
JUMP START
JAVASCRIPT

BY ARA PEHLIVANIAN
& DON NGUYEN

Jump Start JavaScript
by Ara Pehlivanian and Don Nguyen

Copyright © 2013 SitePoint Pty. Ltd.

English Editor: Kelly SteeleProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Colin J. Ihrig

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9873321-8-9 (print)

ISBN 978-0-9873321-9-6 (ebook)

Printed and bound in the United States of America

ii

About Ara Pehlivanian

Ara Pehlivanian has been working on the web since 1997. Most recently, he's worked on

high-end, highly visible projects as a web developer and practice lead at Nurun, a front-end

engineer at Yahoo! Mail and is currently a JavaScript developer on the HP Cloud Services

team.

About Don Nguyen

Like many programmers, Don dabbled in JavaScript for a number years as a secondary lan-

guage. It wasn't until he began implementing server-side projects in Node.js that JavaScript

began to take center stage. Having been heavily involved in a number of web projects from

the back-end all the way to the front, he is now equally at home with JavaScript on the client

and on the server. He currently spends his time working on building startups from his home

base of Sydney, Australia.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Typically around 150 pages in length, they can be read in a

weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

iii

http://www.sitepoint.com/

To my loving wife Krista, without

whose grace, patience and support

I would not have been able to

write this; and to our two brilliant

daughters.

—Ara

To Lorraine, thank you for keeping

me nourished with hot food, a

warm heart and a beaming smile.

—Don

Table of Contents

Preface . xiii

Who Should Read This Book . xiii

Conventions Used . xiii

Code Samples . xiii

Tips, Notes, and Warnings . xv

Supplementary Materials . xv

Do you want to keep learning? . xvi

Chapter 1 Setting Up . 1

Console . 2

Chrome . 2

Firefox . 2

Internet Explorer . 2

Safari . 3

Using JavaScript in HTML Files . 4

In the HTML File . 4

In a Separate File . 5

Location of the <script> Tag . 5

Summary . 7

Chapter 2 Variables . 9

First, a Quick Comment . 9

Declarations . 10

Types . 12

Number . 12

String . 13

Boolean . 13

Undefined . 13

Null . 13

Object . 14

Operations . 14

The Dangers of Loose Typing . 15

Type Conversion (aka Type Coercion) . 15

Comparison Operators . 16

Equal (==) . 16

Not Equal (!=) . 16

Strict Equal (===) . 17

Strict Not Equal (!==) . 17

Greater than (>) . 18

Greater than or Equal to (>=) . 18

Less than (<) . 18

Less than or Equal to (<=) . 19

Logic Flow . 19

Project . 24

Summary . 24

Chapter 3 Arrays . 25

Creating an Array . 25

Adding to an Array . 26

Reading from an Array . 27

Nested Arrays . 28

What can you do with arrays? . 29

Mutator Methods . 30

Accessor Methods . 35

Iteration Methods . 40

Project . 45

viii

Summary . 45

Chapter 4 Objects and Functions 47

Objects . 47

Creating an Object . 47

Adding to an Object . 48

Reading from an Object . 49

Nested Objects . 50

Prototype Chain . 53

Looping over an Object . 54

Functions . 56

Scope . 57

Hoisting . 61

Declaration . 62

Arguments . 65

Object-oriented Programming with Functions 67

this . 70

Properties . 72

Methods . 74

Project . 77

Summary . 78

Chapter 5 Loops and Jumps . 79

Loops . 80

The while Loop . 80

The do ... while Loop . 81

The for Loop . 82

The for ... in Loop . 84

Jumps . 85

break . 85

ix

continue . 86

Labeled Statements . 87

return . 89

Exception Handling . 91

throw . 91

try . 91

An Empirical Study . 93

Loop Alternatives . 94

On Style . 94

Higher Order Functions . 94

Recursion . 97

Project . 98

Counting Tasks . 98

Sorting . 99

Summary . 100

Chapter 6 The Document Object Model 101

What is the DOM? . 101

The Need for Backward Compatibility . 102

The document Object . 102

DOM Level 0 or Legacy DOM . 103

DOM Level 1 . 105

Creating DOM Elements and Attributes . 106

insertBefore . 108

getElementsByTagName . 109

DOM Level 2 . 111

getElementById . 111

hasAttributes . 112

hasAttribute . 112

DOM Level 3 . 112

x

DOM Level 4 . 113

getElementsByClassName . 113

Data Attributes . 114

The style Attribute . 115

Project . 115

Summary . 119

Chapter 7 Events . 121

DOM Events . 122

Event Propagation . 123

Event Handlers . 125

HTML Attribute . 125

addEventListener . 126

DOM Element Properties . 128

More Examples . 129

Event Context . 132

Custom Events . 134

Project . 138

Adding Tasks . 138

Sorting . 139

Task Modification . 140

Summary . 141

Chapter 8 Canvas . 143

What is Canvas? . 143

Preparing the Data . 145

Setting up the Canvas . 146

The Most Basic Drawing . 147

Text and the Coordinate System . 149

A Further Rotation Example . 151

xi

Y-axis Numbering . 153

“Hello World” Canvas-style . 154

Grid Lines . 155

Rectangles . 156

Arcs . 159

Bar Chart Labels . 159

Shadows . 160

Making Images . 161

Summary . 162

Appendix A Common Events . 163

 . 163

xii

Preface
JavaScript is a very powerful, versatile and ubiquitous programming language. From

humble beginnings1 in the mid-90s as Netscape's foil to Microsoft's Visual Basic,

it's grown to be one of the world's most popular2 programming languages.

JavaScript is unique among programming languages because it's the only one de-

ployed on practically all personal computers around the world. All modern web

browsers implement JavaScript. It's the de facto scripting language for the Web.

While it started out as a simple language used for validating forms and minimally

manipulating some content in the page, it's evolved to let you build rich client-side

applications. What's more, over the years, JavaScript has even begun to supplant

Flash to some degree. As the web continues to grow and evolve, the need for

JavaScript developers is increasing. Whether you're an experienced programmer

looking to pick up JavaScript, or a novice wanting to fill some of that demand, this

book will help you. After reading this book you should be able to write your own

JavaScript applications and have enough of an understanding of the language to get

you started down the road to becoming an expert JavaScript developer.

Who Should Read This Book
Web designers and developers wanting to get up to speed with JavaScript quickly.

Knowledge of HTML and CSS is assumed.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

1 http://en.wikipedia.org/wiki/JavaScript#Birth_at_Netscape
2 http://javascript.crockford.com/javascript.html

http://en.wikipedia.org/wiki/JavaScript#Birth_at_Netscape
http://javascript.crockford.com/javascript.html

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

⋮ will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

xiv

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.sitepoint.com/books/jsjavascript1/

The book’s website, containing links, updates, resources, and more.

http://www.sitepoint.com/books/jsjavascript1/code.php

The downloadable code archive for this book.

http://www.sitepoint.com/forums/forumdisplay.php?15-JavaScript-amp-jQuery

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

xv

http://www.sitepoint.com/books/jsjavascript1/
http://www.sitepoint.com/books/jsjavascript1/code.php
http://www.sitepoint.com/forums/forumdisplay.php?15-JavaScript-amp-jQuery

Do you want to keep learning?
Thanks for buying this book. We appreciate your support. Do you want to continue

learning? You can now get unlimited access to courses and ALL SitePoint books at

Learnable for one low price. Enroll now and start learning today! Join Learnable

and you’ll stay ahead of the newest technology trends: http://www.learnable.com.

Once you’ve mastered the principles of JavaScript, challenge yourself with our online

quiz. Can you achieve a perfect score? Head on over to

http://quizpoint.com/#categories/JAVASCRIPT.

xvi

http://www.learnable.com
http://quizpoint.com/#categories/JAVASCRIPT

Chapter1
Setting Up
As a JavaScript developer, you’ll be writing code that runs in the browser. And as

we walk through the book, you’ll want to try out the examples. You could create

an HTML document in which you’d add your JavaScript code, but it will be a little

while yet before we tackle a full project, and you’ll want to test things out in the

meantime. The best way is to jump right in by opening up your browser’s console

and type the examples in there. All the major browser vendors have a console, and

there are instructions below on how to activate it in each. Once you have the console

open, you’ll find a prompt next to which you can click and start typing. In most

consoles, it looks like an angle bracket: >. In Internet Explorer, the prompt is two

angle brackets: >>.

Spinning a Line

When you need a new line within the console, rather than pressing Enter, which

will execute the code, press Shift Enter for a new line.

Console
This section describes how to reach the developer console in several of today’s most

popular browsers. If your browser of choice is not covered here, a quick Google

search will be sure to turn up some results.

Chrome
To activate Chrome’s Developer Tools in Windows and Linux, press Control Shift

J. On Mac, press ⌥⌘J (option command J). This will open the console tab in the

Developer Tools’ panel, which is where we want to be, as seen in Figure 1.1.

Figure 1.1. Console in Chrome

Firefox
To activate Firefox’s Web Console in Windows and Linux, press Control Shift K.

On Mac, press ⌥⌘K (option command K). The result is shown in Figure 1.2.

Figure 1.2. The Web Console in Firefox

Internet Explorer
To activate Internet Explorer’s Developer Tools panel, presented in Figure 1.3, press

F12.

Jump Start JavaScript2

Figure 1.3. Developer Tools in Internet Explorer

Safari
Activating the console in Safari is a bit more involved than in other browsers. First,

you need to enable the Develop menu in the menu bar. To do that, enter Safari’s

settings by pressing⌘, (command comma), going to the Advanced tab, and checking

the Show Develop menu in menu bar checkbox, as shown in Figure 1.4.

Figure 1.4. Enabling the Develop menu

Once you’ve done that, close the options window and then press ⌥⌘C (option

command C) to bring up the console, seen in Figure 1.5.

3Setting Up

Figure 1.5. Console in Safari

Using JavaScript in HTML Files
If you’d prefer to skip the console and work inside an HTML document, you could

go about it in one of two ways: you could write the code directly in the HTML

document, or write it in a separate JavaScript file and load it up from the HTML

file.

In the HTML File
HTML provides a <script> tag, inside of which you can write executable JavaScript

code. Here’s an example of a very simple HTML document with one line of JavaScript

that pops up an alert dialog with the message, Hello, world!:

js-in-html.html

 <!doctype html>
 <html>
 <head>
 <title>Code inside an HTML document</title>
 <script>
 alert("Hello, world!");
 </script>
 </head>
 <body>
 </body>
 </html>

Jump Start JavaScript4

In a Separate File
You can also place the code in a separate file and link to it. So, for example, we

could place our alert statement inside a file we name hello.js (the .js file extension

indicates that this is a JavaScript source file) and then link to it using the <script>

tag’s src attribute like so:

external-js.html

 <!doctype html>
 <html>
 <head>
 <title>Code inside an HTML document</title>
 <script src="hello.js"></script>
 </head>
 <body>
 </body>
 </html>

Note that you cannot have a self-closing <script> tag. In other words, the following

will fail to work:

 <!-- This won't work -->
 <script src="hello.js" />

You must include both the start and end tags, even if there is nothing inside them,

as shown below:

 <script src="hello.js"></script>

Location of the <script> Tag
We’ll be covering the DOM in detail later, but for now it’s important to know that

when the browser reads an HTML document, it converts the tags it encounters into

an internal representation called the Document Object Model, or DOM. You can

then write JavaScript that interacts with your HTML via manipulation of the DOM.

Be aware that if you try to access the DOM before the browser has had a chance to

finish building it, you’ll receive errors.

When you include a <script> tag in the document’s head, the code within it will

execute right away, even if the DOM is yet to be built. So, any reference to DOM

5Setting Up

elements will result in an error since the HTML inside the <body> isn’t there yet.

There are two ways to deal with this. You can wrap your code in the document’s

onload function, which the browser executes once it’s done constructing the DOM.

Alternatively, you could include your script tag(s) at the very end of the document’s

body, immediately before the closing </body> tag.

The latter is the preferred method because when the browser constructs the DOM,

it fires off requests to the server for every tag it encounters. It won’t call onload

until all the images have finished loading. This means that any JavaScript you’d

like to run on the page will have to wait until all the page’s images and other re-

sources are done loading. This may be insignificant on pages with just a bit of text

and an image or two. But, on pages with lots of images, you’ll have a noticeable

delay before your scripts execute. Therefore, it’s better to place your scripts at the

end of the document’s body.

Here’s an HTML document that includes embedded JavaScript as well as a reference

to an external JavaScript file. Though the code in the document’s head references

nothing in the DOM, (it’s a simple alert statement), it will only execute once the

scripts have loaded at the end of the document:

 <!doctype html>
 <html>
 <head>
 <title>Code inside an HTML document</title>
 <script>
 window.onload = function () {
 alert("Hello, world!");
 };
 </script>
 </head>
 <body>
 <h1>An example</h1>
 <p>Here's an example document with loads of images.</p>

 <!-- lots more -->

 <script src="hello.js"></script>
 <script src="another.js"></script>

Jump Start JavaScript6

 <script src="and-another.js"></script>
 </body>
 </html>

Summary
After reading this chapter, you should be ready to jump into the world of JavaScript

development. This chapter has shown you how to work with JavaScript in your

browser of choice. You've also learned the various methods for incorporating

JavaScript into web pages. Now that you're set up, the rest of the book will focus

on the fundamentals of the JavaScript language.

7Setting Up

Chapter2
Variables
Programming is basically the manipulation of data. In order to manipulate it, though,

we first need to store it somewhere. In JavaScript, variables are the most basic form

of data storage. Just like in algebra, variables are representatives of information we

want to work with. Unlike algebra, though, there’s no restriction to only using letters.

We can use whole words to more accurately describe what we’re dealing with like

name, tax, length, or width. We can also use multiple words combined together

like firstName, taskList, or timeToLive. Notice that the first word in each multi-

word variable name is all lowercase, while the first letter of each subsequent word

is capitalized. This is known as camel casing, and it is the naming convention used

in the JavaScript community.

First, a Quick Comment
You’ll be seeing a lot of comments throughout the code examples in this book, so

it’s best to explain what they are here. Comments are bits of nonexecuting text that

can be inserted into code to describe what’s going on. In JavaScript, comments come

in two forms, single-line comments and multiline comments. Single-line comments

are indicated by two forward slashes (//). Anything that follows the double slashes

of a single-line comment is considered nonexecuting text, but only until the end of

that line. On the other hand, multiline (or block) comments can span multiple lines.

Multiline comments begin with a slash star combination (/*) and continue until a

star slash (*/) combination is encountered.

Here are some examples of single-line comments:

 // I'm about to declare a variable and give it a value
 var myVariable = "Hello, world."; // Just did it!

And here’s a multiline comment:

 /* I just declared a variable named myVariable and assigned
 the value "Hello, world." to it. I preceded it with a
 comment stating that I was about to do just that, and then
 followed it with another comment on the same line stating
 that I just did it. I'm now writing a really long comment
 that needs more than one line, so I've made this one a
 multiline comment.
 */

Declarations
Declaring a variable is simple enough:

 var task = "Write the first chapter.";

Here, we’ve declared a variable named task using a variable declaration statement.

Using the var keyword, you can declare one or more variables and optionally ini-

tialize them with a value. So, for example:

 var task = "Write the first chapter.",
 complete = true;

We’ve declared two variables (separated by a comma), and assigned a string to the

first and a Boolean value to the second (there's more on variable types, such as string

and Boolean, shortly). Note how we’re only using one declaration statement to de-

clare and initialize both variables. You can also use multiple declaration state-

ments―one for each variable declaration.

Jump Start JavaScript10

A Sensitive Issue

JavaScript is a case-sensitive language, so task and Task are treated as entirely

different variables. Likewise, when we look at naming functions later on, case

sensitivity will be important. Just remember to always use the same case when

referring to a variable.

Terminate Each Line

The semicolon at the end of the line tells JavaScript that this line of code is com-

plete. If you leave it out, JavaScript will attempt to insert a semicolon when it’s

reading your code. This is known as automatic semicolon insertion. As a general

guideline, you shouldn’t leave your program’s functionality to guesswork. It’s best

to be sure and terminate each line with a semicolon.

One last point about variable declaration and initialization. It’s best to keep the two

separate. I’ve run into trouble in the past when using a debugger to walk through

my code. When variables are declared and initialized in the same statement, the

debugger skips over the whole line in one step. If there’s any trouble with one of

the initializations, you won’t be able to examine each assignment individually. In-

stead, it’s better declare all your variables together and initialize them all separately,

like so:

 // declaration
 var task, complete;

 // initialization
 task = "Write the first chapter.";
 complete = true;

Later, we'll see how it's possible to perform calculations and operations during

value assignment. We'll also see how doing so can make debugging more difficult.

Saving Space

Some examples in this book may go against this rule, declaring and initializing

variables in a single statement. This is usually done in order to save page space.

11Variables

Types
If you’ve had any exposure to programming languages like C or Java, you’ve likely

noticed that there was no specification that we wanted task to hold a string (as

opposed to a Boolean or numeric value). This is because JavaScript is a loosely

typed language, unlike C or Java, which are strongly typed. This means that even

though JavaScript does recognize types internally, you don’t need to explicitly de-

clare a variable to be of a certain type. You can also change a variable’s type on the

fly. JavaScript tries to figure out what you’re trying to do with your variables instead

of relying on you to explicitly say it. In fact, there’s no way to tell JavaScript that

you want your variable to be of a certain type, apart from assigning a value of that

type to the variable.

There are six data types you can work with: number, string, Boolean, null, undefined,

and object.

Number
Unlike in other languages, the only numeric type JavaScript has is Number. According

to the ECMAScript standard1, Number holds a "double-precision 64-bit binary format

IEEE 754 value." According to the standard, Number can hold a "set of all possible

Number values including the special Not-a-Number (NaN) values, positive infinity,

and negative infinity."

When Is a Number Not a Number?

Not-a-Number or NaN is a special value that’s returned by JavaScript when math

functions fail (Math.abs("foo")), or when a function trying to parse a number

fails (Number("foo")). NaN is special because it’s the only value in JavaScript

that doesn’t equal itself. In other words, both NaN == NaN and NaN === NaN

return false when logically you’d expect them to be true since NaN is NaN.

However, true to its meaning NaN itself is “not a number” and therefore is not

equal to itself.

There is an isNaN function to verify if a returned value is actually NaN. but be

careful because the results can be confusing. The reason is because isNaN first

tries to convert the value that you pass it into a number through a process called

1 http://www.ecma-international.org/publications/standards/Ecma-262.htm

Jump Start JavaScript12

http://www.ecma-international.org/publications/standards/Ecma-262.htm

type conversion (which we’ll cover later) and, as a result, some values convert

into numbers while others don’t. For example, it will return true for isNaN(NaN),

undefined, and an object literal ({})―they are all not numbers. It will not,

however, return true for values of true and null, which are also not numbers.

Where it becomes even trickier is in dealing with strings. It will return false for

numbers in strings such as isNaN("42"), since "42" is converted to 42, which

is a number. It will also return false for empty strings ("") and strings consisting

only of spaces (" ") since they’ll convert to 0, which is also a number. But strings

with text in them that fail when parsed as a number (like isNaN("foo")) will

return NaN. So, even though "foo" is clearly not equal to NaN, it returns true

when you pass it into isNaN.

The only truly reliable way to test for whether a value is actually NaN is to compare

it against itself. Since NaN is the sole value that doesn’t equal itself, it will return

false and you’ll know that what you’re dealing with is in fact NaN.

String
Strings holds all possible string values. Some examples include:

 "Hello, world!"
 "1, 2, 3, 4, 5"
 "!@#$%^&*()_+"

Boolean
Boolean variables can only hold the values true or false.

Undefined
Undefined is an odd data type because it represents the state of a variable that’s

been declared but without a value assigned to it. By definition, though, the fact that

the variable exists means that it’s defined, which is what makes this data type un-

usual.

Null
Null is used when you want to declare a variable and intentionally express the ab-

sence of a value (unlike undefined where the value is simply absent).

13Variables

Object
An object is a collection of properties. The properties can be any of the previously

mentioned types, as well as other objects and functions (which we’ll cover later).

Operations
Having data is great, but doing something with it is better. You may have a couple

of strings that you want to concatenate, or a few numbers you’d like to do some

math with. Well, it’s fairly straightforward to perform these tasks using JavaScript.

Concatenating strings is as easy as using the + symbol:

 var fname, lname, fullName;

 fname = "John";
 lname = "Doe";
 fullName = fname + " " + lname; // fullName is "John Doe"

Math operations are carried out as you’d expect, using the addition (+), subtraction

(-), multiplication (*), division (/), and modulus (%) operators:

 var widgets, gizmos, inventory;

 widgets = 1043;
 gizmos = 2279;
 inventory = widgets + gizmos; // inventory is 3322

Similarly:

 var provincial, federal, subtotal, total;

 provincial = 0.095;
 federal = 0.05;
 subtotal = 10;
 total = subtotal + (subtotal * provincial)
➥ + (subtotal * federal); // total is 11.45

Finally, you can use the remainder (%) operator to end up with just the remainder

of a division returned to you. So, for example, 10 % 3 will return 1.

Jump Start JavaScript14

The Dangers of Loose Typing
Although JavaScript does its best to figure out what you’re doing with your variables,

and has no requirement for strong typing, it’s important to consider the type of data

your variables will be holding; otherwise, you may run into some problems.

For example, consider:

 var johnTaskCount = 11,
 janeTaskCount = "42",
 totalTaskCount = johnTaskCount + janeTaskCount;

At a glance, John has 11 tasks and Jane has 42, which should total 53 tasks. However,

since the value of janeTaskCount is a string, JavaScript sees the plus symbol on the

third line as an attempted concatenation instead of an addition. The result is "1142"

instead of the expected number, 53.

For the right result, we have to ensure that both variables hold actual numbers and

not strings, like this:

 var johnTaskCount = 11,
 janeTaskCount = 42,
 totalTaskCount = johnTaskCount + janeTaskCount;

Type Conversion (aka Type Coercion)
When JavaScript is given an operation involving conflicting variable types, it tries

to normalize them first before performing the operation. This is the case in arithmetic

or string operations (as shown) or comparisons (which we’ll cover in a moment).

Because you can’t add a word to a number, it first converts the number to a string

and then concatenates the two (like we saw a moment ago). Likewise, if you attempt

to add a number to a Boolean (true or false), it will first convert the Boolean to

its numeric representation―1 for true and 0 for false―and then add that to the

number. This is a very important aspect of the language to understand, as not

knowing about it could lead to unintentional errors cropping up in your programs.

15Variables

Comparison Operators
Comparison operators compare two values and return either true or false based

on how they compare. So, if we want to know whether 10 is greater than 5, we’d

write 10 > 5 and that comparison would return true. However, 10 > 11 would

return false.

Equal (==)
Returns true if both values are equal. If the values being compared are not of the

same type, JavaScript first converts them and then applies a strict comparison. So,

if the values are a number and a Boolean, they’ll be converted to numbers before

the comparison. If a string is involved, both values are converted to strings before

comparing. If they’re objects, they’re equal if both values are referring to the same

location in memory:

 1 == 1 // returns true
 "1" == 1 // returns true ("1" converts to 1)
 1 == true // returns true
 0 == false // returns true
 "" == 0 // returns true ("" converts to 0)
 " " == 0 // returns true (" " converts to 0)

 0 == 1 // returns false
 1 == false // returns false
 0 == true // returns false

 var x, y; // declare x and y
 x = {}; // create an object and assign it to x
 y = x; // point y to x
 x == y; // returns true (refers to same object in memory)
 x == {}; // returns false (not the same object)

Not Equal (!=)
This is the same as equal, but it works in reverse: true is returned if the values are

not equal. The same conversions described above apply here as well:

 1 != 1 // returns false
 "1" != 1 // returns false ("1" converts to 1)
 1 != true // returns false

Jump Start JavaScript16

 0 != false // returns false
 "" != 0 // returns false ("" converts to 0)
 " " != 0 // returns false (" " converts to 0)

 0 != 1 // returns true
 1 != false // returns true
 0 != true // returns true

 var x, y; // declare x and y
 x = {}; // create an object and assign it to x
 y = x; // point y to x
 x != y; // returns false (refers to same object in memory)
 x != {}; // returns true (not the same object)

Strict Equal (===)
A strict equal comparison performs no conversion of types. Where "" == 0 would

return true for a regular equal comparison, "" === 0 would not, since an empty

string does not equal zero:

 1 === 1 // returns true

 "1" === 1 // returns false ("1" is not converted)
 1 === true // returns false
 0 === false // returns false
 "" === 0 // returns false ("" is not converted)
 " " === 0 // returns false (" " is not converted)
 0 === 1 // returns false
 1 === false // returns false
 0 === true // returns false

 var x, y; // declare x and y
 x = {}; // create an object and assign it to x
 y = x; // point y to x
 x === y; // returns true (refers to same object in memory)
 x === {}; // returns false (not the same object)

Strict Not Equal (!==)
Same as strict equal except that it works in reverse. It returns true if the values are

not equal. Again, no conversions are performed prior to comparison:

17Variables

 1 !== 1 // returns false

 "1" !== 1 // returns true ("1" is not converted)
 1 !== true // returns true
 0 !== false // returns true
 "" !== 0 // returns true ("" is not converted)
 " " !== 0 // returns true (" " is not converted)
 0 !== 1 // returns true
 1 !== false // returns true
 0 !== true // returns true

 var x, y; // declare x and y
 x = {}; // create an object and assign it to x
 y = x; // point y to x
 x !== y; // returns false (refers to same object in memory)
 x !== {}; // returns true (not the same object)

Greater than (>)
Returns true if the value on the left of the operator is greater than the value on the

right. Note that type conversion implicitly occurs before comparison:

 0 > 1 // returns false
 1 > 1 // returns false
 2 > 1 // returns true
 2 > "" // returns true ("" converts to 0)

Greater than or Equal to (>=)
Returns true if the value on the left is greater than or equal to the one on the right.

Note that type conversion implicitly occurs before comparison:

 0 >= 1 // returns false
 1 >= 1 // returns true
 "1" >= 1 // returns true ("1" converts to 1)

Less than (<)
Returns true if the value on the left of the operator is less than the value on the

right. Note that type conversion implicitly occurs before comparison:

Jump Start JavaScript18

 0 < 1 // returns true
 1 < 1 // returns false
 2 < 1 // returns false
 2 < "" // returns false ("" converts to 0)

Less than or Equal to (<=)
Returns true if the value on the left of the operator is less than or equal to the value

on the right. Note that type conversion implicitly occurs before comparison:

 0 <= 1 // returns true
 1 <= 1 // returns true
 "1" <= 1 // returns true ("1" converts to 1)
 2 <= 1 // returns false
 "2" <= 1 // returns false ("2" converts to 2)

Logic Flow
Now that we’ve covered comparison operators, we can use them to control the logic

flow of our programs. Sometimes your program will need to execute different code

under different conditions. For example, if the time is before noon, we should display

a "Good Morning!" message, but if it’s later in the day, "Good Afternoon!" or even

"Good Evening!" would be more appropriate. The way to do this is to use the

if…else statement to evaluate conditions and fork code execution.

Figure 2.1 shows how logic flow can be controlled through comparison statements.

If a condition is met, the code branches in a given direction. If not, it falls to the

next condition. In our flow diagram, we assume a time of 1900 hours or 7 PM. We

then check it against various time ranges to see where it falls. So, if the time value

is greater than or equal to 0000 (midnight) and less than 1200 (noon), we set our

message to "Good morning!". If it’s greater than or equal to 1200 and less than 1700

(5 PM), we set the message to "Good afternoon!". We continue this pattern until

we’ve checked every range leading us to midnight.

19Variables

Figure 2.1. Logic flow

&& symbols

You’ll notice the use of && symbols in Figure 2.1. This is a logical AND operator.

Along with it, there’s also the logical OR (||) as well as the logical NOT (!). The

AND and OR operators convert values to Boolean values and then return one of

the two. The NOT operator inverses the Boolean value of an operand. Here are a

few examples of the logical AND operator. Notice how if the first of the two values

evaluates to false, it is returned; otherwise, the second value is returned:

Jump Start JavaScript20

 true && true; // returns true
 true && false; // returns false
 false && true; // returns false
 0 && 1; // returns 0
 0 && 2; // returns 0
 1 && 0; // returns 0
 2 && 0; // returns 0
 "foo" && "bar" // returns "bar"

Here are a few examples of the logical OR operator. Note how if the first of the

two values evaluates to true, it is returned; otherwise, the second value is re-

turned:

 true || true; // returns true
 true || false; // returns true
 false || true; // returns true
 0 || 1; // returns 1
 0 || 2; // returns 2
 1 || 0; // returns 1
 2 || 0; // returns 2
 "foo" || "bar"; // returns foo

Here are a few examples of the logical NOT operator. Note how it inverts the

Boolean value of the operand:

 !true; // returns false
 !false; // returns true
 !0; // returns true
 !1; // returns false
 !"foo"; // returns false

Let’s write some code that does what’s represented in Figure 2.1:

time-of-day.html (excerpt)

 var d, hours, minutes, time, message;

 // Get the current time's hour and minute components
 d = new Date();
 hours = d.getHours();
 minutes = d.getMinutes();

21Variables

 // Make sure the hour is a double digit string
 if (hours < 10) {
 hours = "0" + hours; // converts hours to string
 } else {
 hours = hours.toString();
 }

 // Make sure the minutes are a double digit string
 if (minutes < 10) {
 minutes = "0" + minutes; // converts minutes to string
 } else {
 minutes = minutes.toString();
 }

 // Concatenate hours and minutes into a quadruple digit number
 // representing the time in 24 hour format
 time = Number(hours + minutes);

 if (time >= 0000 && time < 1200) {
 message = "Good morning!";
 } else if (time >= 1200 && time < 1700) {
 message = "Good afternoon!";
 } else if (time >= 1700 && time < 2100) {
 message = "Good evening!";
 } else if (time >= 2100 && time <= 2359) {
 message = "Good night!";
 }

 alert(message);

In this example, we establish the current time by instantiating a new Date object

and reading the hours and minutes values from it. The Date object is set to the date

and time at the moment it was instantiated. Now, since we need a four-digit number

to represent our time of day, and since hours and minutes can be in the single digits

(if it’s two minutes past the hour, the minutes will be 2, not 02), we need to pad the

values. We check to see if the values we’re given are less than 10. If so, we pad them

with a zero. By doing this, we’re actually accomplishing two tasks at once. By adding

a "0" string to our digit rather than a numeric 0 (which would do nothing), we’re

triggering type coercion and turning our digit into a string. If, however, our hours

or minutes value is in the double-digits, we only convert it to a string by calling the

toStringmethod. Once we have both the hours and minutes values, we concatenate

them to receive a nice four-digit representation, and then we convert it back to a

Jump Start JavaScript22

number from a string. That way, as a number, we can use comparison operators to

check the current time against our ranges. Note how we’ve already used the if…else

syntax to prepare our hours and minutes values? We use it again to compare our

time value against values we’ve set to determine when morning, afternoon, evening,

and night are. When one of the clauses are met, (in the case of our example, when

the 1900 falls between 1700 and 2100), we set the value of message to "Good

evening!" and then alert the user, as seen in Figure 2.2

Figure 2.2. Logic flow output

Shortening Code With The Ternary Operator

Sometimes, if you want to avoid having a verbose if…else statement in your

code, you can shorten it by using the ternary operator. Here’s the way it’s struc-

tured: condition ? expression1 : expression2. So we could write the

first if…else in the previous example like this instead:

hours = (hours < 10) ? "0" + hours : hours.toString();

Sometimes, this syntax makes it easier and cleaner to read your code. Sometimes

it doesn’t. Use your judgment and pick the one that’s easiest to understand what’s

going on.

23Variables

Project
In order to tie together what we’re learning, I’m going to walk us through a project

that we’ll build as we go through this book: a task manager. For now, let’s populate

some variables with tasks:

project.js

 var task1, task2, task3;

 task1 = "Pay phone bill";
 task2 = "Write best-selling novel";
 task3 = "Walk the dog";

Summary
In this chapter, we covered variables, data types, operators, and basic control flow.

These are the the building blocks of all JavaScript programs. If any of this material

is still unclear to you, please go back and read the chapter again. It is absolutely

critical that you understand how these basics work before moving on to more

complex topics.

Jump Start JavaScript24

Chapter3
Arrays
We saw in Chapter 2 how variables store different types of data. But in the case of

something like a to-do list, where you have more than one item to deal with, you're

going to need a way to store a collection of data. This is where arrays come in.

Creating an Array
You can create an array in a couple of ways:

var myArray = new Array();

Or:

var myArray = [];

The [] notation is called an array literal, and it represents an empty array. It’s less

verbose and safer to use than the new Array() syntax, because the Array constructor

can be overwritten and potentially replaced with malicious code; for example, a

function that masquerades as an array but sends any data you place in it to a third-

party server on the Internet. Using the array literal, you can easily create a new array

containing values such as the following:

var myArray = [4, 8, 15, 16, 23, 42];

An array isn’t limited to numbers, though. You can also create an array with strings

in it:

var fruit = ["apple", "orange", "pear", "grapes"];

Furthermore, you can mix the types of data stored in the array:

var stuff = [1, "apple", undefined, 42, "tanks", null, []];

Adding to an Array
There’s no need to pre-populate an array with data, though. You can create an empty

array and then add data to it later in several ways. One way is by index:

 var myArray = [];

 myArray[0] = "Hello";
 myArray[1] = "World";

The contents of this array are now: ["Hello", "World"]. By specifying 0 in the

square brackets, we’re telling JavaScript that we want the value stored at index 0.

In this example, the string "Hello" is assigned to the zeroth position. Similarly, the

string "World" is stored at index one. Figure 3.1 shows how this looks.

Figure 3.1. An array with indices

Jump Start JavaScript26

Speaking of indices, it’s important to remember that array indices are zero-based.

This means that the first item is stored at position 0, the second at position 1, the

third at position 2, and so on. It can cause confusion, however, and lead to one-off

errors. For example, you might ask for the item at index one and expect the first

array element, but, in reality, you’d be accessing the second element.

It’s also possible to use named indices:

 var myArray = [];

 myArray["fruit"] = "apple";
 myArray["vehicle"] = "tank";

This creates an associative array where items are stored by a named index rather

than a numbered index. However, we'd discourage the use of associative arrays.

The preferred way to store data with named indices is by using objects, which we’ll

discuss in the next chapter.

As mentioned earlier, there are a couple of ways to add data to an array. The second

approach is to use the push method. This is useful in situations where you want to

add items to the end of an array, but want to avoid calculating the index required

to access the final position. Instead, you can do this:

myArray.push("hello");

By using push, you simply add a new item to the existing array. If it’s an empty array,

the data is written to position 0. If there are ten items in the array, the data is written

to position 10 (remember, indices are zero-based).

Reading from an Array
Reading from an array is fairly straightforward. All you need to do is point to the

item you want by its index number and the array will return it to you, like so:

 var myValue,
 myArray = ["Hello", "World", "I", "am", "an", "array"];

 myValue = myArray[4]; // returns "an"

27Arrays

Here we have an array containing six items. Since arrays are zero-indexed, the word

"Hello" resides at position 0, "World" is at 1, "I" is at 2, and so on. By passing the

index 4 to myArray, we’re requesting the fifth item in the array, which is the word

"an".

Nested Arrays
Sometimes, you’ll need to store an array within an array. Sometimes, you’ll require

even more nesting. A quick warning: although it’s possible to nest a number of arrays,

we’d advise against it, as working with many array indices can be confusing to work

with.

Let’s start with two simple arrays, which we’ll call them yusuf and dreamers. We’ll

fill dreamers with some values:

 var yusuf, dreamers;

 yusuf = [];
 dreamers = ["cobb", "arthur", "ariadne", "saito", "fischer"];

Now, reading any of the values from the dreamers array is as simple as passing in

an index, which means placing the index value between a set of square brackets

placed next to the array name. So, if I wanted "cobb", I’d pass in an index of 0:

var dreamer = dreamers[0]; // returns "cobb"

But what if dreamers wasn’t a named array but merely defined inline:

 var yusuf;

 yusuf = [["cobb", "arthur", "ariadne", "saito", "fischer"]];

How would we now get to "cobb"? By using: yusuf[0][0]. In the first square

brackets, you define the index of the first array you want to read from; in the second

set, you define the second index. So, reading "arthur" would be yusuf[0][1],

"ariadne" would be yusuf[0][2], and so on.

Let’s take it a bit further:

Jump Start JavaScript28

var reality = ["yusuf", ["arthur", ["eames", ["cobb", "ariadne",
➥"saito", "fischer"]]]];

Here, we have an outer array called reality. It contains the string "yusuf" and a

nested array. The nested array contains the string "arthur" and another nested array,

and so on. Reading values from this nested set would be as follows:

 reality[0]; // returns "yusuf"
 reality[1][0]; // returns "arthur"
 reality[1][1][0]; // returns "eames"
 reality[1][1][1][0]; // returns "cobb"
 reality[1][1][1][1]; // returns "ariadne"
 reality[1][1][1][2]; // returns "saito"
 reality[1][1][1][3]; // returns "fischer"

As you can see, keeping track of matters can become complicated, especially when

each array contains several items―several of which are arrays themselves.

What can you do with arrays?
Now that we’ve covered the basics of an array and how data is stored in them, let’s

look at what you can do with them. There are seven mutator methods that let you

modify the contents of the array: pop, push, reverse, shift, sort, splice, and

unshift. There are also four widely supported accessor methods that don’t modify

the array but allow you to access its contents in different ways: concat, join, slice,

and toString.

On Browser Support

Since JavaScript support varies from browser to browser and from browser version

to browser version, there are varying degrees of support to contend with. For ex-

ample, browsers implementing JavaScript 1.6 and higher also support the indexOf

and lastIndexOf accessor methods. They’ll also support the following iteration

methods: forEach, every, some, filter, and map. Finally, browsers supporting

JavaScript 1.8 or higher will also support the reduce and reduceRight iteration

methods.

It used to be that browser makers released a new version of their product once

every few months or even years. Nowadays, though, they’re doing it much

faster―at least Google and Mozilla are with Chrome and Firefox. To give you an

29Arrays

example, while Internet Explorer is at version 10 and Safari at version 6 as of this

writing, Firefox and Chrome are at versions 21 and 28 respectively. With new

versions coming out so quickly (and updates being made transparently with the

browser updating itself whenever you restart it), it’s very difficult to pin down

which version supports what functionality, especially in print. If you need to

know which version of what browser supports a particular feature you want to

use, you can utilize a tool like http://caniuse.com/. Type in a method name and

you’ll be given a table of all the supporting browsers, their versions, and how well

the feature is implemented.

Mutator Methods

pop

pop will remove the last element from the array and return it to you:

 var tasks = [
 "Pay phone bill",
 "Write best-selling novel",
 "Walk the dog"
];

 tasks.pop(); // returns "Walk the dog"

push

push will add an item to the end of the array and return the array’s new length:

 var tasks = [
 "Pay phone bill",
 "Write best-selling novel",
 "Walk the dog"
];

 tasks.push("Feed the cat"); // returns 4
 // tasks is now:
 // ["Pay phone bill",
 // "Write best-selling novel",
 // "Walk the dog",
 // "Feed the cat"]

Jump Start JavaScript30

http://caniuse.com/

reverse

reverse will reverse the order of the items in the array:

 var tasks = [
 "Pay phone bill",
 "Write best-selling novel",
 "Walk the dog"
];

 tasks.reverse();
 // tasks is now:
 // ["Walk the dog",
 // "Write best-selling novel",
 // "Pay phone bill"]

shift

shift removes the first item in the array and returns it:

 var tasks = [
 "Pay phone bill",
 "Write best-selling novel",
 "Walk the dog"
];

 tasks.shift(); // returns "Pay phone bill"
 // tasks is now:
 // ["Write best-selling novel",
 // "Walk the dog"]

sort

As the name implies, sort sorts the items of an array in ascending order. The sort

algorithm is very basic. For example, regardless of whether you’re sorting strings

or numbers, everything is converted into strings and then compared. So if you’re

sorting [3, 10, 1, 2], rather than [1, 2, 3, 10], you’ll end up with [1, 10,

2, 3]. That’s because lexically (or alphabetically), 10 comes before 2 because it

starts with a 1.

Thankfully, sort lets you pass in a custom comparison function:

array.sort([compare]);

31Arrays

This allows you to compare the items being sorted using your own criteria, without

converting to strings if you don’t want to. You can write a compare function to

simply reverse the sort order, or to sort according to a highly customized set of cri-

teria; for example, the second-last letter of the second-last word of each item in the

array, if you so desired.

We’ll take a closer look at the compare function a little later in the book once we’ve

tackled functions. For now, here’s how a simple sort works:

 var tasks = [
 "Pay phone bill",
 "Write best-selling novel",
 "Walk the dog"
];

 tasks.sort(); // sorts array in ascending order
 // tasks is now:
 // ["Pay phone bill",
 // "Walk the dog",
 // "Write best-selling novel"]

splice

array.splice(index, howMany[, element1, ...[, elementN]);

splice lets you perform selective surgery on an array, allowing you to simultan-

eously add and remove items from an array with just one command:

splice.html (excerpt)

 var tasks = [
 "Pay phone bill",
 "Write best-selling novel",
 "Walk the dog"
];

 tasks.splice(1, 1, "World domination");
 // tasks is now:
 // ["Pay phone bill",
 // "World domination",
 // "Walk the dog"]

Jump Start JavaScript32

We just told splice to start at the index of 1, which was the position of "Write

best-selling novel", remove one item (removing "Write best-selling novel"),

and then insert the item "World domination" in that position. We could do the

same with multiple items:

 var tasks = [
 "Pay phone bill",
 "Write best-selling novel",
 "Walk the dog"
];

 tasks.splice(1, 1, "World domination", "Rotate tires",
➥"Hire hit squad");
 // tasks is now:
 // ["Pay phone bill",
 // "World domination",
 // "Rotate tires",
 // "Hire hit squad",
 // "Walk the dog"]

There are two points to note here. We’ve now have three items where "Write best-

selling novel" used to be, and the inserted items have shifted "Walk the dog"

without overwriting it.

Of course, there’s no need to add any items when splicing. We could just remove

items (and have them returned to us):

 var tasks, task;

 tasks = [
 "Pay phone bill",
 "Write best-selling novel",
 "Walk the dog"
];
 task = tasks.splice(1, 1);
➥// returns "Write best-selling novel
 alert("REMINDER! Don’t forget to: " + task);

Here, all we’re doing is slicing out "Write best-selling novel" and storing it in

the variable named task. We then trigger an alert with the message: "REMINDER!

Don’t forget to: Write best-selling novel". This can be seen in Figure 3.2.

33Arrays

Figure 3.2. Alert showing a reminder message

Getting the User's Attention

An alert is a basic way to attract the user’s attention. It’s hardly an elegant or

design-friendly way of doing it, but it’s simple and achieves the task required―es-

pecially for the purposes of this book!

Unfortunately, users are unable to interact with the page while an alert message

is active. They need to click the "OK" button in order to dismiss the message first.

unshift

unshift adds one or more items to the beginning of the array and returns the array’s

new length:

unshift.html (excerpt)

 var tasks, len;

 tasks = [
 "Pay phone bill",
 "Write best-selling novel",
 "Walk the dog"
];
 len = tasks.unshift("Defeat nemesis", "Pick up dry

Jump Start JavaScript34

➥cleaning");
 alert("You now have " + len + " tasks to complete: "
➥+ tasks.join(", "));

Here, we’ve simply added two new tasks to the beginning of our list using unshift,

then taken the array’s new length and constructed a message for the user. The result

is shown in Figure 3.3.

Figure 3.3. Alert showing new number of tasks

You may have noticed my use of the join method. We’ll take a look at join shortly.

Accessor Methods

concat

With concat, you can combine two or more arrays into one. The original arrays

being concatenated remain untouched. The operation returns a newly formed array

with the concatenated values in it:

 var arr1, arr2, arr3, arr4;

 arr1 = ["Pay phone bill"];
 arr2 = ["Write best-selling novel"];
 arr3 = ["Walk the dog"];
 arr4 = arr1.concat(arr2, arr3);

35Arrays

 // arr4 contains:
 // ["Pay phone bill",
 // "Write best-selling novel",
 // "walk the dog"]

Here, the concat method has filled arr4 with the contents of the first three arrays.

The other three arrays remain unchanged, still containing one item each.

join

We’ve already seen join in action in the unshift example. join takes the values

in an array and joins them into a string. You can pass it a parameter to specify what

character(s) to put in between each item as it performs the join operation. If you

don’t, it will just output a comma-separated list of items. Note that it doesn’t matter

what type each of the array items are, join will perform a toString conversion on

each item and use the result (we’ll look at toString in just a moment), as shown

inFigure 3.4:

join.html

 var nums;

 nums = [4, 8, 15, 16, 23, 42];
 alert("The winning lottery numbers are: "
➥+ nums.join(", "));

Figure 3.4. Alert showing join in action

Jump Start JavaScript36

You may be asking why a comma was passed in for that example when calling join

by itself would have automatically inserted a comma. Notice how I’ve included a

space after the comma? Otherwise, we’d end up with The winning lottery numbers

are: 4,8,15,16,23,42, as shown in Figure 3.5.

Figure 3.5. Alert showing join in action without spacing

slice

slice will copy a part of an array and return it. Rather than modify the original array,

it just makes a shallow copy. You tell it where to start and, optionally, where to end

copying. So arr.slice(2) will return a copy of arr starting at index 2 and going

all the way to the end of the array. Conversely, arr.slice(-2) will start at the end

and give you the last two items. arr.slice(2, 4) will make a copy of arr from

index 2 to index 4.

Did you see we said that slice makes a shallow copy. For example, if your array

contains an array as one of its items, it will be copied by reference. In other words,

if the original array changes, so will the copy.

Let’s create a task list that has a child list of cleaning-related items, then copy it and

slice it up into smaller lists:

37Arrays

 var tasks, todo, cleanup, noCleaning;

 tasks = [
 "Fly a kite",
 "Save the world",
 [
 "Clean bathroom",
 "Clean garage",
 "Clean up act"
]
];
 todo = tasks.slice(0); // makes a copy of tasks
 cleanup = tasks.slice(-1); // copies only the nested array
 noCleaning = tasks.slice(0, 2);
➥// copies only the first two items

The first point to note is that the third item in the tasks list is an array. We’ve

already mentioned that slice makes a shallow copy of the array. This is an example

of needing to be careful when making a sliced copy, because the child array will

only be copied by reference. In other words, the copy of the child array will be

pointing to the original, so if the original array changes, the copy will change too.

toString

toString returns a string representing the array and its items:

 var arr = ["These", "words", "are",
➥ "separated", "by", "commas"];

 arr.toString(); //
➥returns "These,words,are,separated,by,commas"

When array items are exclusively strings, as in the previous example, they’re simply

concatenated in a comma-separated list and returned. Numbers are first converted

to strings before the concatenation:

 var arr = ["These", 8, "words", "and", "numbers", "are",
➥ "separated", "by", "commas"];

 arr.toString(); // returns
➥"These,8,words,and,numbers,are,separated,by,commas"

Jump Start JavaScript38

In the case of arrays and objects (which we’ll cover later), we see a different behavior:

 var arr = ["a", "b", "c", 100, 200, 300, [1,2,3],
➥{"foo": "bar"}];

 arr.toString(); // returns "a,b,c,100,200,300,1,2,3,
➥[object Object]"

Note how the toString function flattens out the nested array containing the values

1,2,3, but only outputs [object Object] for the object literal.

indexOf

indexOf will find the first instance of an item in an array and return its index to

you. It does this using strict equality, just like when you use === instead of ==. Here's

an example:

 array.indexOf(searchElement, [fromIndex]);

The searchElement value is what you’re looking for. If you know that your value

occurs after a certain point, you can optionally pass an index from which to begin

the search so that you can avoid looking through the whole array, as shown in Fig-

ure 3.6:

 var alphabet;

 alphabet = ["a", "b", "c", "d", "e", "f", "g", "h", "i",
➥ "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v",
➥ "w", "x", "y", "z"];
 alert("The letter ’m’ is at index: " +
➥alphabet.indexOf("m"));

39Arrays

Figure 3.6. Alert showing result of indexOf search

You might pass in an index to start the search at, like alphabet.indexOf("m", 10).

In this case, there will be little difference because the number of items in the array

is so small. But in very large arrays, it could have an impact on performance because

you’ll have much fewer items to search through.

lastIndexOf

lastIndexOf works exactly like indexOf, but begins its search from the end of the

array rather than the beginning. Thus, it will find the last occurrence of the

searchElement:

array.lastIndexOf(searchElement, [fromIndex]);

Iteration Methods

forEach (JavaScript 1.6)
Traditionally, when you wanted to work with all the items in an array, you’d loop

over it. Though we’ll be covering loops later, it’s important to show you how it used

to be done so that you understand why the forEach method is handy.

The following is a program that uses the traditional method of looping over an array.

The array contains a set of numbers and on each pass, the instructions in the loop

Jump Start JavaScript40

add the current number to the total. The program ends with an alert stating the total

amount, which is 108:

forach.html (excerpt)

 var arr, i, num, total;

 arr = [4, 8, 15, 16, 23, 42];
 total = 0;

 for (i = 0; i < arr.length; i = i + 1) {
 num = arr[i];
 total = total + num;
 }

 alert("The total is: " + total);

Figure 3.7 shows how that looks.

Figure 3.7. An alert showing the total value of the numbers in an array

Though there are several ways to create a loop, the for loop seen in this example

is the most common. It consists of three parts: the initialization (i = 0), the condition

(i < arr.length), and the final expression (i = i + 1). The loop starts with the

variable i set to zero. If the value of i is less than the length of the array, which it

is, the loop’s body is executed once. After the body is executed, i is incremented

by one. This process continues until i is no longer less than arr.length. Now that

41Arrays

you have a basic understanding of the for loop, take a look at how forEach can

simplify the same program:

 var arr, total;

 arr = [4, 8, 15, 16, 23, 42];
 total = 0;

 arr.forEach(function(num) {
 total = total + num;
 });

 alert("The total is: " + total);

Notice how the loop itself is now a call to the array’s forEach method. We pass in

an anonymous function (we’ll cover those in detail later) that receives a value as

an argument and places it in the variable num. In other words, each time forEach

steps over a number in the array, it passes it to this function as num. The rest is just

math, and the total displayed in the alert ends up being identical, just as it did in

the previous example.

map (JavaScript 1.6)
The mapmethod is nearly identical to forEach. The only difference is that map returns

an array containing the values returned by the callback function. The following

example uses map to compute the square of each item in arr. The results are then

returned and stored in squared:

map.html (excerpt)

 var arr = [1, 2, 3, 4, 5];
 var squared;

 squared = arr.map(function(num) {
 return (num * num);
 }); // squared is [1, 4, 9, 16, 25]

every (JavaScript 1.6)
Sometimes, you need to validate that the data in an array conforms to a set of criteria.

You could, as in the previous example, run a manual test using either a traditional

for loop or the forEach method. Or you could just use the every method that runs

Jump Start JavaScript42

a callback function against each item in the array. It will return true if they all

conform, or false if one or more fails to:

every.html (excerpt)

 var arr, isValid;

 arr = [1, 2, 3, 4, 5];
 isValid = arr.every(function(num) {
 return (num < 10);
 }); // isValid is true

In this example, we’re using the every method to check that every item in our array

is less than 10. The every method loops over the array, and for each item it runs

the function we’ve included within its parentheses. The current array item is passed

in as num, and our expression (return (num < 10)) checks to see if the number is

less than ten, returning true or false. every monitors the response from our code

and if we ever return false, it kicks out of the loop and returns false. We capture

its response in the variable isValid. In the case above, the every method will return

true. If we change our expression to check if numbers are greater than 3, then is-

Valid will be false:

 var arr, isValid;

 arr = [1, 2, 3, 4, 5];
 isValid = arr.every(function(num) {
 return (num < 3);
 }); // isValid is false

some (JavaScript 1.6)
You can use some to check if one or more of the items in an array conform to a test.

some works just like every, but will return true as long as one array item returns

true:

some.html (excerpt)

 var arr, isValid;

 arr = [1, 2, 3, 4, 5];

43Arrays

 isValid = arr.some(function(num) {
 return (num < 2);
 }); // isValid is true

In this example, even though just the one number in the array is less than two,

isValid is still true.

filter (JavaScript 1.6)
It’s all well and good to test an array, but what if you want to create a new array

with the items that met your criteria? Well, filter does just that. It works like every

and some do, except that any item that passes your criteria is copied into a new array:

filter.html (excerpt)

 var arr, filtered;

 arr = [1, 2, 3, 4, 5, 6, 7, 8, 9];
 filtered = arr.filter(function(num) {
 return (num < 5);
 });
 // filtered now contains [1, 2, 3, 4]

reduce and reduceRight (JavaScript 1.8)
At times it’s necessary to perform a mathematical operation on the array and reduce

it to a single value; for instance, if you want the sum of the values in an array. This

is where reduce (and reduceRight) come into play. reduce loops over an array and

passes in a previous and current value. It also passes in the current index and a

reference to the array itself, should you need them in your calculations. For this

example, however, we’ll be using the previous and current arguments only:

reduce.html (excerpt)

 var arr, total;

 arr = [1, 2, 3, 4, 5];
 total = arr.reduce(function(previous, current) {
 return previous + current;
 }); // total is 15

Jump Start JavaScript44

Here, reduce is running over the array just as the earlier methods did, but with a

couple of big differences. For one, on the first pass, since there’s no a previous

value to pass in, the first and second items of the array are passed in (the values 1

and 2 in this case). On subsequent passes, the previous value is what your code

returns, and the current value is the next item in the array. What we’re doing here

is taking the current item in the array and adding it to the previous value―the

running total. The end result is that we add all the array’s values together for the

total value of 15.

reduceRight performs the same function as reduce but in reverse. In other words,

it starts at the end of the array and moves towards the start.

Project
Our intention is to build a fully functional task manager (or a to-do app, if you like),

but since we’ve only covered variables and arrays up to this point, we’ve been unable

to write that much code yet. In the previous chapter, we created three separate

variables holding three distinct tasks. Let’s now put those three tasks in an array

called tasks:

project.js

 var tasks;

 tasks = [
 "Pay phone bill",
 "Write best-selling novel",
 "Walk the dog"
];

Summary
This chapter has introduced arrays, and a number of methods for working with

them. However, in JavaScript, arrays are actually objects, so to truly understand

arrays, you need to understand objects as well. Don’t worry, though; objects are

covered in detail in the next chapter.

45Arrays

Chapter4
Objects and Functions
In the previous chapter, we looked at arrays. Now we’re going to look at objects,

which are similar to arrays in that they are containers for collections of data. Though

there are similarities―arrays are actually a type of object―there are also some sig-

nificant differences.

Objects
Creating an Object
As with arrays, there are a couple of ways to create objects, and, just like arrays,

one is preferred over the other. So even though you can do this:

 var myObject = new Object();

It is much better to do this:

 var myObject = {};

The latter is simpler, safer, and therefore preferred. If you remember from Chapter 3,

Array() can be overwritten for malicious purposes. So can Object(), which is why

it's safer to use the object literal notation {} as it's unable to be overwritten. The

object literal represents a new, empty object.

Whereas in an array, values are simply added and accessed by index, objects use a

key/value pair system. These two distinct ways of storing values make it fairly

simple when choosing between arrays or objects for your data storage and retrieval

needs. For example:

 var lotteryNumbers, profile;

 lotteryNumbers = [4, 8, 15, 16, 23, 42];
 profile = {
 firstName: "Hugo",
 lastName: "Reyes",
 flight: "Oceanic 815",
 car: "Camaro"
 };

Note how the lotteryNumbers array lends itself well to storing the sequence of

lottery numbers, while the profile object is perfect for storing the key/value pairs

of a person's (Hugo's) profile.

Adding to an Object
As you may have already noticed in the previous section, you can declare either an

empty object, {}, or one with values in it (Hugo’s profile). After you’ve declared

your object, however, you can still add key/value pairs to it in a couple of ways.

When looking at the chapter on arrays, we touched on named indices, which can

be used to create associative arrays, though objects are better suited to the task.

Here’s an example of that:

 var obj = {};

 obj["firstName"] = "Hugo";
 obj["lastName"] = "Reyes";

This is known as bracket notation. The alternative and more common syntax is dot

notation. Here's an example:

Jump Start JavaScript48

 var obj = {};

 obj.firstName = "Hugo";
 obj.lastName = "Reyes";

Dot notation is simpler than bracket notation; however, there are certain tasks that

can only be done with bracket notation. For example, you can use a variable inside

the brackets, which can't be done using dot notation. Bracket notation also supports

strings containing spaces and other characters that are invalid in dot notation.

Reading from an Object
Reading a value from an object can also be accomplished using bracket or dot

notation:

 var obj = {};

 obj.firstName = "Hugo";
 obj.lastName = "Reyes";
 alert("Hello, my name is " + obj.firstName + " "
➥+ obj.lastName + ".");

The result of running this code is shown in Figure 4.1.

Figure 4.1. Alert showing message coming from an object

49Objects and Functions

Unlike arrays, it’s not possible to read the contents of an object using a numeric

index. The only type of index that can be used is a named one:

 var obj = {};

 obj.firstName = "Hugo";

 obj[0]; // returns undefined
 obj["firstName"]; // returns "Hugo"
 obj.firstName; // returns "Hugo"

Nested Objects
Nesting objects can be very helpful in organizing your data:

 var person;

 person = {
 name: {
 first: "Hugo",
 last: "Reyes"
 }
 };
 person.name.first; // returns "Hugo"
 person.name.last; // returns "Reyes"

It’s also possible to assign objects:

 var person;

 person = {};
 person.name = {};
 person.name.first = "Hugo";
 person.name.last = "Reyes";

Note, however, that the following will fail to work:

 var person;

 person = {};
 person.name.first = "Hugo";

Jump Start JavaScript50

This will throw the error TypeError: Cannot set property 'first' of un-

defined, which means that it's trying to create first off name, which was never

defined. In the prior example, we assigned an object to person.name, but not in this

one.

Namespacing through Nested Objects
If you’re at all familiar with modern programming languages, you’ve heard of

namespacing. Essentially, it’s a better way to organize code by putting it into nested

buckets, or namespaces:

 Project.Strings.Warnings.sessionExpired =
➥ "Your session has expired."

Of course, in order for this namespace to exist, we must first nest the appropriate

objects:

 var Project = {
 Strings: {
 Warnings: {}
 }
 };

Though this code sets up the required namespace, what happens if one or all of the

objects in question are already there? And what if they already contain data?

Say, for example, we had the following:

 var Project = {
 Strings: {
 Warnings: {
 overQuota: "You've exceeded your quota!",
 outOfStock: "We're out of stock!"
 }
 }
 };

Now say elsewhere in our program (in a different JavaScript file) we wanted to add

Widgets to the Project namespace, but were unsure whether it was already defined:

51Objects and Functions

 var Project = {
 Widgets: {}
 };

By doing what we just did, we’ve destroyed the existing Strings object because

we’ve overwritten the whole Project object with a new one. What we should be

doing instead is checking to see if a Project object already exists. If so, we add to

it; otherwise, we create it and then add to it:

 var Project = Project || {};

 Project.Widgets = {};

Here we use the OR operator (||) to test whether or not Project is defined. If Project

is already defined, it assigns its value to Project and nothing is changed. If it isn’t,

JavaScript assigns what’s on the right-hand side of || to the Project variable, which

is shown in Figure 4.2

Jump Start JavaScript52

Figure 4.2. Demonstration of || operator in action

Prototype Chain
We’re going to discuss looping over objects shortly, but in order to do that, I need

to first cover JavaScript’s prototype chain. You’ll see why in just a second. For the

time being, we’ll take a quick look at prototypes because we’ll be covering them in

more detail later in the section on functions. For now, it’s important to understand

a little bit about them and how they affect looping over key/values in objects.

All objects have a prototype. So, what’s a prototype? It’s an object from which other

objects inherit properties. Figure 4.3 presents a diagram illustrating the concept of

prototypal inheritance.

53Objects and Functions

Figure 4.3. The prototype chain

As you can see, the Human prototype has arms, legs, and head properties that joe

inherits when he’s instantiated from Human. We’ll look at object instantiation when

we cover functions; for now, it’s enough to know that joe gets his arms, legs, and

head from Human.

Looping over an Object
Looping over an object isn’t as simple as looping over an array. With an array, you

simply increment an index value and use that to step through the array. With objects,

there is no index value. Objects are collections of key/value pairs, so you need to

step through them differently:

 var data, key;

 data = {
 firstName: "James",

Jump Start JavaScript54

 lastName: "Kirk",
 occupation: "Captain"
 };

 for (key in data) {
 alert(key + " is " + data[key]);
 }

In this example, we use a for ... in loop. We give it a variable (in this case, key)

that will be used to hold the key as it steps through the object, and an object to step

over (in this case, data). For each key/value pair inside data, the loop will assign

the key to our variable named key. Inside the body of the loop, we can use the key

to plug into our object to access its associated value: data[key]. That’s the equivalent

of writing data["firstName"], and on a subsequent pass, data["lastName"], and

so on.

There is one catch, though. Since objects inherit from objects, the loop may start

returning key/value pairs from further up the prototype chain. To prevent this, we

need to add something to our loop:

 var data, key;

 data = {
 firstName: "James",
 lastName: "Kirk",
 occupation: "Captain"
 };

 for (key in data) {
 if (data.hasOwnProperty(key)) {
 alert(key + " is " + data[key]);
 }
 }

The hasOwnProperty method makes sure that the key we’re using belongs to the

object in question and not from further up the prototype chain. If it returns true,

we can proceed with our operation. Otherwise, we ignore it.

55Objects and Functions

Functions
As you write more complex programs, you’ll find the need to achieve certain oper-

ations that JavaScript doesn’t do natively. You can accomplish the job with just a

few lines of code, but it’s likely you'll want to perform that job more than once.

That’s where functions come in. A function is a way to group a set of operations,

give it a name, and then be able to call it as often as you wish. Here’s a simple

function:

 function sayHello() {
 alert("Hello, world!");
 }

By calling this simple function, you can cause an alert to appear with the message,

"Hello, world!". Once we’ve defined sayHello (as we did above), running (or

executing or calling) it is very simple; you just write its name followed by paren-

theses:

sayHello();

The reason for the parentheses is so that you can pass values as arguments into your

function. For example, rather than our function saying "Hello, world!", we could

have it say something else:

 function sayHello(msg) {
 alert(msg);
 }

Now when we call sayHello, we can pass in our own message:

sayHello("Howdy, y'all!");

Doing this calls the sayHello function and passes in "Howdy, y’all!" as the first

argument. If you look at our sayHello function, we’ve specified a variable named

msg as the first argument, so inside sayHello, msg will contain the value that was

passed into the function; in this case, "Howdy, y’all!" We then hand that variable

over to alert and voilà!

Jump Start JavaScript56

Before we go any further with functions, I need to cover the important topics of

scope and hoisting. These can occur as a result of using functions, and if you’re

unaware of them, you may run into trouble―such as code behaving strangely.

Scope
Not only are functions containers for groups of operations, they also create what’s

called a scope for variables. Variables exist either in the global scope (not declared

within a function and available everywhere) or local scope (declared within a

function and only available within it). No code outside the function can access a

variable declared within it. Only code inside the function can access it. Nested

function declarations that are declared at the same level or lower than the variable

can also access it. So, for example:

 function hi() {
 var hello = "hello"
 };

 hi();
 alert(hello);

In this case, the variable named hello is scoped to the hi function. This means that

the alert trying to access the hello variable from outside the hi function will be

unable to. Instead, it will receive a ReferenceError: hello is not defined error.

The reason why is because the variable hello was declared inside of hi and is

therefore scoped to hi. It’s unavailable outside of the hi function.

That said, any function declared within another function automatically has access

to variables declared within its parent function:

scope-1.html (excerpt)

 function fullName() {
 var firstName = "Hugo";

 function alertFullName() {
 var lastName = "Reyes";

 alert("Full name: " + firstName + " " + lastName);
 }

57Objects and Functions

 alertFullName();
 }

 fullName();

Figure 4.4 shows what that looks like.

Figure 4.4. Concatenation of scoped variable values

The outer function, fullName, creates a scope inside which the variable firstName

and function alertFullName are declared. Since they’re both declared inside

fullName’s scope, alertFullName has access to firstName. So when fullName is

executed, and it in turn executes alertFullName, alertFullName is able to access

both its own lastName variable as well as its parent’s firstName to put together its

alert text, as shown in Figure 4.5.

Jump Start JavaScript58

Figure 4.5. Variable scoping illustrated

In fact, a function has access to all variables declared above it, no matter how deeply

it’s nested. Let's illustrate this. For this example, we’ll use the console’s log function

to output values directly to the browser’s console. If you’re yet to use the console,

go to the first chapter and quickly look up how to enable your browser’s console

for this next example:

scope-2.html (excerpt)

 // Declaring a global variable and giving it the value "a"
 var a = "a";

 function levelb() {
 // Declaring a variable that levelb and children can see
 var b = "b";

 function levelc() {

59Objects and Functions

 // Declaring a variable only levelc and leveld can see
 var c = "c";

 function leveld() {
 // Declaring a variable only leveld can see
 var d = "d";

 console.log("leveld", a, b, c, d);
 }

 // Running leveld() will output a, b, c and d
 leveld();

 console.log("levelc", a, b, c);
 }

 // Running levelc() will output a, b, and c
 levelc();

 console.log("levelb", a, b);
 }

 // Running levelb() will output a and b
 levelb();

 // Only the variable named "a" is available globally
 console.log("global", a);

If you run this example, you’ll end up with the following output in your browser’s

console:

 leveld a b c d
 levelc a b c
 levelb a b
 global a

As you can see in Figure 4.6, nested function declarations can access variables de-

clared above them. To avoid confusion, I only drew arrows from the var a declara-

tion to show how it becomes available to the child function declarations.

Jump Start JavaScript60

Figure 4.6. An example of variable scoping

Hoisting
Now that we’ve covered how functions create variable scope, we'll address a phe-

nomenon called hoisting. Because JavaScript is a very permissive language, it has

to do a lot of work under the hood. We’ve already seen this with type coercion,

when JavaScript attempts to convert variable types in order to make operations with

conflicting types work. Hoisting is another "under the hood" action by JavaScript

does where it moves all variable declarations to the top of a function. That means

that this:

61Objects and Functions

 var name = "Emma";

 function nameHer() {
 var name;
 console.log(name); // outputs undefined
 name = "Audrey";
 }

is the same as:

 var name = "Emma";

 function nameHer() {
 console.log(name); // outputs undefined
 name = "Audrey";
 var name;
 }

which is the same as:

 var name = "Emma";

 function nameHer() {
 console.log(name); // outputs undefined
 var name = "Audrey";
 }

All three examples are the same because JavaScript reads the body of those functions,

and moves all the variable declarations to the top of the function. Note that it only

moves the declaration, not the assignment. Under the hood, all three functions end

up looking like the first. That’s why the second and third examples output undefined

rather "Emma" as you’d expect. Even though it looks like we’re using the name variable

containing "Emma" before assigning "Audrey" to it, we’re actually declaring a new

and undefined name variable at the top of each function.

Declaration
So far, we’ve seen one of three possible ways to create a function. Not only can we

use the function statement (or declaration), we can also use the function operator

(or expression) and the Function constructor. The first is a named function declar-

ation, the second is a function expression, and the third is a constructor just like

Jump Start JavaScript62

Array() and Object(). As with Array() and Object(), the Function() constructor

returns a new Function object:

 // declaration
 function sayHello1() {
 alert("Hello");
 }

 // expression
 var sayHello2 = function() {
 alert("Hello");
 };

 // constructor (not recommended)
 var sayHello3 = new Function("alert('Hello')");

Let’s start by taking a look at the first two since they’re the most common. They

have a couple of differences between them, the first being that a function declaration

needs to have a name (in this case, sayHello1). If the function declaration has no

name, it’s considered a function expression and, since it’s nameless, an anonymous

function. Why does this matter? Well, the second distinction between function de-

clarations and expressions is how the JavaScript engine parses them. Function de-

clarations are hoisted just as variables are, while only the variable declaration of a

function expression is hoisted. For example, this is possible with a function declar-

ation:

 alert(hi());

 function hi() {
 return "Hi!";
 }

It’s possible because the entire hi function is hoisted above alert and is therefore

available when alert uses it. Now let’s look at a similar example using a function

expression, which will throw a TypeError: undefined is not a function error:

 alert(hey());

 var hey = function () {
 return "Hey!";
 };

63Objects and Functions

The reason the error says "undefined is not a function" is because at run time,

the hey variable declaration is hoisted above the alert but the assignment of the

function remains below.

The third way of writing a function is the Function constructor. Of the three, I re-

commend it the least as it requires your code to be passed in as a string, which is

difficult to write and error-prone.

If you’re going to use function declarations, always declare them at the top of your

code’s scope (be it the global or local scope) so as to avoid hoisting, and to make it

clear to the reader when the function is actually available for use. If you’re going

to use function expressions, declare the variables you’ll be assigning to your func-

tions at the top of your local scope for the same reason. Whatever you do, avoid

writing code where you conditionally declare functions because you’ll run into in-

consistent behavior across browsers, to say nothing of it being bad practice.

As of this writing, Google Chrome alerts "Hello!" while Mozilla Firefox alerts "Hi!"

when running this code:

 if (true) {
 function hello() {
 alert("Hi!");
 }
 } else {
 function hello() {
 alert("Hello!");
 }
 }

However, when written as function expressions, both browsers will return "Hi!"

because only the true branch of the if statement will ever be executed and therefore

parsed:

 var hello;

 if (true) {
 hello = function() {
 alert("Hi!");
 }
 } else {
 hello = function() {

Jump Start JavaScript64

 alert("Hello!");
 }
 }

Arguments
When you define a function, you can define a list of arguments that it will receive.

In doing so, you’re declaring variables for use within the scope of that function. In

other words, those variables can only be used inside that function. For example:

function-arguments.html (excerpt)

 function person(firstName, lastName, age) {
 alert(firstName);
 alert(lastName);
 alert(age);
 }

 person("John", "Doe", 44);

Our function, named person, receives three arguments, firstName, lastName, and

age. When the function is called on the last line of our example, three values are

passed through its parentheses: "John", "Doe", and 44. Inside the function, we take

those three values and alert them one after the other.

Sometimes, however, it’s not possible or ideal to predefine arguments. If we wanted

to create a function that concatenated an arbitrary number of values and returned

the result, how would we define the argument list? Well, JavaScript functions have

a special array-like object called arguments that we can access from within the

function to see exactly what was passed in:

arguments-variable.html

 function concatenate() {
 var i, str;

 str = "";
 for (i = 0; i < arguments.length; i += 1) {
 str += arguments[i];
 }
 return str;
 }

65Objects and Functions

 concatenate("Super", "cali", "fragilistic", "expiali",
➥ "docious");
 // returns Supercalifragilisticexpialidocious

We have no way of knowing how many strings will be passed into our concatenate

function, so we’re unable to predefine a list of arguments. Instead, we loop over the

special arguments array and concatenate the values from there.

Of course, this is a simple example of a function in action, and a useless one at that,

since we could just call alert on our own without wrapping it in a function. But

say we wanted to take a string and translate it into Pig Latin? We could write a

function that receives a value and then returns another. In order to get something

back, we need to make use of the return statement:

pig-latin.html (excerpt)

 function pigLatin(phrase) {
 var words, pigged;

 // Create an array with the words of the phrase
 // we're given by splitting the phrase on the
 // spaces between the words.
 words = phrase.split(" ");

 // Loop over the words array and translate each word to
 // Pig Latin. Return the translated word so that it
 // gets placed in a new array called "pigged."
 pigged = words.map(function (word) {
 var first, rest;

 // Grab the first letter of the word
 first = word.substring(0, 1);

 // Grab the rest of the word
 rest = word.substring(1);

 // Start the new word with the ending of the old word,
 // and add the first letter of the old word as well as
 // "ay" to the end of it. Return the result of the
 // concatenation so that the map function can add it
 // to the "pigged" array.
 return rest + first + "ay";

Jump Start JavaScript66

 });

 // Rebuild the new Pig Latin phrase by rejoining the newly
 // "pigged" words with spaces in between. Return the
 // result so that anyone calling our pigLatin function
 // can actually get the new Pig Latin version of their
 // phrase.
 return pigged.join(" ");
 }

Then, we could pass it a simple phrase and have the Pig Latin version returned to

us:

 var pl = pigLatin("tonight you belong to me");

 // returns "onighttay ouyay elongbay otay emay" into pl

Now, whenever we want to translate a phrase, we just need to pass it into our

pigLatin function and we have our translation. Simple!

Object-oriented Programming with Functions
Unfortunately, providing an in-depth, comprehensive explanation of what object-

oriented programming (OOP) is falls outside the scope of this short book. But the

basic gist of it is that OOP is a programming style that lets you represent real-world

items as objects in your code. An object can represent a physical element such as

a person or fruit, or something more abstract such as a bank account or network

connection. The object stores data (called properties) and functions (called methods),

the latter acting on the data. So an object representing a bank account may have

properties such as account number, balance, and overdraft limit, and methods such

as deposit and withdraw.

For anyone familiar with traditional class-based OOP, JavaScript is a class-less

prototypal programming language where objects inherit from other objects instead

of classes. JavaScript uses functions as classes but has no class statement. Instead,

any function can act as a class and new instances of that class can be created using

the new keyword:

67Objects and Functions

bank-accounts.html (excerpt)

 var checking, savings;

 // This is the definition of our Account class
 function Account(accountNumber) {
 // This is the property we'll be storing the
 // account number in.
 this.accountNumber = accountNumber;

 // This is the property we'll be tracking the
 // account's funds in.
 this.funds = 0;

 // This is the setter method we'll be using to
 // add funds to the account.
 this.deposit = function(amount) {
 if (amount === Number(amount)) {
 this.funds += amount;
 }
 };

 // This is the getter method that returns the
 // account's balance.
 this.balance = function() {
 return this.funds;
 };
 }

 // The "new Account()" constructor returns a new account
 // object complete with deposit and balance methods. We
 // store the account object in a variable called checking.
 checking = new Account("87654321");

 // Using the deposit method allows us to pass values to
 // our account object.
 checking.deposit(12.35);
 checking.deposit(2.76);
 checking.deposit(74.01);

 // We now create a new account object and store that in a
 // variable called savings. It also has deposit and
 // balance methods, and is distinct from the "checking"
 // account object.
 savings = new Account("12345678");

Jump Start JavaScript68

 savings.deposit(225.57);

 // Using the objects' balance method, we can ask each
 // of them to report their balances.
 checking.balance(); // returns 89.12
 savings.balance(); // returns 225.57

Here, we have a function called Account from which two instances are created,

checking and savings. By using the this keyword inside the function and hanging

variables and functions off it, we’ve effectively created a class function used for

instantiation. Now we can create instances of this function using the new keyword,

which we do to create both the checking and savings objects in our example. In

this case, the this keyword refers to the account object that was instantiated so that

the deposit and balance methods―as well as the funds property―belong exclus-

ively to the object instance. This way, we can have multiple coexisting instances

of each with their own properties and methods.

Note that though it's possible to directly read from and write to the funds property

by typing checking.funds = 100 or alert(checking.funds), it’s sometimes better

to go through the getter and setter methods. In this case, we have a deposit method

so as to ensure that the value passed in is actually a number. We have a balance

method just to demonstrate how a getter would work. You can also access the

checking.accountNumber property directly.

Because JavaScript lets you use regular functions as classes, developers have adopted

a naming convention that makes functions intended to be used as classes easier to

identify. A function that’s intended to be used as a class has an uppercase first letter,

while regular functions start with a lowercase first letter:

 // this is intended to be used as a class
 function Account() {
 }

 // this is not
 function jump() {
 }

69Objects and Functions

this
The this keyword can be tricky to work with, as what it refers to depends entirely

on how it's used. We saw one example of its use in the Account object example

earlier. In that case, this referred to the object we instantiated. Depending on context,

though, this points to different things, and it’s important to know what it's referring

to.

For example, in Figure 4.7 it refers to the global window object when used in a regular

function, while in a constructor it refers to the function itself. In a regular function

inside an object literal, the this keyword refers to the immediate parent object,

while in an event handler, it refers to the DOM element that called the handler.

And, of course, when using either the call or apply methods to execute a function,

we can pass in an object for the this keyword to refer to. So, if you’re still with me,

let’s go over each of those one by one.

Figure 4.7. Different contexts of the this keyword

Jump Start JavaScript70

Simple Function
When the this keyword is used inside a simple function, it refers to the global

variable scope, which is the window object. In this context, there’s no real need to

use the this keyword as any variable in the global scope is accessible simply by

using its name. In other words, if you declare a variable named foo globally, you

can just refer to it as foo; no need to use this.foo. JavaScript is simply referring

you to the global scope because there’s nothing else for it to point the this keyword

to in this instance. If you’re running in strict mode, however, it will return un-

defined. This is to prevent unintentional errors that are bound to happen in this

context.

Strict Mode

Strict mode is a recent addition to JavaScript. By opting into strict mode via the

addition of "use strict"; at the top of a function, you force the JavaScript en-

gine to change its behavior and essentially fix some potentially error-prone ways

of handling code. In this case, it's what this refers to in a simple function.

In a Constructor
When used in a constructor or function intended to be instantiated via the new

keyword, this refers to the object that’s to be created. So if your constructor is a

bank account:

 var Account, savings;

 Account = function(num) {
 this.accountNumber = num;
 };

 savings = new Account(12345678);
 savings.accountNumber; // returns 12345678

In this case, the this keyword lets you attach the accountNumber property to the

object that’s to be instantiated. It’s therefore possible to get that value by referring

to savings.accountNumber.

71Objects and Functions

Inside an Object Literal
If your function happens to be inside an object literal, and it's a simple function

call as in our first example, the this keyword now refers to the immediate parent

object surrounding your function. For example, the code in our diagram has two

arrays inside the Project object called Managers and Developers. The howMany

function adds their lengths by referring to this.Managers and this.Developers

respectively. That means that the call to the this keyword points us to the Project

object from which we can drop down to both Managers and Developers.

Inside an Event Handler
We’ yet to cover event handlers, so bear with me. Basically, an event handler is a

function that is called when an event is triggered, such as a "click" event when a

link is clicked on. In an event handler, the this keyword refers to the element that

triggered the event, which, in this case, is the anchor on the page.

call and apply
It’s possible to invoke a function using the call and apply methods that are

provided. We’ll cover these in more detail shortly, but in both cases, the first argu-

ment of these methods is an object you can pass in for the this keyword to refer to.

bind

Finally, ECMAScript 5 introduced a method called bind that creates a new function

and permanently binds it to the object you pass it. That object gets referred to when

calling this. We’ll also address this in more detail soon.

Properties

constructor

If you’re handed an object that’s an instance of a function, you may want to know

what that original function was. What’s more, you may wish to instantiate another

object off that original function. With the constructor property, you can. It returns

a reference to the original function in question, which allows you to create new

instances with the original data:

Jump Start JavaScript72

 var foo, bar, baz;

 function Foo() {
 this.ident = "foo";
 }

 foo = new Foo();
 foo.ident; // returns "foo"

 bar = new Foo();
 bar.ident; // returns "foo"
 bar.ident = "bar";
 bar.ident; // now returns "bar"

 baz = new bar.constructor();
 baz.ident; // returns "foo"

First, we instantiate foo, which has an ident property value of "foo". Next, we

instantiate bar, whose ident is also "foo" since it comes from the Foo class. How-

ever, we change its ident value to "bar". We then instantiate baz by using bar’s

constructor property. The property points us to the original Foo function, which

gives our baz instance the same original ident value of "foo".

length

If you ever need to know how many arguments a function is expecting, you can

check with the length property:

 function foo(bar, baz) {
 }

 foo.length; // returns 2

We get the value 2 returned when checking the length of foo because it’s expecting

bar and baz as arguments.

73Objects and Functions

Methods

apply

Sometimes, you need to change what a function’s this keyword points to. The

apply method makes it easy by letting you pass an object in as its first parameter

that the this keyword will point to:

 var person, lastName;

 lastName = "Reyes";
 person = function() {
 return this.lastName;
 };

 person(); // returns "Reyes"

 person.apply({lastName: "Cooper"}); // returns "Cooper"

In this example, our function refers originally to the globally declared lastName

since in this case, this refers to window. But when we use apply, we pass in an

object that the this keyword now points to, and hanging off it is a new lastName

value. Therefore, when we use apply the return value is no longer "Reyes" but

"Cooper".

When calling apply, you can also pass the function an array of arguments:

 var tax;

 tax = function(price, provincial, federal) {
 return price * provincial * federal;
 };

 tax.apply(null, [100, 1.05, 1.095]); // returns 114.975

Here, we have a tax function that takes a price, multiplies it by the provincial and

federal tax rates, and returns the value. Since we aren’t trying to change where the

this keyword is pointing, we don’t bother passing in a value for the first argument.

Instead, we skip it by passing in null. We then pass in an array containing values

for the price, and the provincial and federal tax rates.

Jump Start JavaScript74

call

The call method is almost identical to apply except that instead of passing in an

array of arguments, you only pass arguments, just as you would when calling the

function itself (starting from the second argument):

 var tax;

 tax = function(price, provincial, federal) {
 return price * provincial * federal;
 };

 tax.call(null, 100, 1.05, 1.095); // returns 114.975

Note how the only difference between this implementation and the one for apply

is how we pass the price, provincial, and federal values. With apply, they’re

passed in an array while here, they’re passed in as individual arguments.

bind

With ECMAScript 5, it’s now possible to call the bind method off a function and

pass in an object that will be referred to as this. The bind method creates a new

function with the object bound to it:

 var hugo, person, names;

 person = function () {
 return this.lastName;
 };

 hugo = person.bind({lastName: "Reyes"});
 hugo(); // returns "Reyes"

 names = {
 lastName: "Cooper",
 hugo: hugo,
 person: person
 };
 names.hugo(); // returns "Reyes"
 names.person(); // returns "Cooper"

You’ll note how the person function points to this.lastName and that before we

bind it, lastName refers to a variable in the global window space (which is undefined).

75Objects and Functions

So we go ahead and bind it to an object containing a lastName property with the

value of "Reyes". Now, when we call the newly created hugo function, "Reyes" is

returned to us from the object that was bound to it.

Say if we were to place the original person function as well as the newly created

hugo function inside an object containing a lastName property. We would see how

this inside person dynamically points to the outer object, and therefore

this.lastName now returns "Cooper" while the permanently bound hugo function

continues to return "Reyes".

toString

The toString method returns a string representing the code of a function. So, for

example, if we wrote a simple function:

 function foo() {
 return "foo";
 }

and then called toString on it:

foo.toString();

we’d have a response such as this:

 "function foo() {
 return "foo";
 }"

If, however, we called toString on a function that's a part of the JavaScript language:

document.getElementById.toString()

we’d receive a response that looked as follows:

"function getElementById() { [native code] }"

That’s because the code responsible for getElementById is compiled, and cannot

be output in human-readable form as JavaScript can.

Jump Start JavaScript76

Project
Now that we have functions and objects figured out, we can start doing some fancy

stuff with our task manager project. Instead of a simple array of tasks, we can store

richer information by using an array of objects. We can also write some functions

to perform operations for us. Let’s begin by wrapping each task in an object:

project-1.js

 var tasks;

 tasks = [
 {
 text: "Pay phone bill",
 complete: false,
 priority: 1
 },
 {
 text: "Write best-selling novel",
 complete: false,
 priority: 3
 },
 {
 text: "Walk the dog",
 complete: false,
 priority: 2
 }
];

Now we have a richer set of data; each task now has a complete flag associated with

it, as well as a priority. Let’s write a function to add tasks to our array:

 var tasks, addTask;

 tasks = [];

 addTask = function(task) {
 tasks.push({
 text: task,
 complete: false,
 priority: 1
 });
 };

77Objects and Functions

Now we can call addTask, pass it some text to store it, with a complete flag set to

false in our tasks array.

Summary
In this chapter, we covered objects, including how to write to and read from objects,

and how to nest objects to create namespacing for variables. We also looked at

looping over objects to read data, and how we can filter the prototype chain out

when looping over object properties. We then went on to functions, exploring the

different ways we can create functions, as well as how we can use functions to write

object-oriented code. We examined various properties and methods of functions,

and finished off by adding our knowledge to the task manager project we’re building.

In the next chapter, we’ll take a look at looping and jumping.

Jump Start JavaScript78

Chapter5
Loops and Jumps
This chapter introduces loop and jump statements. A loop statement is used when

we want to repeat some programming statements until a specified condition is

reached. A typical example would be to iterate through a list and perform an oper-

ation on each member of the list. A jump statement allows code to exit loops. One

example is to loop through our to-do list and then break out of the loop upon

reaching the first incomplete item. There are various types of jump statements,

which we’ll explain as we go along.

Loops are generally associated with a particular style of programming known as

imperative programming. Here, the programmer specifies step by step how a program

should achieve a particular task. An alternative approach is functional programming,

which states what the program should be doing without exactly specifying how the

program should do it. JavaScript supports multiple paradigms including imperative

and functional styles. We will spend the latter part of this chapter looking at some

functional alternatives to working with loops. Functional programming can provide

more elegant solutions to certain types of problems, and it can make your code base

smaller, more understandable, and easier to maintain.

Loops
By way of introduction, we should note that as with the if statement, all looping

constructs can be written without the enclosing curly braces when only a single

statement is involved. For clarity, we recommend that you always include the curly

braces, even for single statements. This is the standard that was followed by the

team at id Software when they programmed Doom 3.1 We say only partially tongue

in cheek that if it’s good enough for the legendary John Carmack and his team, it’s

certainly good enough for us!

The while Loop
The while loop takes the following form:

 while (condition) {
 statement
 }

The condition can be any expression that evaluates to true or false. The statement

consists of the code that is executed while the condition evaluates to true. Recall

that in JavaScript, any value can be converted to a Boolean. For those who need a

refresher on how particular values in JavaScript are converted to Booleans, we refer

you to this excellent article written by our technical editor, Colin Ihrig.2

The while loop can be illustrated with this simple example:

 var tasksToDo = 3;

 while (tasksToDo > 0) {
 console.log('There are ' + tasksToDo + ' tasks to do');
 tasksToDo--;
 }

This prints the following to the console:

1 https://github.com/id-Software/DOOM-3-BFG
2 http://cjihrig.com/blog/truthy-and-falsy-in-javascript/

Jump Start JavaScript80

https://github.com/id-Software/DOOM-3-BFG
http://cjihrig.com/blog/truthy-and-falsy-in-javascript/

 There are 3 tasks to do
 There are 2 tasks to do
 There are 1 tasks to do

When using a while loop, it’s important to make sure that the condition eventually

evaluates to false. During each iteration of the loop, some variable should be

changing that will eventually lead to the condition being false, thereby terminating

the loop. Otherwise, your program becomes stuck in the dreaded infinite loop. For

an example of a subtle bug that leads to an infinite loop, consider this:

 function getNext(num) {
 return num++;
 }

 var i=0;

 while (i < 3) {
 i = getNext(i);
 }

At first it may be hard to even spot the bug. Note that num++ will return the value

of num, and then increment the value. Therefore, in the while loop, the value of i

will always be zero! Whenever you are writing a while loop, always double check

that the loop will gracefully exit. With patience and practice this will soon become

second nature.

The do ... while Loop
The do ... while loop is a variation of the while loop that takes the following

form:

 do {
 statement
 } while(expression);

The main difference between the two is that execution is guaranteed at least once

with the do ... while loop. The following example illustrates this:

81Loops and Jumps

 do {
 console.log('This will print at least once');
 }
 while (false);

We use while (false) to emphasize that the while check terminates the loop.

Nonetheless, there will still be a single print to the console. With a slight modifica-

tion, our while example can be rewritten as its do ... while equivalent:

 var tasksToDo = 3;

 do {
 console.log('There are ' + tasksToDo + ' tasks to do');
 tasksToDo--;
 }
 while (tasksToDo > 0);

This code will result in exactly the same console output. For many problems, it is

possible to use either a while or a do ... while, so the question becomes which

one to choose. We would recommend while as the default choice, only using do

... while on those occasions when a statement has to be executed at least once.

The for Loop
The for loop is used to run a code block a number of times, and is often referred

to as a counting loop. It takes this general form:

 for (initialization; condition; end-expression) {
 statement
 }

As a simple example, consider the following:

 for (var i = 0; i < 3; i++) {
 console.log(i);
 }

The above loop will declare the variable i and assign it the initial value of 0. On

each iteration, i will be logged to the screen and then incremented by 1. It is import-

Jump Start JavaScript82

ant to note that the variable is both declared and initialized. It’s syntactically valid

to omit the declaration:

 for (i = 0; i < 3; i++) {
 console.log(i);
 }

However, this will create a global variable, i, which is undesirable. It will potentially

clash with other variables of the same name, and could lead to memory leaks as

well as a host of other disagreeable phenomena. If you are creating a new variable

at the beginning of your for loop, always remember the var! A for loop can also

have multiple tests:

 for (var i = 0; i < 10 && i % 2 === 0; i+=4) {
 console.log(i);
 }

Here we’re testing that i is less than 10 and divisible by 2, which will print:

 0
 4
 8

It’s also possible to have multiple initializations and end expressions:

 for (var i = 0, j = 0; i < 3; i++, j+=2) {
 console.log(i, j);
 }

Before running the code, try to work out what it will print to the console. Did you

guess the following correctly?

 0 0
 1 2
 2 4

The loop is running two end expressions and so, on each iteration, i is being incre-

mented by 1 and j is being incremented by 2. Note also that while the end expression

is generally used to increment a counter, it can take on any number of forms. For

83Loops and Jumps

example, we could assign i to be a random number using the built in Math.random()

function:

 for (var i = 0; i < 0.9; i = Math.random()) {
 console.log(i);
 }

Here the loop will keep on iterating until the random number generator produces

a value of 0.9 or greater. As you can see, the for loop is a powerful and flexible

construct, and is likely to be the one you’ll use the most.

The for ... in Loop
The for ... in loop was covered in the last chapter. To recap, this statement is

used to loop through the properties of an object; for example:

for-in.html (excerpt)

 var agents = {
 '005': "Michael Harp",
 '006': "John Smith",
 '007': "James Bond"
 };

 for (key in agents) {
 if ('007' === key) {
 console.log('Bond, ' + agents[key] + '
➥has been found!');
 } else {
 console.log('Standard spy, ' + agents[key] + '
➥has been found');
 }
 }

There are a few important points worth keeping in mind. First, avoid using this

with arrays; instead, use the standard for loop. Second, do not rely on the loop re-

turning objects in the same order in which they were defined. Although most vendors

do implement the loop in this way, it’s not actually part of the specification, so

there’s potential a standards-compliant vendor may decide on a different implement-

ation.

Jump Start JavaScript84

Jumps
Broadly speaking, a jump statement is used to move to another part of the script.

The jump statements in JavaScript are break, continue, labeled statements, and

return. return is used for exiting functions, while the rest are used with loops.

Let’s break this down in detail.

break
The break statement is used to exit from a loop. Suppose we wish to iterate through

the task list and stop once we’ve hit the first completed a task. This could be accom-

plished with a break statement:

break.html (excerpt)

 var tasks = [
 {name: 'Buy milk', complete: false},
 {name: 'Trash', complete: false},
 {name: 'Pay bills', complete: true},
 {name: 'Repairs', complete: false},
 {name: 'Plumber', complete: true}
];
 var firstComplete;

 for (var i = 0; i < tasks.length; i++) {
 if (tasks[i].complete) {
 firstComplete = tasks[i];
 break;
 }
 }

 console.log(firstComplete);

Note that break is only used for exiting from loops. Do not use it to try and exit

from conditionals such as if. The previous example can be refactored to be written

without the break:

 for (var i = 0; i < tasks.length && firstComplete ===
➥undefined; i++) {
 if (tasks[i].complete) {

85Loops and Jumps

 firstComplete = tasks[i];
 }
 }

From the start, the reader can see that the loop is meant to exit once firstComplete

is assigned a value. When using break, it is almost always possible to replace it

using conditional statements, so it’s worth considering which option is cleaner and

clearer before writing your code. As a practical guideline, if your break statement

is going to be deeply buried within the middle of a loop, ponder ways of either

bringing it to the top or else refactoring to avoid it entirely.

continue
The continue statement is also used in the context of loops; however, instead of

breaking from the loop, it skips to the next iteration. In a while loop, this means

that the condition is tested again. In a for loop, the end expression is run and then

the loop continues. An example should clarify. Assuming the same tasks variable

from the previous example, let’s look at the following code:

continue.html (excerpt)

 for (var i = 0; i < tasks.length; i++) {
 if (!tasks[i].complete) {
 continue;
 }

 console.log(i, tasks[i].name);
 }

This code prints the tasks that are complete, yielding this:

 2 'Pay bills'
 4 'Plumber'

We choose to print the value of the counter i to demonstrate the effect of using

continue on counter incrementation. Notice how it causes the loop to continue, as

well as running the end condition to increment the counter. Let’s revisit our simple

while example. Suppose we wish to skip the case when tasksToDo is equal to 2.

Without typing in the code, consider whether this solution would work:

Jump Start JavaScript86

 var tasksToDo = 3;

 while (tasksToDo > 0) {
 if (tasksToDo == 2) {
 continue;
 }

 console.log('There are ' + tasksToDo + ' tasks to do');
 tasksToDo--;
 }

Did you spot the error? By continuing, we bypass tasksToDo―and become stuck

in an infinite loop. We’ll leave it as an exercise for you to fix the example using a

conditional and then compare the two pieces of code for clarity. It is easier for our

brains to process in a linear manner. More cognitive overhead is needed to process

jump statements, making it more likely for mistakes to creep into our code. It's up

to the programmer to decide on whether a particular method maximizes clarity and

readability, and in this sense, programming is as much an art as it is a science.

Labeled Statements
Labeled statements are used in conjunction with break and continue. A statement

can be labeled by prefixing it with an identifier:

identifier: statement

Let’s look at an example from the Mozilla Developer Network3, which actually

comes with a warning: “As much as possible, avoid using labels and, depending

on the cases, prefer calling functions or throwing an error.” When code comes with

a warning, take note! Their example is as follows:

labeled-statements.html (excerpt)

 var i, j;

 loop1:
 for (i = 0; i < 3; i++) {
➥//The first for statement is labeled "loop1"
 loop2:

3 https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Statements/label

87Loops and Jumps

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Statements/label

 for (j = 0; j < 3; j++) {
➥//The second for statement is labeled "loop2"
 if (i == 1 && j == 1) {
 continue loop1;
 } else {
 console.log("i = " + i + ", j = " + j);
 }
 }
 }

Before running this code, try and guess what it will do and see if the result matches

your expectations:

 i = 0, j = 0
 i = 0, j = 1
 i = 0, j = 2
 i = 1, j = 0
 i = 2, j = 0
 i = 2, j = 1
 i = 2, j = 2

The key to understanding this code is analyzing continue loop1;. When i and j

are both equal to 1, the continue is executed, at which point the code jumps back

to the labelled loop1, the counter i is incremented, and execution resumes. Even

this basic example can be rather confusing, though it can be written to be shorter

and clearer without the labeled statement:

 for (var i = 0; i < 3; i++) {
 for (j = 0; j < 3; j++) {
 var invalid = i == 1 && j >= 1;

 if (!invalid) {
 console.log("i = " + i + ", j = " + j);
 }
 }
 }

Although there are times when you may use break and continue, you will almost

never need to use labeled statements in practice. However, if you now see it in a

programmer’s code, you will no longer wonder what the code is doing, although

you may perhaps question what the original coder was thinking!

Jump Start JavaScript88

return
return is the most commonly used jumping statement. It takes the following general

form:

return expression;

or less commonly:

return;

It can only be used within a function, and is used to delineate the return value of

a function. If the expression is omitted, the return value is undefined. For a simple

example:

 function divideBy(numerator, denominator) {
 return numerator / denominator;
 }

The more observant among you will note that, depending on how this function is

used, we have a potential “divide by zero” problem. Syntactically, it's possible to

have any number of return statements in a given function. As a matter of good

practice, we recommend erring toward a single return statement per function. This

so-called single point of exit makes the code more understandable and easier to

debug. In a debugger, it's only necessary to monitor one statement instead of two

or more.

On Division by Zero

JavaScript is unusual among programming languages in that dividing by zero

doesn’t naturally cause an exception in the language. A positive number divided

by zero yields infinity. A negative number divided by zero yields - infinity. Zero

divided by zero yields NaN. In all cases, normal execution of the program can

continue. However, we still need to deal with the "division by zero" issue.

For example, suppose you wish to calculate a user’s body mass index (BMI). This

is given by the formula: weight / (height x height). If the height comes into the

function with a value of zero, there is a good argument for raising an exception.

89Loops and Jumps

Users may not take to it kindly if you tell them they have a BMI of infinity! Such

a number may also cause problems with downstream applications, such as charts.

There are cases when multiple return statements will make the code easier to read.

Suppose we wish to merge two task lists. Using a single exit point, we could write

the code this way:

 function mergeTasks(taskList1, taskList2) {
 var merged;

 if (taskList1 === undefined)
 merged = taskList2;
 else if (taskList2 === undefined)
 merged = taskList1;
 else {
 // merge code
 merged = ...;
 }

 return merged;
 }

With multiple exit points, the code can be written in a slightly cleaner manner:

 function mergeTasks(taskList1, taskList2) {
 if (taskList1 === undefined) {
 return taskList2;
 } else if (taskList2 === undefined) {
 return taskList1;
 }

 // merge code
 var merged = ...;
 return merged
 }

Note how in the second example we have 'guard' statements to check for exception

conditions, followed by a single exit at the end. As a practical guideline, it is fine

to follow this pattern of guard statements at the top followed by a single exit. It's

when we have return statements cropping up in the middle of long functions that

code potentially becomes more difficult to understand and maintain.

Jump Start JavaScript90

Exception Handling
JavaScript provides a mechanism to handle exceptional circumstances by transferring

control to special error-handling sections of the code. To catch exceptions, we must

place the potentially offending code within a try block. When an error occurs, an

exception is thrown and control is transferred to code within the catch block. If no

exception is thrown, the exception handler is ignored and the code continues as

normal. This will be explained in more detail shortly.

throw
The keyword throw is used to signal an error condition. It takes this form:

throw expression;

While it is syntactically valid to throw an exception this way:

throw "This is an error in the form of a string";

the preferred format is to explicitly use an Error object. Continuing with the example

from the prior section:

 function divideBy(numerator, denominator) {
 if (denominator === 0) {
 throw new Error('Denominator must be non zero');
 }

 return numerator / denominator;
 }

An Error object provides more information than a string. It is possible for upstream

functions to specifically test if an object is an error by using instanceof Error. As

to the question of what we do once we throw an error, we’ll look to the next section.

try
The previously mentioned try statement assumes the following form:

91Loops and Jumps

 try {
 // code which may throw an error
 } catch (identifier) {
 // error handling
 } finally {
 // clean up code
 }

The try clause encloses a block of code in which an exception can occur, while the

catch clause provides the exception handling. The finally clause is optional; if

present, it always executes and is generally used to perform a clean up. Making sure

you're using the divideBy function from the previous section, here is an example

in which no error condition is generated:

 try {
 var result = divideBy(7, 2);

 console.log(result);
 } catch (e) {
 console.log(e.message);
 } finally {
 console.log('This will always execute');
 }

Note that the code inside the finally clause executes, even though there’s no error.

Now for an example that will throw an error:

 try {
 divideBy(7, 0);
 console.log(result);
 } catch (e) {
 console.log(e.message);
 } finally {
 console.log('This will always execute');
 }

Note that console.log(result); is no longer executed; the code jumps straight to

the catch clause. At this point, it prints the error message and then moves to the

finally clause as before.

Jump Start JavaScript92

An Empirical Study
There is some vigorous debate in the programming community as to whether certain

jump statements constitute bad practice. For example, Douglas Crockford, author

of JavaScript: The Good Parts,4 recommends to “avoid use of the continue statement.

It tends to obscure the control flow of the function.”5

Rather than wade into the debate, we’ve taken the liberty of conducting an empirical

study using jQuery, one of the most well-known and popular JavaScript libraries.

If your operating system supports wget, grep, and wc, you can try it yourself; other-

wise, follow along with the text. First, download the uncompressed version of the

code:

wget http://code.jquery.com/jquery-1.9.1.js

Use a combination of grep and word count to see how many times break is used:

 > grep 'break;' jquery-1.9.1.js | wc -l
 > 16

Similarly, we check for continue:

 > grep 'continue;' jquery-1.9.1.js | wc -l
 > 7

function:

 > grep 'function' jquery-1.9.1.js | wc -l
 > 624

and return:

 > grep 'return' jquery-1.9.1.js | wc -l
 > 646

4 http://shop.oreilly.com/product/9780596517748.do?CMP=OTC-KW7501011010&ATT=9780596517748
5 http://javascript.crockford.com/code.html

93Loops and Jumps

http://shop.oreilly.com/product/9780596517748.do?CMP=OTC-KW7501011010&ATT=9780596517748
http://javascript.crockford.com/code.html
http://javascript.crockford.com/code.html

So, to summarize, across a code base spanning nearly 10,000 lines and some 600

functions and return statements, break is used 16 times and continue is used 7

times. I'll let you draw your own conclusions from the data.

Loop Alternatives
On Style
Syntactically, JavaScript takes its syntax from Java, which in turn takes its syntax

from C. In both of these languages, for and while loops feature prominently.

However, the official specification discusses how in terms of programming philo-

sophy JavaScript actually takes its major ideas from Self and Scheme.6

Scheme is a functional programming language, and if we look at some documentation

on its syntax,7 we observe: “Scheme is very odd in one sense, it has no expressions

designed for looping, repeating, or otherwise doing something more than once at a

general level.” JavaScript takes major ideas from a language with no expressions

for loops! How can this be? Let’s have a look at some of the alternatives to loops

now.

Higher Order Functions
Earlier in the text, we briefly touched on the newer built-in array iteration functions:

forEach, every, some, filter, map, reduce, and reduceRight. These are higher order

functions because they accept functions as their arguments. They can be used instead

of loops to facilitate programming in a more functional style. For example, suppose

we have an array and we wish to add up the even numbers:

var myNums = [3, 5, 10, 4, 2, 1, 16, 7];

Using a loop-based approach would yield a similar result to this:

 var sum = 0;

 for (var i = 0; i < myNums.length; i++) {
 if (myNums[i] % 2 === 0) {

6 http://www.ecmascript.org/es4/spec/overview.pdf
7 http://en.wikibooks.org/wiki/Scheme_Programming/Looping

Jump Start JavaScript94

http://www.ecmascript.org/es4/spec/overview.pdf
http://en.wikibooks.org/wiki/Scheme_Programming/Looping
http://en.wikibooks.org/wiki/Scheme_Programming/Looping

 sum += myNums[i];
 }
 }

 console.log(sum);

There is nothing complicated in this; we’re using plain vanilla loops as has been

explained throughout the chapter. Using a functional approach would produce the

following:

 var sum = myNums.filter(function(x) {
 return x % 2 === 0
 }).reduce(function(num1, num2) {
 return num1 + num2;
 })

 console.log(sum);

Here we’re using filter to extract only the even-numbered values; then we are

using reduce to add up the list. Same result, but nary a loop in sight. Let’s look at

a to-do list example, where we have a bunch of tasks with a bunch of owners; we

wish to transfer the tasks of Paul and James to poor David:

 var tasks = [
 {name: 'Buy milk', owner: 'James'},
 {name: 'Trash', owner: 'Jill'},
 {name: 'Bills', owner: 'Paul'},
 {name: 'Repairs', owner: 'Jill'},
 {name: 'Plumber', owner: 'James'}
];

Here’s one way of doing this is:

 var numTasks = 0;
 var newTasks = [];

 for (var i = 0; i < tasks.length; i++) {
 var task = tasks[i];

 if (task.owner === 'Paul' || task.owner === 'James') {
 var newTask = {name: task.name, owner: 'David'};

95Loops and Jumps

 newTasks.push(newTask);
 }
 }

 console.log(newTasks);

Here we are checking for the specified names, creating a new task, and then pushing

it into a new array. A more functional style would be:

 var newTasks = tasks.filter(function(task) {
 return task.owner === 'Paul' || task.owner === 'James'
 }).map(function(t) {
 t.owner = 'David';

 return t;
 });

 console.log(newTasks);

Here we use a filter to create an array with only the specified owners; then we

map the tasks to the new owner. For our next example, we wish to count the number

of tasks that have been assigned to a particular person. Here is where the elegance

of functional programming can truly shine. The imperative way is to go through

each task and increment a counter as follows:

 var tasks = [
 {name: 'Buy milk', owner: 'James'},
 {name: 'Trash', owner: 'Jill'},
 {name: 'Bills', owner: 'Paul'},
 {name: 'Repairs', owner: 'Jill'},
 {name: 'Plumber', owner: 'James'}
];

 function countByOwner(tasks, name) {
 var count = 0;

 for (var i = 0; i < tasks.length; i++) {
 if (tasks[i].owner === name) {
 count++;
 }
 }

Jump Start JavaScript96

 return count;
 }

 console.log(countByOwner(tasks, 'James'));

The functional way is to filter for the owner and then check the length of the array:

 function countByOwner(tasks, name) {
 return tasks.filter(function(task) {
 return task.owner === name;
 }).length;
 }

The functional mindset in some ways is less intuitive than the imperative one;

however, as demonstrated, it can be used to clearly and elegantly express a solution

that would take an imperative program many more lines to accomplish.

Recursion
Let’s briefly touch on the concept of recursion. Many functional approaches eschew

loops in favor of recursion. The following example will illustrate. Remember from

high school calculating the factorial of a number? Without going into the formal

definition, we’ll just use this simple example: 5 factorial is 5 x 4 x 3 x 2 x 1, which

is 120. Here’s the factorial function with loops:

 function factorial(num) {
 var result = 1;

 for (var i = num; i > 0; i--) {
 result *= i;
 }

 return result;
 }

Alternatively, we can implement a recursive function that calls itself:

 function factorial(num) {
 if (1 === num) {
 return num;

97Loops and Jumps

 } else {
 return num * factorial(num - 1);
 }
 }

Many problems lend themselves to elegant recursive solutions. Recursion is a fairly

involved computer science topic, but if you start keeping an eye out for instances

where loops can be refactored as recursions, the number of instances where they

naturally occur may surprise you.

For those of you who wish to explore recursion in greater depth, Kirit Sælensminde's

“Recursive Rights and Wrongs” article will prove useful.8 It touches upon important

topics, such as performance considerations, not covered here.

Project
Counting Tasks
Suppose we wish to count the number of tasks that have been completed. We’ll

need this functionality later when we provide charts. Using loops, one way of

completing the task would be as follows:

 function countComplete(tasks) {
 var numCompleted = 0;

 for (var i = 0; i < tasks.length; i++) {
 if (tasks[i].complete) {
 numCompleted++;
 }
 }

 return numCompleted;
 }

All in all, this is a reasonable approach. The logic is simple enough, and we have

a counter to track the number of tasks completed. We then loop through our task

list and every time we see a completed item, we increment the counter. Is there a

8 http://www.kirit.com/Recursive%20rights%20and%20wrongs

Jump Start JavaScript98

http://www.kirit.com/Recursive%20rights%20and%20wrongs

better solution? Yes. Functional programming to the rescue! Place this code into a

file named todo.js:

 function countComplete(tasks) {
 return tasks.filter(function(task) {
 return task.complete;
 }).length;
 }

Now all we have to do is filter the entire list based on whether a task is complete,

and then return the length of that list.

Sorting
We want to provide our users with the ability to sort by three criteria: low-to-high,

high-to-low, and name. Thanks to the built-in sort function, all we have to do is

provide a function to rank our tasks based on the specified criterion:

 var sortByLowHigh = function(tasks) {
 return tasks.sort(function(task1, task2) {
 return task2.priority - task1.priority;
 });
 };

 var sortByHighLow = function(tasks) {
 return tasks.sort(function(task1, task2) {
 return task1.priority - task2.priority;
 });
 };

 var sortByName = function(tasks) {
 return tasks.sort(function(task1, task2) {
 return task1.text > task2.text;
 });
 };

For priority sorting, we compare the tasks numerically. For name sorting, we compare

lexicographically. For the curious, the built-in array-sorting function uses an al-

gorithm internally known as QuickSort.9

9 http://www.nczonline.net/blog/2012/11/27/computer-science-in-javascript-quicksort/

99Loops and Jumps

http://www.nczonline.net/blog/2012/11/27/computer-science-in-javascript-quicksort/

Summary
We have covered a lot of ground in this chapter. We started by taking a look at loops,

including while, do ... while, for, and for ... in . We then moved onto jumps,

including labeled statements, break, continue, and return. .We also discussed

exception handling, using throw and try ... catch ... finally before moving

onto talking about higher order functions and how they’re used to implement

functional programming solutions. Finally, we took a quick look at recursion, and

how it can elegantly replace loops in certain solutions.

By now, I hope you have a firm grasp of loops and jumps, and are beginning to gain

insights into cases where functional solutions can concisely replace their imperative

counterparts.

Jump Start JavaScript100

Chapter6
The Document Object Model

What is the DOM?
The Document Object Model (DOM) is an API for manipulating HTML and XML

documents. It’s a tree hierarchy of objects representing a document, and facilitates

scripting by exposing methods and properties. Though the DOM is quite powerful

today, and large parts of its specification are well-supported across all major

browsers, this wasn’t always the case.

At first there was little uniformity, let alone a specification. Back in the bad old

days of the Browser Wars,1 when Netscape and Microsoft were vying for supremacy

over the Web, one-upmanship was the name of the game. This lead to conflicting

implementations, with each manufacturer introducing non-standard features into

its own product. As developers began using these features, competing vendors were

forced to mimic the behavior so that web pages wouldn’t break in their own browsers.

Features were forced into existence simply by whoever held significant market

share with their browser. As you can imagine, it was a headache at best for web

developers trying to make their code work in the major browsers of the day.

1 http://en.wikipedia.org/wiki/Browser_wars

http://en.wikipedia.org/wiki/Browser_wars

In 1997, the World Wide Web Consortium (W3C) standardized the DOM with the

release of DOM Level 1, or DOM1.2 It would continue this process through DOM2,

DOM3, and most recently DOM4, which we’ll cover in more detail later. Once the

W3C introduced DOM1, all previous incarnations of the DOM became referred to

as the Legacy DOM, DOM Level 0, or DOM0.3

The Need for Backward Compatibility
The web is a strange animal, unlike any other software. Though browsers continue

to evolve, the pages that they interpret can date from as far back as 1991. This means

that any innovation or iteration on existing browser technology must continue to

work with older web pages. It’s because of this phenomenon that the DOM as we

know it today contains artifacts from the “bad old days.”

The document Object
The document object is a top-level object encompassing (and acting as an entry point

into) your document. All the objects, methods, and properties that you’ll need to

work with your document hang off the document object. For example, one of the

most common methods in use today is getElementById, which returns an element

in the DOM by its id attribute:

getElementById.html (excerpt)

 <!doctype html>
 <html>
 <head>
 </head>
 <body>
 <div id="foo">Foo, baby. Foo!</div>
 <div id="bar">Meh.</div>
 <script>
 // returns a reference to the first div
 var el = document.getElementById("foo");
 </script>
 </body>
 </html>

2 http://en.wikipedia.org/wiki/Document_Object_Model#Standardization
3 http://en.wikipedia.org/wiki/Document_Object_Model#Legacy_DOM

Jump Start JavaScript102

http://en.wikipedia.org/wiki/Document_Object_Model#Standardization
http://en.wikipedia.org/wiki/Document_Object_Model#Standardization
http://en.wikipedia.org/wiki/Document_Object_Model#Legacy_DOM

You can also retrieve other information, such as the document’s title, simply by

using document.title.

DOM Level 0 or Legacy DOM
A few throwbacks to the days of the Legacy DOM are the document’s forms, links,

and images collections. This practice of providing named accessors for specific

element types was discontinued in DOM Level 1. In DOM0, however, this was how

you accessed <form>, <image>, and <anchor> elements. You could do this by using

either the name of the element, or passing its index into the appropriate accessor

via the document object. Let’s take the following document, for example:

 <html>
 <head>
 </head>
 <body>

 <form name="contact">

➥ SitePoint
 </form>
 W3C
 <script>
 var mom, dad, sitepoint, contact;

 mom = document.images.mother; dad = document.images[1];
 sitepoint = document.links.sitepoint;
 contact = document.contact;
 </script>
 </body>
 </html>

The resulting DOM hierarchy is seen in Figure 6.1.

103The Document Object Model

Figure 6.1. DOM0 hierarchy

You could access the form named contact by using document.contact. You could

also access it by using document.forms[0], assuming the form you wanted was the

first one in the page’s hierarchy (which, in this case, it is). If it were the second of

two forms, you’d use document.forms[1], and so on. In our example, we access

the second image by referring to document.images[1]. This syntax can be used for

all three accessors. As with any array, you can loop over the returned results:

 var imgs, img, i;

 imgs = document.images;

 for (i = 0; i < imgs.length; i += 1) {
 ing = imgs[i]; // get reference to image element
 console.log(img);
 }

Jump Start JavaScript104

DOM Level 1
In 1998, the W3C released the DOM Level 1 specification.4 The spec took the existing

hierarchy of the DOM and normalized its contents by introducing the Node object,

from which most objects are derived. Of the handful of object types that the specific-

ation introduced, the most common are Document, Element, Attr, and Text, which

account for the majority of the contents of an HTML document.

In the following HTML, the <div> will become an Element node, its id attribute

will become an Attr node, and the "Hello!" will become a Text node:

 <html>
 <head>
 </head>
 <body>
 <div id="welcome">Hello!</div>
 </body>
 </html>

The previously mentioned Document node is actually an abstract node that wraps

everything, and doesn’t directly represent any tags in the HTML. The <html> tag is

a special Element node, known as the document element, and can be accessed at

document.documentElement.

There are also less common types of nodes such as ProcessingInstruction and

EntityReference, but we’ll stick to the most common ones for our purposes. A

listing of the various node types is shown in Figure 6.2.

4 http://www.w3.org/TR/REC-DOM-Level-1/

105The Document Object Model

http://www.w3.org/TR/REC-DOM-Level-1/

Figure 6.2. Node types

Creating DOM Elements and Attributes
At the root of our DOM tree is the document element, and there can only be one

per document. Since it encompasses the rest of the document’s nodes, it has a set

of methods allowing you to create all the child nodes that it can contain. So if you

wanted to create a <div> element, for example, you’d use the document object’s

createElement method in this way:

var myDiv = document.createElement("div");

This returns an empty <div> element. It’s important to note that the element we’ve

just created currently only exists in memory, and is not part of the document. In

order to add our <div> to the document, we need to append it to a node somewhere

in the DOM using the appendChild method.

Remember when I said that all objects derive from Node? Well, since Node exposes

the appendChild method, we can use that method to append our newly created

Jump Start JavaScript106

<div> as a child of any given object in the DOM. Let’s add our <div> to the contact

form in the previous DOM0 example. We can still access our contact form by its

name attribute, so let’s just call appendChild off it to add our <div> to the form:

 var myDiv = document.createElement("div");

 document.contact.appendChild(myDiv);

Our form now looks like this:

 <form name="contact">

➥ SitePoint
 <div></div>
 </form>

Once we’ve added our <div>, we can add attributes using the setAttributemethod.

So, for example, we could give our <div> a name attribute:

 var myDiv = document.createElement("div");

 myDiv.setAttribute("name", "foo");
 document.contact.appendChild(myDiv);

This will give us a <div>:

 <div name="foo"></div>

It’s important to note that all DOM object references are live. Even after we’ve added

our <div> to the DOM, we can continue to work with it. In other words, it yields

the same results:

 var myDiv = document.createElement("div");

 document.contact.appendChild(myDiv);
 myDiv.setAttribute("name", "foo");

Additionally, if some other code were to modify our <div>, our reference held in

myDiv would still be up to date. What’s more, we can immediately reference our

new <div> by its name, foo.

107The Document Object Model

Though we can use setAttribute to set attributes on elements, we can also use

createAttribute to create attribute nodes. Attributes also derive from the Node

object, starting in the DOM1 spec:

 var myLink, href;

 myLink = document.createElement("a");
 href = document.createAttribute("href");
 href.nodeValue = "http://www.sitepoint.com/";
 myLink.setAttributeNode(href);

We’ve created an anchor and an href attribute, to which we add a URL via its

nodeValue property. Bear in mind that even though the href attribute object derives

from Node, you’re unable to append objects to it. Trying to do so will result in a

HierarchyRequestError: DOM Exception 3 error.

Now that we’ve created an anchor with an href attribute, we can add some text to

make the link clickable. For this, we use createTextNode to add the text node to

our link:

 var myLink, href, linkText;

 myLink = document.createElement("a");
 href = document.createAttribute("href");
 href.nodeValue = "http://www.sitepoint.com/";
 myLink.setAttributeNode(href);
 linkText = document.createTextNode("SitePoint");
 myLink.appendChild(linkText);

Again, text nodes are like attribute nodes in that they’re unable to have children.

A Note on Nodes

Although all objects derive from Node, some are leaf nodes and others aren’t. Text

nodes are leaf nodes and can therefore not have children. As a result, methods

such as childNodes are inapplicable and cannot be used.

insertBefore
We’ve just seen appendChild in action, but sometimes we want to be more specific

about where we insert an element rather than just appending it at the end. That’s

Jump Start JavaScript108

where insertBefore comes in. As its name implies, it tells the DOM that you want

to insert an element before another node that you specify:

insertBefore.html (excerpt)

 var list, item1, item2, item3;

 list = document.createElement("ul");
 item1 = document.createElement("li");
 item1.appendChild(document.createTextNode("1"));
 item2 = document.createElement("li");
 item2.appendChild(document.createTextNode("2"));
 item3 = document.createElement("li");
 item3.appendChild(document.createTextNode("3"));
 list.appendChild(item1);
 list.appendChild(item3);
 list.insertBefore(item2, item3);

Here we’ve created a and three elements. We’ve also added a number to

each . We then append the first and third items to our list. Finally, we use

insertBefore to inject item2 between item1 and item3. The resulting DOM tree

structure is:

 1
 2
 3

getElementsByTagName
In the Legacy DOM, you could access elements either directly by their name attribute

values or by the specialized collections such as document.forms and

document.images. Then DOM1 introduced the the more generic

getElementsByTagName method. It’s a method that you can use from document, or

any object of type Element. For example, if you want all the anchors in a page, you

can write document.getElementsByTagName("a"), which will return a collection

of all the anchors in the document, regardless of where they’re located in the DOM’s

hierarchy. You can also narrow down your lookup by using getElementsByTagName

from a given element. So, if you had a form whose buttons you wanted to access,

you could write myForm.getElementsByTagName("button").

109The Document Object Model

I should point out that what getElementsByTagName returns is actually a NodeList.

For all intents and purposes, a NodeList behaves much like an array in that it’s an

ordered collection of nodes. The similarity ends there, though, as a NodeList has

none of an array’s methods. In other words, it’s not possible to sort, join, or reverse

a NodeList’s contents like you could an array’s. What’s more, a NodeList is live.

As mentioned earlier about Nodes, the contents of a NodeList always reflect the

current state of the underlying DOM. If a Node is deleted, the NodeList reflects that

without you having to go and retrieve the list again. Element nodes, of which the

majority of a DOM’s nodes are, have a few other methods you can use to work with

them.

getAttribute

With getAttribute, you can read an attribute’s value. Given <div

name="foo"></div>, myDiv.getAttribute("name") will return "foo".

removeAttribute

You can completely remove an attribute from an element using removeAttribute.

This is done by passing in the attribute name you want removed. So, given <div

name="foo"></div>, myDiv.removeAttribute("name") will leave the <div> as

<div></div>. Note that removeAttribute returns no value.

setAttributeNode

We saw this one in action earlier. After having created a new attribute node with

createAttribute, we can add it to an element using setAttributeNode:

 var el, attr;

 el = document.createElement("div");
 attr = document.createAttribute("name");
 attr.nodeValue = "foo";
 el.setAttributeNode(attr);

It’s important to remember the step where you assign a value to your attribute with

the nodeValue property. Otherwise, instead of a <div> that looks like <div

name="foo"></div>, you’ll end up with <div name></div>.

Jump Start JavaScript110

removeAttributeNode

Just as with removeAttribute, removeAttributeNode can be used to remove an at-

tribute from an element. The difference with removeAttributeNode is that you need

to pass in a reference to the attribute node that you want removed. In the case of

our recent example, we’d do the following:

 var el, attr;

 el = document.createElement("div");
 attr = document.createAttribute("name");
 attr.nodeValue = "foo";
 el.setAttributeNode(attr);
 el.removeAttributeNode(attr);

DOM Level 2
The second iteration of the W3C’s DOM5 specification came out with a lot of

namespace-friendly versions of existing DOM methods. This was to accommodate

namespacing in XML documents. As mentioned at the start of this chapter, the DOM

is designed to work with both HTML and XML, and since the W3C saw XML as the

next logical step in HTML’s evolution, it began to augment the DOM with XML-

friendly features.

Since we’re only concerned with the HTML DOM in this book, we can ignore them.

The only noteworthy additions to the DOM in DOM2, therefore, are getElementById,

hasAttributes, and hasAttribute.

getElementById
This addition to the DOM is fairly significant, as it allows the targeting of an element

in a document with a unique id value. If no ids match, null is returned. Otherwise,

a reference to the element with the matching id value is returned.

On Uniqueness

The part about the id being unique is important. If your document contains more

than one element with the same identifier, getElementById will more than

5 http://www.w3.org/TR/DOM-Level-2-Core/

111The Document Object Model

http://www.w3.org/TR/DOM-Level-2-Core/

likely only return the first element that matches it. However, because the specific-

ation doesn’t state what the behavior should be in such a scenario, you could re-

ceive unpredictable results depending on the implementation. For this reason,

always make sure that ids in a document are unique.

Given <div id="foo"></div>, document.getElementById("foo") will return that

<div> element.

hasAttributes
If you need to know if a given element has any attributes attached to it, you can use

hasAttributes. The method responds with a Boolean value, where true indicates

the presence of attributes, and false shows otherwise.

hasAttribute
If you want to check for the existence of a particular attribute, use hasAttribute.

It also returns a Boolean value. true is returned if the attribute you’re looking for

exists, while false indicates that it doesn’t. Therefore, given <div id="foo"></div>,

myDiv.hasAttribute("id") will return true, while myDiv.hasAttribute("name")

will return false.

DOM Level 3
A bunch of new attributes and methods were specified in the DOM Level 3 specific-

ation, but none of them are particularly useful for day-to-day web development,

nor are they broadly implemented. What’s more, a majority of them concern them-

selves with the XML DOM.

A couple you may find interesting are the textContent attribute and the isEqualNode

method.

Given the HTML <p id="greeting"></p>, its text content can be set to the string

"Good morning!":

 var el = document.getElementById("greeting");

 el.textContent = "Good morning!";

Jump Start JavaScript112

You have to be careful, though, because it will overwrite all the target element’s

contents, including any child elements.

With isEqualNode, you can compare to see if two nodes are identical. So, comparing

two blank <div> elements will return true; however, if one of the <div>s had a

class name, it would return false:

isEqualNode.html (excerpt)

 var div1, div2, div3;

 div1 = document.createElement("div");
 div2 = document.createElement("div");
 div3 = document.createElement("div");
 div3.className = "chocolate";
 div1.isEqualNode(div2); // returns true
 div1.isEqualNode(div3); // returns false

DOM Level 4
In 2004, the Web Hypertext Application Technology Working Group (WHATWG)

was formed in response to the W3C’s decision to abandon HTML in favor of XML-

based technologies, as well as its slow development of web standards. With the

participation of Apple, Mozilla, and Opera, WHATWG brought forth HTML5―a

broad collection of technologies of which the updated DOM is a part. In 2007, the

W3C joined the effort, forking a copy of the specification and publishing it on its

site under copyright.

The partnership between WHATWG and the W3C ended in 2011 when the latter

wanted to publish a finished version of the spec (with known problems), while the

WHATWG wanted to work on it as a “living standard,” continually maintaining it.

The most notable additions to DOM4 are getElementsByClassName, prepend, append,

before, after, replace, and remove. As of this writing, all but

getElementsByClassName are yet to be implemented in major browsers.

getElementsByClassName
Having native support for getElementsByClassName was a long time coming. For

years, JavaScript libraries had filled the gap by providing non-native support for

this missing feature. Now, however, you can perform this operation natively via

113The Document Object Model

the DOM’s API. As its name plainly states, you can now query the DOM for elements

by their class values. You can use it directly from the document object

document.getElementsByClassName("report"), which will return all elements in

the document with the class name report. Or, you can narrow down your search

by using the method from an element:

document.getElementById("financials").getElementsByClassName("report").

Data Attributes
Although it was always possible to assign your own attributes to elements in the

DOM, HTML5 codified the practice by introducing data-* attributes. If your applic-

ation requires you to store data specific to an element, you can do it using a data-*

attribute so that the data is stored directly with the element. This is advantageous

over storing the data in an array/object because it’s unnecessary to synchronize the

DOM elements to the array/object in order to retrieve the data. Instead, you just re-

trieve the element from the DOM and read the data-* attribute’s value directly from

it.

A simple scenario where this could be useful is when displaying dates:

➥DOB: May 17, 1976, 5:11 PM

With an arrangement such as this, you can easily read the ISO format of a given

date/time in the DOM without having to do any lookups in an array or any conver-

sion of the human-readable format. Most modern browsers support the dataset

accessor, which allows you to both set and get values from data-* attributes. For

example, here’s how we’d both set and read the value for our :

 var el = document.createElement("span");

 el.appendChild(document.createTextNode
➥("DOB: May 17, 1976, 5:11 PM"));
 // setting the value
 el.dataset.iso = "1976-05-17T17:11:22";
 // reading the value
 el.dataset.iso; //returns "1976-05-17T17:11:22"

In this example, we create an element and assign a data-iso attribute to it. We also

add its text content to be the human-readable format of the given date. This, of

Jump Start JavaScript114

course, could just as easily have been rendered by the back end. In either case,

reading the data-iso attribute is as simple as checking .dataset.iso.

The style Attribute
Back in DOM2, the W3C introduced the important and powerful style attribute

(though plans for it were already being laid during work on DOM1). The style at-

tribute allows for the programmatic manipulation of element styles. If you know

CSS, using it is simple. Its format is simply element.style.property = value

where property is a camel-case CSS property, and the value is the CSS value you’d

assign in a regular stylesheet.

For example, given the HTML <div id="hey">Hello, world!</div>, the <div>

style can be manipulated using the following JavaScript:

style.html (excerpt)

 var myDiv = document.getElementById("hey");

 myDiv.style.backgroundColor = "blue";
 myDiv.style.border = "solid 5px #000";
 myDiv.style.color = "#ffffff";
 myDiv.style.padding = "20px 10px";
 myDiv.style.margin = "2em";
 myDiv.style.width = "200px";

The code will yield the style shown in Figure 6.3.

Figure 6.3. The style attribute

Project
In previous chapters, we looked at creating task objects and storing them in arrays

and so on, but that’s all very abstract. In order for users to be able to see their to-do

115The Document Object Model

list, we need to render the contents of our array to the screen. We’ve just looked at

how to create DOM elements and add them to the document, so let’s go ahead and

write some code to do that:

 var taskListForm, taskListEl;

 taskListForm = document.getElementById("tasks");
 taskListEl = taskListForm.getElementsByTagName("ul")[0];

First, we’re obtaining references to both our <form> element as well as our

element, which will contain our list of tasks. Now, let’s write a function that will

clear out our task list before we try and add anything to it. That way, we’ll always

have a clean slate with which to work:

 function clearList() {
 while (taskListEl.hasChildNodes()) {
 taskListEl.removeChild(taskListEl.lastChild);
 }
 }

We use a while loop to keep removing child nodes from our taskListEl until it’s

empty (and hasChildNodes returns false). Now we need a way to generate our task

element. The HTML for it is this:

 <li class="template-item">
 <input type="checkbox" >

 <input type="button" class="btn btn-mini delete-task"
➥value="Delete" >
 <div class="btn-group">
 <button class="btn btn-mini dropdown-toggle"
➥data-toggle="dropdown">
 Priority
 </button>
 <ul class="dropdown-menu">

 High

➥Normal

Jump Start JavaScript116

 Low

 </div>

As you can see, it’s not just a matter of creating a simple element. Instead of

manually creating every element, attribute, and text node required for just one task

item, why not use the DOM to our advantage and merely clone a node whenever

we need it?

You’ll note that I’ve gone ahead and given the a class name of "template-item".

I’ll use this to obtain the element and then clone it using the DOM’s cloneNode

method. I’ll then fill in values specific to our task and have the function return the

complete set of task elements so that it can be inserted into the DOM:

 function newRow(index, task) {
 var template, newRow, textEl;

 template = document.getElementsByClassName
➥("template-item")[0];
 newRow = template.cloneNode(true);
 newRow.setAttribute("data-idx", index.toString());

 // get task text el
 textEl = newRow.getElementsByClassName("task-text")[0];

 // set task priority
 if (task.priority == HIGHPRIORITY) {
 textEl.className += "label-important";
 } else if (task.priority == LOWPRIORITY) {
 textEl.className += " label-success";
 }

 // set task text
 textEl.appendChild(document.createTextNode(task.text));

 // mark complete
 if (task.complete) {
 newRow.getElementsByTagName("input")[0].setAttribute
➥("checked", "checked");
 newRow.getElementsByTagName("span")[0].className

117The Document Object Model

➥+= "complete";
 }

 newRow.className = "task";

 return newRow;
 }

Once we have our template, the first task is to clone it with cloneNode. Note how

I’m passing a value of true to cloneNode. This tells it that I want a deep clone rather

than a shallow one. In other words, I want it to give me a copy of all the child nodes

as well. Note also that the cloned node is only in memory and not part of the DOM.

It will have to be inserted into the DOM once we’re done working with it.

The next task is to add a data-* attribute so as to be able to match the task in the

DOM with the one in our array. I do this by assigning a data-idx attribute and as-

signing it the index of the task in the array. I then get the element surrounding our

task text and assign it a class name based on the task’s priority, as well as create

and append a text node containing the task’s actual text (such as "walk the dog").

Finally, if the task is complete, I check the checkbox and add a "complete" class

name. I overwrite the "template-item" class name with "task", and then return

the DOM element (with child elements) to whomever called our function. Now all

we have to do is call clearList and newRow:

 var renderTaskList = function () {
 var i, task, taskEl;

 clearList();

 for (i = 0; i < tasks.length; i += 1) {
 task = tasks[i];
 taskEl = newRow(i, task);
 taskListEl.appendChild(taskEl);
 }
 };

Here, we’ve created a renderTaskList function that, in order, clears the old list

from the DOM by calling clearList, loops over our tasks array, calls newRow, takes

its return value, and appends it to the DOM.

Jump Start JavaScript118

Summary
In this chapter, we took a look at the DOM―a hierarchical representation of the

HTML document loaded into the browser. We saw how we can access its contents,

as well as create new content to insert into it. We also saw how it’s possible to ma-

nipulate the DOM’s existing content and styles. The DOM’s API is powerful and

versatile, and harnessing it will allow any programmer the ability to build outstand-

ing client-side applications.

119The Document Object Model

Chapter7
Events
This chapter is about JavaScript events. In order to provide interactivity, your ap-

plication must be capable of processing input from the user. Due to the evolving

nature of technology, the definition of what constitutes an event is a constant state

of flux. JavaScript came into existence in 1995. In those days people interacted with

web pages almost exclusively using a keyboard and mouse. JavaScript events

primarily consisted of plain vanilla human computer interactions such as: keypress,

mousedown, mouseup, click, scroll and load.

With the proliferation of smartphones, tablets and similar devices the number of

events has increased dramatically. Nowadays aside from the basic keyboard and

mouse events, APIs are available to detect orientation, zooming, and even humidity!

This is functionality that did not exist just a few short years ago.

Rather than trying to cover the entire API with a broad sweeping brush, it would

be more instructive to begin with a specific use case to illustrate some general ideas

and concepts. Suppose you want to display an alert when a user clicks a button on

a page. To process this event, it is necessary to answer a number of questions:

What was the action? In this case it was a mouse click.

What part of the page received

the action?

In this case it was a button.

How do we wish to handle the

action?

Here we display an alert.

How do we specify a function

to handle the action?

To answer this question, we need a way to simul-

taneously answer all of the previous questions.

While the above questions are somewhat of a simplification, they largely explain

the JavaScript event model. Each step has its own formal description and definitions.

Let’s now look at each step of the process in detail.

DOM Events
To answer the question of “What was the action?”, we turn to DOM events. There

is no central authoritative specification available to define exactly what does and

does not constitute an event. However, the Mozilla Developer Network provides a

list of events1.

This is not actually a specification. Rather it is an amalgamation of a number of

different specifications and provides a list of events along with a reference to the

actual specification from which an event is derived. You will see that most of the

events come from DOM Level 3 or HTML5. These APIs cover some of the more

common cross platform interactions such as keystrokes, mouseclicks, dragging,

media and offline behavior. However there are also some more obscure events such

as chargingchange which comes from the Battery Status API.

Not all events are universally supported across devices and browsers. For example,

the Battery Status API is not supported in older versions of Internet Explorer. Addi-

tionally, while it may exist in desktop browsers, it is really only relevant in mobile

devices such as laptops, tablets and smartphones. We will be covering the main

concepts and common use cases of events in this chapter. Once you have grasped

the basics, you should be able to use the above reference to implement some of the

more esoteric functionality if this is what your application requires.

1 https://developer.mozilla.org/en-US/docs/DOM/Mozilla_event_reference

Jump Start JavaScript122

https://developer.mozilla.org/en-US/docs/DOM/Mozilla_event_reference
https://developer.mozilla.org/en-US/docs/DOM/Mozilla_event_reference

We have included some common events in Appendix A. Browsing through the list,

you will notice that the click event is part of the DOM Level 3, and is fairly unam-

biguously described as "A pointing device button has been pressed and released on

an element." You'll also notice that most other common events are DOM Level 3.

Some of these events include dblclick, mousedown, mouseup, keydown, keyup and

keypress.

Event Propagation
Before turning to the question of “What part of the page received the action?”, it is

necessary to provide a brief overview of how events propagate through a page.

Suppose you have a table and within that table you have an anchor tag. Both the

table and the anchor tag have code to handle mouse clicks. When the user clicks

on the anchor tag, which HTML element should process the event first? Should it

be the table then the anchor tag or vice versa? To answer this question we have to

briefly explore the mechanics of event propagation.

In the early days, different browsers had different event handling orders. Some

would process the event by firing on the parent and then the child element, while

others would do the opposite. In recent times, the W3C has begun to standardize

event propagation in its DOM Level 3 document. The way an event travels through

a document is captured diagrammatically as part of the DOM Level 3 Events Spe-

cification in Figure 7.1.

123Events

Figure 7.1. How DOM events travel through a document

Formally, the event path is broken into three phases. In the capture phase, the event

starts at the top of the DOM tree, and propagates through to the parent of the target.

In the target phase the event object arrives at its target. This is generally where you

will write your event handling code. In the bubble phase, the event will move back

up through the tree until it reaches the top. Bubble phase propagation happens in

reverse order compared to the capture phase, with an event starting at the parent

of the target and ending back up at the top of the DOM tree. These days, there’s a

choice to register an event in either the capture phase or the bubble phase. If you

register an event in the capture phase then the parent element will process the event

before the child element. In the above example the table would process the event

Jump Start JavaScript124

before the anchor. The opposite order will apply if bubbling is specified, in which

case the child element will process the event before the parent. In our example, the

anchor would receive the event before the table.

Note that specifying bubbling or capturing is optional and is something that often

does not even need to be considered. A conventional design would have each user

action processed by only a single element. Only in unusual circumstances would

a single action need to be processed by multiple elements concurrently. We include

a brief discussion here because many of the event APIs make reference to capturing

and bubbling, and it will be handy to understand what these terms mean. With

some of the formal definitions out of the way we can now turn to making our pages

actually respond to events!

Event Handlers
Normally you will want specific elements on your page to handle specific events.

To indicate that a particular element on the page should process a particular event

you need to register an event handler on that element. There are three ways to register

event handlers. To prepare us for the following sections create a new file named

events.html containing the following HTML:

 <!doctype html>
 <html>
 <head>
 <title>Events</title>
 </head>
 <body>
 <button>Click Me!</button>
 </body>
 </html>

This is a bare bones page with a single button that we will use to process events.

HTML Attribute
It is possible to place JavaScript inline with your HTML. In the early days of

JavaScript this was the standard way of processing events. As an example, modify

your <button> tag as follows:

125Events

<button onclick="alert('Old style event handling')">
➥Click Me!</button>

Now when you click on the button, you should see an alert similar to Figure 7.2.

Figure 7.2. Inline JavaScript event handling

This method is not recommended. HTML should primarily be used as a presentation

layer. JavaScript events are portions of business logic which make up the behavior

layer. JavaScript code should not be mixed in with the presentation layer. Separating

these two areas of your code will lead to greater maintainability. If a JavaScript

programmer is updating code there should be no chance that he or she can accident-

ally introduce bugs into the presentation layer. Similarly if an interface designer is

updating a page there should be no chance that he or she can accidentally modify

the behavior layer. By keeping JavaScript completely separate from HTML it means

that the two sections of your application can be developed independently.

addEventListener
The preferred way of handling events is by registering a handler via the function

addEventListener. A handler can be thought of as a function that will process a

particular event. addEventListener will register a single event handler on a target.

Multiple event handlers can be added by calling this function multiple times. This

function takes three parameters:

type The event type we are listening for. In the case of a mouse click, it

will be click.

listener The listener, or handler, is the function that processes the event.

In this case it will be our custom function that displays the alert.

Jump Start JavaScript126

useCapture If true, register the event handler for the capturing phase. If false,

register the event handler for the bubbling phase. The default value

is false.

Modify the HTML code to remove the inline JavaScript. Change the <button> tag

to:

<button id="btnClickMe">Click Me!</button>

Then add a <script> tag just before the closing </body> tag:

<script src="events.js"></script>

Here we have removed the inline JavaScript and added an identifier so the button

can be located by our JavaScript code. Next, create a new file named events.js con-

taining the following code:

 var myButton = document.getElementById("btnClickMe");

 function handleClick() {
 alert("addEventListener clicked!");
 }

 myButton.addEventListener("click", handleClick, false);

Refresh the page, then click the button. You should now see the alert in Figure 7.3.

Figure 7.3. addEventListener event handling

Although it may seem like extra work, for any non-trivial project the separation of

the presentation layer from the business logic will pay dividends. Under this archi-

tecture your designers can concentrate purely on the visual aspects and your

127Events

JavaScript developers can concentrate purely on application logic without stepping

on each other's feet.

Internet Explorer

Before version 9, Internet Explorer did not support addEventListener. Instead

it used its own proprietary mechanism. We will not cover the specifics of legacy

Internet Explorer methods because it is not the most productive use of our time.

Should your application require support for older versions of this browser, we

recommend the use of a cross-browser library, such as jQuery.

DOM Element Properties
Another way of registering a handler is to simply set a property on the target itself.

The convention is to use on followed by the event name, in our case onclick. To

set onclick, replace all code in events.js as follows:

 var myButton = document.getElementById("btnClickMe");

 myButton.onclick = function(e) {
 alert("onclick click!");
 };

You should see the alert in Figure 7.4 after refreshing the page and clicking the

button.

Figure 7.4. Using the onclick handler

Although setting a property directly on the element is simpler than

addEventListener, this comes at the cost of flexibility. Only one handler can be

added to an element using the on syntax. Suppose you wish to write code to inter-

operate with somebody else’s code and you both wish to handle mouse clicks on

Jump Start JavaScript128

the same element. By setting DOM element properties directly, conflicts will arise

and ultimately only a single handler will be available to the user. The other handler

will be overriden. In contrast, using addEventListener you could modify our ex-

ample as follows:

 var myButton = document.getElementById("btnClickMe");

 function handleClick() {
 alert("addEventListener clicked!");
 }

 function handleClick2() {
 alert("addEventListener2 clicked!");
 }

 myButton.addEventListener("click", handleClick, false);
 myButton.addEventListener("click", handleClick2, false);

This would add multiple handlers for the single event. If you’re curious, feel free

to run the above code and you will see that both handlers will fire and both alerts

will display.

Accessibility

There is a common saying that an escalator can never truly break because it can

always function as a set of stairs. If your user’s browser does not support JavaScript

or some particular JavaScript function, where possible the design should be such

that your users can still take the proverbial set of stairs. As a general rule this

means that events should only be added to HTML elements that already have built

in behavior for that particular event. For example, click events should be applied

to elements such as <a> and <button>. The majority of JavaScript events that

you will be dealing with have an HTML equivalent, and you should keep access-

ibility in mind when you design your page.

More Examples
Now that you understand the basics of event handlers, let’s go through a few more

examples to illustrate other events. You’ll begin to notice a pattern that you’ll be

able to apply to just about any JavaScript event, whether or not we have specifically

covered it in this chapter. Suppose we wish to determine when a page is loaded.

Looking to Appendix A, we see there is a load event defined as “A resource and

129Events

its dependent resources have finished loading.” We can detect when the page has

loaded as follows:

 window.onload = function(e) {
 alert("Page loaded");
 };

Once you refresh the page you should see something similar to Figure 7.5.

Figure 7.5. Determining when the page has loaded

It is very common in JavaScript to run code only after the page has finished loading.

Often code will modify particular DOM elements. Therefore, it is necessary to ensure

that these elements have been completely loaded before trying to access them. You

can ensure this occurs by writing all of your code within the load event. Recall that

in JavaScript it is perfectly legal to define functions within functions. Therefore,

defining your application within a load event is perfectly valid.

Suppose now we wish to detect window resizes. By now, you should be familiar

enough with events to be able to look up the name of the function and its description

by yourself. The code to detect a resize looks like this:

 window.onresize = function(e) {
 alert("Page resized");
 };

When you resize the window you will notice that the alert fires:

Jump Start JavaScript130

Figure 7.6. An alert is displayed when the window is resized

Depending on your browser this event may fire twice! It would be remiss of us to

discuss client-side JavaScript without briefly mentioning some of the perils and

pitfalls, one of which you may have just seen. As a client-side JavaScript programmer

the reality is you will be dealing with many versions of JavaScript. Even within the

same version of JavaScript, different browsers may have slightly different imple-

mentations of particular features. Although the most common functions should

work in a uniform manner, occasionally you will run into an idiosyncrasies such

as the above. Generally a library such as jQuery will help ease cross-browser issues,

but we still strongly recommend familiarizing yourself with the material in this

chapter so that even if you do end up using a cross-browser library, you will still

understand what is happening under the hood.

Why All The Quirks?

JavaScript’s development as a programming language has followed a rather unique

path. In a language such as C or Java, painstaking care is taken to ensure that

programs behave as predictably as possible across a range of environments. In

contrast, much of JavaScript’s development occurred during the period of the so-

called browser wars2. During this time vendors were not particularly concerned

about interoperability with competing products. The legacy of this is a rather

fragmented client-side JavaScript environment. The practical implication of all

this is that when you write your client-side application, you will need to make a

conscious decision about which browsers you are planning to support. According

to best practices, you should try to support as many browsers as consistently as

possible. You will need to test your application using each and every single

browser to make sure that your program works as desired. As mentioned above,

a library such as jQuery may make this problem much more tractable.

2 http://en.wikipedia.org/wiki/Browser_wars

131Events

http://en.wikipedia.org/wiki/Browser_wars

Event Context
Let’s return to our very first click example:

 var myButton = document.getElementById("btnClickMe");

 myButton.onclick = function(e) {
 alert("onclick click!");
 };

Suppose inside our event handler, we wish to know something about the HTML

element that generated the event. This can be done by accessing this. Modify the

function as follows:

 myButton.onclick = function(e) {
 console.log(this);
 };

When you refresh your page and click the button, the following should be displayed

in the console:

<button id="btnClickMe">Click Me!</button>

Suppose instead we need information about the actual mouse click. In the above

code replace the logging statement with the following:

console.log(e);

Here, e represents the event object. When you now click on the button you should

see something like the following printed to the console:

MouseEvent {dataTransfer: null, toElement: button#btnClickMe,
➥fromElement: null, y: 41, x: 32...}

The event object contains all the properties of the mouse click. For example suppose

we are building a JavaScript video game and wish to track mouse movements. A

simple logger could be created by adding the following code to events.js:

Jump Start JavaScript132

 window.onmousemove = function(e) {
 console.log(e.x + ", " + e.y);
 };

If you refresh your page and move your mouse around the screen, you should see

something like Figure 7.7.

Figure 7.7. Logging mouse co-ordinates

Continuing the video game theme, suppose we wish to log user keystrokes. Firstly

add a text area to your HTML page as follows:

<textarea id="myTextArea"></textarea>

Then to avoid cluttering the console, remove the mouse logging code and replace

it with the following:

133Events

 var txtArea = document.getElementById("myTextArea");

 txtArea.onkeypress = function(e) {
 console.log(String.fromCharCode(e.keyCode));
 };

keyCode is a numerical representation of the pressed key. We use the built-in

fromCharCode function to convert from a number to the actual key pressed. When

you start typing into the text area, you should see something similar to Figure 7.8.

Figure 7.8. Logging keystrokes

You now know enough about JavaScript events to handle a wide variety of situations

within your own application. However, suppose we want our events to interoperate

with other code. Does JavaScript provide a mechanism to facilitate this? The answer

is yes and we will address this in the next section.

Custom Events
JavaScript provides a simple mechanism for creating custom events. Before describ-

ing the details of the implementation, it is worth going over an example use case,

Jump Start JavaScript134

since the use of custom events is not always obvious to someone new to JavaScript.

Suppose our to-do application is complete and somebody else wishes to write a

plugin to display a fancy notification to the user every time they add a new item to

their list.

How should they go about doing this? One possible option would be for the other

programmer to modify our script and place their notification code inside ours. This

is problematic on several fronts. Firstly they may not have access to our source

code. Although JavaScript will always be viewable as plain text, before shipping,

we may choose to compress our code to improve loading times. This would make

our source code very difficult to work with directly.

But even suppose that we granted access to our original source code. Directly altering

the to-do list code base is still a bad idea for a number of reasons. Firstly, if we decide

to update our to-do list code, it may break the other programmer’s modification.

Secondly, if a number of programmers all wish to create their own plugins, the

original code base will quickly become bloated and unmanageable.

The problem with the above solution is that it involves modifying our to-do list

code to incorporate functionality that it does not need to know anything about.

Whilst the plugin code needs to know about the to-do list, the reverse is not true.

The to-do list application does not need to know about any plugins. In theory it

should be possible for thousands of plugins to be written whilst our original program

happily chugs along in ignorant bliss. The technical term for this architecture is

loose coupling. Let’s now make this concept a little less abstract by providing an

actual implementation using a custom event.

A custom event can be created by using the following general construct:

var event = new CustomEvent(type, eventInitDict);

Here, type is the name of the custom event, and is something we define.

eventInitDict provides the initialization parameters.

eventInitDict is itself a JavaScript object that takes the following three parameters:

bubbles A Boolean indicating whether the event bubbles up through the

DOM or not. The bubble phase and capture phase were covered

earlier in this chapter.

135Events

cancelable A Boolean indicating whether the event is cancelable. If an event is

cancelable it means that it can have its default action prevented.

detail The data passed when initializing the event. We will populate this

object depending upon what data we wish to transmit with our

custom event.

Let’s use an example to illustrate the above. Create a new file named customevent.html

containing the following HTML:

 <!doctype html>
 <html>
 <head>
 <title>Events</title>
 </head>
 <body>
 <button id="btnAdd">Add Task</button>
 <script src="customevent.js"></script>
 </body>
 </html>

This represents our dummy to-do list application. Next, create a file named

customevent.js containing the following JavaScript code:

 var taskEvent = new CustomEvent("TaskAdded", {
 detail: {
 message: "A task has been added",
 },
 bubbles: true,
 cancelable: true
 });
 var btnAdd = document.getElementById("btnAdd");

 btnAdd.onclick = function(e) {
 document.dispatchEvent(taskEvent);
 };

The above code creates a custom event. We define the name to be "TaskAdded" and

then provide the event with the initialization parameters. Every time the button is

clicked, we use dispatchEvent to trigger the event. Our event can now be handled

in exactly the same way as native events such as keystrokes and mouse clicks. We

make the simplifying assumption that a task is added every time the button is

Jump Start JavaScript136

clicked. In a real application you would likely only fire the event if all the error

checking passed. So now we have a mockup of a very simple application. All it

does is trigger a custom event when the button is clicked. Suppose somebody now

wishes to write a plugin. Add the following code to a new file named

customeventplugin.js:

 function handleTaskAdded(e) {
 alert(e.detail.message);
 }

 document.addEventListener("TaskAdded", handleTaskAdded, false);

Add the following line to customevent.html:

<script src="customeventplugin.js"></script>

When you refresh the page and click on the button you should now see a sight such

as Figure 7.9.

Figure 7.9. Using custom events

The use of custom events has some powerful implications. If we have a well-designed

event API, it means that other libraries and code bases can now interoperate with

our code purely by responding to events. These other code bases never directly

need to access our source code. A custom event can be triggered in any number of

situations it does not just have to be a user generated event. This mechanism opens

up the possibility of creating rich JavaScript ecosystems by way of interacting loosely

coupled components. Let’s turn to how we use events in our project.

137Events

Project
Adding Tasks
Our to-do list application needs to deal with and respond to a number of user events.

Users add a task by submitting a form. This is handled in JavaScript as follows:

 addForm.onsubmit = function(e) {
 var val;

 preventDefault(e);
 val = newTaskField.value;

 if (val === "") {
 warn("Please enter a task");
 } else {
 newTaskField.value = "";
 clearWarning();
 addTask(val);
 }
 };

First we add the onsubmit handler to detect when a user has submitted the form.

We use preventDefault to prevent the default action because we do not want the

form to actually be submitted to a server!

Preventing Default Actions

Some HTML elements have default actions. For example forms are submitted,

anchors follow hyperlinks and checkboxes are toggled. By default, JavaScript does

not inhibit these default actions. In other words if you fire an event when a user

clicks an anchor, your event handler will be called but the browser will also

continue with the standard action by following the hyperlink. If this is undesirable

behavior based on your application's needs, then the event's preventDefault

method can be used to tell the browser to stop the default action from occurring.

In our example, we check for an empty task, at which point we display a warning.

If the task is valid, we clear any prior warnings and then add the task to the list.

Jump Start JavaScript138

Sorting
When our user wishes to sort items, they click on one of 'Name', 'Priority Low

To High', or 'Priority High To Low', as seen in Figure 7.10.

Figure 7.10. The sort menu for our app

In the HTML these text values have been defined as anchor tags. We have already

retrieved the tags with the following code:

 sortByLowHighAnchor = document.getElementById("sortByLowHigh");
 sortByHighLowAnchor = document.getElementById("sortByHighLow");
 sortByNameAnchor = document.getElementById("sortByName");

In Chapter 4 we wrote the actual sorting code. Now we can glue these pieces together

with event handlers as follows:

 sortByLowHighAnchor.onclick = function(e) {
 preventDefault(e);
 tasks = sortByLowHigh(tasks);
 renderTaskList();
 };

 sortByHighLowAnchor.onclick = function(e) {
 preventDefault(e);
 tasks = sortByHighLow(tasks);
 renderTaskList();
 };

 // Sort tasks by name
 sortByNameAnchor.onclick = function(e) {
 preventDefault(e);
 tasks = sortByName(tasks);
 renderTaskList();
 };

139Events

As before, we prevent the default action because we do not wish the browser to

follow the actual link. Then we call our sorting function. Lastly we render the list

with the new ordering.

Task Modification
Next we handle the processing of individual tasks. This function is slightly more

involved because we need to keep track of which task is being actioned, along with

which action is being performed. Add the following code to todo.js:

 taskListForm.onclick = function(e) {
 var target, idx, targetClass;

 preventDefault(e);
 target = getTarget(e);
 idx = getIndex(target);

 if (idx) {
 idx = Number(idx);
 targetClass = target.getAttribute('class');

 if (targetClass === 'highpriority' || targetClass ===
➥'lowpriority' || targetClass === 'normalpriority') {
 setPriority(idx, target.getAttribute("value"));
 } else if (target.className.match("delete-task")) {
 removeTask(idx);
 } else if (target.type === "checkbox") {
 toggleComplete(idx);
 }
 }
 };

Firstly, we retrieve the index of the item and store it into the variable idx. If this is

a valid value, we take the class of the HTML element and store it in the variable

targetClass. We then test for three separate cases. In the first case, targetClass

indicates the user has clicked on priority sorting. In this case. we retrieve the value

of the HTML element and use this number to set the priority of the task. In the

second case, targetClass indicates that the user has clicked on delete. In this case

we can simply remove the item. In third and final case, the user has clicked on a

checkbox, at which point we know to toggle whether or not the task of been com-

pleted. This completes our exploration of event handling.

Jump Start JavaScript140

Summary
We have covered the main aspects of JavaScript event handling in this chapter. We

began by describing DOM events, specifically what constitutes an event and where

to find a list of events. We then took a technical detour to cover propagation, the

path that an event takes to get from the user to your application. Next we explored

assigning handlers. This is how HTML elements register for events and how functions

are defined to handle a given event. From within an event handler, we then learned

how to find out about HTML elements and get event object information. We also

discussed custom events which is how to get your application to fire its own intern-

ally defined event.

141Events

Chapter8
Canvas
This chapter introduces the <canvas> element, which is part of the HTML5 specific-

ation. We’ll be using <canvas> to implement a productivity chart for our example

application. The chart will update each time the data is changed. This will show

the user how many tasks have been completed and how many remain unfinished.

We’ll also add some shadowing and gradient effects to give our charts a more pol-

ished look.

What is Canvas?
The official specification1 states: “The canvas element provides scripts with a res-

olution-dependent bitmap canvas, which can be used for rendering graphs, game

graphics, art, or other visual images on the fly.” Although the specification does

not mandate an actual scripting language, JavaScript is generally the language used.

1 http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#the-canvas-

element

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#the-canvas-element

Canvas Versus SVG

The material in this chapter could have also been written using Scalable Vector

Graphics (SVG). SVG is a language for describing two-dimensional graphics in

XML. Both Canvas and SVG have widespread adoption; each has its own strengths

and weaknesses2. In the end, we chose Canvas for the practical reason that it is

JavaScript-based. For those curious to explore SVG, the Mozilla Developer Network

has both documentation and examples.3

We can provide a basic canvas for our users:

 <div align="center">

 <h2>Productivity Chart</h2>
 <canvas id="canvas" height="300" width="400">
 </canvas>
 </div>

Place this code in index.html just before <ul class="template">. A basic canvas

can be provided by using the <canvas> tag. We also specify an id, a height, and a

width for the canvas. If no values are provided, or if the values provided cannot be

correctly parsed, the default values are used: 300 for the width and 150 for the

height. It is possible for a page to have multiple <canvas> elements, but for this

project we’ll just be using one. Our code will provide, pardon the pun, a blank

canvas, with no content.

Our first task is to cater to those browsers without support for the <canvas> element.

As of the time of writing, the canvas element is supported in 85% of browsers4. All

modern major browsers, including those on mobile devices, support the <canvas>

element. Although listed as unsupported, IE8 can actually support <canvas> func-

tionality if developers wish to add one additional <script> tag to use a third-party

library.5

2 http://dev.opera.com/articles/view/svg-or-canvas-choosing-between-the-two/
3 https://developer.mozilla.org/en-US/docs/SVG
4 http://caniuse.com/#feat=canvas
5 https://code.google.com/p/explorercanvas/

Jump Start JavaScript144

http://dev.opera.com/articles/view/svg-or-canvas-choosing-between-the-two/
http://dev.opera.com/articles/view/svg-or-canvas-choosing-between-the-two/
https://developer.mozilla.org/en-US/docs/SVG
http://caniuse.com/#feat=canvas
https://code.google.com/p/explorercanvas/
https://code.google.com/p/explorercanvas/
https://code.google.com/p/explorercanvas/

With IE8 included, browser support would jump to a very healthy 95%. For those

browsers without support for <canvas>, it is easy to provide fallback content. We

can place fallback content between the <canvas> and </canvas> tags as follows:

 <canvas id="canvas" height="300" width="400">
 To Do:<div id="numToDo"></div>
 Done:<div id="numDone"></div>
 </canvas>

For now, we provide some blank placeholders. When we render our chart, we’ll

update the fallback content to display the actual number of tasks completed, as well

as the number of tasks to do.

Preparing the Data
Let’s perform some basic computations around the number of tasks completed and

the number of tasks remaining. Add the following function to todo.js:

 function renderChart(tasks) {
 var done = countComplete(tasks);
 var todo = tasks.length - done;

 document.getElementById("numToDo").innerHTML = todo;
 document.getElementById("numDone").innerHTML = done;

 var dataValue = [todo, done];
 var maxVal = todo > done ? todo : done;
 }

First, we establish the number of tasks completed by using our previously written

countComplete function. By inference, we can calculate the number of tasks to do

by taking the total number of tasks and subtracting the number of tasks completed.

We then update our fallback content with these values for browsers not supporting

<canvas>. We then put the values into an array, which will make it easier to use

with our graph. Finally, we compute the maximum value, which will determine

the largest number for our y-axis. This is calculated by taking the larger of the

number of tasks completed and the number of tasks to do.

145Canvas

Setting up the Canvas
With the computations complete, we need a few lines of code to prepare the canvas

for drawing. Continuing on, we add the following code:

 var topMargin = 25;
 var bottomMargin = 1;
 var canvas = document.getElementById("canvas");

 canvas.width = canvas.width;

We specify, in pixels, the margin of the chart from the top and bottom of the canvas.

This margin is unrelated to any of the built-in variables. It is a variable that we’re

declaring, and we will use it to do some computations and canvas scaling later.

Then, we retrieve the actual <canvas> element using document.getElementById.

The following line of code may initially appear puzzling:

canvas.width = canvas.width;

To make sense of it, we refer to the specification,6 which states: “When the canvas

element is created, and subsequently whenever the width and height attributes are

set (whether to a new value or to the previous value), the bitmap and any associated

contexts must be cleared back to their initial state and re-initialized with the newly

specified coordinate space dimensions.”

In other words, whenever the height or width is changed, the canvas is reset. We

take advantage of this idiomatic behavior, and reset the canvas before doing any

drawing to make sure that any old data is erased.

The Official Specification

Astute readers may notice that we have so far referred to two different official

specifications. Historically, the Web Hypertext Application Technology Working

Group (WHATWG) began working on a new HTML specification while the World

Wide Web Consortium (W3C) was focusing on XHTML. Ultimately, XHTML was

abandoned, and the two groups are now working together on HTML5. This has

left us with two different, but largely compatible, specifications. From the view

6 http://www.w3.org/TR/2010/WD-html5-20101019/the-canvas-element.html

Jump Start JavaScript146

http://www.w3.org/TR/2010/WD-html5-20101019/the-canvas-element.html

of an application developer, both can be treated as authoritative sources. Minor

differences are likely to only come to the fore if one wished to undertake the task

of writing an HTML5 parser or similar.

The Most Basic Drawing
Before we do any drawing, we check to make sure that the browser supports the

canvas object. Continuing on from our previous examples:

 if (canvas && canvas.getContext) {
 }

This contains a subtlety that is worth exploring. Notice how we use canvas.getCon-

text instead of canvas.getContext(). The difference can be illustrated with this

example:

 function testFunction() {
 return 0
 }

 if (testFunction()) {
 console.log('with parentheses');
 }

 if (testFunction) {
 console.log('no parentheses');
 }

Only 'no parentheses' will print. The first if statement will call the function and

evaluate its return value, but this is far from our aim. The second if statement will

simply test if the function exists; this is exactly what we want to do. We want to

make sure the canvas object has a getContext function; we want to avoid calling

that function and evaluating its output!

Let’s begin by establishing the context. Place the following code within the if

statement:

var context = canvas.getContext("2d");

147Canvas

As we’ve checked that the getContext function exists, we can now actually call it.

This function takes a single parameter, the context type. Currently, the canvas

contexts that are available are "2d" and "webgl". The 2d context is defined as7: “The

2D context represents a flat Cartesian surface whose origin (0,0) is at the top-left

corner, with the coordinate space having x values increasing when going right, and

y values increasing when going down.”

Basically, it’s a flat surface that we can use for drawing. It’s important to note that

the origin is the top-left corner, and y values increase when going down. This is

different from the more familiar Cartesian plane, which has y values increasing

when moving up. Because our graph has y values increasing when going up in the

more traditional fashion, we'll need to apply some transformations further on.

Note, also, that because of the way the default coordinate system is defined, negative

coordinates aren’t used. They will cause no errors, but they won’t display on the

screen. The other type of context, WebGL8, is considered more experimental at this

point than the 2d context, and is primarily used for rendering 3D graphics without

the need for third-party plugins. We won’t be exploring WebGL in this book. You’ll

notice that, by default, the canvas displays with a light gray fill. Let’s replace it with

a white background to demonstrate some simple concepts:

 context.fillStyle = '#FFFFFF';
 context.fillRect(0, 0, canvas.width, canvas.height);

We’re specifying a fillStyle of #FFFFFF, which is white. The fillStyle attribute

represents the color or style to use inside shapes. Here we are using it to indicate a

color; later on, we’ll specify a gradient.

We then call the function fillRect to fill in a rectangle with the expressed color

around the specified coordinates. fillRect takes four parameters: the x coordinate

of the upper-left corner, the y coordinate of the upper-left corner, the width of the

rectangle in pixels, and the height of the rectangle in pixels. If you refresh the page,

you’ll notice that the canvas is now completely white. Let’s delineate our canvas

with a black border:

7 http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas/
8 http://en.wikipedia.org/wiki/WebGL

Jump Start JavaScript148

http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas/
http://en.wikipedia.org/wiki/WebGL

 context.strokeStyle = '#000000';
 context.strokeRect(0, 0, canvas.width, canvas.height);

The strokeStyle attribute represents the color or style to use for the lines around

the shapes. Here, we set the strokeStyle to #000000, which is black, and then draw

a line around specified coordinates. strokeStyle takes the same parameters as

fillRect. The main difference is that it will draw the stated rectangle without ac-

tually filling it in with the chosen color. You should now have a white canvas sur-

rounded by a black border.

Text and the Coordinate System
Let’s now draw the text for the y-axis. This will help solidify our understanding of

the canvas coordinate system. Add the following to todo.js:

 var textX = 10;
 var textY = 190;

 context.fillStyle = '#000000';
 context.save();
 context.translate(textX, textY);
 context.rotate(Math.PI * -90 / 180);
 context.fillText('Tasks Complete', 0, 0);
 context.restore();

Once again, we set fillStyle―this time to black to determine the text color. Let’s

look at save and restore. We plan to draw some vertical text onto the canvas,

running along the y-axis, much like one would see in a traditional graph. By default,

text is rendered horizontally. In order for the text to be vertical, we’ll need to

transform the coordinate system. This is where save and restore come in. save

will save the current state of the context. After we perform our transformation and

draw the text vertically, we can bring back the state by calling restore, so that text

by default will continue to render horizontally as expected, as shown in Figure 8.1.

Saving and Restoring Data Stacks

For those of you with greater familiarity with data structures, it’s worth noting

that save and restore are implemented using a stack. Thus, it is possible to

save multiple states. Calling save actually pushes the canvas state onto the top

149Canvas

of the stack, while calling restore will "pop" the most recently pushed state off

the top of the stack.

For those unfamiliar with data structures, it may be helpful to use an example

from the everyday world: a pancake stack. save would be analogous to putting

another pancake on top of the stack; restorewould be akin to removing a pancake

from the top. Just like with a pancake stack, in a computer science stack, a single

operation will only affect items at the top of the stack. Inserting and removing

from the middle is possible, but it requires multiple steps.

Recall that, by default, the origin of the coordinate system is (0,0). We’d prefer to

avoid drawing text at (0, 0) because this will place text in the corner of our canvas.

That’s why we use translate(x, y), which will make (x, y) the new origin. We

are setting (10, 190) to be the starting point for drawing text. Because we want our

text to be vertical, we call the rotate function. This function takes a parameter in-

dicating the number of radians by which the coordinate system is rotated clockwise.

You may recall from high school that pi radians are equivalent to 180 degrees. Here

we’re rotating the canvas 90 degrees counterclockwise so that our text will correctly

run from bottom to top.

Finally, we can render the actual text by calling fillText. This function takes three

parameters. The first parameter is the text to draw, and is followed by the x, y co-

ordinates of the text, which we set to (0,0).

You may be wondering if we could have saved some work by just using con-

text.fillText('Tasks Complete', textX, textY). We can achieve the same

result if we remove translate and alter fillText to:

context.fillText('Tasks Complete', -190, 10);

However, our slightly longer example helps us to avoid negative coordinates, and

is more intuitive. Note that in the amended example, the y-coordinate of (-190) is

actually in the spot where the x-coordinate would traditionally be, and vice-versa

with the x-coordinate. This is because we’re working with the rotated canvas, so

the positions need to be swapped. A bit confusing, isn’t it? The extra line of code

is worth the increased clarity.

Jump Start JavaScript150

Figure 8.1. Y-axis text

A Further Rotation Example
Let’s take a short break from the main project and look at a side example involving

shapes. This is a useful exercise because shape rotation is visually more instructive

and intuitive than text rotation. Create a new files named canvas.html:

canvas-1.html

 <!doctype html>
 <html>
 <head>
 <title>Todo</title>
 </head>
 <body>
 <canvas id="canvas" height="300" width="400">
 </canvas>

151Canvas

 <script src="canvas.js"></script>
 </body>
 </html>

Next, create canvas.js:

canvas-1.js

 var canvas = document.getElementById("canvas");
 var context = canvas.getContext("2d");

 context.strokeStyle = '#000000';
 context.strokeRect(0, 0, canvas.width, canvas.height);
 context.fillRect(100, 100, 200, 100);

You should have a thin black line surrounding the canvas along with a solid black

rectangle on the screen, as seen in Figure 8.2.

Figure 8.2. Drawing a solid black rectangle

Now add the following line of code immediately after getContext:

context.rotate(10 * Math.PI / 180);

Jump Start JavaScript152

Notice how the entire context is rotated 10 degrees clockwise. Switch the 10 to a

-10 and observe what happens. Now adjust the -10 to 45. Then, change the 45 to a

90 and observe how it rotates the context entirely off the screen save for a single

thin border. As a final experiment, move context.rotate(90 * Math.PI / 180);

to the very last line. Note that rotate has no effect on shapes and lines that have

already been rendered to the screen. Subsequent drawings will, of course, be rotated

as expected.

Y-axis Numbering
Let’s return to the main project by adding some numbers to the y-axis. Before

moving on to this section, make sure that you have a few items in your list so that

some sensible numbers can be displayed on the graph. Add the following code to

todo.js after context.restore():

 var yScaleFactor = (canvas.height - topMargin) / (maxVal);
 var count = 0;

 for (var yAxisValue = maxVal; yAxisValue >= 0;
➥yAxisValue -= 1) {
 var yCoord = topMargin - bottomMargin +
➥(yScaleFactor * count);

 context.fillText(yAxisValue, 40, yCoord);
 count++;
 }

The first task is to compute the y-axis scale factor. This variable represents the dis-

tance between two numbers on our y-axis. We compute it by taking the canvas

height, subtracting the top margin and then dividing by the maximum value of the

y-axis. The result will give us the appropriate spacing between each number.

Now we need to draw the numbers on the axis. You’ll notice that the for loop starts

at the maximum value and then counts backwards. Recall that under the default

coordinate system, the top-left corner is (0, 0) and the Y-axis descends downwards

as y increases. Therefore, the smallest number on our Y-axis, being 0, will correspond

with the largest y-coordinate. Similarly, the largest number on the Y-axis will cor-

respond with the smallest y-coordinate. If this is hard to grasp, I’d recommend

pasting in the code and rereading the explanation using the graph as a visual aid,

and it should become clearer. Figure 8.3 illustrates this point.

153Canvas

Figure 8.3. Numbered axis

We calculate the y-coordinate by subtracting the bottom margin from the top margin,

then incrementing by yScaleFactor on each iteration of the for loop. We then call

fillText as before to draw the text at the specified y-coordinate, 40 pixels in from

the x-axis. Our graph is starting to take shape!

“Hello World” Canvas-style
Because text elements are merely decorations on the graph, let’s look at another

side example to gain a better understanding of some canvas text API features. Replace

canvas.js from our prior example with the following:

canvas-2.js

 var canvas = document.getElementById("canvas");
 var context = canvas.getContext("2d");
 var message = "Hello world";
 var xCoord = canvas.width / 2;

Jump Start JavaScript154

 var yCoord = canvas.height / 2;

 context.font = "italic 30pt Times New Roman";
 context.fillStyle = "blue";
 context.textAlign = "center";
 context.textBaseline = "middle";
 context.fillText(message, xCoord, yCoord);

context.font can be used to set font properties. Here we specify a style, size, and

font face. Change fillText to strokeText and observe what happens. Fill and

stroke behave similarly for text as they do for shapes. There’s also a function,

measureText, that’s available to measure the length of the rendered text. Add the

following and then refresh your page:

 var metrics = context.measureText(message);
 var width = metrics.width;

 context.fillText(width + 'pixels', xCoord, yCoord + 70);

measureText returns the width of the text based on the provided text and the current

font. There's no function for returning the height of text; the height of text in pixels

is the same as the font size in points. In this case, the font height is 30 pixels.

Grid Lines
Heading back to the main project, let’s draw some horizontal grid lines to make it

easy to see the numerical value on the bar chart. Add the following two lines of

code within our for loop:

 count++;

 context.moveTo(0, yCoord);
 context.lineTo(canvas.width, yCoord);

The moveTo function moves the cursor to the specified coordinate, while the lineTo

function creates a line to the specified coordinate. At this point, nothing has actually

been rendered to the screen. To do this, add these two lines after our for loop:

155Canvas

 for (var yAxisValue = maxVal; scale >= 0; yAxisValue -= 1) {
 ...
 }

 context.lineWidth = 0.1;
 context.stroke();

lineWidth specifies the width of a line in pixels. To make the line visible, we call

the stroke function, which will finally render the paths to the screen. Figure 8.4

Figure 8.4. Grid lines

Rectangles
We will represent our column graph using rectangles, which are the only shapes

that are natively supported. Although it is possible to draw shapes of arbitrary

complexity, only rectangles have a specialized function. Before drawing the rect-

angles, we need to perform a few context manipulations. Following on from con-

text.stroke(), insert:

Jump Start JavaScript156

 var xScaleFactor = canvas.width / (dataValue.length + 1);

 context.translate(0, canvas.height);
 context.scale(xScaleFactor, -1 * yScaleFactor);
 drawRect(context);

First, we create the xScaleFactor. Analogous to the yScaleFactor variable, this

allows us to compute the spacing between columns. Recall that translate changes

the origin of the coordinate system. Here, we’re changing it from the top-left corner

to the bottom-left corner, which will assist in drawing the columns.

scale is a built-in function that takes two parameters, x and y. Anything drawn

subsequent to this function call is made bigger horizontally by x and bigger vertically

by y. For example, if y is 3, everything drawn will be three times as tall. In this case,

by applying a negative number we ensure that our rectangles start from the bottom

of the graph and are drawn upwards. Without this, the rectangles will be drawn in

the default downwards direction.

We can provide a function to draw our rectangles:

 if (canvas && canvas.getContext) {
 ...
 }

 function drawRect(context) {
 for (i = 0; i < dataValue.length; i++) {
 var startX = i+1;
 var startY = bottomMargin / xScaleFactor;
 var endX = 1;
 var endY = dataValue[i];
 var width = 0.5;
 var gradient = context.createLinearGradient(startX,
➥startY, endX, endY);

 gradient.addColorStop(0.0, "#8ED6FF");
 gradient.addColorStop(1.0, "#004CB3");
 context.fillStyle = gradient;
 context.fillRect(startX, startY, width, endY);
 }
 }

157Canvas

To draw the rectangles, we begin by looping through each value in our data set. In

this case, there are only two values: the number of items to do and the number of

items completed. Then we use the built-in createLinearGradient function, which

takes four parameters. The first two parameters represent the x and y coordinates

of the starting point of the gradient, while the latter two represent the gradient’s

endpoint. We’re using this function to provide our column graph with a bit of texture,

instead of a plain single-color column.

The addColorStop function helps define the colors and position of the gradient.

The first parameter is a float between 0.0 and 1.0 representing the start and end

point of a gradient. It is possible to add an arbitrary number of color stops. We've

just added two stops, one at the beginning and one at the end. The second parameter

represents the color. Here we transition from light to dark blue. Remember how

previously we used fillStyle to define a color? Here we use it to define the

gradient. Finally, we call fillRect as we’ve done before, as shown inFigure 8.5.

Figure 8.5. Our chart with drawn rectangles

Jump Start JavaScript158

Arcs
We’ve mentioned how rectangles are the only natively supported shape, but this

does not indicate that shapes such as circles are unavailable. It just means there is

no fillCircle or similar function. Let’s explore how we might draw some non-

rectangular shapes. Replace all of canvas.js with the following:

 var canvas = document.getElementById("canvas");
 var context = canvas.getContext("2d");

 context.beginPath();
 context.arc(50, 50, 50, 0, Math.PI, true);
 context.stroke();

The only unfamiliar aspect of the above is the arc function. This takes five paramet-

ers, where the first two parameters represent the x and y coordinate of the circle’s

center. The third parameter is the radius of the circle, while the fourth and fifth

parameters represent the start and end of the arc in radians. In this case, we start at

0, which is the same as the x-axis. By choosing Math.PI as the end angle, we are

drawing a semicircle (pi radians is 180 degrees). The final task is to determine

whether the circle is drawn clockwise or counterclockwise. This is specified by the

last parameter, which we have set to true, indicating counterclockwise.

Many of the concepts you’ve learned from drawing rectangles can be applied to

arcs. For instance, you can replace stroke with fill. So far, we’ve just been dealing

with toy examples; you should look at some of the breathtaking examples of canvas

in action9.

Bar Chart Labels
Our charts will need some labels to indicate which columns represent tasks done

and tasks to do. Insert the following immediately after we define xScaleFactor,

but before translate:

 var dataName = ["To Do", "Done"];

 context.textBaseline = "bottom";

9 http://rectangleworld.com/blog/archives/462

159Canvas

http://rectangleworld.com/blog/archives/462
http://rectangleworld.com/blog/archives/462

 for (i = 0; i < dataValue.length; i++) {
 var yCoord = canvas.height - dataValue[i] * yScaleFactor;

 context.fillText(dataName[i], xScaleFactor * (i + 1),
➥yCoord);
 }

We specify textBaseLine to position the vertical alignment of the text. If you scroll

down to the bottom of http://www.html5tutorial.info/html5-canvas-text.php10,

you’ll see a visual representation of the different types of alignment.

We then calculate the x- and y-coordinates so that the text will be positioned on

top of the columns. We then render the text using fillText as earlier.

Shadows
For a nice finishing touch to our graph, we’ll add some shadows to our columns.

Add this code just before drawRect(context):

 context.shadowOffsetX = 2;
 context.shadowOffsetY = 2;
 context.shadowBlur = 2;
 context.shadowColor = "rgba(0, 0, 0, 0.5)";

shadowOffsetX and shadowOffsetX specify the horizontal and vertical offset respect-

ively, in pixels, to the shadow. shadowBlur is a parameter that uses an equation to

determine how much the shadow should be blurred. shadowColor is used to indicate

the color. Shadows can be applied to text, shapes, and images. As Figure 8.6 shows,

the drawing of our graph is complete!

10 http://www.html5tutorial.info/html5-canvas-text.php

Jump Start JavaScript160

http://www.html5tutorial.info/html5-canvas-text.php

Figure 8.6. Finished chart

Making Images
Let’s finish this chapter with a bit of fun, and give users the ability to convert their

chart into an image. Perhaps they’ll use it as inspirational wallpaper to get things

done! Add the following to index.html just below the closing <canvas> tag:

 <div class='row'>
 Print Chart
 </div>

Now we just have to add one line of code to the bottom of the renderChart function:

document.getElementById('printChart').href = canvas.toDataURL();

toDataUrl is a built-in function that returns a URL with a representation of the

image. It takes an optional parameter specifying the image type, of which the default

161Canvas

is PNG. If you wish to specify image/jpeg, this function also takes a second para-

meter between 0.0 and 1.0 to indicate the image quality. When you refresh and click

on the button, you’ll be taken to an image that you’ll be able to save.

Summary
Congratulations, you have achieved quite a lot in this chapter. This chapter began

with an introduction to the <canvas> element. Next, you learned how to draw text,

rectangles, and lines using the canvas API. From there, we moved on to more ad-

vanced topics such as canvas rotation and scaling, gradients, and shadow effects.

Finally, you learned how to save a canvas as an image file. Of course, throughout

the entire chapter, you also learned how to create canvas based charts to work with

the book's example project.

Now that you've read through this book, you should have a fairly good grasp of the

JavaScript programming language. Though the scope and size of this book didn't

allow us to dive as deeply into the language as we could have (that's reserved for

books many times the size of this one) you should nonetheless have a good base to

build on. You're guaranteed to use the fundamentals covered in this book in whatever

JavaScript program you end up writing, regardless of whether it's simple or extremely

complex. Remember, this book sped you through JavaScript at a fairly quick pace.

You'll undoubtedly get to a point where you'll want to dive deeper into some of

what we covered here, or other, more advanced topics that we didn't. Stay curious,

ask questions and dig. At the rate the web is evolving, there are practically no limits

to what you can build.

Jump Start JavaScript162

Appendix A: Common Events
Here are some of the most commonly used JavaScript events.

Fired when...SpecificationEvent TypeEvent Name

The loading of a

resource has been

aborted.

DOM L3UIEventabort

An element has

lost focus (does

not bubble).

DOM L3FocusEventblur

A pointing device

button has been

DOM L3MouseEventclick

pressed and

released on an

element.

The right button of

the mouse is

DOM L3MouseEventcontextmenu

clicked (before the

context menu is

displayed).

A pointing device

button is clicked

DOM L3MouseEventdblclick

twice on an

element.

An element or text

selection is being

HTML5DragEventdrag

dragged (every

350ms).

A drag operation is

ending (by

HTML5DragEventdragend

releasing a mouse

button or hitting

the escape key).

Fired when...SpecificationEvent TypeEvent Name

A dragged element

or text selection

HTML5DragEventdragenter

enters a valid drop

target.

A dragged element

or text selection

HTML5DragEventdragleave

leaves a valid drop

target.

An element or text

selection is being

HTML5DragEventdragover

dragged over a

valid drop target

(every 350ms).

The user starts

dragging an

HTML5DragEventdragstart

element or text

selection.

An element is

dropped on a valid

drop target.

HTML5DragEventdrop

A resource failed

to load.

DOM L3UIEventerror

An element has

received focus

(does not bubble).

DOM L3FocusEventfocus

The fragment

identifier of the

HTML5HashChangeEventhashchange

URL has changed

(the part of the

URL after the #).

The value of an

element changes,

HTML5Eventinput

or the content of

Jump Start JavaScript164

Fired when...SpecificationEvent TypeEvent Name

an element with

the attribute

contenteditable

is modified.

A submissable

element has been

HTML5Eventinvalid

checked and

doesn't satisfy its

constraints.

A key is pressed

down.

DOM L3KeyboardEventkeydown

A key is pressed

down that

DOM L3KeyboardEventkeypress

normally produces

a character value.

A key is released.DOM L3KeyboardEventkeyup

A resource and its

dependent

DOM L3UIEventload

resources have

finished loading.

A pointing device

button (usually a

DOM L3MouseEventmousedown

mouse) is pressed

on an element.

A pointing device

is moved onto the

DOM L3MouseEventmouseenter

element that has

the listener

attached.

A pointing device

is moved off the

DOM L3MouseEventmouseleave

element that has

165Appendix A: Common Events

Fired when...SpecificationEvent TypeEvent Name

the listener

attached.

A pointing device

is moved over an

element.

DOM L3MouseEventmousemove

A pointing device

is moved off the

DOM L3MouseEventmouseout

element that has

the listener

attached or off one

of its children.

A pointing device

is moved onto the

DOM L3MouseEventmouseover

element that has

the listener

attached or onto

one of its children.

A pointing device

button is released

over an element.

DOM L3MouseEventmouseup

The browser has

lost access to the

network.

HTML5 offlineEventoffline

The browser has

gained access to

HTML5 offlineEventonline

the network (but

particular websites

might be

unreachable).

A session history

entry is being

traversed from.

HTML5PageTransitionEventpagehide

Jump Start JavaScript166

Fired when...SpecificationEvent TypeEvent Name

A session history

entry is being

traversed to.

HTML5PageTransitionEventpageshow

A session history

entry is being

HTML5PopStateEventpopstate

navigated to (in

certain cases).

A form is reset.DOM L2, HTML5HTMLEvents

(DOM L2) or Event

(HTML5)

reset

The document

view has been

resized.

DOM L3UIEventresize

The document

view or an element

has been scrolled.

DOM L3UIEventscroll

Some text is being

selected.

DOM L3UIEventselect

A contextmenu

event was fired

HTML5MouseEventshow

on/bubbled to an

element that has a

contextmenu

attribute.

A form is

submitted.

DOM L2, HTML5HTMLEvents

(DOM L2) or Event

(HTML5)

submit

The document or

a dependent

DOM L3UIEventunload

resource is being

unloaded

167Appendix A: Common Events

	Jump Start JavaScript
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Do you want to keep learning?

	Setting Up
	Console
	Chrome
	Firefox
	Internet Explorer
	Safari

	Using JavaScript in HTML Files
	In the HTML File
	In a Separate File
	Location of the <script> Tag

	Summary

	Variables
	First, a Quick Comment
	Declarations
	Types
	Number
	String
	Boolean
	Undefined
	Null
	Object

	Operations
	The Dangers of Loose Typing
	Type Conversion (aka Type Coercion)
	Comparison Operators
	Equal (==)
	Not Equal (!=)
	Strict Equal (===)
	Strict Not Equal (!==)
	Greater than (>)
	Greater than or Equal to (>=)
	Less than (<)
	Less than or Equal to (<=)

	Logic Flow
	Project
	Summary

	Arrays
	Creating an Array
	Adding to an Array
	Reading from an Array
	Nested Arrays
	What can you do with arrays?
	Mutator Methods
	pop
	push
	reverse
	shift
	sort
	splice
	unshift

	Accessor Methods
	concat
	join
	slice
	toString
	indexOf
	lastIndexOf

	Iteration Methods
	forEach (JavaScript 1.6)
	map (JavaScript 1.6)
	every (JavaScript 1.6)
	some (JavaScript 1.6)
	filter (JavaScript 1.6)
	reduce and reduceRight (JavaScript 1.8)

	Project
	Summary

	Objects and Functions
	Objects
	Creating an Object
	Adding to an Object
	Reading from an Object
	Nested Objects
	Namespacing through Nested Objects

	Prototype Chain
	Looping over an Object

	Functions
	Scope
	Hoisting
	Declaration
	Arguments
	Object-oriented Programming with Functions
	this
	Simple Function
	In a Constructor
	Inside an Object Literal
	Inside an Event Handler
	call and apply
	bind

	Properties
	constructor
	length

	Methods
	apply
	call
	bind
	toString

	Project
	Summary

	Loops and Jumps
	Loops
	The while Loop
	The do ... while Loop
	The for Loop
	The for ... in Loop

	Jumps
	break
	continue
	Labeled Statements
	return

	Exception Handling
	throw
	try

	An Empirical Study
	Loop Alternatives
	On Style
	Higher Order Functions
	Recursion

	Project
	Counting Tasks
	Sorting

	Summary

	The Document Object Model
	What is the DOM?
	The Need for Backward Compatibility
	The document Object
	DOM Level 0 or Legacy DOM

	DOM Level 1
	Creating DOM Elements and Attributes
	insertBefore
	getElementsByTagName
	getAttribute
	removeAttribute
	setAttributeNode
	removeAttributeNode

	DOM Level 2
	getElementById
	hasAttributes
	hasAttribute

	DOM Level 3
	DOM Level 4
	getElementsByClassName
	Data Attributes

	The style Attribute
	Project
	Summary

	Events
	DOM Events
	Event Propagation
	Event Handlers
	HTML Attribute
	addEventListener
	DOM Element Properties
	More Examples

	Event Context
	Custom Events
	Project
	Adding Tasks
	Sorting
	Task Modification

	Summary

	Canvas
	What is Canvas?
	Preparing the Data
	Setting up the Canvas
	The Most Basic Drawing
	Text and the Coordinate System
	A Further Rotation Example
	Y-axis Numbering
	“Hello World” Canvas-style
	Grid Lines
	Rectangles
	Arcs
	Bar Chart Labels
	Shadows
	Making Images
	Summary

	Appendix A: Common Events
	

