

VISUAL QUICKSTART GUIDE

XML
SECOND EDITION

KEVIN HOWARD GOLDBERG

 Peachpit Press

Visual QuickStart Guide
XML, Second Edition
Kevin Howard Goldberg

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)
Find us on the Web at: www.peachpit.com
To report errors, please send a note to errata@peachpit.com

Peachpit Press is a division of Pearson Education

Copyright © 2009 by Elizabeth Castro and Kevin Howard Goldberg

Production Editor: David Van Ness
Tech Editors: Chris Hare and Michael Weiss
Compositor: Kevin Howard Goldberg
Indexer: Valerie Perry
Cover Design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. For information on getting permission for reprints and excerpts,
contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every pre-
caution has been taken in the preparation of the book, neither the author nor Peachpit shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the instructions contained in this book or by the computer software and
hardware products described in it.

Trademarks
Visual QuickStart Guide is a trademark of Peachpit, a division of Pearson Education.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark
claim, the designations appear as requested by the owner of the trademark. All other product names
and services identified throughout this book are used in editorial fashion only and for the benefit of
such companies with no intention of infringement of the trademark. No such use, or the use of any
trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-55967-8
ISBN-10: 0-321-55967-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

FOREWORD BY ELIZABETH CASTRO

XML has come a long way since I wrote the first edition of this book in 2001. It is as
widespread now as it was exotic then.

Last year, I bumped into my friend Kevin Goldberg on a visit to California. We had
known each other in college, and had played a lot of Boggle together in Barcelona.

When he offered to help me revise this book, I jumped at the chance. Kevin has been
working in the computer industry for more than twenty years. He started his career as a
video game programmer and producer. Since 1997, Kevin has been serving as partner and
chief technology officer at imagistic, an award-winning, Web development and services
company in Southern California. In this role, he is regularly called upon to help clients
clarify their business needs, and to clearly communicate the nature and applicability of
potential technology solutions—in a sense, demystify technology.

Besides all of these apt credentials, Kevin is a great guy. He is smart, conscientious, cre-
ative, and—not to mention—careful with details. In addition to updating the content
and examples in the book, he added chapters on XSL-FO, recent W3C recommendations
(XSLT 2.0, XPath 2.0 and XQuery 1.0), and a chapter devoted to real world examples
called XML in Practice. I am most confident that you will find this second edition of
XML: Visual QuickStart Guide to be an excellent tutorial for learning all about XML.

Elizabeth Castro
Author of XML for the World Wide Web: Visual QuickStart Guide

ABOUT THE AUTHOR

Kevin Howard Goldberg has been working with computers since 1976 when he
taught himself BASIC on his elementary school’s PDP 11/70. Since then, Kevin’s career
has included management consulting using commerce simulations, and lead software
development for numerous video game titles in multi-million dollar divisions at Film
Roman and Lionsgate (previously Trimark). In his current capacity, he runs technology
operations for a world-class Internet Strategy, Marketing and Development company in
Westlake Village, California.

Kevin serves on the Santa Monica College Computer Science and Information Systems
Advisory Board, and was invited to speak at the ACLU Nationwide Staff Conference as a
Web development and production expert.

Kevin holds a bachelor’s degree in Economics and Entrepreneurial Management from the
Wharton School of Business at the University of Pennsylvania, and is a candidate for a
master’s degree in Computer Science at the University of California, Los Angeles.

DEDICATION

This book is dedicated to my wife, Lainie; in exchange for harried weekends, night-time
surrogates, and an overcrowded bedroom, she receives this book. I am truly blessed.

THANK YOU

Michael Weiss, my business partner (of more than eleven years), my brother-in-law,
and my friend. His support throughout this process; uncanny ability to see things from a
reader’s perspective; and willingness to do what it took to get the job done, while I was, at
times, preoccupied, was invaluable to me.

Chris Hare, my technical editor, for jumping into the XML deep-end and amazingly
keeping everything else afloat; teaching me the subtleties of punctuation (colons, semi-
colons, and parenthetical expressions, oh my!); and being so detailed that when a page
came back with less than a dozen red marks, I was concerned.

The staff at imagistic (Chris, Heidi, Robert, Sam, Tamara, and Will), who didn’t know
what was coming, but nonetheless kept all the plates spinning with grace and humor.

David Van Ness, Peachpit’s production editor extraordinaire, who was so incredibly
helpful, resourceful, accommodating, available, and patient.

Nancy Davis, editor-in-chief at Peachpit, for seeing all the possibilities and shepherd-
ing this complex process through to completion.

Finally, a very special thanks to Elizabeth Castro, whose openness, honesty, integrity,
and first edition of this book made this second edition possible.

IMAGE COPYRIGHTS

◆ Herodotus head in the Stoa of Attalus, Athens (Inv. S270), photograph by Samuel
Provost.

◆ Depictions of The Seven Wonders of the Ancient World, as painted by 16th-century Dutch
artist Marten Jacobszoon Heemskerk van Veen, reside within the public domain.

v

Table of Contents

 Introduction .xi
What is XML? . xii
Th e Power of XML . xiii
Extending XML . xiv
XML in Practice . xv
About Th is Book .xvi
What Th is Book is Not . xviii

XMPart 1: L
Writing XMLChapter 1: . 3
An XML Sample .4
Rules for Writing XML .5
Elements, Attributes, and Values .6
How To Begin .7
Creating the Root Element .8
Writing Child Elements .9
Nesting Elements .10
Adding Attributes .11
Using Empty Elements .12
Writing Comments .13
Predefi ned Entities – Five Special Symbols14
Displaying Elements as Text .15

XSPart 2: L
XSLTChapter 2: . 19
Transforming XML with XSLT .20
Beginning an XSLT Style Sheet .22
Creating the Root Template .23
Outputting HTML .24
Outputting Values .26
Looping Over Nodes .28
Processing Nodes Conditionally .30

TABLE OF CONTENTS

vi

Ta
bl

e
of

 C
on

te
nt

s

Table of Contents

Adding Conditional Choices .31
Sorting Nodes Before Processing .32
Generating Output Attributes .33
Creating and Applying Templates 34

XPath Patterns and ExpressionsChapter 3: 37
Locating Nodes .38
Determining the Current Node .40
Referring to the Current Node .41
Selecting a Node’s Children .42
Selecting a Node’s Parent or Siblings 43
Selecting a Node’s Attributes .44
Conditionally Selecting Nodes .45
Creating Absolute Location Paths 46
Selecting All the Descendants .47

XPath FunctionsChapter 4: . 49
Comparing Two Values .50
Testing the Position .51
Multiplying, Dividing, Adding, Subtracting 52
Counting Nodes .53
Formatting Numbers .54
Rounding Numbers .55
Extracting Substrings .56
Changing the Case of a String .57
Totaling Values .58
More XPath Functions .59

XSL-FOChapter 5: . 61
Th e Two Parts of an XSL-FO Document62
Creating an XSL-FO Document .63
Creating and Styling Blocks of Page Content64
Adding Images .65
Defi ning a Page Template .66
Creating a Page Template Header 67
Using XSLT to Create XSL-FO .68
Inserting Page Breaks .69
Outputting Page Content in Columns70
Adding a New Page Template .71

DTPart 3: D
Creating a DTDChapter 6: . 75
Working with DTDs .76
Defi ning an Element Th at Contains Text77
Defi ning an Empty Element .78

vii

Table of Contents

Table of Contents

Defi ning an Element Th at Contains a Child79
Defi ning an Element Th at Contains Children80
Defi ning How Many Occurrences81
Defi ning Choices .82
Defi ning an Element Th at Contains Anything83
About Attributes .84
Defi ning Attributes .85
Defi ning Default Values .86
Defi ning Attributes with Choices.87
Defi ning Attributes with Unique Values 88
Referencing Attributes with Unique Values89
Restricting Attributes to Valid XML Names90

Entities and Notations in DTDsChapter 7: 91
Creating a General Entity .92
Using General Entities .93
Creating an External General Entity 94
Using External General Entities .95
Creating Entities for Unparsed Content96
Embedding Unparsed Content .98
Creating and Using Parameter Entities 100
Creating an External Parameter Entity101

Validation and Using DTDsChapter 8: 103
Creating an External DTD .104
Declaring an External DTD .105
Declaring and Creating an Internal DTD106
Validating XML Documents Against a DTD107
Naming a Public External DTD 108
Declaring a Public External DTD109
Pros and Cons of DTDs .110

XML SchemPart 4: a
XML Schema BasicsChapter 9: 113
Working with XML Schema .114
Beginning a Simple XML Schema116
Associating an XML Schema with an XML Document . .117
Annotating Schemas .118

Defi ning Simple TypesChapter 10: 119
Defi ning a Simple Type Element120
Using Date and Time Types .122
Using Number Types .124
Predefi ning an Element’s Content125
Deriving Custom Simple Types .126

viii

Ta
bl

e
of

 C
on

te
nt

s

Table of Contents

Deriving Named Custom Types .127
Specifying a Range of Acceptable Values 128
Specifying a Set of Acceptable Values130
Limiting the Length of an Element131
Specifying a Pattern for an Element132
Limiting a Number’s Digits .134
Deriving a List Type. .135
Deriving a Union Type .136

Defi ning Complex TypesChapter 11: 137
Complex Type Basics .138
Deriving Anonymous Complex Types140
Deriving Named Complex Types141
Defi ning Complex Types Th at Contain Child Elements .142
Requiring Child Elements to Appear in Sequence143
Allowing Child Elements to Appear in Any Order144
Creating a Set of Choices .145
Defi ning Elements to Contain Only Text 146
Defi ning Empty Elements .147
Defi ning Elements with Mixed Content 148
Deriving Complex Types from Existing Complex Types .149
Referencing Globally Defi ned Elements150
Controlling How Many .151
Defi ning Named Model Groups 152
Referencing a Named Model Group 153
Defi ning Attributes .154
Requiring an Attribute .155
Predefi ning an Attribute’s Content156
Defi ning Attribute Groups .157
Referencing Attribute Groups .158
Local and Global Defi nitions .159

NamespacePart 5: s
XML NamespacesChapter 12: 163
Designing a Namespace Name .164
Declaring a Default Namespace .165
Declaring a Namespace Name Prefi x166
Labeling Elements with a Namespace Prefi x167
How Namespaces Aff ect Attributes 168

Using XML NamespacesChapter 13: 169
Populating an XML Namespace .170
XML Schemas, XML Documents, and Namespaces 171
Referencing XML Schema Components in Namespaces .172

ix

Table of Contents

Table of Contents

Namespaces and Validating XML 173
Adding All Locally Defi ned Elements 174
Adding Particular Locally Defi ned Elements175
XML Schemas in Multiple Files .176
XML Schemas with Multiple Namespaces177
Th e Schema of Schemas as the Default 178
Namespaces and DTDs .179
XSLT and Namespaces .180

Recent W3C RecommendationPart 6: s
XSLT 2.0Chapter 14: . 183
Extending XSLT .184
Creating a Simplifi ed Style Sheet185
Generating XHTML Output Documents186
Generating Multiple Output Documents.187
Creating User Defi ned Functions188
Calling User Defi ned Functions .189
Grouping Output Using Common Values190
Validating XSLT Output .191

XPath 2.0Chapter 15: . 193
XPath 1.0 and XPath 2.0 .194
Averaging Values in a Sequence .196
Finding the Minimum or Maximum Value197
Formatting Strings .198
Testing Conditions .199
Quantifying a Condition .200
Removing Duplicate Items .201
Looping Over Sequences .202
Using Today’s Date and Time .203
Writing Comments .204
Processing Non-XML Input .205

XQuery 1.0Chapter 16: . 207
XQuery 1.0 vs. XSLT 2.0 .208
Composing an XQuery Document 209
Identifying an XML Source Document210
Using Path Expressions .211
Writing FLWOR Expressions .212
Testing with Conditional Expressions 214
Joining Two Related Data Sources215
Creating and Calling User Defi ned Functions216
XQuery and Databases .217

x

Ta
bl

e
of

 C
on

te
nt

s

Table of Contents

XML in PracticPart 7: e
Ajax, RSS, SOAP, and MoreChapter 17: 221
Ajax Basics .222
Ajax Examples .224
RSS Basics .226
RSS Schema. .227
Extending RSS .228
SOAP and Web Services .230
SOAP Message Schema .231
WSDL .232
KML Basics .234
A Simple KML File .235
ODF and OOXML .236
eBooks, ePub, and More .238
Tools for XML in Practice .240

Appendices
XML ToolsAppendix A: . 245
XML Editors .246
Additional XML Editors .248
XML Tools and Resources .249

Character Sets and EntitiesAppendix B: 251
Specifying the Character Encoding 252
Using Numeric Character References253
Using Entity References .254
Unicode Characters .255

 Index . 257

i

xi

Introduction

INTRODUCTION
Internet time. A phrase whose meaning has
come about as fast as it suggests; happening
significantly faster than one could normally expect.
In 1991, the first Web site was put online.
Now, less than twenty years later, the number of
Web sites online is thought to be more than one
hundred million, give or take a few.

The amount of information available through
the Internet has become practically uncount-
able. Most of that information is written in
HTML (HyperText Markup Language), a simple
but elegant way of displaying data in a Web
browser. HTML’s simplicity has helped fuel the
popularity of the Web. However, when faced
with the Internet’s huge and growing quantity
of information, it has presented real limitations.

In the seven years since the first edition of this
book was published, XML (eXtensible Markup
Language) has taken its place next to HTML as
a foundational language on the Internet. XML
has become a very popular method for storing
data and the most popular method for trans-
mitting data between all sorts of systems and
applications. The reason being, where HTML
was designed to display information, XML was
designed to manage it.

This book will begin by showing you the basics
of the XML language. Then, by building on
that knowledge, additional and supporting lan-
guages and systems will be discussed. To get the
most out of this book, you should be somewhat
familiar with HTML, although you don’t need
to be an expert coder by any stretch. No other
previous knowledge is required.

xii

Introduction

W
ha

t i
s X

M
L?

<?xml version="1.0"?>

<my_children>

 <child>

 <name>Logan</name>

 <gender>Male</gender>

 <age>18</age>

 </child>

 <child>

 <name>Rebecca</name>

 <gender>Female</gender>

 <age>14</age>

 </child>

 <child>

 <name>Lee</name>

 <gender>Female</gender>

 <age>13</age>

 </child>

</my_children>

x m l

 Here is an example XML document. By Figure i.1
reading the custom tags that I created, you can tell this
is an XML document about my children. In fact, you
can tell how many children I have, their names, their
genders, and their ages.

What is XML?
XML, or eXtensible Markup Language, is a
specification for storing information. It is also
a specification for describing the structure of
that information. And while XML is a markup
language (just like HTML), XML has no tags
of its own. It allows the person writing the
XML to create whatever tags they need. The
only condition is that these newly created tags
adhere to the rules of the XML specification.

And what does all that mean? OK, enough
words. Try reading through the example XML
document in Figure i.1, and answering the
following questions:

1. What information is being stored?
2. What is the structure of the information?
3. What tags were created to describe the

information and its structure?
As you may have concluded, the information
being stored is that of my children. The struc-
ture of the information is that each child bears
a description of their name, gender, and age.
Finally, the tags created to describe the informa-
tion and its structure are: my_children, child,
name, gender, and age.

So, what exactly is XML? It is a set of rules for
defining custom-built markup languages. The
XML specification enables people to define
their own markup language. Then they, or
others, can create XML documents using that
markup language.

The example shown in Figure i.1 is an XML
document that I created using an XML markup
language that I defined. It stores information
about my children using an XML structure and
custom tags that I designed.

xiii

Introduction

The Pow
er of XM

L

<?xml version="1.0"?>

<ancient_wonders>

 <wonder>

 <name language="English">
 Colossus of Rhodes</name>

 <name language="Greek">
 Κολοσσός της Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units=”feet”>107</height>

 <main_image file=”colossus.jpg”
 w="528" h="349"/>

 <source sectionid="101"
 newspaperid="21"/>

</wonder>

 ...

</ancient_wonders>

x m l

 At first glance, XML doesn’t look so differ-Figure i.2
ent from HTML: it is populated with tags, attributes,
and values. Notice, however, that the tags are different
than HTML, and in particular how the tags describe
the contents that they enclose. XML is also written
much more strictly, the rules of which we’ll discuss in
Chapter 1.

The Power of XML
So, why use XML? What does it do that exist-
ing technologies and languages don’t? For one,
XML was specifically designed for data stor-
age and transportation. XML looks a lot like
HTML, complete with tags, attributes, and val-
ues (Figure i.2). But rather than serving as a
language for displaying information, XML is a
language for storing and carrying information.

Another reason to use XML is that it is eas-
ily extended and adapted. You use XML to
design your own custom markup languages,
and then you use those languages to store your
information. Your custom markup language
will contain tags that actually describe the data
that they contain. And those tags can be reused
in other applications of XML, scaled back, or
added to, as you deem necessary.

XML can also be used to share data between
disparate systems and organizations. The reason
for this is that an XML document is simply a
text file and nothing more. It is well-structured,
easy to understand, easy to parse, easy to
manipulate, and is considered “human-read-
able.” For example, you were able to read, and
likely understand, the examples shown in both
Figures i.1 and i.2.

Finally, XML is a non-proprietary specifica-
tion and is free to anyone who wishes to use it.
It was created by the W3C (www.w3.org/), an
international consortium primarily responsible
for the development of platform-independent
Web standards and specifications. This open
standard has enabled organizations large
and small to use XML as a means of sharing
information. And, it has supported a larger
international effort to create new applica-
tions based on the XML standard, helping
to overcome barriers in commerce created by
independently developed standards and govern-
mental regulations.

www.w3.org/

xiv

Introduction

Ex
te

nd
in

g
XM

L

<?xml version="1.0"?>

<ancient_wonders>

...

 <wonder>

 <name language="English">
 Statue of Zeus at Olympia</name>

 <name language="Greek">
 ∆ίας μυθολογία</name>

 <location>Olympia, Greece
 </location>

 <height units="feet">39</height>

 <main_image file="zeus.jpg"
 w="528" h="349"/>

 </wonder>

...

</ancient_wonders>

x m l

 This XML excerpt is data describing the Figure i.3
Statue of Zeus at Olympia, one of the seven wonders of
the ancient world.

<html>

...

 <p align="center">

 STATUE OF ZEUS AT OLYMPIA

 <img src="zeus.jpg"
 width="528" height="349"/></p>

 The Statue of Zeus at Olympia
 (∆ίας μυθολογία) was
 located in Olympia, Greece and
 stood 39 feet tall.

</body>

</html>

h t m l

 This HTML is just one example of what Figure i.4
you can do with the XML document in Figure i.3
using XSL transformations.

Extending XML
An important observation about XML (Figure
i.3) is that while HTML is used to format data
for display (Figure i.4), XML describes, and
is, the data itself.

Since XML tags are created from scratch, those
tags have no inherent formatting; a browser
can’t know how to display the <wonder> tag.
Therefore, it’s your job to specify how an XML
document should be displayed. You can do this
using XSL, or eXtensible Stylesheet Language.

XSL is actually made up of three languages:
XSLT, for transforming XML documents;
XPath, for identifying different parts of an
XML document; and XSL-FO, for formatting
an XML document. XSL lets you manipulate
the information in an XML document into any
format you need; most frequently into HTML,
or an XML document with a different structure
than the original. XSL is described in detail in
Part 2 (see page 17).

In addition to displaying an XML document,
there are ways to define the structure of an
XML document. Either written with a DTD
(Document Type Definition) or with the XML
Schema language, these structural definitions
(or schemas) specify the tags you can use in
your XML documents, and what content and
attributes those tags can contain. You’ll learn
about DTD in Part 3 (see page 73), XML
Schema in Part 4 (see page 111), and I’ll explain
how you can use XML Namespaces to extend
XML Schemas in Part 5 (see page 161).

As with most technologies, even as you are
reading this page, there are numerous new
extensions being developed for XML. In
Part 6 (see page 181) of the book, I’ll discuss
some of these recent developments, including
XSLT 2.0, along with XPath 2.0 and its exten-
sion, XQuery, used for the querying of XML
and databases.

xv

Introduction

XM
L in Practice

 RSS Figure i.5 (Really Simple Syndication) is an
easy way for you to “subscribe” to news, podcasts and
other content from Web sites that offer RSS feeds.
Once you’ve subscribed to your favorite feeds, instead
of needing to browse to the sites you like, information
from these sites is delivered to you.

 Some believe that Google Suggest was Figure i.6
instrumental in bringing Ajax to the forefront of Web
development circles. The idea is simple: as you type,
Google Suggest displays matching search terms which
you can choose instead of continuing to type. Try it!
www.google.com/webhp?complete=1&hl=en

XML in Practice
Since the first edition of this book, XML has
been adopted in many significant ways. Not
the least of which is that all standard browsers
can read XML documents, use XML schemas
(DTD and XML Schema), and interpret XSL
to format and display XML documents.

That said, however, the once widely held
notion that XML could replace HTML for
serving Web pages is now more distant than
ever. To accomplish this would require world-
wide adoption of new browsers supporting
additional XML technologies and webmasters
around the world would need to undertake the
gargantuan task of rewriting their sites in XML.

Since XML is not going to replace HTML,
what was initially considered a temporary solu-
tion has become a well-recognized standard:
use XML to manage and organize information,
and use XSL to convert the XML into HTML.
With this, you benefit from the power of XML
to store and transport data, and the universality
of HTML to then format and display it.

In addition to becoming browser readable,
XML has been adopted in numerous other real
world applications. Two of the most widely
recognized uses are RSS and Ajax. RSS (Really
Simple Syndication) is an XML format used to
syndicate Web site content such as news arti-
cles, podcasts and blog entries (Figure i.5).

Ajax (Asynchronous JavaScript and XML) is a
type of Web programming that creates a more
enhanced user experience on the Web pages
that use it (Figure i.6). It is the result of com-
bining HTML and JavaScript with XML. Ajax
enables Web browsers to get new data from a
Web server without having to reload the Web
page each time, thereby increasing the page’s
responsiveness and usability.

You can read about both these applications of
XML, among others, in Part 7 (see page 219).

www.google.com/webhp?complete=1&hl=en

xvi

Introduction

Ab
ou

t T
hi

s B
oo

k

<?xml version="1.0"?>

<ancient_wonders>

...

 <wonder>

 <name language="English">
 Statue of Zeus at Olympia</name>

 <name language="Greek">
 ∆ίας μυθολογία</name>

 <location>Olympia, Greece
 </location>

 <height units="feet">39</height>

 <main_image file="zeus.jpg"
 w="528" h="349"/>

 </wonder>

...

</ancient_wonders>

x m l

 You can tell this is an example of XML Figure i.7
code because of the title bar and the green text color.
(You’ll usually be able to tell pretty easily anyway, but
just in case you’re in doubt, it’s an extra clue.)

About This Book
This book is divided into seven parts. Each part
contains one or more chapters with step-by-
step instructions which explain how to perform
XML-related tasks. Wherever possible, I display
examples of the concepts being discussed, and
I highlight the parts of the examples on which
to focus.

I often have two or more different examples
on the same page, perhaps an XSL style sheet
and the XML document that it will transform.
You can tell what type of file the example is by
looking at the example’s header and the color
of the text itself (Figures i.7 and i.8). For
example, XML uses green text and DTD uses
blue text.

Throughout the book, I have used the fol-
lowing conventions. When I want you to
type some text exactly as is, it will display in
a different font and bold. Then, when I want
you to change a placeholder in that text to a
term of your own, that placeholder will appear
italicized. Lastly, when I introduce a new term
or need to emphasize something, it will also
appear italicized.

A Guided Tour
The order of the book is intentionally designed.
In Part 1 of the book, I will show you how
to create an XML document. It’s relatively
straightforward, and even more so if you know
a little HTML.

Part 2 focuses on XSL; a set of languages
designed to transform an XML document into
something else: an HTML file, a PDF docu-
ment, or another XML document. Remember,
XML is designed to store and transport data,
not display it.

Parts 3 and 4 of the book discuss DTD and
XML Schema, languages designed to define
the structure of an XML document. In con-
junction with XML Namespaces (Part 5 of the
book), you can guarantee that XML documents

xvii

Introduction

About This Book

<!ELEMENT ancient_wonders (wonder+)>

<!ELEMENT wonder (name+, location,
 height, history, main_image,
 source*)>

<!ELEMENT name (#PCDATA)>

...

d t d

 This example of a DTD describes the Figure i.8
XML shown in Figure i.7. Don’t worry if this is not so
easy to understand now, I’ll go through it in detail in
Part 3 of the book.

conform to a pre-defined structure, whether
created by you or by someone else.

Part 6, Developments and Trends, details
some of the up-and-coming XML-related lan-
guages, as well as a few new versions of existing
languages. Finally, Part 7 identifies some well-
known uses of XML in the world today; some
of which you may be surprised to learn.

XML2e Companion Web Site
You can download all the examples used in this
book at www.kehogo.com/xml2e. I strongly rec-
ommend that you do so, and then follow along
either electronically, or using a paper printout.
In many cases, it’s impossible to show an entire
example on a page, and yet it would be help-
ful for you to see it all. Having an XML editor
opened with the examples is ideal; see Appendix
A for some XML editor recommendations. If
not, at least having a paper printout will prove
very useful.

You will also find that the Web site contains
additional support material for the book,
including an online table of contents, a ques-
tion and answer section, and updates. I
welcome your questions and comments at the
Q & A section of the site. Answering ques-
tions publicly allows me to help more people at
the same time (and gives you, the readers, the
opportunity to help each other).

From 2001 to 2008
This book is an updated and expanded version
of Elizabeth Castro’s XML for the World Wide
Web published in 2001. Liz has written many
best-selling books on different technologies
and I am delighted and honored to be updating
her work.

I hope that you enjoy learning about XML as
much as I’ve enjoyed writing about it.

www.kehogo.com/xml2e

xviii

Introduction

W
ha

t T
hi

s B
oo

k
is

No
t

 The World Wide Web ConsortiumFigure i.9
(www.w3.org) is the main standards body for the
Web. You can find the official specifications there for
all the languages discussed in this book, including
XML, XSL, DTD, and XML Schema. You’ll also
find information on advanced and additional topics
including XSL-FO, XQuery, and of course, HTML
and XHTML.

What This Book is Not
XML is an incredibly powerful system for
managing information. You can use it in com-
bination with many, many other technologies.
You should know that this book is not, nor
does it try to be, an exhaustive guide to XML.
Instead, it is a beginner’s guide to using XML
and its core tools / languages.

This book won’t teach you about SAX, OPML,
or XML-RPC, nor will it teach you about
JavaScript, Java, or PHP, although these are
commonly used with XML. Many of these top-
ics deserve their own books (and have them).
While there are numerous ancillary technolo-
gies that can work with XML documents, this
book focuses on the core elements of XML,
XML transformations, and schemas. These
are the basic topics you need to understand
in order to start creating and using your own
XML documents.

Sometimes, especially when you’re starting out,
it’s more helpful to have clear, specific, easy-to-
grasp information about a smaller set of topics,
rather than general, wide-ranging data about
everything under the sun. My hope is that this
book will give you a solid foundation in XML
and its core technologies which will enable you
to move on to the other pieces of the XML
puzzle once you’re ready.

www.w3.org

1

Writing XML 3

PART 1:
XML

This page intentionally left blank

1

3

W
riting XM

L

WRITING XML
The XML specification defines how to write
a document in XML format. XML is not a
language itself. Rather, an XML document is
written in a custom markup language, according
to the XML specification. For example, there
could be custom markup languages describing
genealogical, chemical, or business data, and
you could write XML documents in each one.

Every custom markup language created using
the XML specification must adhere to XML’s
underlying grammar. Therefore, that is where
I will start this book. In this chapter, you will
learn the rules for writing XML documents,
regardless of the specific custom markup lan-
guage in which you are writing.

Officially, custom markup languages created
with XML are called XML applications. In
other words, these custom markup languages
are applications of XML, such as XSLT, RSS,
SOAP, etc. But for me, an application is a full-
blown software program, like Photoshop. I find
the term so imprecise, I usually try to avoid it.

Tools for Writing XML
XML, like HTML, can be written using any
text editor or word processor. There are also
many XML editors that have been created since
the first edition of this book. These editors have
various capabilities, such as validating your
XML as you type (see Appendix A).

I’ll assume you know how to create new docu-
ments, open old ones for editing, and save them
when you’re done. Just be sure to save all your
XML documents with the .xml extension.

4

Chapter 1

An
 X

M
L S

am
pl

e

An XML Sample
XML documents, like HTML documents, are
comprised of tags and data. One big difference
between the two documents, however, is that
the tags used by an XML document are created
by the author. Another big difference is that an
XML document stores and describes that data;
it doesn’t do anything more with the data, such
as display it, like an HTML document does.

XML documents should be rather self-explan-
atory in that the tags should describe the data
they contain (Figure 1.1).

The first line of the XML document <?xml
version="1.0"?> is the XML declaration which
notes which version of XML you are using.
The next line <wonder> begins the data part
of the document and is called the root element.
In an XML document, there can be only one
root element.

The next 3 lines are called child elements, and
they describe the root element in more detail.

 <name>Colossus of Rhodes</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>

The last child element, height, contains an
attribute called units which is being used to
store the specific units of the height measure-
ment. Attributes are used to include additional
information to the element, without adding
text to the element itself.

Finally, the XML document ends with the clos-
ing tag of the root element </wonder>.

This is a complete and valid XML document.
Nothing more needs to be written, added,
annotated, or complicated. Period.

<?xml version="1.0"?>

<wonder>

 <name>Colossus of Rhodes</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

</wonder>

x m l

 An XML document describing one of the Figure 1.1
Seven Wonders of the World: the Colossus of Rhodes.
The document contains the name of the wonder, as
well as its location and its height in feet.

<?xml version="1.0"?>

<ancient_wonders>

 <wonder>

 <name>Colossus of Rhodes</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 </wonder>

 <wonder>

 <name>Great Pyramid of Giza</name>

 <location>Giza, Egypt</location>

 <height units="feet">455</height>

 </wonder>

</ancient_wonders>

x m l

 Here I am extending the XML document Figure 1.2
in Figure 1.1 above to support multiple <wonder>
elements. This is done by creating a new root element
<ancient_wonders> which will contain as many
<wonder> elements as desired. Now, the XML docu-
ment contains information about the Colossus of
Rhodes along with the Great Pyramid of Giza, which
is located in Giza, Egypt, and is 455 feet tall.

5

Writing XML

Rules for W
riting XM

L

Rules for Writing XML
XML has a structure that is extremely regular
and predictable. It is defined by a set of rules,
the most important of which are described
below. If your document satisfies these rules, it
is considered well-formed. Once a document is
considered well-formed, it can be used in many,
many ways.

A root element is required
Every XML document must contain one, and
only one, root element. This root element
contains all the other elements in the docu-
ment. The only pieces of XML allowed outside
(preceding) the root element are comments and
processing instructions (Figure 1.3).

Closing tags are required
Every element must have a closing tag. Empty
elements (see page 12) can use a separate closing
tag, or an all-in-one opening and closing tag
with a slash before the final > (Figure 1.4, and
Nesting Elements, later in this chapter).

Elements must be properly nested
If you start element A, then start element B,
you must first close element B before closing
element A (Figure 1.4).

Case matters
XML is case sensitive. Elements named
wonder, WONDER, and Wonder are considered
entirely separate and unrelated to each other
(Figure 1.5).

Values must be enclosed in
quotation marks
An attribute’s value must always be enclosed
in either matching single or double quotation
marks (Figure 1.6).

<?xml version="1.0"?>

<wonder>

 <name>Colossus of Rhodes</name>

</wonder>

x m l

 In a well-formed XML document, there Figure 1.3
must be one element (wonder) that contains all other
elements. This is called the root element. The first
line of an XML document is an exception because it’s a
processing instruction and not part of the XML data.

<?xml version="1.0"?>

<wonder>

 <name>Colossus of Rhodes</name>

 <main_image file="colossus.jpg"/>

</wonder>

x m l

 Figure 1.4 Every element must be enclosed by match-
ing tags such as the name element. Empty elements
like main_image can have an all-in-one opening and
closing tag with a final slash. Notice that all elements
are properly nested; that is, none are overlapping.

<name>Colossus of Rhodes</name>
<Name>Colossus of Rhodes</Name>

x m l

<name>Colossus of Rhodes</Name>

x m l

 The top example is valid XML, though Figure 1.5
it may be confusing. The two elements (name and
Name) are actually considered completely different
and independent. The bottom example is incorrect
since the opening and closing tags do not match.

<main_image file="colossus.jpg"/>

x m l

 Figure 1.6 The quotation marks are required. They
can be single or double, as long as they match each
other. Note that the value of the file attribute doesn’t
necessarily refer to an image; it could just as easily say
"The picture from last summer's vacation".

6

Chapter 1

Ele
m

en
ts

, A
ttr

ib
ut

es
, a

nd
 V

al
ue

s

<height>107</height>

Opening tag

Angle brackets Forward slash

Closing tag

Content

 A typical element is comprised of an Figure 1.7
opening tag, content, and a closing tag. This height
element contains text.

<height units="feet" > 107 </height>

Attribute name Value (in quotes)

Attribute

Equals sign

 The Figure 1.8 height element now has an attribute
called units whose value is feet. Notice that the word
feet isn’t part of the height element’s content. This
doesn’t make the value of height equal to 107 feet.
Rather, the units attribute describes the content of the
height element.

<wonder>
 <name> Colossus of Rhodes </name>
 <location>Greece</location>
 <height units="feet">107
 </height>
</wonder>

Opening tag

Content

Closing tag

 Figure 1.9 The wonder element shown here contains
three other elements (name, location, and height),
but it has no text of its own. The name, location and
height elements contain text, but no other elements.
The height element is the only element that has an
attribute. Notice also that I’ve added extra white
space (green, in this illustration), to make the code
easier to read.

Elements, Attributes, and Values
XML uses the same building blocks as HTML:
tags that define elements, values of those ele-
ments, and attributes. An XML element is
the most basic unit of your document. It can
contain text, attributes, and other elements.
An element has an opening tag with a name
written between less than (<) and greater than
(>) signs (Figure 1.7). The name, which you
invent yourself, should describe the element’s
purpose and, in particular, its contents. An ele-
ment is generally concluded with a closing tag,
comprised of the same name preceded with a
forward slash, enclosed in the familiar less than
and greater than signs. The exception to this is
called an empty element which may be “self-
closing,” and is discussed on page 12.

Elements may have attributes. Attributes, which
are contained within an element’s opening
tag, have quotation-mark delimited values that
further describe the purpose and content (if
any) of the particular element (Figure 1.8).
Information contained in an attribute is gener-
ally considered metadata; that is, information
about the data in the element, as opposed to
the data itself. An element can have as many
attributes as desired, as long as each has a
unique name.

The rest of this chapter is devoted to writing
elements, attributes, and values.

White Space
You can add extra white space, including line
breaks, around the elements in your XML code
to make it easier to edit and view (Figure
1.9). While extra white space is visible in the
file and when passed to other applications, it
is ignored by the XML processor, just as it is
with HTML in a browser.

7

Writing XML

How
 To Begin

<?xml version="1.0"?>

x m l

 Because the XML declaration is a Figure 1.10
processing instruction and not an element, there is
no closing tag.

How To Begin
In general, you should begin each XML docu-
ment with a declaration that notes what version
of XML you’re using. This line is called the
XML declaration (Figure 1.10).

To declare the version of XML that
you’re using:
1. At the very beginning of your document,

before anything else, type <?xml.
2. Then, type version="1.0".
3. Finally, type ?> to complete the declaration.

✔ Tips
■ The W3C released a Recommendation for

XML Version 1.1 in 2006, but it has few
new benefits and little to no support.

■ Be sure to enclose the version number
in single or double quotation marks. (It
doesn’t matter which you use, so long as
they match.)

■ Tags that begin with <? and end with ?>
are called processing instructions. In addition
to declaring the version of XML, process-
ing instructions are also used to specify
the style sheet that should be used, among
other things. Style sheets are discussed in
detail in Part 2, XSL.

■ This XML processing instruction can also
designate the character encoding (UTF-8,
ISO-8859-1, etc.), that you’re using for the
document. Character encodings are dis-
cussed in Appendix B.

8

Chapter 1

Cr
ea

tin
g

th
e

Ro
ot

 E
lem

en
t

Creating the Root Element
Every XML document must have one, and only
one, element that completely contains all the
other elements. This all-encompassing parent
element is called the root element.

To create the root element:
1. At the beginning of your XML document,

type <root>, where root is the name of the
element that will contain the rest of the
elements in the document (Figure 1.11).

2. Leave a few empty lines for the rest of your
XML document.

3. Finally, type </root> exactly matching the
name you chose in Step 1.

✔ Tips
■ Case matters. <WONDER> is not the

same as <Wonder> or <wonder>.
■ Element (and attribute) names should be

short and descriptive.
■ Element and attribute names must begin

with a letter, an underscore, or a colon.
Names that begin with the letters xml (in
any combination of upper- and lowercase),
are reserved and cannot be used.

■ Element and attribute names may contain
any number of letters, digits, underscores,
and a few other punctuation characters.

■ Caveat: Although colons, hyphens, and
periods are valid within element and attri-
bute names, I recommend that you avoid
including them, as they’re often used in
specific circumstances (such as for identify-
ing namespaces, subtraction, and object
properties, respectively).

■ No elements are allowed outside the
opening and closing root tags. The only
items that are allowed are processing
instructions (see page 7).

<?xml version="1.0"?>

<ancient_wonders>

</ancient_wonders>

x m l

 Figure 1.11 In HTML, the root element is always
<HTML>. In XML, you can use any valid name for
your root element, including <ancient_wonders>, as
shown here. No content or other elements are allowed
before or after the opening and closing root tags,
respectively.

9

Writing XML

W
riting Child Elem

ents

Writing Child Elements
Once you have created your root element, you
can create any child element you like. The idea
is that there is a relationship between the root,
or parent element, and its child element. When
creating child elements, use names that clearly
identify the content so that it’s easier to process
the information at a later date.

To write a child element:
1. Type <name>, where name identifies the

content that is about to appear; the child
element’s name.

2. Create the content.
3. Finally, type </name> matching the

word you chose in Step 1 (Figures 1.12
and 1.13).

✔ Tips
■ The closing tag is never optional (as it

sometimes is in HTML). In XML, ele-
ments must always have a closing tag.

■ The rules for naming child elements are
the same as those for root elements. Case
matters. Names must begin with a letter,
underscore, or colon, and may contain
letters, digits, and underscores. However,
although valid, I recommend that you
avoid including colons, dashes, and periods
within your names. In addition, you may
not use names that begin with the letters
xml, in any combination of upper- and
lowercase.

■ Names need not be in English or even the
Latin alphabet, but if your software doesn’t
support these characters, they may not dis-
play or be processed properly.

■ If you use descriptive names for your ele-
ments, your XML will be easier to leverage
for other uses.

<wonder>Colossus of Rhodes</wonder>

Opening tag

Angle brackets Forward slash

Closing tagContent

 Figure 1.12 A simple XML element is comprised of an
opening tag, content (which might include text, other
elements, or be empty), and a closing tag whose only
difference with the opening tag is an initial forward
slash.

<?xml version="1.0"?>

<ancient_wonders>

 <wonder>Colossus of Rhodes</wonder>

</ancient_wonders>

x m l

 Figure 1.13 Every element in your XML document
must be contained within the opening and closing tags
of the root element.

10

Chapter 1

Ne
st

in
g

Ele
m

en
ts

Nesting Elements
Oftentimes when creating your XML docu-
ment, you’ll want to break down your data into
smaller pieces. In XML, you can create child
elements of child elements of child elements,
etc. The ability to nest multiple levels of child
elements enables you to identify and work with
individual parts of your data and establish a
hierarchical relationship between these indi-
vidual parts.

To nest elements:
1. Create the opening tag of the outer ele-

ment as described in Step 1 on page 9.
2. Type <inner>, where inner is the name of

the first individual chunk of data; the first
child element.

3. Create the content of the <inner> element,
if any.

4. Then, type </inner> matching the word
chosen in Step 2.

5. Repeat Steps 2–4 as desired.
6. Finally, create the closing tag of the outer

element as described in Step 3 on page 9.

✔ Tips
■ It is essential that each element be com-

pletely enclosed in another. In other words,
you may not write the closing tag for the
outer element until the inner element is
closed. Otherwise, the document will
not be considered well-formed, and will
generate an error in the XML processor
(Figure 1.14).

■ You can nest as many levels of elements as
you like (Figure 1.15).

■ When nesting elements, best practices
suggest that you indent the child element.
This enables you to easily see parent, child,
and sibling relationships. Most XML edi-
tors will automatically do this for you.

<wonder><name>Colossus</name></wonder>

<wonder><name>Colossus</wonder></name>

Correct (no overlapping lines)

Incorrect (the sets of tags cross over each other)

 Figure 1.14 To make sure your tags are correctly
nested, connect each set with a line. None of your sets
of tags should overlap any other set; each inner set
should be completely enclosed within its next outer set.

<?xml version="1.0"?>

<ancient_wonders>

 <wonder>

 <name>Colossus of Rhodes</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 </wonder>

</<ancient_wonders>

x m l

 Figure 1.15 Now the wonder element is nested as
a child of the ancient_wonders element, and name,
location and height are nested as child elements of the
wonder element.

11

Writing XML

Adding Attributes

Adding Attributes
An attribute stores additional information
about an element, without adding text to the
element’s content itself. Attributes are known
as “name-value pairs,” and are contained within
the opening tag of an element (Figure 1.16).

To add an attribute:
1. Before the closing > of the opening tag,

type attribute=, where attribute is the word
that identifies the additional data.

2. Then, type "value", where value is that
additional data. The quotes are required.

✔ Tips
■ Attribute names must follow the same rules

as element names, see the Tips on page 9.
■ No two attributes in a given element may

have the same name.
■ Unlike in HTML, attribute values must,

must, must be in quotes. You can use
either single or double quotes, as long as
they match within a single attribute.

■ If an attribute’s value contains double
quotes, use single quotes to contain the
value (and vice versa). For example,
comments= 'She said, "The Colossus has
fallen!"'.

■ Best practices suggest that attributes
should be used as “metadata”; that is, data
about data. In other words, attributes
should be used to store information about
the element’s content, and not the content
itself (Figure 1.17).

■ An additional way to mark and identify
distinct information is with nested ele-
ments (see page 10).

<height language="English">Colossus</name>

Attribute name Value (in quotes)

Attribute

Equals sign

 Attributes are Figure 1.16 name-value pairs
enclosed within the opening tag of an element. The
value must be contained in matched quotation marks
(either single or double).

<?xml version="1.0"?>

<ancient_wonders>

 <wonder>

 <name language="English">Colossus
 of Rhodes</name>

 <name language="Greek">Κολοσσός της
 Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 </wonder>

</ancient_wonders>

x m l

 Figure 1.17 Attributes let you add information
about the contents of an element.

12

Chapter 1

Us
in

g
Em

pt
y

Ele
m

en
ts

Using Empty Elements
Empty elements are elements that do not have
any content of their own. Instead, they will
have attributes to store data about the element.
For example, you might have a main_image
element with an attribute containing the file-
name of an image, but it has no text content
at all.

To write an empty element with a
single opening/closing tag:
1. Type <name, where name identifies the

empty element.
2. Create any attributes as necessary, follow-

ing the instructions on page 11.
3. Finally, type /> to complete the element

(Figure 1.18).

To write an empty element with
separate opening and closing tags:
1. Type <name, where name identifies the

empty element.
2. Create any attributes as necessary, follow-

ing the instructions on page 11.
3. Finally, type > to complete the opening tag.
4. Then, with no spaces, type </name> to

complete the element, matching the word
you chose in Step 1.

✔ Tips
■ In XML, both of the above methods are

equivalent (Figure 1.19). Which one to
use is a stylistic preference; I write elements
using a single opening / closing tag.

■ In contrast with HTML, you are not
allowed to use an opening tag with no cor-
responding closing tag. A document that
contains such a tag is not considered well-
formed and will generate an error in the
XML processor.

<main_image file="colossus.jpg"/>

Less than sign

Forward slash
and greater than sign

 Empty elements can combine the open-Figure 1.18
ing and closing tags in one, as shown here, or can
consist of an opening tag followed immediately by an
independent closing tag as seen in the example below.

<?xml version="1.0"?>

<wonders_of_the_world>

 <wonder>

 <name language="English">Colossus
 of Rhodes</name>

 <name language="Greek">Κολοσσός της
 Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 <main_image file="colossus.jpg"
 w="528" h="349"/>

 <source sectionid="101"
 newspaperid="21"></source>

 </wonder>

</wonders_of_the_world>

x m l

 Figure 1.19 Typical empty elements are those like
source and main_image. Notice that these elements
only contain data in their attributes; the element has
no content of its own. I’ve used both empty element
formats in this example: single opening / closing tag
and separate opening and closing tags.

13

Writing XML

W
riting Com

m
ents

Writing Comments
It’s often useful to annotate your XML
documents so that you know why you used a
particular element, or what a piece of infor-
mation specifically means. As with HTML,
you can insert comments into your XML
documents, and they will not be parsed by the
processor (Figure 1.20).

To write comments:
1. Type <!--.
2. Write your desired comments.
3. Finally, type --> to close the comment.

✔ Tips
■ Comments can contain spaces, text, ele-

ments, and line breaks, and can therefore
span multiple lines of XML.

■ No spaces are required between the double
hyphens and the content of the com-
ments itself. In other words <!--this is a
comment--> is perfectly fine.

■ You may not use a double hyphen within a
comment itself.

■ You may not nest comments within other
comments.

■ You may use comments to hide a piece of
your XML code during development or
debugging. This is called “commenting
out” a section. The elements within a com-
mented out section, along with any errors
they may contain, will not be processed by
the XML processor.

■ Comments are also useful for document-
ing the structure of an XML document, in
order to facilitate changes and updates in
the future (Figure 1.21).

<!-- updated May 23, 2008 -->

Less than sign, exclamation point, and two hyphens

Two hyphens
and greater than sign

Comments

 XML comments have the same syntax Figure 1.20
as HTML comments.

<?xml version="1.0"?>

<wonders_of_the_world>

 <wonder>

 <name language="English">Colossus
 of Rhodes</name>

 <name language="Greek">Κολοσσός της
 Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 <main_image file="colossus.jpg"
 w="528" h="349"/>

 <!-- the research on this wonder of
 the world came in part from the
 sectionid of the newspaper
 (identified by newspaperid) in
 the source tag below -->

 <source sectionid="101"
 newspaperid="21"/>

 </wonder>

</wonders_of_the_world>

x m l

 Figure 1.21 Comments let you add information
about your code. They can be incredibly useful when
you (or someone else) need to go back to a document
and understand how it was constructed.

14

Chapter 1

Pr
ed

ef
in

ed
 E

nt
iti

es
 –

 F
iv

e
Sp

ec
ia

l S
ym

bo
ls

Predefi ned Entities – Five Special
Symbols
Entities are a kind of autotext; a way of enter-
ing text into an XML document without typing
it all out. There are many letters and symbols
that can be inserted into HTML documents by
using entities. In XML, however, there are only
five predefined entities.

To write the fi ve predefi ned entities:
◆ Type & to create an ampersand char-

acter (&).
◆ Type < to create a less than sign (<).
◆ Type > to create a greater than sign (>).
◆ Type " to create a double quotation

mark (").
◆ Type ' to create a single quotation

mark or apostrophe (').

✔ Tips
■ Predefined entities exist in XML because

each of these characters have specific mean-
ings. For example, if you used (<) within
the text value of an element or attribute,
the XML processor would think you were
starting a new element (Figure 1.22).

■ You may not use (<) or (&) anywhere in
your XML document, except to begin a
tag or an entity, respectively. If you need to
use one of these characters within the text
value of an element or attribute, you must
use one of the predefined entities.

■ You may use ("), ('), or (>) within the text
value of an element or attribute. However,
when using (") or ('), be on the lookout
for unintentionally matching existing
quotes. Also, I always recommend using
the predefined entity for (>) to avoid any
possible confusion.

■ If you want to create additional entities for
your XML documents, you must explicitly
declare them (see Chapter 7).

<?xml version="1.0"?>

<wonders_of_the_world>

 <wonder>

 <name language="English">Colossus
 of Rhodes</name>

 <name language="Greek">Κολοσσός της
 Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">< 107
 </height>

 <main_image file="colossus.jpg"
 w="528" h="349"/>

 <source sectionid="101"
 newspaperid="21"/>

 </wonder>

</wonders_of_the_world>

x m l

 Figure 1.22 When this document is parsed, the >
entity will be displayed as >. So when the value of the
height element is displayed, it will likely read some-
thing like "< 107 ". How it is displayed will depend
on the transformation of the XML, which is discussed
in Part 2, XSL.

15

Writing XML

Displaying Elem
ents as Text

Displaying Elements as Text
If you want to write about XML elements and
attributes in your XML documents, you will
want to keep the XML processor from inter-
preting them, and instead just display them as
regular text. To do this, you enclose such infor-
mation in a CDATA section (Figure 1.23).

To display elements as text:
1. Type <![CDATA[.
2. Create the elements, attributes, and con-

tent that you would like to display, but not
process.

3. Finally, type]]> to complete the tag.

✔ Tips
■ Two other common uses for the CDATA

section are to enclose HTML and
JavaScript so that they are not parsed by
the XML processor.

■ CDATA stands for (unparsed) Character
Data, meaning that the CDATA content
will not be interpreted by the XML proces-
sor. This is opposed to PCDATA, which
stands for Parsed Character Data and is
discussed in Chapter 6.

■ The special meaning that symbols have is
ignored in the CDATA section. To display
the less than and ampersand symbols, you
would write < and &. If you write < and
&, that’s what will display; they will
not be replaced with < and &.

■ You may not nest CDATA sections.
■ CDATA sections can be used anywhere

within the root element of an XML
document.

■ If, for some reason, you want to write]]>
and you are not closing a CDATA section,
the > must be written as >. See page 14
and Appendix B for more information on
writing special symbols.

<?xml version="1.0"?>

<xml_book>

 <tags>

 <appearance>

<![CDATA[
<ancient_wonders>
 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>
 <main_image file="colossus.jpg"
 w="528" h="349"/>
 <source sectionid="101"
 newspaperid="21"/>
 </wonder>
</ancient_wonders>
]]>

 </appearance>

 </tags>

</xml_book>

x m l

 In this example about an example, I use Figure 1.23
CDATA to display the actual code, without the XML
processor parsing it first.

 Figure 1.24 Shown here in Internet Explorer 7 for
Windows, you can see how the elements within the
CDATA section are treated as text; in contrast with
the xml_book, tags, and appearance elements, which
are parsed by the XML processor.

This page intentionally left blank

17

XSLT 19
XPath Patterns and Expressions 37

XPath Functions 49
XSL-FO 61

PART 2:
XSL

This page intentionally left blank

2

19

XSLT

XSLT
Now that you have an understanding of the
XML language and how to create and read
XML documents, the next step is to format
those documents. The details for formatting
XML documents was originally in a specifica-
tion called XSL, which stands for eXtensible
Style Language. However, because it was taking
so long to finish, the W3C divided XSL into
two pieces: XSLT (for Transformations) and
XSL-FO (for Formatting Objects).

This chapter, and the two that follow, explain
how to use XSLT to transform XML docu-
ments. The end result might be another XML
document or an HTML document. In real-
ity, you can transform an XML document
into practically any document type you like.
Transforming an XML document means using
XSLT to analyze its contents and then take
certain actions depending on what elements are
found. You can use XSLT to reorder the output
according to specific criteria, display only cer-
tain pieces of information, and much more.

XSL-FO is typically used to format XML for
print output, such as going directly to a PDF. It
is not supported by any browsers, and requires
specific parsing software to use. For more infor-
mation on XSL-FO, see Chapter 5.

Most of the examples in this part of the book
are based on a single XML file and a set of
XSLT files, in which each often builds on the
previous. I strongly recommend downloading
the examples from the companion Web site
(mentioned in the book’s Introduction) and
following along.

20

Chapter 2

Tr
an

sf
or

m
in

g
XM

L w
ith

 X
SL

T

Transforming XML with XSLT
Let’s start with an overview of the transfor-
mation process. The process starts with two
documents, the XML document which con-
tains the source data to be transformed, and
the XSLT style sheet document which describes
the rules of the transformation. While you can
transform XML into nearly any format, I am
going to use examples that return HTML.

To perform the actual transformation, you’ll
need an XSLT processor, or a browser that sup-
ports XSLT. Most current XML Editors have
built-in XSLT support, as do most current Web
browsers. See Appendix A for details.

Analyzing the source XML
To begin, you’ll need to link your XML
document to your XSLT style sheet using
the xml-stylesheet processing instruction
(Figure 2.1). Then, when you open your
XML document in an XSLT processor or a
browser, the instruction tells the processor to
perform the XSLT transformation before dis-
playing the document.

In the first step of this transformation, the
XSLT processor analyzes the XML document
and converts it into a node tree. A node tree is a
hierarchical representation of the XML docu-
ment (Figure 2.2). In the tree, a node is one
individual piece of the XML document (such as
an element, an attribute, or some text content).

Assessing the XSLT style sheet
Once the processor has identified the nodes in
the source XML, it then looks to an XSLT style
sheet (Figure 2.3) for instructions on what
to do with those nodes. Those instructions are
contained in templates which are comparable to
functions in a programming language.

Each XSLT template has two parts: first, a label
that identifies the nodes in the XML document
to which the template applies; and second,
instructions about the actual transformation

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl"
 href="02-03.xsl"?>

<ancient_wonders>
 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <location>Rhodes, Greece</location>
 </wonder>
</ancient_wonders>

x m l

 This is a very basic XML document Figure 2.1
representing a single wonder of the world. Notice the
xml-stylesheet processing instruction linking this
XML document to an XSLT style sheet.

ancient_wonders

wonder
name
 language
 English
 Colossus of Rhodes
location
 Rhodes, Greece

root node

element nodes

attribute node

text nodes
element node

text node

 Figure 2.2 Here is a representation of the node tree
that corresponds to the XML document shown in
Figure 2.1.

21

XSLT

Transform
ing XM

L w
ith XSLT

that should take place. The instructions, or
rules, will either output or further process the
nodes in the source document. They can also
contain literal elements that should be output
as is.

Performing the transformation
The XSLT transformation begins by process-
ing the root template. Every XSLT style sheet
must have a root template; this is the template
the applies to the source XML document’s
root node. In Figure 2.3, the root template is
defined with <xsl:template match = "/">.
Within this root template, there may be other
sub-templates which can then apply to other
nodes in the XML document.

And the transformation continues until the last
instruction of the root template is processed.
The transformed document is then either saved
to another file, displayed in a browser (Figure
2.4), or both.

While you can use XSLT to convert almost
any kind of document into almost any other
kind of document, that’s a pretty vague topic
to tackle. In this book, I am focusing on using
XSLT to convert XML into HTML. This lets
you take advantage of the strengths and flexibil-
ity of XML for handling your data, as well as
the compatibility of HTML for viewing it.

✔ Tips
■ XSLT style sheets are text files and are

saved with an .xsl extension.
■ With some XSLT processors, you don’t

need an xml-stylesheet instruction in
your XML document. Instead, you can
assign your XSLT style sheet to an XML
document.

■ XSLT uses the XPath language to identify
nodes. XPath is sufficiently complex to
warrant its own chapters: Chapter 3, XPath
Patterns and Expressions, and Chapter 4,
XPath Functions.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:template match="/">

 <html><head><title>Wonders of the
 World</title></head><body>
 <h1>Wonders of the World</h1>

 The <xsl:value-of select=
 "ancient_wonders/wonder/name"/>

 is located in
 <xsl:value-of select=
 "ancient_wonders/wonder
 /location"/>.

 </body></html>

 </xsl:template>

</xsl:stylesheet>

x s l t

 Figure 2.3 A very basic XSLT document to transform
the XML document shown in Figure 2.1.

 Figure 2.4 The final transformed HTML shown in
Internet Explorer 7.

22

Chapter 2

Be
gi

nn
in

g
an

 X
SL

T
St

yl
e

Sh
ee

t

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="1.0">

</xsl:stylesheet>

x s l t

 Figure 2.5 An XSLT style sheet is itself an XML
document and must be well-formed.

Beginning an XSLT Style Sheet
Every XSLT style sheet is actually an XML
document in itself, and therefore should begin
with a standard XML declaration. Once that’s
out of the way, you define the W3C namespace
for style sheets.

To begin an XSLT style sheet:
1. Type <?xml version="1.0"?> to indicate

that the XSLT style sheet is an XML
document.

2. Type <xsl:stylesheet xmlns:xsl=
"http://www.w3.org/1999/XSL/
Transform" version="1.0"> to specify the
namespace for the style sheet and declare
its prefix (xsl).

3. Leave a few empty lines where you will
create the style sheet (with the instructions
contained in this and the following two
chapters).

4. Finally, type </xsl:stylesheet> to complete
the style sheet (Figure 2.5).

✔ Tips
■ There are no spaces contained in the

xsl:stylesheet tag. (It is not
xsl:style sheet.) Nevertheless, I do
use two words to refer to style sheets when
talking about them in this book (as is the
convention).

■ The header for a style sheet is almost
always the same. You can just copy and
paste the two lines from one style sheet to
the next.

■ For more information on namespaces, see
Chapters 12 and 13.

23

XSLT

Creating the Root Tem
plate

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:template match="/">

</xsl:template>

</xsl:stylesheet>

x s l t

 The root template (Figure 2.6 match="/") is the
starting point for all XSLT processing.

Creating the Root Template
The first thing that the XSLT processor looks
for in a style sheet is the root template. This
is the template that defines the set of rules to
apply to the root node of the XML document.
Specifically, it describes how to process or trans-
form the content from the root node into some
new output.

To create the root template:
1. Type <xsl:template.
2. Then, type match="/". The forward slash

matches the root node of the XML source
document.

3. Next, type > to close the tag.
4. Leave a few lines for specifying the rules of

the template, that is, what transformation
should happen with the XML document
(I’ll get there on pages 24–34).

5. Finally, type </xsl:template> to complete
the root template (Figure 2.6).

✔ Tips
■ While the XSLT processor doesn’t care

where the root template appears in your
XSLT style sheet, it will probably be clear-
est to you (and the people who might need
to understand your style sheet) if you put it
up at the very top.

■ All XSLT transformations must start with
the root template. If you do not include
a root template in your XSLT style sheet,
a root template built in to the XSLT pro-
cessor is automatically used. Usually, this
built-in template simply lists all the data in
the XML document in plain text (which is
probably not what you want).

24

Chapter 2

Ou
tp

ut
tin

g
HT

M
L

Outputting HTML
Now that you’ve created the root template, you
need to define the set of rules for this template;
the rules that will apply to the content in the
root node. Typically, in the root template, you
will start by creating the structure for the final
transformed document. If your final docu-
ment is HTML, you’ll want to add HTML
header information (head, title, body, etc.)
at the very least. Of course, you can add more
HTML, CSS, and JavaScript, as well.

To have your XSLT processor output HTML,
you will need to use the xsl:output process-
ing instruction (Figure 2.7). You can set the
output method to either html, xml, or text. If
this instruction is omitted, processors will out-
put XML by default.

To set the processor’s output method
to HTML:
1. Immediately after the xsl:stylesheet

element, type <xsl:output .
2. Then, type method="html"/> .

Then, to add HTML to your output, you’ll use
literal elements, one of the components of an
XSLT style sheet. Literals are typically HTML
code and text, and they are output just as they
appear in the style sheet.

To add HTML to the root template’s
output:
◆ Inside the root template rule (that is,

between <xsl:template match="/"> and
its matching </xsl:template>), add the
HTML that you’d like to output when this
template is applied.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:output method="html"/>

<xsl:template match="/">

 <html><head><title>Wonders of the
 World</title></head>
 <body>
 <p align="center"><img
 src="herodotus.jpg" width="120"
 height="171" /></p>
 <p>The famous Greek historian
 Herodotus wrote of seven great
 architectural achievements. And
 although his writings did not
 survive, he planted seeds for
 what has become the list of the
 Seven Wonders of the
 Ancient World.
 </p>
 </body>
 </html>

</xsl:template>

</xsl:stylesheet>

x s l t

 Within the root template, anything that’s Figure 2.7
not an XSLT instruction, in other words, literal
elements, will be output as is. It’s an easy way to add
HTML tags and text to the output.

25

XSLT

Outputting HTM
L

In templates other than the root template, you
can add HTML to the output.

To add HTML to any template’s
output:
◆ Inside any other template rule (that is,

between <xsl:template match="...">
and its matching </xsl:template>, add
the HTML that you’d like to output when
this particular template is applied.

✔ Tips
■ Because all XSLT documents are XML

documents, they must be well-formed.
Consequently, the HTML you use in the
XSLT document must be well-formed as
well. See Chapter 1 for more details.

■ For more information about how to write
HTML or XHTML, you might want
to consult Elizabeth Castro’s bestselling
HTML, XHTML, and CSS, Sixth Edition:
Visual QuickStart Guide. For more details
see: www.cookwood.com/html6ed/.

<html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html;
 charset=UTF-8">
 <title>Wonders of the World</title>
 </head>

 <body>
 <p align="center"><img
 src="herodotus.jpg" width="120"
 height="171" /></p>
 <p>The famous Greek historian
 Herodotus wrote of seven great
 architectural achievements. And
 although his writings did not
 survive, he planted seeds for
 what has become the list of the
 Seven Wonders of the
 Ancient World.
 </p>
 </body>

</html>

h t m l

 Although an XML document was pro-Figure 2.8
cessed, the XSLT processor still hasn’t gotten its hands
on the XML contents itself. It has only output the
HTML tags and text. In the rest of this chapter, I’ll
show how to use XSLT to transform the XML source
document to generate some of this HTML.

 Figure 2.9 Here’s what it looks like so far in a
browser. It’s not very exciting yet, but it’s getting
somewhere.

www.cookwood.com/html6ed/

26

Chapter 2

Ou
tp

ut
tin

g
Va

lu
es

Outputting Values
You’ve output HTML using the root template,
but your XSLT style sheet still hasn’t touched
the XML content (Figure 2.8). In order
to actually output the content of an XML
node (called its string value), you’ll use the
<xsl:value-of> element.

To output a node’s content:
1. If desired, create the HTML code that will

format the content (see page 24).
2. Type <xsl:value-of.
3. Then, type select="expression", where

expression identifies the node set from the
XML source document whose content
should be output at this point (Figure
2.11). For more information on writ-
ing expressions, consult Chapter 3, XPath
Patterns and Expressions.

4. Finally, type /> to close the tag.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"
 href="02-10.xsl"?>

<ancient_wonders>

 <wonder>

 <name language="English">Colossus
 of Rhodes</name>

 <name language="Greek">Κολοσσός της
 Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

...

x m l

 An excerpt of the XML source document Figure 2.10
shows this wonder element contains two name ele-
ments and additional contents.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="html"/>

 <xsl:template match="/">

 <html><head><title>Wonders of the
World</title></head>
 <body>
 <h1>Seven Wonders of the Ancient
 World</h1>

 <p>The <xsl:value-of select=
 "ancient_wonders/wonder/name"/>
 is one of the wonders.</p>

 </body></html>

 </xsl:template>

</xsl:stylesheet>

x s l t

 In this example, the Figure 2.11 xsl:value-of tag
is requesting the value of the name element (within
the wonder element within the ancient_wonders
element).

27

XSLT

Outputting Values

✔ Tips
■ You can use select="." to output the con-

tent of the current node. This is discussed
in more detail in Determining the Current
Node on page 40.

■ If the select expression matches more than
one node in the XML document, only the
first node’s value is output. (In the example
in Figure 2.12, many nodes match the
XSLT select expression from Figure 2.11,
but only the value of the first (“Colossus of
Rhodes”) is output.

■ If I wanted to act on multiple nodes, I’d
need a new XSLT element, discussed in
Looping Over Nodes on page 28.

■ In Figure 2.11, if I wanted to return the
name nodes where the language attri-
bute was equal to “Greek", I would
write xsl:value-of select="name[@
language='Greek']". For more informa-
tion, see Processing Nodes Conditionally on
page 30.

■ If the select expression matches a node,
the string value of that node (the text that
node contains) is output. If the node has
child elements, the output includes the text
contained in those child elements as well.

■ If the select expression matches a node set
that is empty, there is nothing to output.

■ If the select expression evaluates to a
number, the number is converted to a
string for output.

■ If the select expression evaluates to a bool-
ean expression (evaluates to either true or
false), the output will be either the text
“true” or the text “false”.

<html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html;
 charset=UTF-8">
 <title>Wonders of the World</title>
 </head>
 <body>
 <h1>Seven Wonders of the Ancient
 World</h1>

 <p>The Colossus of Rhodes is one
 of the wonders.</p>

 </body>
</html>

h t m l

 When the XSLT processor applies the Figure 2.12
root template in Figure 2.11, it first outputs all
the HTML header code. Then when it gets to the
xsl:value-of element, it only outputs the value of the
first node it finds, which is Colossus of Rhodes. I dis-
cuss how to return multiple values on page 28.

 Figure 2.13 And now, the XSLT processor is actually
using input from the XML source document.

28

Chapter 2

Lo
op

in
g

Ov
er

 N
od

es

Looping Over Nodes
As you saw in the previous topic, the
xsl:value-of element will only act on one
node, even if there are many nodes that it
matches. The xsl:for-each element allows
you to act on all nodes matched. It processes all
the nodes matched by its select attribute, one
after the other.

To batch-process nodes:
1. Within a template rule, type <xsl:for-each.
2. Then, type select="expression", where

expression identifies the set of nodes that
will be processed.

3. Next, type > to close the tag.
4. Specify what processing should take place.
5. Finally, type </xsl:for-each> to complete

the instruction (Figure 2.14).

...
<xsl:template match="/">
...
 <table border="1"><tr><th>Wonder
 Name</th><th>Location</th>
 <th>Height</th></tr>

 <xsl:for-each select=
 "ancient_wonders/wonder">

 <tr><td><xsl:value-of
 select="name[@language=
 'English']"/>

 (<xsl:value-of
 select="name[@language!=
 'English']"/>)</td>

 <td><xsl:value-of
 select="location"/></td>
 <td><xsl:value-of
 select="height"/></td> </tr>

 </xsl:for-each>

 </table>
...
</xsl:template>

x s l t

 The Figure 2.14 xsl:for-each element contains all
the things that should happen for each wonder node
in the ancient_wonders node). The first xsl:value-of
element is requesting the name node where the
language attribute equals “English”. The second
xsl:value-of element is requesting the name node again
where the language attribute is not equal to “English”
(!= means "not equal to").

29

XSLT

Looping Over Nodes

✔ Tips
■ In general, place the xsl:for-each right

before the rules that should be repeated for
each node found. To add a table or some
other container, you would do so before
and after the opening and closing tags,
respectively.

■ The xsl:for-each element is often used
to create HTML tables (Figure 2.15).
Place the opening and closing <table>
tags before and after the <xsl:for-each>
instruction in Figure 2.14. Then, place the
<tr> and <td> tags as part of the process-
ing that should take place as described in
Step 4 on the previous page.

■ Because an XSLT style sheet is also an
XML document itself, when HTML is
part of an XSLT file, it must follow XML’s
rules. For example, every opening tag must
have a matching closing tag and elements
may not overlap. For more details, consult
Chapter 1.

■ In the select condition of the
xsl:for-each element, you can require
a specific attribute match by using the
@[attribute='expression']. This is
the same syntax seen in the select attri-
butes of both xsl:value-of elements in
Figure 2.14.

...

<table border="1">
 <tr><th>Wonder Name</th><th>Location
 </th><th>Height</th></tr>

 <tr><td>Colossus of
 Rhodes
(Κολοσσός
 της Ρόδου)</td>
 <td>Rhodes, Greece</td>
 <td>107</td></tr>

 <tr><td>Great Pyramid of
 Giza
()</td>
 <td>Giza, Egypt</td>
 <td>455</td></tr>

 <tr><td>Hanging Gardens of
 Babylon
()</td>
 <td>Al Hillah, Iraq</td>
 <td><td/></tr>
...

</table>
</body>
</html>

h t m l

 Figure 2.15 The xsl:for-each instruction in Figure
2.14 creates a new row for each wonder. (Note: Not
all the rows are shown here, due to space constraints).
Once it has processed all the nodes in the selected set, it
continues with the rest of the template.

 Figure 2.16 Notice that the name of each wonder is
written in English and then in its alternate language,
if one exists.

30

Chapter 2

Pr
oc

es
sin

g
No

de
s C

on
di

tio
na

lly

Processing Nodes Conditionally
It’s not uncommon to want to process a node
or a set of nodes only if a certain condition is
met. The condition is written as an expression.
For example, you might want to perform a cer-
tain action if a particular node set is not empty,
or if the string value of a node is equal to a par-
ticular word.

To process nodes conditionally:
1. Within a template rule, type <xsl:if.
2. Then, type test="expression", where

expression specifies a node set, a string, or a
number. See Chapter 3, XPath Patterns and
Expressions, for more details on writing
expressions.

3. Next, type > to close the tag.
4. Specify what should happen if the node set,

string, or number specified in Step 2 is not
empty (or not equal to zero, in the case of a
number).

5. Finally, type </xsl:if> to complete the
instruction (Figure 2.17).

✔ Tips
■ When referring to a node set in the expres-

sion, the test returns true if the node set
is not empty; that is, if it contains at least
one node.

■ If you want to be able to specify an alter-
nate result when the expression is false,
e.g., an else condition, use xsl:choose
(see page 31).

■ You can test for all sorts of conditions.
Consult Chapter 3, XPath Patterns and
Expressions, for details on how to construct
more elaborate test expressions.

...
<xsl:for-each select="ancient_
 wonders/wonder">
 <tr><td><xsl:value-of select
 ="name[@language='English']"/>

 <xsl:if
 test="name[@language!='English']">

(<xsl:value-of select
 ="name[@language!='English']"/>
)
 </xsl:if>
 </td>
...

x s l t

 Here, the Figure 2.17 xsl:if test condition tests to see
if the current node is a name node with a language
attribute that is not English. If so, then it outputs the
value of the name node. If not, nothing is done. This
prevents displaying a set of empty parentheses when no
alternate language name exists.

...
 <tr><td>Colossus of
 Rhodes
(Κολοσσός
 της Ρόδου)</td>
 <td>Rhodes, Greece</td>
 <td>107</td></tr>

 <tr><td>Great Pyramid of
 Giza</td>
 <td>Giza, Egypt</td>
 <td>455</td></tr>
...

h t m l

 Figure 2.18 In this output from the XSLT in Figure
2.17, the highlighted text shows an alternate language
version of a name element. Notice that there is noth-
ing additional output for the Great Pyramid of Giza
because there isn’t an alternate language name node.

 Figure 2.19 If there is a non-English name, it is dis-
played; otherwise, there is no output.

31

XSLT

Adding Conditional Choices

Adding Conditional Choices
The xsl:if instruction described on the pre-
vious page only allows for one condition and
one resulting action. You can use xsl:choose
when you want to test for several different con-
ditions, and react accordingly to each one. The
simplest example of this is when you want to
do one action when the condition is true, and
another action when it’s false.

To add conditional choices:
1. Within a template rule, type <xsl:choose>.
2. Type <xsl:when to begin the first

condition.
3. Then, type test="expression", where

expression specifies a node set, a string,
or a number. See Chapter 3, XPath
Patterns and Expressions, for more details
on writing expressions.

4. Next, type > to close the tag.
5. Specify the processing that should take

place if the node set, string, or number
tested in Step 3 is not empty (or equal to
zero, in the case of numbers).

6. Type </xsl:when> to complete the
condition.

7. Repeat Steps 2–6 for each condition.
8. If desired, type <xsl:otherwise>. Specify

what should happen if none of the condi-
tions specified by the xsl:when elements
are true. Then, type </xsl:otherwise>.

9. Finally, type </xsl:choose> to complete
the instruction.

✔ Tip
■ In the case of multiple conditions, once

a condition is found to be true, all the
remaining conditions are ignored (even if
there is another true condition). The action
contained in this first true condition is the
only one performed.

...
<xsl:choose>
 <xsl:when test="height != 0">
 <xsl:value-of select="height"/>
 </xsl:when>

 <xsl:otherwise>
 unknown
 </xsl:otherwise>

</xsl:choose>
...

x s l t

 In the XML document, I set the height Figure 2.20
of the Hanging Gardens of Babylon to zero. I did this
because I needed a numeric value for the node but,
because there are no surviving documents about the
gardens, nobody knows what its dimensions may have
been. (In fact, its existence is actually questioned, but
that’s another story altogether.)

...
<tr><td>Great Pyramid of Giza
 </td>
 <td>Giza, Egypt</td>
 <td>455</td></tr>

<tr><td>Hanging Gardens of
 Babylon</td>
 <td>Al Hillah, Iraq</td>
 <td>unknown</td></tr>
...

h t m l

 Figure 2.21 By using the xsl:choose in Figure 2.20,
instead of showing a height of zero for the Hanging
Gardens of Babylon (as in Figure 2.19 on page 30), I
display the word unknown.

 Figure 2.22 Now the information makes more sense.

32

Chapter 2

So
rti

ng
 N

od
es

 B
ef

or
e

Pr
oc

es
sin

g

Sorting Nodes Before Processing
By default, nodes are processed in the order in
which they appear in the XML source docu-
ment. If you’d like to process them in some
other order, you can add an xsl:sort element
when you use xsl:for-each.

To sort nodes before processing:
1. Directly after an xsl:for-each element

type <xsl:sort.
2. Then, type select="criteria", where criteria

is an expression that specifies the node
(key) on which the source nodes should
be sorted.

3. If desired, type order="descending". The
default is for nodes to be sorted in ascend-
ing order.

4. If desired, then type data-type="text" or
data-type="number" depending on what
you’re sorting. The default is text.

5. Finally, type /> to close the instruction
(Figure 2.23).

6. Repeat Steps 1–5 to define as many sorting
parameters as desired.

✔ Tips
■ Be sure to specify the correct data-type

in Step 4. Sorting numbers as text has such
erroneous results as 100, 7, 89. Sorting text
as numbers is equally ineffective.

■ Descending means you go from high num-
bers to low, and from Z to A. Ascending
means the low numbers (and letters)
appear at the top.

■ You can nest xsl:sort elements within
other xsl:sort elements. This allows you
to sort on multiple nodes (keys).

...
<table border="1"><tr><th>Wonder
 Name</th><th>Location</th><th>
 Height</th></tr>

<xsl:for-each select="ancient_
 wonders/wonder">

 <xsl:sort select="height"
 order="descending"
 data-type="number" />
...

x s l t

 Figure 2.23 I’ve added an xsl:sort instruction right
after the xsl:for-each element to sort the nodes by
height, in a descending order for processing.

...
<table border="1"><tr><th>Wonder
 Name</th><th>Location</th><th>
 Height</th></tr>

 <tr><td>Great Pyramid of
 Giza</td>
 <td>Giza, Egypt</td>
 <td>455</td></tr>

 <tr><td>Lighthouse of
 Alexandria
(
 ‛o Φάρος τη̃ς ’Aλεξανδρείας)
 </td><td>Alexandria, Egypt</td>
 <td>384</td></tr>
...

h t m l

 Figure 2.24 Based on the XSLT in Figure 2.23, the
Great Pyramid of Giza (the tallest of all the ancient
wonders) is the first to be processed and thus will
appear at the top of the table.

 Figure 2.25 Now the ancient wonders are listed in
descending order by height, the tallest being more than
45 stories tall.

33

XSLT

Generating Output Attributes

Generating Output Attributes
When you are transforming your XML source
document to an HTML document (or an XML
document for that matter), it’s often useful to
be able to add attributes and values to a given
output element. For example, if you are creat-
ing an element or an <a> element, you
might need to include the src, width, and
height attributes, or the href and target
attributes, respectively.

To generate output attributes:
1. Directly after the opening tag of the ele-

ment in which this new attribute should
appear, type <xsl:attribute.

2. Then, type name="att_name", where
att_name is the name that the attribute
should have in the element.

3. Next, type > to close the tag.
4. Specify the value of the new attribute using

XSLT instructions or literals.
5. Finally, type </xsl:attribute> to complete

the attribute generation (Figure 2.26).
6. Repeat Steps 1–5 to define as many attri-

butes as desired.

✔ Tip
■ You will often use the xsl:value-of ele-

ment in Step 4 to generate the value of the
attribute from content that comes from
your XML document.

...
<tr><td>
 <a>
 <xsl:attribute name="href">
 #<xsl:value-of select=
 "name[@language='English']"/>
 </xsl:attribute>

 <xsl:value-of select="name[@
language='English']"/>

...

x s l t

 Figure 2.26 Here I am using xsl:attribute to add
an href attribute to an anchor element <a>. The href
value will be set to # (a pound sign) and the name of
the wonder being processed. In this way, each wonder
will link to its own named reference on the page.

...
<table border="1"><tr><th>Wonder
 Name</th><th>Location</th><th>
 Height</th></tr>

 <tr><td><a href="#Great Pyramid of
 Giza">Great Pyramid of
 Giza</td>
 <td>Giza, Egypt</td>
 <td>455</td></tr>
...

h t m l

 Figure 2.27 Now, the Great Pyramid of Giza links
to an href of its own name.

 Figure 2.28 You can see that each of the wonder’s
names is now a hyperlink.

34

Chapter 2

Cr
ea

tin
g

an
d

Ap
pl

yi
ng

 Te
m

pl
at

es

Creating and Applying Templates
As discussed on page 20, the root template is
the first thing processed in an XSLT style sheet.
This template is the set of rules applied to the
root node of the XML source document.

As it turns out, XSLT allows you to create more
templates than just the root template. This
allows you to create different sets of processing
rules to apply to different parts of your XML.

While most XSLT processing can be done
without using templates, one of the main ben-
efits of using templates is the ability to reuse
a template for other nodes in your document.
In the same way that one can use functions in
most programming languages, you would cre-
ate a template, and simply apply that template
whenever necessary. This eliminates the need to
rewrite the exact same processing instructions
each time.

To create a template:
1. Type <xsl:template to begin the template.
2. Then, type match="pattern", where pat-

tern identifies the node(s) of the XML
document to which the template will be
applied. The syntax for describing pat-
terns is described in Chapter 3, XPath
Patterns and Expressions.

3. Next, type > to close the tag.
4. Specify all the transformations that should

happen when a node is found that matches
the pattern in Step 2.

5. Finally, type </xsl:template> to complete
the template (Figure 2.29).

✔ Tips
■ The root template is simply a template

with a pattern that matches the root node.
■ Only the root template is called automati-

cally. All other templates must be applied
manually (see page 35). Otherwise, they are
simply ignored.

...
<xsl:template match="/">
 <html><head><title>Wonders of the
 World</title></head>
 <body>
 <h1>Seven Wonders of the Ancient
 World</h1>
...
</xsl:template>

<xsl:template
 match="name[@language!='English']">

 (
 <xsl:value-of select="."/>
)

</xsl:template>
...

x s l t

 Figure 2.29 In this excerpt, I’ve added a new tem-
plate for name nodes where the language attribute is
not English. This template will output the value of the
current name node italicized in parentheses. It does
so by using xsl:value-of select="."which returns the
value of the current node.

...
<tr><td>
 <a>
 <xsl:attribute name="href">
 #<xsl:value-of select=
 "name[@language='English']"/>
 </xsl:attribute>
 <xsl:value-of select="name
 [@language='English']"/>

 <xsl:apply-templates select="name
 [@language!='English']"/>
</td>
...

x s l t

 Figure 2.30 In this excerpt of the same XSLT style
sheet, I have used an xsl:apply-templates element
where the xsl:if element was, as seen in Figure 2.17.
This xsl:if element was testing for a name node with a
language value not equal to English. The new result-
ing output will be the same as before, as you will see in
the figures that follow.

35

XSLT

Creating and Applying Tem
plates

Now that you’ve learned how to create tem-
plates, the next step is how to use them; in
other words, how to apply a template to a spe-
cific node in your XML document. You do this
by using xsl:apply-templates. This is how
you control where and when the transformation
described by the template is used in the final
document.

To apply a template:
1. Within any template, type <xsl:apply-

templates.
2. Then, type select="expression", where

expression identifies the node(s) of the XML
document whose templates should be
applied. See Chapter 3, XPath Patterns and
Expressions, for more details on writing
expressions.

3. Finally, type /> to complete the instruction
(Figures 2.30 and 2.31).

✔ Tips
■ If you have multiple templates in your

style sheet, the order of the xsl:apply-
templates elements determines the order
in which the templates are processed.

■ If you don’t specify the select attribute
in Step 2 above, the processor will look for
and apply a template to each of the current
node’s children.

■ When using xsl:apply-templates, if
there is no template matching the current
node, a template built in to the XSLT pro-
cessor is automatically used. For the root
node, or an element node, it looks for a
matching template for each child node. For
a text or attribute node, it outputs the node
value as text.

■ The xsl:apply-templates element may
contain an xsl:sort element (see page 32).

■ If you haven’t already, I recommend down-
loading and reviewing the example files.
See the book’s Introduction for details.

...
<h2>History</h2>
<xsl:for-each select=
 "/ancient_wonders/wonder">
<xsl:sort select="height" order=
 "descending" data-type="number" />
 <a><xsl:attribute name="name">
 <xsl:value-of select="name
 [@language='English']"/>
 </xsl:attribute>
 <xsl:value-of select="name[@
language='English']"/>

 <xsl:apply-templates select=
 "name[@language!='English']"/>

</xsl:for-each>
...

x s l t

 Figure 2.31 In this excerpt of the same XSLT style
sheet, I’ve added a new section called History to show
historical information about the ancient wonders. I
am reusing the new template created in Figure 2.29
with the highlighted xsl:apply-templates element to
display the non-English name.

 By moving the non-English processing Figure 2.32
instructions into its own template, I am able to use
the same logic and output the same information twice
without having to rewrite those same instructions.

This page intentionally left blank

3

37

XPath Patterns and Expressions

XPATH PATTERNS
AND EXPRESSIONS

In the previous chapter, XSLT, you learned
about creating and applying templates to trans-
form XML documents. When you create a
template, you use a pattern to specify the nodes
that the template can be applied to. When you
apply a template, you use an expression to spec-
ify the node set that should be processed. You
write both patterns and expressions using XML
Path Language (XPath) syntax.

XPath is a language for selecting nodes and
node sets by specifying their location paths in
the XML document. This chapter will describe
how to specify XPath location paths in detail.

You can also use XPath in other XSLT instruc-
tions to further process given node sets to
return values instead of nodes. XPath has built-
in functions to do math, process strings, and
test conditions in an XML document. The next
chapter, XPath Functions, will describe these
functions in detail.

Like XSLT, XQuery uses XPath expressions and
is discussed in Chapter 16.

Note: The most current version of the language
is XPath 2.0. However, because version 1.0 is
still more widely used, these two chapters will
cover XPath 1.0. XPath 2.0 is discussed in detail
in Chapter 15.

38

Chapter 3

Lo
ca

tin
g

No
de

s

Locating Nodes
At the foundation of the XPath language is the
ability to use location paths to refer to a node
or node set. Remember that a node is an indi-
vidual piece of the XML document (such as an
element, an attribute, or some text content).
A location path uses relationships to describe
the location of a node or set of nodes relative
to a given node. When translating location
paths, XPath considers all XML documents as
tree structures. Specifically, they are considered
node trees, which are a hierarchical structure of
nodes (Figures 3.1 and 3.2).

The XML Node Tree
In an XML node tree, everything in the tree is
a node, and every node is in some way related
to another. At the top of the node tree is the
root node. The root node, or document node, can
have any number of child nodes. To these child
nodes, the root node is a parent node. These
child nodes can have any number of child
nodes themselves, and so on, and so on. Child
nodes with the same parent are called sibling
nodes. Descendant nodes are a node’s child nodes,
its children’s child nodes, and so forth. Ancestor
nodes are a node’s parent node, grandparent
nodes, etc. Through XPath location paths, you
can access any of these nodes from any other
simply by knowing the relationship between
the two.
Location Paths
There are two kinds of location paths: relative
location paths and absolute location paths.

A relative location path consists of a sequence of
location steps separated by / (a forward slash).
Each step selects a node or node set relative to
the current node. Then, each node in that set is
used as the current node for the following step,
and so on.

An absolute location path consists of / (a for-
ward slash), optionally followed by a relative
location path. A / by itself selects the root node

/
ancient_wonders

wonder
name
 Colossus of Rhodes
 -language
 English
name
 Κολοσσός της Ρόδου
 -language
 Greek
location
 Rhodes, Greece
height
 107
 -units
 feet
history ...
main_image ...
source ...

siblings

parent

child

 Figure 3.1 This is an XML node tree representa-
tion of a single ancient wonder and its children.
ancient_wonders is the root, or document node.
In this example, the ancient_wonders element has
one child node which is the wonder element. And,
in turn, the ancient_wonders element is the wonder
element’s parent node. The wonder element has seven
child nodes (name, name, location, height, history,
main_image, and source), each of which are sibling
nodes to one another. As well, each are descendant
nodes of the wonder node and the ancient_wonders
node. And this, consequently makes the wonder node
and the ancient_wonders node ancestor nodes to
these seven children.

39

XPath Patterns and Expressions

Locating Nodes

of the XML document. If it is followed by a rel-
ative location path, then the location path is a
relative location path starting at the root node.

The choice of whether to use a relative or an
absolute location path depends on the cir-
cumstance. Relative location paths are most
commonly used, because they generate the
resulting node set relative to the current node,
and this is typically the context in which you
are working.

Using Located Nodes
Often, when using location paths, you will be
using the located node or node set as a con-
tainer of other elements to process.

Other times, you will want to know the
node’s value. In XPath, there are seven differ-
ent node types: root nodes (of which there is
always exactly one), element nodes, text nodes,
attribute nodes, comment nodes, processing
instruction nodes, and namespace nodes. For
each node type, there is a way of retrieving its
value. For some, the value is part of the node
itself; for others, the value is based on the value
of its descendant nodes.

✔ Tips
■ The XPath language syntax was inspired in

part by the common “path/file” file system.
■ The current node is the element, or node,

that is currently being processed. The con-
text node is where the XPath location path
address starts. In most circumstances, these
terms are interchangeable, so I use the term
current node throughout the book.

<?xml version="1.0"?>

<ancient_wonders>

 <wonder>

 <name language="English">
 Colossus of Rhodes</name>

 <name language="Greek">
 Κολοσσός της Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

 <history> ... </history>

 <main_image ... />

 <source ... />

 </wonder>

</ancient_wonders>

x m l

 Figure 3.2 This is the actual XML source that is
represented by the XML node tree in Figure 3.1. As
noted, the ancient_wonders element is the root, or
document node, and is the parent to the wonder
element. Continuing down the XML, the wonder
element is the parent to seven children (name,
name, location, height, history, main_image, and
source). All seven child nodes of the wonder element
are siblings. These nodes and the wonder element
itself are descendants of the ancient_wonders node.
Conversely, this makes the ancient_wonders node an
ancestor to the wonder element and all its children.

40

Chapter 3

De
te

rm
in

in
g

th
e

Cu
rr

en
t N

od
e

...
<xsl:template match="/">
...
 <h2>Overview</h2>

 <xsl:apply-templates select=
 "ancient_wonders/wonder">
 <xsl:sort select="height" order=
 "descending" data-type="number" />
 </xsl:apply-templates>
...
</xsl:template>

<xsl:template match="wonder">
 <tr><td><a>...
 <xsl:value-of select=
 "name[@language='English']"/>

 <xsl:apply-templates select="
 name[@language!='English']"/>
...
</xsl:template>

<xsl:template match=
 "name[@language!='English']">
 (
 <xsl:value-of select="."/>)
</xsl:template>
...

x s l t

 At point Figure 3.3 1, the current node is / (the root
node) as specified by the xsl:template match="/"
instruction. When the processor reaches point 1a, the
current node becomes the first wonder element in
ancient_wonders and the processing jumps to point 2
where that wonder element is processed according to
the xsl:template match="wonder" instruction.

Then, when the processor reaches point 2a, the name
element with a language attribute not equal to
English becomes the current node and the processing
jumps to point 3, where that name element becomes
the current node and is processed according to the
xsl:template match="name[@language!='English']"
instruction.

When this instruction is complete, the processor
“returns” from the name template applied in point 2a.
The current node then becomes the wonder element
once again, until the processor finishes the wonder
template and returns to the root template.

After this first wonder element is processed, the second
wonder element becomes the current node, and so
on until all the wonder elements have been processed
(and taken their turn as the current node).

Determining the Current Node
As the XSLT processor goes through your
style sheet, it works on one node at a time.
It is through the use of the xsl:template,
xsl:apply-templates, and xsl:for-each
elements that it knows which parts of your
XML document to process and when.

When developing an XSLT style sheet, you will
often specify what to process next with respect
to what is being processed now. The node
currently being processed is called the current
node. Of course, before you can refer from the
current node, you will need to know how to
identify it (Figure 3.3).

To determine the current node:
1. By default, the current node is the one

that is specified by the current template. In
other words, the current node is identified
by the template’s match attribute.

2. If there is an xsl:apply-templates
instruction, the current node becomes the
node that is matched by the correspond-
ing template (that is, the one specified in
the match attribute of the xsl:template
instruction). When the processor “returns”
from that xsl:template, the current node
reverts back to one from the original tem-
plate’s match attribute.

3. If there is an xsl:for-each instruc-
tion, the current node changes to the one
specified by its select attribute. After the
xsl:for-each instruction, the current
node reverts back to whatever it was before
that instruction was processed.

✔ Tip
■ The xsl:apply-templates instruction

may process more than one node in the
case where the select expression returns a
node set. In this case, each of the nodes in
the set will be the current node in turn.

1

1a

2

2a

3

41

XPath Patterns and Expressions

Referring to the Current Node

...
<xsl:template match="wonder">
 <tr><td><a>...
 <xsl:value-of select=
 "name[@language='English']"/>

 <xsl:apply-templates select="name[@
language!='English']"/>
...
</xsl:template>

<xsl:template match=
 "name[@language!='English']">
 (<xsl:value-of select="."/>
)
</xsl:template>
...

x s l t

 The current node will be the contents Figure 3.4
of some name element whose language attribute is
“English.” Which name element it is depends on where
the processor is in the transformation process.

...
<tr><td><a href="#Great Pyramid of
 Giza">Great Pyramid of
 Giza
</td>
 <td>Giza, Egypt</td>
 <td>455</td></tr>

<tr><td><a href="#Lighthouse of
 Alexandria">Lighthouse of
 Alexandria

 (o Φάρος τη̃ς ’Aλεξανδρείας)
 </td><td>Alexandria, Egypt</td>
 <td>384</td></tr>

 <tr><td><a href="#Mausoleum at
 Halicarnassus">
 Mausoleum at Halicarnassus

 (Μαυσωλει̃ον ’Aλικαρνασσεύς)
 </td><td>Bodrum, Turkey</td>
 <td>135</td></tr>
...

h t m l

 The highlighted text is output when Figure 3.5
the processor executes the <xsl:apply-templates
select="name[@language!='English']"/>
instruction in the wonder template. Within the
template itself (<xsl:template match="name[@
language!='English']">), the <xsl:value-of
select="."/> instruction returns the value of the cur-
rent node each time it is called.

Referring to the Current Node
If you’re currently processing the node that
you want to use in a select attribute, there’s
a shortcut you can use. Instead of referencing
the current node using a location path from the
root node, it’s much easier to use the current
node shortcut (Figure 3.4).

To refer to the current node:
◆ In a location path, type . (a single period).

✔ Tips
■ You won’t always want to select the entire

node set. To get a subset of the current
node, you can add a test called a predicate.
For more details, consult Conditionally
Selecting Nodes on page 45.

■ You can also use . (the current node short-
cut) in a predicate to refer to the context
node. The context node is the node that is
being tested by the predicate.

42

Chapter 3

Se
lec

tin
g

a
No

de
’s

Ch
ild

re
n

Selecting a Node’s Children
If the current node contains element(s) that you
want to use, you can use a shortcut to refer to
these child nodes (Figure 3.6). Instead of writ-
ing the location path from the root node, you
can refer to the desired child nodes simply by
using their name (Figure 3.7).

To get a node’s children:
1. Make sure you know what the current

node is (see page 40), and that the node or
node set you’re interested in is a child of
the current node. (You can actually refer to
any descendant. See Step 3 below.)

2. Then, in the desired location path, type
child to refer to the name of the child
element(s) within the current node.

3. If desired, you could then add /grandchild
to refer to a node or node set contained
in the child set referenced in Step 2. This
enables you to dig deeper into the XML
tree and reference node sets further down.

4. Repeat Step 3 until you get to the node(s)
at the level you want.

✔ Tips
■ Of course, before you ask for children, it’s

important to know which is the current
node. See page 40 for details.

■ Type * (an asterisk) to select all the current
node’s children.

■ The xsl:text element is used to add
literal text to the output. xsl:text can-
not contain any other elements. It is often
used to handle special characters such as
& or >, or to control white space. Notice
it is being used to add a space between the
year_built / year_destroyed elements
and their eras in Figure 3.7. Without it,
there would be no space between the year
and the era in the output.

...
<history>
 <year_built era="BC">282
 </year_built>
 <year_destroyed era="BC">226
 </year_destroyed>
 <how_destroyed>earthquake
 </how_destroyed>
 <story>In 294 BC, the people of
 the island of Rhodes began
 building a colossal statue of the
 sun god Helios. They believed ...
 </story>
</history>
...

x m l

 Here is an excerpt from the XML docu-Figure 3.6
ment. This history element has four child elements.
They are: year_built, year_destroyed,
how_destroyed and story.

...
<xsl:template match="history">
...
 was built in
<xsl:value-of select="year_built"/>
<xsl:text> </xsl:text>
<xsl:value-of
 select="year_built/@era"/>

<xsl:choose>
 <xsl:when
 test="year_destroyed != 0">
 and was destroyed by
 <xsl:value-of
 select="how_destroyed"/> in
 <xsl:value-of
 select="year_destroyed"/>
 <xsl:text> </xsl:text>
 <xsl:value-of
 select="year_destroyed/@era"/>.
 </xsl:when>
 <xsl:otherwise>
 is still standing today.
 </xsl:otherwise>
</xsl:choose>
<br \><br \>
</xsl:template>

x s l t

 When the processor gets to the history tem-Figure 3.7
plate, history becomes the current node. With this, the
processor can directly address its child nodes in XPath
location paths. Notice the use of the @ symbol referring
to the era attribute. This is discussed more on page 44.

43

XPath Patterns and Expressions

Selecting a Node’s Parent or Siblings

Selecting a Node’s Parent or
Siblings
Again, if the relationship between the current
node (see page 40) and the desired node is quite
clear (Figure 3.8), it’s much easier to use a
shortcut than to write the complete, absolute
relationship starting from the root node.

To select a node’s parent:
1. Make sure you know what the current

node is, and that the node set you’re inter-
ested in is the parent of the current node.

2. Type .. (two periods) to select the current
node’s parent.

To select a node’s siblings:
1. After you’ve gotten to the node’s parent in

Step 2 above, type /sibling, where sibling
refers to the name of the desired node. This
sibling is therefore a child of the current
node’s parent, but isn’t the current node
itself (Figure 3.9).

2. If desired, type /niece, where niece refers to
a node that is the child of the sibling of the
current node.

3. Repeat Step 2 as necessary to select grand-
nieces, etc.

✔ Tips
■ The .. is often combined with a node’s

attribute to find the attribute of the parent
node (../@attribute). More on this when I
get to attributes (see page 44).

■ You can also use an asterisk as a wildcard
within a location path. For example, ../*
would select all the child elements of the
parent of the current node, including the
current node itself.

...
<wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
...
 <history>
 <year_built era="BC">
 282</year_built>
 <year_destroyed era="BC">
 226</year_destroyed>
 <how_destroyed>
 earthquake</how_destroyed>
 <story>In 294 BC, ...</story>
 </history>
...

x m l

 Figure 3.8 Notice that the history and name ele-
ments are both children of (contained directly in) the
wonder element, and thus are siblings.

...
<xsl:template match="history">
...
 The <xsl:value-of select=
 "../name[@language='English']"/>
 <xsl:apply-templates select=
 "../name[@language!='English']"/>
 was built in <xsl:value-of select=
 "year_built"/>
...

x s l t

 When the processor applies this Figure 3.9 history
template, history becomes the current node. If I then
want to reference the name element (which is its sib-
ling), I have to use .. to go up one level (to the parent
element, wonder). Then I use / to get to a different
child, and type name to specify that child element.

 Although the processor is now in the Figure 3.10
history template (not the wonder template), as long as
I specify the new relationship, the output is correct.

44

Chapter 3

Se
lec

tin
g

a
No

de
’s

At
tri

bu
te

s

Selecting a Node’s Attributes
If you want the location path to return a node’s
attributes rather than the node itself, you can
use the @ to specify that you want the attribute
returned (Figure 3.11).

To select a node’s attribute(s):
1. Write the location path to the node, using

the techniques described in this chapter.
2. Then, type /@ to indicate that you’re

interested in the current node’s attributes.
3. Finally, type attribute, to specify the name

of the attribute you’re interested in. Or
type * (an asterisk) as a wildcard to select
all the node’s attributes.

✔ Tip
■ The @ symbol is sometimes referred to as

the attribute axis. In XPath, an axis is a set
of nodes relative to the current node. In
addition to the attribute axis, there are 12
other axes defined in the XPath language.
They are: ancestor, ancestor-or-self, child,
descendant, descendant-or-self, following,
following-sibling, namespace, parent, pre-
ceding, preceding-sibling, and self. Each of
these additional axes specifies a “direction”
relative to the current node and repre-
sents the corresponding node set. Because
each of these axes can be represented by
shortcuts (specifically those defined in this
chapter), the axes themselves are seldom
used in practice.

...
<xsl:template match="history">
...
 The <xsl:value-of select=
 "../name[@language='English']"/>
 <xsl:apply-templates select=
 "../name[@language!='English']"/>
 was built in <xsl:value-of
 select="year_built"/>
 <xsl:text> </xsl:text>
 <xsl:value-of
 select="year_built/@era"/>
...

x s l t

 To get the attribute(s) of an element, Figure 3.11
use the element’s name, followed by the @ sign and
then followed by the name of the attribute. Here I am
requesting the era attribute of the year_built element.

...
<h2>History</h2>

 The Great Pyramid of Giza was built
 in 2570 BC and is still standing
 today.

<a name="Hanging Gardens of
 Babylon"/>The Hanging Gardens of
 Babylon was built in 600 BC
...

h t m l

 The contents of the Figure 3.12 era attribute (from
the year_built element) are output.

 The Figure 3.13 era attribute information is dis-
played with the year_built element as shown in the
HTML excerpt above.

45

XPath Patterns and Expressions

Conditionally Selecting Nodes

Conditionally Selecting Nodes
It’s not always precise enough to select an entire
node set from the XML document (Figure
3.14). With XPath, you can create boolean
expressions (called predicates) to test a condition
and based on the results of that test, select a
specific subset of the node set (Figure 3.15).

Predicates can compare values, test for
existence, do math, and more. You use func-
tions to write these and more complicated
conditions. For more details, see Chapter 4,
XPath Functions.

To conditionally select nodes:
1. Create a location path to the node that

contains the desired subset following the
instructions in this chapter.

2. Type [(a left square bracket; to the right of
the p on your keyboard).

3. Write the expression that identifies the
subset.

4. Finally, type] (a right square bracket) to
complete the predicate.

✔ Tips
■ As noted above, predicates are not only for

comparisons. It’s enough to write
[@language], which would select all
the current node’s elements that have a
language attribute (regardless of its value).

■ You can use multiple predicates to
further narrow your search. name[@
language='English'][position() = last()]
would select the name elements that have a
language attribute equal to “English” and
that are the last node in the set.

■ You can also add an attribute selector after
the predicate, if desired. For example, to
get all the attributes of the last element of
the current node set, type [last ()]/@*.

■ Make sure you type square brackets; not
curly ones or parentheses.

...
<wonder>
 <name language="English">
 Statue of Zeus at Olympia</name>
 <name language="Greek">
 ∆ίας μυθολογία</name>
 <location>Olympia, Greece</location>
 <height units="feet">39</height>
 <history>
...
</wonder>
...

x m l

 Figure 3.14 Notice that in the XML document, the
wonder element can have more than one name child
element, each having its own language attribute.

...
<xsl:template match=
 "name[@language!='English']">
 (<xsl:value-of select="."/>
)
</xsl:template>
...

x s l t

 This template will only be applied to Figure 3.15
all name elements that have a language attribute not
equal to English.

 The non-English Figure 3.16 name elements are
displayed in italics inside parentheses, as instructed by
the XSLT template.

46

Chapter 3

Cr
ea

tin
g

Ab
so

lu
te

 Lo
ca

tio
n

Pa
th

s

Creating Absolute Location Paths
All the location paths that I’ve created so far
have been relative location paths—ones depen-
dent on the current node.

You can also create absolute location paths, ones
that do not rely on the current node (Figure
3.17). To do so, begin by writing the path to
the desired node starting at the root node.

To create an absolute location path:
1. Type / to indicate that you are starting at

the root node of the XML document.
2. Then type root, where root refers to the

root element of your XML document.
3. Next, type / to go down one level in your

XML document’s tree hierarchy.
4. Type container, where container identifies

the name of the element on the next level
that contains the desired element.

5. Repeat Steps 3–4 until you have come to
the parent of the node in which you are
interested.

6. Finally, type /element, where element is the
name of the desired node.

7. Now, you may also use a predicate, or
select the node’s attribute, or both.

✔ Tips
■ All location path ideas and shortcuts dis-

cussed so far in this chapter can also be
used when creating an absolute path.

■ At any point in the location path, you can
use * (an asterisk) to specify all the ele-
ments at that level.

■ You may skip Steps 3–5 if the desired ele-
ment is a child of the root element itself.

■ Some benefits of using absolute paths are
described on page 38. However, pay careful
attention when doing so, as disregarding
the current node may cause unforeseen
consequences (Figure 3.19).

...
<xsl:template match="wonder">
 <tr><td>
 <a><xsl:attribute name=
 "href">#<xsl:value-of select=
 "name[@language='English']"/>
 </xsl:attribute>

 <xsl:value-of select=
 "/ancient_wonders/wonder/name
 [@language='English']"/>

...

x s l t

 I’ve changed the highlighed location Figure 3.17
path (which displays the wonder’s English name) from
relative to absolute. I did so by adding
/ancient_wonders/wonder to the beginning of the
relative location path used in the original version
(select="name[@language='English']").

...
 <a href="#Great Pyramid of
 Giza">Colossus of Rhodes

</td>
<td>Giza, Egypt</td><td>455</td>
...
 <a href="#Lighthouse of
 Alexandria">Colossus of
 Rhodes
...

h t m l

 However, instead of getting the Figure 3.18 current
node’s English name, the absolute location path
returns the first element from the root node’s English
name every time.

 And the point here: Make sure you know Figure 3.19
what you’re doing when using absolute location paths
and disregarding the current node. It may not give you
what you need. Rather, you may end up with a mess.

47

XPath Patterns and Expressions

Selecting All the Descendants

Selecting All the Descendants
The // (double forward slash) comes in handy
when you need to select all the descendants of
a particular node (Figure 3.21). Like most of
the other shortcuts in this chapter, you can use
it either in an absolute or relative location path.

To select all the descendants of the
root node:
◆ Type // (two forward slashes).

To select all the descendants of the
current node:
◆ Type .// (a period followed by two forward

slashes).

To select all the descendants of any
node:
1. Use the techniques in the previous pages to

get to the node whose descendants you’re
interested in.

2. Then, type // (two forward slashes).

To select some of the descendants of
any node:
1. Create the path to the node whose descen-

dants you’re interested in by using the
techniques described on earlier pages.

2. Type //.
3. Then, type the name of the descendant ele-

ments that you’re interested in.

✔ Tip
■ To get to a node when you don’t know (or

don’t care) where it is in the document, you
can use the following technique. An expres-
sion like //element_name will output all
the matching elements in the document
whose name is element_name, wherever
they may be.

...
<wonder>
 <name language="English">
 Lighthouse of Alexandria</name>
...
 <main_image file="lighthouse.jpg"
 w="528" h="349"/>
 <source sectionid="112"
 newspaperid="53"/>
</wonder>
...

x m l

 I know there are elements in the XML Figure 3.20
document that contain image filenames, but if I wasn’t
sure where they were and wanted to create a list of
them all, I could use the // shortcut, see below.

...
<xsl:template match="/">
 <html><head><title>Wonders of the
 World</title></head>
 <body>
 <xsl:apply-templates
 select="//*/@file" />
 </body></html>
</xsl:template>

<xsl:template match="//*/@file" >
 <xsl:value-of select="."/>

</xsl:template>
...

x s l t

 The Figure 3.21 select and match attributes that
are highlighted return all the nodes, no matter where
they appear in the XML source, that have an attribute
named file. (Note: This is a completely different XSLT
file, not built upon the previous ones.)

 Notice that all the filenames contained Figure 3.22
in the XML source document are displayed here,
regardless of their actual location.

This page intentionally left blank

4

49

XPath Functions

XPATH FUNCTIONS
In the last two chapters, you learned how to use
XPath location paths to specify nodes and node
sets in an XML source document.

In some cases, I used location paths for further
processing by templates (xsl:template and
xsl:apply-templates), or in test conditions
(xsl:if and xsl:when). In both of these cases,
there are times that you will not need or want
to use all the data in the node set returned.
With XPath functions, you can apply additional
logic to these node sets to return only the data
you need.

In other cases, I used location paths to extract
the contents of a node using xsl:value-of.
Remember, xsl:value-of outputs the string
value of the first node in a node set. With
XPath functions, you can perform one or more
operations on that string before it is output to
modify the final result.

In this chapter, I will detail many common
XPath functions. The official specifications for
XPath Version 1.0 functions can be found at
the World Wide Web Consortium site:
www.w3.org/TR/xpath#corelib.

As noted, even though the most current ver-
sion of the XPath language is 2.0, this and the
previous chapter detail XPath Version 1.0. This
is because version 1.0 is still the more widely
used and widely supported version. XPath 2.0
is discussed in detail in Chapter 15. As well,
specifications for the new version can be found
at: www.w3.org/TR/xpath20/.

www.w3.org/TR/xpath#corelib
www.w3.org/TR/xpath20/

50

Chapter 4

Co
m

pa
rin

g
Tw

o
Va

lu
es

Comparing Two Values
Perhaps the most common test that you can
perform on a location path is whether one value
is bigger than another (Figure 4.1). You can
then use this answer to determine which actions
should result, or simply use the resulting node
set in your transformation.

To compare two values:
1. Create the path to the first node set that

you want to compare.
2. Then, type = (equal to), != (not equal to),

> (greater than), >= (greater than or
equal to), < (less than), or <= (less than
or equal to), depending on how you want
to compare the two values.

3. Finally, type a value or a path to the node
set that you want to compare with the first
node set identified in Step 1.

✔ Tips
■ This test can be used in xsl:template

and xsl:apply-templates processing, as
well as condition testing using xsl:if and
xsl:when.

■ If you just want to test that a node set
exists (regardless of its contents), skip
Steps 2–3.

■ String and text values in Step 3 should be
enclosed in single quotes.

■ Use the and operator to test that all of a
series of multiple conditions are true. Use
the or operator to test if at least one of a
series of multiple conditions is true. Other
boolean operators are not valid.

■ There is also a boolean expression not,
but it is a function, it is not an operator.
For more details, see More XPath Functions
on page 59.

...
<h2>Overview</h2>
 <table border="1"><tr><th>Wonder
 Name</th><th>Location</th>
 <th>Height</th></tr>

 <xsl:apply-templates
 select="ancient_wonders/
 wonder[height > 100]">

 <xsl:sort select="height"
 order="descending"
 data-type="number" />
 </xsl:apply-templates>

 </table>
...

x s l t

 In this example, I am using a com-Figure 4.1
parison to refine the node set being used in the
xsl:apply-templates instruction. Specifically, it is say-
ing that only those wonder nodes that have a height
greater than 100 will be used.

 Based on the XSLT in Figure 4.2 above, Figure 4.2
four of the seven wonders have a height greater than
100 as shown above. Notice that, in addition to the
Overview section of the output, I applied the same
height condition to the History section, too.

51

XPath Functions

Testing the Position

Testing the Position
In addition to applying conditions to location
paths, you can actually choose to select a spe-
cific node in the node set: the first, second, or
even the last.

To test a node’s position:
◆ Type position() = n, where n is the number

that identifies the position of the node
within the current node set (Figure 4.3).

To fi nd the last node in a node set:
◆ Type last() to get the last node.

✔ Tips
■ You don’t put anything between the paren-

theses in either the position() function
or the last() function.

■ In a predicate (a boolean expression in
brackets used to test a condition), you can
also use just n as a shortcut for position()=n.
For example, wonder[1] would result in
returning the first wonder node. (Note:
You can use this shortcut in template pro-
cessing, but not in xsl:if or xsl:when
test expressions, or in an xsl:value-of
instruction.)

...
<p>These ancient wonders are

 <xsl:for-each select=
 "ancient_wonders/wonder/name
 [@language='English']">

 <xsl:value-of select="."/>
 <xsl:choose>

 <xsl:when test=
 "position()=last()">.</xsl:when>

 <xsl:when test=
 "position()=last()-1">, and
 </xsl:when>

 <xsl:otherwise>, </xsl:otherwise>

 </xsl:choose>
 </xsl:for-each>
</p>
...

x s l t

 Here I am using position functions to Figure 4.3
format a sentence that lists all the wonders. The won-
der’s name is output no matter what. If it’s in the last
position, a period is also output after the name. If it’s
in the second-to-last position (position() = last()–1),
a comma, the word and, and a space are output after
the name. Otherwise, if it’s in any other position, only
the name and a space are output.

 The output from the transformation based Figure 4.4
on Figure 4.3 shows the list of the seven wonders, well-
formatted with commas separating the names and a
final and before the last wonder.

52

Chapter 4

M
ul

tip
ly

in
g,

 D
iv

id
in

g,
 A

dd
in

g,
 S

ub
tra

cti
ng

...
<td valign="top">
 <xsl:choose>
 <xsl:when test="
 history/year_destroyed != 0">

 <xsl:choose>
 <xsl:when test="
 history/year_destroyed/@era =
 'BC'">
 <xsl:value-of select="
 history/year_built -
 history/year_destroyed"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="
 history/year_built +
 history/year_destroyed - 1"/>
 </xsl:otherwise>
 </xsl:choose>

 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="
 history/year_built + 2008 - 1"/>
 </xsl:otherwise>
 </xsl:choose>
</td>
...

x s l t

 I added a new column to the Overview Figure 4.5
section called Years Standing. The math is pretty
straightforward, but one complicated part of the logic
is explained here: Since all the wonders were built
in the BC era, if they were destroyed in the AD era
or are still standing, I need to add, not subtract, the
year_built and the year_destroyed.

 If you do a little math using this HTML Figure 4.6
output from the XSLT in Figure 4.6, you’ll see that in
260 years, the Great Pyramid of Giza will have stood
longer than all the other wonders combined.

Multiplying, Dividing, Adding,
Subtracting
You can include simple arithmetic operations
to your expressions. These will allow you to test
for more complicated conditions or to output
calculated values (Figure 4.5).

To multiply, divide, add, or subtract:
1. Type the first operand. It can be a numeri-

cal constant like 12, or it can be a node set
(in which case the string value of the first
node is used).

2. Then, type the mathematical operator:
* (for multiplication), div (for division,
since / is already fraught with meaning),
+ (for addition), or – (for subtraction).

3. Finally, type the second operand.

✔ Tips
■ Following typical math conventions,

multiplication and division are performed
before addition and subtraction. In other
words, 4+5*3 is 19 and not 27. You can
use parentheses to override the default. So,
(4+5)*3 is, in fact, 27.

■ To control the output of your mathemati-
cal operations (or any numeric output for
that matter), you’ll want to use a number
formatting function (see pages 54–55).

■ There is a fifth operator, mod, for obtain-
ing the remainder of a division. So, 20
mod 4 is 0 (since 4 divides evenly into 20),
but 20 mod 3 is 2 since 20/3 is 6 with a
remainder of 2.

53

XPath Functions

Counting Nodes

...
Of these wonders,
<xsl:value-of select="
 count(ancient_wonders/wonder/
 history/how_destroyed[. =
 'earthquake'])" />
were destroyed by earthquake,

<xsl:value-of select="
 count(//how_destroyed[. = 'fire'])"/>
were destroyed by fire, and

<xsl:value-of select="
 count(//wonder) -
 count(//how_destroyed)" />
is still standing.
...

x s l t

 Figure 4.7 In the first count() function I am using
an absolute location path to return the number of
wonders that were destroyed in an earthquake. In the
last two, I used the // shortcut to return all nodes in
the entire document that match the expression.

 Based on the XSLT from Figure 4.7, more Figure 4.8
than half the wonders were destroyed by earthquake.

Counting Nodes
Often, rather than doing arithmetic on a set
of nodes, you may simply want to know how
many nodes there are (Figure 4.7).

To count nodes:
1. Type count(.
2. Then, type the path to the node set whose

nodes should be counted.
3. Finally, type) to complete the function.

✔ Tip
■ The location path referenced in Step 2

can optionally include predicates. This
is shown in the first two instances of
count() in Figure 4.7.

54

Chapter 4

Fo
rm

at
tin

g
Nu

m
be

rs

Formatting Numbers
In XPath, arithmetic is done using floating
point math which can make for long output
(Figures 4.9 and 4.10). Fortunately, with the
format-number function, you can easily con-
trol the output format of numbers.

To format numbers:
1. Type format-number(.
2. Then, type the expression which contains

the number to be formatted.
3. Next, type , ' (a comma, a space, and a

single quote).
4. Then, type 0 for each digit that should

always appear, and # for each digit that
should only appear when not zero. If
desired, type . (a period), to separate the
integer part of a number from the frac-
tional part, and , (a comma), to separate
groups of digits in the integer part.

5. Finally, type ') (a single quote followed by a
right parentheses) to complete the number
pattern and the function (Figure 4.11).

✔ Tips
■ Use #,##0.00 to output at least one digit

in the number, with commas separating
every three digits, and exactly two dig-
its in the fractional part of the number
(as in dollars and cents: 269.40). With
#,000.0#, numbers with tenths (but not
hundredths) would have no final zero, for
example: 269.4.

■ Negative numbers are preceded by a minus
sign (–) by default. If you’d rather that they
be surrounded by parentheses, add ;(0)
after Step 4 above.

...
<xsl:when test="height != 0">
 <xsl:value-of select=
 "height"/> feet

 (<xsl:value-of select=
 "height * 0.3048"/> m)
...

x s l t

 In this excerpt, I am outputting the height Figure 4.9
in feet and then converting the height to meters for
output as well.

 Remember that arithmetic is done using Figure 4.10
floating point math which, as I said, can make for
really ugly output.

...
"(<xsl:value-of select=
 "format-number
 (height * 0.3048, '##0.0')"/> m
)"/> m)
...

x s l t

 The number being formatted is the same Figure 4.11
as in Figure 4.10 above. Now it will be formatted
with at least one digit to the left of the decimal point,
(but numbers are never truncated to the left) and
exactly one digit to the right of the decimal point.

 Now, the numbers look much better Figure 4.12
without quite so many digits.

55

XPath Functions

Rounding Num
bers

Rounding Numbers
There are three XPath functions for rounding
numbers in your data source (Figure 4.13).
You can round to the nearest integer (round),
always round up (ceiling) (), or always round
down (floor).

To round numbers:
1. Type ceiling(, floor(, or round(, depending

on whether you want to round up, down,
or to the nearest integer.

2. Then, type the expression which contains
the number to be formatted.

3. Finally, type) to complete the function.

✔ Tip
■ When using the format-number() func-

tion, described on page 54, if there are
any decimal places lost, the XSLT proces-
sor will automatically round the resulting
number being output.

<main_image
 file="artemis.jpg" w="528" h="349"/>

x m l

 In this XML excerpt, you can see that the Figure 4.13
image’s size is 528 pixels wide by 349 pixels tall.

...

 <xsl:attribute name="src">
 <xsl:value-of select=
 "./@file"/></xsl:attribute>
 <xsl:attribute name="width">
 <xsl:value-of select=
 "ceiling(./@w div 2)"/>
 </xsl:attribute>
 <xsl:attribute name="height">
 <xsl:value-of select=
 "ceiling(./@h div 2)"/>
 </xsl:attribute>

...

x s l t

 I’d like the pictures to be shown at Figure 4.14
half their regular size. Since the width and height
attributes only accept integers, I use the ceiling() func-
tion to round the division up to the nearest integer.

...
<p align="center">
 <img src="artemis.jpg"
 width="264" height="175"/>
...

h t m l

 After the XPath Figure 4.15 ceiling() function in
, the width and height of the image are now half of
their original values.

The wonder images now display at half Figure 4.16
their normal size: 264 by 175 pixels.

56

Chapter 4

Ex
tra

cti
ng

 S
ub

st
rin

gs

Extracting Substrings
When processing XML for output, it’s often
useful to dig into a string and take out only
the bit that you need. In this example (Figure
4.16), I am breaking up the location element
into city and country by using the comma that
separates them.

To extract a substring that comes
before or after a particular
character:
1. Type substring-after(or substring-before(,

depending on whether you want to extract
the part of the string that comes before or
after the character.

2. Then, type the expression which contains
the source string.

3. Next, type , c, where c is the character
after or before the substring that will be
extracted.

4. Finally, type) to complete the function.

✔ Tip
■ You can also extract a substring in the

middle of a string if you know the posi-
tion of the first character you want and
the total number of characters after that.
You would use the substring(s,f,n)
function, where s is the expression which
contains the source string, f is the posi-
tion of the first character that you want to
extract, and n is the total number of char-
acters you want.

...
<h2>Overview</h2>
<table border="1"><tr><th>Wonder Name
 </th><th>City</th><th>Country</th>
 <th>Years
Standing</th>
 <th>Height</th></tr>
...
<td valign="top">
 <xsl:value-of select="
 substring-before(location, ',')"/>
</td>
<td valign="top">
 <xsl:value-of select="
 substring-after(location, ',')"/>
</td>
...

x s l t

 In the XML document, the Figure 4.17 location
element contains both the wonder’s city and country.
Here, I am separating the location element into two
separate outputs of city and country. I am using the
string before the comma for city, and after the comma
for country.

 After the XSLT in Figure 4.16, each Figure 4.18
wonder’s city and country is displayed in a separate
column in the Overview section.

57

XPath Functions

Changing the Case of a String

Changing the Case of a String
When manipulating text, it’s often important to
be able to change letters from upper- to lower-
case and back again.

To capitalize strings:
1. Type translate(.
2. Then, type the expression which contains

the source string.
3. Next, type , 'abcdefghijklmnopqrstuvwxyz'

(that is; a comma, a space, and the string
which contains the letters to change).

4. Then, type , 'ABCDEFGHIJKLMNOPQRST
UVWXYZ' (that is; a comma, a space, and
the string which contains the letters that
you want to replace from Step 3).

5. Finally, type) to complete the function
(Figure 4.18).

✔ Tips
■ To change letters from lower- to uppercase,

swap Step 3 with Step 4.
■ You can use the translate() function

to translate any character into any other
character. Type the letters that should be
changed in Step 3, and the letters that
these should be changed into in Step 4.

■ In XPath Language Version 2.0, there are
many more string manipulation functions,
including one to specifically convert to and
from upper- and lowercase.

...
<p align="center">
<xsl:value-of select="
translate(../name[@language='English']
,'abcdefghijklmnopqrstuvwxyz'
,'ABCDEFGHIJKLMNOPQRSTUVWXYZ')"/>

<xsl:apply-templates select="
 ../main_image"/>
</p>
...

x s l t

 Figure 4.19 In the History section, I am going to
output the wonder’s name above the image of the won-
der. And I am going to translate the wonder’s name to
be all uppercase.

 The XSLT in Figure 4.18 capitalized Figure 4.20
each wonder’s name as a header in the History section.

58

Chapter 4

To
ta

lin
g

Va
lu

es

Totaling Values
You can use the XPath sum() function to add
up all the values of the nodes in a node set
(Figure 4.20). It’s great for displaying data in
tables and columns (Figure 4.21).

To total values:
1. Type sum(.
2. Then, type the path to the node set whose

nodes should be totaled.
3. Finally, type) to complete the function.

✔ Tip
■ As shown in the example in Figure 4.20,

you can combine many XPath functions
together in the same output. This allows
you to create very specific transformations
of the XML data source.

...
<tr>
<td valign="top" align="right"
 colspan="4">Average Height: </td>
<td valign="top">
 <xsl:value-of select="
 format-number(
 sum(/ancient_wonders/wonder/height)
 div
 count(/ancient_wonders/wonder/
 height[.!=0]),
 '##0.0')" />
 ft</td>
</tr>
...

x s l t

 I’m creating a row to show the average Figure 4.21
height of all the wonders. To find the average, I use the
sum() function to add up all the values of the height
nodes. Then I divide the total height by the number of
wonders which don’t have a height of zero. Finally, I
format the output to show one value to the right of the
decimal point.

 The average height of all the wonders Figure 4.22
was nearly 20 stories high.

59

XPath Functions

M
ore XPath Functions

More XPath Functions
In addition to the XPath functions detailed in
this chapter, here are some additional func-
tions you might find useful. For a full list of the
functions in XPath Version 1.0, see
www.w3.org/TR/xpath#corelib.

Node Functions:
◆ name(node-set) returns the first node in

the specified node set, and name() returns
the name of the current node.

◆ id(id-str) returns all the elements that have
an ID equal to id-str.

String Functions:
◆ contains(str1, str2) returns True if str1 con-

tains str2, otherwise returns False.
◆ string-length(str1) returns the number of

characters in str1, while string-length()
returns the number of characters in the
current node.

◆ normalize-space(str1) returns str1 with all
leading and trailing white space removed,
and sequences of white space replaced with
a single space. normalize-space() performs
the same action on the current node.

Boolean Functions:
◆ not(expression) returns True if expression

evaluates to False, and returns False if
expression evaluates to True.

◆ | (a vertical bar; often located above the \
on your keyboard). Although it’s techni-
cally not a function, it is used to combine
two node sets into one.

✔ Tip
■ While XPath 1.0 remains the most widely

used version, it only provides a limited set
of functions. If there is functionality you
really need, you can look at XPath Version
2.0, which has a larger set of functions and
operators. The specifications can be found
at: www.w3.org/TR/xpath20/.

<xsl:template match="history">
...
 <xsl:value-of select="story"/>

x s l t

 To complete the output of the wonders-Figure 4.23
master.xml document, I add the story element to the
History section. See Figure 4.23 below for a screenshot
of the final HTML.

 After all the XSLT and XPath work, Figure 4.24
here is screenshot of the final HTML output!

www.w3.org/TR/xpath#corelib
www.w3.org/TR/xpath20/

This page intentionally left blank

5

61

XSL-FO

As I mentioned in Chapter 2, the eXtensible
Stylesheet Language (XSL), was originally
a single specification for formatting XML
documents. But before finishing it, the W3C
divided XSL into two pieces: XSLT (for
Transformations) and XSL-FO (for Formatting
Objects). I discussed XSLT in the last three
chapters. In this chapter, I’ll discuss XSL-FO.

XSL-FO is essentially a typesetting language.
It enables you to easily specify page layouts,
including setting margins and line spacing;
creating headers, footers, and marginalia; and
generating endnotes, footnotes, columnar page
content, cover sheets, and tables of content.

XSL-FO is an XML-based markup language,
and was designed to format XML data. You
have already seen how XSLT can format XML
data, transforming it into HTML. XSL-FO,
however, was specifically designed to format
XML data for output to print. In this chapter,
the XSL-FO examples that I use will generate
printable output in the Adobe PDF format.

In order to see the examples work, or to write
XSL-FO yourself, you will need an XSL-FO
processor. If you don’t have one already, see
Appendix A, XML Tools, for a list of options.

In 2001, XSL-FO 1.0 became an official W3C
Recommendation, and was updated in 2006 to
version 1.1. In March 2008, a Working Draft
of version 2.0 was released. For additional
information, visit the W3C’s XSL Working
Group site at: www.w3.org/Style/XSL.

XSL-FO

www.w3.org/Style/XSL

62

Chapter 5

Th
e

Tw
o

Pa
rts

 o
f a

n
XS

L-
FO

 D
oc

um
en

t

<?xml version="1.0"?>

<fo:root xmlns:fo="http://
 www.w3.org/1999/XSL/Format">

<!-- overall structure -->
 <fo:layout-master-set>
 <fo:simple-page-master
 master-name="wonders_cover"
 page-width="8.5in"
 page-height="11in" margin="1in">
 <fo:region-body/>
 </fo:simple-page-master>
 </fo:layout-master-set>

<!-- page content -->
 <fo:page-sequence
 master-reference="wonders_cover">
 <fo:flow
 flow-name="xsl-region-body">
 <fo:block font-size="28pt"
 text-align="center">
 Seven Wonders of the Ancient
 World</fo:block>
 <fo:block font-size="14pt"
 text-align="justify"
 space-before=".25in">
 The famous Greek historian
 Herodotus wrote of seven great
 architectural achievements.
...
 </fo:flow>
 </fo:page-sequence>

</fo:root>

x s l - f o

 The Figure 5.1 overall structure part of this
XSL-FO excerpt defines a page template with
page-width, page-height, and margin elements.
The page content part contains the literal text
Seven Wonders of the Ancient World, formatted as
28-point text, and additional text about Herodotus,
formatted as 14-point justified text.

 When processed, the XSL-FO document Figure 5.2
in Figure 5.1 generates a final output document. In
this case, I have created a PDF file (the top of which is
shown above) from the XSL-FO document.

The Two Parts of an XSL-FO
Document
An XSL-FO document is a text-only file con-
taining XSL-FO markup and literal content.
With this document, an XSL-FO processor
can generate one of many different printable
outputs, including: Portable Document Format
(PDF), Maker Interchange Format (MIF),
PostScript (PS), and others.

Every XSL-FO document (Figure 5.1) can
be broken into two parts, both of which are
enclosed in a top-level element fo:root. The
first part describes the overall structure of the
final output. It does so by using XSL-FO ele-
ments and attributes to set page width / height,
margins, and sidebars, as well as identify dif-
ferent page templates (such as those for a cover
page, table of contents, odd- and even-num-
bered pages, or the content itself).

The overall structure part of an XSL-FO docu-
ment contains an fo:layout-master-set
element which is a container for one or more
fo:simple-page-master child elements.
These child elements describe page templates
which are broken up into five region elements,
such as fo:region-body, used for the body
region of a page template.

The second part of an XSL-FO document
contains and formats the page content of the
final output. In this part, there are fo:page-
sequence elements, each of which corresponds
to an fo:simple-page-master element
defined in the overall structure part of the
document. Each page sequence contains one
fo:flow child element for each of the regions
defined within the fo:simple-page-master
element. Finally, each flow element has one or
more fo:block child elements, and each block
element contains actual page content.

63

XSL-FO

Creating an XSL-FO Docum
ent

<?xml version="1.0"?>

<fo:root xmlns:fo="http://
 www.w3.org/1999/XSL/Format">

<!-- overall structure -->
 <fo:layout-master-set>
 <fo:simple-page-master
 master-name="wonders">
 <fo:region-body/>
 </fo:simple-page-master>
 </fo:layout-master-set>

<!-- page content -->
 <fo:page-sequence
 master-reference="wonders">
 <fo:flow
 flow-name="xsl-region-body">
 <fo:block>
 Colossus of Rhodes</fo:block>
 </fo:flow>
 </fo:page-sequence>

</fo:root>

x s l - f o

 This is a complete XSL-FO document. Figure 5.3
The page template is named wonders and contains
a body region, which is filled with the text Colossus
of Rhodes. Notice that an XSL-FO document can
be very sparse in content, but it still requires both the
overall structure and page content parts.

 This is the top of the PDF file, which was Figure 5.4
generated by processing the XSL-FO document
in Figure 5.3.

Creating an XSL-FO Document
XSL-FO is an XML markup language, so
XSL-FO documents are written using XML
syntax. The first line of an XSL-FO document
is the standard XML declaration, and it must
contain a single root element (Figure 5.3).
XSL-FO documents are text-only files and are
saved with an .fo extension.

To create an XSL-FO document:
1. Type <?xml version="1.0"?>.
2. Type <fo:root to define the root element

of the XSL-FO document. Notice the fo:
namespace prefix; it is defined next.

3. Then, type xmlns:fo="http://www.w3.org/
1999/XSL/Format" to declare the XSL-FO
namespace with the fo: prefix.

4. Finally, type > to close the tag.
5. Type <fo:layout-master-set> to start the

overall structure part of the document.
6. Type <fo:simple-page-master master-

name="master">, where master is the page
template name used in Step 10.

7. Type <fo:region-body/> to declare that
this page master will contain content in the
body region.

8. Type </fo:simple-page-master>.
9. Type </fo:layout-master-set>.
10. Then, type <fo:page-sequence master-

reference="master">, where master is the
same name defined in Step 6. This begins
the page content part of the document.

11. Type <fo:flow flow-name="xsl-region-
body">. Here, xsl-region-body refers to
the body region declared in Step 7.

12. Enter the page content for your final out-
put using fo:block elements.

13. Type </fo:flow>.
14. Type </fo:page-sequence>.
15. Finally, type </fo:root> to complete the

XSL-FO document.

64

Chapter 5

Cr
ea

tin
g

an
d

St
yl

in
g

Bl
oc

ks
 o

f P
ag

e
Co

nt
en

t

...
<!-- page content -->
 <fo:page-sequence
 master-reference="wonders">
 <fo:flow
 flow-name="xsl-region-body">
 <fo:block font-size="24pt"
 space-after="0.2in">
 Colossus of Rhodes
 </fo:block>
 <fo:block font-size="14pt">
 <fo:block space-after="0.1in">
 In 294 BC, the people of the
 island of Rhodes began building
...
 </fo:block>
 <fo:block space-after="0.1in">
 The Colossus was built with
 bronze, reinforced with iron,
...
 </fo:block>
 </fo:block>
 </fo:flow>
 </fo:page-sequence>

</fo:root>

x s l - f o

 In this excerpt, I added more page content Figure 5.5
to the XSL-FO document shown in Figure 5.3 by
using a number of additional fo:block elements. I also
applied a few style properties to each of the blocks.

 After processing the XSL-FO document, Figure 5.6
each fo:block element is styled using its style proper-
ties, and stacked on top of the other in the final output.

Creating and Styling Blocks of
Page Content
In XSL-FO, content such as paragraphs and
headlines are contained in blocks. The XSL-FO
processor retrieves each block’s content, applies
its style properties, and then stacks each block
one after the other to generate the final output.

To create a block of page content:
1. As a child element to an fo:flow element,

type <fo:block (Figure 5.5).
2. Set any style properties (see below) you

wish to apply to the block of page content
in Step 4 below.

3. Then, type > to close the tag.
4. Write the literal page content, which is the

text value of this fo:block element.
5. Finally, type </fo:block>.

To style a block of page content:
◆ As an attribute of an fo:block element,

type the name of the style property and its
value. For example:

 font-size="f_size", where f_size can be
a length in inches (in), points (pt), and
others; an absolute size (such as small,
x-large, and others); a relative size (such
as larger or smaller); a percentage in
numeric value or em’s; or inherit, which
uses the parent’s font-size value.

 space-after="s_after", where s_after can
be a length in inches (in), points (pt), and
others; or inherit, which uses the parent’s
space-after value.

✔ Tip
■ The fo:block element can have fo:block

child elements, and any inheritable style
properties in the parent will be applied to
each child. If not automatically inherited,
setting the child’s style property value to
inherit will use the parent’s value.

Look Familiar?
Many styling properties of the fo:block
element are the same as Cascading Style
Sheets (CSS) properties. If you already
know CSS, that knowledge will apply to
styling XSL-FO output as well.

65

XSL-FO

Adding Im
ages

...
<!-- page content -->
 <fo:page-sequence
 master-reference="wonders">
 <fo:flow
 flow-name="xsl-region-body">
 <fo:block font-size="24pt"
 text-align="center"
 space-after="0.2in">
 Colossus of Rhodes
 </fo:block>
 <fo:block text-align="center"
 space-after="0.2in">
 <fo:external-graphic
 src="url('colossus.jpg')"
 content-height="3.5in"
 border-style="ridge"
 border-width="thick"/>
 </fo:block>
 <fo:block font-size="14pt">
 <fo:block space-after="0.1in">
...

x s l - f o

 I added the Figure 5.7 colossus.jpg image to the
XSL-FO document. It will display center-aligned in
the final output with a thick ridge border, and be
3.5 inches tall. I also decided to center the wonder’s
name because I thought it looked better that way.

 The colossus.jpg image is treated like any Figure 5.8
other page content contained in a block; it is stacked,
in order, and its styles are applied for the final output
(in this case, being center-aligned with a 0.2-inch
space after it).

Adding Images
In addition to text content, the fo:block
element can also contain images. The
fo:external-graphic element, which iden-
tifies the image, can also have its own style
properties defined (Figure 5.7).

To add an image:
1. As a child element to an fo:block ele-

ment, type <fo:external-graphic.
2. Then, type src="graphic.uri", where

graphic.uri is the path to the image file you
wish to include in the final output.

3. Finally, type /> to close the element.

Some common style properties of the
fo:external-graphic element include:

◆ content-height="c_height", where c_height
can be auto, which means to use the
actual height of the image; scale-to-fit,
which means to scale the image to fit in
the block space provided by the XSL-FO;
a length in inches (in), points (pt), and
others; a percentage in numeric value or
em’s; or inherit, which uses the parent’s
content-height value. Note that when an
image’s content-height property is set,
but its content-width property is not, the
image is scaled proportionally.

◆ border-style="b_style", where b_style can
be none or hidden, which will not show a
border; dotted, dashed, solid, double,
groove, ridge, inset, outset (each of
which is a specific visual style of border);
or inherit, which uses the parent’s
border-style value.

◆ border-width="b_width", where b_width
can be thin, medium, thick (each of
which is increasingly wide); a length in
inches (in), points (pt), and others; or
inherit, which uses the parent’s border-
width value.

66

Chapter 5

De
fin

in
g

a
Pa

ge
 Te

m
pl

at
e

<?xml version="1.0"?>

<fo:root xmlns:fo="http://
 www.w3.org/1999/XSL/Format">

<!-- overall structure -->
 <fo:layout-master-set>

 <fo:simple-page-master
 master-name="wonders"
 page-width="8.5in"
 page-height="11in" margin="1in">
 <fo:region-body/>
 </fo:simple-page-master>

 </fo:layout-master-set>
...

x s l - f o

 The Figure 5.9 fo:simple-page-master element uses
the master-name attribute to define a page template
named wonders. By setting the style property attri-
butes of the fo:simple-page-master element, I have
defined that the wonders page template is 8.5 inches
wide by 11 inches tall, and has a 1-inch margin on
the top, right, bottom, and left.

 Unlike the PDF example shown in Figure 5.10
Figure 5.8, here the page content does not butt up
against the top and left edges of the page; rather, there’s
a 1-inch margin on all sides.

Defi ning a Page Template
The root element of an XSL-FO document is
fo:root. Also, as I explained, it contains two
parts: One defining the final output’s overall
structure and one defining the final output’s
page content. In the last two pages, I focused
on the page content part of an XSL-FO docu-
ment. Now, I will focus on the overall structure.

The overall structure part is contained in a
single fo:layout-master-set element, which
has one or more fo:simple-page-master
child elements. These elements define the page
templates in which the page content is output.

To defi ne a page template:
◆ As an attribute of an fo:simple-page-

master element, type the name of the style
property and the value of which to apply
(Figure 5.9). For example:

 page-width="p_width", where p_width can
be a length in inches (in), points (pt), and
others; auto (the default setting) means the
page width is determined by the XSL-FO
processor; or indefinite, which means
the width is determined by the size of the
page content.

 page-width="p_height", where p_height
has the same options as page-width.

 margin="m_value", where m_value is a
length in inches (in), points (pt), and
others.

✔ Tip
■ Shorthand properties are style proper-

ties that set more than one subproperty
with a single attribute and value. For
example, setting the margin property
actually sets margin-top, margin-right,
margin-bottom, and margin-left. On
the previous page, border-style and
border-width are also shorthand proper-
ties, setting -top, -right, -bottom and -left.

67

XSL-FO

Creating a Page Tem
plate Header

...
<!-- overall structure -->
 <fo:layout-master-set>
 <fo:simple-page-master
 master-name="wonders"
 page-width="8.5in"
 page-height="11in">
 <fo:region-body margin="1in"/>
 <fo:region-before extent="1in"/>
 </fo:simple-page-master>
 </fo:layout-master-set>
...

x s l - f o

 The header Figure 5.11 (fo:region-before) is defined
to be 1 inch tall. To avoid overlapping content (see
the Tip on this page) the body (fo:region-body) must
have a 1-inch margin. Also, since the body now has a
1-inch margin, I removed the margin setting from the
page template (fo:simple-page-master).

...
<!-- page content -->
 <fo:page-sequence
 master-reference="wonders">
 <fo:static-content
 flow-name="xsl-region-before">
 <fo:block font-size="18pt"
 text-align="center"
 border-bottom-width="medium"
 border-bottom-style="solid"
 margin="0.25in">
 Seven Wonders of the Ancient
 World</fo:block>
 </fo:static-content>
...

x s l - f o

 The page content for the header is Figure 5.12
defined in the <fo:static-content flow-name="xsl-
region-before"> element. This is a child element of
the fo:page-sequence element whose master-reference
attribute is equal to “wonders.”

 The header content, Figure 5.13 Seven Wonders
of the Ancient World, is output as 18 point,
center-aligned text, with a medium-width, solid,
bottom-aligned border.

Creating a Page Template Header
So far, I have only used the body region of a
page template defined by the fo:region-body
element. There are four other page template
regions that can be defined, which correspond
to the header, footer, and left and right sidebars.

To create the structure for a header:
1. As a child element to an fo:simple-

page-master element, and after
the fo:region-body element, type
<fo:region-before (Figure 5.11). (Make
note of the master-name attribute in the
fo:simple-page-master element.)

2. Then, type extent="e_value", where
e_value is the height of the header region.

3. Set any style property attributes for the
region, such as background and border.

4. Finally, type /> to close the element.

To set the page content for a header:
1. Locate the fo:page-sequence element

whose master-reference attribute equals
the master-name attribute from Step 1
above. As a child element of this element,
type <fo:static-content (Figure 5.12).

2. Then, type flow-name="xsl-region-
before">. (xsl-region-before refers
to the header region defined by the
fo:region-before element.)

3. Write fo:block elements to define the
page content for your header.

4. Finally, type <fo:static-content/>.

✔ Tip
■ Although defined separately, the header

region (as well as the footer, and left and
right sidebar regions) is part of the body
region. Consequently, the margin of the
body region must be equal to (or greater
than) the extent of the header region. If
not, the body will overlap the header.

68

Chapter 5

Us
in

g
XS

LT
 to

 C
re

at
e

XS
L-

FO

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="1.0" xmlns:fo="http://
 www.w3.org/1999/XSL/Format">
 <xsl:output method="xml"
 indent="yes"/>

 <xsl:template match="/">
 <fo:root>
 <!-- overall layout -->
 <fo:layout-master-set>
...

x s l t

 Here, I am using XSLT to generate the Figure 5.14
XSL-FO document shown in Figures 5.11 and 5.12.
Actually, the XSL-FO being generated will include all
wonders, not just the Colossus of Rhodes. This XSLT
continues in the two examples below.

...
<fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates select=
 "ancient_wonders/wonder/name
 [@language='English']">
 <xsl:sort select="."
 order="ascending"/>
 </xsl:apply-templates>
</fo:flow>
...

x s l t

 In the XSL-FO page templates (where Figure 5.15
the page content is entered), instead of typing literal
text, I am using the XSLT xsl:apply-templates ele-
ment. I’m calling the name template for each wonder
with an English-language name, in alphabetical order.

...
<xsl:template match="name">
 <fo:block font-size="24pt"
 text-align="center"
 space-after="0.2in">
 <xsl:value-of select="."/>
 </fo:block>
...

x s l t

 This XSLT Figure 5.16 name template excerpt cre-
ates an XSL-FO block containing a wonder’s name
in 24 point, centered text, with 0.2 inches of space
afterwards. This is the same styling I have used for
Colossus of Rhodes in the previous examples.

Using XSLT to Create XSL-FO
Remember, XSL-FO was designed to format
XML documents, not literal text as I have
shown thus far. Also, remember that XSL was
originally one specification, but was split into
two: XSLT and XSL-FO. By recombining these
languages, you will first transform the XML
source data (XSLT), and then you will format
the transformed content into a final output
document for publication (XSL-FO).

How to combine XSLT with XSL-FO:
1. Instead of starting with an XSL-FO

document, start with an XSLT document
(Figure 5.14). Refer to XSLT, Part 2 of
the book for details.

2. Within the xsl:stylesheet element,
type xmlns:fo="http://www.w3.org/
1999/XSL/Format" to declare the
XSL-FO namespace.

3. Type <xsl:output method="xml"
indent="yes"/> to define the output
method to be xml (and indent this xml
output which makes for easier reading).

4. Create the XSLT root template
(<xsl:template match="/">) which will
contain the entire XSL-FO document tree
beginning with its root element, <fo:root>.

5. Finally, use XSLT elements, such as
xsl:apply-templates (Figure 5.15),
to generate the XSL-FO page content.
These XSLT elements will then call
the xsl:template elements using the
xsl:value-of elements (Figure 5.16).

✔ Tip
■ When this XSLT is processed, the output

it generates is an XSL-FO document. You
can then process the XSL-FO document
and generate a publishable final output.
Some XSLT / XSL-FO processors can even
go directly from XSLT, through XSL-FO,
to the final output with a single command.

69

XSL-FO

Inserting Page Breaks

...
<xsl:template match="name">
 <fo:block font-size="24pt"
 text-align="center"
 space-after="0.2in"
 break-before="page">
 <xsl:value-of select="."/>
 </fo:block>
...

x s l t

 This XSLT excerpt shows that a page Figure 5.17
break will be inserted before the block that outputs
each wonder’s name. This XSLT continues below.

...
<fo:static-content
 flow-name="xsl-region-after">
 <fo:block font-size="9pt"
 text-align="right" margin="0.5in"
 margin-top="0.25in">
 Page <fo:page-number/>
 </fo:block>
</fo:static-content>
...

x s l t

 This excerpt of XSL-FO code within the Figure 5.18
XSLT template will output in the footer the literal text
Page, followed by the current page number.

 The result of the XSLT to XSL-FO to Figure 5.19
PDF process is a seven-page document with each won-
der on a separate page and page numbers in the footer.

Inserting Page Breaks
The XSLT example on the previous page gener-
ates an XSL-FO file which, in turn, generates a
final output. As you may imagine, or have seen
in the example files, the final output is many
pages long without any logical page breaks.

To insert a page break:
◆ As an attribute of an fo:block element,

type break-before="page". This inserts a
page break before the block’s content in the
final output (Figure 5.17).

When your final output is multiple pages, you
can include XSL-FO elements to number your
pages in a footer (Figure 5.18).

To number each page in a footer:
1. To create the structure for a footer, the

child element in the first Step 1 on page 67
should be <fo:region-after.

2. To set the page content for the footer,
the attribute value in the second Step 2
on page 67 should be "xsl-region-after".
(xsl-region-after refers to the footer
region defined by the fo:region-after
element in Step 1.)

3. Finally, in a block of page content for the
footer, type <fo:page-number/>, which
outputs the current page number.

✔ Tips
■ The break-before style property can

take other values such as: auto (the default
setting), where no break is forced; even-
page or odd-page, where the page break
is generated only for even or odd pages,
respectively; inherit, which uses the
parent’s break-before value; or column,
which is discussed on page 70.

■ There is also a break-after style property
which acts just like break-before, except
the page break is inserted after the element.

70

Chapter 5

Ou
tp

ut
tin

g
Pa

ge
 C

on
te

nt
 in

 C
ol

um
ns

...
<!-- overall layout -->
<fo:layout-master-set>
 <fo:simple-page-master
 master-name="wonders"
 page-width="8.5in"
 page-height="11in">
 <fo:region-body margin="1in"
 column-count="2"/>
...

x s l t

 The body region of the page template Figure 5.20
named wonders will be output in two columns. This
XSLT continues in the two examples below.

...
<xsl:template match="name">
 <fo:block span="all"
 margin-bottom="0.2in">
 <fo:block font-size="24pt"
 text-align="center"
 break-before="page">
 <xsl:value-of select="."/>
 </fo:block>
...

x s l t

This block element will contain the won-Figure 5.21
der name and image, and will span all columns.

...
<fo:block font-size="14pt"
 text-align="justify"
 break-after="column">
 <xsl:apply-templates
 select="../history/story"/>
</fo:block>
...

x s l t

 I added the Figure 5.22 break-after="column"
attribute to the block that outputs the story.

 Now the PDF shows the story text in Figure 5.23
two columns, and the image (and wonder name above
it—not shown) spanning both columns.

Outputting Page Content in
Columns
One of XSL-FO’s built-in typographic capabili-
ties is being able to define columns in which to
output page content.

To output page content in columns:
1. As an attribute of a region element, type

column-count="c_count", where c_count
is the number of columns to use in that
region’s final output (Figure 5.20).

2. Within the region identified in Step 1,
as an attribute of any block you wish
not to place in the columnar layout, type
span="all" (Figure 5.21).

3. Within the region identified in Step 1,
 as an attribute of any block you wish
to generate a column break, type
break-before="column" or break-
after="column", as needed (Figure 5.22).

✔ Tips
■ Another style property attribute for col-

umns is column-gap, which sets the
separation width between columns. It can
take be a length in inches (in), points (pt),
and others; or a percentage in numeric
value or em’s.

■ Placing a column break in the last block
on the last page of a final output may gen-
erate an unintentional blank page (after
what should be the last page). You can
avoid this problem by not including this
attribute in the last block. One way to do
this is to use the xsl:if element with the
xsl:attribute element to only include
the break-after="column" attribute
in the second to the last block. (I have
included this fix in the next set of XSLT
example files.)

71

XSL-FO

Adding a New
 Page Tem

plate

...
<!-- overall layout -->
<fo:layout-master-set>
 <fo:simple-page-master
 master-name="wonders_cover"
 page-width="8.5in"
 page-height="11in" margin="1in">
 <fo:region-body/>
 </fo:simple-page-master>
...

x s l t

 This new page template will be a cover Figure 5.24
sheet for the PDF and is named wonders_cover.

...
<!-- page content-->
<fo:page-sequence
 master-reference="wonders_cover">
 <fo:flow
 flow-name="xsl-region-body">
 <fo:block font-size="28pt"
 text-align="center">
 Seven Wonders of the Ancient World
...

x s l t

 An initial version of the cover sheet was Figure 5.25
shown in Figures 5.1 and 5.2.

 The cover sheet uses a different page Figure 5.26
template with no header or footer.

Adding a New Page Template
On page 66, I defined a page template that I
have used for my final output in all the exam-
ples thus far. Now, I want to create a cover page
for my output with a different overall layout
and different page content.

To add a new page template:
1. As a child element of the

fo:layout-master-set element, type
<fo:simple-page-master (Figure 5.24).

2. Then, type master-name="master", where
master is the page template name used in
the fo:page-sequence element below.

3. Include any style properties as desired, see
Defining a Page Template on page 66.

4. Finally, type > to close the tag.
5. Type <fo:region-body/> to declare that

this page master will contain content in the
body region, and include any style proper-
ties you would like for the region.

6. Include any other region declaration ele-
ments (see page 67).

7. Finally, type </fo:simple-page-master>.

To defi ne page content for a new
page template:
1. In the page content part of your XSL-FO

document, type <fo:page-sequence
master-reference="master">, where master
is the name of the page template from
Step 2 above (Figure 5.25).

2. Type <fo:flow flow-name="xsl-region-
body"> to create the container for blocks
of content for the body region.

3. Enter page content blocks for the region.
4. Type </fo:flow> to complete the element.
5. Repeat Steps 3 and 4 for other regions

defined in Step 6 above.
6. Finally, type </fo:page-sequence>.

This page intentionally left blank

73

Creating a DTD 75
Entities and Notations in DTDs 91

Validation and Using DTDs 103

PART 3:
DTD

This page intentionally left blank

6

75

Creating a DTD

CREATING A DTD
In Part 1 of the book, you learned XML’s
underlying grammar, which forms the rules
for writing an XML document. In Part 2, you
learned how to transform an XML document
into another form, in this case HTML. Now,
in Part 3, you’ll learn how to define a custom
markup language in XML.

To define such a language, you will first iden-
tify its elements and their attributes, declaring
which are required, and which are not. This
information is called a schema. For example, an
historian might create WowML, the (fictitious)
Wonders of the World Markup Language, as a
system for cataloging data about the wonders of
the world. WowML might have elements like
wonder, name, year_built, and story.

Schemas, while not required, are exception-
ally important for keeping XML documents
consistent. In fact, you can compare any XML
document to its corresponding schema to vali-
date whether it conforms to the rules specified
in the schema (see Chapter 8). And, if an XML
document is deemed valid, then its data is in
the proper form as specified by the schema.

There are two principal systems for writing
schemas: DTD and XML Schema. A DTD,
or Document Type Definition, is an older, but
widely used system with a peculiar and limited
syntax. The next three chapters are devoted to
writing DTD-style schemas. The other primary
system, XML Schema, is described in detail in
Part 4 of the book. For some reasons why you
might choose one over the other, consult Pros
and Cons of DTDs on page 110.

76

Chapter 6

W
or

ki
ng

 w
ith

 D
TD

s

Working with DTDs
A DTD, or Document Type Definition, is a set
of rules that defines a custom markup language
in XML. A DTD, at its core, simply identi-
fies elements and their attributes. If an XML
document does not adhere to the rules defined
by the DTD, it is not considered valid for that
particular custom language. With this valida-
tion test, you can quickly discern if a given
XML document follows the rules you set forth
for your language or not.

As I’ve mentioned, XML uses the same build-
ing blocks as HTML: Elements, attributes, and
values. Elements are the foundational units of
an XML document (Figure 6.1). They can
contain values, have attributes, and they can
contain other elements. A DTD for a given
custom markup language will define a list of
elements and any child elements that each ele-
ment can have (Figure 6.2). It will define any
attributes that each element can have, and it
will define whether these elements and attri-
butes are optional or required. In this way, the
DTD defines the legal structure of the custom
markup language, and therefore, any valid
XML document that is part of this language.

A DTD is a text-only document and is custom-
arily saved with a .dtd extension. It is not an
XML document itself and therefore does not
begin with the standard XML declaration.

✔ Tips
■ DTDs are a great way to insure the con-

sistency of XML data shared between
different people and companies. You can
use a DTD to validate that the XML docu-
ments you receive from others are in the
proper format before using them.

■ You will need to use an XML Editor or
some type of DTD processor to validate an
XML document against a given DTD. You
can find details about both in Appendix A.

<?xml version="1.0"?>
<wonder>
 <name>Colossus of Rhodes</name>
 <location>Greece</location>
 <height>107</height>
</wonder>

x m l

 Here is one of the first XML documents Figure 6.1
you saw in this book. This XML document has four
elements: the root element, wonder, and its three child
elements: name, location, and height.

<!ELEMENT wonder
 (name, location, height)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT location (#PCDATA)>
<!ELEMENT height (#PCDATA)>

d t d

 This DTD excerpt defines the structure of Figure 6.2
the XML document in Figure 6.1. It reads as follows:
the wonder element contains three child elements:
name, location, and height; the name element is
of type PCDATA, the location element is of type
PCDATA and the height element is of type PCDATA.
PCDATA is defined more on page 77; but, for now,
I’ll say that PCDATA is simply text.

77

Creating a DTD

Defining an Elem
ent That Contains Text

Defi ning an Element That
Contains Text
To define the structure of your custom markup
language in a DTD, you define the structure
and content of the elements that a valid XML
document would have.

Many elements in your XML document will
contain just text (Figure 6.3). While an
address element may contain child elements
for street, city, state, and zip, these ele-
ments themselves will likely just contain text.

To defi ne an element that only
contains text:
1. Type <!ELEMENT tag where tag is the name

of the element you wish to define.
2. Then, type (#PCDATA) (include the

parentheses!). This defines the element as
one that should only allow text content.

3. Finally, type > to complete the element
definition (Figure 6.4).

✔ Tips
■ PCDATA stands for parsed character data,

and it refers to the text value of an element.
This character data will be parsed, or ana-
lyzed, by an XML processor.

■ Text (also called a string) can be any series
of letters, numbers, and symbols, such as
“Hello,” or “4 Privet Dr.,” or “99811.”

■ An element that is defined to contain
PCDATA can’t contain any other element.

■ Everything is case-sensitive in XML. The
word <!ELEMENT must be typed just so.
<!Element just doesn’t cut it. And don’t for-
get the exclamation point. You can choose
a mixed-case name for the element, as
long as you always refer to it and use it in
exactly the same way. Many XML applica-
tions use all lowercase. This way you don’t
have to spend time remembering what case
anything should be.

<?xml version="1.0"?>
<ancient_wonders>
 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>
 <history>
 <year_built era="BC">
 282</year_built>
 <year_destroyed era="BC">
 226</year_destroyed>
 <how_destroyed>
 earthquake</how_destroyed>
 <story>In 294 BC, the people of
 the island of Rhodes ...</story>
 </history>
 </wonder>
</ancient_wonders>

x m l

 Notice in this pared-down version of the Figure 6.3
master XML document, most of the elements contain
text. (Some also contain attributes which I discuss on
page 84.) The history child elements also contain text,
while history itself does not. Elements with children
are discussed on page 79.

<!ELEMENT name (#PCDATA)>
<!ELEMENT location (#PCDATA)>
<!ELEMENT height (#PCDATA)>
<!ELEMENT year_built (#PCDATA)>
<!ELEMENT year_destroyed (#PCDATA)>
<!ELEMENT how_destroyed (#PCDATA)>
<!ELEMENT story (#PCDATA)>

d t d

 Almost every DTD will have elements Figure 6.4
that are defined as PCDATA. In this DTD excerpt, I
am showing all the elements from Figure 6.3 that are
defined to contain text.

78

Chapter 6

De
fin

in
g

an
 E

m
pt

y
Ele

m
en

t

...
<main_image file="lighthouse.jpg"
 w="528" h="349"/>
<source sectionid="112"
 newspaperid="53"/>
...

x m l

 In this XML excerpt, the Figure 6.5 main_image
and source elements are both empty elements. It
doesn’t matter whether they use a single or separate
opening and closing tags, they are both empty.

<!ELEMENT main_image EMPTY>
<!ELEMENT source EMPTY>

d t d

 This is the DTD excerpt that defines the Figure 6.6
elements in Figure 6.5. Defining their attributes will
be discussed on page 84.

Defi ning an Empty Element
In addition to elements that contain text,
DTDs must also be able to define empty ele-
ments. As discussed in Chapter 1, an empty
element is an XML element that does not have
any content value of its own. Instead, it uses its
attributes to store data (Figure 6.5).

To defi ne an empty element:
1. Type <!ELEMENT tag, where tag is the

name of the element you wish to define.
2. Then, type EMPTY to indicate that the

element will not contain a text value of
its own.

3. Finally, type > to complete the element
definition (Figure 6.6).

✔ Tips
■ Notice that when writing EMPTY, you do

not use parentheses as is required when
writing (#PCDATA).

■ As mentioned above, empty elements
will have attributes which are discussed
on page 84.

79

Creating a DTD

Defining an Elem
ent That Contains a Child

<?xml version="1.0"?>
<ancient_wonders>
 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>
 <history>
 <year_built era="BC">
 282</year_built>
 <year_destroyed era="BC">
 226</year_destroyed>
 <how_destroyed>
 earthquake</how_destroyed>
 <story>In 294 BC, the people of
 the island of Rhodes ...</story>
 </history>
 <main_image file="lighthouse.jpg"
 w="528" h="349"/>
 <source sectionid="112"
 newspaperid="53"/>
 </wonder>
</ancient_wonders>

x m l

 In this pared-down version of the XML Figure 6.7
master document, the ancient_wonders element has a
single child element, the wonder element.

<!ELEMENT ancient_wonders (wonder)>

d t d

 This DTD definition defines that the Figure 6.8
ancient_wonders element can contain a single
element named wonder as shown in Figure 6.7.
Note: The wonder element’s contents depend on its
definition only (and are not affected by the ancient_
wonders definition in the least).

Defi ning an Element That
Contains a Child
Now that you understand how to define basic
XML elements in a DTD, you need to be able
to define parent elements: elements that con-
tain other elements (Figure 6.7).

To defi ne an element to contain one
child element:
1. Type <!ELEMENT tag, where tag is the

name of the element you wish to define.
2. Then, type (child), where child is the name

of the element that will be contained in the
element you’re defining.

3. Finally, type > to complete the element
definition (Figure 6.8).

✔ Tips
■ A tag that is defined to contain one other

element may not contain anything except
that element. It may not contain additional
elements, nor may it contain text.

■ You can make a child element optional,
or have it appear multiple times. For
more details, consult Defining How Many
Occurrences on page 81.

■ You can also control the order in which ele-
ments must appear in an XML document
(see page 80).

■ Once you define that an element contains
another element, it must contain that ele-
ment every time it appears in the XML
document. If not, the XML document will
not be considered valid.

80

Chapter 6

De
fin

in
g

an
 E

lem
en

t T
ha

t C
on

ta
in

s C
hi

ld
re

n

Defi ning an Element That
Contains Children
Oftentimes, an XML element contains a
sequence of child elements (Figure 6.9). In a
DTD, you can define a sequence of child ele-
ments that must be contained in the parent
element. This sequence also defines the order in
which the children must appear.

To defi ne an element with children:
1. Type <!ELEMENT tag, where tag is the

name of the element you wish to define.
2. Then, type (child1, where child1 is the

first element that should appear in the
parent element.

3. Next, type , child2, where child2 is the next
element that should appear in the parent
element. Separate each child element from
the next with a comma and space.

4. Repeat Step 3 for each child element that
should appear in the parent element.

5. Then, type) to complete the sequence.
6. Finally, type > to complete the element

definition (Figure 6.10).

✔ Tips
■ The most important thing in a sequence

is the comma. The comma is the character
that separates elements (or groups of ele-
ments) in a sequence.

■ You may not use (#PCDATA) in any part
of a sequence; sequences must only contain
elements.

■ The elements contained in a sequence may
of course contain their own child elements.
The history element defined in Figure
6.10 actually contains four individual child
elements (as seen in Figure 6.12 on the
next page).

<?xml version="1.0"?>
<ancient_wonders>
 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>
 <history>
 <year_built era="BC">
 282</year_built>
 <year_destroyed era="BC">
 226</year_destroyed>
 <how_destroyed>
 earthquake</how_destroyed>
 <story>In 294 BC, the people of
 the island of Rhodes ...</story>
 </history>
 <main_image file="lighthouse.jpg"
 w="528" h="349"/>
 <source sectionid="112"
 newspaperid="53"/>
 </wonder>
</ancient_wonders>

x m l

 The Figure 6.9 wonder element has many child
elements. Notice, that many of the elements have attri-
butes which I discuss in more detail on page 84.

<!ELEMENT wonder (name, location,
 height, history, main_image,
 source)>

d t d

 This DTD definition which validates Figure 6.10
the XML in Figure 6.9 says that the wonder element
must contain each one of the listed elements, in order.
And, it may not contain anything else.

81

Creating a DTD

Defining How
 M

any Occurrences

Defi ning How Many Occurrences
So far, parent elements can only contain one
instance of each of their child elements. But
DTDs do allow more than just one instance of
a child element in an XML document. There
are three special symbols in DTDs that can be
used to define how many times a child element
can appear within a parent element (Figures
6.11 and 6.12).

To defi ne the number of occurrences:
1. In the contents portion of the element

definition, type the child element's name.
2. Then, type * to indicate that the child

element can appear as many times as nec-
essary, or not at all, in the parent element
being defined (zero or more times).

 Or type + to indicate that the child
element must appear at least once, and
as many times as desired in the parent
element being defined (one or more times).

 Or type ? to indicate that the child
element can appear at most once, if at
all, in the parent element being defined
(zero or one time).

✔ Tips
■ To reiterate:

* means zero or more times
+ means one or more times
? means zero or one time only.

■ It’s important to remember that an
element without a quantifier must appear
exactly once.

■ You can also use quantifiers to define the
number of occurrences for a sequence (see
page 80).

■ There’s no special way to define a spe-
cific quantity of an element (for example,
three). The one rather long-winded way is
to write: (element, element, element).

<!ELEMENT ancient_wonders (wonder+)>

<!ELEMENT wonder (name+, location,
 height, history, main_image,
 source*)>

d t d

 The special symbols (sometimes called Figure 6.11
quantifiers), make the definition much more flexible.
Now, the ancient_wonders element must contain at
least one (and an unlimited number of) wonder ele-
ments. In addition, the wonder element must contain
at least one (and an unlimited number of) name
elements, and there may be any number of source
elements (including none). The location, height,
history, and main_image elements must all appear
exactly once (which is the default).

<!ELEMENT history (year_built,
 year_destroyed?, how_destroyed?,
 story)>

d t d

 This definition of the Figure 6.12 history element
says that it must contain exactly one each of the
year_built and story elements. The year_destroyed
and how_destroyed elements may be omitted (or may
appear at most one time).

82

Chapter 6

De
fin

in
g

Ch
oi

ce
s

Defi ning Choices
Sometimes you might need an XML element to
contain one thing or another (Figure 6.13).

To defi ne choices for the content of
an element:
1. Type <!ELEMENT tag, where tag is the

name of the element you wish to define.
2. Then, type (child1, where child1 is the first

child element that may appear.
3. Next, type | to indicate that if the first

child element appears, the following one
may not (and vice versa).

4. Then, type child2, where child2 is the sec-
ond child element that may appear.

5. Repeat Steps 3–4 for each additional
choice.

6. Then, type) to complete the list of choices.
7. Finally, type > to complete the element

definition (Figure 6.14).

✔ Tips
■ You can add the * quantifier after Step 6 to

allow the element to have any number of
any of the choices (see page 81).

■ When an asterisk quantifier is applied to
a list of choices, it means that the element
can contain any number of the individual
choices, in any order, effectively creating an
unordered list of the choices.

■ In some cases, you may want an element to
contain both content and child elements.
This is referred to as mixed content as seen
in Figure 6.13. In this case, you must add
the asterisk quantifier as described in the
tips above. Note: This is not something
you will use often when writing your own
custom language. Rather, it is something
that you might use when writing a DTD
to support multiple XML documents from
multiple sources.

<ancient_wonders>
 <wonder>
 <name>Colossus of Rhodes</name>
 <location>Rhodes, Greece</location>
 </wonder>
 <wonder>
 Great Pyramid of Giza, Giza, Egypt
 </wonder>
 <wonder>
 Temple of Artemis at Ephesus
 <city>Ephesus</city>
 <country>Turkey</country>
 </wonder>
</ancient_wonders>

x m l

 Imagine that the information for the Figure 6.13
ancient wonders came from three different sources,
each having a different wonder element structure.

<!ELEMENT ancient_wonders (wonder+)>
<!ELEMENT wonder
 (#PCDATA | name | location | city
 | country)*>
<!ELEMENT name (#PCDATA)>
<!ELEMENT location (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT country (#PCDATA)>

d t d

 This DTD uses choices to support the Figure 6.14
different structures of the wonder element shown in
Figure 6.13. It declares that the wonder element can
contain zero or more occurrences of PCDATA, name,
location, city, or country elements.

<!ELEMENT history
 ((year_built, year_destroyed,
 how_destroyed, story)
 |
 (year_built, story))>

d t d

This is another way to write the DTD Figure 6.15
logic from Figure 6.12. Here the DTD is defining
the history element to either contain the year_built,
year_destroyed, how_destroyed, and story elements;
or, only the year_built and story elements.

83

Creating a DTD

Defining an Elem
ent That Contains Anything

Defi ning an Element That
Contains Anything
While not ideal for creating a structured set
of rules, in a DTD you can define an element
to contain anything; meaning, it can contain
any combination of elements and text. As with
mixed content, this is useful if you are creating
a DTD to support XML documents from dif-
ferent sources. It may be the only way to define
elements you know and allow for element struc-
tures you can’t anticipate (Figure 6.16).

To defi ne an element that can
contain anything:
1. Type <!ELEMENT tag, where tag is the

name of the element you wish to define.
2. Then, type ANY to allow the element to

contain any combination of elements and
parsed character data.

3. Finally, type > to complete the element
definition (Figure 6.17).

✔ Tips
■ You should be judicious with your use of

ANY. The point of a DTD is to set up rules
for what an element can and cannot con-
tain. If you’re going to allow every element
to contain anything, you might as well skip
the DTD altogether. DTDs aren’t required;
they simply help keep data consistent.

■ ANY defines that an element may contain
any structure. However, if the element
contains child elements, those children
must still be defined in the DTD. In other
words, ANY does not allow an element to
contain child elements that are not defined
in the DTD; all elements that appear in a
valid XML document must still be defined.

■ Every element must be defined exactly
once in a DTD and no more. Even if an
element can appear in many different
places in a valid XML document, it must
only be defined once.

<ancient_wonders>
 <wonder>
 <name>Colossus of Rhodes</name>
 <location>Rhodes, Greece</location>
 </wonder>
 <wonder>
 Great Pyramid of Giza, Giza, Egypt
 </wonder>
 <wonder>
 Temple of Artemis at Ephesus
 <city>Ephesus</city>
 <country>Turkey</country>
 </wonder>
 <wonder>
 <name>
 Mausoleum at Halicarnassus</name>
 <location>
 <city>Bodrum</city>
 <country>Turkey</country>
 </location>
 </wonder>
</ancient_wonders>

x m l

 Here, I’ve added another Figure 6.16 wonder ele-
ment (from a new unexpected source) to the XML
document in Figure 6.13. This new wonder element
has yet another structure to it. Notice that in this new
element, the location element does not contain any
PCDATA; rather, it is a parent element to the city
and country elements.

<!ELEMENT ancient_wonders (wonder+)>
<!ELEMENT wonder
 (#PCDATA | name | location | city
 | country)*>
<!ELEMENT name (#PCDATA)>
<!ELEMENT location ANY>
<!ELEMENT city (#PCDATA)>
<!ELEMENT country (#PCDATA)>

d t d

 Instead of adding to the DTD in Figure Figure 6.17
6.14 to define the new location structure, I have
defined the element to contain anything. It’s not as
clear as defining location to contain specific content,
but it does work.

84

Chapter 6

Ab
ou

t A
ttr

ib
ut

es

About Attributes
Attributes are useful to provide additional data
about an element. Information contained in
attributes tends to be about the content of the
XML document, as opposed to being the
content itself.

For example, in the Wonders of the World
XML master document, the name element
contains a language attribute which describes
the language that the name element content
is in. You could easily restructure the XML so
that the same information is in two individual
child elements. The name element could con-
tain two elements, a language element and a
local_name element.

Either way is fine, but general best practices
suggest that elements are better used for infor-
mation you want to display; and attributes are
better used for information about information.
Some of the reasons for this are: Attributes
cannot describe data relationships like child
elements can, their values are not as easily
validated by a DTD, and they cannot contain
multiple values whereas child elements can.

Attributes are, of course, often used with empty
elements where they describe information
about the element. For example, they are often
used to store IDs, as attributes are not the data,
but information about the data (see page 88).

✔ Tip
■ How you choose to craft your XML should

be based on its usage. If you are not going
to “do” much with a particular piece of
information, then having it as an attribute
is fine. If you are going to use that infor-
mation in a more significant way, then
having it be the content value of an ele-
ment is more appropriate (Figure 6.18).

<how_destroyed year="426">
 fire</how_destroyed>

x m l

<year_destroyed>426</year_destroyed>

<how_destroyed>fire</how_destroyed>

x m l

 Both of these bits of XML contain the Figure 6.18
same information: The Statue of Zeus at Olympia was
destroyed in 426 by fire. The difference lies in how the
information is organized. In the top example, 426 is
an attribute’s value. In the bottom example, both 426
and fire are content, enclosed in individual elements.

85

Creating a DTD

Defining Attributes

Defi ning Attributes
An attribute may not appear in a valid XML
document unless it has been declared in the
DTD. An attribute definition consists of four
parts: element name, attribute name, attribute
type, and an optional status.

To defi ne an attribute:
1. Type <!ATTLIST tag, where tag is the

element name in which the attribute
will appear.

2. Then, type att_name, where att_name is
the name of the attribute.

3. Next, type CDATA to indicate that the attri-
bute type is text. And, unlike (#PCDATA),
CDATA, or character data, will not be
parsed by the processor.

4. Then, for the attribute’s optional status,
type #IMPLIED to indicate that the attribute
may be omitted, if desired (Figure 6.19).

 Or type #REQUIRED to indicate that the
attribute may not be omitted and must
contain a value (Figure 6.21).

5. Finally, type > to complete the attribute
definition.

✔ Tips
■ Note that all the parts of an attribute defi-

nition are case-sensitive. Type them as I
have them here. Something like #Required
doesn’t mean a thing in a DTD.

■ You can define all the attributes for a given
element in a single attribute definition.
Before completing the attribute definition
in Step 5 above, repeat Steps 2–4 for each
attribute that the element should contain.
This is the most common way of defining
multiple attributes for a single element.

<!ELEMENT height (#PCDATA)>
<!ATTLIST height
 units CDATA #IMPLIED>

d t d

 This attribute definition says that the Figure 6.19
height element can contain an optional units attri-
bute (because of the #IMPLIED status) that contains
text (because of the CDATA attribute type).

<height>39</height>

x m l

<height units="feet">39</height>

x m l

<height units="39">feet</height>

x m l

 According to the DTD in Figure 6.19, Figure 6.20
all three of these XML excerpts are valid, since the
units attribute is optional (#IMPLIED), and its con-
tents may be any combination of characters.

<!ELEMENT height (#PCDATA)>
<!ATTLIST height
 units CDATA #REQUIRED>

d t d

 This version of the definition says that Figure 6.21
in the height element, the units attribute is required.

<height>39</height>

x m l

<height units="feet">39</height>

x m l

<height units="39">feet</height>

x m l

 These examples are the same as those Figure 6.22
shown in Figure 6.20 above. When validated against
the DTD in Figure 6.21, however, only the last two
excerpts are valid. The first excerpt is not valid because
the height element does not contain a units attribute.

86

Chapter 6

De
fin

in
g

De
fa

ul
t V

al
ue

s

Defi ning Default Values
Instead of having an attribute’s optional status
be either #REQUIRED or #IMPLIED, you
can set an attribute to have default values.

To defi ne an attribute with default
values:
1. Follow Steps 1, 2, and 3 on page 85 to

define the element name, attribute name,
and attribute type.

2. Then, type "default" (the opening and
closing quotes are required), where default
will be the value for the attribute if none is
set in the XML document (Figure 6.23).

 Or type #FIXED "default", where default
will be the value for the attribute if none is
explicitly set. And, if set, the attribute must
be set to this value for the XML document
to be valid (Figure 6.25).

3. Finally, type > to complete the attribute
definition.

✔ Tips
■ If you define an attribute with a default

value, the XML parser will automatically
add the default value if the attribute is not
set in the XML document (Figure 6.24).

■ If you define an attribute with #FIXED
"default", the value of the attribute in the
XML document must be set to the default
value, if it is set at all. If the attribute is not
set, then the parser will automatically set it
to the value of the default (Figure 6.26).

■ You may not combine a default value with
either #REQUIRED or #IMPLIED. In fact,
since there is a default value already being
set, neither optional status would actually
make sense.

<!ELEMENT height (#PCDATA)>
<!ATTLIST height
 units CDATA "feet">

d t d

 This time, I am adding a default value Figure 6.23
of feet for the height attribute.

<height units="feet">39</height>

x m l

<height units="meters">39</height>

x m l

<height>39</height>

x m l

 All these XML excerpts are valid. The Figure 6.24
units attribute can be set to any value and may even
be omitted. If the units attribute is omitted, as in the
third example, the parser will act as if the attribute is
actually present and that its value is feet.

<!ELEMENT height (#PCDATA)>
<!ATTLIST height
 units CDATA #FIXED "feet">

d t d

 A fixed value can be useful for ensuring Figure 6.25
that an attribute has a given value, whether or not it
actually appears in the XML document.

<height units="feet">39</height>

x m l

<height units="meters">39</height>

x m l

<height>39</height>

x m l

 These examples are the same as those in Figure 6.26
Figure 6.24 above. When validated against the DTD
in Figure 6.25, though, the middle example is no lon-
ger valid; if the attribute is set, it must contain a value
of feet (and not meters, or any other characters). Note
that in the bottom example, the parser acts as if the
units attribute is actually set to feet.

87

Creating a DTD

Defining Attributes w
ith Choices

Defi ning Attributes with Choices
DTDs support attribute types that allow much
more than just character data. One such type
allows you to define an attribute that supports
different pre-defined choices (Figure 6.27).

To defi ne an attribute with choices:
1. Follow Steps 1 and 2 on page 85 to begin

the attribute definition.
2. Type (choice_1 | choice_2), where choice_n

represents each possible value for the
attribute, and each attribute in the XML
document can use any one of the listed
choices. Each choice should be separated
by a vertical bar, and the full set should be
enclosed in parentheses.

3. Identify any optional attribute statuses as
described in Step 4 on page 85 and in
Step 2 on page 86.

4. Finally, type > to complete the attribute
definition.

✔ Tips
■ Each choice in a list must follow the rules

for valid XML names (see page 8).
■ There are several other kinds of attribute

types: ID, IDREF, and IDREFS, which
are explained on pages 88–89;
NMTOKEN and NMTOKENS, which
are described on page 90, and ENTITY,
which is described in Chapter 7.

<!ELEMENT height (#PCDATA)>
<!ATTLIST height
 units (inches|feet) #REQUIRED>

d t d

 In this example, I only want to allow Figure 6.27
two possibilities for the value of the units attribute
in the year element: inches or feet. The list of choices
appears between parentheses, separated by a vertical
bar. Note that the attribute must be set (because of the
#REQUIRED value).

<height units="feet">39</height>

x m l

<height units="meters">39</height>

x m l

<height>39</height>

x m l

 Of these three XML excerpts, only Figure 6.28
the top is valid with respect to the bit of DTD in
Figure 6.27. The middle example is invalid because
meters is not one of the allowed choices for the
content of the attribute. The bottom example is
invalid because the units attribute is missing despite
being #REQUIRED.

88

Chapter 6

De
fin

in
g

At
tri

bu
te

s w
ith

 U
ni

qu
e

Va
lu

es

Defi ning Attributes with Unique
Values
There are a few special kinds of attribute types.
ID attributes are defined to have a value that is
unique (not repeatable) throughout the XML
document. An ID attribute is ideal for keys and
other identifying information (product codes,
customer codes, etc).

To defi ne ID attributes:
1. Follow Steps 1 and 2 on page 85 to begin

the attribute definition.
2. Type ID to define that the value of the

attribute will be unique and non-repeatable
throughout the XML document. In other
words, no other element may have an attri-
bute with the same value.

3. Identify any optional attribute statuses as
described in Step 4 on page 85. (Note: ID
attributes can only be #REQUIRED or
#IMPLIED, they cannot use the default
values defined on in Step 2 on page 86.)

4. Finally, type > to complete the attribute
definition (Figure 6.29).

✔ Tips
■ An XML document is not considered

valid if two elements with ID attributes
have the same value, regardless of whether
the element or attribute names are the
same or different.

■ The one exception to this rule is that there
can be an unlimited number of omitted ID
attributes, each implying a null value.

■ The value of an ID attribute must follow
the same rules as valid XML names (see
page 8). (That means an ID attribute can-
not contain only numerical values, like
many database ID fields, Social Security
numbers, etc., unless you prefix them with
a letter or underscore.)

<!ELEMENT wonder (name)>

<!ATTLIST wonder
 code ID #REQUIRED>

d t d

 If you’re going to create an ID attribute, Figure 6.29
it’s a good idea make it required. If not, it must be
implied since ID attributes cannot have default values.

<wonder code="w_143">
 <name language="English">
 Hanging Gardens of Babylon</name>
</wonder>

<wonder code="w_284">
 <name language="English">
 Statue of Zeus at Olympia</name>
</wonder>

x m l

<wonder code="w_284">
 <name language="English">
 Hanging Gardens of Babylon</name>
</wonder>

<wonder code="w_284">
 <name language="English">
 Statue of Zeus at Olympia</name>
</wonder>

x m l

 As defined by the DTD in Figure 6.29, Figure 6.30
the code attribute must contain a unique value
throughout the XML document. Given this, the first
excerpt is valid, but the second is not.

89

Creating a DTD

Referencing Attributes w
ith Unique Values

Referencing Attributes with
Unique Values
An attribute whose value is the same as any
existing ID attribute (defined on page 88)
in the XML document is called an IDREF
attribute (Figure 6.31).

An attribute whose value is a white-space-
separated list of existing ID attribute values is
called an IDREFS attribute (notice that this
attribute ends in an “S”) (Figure 6.33).

To reference attributes with unique
values:
1. Follow Steps 1 and 2 on page 85 to begin

the attribute definition.
2. Type IDREF to define an attribute that

can contain a value matching any existing
ID attribute’s value (such as one that you
defined with the instructions on page 88).

 Or type IDREFS (with an “s”) for an
attribute that can contain several white-
space-separated values which match any
existing ID attribute's value.

3. Identify any optional attribute statuses as
described in Step 4 on page 85 and Step 2
on page 86.

4. Finally, type > to complete the attribute
definition.

✔ Tips
■ Note that there may be several IDREF

attributes that refer to the same ID
(Figure 6.32). That’s fine. It’s just the ID
itself that must be unique to one element.

■ There’s nothing that keeps repeated items
out of an IDREFS attribute. Something
like contents="w_143 w_143 w_143" is
perfectly valid for the parser, whether or
not it’s what you want. For more control
over element and attribute contents, you
have to abandon DTDs in favor of XML
Schema (see Part 4).

<!ELEMENT special_site (title, url)>

<!ATTLIST special_site
 wonder_focus IDREF #REQUIRED>

d t d

 The Figure 6.31 special_site element will keep track
of Web sites dedicated to each wonder. Its wonder_
focus attribute is defined as an IDREF type, enabling
it to contain the ID of the wonder on which it focuses.

<special_site wonder_focus="w_143">
 <title>The Lost Gardens</title>
 <url>www.lost-gardens.com</url>
</special_site>

<special_site wonder_focus="w_143">
 <title>Herodotus in Babylon</title>
 <url>www.herodotus.com/babylon</url>
</special_site>

<special_site wonder_focus="w_284">
 <title>Zeus at Olympia</title>
 <url>www.olympiaszeus.com</url>
</special_site>

x m l

 Given the DTD in Figure 6.31, the Figure 6.32
wonder_focus attribute must contain a value from
an existing ID attribute in the document. (Note: This
excerpt is from an XML file that also contains the
XML excerpt in the top example of Figure 6.30 on
page 88).

<!ELEMENT general_site (title, url)>

<!ATTLIST general_site
 contents IDREFS #REQUIRED>

d t d

 The Figure 6.33 general_site element has an
IDREFS attribute called contents. This attribute can
contain a list of the IDs of the wonders on which the
general_site element focuses.

<general_site
 contents="w_143 w_284">
 <title>Wonders of the World</title>
 <url>
 www.wonders_of_the_world.com</url>
</general_site>

x m l

 This XML excerpt is valid when using Figure 6.34
the DTD in Figure 6.33.

90

Chapter 6

Re
st

ric
tin

g
At

tri
bu

te
s t

o
Va

lid
 X

M
L N

am
es

Restricting Attributes to Valid
XML Names
DTDs don’t allow for much data typing, but
there is one restriction that you can apply to
attributes. The value of an attribute defined as
the NMTOKEN type, must be a valid XML
name. That is, a value that begins with a let-
ter or an underscore and contains only letters,
numbers, underscores, hyphens, and periods.

To ensure attribute values follow the
rules for valid XML names:
1. Follow Steps 1 and 2 on page 85 to begin

the attribute definition.
2. Type NMTOKEN if you want the attribute

value to be a valid XML name as defined
on page 8.

 Or type NMTOKENS if you want the attri-
bute value to be a white-space-separated
list of valid XML names.

3. Identify any optional attribute statuses as
described in Step 4 on page 85 and Step 2
on page 86.

4. Finally, type > to complete the attribute
definition (Figure 6.35).

✔ Tips
■ NMTOKEN attributes may not contain

any white space, which may be one good
reason to use this particular type.

■ If you want the value of an attribute to
not only be a valid XML name, but also
to be unique throughout the XML docu-
ment, use ID instead of NMTOKEN (see
page 88).

<!ELEMENT w_visit EMPTY`>

<!ATTLIST w_visit
 primary_keyword NMTOKEN #REQUIRED>

d t d

 In this rather contrived example, I Figure 6.35
need a single word for each wonder to use as the pri-
mary keyword in a special online application called
Wonderful Visit. I created an element called w_visit
with a primary_keyword attribute. To keep the
value of the primary_keyword attribute to just one
word (with no white space), I can define it to be the
NMTOKEN type.

<wonder>
 <w_visit
 primary_keyword="colossus"/>
 <name language="English">
 Colossus of Rhodes</name>
...
<wonder>
 <w_visit
 primary_keyword="great pyramid"/>
 <name language="English">
 Great Pyramid of Giza</name>
...

x m l

<wonder>
 <w_visit
 primary_keyword="colossus"/>
 <name language="English">
 Colossus of Rhodes</name>
...
<wonder>
 <w_visit
 primary_keyword="great_pyramid"/>
 <name language="English">
 Great Pyramid of Giza</name>
...

x m l

 Only the second example above would Figure 6.36
be considered valid against the DTD in Figure 6.35.
In the first, the primary_keyword attribute "great
pyramid" has a space in its value, and spaces are not
allowed in an NMTOKEN attribute.

7

91

Entities and Notations in DTDs

ENTITIES AND
NOTATIONS IN DTDS

Entities are just like autotext entries or short-
cuts. With an entity, you define its name and
the text it should expand into when referenced
in your document. Then, when you type the
entity reference in an XML document or DTD,
it is replaced with text you defined.

There are several types of entities, but they all
work in the same way, and they are all defined
through a DTD. The differences lie in where
the entity can be expanded, and what kind of
data it contains.

Entities can be divided into two main types:
general entities and parameter entities. General
entities can be expanded only in XML docu-
ments; parameter entities can be expanded only
in DTDs.

General entities can be further subdivided
into internal and external, parsed or unparsed.
Parameter entities can also be further subdi-
vided into internal and external, but parameter
entities are always parsed.

92

Chapter 7

Cr
ea

tin
g

a
Ge

ne
ra

l E
nt

ity

Creating a General Entity
The simplest kind of entities are defined
in a DTD, and they simply represent text.
Officially, they are called internal general enti-
ties. I often just call them shortcuts.

To create an internal general entity:
1. In the DTD, type <!ENTITY.
2. Then, type ent_name, where ent_name

specifies the name of the entity; the name
you’ll refer to when using the entity in your
XML document.

3. Next, type "content", where content is the
shortcut text that will appear when you use
the entity in your XML document.

4. Finally, type > to complete the entity defi-
nition (Figure 7.1).

✔ Tips
■ For details on using these shortcuts, see

Using General Entities on page 93.
■ The entity name reference (in Step 2

above) must follow the rules for valid XML
names (see page 8).

■ In XML, there are five built-in general
entities: & , < , > , " ,
&apost; (see page 14). All other entities
must be declared in the DTD before
being used.

■ Many common entities have been defined
and are easily available to include in your
own DTDs. For more details, see the Tips
on page 95.

<!ENTITY wow "Wonders of the World">

d t d

 You can use internal general entities for Figure 7.1
quickly typing long phrases; ones that you might use
frequently in your XML document.

93

Entities and Notations in DTDs

Using General Entities

Using General Entities
Once you have defined an entity in your DTD,
you can use it in any XML document that ref-
erences that DTD.

To use general entities:
1. In the XML document, type & (an

ampersand).
2. Then, type ent_name, where ent_name

identifies the name of your entity (the one
you used in Step 2 on page 92.

3. Finally, type ; (a semicolon) (Figure 7.2).

✔ Tips
■ You may only use a general entity after it

has been defined in the DTD referred to
by your XML document. If not, the parser
will return an error that the entity has not
been defined.

■ Character references are used for adding
special symbols to a document, such as
writing &246; to generate the ö symbol,
etc. They look rather similar to entities, but
they are not entities, and do not need to be
declared in the DTD (see Appendix B).

■ General entities are used in XML docu-
ments only; they cannot be used in XSLT
documents. (There are ways around this,
but they are advanced and cumbersome.)

■ You may use an entity within another
entity’s definition as long as there is no
circular reference.

<story>
 The first and most interesting fact
 about the gardens is that there is
 significant controversy about
 whether the gardens existed at all.
 ...
 Regardless of the final outcome,
 it is interesting to note that the
 imagination of the poets and
 ancient historians have created one
 of the &wow;.
</story>

x m l

 It’s easier and faster to type Figure 7.2 &wow; than
Wonders of the World.

...
<p align="center">
 HANGING GARDENS OF BABYLON

 <img src="gardens.jpg"
 width="264" height="175"></p>
 The Hanging Gardens of Babylon was
 built in 600 BC and was destroyed
 by earthquake in 226 BC.

 The first and most interesting fact
 about the gardens is that there
 is significant controversy about
 whether the gardens existed at all.

 ...
 Regardless of the final outcome, it
 is interesting to note that the
 imagination of the poets and
 ancient historians have created
 one of the Wonders of the World.

...

h t m l

 The entity created in Figure 7.2 Figure 7.3
“expands” when the XML is parsed.

94

Chapter 7

Cr
ea

tin
g

an
 E

xt
er

na
l G

en
er

al
 E

nt
ity

<story>
 The first and most interesting fact
 about the gardens is that there is
 significant controversy about
 whether the gardens existed at all.
 ...
 Regardless of the final outcome,
 it is interesting to note that the
 imagination of the poets and
 ancient historians have created one
 of the &wow;.
</story>

d t d

 This time, I’ll define the entity to be the Figure 7.4
entire chunk of XML code. Notice that it includes the
wow general entity defined in Figure 7.1. I’ll save it as
a text file called gardens.ent.

<!ENTITY
 gardens_story SYSTEM "gardens.ent">

d t d

 The Figure 7.5 gardens_story entity points to the
URI of the file that contains the entity’s contents shown
in Figure 7.4.

Creating an External General
Entity
If you have a larger entity, or one that could be
reused in multiple DTD documents, it is often
more convenient to save it in a separate, exter-
nal document.

To create an external general entity:
◆ Create the content for the entity in an

external file. Save the file as text-only using
an extension of .ent (Figure 7.4).

To defi ne an external general entity:
1. In your DTD where you want to use the

content, type <!ENTITY to begin the entity
definition.

2. Then, type ent_name, where ent_name
specifies the name of the external entity;
the name you’ll refer to when using the
entity in your XML document.

3. Next, type SYSTEM to indicate that the
entity is defined externally in another
document.

4. Then, type "entity.uri", where entity.uri
is the location of the file containing the
entity content.

5. Finally, type > to complete the entity defi-
nition (Figure 7.5).

✔ Tips
■ The "entity.uri" in Step 4 above can refer

to a file on your computer, a local area net-
work, or on the Internet.

■ Using the .ent file extension for your
external general entity is not required
(any extension will work fine), but .ent
is most common.

■ Using external entities, you can actually
create a single DTD from several others.

95

Entities and Notations in DTDs

Using External General Entities

<?xml version="1.0" standalone="no"?>
...
<wonder>
 <name language="English">
 Hanging Gardens of Babylon</name>
 <location>Al Hillah, Iraq</location>
 <height units="feet">0</height>
 <history>
 <year_built era="BC">
 600</year_built>
 <year_destroyed era="BC">
 226</year_destroyed>
 <how_destroyed>
 earthquake</how_destroyed>
 &gardens_story;
 </history>
...

x m l

 First, be sure to add Figure 7.6 standalone="no" to
the XML declaration. Then, you can use the external
general entity in the document, as &gardens_story; is
used here.

 The entity (defined in Figure 7.5) con-Figure 7.7
tains an element, text, and another entity. And the
idea is the same: You type something short, and the
parser replaces it with the referenced content. Note
that any elements coming from an external general
entity must still be defined in the DTD for the docu-
ment to be valid.

Using External General Entities
Once created, you can use your entity, share
your entity with others, and borrow entities
from others (provided they’ve created external
general entities, too).

To use external general entities:
1. In the XML document that will refer to the

DTD, add standalone="no" to the initial
XML declaration (see page 7). This tells the
XML parser that the document will rely on
an external file; in this case, the one that
contains the entity definition.

2. Then, in the XML document, type & (an
ampersand).

3. Next, type ent_name, where ent_name
identifies the name of your entity (the one
you used in Step 2 on page 94.

4. Finally, type ; (a semicolon) (Figure 7.6).

✔ Tips
■ A URI (Uniform Resource Identifier) is a

string of characters used to identify and
locate a resource. It is often used inter-
changeably with URL (Uniform Resource
Locator). Technically, a URI can be either a
URL or a URN (Universal Resource Name),
but for purposes this book, I will use URI
and URL to mean the same thing.

■ You could link to a standardized list
of entities, like the ones available at:
www.w3.org/TR/xhtml1/#h-A2. This would
let you use the easy-to-remember entity
references for accented characters without
having to manually define each one.

■ A general entity (like those described on
pages 92 and 94) are defined as part of a
DTD and used in the body of an XML
document. There is another kind of entity
used to add content to the DTD itself. It is
called a parameter entity and has a slightly
different syntax (see page 100).

www.w3.org/TR/xhtml1/#h-A2

96

Chapter 7

Cr
ea

tin
g

En
tit

ies
 fo

r U
np

ar
se

d
Co

nt
en

t

Creating Entities for Unparsed
Content
So far, I’ve only talked about entities whose
content is text. Entities that contain text
are called parsed entities because the XML
parser looks at them and analyzes them in the
course of going through the XML document.
Unparsed entities, which I’ll describe here, don’t
usually contain text (but can), but most impor-
tantly are completely bypassed by the XML
parser. They can be used to embed non-text or
non-XML content into an XML document.

To create unparsed content:
◆ Create the data that you want to embed

in the XML document. It may be, or con-
tain, virtually anything; including plain
text, an image file, a video file, a PDF file,
or anything else (Figure 7.8).

In order to create an entity for unparsed con-
tent, you must first identify how to process the
unparsed content using a notation.

To create a notation about the
unparsed content:
1. In the DTD where you want to embed

the content, type <!NOTATION n_name,
where n_name will be used to identify the
unparsed content.

2. Then, type SYSTEM.
3. Next, type "notation.instr", where

notation.instr is usually information (such
as a URI), that defines how to process the
unparsed content. (Note, however, that
there is no official format for this informa-
tion, so consult your XML processor for
more details.)

4. Finally, type > to complete the notation.
(Figure 7.9)

 Here is a typical chunk of unparsed data: Figure 7.8
A JPEG image. It’s called lighthouse.jpg.

<!ELEMENT ancient_wonders (wonder*)>
<!ELEMENT wonder (name+, photo)>
<!ELEMENT name (#PCDATA) >
<!ATTLIST name
 language CDATA #REQUIRED>

<!NOTATION jpg SYSTEM "image/jpeg">

d t d

 The identifying name of the notation ele-Figure 7.9
ment jpg will be used when creating the entity for the
unparsed content.

97

Entities and Notations in DTDs

Creating Entities for Unparsed Content

To defi ne an entity for the unparsed
content:
1. On a new line in the same DTD, after the

corresponding notation for the unparsed
content, type <!ENTITY to begin the
unparsed entity definition.

2. Then, type ent_name, where ent_name
specifies the name for the external entity;
the name you’ll refer to when using the
entity in your XML document.

3. Next, type SYSTEM to indicate that the
entity is defined in a separate document.

4. Then, type "entity.uri", where entity.uri
is the location of the file with the
unparsed content.

5. Next, type NDATA n_name, where n_name
is the unparsed content’s identifying name
you created in Step 1 on page 96.

6. Finally, type > to complete the entity defi-
nition (Figure 7.10).

✔ Tips
■ The "notation.instr" in Step 3 on the

previous page can be a MIME type (an
Internet standard describing content
types), a URI indicating a local or external
application that can handle the unparsed
content, or practically anything else.
According to the specification, there is no
required format for this information, and
each XML application can use the informa-
tion as it chooses.

■ Unparsed entities are inherently general
entities because they become part of the
body of an XML document.

■ The contents of an unparsed entity can be
just about anything. Often, it’s an image
file, audio file, video file, or some other
kind of multimedia file. It could also be
plain text. It doesn’t matter what it is
because the XML parser won’t look at it.

<!ELEMENT ancient_wonders (wonder*)>
<!ELEMENT wonder (name+, photo)>
<!ELEMENT name (#PCDATA) >
<!ATTLIST name
 language PCDATA #REQUIRED>

<!NOTATION jpg SYSTEM "image/jpeg">

<!ENTITY lighthouse_pic SYSTEM
 "lighthouse.jpg" NDATA jpg>

d t d

 The entity’s name, Figure 7.10 lighthouse_pic, refers
to an external SYSTEM file called lighthouse.jpg,
and I can get more information about the file by look-
ing at the notation identifier NDATA jpg.

98

Chapter 7

Em
be

dd
in

g
Un

pa
rs

ed
 C

on
te

nt

Embedding Unparsed Content
Once you’ve defined an entity for your
unparsed content, as described on page 96,
you can then embed it into your XML docu-
ment. Unparsed entities do not have entity
references (like the parsed entities I described
earlier). Instead, unparsed entities are referred
to through a special ENTITY attribute type.

To declare the attribute that
will contain the reference to the
unparsed entity:
1. In the DTD, first define an element. It is

this element that will contain the attribute
referencing the unparsed entity.

2. Type <!ATTLIST tag, where tag is the ele-
ment you defined in Step 1.

3. Then, type att_name, where att_name
identifies the name of the attribute defined
in Step 1. It will contain the reference to
the unparsed entity.

4. Next, type ENTITY to indicate that the
attribute can contain references to an
unparsed entity.

 Or, type ENTITIES if you want the attribute
to be able to contain multiple white-space-
separated references to unparsed entities.

5. Then, you may define a status or default
value for the attribute. For more details,
consult Defining Attributes on page 85 and
Defining Default Values on page 86.

6. Finally, type > to complete the attribute
definition (Figure 7.11).

<!ELEMENT ancient_wonders (wonder*)>
<!ELEMENT wonder (name+, photo)>
<!ELEMENT name (#PCDATA) >
<!ATTLIST name
 language CDATA #REQUIRED>

<!NOTATION jpg SYSTEM "image/jpeg">

<!ENTITY lighthouse_pic SYSTEM
 "lighthouse.jpg" NDATA jpg>

<!ELEMENT photo EMPTY>
<!ATTLIST photo
 source ENTITY #REQUIRED>

d t d

 First, I define the Figure 7.11 photo element that
will contain the attribute referencing the unparsed
data. Then, I define the entity’s attribute source using
the ENTITY attribute type.

99

Entities and Notations in DTDs

Em
bedding Unparsed Content

To embed an unparsed entity in an
XML document:
1. In the XML document that will refer to

the DTD, add standalone="no" to the ini-
tial XML declaration. This tells the XML
parser that the document will rely on an
external file; in this case, the one that con-
tains the unparsed entity.

2. In the body of the XML document, within
the attribute declared with an ENTITY
type (on the preceding page), type
att_name="ent_name", where att_name
identifies the attribute and ent_name is the
name of the unparsed entity you created in
Step 2 on page 96 (Figure 7.12).

✔ Tips
■ While XML parsers are supposed to be able

to use the notation information to help
them to view/play/display the unparsed
entity, current browsers cannot. In short,
they won’t show the embedded data
(Figure 7.13).

■ In fact, there is a general consensus that
using unparsed entities is complicated and
confusing. Instead, you could set an ele-
ment’s value to a URL that points to any
file of your choosing, and use attributes to
clarify additional information if you desire.

<?xml version="1.0" standalone="no"?>
...
<ancient_wonders>
 <wonder>
 <name language="English">
 Lighthouse of Alexandria</name>
 <name language="Greek">
 ‛o Φάρος τη̃ς ’Aλεξανδρείας</name>
 <photo source="lighthouse_pic" />
 </wonder>
</ancient_wonders>

x m l

 The value of the Figure 7.12 photo element’s source
attribute corresponds to the name of the entity refer-
encing the unparsed data.

 After using XSLT to transform the Figure 7.13
XML, the results are disappointing in Internet
Explorer 7 (shown here), and actually in most other
current browsers.

100

Chapter 7

Cr
ea

tin
g

an
d

Us
in

g
Pa

ra
m

et
er

 E
nt

iti
es

Creating and Using Parameter
Entities
The entities that I’ve talked about so far all ref-
erence text or files that will be used in an XML
document. In a DTD, you can also create enti-
ties for the DTD itself. These kinds of shortcuts
are called parameter entities.

To create a parameter entity:
1. In the DTD, type <!ENTITY to begin the

entity definition.
2. Then, type % followed by a space to note

that the entity is a parameter entity.
3. Next, type ent_name, where ent_name

specifies the name of the entity; the name
you’ll refer to when using the entity in
your DTD.

4. Then, type "content", where content is the
shortcut text that will appear when you use
the entity in your DTD.

5. Finally, type > to complete the entity defi-
nition (Figure 7.14).

Once you’ve created the parameter entity, you
can use it.

To use a parameter entity:
1. In the DTD, type % (with no following

space).
2. Then, type ent_name, where ent_name is

the identifying name of your entity (the
one you used in Step 3 above).

3. Finally, type ; (a semicolon) (Figure 7.15).

✔ Tips
■ Parameter entities must be created in the

DTD before they’re used in the DTD. In
this case, the order does matter.

■ Parameter entities can only be used within
the DTD, and are distinguished from gen-
eral entities by the percent sign (%).

<!ENTITY % p "(#PCDATA)">

d t d

 Here is very simple example. I have cre-Figure 7.14
ated a parameter entity named p for something that is
quite frequently typed in most DTDs: (#PCDATA).

<!ENTITY % p "(#PCDATA)">

<!ELEMENT ancient_wonders (wonder+)>
<!ELEMENT wonder (name+, location,
 height, history, main_image,
 source*)>
<!ELEMENT name %p;>
<!ATTLIST name
 language CDATA #REQUIRED>
<!ELEMENT location %p;>
<!ELEMENT height %p;>
<!ATTLIST height
 units CDATA #REQUIRED>
<!ELEMENT history (year_built,
 year_destroyed?, how_destroyed?,
 story)>
<!ELEMENT year_built %p;>
<!ATTLIST year_built
 era (BC | AD) #REQUIRED>
<!ELEMENT year_destroyed %p;>
<!ATTLIST year_destroyed
 era (BC | AD) #REQUIRED>
<!ELEMENT how_destroyed %p;>
<!ELEMENT story (#PCDATA | para)*>
<!ELEMENT para EMPTY>
<!ELEMENT main_image EMPTY>
<!ATTLIST main_image
 file CDATA #REQUIRED
 h CDATA #REQUIRED
 w CDATA #REQUIRED>
<!ELEMENT source EMPTY>
<!ATTLIST source
 sectionid CDATA #REQUIRED
 newspaperid CDATA #REQUIRED>

d t d

 In my master DTD, I am using the Figure 7.15 %p;
parameter entity to mean (#PCDATA).

101

Entities and Notations in DTDs

Creating an External Param
eter Entity

Creating an External Parameter
Entity
As with general entities, parameter entities can
also be created in external files.

To create an external parameter
entity:
◆ Create the entity’s content in an external

file and save it as text only using an .ent
extension (Figure 7.16).

To defi ne an external parameter
entity:
1. In your DTD, type <!ENTITY to begin the

entity definition.
2. Then, type % to indicate that this is for a

parameter entity.
3. Next, type ent_name, where ent_name

specifies the name of the external entity;
the name you’ll refer to when using the
entity in your XML document.

4. Then, type SYSTEM to indicate that the
entity is defined externally in another
document.

5. Next, type "entity.uri", where entity.uri
is the location of the file with the entity
content.

6. Finally, type > to complete the entity defi-
nition (Figure 7.17).

✔ Tips
■ Use this external parameter entity (Figure

7.18) in the same way you would an inter-
nal parameter entity, see Creating and Using
Parameter Entities on page 100.

■ If you are using an internal DTD (see page
106), then in the XML document contain-
ing the DTD, add standalone="no" to
the initial XML declaration. This tells the
XML parser that the document will rely on
an external file.

<!ELEMENT main_image EMPTY>
<!ATTLIST main_image
 file CDATA #REQUIRED
 w CDATA #REQUIRED
 h CDATA #REQUIRED>

d t d

 Here is a bit of DTD that I have saved Figure 7.16
in a separate file called pic.ent. I want to use it in
several other DTDs, as it contains the declarations for
the main_image element and its attributes.

<!ENTITY % full_pic SYSTEM "pic.ent">

d t d

 In this DTD, and any in which I want Figure 7.17
to declare the main_image element and its attributes,
I have to first define the entity (as shown here).

<!ENTITY % full_pic SYSTEM "pic.ent">

<!ELEMENT ancient_wonders (wonder+)>
<!ELEMENT wonder (name+, location,
 height, history, main_image,
 source*)>
...
<!ELEMENT story (#PCDATA | para)*>
<!ELEMENT para EMPTY>
%full_pic;
<!ELEMENT source EMPTY>
<!ATTLIST source
 sectionid CDATA #REQUIRED
 newspaperid CDATA #REQUIRED>

d t d

 Once the entity is defined, it can be used Figure 7.18
by typing its reference; in this case, %full_pic;.

...
<main_image file="gardens.jpg"
 w="528" h="349"/>
<source sectionid="11"
 newspaperid="24"/>
 <source sectionid="18"
 newspaperid="151"/>
</wonder>
...

x m l

 When the DTD in Figure 7.18 is Figure 7.19
parsed, the processor replaces the %full_pic parameter
entity reference with the contents of the file shown in
Figure 7.16. Now the main_image element in the
XML file is considered valid against the DTD.

This page intentionally left blank

8

103

Validation and Using DTDs

VALIDATION
AND USING DTDS

In the previous two chapters, you learned how
to create DTDs. In this chapter, you’ll learn
how to use them.

Specifically, a DTD defines rules for every ele-
ment and attribute that can appear in an XML
document. However, you must declare the
DTD in your XML document in order to use
it. Once this declaration is made, you can use
various tools to validate the XML document
against the DTD. This is the reason for creating
a DTD in the first place, to insure that a given
XML document is constructed in a specific way
as defined by the DTD.

DTDs can be written and saved as separate
files, or they can be written entirely inside
an XML document. A benefit of writing
internal DTDs is that there is only one file
to manage that contains both the DTD
structure and the XML content. A benefit of
writing external DTDs is that they can easily
be used to validate many XML documents.
In fact, they can be used by other people and
companies who are generating XML documents
to validate their documents before sending
them to you, and vice versa. In this way, the
validation process enables the sharing of XML
documents, as well as the verification that these
documents are all consistently structured.

104

Chapter 8

Cr
ea

tin
g

an
 E

xt
er

na
l D

TD

Creating an External DTD
If you have a set of related XML documents,
you may want them all to use the same
DTD. Instead of copying the DTD into each
document, you can create an external file that
contains the DTD (Figure 8.1), and then
reference the DTD from each of the XML
documents that needs it.

To create an external DTD:
1. Define the rules for the DTD in an exter-

nal file, as described in Chapters 6 and 7.
2. Save the file as text only using an extension

of .dtd.

✔ Tips
■ As you may have noticed in the previous

two chapters, all the DTD examples that
were used by the XML documents were
external DTDs. This is the most common
way of using DTDs.

■ For details on how to use this external
DTD, see Declaring an External DTD on
page 105.

<!ELEMENT wonder (name, location,
 height)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT location (#PCDATA)>
<!ELEMENT height (#PCDATA)>

d t d

 This DTD has been saved as Figure 8.1 08-01.dtd
(the filename has no special meaning, except that it
corresponds to the Figure 8.1). Notice that it has no
relationship to any XML document, yet. It simply
contains DTD definitions and was saved as text only
with the .dtd extension.

105

Validation and Using DTDs

Declaring an External DTD

Declaring an External DTD
Now that you’ve created an external DTD, you
need to refer to it within your XML document.
You do this using a document type declaration
(see the last Tip on this page) which declares
the DTD (Figure 8.2).

To declare an external DTD:
1. Type <!DOCTYPE root, where root corre-

sponds to the name of the root element in
this XML document.

2. Then, type SYSTEM to indicate that the
DTD is defined in an external document.

3. Next, type "dtd.uri", where dtd.uri is the
location of the file with the DTD content.

4. Finally, type > to complete the document
type declaration.

5. Then, in the XML declaration at the top of
the document, add standalone="no". This
tells the XML parser that the document
will rely on an external file; in this case, the
one that contains the DTD.

✔ Tips
■ As discussed, for an XML document to be

valid, it must conform to the rules of the
corresponding DTD.

■ The "dtd.uri" in Step 3 above can refer to a
file on your computer, a local area network,
or the Internet.

■ The default value of the standalone
attribute in the XML declaration in Step
5 is no. Consequently, in the examples in
Figure 8.2, the attribute was not needed.

■ Here’s some terminology fun. The collec-
tion of element and attribute rules is called
a DTD, or document type definition. The
lines of code that refer to the DTD are
called a document type declaration. To dis-
tinguish them, think of the document type
declaration as the instruction that refers to,
or declares, the document type definition.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE wonder SYSTEM "08-01.dtd">
<wonder>
 <name>Colossus of Rhodes</name>
 <location>Greece</location>
 <height>107</height>
</wonder>

x m l

<?xml version="1.0" standalone="no"?>
<!DOCTYPE wonder SYSTEM "08-01.dtd">
<wonder>
 <name>Colossus of Rhodes</name>
 <location>Greece</location>
 <height units="feet">107</height>
</wonder>

x m l

<?xml version="1.0" standalone="no"?>
<!DOCTYPE wonder SYSTEM "08-01.dtd">
<wonder>
 <name>Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Greece</location>
 <height>107</height>
</wonder>

x m l

 According to the DTD referred to in each Figure 8.2
of these XML documents’ document type declarations
(08-01.dtd, shown in Figure 8.1), only the first XML
document is valid. In the second, the height element
has a units attribute that is not defined. In the third,
there are two name elements, but only one is allowed.

106

Chapter 8

De
cla

rin
g

an
d

Cr
ea

tin
g

an
 In

te
rn

al
 D

TD

<?xml version="1.0"?>
<!DOCTYPE wonder [
 <!ELEMENT wonder
 <!ELEMENT wonder (name, location,
 height)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT location (#PCDATA)>
 <!ELEMENT height (#PCDATA)>
]>
<wonder>
 <name>Colossus of Rhodes</name>
 <location>Greece</location>
 <height>107</height>
</wonder>

x m l

 Here is a simple internal DTD. It goes Figure 8.3
right after the XML declaration and before the actual
tags in the body of the XML document. This corre-
sponds to the first example in Figure 8.2.

<?xml version="1.0"?>
<!DOCTYPE wonder SYSTEM "08-01.dtd"[
 <!ATTLIST height
 units CDATA #REQUIRED>
]>
<wonder>
 <name>Colossus of Rhodes</name>
 <location>Greece</location>
 <height units="feet">107</height>
</wonder>

x m l

 Combining both an internal and exter-Figure 8.4
nal DTD can sometimes be beneficial. Here, I have
updated the second example in Figure 8.2 with an
internal DTD which declares a units attribute for the
height element. It is now a valid XML document.

<?xml version="1.0"?>
<!DOCTYPE wonder SYSTEM "08-01.dtd"[
<!ELEMENT wonder (name*, location,
 height)>
<!ATTLIST name
 language CDATA #IMPLIED>
]>
<wonder>
 <name>Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name> ...

x m l

 Unfortunately, while the third example Figure 8.5
from Figure 8.2 now appears to be valid, most XML
processors will return an error stating that it is not
legal to redefine the wonder element.

Declaring and Creating an
Internal DTD
For individual XML documents (ones that you
won’t be sharing with others, or at least a very
little), it is simplest to declare and create the
DTD within the XML document itself.

The rules for creating a DTD, whether inter-
nal or external, are the same. The difference
between the two is the way the document type
declaration is written; in other words, how the
DTD is declared.

To declare and create an internal
DTD:
1. At the top of your XML document, after

the XML declaration (see page 7), type
<!DOCTYPE root [, where root corresponds
to the name of the root element in your
XML document.

2. Then, create your DTD by defining its ele-
ments and attributes using the information
you learned in the previous two chapters.

3. Finally, type]> to complete the document
type declaration (Figure 8.3).

✔ Tips
■ Even though internal DTD declarations

are part of the XML document itself, they
are not XML elements, and thus do not
require a closing slash before the final >.

■ In fact, although the DTD schema speci-
fication is part of the XML specification,
DTDs use a specific syntax that is not
XML compliant at all.

■ You can use both an internal and exter-
nal DTD in the same XML document
(Figure 8.4). When doing so, the internal
DTD rules override those from the exter-
nal DTD. Unfortunately, however, most
XML processors treat conflicts between
an internal and external DTD as errors
(Figure 8.5).

107

Validation and Using DTDs

Validating XM
L Docum

ents Against a DTD

 I copied and pasted the XML from my Figure 8.6
editor into the text box labeled “Validate by direct
input.” (Can you see the error?)

 The validator tells me that I’ve forgotten Figure 8.7
the opening quotation mark before the attribute value
"Greek". Also notice that this problem caused seven
total errors. However, once the quotation mark error is
fixed, all the additional “ghost” errors will disappear.

Validating XML Documents
Against a DTD
Now that you have created your DTD and have
declared it in your XML document, you will
want to validate your XML against it. Every
XML parser is required to return an error if
your XML document is not well-formed; how-
ever, not all have the ability to validate your
XML against a DTD.

If the XML parser you are using cannot validate
XML against a DTD, there are several valida-
tors available online. I like the W3C’s Markup
Validation Service.

To use an online validator:
1. Make sure you’ve declared the DTD in

your document.
2. With your browser, go to:

http://validator.w3.org/ (Figure 8.6).
3. You can choose to “Validate by URI,”

“Validate by File Upload,” or “Validate by
Direct Input” (that is, copying your XML
document into the text box on the page).

4. Click “Check”. The validator gives you
a useful report of any errors it may find
(Figure 8.7).

✔ Tips
■ If you use an external DTD, it must be

publicly available as well, otherwise an
online validator won’t be able to get to it.

■ Often, one error can cause ghost errors,
where most of the code below this first
error is misunderstood, see Figure 8.7.
Usually, if you correct the first error in the
list and then revalidate, many additional
errors (the ghost errors) will disappear.

■ Another online validator is Brown
University’s Scholarly Technology Group’s
XML Validator at: www.stg.brown.edu/
service/xmlvalid/.

www.stg.brown.edu/service/xmlvalid/
www.stg.brown.edu/service/xmlvalid/
http://validator.w3.org/

108

Chapter 8

Na
m

in
g

a
Pu

bl
ic

Ex
te

rn
al

 D
TD

Naming a Public External DTD
If your DTD will be used by others, you should
name your DTDs in a standard way: using a
formal public identifier, or FPI. An XML parser
could then use the FPI to find the latest version
of the DTD on a public Web server.

To name an external DTD:
1. Type
 –//, if your DTD is not a recognized stan-

dard (this is most common), or
 +//, if your DTD is an approved non-ISO

standard, or
 ISO//, if your DTD is an approved ISO

standard.
2. Then, type owner//, where owner identi-

fies the person or organization who wrote
and will maintain the DTD.

3. Next, type DTD description//, where
description is a reference to the DTD and
should contain a unique element, such as a
version number.

4. Finally, type XX, where XX is the two-letter
abbreviation for the language the DTD
uses. Use EN for English (and see Tip for
more on other languages).

✔ Tips
■ You can find the complete, official list of

two-letter language abbreviations in
ISO 639 online at: www.unicode.org/uni-
code/onlinedat/languages.html.

■ ISO is the International Organization for
Standardization. It is an international stan-
dards organization similar to the W3C.

–//kehogo//DTD WowML 2.0//EN

Not a
standard

Language

Owner Description

 Here is the official public name for the Figure 8.8
DTD that will describe my Wonders of the World
XML documents.

www.unicode.org/unicode/onlinedat/languages.html
www.unicode.org/unicode/onlinedat/languages.html

109

Validation and Using DTDs

Declaring a Public External DTD

Declaring a Public External DTD
If my Wonders of the World DTD becomes
very popular, and there are copies of it dis-
tributed far and wide, I would want it to be
possible for the public to declare it in their own
XML documents using its formal public identi-
fier (the name I just created for it on page 108).

To declare a public external DTD:
1. Type <!DOCTYPE root, where root is the

name of the root element in the XML
document to which the DTD will apply.

2. Then, type PUBLIC to indicate that the
DTD is a standardized, publicly available
DTD.

3. Next, type "FPI", where FPI is the formal
public identifier for the DTD (see page
108).

4. Then, type "dtd.uri", where dtd.uri is the
location of the DTD, indicating its loca-
tion on a public server.

5. Finally, type > to complete the document
type declaration.

6. Then, in the XML declaration at the top of
the document, add standalone="no". This
tells the XML parser that the document
will rely on an external file; in this case, the
public external DTD.

✔ Tip
■ When an XML parser sees a formal public

identifier, it will usually try to get a copy
of the DTD from the best possible server;
perhaps one that’s closer on the Internet or
one that has the latest version of the DTD.
If it can’t find the DTD by using the FPI,
it can then resort to using the URI.

<?xml version="1.0"?>
<!DOCTYPE ancient_wonders PUBLIC
 "-//kehogo//DTD WowML 2.0//EN"
 "http://www.kehogo.com/dtd
 /wonders-master.dtd">

<ancient_wonders>
 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
...
 </wonder>
</ancient_wonders>

x m l

 This time, the XML parser will use the Figure 8.9
public identifier to try and find the DTD, perhaps in
a public repository. If that proves unsuccessful, it will
use the DTD referenced by the given URI.

110

Chapter 8

Pr
os

 a
nd

 C
on

s o
f D

TD
s

Pros and Cons of DTDs
DTDs are schemas. They specify the elements,
attributes, and relationships that a valid XML
document can contain.

DTDs are very powerful and very useful;
however, there are other schema languages for
XML. The most recognized and most used
alternative is called XML Schema, and each
schema language has its costs and benefits. I
will discuss XML Schema in the next part of
the book.

Some pros of using DTDs:
◆ They are compact and easily compre-

hended with a little direction.
◆ They can be defined inline (internal

DTDs) for quick development.
◆ They can define entities (see Chapter 7).
◆ They are likely the most widely accepted

and are supported by most XML parsers.

Some cons of using DTDs:
◆ They are not written using XML syntax,

and require parsers to support an addi-
tional language.

◆ They do not support Namespaces (see
Chapters 12 and 13).

◆ They do not have data typing (requiring
data to be an integer, a string, or a date,
etc.), thereby decreasing the strength of the
validation.

◆ They have limited capacity to define how
many child elements can nest within a
given parent element.

111

XML Schema Basics 113
Defining Simple Types 119

Defining Complex Types 137

PART 4:
XML SCHEMA

This page intentionally left blank

9

113

XM
L Schem

a Basics

XML SCHEMA BASICS
The specifications for XML include the syntax
for a schema language: A way to define what
a valid XML document could contain. This
language, known as a DTD (Document Type
Definition), enables users to define elements,
attributes, and their relationships for any appli-
cation of XML needed (see Part 3).

In 2001, the W3C developed a new schema
language to address many of the shortcomings
of DTD (see page 110). This schema language
was named XML Schema, which is admittedly
confusing because DTDs are a type of XML
schema (lower case “s”). Even still, it’s most
often called XML Schema, though it is occa-
sionally called XML Schema Definition (XSD).
And now, with version 1.1 of the language, it is
known as XML Schema Definition Language
(XSDL). However, for this book, I will use the
name XML Schema, which is still the most
widely recognized name of them all.

XML Schema, written in XML itself, is deeper
and more powerful than a DTD. A few
examples of its strength include its system of
data types that let you specify when an ele-
ment should, for example, contain an integer,
or a period of time, or a string. It supports
namespaces, which are discussed in Chapters
12 and 13. It also lets you define both local and
global elements, thereby allowing two elements
to have different definitions, even though they
have the same name. In short, XML Schema
gives you much more control over the contents
of an XML document, and will likely supplant
DTDs as the most widely accepted schema lan-
guage in the near future.

114

Chapter 9

W
or

ki
ng

 w
ith

 X
M

L S
ch

em
a

Working with XML Schema
An XML Schema specifies the structure of valid
XML documents (Figure 9.1) by defining
a set of elements, their relationships to each
other, and the attributes that they can contain.
In a DTD, all XML elements are defined using
one element type. In XML Schema, an XML
element can be defined as either a simple type
or a complex type. Essentially, a simple type is an
XML element that only contains text, whereas
a complex type is an XML element that contains
child elements and/or attributes.

Let’s take a closer look at simple types. Again,
in XML Schema, a simple type element is one
that contains only text. In a DTD, a text-only
element is defined as #PCDATA, meaning its
contents might be a name, number, date, or
practically anything. In XML Schema, you can
(and must) specify exactly what kind of con-
tent you want an element to contain. You do
this by assigning it a data type. There are many
built-in data types; like string, integer, and date
(Figure 9.2). You can also create custom data
types to have even more control over an ele-
ment’s content.

Where simple type elements describe the text
of an XML document, complex type elements
describe its structure (Figure 9.3). There are
four kinds of complex type elements: those that
contain child elements; those that contain both
child elements and text; those that contain only
text; and those that are empty. You’ll find more
detailed information in Chapter 11, Defining
Complex Types.

<?xml version="1.0"?>
<wonder>
 <name>Colossus of Rhodes</name>
 <location>Greece</location>
 <height>107</height>
</wonder>

x m l

 Here is one of the first XML documents Figure 9.1
I used in the book.

<element name="name"
 type="string"/>

<element name="location"
 type="string"/>

<element name="height"
 type="integer"/>

x s d

 These elements are defined using XML Figure 9.2
Schema’s built-in simple data types. The name and
location elements must be strings, and the height ele-
ment must be an integer.

<element name="wonder">
 <complexType>
 <sequence>
...
 </sequence>
 </complexType>
</element>

x s d

 This complex type definition using XML Figure 9.3
Schema defines the wonder element as containing a
sequence of elements (the sequence of child elements is
not shown here).

115

XML Schema Basics

W
orking w

ith XM
L Schem

a

✔ Tips
■ One of the benefits of XML Schema is that

it uses XML syntax, which you probably
already know by now!

■ Because an XML Schema is an XML
document, it must begin with an XML
declaration, have one root element, and be
well-formed, just like all other XML docu-
ments (Figure 9.4).

■ Interestingly, when the first version of this
book was being published, XML Schema
was still a working draft. Now, the W3C
is working towards the completion of
XML Schema Version 1.1. It is being
developed to fix bugs and make improve-
ments where possible, while maintaining
the same basic scope as (and remaining
mostly compatible with) version 1.0. You
can find up-to-date information at the
W3C’s XML Schema Working Group site
at: www.w3.org/XML/Schema.

<?xml version="1.0"?>
<element name="wonder">
 <complexType>
 <sequence>
 <element name="name"
 type="string"/>
 <element name="location"
 type="string"/>
 <element name="height"
 type="string"/>
 </sequence>
 </complexType>
</element>

x s d

 Put Figures 9.2 and 9.3 together and you Figure 9.4
get most of an XML Schema that defines the XML
document shown in Figure 9.1. The rest of the XML
Schema is explained on the next page.

www.w3.org/XML/Schema

116

Chapter 9

Be
gi

nn
in

g
a

Si
m

pl
e

XM
L S

ch
em

a

<?xml version="1.0"?>
<xs:schema xmlns:xs=
 "http://www.w3.org/2001/XMLSchema">

...

</xs:schema>

x s d

 An XML Schema is an XML document Figure 9.5
itself. The root element must be schema, and its
namespace is declared to be the W3C’s XML Schema
namespace.

<?xml version="1.0"?>
<xs:schema xmlns:xs=
 "http://www.w3.org/2001/XMLSchema">

<xs:element name="wonder">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name"
 type="xs:string"/>
 <xs:element name="location"
 type="xs:string"/>
 <xs:element name="height"
 type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

x s d

 Here, I’ve combined the XML Schema Figure 9.6
excerpt in Figure 9.4 with the correct XML declara-
tion, an xs:schema root definition. I have also started
all the XML Schema elements with the XML Schema
namespace prefix xs:.

Beginning a Simple XML Schema
An XML Schema is a text-only document, and
begins with a standard XML declaration. It is
customarily saved with an .xsd extension, and
its root element must be schema.

To begin an XML Schema:
1. At the top of your document, type

<?xml version="1.0"?>.
2. Type <xs:schema to define the root

element. The xs: is a namespace prefix
(see Tip on namespaces below).

3. Then, type xmlns:xs="http://www.3.org/
2001/XMLSchema" to declare the XML
Schema namespace (xmlns). This also
declares that the elements and data types
that are part of this namespace should
be prefixed with xs: as you saw in
Step 2 above.

4. Type > to complete the root element’s tag.
5. Leave a few empty lines for your XML

Schema’s rules.
6. Finally, type </xs:schema> to complete

the root element, and the XML Schema
document itself (Figure 9.5).

✔ Tips
■ A namespace is a “space” in which names

reside. Names that are part of one
namespace are not the same as names that
are part of another namespace (even if they
are spelled the exact same way).

■ The W3C created a namespace which con-
tains all XML Schema elements and data
types. This namespace is declared in Step
3 above. Once declared, in order to indi-
cate that a particular element or data type
should be considered part of the W3C’s
XML Schema namespace, it must start
with the xs: namespace prefix (Figure
9.6). Namespaces are discussed at length
in Chapters 12 and 13.

117

XML Schema Basics

Associating an XM
L Schem

a w
ith an XM

L Docum
ent

<?xml version="1.0"?>
<wonder xmlns:xsi="http://
 www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "09-06.xsd">
...

x m l

 In order to associate an XML Schema Figure 9.7
with an XML document, you must declare the XML
Schema document location within the root element of
the XML document.

<?xml version="1.0"?>
<wonder xmlns:xsi="http://
 www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "09-06.xsd">

 <name>Colossus of Rhodes</name>
 <location>Greece</location>
 <height>107</height>

</wonder>

x m l

 Here, I’ve added the XML Schema asso-Figure 9.8
ciation to the XML document from Figure 9.1. Then,
when checked, this XML document is valid against the
XML Schema in Figure 9.6.

Associating an XML Schema with
an XML Document
To validate an XML document against an XML
Schema, you must specify the location of the
XML Schema in the XML document itself.

To declare the XML Schema and its
location:
1. Inside the definition of the root element of

your XML document, type xmlns:xsi=
"http://www.w3.org/2001/XMLSchema".
This allows you to define the location of
your XML Schema in the next two steps.

2. Type xsi:noNamespaceSchemaLocation=

3. Finally, type "xsd.uri", where xsd.uri is
the location of the XML Schema file
against which you want to validate your
XML file (Figure 9.7).

✔ Tips
■ Most XML parsers can validate XML doc-

uments against a declared XML Schema
(Figure 9.8). If the XML parser you are
using cannot, there are validators available
online that can. The W3C has a valida-
tor at: www.w3.org/2001/03/webdata/xsv.
There are other validators listed at:
www.w3.org/XML/Schema.

■ The "xsd.uri" in Step 3 above can refer to
a file on the Internet, local area network, or
your local computer.

■ Step 1 above declares the XML Schema
Instance namespace which includes the
xsi:noNamespaceSchemaLocation attri-
bute used in Step 2, along with a few other
namespace attributes. Namespaces are dis-
cussed in Chapters 12 and 13.

www.w3.org/2001/03/webdata/xsv
www.w3.org/XML/Schema

118

Chapter 9

An
no

ta
tin

g
Sc

he
m

as

Annotating Schemas
Since an XML Schema is an XML document,
you can include standard XML comments in
your XML Schema documents (see page 13).

In addition to these standard comments, XML
Schema offers the ability to add more struc-
tured comments to your document. Whereas
XML comments are readable by people, they
are ignored by parsers, and often not passed
through during XML transformations. XML
Schema comments (annotations, as they are
called), can be parsed and processed, because
they are elements themselves (Figure 9.9).

To annotate XML Schemas:
1. Type <xs:annotation>.
2. Next, type <xs:documentation> to begin

the comment.
3. Type the comment.
4. Type </xs:documentation> to complete

the comment.
5. Finally, type </xs:annotation> to complete

the annotation.

✔ Tips
■ Whether you use XML comments, XML

Schema annotations (or both), comment-
ing your XML Schema makes it much
easier to work with your documents.

■ You can create annotations anywhere in the
XML Schema, after the root element. They
can be placed just after the xs:schema
root element (to comment on the entire
schema), or just after individual element
definitions (to give more information
about them), or both.

<?xml version="1.0"?>
<xs:schema xmlns=
 "http://www.w3.org/2001/XMLSchema">

<xs:annotation>
 <xs:documentation>This XML Schema
 will be used to validate the set
 of XML documents for the Wonders
 of the World project.
 </xs:documentation>
</xs:annotation>
...

x s d

 An annotation helps you document the Figure 9.9
XML Schema. It can facilitate future revisions.

10

119

Defining Sim
ple Types

DEFINING SIMPLE TYPES
In XML Schema, an element defined as a
simple type can contain only text. In other
words, it cannot have attributes or child ele-
ments. However, it’s a little misleading to say it
can only contain text. Rather, it’s more accurate
to say that it can only contain a value, because
with XML Schema, you can declare that it
can contain a particular kind of text. In other
words, you can declare that an element contain
only numbers, or only dates, or only boolean
values, etc.

XML Schema includes a large collection of
built-in simple types for the most common
kinds of text. These include strings, boolean
values, URLs, various date and time formats,
and numbers of all kinds.

You can also apply restrictions, or facets, to these
simple types in order to limit them further.
In doing so, you actually can create your own
custom simple types. For example, you might
want to define that an element contain a string
that matches a certain pattern (like a telephone
number or product code). Or, you might want
to define that an element can only contain one
of a specific set of dates. This feature allows you
to more specifically and effectively define the
acceptable element values that make up a valid
XML document.

120

Chapter 10

De
fin

in
g

a
Si

m
pl

e
Ty

pe
 E

lem
en

t

Defi ning a Simple Type Element
As stated, in XML Schema, a simple type ele-
ment can only contain a value; it may not
contain any child elements, and it may not
have any attributes.

With simple types, you can define that an XML
element be a string, integer, boolean value
(Figure 10.1), or one of the other simple data
types that are built into the XML Schema lan-
guage (see pages 122–124).

To defi ne a simple type element:
1. Type <xs:element to begin the definition.
2. Then, type name="label", where label is

the name of the XML element that you
are defining. (In other words, the name
of the element for which you are writing
the XML Schema should replace the
word “label”.)

3. Next, type type=".
4. Then, to identify your XML element’s

simple data type:
 Type xs:string if the element will contain a

string of characters.
 Or type xs:decimal if the element will con-

tain a decimal number. For other possible
number types, see page 124.

 Or type xs:boolean if the element will con-
tain the values true or false (or, 1 or 0).

 Or type xs:date if the element will be a
date. For other possible date types, see
page 122.

 Or type xs:time if the element will be a
time of day. For other possible time types,
see page 122.

 Or type xs:anyURI (as in URI and not
URL) if the element will contain a refer-
ence to a file on the Internet, a local area
network, or even your computer.

5. Next, type " to complete the data type.
6. Finally, type /> to complete the definition.

<xs:element name="height"
 type="xs:string"/>

<xs:element name="year_built"
 type="xs:integer"/>

x s d

 When defining an element in an XML Figure 10.1
Schema, you identify the XML document’s element
name and what kind of content it should contain
(its simple data type). In this case, the content of the
height element is defined to be a string, and
year_built is defined to be an integer.

<height>39 feet</height>

<year_built>430</year_built>

x m l

 A Figure 10.2 string is a series of letters, numbers,
and/or symbols. An integer is any whole number.
Therefore, both the height and year_built elements
are valid when compared against the XML Schema
definition in Figure 10.1.

<height>39</height>

<year_built>long ago</year_built>

x m l

 In this XML excerpt, the Figure 10.3 height element
looks like it might not be valid based on the XML
Schema in Figure 10.1; but in fact, it is valid since a
number is a string (though, conversely, not all strings
are numbers). The year_built element, however, is
invalid. The phrase “long ago” is not an integer.

121

Defining Simple Types

Defining a Sim
ple Type Elem

ent

✔ Tips
■ There are many other built-in simple types.

You can find the entire list at: www.w3.org/
TR/xmlschema-2/#built-in-datatypes.

■ Built-in simple types always begin with the
XML Schema namespace prefix, which is
typically declared as xs: (Figure 10.4).
Namespaces are discussed in more detail in
Part 5 of the book.

■ You can also create custom simple types
by extending the built-in simple types.
For more details, consult Deriving Custom
Simple Types on page 126.

■ Attributes themselves are also simple types
(since they can only contain values, not
child elements or attributes of their own),
and they are declared in much the same
way as simple type elements. I’ll discuss
them in the next chapter, see Defining
Attributes on page 154.

■ To reiterate, a simple type element cannot
contain child elements or attributes. If an
element needs to contain child elements or
attributes, it will be defined as a complex
type. For more details, see Chapter 11,
Defining Complex Types.

<xs:element name="last_modified"
 type="xs:date"/>

x s d

 In this XML Schema excerpt, the XML Figure 10.4
element last_modified is defined to contain date val-
ues. This is done by using the built-in XML Schema
simple type: date.

<last_modified>2008-05-23
 </last_modified>

x m l

 The Figure 10.5 last_modified element in this XML
excerpt is valid based on the XML Schema definition
in Figure 10.4. It is valid because it contains a date,
and is in the proper format. In XML Schema, the date
format is YYYY-MM-DD. (That is, a four-digit year,
followed by a dash, followed by two digits representing
the month, another dash, and then two digits repre-
senting the day.) With all built-in simple type formats,
it’s important to know the format in which the data
should be written.

<last_modified>May 23, 2008
 </last_modified>

x m l

 Although this Figure 10.6 last_modified element
contains a date, it is actually not valid because the
date is not in the proper format.

www.w3.org/TR/xmlschema-2/#built-in-datatypes
www.w3.org/TR/xmlschema-2/#built-in-datatypes

122

Chapter 10

Us
in

g
Da

te
 a

nd
 T

im
e

Ty
pe

s

<xs:element name="birth"
 type="xs:date"/>

x s d

<birth>1879-03-14</birth>

x m l

 Albert Einstein was born on March 14, Figure 10.7
1879. (In 1921, Einstein received the Nobel Prize for
his work in Theoretical Physics, and in 1999 he was
named “Person of the Century” by Time magazine.)

<xs:element name="time_painted"
 type="xs:time"/>

x s d

<time_painted>21:08:00</time_painted>

x m l

 Initially thought to be the setting sun, it Figure 10.8
is now believed that Vincent van Gogh’s Expressionist
painting “Moonrise,” depicts the night sky in Saint-
Rémy at 9:08 p.m., on July 13, 1889. (Notice that the
time is written in “military” or universal format.)

<xs:element name="when_shot"
 type="xs:dateTime"/>

x s d

<when_shot>
 1968-04-04T18:01:00-05:00</when_shot>

x m l

 The assassination of Martin Luther Figure 10.9
King, Jr., a well-known leader in the American Civil
Rights movement, took place at 6:01 p.m. on April 4,
1968. His assassination happened in Tennessee, so the
time is written with –05:00, indicating a –5 hour
offset from UTC (see first Tip on the next page).

<xs:element name="strike_length"
 type="xs:duration"/>

x s d

<strike_length>P5D</strike_length>

x m l

 Mohandas Gandhi was a world-Figure 10.10
renowned leader who made famous the idea of
resistance through civil disobedience. In 1939, while
in prison, he went on a 5-day hunger strike for peace.

Using Date and Time Types
In addition to the simple data types I just dis-
cussed, XML Schema has several more refined
data types for dates and times. To define an
XML element using one of these types, replace
Step 4 on page 120 with the one below that
suits your purpose.

To use date and time types:
◆ Use xs:date to require that an element’s

content be a date (Figure 10.7). It must
be formatted YYYY-MM-DD. That is, May
23, 2008 would be written: 2008-05-23.

◆ Use xs:time to require that an element’s
content be the time of day (Figure 10.8).
It must be formatted hh:mm:ss. That is,
4:21 p.m. is written: 16:21:00. (Time is
written in “military” or universal format.)

◆ Use xs:dateTime to require that an ele-
ment’s content be a date and a time
(Figure 10.9). It should be formatted
YYYY-MM-DDThh:mm:ss. That is, 4:21 p.m.
on May, 23, 2008 would be written:
2008-05-23T16:21:00.

◆ Use xs:duration to require that an
element’s content be an amount of time
(Figure 10.10).

 The duration must be formatted as
PnYnMnDTnHnMnS, where P is always
required (it stands for Period), and T is only
required if you have any time units. Each
n indicates how many of the following
units there are: Years, Months, Days, Hours,
Minutes, Seconds, and is a non-optional,
non-negative integer. For example, 3
months, 4 days, 6 hours, and 17 minutes
would be written: P3M4DT6H17M, and
90 days would be written: P90D.

 You can also add an optional leading
hyphen to indicate that the duration goes
back in time (not forward). For example,
–P90D would mean 90 days ago.

123

Defining Simple Types

Using Date and Tim
e Types

<xs:element name="tribute_year"
 type="xs:gYear"/>

x s d

<tribute_year>1995</tribute_year>

x m l

 Marie Curie’s work in radioactivity Figure 10.11
won her Nobel Prizes in 1903 and 1911. In 1995,
her ashes were transferred to the Panthéon in Paris,
making her the first woman ever honored in that way.

<xs:element name="birth_month"
 type="xs:gMonth"/>

x s d

<birth_month>--12</birth_month>

x m l

 Nostradamus was an apothecary, but Figure 10.12
is best known for his collection of prophecies. And,
although it is known that he was born in the month of
December, historians are not certain on which day.

<xs:element name="leap_day"
 type="xs:gMonthDay"/>

x s d

<leap_day>--02-29</leap_day>

x m l

 February 29th is Leap Day. It occurs Figure 10.13
every four years (with the exception of century years
not divisible by 400, such as 1800) to resync our cal-
endar with the revolution of the Earth around the sun.

<xs:element name="ides"
 type="xs:gDay"/>

x s d

<ides>---15</ides>

x m l

 The word Figure 10.14 ides comes from the Latin
word “idus,” meaning “half division.” It is often
thought to mean the 15th day of the month because
of Julius Caesar’s assassination on the Ides of March,
March 15th. Actually, in ancient Roman times, ides
referred to the 15th day of March, May, July, and
October, but the 13th day of the other months.

◆ Use xs:gYear to require that an element’s
content be a year (Figure 10.11). It
should be formatted YYYY.

◆ Use xs:gYearMonth to require that an ele-
ment’s content be a year and month. It
should be formatted YYYY-MM.

◆ Use xs:gMonth to require that an element’s
content be a month (Figure 10.12). It
should be formatted --MM. (That’s two ini-
tial dashes: One to represent the “missing”
year, and one to act as a separator). For
example, April would be written: --04.

◆ Use xs:gMonthDay to require that an ele-
ment’s content be the day of a month
(Figure 10.13). It should be formatted
--MM-DD. (That’s two initial dashes: One
to represent the “missing” year, and one to
act as a separator.) For example, September
14th would be written as --09-14.

◆ Use xs:gDay to require that an element’s
content be a day of the month (Figure
10.14). It should be formatted ---DD.
(Three initial dashes here: One for each
“missing” piece, and one as a separator.)
For example, the 7th day of the month
would be written as ---07.

✔ Tips
■ All time types can also end with an

optional time zone indicator. You would
type Z for UTC or one of -hh:mm or
+hh:mm to indicate an offset from UTC.
UTC (Coordinated Universal Time) is the
same time as Greenwich Mean Time.

■ Time types can also include fractional sec-
onds in the format hh:mm:ss.sss. You can
include as many digits as you’d like.

■ The g in the simple types on this page
stands for Gregorian. This refers to the
Gregorian calendar, which is the most
commonly used calendar today.

124

Chapter 10

Us
in

g
Nu

m
be

r T
yp

es

Using Number Types
XML Schema also has several more refined
simple types for numbers (Figure 10.15).
To define the acceptable content for an XML
element using one of these types, replace Step 4
on page 120 with one of the types below.

To use number types:
◆ Use xs:decimal when you want the content

to be either positive or negative numbers
that have a finite number of digits on
either side of the optional decimal point,
such as 4.26, –100, or 0.

◆ Use xs:integer when you want the content
to be positive or negative whole numbers;
that is, those that have no fractional part,
like 542 or –7.

◆ Use xs:positiveInteger (1, 2, etc.),
xs:negativeInteger (–1, –2, etc.),
xs:nonPositiveInteger (0, –1, –2, etc.), or
xs:nonNegativeInteger (0, 1, 2, etc.) when
you want the content to one be those kinds
of numbers.

◆ Use xs:int when you want the content to
be a signed 32-bit integer, often used for
database ID fields.

◆ Use xs:float when you want the content to
be single precision, 32-bit floating point
numbers like 43e–2. This includes positive
and negative zero (0 and –0), positive and
negative infinity (INF and –INF), and “not
a number” (NaN).

✔ Tips
■ You can find more number types explained

at: www.w3.org/TR/xmlschema-2/, such as
short, byte, and the unsigned versions of
some I’ve already listed here.

■ You can also use these types (as well as the
ones listed on the previous pages) as the
foundation on which to define your own
data types (see page 126).

<xs:element name="years_standing"
 type="xs:positiveInteger"/>

<xs:element name="height"
 type="xs:decimal"/>

x s d

 It’s more precise to require a positive Figure 10.15
integer for years_standing. (An integer, or even a non-
negative integer, would not be appropriate, allowing
either a negative value, or even zero). The height ele-
ment could well use the precision of a decimal number.

<years_standing>
 1602</years_standing>

<height>384.25</height>

x m l

 Based on the XML Schema defini-Figure 10.16
tion in Figure 10.15, as long as the years_standing
is an integer greater than 0, the element is valid. The
height may have both a fractional and a whole part.

<years_standing>
 1602.5</years_standing>

<height>384</height>

x m l

 The Figure 10.17 years_standing element in this
excerpt is invalid. Since it was defined to be an inte-
ger, it cannot have a decimal part. The height element
is valid, however, since a decimal number may have a
fractional portion, but it is not required to.

www.w3.org/TR/xmlschema-2/

125

Defining Simple Types

Predefining an Elem
ent’s Content

Predefi ning an Element’s Content
There are two ways to use an XML Schema to
predefine what an element’s content should be.
You can either set the element’s value using a
fixed value (Figure 10.18). Or, you can set the
element’s value if it’s empty or omitted using a
default value (Figure 10.20).

To set an element’s value:
1. Within the element tag, type fixed=.
2. Then, type "value", where value is what

the element must be equal to, in order to
be considered valid (unless the element is
omitted from the XML document, which
is also valid).

To set an element’s default value:
1. Within the element tag, type default=.
2. Then, type "value", where value is what

the element will be equal to, if the element
is empty or omitted.

✔ Tips
■ The fixed attribute only sets the content

if the element actually appears empty in
the XML (Figure 10.19). If it is omitted,
then no content is set.

■ If the element has a value that is different
from the fixed value, then the XML docu-
ment is not valid.

■ The default attribute sets the content if
the element appears empty in the XML or
if it is omitted (Figure 10.21).

■ If the element has a value that is different
from the default value, the XML document
is valid, and the element’s value is the one
specified in the XML document.

■ You cannot set both a default and a
fixed attribute at the same time. Since
they contradict each other, an XML
Schema processor will not allow this.

<xs:element name="how_destroyed"
 type="xs:string" fixed="fire"/>

x s d

 Defining the Figure 10.18 how_destroyed element
with a fixed value means as long as it appears in the
XML, it must be the string “fire” (or be empty, in
which case it’s considered to have the string “fire”).

<how_destroyed>fire</how_destroyed>

x m l

<how_destroyed></how_destroyed>

x m l

<how_destroyed>
 earthquake</how_destroyed>

x m l

 The first XML excerpt is valid because Figure 10.19
the how_destroyed element matches the fixed value
from the XML Schema excerpt in Figure 10.18. The
second XML excerpt is valid because the element is
empty, so it’s set to the fixed value. The third isn’t valid
because it doesn’t match the fixed value.

<xs:element name="how_destroyed"
 type="xs:string" default="fire"/>

x s d

 Defining the Figure 10.20 how_destroyed element
with a default value means that value will be set as
the initial content whether or not the how_destroyed
element appears in the XML document.

<how_destroyed>fire</how_destroyed>

x m l

<how_destroyed></how_destroyed>

x m l

<how_destroyed>
 earthquake</how_destroyed>

x m l

 All these XML examples are valid Figure 10.21
based on the XML Schema excerpt in Figure 10.20.
The default attribute only sets an initial value, and
any other value is also acceptable.

126

Chapter 10

De
riv

in
g

Cu
st

om
 S

im
pl

e
Ty

pe
s

Deriving Custom Simple Types
The XML Schema language contains many
built-in simple types. Using these types as a
foundation, the language allows you to derive
your own custom simple types.

To derive a custom simple type:
1. First, identify the name of the XML ele-

ment that you are using XML Schema
to define. To do so, type <xs:element
name="label">, where label is the name of
the XML element (Figure 10.22).

2. Type <xs:simpleType> to start deriving
your custom simple type.

3. Type <xs:restriction base="foundation">,
where foundation is any one of the built-in
simple types upon which you’d like to base
your custom type.

4. Specify as many restrictions (or facets) as
necessary to define your new custom
type. Facets, which are the way that you
can customize built-in simple types, are
discussed in detail on pages 128–134.

5. Type </xs:restriction>.
6. Type </xs:simpleType> to complete your

new custom simple type.
7. Finally, type </xs:element> to complete

the definition of the element.

✔ Tips
■ This custom simple type is called an

anonymous custom type. There is also such a
thing as a named custom type (see page 127).
The difference between these two is that a
named type can be used more than once
(by setting the simple type’s type attribute
to the custom name), but the anonymous
type (which has no name) can only be used
for the element in which it is contained.

■ You can also create list simple types. For
more information, consult Deriving a List
Type on page 135.

<xs:element name="story">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:length value="1024"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

x s d

 Here, I’ve derived a custom type for the Figure 10.22
story element. I started with a base foundation of the
xs:string simple type. I then extended this by adding a
restriction that limits the content’s length to be a maxi-
mum of 1024 characters.

127

Defining Simple Types

Deriving Nam
ed Custom

 Types

Deriving Named Custom Types
If you are going to use a custom type to define
more than one element in your XML Schema,
you can name it (Figure 10.23). Then, each
time you want to use it, you can include a
cross-reference between the XML element and
your new custom type.

To derive a named custom type:
1. Type <xs:simpleType to start your custom

simple type.
2. Then, type name="custom_type_name">,

where custom_type_name identifies your
new custom simple type.

3. Type <xs:restriction base="foundation">,
where foundation is the simple type upon
which you are building your custom type.

4. Specify as many restrictions (or facets) as
you would like to define your new custom
type (see pages 128–134).

5. Type </xs:restriction>.
6. Finally, type </xs:simpleType> to complete

your custom simple type definition.
7. Then, to use your new custom type, for the

definition of the element, you would type
<xs:element name="label" type="custom_
type_name">, using the custom_type_name
you gave you new custom type in Step 2
above (Figure 10.24).

✔ Tips
■ Once you’ve defined your named custom

type, you can use it instead of the simple
types described in Step 4 on page 120.

■ Notice that you refer to your new custom
type as custom_type_name, instead of
xs:custom_type_name. This is because
the "xs:" prefix refers to the XML Schema
namespace, and your new custom type is
not part of that namespace. See Part 5 of
the book for more details on namespaces.

<xs:simpleType name="story_type">

 <xs:restriction base="xs:string">

 <xs:length value="1024"/>

 </xs:restriction>

</xs:simpleType>

x s d

 Compare this custom type definition Figure 10.23
with the element definition using a custom type in
Figure 10.22 on the previous page. The definition of
the story element in both examples is identical. The
principle difference is that the custom type shown
above can be reused for any other element in your
XML Schema. Notice how the xs:simpleType ele-
ment’s name attribute is set to story_type. This is the
name that can be used to reference the custom type.

<xs:element name="story"
 type="story_type"/>

<xs:element name="summary"
 type="story_type"/>

<xs:element name="another_story"
 type="story_type"/>

x s d

 I can now use the new Figure 10.24 storyType cus-
tom type in as many element definitions as I’d like.

128

Chapter 10

Sp
ec

ify
in

g
a

Ra
ng

e
of

 A
cc

ep
ta

bl
e

Va
lu

es

Specifying a Range of Acceptable
Values
In XML Schema, in addition to defining
an XML element’s type, you can also place
restrictions on what would be considered valid
content. These restrictions are called facets.
By using facets, you can create custom simple
types, as discussed on pages 126 and 127.

One of the most common facets used is to spec-
ify the highest or lowest value (or both) that an
XML element can have to be considered valid.

To specify the highest possible value:
1. Within a custom type definition (that is,

for Step 4 on either page 126 or 127), type
<xs:maxInclusive. (Notice the capital I that
begins the word Inclusive).

2. Then, type value="n", where the element’s
content must be less than or equal to n in
order to be valid.

3. Finally, type /> to complete the
xs:maxInclusive facet (Figure 10.25).

Another way to specify the highest
possible value:
1. Within a custom type definition (that is,

for Step 4 on either page 126 and 127),
type <xs:maxExclusive. (Notice the capital
E that begins the word Exclusive).

2. Then, type value="n", where the element’s
content must be less than (but not equal
to) n in order to be valid.

3. Finally, type /> to complete the
xs:maxExclusive facet (Figure 10.27).

<xs:element name="total_bases">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxInclusive value="6856"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

x s d

 The Figure 10.25 xs:maxInclusive facet specifies the
highest possible value for an element. In this case, the
maximum value is Hank Aaron’s All-Time Total Bases
record in Major League Baseball of 6,856 total bases.

<total_bases>6855</total_bases>

x m l

<total_bases>6856</total_bases>

x m l

 These Figure 10.26 total_bases elements are both
valid based on the XML Schema in Figure 10.25,
since the first is less than, and the second is equal to,
the xs:maxInclusive value.

<xs:element name="total_bases">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxExclusive value="6856"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

x s d

 This XML Schema custom type uses Figure 10.27
the xs:maxExclusive facet to specify that the highest
acceptable value is one less than the maximum.
That is, the total_bases element’s content must be
lower than (and not equal to) the xs:maxExclusive
value, Hank Aaron’s record.

<total_bases>6855</total_bases>

x m l

<total_bases>6856</total_bases>

x m l

 With the changed XML Schema from Figure 10.28
Figure 10.27, the first total_bases element is still
valid, while the second is invalid. (And, nobody yet
has tied or broken Hank Aaron’s total bases record!)

129

Defining Simple Types

Specifying a Range of Acceptable Values

To specify the lowest possible value:
1. Within a custom type definition (that is,

for Step 4 on either page 126 or 127), type
<xs:minInclusive. (Notice the capital I that
begins the word Inclusive).

2. Then, type value="n", where the element’s
content must be greater than or equal to n
in order to be valid.

3. Finally, type /> to complete the
xs:minInclusive facet (Figure 10.29).

Another way to specify the lowest
possible value:
1. Within a custom type definition (that is,

for Step 4 on either page 126 or 127), type
<xs:minExclusive. (Notice the capital E
that begins the word Exclusive).

2. Then, type value="n", where the element’s
content must be greater than (but not
equal to) n in order to be valid.

3. Finally, type /> to complete the
xs:minExclusive facet.

✔ Tips
■ While you can’t use the two min limits (or

the two max limits) simultaneously for the
same type (it wouldn’t make sense), you
can mix and match the mins and maxes as
needed (Figure 10.31). Of course, you
can also use just one.

■ You can use these min and max facets with
date, time, and numeric simple types.

■ What it means for a number to be greater
or less than another is pretty obvious. For a
date or time to be greater, it must represent
a later date or time. For a date or time to
be less, it should represent an earlier date
or time.

<xs:element name="game_day">
 <xs:simpleType>
 <xs:restriction base="xs:date">
 <xs:minInclusive
 value="1954-04-13"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

x s d

 Here, the Figure 10.29 xs:minInclusive facet is spec-
ifying the lowest (or earliest) game_day: Hank Aaron’s
Major League debut game on April 13, 1954.

<game_day>1954-04-13</game_day>

x m l

<game_day>1954-04-14</game_day>

x m l

 These excerpts are both valid, based on Figure 10.30
the XML Schema defined in Figure 10.29 above.

<xs:element name="game_day">
 <xs:simpleType>
 <xs:restriction base="xs:date">
 <xs:minInclusive
 value="1954-04-13"/>
 <xs:maxInclusive
 value="1976-10-03"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

x s d

 This XML Schema custom type uses Figure 10.31
both the xs:minInclusive and xs:maxInclusive facets
to specify that valid elements contain dates that are
equal to, or fall in-between, April 13, 1954 and
October 3, 1976, Hank Aaron’s Major League career.

<game_day>1976-07-20</game_day>

x m l

 This is valid (Aaron’s 755th home run Figure 10.32
game), given the XML Schema in Figure 10.31.

<game_day>2008-07-04</game_day>

x m l

 This Figure 10.33 game_day element is not valid.

130

Chapter 10

Sp
ec

ify
in

g
a

Se
t o

f A
cc

ep
ta

bl
e

Va
lu

es

Specifying a Set of Acceptable
Values
With the facets described on the previous two
pages, you can set minimums, maximums, and
value ranges for valid XML elements. In some
cases, however, there may be a specific set of
acceptable values that you want to define as
valid. In these cases, you would use an
enumeration facet (Figure 10.34).

To specify a set of acceptable values:
1. Within a custom type definition (that is,

for Step 4 on either page 126 or 127), type
<xs:enumeration.

2. Then, type value="choice", to identify one
acceptable choice for the content of the ele-
ment or attribute.

3. Finally, type /> to complete the
xs:enumeration element.

4. Repeat Steps 1–3 for each additional value
choice that the element can have.

✔ Tips
■ Each enumeration value must be unique.
■ Enumeration values may contain white

space.
■ You can use the xs:enumeration facet

with all simple types, except boolean.

<xs:element name="wonder_name">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value=
 "Colossus of Rhodes"/>
 <xs:enumeration value=
 "Great Pyramid of Giza"/>
 <xs:enumeration value=
 "Hanging Gardens of Babylon"/>
 <xs:enumeration value=
 "Statue of Zeus at Olympia"/>
 <xs:enumeration value=
 "Temple of Artemis at Ephesus"/>
 <xs:enumeration value=
 "Mausoleum at Halicarnassus"/>
 <xs:enumeration value=
 "Lighthouse of Alexandria"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

x s d

 The Figure 10.34 wonder_name element can and
must now contain one of these values.

<wonder_name>
 Great Pyramid of Giza</wonder_name>

x m l

 This Figure 10.35 wonder_name element is per-
fectly valid, since it matches one of the enumerated
choices from the XML Schema in Figure 10.34.

<wonder_name>
 Great Pyramid</wonder_name>

x m l

<wonder_name>
 Lighthouse of Alexandria
 Hanging Gardens of Babylon
</wonder_name>

x m l

 Neither of these Figure 10.36 wonder_name ele-
ments is valid. The first one contains only a part of
a choice. (While it’s often referred to as the “Great
Pyramid”, that doesn’t match any of the enumera-
tion choices, and thus is not valid.) The second one
contains two choices, but only one is allowed with enu-
merations. Defining an element that allows multiple
selections from a set of values is an advanced topic not
covered in this book.

131

Defining Simple Types

Lim
iting the Length of an Elem

ent

Limiting the Length of an Element
One of the ways you can further restrict an
XML element with a custom type is to use a
facet that specifies or limits its length.

To specify the exact length of an
element:
◆ Within a custom type definition (that is,

for Step 4 on either page 126 or 127), type
<xs:length value="g"/>, where g is the
number of characters that the element
must have (Figure 10.37).

To specify the minimum length of an
element:
◆ Within a custom type definition (that is,

for Step 4 on either page 126 or 127), type
<xs:minLength value="n"/>, where n is
the minimum length in characters of the
element.

To specify the maximum length of an
element:
◆ Within a custom type definition (that is,

for Step 4 on either page 126 or 127), type
<xs:maxLength value="x"/>, where x is
the maximum length in characters of the
element (Figure 10.39).

✔ Tips
■ You can use the length facet with string,

and other string-based XML Schema sim-
ple types such as anyURI or hexBinary.

■ The values for xs:length, xs:minLength,
and xs:maxLength must all be non-nega-
tive integers.

■ If the element is based on a binary type,
such as hexBinary, the length facet
limits the number of octets of binary data.
If the element is derived by list (see page
135), the length facet limits the number
of list items.

<xs:element name="wonder_code">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:length value="5"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

x s d

 You can create a custom type that Figure 10.37
specifies the length of a valid element’s string value.

<wonder_code>w_285</wonder_code>

x m l

 This Figure 10.38 wonder_code element is valid
since it contains 5 characters as specified by the custom
type in Figure 10.37. If wonder_code elements are
consistently one character, an underscore, and then
three digits, I could use a pattern facet to more pre-
cisely define the element (see page 132).

<xs:element name="brief_description">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

x s d

You can limit the length of an element’s Figure 10.39
string value to keep it from getting too large, or to
match specific length constraints, such as those required
of a database.

<brief_description>In 294 BC, a huge
 statue was built honoring the god
 Helios. This Colossus of Rhodes,
 often depicted straddling the
 harbor, likely stood by it. The
 statue was toppled by earthquake,
 and wasn’t rebuilt. Even broken,
 many still traveled to see it.
</brief_description>

x m l

 This Figure 10.40 brief_description element is
valid because its value is comprised of 243 characters,
which is less than the 256-character maximum limit
defined by the custom type in Figure 10.39.

132

Chapter 10

Sp
ec

ify
in

g
a

Pa
tte

rn
 fo

r a
n

Ele
m

en
t

Specifying a Pattern for an
Element
In XML Schema, you can also restrict what a
valid XML element can contain using a pat-
tern facet (Figures 10.41 and 10.42). To
construct a pattern, you use a regular expression
(regex) language. This enables you to define a
pattern that the XML element’s content must
match in order to be considered valid.

The regex language in XML Schema is based
on Perl’s regex language, and could fill a chapter
of its own. I’ll give you a brief taste here.

To specify a pattern for an element:
1. Within a custom type definition (that is,

for Step 4 on either page 126 or 127), type
<xs:pattern.

2. Then, type value="regex", where regex is
the regular expression that the XML ele-
ment’s content must match.

 Regular expressions are made up of letters,
numbers, and special symbols; in the order
which those letters, numbers, and symbols
should appear in the content. Symbols
include:

 . (a period) for any character at all.
 \d for any digit; \D for any non-digit.
 \s for any white space (including space,

tab, newline, and return); \S for any char-
acter that is not white space.

 x* to have zero or more x’s; (xy)* to have
zero or more xy’s.

 x? to have zero or one x; (xy)? to have zero
or one xy.

 x+ to have one or more x’s; (xy)+ to have one
or more xy’s.

 [abc] to include one of a group of values
(a, b, or c).

 [0–9] to include the range of values from 0
to 9.

<xs:element name="wonder_code">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="w_\d{3}"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

x s d

 This pattern limits the content of the Figure 10.41
wonder_code element to strings that begin with the
letter w, an underscore, and then three digits. Any
character that appears in the element must appear in
that same position in the regex for the element to be
considered valid.

<wonder_code>w_285</wonder_code>

x m l

<wonder_code>285_w</wonder_code>

x m l

 The first XML excerpt shows a valid Figure 10.42
instance of the wonder_code element, based on the bit
of XML Schema shown in Figure 10.41. The second
element shown is not valid because the order of the
content does not match the regex pattern.

133

Defining Simple Types

Specifying a Pattern for an Elem
ent

 this | that to have this or that in the con-
tent. Separate additional choices with
additional vertical bars.

 x{5} to have exactly 5 x’s (in a row).
 x{5,} to have at least 5 x’s (in a row).
 x{5,8} to have at least 5 and at most 8 x’s

(in a row).
 (xyz){2} to have exactly two xyz’s (in a row).
 Note: Parentheses control what the curly

brackets and other modifiers, such as ?, +,
and *, affect.

3. Finally, type /> to complete the
xs:pattern element.

✔ Tips
■ It’s a little beyond the scope of this book

to cover regular expressions in more detail.
Instead, let me refer you to another book:
Perl and CGI for the World Wide Web: Visual
QuickStart Guide, by Elizabeth Castro,
published by Peachpit Press. It has many
more examples and background infor-
mation. You can also find more specific
information about XML Schema regular
expressions at www.w3.org/TR/2004/
REC-xmlschema-2-20041028/datatypes.
html#regexs.

■ The regular expressions used in XML
Schema are very similar to those used in
Perl. However, one important technical
difference is that in XML Schema regex,
the comparison is always made between the
regular expression and the entire contents
of the element. There are no ^ or $ char-
acters to limit a match to the beginning or
end of a line (as there are in Perl).

■ You can use the pattern facet with any of
the simple types.

<xs:element name="race_time">
 <xs:simpleType>
 <xs:restriction base="xs:duration">
 <xs:pattern value=
 "PT\d+H\d+M\d+S"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

x s d

 You can also use patterns to control Figure 10.43
the contents of elements based on other types besides
string. For example, if you want the race_time ele-
ment to contain an xs:duration value only containing
hours, minutes, and seconds, you might set the pattern
as shown here. Note that this pattern doesn’t “under-
stand” what the duration type needs. It simply requires
that the content include a capital letter P, a capital
letter T, followed by one or more digits, a capital letter
H, one or more digits, a capital letter M, one or more
digits, and finally, a capital letter S.

<race_time>PT2H4M26S</race_time>

x m l

<race_time>PT2H15M25S</race_time>

x m l

 Here are two valid examples of the Figure 10.44
race_time element defined in Figure 10.43. The first
represents the current men’s world record for a mara-
thon race run by Haile Gebrselassie from Ethiopia.
The second represents the current women’s world record
for a marathon race run by Paula Radcliffe from the
United Kingdom.

www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#regexs
www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#regexs
www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#regexs

134

Chapter 10

Lim
iti

ng
 a

 N
um

be
r’s

 D
ig

its

Limiting a Number’s Digits
You saw how to limit the value of numeric ele-
ments with the min and max facets on pages
128 and 129. In XML Schema, you can also
limit the total number of digits, as well as the
number of digits after the decimal point of
numeric elements (Figure 10.45).

To specify the total number of digits
in a number:
1. Within a custom type definition (that is,

for Step 4 on either page 126 or 127), type
<xs:totalDigits.

2. Then, type value="n", where n is the maxi-
mum number of digits that can appear in
the number.

3. Finally, type /> to complete the
xs:totalDigits facet.

To specify the number of digits after
the decimal point:
1. Within a custom type definition (that is,

for Step 4 on either page 126 or 127), type
<xs:fractionDigits.

2. Then, type value="n", where n is the maxi-
mum number of digits that can appear
after the decimal in the number.

3. Finally, type /> to complete the
xs:fractionDigits facet.

✔ Tips
■ You may use either of these facets with any

numerical type.
■ The xs:totalDigits facet must be a posi-

tive number, and it may not be less than
the xs:fractionDigits value.

■ The xs:fractionDigits facet must be a
non-negative integer (0, 1, 2, or higher).

■ Both facets specify the maximum values
allowed. The number is still considered
valid if fewer digits are present.

<xs:element name="atomic_weight">
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:totalDigits value="6"/>
 <xs:fractionDigits value="4"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

x s d

 The Figure 10.45 totalDigits value determines the
total number of digits, and the fractionDigits value
specifies how many digits must appear in the fractional
part of the number, after the decimal point.

<atomic_weight>
 12.0107</atomic_weight>

x m l

<atomic_weight>
 55.845</atomic_weight>

x m l

 Both of these elements are valid, based Figure 10.46
on the XML Schema excerpt in Figure 10.45, since
they contain a maximum of six digits (and sometimes
less), and a maximum of four fractional digits (and
sometimes less). John Dalton and Jöns Jakob Berzelius
are credited with being the first scientists to determine
atomic weights. These two XML elements represent the
atomic weights for carbon and iron, respectively.

<atomic_weight>
 196.9665</atomic_weight>

x m l

<atomic_weight>
 1.00794</atomic_weight>

x m l

 These two Figure 10.47 atomic_weight elements
are invalid, the first because there are too many total
digits (7 instead of 6), the second because while there
are the proper number of total digits, there are too
many fractional digits (5 instead of 4). Although not
valid for the given XML Schema, these XML elements
accurately represent the atomic weights of gold and
hydrogen respectively.

135

Defining Simple Types

Deriving a List Type

Deriving a List Type
So far, your elements can only contain one unit
each. If you define an element as a date, it can
contain just one date. But if you need an ele-
ment to contain an entire list of dates, then you
could derive a list type from the date type to
accommodate the situation (Figure 10.48).

To derive a list type:
1. First, identify the name of the XML ele-

ment that you are using XML Schema
to define. To do so, type <xs:element
name="label">, where label is the name of
the XML element.

2. Type <xs:simpleType> to start deriving
your custom simple type.

3. Type <xs:list itemType="list_element"/>,
where list_element is the simple type (built-
in or custom) that defines each individual
unit in your list.

4. Type </xs:simpleType> to complete your
new custom simple type.

5. Finally, type </xs:element> to complete
the definition of the element.

✔ Tips
■ Lists should not be confused with enu-

merations (see page 130). Enumerations
provide a set of optional values for an ele-
ment. Lists are sequences of values within
the element itself.

■ In a list, spaces separate one item from the
next. Therefore, a list of strings will be
misinterpreted if any item in the list has a
space itself. For example, the list “Colossus
of Rhodes Lighthouse of Alexandria”
would represent six items, not two.

■ As with derived simple types (see pages
126 and 127), if you aren’t going to reuse
the list, create an anonymous list type, as
shown in the steps above (Figure 10.48). If
you are going to reuse the list, then create a
named list type (Figure 10.50).

<xs:element name="recent_eclipses">
 <xs:simpleType>
 <xs:list itemType="xs:dateTime"/>
 </xs:simpleType>
</xs:element>

x s d

 A list must be based on an existing Figure 10.48
built-in or custom simple type. This list type for the
recent_eclipses element is based on the xs:dateTime
type.

<recent_eclipses>
 2008-02-21T03:26:00Z
 2007-08-28T10:37:00Z
</recent_eclipses>

x m l

 According to the XML Schema in Figure 10.49
Figure 10.48, a valid recent_eclipses element must
contain a list of zero or more xs:dateTime units. These
units are separated by white space, as shown in this
valid example of the last two total lunar eclipses.

<xs:simpleType name="dateTime_list">
 <xs:list itemType="xs:dateTime"/>
</xs:simpleType>
...
<xs:element name="recent_eclipses"
 type="dateTime_list"/>

x s d

 Compare this XML Schema excerpt Figure 10.50
to the one in Figure 10.48. In that excerpt, I used
an anonymous list type to define the recent_eclipses
element. In this excerpt, I define the recent_eclipses
element with a named list type dateTime_list. In both
cases, the element is considered valid if it contains a
white-space-separated list of xs:dateTime types.

<recent_eclipses>
 2010-12-21T08:17:00Z
 2011-06-15T20:13:00Z
 2011-12-10T14:32:00Z
</recent_eclipses>

x m l

 The Figure 10.51 recent_eclipses element in this
excerpt is valid, according to the XML Schema in
Figure 10.50; it lists the next three total lunar eclipses.

136

Chapter 10

De
riv

in
g

a
Un

io
n

Ty
pe

Deriving a Union Type
In the same way I can define an XML element
to be one of a number of different values, some-
times I might need to define an XML element
to be defined as one of a number of different
simple types (Figure 10.52).

To define an XML element to be one of two
(or more) different simple types, you can derive
a new type as the combination of these other
simple types. This newly derived simple type
is called a union, and is made from a group of
other simple types (Figure 10.53).

To derive a union:
1. First, identify the name of the XML ele-

ment that you are using XML Schema
to define. To do so, type <xs:element
name="label">, where label is the name of
the XML element.

2. Type <xs:simpleType> to start your custom
simple type.

3. Type <xs:union memberTypes="union_
elements"/>, where union_elements is a
white-space-separated group of simple
types (built-in or custom) that define the
valid simple types for this element.

4. Type </xs:simpleType> to complete your
new custom simple type.

5. Finally, type </xs:element> to complete
the definition of the element.

✔ Tip
■ As with derived simple types (see pages 126

and 127), if you aren’t going to reuse the
union, create an anonymous union type as
shown in the steps above. If you are going
to reuse the union, then you would create a
named union type.

<xs:simpleType name="isbn10">
 <xs:restriction base="xs:string">
 <xs:pattern value="\d{9}[\d|X]"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="isbn13">
 <xs:restriction base="xs:string">
 <xs:pattern value="\d{3}-\d{10}"/>
 </xs:restriction>
</xs:simpleType>

x s d

 In this XML Schema excerpt, I have Figure 10.52
defined two named custom simple types, isbn10 and
isbn13. Each custom type is a string restricted to meet
the format of its respective ISBN standard.

<xs:element name="book">
 <xs:simpleType>
 <xs:union
 memberTypes="isbn10 isbn13"/>
 </xs:simpleType>
</xs:element>

x s d

 Here, the Figure 10.53 book element is defined to be
a union of the custom types defined in Figure 10.52.
This means that the book element can be either an
isbn10 custom type or an isbn13 custom type.

<!-- The Fountainhead,
 by Ayn Rand -->
<book>0452286751</book>

x m l

<!-- The Kill a Mockingbird,
 by Harper Lee-->
<book>044508376X</book>

x m l

<!-- XML: Visual QuickStart Guide
 (2nd Edition),
 by Kevin Howard Goldberg -->
<book>978-0321559678</book>

x m l

 All three XML excerpts of the Figure 10.54 book
element are valid, based on the XML Schema in
Figure 10.53. The first two use the isbn10 custom
type and the last one uses the isbn13 custom type.

11

137

Defining Com
plex Types

DEFINING COMPLEX TYPES
In the previous chapter, I discussed that simple
type XML elements can only contain a value
and not child elements or attributes. In this
chapter, I will discuss complex type elements. A
complex type element is one that can contain
child elements, attributes, or some combination
of the two.

There has been some discussion in the XML
community about the intricacies of complex
types, specifically, how difficult they are to
understand. Even still, since you’ll want your
XML document to contain more than just a
root element, you’ll at least need one complex
type element to allow the root element to have
a child element of its own. Another important
reason to use complex types in your XML
Schema is to allow elements to have attributes.

While you certainly can, and will, get the
basic gist of how to write complex types, I will
endeavor to give you the foundation of why
they are constructed the way they are. I go into
this foundational detail in Complex Type Basics
on page 138. And, I will continue with step-by-
step examples thereafter.

138

Chapter 11

Co
m

pl
ex

 Ty
pe

 B
as

ics

 Complex Type Basics
In XML Schema, all XML elements are defined
using either simple or complex types. Complex
type elements can have child elements and/or
attributes, whereas simple type elements cannot.

Complex type elements are further subdivided
into those with simple content, and those with
complex content. Both can have attributes, but
simple content only allows string content,
whereas complex content allows child elements.

The Four Complex Types
The first is called “text only” and is a complex
type element with simple content (allows text
and attributes) (Figure 11.1).

The second is called “element only” and is a
complex type element with complex content
(allows children and attributes) (Figure 11.2).

The third is the “empty element” and is also a
complex type element with complex content
(Figure 11.3). It’s a complex type element
because it may contain attributes. It’s consid-
ered complex content because simple content
allows text, and, since I am defining an empty
element, it cannot allow text content.

Finally, the fourth complex type XML element
is called “mixed content.” This is because it is
a complex type element with both complex
content and simple content (allows text, child
elements, and attributes) (Figure 11.4).

XML Schema Type Hierarchy
An important building block of the XML
Schema language is that all element types are
hierarchically derived from a single root type.
In fact, the built-in simple types are all derived
from this root type as well. This single root type
branches into the two types I have discussed:
Simple types and complex types. Then, com-
plex types branch again into simple content and
complex content. This root type is named
anyType, and it is used to define an XML ele-
ment that contains any content of any type.

<year_built era="BC">
 282</year_built>

x m l

 Figure 11.1 The year_built element is a complex
type element that only contains text (and an attri-
bute), and is thus considered “text only.”

<ancient_wonders>
 <wonder>
...
 </wonder>
</ancient_wonders>

x m l

 Figure 11.2 The ancient_wonders element is a
complex type element that contains a child element,
wonder, but no text. This element is considered “ele-
ment only.” Although this particular element has no
attributes, as an “element only” complex type, it could.

<source sectionid="101"
 newspaperid="21"/>

x m l

 Figure 11.3 The source element is a complex type
element and is considered an “empty” element; it has
no content. This particular empty element has attri-
butes (but not all do).

<story>In 294 BC, the people of the
 island of Rhodes began building a
 colossal statue of the sun god
 Helios. They believed that it was
 because of his blessings that they
 were able to withstand a long siege
 on the island and emerge victorious.
 <para/>
 The Colossus was built with bronze,
 reinforced with iron, ...
</story>

x m l

 This Figure 11.4 story element is a complex type
element that contains text and a child element called
para. It is considered as having “mixed” content. Note
that this is not a very common structure for XML ele-
ments, especially those in database type applications.

139

Defining Complex Types

Com
plex Type Basics

Deriving a Complex Type
In the last chapter, you saw how to derive
custom simple types from the built-in simple
types, Deriving Custom Simple Types on page
126. With complex types, there aren’t any built-
in types to use. To use a complex type, it must
be derived.

To derive a “text only” content type (such
as is seen in Figure 11.1), you can use the
<xs:simpleContent> element (Figure 11.5).
Here, the year_built element is derived from
simple content with a positive integer base.
It also has a string value attribute called era.
This is discussed more in Defining Elements to
Contain Only Text on page 146.

To derive an “element only” complex type
(such as is seen in Figure 11.2), you can use
the <xs:complexContent> element (Figure
11.6). Here, the ancient_wonders element is
derived from complex content that restricts the
root type anyType. It uses an <xs:sequence>
restriction, allowing the ancient_wonders
element to have children. This is discussed in
Defining Complex Types That Contain Child
Elements on page 142.

The Default Condition
Probably the most important thing to know
about working with complex types is that the
default derivation for complex types is:

complex content that restricts anyType

With this default condition, you can and
should always omit the <xs:complexContent>
and <xs:restriction base="anyType">
elements from your XML Schema definitions
of complex types (Figure 11.7).

This default is often overlooked when discuss-
ing complex types in XML Schema, and it will
be reiterated often throughout the chapter.

<xs:element name="year_built">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension
 base="xs:positiveInteger">
 <xs:attribute name="era"
 type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

x s d

 Figure 11.5 This XML Schema defines the XML
element in Figure 11.1. This complex type is derived
from an extension of simple content with an attribute.

<xs:element name="ancient_wonders">
<xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:anyType">
 <xs:sequence>
 <xs:element name="wonder"
 type="wonderType"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>
</xs:element>

x s d

 Figure 11.6 This XML Schema defines the XML
element in Figure 11.2. It shows the complex type is
derived from complexContent that restricts anyType.

<xs:element name="ancient_wonders">
<xs:complexType>
 <xs:sequence>
 <xs:element name="wonder"
 type="wonderType"/>
 </xs:sequence>
</xs:complexType>
</xs:element>

x s d

 Figure 11.7 This XML Schema also defines the XML
element in Figure 11.2. Notice that I have removed
the default condition for complex types: Deriving
from complex content with a restriction on the base
anyType. Not only does it take up less space, it is
much easier to read!

140

Chapter 11

De
riv

in
g

An
on

ym
ou

s C
om

pl
ex

 Ty
pe

s

 Deriving Anonymous Complex
Types
As with simple types, you can derive a complex
type anonymously, or you can name it (and
reuse it throughout the XML Schema). If you
don’t need to reuse a complex type, it’s faster to
create it anonymously within the element defi-
nition itself (Figure 11.8).

To derive an anonymous complex
type:
1. Begin the definition of the element by typ-

ing <xs:element name="label">, where
label is the name of the XML element that
you are defining. In other words, you’re
writing the XML Schema to define the
<label> element in your XML document.

2. Then, type <xs:complexType> to begin the
anonymous complex type.

3. Within the xs:complexType element:
 Declare the content type to be either simple

content or complex content (see page 138).
 Create the guts of the element (which

the bulk of this chapter is devoted to
explaining).

 Define the attributes (see page 154) that
should appear, if any.

4. Next, type </xs:complexType> to complete
the anonymous complex type definition.

5. Finally, type </xs:element> to complete
the definition of the complex type element.

✔ Tip
■ The only difference between an anony-

mous type and a named type is that a
named type can be used more than once,
and can be used as the base for new
complex types. An anonymous type can
only be used for the element in which it
is contained.

<xs:element name="year_built">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension
 base="xs:positiveInteger">

 <xs:attribute name="era"
 type="xs:string"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

x s d

 Figure 11.8 This XML Schema excerpt is an
anonymous complex type definition. It is defining the
year_built element as a “text only” element requiring
a positive integer for its text value. It also defines that
year_built will have an attribute, called era, which
has a string value.

<year_built era="BC">
 282</year_built>

x m l

 Here is a valid XML element, based on Figure 11.9
the XML Schema in Figure 11.8.

141

Defining Complex Types

Deriving Nam
ed Com

plex Types

 Deriving Named Complex Types
If you are going to use a complex type to define
more than one element in your XML Schema,
you can create a named complex type (Figure
11.10). Then, each time you want to use it,
you can include a reference between the XML
element and your new custom type.

To derive a named complex type
element:
1. Type <xs:complexType to begin the named

complex type.
2. Then, type name="complex_type_name">,

where complex_type_name identifies your
new complex type.

3. Within the xs:complexType element:
 Declare the content type to be either simple

content or complex content (see page 138).
 Create the guts of the element (which

the bulk of this chapter is devoted to
explaining).

 Define the attributes (see page 154) that
should appear, if any.

4. Finally, type </xs:complexType> to
complete the named complex type
definition.

5. Then, to use the named complex type
for the definition of the XML element,
you’ll type <xs:element name="label"
type="complex_type_name">, where
complex_type_name is the name you gave
the new complex type in Step 2 above
(Figure 11.11).

✔ Tip
■ Notice that you refer to your new complex

type as complex_type_name, instead of
xs:complex_type_name. This is because
the "xs:" prefix refers to the XML Schema
namespace, not custom types. See Part 5
for more details.

<xs:complexType name="yearType">

 <xs:simpleContent>

 <xs:extension
 base="xs:positiveInteger">

 <xs:attribute name="era"
 type="xs:string"/>

 </xs:extension>

</xs:simpleContent>

</xs:complexType>

x s d

 Figure 11.10 When compared with the anonymous
definition in Figure 11.8 on the previous page, you
can see that the “guts” of the definitions are identi-
cal. The principle difference is that a named complex
type can be reused for any other element in the XML
Schema. Notice how the xs:complexType element has
defined its name attribute to be “yearType”. This is
the name other elements will use when referring to this
complex type.

<xs:complexType name="historyType">

 <xs:sequence>

 <xs:element name="year_built"
 type="yearType"/>

 <xs:element name="year_destroyed"
 type="yearType"/>

x s d

 I can now use the new Figure 11.11 yearType in as
many element definitions as I’d like.

<year_built era="BC">
 282</year_built>
<year_destroyed era="BC">
 226</year_destroyed>

x m l

 Here is a valid XML instance based on Figure 11.12
the Schema in Figure 11.10. Notice that I am able to
use the one named complex type yearType for both the
year_built and year_destroyed elements.

142

Chapter 11

De
fin

in
g

Co
m

pl
ex

 Ty
pe

s T
ha

t C
on

ta
in

 C
hi

ld
 E

lem
en

ts

<xs:element name="ancient_wonders">

 <xs:complexType>

 <xs:complexContent>

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:element name="wonder"
 type="wonderType"/>

 </xs:sequence>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

</xs:element>

x s d

 Figure 11.13 Here is an anonymous complex type
definition that contains a sequence of one child
element called wonder, defined to be of the type
wonderType. (Notice that this complex type element
is derived from complex content that restricts anyType
which is the default condition for complex types.)

<xs:element name="ancient_wonders">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="wonder"
 type="wonderType"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

x s d

 Figure 11.14 Here is another complex type defini-
tion for the ancient_wonders element. I have omitted
the default condition elements: <xs:complexContent>
and <xs:restriction base=”xs:anyType”>. Because
these are default conditions, this XML Schema excerpt
defines the exact same XML element as shown in
Figure 11.13, and is the way complex type elements
will almost always be written.

 Defi ning Complex Types That
Contain Child Elements
One of the most common complex types is
one that contains child elements. This complex
type can also contain attributes, but it cannot
contain a value of its own. It’s described (even
with attributes) as “element only.”

To defi ne an “element only”
complex type:
1. Type <xs:complexType.
2. Then, type name="complex_type_name">,

where complex_type_name identifies your
new complex type.

3. Next, you’ll define the structure and
order of the child elements of this par-
ent element. You’ll declare a sequence, an
unordered list, or a choice; each of which is
discussed on the next three pages.

4. Then, declare the attributes (see page 154)
that should appear in this complex type
element, if any.

5. Finally, type </xs:complexType> to com-
plete the “element only” complex type
definition (Figure 11.13).

✔ Tips
■ As discussed on page 139, the default con-

dition for complex types is that they derive
from xs:complexContent that restricts
xs:anyType. Because of this, you can omit
these XML Schema element declarations
(Figure 11.14).

■ The child elements of a complex type are
referred to as its content model.

■ The content model of a complex type must
either be a sequence, an unordered list, or
a choice. These are called model groups, and
they indicate the structure and order of
child elements within their parent.

143

Defining Complex Types

Requiring Child Elem
ents to Appear in Sequence

<xs:complexType name="wonderType">

 <xs:sequence>

 <xs:element name="name"
 type="nameType"/>

 <xs:element name="location"
 type="xs:string"/>

 <xs:element name="height"
 type="heightType"/>

 <xs:element name="history"
 type="historyType"/>

 <xs:element name="main_image"
 type="imageType"/>

 <xs:element name="source"
 type="sourceType"/>

 </xs:sequence>

</xs:complexType>

x s d

 Figure 11.15 This XML Schema excerpt defines a
complex type named wonderType. Now, any XML
element defined with the type wonderType will have
to contain the child elements name, location, height,
history, main_image, and source, in order. In fact,
in Figure 11.14, the wonder element is defined with
the wonderType complex type. It is not at all uncom-
mon for one complex type to have child elements that
are also complex type elements.

 Requiring Child Elements to
Appear in Sequence
If you want a complex type element to contain
child elements, in order, you have to define a
sequence of those elements (Figure 11.15).

To require child elements to appear
in sequence:
1. Type <xs:sequence.
2. If desired, specify how many times the

sequence of elements itself can appear by
setting the minOccurs and maxOccurs
attributes, as described on page 151.

3. Then, type > to complete the opening tag.
4. Declare the simple type elements and/or

complex type elements you want in the
sequence, in the order in which they
should appear.

5. Finally, type </xs:sequence> to complete
the model group.

✔ Tips
■ A sequence defines the order in which its

child elements must appear in an XML
document.

■ Since an XML element may only have one
child, it’s perfectly legitimate for a sequence
to contain only one element.

■ A sequence can also contain other
sequences, choices (see page 145), or refer-
ences to named groups (see page 152).

■ A sequence may be contained in a complex
type definition, other sequences, a set of
choices (see page 145), or in named group
definitions (see page 152).

■ The <xs:sequence> element is basically
equivalent to the comma (,) in DTDs.

144

Chapter 11

Al
lo

w
in

g
Ch

ild
 E

lem
en

ts
 to

 A
pp

ea
r i

n
An

y
Or

de
r

 Allowing Child Elements to
Appear in Any Order
If you want a complex type element to contain
child elements in any order, you can list those
children with an all element (Figure 11.16).

To allow child elements to appear in
any order:
1. Type <xs:all to begin the unordered list of

elements.
2. Optionally, you can specify how many

times the unordered list itself can appear
by setting the minOccurs and maxOccurs
attributes, as described on page 151.

3. Then, type > to complete the opening tag.
4. Declare the simple type elements and/or

complex type elements that you want in
the unordered list.

5. Finally, type </xs:all> to complete the
model group.

✔ Tips
■ The members of an xs:all element

(despite its name) may appear once or
not at all (depending on their individual
minOccurs and maxOccurs attributes), in
any order.

■ The minOccurs attribute may only be set
to 0 or 1. The maxOccurs attribute may
only be set to 1 (see page 151).

■ An xs:all element can only contain indi-
vidual element declarations or references,
not other groups. In addition, no element
may appear more than once.

■ An xs:all element can only be contained
in, and must be the sole child of, an ele-
ment only complex type definition (see
page 142).

<xs:complexType name="historyType">

 <xs:all>

 <xs:element name="year_built"
 type="yearType"/>

 <xs:element name="year_destroyed"
 type="yearType"/>

 <xs:element name="how_destroyed"
 type="destrType"/>

 <xs:element name="story"
 type="storyType"/>

 </xs:all>

</xs:complexType>

x s d

 Figure 11.16 Here, I am defining the complex type
historyType using xs:all. This means that any XML
element defined using the historyType will be valid
if it contains the year_built, year_destroyed, how_
destroyed, and story elements in any order.

<history>
 <year_built era="BC">
 282</year_built>
 <story>In 294 BC, the people of the
 island of Rhodes began building a
 colossal statue ...</story>
 <year_destroyed era="BC">
 226</year_destroyed>
 <how_destroyed>
 earthquake</how_destroyed>
</history>

x m l

<history>
<story>In 294 BC, the people of the
 island of Rhodes began building a
 colossal statue ...</story>
 <year_built era="BC">
 282</year_built>
<how_destroyed>
 earthquake</how_destroyed>
 <year_destroyed era="BC">
 226</year_destroyed>
</history>

x m l

 In these XML excerpts, both Figure 11.17 history
elements are valid based on the XML Schema in
Figure 11.16, since the order of its child elements is
unimportant.

145

Defining Complex Types

Creating a Set of Choices

 Creating a Set of Choices
It’s sometimes useful to declare a complex type
element so that it can contain one child ele-
ment (or a group of child elements) or another.
You do that by creating a choice model group
(Figure 11.18).

To offer a choice of child elements:
1. Type <xs:choice.
2. Optionally, you can specify how many

times the set of choices itself can appear
by setting the minOccurs and maxOccurs
attributes, as described on page 151.

3. Then, type > to complete the opening tag.
4. Declare the simple type elements and/or

complex type elements that you want to
make up the set of choices.

5. Finally, type </xs:choice> to complete the
model group.

✔ Tips
■ The default minOccurs and maxOccurs

attribute values are both 1. With these
defaults, only one of the elements in a
set of choices can appear in a valid XML
document. If the value of the maxOccurs
attribute is greater than 1, that value
determines how many of the choices may
appear. Using maxOccurs=”unbounded” is
equivalent to adding an asterisk (*) to a set
of choices in a DTD (see Chapter 5).

■ A set of choices can also contain sequences
(see page 143), additional choice sets, or
references to named groups (see page 152).

■ A set of choices may be contained in a
complex type definition, in sequences (see
page 143), in other sets of choices, or in
named group definitions (see page 152).

■ The <xs:choice> element is basically
equivalent to the vertical bars in DTDs.

<xs:complexType name="wonderType">
 <xs:sequence>
 <xs:element name="name"
 type="nameType"/>
 <xs:choice>
 <xs:element name="location"
 type="xs:string"/>

 <xs:sequence>
 <xs:element name="city"
 type="xs:string"/>
 <xs:element name="country"
 type="xs:string"/>
 </xs:sequence>

 </xs:choice>
...
 </xs:sequence>
</xs:complexType>

x s d

 If the information for the ancient Figure 11.18
wonders came from different sources, each having a
different structure, I could use a set of choices to sup-
port this. In this XML Schema excerpt, I replace the
location element with a choice model group, allowing
a single location element, or a set of two elements, city
and country.

<wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <location>Rhodes, Greece</location>
...
</wonder>

x m l

<wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <city>Rhodes</city>
 <country>Greece</country>
...
</wonder>

x m l

 Based on the XML Schema excerpt Figure 11.19
in Figure 11.18, both of these wonder elements are
valid. In the top XML excerpt, the location field is
present. In the bottom excerpt, instead of a location
field, there is a sequence consisting of a city and
country element.

146

Chapter 11

De
fin

in
g

Ele
m

en
ts

 to
 C

on
ta

in
 O

nl
y

Te
xt

 Defi ning Elements to Contain
Only Text
Another common complex type element is
called “text only.” It contains a text value and
no child elements. This complex type name is
a little misleading, however, in that it can (and
often will), also have one or more attributes.

To defi ne a “text only” complex
type:
1. Type <xs:complexType.
2. Then, type name="complex_type_name">,

where complex_type_name identifies your
new complex type.

3. Type <xs:simpleContent>.
4. Next, type <xs:extension to use a simple

type for the text value of the element.
 Or type <xs:restriction to limit the base

simple type with additional facets.
5. Then, type base="foundation">, where

foundation indicates the simple type on
which you’re basing the new complex
type element.

6. If you chose xs:restriction in Step 4,
declare the additional facets (see Chapter
10) that should limit the simple content in
this complex type definition.

7. Next, declare the attributes (see page 154)
that should appear in this complex type
element, if any.

8. Then, type </xs:extension> or
</xs:restriction> to match Step 4.

9. Type </xs:simpleContent>.
10. Finally, type </xs:complexType> to

complete the complex type definition
(Figure 11.20).

<xs:complexType name="yearType">

 <xs:simpleContent>

 <xs:extension base=
 "xs:positiveInteger">

 <xs:attribute name="era"
type="xs:string"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

x s d

 Figure 11.20 This is a “text only” complex type
definition. This indicates that any XML elements
defined using the yearType type must contain a posi-
tive integer, but no child elements. They will also have
an attribute named era which contains a string value.
For more details on attributes, see page 154.

<year_built era="BC">
 282</year_built>

x m l

 This Figure 11.21 year_built element is valid,
based on the complex type definition in Figure
11.20, because it contains an integer and has an era
attribute.

<year_built era="BC">
 long ago</year_built>

x m l

 This Figure 11.22 year_built element, however,
is invalid, because “long ago” is not an integer. The
yearType complex type requires that the element’s
value be an xs:positiveInteger, specified by the base
simple type from which the complex type was extended.

147

Defining Complex Types

Defining Em
pty Elem

ents

 Defi ning Empty Elements
Elements that can contain attributes, but have
no content between the opening and closing
tags are called “empty elements.” Since these
are complex type elements, they can (and often
do), have one or more attributes.

To defi ne an “empty element”
complex type:
1. Type <xs:complexType.
2. Then, type name="complex_type_name">,

where complex_type_name identifies your
new complex type.

3. Next, declare the attributes (see page 154)
that should appear in this complex type
element, if any.

4. Finally, type </xs:complexType> to
complete the complex type definition
(Figure 11.23).

✔ Tip
■ As discussed on page 139, the default con-

dition for complex types is that they derive
from xs:complexContent that restricts
xs:anyType. Because of this, you can omit
these XML Schema element declarations
(Figure 11.24).

<xs:complexType name="sourceType">

 <xs:attribute name="sectionid"
 type="xs:positiveInteger"/>

 <xs:attribute name="newspaperid"
 type="xs:positiveInteger"/>

</xs:complexType>

x s d

 Figure 11.23 This complex type definition defines the
sourceType complex type. It is an empty element that
contains two attributes, sectionid and newspaperid.

<xs:complexType name="sourceType">

 <xs:complexContent>

 <xs:restriction base="xs:anyType">

 <xs:attribute name="sectionid"
 type="xs:positiveInteger"/>

 <xs:attribute name="newspaperid"
 type="xs:positiveInteger"/>

 </xs:restriction>

 </xs:complexContent>

</xs:complexType>

x s d

 Figure 11.24 Here is another complex type defini-
tion for the sourceType complex type. In this excerpt,
I have added back in the default condition elements
(derived from complex content that restricts anyType).
While it defines the exact same complex type as shown
in Figure 11.23, it is much more cumbersome and is
not written this way in practice.

<source sectionid="101"
 newspaperid="21"/>

x m l

 This Figure 11.25 source element is valid based on
the XML Schema shown in either Figure 11.23 or
Figure 11.24.

148

Chapter 11

De
fin

in
g

Ele
m

en
ts

 w
ith

 M
ix

ed
 C

on
te

nt

Defi ning Elements with Mixed
Content
While pure database-driven content rarely has
elements that contain both child elements and
text, more text-centered documents wouldn’t
find it strange at all. A complex type that sup-
ports this is called “mixed content.” When
creating this complex type, you must declare
that the content will be mixed (Figure 11.26).

To create a “mixed content”
complex type:
1. Type <xs:complexType.
2. Then, type name="complex_type_name",

where complex_type_name identifies your
new complex type.

3. Next, type mixed="true"> to indicate that
the element can contain elements and text,
(and may even contain attributes as well).

4. Declare a sequence (see page 143), an unor-
dered list (see page 144), or a choice (see
page 145) to specify the child elements and
structure within the complex type.

5. Then, declare the attributes (see page 154)
that should appear in this complex type
element, if any.

6. Finally, type </xs:complexType> to com-
plete the complex type definition.

✔ Tips
■ Mixed content elements are ideal for

descriptive, text-based chunks of infor-
mation. They are not very common in
database-type applications.

■ As discussed on page 139, the default con-
dition for complex types is that they derive
from xs:complexContent that restricts
xs:anyType. Because of this, I have omit-
ted these XML Schema elements.

<xs:complexType name="story"
 mixed="true">

 <xs:sequence>

 <xs:element name="para"
 maxOccurs="unbounded">
 <xs:complexType/>
 </xs:element>

 </xs:sequence>

</xs:complexType>

x s d

 By setting the Figure 11.26 mixed attribute
to true, the story element can contain both text
and child elements. Notice that the para element
is an empty complex type element with no attri-
butes (see page 147). The XML Schema attribute
maxOccurs="unbounded" means that there can be
an unlimited number of para elements within the
story element.

<story>
 In 294 BC, the people of the island
 of Rhodes began building a colossal
 statue of the sun god Helios. They
 believed that it was because of his
 blessings that they were able to
 withstand a long siege on the
 island and emerge victorious.
 <para/>
 The Colossus was built with bronze,
 reinforced with iron, and weighted
 with stones. While it is often
 depicted straddling Mandrákion
 harbor, this is now considered
 technically impossible; and
 therefore, it likely stood beside
 the harbor.
 <para/>
 The statue was toppled by an
 earthquake in 226 BC. ...
</story>

x m l

 This valid XML Figure 11.27 story element con-
tains both loose text and para elements (bolded).

149

Defining Complex Types

Deriving Com
plex Types from

 Existing Com
plex Types

Deriving Complex Types from
Existing Complex Types
You can also create new complex types based
on existing complex types. The new complex
type begins with all the information from the
existing type (Figure 11.28), and then adds or
removes features.

To derive a new complex type from
an existing type:
1. Type <xs:complexType.
2. Then, type name="complex_type_name",

where complex_type_name identifies your
new complex type.

3. Type <xs:complexContent>.
4. Next, type <xs:extension to indicate that

features will be added to the existing com-
plex type (Figure 11.29).

 Or type <xs:restriction to indicate that
features will be removed from the existing
complex type (Figure 11.30).

5. Then, type base="existing_type">, where
existing_type identifies the name of the
existing type from which the new complex
type will be derived.

6. Declare the attributes (see page 154) that
should be part of the new complex type.

7. Type a matching closing tag for Step 4.
8. Type </xs:complexContent>.
9. Finally, type </xs:complexType> to com-

plete the complex type definition.

✔ Tips
■ New complex types derived using restric-

tions must be valid subsets of the existing
complex type. Some acceptable restric-
tions include setting default or fixed values
(Figure 11.30).

■ As this is an advanced topic, I have only
identified the basics here.

<xs:complexType name="historyType">
 <xs:sequence>
 <xs:element name="year_built"
 type="yearType"/>
 <xs:element name="year_destroyed"
 type="yearType" minOccurs="0"/>
 <xs:element name="how_destroyed"
 type="destrType" minOccurs="0"/>
 <xs:element name="story"
 type="storyType"/>
 </xs:sequence>
</xs:complexType>

x s d

 Figure 11.28 This historyType is the base complex
type that I’ll be using for the two examples below.

<xs:complexType name="newHistoryType">
 <xs:complexContent>
 <xs:extension base="historyType">
 <xs:sequence>
 <xs:element name="who_built"
 type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

x s d

 Here, I have derived a new complex Figure 11.29
type called newHistoryType as an extension of the
historyType shown in Figure 11.28. This new type
adds a who_built element to the end of the sequence
from the existing base complex type.

<xs:complexType name="newHistoryType">
 <xs:complexContent>
 <xs:restriction base="historyType">
 <xs:sequence>
 <xs:element name="year_built"
 type="yearType"/>
 <xs:element name="year_destroyed"
 type="yearType"/>
 <xs:element name="how_destroyed"
 type="destrType" fixed="fire"/>
 <xs:element name="story"
 type="storyType"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

x s d

 When deriving a new complex type Figure 11.30
using restriction, you duplicate the base type and then
refine it. Here, I have set a fixed value of “fire” for the
how_destroyed element.

150

Chapter 11

Re
fe

re
nc

in
g

Gl
ob

al
ly

 D
ef

in
ed

 E
lem

en
ts

Referencing Globally Defi ned
Elements
In an XML Schema document, elements
defined as children of the xs:schema root ele-
ment are said to be defined globally. Named
complex types are an example of an element
that is globally defined.

You can also globally define an individual ele-
ment (Figure 11.31). Once defined, in order
for this element to be used in the XML Schema
document, it must be called or referenced.

To reference a globally defi ned
element:
1. In the sequence (see page 143), unordered

list (see page 144), or set of choices (see page
145) in which the element should appear,
type <xs:element.

2. Then, type ref="label", where label is the
name of the globally defined element.

3. If desired, specify how many times the
element can appear at this point using
minOccurs or maxOccurs (see page 151).

4. Finally, type /> to complete the global ele-
ment reference (Figure 11.32).

✔ Tips
■ You can reference a globally declared ele-

ment in your XML Schema as many
times as you like. As well, each reference
may contain its own distinct values for
minOccurs and maxOccurs.

■ Locally declared elements are automati-
cally referenced by the parent definition in
which they appear. They cannot be refer-
enced anywhere else.

■ For more information about local and
global declarations, consult Local and
Global Definitions on page 159.

<xs:schema xmlns:xs="http://
 www.w3.org/2001/XMLSchema">

 <xs:element name="name">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="language"
 type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

x s d

 Figure 11.31This name element, which is a child of
the xs:schema element, is considered globally defined.
As such, it can be referenced within any complex type
definition, as shown below.

<xs:complexType name="wonderType">
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element name="location"
 type="xs:string"/>
 <xs:element name="height"
 type="heightType"/>
...

x s d

 Figure 11.32 In this complex type definition for the
wonderType, I reference the globally defined name
element shown in Figure 11.31.

<wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>
...

x m l

 This is a valid XML excerpt, based Figure 11.33
on the XML Schema in Figures 11.31 and 11.32. It
shows a wonder element with a valid name element.

151

Defining Complex Types

Controlling How
 M

any

 Controlling How Many
Using XML Schema, you can control how
many times a given element, sequence, unor-
dered list, or set of choices can appear in a valid
XML document (Figures 11.34 and 11.35).

To specify the minimum number of
occurrences:
◆ In the opening tag, type minOccurs="n",

where n indicates the fewest number of
times the element, sequence, unordered
list, or set of choices may occur for the
XML document to be considered valid.

To specify the maximum number of
occurrences:
◆ In the opening tag, type maxOccurs="n",

where n indicates the maximum number
of times the element, sequence, unordered
list, or set of choices may occur for the
XML document to be considered valid.

✔ Tips
■ The default value for both minOccurs and

maxOccurs is 1. In other words, unless
specified by either of these occurrence attri-
butes, an element must appear exactly one
time in a valid XML document.

■ The minOccurs attribute must be a non-
negative integer (0, 1, 2, 3, or higher).

■ The maxOccurs attribute can be any non-
negative integer, or the word unbounded
to indicate that the element can appear any
number of times.

■ The minOccurs and maxOccurs attributes
cannot be used when defining an element
globally. They only make sense with local
references to global elements, or locally
defined elements.

■ When using the xs:all element (see page
144), you can only set minOccurs to 0 or
1, and maxOccurs can only be set to 1.

<xs:complexType name="wonderType">
 <xs:sequence>
...
 <xs:element name="contributor">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

x s d

 I added a new Figure 11.34 contributor element to
wonderType. It has one child element called name,
defined using a reference to the globally defined name
element shown in Figure 11.31. In a valid XML doc-
ument, the contributor element can have from zero to
an infinite number of name child elements.

<xs:element name="contributor">
 <xs:complexType>
 <xs:choice minOccurs="1"
 maxOccurs="4">
 <xs:element ref="name"/>
 <xs:element name="organization"
 type="xs:string"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

x s d

 The Figure 11.35 minOccurs and maxOccurs
attributes can also be applied to sequences, unordered
lists, or sets of choices. In this excerpt, between 1 and
4 elements of this set of choices are allowed. That is,
there can only be between one and four contributor
child elements, made up of any number of name
and/or organization elements.

152

Chapter 11

De
fin

in
g

Na
m

ed
 M

od
el

Gr
ou

ps

<xs:group name="image_element">
 <xs:sequence>

 <xs:element name="image">
 <xs:complexType>
 <xs:attribute name="file"
 type="xs:anyURI"/>
 <xs:attribute name="w"
 type="xs:positiveInteger"/>
 <xs:attribute name="h"
 type="xs:positiveInteger"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="source"
 type="xs:string"/>

 </xs:sequence>
</xs:group>

x s d

 Figure 11.36 This named model group image_
element has an image element, which is an empty
complex type with attributes, and another child ele-
ment called source, which takes a string value.

 Defi ning Named Model Groups
If a collection of elements appears together in
several places in your XML document, you can
group the elements together to make it easier to
refer to them all at once.

In other words, in the same way that you can
create a globally defined element and refer to it
throughout your XML Schema, you can name
a model group (sequence, unordered list, or
choice), and refer to the group throughout your
XML Schema.

To defi ne a named model group:
1. Type <xs:group.
2. Then, type name="model_group_name",

where model_group_name identifies your
group of elements.

3. Next, type > to complete the opening
group tag.

4. Declare sequences (see page 143), unor-
dered lists (see page 144), and/or sets of
choices (see page 145) that will make up the
named model group.

5. Finally, type </xs:group> to complete the
definition of the group (Figure 11.36).

✔ Tips
■ Like globally defined elements, a named

model group may only be defined at the
top-level of a schema (a child element of
xs:schema). And, like globally defined ele-
ments, it may be referenced as many times
as you would like (see page 153).

■ A named model group is analogous to a
parameter entity in DTDs (see Chapter 7).

153

Defining Complex Types

Referencing a Nam
ed M

odel Group

<xs:element name="main_image">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="image_element" />
 <xs:element name="caption"
 type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="thumbnail_image">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="image_element" />
 <xs:element name="frame_border"
 type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

x s d

 Both the Figure 11.37 main_image and the
thumbnail_image elements are now defined by the
image_element named model group defined in Figure
11.36. They each can also have additional, individual
elements, caption and frame_border, respectively.

<main_image>
 <image file="colossus.jpg"
 w="528" h="349" />
 <source>
 Greek Historical Archives</source>
 <caption>Part of a series of the
 Seven Wonders of the World,
 engraved by Marten Heemskerk.
 </caption>
</main_image>

<thumbnail_image>
 <image file="colossus_tn.jpg"
 w="80" h="120" />
 <source>
 Greek Historical Archives</source>
 <frame_border>Blue</frame_border>
</thumbnail_image>

x m l

 In this valid XML excerpt, based on Figure 11.38
the XML Schema in Figures 11.36 and 11.37,
main_image and thumbnail_image have the ele-
ments defined in the named model group. As well,
each also has its own individual elements.

 Referencing a Named Model
Group
Once you’ve created a named model group, you
can reference it in as many complex type defini-
tions as you’d like (Figure 11.37). You can
even reference it in other groups.

To reference a named model group:
1. In the part of your schema where you want

the elements in the group to appear, type
<xs:group.

2. Then, type ref="model_group_name",
where model_group_name identifies the
group you created in Step 2 on the
preceding page.

3. Finally, type /> to complete the reference.

✔ Tip
■ You can reference a group in a complex

type definition (see page 142), a sequence
(see page 143), an unordered list (see page
144), a set of choices (see page 145), or in
other named groups (see page 152).

154

Chapter 11

De
fin

in
g

At
tri

bu
te

s

<xs:complexType name="sourceType">

 <xs:attribute name="sectionid"
 type="xs:positiveInteger"/>

 <xs:attribute name="newspaperid">
 <xs:simpleType>
 <xs:restriction
 base="xs:positiveInteger">
 <xs:pattern value="\d{4}"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

</xs:complexType>

x s d

 In this excerpt, the Figure 11.39 sectionid element is
declared with the base simple type xs:positiveInteger.
The newspaperid element is declared with an
anonymous simple type definition using pattern facet
restriction allowing exactly 4 digits.

<source sectionid="101"
 newspaperid="21"/>

x m l

 Based on the XML Schema in Figure 11.40
Figure 11.39, this XML excerpt is invalid. While
sectionid and newspaperid are both positive integers,
newspaperid is now required to be exactly 4 digits.

 Defi ning Attributes
Attributes are simple type elements since they
contain neither child elements nor attributes.
However, since they always appear within
complex type elements, they are discussed in
this chapter rather than in the previous.

To defi ne an attribute:
1. Within the definition of the complex type,

type <xs:attribute.
2. Then, type name="attribute_name", where

attribute_name is the name of the XML
attribute that you are defining.

Then, starting with Step 3, follow one of the
three tasks below.

To use a base or named simple type:
3. Type type="simple_type"/>, where

simple_type is the named or base type
of the attribute that you are defining
(Figure 11.39).

To use an anonymous simple type:
3. Type > to complete the opening tag.
4. Then, type <xs:simpleType>.

5. Add any restrictions (or facets) you like.
6. Next, type </xs:simpleType> to close the

simple type element.
7. Finally, type </xs:attribute> to close the

opening tag, see Figure 11.39.

To use a globally defi ned attribute:
3. Type ref="label"/>, where label identifies

an attribute definition that you’ve already
globally defined.

✔ Tip
■ Attributes must be defined at the very end

of the complex type to which they belong;
that is, after all the elements in the com-
plex type have been defined.

155

Defining Complex Types

Requiring an Attribute

<xs:complexType name="sourceType">

 <xs:attribute name="sectionid"
 type="xs:positiveInteger"
 use="required"/>

 <xs:attribute name="newspaperid">
 <xs:simpleType>
 <xs:restriction
 base="xs:positiveInteger">
 <xs:pattern value="\d{4}"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

</xs:complexType>

x s d

 Since the default condition is for an Figure 11.41
attribute to be optional, you must specifically indicate
that it be required.

<source sectionid="141"
 newspaperid="9999"/>

x m l

<source sectionid="2"/>

x m l

 Both of these Figure 11.42 source elements are valid
since only sectionid is required according to the XML
Schema in Figure 11.41. If an attribute is not explic-
itly required, it is considered optional.

 Requiring an Attribute
Unless you specify otherwise, an attribute is
always optional. In other words, it may appear
or be absent from a valid XML document.
However, if you’d prefer, you can insist that an
attribute be present (or not), when determining
if the XML document is valid.

To require that an attribute be
present:
1. Within an attribute definition, type

use="required" to indicate that the attri-
bute must appear for an XML document
to be considered valid (Figure 11.41).

2. You may also add value="must_be", where
must_be is the only acceptable value for the
attribute.

To require that an attribute not be
present:
◆ Within an attribute definition, type

use="prohibited" so that the XML docu-
ment will only be considered valid if the
attribute is not present.

✔ Tip
■ You could also type use="optional" within

an attribute definition, but since that’s the
default condition, it’s unnecessary.

156

Chapter 11

Pr
ed

ef
in

in
g

an
 A

ttr
ib

ut
e’

s C
on

te
nt

<xs:attribute name="sectionid"
 type="xs:positiveInteger"/>
<xs:attribute name="newspaperid"
 type="xs:positiveInteger"
 fixed="21"/>

x s d

 The Figure 11.43 newspaperid attribute, as long
as it appears in the XML document, must contain the
value “21.” The attribute may, however, be omitted.

<source sectionid="101"
 newspaperid="21"/>

x m l

<source sectionid="101"</source>

x m l

<source newspaperid="64"/>

x m l

 The first two XML excerpts are valid. Figure 11.44
In the first, newspaperid is equal to the fixed value.
In the second, newspaperid is omitted (and will
remain excluded). In the third, newspaperid is not
equal to the fixed value, and is therefore invalid.

<xs:attribute name="sectionid"
 type="xs:positiveInteger"/>
<xs:attribute name="newspaperid"
 type="xs:positiveInteger"
 default="21"/>

x s d

 The Figure 11.45 newspaperid attribute now has a
default value. This will be the initial value, whether
or not the attribute is in the XML document.

<source sectionid="101"
 newspaperid="21"/>

x m l

<source sectionid="101"/>

x m l

<source newspaperid="64"/>

x m l

 Here, all three XML excerpts are valid. Figure 11.46
In the second, the newspaperid attribute will be cre-
ated automatically and set to the default value.

Predefi ning an Attribute’s
Content
There are two ways to use XML Schema to
predefine what an attribute’s content should be.
You can either dictate the attribute’s content, or
set an initial value for the attribute regardless of
whether it appears or not. The former is called
a fixed value; the latter is called a default value.

To dictate an attribute’s content:
◆ Within an attribute definition, type

fixed="content", where content determines
what the value of the attribute should be
for the document to be considered valid
(Figure 11.43). (This only applies if the
attribute appears in the XML document.)

To set an attribute’s initial value:
◆ Within an attribute definition, type

default="content", where content deter-
mines the value the that attribute should
be set to if it is omitted from the XML
document (Figure 11.45).

✔ Tips
■ The fixed attribute only sets a value if

the attribute actually appears in the XML.
If the attribute is omitted, then no content
is set.

■ If the default attribute is set and the
attribute is omitted from the XML docu-
ment, then the attribute’s value is set to the
default value.

■ If you set the default attribute, the
only use attribute value you can have is
optional, see Requiring an Attribute on
page 155

■ You may not have values for both default
and fixed in the same attribute definition.

157

Defining Complex Types

Defining Attribute Groups

<xs:attributeGroup name="imageAttrs">

 <xs:attribute name="file"
 type="xs:anyURI" use="required"/>

 <xs:attribute name="w"
 type="xs:positiveInteger"
 use="required"/>

<xs:attribute name="h"
 type="xs:positiveInteger"
 use="required"/>

</xs:attributeGroup>

x s d

 By defining a group of attributes, Figure 11.47
it is easy to reuse those attributes in multiple XML
Schema element definitions (see Referencing Attribute
Groups on page 158).

 Defi ning Attribute Groups
If you need to use the same set of attributes in
several places in your XML document, it’s more
efficient to define an attribute group and then
refer to the attributes all at once.

This is the same concept you have seen used
with globally defined elements and named
model groups.

To define an attribute group:

1. Type <xs:attributeGroup.
2. Then, type name="attribute_group_

name">, where attribute_group_name
identifies your attribute group.

3. Define or reference each attribute that
belongs to the group (see page 154).

4. Finally, type </xs:attributeGroup> to
complete the attribute group definition
(Figure 11.47).

✔ Tips
■ Like all other globally defined elements,

an attribute group may only be defined at
the top-level of a schema (a child element
of xs:schema). And, like all other globally
defined elements, it may be referenced as
many times as you like (see page 158).

■ In Step 2 above, you can only reference
attributes that are globally defined; that is,
those that were declared at the top level of
the schema. For more details, see Local and
Global Definitions on page 159.

■ An attribute group can contain references
to other attribute groups.

158

Chapter 11

Re
fe

re
nc

in
g

At
tri

bu
te

 G
ro

up
s

<xs:complexType name="imageType">
 <xs:attributeGroup ref="imageAttrs"/>
</xs:complexType>

<xs:complexType name="videoType">
 <xs:attributeGroup ref="imageAttrs"/>
 <xs:attribute name="format"
 type="xs:string"/>
</xs:complexType>

x s d

 Using the Figure 11.48 imageAttrs attribute group
defined in Figure 11.47 on the previous page, I’ve
created two named complex types, imageType and
videoType. The imageType will be used for the
main_image element. The videoType will be used
to create a main_video element. Note that it has an
additional format attribute declared after the
attribute group.

<main_image file="colossus.jpg"
 w="528" h="349"/>

<main_video file="colossus.mov"
 w="320" h="240"
 format="quicktime"/>

x m l

 Both the Figure 11.49 main_image and main_
video elements share the file, as well as the w and h
attributes. The benefit of the attribute group is that all
three attributes were only defined once, but have been
used in more than one complex type definition.

 Referencing Attribute Groups
Once you’ve defined an attribute group, you
can reference it wherever those attributes are
needed; whether in complex type definitions or
even in other attribute groups (Figure 11.48).

To reference an attribute group:
1. Within a complex type definition, after

declaring any elements that should be
contained, type <xs:attributeGroup.

2. Then, type ref="attribute_group_name"/>,
to identify the attribute group that you
created in Step 2 on page 157.

✔ Tips
■ Attributes and attribute groups must be

defined at the very end of the complex type
to which they belong, after all other ele-
ments have been defined.

■ Attribute groups are analogous to param-
eter entities in DTDs (see Chapter 7).
However, they are limited to representing
only collections of attributes.

159

Defining Complex Types

Local and Global Definitions

<xs:element name="name">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="language"
 type="xs:string"
 use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

x s d

 The example shown in Figure 11.34 Figure 11.50
on page 151 works, in part, because the globally
defined name element does not require the language
attribute. However, if it did require the language
attribute, as shown here, all name elements that were
children of contributor would be invalid.

<xs:complexType name="wonderType">
 <xs:sequence>
 <xs:element name="name">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="language"
 type="xs:string"
 use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
...
 <xs:element name="contributor">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name"
 type="xs:string" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
...
</complexType>

x s d

 Considering the dilemma described in Figure 11.51
Figure 11.50, it would be better to have each of the
name elements defined locally; one for the wonder
element and one for the contributor element.

Local and Global Defi nitions
In XML Schema, elements can be defined
either locally or globally. A globally defined ele-
ment is defined as a child of the xs:schema
element. Since it is defined at the top-most
level of the schema, it’s scope (meaning where it
can be used) is anywhere in the entire schema.

Conversely, a locally defined element is defined
as the child of some other element. Since it is
defined as a child element, its scope is within its
parent element only.

Globally defined elements, like named custom
types, do not automatically become part of an
XML Schema. The definition only determines
what that element will look like. Global ele-
ments must be explicitly referenced in order to
actually appear in a valid XML document.

Locally defined elements, however, like anony-
mous custom types, automatically become part
of an XML document. Where they are defined
determines where in the XML document the
element must appear.

I have already shown the benefits of reus-
ing globally defined elements (see Referencing
Globally Defined Elements on page 150,
Referencing a Named Model Group on page 153,
and Referencing Attribute Groups on page 158).

On the flip side, one of the benefits of using
locally defined elements is that the element’s
scope is isolated. An isolated scope means
that the element’s name and definition cannot
conflict with other elements in the same XML
Schema using the same name. Which one to
choose is dependent on your need for reusabil-
ity, versus your need to isolate an element and
its definition (Figures 11.50 and 11.51).

✔ Tip
■ In a DTD, every element is declared glob-

ally; there is no such thing as a locally
defined element.

This page intentionally left blank

161

XML Namespaces 163
Using XML Namespaces 169

PART 5:
NAMESPACES

This page intentionally left blank

12

163

XM
L Nam

espaces

XML NAMESPACES
You’ve learned how to create XML documents,
transform, and display them, as well as define
the set of elements and attributes that they
can contain. Now, imagine that you want to
combine some of your XML documents with
someone else’s. In doing so, you find out that
they have used some of the same names for ele-
ments that you have. For example, the Wonders
of the World document uses the name element
to contain the name of each specific wonder,
while the other person uses the name element
to contain the name of an ancient civilization.
If I combine these XML documents, the source
element data will become unclear and effec-
tively meaningless.

The solution to this problem is to group the
element names from each XML document
into its own space. Then, when referring to a
particular element, it would be identified with
the space in which it resides. This format would
provide a way to distinguish elements in one
group of XML documents from the other. For
example, I could call my space “Kevin,” and
identify the elements in my XML documents
with that name. Now, the Kevin:name element
can’t be confused with the other name element.

This group of element names, is actually called
a namespace (one word), and the identifier I
used is called a namespace name. And, while it’s
fun to use “Kevin” as my namespace name, the
required format of a namespace name is a bit
more structured, as you’ll see in this chapter.

164

Chapter 12

De
sig

ni
ng

 a
 N

am
es

pa
ce

 N
am

e

http://www.domain.com/ns/wonders/1.0

Opening protocol Optional namespaces
directory information

Optional
version number

Your domain name

Short description of
this namespace

 A namespace name should be in the Figure 12.1
form of a URI. I recommend using a URL format.
The URL does not have to (and typically will not),
point to an actual file!

Designing a Namespace Name
Since the whole point of namespaces is to
distinguish elements with the same name
from each other, a namespace must have an
absolutely unique and permanent name. In
XML, namespace names are written in the
form of a URI (Uniform Resource Identifier).

To design a namespace name:
1. Start with your domain name.
2. Add descriptive information (as if it were a

path in a URI) to create a unique name for
your namespace (Figure 12.1).

✔ Tips
■ A URI is a string of characters that identi-

fies a resource. A URL (Uniform Resource
Locator) is the most common form of URI,
and I recommend using it for designing a
namespace name.

■ Using your own domain as the foundation
for your namespace name gives you the
ability to ensure that the name is unique.
No one else can use your domain name.

■ The only requirements for the URI are that
it be unique, and that it be persistent (prac-
tically permanent). I’d also recommend
it being consistent if you’re going to create
numerous namespaces.

■ You can also add version information to
your namespace, if desired.

■ There is a lot of confusion over what is
pointed to by the namespace name.
In fact, while the namespace name
may point to a DTD or XML Schema,
this is not common, nor is it required
in the W3C’s XML Namespaces
Recommendation. Furthermore, even if
the URI does point to a file, XML software
does not even look at it.

165

XML Namespaces

Declaring a Default Nam
espace

<ancient_wonders
 xmlns="http://
 www.kehogo.com/ns/wonders/1.0">

 <wonder>

 <name language="English">
 Colossus of Rhodes</name>

 <name language="Greek">
 Κολοσσός της Ρόδου</name>

 <location>Rhodes, Greece</location>

 <height units="feet">107</height>

x m l

 With this default namespace declara-Figure 12.2
tion, all the document’s elements are part of the http://
www.kehogo.com/ns/wonders/1.0 namespace.

<ancient_wonders
 xmlns="http://
 www.kehogo.com/ns/wonders/1.0">

 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>

 <civilization
 xmlns="http://www.kehogo.com/ns
 /ancient_civ/2.3">
 <name>Greece</name>
 <locale>Mediterranean Sea</locale>
 <period>750 BC - 146 BC</period>
 </civilization>

 <height units="feet">107</height>

x m l

 In this example, I have added a new Figure 12.3
civilization element, which is declared to be part of
the http://www.kehogo.com/ns/ancient_civ/2.3
namespace. Consequently, civilization, name,
historical_data and all other children of civilization
are part of its default namespace (the one for ancient
civilizations). By declaring this default namespace for
the civilization element, I have avoided the element
conflict between the “wonders of the world” name ele-
ment, and the “ancient civilization” name element.

Declaring a Default Namespace
Once you’ve designed a namespace name, you
can declare it as the default namespace for your
XML document (Figure 12.2).

To declare a default namespace for
your XML document:
1. Within the opening tag of the root ele-

ment, type xmlns=. (This is the attribute
for declaring an xml namespace.)

2. Then, type "URI", where URI identifies the
name of your namespace (see page 164).

✔ Tips
■ Declaring a default namespace for the

root element means that all the elements
in the document are considered to be from
that namespace.

■ You can declare a default namespace for
any element in your document, not just the
root element. To do so, you would follow
the steps above replacing the root element
with the element for which you want to
declare a default namespace. This will over-
ride the default namespace declared by any
ancestor element (Figure 12.3).

■ Labeling any element with a default
namespace affects not only that particular
element, but all of its children as well.

■ You can override a default namespace by
specifying a prefixed namespace for an
individual element, as described on pages
166–167. In this case, the child elements
are not affected.

■ In the case where a default namespace is
not declared for a particular element, nor
has it inherited a namespace from one
of its ancestors, it is considered “in no
namespace.” Elements in no namespace can
be assigned default namespaces, thereby
overriding the no namespace state.

http://www.kehogo.com/ns/wonders/1.0
http://www.kehogo.com/ns/wonders/1.0
http://www.kehogo.com/ns/ancient_civ/2.3

166

Chapter 12

De
cla

rin
g

a
Na

m
es

pa
ce

 N
am

e
Pr

ef
ix

<ancient_wonders
 xmlns="http://
 www.kehogo.com/ns/wonders/1.0"

 xmlns:anc_civ="http://
 www.kehogo.com/ns/ancient_civ/2.3">

 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>
 <anc_civ:civilization>
 <anc_civ:name>
 Greece</anc_civ:name>
 <anc_civ:locale>Mediterranean
 Sea</anc_civ:locale>
 <anc_civ:period>
 750 BC - 146 BC</anc_civ:period>
 </anc_civ:civilization>
 <height units="feet">107</height>

x m l

 Here, I am declaring the ancient civili-Figure 12.4
zation namespace in the document’s root element, and
assigning it a prefix of anc_civ. I can then use that
namespace prefix throughout the document to indicate
individual elements that belong to that namespace.

<ancient_wonders
 xmlns="http://www.kehogo.com/ns
 /wonders/1.0">

 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>

 <anc_civ:civilization
 xmlns:anc_civ="
 http://www.kehogo.com/ns
 /ancient_civ/2.3">

 <anc_civ:name>Greece ...

x m l

 In this example, the Figure 12.5 anc_civ namespace
prefix is not declared in the root element, but rather in
the anc_civ:civilization element. Consequently, it can
only be used for that element and its children.

Declaring a Namespace Name
Prefi x
Declaring a default namespace for an element
applies to all that element’s children. You can
also choose to label specific individual elements
in your document with a namespace, and not
affect those elements’ children. To do so, you
can declare a special nickname, or prefix, for the
namespace, and then use that prefix to label the
individual elements specifically.

To declare a prefi x for a namespace
name:
1. In the document’s root element, type

xmlns:prefix, where prefix will be the nick-
name for this namespace.

2. Then, type ="URI", where URI identifies
the name of the namespace to which the
prefix will refer (Figure 12.4).

✔ Tips
■ Prefixes may not begin with the letters

xml, in any combination of upper or
lowercase.

■ You may use a prefix in any element con-
tained wherein you declared the prefix,
including the containing element itself.
That is, if you declare a prefix in the root
element, you can use the prefix in any ele-
ment in the document, including in the
root element itself. If you declare the
prefix in an element other than the root
element, it can only be used in that ele-
ment and/or in that element’s descendants
(Figure 12.5).

■ You can declare as many namespace pre-
fixes as necessary in any element.

167

XML Namespaces

Labeling Elem
ents w

ith a Nam
espace Prefix

<ancient_wonders
 xmlns="http://www.kehogo.com/ns
 /wonders/1.0"

 xmlns:anc_civ="
 http://www.kehogo.com/ns
 /ancient_civ/2.3">

 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>
 <anc_civ:locale>
 Mediterranean Sea</anc_civ:locale>
 <anc_civ:period>
 750 BC - 146 BC</anc_civ:period>
 <height units="feet">107</height>
 <history>
 <year_built era="BC">
 282</year_built>
 <year_destroyed era="BC">
 226</year_destroyed>
 <how_destroyed>earthquake
 </how_destroyed>
 <anc_civ:gods>
 <anc_civ:god>
 Helios</anc_civ:god>
 <anc_civ:domain>
 Sun</anc_civ:domain>
 </anc_civ:gods>
 <story>
 In 294 BC, the people of the
 island of Rhodes began building
 a colossal statue of the sun god
 Helios. They believed that it
 was because of his blessings ...

x m l

 Each element in the ancient civilization Figure 12.6
namespace is preceded by its prefix anc_civ:, to show
that it belongs to that namespace. While typing anc_
civ: a bunch of times is a little cumbersome, typing
http://www.kehogo.com/ns/ancient_civ/2.3 would
be even worse.

Labeling Elements with a
Namespace Prefi x
Once you’ve declared a prefix for a namespace
name, you can use that prefix to label indi-
vidual elements. In this way, you can assign
these elements to different namespaces in your
XML, without affecting the siblings or children
of those elements (Figure 12.6).

To label individual elements with
different namespaces:
1. Type < to begin the element.
2. Then, type prefix:, where prefix indicates

the namespace to which this element
belongs, as declared on the previous page.

3. Next, type element, where element is the
name of the element you wish to use.

4. Finally, complete the element as usual. (See
Chapter 1, Writing XML, for details.)

✔ Tips
■ Only those elements whose names are pre-

ceded with a prefix are identified with the
namespace declared with that prefix. This
is different than default namespaces, where
the element and all of its children are identi-
fied with the namespace.

■ The XML processor considers unpre-
fixed elements to belong to the default
namespace (see page 165), if there is one, or
to no namespace, if there’s not.

■ An XML processor considers the prefix
part of the element’s name. Therefore, the
closing tag must match the opening tag.
So, if you’ve typed <anc_civ:locale> as an
element’s opening tag, you would use
</anc_civ:locale> for its closing tag.

■ If you’re using a lot of elements from a
given namespace in one section, it’s easier
to declare a default namespace for that sec-
tion (see page 165).

http://www.kehogo.com/ns/ancient_civ/2.3

168

Chapter 12

Ho
w

 N
am

es
pa

ce
s A

ffe
ct

At
tri

bu
te

s

<source sectionid="101"
 newspaperid="21"/>

<map sectionid="a942"/>

x m l

 Even though Figure 12.7 source and map both have
sectionid attributes, they don’t overlap in the same
way that identically named elements do.

<main_image file="colossus.jpg"
 w="528" h="349"/>

x m l

<main_image file="local"/>

x m l

<main_image anc_civ:file="local"
 wow:file="colossus.jpg"
 w="528" h="349"/>

x m l

 In this example, the first two elements Figure 12.8
are main_image elements each containing a file attri-
bute. The first is from the wow: namespace and the
second is from the anc_civ: namespace. In the third
XML file excerpt, I combined these two main_image
elements into a single element by creating unique file
attributes using their respective namespace prefixes.

How Namespaces Affect
Attributes
While you could associate an attribute with
a specific namespace by prefixing it with the
appropriate prefix, it’s almost never necessary.
Attributes are already made unique by the ele-
ment that contains them.

For example, when you see the sectionid
attribute within the source element, you know
that it belongs to the source element, and
therefore, its namespace. There is no confusion.
If there were another sectionid attribute,
say, in a map element, you’d recognize that
sectionid attribute as belonging to the map
element, without any other necessary clues.
This is simply because it is physically contained
within the map element (Figure 12.7).

If an attribute has no prefix, which they
rarely do, then it is considered to be “in no
namespace” (because default namespaces do not
apply to attributes). So, in this case, the attri-
bute is locally scoped, which is a fancy way of
saying that it is identified by the namespace of
the element that contains it.

Although quite uncommon, there are cases
where you would need to associate an attribute
with a specific namespace, by prepending it
with the appropriate prefix. Imagine that you
need to combine two elements from different
namespaces into a single element, and both
have an attribute with the same name. In this
case, you would need to differentiate each
attribute, since a single element cannot have
multiple attributes with the same name. By
prefixing each attribute with the their respec-
tive namespace prefix, you would be creating
unique attributes, because an XML processor
considers the prefix part of an attribute’s name
(Figure 12.8).

13

169

Using XM
L Nam

espaces

USING XML NAMESPACES
As you saw in the previous chapter, a namespace
is a collection of related elements and attri-
butes, identified by a namespace name. This
namespace name must be unique, and is often
referred to by its abbreviated name or prefix.

Namespaces are most often used to distinguish
identically named elements from one another.
Specifically, namespaces help to distinguish
global elements that are identically named,
since local elements and attributes are generally
made unique by their context.

This combination of namespace name plus
an element name is called an expanded name.
Because a namespace name must be unique, the
expanded name will also be unique. (Note: This
combination is also referred to as a universal
name, qualified name, or QName.)

Up until this part of the book, all the XML,
XSL, DTD, and XML Schema documents have
been “in no namespace.” Now, with the intro-
duction of namespaces in the XML documents,
the relationship between the XML documents
and these companion technologies will change.

In this chapter, I’ll discuss some of the impor-
tant details about how to use XML documents
and XML namespaces with these languages.

170

Chapter 13

Po
pu

la
tin

g
an

 X
M

L N
am

es
pa

ce

<?xml version="1.0"?>

<xs:schema xmlns:xs=
 "http://www.w3.org/2001/XMLSchema"

 targetNamespace=
 "http://www.kehogo.com/ns/wow/1.0">

 <xs:element name="ancient_wonders">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="wonder"
 type="wonderType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="wonderType">
 <xs:sequence>
 <xs:element name="name"
 type="nameType"
 maxOccurs="unbounded"/>
 <xs:element name="location"
 type="xs:string"/>
 <xs:element name="height"
 type="heightType"/>
 <xs:element name="history"
 type="historyType"/>
 <xs:element name="main_image"
 type="imageType"/>
 <xs:element name="source"
 type="sourceType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

x s d

 In this example, the Figure 13.1 ancient_wonders
element and the wonderType complex type are now
identified with the http://www.kehogo.com/ns/
wow/1.0 namespace. The wonder, name, location,
height, history, main_image, and source elements
are not identified with the namespace since they are
not globally defined elements.

Populating an XML Namespace
You saw in Part 4 of the book that XML
Schemas specify the elements and attributes of
which valid XML documents are composed.
As it turns out, XML Schemas can also specify
the elements and attributes contained in an
XML namespace.

You don’t have to do anything special in the
way element and attributes are defined; you
can simply follow the instructions in Chapters
10 and 11. You do, however, have to specify
the target namespace to which the elements and
attributes will belong. This process of specify-
ing the elements and attributes for a target
namespace is called populating the namespace.

To populate a namespace:
◆ In the root element of your XML Schema,

type targetNamespace="URI", where URI
is the namespace name being populated
(Figure 13.1).

✔ Tips
■ When populating a namespace, only

the globally defined (top-level) elements
and attributes are associated with the
namespace. Remember, a globally defined
element or attribute is a child of the
xs:schema element, and could actually be
an element, an attribute, a complex or sim-
ple type definition, a named model group,
or a named attribute group.

■ This does not mean that you cannot use or
validate locally defined elements, such as
the wonder, name or location elements in
Figure 13.1. When you validate an XML
document against the XML Schema shown
in the figure, it will make sure that all the
locally defined elements are not associated
with a namespace.

http://www.kehogo.com/ns/wow/1.0
http://www.kehogo.com/ns/wow/1.0

171

Using XML Namespaces

XM
L Schem

as, XM
L Docum

ents, and Nam
espaces

<?xml version="1.0"?>

<ancient_wonders
 xmlns="http://
 www.kehogo.com/ns/wow/1.0"

 xmlns:xsi="http://
 www.w3.org/2001/
 XMLSchema-instance"

 xsi:schemaLocation="http://
 www.kehogo.com/ns/wow/1.0

 13-01.xsd">

 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>
 <history> ...

x m l

 The first highlighted line declares Figure 13.2
the namespace for the XML document. The second
declares the namespace for the xsi-prefixed items. The
third indicates the namespace, and then the actual file
with which that namespace was populated.

XML Schemas, XML Documents,
and Namespaces
Now that your XML Schema has populated
a namespace, you need to adjust the relation-
ship between the XML Schema and your XML
document. You’ve already seen how to indicate
an XML Schema’s location in an XML docu-
ment when there is no namespace involved (see
page 117). Specifying the location of an XML
Schema that has populated a namespace is
pretty similar (Figure 13.2).

To indicate the location of an XML
Schema and the namespace it
populated:
1. In the root element of the XML docu-

ment, after the declaration of the XML
Schema-populated namespace, type
xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance". This declaration
allows you to define the location of your
XML Schema in the next three steps.

2. Then, type xsi:schemaLocation="URI,
where URI is the namespace name just
populated by your XML Schema docu-
ment. (Notice, in this step, there’s no
closing double quotation mark.)

3. Next, type a space (or a return, if you pre-
fer), to separate the namespace name and
the XML Schema’s location.

4. Finally, type schema.uri">, where
schema.uri is the location of your XML
Schema document. (Notice, in this step,
there’s no opening double quotation mark.)

✔ Tips
■ If you need multiple namespaces and

XML Schema documents, you can repeat
Steps 2–4 as many times as needed.

■ As an aside, in Step 1 above you are defin-
ing another namespace for your XML
document. It has a prefix of xsi:, and
defines the attribute being set in Steps 2–4.

Why Is This Not Yet Valid?
Although the examples on these two
pages have followed the outlined steps,
the XML document is not yet valid. This
is because the wonder_type complex
type definition (and others) is part of
the namespace populated by the XML
Schema, but the reference to this com-
plex type, as seen in Figure 13.1, does
not use the namespace itself. Referencing
a complex type using a namespace is dis-
cussed on page 172.

172

Chapter 13

Re
fe

re
nc

in
g

XM
L S

ch
em

a
Co

m
po

ne
nt

s i
n

Na
m

es
pa

ce
s

<?xml version="1.0"?>

<xs:schema xmlns:xs=
 "http://www.w3.org/2001/XMLSchema"

 xmlns=
 "http://www.kehogo.com/ns/wow/1.0"

 targetNamespace=
 "http://www.kehogo.com/ns/wow/1.0">

 <xs:element name="ancient_wonders">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="wonder"
 type="wonderType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="wonderType">
 <xs:sequence>
 <xs:element name="name"
 type="nameType"
 maxOccurs="unbounded"/>
 <xs:element name="location"
 type="xs:string"/>
 <xs:element name="height"
 type="heightType"/>
 <xs:element name="history"
 type="historyType"/>
 <xs:element name="main_image"
 type="imageType"/>
 <xs:element name="source"
 type="sourceType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

x s d

 In the root element of the XML Schema, Figure 13.3
I’ve declared the default namespace as http://www.
kehogo.com/ns/wow/1.0. This means that the defi-
nitions of the unprefixed global types (wonderType
being the only one shown in the excerpt) can be found
in the XML Schema that corresponds to the default
namespace. (The definitions of the prefixed types,
xs:complexType, xs:string, etc., are found in the
XML Schema that corresponds to the http://www.
w3.org/2001/XMLSchema namespace.)

Referencing XML Schema
Components in Namespaces
In XML Schema, components are either named
simple or complex types, elements, attributes,
named model groups, or named attribute
groups. Once you have associated XML
Schema components with a namespace (see page
170), you can refer to them within that (or any
other) XML Schema. However, since they are
now associated with a namespace, you must
specify the namespace when you refer to them.

To declare a default namespace for
XML Schema components:
◆ In the root element of your XML Schema

document, type xmlns="URI", where URI
is the namespace with which the referenced
components are associated (Figure 13.3).

To declare a namespace with a
prefi x for XML Schema components:
◆ In the root element of your XML Schema

document, type xmlns:prefix="URI", where
prefix is how you will identify the compo-
nents in this XML Schema that belong to
the namespace indicated by the URI.

To then reference those components
in the XML Schema:
◆ If you have declared a prefix for your

namespace, type prefix:component_name,
where you prepend the component_name
with the defined namespace prefix. If you
have declared a default namespace, simply
type the component name as usual, see
Figure 13.3.

✔ Tip
■ A namespace declaration allows you to

identify components in your document
that are part of that namespace. A target
namespace allows you to populate that
namespace with components.

http://www.kehogo.com/ns/wow/1.0
http://www.kehogo.com/ns/wow/1.0
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

173

Using XML Namespaces

Nam
espaces and Validating XM

L

<?xml version="1.0"?>

<wow:ancient_wonders

 xmlns:wow=
 "http://www.kehogo.com/ns/wow/1.0"

 xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-
 instance"
 xsi:schemaLocation=
 "http://www.kehogo.com/ns/wow/1.0
 13-03.xsd">

 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>
 <history> ...

x m l

 In the XML Schema in Figure 13.3, Figure 13.4
the ancient_wonders element was associated with the
namespace http://www.kehogo.com/ns/wow/1.0.
So, for this XML document to be valid, I qualify
the ancient_wonders element accordingly. Because
wonder and the other elements were not associated
with the target namespace (they were not global ele-
ments in the schema), they don’t need to be qualified.

Namespaces and Validating XML
You have populated an XML namespace and
associated it with an XML document. In the
XML Schema that populated the namespace,
you have declared the namespace as the default
namespace. Now, you’re ready to validate an
XML document against the XML Schema,
both of which reference the same namespace.

When validating XML documents in Chapters
10 and 11, you didn’t have to worry about
namespaces, because none of the elements were
qualified (associated with a target namespace).
Now that all or some of your elements
belong to a namespace, when validating your
XML documents, you’ll have to specify that
namespace for those elements.

To write XML documents with
qualifi ed elements:
1. You must indicate the namespace of the

desired elements by declaring a namespace
with a prefix. Within the root element,
type xmlns:prefix="URI", where prefix
will identify the elements in this XML
document that belong to the namespace
indicated by the URI (Figure 13.4).

2. Finally, prefix those elements with the
namespace prefix from Step 1 (see Figure
13.4). Consult Chapter 12 for details.

✔ Tips
■ You can also indicate the namespace of the

desired elements in your XML document
using a default namespace (xmlns="URI"),
and using no prefix with the elements. This
however, is not very common. Namespaces
are only populated with the global ele-
ments by default; consequently most XML
Schemas will end up containing a mixture
of qualified and unqualified components.

■ Remember to qualify only those elements
that are actually associated with their cor-
responding namespace.

It’s All Good
The XML document is finally valid, as is
the XML Schema document on the pre-
ceding page, both of which are now part
of the same namespace.

http://www.kehogo.com/ns/wow/1.0

174

Chapter 13

Ad
di

ng
 A

ll
Lo

ca
lly

 D
ef

in
ed

 E
lem

en
ts

<?xml version="1.0"?>

<xs:schema xmlns:xs=
 "http://www.w3.org/2001/XMLSchema"

 xmlns=
 "http://www.kehogo.com/ns/wow/1.0"

 targetNamespace=
 "http://www.kehogo.com/ns/wow/1.0"

 elementFormDefault="qualified">

 <xs:element name="ancient_wonders">

...

x s d

 Because the Figure 13.5 elementFormDefault attri-
bute is set to qualified, the locally declared elements
will be associated with the target namespace. As such,
they must be written using a qualified name for an
XML document to be considered valid.

<wow:ancient_wonders
 xmlns:wow="http://
 www.kehogo.com/ns/wow/1.0"

 xmlns:xsi="http://www.w3.org
 /2001/XMLSchema-instance"

 xsi:schemaLocation="http://
 www.kehogo.com/ns/wow/1.0
 13-05.xsd">

 <wow:wonder>
 <wow:name language="English">
 Colossus of Rhodes</wow:name>
 <wow:name language="Greek">
 Κολοσσός της Ρόδου</wow:name>
 <wow:location>
 Rhodes, Greece</wow:location>
 <wow:height units="feet">
 107</wow:height>
 <wow:history>
 <wow:year_built era="BC">
 282</wow:year_built>

...

x m l

 In this valid XML document, all locally Figure 13.6
defined elements in the XML Schema are now quali-
fied with the wow: prefix.

Adding All Locally Defi ned
Elements
When populating a namespace with an XML
Schema, only the globally defined (top-level)
components are associated with the target
namespace by default. As such, only the global
components must be qualified, or identi-
fied with a namespace name, in a valid XML
document.

You can also require that locally defined com-
ponents (e.g., those that are one or more levels
down from the root element) be added to the
target namespace. In this case, these elements
must be qualified for an XML document to be
considered valid.

If you want to add locally defined components,
you can add all the elements and/or attribute
declarations at once, both of which are shown
below. You can also add elements and/or attri-
butes individually, as shown on page 175.

To add all locally defi ned elements
to the target namespace:
◆ In the xs:schema element, type

elementFormDefault="qualified".
(Figure 13.5).

To add all locally defi ned attributes
to the target namespace:
◆ In the xs:schema element, type

attributeFormDefault="qualified".

✔ Tips
■ The default value for each of these attri-

butes is unqualified, which means that only
globally defined (top-level) components
are associated with the target namespace,
unless you specify otherwise.

■ It is considered best practices to add all
locally defined elements when populating a
namespace, even though this overrides the
default (Figure 13.6).

175

Using XML Namespaces

Adding Particular Locally Defined Elem
ents

<?xml version="1.0"?>

<xs:schema xmlns:xs=
 "http://www.w3.org/2001/XMLSchema"

 xmlns=
 "http://www.kehogo.com/ns/wow/1.0"

 targetNamespace=
 "http://www.kehogo.com/ns/wow/1.0"

 elementFormDefault="qualified">

 <xs:element name="ancient_wonders">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="wonder"
 type="wonderType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="wonderType">
 <xs:sequence>
 <xs:element name="name"
 type="nameType"
 maxOccurs="unbounded"/>
 <xs:element name="location"
 type="xs:string"/>
 <xs:element name="height"
 type="heightType"/>
 <xs:element name="history"
 type="historyType"/>
 <xs:element name="main_image"
 type="imageType"
 form="unqualified"/>
 <xs:element name="source"
 type="sourceType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

x s d

 Despite the Figure 13.7 elementFormDefault
setting in the xs:schema element, the main_image
element will not be associated with the target
namespace, because its form attribute overrides the
elementFormDefault value.

Adding Particular Locally Defi ned
Elements
The form attribute is useful for specifying
whether a particular locally defined element
should be associated with the target namespace,
regardless of the default (see page 174).

To add a particular locally defi ned
element to the target namespace:
◆ In the element’s definition, type

form="qualified". Regardless of where that
element is defined, it will be associated
with the target namespace.

Conversely, if you’ve decided to set the
elementFormDefault attribute to qualified
in the xs:schema element, you can use the
form attribute to prevent a particular locally
defined element from being associated with the
target namespace (Figure 13.7).

To keep a particular locally defi ned
element from being associated with
a target namespace (despite the
default):
◆ In the element’s definition, type

form="unqualified". Regardless of where
that element is defined, it will not be asso-
ciated with the target namespace.

✔ Tip
■ Like elements, XML Schema attributes

can use the same form attribute to identify
whether they should be associated with
the target namespace (or not), regardless
of the default.

176

Chapter 13

XM
L S

ch
em

as
 in

 M
ul

tip
le

Fil
es

<?xml version="1.0"?>

<xs:schema xmlns:xs="
 http://www.w3.org/2001/XMLSchema"

 targetNamespace="
 http://www.kehogo.com/ns/wow/1.0">

 <xs:complexType name="civType">
 <xs:sequence>
 <xs:element name="name"
 type="xs:string"/>
 <xs:element name="locale"
 type="xs:string"/>
 <xs:element name="period"
 type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

</xs:schema>

x s d

 First, I create a new XML Schema Figure 13.8
shown here with the civType complex type definition.
Then, I can use this definition in other XML Schemas.

<?xml version="1.0"?>

<xs:schema xmlns:xs=
 "http://www.w3.org/2001/XMLSchema"

 xmlns=
 "http://www.kehogo.com/ns/wow/1.0"

 targetNamespace=
 "http://www.kehogo.com/ns/wow/1.0">

 <xs:include schemaLocation=
 "13-08.xsd"/>
...
 <xs:complexType name="wonderType">
 <xs:sequence>
 <xs:element name="name"
 type="nameType"
 maxOccurs="unbounded"/>
 <xs:element name="location"
 type="xs:string"/>
 <xs:element name="civilization"
 type="civType"/>
...

x s d

 Here, I am including and referencing Figure 13.9
the civType complex type defined in the XML Schema
shown in Figure 13.8.

XML Schemas in Multiple Files
You can divide an XML Schema’s components
into various individual files in order to reuse
them in several different XML Schemas, or
simply to make it easier to handle large XML
Schemas.

To include XML Schema components:
1. Divide the XML Schema components

among files. Each file should be text-only
and be saved with the .xsd extension
(Figure 13.8).

2. Finally, reference the XML Schema
document in which you wish to include
these components. Directly after the
xs:schema element, type <xs:include
schemaLocation="includedfile.uri"/>,
where includedfile.uri is the URI of the
XML Schema document that contains
the components you wish to include
(Figure 13.9).

✔ Tips
■ The targetNamespace attribute of the

included XML Schema document must
be the same as the targetNamespace
attribute of the XML Schema document
receiving the components. To add XML
Schema components with different target
namespaces, consult XML Schemas with
Multiple Namespaces on page 177.

■ If the included XML Schema has no target
namespace specified, it is assumed that its
target namespace is the same as the one for
the XML Schema document in which it is
being included.

177

Using XML Namespaces

XM
L Schem

as w
ith M

ultiple Nam
espaces

<?xml version="1.0"?>

<xs:schema xmlns:xs=
 "http://www.w3.org/2001/XMLSchema"
 xmlns=
 "http://www.kehogo.com/ns/wow/1.0"
 targetNamespace=
 "http://www.kehogo.com/ns/wow/1.0"
 xmlns:anc_civ=
 "http://www.kehogo.com/ns
 /ancient_civ/2.3">

 <xs:import namespace=
 "http://www.kehogo.com/ns
 /ancient_civ/2.3"

 schemaLocation=
 "13-10-anc_civ.xsd"/>
...
 <xs:complexType name="wonderType">
 <xs:sequence>
 <xs:element name="name"
 type="nameType"
 maxOccurs="unbounded"/>
 <xs:element name="location"
 type="xs:string"/>
 <xs:element name="civilization"
 type="anc_civ:civType"/>
...

x s d

 Importing one XML Schema into Figure 13.10
another makes the components from the first available
for defining components in the second.

XML Schemas with Multiple
Namespaces
If you want to use XML Schema components
from other XML Schemas with different target
namespaces, you would use the xs:import
element. This enables you to validate XML
documents whose elements are associated with
more than one namespace.

To import components from XML
Schemas with different target
namespaces:
1. Directly after the xs:schema element in

the XML Schema document into which
you’re importing the XML Schema compo-
nents, type <xs:import.

2. Then, type namespace="URI", where URI
indicates the namespace name of the XML
Schema components to be imported.

3. Next, type schemaLocation="schema.uri",
where schema.uri specifies the location of
the file that contains the XML Schema
defining the namespace in Step 2.

4. Finally, type /> to complete the
xs:import element (Figure 13.10).

5. Additionally, you will need to declare a
prefix for the imported namespace in the
xs:schema element (see page 172) so that
you can refer to the imported components
in your XML Schema (see Figure 13.10).

✔ Tip
■ You’ll use xs:import when you need

XML Schema definitions from different
XML namespaces, since a single XML
Schema file cannot contain components
from more than one namespace. You’ll use
xs:include (see previous page) to break
up a large XML Schema file into various
modular files, and then include the ones
you need for a particular XML Schema.

178

Chapter 13

Th
e

Sc
he

m
a

of
 S

ch
em

as
 a

s t
he

 D
ef

au
lt

<?xml version="1.0"?>

<schema xmlns=
 "http://www.w3.org/2001/XMLSchema"

 xmlns:wow=
 "http://www.kehogo.com/ns/wow/1.0"
 targetNamespace=
 "http://www.kehogo.com/ns/wow/1.0">

 <element name="ancient_wonders">
 <complexType>
 <sequence>
 <element name="wonder"
 type="wow:wonderType"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

 <complexType name="wonderType">
 <sequence>
 <element name="name"
 type="wow:nameType"
 maxOccurs="unbounded"/>
 <element name="location"
 type="string"/>
 <element name="height"
 type="wow:heightType"/>
 <element name="history"
 type="wow:historyType"/>
 <element name="main_image"
 type="wow:imageType"/>
 <element name="source"
 type="wow:sourceType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

x s d

 This document is equivalent to the one Figure 13.11
shown in Figure 13.3. The only difference is one of
notation. Because the Schema of Schemas is the default
namespace, I don’t prefix XML Schema element names
(schema, element, complexType, etc.), or built-in
types (string, positiveInteger) with xs:.

On the other hand, an XML Schema document can-
not have two default namespaces. Consequently, I need
to give the http://www.kehogo.com/ns/wow/1.0
namespace a prefix (wow:), and prefix the components
from the wow: namespace, such as wow:wonderType,
wow:nameType, and wow:heightType.

The Schema of Schemas as the
Default
In Chapter 9, XML Schema Basics, you learned
how to start a basic XML Schema. The first
line of an XML Schema is an XML declaration.
This means that an XML Schema document is,
in fact, an XML document itself.

The second line of an XML Schema docu-
ment is the xs:schema element, which is the
root element. And, as you may have already
realized, xs: is a prefix for a namespace, the
W3C’s XML Schema namespace. Often called
“the Schema of Schemas,” this namespace
contains definitions for components that you
have come to know, such as xs:element
xs:complexType, and xs:attribute.

But, the XML Schema specification doesn’t
require using the xs: prefix for this namespace.
I could just as easily use zorch:, fondo:, or
practically anything else.

So, if your XML Schema is mostly composed
of built-in types, it may be easier and quicker
to declare the Schema of Schemas as the default
namespace. Then, you wouldn’t have to use a
prefix for the elements from this namespace at
all (Figure 13.11).

To declare the Schema of Schemas
as the default namespace:
1. To begin defining the XML Schema root

element, after the XML declaration, type
<schema (notice that it’s not xs:schema).

2. Then, type xmlns="http://www.
w3.org/2001/XMLSchema" to declare
the Schema of Schemas as the default
namespace.

3. Continue as you normally would, iden-
tifying target namespaces, and XML
namespaces as you wish.

4. Finally, type > to complete the schema tag.

http://www.kehogo.com/ns/wow/1.0

179

Using XML Namespaces

Nam
espaces and DTDs

Namespaces and DTDs
One of the largest and most consistent com-
plaints about DTDs is that they don’t support
XML namespace declarations.

Interestingly enough, you can, in fact, use
a prefix:element structure in your DTD
names. The problem is that there is no way for
the parser to know which XML namespace that
prefix refers to. In actuality, the parser doesn’t
consider the characters before the colon a prefix
at all. You may have the element wow:height,
but this has no more meaning than any other
element. For example, it does not mean the
height element in the wow: namespace, it just
means the wow:height element.

If you think this is kind of a pain, you’re not
alone. The lack of direct support for XML
namespaces is one of the main reasons that
DTDs are being supplanted by XML Schema.

For more information on DTDs, see Part 3.

180

Chapter 13

XS
LT

 a
nd

 N
am

es
pa

ce
s

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999
 /XSL/Transform" version="1.0"

 xmlns:wow="
 http://www.kehogo.com/ns/wow/1.0">

<xsl:template match="/">
 <html><head><title>Wonders of the
 World</title></head>
 <body>
 <h1 align="center">Seven Wonders
 of the Ancient World</h1>
...
 <p>These ancient wonders are

 <xsl:for-each
 select="wow:ancient_wonders/
 wonder/name[@language='English']">

 <xsl:value-of select="."/>
...

x s l t

 This XSLT excerpt shows the Figure 13.12
declaration of the http://www.kehogo.com/ns/
wow/1.0 namespace and its prefix (wow:). The
ancient_wonders element is the only qualified
element from the namespace, and it is written as
wow:ancient_wonders in the XSLT Style Sheet.

XSLT and Namespaces
In Chapter 2, XSLT, you learned how to start a
basic XSLT Style Sheet. As with XML Schemas,
the first line of an XSLT Style Sheet is an XML
declaration. Therefore, an XSLT Style Sheet is
an XML document itself.

Consequently, if you are working with XML
elements that belong to a namespace, you will
need to declare the namespace and prefix each
of these elements in your XSLT Style Sheet
(Figure 13.12).

To use an XML namespace in an
XSLT Style Sheet:
1. Within the opening tag of the root element

xsl:stylesheet, type xmlns:prefix,
where prefix will identify the XML
namespace in this XSLT Style Sheet.

2. Then, type ="URI", where URI identifies
the name of the XML namespace to which
the prefix in Step 1 will refer.

3. Finally, label individual elements as neces-
sary by typing <prefix:element>, where
prefix is the namespace prefix defined in
Step 1 and indicates the namespace to
which this element belongs.

✔ Tip
■ Unlike XML Schema documents, the

default namespace in an XSLT Style Sheet
is not used for unprefixed names. In other
words, you can’t remove the xsl: prefix
from a style sheet’s elements by setting
the W3C’s XSLT namespace as the
default namespace.

http://www.kehogo.com/ns/wow/1.0
http://www.kehogo.com/ns/wow/1.0

181

XSLT 2.0 183
XPath 2.0 193

XQuery 1.0 207

PART 6:
RECENT W3C

RECOMMENDATIONS

This page intentionally left blank

14

183

XSLT 2.0

XSLT 2.0
XSL, the eXtensible Stylesheet Language, is
used to transform XML documents into other
documents, such as HTML (see Part 2). It is a
family of three languages: XPath for selecting
nodes from source documents; XSLT, for trans-
forming those selected nodes; and XSL-FO, a
language often used to generate PDFs.

On January 23, 2007, the W3C published eight
new XML-centric Recommendations. These
Recommendations defined new versions of
both XSLT and XPath, as well as a new XML
language called XQuery.

Like XSLT, XQuery gives users the ability to
query XML data, based on the logical structure
of an XML document. In fact, you can do most
of the same things with XQuery 1.0 that you
can with XSLT 2.0. However, XQuery differs
from XSLT 2.0 in its ability to also directly
query databases as opposed to only querying
text-based documents.

Both XSLT and XQuery rely on the XPath
language to select content from XML source
information. This selection process uses the
XML source’s logical structure, which is known
as the data model. This XML Data Model
(XDM) is the exact same for all three languages,
XQuery 1.0, XPath 2.0, and XSLT 2.0. It is, in
essence, the glue that binds them all.

You can read more about these languages at:
www.w3.org/2007/01/qt-pressrelease.

www.w3.org/2007/01/qt-pressrelease

184

Chapter 14

Ex
te

nd
in

g
XS

LT

Extending XSLT
XSLT is an XML language whose purpose is to
transform a given XML source document into
something else, such as an HTML document or
a new XML document.

XSLT 1.0 became an official W3C
Recommendation in 1999, and was rapidly
adopted by the XML community. With that,
came feedback, critique, and ultimately the
formation of a new W3C Working Group to
revise and improve XSLT.

Some of the primary goals of this effort were to:

◆ Improve ease of use.
◆ Support multiple output documents.
◆ Enable the creation of user-defined

functions.
◆ Support the use of XML Schema.
◆ Simplify content grouping.
◆ Retain backward compatibility.

This last goal, being backward compatible, was
an important goal to make it easier for users to
adopt this new Recommendation. By retaining
backward compatibility, you can use an XSLT
2.0 processor with your existing XSLT 1.0 style
sheets, with little to no modification. Then,
you can begin using XSLT 2.0 features and
functions at your convenience (Figure 14.1).

Although the XSLT 2.0 Recommendation
hasn’t changed much since the Working Draft
was published in 2003, version 1.0 is still more
widely used and supported. In fact, none of
the major browsers support version 2.0 yet.
Therefore, in order to view the XSLT examples
in this chapter, you’ll need to use an XSLT
processor that supports version 2.0. If you don’t
have one already, see Appendix A.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="2.0">

 <xsl:output method="html"/>

 <xsl:template match="/">

 <html>

 <head><title>Wonders of the World
 </title></head>

 <body>

 <p>The famous Greek historian
Herodotus wrote of seven great
architectural achievements. And
although his writings did not survive,
he planted seeds for what has become
the list of the Seven Wonders
of the Ancient World.</p>

 <p>These ancient wonders are

 <xsl:for-each select="
 ancient_wonders/wonder/name
 [@language='English']">

 <xsl:value-of select="."/>

...

 </xsl:for-each>

 </p>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

x s l t

 This XSLT style sheet will be processed Figure 14.1
using the XSLT 2.0 specification, because the version
attribute of the xsl:stylesheet element is set to "2.0."
Note: This is a shortened version of the master XSLT
1.0 style sheet used throughout the earlier chapters of
the book. Notice that nothing has changed in the style
sheet, except the value of the version attribute.

185

XSLT 2.0

Creating a Sim
plified Style Sheet

Creating a Simplifi ed Style Sheet
One goal of XSLT 2.0 was to improve its ease
of use over XSLT 1.0. An example of this is
seen with style sheets that only have a tem-
plate rule for the root node (<xsl:template
match="/">), and no other template rules,
such as in Figure 14.1.

In these cases, you can simplify your XSLT
style sheet by combining the content from the
xsl:stylesheet and xsl:template elements
into your opening <html> tag, and remov-
ing the xsl:stylesheet, xsl:output, and
xsl:template elements completely.

To create a simplifi ed style sheet:
1. Type <?xml version="1.0"?> to indicate

that the XSLT style sheet is an XML
document.

2. Type <html .
3. Next, type xmlns:xsl="http://www.

w3.org/1999/XSL/Transform" which
is the standard declaration for the XSLT
namespace and its prefix.

4. Then, type xsl:version="2.0"> to identify
that this document will use version 2.0 of
the XSLT namespace.

5. Enter the instructions for your style sheet.
6. Finally, type the end tag </html> to com-

plete the html element from Step 2 above,
as well as to complete the simplified style
sheet (Figure 14.2).

✔ Tips
■ The version attribute in the opening

html tag is different than the standard ver-
sion attribute. In a simplified style sheet,
the version attribute must be prefixed
with xsl: to indicate that it belongs to the
XSLT namespace.

■ There cannot be xsl:apply-template
elements in your simplified style sheet.

<?xml version="1.0"?>

<html xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 xsl:version="2.0">

 <head><title>Wonders of the World
 </title></head>

 <body>

 <p>The famous Greek historian
Herodotus wrote of seven great
architectural achievements. And
although his writings did not survive,
he planted seeds for what has become
the list of the Seven Wonders
of the Ancient World.</p>

 <p>These ancient wonders are

 <xsl:for-each select="
 ancient_wonders/wonder/name
 [@language='English']">

 <xsl:value-of select="."/>

...

 </xsl:for-each>

 </p>

 </body>

</html>

x s l t

 This is a simplified style sheet based on Figure 14.2
the style sheet in Figure 14.1.

186

Chapter 14

Ge
ne

ra
tin

g
XH

TM
L O

ut
pu

t D
oc

um
en

ts

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="2.0" xmlns=
 "http://www.w3.org/1999/xhtml">

 <xsl:output method="xhtml"/>

 <xsl:template match="/">

x s l t

 In this example, I’ve used the Figure 14.3 xsl:output
instruction to tell the XSLT processor to generate
XHTML-compliant output.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="2.0" xmlns=
 "http://www.w3.org/1999/xhtml">

 <xsl:template match="/">

 <xsl:result-document method="xhtml">

 <html><head><title>Wonders of the
 World</title></head><body>

...

 <h2>History</h2>

 <xsl:apply-templates select="
 ancient_wonders/wonder/history">

 <xsl:sort select="year_built"
 order="descending"
 data-type="number" />

 </xsl:apply-templates>

 </body></html>

 </xsl:result-document>

</xsl:template>

x s l t

 In this example, I’ve used the Figure 14.4 xsl:result-
document instruction to tell the XSLT processor to
generate XHTML-compliant output. Notice how the
xsl:result-document instruction encloses the output
and instructions within the root template.

Generating XHTML Output
Documents
XHTML is a more structured form of HTML;
essentially a marriage of HTML and XML. It
became a W3C Recommendation in January
2000, and has been widely adopted in the cre-
ation of Web pages.

In XSLT 1.0, there is no direct support for gen-
erating XHTML-compliant output documents.
This feature has been added to XSLT 2.0.

To generate XHTML-compliant output
documents:
1. Within the xsl:stylesheet declaration,

type xmlns="http://www.w3.org/1999/
xhtml" to declare the XHTML namespace.

2. Immediately after the xsl:stylesheet
declaration, type <xsl:output .

3. Finally, type method="xhtml"/> to identify
the output method as XHTML and close
the output instruction (Figure 14.3).

Another way to generate XHTML-
compliant output documents:
1. Within the xsl:stylesheet declaration,

type xmlns="http://www.w3.org/1999/
xhtml" to declare the XHTML namespace.

2. Immediately after the template for the root
node (<xsl:template match="/">), type
<xsl:result-document.

3. Then, type method="xhtml"> to identify
the output method as XHTML.

4. Finally, immediately before the closing tag
of the root node template, type <xsl:result-
document/> to close the output instruction
(Figure 14.4).

✔ Tip
■ There are other attributes for both these

output instructions, including control for
character encoding, indentation, and more.

187

XSLT 2.0

Generating M
ultiple Output Docum

ents

...
<xsl:result-document
 href="history.html" method="xhtml">

 <html><body><head><title>Wonders of
 the World</title></head>
 <h2>History</h2>

 <xsl:apply-templates select="
 ancient_wonders/wonder/history">

 <xsl:sort select="year_built"
 order="descending"
 data-type="number" />

 </xsl:apply-templates>

 </body></html>

</xsl:result-document>

x s l t

 This excerpt of an XSLT style sheet will Figure 14.5
generate an output document for the History section
of the wonders output named history.html. A second
output document is created automatically and contains
all the remaining XSLT output, including a list of all
the wonders, each of which must link to its place in
the new history output document (see Figure 14.6).

...
<a>
 <xsl:attribute name="href">
 history.html#<xsl:value-of select=
 "name[@language='English']"/>
 </xsl:attribute>

 <xsl:value-of select="name
 [@language='English']"/>

x s l t

 Further down in the XSLT document Figure 14.6
excerpted in Figure 14.5, I adjust the anchor tags
that link to the history section for each of the wonders.
Each anchor tag now links to its proper place in the
new history.html document.

Generating Multiple Output
Documents
In XSLT 1.0, when an XSLT style sheet is pro-
cessed, only one output document is produced.
If you want to create a multiple documents
from your XML content, you have to run the
XSLT processor for each document you want.

With XSLT 2.0, however, you can produce
multiple output documents from a single
run of the processor. As well, you can include
instructions for how to create each of the out-
put documents in a single XSLT document.

To generate multiple output
documents:
1. For each output document, identify the

XSLT instructions that will generate the
output you wish.

2. Before the first XSLT instruction identi-
fied in Step 1, type <xsl:result-document to
begin the output declaration.

3. Then, type href="output.uri">, where
output.uri identifies the location of the
document where the output from these
XSLT instructions will be saved.

4. Finally, after the last XSLT instruction
identified in Step 1, type </xsl:result-
document> to complete the output
instruction (Figure 14.5).

✔ Tips
■ You may use as many xsl:result-

document instructions in your XSLT style
sheet as you wish.

■ You can choose to have your output be
XHTML-compliant using the method
attribute as described on page 186.

■ The output of an XSLT transforma-
tion is called a final result tree. For any
XSLT instructions not enclosed by an
xsl:result-document element, a final
result tree is created automatically.

188

Chapter 14

Cr
ea

tin
g

Us
er

 D
ef

in
ed

 F
un

cti
on

s

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="2.0" xmlns:khg="http://
 www.kehogo.com/ns/khg"
 exclude-result-prefixes="khg">

 <xsl:template match="/">
 <html><head><title>Hello World
 </title></head><body>
 <xsl:value-of select="
 khg:helloWorld()"/>
 </body></html>
 </xsl:template>

 <xsl:function name="khg:helloWorld">

 Hello World on
 <xsl:value-of select="
 format-dateTime(current-dateTime(),
 '[M01]/[D01]/[Y0001] at
 [H01]:[m01]:[s01]')"/>

 </xsl:function>

</xsl:stylesheet>

x s l t

 The style sheet in this example declares Figure 14.7
a UDF called helloWorld which is part of the khg:
namespace. It returns the literal string “Hello World
on ”, followed by today’s date and time. Notice the
use of the exclude-result-prefixes attribute in the
root element; it excludes the khg namespace from the
output document.

 The execution of the XSLT 2.0 style Figure 14.8
sheet in Figure 14.7, as seen in a browser.

Creating User Defi ned Functions
User Defined Functions (UDFs) in XSLT 2.0
act just like functions in other programming
languages. You declare the UDF’s name, input,
what it does with the input, and its output.

To create a User Defi ned Function:
1. As a top-level element (a child of the

root element xsl:stylesheet), type
<xsl:function to begin your UDF.

2. Type name="UDF_name">, where
UDF_name is the name of your function.

3. Optionally (to begin identifying any
UDF input parameters), type <xsl:param
name="param_name"/>, where param_
name is the name you will use to refer to
this parameter within your UDF.

4. Repeat Step 3 for as many input param-
eters you wish to declare. You may also
choose to not have any input parameters,
and skip Step 3 altogether.

5. Type the XSLT 2.0 and XPath 2.0 instruc-
tions for your function that will generate
the return value of the UDF.

6. Finally, type </xsl:function> to finish creat-
ing the UDF (Figure 14.7).

To create the namespace for your
User Defi ned Functions:
1. Within the opening tag of the root ele-

ment, type xmlns:prefix, where prefix is the
namespace prefix for your UDF.

2. Then, type ="URI", where URI is the
namespace to which the prefix will refer.

✔ Tips
■ Your UDF must part of its own namespace

to eliminate potential naming conflicts
with functions in the default namespace.

■ Optionally, use exclude-result-prefixes
so your UDF’s namespace won’t be part of
the output document (see Figure 14.7).

189

XSLT 2.0

Creating User Defined Functions

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="2.0" xmlns="http://
 www.w3.org/1999/xhtml"
 xmlns:khg="http://
 www.kehogo.com/ns/khg"
 exclude-result-prefixes="khg">

...

<xsl:function name="khg:third">

 <xsl:param name="dimension"/>
 <xsl:value-of select="
 (ceiling($dimension div 3))"/>

</xsl:function>

x s l t

 This UDF, named Figure 14.9 khg:third, takes
a single input parameter, dimension. It divides the
value of dimension by 3, and uses the ceiling function
to round up to the nearest integer. Then, the UDF
returns this final value to the calling statement.

<xsl:template match="main_image">

 <xsl:attribute name="src">
 <xsl:value-of select="./@file"/>
 </xsl:attribute>

 <xsl:attribute name="width">
 <xsl:value-of select="
 khg:third(./@w)"/>
 </xsl:attribute>

 <xsl:attribute name="height">
 <xsl:value-of select="
 khg:third(./@h)"/>
 </xsl:attribute>

</xsl:template>

x s l t

 Here are the two places where the Figure 14.10
khg:third() function is called. I am using this UDF to
divide the w and h attributes of the main_image ele-
ment by 3, effectively shrinking the display size of the
images by a third.

Calling User Defi ned Functions
Of course, creating a UDF doesn’t do anything
itself (Figure 14.9); you need to call the UDF
from within the style sheet. To use the func-
tionality created by your UDF, you call it from
anywhere an XPath expression is expected.

To call a User Defi ned Function:
1. Anywhere an XPath expression is expected,

type prefix:, where prefix matches the one
you used in Step 1 at the bottom of page
188. (This is the namespace prefix that you
defined for your UDF.)

2. Then, type UDF_name(, where UDF_name
matches the one you used in Step 2 at the
top of page 188 (which is the name you
gave your function).

3. Next, type the value(s) of any input param-
eters defined in Step 3 at the top of page
188, separated by a comma. If there are no
input parameters declared, you will skip
this step.

4. Finally, type) to finish calling your UDF
(Figure 14.10).

✔ Tips
■ An xsl:function declaration can appear

anywhere in your XSLT style sheet, pro-
vided it is a top-level element.

■ Unlike in many other procedural program-
ming languages, optional input parameters
are not allowed in UDFs.

■ As in many other procedural program-
ming languages, UDFs can call themselves,
thereby creating recursive functions.

■ In XSLT 1.0, advanced users created UDF-
like functionality by tricking the processor
into using named templates, or by writing
functions in another language outside the
style sheet itself.

190

Chapter 14

Gr
ou

pi
ng

 O
ut

pu
t U

sin
g

Co
m

m
on

 V
al

ue
s

...

<table border="1">
 <tr><th>Newspaper ID</th>
 <th>Section ID</th></tr>

 <xsl:for-each-group
 select="//source"
 group-by="@newspaperid">

 <tr>

 <td><xsl:value-of select=
 "@newspaperid"/></td>

 <td><xsl:value-of select=
 "current-group()/@sectionid"/></td>

 </tr>

</xsl:for-each-group>

</table>

x s l t

 To generate a listing of Figure 14.11 source
elements grouped by their newspaperids, I have set
the select attribute of the xsl:for-each-group to
//source, and the group-by attribute to newspaperid.
The current-group() component above returns all
the sectionid values of each group. Without this, the
output would only show the current newspaperid’s
sectionid, not all the sectionids in the group.

 The XSLT in Figure 14.11 generates Figure 14.12
this listing above. Notice that newspaperids 21 and
19 each have multiple sectionids listed. Without using
the current-group() component, the output would
only show the current newspaperid’s sectionid value,
not all the values.

Grouping Output Using Common
Values
Grouping a set of elements based on common
content (such as elements with the same name
or attribute value) is extremely difficult in
XSLT 1.0, and not something the average user
can easily accomplish. Fortunately, in XSLT 2.0,
grouping is much easier and is supported by a
set of built-in functions.

To group by a common value:
1. Type <xsl:for-each-group.
2. Then, type select="node_set", where

node_set identifies the set of items to be
grouped. This is also called the population.

3. Next, type group-by="group_key">,
where group_key is an expression that is
evaluated for each item in the population.
The result of this evaluation is defined to
be that item’s group value. Each item in the
population is then placed into a group with
other items that have the same group value.

4. Specify what processing should take place.
5. Finally, type </xsl:for-each-group> to

complete the grouping (Figure 14.11).

✔ Tips
■ Both the node_set in Step 2, and the group_

key in Step 3 must be XPath expressions.
In fact, they must be XPath 2.0 expres-
sions, since the xsl:for-each-group is an
XSLT 2.0 element. XPath 2.0 is discussed
in Chapter 15.

■ When the xsl:for-each-group instruc-
tion is being processed, you can use a
function called current-group(). It is a
collection of all the items from the popula-
tion that are assigned to the group being
processed (see Figure 14.11).

■ You can also use an xsl:sort instruction
within the xsl:for-each-group instruc-
tion to sort the resulting content.

191

XSLT 2.0

Validating XSLT Output

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="2.0">
 <xsl:output method="xml"
 indent="yes"/>

 <xsl:import-schema
 schema-location="14-13.xsd"/>

 <xsl:template match="/">

 <sources xsl:validation="strict">

 <xsl:for-each-group select="
 //source" group-by="@newspaperid">
 <newspapers>
 <newspaperid>
 <xsl:value-of select="
 @newspaperid"/>
 </newspaperid>
 <sectionid>
 <xsl:value-of select="
 current-group()/@sectionid"/>
 </sectionid>
 </newspapers>
 </xsl:for-each-group>
 </sources>
 </xsl:template>
</xsl:stylesheet>

x s l t

 Instead of having XSLT generate an Figure 14.13
HTML table of the source elements (Figure 14.11),
here it is generating that information as an XML doc-
ument. I am validating the XML document prior to it
being output, using the imported schema, 14-13.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<sources>
 <newspapers>
 <newspaperid>21</newspaperid>
 <sectionid>101 141</sectionid>
 </newspapers>
 <newspapers>
 <newspaperid>71</newspaperid>
 <sectionid>123</sectionid>
 </newspapers>
...

x m l

 This is an excerpt of the validated Figure 14.14
XML output document, generated by the XSLT style
sheet in Figure 14.13.

Validating XSLT Output
In addition to transforming XML documents
into (X)HTML for display, XSLT is often used
to transform XML documents into other XML
documents. These new XML documents can
then be used for different purposes than those
of the original XML document.

XSLT 1.0 however, cannot validate its own
output against an XML Schema. As a result,
to ensure that XML documents generated
from an XSLT transformation have the correct
structure, they have to be validated in a sepa-
rate step. This has been rectified in XSLT 2.0
by including the ability to validate the output
of an XSLT transformation against an XML
Schema, as part of the XSLT transformation.

To validate XSLT Output:
1. Anywhere at the top-level of the style

sheet (outside the root template rule), type
<xsl:import-schema.

2. Then, type schema-location="schema.
uri"/>, where schema.uri identifies the
location of the XML Schema you wish to
use for your validation.

3. Additionally (in the XSLT style sheet),
within the root element of the output you
wish to validate, type xsl:validation="strict"
(Figure 14.13).

✔ Tips
■ Using this same model, you can validate

different parts of the XSLT output with
different imported XML Schemas.

■ Instead of identifying a schema location
in the xsl:import-schema element, you
can include the rules of your XML Schema
in the XSLT style sheet itself. Having an
inline schema means that you can’t eas-
ily reuse it in another XSLT style sheet.
It does, however, provide you with quick
access to both the style sheet and the
schema in a single file.

This page intentionally left blank

15

193

XPath 2.0

XPath (XML Path Language) is a language
for selecting and processing parts of an XML
document. XPath 2.0 is part of the eight W3C
Recommendations published together in
January 2007, and includes significant changes
to the original version published in 1999.

One fundamental change is in the data model
used by XPath. In version 1.0, the data model
used is based on node sets (see Chapter 3).
In version 2.0, the data model is based on
sequences. A sequence is a collection of items
(nodes and/or values), whereas a node set is a
collection of nodes only. This distinction, while
subtle, is an important enhancement to XPath
2.0 that I’ll discuss more in this chapter.

In addition to a new data model, XPath 2.0 has
a larger set of functions; it supports conditional
expressions (if-then-else statements), and it
supports loops and variables (which were only
available in XSLT previously).

By design, upgrading to XPath 2.0 should be
relatively easy, because everything you know
about XPath 1.0 applies to version 2.0 as well.
Further, many of the changes in version 2.0 are
based on well-known programming constructs
that you may already be familiar with.

As with XPath 1.0, version 2.0 is not a stand-
alone language; it was designed to be used
within a “host language,” such as XSLT 2.0.
The examples in this chapter will use XSLT
2.0 to show the XPath 2.0 functionality. If you
need to, review XSLT 1.0 and XPath 1.0 in Part
2 of the book, as well as Chapter 14, XSLT 2.0.

XPATH 2.0

194

Chapter 15

XP
at

h
1.

0
an

d
XP

at
h

2.
0

...
<p>These ancient wonders are
<xsl:for-each select=
 "ancient_wonders/wonder/name
 [@language='English']">

 <xsl:value-of select="."/>
...

x s l t

 This location path is requesting the Figure 15.1
name nodes with a language attribute equal to
‘English.’ These nodes are children of wonder nodes,
which are children of the ancient_wonders node.

 The results of the location path in Figure Figure 15.2
15.1 within the style sheet’s HTML.

...
<xsl:when test="height != 0">
 <xsl:value-of select="height"/>
 ft

 (<xsl:value-of select=
 "format-number(height * 0.3048,
 '##0.0')"/> m)
...

x s l t

 Using multiplication and the Figure 15.3 format-
number function to convert the height into meters.

 Displaying each wonder’s height, for-Figure 15.4
matted as described in the XSLT in Figure 15.3.

XPath 1.0 and XPath 2.0
XPath 2.0 is a superset of XPath 1.0. In other
words, all you have learned about XPath 1.0
(see Chapters 3 and 4) also applies to XPath 2.0.

XPath Basics
There are two primary purposes that XPath
serves. The first is finding and returning specific
parts of an XML document. To do this, XPath
converts an XML document into an XML node
tree. An XML node tree is a hierarchical repre-
sentation of an XML document. Then, based
on the location path that you define, XPath
uses the XML node tree to find and return the
information you requested. A location path is
a way to describe the position of the desired
content in the XML document relative to some
current context (Figure 15.1).

XPath’s second primary purpose is to perform
operations on those selected parts. XPath has
built-in functions to perform basic arithmetic
operations on, or to alter the format of, data
returned by a location path (Figure 15.3).

XPath 2.0 Data Model
The new data model that supports version 2.0
of the XPath language is called XDM (XQuery/
XPath Data Model). It is an extension of the
XML Infoset, the data model for XPath 1.0.
An important component of using XDM is
that it includes support for XML Schema types
(see Part 4), making XPath 2.0 a strongly typed
language. This means that the use of values
is strictly dependent on each value’s type. For
example, trying to do math on the string “2008”
will yield an error, which was not the case in
XPath 1.0 (see Figure 15.25 on page 203).

Having support for XML Schema also allows
XSLT 2.0 style sheets (which only work with
the XPath 2.0 language) to be connected to an
XML document’s schema. Then, when trans-
forming the document, you would be alerted
to misspellings, invalid paths, and type errors
based on the schema. As well, you would be

195

XPath 2.0

XPath 1.0 and XPath 2.0

(8, 'Logan', 58.3)

x s l t

 In XPath 2.0, everything is processed as Figure 15.5
a sequence. A sequence is an ordered list of mixed type
items. To define a sequence, write the values you want
in a set of parentheses, separated by a comma (the
space after the comma is not required but makes for
increased legibility).

(8, 'Logan', ('3rd', 8), 58.3)

x s l t

(8, 'Logan', '3rd', 8, 58.3)

x s l t

 Sequences cannot be nested within other Figure 15.6
sequences. This means that the top example is auto-
matically converted in the bottom one. Notice also that
sequences allow duplication.

(1 to 5)

x s l t

(1, 2, 3, 4, 5)

x s l t

 Sequences can be constructed using the Figure 15.7
to operator which returns integers in consecutive order.
The top example is automatically converted into the
bottom example.

reverse(1 to 10)

x s l t

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

x s l t

 As I’ll show in the rest of this chapter, Figure 15.8
functions can act on and return sequences. In this
example, the reverse function takes each item in the
top sequence and reverses the order to generate the
bottom sequence.

alerted to any changes required in your XSLT
necessitated by changes in the XML Schema.

XPath 2.0 Sequences

XPath 1.0 is not a strongly typed language.
Expressions in XPath 1.0 return only one of
four different types: node sets, strings, num-
bers, and boolean values. On the other hand,
XPath 2.0 is a strongly typed language, and
expressions can return many more types.

To support this difference, the return value of
expressions in XPath 2.0 is a sequence (Figure
15.5). (And, as you’ll see throughout the rest
of this chapter, the additional functionality
connected with sequences is significant.)

A sequence is comma-separated, ordered list of
items, where an item is defined as either a node
or an atomic value. An atomic value is basically
any value; or, more specifically, it is a simple
type or a custom type derived by restriction (see
Chapters 10 and 11).

Other characteristics of sequences include that
they can have duplicate items (node sets in
XPath 1.0 cannot). They are also flat structures;
in other words, you cannot have a sequence
within another sequence (Figure 15.6). Just
as with node sets in XPath 1.0, sequences can
include operators (Figure 15.7), be the object
of functions (Figure 15.8), and take predi-
cates (which are the “filters” written in square
backets [and]). Sequences can also be used
in loops, in a way similar to the xsl:for-each
element in XSLT (see Looping Over Nodes on
page 28).

✔ Tip
■ Since XPath 2.0 is a superset of version

1.0, everything you’ve learned about XPath
1.0 (see Chapters 3 and 4) applies to ver-
sion 2.0. You can even use XPath 2.0 with
your existing style sheets. The very few
exceptions are noted at: www.w3.org/TR/
xpath20/#id-backwards-compatibility.

www.w3.org/TR/xpath20/#id-backwards-compatibility
www.w3.org/TR/xpath20/#id-backwards-compatibility

196

Chapter 15

Av
er

ag
in

g
Va

lu
es

 in
 a

 S
eq

ue
nc

e

...
<td valign="top">
 <xsl:value-of select="
 format-number(
 sum(ancient_wonders/wonder/height)
 div count(ancient_wonders/wonder/
 height[.!=0]), '##0.0')" />ft
</td>

x s l t

 This XPath 1.0 excerpt calculates the Figure 15.9
sum() of all the ancient wonder’s heights, and then
divides that sum by the count() of the ancient wonders
that have a non-zero height (remember that the height
of the Hanging Gardens of Babylon is set to zero in
our XML document).

...
<td valign="top">
 <xsl:value-of select="
 format-number(
 avg(ancient_wonders/wonder/
 height[.!=0]),'##0.0')" /> ft
</td>

x s l t

 Here, I am using the XPath 2.0 func-Figure 15.10
tion avg() to do the same thing as in Figure 15.9. It
produces the same result with fewer lines of code.

 The resulting HTML from the Figure 15.11
XSLT 2.0 / XPath 2.0 code in Figure 15.10, as seen
in Internet Explorer 7. (The XSLT 1.0 / XPath 1.0
code in Figure 15.9 generates the exact same HTML.)

Averaging Values in a Sequence
In XPath 1.0, there are functions for count-
ing the number of nodes in a nodeset, and for
totaling the values of the nodes in a nodeset
(Figure 15.9). XPath 2.0 has these same func-
tions for sequences, and has added three new
similar functions: avg(), min(), and max().

One of these new functions is to average all the
values in a sequence.

To average the values in a sequence:
1. Type avg(.
2. Then, type the sequence or the location

path to the sequence whose items should
be averaged.

3. Finally, type) to complete the function
(Figure 15.10).

✔ Tip
■ The results from this function, as well as

the other two new functions discussed on
page 197, could be generated in XPath 1.0.
However, especially in the case of min()
and max(), it would take a lot more than a
single line of XSLT and XPath.

197

XPath 2.0

Finding the M
inim

um
 or M

axim
um

 Value

...
and they ranged in height from
<xsl:value-of select="
 min(ancient_wonders/wonder/
 height[.!=0])"/>
to
<xsl:value-of select="
 max(ancient_wonders/wonder/
 height[.!=0])"/>
feet.

x s l t

 Using both the Figure 15.12 min() and max() func-
tions, I have added a statement to the final output
about the range of height of the ancient wonders. And
although possible in XPath 1.0, the min() and max()
functions require much less code to return their results.

 The HTML result of the new instruc-Figure 15.13
tions shown in Figure 15.12.

Finding the Minimum or
Maximum Value
In addition to averaging values in a sequence,
XPath 2.0 also has functions to find the
minimum and maximum values in a sequence
(Figure 15.12).

To return the minimum value of the
numbers in a sequence:
1. Type min(.
2. Then, type the sequence or the location

path to the sequence whose smallest value
should be returned.

3. Finally, type) to complete the function.

To return the maximum value of the
numbers in a sequence:
1. Type max(.
2. Then, type the sequence or the location

path to the sequence whose greatest value
should be returned.

3. Finally, type) to complete the function.

✔ Tips
■ These functions are called “aggregating

functions” since they return a single value
based on the values of a sequence. They
are: avg(), min(), max(), sum(), and
count(). The last two were available in
XPath 1.0.

■ For all aggregating functions, except for
count(), the sequence must consist of
similarly typed values. Either they must all
be numeric, or they can be a single type
(such as date types).

198

Chapter 15

Fo
rm

at
tin

g
St

rin
gs

...

<xsl:value-of select=
 "translate(../name
 [@language='English'],
 'abcdefghijklmnopqrstuvwxyz',
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')"/>

x s l t

 This XPath 1.0 excerpt uses the Figure 15.14
translate() function to convert each of the ancient
wonder’s English names to uppercase.

...

<xsl:value-of select=
 "upper-case(../name
 [@language='English'])"/>

x s l t

 Here, I am using the XPath 2.0 func-Figure 15.15
tion upper-case() to do the same thing as the code
in Figure 15.14. Not only are there fewer lines of
code in this example, but it’s much easier to read
and understand.

 With the new XPath 2.0 function, Figure 15.16
the HTML output remains the same as before; which
was expected.

Formatting Strings
In XPath 2.0, there are a handful of new func-
tions for formatting strings. Two such functions
provide the ability to change a string to upper
or lowercase. And, while you can convert string
cases in XPath 1.0 (Figure 15.14), it’s quite a
lot easier in XPath 2.0 (Figure 15.15).

To convert a string to uppercase:
1. Type upper-case(.
2. Then, type the expression that contains the

string to be converted to uppercase.
3. Finally, type) to complete the function.

To convert a string to lowercase:
1. Type lower-case(.
2. Then, type the expression that contains the

string to be converted to lowercase.
3. Finally, type) to complete the function.

✔ Tips
■ Numbers and punctuation are not affected

by the case conversion.
■ The translate() function that was used

to do case conversions in XPath 1.0 still
exists in XPath 2.0. It can be used for
replacing specific characters in a string with
other characters, or removing specific char-
acters from a string altogether.

199

XPath 2.0

Testing Conditions

...
<xsl:choose>
 <xsl:when test="
 history/year_destroyed != 0">
 <xsl:choose>
 <xsl:when test="history/
 year_destroyed/@era = 'BC'">
 <xsl:value-of select="
 history/year_built -
 history/year_destroyed"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="
 history/year_built +
 history/year_destroyed - 1"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="
 history/year_built + 2008 - 1"/>
 </xsl:otherwise>
</xsl:choose>

x s l t

 This excerpt uses the XPath 1.0 Figure 15.17
conditional structure of “choose-when-otherwise.” It
calculates the number of years a wonder stood before
being destroyed, accounting for the change in era from
BC to AD, and for the Great Pyramid of Giza, which
is still standing. It’s a lot of code to write, and read!

...
if (history/year_destroyed != 0)
 then (
 if (history/year_destroyed/@era =
 'BC')
 then (history/year_built -
 history/year_destroyed)
 else (history/year_built +
 history/year_destroyed - 1)
)
 else (history/year_built + 2008 - 1)

x s l t

 Written using XPath 2.0 conditional Figure 15.18
expressions, the code is a lot smaller, and a lot easier
to read.

Testing Conditions
In XPath 1.0, choosing which of two things to
output, or whether to output anything at all,
is done using either xsl:if or xsl:choose
instructions (Figure 15.17).

XPath 2.0 has the ability to test for conditions
within an XPath expression itself. As well, the
test condition can be any expression that evalu-
ates to a boolean value (true or false), not only
an expression using nodes.

To test a condition:
1. Anywhere you could have an XPath expres-

sion, type if (.
2. Specify the boolean expression that you

wish to test.
3. Then, type) to end the test expression.
4. Next, type then (.
5. Specify the expression whose value will be

returned if the boolean expression in Step 2
is true.

6. Then, type) to end the then-expression.
7. Next, type else (.
8. Specify the expression whose value will be

returned if the boolean expression in Step 2
is false.

9. Finally, type) to end the else-expression and
the conditional test (Figure 15.18).

✔ Tips
■ You may use an “if-then-else” expression as

the expression in a “then” or “else” clause.
Doing so creates what is called a nested
“if-then-else” structure (see Figure 15.18).

■ The parentheses around the then-expres-
sion and the else-expression are optional.
However, I recommend that you use them
to make your XPath easier to read. The
parentheses around the test expression,
however, are not optional.

200

Chapter 15

Qu
an

tif
yi

ng
 a

 C
on

di
tio

n

Quantifying a Condition
There may be times when you want to know
if every one or some of the items in a sequence
satisfy a certain condition. For example, were
every one of Michael Phelps’ medals in the 2008
Olympics gold? True. Or, did some of Misty
May-Treanor and Kerri Walsh’s matches in the
2008 Olympics result in a loss? False.

To test if every item in a sequence
satisfi es a condition:
1. Anywhere you could have an XPath expres-

sion (though usually as a test expression),
type every.

2. Then, type $var_name, where var_name
will refer to the value of the expression in
Step 4 below.

3 Next, type in (.
4. Specify the expression which is the

sequence of items to be tested by the
expression in Step 7.

5. Then, type) to end the expression, some-
times called the binding sequence.

6. Next, type satisfies (.
7. Specify the test expression using $var_name

from Step 2 to represent the items from the
expression in Step 4.

8. Finally, type) to end the test expression and
the conditional test (Figure 15.19).

✔ Tips
■ You can also test if some of the items in

a sequence satisfy a condition. To do so,
replace the word every in Step 1 with the
word some.

■ This construct is called a quantified expres-
sion, and its result is a boolean value.

■ The parentheses around the binding
sequence and the test expression are
optional. However, I recommend that
you use them to make your XPath easier
to read.

...
Of these wonders,

<xsl:value-of select="

 if (every $wonder_history
 in (ancient_wonders/wonder/history)
 satisfies (exists
 ($wonder_history/how_destroyed)))

 then ('all')

 else (

 if (some $wonder_history
 in (ancient_wonders/wonder/history)
 satisfies (exists
 ($wonder_history/how_destroyed)))

 then ('some')

 else ('none')
)
" />

have been destroyed.

x s l t

 Here I am using both an Figure 15.19 every condi-
tion and a some condition to see if all, some, or none
of the ancient wonders have been destroyed. Note the
use of a nested if-then-else structure, as described on
page 199. Also, notice the use of the XPath 2.0 func-
tion exists(), which returns a boolean value based on
whether its argument exists or not.

 As you probably already know, only Figure 15.20
some of the ancient wonders have been destroyed.

201

XPath 2.0

Rem
oving Duplicate Item

s

Removing Duplicate Items
One of the differences between node sets and
sequences is that sequences can have dupli-
cate items. This is an important upgrade of
functionality from version 1.0 to version 2.0.
However, there will be times when you want to
have a sequence where each item is represented
only once.

To remove duplicate items from a
sequence:
1. Type distinct-values(.
2. Then, type the expression that contains the

sequence to be processed.
3. Finally, type) to complete the function

(Figure 15.21).

✔ Tip
■ The order of the items returned from the

distinct-values() function may be
different depending on your XSLT proces-
sor. If you need your sequence to be in a
specific order, you can use the xsl:sort
instruction to sort the resulting sequence in
the way that you need (Figure 15.22).

...
They were built in

<xsl:for-each select=
 "distinct-values(ancient_wonders/
 wonder/substring-after
 (location, ','))">
 <xsl:sort select="."
 order="ascending"/>
 <xsl:value-of select="."/>
 <xsl:choose>
 <xsl:when test="position()=
 last()">;</xsl:when>
 <xsl:when test="position()=
 last()-1">, and </xsl:when>
 <xsl:otherwise>, </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>

x s l t

 This XSLT 2.0 / XPath 2.0 example Figure 15.21
is using the distinct-values() function to remove the
duplicate items from a sequence. The sequence is gen-
erated using the substring-after() function to return
only the country name from the location element.

<p>These ancient wonders are Colossus
 of Rhodes, Great Pyramid of Giza,
 Hanging Gardens of Babylon, Statue
 of Zeus at Olympia, Temple of
 Artemis at Ephesus, Mausoleum at
 Halicarnassus, and Lighthouse of
 Alexandria.

 They were built in Egypt, Greece,
 Iraq, and Turkey; and they ranged
 in height from 39 to 455 feet.

 Of these wonders, some have been
 destroyed. 4 were destroyed by
 earthquake, 2 were destroyed by
 fire, and 1 is still standing.
</p>

h t m l

 The code in Figure 15.21 returns a Figure 15.22
sequence of the countries in which the wonders were
built. Notice that I also used xsl:sort to order the
sequence alphabetically before displaying it.

202

Chapter 15

Lo
op

in
g

Ov
er

 S
eq

ue
nc

es

...
and they stood from
<xsl:variable name="yrs_standing"
 select=
 "for $i in (ancient_wonders/wonder)
 return (

if ($i/history/year_destroyed != 0)
 then (
 if ($i/history/year_destroyed/@era
 ='BC')
 then ($i/history/year_built -
 $i/history/year_destroyed)
 else ($i/history/year_built +
 $i/history/year_destroyed - 1)
)
 else ($i/history/year_built
 + 2008 - 1)

) "/>

<xsl:value-of
 select="min($yrs_standing)"/>
years to
<xsl:value-of
 select="max($yrs_standing)"/>
years.

x s l t

 Here, I’m using the calculation shown Figure 15.23
in Figure 15.18 within a for expression. It returns a
sequence of the years standing for all the wonders. The
range variable $i refers to the current wonder in the
for expression.

 The XPath 2.0 Figure 15.24 for expression returns
a sequence. This sequence can then be used elsewhere
in the XSLT document. For example, at the bottom of
the code in Figure 15.23, I used the min() and max()
functions on the sequence. These functions were dis-
cussed on page 197.

Looping Over Sequences
One of the more powerful new features in
XPath 2.0 is the ability to loop over a sequence.
Though similar to the functionality of the
XSLT 1.0 xsl:for-each instruction, the result
of an XPath 2.0 loop is a sequence. And, this
sequence can then be processed just as any
other, enabling much more complex data trans-
formations than were possible using XSLT 1.0
with XPath 1.0.

To loop over a sequence:
1. Anywhere you could have an XPath

expression (though usually in an output
capacity), type for.

2. Then, type $range_var, where range_var
will be set to each of the items in the
expression in Step 4 below. This is some-
times called the range variable.

3. Next, type in (.
4. Specify the expression which is the

sequence of items used to set the range
variable in Step 2 above.

5. Then, type) to end the expression, some-
times called the binding sequence.

6. Next, type return (.
7. Specify the return expression. This expres-

sion is evaluated once using $range_var
from Step 2 to represent each of the items
from the expression in Step 4.

8. Finally, type) to end the return expression
(Figure 15.23).

✔ Tips
■ This XPath 2.0 construct is called a for

expression. The return value of a for expres-
sion is a sequence.

■ The parentheses around the binding
sequence and the return expression are
optional. However, I recommend that
you use them to make your XPath easier
to read.

203

XPath 2.0

Using Today’s Date and Tim
e

...
<xsl:variable name="cur_year"
 select="format-date
 (current-date(), '[Y0001]')"/>

and they stood from
<xsl:variable name="yrs_standing"
...
 else ($i/history/year_built
 + $cur_year - 1)
...

x s l t

 In this excerpt, I am using the Figure 15.25 format-
date() function to convert the value returned from
the current-date() function to a four-digit year
([Y0001]). While this returns the current year (in
this case, 2008), it does so as a string. Because XPath
2.0, is a strongly typed language, the math calcula-
tion of year_built + $cur_year - 1 generates an XSLT
processing error (because you cannot perform math on
a string).

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://
www.w3.org/1999/XSL/Transform"
version="2.0" xmlns:xs="http://www.
w3.org/2001/XMLSchema">

...
<xsl:variable name="cur_year"
 select="format-date
 (current-date(), '[Y0001]')
 cast as xs:integer"/>

and they stood from
<xsl:variable name="yrs_standing"
...
 else ($i/history/year_built
 + $cur_year - 1)
...

x s l t

 In order to fix the processing error in Figure 15.26
Figure 15.25, I have to change the string '2008' to
be an integer = 2008. To do this, I declare the XML
Schema namespace in the xsl:stylesheet element,
and then use the cast operator to change $cur_year
to an xs:integer.

Using Today’s Date and Time
XPath 2.0 has a significantly larger set of func-
tions than XPath 1.0 has. I’ve discussed some
of the aggregating functions on pages 196 and
197, as well as some string functions on page
198. In addition to these, there are three new
functions in XPath 2.0 that return today’s date
and time.

To return today’s date:
◆ Type current-date() (Figure 15.25).

To return the current time:
◆ Type current-time().

To return the current date and time:
◆ Type current-dateTime().

✔ Tips
■ Each of these new functions returns an

XML Schema primitive type: xs:date,
xs:time, and xs:dateTime, respectively.

■ Each of these new functions can be for-
matted by a new XSLT 2.0 function:
format-date(), format-time(), and
format-dateTime(), respectively (see
Figure 15.25).

■ To manipulate values that are xs:date,
xs:time, xs:dateTime, or any other
XML Schema data type, you must declare
the namespace in the xsl:stylesheet
element (Figure 15.26).

204

Chapter 15

W
rit

in
g

Co
m

m
en

ts

...
and they stood from
<xsl:variable name="yrs_standing"
 select="

(: This set of instructions
 calculates the total years
 standing of each wonder.

 If the wonder was destroyed in the
 BC era, the math is simple:
 subtract year_destroyed from
 year_built.

 If the wonder was destroyed in the
 AD era, the math is to add the
 year_built and the year_destroyed,
 but subtract 1 because there is no
 year zero.

 If the wonder has not been
 destroyed, the math is to add the
 year_built and the current year,
 but subtract 1 because there is no
 year zero. :)

 for $i in (ancient_wonders/wonder)
 return (

if ($i/history/year_destroyed != 0)
 then (
 if ($i/history/year_destroyed/@era
 ='BC')
 then ($i/history/year_built -
 $i/history/year_destroyed)
 else ($i/history/year_built +
 $i/history/year_destroyed - 1)
)
 else ($i/history/year_built
 + $cur_year - 1)
...

x s l t

 This calculation may make sense to me Figure 15.27
today. However, when returning to this code in one,
six, or twelve months, it may be a little more difficult
to follow without the XPath comment.

Writing Comments
Being able to comment your XPath is extremely
helpful. It allows you to explain what a par-
ticular instruction or set of instructions means.
Surprisingly, this was not available in XPath 1.0
but is part of the XPath 2.0 specification.

To write comments:
1. Type (:.
2. Write your comment.
3. Finally, type :) to close the comment

(Figure 15.27).

✔ Tips
■ XPath comments can only occur where

an XPath expression is expected.
■ XPath comments can span multiple lines,

and can contain any characters, includ-
ing spaces, text, elements, and line breaks.
In fact, they can even contain a colon
and a closing parenthesis (unless they are
together, in which case you have closed
your comment).

■ Like XML comments, you can use XPath
comments to hide a set of XPath instruc-
tions during development. This is called
commenting out a section. Within a com-
mented out section, the elements, along
with any errors they may contain, will not
be processed by the XPath processor.

■ Unlike XML comments, however, you
may nest XPath comments in other XPath
comments. This enables you to comment
out sets of XPath instructions that already
contain comments of their own.

205

XPath 2.0

Processing Non-XM
L Input

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://
 www.w3.org/1999/XSL/Transform"
 version="2.0" xmlns:xs="http://
 www.w3.org/2001/XMLSchema">
 <xsl:output method="html"/>

 <xsl:variable name="input_text"
 as="xs:string" select="
 unparsed-text(
 'julius_caesar-act-iii.txt')"/>

 <xsl:variable name="input_lines"
 as="xs:string" select="
 replace(
 $input_text, '\r?\n', ' ')"/>

 <xsl:variable name="no_speakers"
 as="xs:string*" select="
 tokenize(
 $input_lines, '\b[A-Z]+\.')"/>
...
 <xsl:for-each select="
 $no_speakers">
 <xsl:analyze-string select="."
 regex=".*Caesar.*">
 <xsl:matching-substring>
 <p>
 <xsl:value-of select="."/>
 </p>
 </xsl:matching-substring>
 </xsl:analyze-string>
 </xsl:for-each>
...

x s l t

 This example returns an HTML file Figure 15.28
with all the lines of dialogue from Act III of Julius
Caesar, which contain the word ‘Caesar.’

The unparsed-text() function sets input_text to be
equal to the text from the file julius_caesar-act-iii.txt.

The replace() function changes all line breaks and
carriage returns in input_text to spaces, and then
saves the result in input_lines.

The tokenize() function breaks up input_lines into
a sequence of strings, and saves it in the variable
no_speakers. The breaking marker used is capital
letter words followed by a period (\b[A-Z]+\.). These
markers are the speakers’ names in the text.

The analyze-string() function and its companion
function matching-substring() function return
the strings from no_speakers, which contain the
word ‘Caesar’. This could have been done using the
contains() function as well.

Processing Non-XML Input
Although it was technically possible to use
non-XML input in XSLT 1.0 and XPath 1.0, it
was not an easy task to process, and there were
many constraints when trying to do so.

However, in XSLT 2.0 / XPath 2.0, there are a
handful of new functions that make processing
non-XML input much easier (Figure 15.28).
This is a rather advanced topic, but I’ve listed
few important and relevant functions below.

Reading non-XML input:
◆ unparsed-text(href) returns the contents of

the file found at href as a string.

Parsing input using regular
expressions:
◆ tokenize(input, regex_pattern) returns a

sequence of strings from the input string
using the regex_pattern to break the input
string into individual pieces.

◆ replace(input, regex_pattern, replace)
returns an updated input string, where each
occurrence of the regex_pattern in the input
string is replaced with the replace string.

◆ match(input, regex_pattern) returns
the boolean value (either true or false),
depending on whether the input string
matches the regex_pattern or not.

◆ analyze-string(select="expression"
regex="pattern") returns a sequence of
all the strings from the select expression
that match the regex pattern. It is fol-
lowed by one or both of the instructions:
<xsl:matching-substring> and/or
<xsl:non-matching-substring>,
each of which processes the appropriate
substrings from the analyze-string
instruction.

This page intentionally left blank

16

207

XQuery 1.0

XQuery 1.0 (XML Query Language) is the third
major language resulting from the eight W3C
Recommendations published in January, 2007.
Like XSLT 2.0 (Chapter 14), XQuery is used to
select content from an XML data source, trans-
form that content as directed, and then return
this new content as either XML, HTML, or
some other format. XQuery uses the XPath 2.0
language (Chapter 15) to select XML source
content and to manipulate that content if nec-
essary, just like XSLT 2.0. In fact, most of the
things that you can do with XSLT 2.0, you can
also do with XQuery 1.0.

XQuery does differ from XSLT 2.0 in a few
significant ways; including, most noticeably,
that it does not use XML syntax. This actu-
ally makes for a more compact and easily
learned language, especially for XML novices or
those with previous programming experience.
Interestingly enough, one of the other eight
published Recommendations is a language
that uses XML syntax for XQuery queries,
called XQueryX. It is, however, a verbose and
unwieldy language, and is only really usable by
XML software tools, not by people.

As with XSLT 2.0 and XPath 2.0, in order to
see this chapter’s examples work (or to write
XQuery yourself), you will need an XQuery
processor. If you don’t have one already, see
Appendix A, XML Tools, for a list of options.

For additional XQuery information, visit the
W3C’s XQuery Working Group site at:
www.w3.org/XML/Query.

XQUERY 1.0

www.w3.org/XML/Query

208

Chapter 16

XQ
ue

ry
 1

.0
 v

s.
XS

LT
 2

.0

...
<p>These ancient wonders are

 <xsl:for-each select="
 ancient_wonders/wonder/name
 [@language='English']">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </p>
...

x s l t

 This excerpt of XSLT uses XPath to Figure 16.1
retrieve a sequence of ancient wonder names whose
language attribute equals ‘English’. It then uses the
xsl:for-each construct to loop over all the names and
display each of them in an HTML bulleted list.

...
<p>These ancient wonders are:

 {
 for $x in
 doc("wonders-master.xml")
 /ancient_wonders/wonder/name
 [@language='English']

 return

 {data($x)}

 }

</p>
...

x q u e r y

 This XQuery excerpt generates the exact Figure 16.2
same HTML as the XSLT shown in Figure 16.1.
Here, a loop is created where XPath returns each of
the wonder nodes whose language attribute equals
‘English,’ and sets the variable $x. Then, each time
through the loop, the data value of the variable $x is
output in an HTML bulleted list.

XQuery 1.0 vs. XSLT 2.0
Both XQuery 1.0 and XSLT 2.0 can be used to
query XML data sources. They are both built
on XPath 2.0 expressions, and they use the
same data model, XDM. In both languages,
you can create user-defined functions, and you
can use XML Schema to validate XML source
content, as well as XML output content.

Given this, at the basic level, the choice to
use XQuery 1.0, as opposed to XSLT 2.0, is a
matter of taste and experience. XSLT 2.0 uses
XML syntax and extends XSLT 1.0, a language
with which you may have some experience. On
the other hand, XQuery does not use XML
syntax, and is more similar in structure to SQL
(Structured Query Language), another language
with which you may be familiar.

With basic queries and transformations, both
languages are equally competent (Figures
16.1 and 16.2). However, a well-known
study showed that with no previous knowledge,
XQuery is easier to learn than XSLT 2.0. But,
as the transformation requirements increase in
complexity, the better choice becomes XSLT
2.0. It has better support for grouping data,
formatting numbers and dates, and schema-
type validation.

Even still, XQuery is gaining significant
momentum. One of the major reasons is that
XQuery was designed with the idea of directly
querying databases. And, major database devel-
opers such as IBM, Microsoft, and Oracle have
mechanisms enabling XQuery to view their
databases like any other XML source.

The bottom line is that the choice of whether
to use XQuery 1.0 or XSLT 2.0, can be subjec-
tive. I suggest that for complex queries, you use
XQuery, and for complex transformations, you
use XSLT 2.0. Moreover, most XML processing
infrastructures allow for a mixture of languages,
and you will likely be best served by using both
languages, each where most appropriate.

209

XQuery 1.0

Com
posing an XQuery Docum

ent

xquery version "1.0";

"Hello World!"

x q u e r y

Hello World!

o u t p u t

 In the XQuery document above, I Figure 16.3
declared that I’m using XQuery version 1.0. Then, I
typed in a literal string, which will be output as shown
when the document is processed.

xquery version "1.0";

"Everyone count down:",

reverse(1 to 10),

"Blastoff!"

x q u e r y

Everyone count down:
10 9 8 7 6 5 4 3 2 1 Blastoff!

o u t p u t

 In the example above, the three XQuery Figure 16.4
expressions are separated by commas. The second
expression constructs a sequence, which is then reversed
using the built-in reverse() function.

xquery version "1.0";

<countdown>
 {reverse(1 to 10)}</countdown>

x q u e r y

<countdown>10987654321</countdown>

o u t p u t

 In this example, I am constructing an Figure 16.5
XML element called countdown. Notice the use of
the curly braces, which delimit the enclosed expression.
This expression is then evaluated, and replaced by its
value in the output.

Composing an XQuery Document
An XQuery document is a text-only file and
begins with a version declaration (Figure
16.3). It does not start with the standard XML
declaration, because it is not an XML docu-
ment itself. An XQuery document is saved with
either an .xquery or .xq extension. I use the
latter in this chapter.

To compose an XQuery document:
1. At the top of your document, type xquery.
2. Then, type version "1.0".
3. Next, type ; (a semi-colon).
4. Finally, write an XQuery expression, or

multiple XQuery expressions, separated
by commas.

✔ Tips
■ An XQuery expression can be a numeric

or string literal (Figure 16.3); a sequence
constructor (Figure 16.4); an element
constructor (Figure 16.5); a built-in or
user-defined function (see page 216); or
one of the built-in expressions, such as a
conditional expression (see page 214) or a
FLWOR expression (see page 212).

■ Comments in XQuery use the same syntax
as XPath 2.0. (: is used to start the com-
ment, and :) is used to end it. And, like
XPath 2.0, they can be nested.

■ When using element constructors (Figure
16.5), curly braces ({ }) are used to dis-
tinguish expressions from literal text. These
enclosed expressions are evaluated first before
being output.

■ Although XQuery does not use XML
syntax, it is case sensitive, and all XQuery
instructions are written in lowercase.

210

Chapter 16

Id
en

tif
yi

ng
 a

n
XM

L S
ou

rc
e

Do
cu

m
en

t

xquery version "1.0";

doc("wonders-master.xml")

x q u e r y

<?xml version="1.0" encoding="UTF-8"?>
<!-- Note: For many of the wonders,
 the experts do not agree on precise
 dates or construction dimensions.
 In these cases, I chose a year or
 dimension in the middle of the
 range so all attributes could be
 numeric. -->
<ancient_wonders>
 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσσός της Ρόδου</name>
 <location>Rhodes, Greece</location>
 <height units="feet">107</height>
 <history>
 <year_built era="BC">
 282</year_built>
 <year_destroyed era="BC">
 226</year_destroyed>
 <how_destroyed>
 earthquake</how_destroyed>
 <story>In 294 BC, the people of
 the island of Rhodes began
 building a colossal statue ...

o u t p u t

 In the XQuery example above, I have Figure 16.6
identified the XML source document to be the
wonders-master.xml document, something you should
be familiar with by now. The doc() function returns
the node tree of the current context as a sequence.

Identifying an XML Source
Document
To process XML source documents with either
version of XSLT, you would use the XML
processing directive xml-stylesheet. This
directive enables you to identify the path to
the XML source document. For XQuery, how-
ever, there isn’t an XML processing directive.
To identify the XML source for an XQuery
document, you can use the doc() function.

To identify an XML source document:
1. Type doc(.
2. Then, type doc_uri, where doc_uri is

the path to the XML source document.
3. Finally, type) to end the function

(Figure 16.6).

✔ Tips
■ Some XQuery processors require that you

identify the XML source document when
you process your XQuery (and not in the
XQuery code itself). In this case, you will
need to replace the doc_uri in the doc()
function with . (a period). This is a repre-
sentation of the current context, which you
will need to use instead of a URI.

■ Regardless of the XQuery processor you
use, XQuery can actually use more than
one XML source document (see page 215).

211

XQuery 1.0

Using Path Expressions

xquery version "1.0";

doc("wonders-master.xml")
 /ancient_wonders/wonder/location

x q u e r y

<location>Rhodes, Greece</location>
<location>Giza, Egypt</location>
<location>Al Hillah, Iraq</location>
<location>Olympia, Greece</location>
<location>Ephesus, Turkey</location>
<location>Bodrum, Turkey</location>
...

o u t p u t

 In the example above, I use the Figure 16.7 doc()
function to retrieve the document node from the
wonders-master.xml source document. Then, I use the
location path /ancient_wonders/wonder/location to
retrieve each wonder’s location element.

xquery version "1.0";

doc("wonders-master.xml")
 /ancient_wonders/wonder/location
 [contains(., "Turkey")]

x q u e r y

<location>Ephesus, Turkey</location>
<location>Bodrum, Turkey</location>

o u t p u t

 In this example, I have added a predi-Figure 16.8
cate to select only those location elements that contain
the string “Turkey.”

xquery version "1.0";

doc("wonders-master.xml")
 /ancient_wonders/wonder/name
 [contains(../location, "Turkey")]

x q u e r y

<name language="English">Temple of
 Artemis at Ephesus</name>
<name language="Greek">
 ’Aρτεμίσιον</name>
<name language="English">Mausoleum at
 Halicarnassus</name> ...

o u t p u t

 Here, I have altered the path expression Figure 16.9
and predicate to return the name elements which have
a location element containing the string “Turkey.”

Using Path Expressions
To select content from an XML data source,
XQuery uses the XPath language syntax
(Figure 16.7). The XML source document is
first converted into an XML node tree. Then,
based on the location path you provide, the
XML tree is searched to find the information
requested. As discussed in Chapter 3, the
location path describes the position of the
desired content relative to the position of the
current context.

To use a path expression:
1. First, identify the XML source document

using the doc() function described on
page 210.

2. Next, type any valid XPath expression. This
expression will be used with the node tree
generated from the XML source document,
retrieved by the doc() function in Step 1.

✔ Tips
■ Some XQuery processors require that you

select the XML source document when you
process your XQuery. In this case, you will
need to change the doc_uri in the doc()
function to a representation of the current
context, which is . (a period).

■ Like all XPath expressions, those used in
XQuery can take predicates, and XQuery
predicates can also use functions (Figures
16.8 and 16.9).

212

Chapter 16

W
rit

in
g

FL
W

OR
 E

xp
re

ss
io

ns

xquery version "1.0";

for $wndr in
 doc("wonders-master.xml")
 /ancient_wonders/wonder

where
 contains($wndr/location, "Turkey")

return $wndr/name

x q u e r y

<name language="English">Temple of
 Artemis at Ephesus</name>
<name language="Greek">
 ’Aρτεμίσιον</name>
<name language="English">Mausoleum at
 Halicarnassus</name> ...

o u t p u t

 The FLWOR expression above sets the Figure 16.10
range variable $wndr to each of the wonder elements
in the XML source document, wonders-master.xml.
The where clause then filters the sequence of $wndr
variables to only include those which have a location
element containing the string “Turkey.” Then, the
return clause outputs each of these name elements.
You’ll see from the output that this FLWOR expres-
sion generates the exact same result as the example in
Figure 16.9.

xquery version "1.0";

for $wndr in
 doc("wonders-master.xml")
 /ancient_wonders/wonder

where
 contains($wndr/location, "Turkey")

return $wndr/name[@language='English']

x q u e r y

<name language="English">Temple of
 Artemis at Ephesus</name>
<name language="English">Mausoleum at
 Halicarnassus</name>

o u t p u t

 In this example, I’ve added a predicate Figure 16.11
to the return clause, only outputting the name ele-
ments with a language attribute of ‘English.’

Writing FLWOR Expressions
The FLWOR expression (pronounced “flower”)
is unique to XQuery (Figure 16.10). It is sim-
ilar to XSLT’s xsl:for-each instruction and is
an extension of the XPath 2.0 for expression.
Also, the FLWOR expression is loosely based
on the SQL Select statement, and its name is
an acronym of each of its five keywords: for, let,
where, order, and return.

To write a basic FLWOR expression:
1. Type for.
2. Then, type $range_var, where range_var

will be set to each of the items returned
in the expression in Step 4 below. This is
sometimes called the range variable.

3. Next, type in.
4. Specify the expression, which is the

sequence of items used to set the range
variable in Step 2 above. This is sometimes
called the binding sequence.

5. Then, type where.
6. Specify the expression, which will filter the

range variables set by the binding sequence
in Steps 2 and 4 above. This is usually
called the where clause.

7. Next, type return.
8. Finally, specify the return clause. This

expression is evaluated once for each range
variable set by the binding sequence and
filtered by the where clause (Steps 2, 4, and
6, respectively).

✔ Tip
■ In a FLWOR expression, the where clause

shown in Steps 5 and 6 is optional.

213

XQuery 1.0

W
riting FLW

OR Expressions

xquery version "1.0";

for $wndr in
 doc("wonders-master.xml")
 /ancient_wonders/wonder
where
 contains($wndr/location, "Turkey")
order by
 $wndr/name[@language='English']
return $wndr/name[@language='English']

x q u e r y

<name language="English">Mausoleum at
 Halicarnassus</name>
<name language="English">Temple of
 Artemis at Ephesus</name>

o u t p u t

 Here, I’m using an order by clause to Figure 16.12
sort the final sequence by each wonder’s English name.

xquery version "1.0";

for $wndr in
 doc("wonders-master.xml")
 /ancient_wonders/wonder
let $src := $wndr/source
where
 contains($wndr/location, "Turkey")
order by
 $wndr/name[@language='English']
return
 ($wndr/name[@language='English'],
 $src)

x q u e r y

<name language="English">
 Mausoleum at Halicarnassus</name>
<source sectionid="141"
 newspaperid="21"/>
<source sectionid="2"
 newspaperid="19"/>
<name language="English">
 Temple of Artemis at Ephesus</name>
<source sectionid="92"
 newspaperid="19"/>

o u t p u t

 The let clause sets Figure 16.13 $src to the source
element(s) for each wonder in the for clause (also fil-
tered by the where clause). These source elements are
output with each wonder’s English name element. The
parentheses and comma separator in the return clause
create a single sequence of the two expressions shown.
This is used because return clauses can only output a
single expression.

The other optional clause in the FLWOR
expression is the order by clause. It sorts the
final sequence of items before it’s output by the
return clause (Figure 16.12).

To include the order by clause:

1. Immediately before the return clause
shown in Steps 7 and 8 on page 212, type
order by.

2. Finally, specify the expression which will
order the final sequence of items to be out-
put by the return clause.

The last clause in the FLWOR expression is
the let clause (Figure 16.13). It, like the for
clause, generates an ordered sequence of items.
The difference between the two is that for
each item in the sequence generated by the for
clause, only one item is created for the variable
in the let clause, even if this variable is set to a
sequence itself.

To include the let clause:
1. Before the return clause and both the

optional where clause and order by clause
(if they are included), type let.

2. Then, type $instance_var, where
instance_var will be set to the entire result
of the expression in Step 4 below.

3. Next, type := (a colon and an equals sign).
4. Finally, specify the expression which will set

the instance variable in Step 2 above. This
is sometimes called the binding sequence.

✔ Tips
■ You can have as many, or as few, for clauses

and let clauses as you wish, but you must
have at least one of either for the FLWOR
expression to be valid.

■ Sometimes, the variable set in the for
clause is used in the let clause expression.
This creates something like the SQL join
clause, and is discussed more on page 215.

214

Chapter 16

Te
st

in
g

w
ith

 C
on

di
tio

na
l E

xp
re

ss
io

ns

xquery version "1.0";

<destruction>
{
 for $wndr in
 doc("wonders-master.xml")
 /ancient_wonders/wonder

 return
 if ($wndr/history/how_destroyed
 ="earthquake")
 then
 <quake>
 {data($wndr/name
 [@language='English'])}
 </quake>

 else
 if ($wndr/history/how_destroyed
 ="fire")
 then
 <fire>
 {data($wndr/name
 [@language='English'])}
 </fire>
 else ()
}
</destruction>

x q u e r y

<destruction>
 <quake>
 Colossus of Rhodes</quake>
 <quake>
 Hanging Gardens of Babylon</quake>
 <fire>
 Statue of Zeus at Olympia</fire>
 <fire>
 Temple of Artemis at Ephesus</fire>
 <quake>
 Mausoleum at Halicarnassus</quake>
 <quake>
 Lighthouse of Alexandria</quake>
</destruction>

o u t p u t

 In the XQuery example, the condi-Figure 16.14
tional expression tests how each wonder was destroyed,
and returns a new element (<quake> or <fire>) with
that wonder’s English name. Remember, the enclosed
expression inside the curly braces is evaluated first
before being output.

Testing with Conditional
Expressions
Conditional expressions in XQuery 1.0 use the
same if-then-else syntax as those in XPath 2.0.
These expressions (Figure 16.14) provide the
ability to test a condition and output different
results based on the boolean value (true or false)
of the condition.

To test with a conditional
expression:
1. Type if (.
2. Specify the boolean expression which is the

condition on which you wish to test.
3. Then, type) to end the test expression.
4. Next, type then.
5. Specify the expression whose value will be

returned if the boolean expression in Step 2
is true. This is called the then-expression.

6. Then, type else.
7. Finally, specify the expression whose

value will be returned if the boolean
expression in Step 2 is false. This is called
the else-expression.

✔ Tips
■ You may use any valid expression for the

then-expression and the else-expression.
In fact, these expressions may even be new
if-then-else expressions (Figure 16.14).
Doing so creates what is called a nested if-
then-else structure.

■ Parentheses are required around the test
expression. Parentheses are optional around
the then-expression and the else-expression.

■ If you do not need an else-expression,
you still must include one. Just use else(),
which returns an empty sequence (Figure
16.14). Notice that in this case, parenthe-
ses are required.

215

XQuery 1.0

Joining Tw
o Related Data Sources

<earthquakes>
 <occurrence>
 <epicenter>Abu Qir, Egypt
 </epicenter>
 <cities_affected>
 <city>Abu Qir, Egypt</city>
 <city>Alexandria, Egypt</city>
 <city>Damanhur, Egypt</city>
 </cities_affected>
 <date>1323-01-09</date>
 <magnitude>6.1</magnitude>
 </occurrence>
...

x m l

 I have created an xml file containing Figure 16.15
(100% fictitious) information about earthquakes that
occurred in the 14th and early 15th centuries. It is
called earthquake_data.xml.

xquery version "1.0";

for $wndr in
 doc("wonders-master.xml")
 /ancient_wonders/wonder

for $quake in
 doc("earthquake_data.xml")
 /earthquakes/occurrence

where $quake[cities_affected/city
 = $wndr/location]

return (data($wndr/name
 [@language='English']),
 data($quake/date))

x q u e r y

Mausoleum at Halicarnassus 1402-11-18
Mausoleum at Halicarnassus 1404-03-13
Mausoleum at Halicarnassus 1404-03-23
Lighthouse of Alexandria 1323-01-09

o u t p u t

 In the example above, the first Figure 16.16
data source is wonders-master.xml. The second
data source is earthquake_data.xml. The where
clause joins these two data sources by matching the
cities_affected/city with the wonder’s location. This
results in a list of wonders which were affected by
earthquakes in the 14th and 15th centuries, and the
dates of each earthquake.

Joining Two Related Data Sources
Oftentimes, the information with which you
are working is contained in multiple XML data
sources. XQuery allows you to query informa-
tion in multiple files simultaneously using a
FLWOR expression.

For example, a clothing store might have an
XML file listing its products: product id, name,
price, and description; and another XML file
listing its orders: order id, product id, quantity
purchased, and customer information. Using
the product id as the primary relationship
between the two files, you could use an XQuery
FLWOR expression to calculate the total cost
of an order by multiplying the quantity of each
product purchased (in the orders file) by the
price of the product itself (in the products file).

To join two related data sources:
1. Write the for clause which refers to the first

data source.
2. Then, write a second for clause, and refer

to the second data source. The relationship
between both data sources will be defined
in Step 3 below.

3. Finally, in the where clause of the FLWOR
expression, use the range variables from
both for clauses in Steps 1 and 2 to define
the relationship between the data sources
(Figure 16.16).

✔ Tip
■ There are actually many different ways

to join related data sources. You could
use let clauses instead of one or both for
clauses; you could write a second FLWOR
expression as the return clause for the
first FLWOR expression; you could use
predicates instead of a where clause, etc.
The idea is the same; joining two related
data sources requires items in the first data
source that relate to (and are often equal
to) items in the second data source.

216

Chapter 16

Cr
ea

tin
g

an
d

Ca
lli

ng
 U

se
r D

ef
in

ed
 F

un
cti

on
s

<richter>
 <quake>
 <magnitude>1.0</magnitude>
 <energy>50 lbs</energy>
 <example>Blast at construction
 site</example>
 </quake>...

x m l

 This xml file, called Figure 16.17 richter_scale.xml,
contains information about the energy released by
earthquakes of different Richter scale magnitudes.

xquery version "1.0";

declare function local:richter($mag)
{
 let $mag_normalized :=
 ((round($mag * 2)) div 2)
 cast as xs:decimal
 for $r in
 doc("richter_scale.xml")
 /richter/quake
 let $r_dec := (data($r/magnitude))
 cast as xs:decimal
 where $r_dec = $mag_normalized
 return
 (data($r/energy), data($r/example))
};
for $wndr in
 doc("wonders-master.xml")
 /ancient_wonders/wonder
...
return (data($wndr/name
 [@language='English']),
 data($quake/date),
 local:richter(
 data($quake/magnitude)))

x q u e r y

Mausoleum at Halicarnassus 1402-11-18
200 million tons Estimated energy
released by Krakatoa volcano in 1883
Mausoleum at Halicarnassus 1404-03-13
80,000 tons Large hurricane
Mausoleum at Halicarnassus 1404-03-23
32 million tons Largest Thermonuclear
Weapon ...

o u t p u t

 The UDF named Figure 16.18 richter has an input
parameter named $mag. The UDF rounds $mag to
the nearest 0.5 increment, and returns the amount of
energy released by an earthquake of that magnitude
and an example of that energy in another context. The
calling expression local:richter(...) is part of the return
clause of the FLWOR clause from Figure 16.16.

Creating and Calling User Defi ned
Functions
A User Defined Function (UDF) in XQuery
acts just like a built-in XQuery function, except
that you define its name, input, what it does
with the input, and what it outputs.

To create a User Defi ned Function:
1. Immediately after the version declaration

(see page 209), type declare function.
2. Then, type local:UDF_name(, where

UDF_name is the name of your function.
3. Next, type $param_name to identify any

input parameters, where param_name will
refer to this parameter within your UDF.

4. Repeat Step 3 for each input parameter you
want, separated by a comma, and finish the
parameter listing with an). You may also
have no input parameters and skip Step 3.

5. Type {.
6. Then, write your XQuery expression. If

you have defined any input parameters in
Steps 3 and 4, use them in this expression.

7. Finally, type }; to complete the function.

To call your User Defi ned Function:
1. Anywhere an XQuery function is expected,

type local:UDF_name(, where UDF_name
matches the one you used in Step 2 above.

2. Type the value(s) of any input parameters
defined in Steps 3 above, separated by a
comma. If there are no input parameters
declared, you will skip this step.

3. Finally, type) to finish calling your UDF.

✔ Tip
■ XQuery provides a namespace (local:) to

prevent conflicts between UDF names and
the names of functions in the default
namespace. You may also declare and use a
different namespace for your UDFs.

217

XQuery 1.0

XQuery and Databases

 This excerpt is from a database table Figure 16.19
that contains the medals earned by country during the
2008 Summer Olympics. The table’s name is medals
and is in a database called olympics. The field names
are country, gold, silver, and bronze.

xquery version "1.0";

let $cntry_medals :=
 collection("olympics.medals")/*
let $total_gold :=
 sum(data($cntry_medals/gold))
let $total_silver :=
 sum(data($cntry_medals/silver))
let $total_bronze :=
 sum(data($cntry_medals/bronze))
let $total_medals := $total_gold +
 $total_silver + $total_bronze
return
(
 "Total gold medals awarded:",
 $total_gold,
...
 "Total medals awarded:",
 $total_medals
)

x q u e r y

Total gold medals awarded: 302
Total silver medals awarded: 303
Total bronze medals awarded: 353
Total medals awarded: 958

o u t p u t

 This example uses the Figure 16.20 collection()
function to set $cntry_medals to the sequence of rows
from the medals table in the olympics database.
While technically a FLWOR expression, there is no
for clause in the XQuery document. Had the first line
been a for clause instead of a let clause, the
sum calculations would have only taken place on a
row-by-row basis, not on the entire node tree.

XQuery and Databases
XQuery was specifically designed to be able
to query a wide array of XML data sources.
To accomplish this, before a query can be pro-
cessed, all data sources are converted into an
XML node tree. XQuery doesn’t care whether
that data source is some random file, an XML
document, or a relational database.

Since the inception of XQuery, database devel-
opers have been writing extensions for shuttling
data back and forth between their databases
and XML documents. In this way, these data-
bases were able to export data in XML format,
as well as convert (or shred) XML data into rela-
tional format. However, using an XML-enabled
database only works well if the XML data is
easily converted into the “rows and columns”
structure of a relational database. Moreover,
shredding XML for storage in the database, and
then putting it back together as XML, is often
an inefficient and costly process.

To address these drawbacks, a new type of data-
base was developed. It was designed to support
standard database features, but store its data in
a native XML format. And, while many users
are not interested (or are not in a position), to
change their database application, many others
have started using Native XML Databases.

The XQuery specification, however, does not
say how to create a database connection. Most
XQuery processors use the collection()
function. Like the doc() function, collection()
takes a URI argument and returns a sequence
of nodes (Figure 16.20). Even still, different
processors interpret the URI in different ways,
so you’ll need to consult your processor’s docu-
mentation for specifics.

In addition to the XQuery Working Group site
at: www.w3.org/XML/Query, a good resource
for information about XML and databases
(albeit a little out of date) can be found at:
www.rpbourret.com/xml/.

www.w3.org/XML/Query
www.rpbourret.com/xml/

This page intentionally left blank

219

Ajax, RSS, SOAP, and More 221

PART 7:
XML IN PRACTICE

This page intentionally left blank

17

221

Ajax, RSS, SOAP, and M
ore

Through reading this book, hopefully you have
come to understand that XML is not a markup
language itself. Rather, you now understand
that XML is a specification for creating markup
languages, and thus, its inherent extensibility.

In this chapter, I will identify and breakdown
some of the more widespread uses of XML
today. In one case, XML is simply being used
as a data container; in another case, the custom
markup language that was created has already
been extended further by those who are using
it. In yet another case, there are two XML stan-
dards fighting to become the standard. And, in
many of the examples, XML has been an inte-
gral part of the creation of a new technology.

The examples that I have included are not
nearly as extensive as those found in the rest
of the book. That’s because the intention of
this chapter is not to teach you how to develop
in each use of XML; each one could have a
chapter and much more devoted to it. Rather,
the examples are meant to give you a flavor of
the specific implementations, and how XML is
really being used in practice.

In February 1998, XML became an official
W3C Recommendation. The working group
members must certainly have thought they had
a great idea, but I don’t imagine that they could
foresee what it could become.

This chapter is about what XML has become.

Please note: If you want to follow the examples
in this chapter more closely, see pages 240–241
at the end of this chapter for some guidance.

AJAX, RSS,
SOAP, AND MORE

222

Chapter 17

Aj
ax

 B
as

ics

You
(on a browser)

http://
(submitting a form /

requesting information)

Web server

http://
(new page returned /

screen flashes)

 Without Ajax, data is submitted to a Figure 17.1
Web server, processed, and then returned as a new page.

You
(on a browser)

xmlhttp://
(submitting a form /

requesting information)

Web server

JavaScript
(new content returned /

screen updated)

 Here, data is submitted to, and returned Figure 17.2
from, the Web server. However, using Ajax, the content
is updated without a new page loading in the browser.

function GetXmlHttpObject() {
 var xmlHttpObject = false;
 try {
 // Most browsers today
 xmlHttpObject = new
 XMLHttpRequest();
 }
 catch (e) {
 // Internet Explorer 5 and 6
 xmlHttpObject = new
 ActiveXObject("Msxml2.XMLHTTP");
 }
 return xmlHttpObject;
}

j a v a s c r i p t

 This JavaScript function returns the Figure 17.3
XMLHttpRequest object used with Ajax. It supports
most current browsers, as well as IE 5 and 6.

Ajax Basics
Ajax (sometimes written as AJAX) stands for
Asynchronous JavaScript and XML. It is a Web-
based technique that creates a more seamless
user experience when a Web page is updated
based on user input. For instance, a page not
using Ajax (Figure 17.1) will take user input
and submit it to a script on the Web server for
processing. This is often the result of the user
clicking a submit button or selecting something
in a pull-down menu. The user input is then
processed by the server, and a new HTML page
is created. This new page is returned to the
browser, and the existing page is refreshed.

A Web page using Ajax (Figure 17.2) also
takes user input, and submits it to a script on
the Web server. This is triggered in the same
manner as above; however, the user input
is sent to the Web server differently (this is
discussed in more detail a little later). The
user input is then processed by the server, but
instead of creating a new HTML page, only
new data is created. This new data is returned
to the browser (again via a different mechanism
than in the non-Ajax experience). Then, instead
of refreshing the page, the existing page is sim-
ply updated with the new data.

The Technology of Ajax
Ajax is not a language. It is a specific way of
using existing languages to create a more inter-
active Web experience. It is the combination of
HTML (used to display the Web page), XML
(used to exchange data between the server-side
script and the Web page), and JavaScript (used
to update the HTML page with new data and
bind the entire process together).

The foundational component of Ajax is the
XMLHttpRequest object. It facilitates the
exchange of data between the Web page and
the script on the server. The XMLHttpRequest
object is supported by most current browsers.
And, for older browsers, there are other objects
that can be used in its place (Figure 17.3).

223

Ajax, RSS, SOAP, and More

Ajax Basics

function RequestAjax(url) {
 var xmlHttp = GetXmlHttpObject();
 if (xmlHttp) {
 xmlHttp.onreadystatechange =
 function() {
 if (xmlHttp.readyState == 4)
 ProcessAjax(xmlHttp.responseXML);
 }
 xmlHttp.open("GET", url, true);
 xmlHttp.send(null);
 }
 else
 alert ("Your browser is old or
 doesn't support Ajax.");
}

j a v a s c r i p t

 This JavaScript function uses the Figure 17.4
XMLHttpRequest object to set up the structure for the
asynchronous communication. When the Web server is
ready, the ProcessAjax function is called with the Web
server’s updated data (xmlHttp.responseXML).

<script language="JavaScript">
 function SelectWonder(value) {
 if (value != 0)
 RequestAjax(
 "getWonder.asp?id=" + value);
 }
...
<form>
Ancient Wonders:
 <select name="wonders" onchange=
 "SelectWonder(this.value)">
 <option value="0" default>
 Select a Wonder
 <option value="1">Colossus of Rhodes
...

h t m l

 The Figure 17.5 SelectWonder() function is called
when a wonder is selected. It sends the server-side
script URL with the selected wonder’s option value to
the RequestAjax() function.

function ProcessAjax(ret_xml) {
 var xmlDoc = ret_xml.documentElement;
 var xmlName = xmlDoc.
 getElementsByTagName("name")[0].
 childNodes[0].nodeValue;
...

h t m l

 The Figure 17.6 ProcessAjax() function is called
when data is returned from the server. It parses the
returned XML and displays it as directed on the page.

The XMLHttpRequest object exchanges data
between the Web page and the server-side script
asynchronously. This means that the browser
isn’t stopped while waiting for the server to
return the updated data. Consequently, the data
exchange happens without interfering with the
display or functionality of the existing page.

Once the XMLHttpRequest object has been
created, there are three steps required for the
data exchange to take place (Figure 17.4).
The first is to create the “retrieving function,”
which will be called when the Web server is
ready to send the updated data. For this, the
onreadystatechange property is used.

Once the retrieving function is declared, the
next step is to identity the URL of the server-
side script, which is done using the open
property. The final step is to send the request to
the server using the send property, which can
include content, variables, or be null.

Using Ajax

To use this Ajax foundation, the HTML page
needs to call the RequestAjax() function
from Figure 17.4. When it does, it must
include the server-side script’s URL and the
data to be processed (Figure 17.5).

The HTML page will also need to have a
ProcessAjax() function, which is called when
data is returned from the server (Figure 17.6).
It parses the XML returned by the server, and
uses JavaScript to display it as needed on the
Web page.

✔ Tips
■ The names of the functions and parameters

shown here were created by me; they are
not required names. The one exception is
the XMLHttpRequest() function. It and its
properties must be named as shown.

■ The examples shown here can be seen in
action on my Web site at: www.kehogo.com/
examples/wonders-ajax.html.

www.kehogo.com/examples/wonders-ajax.html
www.kehogo.com/examples/wonders-ajax.html

224

Chapter 17

Aj
ax

 E
xa

m
pl

es

 Having typed in “visual q,” Google Figure 17.7
Suggest offers a set of suggestions for me to search.

 TheFigure 17.8 4.4 red stars show the average rating.

 Mousing over the stars shows their Figure 17.9
meaning. I clicked on the 5th star, meaning I loved it.

Ajax Examples
Ajax is not that new. In fact, the underlying
concepts go back as far as 1996 (which, in
Internet time, is a long time ago).

The term Ajax was actually first used in an
essay by Jesse James Garrett in 2005. The essay,
in conjunction with Google Lab’s Beta release
of Google Suggest, is believed to have brought
about the wider recognition of the Ajax con-
cept. Here are some examples of Ajax in action.

Google Suggest
The idea behind Google Suggest (which has
since become a built-in feature of Google’s
standard search service), was to use Ajax to offer
search suggestions, based on what was being
typed. Using Ajax, each key press in the Google
search field would be sent to Google’s server,
and the data returned would be (typically) the
most popular searches, based on the string of
characters already typed (Figure 17.7).

Netfl ix: Star Ratings
Although not the first site to use Ajax for data
submissions, Netflix (an online movie rental
company) offers a star rating interface that has
earned it accolades in the Web community.

As a Netflix member, you have the ability to
rate every movie. Before you do so, each movie
displays the average of all Netflix members’
ratings for that movie. The rating is displayed
using red stars; the more stars shown, the
higher the rating (Figure 17.8).

You can mouse over the stars to see their mean-
ings (two stars: “Didn’t Like It”, four stars:
“Really Liked It,” etc.). Then, by clicking on
a specific star, you give the movie your rat-
ing. Upon your click, information is sent to
the Netflix server via Ajax and the rating area
is updated, all without causing the page to
refresh. Now the movie displays your rating in
yellow stars, instead of the average rating of all
Netflix members (Figure 17.9).

225

Ajax, RSS, SOAP, and More

Ajax Exam
ples

 Tracking Apple Inc.’s stock activity on Figure 17.10
Yahoo! Finance’s stock quote page.

 In real-time (at 3:45 p.m. ET), Figure 17.11
Apple’s stock price traded down to $128.25 per share,
a 2.79% decrease on the day.

 The NASDAQ traded down to be Figure 17.12
–0.20% on the day.

Yahoo! Finance
In the previous examples, a user action trig-
gered the Ajax data exchange. However, that is
not always necessary.

In the case of the Yahoo! Finance stock quote
page (Figure 17.10), and the quote pages on
many other financial sites, the Ajax exchange is
only one-way, from the server to the browser.
The triggering event is a completed trade of
the stock being viewed. (In some cases the data
is delayed 20 minutes. And, in other cases, it’s
real-time, but the functionality is the same.)

When a stock is traded, if any of the data
reported on that stock (price, price move-
ment, volume traded, etc.) has changed, it gets
updated on the page. Once again, because of
the use of Ajax, the change happens without
the page needing to be refreshed.

On the Yahoo! Finance pages, there is a colored
background rectangle that flashes behind the
new data to indicate a change. The rectangle is
green if the change in the data is positive, and
red if the change is negative (Figure 17.11).
This is true for all the data on the page, includ-
ing the major market indices, such as the Dow
and NASDAQ (Figure 17.12).

✔ Tip
■ It’s interesting to note that Ajax has

become more of a concept, as opposed to
a specific use of JavaScript and XML. In
other words, Web developers are creating
the same Ajax-like user experience, without
using Ajax technologies. In some instances,
JavaScript has been replaced with VBScript
for the client-side functionality. At other
times, iFrames have been used to send and
receive data asynchronously between the
browser and the server (Google Maps was
initially launched using iFrames). And, in
still other cases, the data sent back from
the server can be anything from HTML to
plain text, using no XML at all.

226

Chapter 17

RS
S

Ba
sic

s

 This is the RSS subscription page on the Figure 17.13
WWF Web site. Clicking the Climate Change link
shows the content for that RSS feed, and gives the user
an option to subscribe to it.

 Subscribing to the Figure 17.14 Climate Change /
Global Warming News RSS feed, I can use my own
RSS reader, or the one built into most browsers today.

 The view of the Global Warming News Figure 17.15
RSS feed, as seen in Internet Explorer 7’s RSS reader.

RSS Basics
RSS (Really Simple Syndication) is a file for-
mat that allows Web sites to easily make their
content available to readers, such as yourself.
The content is packaged into what is called an
RSS feed or RSS channel (Figure 17.13). To
see this content, you subscribe to an RSS feed.
Then, you can view the RSS feed using an RSS
Reader or an RSS Aggregator.

RSS and its orange icon have become quite
ubiquitous, showing up on everything from
espn.com and nytimes.com, to practically
anyone’s blog site. RSS allows you to subscribe
to news articles (Figure 17.14), calendar
events, blog postings, podcasts, and even newly
uploaded photos called photostreams.

RSS Readers are everywhere as well. Besides the
many readers you can purchase, or download
for free, both Google and Yahoo! offer free RSS
Readers of their own. Even the major Web
browsers now have built-in RSS Readers, mak-
ing it more convenient than ever to subscribe to
and view RSS feeds (Figure 17.15). And once
you’ve subscribed to an RSS feed, you won’t
need to go back to the Web site that provides
the feed. You can simply open your RSS Reader
and view all the most up-to-date content
from that site, based on the feed to which you
subscribed.

The RSS specification has a 10+ year history,
with different versions, including RSS 0.91,
RSS 1.0, and RSS 2.0. Currently, the trend is
moving toward RSS 2.0, and that’s what I’ll be
focusing on in this section.

✔ Tip
■ A version of the RSS 2.0 specification can

be found at: http://cyber.law.harvard.edu/
rss/rss.html.

http://cyber.law.harvard.edu/rss/rss.html
http://cyber.law.harvard.edu/rss/rss.html

227

Ajax, RSS, SOAP, and More

RSS Schem
a

<?xml version="1.0"?>
<rss version="2.0">

</rss>

x m l

 An RSS file is written in XML. Its root Figure 17.16
element is rss and contains a single attribute, version.

<?xml version="1.0"?>
<rss version="2.0">
 <channel>
 <title>
 WWF - Global Warming News</title>
 <link>http://www.panda.org/</link>
 <description>News, publications
 and job feeds from WWF - the
 global conservation organization
 </description>
 </channel>
</rss>

x m l

 The Figure 17.17 rss element has one child element
called channel, with three children (title, link, and
description), and other optional child elements. The
channel element contains content about the feed itself.

<?xml version="1.0"?>
<rss version="2.0">
 <channel>
...
 <item>
 <title>Climate change means more
 floods for a drying Thames
 basin</title>
 <link>http://www.panda.org/about_
 wwf/what_we_do/climate_change/
 news/index.cfm?uNewsID=142541
 </link>
 <description>.,..A drying Thames
 river basin in the UK would
 still face five times the
 current risk of flooding by
 2080, ...</description>
 </item>
 </channel>
</rss>

x m l

 The actual content of an RSS feed is Figure 17.18
in the item element, a child of the channel element.
It, like the channel element, has three children (title,
link, and description), and other optional child ele-
ments as well.

RSS Schema
The RSS 2.0 format is specified using XML.
This means that when writing an RSS
document, all the rules about writing XML
documents apply (see Chapter 1).

The root element of an RSS file is the rss ele-
ment (rss is written in all lowercase, as XML is
case-sensitive). It has a version attribute, and
since I am writing for RSS 2.0, the value of the
attribute must be “2.0” (Figure 17.16).

The rss element has one child element, called
channel. It is a required element and contains
information describing the RSS feed. It has
three required child elements: title, link,
and description (Figure 17.17). It also
has a few optional child elements, including:
category (which RSS Readers use to group
feed content), and image (which is the URL
of an image to be displayed when the feed is
presented).

The most important child element of channel
is the item element. Although technically
optional, if there are no item elements, there
is no content in the feed. The item element,
like the channel element, has three required
child elements: title, link, and description
which describe the item content (Figure
17.18). As well, it has a number of additional,
optional child elements including, enclosure
(which points to a media file such as a video or
audio file that is related to the item).

✔ Tip
■ There is no formal namespace for RSS 2.0.

This is to support backward compatibility
so that a version 0.91 or 0.92 file is also a
valid 2.0 file. However, individuals have
written their own schemas based on the
specification. Some examples can be found
at: www.silmaril.ie/software/rss2.dtd and
www.thearchitect.co.uk/schemas/rss-2_0.xsd.

www.silmaril.ie/software/rss2.dtd
www.thearchitect.co.uk/schemas/rss-2_0.xsd

228

Chapter 17

Ex
te

nd
in

g
RS

S

<?xml version="1.0"?>
<rss version="2.0" xmlns:media=
 "http://search.yahoo.com/mrss/">
...
 <item>
 <title>Daylily</title>
 <link>http://www.flickr.com/photos
 /larigan/2721793930/</link>
 <description> ... Daylily"
 </description>
 <media:content url="http://farm4.
 static.flickr.com/3105/2721793930_
 e71f7a6ff7_m.jpg" type="image
 /jpeg" height="166" width="240"/>
 <media:title>Daylily</media:title>
 <media:description type="html">
 <p>Hemerocallis</p>
 </media:description>
 <media:credit role="photographer">
 larigan.</media:credit>
 <media:category scheme=
 "urn:flickr:tags">yellow daylily
 hemerocallis larigan phamilton
 </media:category>
 </item>
...

x m l

 This excerpt is from an RSS feed of Figure 17.19
pictures (a photostream) from a photo sharing Web
site called flickr.com. The RSS file uses the Media RSS
module to include additional information about the
picture, such as photographer credits and a set of
categories that are flickr tags.

 This is the display of the RSS photo-Figure 17.20
stream feed, shown in Figure 17.19 above.

Extending RSS
Since RSS is an XML format, it is inherently
extensible. Additional XML schemas have been
written, called RSS modules, taking advantage
of this extensibility. These extensions, declared
through XML namespaces, add functionality to
RSS, without modifying its core structure.

It’s not enough, however, to just extend RSS.
An RSS Reader must be aware of the extension
and how to use the additional information.
And, while new modules can be created, only
the ones deemed interesting or significant will
get developers to update their RSS Readers.

Here are three widely used extensions to RSS:

Media RSS module
Yahoo! Search developed an RSS module,
called Media RSS. This module adds additional
elements and attributes to better support multi-
media files in RSS feeds (Figure 17.19).

◆ The namespace declaration for the
Media RSS module is defined to be
xmlns:media="http://search.yahoo.com/
mrss/". Documentation about the module
can be found at this URL as well.

◆ media:content is the primary element
introduced by this module, and is typically
a child of the RSS element item.

◆ It has many optional attributes, some of
which are: url, type, height, width,
medium, framerate, and duration.

◆ The module provides additional optional
elements that are also typically children of
item. Some of these are: media:title,
media:description, media:keywords,
media:credit, media:category, and
media:copyright. Also, a few of these
elements have attributes of their own.

blogChannel RSS module
The very first RSS module available for extend-
ing RSS 2.0 was written by Dave Winer, one

229

Ajax, RSS, SOAP, and More

Extending RSS

<?xml version="1.0"?>
<rss version="2.0" xmlns:itunes=
 "http://www.itunes.com/dtds
 /podcast-1.0.dtd">
...
 <item>
 <title>Nature: 31 July 2008</title>
 <itunes:duration>
 00:30:40</itunes:duration>
 <itunes:author>
 Nature</itunes:author>
 <itunes:subtitle>The origins of
 snake fangs, an ethane lake on
 Saturn's largest moon, the
 genetics of schizophrenia and
 an ancient Greek computer.
 </itunes:subtitle>
...

x m l

 An excerpt of an RSS podcast feed, Figure 17.21
from nature.com.

 The display in IE7s’ RSS Reader of the Figure 17.22
RSS podcast stream shown in Figure 17.21 above.

 The display in iTunes of the same RSS Figure 17.23
podcast stream referenced in Figure 17.22 above.

of the pioneers of RSS itself. The blogChannel
RSS module adds new elements to RSS, pro-
viding additional functionality for bloggers and
their readers.

◆ The namespace declaration for the
blogChannel RSS module is defined to
be xmlns:blogChannel="http://backend.
userland.com/blogChannelModule".
Documentation about the module can be
found at this URL as well.

◆ The four new elements intro-
duced by this module are children
of the RSS channel element. They
are: blogChannel:blogRoll,
blogChannel:mySubscriptions,
blogChannel:blink, and
blogChannel:changes.

Podcasting and iTunes
A podcast, like any other RSS feed, is a syn-
dicated group of files available for download
or subscription (Figure 17.21). You can
use a standard RSS Reader for a podcast feed
(Figure 17.22), but most people use a pod-
catching client, the most popular of which is
Apple’s iTunes (Figure 17.23).

In addition to standard RSS, there is an iTunes
Podcasting namespace that better supports list-
ing and placement on the iTunes interface.

◆ The declaration for the iTunes
Podcasting namespace is defined to be
xmlns:itunes="http://www.itunes.com/
dtds/podcast-1.0.dtd". Documentation
about the namespace can be found at:
www.apple.com/itunes/whatson/podcasts/
specs.html.

◆ The new elements can often be children of
both channel and item, some of which
are: itunes:author, itunes:block,
itunes:duration, itunes:explicit,
itunes:category, itunes:subtitle,
and itunes:summary.

www.apple.com/itunes/whatson/podcasts/specs.html
www.apple.com/itunes/whatson/podcasts/specs.html

230

Chapter 17

SO
AP

 a
nd

 W
eb

 S
er

vi
ce

s

<?xml version="1.0"?>
<soap12:Envelope xmlns:soap12="http://
 www.w3.org/2003/05/soap-envelope">
 <soap12:Body>

...

 </soap12:Body>
</soap12:Envelope>

x m l

 The SOAP wrapper, or envelope, is Figure 17.24
actually two elements: Envelope and Body. Notice
that the Envelope element is qualified with the SOAP
namespace prefix soap12:.

SOAP and Web Services
SOAP stands for Simple Object Access Protocol.
(Technically, with version 1.2, that definition
was dropped, yet most people still use it any-
way.) In either case, SOAP is an XML-based
messaging framework. In the same way that a
person can request a stock price or an item’s
inventory from a server, SOAP supports server-
to-server communication. Specifically, it allows
for platform- and language-independent com-
munication between different applications,
typically running on different servers.

SOAP’s support of this type of interoperabil-
ity has made it an important part of what the
W3C calls a Web Service. A Web Service is a set
of functions that can be accessed and executed
over a network. While generic in its definition,
a Web Service usually refers to the exchange of
XML messages using the SOAP framework.

SOAP’s core functionality is to support this
exchange of XML messages from one applica-
tion to another. SOAP is a lightweight protocol
because, for the most part, a SOAP message is
basically an XML file in a SOAP wrapper. And,
this wrapper, often referred to as the SOAP
envelope (Figure 17.24), adds very little over-
head to the messaging process.

The exchange of SOAP messages is most fre-
quently done over the Internet via HTTP. A
client application sends a SOAP message as
an HTTP request, and the server sends back
its SOAP message as an HTTP response.
Because the SOAP message exchange works
using HTTP, it allows for easier communica-
tion between computers on different networks
than was previously possible. This is one of the
biggest advantages of using SOAP over other
remote communication frameworks.

✔ Tip
■ The SOAP Version 1.2 specification can be

found at: www.w3.org/TR/soap12.

www.w3.org/TR/soap12

231

Ajax, RSS, SOAP, and More

SOAP M
essage Schem

a

<?xml version="1.0"?>
<soap12:Envelope xmlns:soap12="http://
 www.w3.org/2003/05/soap-envelope">
 <soap12:Body>
 <sayHello xmlns="http://
 www.kehogo.com/ns/hello">
 <name>Kevin</name>
 </sayHello>
 </soap12:Body>
</soap12:Envelope>

x m l

 This SOAP request message is calling Figure 17.25
the procedure sayHello and passing the name param-
eter with the value “Kevin.”

<?xml version="1.0" encoding="utf-8"?>
<soap12:Envelope xmlns:soap="http12://
 www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://
 www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://
 www.w3.org/2001/XMLSchema">
 <soap12:Body>
 <sayHelloResponse xmlns="http://
 www.kehogo.com/ns/hello">
 <sayHelloResult>Hello Kevin (and
 World). It's Sunday, September
 21, 2008, 10:20 PM, and I've
 been expecting you.
 </sayHelloResult>
 </sayHelloResponse>
 </soap12:Body>
</soap12:Envelope>

x m l

 This SOAP message is the response Figure 17.26
to the request message in Figure 17.25 above. It is
returning the result of the sayHello procedure, using
the sayHelloResponse element.

SOAP Message Schema
The SOAP framework is based on the XML
language, which means that all the rules about
writing XML documents apply to SOAP mes-
sages. The root element of a SOAP message is
the Envelope element (written in title case).
It must declare the SOAP namespace, which
defines the elements and attributes of a SOAP
message. There is no standard namespace pre-
fix, so I use soap12: (see Figure 17.24).

A SOAP message has an optional Header
element which, if present, must be the first
immediate child of the Envelope element.
It allows application-specific communication
between the client and the server, beyond the
actual SOAP message itself.

The Body element is a required child element
of the Envelope element and contains the
actual SOAP message content. In a request
message, the Body element’s children cor-
respond to the operation being called, and its
grandchildren correspond to the operation’s
parameters (Figure 17.25). In a response mes-
sage, the word “Response” is typically appended
to the Body element’s children (the operation
elements) and its grandchildren are the opera-
tion’s result values (Figure 17.26). The Body
element must be the first, or second, child ele-
ment of the Envelope element, depending on
whether or not the Header element is present.

✔ Tips
■ Notice in Figures 17.25 and 17.26 that

the descendant elements of the Body ele-
ment are namespace-qualified using the
URI: www.kehogo.com/ns/hello. This will
often be the case, as the elements of your
Web Service will likely not belong to the
SOAP namespace itself.

■ The SOAP-based Web Service shown in
these examples can be found on my Web
site at: www.kehogo.com/examples/
hello_world.asmx.

www.kehogo.com/ns/hello
www.kehogo.com/examples/hello_world.asmx
www.kehogo.com/examples/hello_world.asmx

232

Chapter 17

W
SD

L

<?xml version="1.0"?>
<definitions xmlns="http://
 schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://
 schemas.xmlsoap.org/wsdl/soap12/"
...

x m l

 The WSDL root element contains Figure 17.27
namespace declarations for WSDL and for binding
with SOAP. As the default namespace, the WSDL
namespace won’t require a namespace prefix.

<portType name="hello_world">
 <operation name="sayHelloRequest">
 <input message="tns:hello_in"/>
 <output message="tns:hello_out"/>
 </operation>
</portType>

x m l

 In this excerpt, the Figure 17.28 portType element
is defining the sayHelloRequest operation of this
Web Service. It is expecting an input message called
hello_in, and will return a response message called
hello_out, both of which are defined below.

<types>
 <xs:schema
 targetNamespace="http://
 www.kehogo.com/ns/hello">
 <xs:element name="sayHelloRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name"
 type="xs:string"/>
 </xs:sequence>
...
</types>

<message name="hello_in">
 <part name="parameters"
 element="tns:sayHelloRequest"/>
 </message>
 <message name="hello_out">
 <part name="parameters"
 element="tns:sayHelloResponse"/>
</message>

x m l

 The Figure 17.29 types element defines the
sayHelloRequest and sayHelloResponse (not shown)
elements used by the Web Service. These XML elements
are parameters in the hello_in and hello_out mes-
sages respectively.

WSDL
WSDL or Web Services Description Language, is
an XML language for describing how to inter-
face with Web Services. Where SOAP provides
the message exchange framework for a Web
Service, WSDL (often pronounced “wizdel”)
documents the messages that can be sent.

WSDL is not needed for the exchange of Web
Service messages—this can happen using SOAP
exclusively. However, with WSDL, requesting
applications are given technical information
about the Web Service which supports an easier,
more automated, and less error prone exchange.

WSDL Schema
A WSDL document is an XML document, and
its root element is definitions (written in all
lowercase). You’ll need to declare the WSDL
namespace and its binding namespace for
SOAP. You may also need to declare the XML
Schema namespace, and the namespace in
which you have defined the elements for your
Web Service (Figure 17.27).

The definitions elements has five major
child elements (in sequence): types, message,
portType, binding, and service. The center
hub of them all is the portType element. It
describes the available operations and the mes-
sages each expects (Figure 17.28). It is the
equivalent of a description of the application’s
library, and each operation contains the equiva-
lent of a list of specific function calls.

The types and message elements work hand
in hand (Figure 17.29). The message ele-
ment identifies the messages each operation
expects, and the parameters each message will
contain. These parameters reference the ele-
ments defined for your Web Service, and their
definitions are found in the types element.

The binding element defines the transport
protocol of the SOAP message exchange (which
is typically done via HTTP, but can be done
via SMTP, FTP, or other transport protocols).

233

Ajax, RSS, SOAP, and More

W
SDL

<binding name="hello_binding12"
 type="tns:hello_world">
 <soap12:binding transport="http://
 schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHelloRequest">
 <soap12:operation soapAction=
 "http://www.kehogo.com/ns/hello/
 sayHello">
 <input>
 <soap12:body use="literal"/>
 </input>
 <output>
 <soap12:body use="literal"/>
 </output>
 </operation>
 </binding>

x m l

 This Figure 17.30 binding element says to use
SOAP via HTTP, and that the SOAP body will
contain the XML Schema-defined elements from the
WSDL types element.

<service name="xml2e_example">
...
 <port name="hello_world12"
 binding="tns:hello_binding12">
 <soap12:address
 location="http://www.kehogo.com/
 examples/hello_world.asmx"/>
 </port>
</service>

x m l

 The Figure 17.31 service element connects the
portType element and the binding element, effectively
defining the public use of the Web Service.

Then, for each named operation, you define
how the messages appear inside the SOAP body
element. For example, use="literal" means
to use the schema-defined elements from the
WSDL types element (Figure 17.30).

Finally, the service element puts together the
pieces of the Web Service by connecting the
portType, defined in Figure 17.28, with the
binding, defined in Figure 17.30. And, it
identifies the public URI of the Web Service
itself (Figure 17.31).

UDDI
The final part of what are considered to be
the three standards of a Web Service is called
UDDI (Universal Description, Discovery, and
Integration). It was written as an XML-based
registry of SOAP-based Web Services, and pro-
vides each service’s corresponding WSDL file to
applications requesting such information.

A public registry called the UDDI Business
Registry (UBR) was announced in September
2000. It was created as a proof of concept, with
the intention of improving the UDDI specifica-
tion, as well as the applications that used it.

In January 2006, major supporters of the
UBR announced that they would no longer
publish to the registry. While still providing
Web Services internally and to clients, these
organizations felt that the UBR had served its
purpose, and it has since become obsolete.

✔ Tips
■ The WSDL file from these examples (and

its corresponding SOAP Web Service) can
be found on my Web site at: www.kehogo.
com/examples/hello_world.wsdl.

■ These pages have used WSDL Version 1.1.
Its specification is at: www.w3.org/TR/wsdl,
and its XML Schema is at: http://schemas.
xmlsoap.org/wsdl/. In June 2007, the W3C
released version 2.0, and its adoption suc-
cess has yet to be determined.

www.kehogo.com/examples/hello_world.wsdl
www.kehogo.com/examples/hello_world.wsdl
www.w3.org/TR/wsdl
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/

234

Chapter 17

KM
L B

as
ics

 Google Earth’s interface zoomed in to Figure 17.32
focus on the Mediterranean Sea.

 A placemark and polygonal outline for Figure 17.33
the Statue of Zeus at Olympia using Google Maps.

 A geotagged photo from flickr.com.Figure 17.34

KML Basics
KML (Keyhole Markup Language) is an XML
markup language for annotating maps using
placemarks, polygonal shapes, paths, descrip-
tions, and the like. It was initially developed
for use with Google Earth (an application often
run on your local computer) (Figure 17.32).
Since then, it has been adopted for use by many
other map-related applications.

Annotating a map using KML (like an XML
file) can be done by hand in an XML editor.
It’s more likely, however, that you would gen-
erate a KML file by using one of the KML
mapping tools. You would do this by first
annotating a map in Google Earth or Google
Maps online at: http://maps.google.com/ (Figure
17.33). Then, you would copy the KML gen-
erated by the tool to a text editor and save the
file with a .kml extension. If you prefer, you
can edit that file to gain even more control over
the annotation elements that were generated by
the tool.

There are other applications that use KML.
For example, you can geotag (add geographic
information to something) your photos on
the photo sharing site, flickr.com. Then you
can share those photos using KML. When this
KML file is viewed, each photo that you geo-
tagged would be placed in that location on the
map (Figure 17.34).

✔ Tips
■ You can download a copy of Google Earth

from: http://earth.google.com/.
■ KML Version 2.2 is an official standard of

the OGC (Open Geospatial Consortium),
an international standards organization
similar to the W3C. You can read about
this version of KML and download the
specification at: www.opengeospatial.org/
standards/kml.

www.opengeospatial.org/standards/kml
www.opengeospatial.org/standards/kml
http://earth.google.com/
http://maps.google.com/

235

Ajax, RSS, SOAP, and More

A Sim
ple KM

L File

<?xml version="1.0"?>
<kml xmlns="http://
 www.opengis.net/kml/2.2">
 <Placemark>
 <name>Great Pyramid of Giza</name>
 <Point>
 <coordinates>
 31.134224,29.979769,0
...

x m l

 A KML file with aFigure 17.35 Placemark element.

 The KML output from Figure 17.35 Figure 17.36
as seen in Google Earth.

...
<Style id="purple_poly">
 <PolyStyle>
 <color>669900aa</color>
...
<Style id="arrow_icon">
 <IconStyle>
 <color>ff33aa22</color>
...

x m l

 Adding placemark styles for a purple Figure 17.37
polygon for the pyramid, and a green arrow instead of
the default yellow pushpin.

 The KML output from Figure 17.37 Figure 17.38
as seen in Google Earth.

A Simple KML File
The root element of a KML file is the kml ele-
ment (written in all lowercase). As part of the
root element, the kml namespace is declared,
and is typically done without the kml: prefix.

Placemarks
The most common annotation used with kml
files is a placemark. The most common place-
mark is a pushpin graphic marking a location.
When used in this manner, the Placemark ele-
ment will often have the child elements: name,
and Point (Point is the longitude, latitude,
and altitude above the surface of the placemark
on the map) (Figure 17.35).

Placemarks can also be styled using a styleURL
element, which can refer to the URL of a kml
style document, or an inline style defined with
a Style element. In either case, the Style ele-
ment will have child elements for each type
of object it is styling, such as IconStyle or
PolyStyle (which is used below). Within each
object style, there can be child elements for
color, scale, icon, and others.

In addition to the pushpin, placemarks can
also be lines, polygonal shapes, and even 3D
objects. A polygonal shape element (Polygon),
must have an outer boundary child element
(outerBoundaryIs), which contains the lon-
gitude, latitude, and altitude of a minimum of
four points, thereby creating a closed shape.
And, as noted above, polygons can be styled
using the PolyStyle element (Figure 17.37).

✔ Tips
■ The XML Schema for the KML language

can be found at: http://schemas.opengis.net/
kml/2.2.0/ogckml22.xsd.

■ A detailed KML file of all the wonders can
be found at: www.kehogo.com/examples/
wonders.kml. You can view it in Google
Maps, or you can type this URL directly
into the Google Maps search field.

www.kehogo.com/examples/wonders.kml
www.kehogo.com/examples/wonders.kml
http://schemas.opengis.net/kml/2.2.0/ogckml22.xsd
http://schemas.opengis.net/kml/2.2.0/ogckml22.xsd

236

Chapter 17

OD
F

an
d

OO
XM

L

<?xml version="1.0" encoding="UTF-8"?>
<office:document-content xmlns:office=
 "urn:oasis:names:tc:opendocument:
 xmlns:office:1.0" xmlns:style="
 urn:oasis:names:tc:opendocument:
 xmlns:style:1.0" xmlns:text="
 urn:oasis:names:tc:opendocument:
 xmlns:text:1.0" xmlns:table="urn:
 oasis:names:tc:opendocument:xmlns:
 table:1.0" xmlns:draw="urn:oasis:
 names:tc:opendocument:xmlns:
 drawing:1.0" xmlns:fo="urn:oasis:
 names:tc:opendocument:xmlns:
 xsl-fo-compatible:1.0"
 ...
 office:version="1.1">
 <office:scripts/>
 <office:font-face-decls>
 <style:font-face style:name=
 "Tahoma1" svg:font-family="Tahoma"/>
 <style:font-face style:name="
 Times New Roman" svg:
 font-family="'Times New
 Roman'" style:font-family-
 generic="roman" style:font-
 pitch="variable"/>
...
 </office:font-face-decls>
 <office:automatic-styles/>
 <office:body>
 <office:text>
 <text:sequence-decls>
 <text:sequence-decl
 text:display-outline-level="0"
 text:name="Illustration"/>
 <text:sequence-decl text:display-
 outline-level="0" text:name=
 "Table"/>
 <text:sequence-decl text:display-
 outline-level="0" text:name=
 "Text"/>
 <text:sequence-decl text:display-
 outline-level="0" text:name=
 "Drawing"/>
 </text:sequence-decls>
 <text:p text:style-name="
 Standard">Hello World!</text:p>
 </office:text>
 </office:body>
</office:document-content>

x m l

 The Figure 17.39 content.xml file from an ODF
package. This file, along with other XML files in the
package, produces a word processing document that
has Hello World! in it.

ODF and OOXML
Both ODF (Open Document format) and
OOXML (Office Open XML) are file formats
for office productivity documents, such as
spreadsheets, presentations, word processing,
and more. They were both started at large cor-
porations, and have since been published as
open standards by organizations, like the W3C.

Both standards create a separation between
content and presentation, and store these ele-
ments in separate files. Consequently, a single
document generated by either format is actu-
ally compressed and contains multiple files and
folders. Besides binary data, such as images and
audio, the format for these files is XML.

The fact that office productivity applications
can store their data as XML is a monumental
change. Instead of the proprietary formats used
just a few years ago, this data is now stored in
an open, platform-independent format. This
provides greater accessibility to the underlying
data, and opens up the possibility of creating
other complementary tools and applications.

ODF
In 2002, Sun Microsystems began working
with OASIS (an international standards orga-
nization) to create an open standard based on
the XML format used by OpenOffice.org (an
open source office productivity suite). In 2005,
ODF was approved as an OASIS standard,
and in 2006, it became an ISO (International
Organization for Standardization) standard.

ODF packages its files and folders using the
JAR file format. Besides data files, each docu-
ment’s information is stored in one of a few
XML files, with content.xml being the file that
contains the actual content (Figure 17.39).

There are many applications that support the
ODF standard. Of course, OpenOffice.org’s
default format is ODF. As well, Lotus
Symphony, WordPerfect, and Google Docs all
have extensive support for the standard.

237

Ajax, RSS, SOAP, and More

ODF and OOXM
L

<?xml version="1.0" encoding="UTF-8"
 standalone="yes"?>
<w:document xmlns:ve="http://
 schemas.openxmlformats.org/
 markup-compatibility/2006"
 xmlns:o="urn:schemas-microsoft-com
 :office:office" xmlns:r="http://
 schemas.openxmlformats.org/
 officeDocument/2006/
 relationships" xmlns:m="http://
 schemas.openxmlformats.org/
 officeDocument/2006/math"
 xmlns:v="urn:schemas-microsoft-com:
 vml" xmlns:wp="http://schemas.
 openxmlformats.org/drawingml/2006/
 wordprocessingDrawing"
 xmlns:w10="urn:schemas-microsoft-
 com:office:word" xmlns:w="http://
 schemas.openxmlformats.org/
 wordprocessingml/2006/main"
 xmlns:wne="http://schemas.
 microsoft.com/office/word/2006/
 wordml">
 <w:body>
 <w:p w:rsidR="00A27C68"
 w:rsidRDefault="00A27C68">
 <w:r>
 <w:t>Hello World!</w:t>
 </w:r>
 </w:p>
 <w:sectPr w:rsidR="00A27C68">
 <w:pgSz w:w="12240" w:h="15840"/>
 <w:pgMar w:top="1440"
 w:right="1440" w:bottom="1440"
 w:left="1440" w:header="720"
 w:footer="720" w:gutter="0"/>
 <w:cols w:space="720"/>
 <w:docGrid w:linePitch="360"/>
 </w:sectPr>
 </w:body>
</w:document>

x m l

 The Figure 17.40 document.xml file from an
OOXML package. Like the example in Figure 17.39,
this file, along with other XML files in the package,
produces a word processing document that has Hello
World! in it. And, while you may be able to under-
stand both files, manually creating either one is not
something I’d recommend trying.

OOXML
In 2005, Microsoft announced that it would
work with Ecma International (a standards
organization) to create an open standard based
on the XML format used with the Office 2003
suite. In 2006, OOXML was approved as an
Ecma standard (a 6,000 plus page specifica-
tion!), and in 2008, it became an ISO standard.

OOXML packages its files and folders using
the ZIP file format. Unlike ODF, each docu-
ment’s information is stored in differently
named XML files, based on the custom
markup language in which it was written,
such as WordProcessingML (Figure 17.40),
SpreadsheetML, PresentationML, and others.

There are many applications on the market
that support OOXML. Of course, it is Office
2007’s default format. WordPerfect has exten-
sive support for OOXML, and Apple’s iWork
suite offers read-only support. There is also
OpenXML Writer, an open source text editor
created specifically for working with OOXML.

Comparison and Controversy
There is controversy over the process by which
OOXML became an ISO standard. You can
search online and find different opinions from
each of the standard’s camps. As well, you will
find information about which standard will
“win,” or if there will be a winner at all.

Many think that because of OOXML’s strong
tie to Microsoft Office, ODF has a long row
to hoe. Others think that OOXML’s specifica-
tion is so bloated (nearly eight times longer
than ODF’s), that creating compliant applica-
tions and tools is simply too cumbersome. To
complicate matters, earlier this year, Microsoft
announced that it would add native support for
ODF in Office 2007’s upcoming Service Pack.

Regardless of the outcome, with their underly-
ing data model changing to XML, productivity
applications are clearly entering a new era in
their product lifecycle.

238

Chapter 17

eB
oo

ks
, e

Pu
b,

 a
nd

 M
or

e

application/epub+zip

m i m e t y p e

 The contents of the Figure 17.41 mimetype file.
This file never changes, and must always be the first
file in the compressed ePub file.

<?xml version="1.0"?>
<container version="1.0" xmlns="
 urn:oasis:names:tc:opendocument:
 xmlns:container">
 <rootfiles>
 <rootfile
 full-path="content.opf"
 media-type="application/oebps-
 package+xml"/>
 </rootfiles>
</container>

x m l

 This is the Figure 17.42 container.xml file. The
rootfile element identifies the path to the file that
describes the eBook’s structure. Although you can
change its content (unlike the mimetype file), unless
you choose to reorganize the remaining files, there’s
really no purpose in doing so.

eBooks, ePub, and More
In 1971, Michael Hart began making available
free, electronic text copies of public domain
books, including the Bible and the works of
Shakespeare and Mark Twain. Since 1971,
Hart’s vision (Project Gutenberg) has accumu-
lated more than 25,000 free electronic books.

Electronic books (also referred to as eBooks
or e-Books), are books that use electronic
files instead of paper. eBooks can be read on
personal computers or special eBook read-
ers, which have features such as “dog-earring”
pages, highlighting book content, and looking
up words in an included dictionary. And,
while the market for eBooks is nothing com-
pared to the market for paper books, the
industry is nevertheless growing rapidly.

ePub
Besides plain text, eBooks can be published
in many different formats. And, the format
war has certainly begun. One format that has
gained large support in the electronic publish-
ing industry is ePub. Its specification is an open
standard of the IDPF, the industry’s standards
organization. As an XML-based format, ePub
uses XHTML for the book’s content, and XML
for the book’s structure, table of contents, etc.
Also, like the office productivity formats, these
files are then compressed using a ZIP format
for final delivery.

A compressed ePub file contains a few required
files, and one required folder. The first required
file must be named mimetype, and must
contain the exact single line of text shown in
Figure 17.41, describing the MIME type of the
ePub file. It literally must be the first file in the
compressed ePub file, or the ePub file will not
be considered valid.

The one required folder is named META-INF,
and it must contain an XML file named
container.xml (Figure 17.42). Its purpose
is to tell the eBook reader where to find the

239

Ajax, RSS, SOAP, and More

eBooks, ePub, and M
ore

<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://
 www.idpf.org/2007/opf" ...>
 <metadata>
 <dc:creator>
 Goldberg, Kevin Howard</dc:creator>
 <dc:title>Seven Wonders of the
 Ancient World</dc:title>
 <dc:language>en</dc:language>
 <dc:identifier id="ePUBid">
 wonders_v01</dc:identifier>
 </metadata>
 <manifest>
 <item id="ncx" href="toc.ncx"
 media-type="text/xml"/>
 <item id="main"
 href="ancient_wonders.htm"
 media-type="application/xhtml+xml"/>
 <item id="herodotus"
 href="images/herodotus.jpg"
 media-type="image/jpeg"/>
 </manifest>
 <spine toc="ncx">
 <itemref idref="main"/>
 </spine>
</package>

x m l

 The Figure 17.43 content.opf file describes the
eBook structure and the files that it contains.

<?xml version="1.0" encoding="UTF-8"?>
<ncx xmlns="http://www.daisy.org/
 z3986/2005/ncx/" version="2005-1"
 xml:lang="en">
...
 <docTitle>
 <text>Seven Wonders of the Ancient
 World</text>
 </docTitle>
 <docAuthor>
 <text>Goldberg, Kevin Howard</text>
 </docAuthor>
 <navMap>
 <navPoint id="navpoint-1"
 playOrder="1">
 <navLabel>
 <text>Intro</text>
 </navLabel>
 <content
 src="ancient_wonders.htm"/>
 </navPoint>
 </navMap>
</ncx>

x m l

 This Figure 17.44 .ncx file is essentially some eBook
metadata, along with a linkable table of contents.

file that describes the eBook’s structure. This
information is found in the rootfile element’s
full-path attribute.

The container.xml file, the META-INF folder,
and the mimetype file, are all written accord-
ing to one of ePub’s three sub-specifications,
the OCF (OEBPS Container Format), which is
derived from the Open eBook format.

The file referred to in container.xml that
describes the eBook’s structure is often called
content.opf. It is written according to the
second of ePub’s three sub-specifications, the
OPF (Open Package Format). This .opf file
is required and has the following elements:
metadata (containing metadata about the
eBook), manifest (containing a list of all the
files in the ePub compressed file), and spine
(containing the order in which the files are to
be presented) (Figure 17.43).

In most cases, there is also an .ncx file, which
contains the table of contents. It is referred
to by the .opf file in both the manifest and
the spine’s toc attribute. It contains elements
for the document title and author, as well as a
navMap element, which describes the content’s
play order (Figure 17.44).

The final required file is the eBook’s content
itself, which is governed by ePub’s third sub-
specification, the OPS (Open Publication
Structure). This can be a single file with book-
marks concluding each chapter, or each chapter
can be in a separate file. The content is typi-
cally written in XHTML Version 1.1 (without
forms, server-side image maps, events, and
scripting), and can use a subset of CSS 2.1.

✔ Tip
■ The ePub format is an open standard

comprised of three other IDPF standards.
Information about all three standards
can be found at: www.idpf.org/2007/ops/
OPS_2.0_final_spec.html.

www.idpf.org/2007/ops/OPS_2.0_final_spec.html
www.idpf.org/2007/ops/OPS_2.0_final_spec.html

240

Chapter 17

To
ol

s f
or

 X
M

L i
n

Pr
ac

tic
e

Tools for XML in Practice
Besides an XML editor and a browser, there are
some other tools that will be useful in working
with this chapter’s examples. Note: When it
comes to creating your own examples, this list is
inadequate. So, unless you like to tinker, I rec-
ommend finding a book or an online tutorial.

Ajax
To see Ajax in action, go to the examples listed
in the book, or refer to the ones on my Web
site. If you want to edit the examples, or cre-
ate some of your own, you’ll need an HTML/
JavaScript editor. You’ll also need a Web server
on which to run the HTML and JavaScript that
you create. Using a scripting language (such as
.asp) is not required, but it is usually how the
server-side script is created.

RSS
To view RSS at work, you can use your brows-
er’s built-in RSS Reader (most current browsers
have one). You could also use the Yahoo! (http://
my.yahoo.com/) or Google (www.google.com/ig)
custom Home pages, or simply download an
RSS Reader from the Internet.

If you want to create an RSS feed of your own,
you’ll need an XML editor to start. You’ll also
need a Web server on which to serve your RSS
feed. You’ll probably want to use one of the
book’s examples as a starting point (or a feed
you can find online), and edit that. When you
think you’re ready, you can validate your feed
at: http://aggregator.userland.com/validator.

SOAP and WSDL
To experience SOAP or WSDL, you’ll need a
client application. Some of the XML editors
listed in Appendix A support SOAP/WSDL.
You could also use a free online tool, such as
www.soapclient.com/soaptest.html. Then, use the
examples on the book’s companion Web site.

To create a Web Service, I used the Microsoft
.NET Web Service template and then modified

http://my.yahoo.com/
http://my.yahoo.com/
www.soapclient.com/soaptest.html
www.google.com/ig
http://aggregator.userland.com/validator

241

Ajax, RSS, SOAP, and More

Tools for XM
L in Practice

it using an editor. Other scripting languages
provide Web Service templates as well.

KML
To view the results of a KML file, download
Google Earth at: http://earth.google.com/. Then,
use the examples on my Web site.

If you want to edit my examples, or create some
of your own, you can use Google Maps, Google
Earth, or edit directly in an XML editor.

ODF and OOXML
To see the inner workings of an ODF or an
OOXML file, you’ll need to create a document
in that format. For ODF, one option is to use
the productivity suite at www.openoffice.org/.
For OOXML, some options include Microsoft
Office 2007, or OpenXML Writer at www.
openxml.biz/OpenXMLWriter.html.

Once you’ve created a file in either format,
rename the file’s extension to .zip. Then, open
that file using a ZIP application. When opened,
you will see that it contains a number of XML
files as described in this chapter, and you can
extract and view them all as you like.

ePub
To read the book in an ePub file, you’ll need to
download an eBook in the ePub format, as well
as an eBook reader, such as Mobipocket Reader
at: www.mobipocket.com/en/DownloadSoft/, or
Adobe Digital Editions at: www.adobe.com/
products/digitaleditions/.

To see the inner mechanics of an ePub file
(just as with files in the ODF and OOXML
formats), rename it with a .zip extension
and open it using a ZIP application to see its
contents. You can extract and view any of the
component files. You can also edit any file and
see your changes in an eBook reader. To do so,
after editing, recompress all the ePub’s contents
with a ZIP application, and then rename the
compressed file with an .ePub extension.

www.adobe.com/products/digitaleditions/
www.openoffice.org/
www.openxml.biz/OpenXMLWriter.html
www.openxml.biz/OpenXMLWriter.html
www.mobipocket.com/en/DownloadSoft/
www.adobe.com/products/digitaleditions/
http://earth.google.com/

This page intentionally left blank

243

XML Tools 245
Character Sets and Entities 251

APPENDICES

This page intentionally left blank

A

245

XM
L Tools

When the first edition of this book was written,
many people were writing XML using simple
text editors, such as Notepad for Windows, and
TextEdit for the Mac. Then, in order to validate
or transform their XML, they were using com-
mand-line or Web-based applications, neither
of which were necessarily easy to use or easy to
fit into a business workflow.

Luckily, things have changed. For starters,
the current Web browsers (including Mozilla
Firefox, Internet Explorer, Opera, and Safari),
have support for XML and XSLT. You also have
the option to choose from dozens of XML edi-
tors that you can download from the Internet
and use right now. Many of these editors are
free to use, and some of the free ones are actu-
ally very good.

Most of the XML editors today can validate
your XML using both DTD and XML Schema,
and process your XML with XSLT style sheets.
Also, most have additional features, including
support for XSLT 2.0 / XPath 2.0, XSL-FO,
XQuery, and more.

This appendix is not an exhaustive list of the
XML editors or tools available today. And,
since it’s certainly possible that a good editor
or tool was overlooked, or one has recently
been released, I will keep a running list of edi-
tors and tools on the companion Web site for
your reference.

XML TOOLS

246

Appendix A

XM
L E

di
to

rs

XML Editors
The minimum requirements to include an XML editor in this list are as follows: be able to check
for well-formed XML; validate against both a DTD and an XML Schema; perform an XSLT trans-
formation; and support the Unicode character set (for the Greek text in the examples). There are a
few other excellent XML editors, listed on page 248, if none of these are well-suited for you.

Feature XML Copy Editor
EditiX XML

Editor Altova XMLSpy
oXygen XML

Editor

Operating Systems supported:

◆ Windows Yes Yes Yes Yes

◆ Macintosh Yes1 Yes No Yes

◆ Unix / Linux Yes Yes No Yes

Free Version Yes Yes No No

Retail Version No Yes2 Yes2 Yes2

XSLT Preview No Yes3 Yes Yes

XSL-FO Support No Yes3 Yes Yes

XSLT 2.0 / XPath 2.0 Support No Yes Yes Yes

XQuery 1.0 Support No Yes Yes Yes

SOAP / WSDL Support No No Yes Yes

Auto-completion Yes Yes Yes Yes

Format Document Yes Yes Yes Yes

Collapse / Expand XML Yes No Yes Yes

Search & Replace:

◆ Basic Yes Yes Yes Yes

◆ Multiple Documents Yes No Yes Yes

◆ Within Folders No No Yes Yes

Spell Check Yes No Yes Yes

Grid / Tree View of Content No Yes Yes Yes

Auto-creation of DTD No Yes3 Yes Yes

Auto-creation of XML Schema No Yes3 Yes Yes

Convert DTD to XML Schema No Yes Yes Yes

Convert XML Schema to DTD No No Yes No

Generate Sample from DTD No Yes2 Yes No

Generate Sample from XML Schema No Yes2 Yes Yes

New File Templates Yes Yes Yes Yes

1. The application should compile from the source code.
2. The retail versions all have free trial periods.
3. These features are only available in the retail version.

247

XML Tools

XM
L Editors

XML Copy Editor
URL: http://xml-copy-editor.sourceforge.net

OS Support: Windows, Unix / Linux,
Macintosh (should compile from source code)

Version: 1.2.0

Free Version: Yes

Additional Features:

◆ Can handle files >10MB at an appro-
priate speed.

◆ Import / export Microsoft Word
◆ XML Tag locking
◆ RELAX NG validation
◆ Background validation
◆ For more info: http://xml-copy-editor.

sourceforge.net/index.php?page=features

Altova XMLSpy
URL: www.altova.com/xmlspy

OS Support: Windows

Version: 2008, Release 2

Free Version: No (retail version has free trial)

Additional Features:

◆ Open XML / Open Document support
◆ XML file compare
◆ WSDL editor and SOAP client /debugger
◆ XQuery editor / debugger / profiler
◆ XSLT 1.0/2.0 editor / debugger / profiler
◆ RELAX NG validation
◆ Relational / XML database integration
◆ For more info: www.altova.com/matrix_x.

html

EditiX XML Editor
URL: www.editix.com

OS Support: Windows, Unix / Linux,
Macintosh

Version: 2008, Service Pack 5

Free Version: Yes (and retail version)

Additional Features:

◆ Open XML / Open Document support
◆ XML file compare
◆ DTD / XML Schema documentation

generator
◆ XPath builder / editor
◆ XSLT editor / debugger
◆ For more info: www.editix.com/features.

html

oXygen XML Editor
URL: www.oxygenxml.com

OS Support: Windows, Unix / Linux,
Macintosh

Version: 9.3

Free Version: No (retail version has free trial)

Additional Features:

◆ Open XML / Open Document support
◆ XML file compare
◆ WSDL editor and SOAP client /debugger
◆ XQuery editor / debugger / profiler
◆ XSLT 1.0/2.0 editor / debugger / profiler
◆ RELAX NG validation
◆ Relational / XML database integration
◆ For more info: www.oxygenxml.com/

feature_matrix.html

www.oxygenxml.com
www.altova.com/xmlspy
www.altova.com/matrix_x.html
www.altova.com/matrix_x.html
www.editix.com
www.editix.com/features.html
www.editix.com/features.html
www.oxygenxml.com/feature_matrix.html
www.oxygenxml.com/feature_matrix.html
http://xml-copy-editor.sourceforge.net
http://xml-copy-editor.sourceforge.net/index.php?page=features
http://xml-copy-editor.sourceforge.net/index.php?page=features

248

Appendix A

Ad
di

tio
na

l X
M

L E
di

to
rs

WMHelp XMLPad
URL: www.wmhelp.com/xmlpad3.htm

OS Support: Windows

Version: 3.0.2a

Free Version: Yes

Additional Features:

◆ For more info: www.wmhelp.com/
xmlpad32.htm

XMLmind XML Editor
URL: www.xmlmind.com/xmleditor

OS Support: Windows, Unix / Linux,
Macintosh

Version: 4.1

Free Version: Yes (and retail version)

Additional Features:

◆ For more info: www.xmlmind.com/
xmleditor/features.html

Additional XML Editors

XMLwriter XML Editor
URL: www.xmlwriter.net

OS Support: Windows

Version: 2.7

Free Version: No (retail version has free trial)

Additional Features:

◆ For more info: www.xmlwriter.net/
xmlwriter/features.shtml

Stylus Studio
URL: www.stylusstudio.com

OS Support: Windows

Version: Release 2

Free Version: No (retail version has free trial)

Additional Features:

◆ For more info: www.stylusstudio.com/
xml_feature_overview.html

Liquid XML Studio
URL: www.liquid-technologies.com

OS Support: Windows

Version: 2008 (v6)

Free Version: Yes (and retail version)

Additional Features:

◆ For more info: www.liquid-technologies.com/
Product_XmlStudio_Features.aspx

www.xmlwriter.net
www.liquid-technologies.com
www.wmhelp.com/xmlpad3.htm
www.xmlwriter.net/xmlwriter/features.shtml
www.xmlwriter.net/xmlwriter/features.shtml
www.wmhelp.com/xmlpad32.htm
www.wmhelp.com/xmlpad32.htm
www.stylusstudio.com
www.xmlmind.com/xmleditor
www.stylusstudio.com/xml_feature_overview.html
www.stylusstudio.com/xml_feature_overview.html
www.xmlmind.com/xmleditor/features.html
www.xmlmind.com/xmleditor/features.html
www.liquid-technologies.com/Product_XmlStudio_Features.aspx
www.liquid-technologies.com/Product_XmlStudio_Features.aspx

249

XML Tools

XM
L Tools and Resources

XML Tools and Resources
This list of XML tools is just a sampling of
what you can find by searching the Web. The
specifications are listed in the order in which
they are discussed in the book.

Validation and Conversion Tools
◆ XML Validator

www.stg.brown.edu/service/xmlvalid/
◆ DTD Validator

www.validome.org/grammar
◆ XML Schema Validator

www.w3.org/2001/03/webdata/xsv
◆ Convert XML to DTD / XML Schema;

Convert DTD to XML Schema
www.hitsw.com/xml_utilities/

Specifi cations
◆ XML 1.0

www.w3.org/TR/xml/
◆ XSLT 1.0

www.w3.org/TR/xslt
◆ XPath 1.0

www.w3.org/TR/xpath
◆ XSL-FO (the same as XSL 1.1)

www.w3.org/TR/xsl/
◆ DTD (within the XML spec)

www.w3.org/TR/xml/
◆ XML Schema

www.w3.org/TR/xmlschema-0/
◆ XML Namespaces

www.w3.org/TR/xml-names/
◆ XSLT 2.0

www.w3.org/TR/xslt20/
◆ XPath 2.0

www.w3.org/TR/xpath20/
◆ XQuery 1.0

www.w3.org/TR/xquery/

www.stg.brown.edu/service/xmlvalid/
www.validome.org/grammar
www.w3.org/2001/03/webdata/xsv
www.hitsw.com/xml_utilities/
www.w3.org/TR/xml/
www.w3.org/TR/xslt
www.w3.org/TR/xpath
www.w3.org/TR/xsl/
www.w3.org/TR/xml/
www.w3.org/TR/xmlschema-0/
www.w3.org/TR/xml-names/
www.w3.org/TR/xslt20/
www.w3.org/TR/xpath20/
www.w3.org/TR/xquery/

This page intentionally left blank

B

251

Character Sets and Entities

An XML document may contain any character
from the entire Unicode character set. This
character set (equivalent to the ISO/IEC 10646
standard) is a universal character set (UCS), and
represents nearly all the characters for all known
world languages today.

In most cases, you can simply type a character
into an XML document, and it will display
as expected. However, if you want to use any
accents, foreign language characters, or spe-
cial symbols, this may not be the case. That’s
because not all computer applications store
character information in the same way.

The method of storing the characters from a
character set is called character encoding. And,
if your XML document and the application
displaying it do not use the same character
encoding, then what you type may not be what
is displayed. To avoid this, you can specify the
character encoding of your document. Then, if
the displaying application supports that encod-
ing, the character will display as expected.

If this doesn’t work, there are two other ways to
have the character represented correctly. One
is to use NCRs (numeric character references),
which are short sequences of numbers that rep-
resent Unicode characters. For example, Δ
represents the Greek letter ∆ (Delta) .

Another way is to use entities, which are unique
“words” that represent Unicode characters. In
XML, there are five predefined entities (see page
14), such as > which creates > (a greater
than sign). Besides those options, entities can
be created by using a DTD (see Chapter 7).

CHARACTER SETS
AND ENTITIES

Still Not Displaying Correctly?
Even after setting your XML document’s
character encoding, or entering your
character using NCRs, your character
still may not display correctly. That
could be because your operating system
doesn’t support Unicode. Or, more likely,
the font you are using cannot display
that particular Unicode character.

252

Appendix B

Sp
ec

ify
in

g
th

e
Ch

ar
ac

te
r E

nc
od

in
g

Specifying the Character Encoding
Although all XML documents use the Unicode
character set, the character encoding used by an
XML document is not predetermined.

To specify the character encoding:
1. After the version in the XML declaration,

type encoding=.
2. Then, type "char_enc", where char_enc is

the character encoding you want for your
XML document (Figure B.1).

Character Encodings
◆ ASCII: In 1963, the American Standard

Code for Information Interchange was pub-
lished. It mapped the English alphabet,
digits, punctuation, and other symbols
(including a set of non-printable char-
acters) to the values from 0 to 127. This
enabled ASCII encoding to be stored in
seven bits of a byte of computer memory.

◆ ANSI: The American National Standards
Institute code standard extended ASCII
with European language characters. Note:
Windows “ANSI” refers to a Microsoft
character set, not an ANSI standard.

◆ ISO-8859-1: The International
Organization for Standardization, together
with the International Electrotechnical
Commission, also extended ASCII with
additional characters. The standard is
divided into different parts representing
different language groups such as ISO-
8859-1 (Latin-1/Western European),
ISO-8859-5 (Latin/Cyrillic), ISO-8859-8
(Latin/Hebrew), and others.

◆ UTF-8: The 8-bit Unicode Transformation
Format is a character encoding that can
represent any character in the Unicode
character set by using one to four bytes, as
necessary. Note: UTF-16 also represents
any character in the Unicode character set,
except that it uses 16-bit “words” instead.

<?xml version="1.0" encoding="UTF-8"?>
<ancient_wonders>
 <wonder>

x m l

 I have now specified that this XML docu-Figure B.1
ment’s character encoding is UTF-8.

253

Character Sets and Entities

Using Num
eric Character References

<?xml version="1.0"
 encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl"
 href="wonders-master.xsl"?>
<ancient_wonders>
 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολοσ
 σός
 της
 Ρόδου
 </name>
 <location>Rhodes, Greece</location>
...

x m l

 I have replaced Figure B.2 Κολοσσός της Ρόδου
with the corresponding Unicode code points. Notice
also that I have specified an ISO-8859-1 character
encoding instead of UTF-8 or UTF-16. This is to
prove a point illustrated in the figure below.

 The Greek characters typed into the XML Figure B.3
document don’t display properly because of the conflict
between the ISO-8859-1 character encoding and
Unicode. However, the Colossus of Rhodes Greek char-
acters, which used NCRs, display just fine.

Using Numeric Character
References
By design, Unicode shares its first 127 charac-
ters with ASCII. This means that any ASCII
character can be typed directly into your XML
document from the keyboard of any system.

Any Unicode character beyond 128 may also
be typed, but then you may run into charac-
ter encoding problems. Instead, you can use a
numeric character reference to put that charac-
ter into your document.

To use a (decimal) numeric character
reference:
1. Type &#.
2. Then, type n;, where n is the decimal

number that corresponds to the desired
Unicode character (Figure B.2). (See Tip
below for a list of all Unicode characters.)

To use a (hexadecimal) numeric
character reference:
1. Type &#x. (Note the addition of the “x”.)
2. Then, type h;, where h is the hexadecimal

number that corresponds to the desired
Unicode character.

✔ Tips
■ NCRs will translate into their underlying

Unicode numbers (also called code points),
regardless of the XML document’s charac-
ter encoding setting (Figure B.3).

■ For a list of every Unicode character’s code
point, go to: www.unicode.org/charts.

■ Consult the table on for a list of the
Unicode code points corresponding to
some common European language charac-
ters, along with some common symbols.

■ To convert a decimal NCR back into
Unicode, you can type it into Google’s
search field and simply click “Search.”

www.unicode.org/charts

254

Appendix B

Us
in

g
En

tit
y

Re
fe

re
nc

es

Using Entity References
XML has five predefined entities for characters
that have specific meanings. They are:

◆ & (for an ampersand character: &)
◆ < (for a less than sign: <)
◆ > (for a greater than sign: >)
◆ " (for a double quotation mark: ")
◆ ' (for a single quotation mark or

apostrophe: ').
Without these entities, the intended use of each
character in an XML document could be easily
misconstrued.

You can also declare you own entities using
DTDs, as discussed in Chapter 7. Moreover,
you can use the set of entities defined for
HTML and XHTML by using a public DTD
reference, or by downloading the files from
www.w3.org/TR/xhtml1/#h-A2 and incorporat-
ing them into your DTD (Figure B.4).

To use an entity reference:
1. Type &.
2. Then, type ent_name;, where ent_name

is the name of the entity that corresponds
with the desired Unicode character
(Figure B.5).

✔ Tips
■ Entity references will translate into their

underlying Unicode code points, regardless
of the XML document’s character encoding
setting (Figure B.6).

■ Public DTD references are not supported
in all browsers.

■ Although the set of HTML / XHTML
entities is large, it is not nearly large
enough to represent the entire Unicode
character set.

<!ENTITY % HTMLsymbol SYSTEM
 "xhtml-symbol.ent">
%HTMLsymbol;

<!ELEMENT ancient_wonders (wonder+)>
...

d t d

 After downloading Figure B.4 xhtml-symbol.ent
from the W3C, I have incorporated it into my DTD.

<?xml version="1.0"?>
<!DOCTYPE ancient_wonders
 SYSTEM "B-03.dtd">
<ancient_wonders>
 <wonder>
 <name language="English">
 Colossus of Rhodes</name>
 <name language="Greek">
 Κολο
 σσός
 της
 Ρόδο
 υ
 </name>
 <location>Rhodes, Greece</location>
...

x m l

 In this XML excerpt, I used XHTML Figure B.5
entities for most of the characters in the Colossus of
Rhodes’ Greek name. However, there are no entities
defined for the ό character (omicron with tonos), so I
used the numeric character reference ό instead.

 There is no character encoding specified Figure B.6
in the XML document in Figure B.5. In that case, the
XML processor sets the character encoding based on
its own configuration. Regardless, the entity references
display just fine.

www.w3.org/TR/xhtml1/#h-A2

255

Character Sets and Entities

Unicode Characters

Unicode Characters
Here is a table of some interesting Unicode characters, their numeric character references (NCRs),
and their XHTML entity references. This table shows only a fraction of the total XHTML entity
references, and less than one-tenth of one percent of the total Unicode character set. A set of PDF
charts covering the entire Unicode character set can be found at www.unicode.org/charts/.

Unicode
Character

NCR
(Decimal)

NCR
(Hexadecimal)

Entity
Reference

à à à à
á á á á
â â â â
ã ã ã ã
ä ä ä ä
å å å å
æ æ æ æ
ç ç ç ç
è è è è
é é é é
ê ê ê ê
ë ë ë ë
ì ì ì ì
í í í í
î î î î
ï ï ï ï
ñ ñ ñ ñ
ò ò ò ò
ó ó ó ó
ô ô ô ô
õ õ õ õ
ö ö ö ö
ø ø ø ø
ù ù ù ù
ú ú ú ú
û û û û
ü ü ü ü
œ œ œ œ
§ § § §

Unicode
Character

NCR
(Decimal)

NCR
(Hexadecimal)

Entity
Reference

α α α α
β β β β
γ γ γ γ
δ δ δ δ
ε ε ε ε
ζ ζ ζ ζ
η η η η
θ θ θ θ
ι ι ι ι
κ κ κ κ
λ λ λ λ
μ μ μ μ
ν ν ν ν
ξ ξ ξ ξ
ο ο ο ο
π π π π
ρ ρ ρ ρ
σ σ σ σ
τ τ τ τ
υ υ υ υ
φ φ φ φ
χ χ χ χ
ψ ψ ψ ψ
ω ω ω ω
™ ™ ™ ™
© © © ©
¢ ¢ ¢ ¢
£ £ £ £
¥ ¥ ¥ ¥

www.unicode.org/charts/

This page intentionally left blank

257

Index

INDEX
The elements and attributes of the XML languages defined throughout the book are listed alpha-
betically for easy reference. We have chosen to leave off the namespace prefixes (xsl:, xsd:, etc.)
so that the elements and attributes can be easily found alphabetized by name. For example,
you’ll find the xsl:apply-templates element under the letter “A,” listed as apply-templates.
We made this choice because (although there are standard prefixes) the namespace prefixes that
people use may not necessarily be the same, or may not be used at all (see Part 5).

i

Symbols
– (subtraction) operator, using in XPath, 52
& (ampersand)

creating, 14
entity reference, 254
using with general entities, 93

&#, using with NCRs, 253
&#x, using with NCRs, 253
() (parentheses), using in DTDs, 77, 79
* (asterisk)

using in DTDs, 81, 82
using with location paths in XPath, 42, 43, 46

* (multiplication) operator, using in XPath, 52
. (period), using with current node in XPath, 41
.. (two periods) using with location paths in XPath, 43
/ (division) operator, using in XPath, 52
/ (forward slash), using with location paths in

XPath, 46
// (double forward slash), using with location paths in

XPath, 47
: (colon), using with namespaces, 166
? (question mark), using in DTDs, 81
@ (at) symbol

using with attributes in XPath, 44
[] (square brackets), using with predicates in XPath, 45
{} (curly braces), using in XQuery, 209
+ (addition) operator, using in XPath, 52
+ (plus sign), using in DTDs, 81
< (less than) character

creating, 14
entity reference, 254

<!-- and --> (comment), using with XML, 13
(: and :) (comment), using with XQuery, 209
<? and ?> (processing instructions), using with XML, 7

> (greater than) character
creating, 14
entity reference, 254

" (double quotation mark)
creating, 14
enclosing attribute values in, 5, 11
entity reference, 254
single vs. double, 11

' (single quotation mark, apostrophe)
creating, 14
entity reference, 254

, (comma)
using in DTDs, 80
versus xs:sequence element, 143

A
Aaron, Hank, 129
absolute location paths, creating in XPath, 46. See also

location paths
acceptable values. See also values

specifying range of, 128–129
specifying set of, 130

addition (+) operator, using in XPath, 52
aggregating functions, using in XPath 2.0, 197
Ajax (Asynchronous JavaScript and XML), xv

as concept, 225
overview of, 222
technology of, 222–223
using, 223

Ajax examples
accessing, 240
Google Suggest, 224
Netflix: Star Ratings, 224
Yahoo! Finance, 225

258

Index

In
de

x

attribute groups
defining in XML documents, 157
referencing, 158

attribute names, beginning, 8
attribute selector, using with predicate, 45
attributes. See also node attributes; output attributes

adding, 11
associating with namespaces, 168
in complex types, 154
declaring for unparsed entities, 98
defining default values with DTDs, 86
defining fixed values with DTDs, 86
defining for complex types, 154
defining with choices, 87
defining with unique values, 88
in elements, 6
example of, 4
impact of namespaces on, 168
local scoping of, 168
metadata in, 6
prohibiting, 155
referencing with unique values, 89
requiring, 155
requiring in xsl:for-each element, 29
restricting to valid XML names, 90
as simple types, 121
types of, 87
using as metadata, 11
using with DTDs, 84–85

avg() function, using in XPath 2.0, 196
axis, use in XPath language, 44

B
base simple type, using, 154
binary types, basing elements on, 131
binding sequence

using in XPath 2.0, 200, 202
using in XQuery, 212

block element, using in XSL-FO, 61, 64
blogChannel RSS module, 228–229
book, downloading examples in, xvii
boolean element, using with simple types, 120
boolean expressions

testing node position in, 51
using in XPath, 45, 59

border-style property, using with XSL-FO
documents, 65

border-width style property, using with XSL-FO
documents, 65

brackets ([]), using with nodes in XPath, 45
break-after style property, using in XSL-FO

documents, 69
break-before style property

using in XSL-FO, 70
using in XSL-FO documents, 69

all element
appearance of members in, 144
using to control occurrences, 151

Altova XMLSpy, features of, 247
& entity references, using, 14, 254
ampersand (&) character

creating, 14
entity reference, 254
using with general entities, 93

analyze-string() function, using, 205
ancestor nodes in XML node tree, 38
ancient wonders document, 4
annotation element, using with XML Schema, 118
annotations, using with XML Schema, 118
anonymous complex types

deriving, 140
versus named types, 140–141

anonymous custom types, using, 126
anonymous list type, creating, 135
anonymous simple type, using, 154
ANSI character encoding, specifying, 252
ANY, using with DTDs, 83
anyURI element, using with simple types, 120
&apos

entity reference, using, 254
predefined entity, 14

apostrophe (') (single quotation mark)
creating, 14
entity reference, 254

apply-templates

element, 35
instruction used with current node, 40

apply-templates instruction, comparing values
with, 50

arithmetic, performing in XPath, 52, 54
ascending order, defined, 32
ASCII character encoding, specifying, 252
asterisk (*)

using in DTDs, 81, 82
using with location paths in XPath, 42, 43, 46
using as multiplication operator in XPath, 52

Asynchronous JavaScript and XML (Ajax), xv
as concept, 225
overview of, 222
technology of, 222–223
using, 223

at (@) symbol, using with attributes in XPath, 44
atomic value, defined, 195
!ATTLIST tag

using with DTDs and attributes, 85
using with embedded unparsed content, 98

attribute axis, @ symbol as, 44
attribute content, predefining, 156
attribute definitions, case sensitivity of, 85
attribute element, generating output attributes

with, 33

259

Index

Index

defined, 137
deriving, 139
deriving from existing complex types, 149
empty elements, 147
including ordered child elements in, 143
including unordered child elements in, 144
kinds of, 138
mixed content, 148
offering choice of child elements for, 145
text only, 146
and XML Schema type hierarchy, 138

conditional choices, adding, 31
conditional expressions in XQuery, testing with, 214
conditions

qualifying in XPath 2.0, 200
testing in XPath 2.0, 199

container element, indicating for absolute location
paths, 46

container.xml file, using with eBooks, 238
content model, defined, 142
content-height style property, using with XSL-FO

documents, 65
context node, referring to in XPath, 41
Coordinated Universal Time (UTC), using time zone

indicator with, 123
count() function, using with nodes in XPath, 53
Curie, Marie, 123
curly braces ({}), using in XQuery, 209
current node

versus absolute location paths, 46
defined, 39
determining in XPath, 40
referring to in XPath, 41

current time, returning in XPath 2.0, 203
current-group() function, using in XSLT 2.0, 190
custom simple types, deriving, 126
custom_type_name, using, 127

D
data model

for XML, 183
for XPath 2.0, 193

data types, assigning for XML Schema, 114
databases, using XQuery with, 217
date, returning in XPath 2.0, 203
date

element used with simple types, 120
simple type element, 122
XML Schema primitive type, 203

date and time types, using, 122–123
dateTime XML Schema primitive type, returning, 203
decimal

element used with simple types, 120
number type, 124

decimal numeric character references, using, 253

C
case sensitivity, importance of, 5, 8
Castro, Elizabeth, xvii, 25, 133
CDATA

using to display elements as text, 15
using with DTDs and attributes, 85

ceiling() function, using in XPath, 55
channel element of RSS schema, item element of, 227
character encoding, specifying, 7, 252
characters, translating in XPath, 57
child elements (child nodes)

allowing to appear in any order, 144
child element, DTD for, 79
examples of, 4
including in complex types, 142
offering choice of, 145
requiring to appear in sequence, 143
selecting in XPath, 42
writing, 9
in XML node tree, 38

children elements, DTD for, 80
choices

defining attributes with, 87
offering for child elements, 145
specifying occurrences of, 151

choose element
using with conditional choices, 31
using with nodes, 30–31

closing tags
requirement of, 5, 9
using with elements, 6
using with empty elements, 12

collection() function, using with XQuery
processors, 217

column breaks, placing in pages of XSL-FO
documents, 70

column-count style property, using in XSL-FO, 70
column-gap style property, using in XSL-FO, 70
comma (,)

using in DTDs, 80
versus xs:sequence element, 143

comma and single quote (, '), using in XPath, 54
comments

writing in XML, 13
writing in XPath 2.0, 204
writing in XQuery, 209

comparisons, using in XPath, 50
complexType element

using with anonymous complex types, 140
using with named complex types, 141

complex types. See also XML Schemas
anonymous, 140
attributes in, 154
with child elements, 142
default condition for, 139

260

Index

In
de

x

purpose of, 83
referencing attributes with unique values, 89
restricting attributes to valid XML names, 90
as schemas, 110
specification Web site, 249
using, 76
using attributes with, 84–85
using external general entities, 95
using general entities, 93
validating XML documents against, 107
and validation, 103
and XML namespaces, 179

duplicate items, removing from sequences, 201
duration simple type element, using, 122

E
eBooks, formats for, 238–239
EditiX XML Editor, features of, 247
Einstein, Albert, 122
element

using with custom simple types, 126
using with list type, 135
using with simple types, 120
using with union type, 136

element node, indicating for absolute location paths, 46
element only complex type

defining with child elements, 142
deriving, 139
explained, 138

!ELEMENT tag
using to define choices, 82
using to define elements containing anything, 83
using with child elements, 79
using with DTDs, 76
using with elements containing children, 80
using with empty elements, 78

elements. See also empty elements; locally defined
elements

basing on binary types, 131
components of, 6, 9
containing anything, 83
containing child DTD, 79
containing children, DTD for, 80
containing text, DTD for, 76
contents of, 6
defining choices with DTDs, 82
defining in XML Schema, 120
defining quantities with DTDs, 81
displaying as text, 15
distinguishing with XML namespaces, 169
globally versus locally defined, 159
grouping, 152
labeling with namespace prefixes, 167
limiting lengths of, 131
naming, 8

decimal point, specifying number of digits after, 134
default attribute

setting, 156
using with predefined element content, 125

default namespaces
declaring for XML documents, 165
declaring for XML Schema components, 172

descendant nodes in XML node tree, 38
descendants, selecting in XPath, 47
descending order, defined, 32
division (/) operator, using in XPath, 52
doc() function, using with XQuery, 210–211
DOCTYPE root

using with external DTD, 105
using with internal DTD, 106
using with public external DTD, 109

document node in XML node tree, 38
document type declaration, distinguishing from

DTD, 105
Document Type Definitions (DTDs). See DTDs

(Document Type Definitions)
domains, using with namespaces, 164
double forward slash (//), using with location paths in

XPath, 47
double quotation mark (")

creating, 14
enclosing attribute values in, 5, 11
entity reference, 254
single vs. double, 11

.dtd extension, using, 76
DTD Validator Web site, 249
DTDs (Document Type Definitions)

attributes with unique values, 88
for child elements, 79
converting XML to, 249
creating and using parameter entities, 100
creating entities for unparsed content, 96
creating external parameter entities, 101
creating general entities in, 92
defining attributes with choices, 87
defining choices with, 82
defining default values for attributes, 86
defining elements containing text with, 76
for defining elements containing anything, 83
defining empty elements with, 78
defining number of occurrences with, 81
for elements containing children, 80
for elements containing text, 77
embedding unparsed content, 98
for empty elements, 78
example of, xvii
external, 104–105
indicating language for, 108
internal, 106
pros and cons of, 110
public external, 108–109

261

Index

Index

for XSLT, 21
for XQuery, 209

external DTD
creating, 104
declaring, 105

external general entities
creating, 94
using, 95

external-graphic element, using in XSL-FO, 65
external parameter entities, creating, 101

F
facets

applying to simple types in XML Schema, 119
enumeration, 130
fractionDigits, 134
length, 131
maxExclusive, 128
maxInclusive, 128
maxLength, 131
minExclusive, 129
minInclusive, 129
minLength, 131
pattern, 132
totalDigits, 134
using with range of acceptable values, 128

file extensions. See extensions
#FIXED, using with default attribute values, 86
fixed attribute

using with predefined element content, 125
value set for, 156

float number type, using, 124
floating point math, using in XPath, 54
floor() function, using in XPath, 55
flow element, using in XSL-FO, 61
FLWOR expressions. See also expressions

joining two related data sources with, 215
writing in XQuery, 212–213

.fo extenstion, using, 63
footers in XSL-FO documents, numbering pages in, 69
for-each

element for looping over nodes, 28–29
instruction for current node, 40

for-each-group instruction, using xsl:sort in, 190
for expression, using in XPath 2.0, 202
form attribute, using with XML Schema, 175
DTD, 109
format-number() function, using in XPath, 54–55
/ (forward slash), using with location paths in XPath, 46
// (forward slashes, double), using with location paths in

XPath, 47
fractionDigits facet, using, 134
FPI (formal public identifier), using with public external

DTD, 109
function declaration, including in XSLT style sheets, 189

nesting, 5, 10
predefining with XML Schema, 125
restricting, 131
simple versus complex types of, 114
specifying maximum lengths of, 131
specifying occurrences of, 151
specifying patterns for, 132
using white space with, 6

else expression
using in XPath 2.0, 199
using in XQuery, 214

empty elements. See also elements
complex type, explained, 138
complex type, defining, 147
defining with DTDs, 78
using, 12

.ent extension, using, 94
entities. See also general entities; parameter entities

creating for unparsed content, 96
defining for unparsed content, 97
general and parameter types of, 91
predefined, 14
representing Unicode characters with, 251
using with embedded unparsed content, 98
using with external general entities, 94
using with external parameter entities, 100
using with general entities, 92, 93
using with parameter entities, 100
using with unparsed content, 96

ENTITY. See entities
entity references

table of, 255
using, 254

enumeration element, using, 130
enumeration facet, using, 130
enumerations versus lists, 135
ePub file

opening with ZIP application, 241
using with eBooks, 238–239, 241

examples in book, downloading, xvii
exclude-result-prefixes, using, 188
expanded name, defined, 169
expressions. See also FLWOR expressions; path

expressions
in XPath 1.0, 195
in XPath 2.0, 199

eXtensible Markup Language (XML). See XML
(eXtensible Markup Language)

eXtensible Stylesheet Language (XSL). See XSL
(eXtensible Stylesheet Language)

extensions
for DTDs, 76
for DTD entities, 94
for XSL-FO, 63
for XML Schemas, 116
for XML documents, 3

262

Index

In
de

x

“if-then-else” expression, using in XPath 2.0, 199
if when, comparing values with, 50
#IMPLIED

and default attribute values, 86
ID attributes, 88
using with DTDs and attributes, 85

import element, using, 177
importing components form XML Schemas, 177
include element, using, 176–177
inner element, using with nested elements, 10
int number type, using, 124
integer number type, using, 124
internal DTD, declaring and creating, 106
internal general entities

creating, 92
using, 93

ISO 639, finding language abbreviations for, 108
ISO-8859-1 character encoding, specifying, 252
iTunes and podcasting RSS modules, 229

J
JavaScript, preventing parsing of, 15

K
King, Martin Luther, 122
KML (Keyhole Markup Language), 234
KML file

placemarks in, 235
viewing results of, 241

L
language attribute, selecting node elements with, 45
languages

for ancient wonders, 29
indicating for DTD, 108
other than English, 30, 34–35
two-letter abbreviations, 108

last() function, using in XSLT, 51
layout-master-set element, using in XSL-FO, 61
length element, using, 131
length facet, using with string, 131
less than (<) character

creating, 14
entity reference, 254

let clause, using in FLWOR expressions, 213
Liquid XML Studio XML editor, features of, 248
list type, deriving, 135
lists, spaces in, 135
literal elements, using with HTML and XSLT, 24
literal text, using xsl:text element with, 42
local: namespace, using in XQuery, 216
locally declared element, defined, 150
locally defined attributes, adding to target

namespaces, 174

G
Gandhi, Mohandas, 122
gDay simple type element, using, 123
general entities. See also entities; parameter entities

creating in DTDs, 92, 94
external, 94
internal, 92
using, 93, 95

ghost errors, occurrence of, 107
globally defined elements

explained, 159
referencing, 150
using, 154

gMonth simple type element, using, 123
gMonthDay simple type element, using, 123
Google Earth, downloading, 234, 241
Google Suggest, xv, 224
grandchild element, referring to in XPath, 42
greater than (>) character

creating, 14
entity reference, 254

Gregorian (g) notation, using with time types, 123
grouping elements, 152
groups. See named model groups
> entity references, using, 14, 254
gYear simple type element, using, 123
gYearMonth simple type element, using, 123

H
Hart, Michael, 238
header region, defining in XSL-FO, 67
hexadecimal numeric character references, using, 253
HTML (HyperText Markup Language)

adding to template rules, 25
outputting, 24–25
preventing parsing of, 15
resource for, 25
root element, using, 8
transformation, 21
versus XML (eXtensible Markup Language), xi, xiii,

xiv, 4, 76

I
ID attributes, defining with DTDs, 88
ides, origin of, 123
IDPF standards for eBooks, 239
IDREF attribute, 89
IDREFS attribute, 89
if instruction

comparing values with, 50
using to process nodes conditionally, 30

if expression
using in XPath 2.0, 199
using in XQuery, 214

263

Index

Index

as globally defined elements, 150
named custom types, deriving, 127
named model groups

defining, 152
referencing, 153

named simple type, using, 154
name(node-set) function, using in XPath, 59
namespace names, designing, 164
namespaces. See XML namespaces
NCRs (numeric character references)

table of, 255
using, 251, 253

.ncx file, using with eBooks, 238–239
NDATA, using with unparsed content, 96
negativeInteger number type, using, 124
nested “if-then-else” structure, creating in XPath 2.0, 199
nested if-then-else structure, using in XQuery, 214
nesting elements, 5, 10
Netflix: Star Ratings example of Ajax, 224
niece element, using in XPath, 43
NMTOKEN attribute, 90
NMTOKENS attribute, 90
node attributes. See also attributes

selecting in XPath, 44
using .. with, 43

node functions, using in XPath, 59
node position, testing, 51
node tree, for XML document, 20
nodes

axis of, 44
batch-processing, 28–29
counting in XPath, 53
locating in XPath, 38–39
processing conditionally, 30
selecting children of, 42
selecting conditionally in XPath, 45
selecting in node sets, 51
selecting parents or siblings of, 43
sets versus sequences, 201
sorting before processing, 32
in XML node tree, 38

nonNegativeInteger number type, using, 124
nonPositiveInteger number type, using, 124
non-XML input, processing in XPath 2.0, 205
Nostradamus, 123
!NOTATION, using with unparsed content, 96
number types, using, 124
numbers

formatting in XPath, 54
limiting digits of, 134
rounding in XPath, 55

O
ODF (Open Document format), 236–237

examples, accessing, 241

locally defined elements. See also elements
adding to target namespaces, 174
explained, 159
preventing association with target namespaces, 175

located nodes, using in XPath, 39
location paths. See also absolute location paths

absolute versus relative, 38–39
specifying elements in, 46
using, 49

lower-case() function, using in XPath 2.0, 198
lowercase letters, changing to uppercase, 57
<

entity reference, 254
predefined entity, 14

M
master-name attribute, using in XSL-FO, 63
match() function, using, 205
math, performing in XPath, 52, 54
maxExclusive facet, using, 128
max() function, using in XPath 2.0, 197
maxInclusive facet, using, 128
maxLength facet, using, 131
maxOccurs attribute

default value for, 145, 151
using with globally defined elements, 150

Media RSS module, 228
metadata

including in attributes, 6
using attributes as, 11

meters, converting height to, 54
minExclusive facet, using, 129
min() function, using in XPath 2.0, 197
minInclusive facet, using, 129
minLength facet, using, 131
minOccurs attribute

default value for, 145, 151
settings for, 144
using with globally defined elements, 150

mixed content complex type
creating, 148
example of, 82
explained, 138

Mobipocket Reader, downloading, 241
mod operator, using in XPath, 52
model group, defined, 142
multiplication (*) operator, using in XPath, 52

N
name element

using with child elements, 9
using with empty elements, 12

named complex types
versus anonymous types, 140–141
deriving, 141

264

Index

In
de

x

labeling elements with, 167
processing instructions (<? and ?>), using with tags, 7
public external DTD

declaring, 109
naming, 108

Q
quantified expression, using in XPath 2.0, 200
question mark (?), using with child elements and

DTDs, 81
" entity references, using, 14, 254
quotation mark (")

creating, 14
enclosing attribute values in, 5, 11
entity reference, 254
single vs. double, 11

R
range variable

using in XPath 2.0, 202
using in XQuery, 212

regex language, using with patterns for elements, 132
region-before element, using in XSL-FO, 67
region-body element, using in XSL-FO, 63
regular expressions

parsing input with, 205
symbols used with, 132–133

replace() function, using, 205
#REQUIRED

and default attribute values, 85
ID attributes, 88
using with DTDs and attributes, 85

restriction element
using with custom simple types, 126
using with named custom types, 127
using with text only complex type, 146

restrictions, using with range of acceptable values, 128
result-document instructions, using in XSLT, 187
return expression, ending in XPath 2.0, 202
root element (root node)

creating, 8
creating for XSLT, 68
defined, 4, 34
defining for XML Schema, 116
defining for XSL-FO documents, 63, 66
requirement of, 5
of RSS file, 227
starting at, 46
in XML node tree, 38

root template
creating for XSLT, 23
defining rules for, 24–25
processing in XSLT transformation, 21

round() function, using in XPath, 55

Office Open XML (OOXML), 237
office productivity documents, file formats for, 236–237
OGC (Open Geospatial Consortium), 234
online validators, using, 107
OOXML (Office Open XML), 237

examples, accessing, 241
opening tags, using with empty elements, 12
OPF (Open Package Format), using with eBooks, 238
OPS (Open Publication Structure), using with

eBooks, 238
order by clause, using in FLWOR expressions, 213
output attributes, generating, 33. See also attributes
output processing instruction, using, 24
oXygen XML Editor, features of, 247

P
page breaks, inserting in XSL-FO documents, 69
page content, outputting in columns in XSL-FO, 70
page-sequence element, using in XSL-FO, 61
page templates

adding in XSL-FO documents, 71
creating headers in XSL-FO documents, 67
defining for XSL-FO documents, 66

parameter entities. See also entities; general entities
creating and using external, 101
creating and using internal, 100

parent nodes
selecting in XPath, 43
in XML node tree, 38

parentheses (()), using in XPath, 53–54
parsed character data (#PCDATA), using with

DTDs, 76
parsed entity, defined, 96
path expressions, using in XQuery, 211. See also

expressions
pattern facet, using, 132
#PCDATA (parsed character data), using with

DTDs, 76
period (.), using with current node in XPath, 41
Perl’s regex language, using with patterns for

elements, 132
placemarks, using in KML files, 235
plus sign (+)

using with DTDs, 81
using as addition operator in XPath, 52

podcasting and iTunes RSS modules, 229
position() function, using in XSLT, 51
positiveInteger number type, using, 124
predefined entities, 14
predicates

testing node position in, 51
using in XPath, 45

prefix:element structure, using in DTD names, 179
prefixes

declaring for namespace names, 166

265

Index

Index

restriction on, 121
union, 136
using xs: prefix with, 121
Web resource for, 121
in XML Schema, 119

single quotation mark, apostrophe (')
creating, 14
entity reference, 254

SOAP and Web Services, 230
SOAP examples, accessing, 240
SOAP message schema, 231
sort element

using with nodes, 32
using in xsl:for-each-group, 190

spaces in lists, 135
square brackets ([]), using with nodes in XPath, 45
static-content element, using in XSL-FO, 67
string, defined, 120
string element, using with simple types, 120
string functions, using in XPath, 59
string values, outputting, 26
strings

changing case in XPath, 57
converting to lowercase in XPath 2.0, 198
converting to uppercase in XPath 2.0, 198
formatting in XPath 2.0, 198

stylesheet element
using, 22
using with XSL-FO, 68

style sheets, simplifying in XSLT, 185
Stylus Studio XML editor, features of, 248
substring-after() function, using in XPath, 56
substrings, extracting in XPath, 56
subtraction (–) operator, using in XPath, 52
sum() function, using in XPath, 58
SYSTEM attribute

using with external DTD, 105
using with external general entities, 94
using with external parameter entities, 100
using with unparsed content, 96

T
table tags, using with xsl:for-each element, 29
tags. See elements
target namespaces

adding locally defined attributes to, 174
adding locally defined elements to, 174
adding particular locally defined elements to, 175
specifying, 170

targetNamespace attribute, using with XML Schema,
176

template element
beginning templates with, 34
comparing values with, 50

template rules, adding HTML to, 25

RSS (Really Simple Syndication), xv
blogChannel RSS module, 228–229
examples, accessing, 240
Media RSS module, 228
overview of, 226
podcasting and iTunes, 229
schema, root element of, 227

rss element, child elements of, 227

S
Schema of Schemas, declaring as default namespace,

178
schema element

defining for XML Schema, 116
using, 178
using with named model groups, 152

schemas
defined, 75
DTDs as, 110

select expressions, options for output for XML
nodes, 27

sequence element versus , (comma), 143
sequence, using with children elements and DTDs, 80
sequences

averaging values in XPath 2.0, 196
capabilities of, 143
child elements in, 143
looping over in XPath 2.0, 202
versus node sets, 201
removing duplicate items from, 201
specifying occurrences of, 151
testing to satisfy conditions, 200
in XPath 2.0, 195

Seven Wonders of the World XML document, 4
shorthand properties, using with XSL-FO documents,

66
sibling nodes

selecting in XPath, 43
in XML node tree, 38

simple-page-master element, using in XSL-FO, 66, 71
simpleType element

using with custom simple types, 126
using with list type, 135
using with named custom types, 127
using with union type, 136

simple types. See also XML Schemas
applying faces to, 119
attributes as, 121
built-in, 121
custom, 126
date and time, 122–123
elements, 120
list, 135
named custom, 127
numbers, 124

266

Index

In
de

x

unparsed entities
alternative to, 99
embedding in XML documents, 99

unqualified, defined, 174
upper-case() function, using in XPath 2.0, 198
uppercase letters, changing to lowercase, 57
URIs (Uniform Resource Identifiers)

explained, 95
namespaces in form of, 164
requirements for, 164

UTC (Coordinated Universal Time), using time zone
indicator with, 123

UTF-16 character encoding, specifying, 252
UTF-8 character encoding, specifying, 252

V
valid XML documents, specifying structure of, 114
validating

XML documents against DTDs, 107
XML documents against XML Schema, 117

validation and conversion tools, 249
validation and DTDs, 103
validator, accessing online, 107
value-of element

using, 26
using in XPath, 49
using with output attributes, 33

values. See also acceptable values
comparing in XPath, 50
fixed versus default, 125
in attributes, 11
predefining element content, 125
specifying highest possible, 128
specifying lowest possible, 129
totaling in XPath, 58

van Gogh, Vincent, 122
version attribute

using in XML, 7
using in XQuery, 209
using in XSLT 1.0, 22
using in XSLT 2.0, 185

W
W3C (World Wide Web Consortium) Web site, xiii,

xviii, 49
W3C’s XML Schema Working Group, 115
W3C’s XSL Working Group site, 61
Web Services and SOAP, 230
Web Services Description Language (WSDL), 232–233
Web sites

Altova XMLSpy, 247
DTD specification, 249
eBook readers, 241
eBook standards, 239
EditiX XML Editor, 247

templates
creating and applying, 34–35
XSLT instructions in, 20

text
displaying elements as, 15
in elements DTD, 76

text element, using with literal text in XPath, 42
text node in XPath, 39
text only complex type

defining, 146
deriving, 139
explained, 138

then expression
using in XPath 2.0, 199
using in XQuery, 214

time

element used with simple types, 120, 122
returning XML Schema primitive type with, 203

time, returning in XPath 2.0, 203
time and date types, using, 122–123
time zone indicator, using with time types, 123
today’s date, returning in XPath 2.0, 203
tokenize() function, using, 205
totalDigits facet, using, 134
tr and td tags, using with xsl:for-each element, 29
transforming

XML documents, 19
XML documents with XSLT, 20–21

translate() function, using with strings in
XPath, 57

two forward slashes (//), using with location paths
in XPath, 47

U
UBR (UDDI Business Registry), 233
UDDI (Universal Description, Discovery, and

Integration), 233
UDDI Business Registry (UBR), 233
UDFs (User Defined Functions)

calling in XSLT 2.0, 189
creating and calling in XQuery, 216
creating in XSLT 2.0, 188
creating namespaces for, 188

Unicode character set
code points, 253
including characters from, 251
table of, 255

union memberTypes, using, 136
union type, deriving, 136
unordered lists

beginning for child elements, 144
specifying occurrences of, 151

unparsed content. See also entities
creating entity for, 96
embedding entity for, 98

267

Index

Index

X
XDM (XML Data Model), 183, 194
XHTML (Extensible Hypertext Markup Language)

generating in output documents, 186
resource for, 25

XML (eXtensible Markup Language)
adding attributes in, 11
converting to DTD and XML Schema, 249
creating root element in, 8
declaring version of, 7
displaying elements as text in, 15
elements, attributes, and values in, 6
extending, xiv
versus HTML (HyperText Markup Language), xi,

xiii, xiv, 76
nesting elements in, 10
overview of, xii
power of, xiii
in practice, xv
predefined entities in, 14
rules for writing in, 5
using empty elements in, 12
white space in, 6
writing child elements in, 9
writing comments in, 13

XML 1.0 specification Web site, 249
XML code

hiding with comments, 13
identifying, xvi

XML comments versus XPath comments, 204
XML Data Model (XDM), 183, 194
XML declaration, example of, 4
XML documents

beginning, 7
combining, 163
declaring default namespaces for, 165
defining attribute groups in, 157
defining named model groups in, 152
defining structure of, xiv
documenting structure of, 13
embedding unparsed entities in, 99
example of, xii
versus HTML documents, 4
invalidity of, 88, 171
linking to XSLT style sheets, 20
node tree for XSLT transformation, 20
referencing globally defined elements in, 150
requiring attributes in, 155
setting height in, 31
transforming, 19
using general entities in, 93
valid, 114
validating against DTD, 107
writing with qualified elements, 173
XSLT style sheets as, 22

examples in book, xvii
Google Earth, 234, 241
KML language, 235
KML specification, 234
language abbreviations, 108
language specifications, 249
Liquid XML Studio, 248
Mobipocket Reader for eBooks, 241
number types, 124
online validators, 107
oXygen XML Editor, 247
RSS schemas, 227
RSS-feed validation, 240
SOAP Version 1.2 specification, 230
SOAP-based Web Service, 231
Stylus Studio, 248
Unicode character code points, 253
W3C, xiii
W3C (World Wide Web Consortium), xviii, 49
W3C’s XML Schema Working Group, 115
W3C’s XSL Working Group, 61
WMHelp XMLPad, 248
WSDL sample file, 233
XML namespaces specification, 249
XML Schema simple types, 121
XML Schema specification, 249
XML specifications, 249
XML validation and conversion tools, 249
XML2e, xvii
XMLCopy Editor, 247
XMLmind XML Editor, 248
XMLwriter XML Editor, 248
XPath 1.0 specification, 249
XPath 2.0, 183, 195
XPath 2.0 specification, 249
XPath Version 1.0 function specifications, 49
XPath Version 2.0 specifications, 59
XQuery, 207
XQuery 1.0, 183
XQuery 1.0 specification, 249
XQuery Working Group, 217
XSL (eXtensible Stylesheet Language), 183
XSL-FO specification, 249
XSLT (Transformations) 2.0, 183
XSLT 1.0 specification, 249
XSLT 2.0 specification, 249

well-formed XML document, 5
when element, using with xsl:choose, 31
where clause, using with FLWOR expressions, 212
white space, adding around elements, 6
WMHelp XMLPad XML editor, features of, 248
Wonders of the World XML document, 4
WSDL (Web Services Description Language), 232–233
WSDL examples, accessing, 240
WSDL schema, elements of, 232–233

268

Index

In
de

x

indicating location of, 171
local and global elements in, 159
in multiple files, 176
with multiple namespaces, 177
and namespaces, 171
overview of, 113–115
predefining attribute’s content with, 156
predefining element content with, 125
saving range of acceptable values, 128
specification Web site, 249
specifying patterns for elements in, 132
type hierarchy, 138

XML source documents, identifying in XQuery, 210
XML specifications, 249
XML validation and conversion tools, 249
XML Validator Web site, 249
XML versions, declaring, 7
XML2e companion Web site, accessing, xvii
XMLCopy Editor, features of, 247
XML-enabled database, using, 217
XMLHttpRequest object, using in Ajax, 222–223
XMLmind XML Editor, features of, 248
XMLwriter XML Editor, features of, 248
XPath 1.0

expressions in, 195
function specifications, 49
specification Web site, 249

XPath 2.0
averaging values in sequences, 196
data model used by, 193–194
finding maximum value in, 197
finding minimum value in, 197
formatting strings in, 198
looping over sequences in, 202
processing non-XML input, 205
purpose of, 194
qualifying conditions in, 200
sequences in, 195
specification Web site, 59, 249
as strongly typed language, 195
testing conditions in, 199
using aggregating functions in, 197
using today’s date and time in, 203
writing comments in, 204
versus XPath 1.0, 194

XPath functions
for boolean operations, 59
for changing case of strings, 57
for comparing values, 50
for counting nodes, 53
for doing arithmetic, 52
for extracting substrings, 56
for formatting numbers, 54
for nodes, 59
for rounding numbers, 55
for strings, 59

XML editors
Altova XMLSpy, 247
EditiX XML Editor, 247
Liquid XML Studio, 248
oXygen XML Editor, 247
Stylus Studio, 248
table of, 246
WMHelp XMLPad, 248
XMLCopy Editor, 247
XMLmind XML Editor, 248
XMLwriter XML Editor, 248

XML elements. See elements
.xml extension, using, 3
XML names, following rules for attribute values, 90
XML namespaces

associating attributes with, 168
creating for UDFs, 188
declaring defaults for, 165
declaring name prefixes for, 166
and DTDs, 179
in form of URIs, 164
impact on attributes, 168
populating, 170
with prefixes declared for XML Schema

components, 172
purpose of, 164
referencing XML Schema components in, 172
specification Web site, 249
specifying for XML Schema, 116
specifying for XSLT style sheet, 22
use of, 169
using domains with, 164
using in XSLT style sheets, 180
and validating XML, 173

XML node trees, converting XML documents into, 194
XML nodes

outputting content of, 26
types of, 38

XML Schema components, referencing in
namespaces, 172

XML Schema namespace, indicating, 178
XML Schema Validator Web site, 249
XML Schemas. See also complex types; simple types

annotating, 118
assigning data types for, 114
associating with XML document, 117
beginning (simple), 116
benefits of, 115
breaking up, 176–177
controlling occurrences in, 151
converting DTDs to, 249
converting XML to, 249
defining elements in, 120
defining root element for, 116
elements defined as simple types, 119
importing components from, 177

269

Index

Index

creating with XSLT, 68
defining page templates for, 66
defining root element of, 63
inserting page breaks in, 69
numbering pages in footers, 69
outputting page content in columns, 70
overall structure of, 61
page content of, 61
root element of, 66
styling blocks of page content for, 64
using shorthand properties with, 66

XSLT
adding conditional choices, 31
creating and applying templates, 34–35
creating root element for, 68
creating root template for, 23
creating XSL-FO documents with, 68
generating output attributes, 33
looping over nodes, 28–29
output, validating, 191
outputting HTML, 24–26
outputting values, 26–27
processing nodes conditionally, 30
sorting nodes before processing, 32
style sheets

assessing, 20–21
beginning and completing, 22
headers in, 22
linking XML documents to, 20
using XML namespaces in, 180

transforming XML with, 20–21
XSLT 1.0 specification Web site, 249
XSLT 2.0

calling UDFs in, 189
creating simplified style sheets in, 185
creating UDFs in, 188
extending, 184
generating multiple output documents in, 187
generating XHTML output documents in, 186
goal of, 185
grouping output by common values in, 190
specification Web site, 249
versus XQuery, 183, 207–208

Y
Yahoo! Finance example of Ajax, 225

Z
ZIP application, opening ePub file with, 241

for testing node’s position, 51
for totaling values, 58

XPath language
attribute axis in, 44
conditionally selecting nodes in, 45
creating absolute location paths in, 46
current version of, 49
locating nodes in, 38–39
location paths in, 38–39
referring to current node in, 41
selecting all descendants in, 47
selecting node’s attributes, 44
selecting node’s children, 42
use of, 37
using @ (at) symbol in, 44
using boolean expressions in, 45
using location paths in, 38–39

XQuery
case sensitivity of, 209
comments in, 209
creating and calling UDFs in, 216
and databases, 217
identify XML source documents in, 210
joining two related data sources in, 215
overview of, 207
specification Web site, 249
testing with conditional expressions in, 214
using path expressions in, 211
writing FLWOR expressions in, 212–213
versus XSLT 2.0, 207–208

XQuery document, composing, 209
XQuery expressions, types of, 209
XQuery Working Group Web site, 217
xs: prefix

meaning of, 178
using, 121, 127

.xsd extension, using, 176
XSL (eXtensible Stylesheet Language), components of,

xiv, 19, 183
.xsl extension, using, 21
XSL-FO (Formatting Objects)

features of, 61
specification Web site, 249
use of, 19

XSL-FO documents
adding images to, 65
adding page templates in, 71
creating, 63
creating blocks of page content for, 64
creating page template headers in, 67

Simply visit www.peachpit.com/safarienabled
and enter code JULJJVH to try it today.

Get free online access
to this book!
And sign up for a free trial to Safari Books
Online to get access to thousands more!

With the purchase of this book you have instant online,

searchable access to it on Safari Books Online! And while you’re

there, be sure to check out the Safari on-demand digital library

and its Free Trial Offer (a separate sign-up process)—where

you can access thousands of technical and inspirational books,

instructional videos, and articles from the world’s leading

creative professionals with a Safari Books Online subscription.

www.peachpit.com/safarienabledand

	Table of Contents
	Introduction
	What is XML?
	The Power of XML
	Extending XML
	XML in Practice
	About This Book
	What This Book is Not
	Part 1: XML
	Chapter 1: Wrinting XML
	An XML Sample
	Rules for Writing XML
	Elements, Attributes, and Values
	How To Begin
	Creating the Root Element
	Writing Child Elements
	Nesting Elements
	Adding Attributes
	Using Empty Elements
	Writing Comments
	Predefined Entities – Five Special Symbols
	Displaying Elements as Text

	Part 2: XSL
	Chapter 2: XSLT
	Transforming XML with XSLT
	Beginning an XSLT Style Sheet
	Creating the Root Template
	Outputting HTML
	Outputting Values
	Looping Over Nodes
	Processing Nodes Conditionally
	Adding Conditional Choices
	Sorting Nodes Before Processing
	Generating Output Attributes
	Creating and Applying Templates

	Chapter 3: XPath Patterns and Expressions
	Locating Nodes
	Determining the Current Node
	Referring to the Current Node
	Selecting a Node’s Children
	Selecting a Node’s Parent or Siblings
	Selecting a Node’s Attributes
	Conditionally Selecting Nodes
	Creating Absolute Location Paths
	Selecting All the Descendants

	Chapter 4: XPath Functions
	Comparing Two Values
	Testing the Position
	Multiplying, Dividing, Adding, Subtracting
	Counting Nodes
	Formatting Numbers
	Rounding Numbers
	Extracting Substrings
	Changing the Case of a String
	Totaling Values
	More XPath Functions

	Chapter 5: XSL-FO
	The Two Parts of an XSL-FO Document
	Creating an XSL-FO Document
	Creating and Styling Blocks of Page Content
	Adding Images
	Defining a Page Template
	Creating a Page Template Header
	Using XSLT to Create XSL-FO
	Inserting Page Breaks
	Outputting Page Content in Columns
	Adding a New Page Template

	Part 3: DTD
	Chapter 6: Creating a DTD
	Working with DTDs
	Defining an Element That Contains Text
	Defining an Empty Element
	Defining an Element That Contains a Child
	Defining an Element That Contains Children
	Defining How Many Occurrences
	Defining Choices
	Defining an Element That Contains Anything
	About Attributes
	Defining Attributes
	Defining Default Values
	Defining Attributes with Choices
	Defining Attributes with Unique Values
	Referencing Attributes with Unique Values
	Restricting Attributes to Valid XML Names

	Chapter 7: Entities and Notations in DTDs
	Creating a General Entity
	Using General Entities
	Creating an External General Entity
	Using External General Entities
	Creating Entities for Unparsed Content
	Embedding Unparsed Content
	Creating and Using Parameter Entities
	Creating an External Parameter Entity

	Chapter 8: Validation and Using DTDs
	Creating an External DTD
	Declaring an External DTD
	Declaring and Creating an Internal DTD
	Validating XML Documents Against a DTD
	Naming a Public External DTD
	Declaring a Public External DTD
	Pros and Cons of DTDs

	Part 4: XML Schema
	Chapter 9: XML Schema Basics
	Working with XML Schema
	Beginning a Simple XML Schema
	Associating an XML Schema with an XML Document
	Annotating Schemas

	Chapter 10: Defining Simple Types
	Defining a Simple Type Element
	Using Date and Time Types
	Using Number Types
	Predefining an Element’s Content
	Deriving Custom Simple Types
	Deriving Named Custom Types
	Specifying a Range of Acceptable Values
	Specifying a Set of Acceptable Values
	Limiting the Length of an Element
	Specifying a Pattern for an Element
	Limiting a Number’s Digits
	Deriving a List Type
	Deriving a Union Type

	Chapter 11: Defining Complex Types
	Complex Type Basics
	Deriving Anonymous Complex Types
	Deriving Named Complex Types
	Defining Complex Types That Contain Child Elements
	Requiring Child Elements to Appear in Sequence
	Allowing Child Elements to Appear in Any Order
	Creating a Set of Choices
	Defining Elements to Contain Only Text
	Defining Empty Elements
	Defining Elements with Mixed Content
	Deriving Complex Types from Existing Complex Types
	Referencing Globally Defined Elements
	Controlling How Many
	Defining Named Model Groups
	Referencing a Named Model Group
	Defining Attributes
	Requiring an Attribute
	Predefining an Attribute’s Content
	Defining Attribute Groups
	Referencing Attribute Groups
	Local and Global Definitions

	Part 5: Namespaces
	Chapter 12: XML Namespaces
	Designing a Namespace Name
	Declaring a Default Namespace
	Declaring a Namespace Name Prefix
	Labeling Elements with a Namespace Prefix
	How Namespaces Affect Attributes

	Chapter 13: Using XML Namespaces
	Populating an XML Namespace
	XML Schemas, XML Documents, and Namespaces
	Referencing XML Schema Components in Namespaces
	Namespaces and Validating XML
	Adding All Locally Defined Elements
	Adding Particular Locally Defined Elements
	XML Schemas in Multiple Files
	XML Schemas with Multiple Namespaces
	The Schema of Schemas as the Default
	Namespaces and DTDs
	XSLT and Namespaces

	Part 6: Recent W3C Recommendations
	Chapter 14: XSLT 2.0
	Extending XSLT
	Creating a Simplified Style Sheet
	Generating XHTML Output Documents
	Generating Multiple Output Documents
	Creating User Defined Functions
	Calling User Defined Functions
	Grouping Output Using Common Values
	Validating XSLT Output

	Chapter 15: XPath 2.0
	XPath 1.0 and XPath 2.0
	Averaging Values in a Sequence
	Finding the Minimum or Maximum Value
	Formatting Strings
	Testing Conditions
	Quantifying a Condition
	Removing Duplicate Items
	Looping Over Sequences
	Using Today’s Date and Time
	Writing Comments
	Processing Non-XML Input

	Chapter 16: XQuery 1.0
	XQuery 1.0 vs. XSLT 2.0
	Composing an XQuery Document
	Identifying an XML Source Document
	Using Path Expressions
	Writing FLWOR Expressions
	Testing with Conditional Expressions
	Joining Two Related Data Sources
	Creating and Calling User Defined Functions
	XQuery and Databases

	Part 7: XML in Practice
	Chapter 17: Ajax, RSS, SOAP, and More
	Ajax Basics
	Ajax Examples
	RSS Basics
	RSS Schema
	Extending RSS
	SOAP and Web Services
	SOAP Message Schema
	WSDL
	KML Basics
	A Simple KML File
	ODF and OOXML
	eBooks, ePub, and More
	Tools for XML in Practice

	Appendices
	Appendix A: XML Tools
	XML Editors
	Additional XML Editors
	XML Tools and Resources

	Appendix B: Character Sets and Entities
	Specifying the Character Encoding
	Using Numeric Character References
	Using Entity References
	Unicode Characters

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

