, RD Instances, 270

G
GD extension, Mac OS X, 55

GD images, writing to file system, 326

get_object_list method, 73

GetObjectAccessControlPolicy function,

28

gigabyte-months, S3, 64

Google Chart API, 199

grants, S3, 63

H
halt command, 217

hardware, expectations for using book,

38

horizontal scaling, 182

hosting

(see also EC2)

image crawler application example,

159

web sites, 14

HTML

fetching in image crawler application

example, 164

parsing and extracting in image

crawler application example, 168

HTTP-style probes, 212

I
I/O

EBS volumes capacity, 313

RDS storage, 271

Identity and Access Management

about, 34

images

(see also AMIs)

extracting in image crawler applica-

tion example, 168

fetching URLs in image crawler applic-

ation example, 171

GD images, 326

rendering in image crawler applica-

tion example, 174

thumbnail images, 86–92, 94

importing

data in RDS, 279

usage data, 292–298

infrastructure web services, AWS, 28–34

inserting items in queues, 153

installing

AWS SDK for PHP, 57

command line tools, 184–187

JMeter, 204

packages, 126

instance types, EC2, 104

instances

about DB Instances, 265

AWS, 27

deleting, 286

EC2, 108, 110, 111–129, 317

launching, 274

RDS, 278, 280

instances, EC2, 108, 110, 111–129, 317

IP addresses

assigning in EC2, 108, 122

elastic, 27

reservations in EC2, 111

iPhone

DirectEC2, 51

363

Ylastic, 50

iPod, DirectEC2, 51

itemName() field, 242

J
JMeter, 203–209

about, 203

installing and running, 204

JSON (JavaScript Object Notation), 157

K
keys

AWS keys, 53

SDB, 295

SSH, 112

L
language libraries, 41

limit clause, 243

Linux

connecting to EC2 instances, 120

disk device names, 306

SSH keys, 114

list_distributions method, 93

list_domains method, 234

list_metrics method, 194

listing

available metrics in CloudWatch, 192

CloudFront distributions, 93

objects in a bucket, 72, 77

queues, 152

S3 buckets, 70–72

S3 files with thumbnails, 94

SimpleDB domains, 234

load balancing

(see also elastic load balancing)

about, 183, 209

Elastic Load Balancer, 33

loader command, image crawler applica-

tion example, 163

local disk storage, EC2, 108

M
Mac OS X

connecting to EC2 instances, 120

GD extension for PHP, 55

SSH keys, 114

maintenance windows, DB Instances,

268

MapReduce service, 33

measure, defined, 188

media processing, resources in the cloud,

17

messages

asynchronous messaging, 143

order, delivery and sampling, 149

metadata, EC2 instances, 317

metering, AWS, 25

metrics

CloudWatch, 192–203

defined, 189

mon-get-stats command, 192

monitoring

about, 183

domain statistics in SimpleDB, 249

EC2 with CloudWatch, 188–203

instance performance in RDS, 280

mon-list-metrics command, 191, 216

Moore’s Law, 25

mounting, EBS volumes, 307

Multi-AZ, 285

MySQL and RDS, 263

364

N
namespace, defined, 188

new item submission form, CloudList

example application, 353–358

numeric data, SimpleDB, 239

O
objects

listing in a bucket, 72, 77

permissions, 63

S3, 29

operation expenditures versus capital

expenditures, 9

operators, SimpleDB, 243

order by clause, 243

order of messages, 149

overflow processing, resources in the

cloud, 18

P
packages, installing, 126

pages (see web pages)

parallelism, performance, 261

parsing HTML in image crawler applica-

tion example, 168

patterns, asynchronous messaging pat-

terns, 145

performance

CloudWatch, 33

parallelism, 261

RDS, 280

period, defined, 189

permissions, S3, 63

persistent resources, 103

PHP code, running examples from book,

55

pipelines

asynchronous messaging patterns, 145

image crawler application example,

164

presentment, AWS, 25

pricing

about, 24

auto scaling, 221

AWS, 24

CloudFront, 66

CloudWatch, 190

elastic load balancing, 212

RDS, 270

S3, 64

SimpleDB, 231

SQS, 150

processing model

auto scaling, 219

elastic load balancing, 210

programmable data centers, cloud com-

puting, 5

programming model

auto scaling EC2, 218

EC2 with elastic load balancing, 209

RDS, 270

S3 and CloudFront, 66–92

SimpleDB, 228, 230

SQS, 150–158

protocols, AWS, 22

provisioned storage, RDS, 271

Public Data Sets, EBS, 312

put_attributes method, 234, 244, 245

PuTTY, 38, 113, 118

Q
queries

AWS account data, 298

365

SimpleDB, 239–245

queue status command, image crawler

application example, 162

queues

about, 148

creating, 151

extracting items, 154

inserting items, 153

listing, 152

R
RAID, EBS, 313

RDS (Relational Database Service), 263–

287

about, 31, 263

concepts, 265–269

creating instances from snapshots, 285

deleting instances, 286

monitoring instance performance, 280

Multi-AZ, 285

pricing, 270

programming model, 270

scale-up processing, 282

scale-up storage, 284

snapshot backups, 281

receive_message method, 154, 161

redundancy, EBS volumes, 313

Regions, AWS, 26

rendering

images in image crawler application

example, 174

resources in the cloud, 17

resources, persistent and ephemeral, 103

REST, 22

retrieving AWS usage data, 300–305

reusing AMIs, 137

Route 53 service

about, 33

RSS feeds, SimpleDB, 251–261

RunInstances function, 27

S
S3 (Simple Storage Service), 61–99

about, 28, 61

CloudFront Distributions, 92–99

pricing, 64

programming, 66–92

S3Fox, 46

sampling messages, 149

scale-in events, 218

scale-out events, 218

scaling

(see also auto scaling; SQS)

about, 183

asynchronous messaging patterns, 146

EC2 with elastic load balancing, 209–

218

problems of fixed-scale infrastructure,

1

RDS, 282

scalability of cloud computing, 3

technical characteristics, 10

scaling activity, 218

scientific data processing, resources in

the cloud, 17

scrubbing AMIs, 135

SDK (see AWS SDK for PHP)

security

AWS, 28, 32

EC2, 107

RD Instances, 276

tools, 41

select function, 349

366

select method, 240, 339, 340

service requests, traditional process

versus cloud computing, 5

SES (Simple Email Service)

about, 34

SetDesiredCapacity function, 221

SetObjectAccessControlPolicy function,

28

sharing AMIs, 137

shell scripts, running PHP as, 56

shutting down EC instances, 128

Simple Queue Service (see SQS)

Simple Storage Service (see S3)

SimpleDB, 227–261

about, 30, 227–231

keys, 295

pricing, 231

programming, 232–251

RSS feeds, 251–261

SimpleDB Explorer, 49

skills expectations, 37

snapshots

backups, 281

creating instances from, 285

EBS, 308–312

SOAP, 22

software development life cycle support

resources in the cloud, 14

software expectations for using book, 38

SQS (Simple Queue Service), 143–180

about, 30, 148

asynchronous messaging, 143–147

image crawler application example,

158–178

pricing, 150

programming, 150–158

SSH access, enabling, 117

SSH client, 38

SSH keys, 112

statistics, defined, 189

storage

AMIs, 111

DB instances, 266

local disk storage in EC2, 108

RDS, 271

RSS feed with SimpleDB, 251–261

scaling in RDS, 284

in SimpleDB, 234–239, 244–247

storage capacity, EBS volumes, 313

storing thumbnail images, 86–92

success disaster, 1

T
TCP-style probes, 212

TerminateInstances function, 27

terminology, Amazon EC2, 104–109

tests, JMeter, 205–208

thumbnail images

creating and storing, 86–92

listing, 94

time zones, PHP, 57

tools, 40–51

about, 40

command line tools, 42, 184–187

visual tools, 43

training, resources in the cloud, 15

U
units, defined, 188

update frequency, tools, 40

uploading files to S3, 82–86

URLs, fetching in image crawler applica-

tion example, 171

367

usage

AWS, 291–298, 300–305

cloud computing, 13

S3, 65

use cases, cloud computing, 13–18

utility functions, CloudList example ap-

plication, 336–348

V
variable versus fixed costs, 9

vertical scaling, 182

virtual volumes, attributes, 313

virtualization, EC2, 104

visual tools, 43

volumes

about EBS volumes, 28

EBS volume snapshots, 308

mounting EMS volumes, 307

using EBS volumes, 32

virtual volumes attributes, 313

W
web pages

listing objects as, 77

listing S3 buckets as, 71

web servers

Apache, 125

security group, 108

web sites, hosting

(see also EC2)

web_access security group, 107

wget command, 317

where expression, operators, 243

Windows

PHP, 55

PuTTY, 118

X
XML, SOAP, 23

Y
Ylastic iPhone interface, 50

yum, 126

Z
zones

Availability Zones, 26

time zones, 57

368

	Host Your Web Site in the Cloud
	Table of Contents
	Preface
	Who Should Read This Book?
	What’s Covered in This Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	The SitePoint Podcast
	Your Feedback
	Acknowledgments
	Conventions Used in This Book
	Markup Samples
	Tips, Notes, and Warnings

	Welcome to Cloud Computing
	Avoiding a Success Disaster
	Tell Me about Cloud Computing!
	What’s a Cloud?
	The Programmable Data Center

	Characterizing the Cloud
	Some Common Misconceptions

	Cloud Usage Patterns
	Cloud Use Cases
	Hosting Static Web Sites and Complex Web Applications
	Software Development Life Cycle Support
	Training
	Demos
	Data Storage
	Disaster Recovery and Business Continuity
	Media Processing and Rendering
	Business and Scientific Data Processing
	Overflow Processing

	Just Recapping

	Amazon Web Services Overview
	Amazon and AWS Overview
	Building Blocks
	Protocols
	Dollars and Cents
	Key Concepts
	Availability Zone
	Region
	Access Identifiers
	Amazon Machine Image
	Instance
	Elastic IP Address
	Elastic Block Store Volume
	Security Group
	Access Control List

	AWS Infrastructure Web Services
	Amazon Simple Storage Service
	Amazon CloudFront
	Amazon Simple Queue Service
	Amazon SimpleDB
	Amazon Relational Database Service
	Amazon Elastic Compute Cloud
	Amazon Elastic MapReduce
	Amazon Route 53
	AWS Identity and Access Management
	AWS Elastic Beanstalk
	Amazon Simple Email Service
	Other Services

	What We’ve Covered

	Tooling Up
	Technical Prerequisites
	Skills Expectations
	Hardware and Software Expectations
	Optional but Recommended

	Tools and Libraries
	Tool Considerations
	Language Libraries
	Command Line Tools
	Visual Tools
	AWS Management Console
	ElasticFox
	S3Fox
	CloudBerry Explorer
	Bucket Explorer
	SimpleDB Explorer
	Ylastic
	DirectEC2

	Creating an AWS Account
	Obtaining Your AWS Keys
	Running the PHP Code in This Book
	Installing the AWS SDK for PHP
	Where We’ve Been

	Storing Data with Amazon S3
	S3 Overview
	The S3 Pricing Model

	CloudFront Overview
	The CloudFront Pricing Model

	Programming S3 and CloudFront
	Creating an S3 Bucket
	Listing Your S3 Buckets
	Bucket Listing as a Web Page
	Listing Objects in a Bucket
	Processing Complex SDK Data Structures
	Listing Objects in a Bucket as a Web Page
	Uploading Files to S3
	Creating and Storing Thumbnail Images

	Creating a CloudFront Distribution
	Listing CloudFront Distributions
	Listing S3 Files with Thumbnails

	Finally

	Web Hosting with Amazon EC2
	The Programmable Data Center
	Amazon EC2 Overview
	Persistent and Ephemeral Resources
	Amazon EC2 Terminology
	All Together Now

	The Amazon EC2 Pricing Model
	Instance Use
	Data Transfer
	AMI Storage
	IP Address Reservations
	Elastic Block Store

	Launching Your First Amazon EC2 Instance
	Creating and Preparing an SSH Key
	Preparing PuTTY on Windows
	Preparing Your Key Pair on Mac OS X or Linux

	Touring the AWS Management Console
	Launching Your First Instance
	Enabling SSH Access
	Connecting to the Instance
	Connecting with PuTTY on Windows
	Connecting with the Mac OS X or Linux Terminal
	Now We’re Connected

	Assigning an IP Address
	Creating an EBS Volume
	Testing Apache
	Running Some Code
	Shutting Down
	You Did It!

	All about AMIs
	The AMI Catalog
	Choosing an AMI

	Creating a Custom AMI
	Planning
	Image Preparation
	Image Scrubbing
	Image Creation
	Reusing and Sharing the AMI

	Using the EC2 API
	Closing Thoughts

	Building a Scalable Architecture with Amazon SQS
	Why Asynchronous Messaging?
	Asynchronous Messaging Patterns
	Amazon SQS Overview
	Terminology and Concepts
	Watch Out For …
	Operations
	Pricing Model

	Programming Amazon SQS
	Creating a Queue
	Listing Queues
	Inserting Items into Queues
	Extracting Items from Queues
	Introducing JSON

	Building an Image Crawler
	Hosting the Image Crawler
	Definitions and Utility Functions
	Crawl Queue Status Command
	Crawl Loader Command
	The Feed Processing Pipeline
	Stage 1: Fetching the HTML
	Stage 2: Parsing HTML and Extracting Image URLs
	Stage 3: Fetching Image URLs
	Stage 4: Rendering Images

	Running the Code

	Wrapping Up

	EC2 Monitoring, Auto Scaling, and Elastic Load Balancing
	Introduction
	Vertical Scaling
	Horizontal Scaling
	Monitoring, Scaling, and Load Balancing

	Installing the Command Line Tools
	Monitoring EC2 Data with Amazon CloudWatch
	Amazon CloudWatch Concepts
	Amazon CloudWatch Operation
	Amazon CloudWatch Pricing
	Amazon CloudWatch from the Command Line
	Programming Amazon CloudWatch
	Listing Available Metrics
	Charting Multiple Metrics

	Learning and Using Apache JMeter
	Why JMeter?
	Installing and Running JMeter
	Creating a Test Plan
	Running the Test
	Viewing the Results
	Going Further with JMeter

	Scaling EC2 Instances with Elastic Load Balancing
	Elastic Load Balancing Concepts
	Elastic Load Balancing Processing Model
	Elastic Load Balancing Pricing
	Elastic Load Balancing in Operation
	Programming Elastic Load Balancing

	Auto Scaling
	Auto Scaling Concepts
	Auto Scaling Processing Model
	Auto Scaling Pricing
	Auto Scaling in Operation
	Programming Auto Scaling

	Off the Scale

	Wrapping It Up

	Amazon SimpleDB: A Cloud Database
	Introduction
	Amazon SimpleDB
	Amazon SimpleDB Concepts
	Amazon SimpleDB Programming Model
	Amazon SimpleDB Pricing

	Programming Amazon SimpleDB
	Creating a Domain
	Listing Domains
	Storing Data
	Storing Multiple Items Efficiently
	Running a Query
	Advanced Queries
	Augmenting Items with Additional Data
	Storing Multiple Values for an Attribute
	Accessing Attribute Values
	Deleting Attributes
	Deleting Items
	Monitoring Domain Statistics

	Processing and Storing RSS Feeds with Amazon SimpleDB
	All Stored

	Amazon Relational Database Service
	Introduction
	Amazon Relational Database Service
	Amazon RDS Concepts
	Amazon RDS Programming Model
	Amazon RDS Pricing
	DB Instance Hours
	Provisioned Storage
	Storage I/O
	Backup Storage
	Data Transfer

	Using Amazon RDS
	Signing Up
	Tour the Console
	Launching a DB Instance
	Configure a DB Security Group
	Access the DB Instance
	Import Some Data

	Administering RDS
	Monitor Instance Performance
	Initiate a Snapshot Backup
	Scale-up Processing
	Scale-up Storage
	Create a DB Instance from a DB Snapshot or to a Point in Time
	Convert to Multi-AZ
	Delete DB Instances

	And That’s a Wrap

	Advanced AWS
	Accounting and Tracking
	Account Activity
	Access to Usage Data
	Importing Usage Data
	Querying Account Data
	Retrieving and Displaying Usage Data

	Elastic Block Storage
	EBS from the Command Line
	EBS Snapshots
	EBS Public Data Sets
	EBS RAID

	EC2 Instance Metadata
	Dynamic Diagramming
	Conclusion

	Putting It All Together: CloudList
	Designing the Application
	Utility Functions and Programs
	The Web Front End
	The New Item Submission Form
	And That’s It

	Index

