
SamsTeachYourself

JavaScript and Ajax

Quick Start Guide

OVideoLearning
StarterKit

00_0672330377_FM.qxd 4/3/09 8:55 AM Page i

00_0672330377_FM.qxd 4/3/09 8:55 AM Page ii

Contents

Before You Begin

About JavaScript and Ajax 1

About the Video Lessons 2

Who This Video Learning Kit is For 3

What’s on the DVD 3

How the Course is Organized 4

1: Using this Video Learning Kit

How to Watch the Videos 8

How to Use the Learning Labs and Take the Quizzes 9

Setting up Your Learning Environment 9

2: Web Basics Refresher

Workings of the Web 11

A Short History of the Internet 12

The World Wide Web 12

Introducing HTTP 17

The HTTP Request and Response 17

HTML Forms 20

Writing Web Pages in HTML 23

Introducing HTML 23

Elements of an HTML Page 25

A More Advanced HTML Page 30

Some Useful HTML Tags 32

Adding Your Own Style 32

Defining the Rules 33

Add a Little class 34

Applying Styles 36

Formatting Text with Styles 38

Adding Lines 42

Anatomy of an Ajax Application 44

The Need for Ajax 44

Introducing Ajax 46

The Constituent Parts of Ajax 48

Putting It All Together 50

00_0672330377_FM.qxd 4/3/09 8:55 AM Page iii

Sams Teach Yourself JavaScript and Ajax: Video Learning Starter Kit

Copyright © 2009 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No
patent liability is assumed with respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions.
Nor is any liability assumed for damages resulting from the use of the information contained herein.

International Standard Book Number:

ISBN-13: 978-0-672-33037-7
ISBN-10: 0-672-33037-7

Printed in the United States of America

First Printing: April 2009

12 11 10 09 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information contained in
this book.

Reader Services
Visit our website and register this product at informit.com/register for convenient access to any updates, downloads
or errata that may become available.

00_0672330377_FM.qxd 4/3/09 8:55 AM Page iv

1

Before You Begin

This Sams Teach Yourself Video Learning Starter Kit is about the two web development
technologies that provide the interactivity and visual effects at almost all current web
sites and applications today.

JavaScript and Ajax are at work behind the scenes and on the homepages of
everything from the simplest blog to huge sites like Facebook, Yahoo, and Google,
with millions of subscribers and users worldwide.

While the videos in this course most likely won’t show you how to develop the next
Google Gmail or Yahoo homepage, they will give even non-programmers a solid
understanding of how JavaScript and Ajax work and how you too can easily learn
the basics of using JavaScript and Ajax, and begin to add interactivity and dynamic
content to your own web site, large or small.

Before you get started watching the videos, however, we suggest that you first take a
few minutes to review the material in this booklet. The information here will help you
make sure you have all the equipment that’s needed to watch the videos and do
the exercises, and it will help you make best use of all the unique features of these
courses as well as the software that’s also on the DVD.

About JavaScript and Ajax
Over the last decade or so the World Wide Web has grown in scope from being a
relatively simple information repository, to become the first stop for many people
when seeking entertainment, education, news or business resources.

Web sites themselves need no longer be limited to a number of static pages
containing text and perhaps simple images; the tools now available allow the
development of highly interactive and engaging pages involving animations, visual
effects, context-sensitive content, embedded productivity tools, and much more.

The list of technologies available for producing such pages is broad. However, those
based on open standards have become, and remain, highly popular due to their
typically low (often zero) entry cost, and to the huge resource of user-contributed
scripts, tutorials, tools and other resources for these tools and applications available
via the Internet and elsewhere.

01_0672330377_Intro.qxd 4/3/09 8:55 AM Page 1

Before You Begin

2

In this video course, we give a detailed account of how to program fluid,
interactive web sites using server- and client-side coding techniques and
tools, as well as combining these to produce a slick, desktop-application-like
user experience using Ajax.

The programming languages used in this book include the ubiquitous
JavaScript (for client-side programming), and the immensely popular
open-source PHP language (for server-side scripting, and available with
the majority of web hosting packages). The nuts and bolts of Ajax program-
ming are described in detail, as well as the use of several advanced
open-source frameworks that contain ready-written code for quickly
building state-of-the-art interactive sites.

About The Video Lessons
Sams Teach Yourself Video Learning courses are designed not only for begin-
ners, but also for busy, time-crunched people who aren’t able to devote the
large blocks of time often required to take a full class on a subject, or to read
some thick tome that covers everything in more detail than you’ll ever need.

Each lesson in this course takes no more that 10 minutes to complete three
basic steps:

1. Watch the video tutorial.

2. Try the hands-on examples in the lab section.

3. Take a short quiz to test yourself before moving on.

The short video tutorials clearly explain key concepts, terms, and techniques,
and are rich in diagrams and clear, real-world examples. Plus, you can stop,
start, pause or replay any part of the video you want, as often as you want,
until you feel you really understand it.

After you’ve watched the video tutorial, you then you get to try it yourself
and put what you’ve learned to work in a unique hands-on learning lab
that helps you begin to develop real live programs that you can use on
your own web site.

The software that you need to complete the exercises is included on the
DVD. And as you continue to watch the lesson on your computer, you’re
guided step by step through the process of creating your own usable code.

Once you’re done trying things out in the learning lab each lesson ends
with a short, easy quiz so you can test what you’ve learned before you go
on to the next lesson.

01_0672330377_Intro.qxd 4/3/09 8:55 AM Page 2

What’s on the DVD

3

Who This Video Learning Kit is For
This course is aimed primarily at web developers seeking to build better
interfaces for the users of their web applications and programmers from
desktop environments looking to transfer their applications to the Internet.

It also proves useful to web designers eager to learn how the latest
techniques can offer new outlets for their creativity.

Although the nature of JavaScript, Ajax, and PHP applications means that
they require some programming, all of the required technologies are
explained from first principles within the book, so even those with little or no
programming experience should be able to follow the lessons without a
great deal of difficulty.

This course does not teach HTML. And although a thorough knowledge of
HTML is not necessarily a prerequisite, the course does assumes a basic
understanding of how web pages are constructed, where they’re stored and
maintained, and how a user interacts with them through a web browser.

What’s on the DVD
The DVD for Sams Teach Yourself JavaScript and Ajax Video Learning has
several components—all accessible by either a Windows or a Mac computer:

■ 25 ten-minute video lessons—each made up of a short video
tutorial, a hands-on learning lab for trying things out, and a short
self-assessment quiz at the end.

■ Software for the learning labs—an easy-to-install package to set up
a PHP- and MySQL-enabled Apache server on your computer, a script
editing program, three JavaScript and Ajax libraries, and source code
that you can cut-and-paste or customize in your own scripts.

■ The complete text of the lessons in PDF—All the video lessons in
this course are based on chapters from the print book Sams Teach
Yourself Ajax, JavaScript and PHP All in One. So to help you out if
you want to re-read a particular lesson or quickly look up a term or
technique, we’ve included the full text of the book in easily searchable
PDF format.

01_0672330377_Intro.qxd 4/3/09 8:55 AM Page 3

Before You Begin

4

How the Course Is Organized
Sams Teach Yourself JavaScript and Ajax Video Learning is organized into
five parts, with each part made up of three to six lessons, each designed
to be completed in 10 minutes or less.

Part I: Web Basics Refresher
The lessons in Part I provide a refresher on the fundamental building
blocks of Web development:

■ Lesson 1: Workings of the Web. Introduces you to what the
World Wide Web is and its key HTTP protocol.

■ Lesson 2: Writing Pages in HTML and CSS. Provides you with a
sound foundation in HTML and CSS for the Ajax applications in
later lessons.

■ Lesson 3: Anatomy of an Ajax Application. Examines the
individual building blocks of Ajax and how they fit together.

Part II: Web Scripting with JavaScript
The lessons in Part II covers the basics of adding scripting to web pages
using JavaScript:

■ Lesson 4: Creating Simple Scripts in JavaScript. Shows you
how to create a simple script, edit it, and test it using a web
browser.

■ Lesson 5: Working with the DOM. Introduces one of the most
important tools you’ll use with JavaScript: the Document Object
Model (DOM).

■ Lesson 6: Variables, Strings, and Arrays. Explains three tools for
storing data in JavaScript: variables, which store numbers or text;
strings, which are special variables for working with text; and
arrays, which are multiple variables you can refer to by number.

■ Lesson 7: Using Functions and Objects. Covers two more key
JavaScript concepts you’ll use later on with Ajax: functions, which
enable you to group any number of statements into a block, and
objects, which enable you to group data.

■ Lesson 8: Conditions and Loops – Controlling Flow. Examines
two ways to control program flow in JavaScript: conditions, which
allow a choice of difference options depending on a value, and
loops, which allow repetitive statements.

01_0672330377_Intro.qxd 4/3/09 8:55 AM Page 4

How the Course Is Organized

5

■ Lesson 9: Using Built-In Functions and Third-Party Libraries.
Covers the use of some key objects in JavaScript, including Math and
Date, as well as third-party libraries

Part III: Introducing Ajax
The lessons in Part III introduce Ajax technologies for extending
JavaScript’s capabilities:

■ Lesson 10: The XMLHTTPRequest Object. Examines the object at the
heart of every Ajax application — the XMLHTTPRequest object.

■ Lesson 11: Talking with the Server. Shows how to send requests to,
and receive data from, the server.

■ Lesson 12: Using the Returned Data. Examines how to process
information returned from the server in response to an Ajax request.

■ Lesson 13: Our First Ajax Application. Shows how to construct a
complete and working Ajax application.

Part IV: Server-Side Scripting with PHP
The lessons in Part IV deal with using PHP to communicate with a web
server and extend Ajax applications:

■ Lesson 14: Getting to Know PHP. Tells you what PHP is all about
and what it’s able to do.

■ Lesson 15: Variables. Examines how to assign values to variables in
PHP and how to use them in some simple expressions.

■ Lesson 16: Flow Control. Looks at how to control the flow of a PHP
script using conditional statements and loops

■ Lesson 17: Functions. Explains how frequently used sections of
code can be turned into reusable functions.

■ Lesson 18: Using Classes. Covers the basics of object-oriented PHP

Part V: Advanced Ajax Programming
Part IV looks at some advanced Ajax techniques for handling data and at
building a library of Ajax scripts

■ Lesson 19: Returning Data as Text. Shows how to use the
responseText property to add functionality to Ajax applications.

■ Lesson 20: Asynchronous HTML and HTTP (AHAH). Explains how
to build Ajax-style applications without using XML.

01_0672330377_Intro.qxd 4/3/09 8:55 AM Page 5

Before You Begin

6

■ Lesson 21: Returning Data as XML. Shows how to use XML data
returned from the server via the responseXML property of the
XMLHTTPRequest object

■ Lesson 22: Implementing Web Services with REST and SOAP.
Discusses the basics of web services and how to implement them
using the REST and SOAP protocols.

■ Lesson 23: Building an Ajax Library. Explains how to build a
small library of scripts that you can call from your applications.

■ Lesson 24: Avoiding Ajax Gotchas. Discusses some of the
common Ajax mistakes and how to avoid them.

01_0672330377_Intro.qxd 4/3/09 8:55 AM Page 6

7

Using this Video Learning Kit

The Sams Teach Yourself JavaScript and Ajax Video Learning Kit can be used in a variety
of different ways, depending on what your learning needs and style might be.

Watching the video lessons alone would provide a good, quick overview of the
JavaScript and Ajax and the process of developing simple Ajax applications. And the
quizzes at the end of each lesson provide an easy way to quickly test yourself before
you go on to the next lesson.

Both the videos and the quizzes require nothing more than a DVD drive on your
computer and a web browser with the Flash plugin installed.

For the best, most complete experience, however, nothing beats learning by doing.
The Learning Lab exercises in each lesson are designed to give the learner hands-on
experience in a real, live (not simulated) web server environment.

All that’s required for the Learning Lab exercises is either a web hosting service that
includes access to a web server and PHP, or taking the time before you begin the
lessons to set up a web server learning environment on your Windows PC or Mac
using the software included on the DVD.

1

02_0672330377_ch1.qxd 4/3/09 8:55 AM Page 7

1: Using this Video Learning Kit

8

How to Watch the Videos
The requirements for watching the video lessons in this kit are fairly
straightforward:

■ Any kind of a Windows, Mac, or Linux PC with a DVD drive that’s
capable of reading data DVDs.

■ A web browser, such as Microsoft Internet Explorer, Safari, or
Mozilla Firefox.

■ The Adobe Flash Player plugin, which allows you to view Flash
videos in your browser. If you can watch videos on YouTube, you
should be all set.

Once you’re sure you’ve got everything, you’re ready to get started:

1. Insert the DVD from this package into your DVD drive on your
computer.

2. If the DVD main interface does not automatically start up, navi-
gate to the DVD folder on your computer and double-click on the
icon or file named Start (start.exe on Windows or start.app on
Mac OS X).

NOTE: Make sure you’ve
put the DVD in your com-
puter’s DVD drive. The DVD
will not run on a comput-
er’s CD drive. Nor will it
work in a DVD player
designed for plugging into
a TV for watching movies.

FIGURE 1.1 The DVD’s main interface.

02_0672330377_ch1.qxd 4/3/09 8:55 AM Page 8

Setting Up Your Learning Environment

9

3. To watch the videos, choose the lesson you want to start with
from the list of lessons on the left side of the window (Figure 1.1),
and then click on the play button in the player window on the
right side.

How to Use the Learning Labs
and Take the Quizzes
After each video in complete you can optionally work through the
Learning Lab exercises and take a short (not too hard) quiz to help assess
what you’ve learned in that lesson.

The Learning Lab exercises in this course require you to set up a web
server learning environment either at a web hosting service or on your
own computer (see the next section for detailed installation instructions).

Once your learning environment is set up, the instructions for each
exercise walk you through the process one step at a time.

It’s usually recommended that you take the time to type in the needed
code for each exercise—it’s generally thought that typing it in yourself
helps you become more familiar with the details of how the code is
structured and used. But if you’re just a terrible typist or if you want to
speed things up a little, the complete code for the exercise is on the
second tab in the browser windows, ready for cutting and pasting into
your code editor.

The quizzes after the exercises are relatively short and painless. After you
make your choice, the program will tell you immediately if you’re correct
or wrong. Your answers are not stored or compiled, so you can take the
quizzes as often as you like, and guessing won’t count against you.

Setting up Your Learning
Environment
As mentioned above, to complete the exercises in the lessons you’ll
need to have access to a web server environment running either on your
own computer at home or on a web hosting service where you have
access to the PHP scripting language and you can create and administer
MySQL databases.

02_0672330377_ch1.qxd 4/3/09 8:55 AM Page 9

1: Using this Video Learning Kit

10

Many web hosting services offer PHP and MySQL access for customers
who need them. If you’re uncertain about this, inquire with your service
whether they offer PHP and MySQL or not, and if so how to use them on
your service.

However, since you’re only going to be trying out simple exercises, and
not presumably making your work available to the entire World Wide
Web for now, a better solution for your learning environment might be
to install the needed software on your computer using the DVD in this
package.You don’t even need to be connected to the Internet to do this.

The accompanying DVD contains a complete software toolkit with
everything you’ll need to complete the course’s examples:

■ XAMPP—a complete open source compilation you can use to
easily install the Apache web server, PHP language and MySQL
database manager on your computer. Versions are provided for
Mac and Windows environments.

■ jEdit—a Java-based programmer’s editor that’s perfect for
creating or modifying code. The CD includes files for Java, Mac,
or Windows.

■ Prototype, Scriptaculous, Rico, and XOAD—popular JavaScript
libraries for creating Ajax applications and effects

You can install this software by clicking on the “Install Software and
Support” link on the opening screen of the DVD’s main interface (Figure
1.1), or by navigating to the DVD in your computer’s file browser and
running the file named Software (Software.exe in Windows or
Software.app in Mac OS X).

Once you’ve launched the software installer just follow the instructions
on the screen to install either the complete packages or parts of it.

02_0672330377_ch1.qxd 4/3/09 8:55 AM Page 10

11

Web Basics Refresher

WHAT’S COVERED:
■ Workings of the Web

■ Writing Web Pages in HTML

■ Anatomy of an Ajax Application

This chapter provides a quick, high-level refresher on the inner workings of the web,
the mechanics of how web pages are constructed with HTML and CSS, and on the
additional features that JavaScript and Ajax can bring to your web pages.

The information contained in this chapter is a prerequisite for getting the most out of
the video lessons that make up the Sams Teach Yourself JavaScript and Ajax Video
Learning course. If you have a solid background in HTML and web programming
already, you can probably skip or just skim this material. If not, then read on.

Workings of the Web
We have a lot of ground to cover, so let’s get to it. We’ll begin by reviewing what the
World Wide Web is and where it came from. Afterward we’ll take a look at some of the
major components that make it work, especially the HTTP protocol used to request
and deliver web pages.

2

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 11

2: Web Basics Refresher

12

A Short History of the Internet
In the late 1950s, the U.S. government formed the Advanced Research
Projects Agency (ARPA). This was largely a response to the Russian
success in launching the Sputnik satellite and employed some of the
country’s top scientific intellects in research work with U.S. military
applications.

During the 1960s, the agency created a decentralized computer
network known as ARPAnet. This embryonic network initially linked
four computers located at the University of California at Los Angeles,
Stanford Research Institute, the University of California at Santa Barbara,
and the University of Utah, with more nodes added in the early 1970s.

The network had initially been designed using the then-new technology
of packet switching and was intended as a communication system that
would remain functional even if some nodes should be destroyed by a
nuclear attack.

Email was implemented in 1972, closely followed by the telnet protocol
for logging on to remote computers and the File Transfer Protocol (FTP),
enabling file transfer between computers.

This developing network was enhanced further in subsequent years
with improvements to many facets of its protocols and tools. However, it
was not until 1989 when Tim Berners-Lee and his colleagues at the
European particle physics laboratory CERN (Conseil Europeen pour le
Recherche Nucleaire) proposed the concept of linking documents with
hypertext that the now familiar World Wide Web began to take shape.
The year 1993 saw the introduction of Mosaic, the first graphical web
browser and forerunner of the famous Netscape Navigator.

The use of hypertext pages and hyperlinks helped to define the
page-based interface model that we still regard as the norm for web
applications today.

The World Wide Web
The World Wide Web operates using a client/server networking princi-
ple. When you enter the URL (the web address) of a web page into your
browser and click on “Go”, you ask the browser to make an HTTP request
of the particular computer having that address. On receiving this
request, that computer returns (“serves”) the required page to you in a

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 12

13

form that your browser can interpret and display. Figure 2.1 illustrates
this relationship. In the case of the Internet, of course, the server and
client computers may be located anywhere in the world.

The World Wide Web

FIGURE 2.1 How web servers and clients (browsers) interact.

Later we’ll discuss the nitty-gritty of HTTP requests in more detail. For
now, suffice to say that your HTTP request contains several pieces of
information needed so that your page may be correctly identified and
served to you, including the following:

■ The domain at which the page is stored (for example,
mydomain.com)

■ The name of the page (This is the name of a file in the web
server’s file system—for example, mypage.html)

■ The names and values of any parameters that you want to send
with your request

What Is a Web Page?
Anyone with some experience using the World Wide Web will be familiar
with the term web page. The traditional user interface for websites
involves the visitor navigating among a series of connected pages each
containing text, images, and so forth, much like the pages of a magazine.

Generally speaking, each web page is actually a separate file on the
server. The collection of individual pages constituting a website is
managed by a program called a web server.

Client

Client

Client

Client

Server

HTTP Request

HTML Response

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 13

2: Web Basics Refresher

14

Web Servers
A web server is a program that interprets HTTP requests and delivers
the appropriate web page in a form that your browser can understand.
Many examples are available, most running under either UNIX/Linux
operating systems or under some version of Microsoft Windows.

Perhaps the best-known server application is the Apache Web Server
from the Apache Software Foundation (http://www.apache.org), an
open source project used to serve millions of websites around the
world (see Figure 2.2).

FIGURE 2.2 The Apache Software Foundation home page at
http://www.apache.org/ displayed in Internet Explorer.

Another example is Microsoft’s IIS (Internet Information Services),
often used on host computers running the Microsoft Windows
operating system.

Server-Side Programming
Server-side programs, scripts, or languages, refer to programs that run
on the server computer. Many languages and tools are available for
server-side programming, including PHP, Java, and ASP (the latter being
available only on servers running the Microsoft Windows operating

CAUTION: The term web
server is often used in
popular speech to refer to
both the web server pro-
gram—such as Apache—
and the computer on
which it runs.

NOTE: Not all Windows-
based web hosts use IIS.
Various other web servers
are available for Windows,
including a version of the
popular Apache Web Server.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 14

The World Wide Web

15

system). Sophisticated server setups often also include databases of
information that can be addressed by server-side scripts.

The purposes of such scripts are many and various. In general, however,
they all are designed to preprocess a web page before it is returned to
you. By this we mean that some or all of the page content will have
been modified to suit the context of your request—perhaps to display
train times to a particular destination and on a specific date, or to show
only those products from a catalog that match your stated hobbies and
interests.

In this way server-side scripting allows web pages to be served with rich
and varied content that would be beyond the scope of any design using
only static pages—that is, pages with fixed content.

Web Browsers
A web browser is a program on a web surfer’s computer that is used to
interpret and display web pages. The first graphical web browser,
Mosaic, eventually developed into the famous range of browsers pro-
duced by Netscape.

The Netscape series of browsers, once the most successful available,
were eventually joined by Microsoft’s Internet Explorer offering, which
subsequently went on to dominate the market.

Recent competitive efforts, though, have introduced a wide range of
competing browser products including Opera, Safari, Konqueror, and
especially Mozilla’s Firefox, an open source web browser that has
recently gained an enthusiastic following (see Figure 2.3).

Browsers are readily available for many computer operating systems,
including the various versions of Microsoft Windows, UNIX/Linux, and

NOTE: Server-side pro-
gramming in this course is
carried out using the popu-
lar PHP scripting language,
which is flexible, is easy to
use, and can be run on
nearly all servers. Ajax, how-
ever, can function equally
well with any server-side
scripting language.

NOTE: By graphical web browser we mean one that can display not
only the text elements of an HTML document but also images and
colors. Typically, such browsers have a point-and-click interface using a
mouse or similar pointing device.

There also exist text-based web browsers, the best known of which
is Lynx (http://lynx.browser.org/), which display HTML pages on
character-based displays such as terminals, terminal emulators, and
operating systems with command-line interfaces such as DOS.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 15

2: Web Basics Refresher

16

Macintosh, as well as for other computing devices ranging from mobile
telephones to PDAs (Personal Digital Assistants) and pocket computers.

FIGURE 2.3 The Firefox browser from Mozilla.org browsing the Firefox
Project home page.

Client-Side Programming
We have already discussed how server scripts can improve your web
experience by offering pages that contain rich and varied content
created at the server and inserted into the page before it is sent to you.

Client-side programming, on the other hand, happens not at the server
but right inside the user’s browser after the page has been received.
Such scripts allow you to carry out many tasks relating to the data in the
received page, including performing calculations, changing display
colors and styles, checking the validity of user input, and much more.

Nearly all browsers support some version or other of a client-side
scripting language called JavaScript, which is an integral part of Ajax
and is the language we’ll be using here for client-side programming.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 16

The HTTP Request and Response

17

DNS—The Domain Name Service
Every computer connected to the Internet has a unique numerical
address (called an IP address) assigned to it. However, when you
want to view a particular website in your browser, you don’t generally
want to type in a series of numbers—you want to use the domain
name of the site in question. After all, it’s much easier to remember
www.somedomain.com than something like 198.105.232.4.

When you request a web page by its domain name, your Internet
service provider submits that domain name to a DNS server, which tries
to look up the database entry associated with the name and obtain
the corresponding IP address. If it’s successful, you are connected to the
site; otherwise, you receive an error.

The many DNS servers around the Internet are connected together
into a network that constantly updates itself as changes are made.
When DNS information for a website changes, the revised address
information is propagated throughout the DNS servers of the entire
Internet, typically within about 24 hours.

Introducing HTTP
Various protocols are used for communication over the World Wide
Web, perhaps the most important being HTTP, the protocol that is also
fundamental to Ajax applications.

When you request a web page by typing its address into your web
browser, that request is sent using HTTP. The browser is an HTTP client,
and the web page server is (unsurprisingly) an HTTP server.

In essence, HTTP defines a set of rules regarding how messages and
other data should be formatted and exchanged between servers
and browsers.

The HTTP Request and Response
The HTTP protocol can be likened to a conversation based on a series of
questions and answers, which we refer to respectively as HTTP requests
and HTTP responses.

The contents of HTTP requests and responses are easy to read and
understand, being near to plain English in their syntax.

TIP: For a detailed
account of HTTP, Sams
Publishing offers the HTTP
Developer’s Handbook by
Chris Shiflett.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 17

2: Web Basics Refresher

18

This section examines the structure of these requests and responses,
along with a few examples of the sorts of data they may contain.

The HTTP Request
After opening a connection to the intended server, the HTTP client
transmits a request in the following format:

■ An opening line

■ Optionally, a number of header lines

■ A blank line

■ Optionally, a message body

The opening line is generally split into three parts; the name of the
method, the path to the required server resource, and the HTTP version
being used. A typical opening line might read:

GET /sams/testpage.html HTTP/1.0

In this line we are telling the server that we are sending an HTTP
request of type GET (explained more fully in the next section), we are
sending this using HTTP version 1.0, and the server resource we require
(including its local path) is

/sams/testpage.html.

Header lines are used to send information about the request, or about
the data being sent in the message body. One parameter and value pair
is sent per line, the parameter and value being separated by a colon.
Here’s an example:

User-Agent: [name of program sending request]

For instance, Internet Explorer v5.5 offers something like the following:

User-agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

A further example of a common request header is the Accept: header,
which states what sort(s) of information will be found acceptable as a
response from the server:

Accept: text/plain, text/html

By issuing the header in the preceding example, the request is inform-
ing the server that the sending application can accept either plain text
or HTML responses (that is, it is not equipped to deal with, say, an audio
or video file).

NOTE: In this example
the server resource we
seek is on our own server,
so we have quoted a
relative path. It could of
course be on another
server elsewhere, in which
case the server resource
would include the full URL.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 18

The HTTP Request and Response

19

The HTTP Response
In answer to such a request, the server typically issues an HTTP
response, the first line of which is often referred to as the status line. In
that line the server echoes the HTTP version and gives a response status
code (which is a three-digit integer) and a short message known as a
reason phrase. Here’s an example HTTP response:

HTTP/1.0 200 OK

The response status code and reason phrase are essentially intended as
machine-and human-readable versions of the same message, though
the reason phrase may actually vary a little from server to server. Table
2.1 lists some examples of common status codes and reason phrases.
The first digit of the status code usually gives some clue about the
nature of the message:

■ 1**—Information

■ 2**—Success

■ 3**—Redirected

■ 4**—Client error

■ 5**—Server error

TABLE 2.1 Some Commonly Encountered HTTP Response
Status Codes

STATUS CODE EXPLANATION

200 - OK The request succeeded.

204 - No Content The document contains no data.

301 - Moved Permanently The resource has permanently moved
to a different URI.

401 - Not Authorized The request needs user authentication.

403 - Forbidden The server has refused to fulfill the
request.

404 - Not Found The requested resource does not exist
on the server.

408 - Request Timeout The client failed to send a request in the
time allowed by the server.

500 - Server Error Due to a malfunctioning script, server
configuration error or similar.

NOTE: HTTP request
methods include POST, GET,
PUT, DELETE, and HEAD. By
far the most interesting
for the purposes here are
the GET and POST requests.
The PUT, DELETE, and
HEAD requests are not
covered here.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 19

2: Web Basics Refresher

20

The response may also contain header lines each containing a header
and value pair similar to those of the HTTP request but generally con-
taining information about the server and/or the resource being returned:

Server: Apache/1.3.22

Last-Modified: Fri, 24 Dec 1999 13:33:59 GMT

HTML Forms
Web pages often contain fields where you can enter information.
Examples include select boxes, check boxes, and fields where you can
type information. Table 2.2 lists some popular HTML form tags.

TABLE 2.2 Some Common HTML Form Tags

TAG DESCRIPTION

<form>...</form> Container for the entire form

<input /> Data entry element; includes text,
password, check box and radio button
fields, and submit and reset buttons

<select>...</select> Drop-down select box

<option>...</option> Selectable option within select box

<textarea>...</textarea> Text entry field with multiple rows

After you have completed the form you are usually invited to submit it,
using an appropriately labeled button or other page element.

At this point, the HTML form constructs and sends an HTTP request
from the user-entered data. The form can use either the GET or POST
request type, as specified in the method attribute of the <form> tag.

GET and POST Requests
Occasionally you may hear it said that the difference between GET and
POST requests is that GET requests are just for GETting (that is, retrieving)
data, whereas POST requests can have many uses, such as uploading
data, sending mail, and so on.

TIP: A detailed list of status codes is maintained by the World Wide
Web Consortium, W3C, and is available at http://www.w3.org/
Protocols/rfc2616/ rfc2616-sec10.html.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 20

HTML Forms

21

Although there may be some merit in this rule of thumb, it’s instructive to
consider the differences between these two HTTP requests in terms of how
they are constructed.

A GET request encodes the message it sends into a query string, which is
appended to the URL of the server resource. A POST request, on the other
hand, sends its message in the message body of the request. What actually
happens at this point is that the entered data is encoded and sent, via an
HTTP request, to the URL declared in the action attribute of the form,
where the submitted data will be processed in some way.

Whether the HTTP request is of type GET or POST and the URL to which
the form is sent are both determined in the HTML markup of the form.
Let’s look at the HTML code of a typical form:

<form action=”http://www.sometargetdomain.com/somepage.htm” method=”post”>

Your Surname: <input type=”text” size=”50” name=”surname” />

<input type=”submit” value=”Send” />

</form>

This snippet of code, when embedded in a web page, produces the
simple form shown in Figure 2.4.

FIGURE 2.4 A simple HTML form.

Let’s take a look at the code, line by line. First, we begin the form by
using the <form> tag, and in this example we give the tag two attribut-
es. The action attribute determines the URL to which the submitted

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 21

2: Web Basics Refresher

22

form will be sent. This may be to another page on the same server and
described by a relative path, or to a remote domain, as in the code
behind the form in Figure 2.4.

Next we find the attribute method, which determines whether we want
the data to be submitted with a GET or a POST request.

Now suppose that we completed the form by entering the value
Ballard into the surname field. On submitting the form by clicking the
Send button, we are taken to
http://www.sometargetdomain.com/somepage.htm, where the submit-
ted data will be processed—perhaps adding the surname to a database,
for example.

The variable surname (the name attribute given to the Your Surname
input field) and its value (the data we entered in that field) will also have
been sent to this destination page, encoded into the body of the POST
request and invisible to users.

Now suppose that the first line of the form code reads as follows:

<form action=”http://www.sometargetdomain.com/somepage.htm”

method=”get”>

On using the form, we would still be taken to the same destination, and
the same variable and its value would also be transmitted. This time,
however, the form would construct and send a GET request containing
the data from the form. Looking at the address bar of the browser, after
successfully submitting the form, we would find that it now contains:

http://www.example.com/page.htm?surname=Ballard

Here we can see how the parameter and its value have been appended
to the URL. If the form had contained further input fields, the values
entered in those fields would also have been appended to the URL as
parameter=value pairs, with each pair separated by an & character.
Here’s an example in which we assume that the form has a further text
input field called firstname:

http://www.example.com/page.htm?surname=Ballard&firstname=Phil

Some characters, such as spaces and various punctuation marks, are not
allowed to be transmitted in their original form. The HTML form
encodes these characters into a form that can be transmitted correctly.
An equivalent process decodes these values at the receiving page
before processing them, thus making the encoding/decoding operation
essentially invisible to the user. We can, however, see what this encoding
looks like by making a GET request and examining the URL constructed
in doing so.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 22

Introducing HTML

23

Suppose that instead of the surname field in our form we have a full-
name field that asks for the full name of the user and encodes that infor-
mation into a GET request. Then, after submitting the form, we might see
the following URL in the browser:

http://www.example.com/page.htm?fullname=Phil+Ballard

Here the space in the name has been replaced by the + character; the
decoding process at the receiving end removes this character and
replaces the space.

The XMLHTTPRequest object at the heart of all Ajax applications uses
HTTP to make requests of the server and receive responses. The content
of these HTTP requests are essentially identical to those generated
when an HTML form is submitted.

Writing Web Pages in HTML
In this section we introduce HTML, the markup language behind virtual-
ly every page of the World Wide Web. A sound knowledge of HTML pro-
vides an excellent foundation for the Ajax applications discussed in this
video course.

Introducing HTML
It wouldn’t be appropriate to try to give an exhaustive account of HTML
(Hypertext Markup Language)—or, indeed, any of the other component
technologies of Ajax—within this course. Instead we’ll review the funda-
mental principles and give some code examples to illustrate them, pay-
ing particular attention to the subjects that will become relevant when
we start to develop Ajax applications.

What Is HTML?
The World Wide Web is constructed from many millions of individual
pages, and those pages are, in general, written in Hypertext Markup
Language, better known as HTML.

That name gives away a lot of information about the nature of HTML.
We use it to mark up our text documents so that web browsers know
how to display them and to define hypertext links within them to pro-
vide navigation within or between them.

NOTE: In many cases, you
may use either the POST or
GET method for your form
submissions and achieve
essentially identical results.
The difference becomes
important, however,
when you learn how to
construct server calls in
Ajax applications.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 23

2: Web Basics Refresher

24

Anyone who (like me) can remember the old pre-WYSIWYG word
processing programs will already be familiar with text markup. Most of
these old applications required that special characters be placed at the
beginning and end of sections of text that you wanted to be displayed
as (for instance) bold, italic, or underlined text.

What Tools Are Needed to Write HTML?
Because the elements used in HTML markup employ only ordinary key-
board characters, all you really need is a good text editor to construct
HTML pages. Many are available, and most operating systems have at
least one such program already installed. If you’re using some version of
Windows, for example, the built-in Notepad application works just fine.

Our First HTML Document
Let’s jump right in and create a simple HTML document. Open your
choen editor and enter the text shown in Listing 2.1. The HTML markup
elements (often referred to as tags) are the character strings enclosed
by < and >.

LISTING 2.1 testpage.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

”http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<title>A Simple HTML Document</title>

</head>

<body>

<h1>My HTML Page</h1>

Welcome to my first page written in HTML.

This is simply a text document with HTML markup to show some

ON THE DVD: The DVD
accompanying in this
package contains the
popular and capable jEdit
programmer’s editor.

TIP: Although Notepad is a perfectly serviceable text editor, many
so-called programmers’ editors are available offering useful additional
functions such as line numbering and syntax highlighting. Many of
these are under open source licences and can be downloaded and used
at no cost. It is well worth considering using such an editor, especially
for larger or more complex programming tasks.

The use of word processing software can cause problems due to
unwanted markup and other symbols that such programs often embed
in the output code. If you choose to use a word processor, make sure
that it is capable of saving files as plain ASCII text.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 24

Elements of an HTML Page

25

words in bold and some other words in <i>italics</i>.

</body>

</html>

Now save the document somewhere on your computer, giving it the
name testpage.html.

If you now load that page into your favorite browser, such as Internet
Explorer or Firefox, you should see something like the window displayed
in Figure 2.5.

FIGURE 2.5 Our test document displayed in Internet Explorer.

Elements of an HTML Page
Let’s look at Listing 2.1 in a little more detail.

The first element on the page is known as the DOCTYPE element. Its pur-
pose is to notify the browser of the “flavor” of HTML used in the docu-
ment. The DOCTYPE element used throughout this course refers to HTML
4.0 Transitional, a fairly forgiving version of the HTML specification that
allows the use of some earlier markup styles and structures in addition
to the latest HTML 4.0 specifications.

The DOCTYPE element must always occur right at the beginning of the
HTML document.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 25

2: Web Basics Refresher

26

Next, note that the remainder of the document is enclosed by the
elements <html> at the start of the page and </html> at the end. These
tags notify the browser that what lies between should be interpreted
and displayed as an HTML document.

The document within these outer tags is split into two further sections.
The first is enclosed in <head> and </head> tags, and the second is
contained between <body> and </body>. Essentially, the document’s
head section is used to store information about the document that is
not to be displayed in the browser window, whereas the body of the
document contains text to be interpreted and displayed to the user
via the browser window.

The <head> of the Document
From Listing 2.1 we can see that the head section of our simple HTML
document contains only one line—the words A Simple HTML
Document enclosed in <title> and </title> tags.

Remember that the head section contains information that is not to
be displayed in the browser window. This is not, then, the title displayed
at the top of our page text, as you can confirm by looking again at
Figure 2.5. Neither does the document title refer to the filename of the
document, which in this case is testpage.html.

In fact, the document title fulfils a number of functions, among them:

■ Search engines often use the page title (among other factors) to
help them decide what a page is about.

■ When you bookmark a page, it is generally saved by default as
the document title.

■ Most browsers, when minimized, display the title of the current
document on their icon or taskbar button.

It’s important, therefore, to choose a meaningful and descriptive title for
each page that you create.

Many other element types are used in the head section of a document,
including link, meta, and script elements. Although we don’t give
an account of them here, they are described throughout the course as
they occur.

CAUTION: Although
many modern browsers
correctly display HTML
without these tags, it is
bad practice to omit them.
Even if the page is shown
correctly on your own PC,
you have no idea what
operating system and
browser a visitor may be
using—he or she may not
be so lucky.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 26

Elements of an HTML Page

27

The Document <body>
Referring again to Listing 2.1, we can clearly see that the content of the
document’s body section is made up of the text we want to display on
the page, plus some tags that help us to define how that text should
look.

To define that certain words should appear in bold type, for example,
we enclose those words in and tags. Similarly, to convert
certain words into an italic typeface, we can use the <i> and </i> tags.

The heading, My HTML Page, is enclosed between <h1> and </h1> tags.
These indicate that we intend the enclosed text to be a heading. HTML
allows for six levels of headings, from h1 (the most prominent) to h6. You
can use any of the intermediate values h2, h3, h4, and h5 to display
pages having various levels of subtitles, for instance corresponding to
chapter, section, and paragraph headings. Anything displayed within
header tags is displayed on a line by itself.

All the tags discussed so far have been containers—that is, they consist
of opening and closing tags between which you place the text that you
want these tags to act upon. Some elements, however, are not contain-
ers but can be used alone. Listing 2.1 shows one such element: the
 tag, which signifies a line break. Another example is <hr /> (a hori-
zontal line).

Adding Attributes to HTML Elements
Occasionally there is a need to specify exactly how a markup tag should
behave. In such cases you can add (usually within the opening tag)
parameter and value pairs, known as attributes, to change the behavior
of the element:

<body bgcolor=”#cccccc”>

… page content goes here …

</body>

TIP: If you want to write in the body section of the HTML page but
don’t want it to be interpreted by the browser and therefore displayed
on the screen, you may do so by writing it as a comment. HTML
comments start with the character string <!— and end with the string
—> as in this example:

<!— this is just a comment and won’t be displayed in the

browser —>

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 27

2: Web Basics Refresher

28

In this example, the behavior of the <body> tag has been modified by
adjusting its BGCOLOR (background color) property to a light gray. Figure
2.6 shows the effect this has if 6applied to our file testpage.html:

FIGURE 2.6 Our test page with the body color changed to gray.

Images
Images can be inserted in our page by means of the tag. In this
case we specify the source file of the image as a parameter by using the
src attribute. Other aspects of the image display that we can alter this
way include the borders, width, and height of the image:

Border width, image width, and image height are in numbers of pixels (the
“dots” formed by individual picture elements on the screen).

TIP: Color values in HTML
are coded using a hexa-
decimal system. Each color
value is made up from
three component values,
corresponding to red,
green, and blue. Each of
the color values can range
from hex 00 to hex ff
(zero to 255 in decimal
notation). The three hex
numbers are concatenated
into a string prefixed with
a hash character #. The
color value #000000 there-
fore corresponds to black,
and #ffffff to pure white.

TIP: A further useful attribute for images is alt, which is an abbrevia-
tion of alternative text. This specifies a short description of the image
that will be offered to users whose browsers cannot, or are configured
not to, display images. Alternative text can also be important in making
your website accessible to those with visual impairment and other
disabilities:

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 28

Elements of an HTML Page

29

Tables
Often you want to display information in tabular format, and HTML has
a set of elements designed specifically for this purpose:

<table>

<tr><th>Column Header 1</th><th>Column Header 2</th></tr>

<tr><td>Data Cell 1</td><td>Data Cell 2</td></tr>

<tr><td>Data Cell 3</td><td>Data Cell 4</td></tr>

</table>

The <table> and </table> tags contain a nested hierarchy of other
tags, including <tr> and </tr>, which define individual table rows; <th>
and </th>, which indicate cells in the table’s header; and <td> and
</td>, which contain individual cells of table data.

Look ahead to Figure 2.7 to see an example of how a table looks when
displayed in a browser window.

Hyperlinks
Hypertext links (hyperlinks) are fundamental to the operation of HTML.
By clicking on a hyperlink, you can navigate to a new location, be that to
another point on the current page or to some point on a different page
on another website entirely.

Links are contained within an <a>, or anchor tag, a container tag that
encloses the content that will become the link. The destination of the
link is passed to this tag as a parameter href:

Here is my hyperlink

Clicking on the words my hyperlink in the above example results in
the browser requesting the page newpage.html.

TIP: A hyperlink can contain images as well as, or instead of, text. Look
at this example:

Here, a user can click on the image picfile.gif to navigate to
newpage.html.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 29

2: Web Basics Refresher

30

A More Advanced HTML Page
Let’s revisit our testpage.html and add some extra elements. Listing 2.2
shows seville.html, developed from our original HTML page but with
different content in the <body> section of the document. Figure 2.7
shows how the page looks when displayed, this time in Mozilla Firefox.

Now we have applied a background tint to the body area of the docu-
ment. The content of the body area has been centered on the page, and
that content now includes an image (which we’ve given a two-pixel-wide
border), a heading and a subheading, a simple table, and some text.

LISTING 2.2 seville.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01

Transitional//EN” “http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<title>A Simple HTML Document</title>

</head>

<body bgcolor=”#cccccc”>

<center>

<h1>Guide to Seville</h1>

<h3>A brief guide to the attractions</h3>

<table border=”2”>

<tr>

<th bgcolor=”#aaaaaa”>Attraction</th>

<th bgcolor=”#aaaaaa”>Description</th>

</tr>

<tr>

<td>Cathedral</td>

<td>Dating back to the 15th century</td>

</tr>

<tr>

<td>Alcazar</td>

<td>The medieval Islamic palace</td>

</tr>

</table>

<p>Enjoy your stay in beautiful Seville.</p>

</center>

</body>

</html>

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 30

A More Advanced HTML Page

31

Let’s take a closer look at some of the code.

First, we used the BGCOLOR property of the <body> tag to provide the
overall background tint for the page:

<body bgcolor=”#cccccc”>

Everything in the body area is contained between the <center> tag
(immediately after the body tag) and its partner </center>, immediate-
ly before the closing body tag. This ensures that all of our content is
centered on the page.

The main heading is enclosed in <h1> … </h1> tags as previously, but is
now followed by a subheading using <h3> … </h3> tags to provide a
slightly smaller font size.

By using the border property in our opening <table> tag, we set a bor-
der width of two pixels for the table:

<table border=”2”>

Meanwhile we darkened the background of the table’s header cells
slightly by using the BGCOLOR property of the <th> elements:

<th bgcolor=”#aaaaaa”>Vegetables</th>

FIGURE 2.7 testpage2.html shown in Mozilla Firefox.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 31

2: Web Basics Refresher

32

Some Useful HTML Tags
Table 2.3 lists some of the more popular HTML tags.

TABLE 2.3 Some Common HTML Markup Elements

DOCUMENT TAGS

<html>..</html> The entire document

<head>..</head> Document head

<body>..</body> Document body

<title>..</title> Document title

STYLE TAGS

<a>.. Hyperlink

.. Bold text

.. Emphasized text

.. Changed font

<i>..</i> Italic text

<small>..</small> Small text

<table>..</table> Table

<tr>..</tr> Table row

<th>..</th> Cell in table header

<td>..</td> Cell in table body

.. Bulleted list

.. Ordered (numbered) list

.. List item in bulleted or ordered list

Adding Your Own Style
As you’ve already learned, HTML was written as a markup language for
defining the structure of a document (paragraphs, headings, tables, and so
on). Although it was never intended to become a desktop publishing tool,
it does include some basic formatting attributes, such as font-size, align
and the aforementioned bgcolor . In 1996, the W3C first recommended
the idea of Cascading Style Sheets (CSS) to format HTML documents.
The recommendation, which was updated in mid-1998, enables Web
developers to separate the structure and format of their documents.

TIP: The World Wide Web
Consortium is responsible
for administering the
definitions of HTML, HTTP,
XML, and many other web
technologies. Its website is
at http://www.w3.org/.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 32

Defining the Rules

33

The CSS recommendation describes the following three types of style
sheets:

■ Embedded The style properties are included (within the
<style> tags) at the top of the HTML document. A style assigned
to a particular tag applies to all those tags in this type of docu-
ment. In this course, you’ll see embedded style sheets most often.

■ Inline The style properties are included throughout the HTML
page. Each HTML tag receives its own style attributes as they
occur in the page.

■ Linked The style properties are stored in a separate file. That
file can be linked to any HTML document using a <link> tag
placed within the <head> tags.

In the following sections, you’ll learn how to construct these style sheets
and how to apply them to your documents.

Defining the Rules
Style sheet rules are made up of selectors (the HTML tags that receive
the style) and declarations (the style sheet properties and their values). In
the following example, the selector is the body tag and the declaration is
made up of the style property (background) and its value (black). This
example sets the background color for the entire document to black.

body {background:black}

TIP: Even without all the formatting benefits that style sheets provide,
Web developers can rejoice in knowing that using style sheets will no
doubt be the biggest timesaver they’ve ever encountered. Because you
can apply style sheets to as many HTML documents as you like, making
changes takes a matter of minutes rather than days.

Before the advent of style sheets, if you wanted to change the appear-
ance of a particular tag in your Web site, you would have to open each
document, find the tag you wanted to change, make the change, save
the document, and continue on to the next document. With style sheets,
you can change the tag in a single style sheet document and have the
changes take effect immediately in all the pages linked to it.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 33

2: Web Basics Refresher

34

You can see that, in a style sheet, the HTML tag is not surrounded by
brackets as it would be in the HTML document, and the declaration is
surrounded by curly braces. Declarations can contain more than one
property. The following example also sets the text color for this page to
white. Notice that the two properties are separated by a semicolon.

body {background:black; color:white}

If you want to apply the same rules to several HTML tags, you could
group those rules together, as in the following example:

body, td, h1 {

background:black;

color:white

}

Add a Little class
As the old saying goes, rules are made to be broken. What if you don’t
want every single h1 heading in your document to be white on a black
background? Maybe you want every other h1 heading to be yellow on a
white background. Let me introduce you to the class attribute. You can
apply this attribute to almost every HTML tag, and it’s almost like creat-
ing your own tags.

Figure 2.8 shows a fairly standard HTML page that uses an aqua table at
the top of the page to hold the navigation links, and places other tabu-
lar content in yellow tables throughout the document. You can see the
HTML document for that page in Figure 2.9.

Take a closer look at the style properties in Figure 2.9. This document
defines two table styles within the <style> tags. The HTML tag name
table is followed by a period (.) and the class names (nav and rest).

table.nav {background:aqua}

table.rest {background:yellow;

text-align:center;

color:black}

When the table is referenced in the body of the document, you must
apply the class attribute to tell the browser which style properties
should be applied. The HTML markup for each table in this example
appears in the following HTML code. You can see that the class name
appears within quotations just like the other HTML attributes (and as
with the width attribute shown here).

<table class=”nav” width=”100%”>

<table class=”rest” width=50%>

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 34

Add a Little class

35

FIGURE 2.9 The HTML document for the page in Figure 2.8. Notice the class
attribute in each <table> tag.

FIGURE 2.8 An HTML page that formats two tables differently.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 35

2: Web Basics Refresher

36

Applying Styles
Before moving on, we’ll quickly cover how to apply style properties to
your documents. Remember, you have three methods to add style
sheets: embedded, linked, and inline. We’ll discuss each one in turn.

Embedded Styles
All the styles are defined at the top of the HTML document within the
<head> tags because they contain information about the entire docu-
ment. The styles defined here apply only to the one document in which
they appear. If you plan to use these same styles in another document,
you need to add them there as well.

<head>

<style type=”text/css”>

table.nav {background:aqua}

table.rest {background:yellow;

text-align:center;

color:black}

a:link {color:red;

text-decoration:none}

</style>

</head>

Linked Styles
Linked style sheets hold all the style properties in a separate file. You
then link the file into each HTML document where you want those style
properties to appear.

<head>

<link rel=”stylesheet” href=”mystyles.css” type=”text/css”>

</head>

With this method, I’ve created a separate file called mystyles.css (for cas-
cading style sheet) that contains all my style properties. You can see
that the same type=”text/css” attribute shows up here. Following are
the entire contents of the mystyles.css file. These are the same styles
that showed up in the preceding embedded styles example, but now
they appear in a separate text file.

table.nav {background:aqua}

table.rest {background:yellow;

text-align:center;

color:black}

a:link {color:red;

text-decoration:none}

NOTE: The <style> tag
almost always includes the
type=”text/css”

attribute, so you should
get used to adding it.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 36

Applying Styles

37

Inline Styles
With inline styles, the style properties are added to the HTML tag as the
tag is entered. This means that if I want the same style to appear on all
the <h1> tags in my document, I would have to type those styles in all
the <h1> tags. Look at the following example. I am still using the same
style properties, as in the previous examples, but now you can see how
the two tables would be created using inline styles.

<table style=”background:aqua” width=”100%”>

<table style=”background:yellow; text-align:center;

color:black” width=”100%”>

Using inline styles, the <style> tag becomes the style attribute.
Multiple style properties are still separated by semicolons, but the entire
group of properties for each tag is grouped within each HTML tag. This
type of style sheet is fine for documents in which you need to apply
styles to only one or two elements, but you wouldn’t want to do all that
work when you have a lot of styles to add.

Cascading Precedence
Web browsers give precedence to the style that appears closest to the
tag. So, inline styles (which appear as attributes within the tag itself) are
most important. Embedded styles (which appear at the top of the HTML
file) are applied next, and linked styles (which appear in another file
altogether) are applied last.

Imagine that you have created an embedded style for the <h1> tag, but
want to change that style for one occurrence of the <h1> tag in that
document. You would create an inline style for that new <h1> tag. The
browsers recognize that fact and change the style for that tag to reflect
the inline style.

CAUTION: Style sheet precedence is supposed to place more impor-
tance on embedded styles than on linked style sheets. In actual practice,
however, you’ll find that both Internet Explorer and Netscape treat
linked sheets as more important than embedded sheets (but they do
treat inline styles as more important than either of the other two). You’ll
find that you have better luck if you use either linked or embedded
styles, but not both.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 37

2: Web Basics Refresher

38

Formatting Text with Styles
Text is the most important element of any Web page. Without text, there
is nothing on the page to help people decide whether it’s worth com-
ing back.

Text on an HTML page is structured by the <body>, <p>, <td>, <tr>,
<th>, <h1> <h6>, and tags (among others). You can add your own
style preferences to each of these tags using the style properties shown
in Table 2.4.

In the following example, we’ve added some embedded style elements
that set the font, font size, and font color for the body text of a basic
HTML page. In Figure 2.10, you can see how those styles change the
appearance of the document in the browser.

<!DOCTYPE html

PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>

<head>

<title>My First Web Page</title>

<style type=”text/css”>

body {font-family:”Arial”;

font-size:”12pt”;

color:red}

</style>

</head>

<body>

<p>This is my <i>first</i> Web page.</p>

</body>

</html>

FIGURE 2.10 The browser applies the style attributes to the text in the
<body> tags.

Table 2.4 lists the many style properties that you can use to format
your text.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 38

Formatting Text with Styles

39

TABLE 2.4 Style Properties for Text

PROPERTY DESCRIPTION OF USE AND VALUES

background Sets the background color for the text.

color Sets the text color for the text.

font-family Sets the font for the text.

font-size Can be a point size, a percentage of the size of
another tag, or xx-small to xx-large.

font-style normal (which is assumed) or italic.

font-weight extra-light to extra-bold.

text-align left, right, center, or justify (full).

text-indent Can be a fixed length or a percentage.

text-decoration underline, overline, strikethrough,
and none.

Microsoft maintains a brief tutorial for style sheets on its typography
site (http://www.microsoft.com/typography/default.mspx). The
tutorial teaches Web page authors how style sheets can enhance their
documents. The <style> tag for one of those examples is shown in the
following code. This is impressive because of the many different styles
and classes defined in this document. You can see that you are only lim-
ited by your own imagination. You can see the page this style code cre-
ated in Figure 2.11.

<style type=”text/css”>

body {background: coral}

.copy {color: Black;

font-size: 11px;

line-height: 14px;

font-family: Verdana, Arial, Helvetica, sans-serif}

a:link {text-decoration: none;

font-size: 20px;

color: black;

font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}

.star {color: white;

font-size: 350px;

font-family: Arial, Arial, helvetica, sans-serif}

.subhead {color: black;

font-size: 28px;

margin-top: 12px;

margin-left: 20px;

line-height: 32px;

font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 39

2: Web Basics Refresher

40

.what {color: black;

font-size: 22px;

margin-left: 20px;

font-weight: bold;

font-style: italic;

font-family: Times New Roman, times, serif}

.quott {color: black;

font-size: 120px;

line-height: 120px;

margin-top: -24px;

margin-left: -4px;

font-family: Arial Black, Arial, helvetica, sans-serif}

.quotb {color: black;

font-size: 120px;

line-height: 120px;

margin-right: -1px;

margin-top: -33px;

font-family: Arial Black, Arial, helvetica, sans-serif}

.quote {color: red;

font-size: 24px;

line-height: 28px;

margin-top: -153px;

font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}

.footer {color: cornsilk;

background: red;

font-size: 22px;

margin-left: 20px;

margin-top: 16px;

font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}

.headline {color: black;

font-size: 80px;

line-height: 90px;

margin-left: 20px;

font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}

.mast {color: cornsilk;

font-size: 90px;

font-style: italic;

font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}

</style>

CAUTION: None of the most popular Web browsers react the same
way to all the style sheet properties. Your best bet is to remember to test
everything before you publish it. Webmaster Stop maintains a table of
style sheet properties mapped to the most popular browsers. Check out
this table (http://www.webmasterstop.com/118.html) to find out
whether the style sheet properties you plan to use are supported by
specific browsers.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 40

Formatting Text with Styles

41

FIGURE 2.11 The preceding style code produced this page, found at
http://www.microsoft.com/typography/css/gallery/slide3.htm.

Link Styles
You have probably seen those bright blue underlined hyperlinks on the
Web. Style sheets have the following selectors to help you change the look
of them:

■ a:link Sets the styles for unvisited links.

■ a:visited Sets the styles for visited links.

■ a:active Sets the styles for the link while it is linking.

■ a:hover Sets the style for the link while your mouse is hovering.

Table 2.5 shows some of the style properties you can assign to your links.

Table 2.5 Style Properties for the Anchor Styles

PROPERTY DESCRIPTION OF USE AND VALUES

background-color Sets the background color for the link.

color Sets the text color for the link.

font-family Sets the font for the text of the link.

text-decoration underline, overline, strikethrough, and none.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 41

2: Web Basics Refresher

42

Color Styles
As you can see in Table 2.6, you can apply color to your HTML tags in
two different ways: with color or with background.

TABLE 2.6 Style Properties for Color

PROPERTY DESCRIPTION OF USE AND VALUES

color Sets the color of the text.

background Sets the background of the page or text.

Adding Lines
A horizontal line, or horizontal rule as’ it is named in HTML, is one of the
easiest tags to use. You can insert the <hr /> tag anywhere in your doc-
ument to insert a horizontal line that extends across the space available.
Take a look at the following sample HTML. It shows three <hr> tags: two
used as a section break between text and the other used inside a table
cell. Figure 2.12 shows how they appear in the browser.

<!DOCTYPE html

PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”

xml:lang=”en” lang=”en”>

<head>

<title>Horizontal Lines</title>

<style type=”text/css”>

td {text-align=center}

</style>

</head>

<body>

<p>This is a horizontal line.</p>

<hr />

TIP: One of the most popular style sheet effects on the Web right now
is to remove the underlining on hyperlinks. To do this on your pages, just
add the text-decoration:none declaration to the a styles, as shown in
the following example:

a:link {color:yellow;

text-decoration:none}

If you like the look of the underlined hyperlink, you’re in luck. You don’t
have to specify anything at all. Underlining is assumed for all a styles.

CAUTION: Don’t forget
to test your pages before
you publish them. Not all
colors work together.
If you’ve specified a black
background color and a
black text color, you’ve
got a problem because no
one will be able to see
your text.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 42

Adding Lines

43

<p>This is another horizontal line.</p>

<hr />

<table width=”50%” rules=cols>

<tr>

<td>This is also a<hr />horizontal line.</td>

<td>There is
no line on this
side

of the table.</td>

</tr>

</table>

</body>

</html>’

FIGURE 2.12 The <hr /> tag inserts a horizontal line that stretches across
the available horizontal space.

Margin Styles
Style sheets give you another important’ advantage: You can specify the
margins of almost any HTML element. The margins can be defined in pt,
in, cm, or px sizes.

body {margin-left: 100px;

margin-right: 100px;

margin-top: 50px}

You can set the margin-left, margin-right, and margin-top proper-
ties individually or combine them into one property called margin that
applies the sizes to the top, right, and left margins.

body {margin: 100px 100px 50px}

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 43

2: Web Basics Refresher

44

Anatomy of an Ajax Application
In this section you’ll learn about the individual building blocks of Ajax
and how they fit together to form the architecture of an Ajax application.

The Need for Ajax
In other parts of the course, we shall discuss each of the core compo-
nents in detail.

Before discussing the individual components, though, let’s look in more
detail at what we want from our Ajax application.

Traditional Versus Ajax Client-Server
Interactions
Chapter 1 discussed the traditional page-based model of a website
user interface. When you interact with such a website, individual pages
containing text, images, data entry forms, and so forth are presented
one at a time. Each page must be dealt with individually before
navigating to the next.

For instance, you may complete the data entry fields of a form, editing
and re-editing your entries as much as you want, knowing that the data
will not be sent to the server until the form is finally submitted.

Figure 2.13 illustrates this interaction.

FIGURE 2.13 Traditional client–server interactions.

Server

Browser

Page 1 Page 2 Page 3 Page 4

Time

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 44

The Need for Ajax

45

After you submit a form or follow a navigation link, you then must wait
while the browser screen refreshes to display the new or revised page
that has been delivered by the server.

As your experience as an Internet user grows, using this interface
becomes almost second nature.You learn certain rules of thumb that
help to keep you out of trouble, such as “don’t press the Submit button a
second time,” and “don’t press the Back button after submitting a form.”

Unfortunately, interfaces built using this model have a few drawbacks.
First, there is a significant delay while each new or revised page is loaded.
This interrupts what we, as users, perceive as the “flow” of the application.

Furthermore, a whole page must be loaded on each occasion, even
when most of its content is identical to that of the previous page. Items
common to many pages on a website, such as header, footer, and
navigation sections, can amount to a significant proportion of the data
contained in the page.

Figure 2.14 illustrates a website displaying pages before and after the
submission of a form, showing how much identical content has been
reloaded and how relatively little of the display has actually changed.

FIGURE 2.14 Many page items are reloaded unnecessarily.

This unnecessary download of data wastes bandwidth and further
exacerbates the delay in loading each new page.

NOTE: Bandwidth refers
to the capacity of a com-
munications channel to
carry information. On the
Internet, bandwidth is usu-
ally measured in bps (bits
per second) or in higher
multiples such as Mbps
(million bits per second).

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 45

2: Web Basics Refresher

46

The Rich User Experience
The combined effect of the issues just described is to offer a much
inferior user experience compared to that provided by the vast majority
of desktop applications.

On the desktop, you expect the display contents of a program to remain
visible and the interface elements to respond to commands while the
computing processes occur quietly in the background. As I write this
using a word processor, for example, I can save the document to disk,
scroll or page up and down, and alter font faces and sizes without
having to wait on each occasion for the entire display to be refreshed.

Ajax allows you to add to your web application interfaces some of this
functionality more commonly seen in desktop applications and often
referred to as a rich user experience.

Introducing Ajax
To improve the user’s experience, you need to add some extra capabili-
ties to the traditional page-based interface design. You want your user’s
page to be interactive, responding to the user’s actions with revised
content, and be updated without any interruptions for page loads or
screen refreshes.

To achieve this, Ajax builds an extra layer of processing between the
web page and the server.

This layer, often referred to as an Ajax Engine or Ajax Framework, inter-
cepts requests from the user and in the background handles server
communications quietly, unobtrusively, and asynchronously. By this we
mean that server requests and responses no longer need to coincide
with particular user actions but may happen at any time convenient to
the user and to the correct operation of the application. The browser
does not freeze and await the completion by the server of the last
request but instead lets the user carry on scrolling, clicking, and typing
in the current page.

The updating of page elements to reflect the revised information
received from the server is also looked after by Ajax, happening
dynamically while the page continues to be used.

Figure 2.15 represents how these interactions take place.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 46

Introducing Ajax

47

FIGURE 2.15 Ajax client–server interaction.

A Real Ajax Application—Google Suggest
To see an example of an Ajax application in action, let’s have a look at
Google Suggest. This application extends the familiar Google search
engine interface to offer the user suggestions for suitable search terms,
based on what he has so far typed.

With each key pressed by the user, the application’s Ajax layer queries
Google’s server for suitably similar search phrases and presents the
returned data in a drop-down box. Along with each suggested phrase is
listed the number of results that would be expected for a search con-
ducted using that phrase. At any point the user has the option to select
one of these suggestions instead of continuing to type and have
Google process the selected search.

Because the server is queried with every keypress, this drop-down list
updates dynamically as the user types—with no waiting for page
refreshes or similar interruptions.

Figure 2.16 shows the program in action. You can try it for yourself by
following the links from Google’s home page at
http://www.google.com/webhp?complete=1&hl=en.

Next let’s identify the individual components of such an Ajax applica-
tion and see how they work together.

Server

Ajax

Page 1

Browser

Time

NOTE: Google has presented other Ajax-enabled applications that you
can try, including the gmail web mail service and the Google Maps street
mapping program. See the Google website at http://www.google.com/
for details.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 47

2: Web Basics Refresher

48

FIGURE 2.16 An example of an Ajax application—Google Suggest.

The Constituent Parts of Ajax
Now let’s examine the components of an Ajax application one at a time.

The XMLHTTPRequest Object
When you click on a hyperlink or submit an HTML form, you send an
HTTP request to the server, which responds by serving to you a new
or revised page. For your web application to work asynchronously,
however, you must have a means to send HTTP requests to the server
without an associated request to display a new page.

You can do so by means of the XMLHTTPRequest object. This JavaScript
object is capable of making a connection to the server and issuing an
HTTP request without the necessity of an associated page load.

Later on you will learn what objects are, see how an instance of this
object can be created, and see how its properties and methods can be
used by JavaScript routines included in the web page to establish
asynchronous communications with the server.

Talking with the Server
In the traditional style of web page, when you issue a server request
via a hyperlink or a form submission, the server accepts that request,

TIP: As a security measure,
the XMLHTTPRequest object
can generally only make
calls to URLs within the
same domain as the calling
page and cannot directly
call a remote server.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 48

The Constituent Parts of Ajax

49

carries out any required server-side processing, and subsequently serves
to you a new page with content appropriate to the action you have
undertaken.

While this processing takes place, the user interface is effectively frozen.
You are made quite aware of this, when the server has completed its
task, by the appearance in the browser of the new or revised page.

With asynchronous server requests, however, such communications
occur in the background, and the completion of such a request does
not necessarily coincide with a screen refresh or a new page being
loaded. You must therefore make other arrangements to find out what
progress the server has made in dealing with the request.

The XMLHTTPRequest object possesses a convenient property to report
on the progress of the server request. You can examine this property
using JavaScript routines to determine the point at which the server has
completed its task and the results are available for use.

Your Ajax armory must therefore include a routine to monitor the status
of a request and to act accordingly. We’ll look at this in more detail in
Chapter 11,“Talking with the Server.”

What Happens at the Server?
So far as the server-side script is concerned, the communication from
the XMLHTTPRequest object is just another HTTP request. Ajax applica-
tions care little about what languages or operating environments exist
at the server; provided that the client-side Ajax layer receives a timely
and correctly formatted HTTP response from the server, everything will
work just fine.

It is possible to build simple Ajax applications with no server-side
scripting at all, simply by having the XMLHTTPRequest object call a static
server resource such as an XML or text file.

Ajax applications may make calls to various other server-side resources
such as web services. Later on we’ll look at some examples of calling
web services using protocols such as SOAP and REST.

Dealing with the Server Response
Once notified that an asynchronous request has been successfully
completed, you may then utilize the information returned by the server.

Ajax allows for this information to be returned in a number of formats,
including ASCII text and XML data.

NOTE: In this course we’ll
be using the popular PHP
scripting language for our
server-side routines, but if
you are more comfortable
with ASP, JSP, or some
other server-side language,
go right ahead and use it
in your Ajax applications.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 49

2: Web Basics Refresher

50

Depending on the nature of the application, you may then translate, dis-
play, or otherwise process this information within the current page.

Other Housekeeping Tasks
An Ajax application will be required to carry out a number of other
duties too. Examples include detecting error conditions and handling
them appropriately, and keeping the user informed about the status of
submitted Ajax requests.

Putting It All Together
Suppose that you want to design a new Ajax application, or update a
legacy web application to include Ajax techniques. How do you go
about it?

First you need to decide what page events and user actions will be
responsible for causing the sending of an asynchronous HTTP request.
You may decide, for example, that the action of moving the mouse cur-
sor over an image will result in a request being sent to the server to
retrieve further information about the subject of the picture; or that the
clicking of a button will generate a server request for information with
which to populate the fields on a form.

JavaScript can be used to execute instructions on occurrences such as
these, by employing event handlers. In your Ajax applications, such
methods will be responsible for initiating asynchronous HTTP requests
via XMLHTTPRequest.

Having made the request, you need to write routines to monitor the
progress of that request until you hear from the server that the request
has been successfully completed.

Finally, after receiving notification that the server has completed its task,
you need a routine to retrieve the information returned from the server
and apply it in the application. You may, for example, want to use the
newly returned data to change the contents of the page’s body text,
populate the fields of a form, or pop open an information window.

Figure 2.17 shows the flow diagram of all this.

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 50

Putting It All Together

51

FIGURE 2.17 How the components of an Ajax application work together.

Ajax Frameworks
While it is essential for a complete understanding of Ajax to understand
what role each of the individual components plays, it is thankfully not
necessary to rewrite all of your code for each new application. Your
Ajax code can be stored as a reusable library of common Ajax routines,
ready to be re-used wherever they may be needed. There are also many
commercial and open-source frameworks that you can use in your
projects to do the “heavy lifting”.

Web Page

Server

Ajax Engine

XMLHTTPRequest

create
server

request

send

monitor status

get response

capture
event

update
page

request

readyState

response

process
returned

data

03_0672330377_ch2.qxd 4/3/09 8:55 AM Page 51

sams_RegThisProd_7x9.indd 1 1/12/09 4:54:07 PM

Whatever your need and whatever your time frame,
there’s a SamsTeachYourself for you. With a
SamsTeachYourself book or video as your guide,
you can quickly get up to speed on just about any
new product or technology—in the absolute shortest
period of time possible. Guaranteed.

Learning how to do new things with your computer
shouldn’t be tedious or time-consuming. Sams
TeachYourself makes learning anything quick, easy,
and even a little bit fun.

HTML and CSS: Video Learning Starter Kit
ISBN-10: 0-672-33059-8
ISBN-13: 978-0-672-33059-9

SamsTeachYourself
When you only have time

for the answers™

PHP, MySQL and
Apache All in One

Julie C. Meloni
ISBN-10: 0-672-32976-X
ISBN-13: 978-0-672-32976-0

Ajax, JavaScript and
PHP All in One

Phil Ballard
Michael Moncur
ISBN-10: 0-672-32965-4
ISBN-13: 978-0-672-329565-4

Adobe Photoshop CS4
in 24 Hours

Kate Binder
ISBN-10: 0-672-33042-3
ISBN-13: 978-0-672-33042-1

Adobe Creative
Suite 4 All in One

Mordy Golding
ISBN-10: 0-672-33043-1
ISBN-13: 978-0-672-33043-8

Sams Teach Yourself books are available at most retail and online bookstores. For more information
or to order direct, visit our online bookstore at informit.com/sams.

Online editions of all Sams Teach Yourself titles are available by subscription from Safari Books Online
at safari.informit.com.

04_0672330377_ad_pages.qxd 4/3/09 8:56 AM Page 2

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

sams_RegThisProd_7x9.indd 1 1/12/09 4:54:07 PM

04_0672330377_ad_pages.qxd 4/3/09 8:56 AM Page 3

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

04_0672330377_ad_pages.qxd 4/3/09 8:56 AM Page 4

