
Sikos, Ph.D.

Shelve in Category
Web Development/General

User level
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Mastering Structured Data on
the Semantic Web
Mastering Structured Data on the Semantic Web explains the practical aspects
and the theory behind the Semantic Web and how structured data, such as
HTML5 Microdata and JSON-LD annotations, can be used to improve your site’s
performance on next-generation Search Engine Result Pages and be displayed
on Google Knowledge Panels. You will learn how to represent data in a machine-
interpretable form, using the Resource Description Framework (RDF), the
cornerstone of the Semantic Web. You will see how to store and manipulate RDF
data in ways that benefit Big Data applications, such as the Google Knowledge
Graph, Wikidata, or Facebook’s Social Graph.

The book also covers the most important tools for manipulating RDF data,
including, but not limited to, Protégé, TopBraid Composer, Sindice, Apache
Marmotta, Callimachus, and Tabulator. You will learn to use the Apache Jena
and Sesame APIs for rapid Semantic Web application development. Mastering
Structured Data on the Semantic Web demonstrates how to create and interlink
five-star Linked Open Data to reach a wider audience, encourage data reuse, and
provide content that can be automatically processed with full certainty.

The book is for web developers and search engine optimization (SEO) experts
who want to learn state-of-the-art SEO methods. The book will also benefit
researchers interested in automatic knowledge discovery.

In this book, you’ll learn to:

• Extend your markup with machine-readable annotations and get your
data to the Google Knowledge Graph

• Represent real-world objects and persons with machine-interpretable code
• Develop Semantic Web applications in Java

RELATED

9 781484 210505

54499
ISBN 978-1-4842-1050-5

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Author ��� xiii

About the Technical Reviewer ���xv

Preface ��xvii

 ■Chapter 1: Introduction to the Semantic Web�� 1

 ■Chapter 2: Knowledge Representation �� 13

 ■Chapter 3: Linked Open Data ��� 59

 ■Chapter 4: Semantic Web Development Tools ��� 79

 ■Chapter 5: Semantic Web Services �� 121

 ■Chapter 6: Graph Databases �� 145

 ■Chapter 7: Querying ��� 173

 ■Chapter 8: Big Data Applications ��� 199

 ■Chapter 9: Use Cases ��� 217

Index ��� 227

1

Chapter 1

Introduction to the Semantic Web

The content of conventional web sites is human-readable only, which is unsuitable for automatic processing
and inefficient when searching for related information. Web datasets can be considered as isolated data silos
that are not linked to each other. This limitation can be addressed by organizing and publishing data, using
powerful formats that add structure and meaning to the content of web pages and link related data to one
another. Computers can “understand” such data better, which can be useful for task automation.

The Semantic Web
While binary files often contain machine-readable metadata, such as the shutter speed in a
JPEG image1 or the album title in an MP3 music file, the textual content of traditional web sites
cannot be interpreted (that is, not understood) by automated software agents. The web sites
that provide semantics (meaning) to software agents form the Semantic Web, an extension
of the conventional Web [1] introduced in the early 2000s [2]. The Semantic Web is a major
aspect of Web 2.0 [3] and Web 3.0 [4]. Web 2.0 is an umbrella term used for a collection of
technologies behind instant messaging, Voice over IP, wikis, blogs, forums, social media
portals, and web syndication. The next generation of the Web is denoted as Web 3.0, which
is an umbrella term for customization, semantic contents, and more sophisticated web applications toward
artificial intelligence, including computer-generated contents (see Figure 1-1) .

 ■ Caution The word semantic is used on the Web in other contexts as well. For example, in HTML5 there
are semantic (in other words, meaningful) structuring elements, but this expression refers to the “meaning”
of elements. In this context, the word semantic contrasts the “meaning” of elements, such as that of
section (a thematic grouping), with the generic elements of older HTML versions, such as the “meaningless”
div. The semantics of markup elements should not be confused with the semantics (in other words,
machine-processability) of metadata annotations and web ontologies used on the Semantic Web. The latter
can provide far more sophisticated data than the meaning of a markup element.

1Exif or XMP. For more information, see Leslie Sikos: Web Standards: Mastering HTML5, CSS3, and XML (New York,
Apress, 2014).

CHapTer 1 ■ InTroduCTIon To THe SeManTIC Web

2

In contrast to the conventional Web (the “Web of documents”), the Semantic Web includes the “Web of
Data” [6], which connects “things”2 (representing real-world humans and objects) rather than documents
meaningless to computers. The machine-readable datasets of the Semantic Web are used in a variety of
web services [7], such as search engines, data integration, resource discovery and classification, cataloging,
intelligent software agents, content rating, and intellectual property right descriptions [8], museum portals [9],
community sites [10], podcasting [11], Big Data processing [12], business process modeling [13], and medical
research. On the Semantic Web, data can be retrieved from seemingly unrelated fields automatically, in order
to combine them, find relations, and make discoveries [14].

Structured Data
Conventional web sites rely on markup languages for document structure, style sheets for appearance, and
scripts for behavior, but the content is human-readable only. When searching for “Jaguar” on the Web, for
example, traditional search engine algorithms cannot always tell the difference between the British luxury
car and the South American predator (Figure 1-2).

Figure 1-1. The evolution of the Web [5]

2The concept of “thing” is used in other contexts as well, such as in the “Internet of Things” (IoT), which is the
network of physical objects embedded with electronics, software, and sensors, including smart objects such as wearable
computers, all of which are connected to the manufacturer and/or the operator, and/or other devices.

CHapTer 1 ■ InTroduCTIon To THe SeManTIC Web

3

Figure 1-2. Traditional web search algorithms rely heavily on context and file names

A typical web page contains structuring elements, formatted text, and some even multimedia objects.
By default, the headings, texts, links, and other web site components created by the web designer are
meaningless to computers. While browsers can display web documents based on the markup, only the
human mind can interpret the meaning of information, so there is a huge gap between what computers
and humans understand (see Figure 1-3). Even if alternate text is specified for images (alt attribute with
descriptive value on the img or figure3 elements), the data is not structured or linked to related data, and
human-readable words of conventional web page paragraphs are not associated with any particular software
syntax or structure. Without context, the information provided by web sites can be ambiguous to search
engines.

3This is only supported in (X)HTML5.

CHapTer 1 ■ InTroduCTIon To THe SeManTIC Web

4

The concept of machine-readable data is not new, and it is not limited to the Web. Think of the credit
cards or barcodes, both of which contain human-readable and machine-readable data (Figure 1-4). One
person or product, however, has more than one identifier, which can cause ambiguity.

Figure 1-4. Human-readable and machine-readable data

Figure 1-3. Traditional web site contents are meaningless to computers

CHapTer 1 ■ InTroduCTIon To THe SeManTIC Web

5

Even the well-formed XML documents, which follow rigorous syntax rules, have serious limitations
when it comes to machine-processability. For instance, if an XML entity is defined between <SLR> and
</SLR>, what does SLR stand for? It can refer to a single-lens reflex camera, a self-loading rifle, a service-level
report, system-level requirements, the Sri Lankan rupee, and so on.

Contents can be made machine-processable and unambiguous by adding organized (structured) data
to the web sites, as markup annotations or as dedicated external metadata files, and linking them to other,
related structured datasets. Among other benefits, structured data files support a much wider range of tasks
than conventional web sites and are far more efficient to process. Structured data formats have been used for
decades in computing, especially in Access and SQL relational databases, where queries can be performed to
retrieve information efficiently. Because there are standards for direct mapping of relational databases to core
Semantic Web technologies, databases that were publicly unavailable can now be shared on the Semantic
Web [15]. Commercial database software packages powered by Semantic Web standards are also available on
the market (5Store, AllegroGraph, BigData, Oracle, OWLIM, Talis Platform, Virtuoso, and so on) [16].

In contrast to relational databases, most data on the Web is stored in (X)HTML documents that contain
unstructured data to be rendered in web browsers as formatted text, images, and multimedia objects.
Publishing unstructured data works satisfactorily for general purposes; however, a large amount of data
stored in, or associated with, traditional web documents cannot be processed this way. The data used to
describe social connections between people is a good example, which should include the relationship type
and multiple relationship directions inexpressible with the hyperlinks of the conventional Web [17].

The real benefit of semantic annotations is that humans can browse the conventional web documents,
while Semantic Web crawlers can process the machine-readable annotations to classify data entities,
discover logical links between entities, build indices, and create navigation and search pages.

Semantic Web Components
Structured data processing relies on technologies that provide a formal description of concepts, terms,
and relationships within a knowledge domain (field of interest, discipline). Knowledge Representation and
Reasoning is the field of Artificial Intelligence (AI) used to represent information in a machine-readable
form that computer systems can utilize to solve complex tasks. Taxonomies or controlled vocabularies
are structured collections of terms that can be used as metadata element values. For example, an events
vocabulary can be used to describe concerts, lectures, and festivals in a machine-readable format, while
an organization vocabulary is suitable for publishing machine-readable metadata about a school, a
corporation, or a club. The controlled vocabularies are parts of conceptual data schemas (data models) that
map concepts and their relationships.

The most widely adopted knowledge-management standards are the Resource Description Framework
(RDF), the Web Ontology Language (OWL), and the Simple Knowledge Organization System (SKOS).
Knowledge Organization Systems (KOS) are used for processing authority lists, classifications, thesauri,
topic maps, ontologies, and so on. Web ontologies are formalized conceptual structures, in other words,
complex knowledge representations of sets of concepts in a domain and the relationships between them.
The namespace mechanism is used to reveal the meaning of tags and attributes by pointing to an external
vocabulary that describes the concepts of the discipline in a machine-processable format, extending the
vocabulary (set of elements and attributes) of markup languages. For example, a smartphone ontology defines
all features of smartphones and the relationships between those features in a machine-processable format, so
that software agents can “understand” the meaning of any of these features used to annotate a word on a web
page by pointing to the ontology file. Web ontologies make it possible to describe complex statements in any
topic in a machine-readable format. The architecture of the Semantic Web is illustrated by the “Semantic Web
Stack,” which shows the hierarchy of standards in which each layer relies on the layers below (see Figure 1-5).

CHapTer 1 ■ InTroduCTIon To THe SeManTIC Web

6

While the preceding data formats are primarily machine-readable, they can be linked from
human-readable web pages or integrated into human-readable web pages as semantic annotations such as
microformats, RDFa, or HTML5 microdata.

Ontologies
The word ontology was originally introduced in philosophy to study the nature of existence. In computer
science, ontology refers to conceptualization through a data model for describing a piece of our world, such
as an organization, a research project, a historical event, our colleagues, friends, etc., in a machine-readable
manner, by formally defining a set of classes (concepts), properties (attributes), relationship types, and
entities (individuals, instances). The most advanced ontology languages (such as OWL) support the
following components:

•	 Classes: Abstract groups, sets or collections of objects, object types. Classes
usually represent groups or classes whose members share common properties.
The hierarchy of classes is expressed as higher-level (superclass or parent class)
and lower-level classes (subclass or child class). For example, a company can be
represented as a class with subclasses such as departments and employees.

•	 Attributes: Aspects, properties, characteristics, or parameters that feature objects
and classes

•	 Individuals: Instances or objects. For example, if our domain covers companies, each
employee is an individual.

Figure 1-5. The Semantic Web Stack

CHapTer 1 ■ InTroduCTIon To THe SeManTIC Web

7

•	 Relations: The logical bond between classes, between individuals, between an
individual and a class, between a single object and a collection, or between
collections

•	 Function terms: Complex structures formed from certain relations that can be used
in place of an individual term in a statement

•	 Restrictions: Formally defined limitations or ranges of valid values

•	 Rules: If-then statements (antecedent-consequent sentence) defining the
logical inferences

•	 Axioms: Assertions in a logical form that, together with rules, form the overall theory
the ontology describes. Unlike the definition of axiom in generative grammar or
formal logic, where axioms include only statements defined as a priori knowledge,
the axioms of Semantic Web ontologies also include the theory derived from
axiomatic statements. Axioms are used to impose constraints on the values of classes
or instances, so axioms are generally expressed using logic-based languages. Axioms
are suitable for verifying the consistency of the ontology.

•	 Events: Attribute or relationship changes

Ontology Engineering
Ontology engineering is a field of computer science that covers the methods and methodologies for building
ontologies. The purpose of Semantic Web ontologies is to achieve a common and shared knowledge ready
to be transmitted between applications, providing interoperability across organizations of different areas or
different views of the same area. Ontology transformation is the development of a new ontology to deal with
the new requirements of an existing ontology for a new purpose. Creating a new single coherent ontology
from two or more ontologies of the same knowledge domain is known as ontology merging. Ontology
integration is the creation of a new ontology from two or more source ontologies from different knowledge
domains. Ontology mapping is a formal expression to define the semantic relationships between entities from
different ontologies. Ontology alignment is the process of creating a consistent and coherent link between two
or more ontologies where statements of the first ontology confirm the statements of the second ontology.

Inference
The automatic discovery of relationships between seemingly unrelated structured data is called inference.
The automatically generated new relationships are based on the structured data and additional information
defined in the vocabulary, as, for example, a set of rules. The new relationships are either explicitly declared
or returned through queries. As an example, if we make the statement “Unforgiven is a western,” while
an ontology declares that “every western is a movie,” Semantic Web agents can automatically infer the
statement “Unforgiven is a movie,” which was originally not declared.

Semantic Web Features
The Semantic Web has many distinctive features that are rarely seen or not used at all on traditional web
sites. For example, a large share of the data is published with explicitly declared open license, allowing
data sharing and distribution that is truly free. The formally defined data connections make automatic
knowledge discovery possible, along with accurate statement verification. Each and every object and feature
is associated with a web address, so that you can refer to virtually everything, from a table cell to an image or
a friendship of two people.

CHapTer 1 ■ InTroduCTIon To THe SeManTIC Web

8

Free, Open Access Data Repositories

Open data and content can be freely used, modified, and shared by anyone for any purpose

—OpenDefinition.org

Automation and data processing rely on data access, so “open data” is a fundamental feature of the
Semantic Web. There are already hundreds of government organizations, enterprises, and individuals
publishing machine-readable, structured data as open data (https://data.cityofchicago.org,
http://data.alberta.ca, http://data.gov.uk, etc.), although not all of them provide an open license
explicitly that makes data truly “open.” Semantic Web applications also benefit from open APIs, open
protocols, open data formats, and open source software tools to reuse, remix, and republish data. On the
Semantic Web, the machine-readable data of persons, products, services, and objects of the world are open
and accessible, without registering and paying membership or subscription fees, and software agents can
access these data automatically on your behalf.

Adaptive Information
While on the conventional Web, each web document is edited by a single person or a team, Semantic Web
documents are edited by groups of people through related documents as a “global database.” As a result,
datasets are more accurate, more connected, and more descriptive. Information is not just about pages,
but, rather, about connected and reusable data. The classification, reorganization, and reuse of data is a
fundamental concept of the Semantic Web.

Unique Web Resource Identifiers
Web resources can be located by unique IP addresses. However, they are hard to remember, and their
number is limited. This is why domain names are used in most cases. Figure 1-6 shows the relationship
between a domain name and a URL: www.masteringhtml5css3.com is a subdomain of the node
masteringhtml5css3.com, which is the subdomain of the com (which stands for commercial) domain. The
domain name syntax rules are defined by RFC 1035 [18], RFC 1123 [19], and RFC 2181 [20].

Figure 1-6. The domain within the URL

The tree of subdomains can contain a maximum of 127 levels. Each label may contain up to 63 characters.
According to RFC 2181, the full length of a domain name is 253 characters. Conventional domain names
cannot contain Latin alphabet–based characters with diacritics, non-Latin characters, or scripts. With the

https://data.cityofchicago.org/
http://data.alberta.ca/
http://data.gov.uk/
http://www.masteringhtml5css3.com/

CHapTer 1 ■ InTroduCTIon To THe SeManTIC Web

9

introduction of Internationalized Domain Names (IDN), it is possible to represent names and words in
several languages in native alphabets and scripts.

A Uniform Resource Identifier (URI) is a character string that identifies a name or a resource on the
Internet (RFC 2396 [21]). URIs can be classified as Uniform Resource Locators (URLs; RFC 1738 [22]),
Uniform Resource Names (URNs), or both. A URN defines the identity of a resource, while the URL provides a
method for finding it (including protocol and path). URIs are often used incorrectly as a synonym for URLs,
although URI is a broader term (RFC 3305 [23]). Both the URN and the URL are subsets of the URI, but they
are generally disjoint sets. The best-known examples of URLs are the web site addresses on the World Wide
Web. Listing 1-1 shows the general URL syntax.

Listing 1-1. URL Syntax

protocol://domain:port/path?query_string#fragment_identifier

The protocol is followed by a colon. The other parts of URLs depend on the scheme being used. Usually,
there is a domain name or an IP address, an optional port number, and an optional path to the resource
or script. Programs such as PHP or CGI scripts might have a query string. The end of the URL can be an
optional fragment identifier, which starts with the number sign (#), and in markup languages, it points to a
section of the document available through the provided path. Fragment identifiers are widely used on the
Semantic Web for distinguishing a file from the entity it represents (e.g., a person vs. the file that describes
him/her or a book vs. the file that describes it). This use of fragment identifiers provides an unlimited
number of unique identifiers, regardless of the restricted choice of domain names. Listing 1-2 shows an
example, in which http is the protocol, www.masteringhtml5css3.com is the domain, and the URL identifies
a book rather than the file webstandardsbook.rdf stored in the metadata directory.

Listing 1-2. A Typical URL with Fragment Identifier

http://www.masteringhtml5css3.com/metadata/webstandardsbook.rdf#book

Because many of the URL components are optional, one or more of them are often omitted.
To avoid the inconvenience of registering and renewing domain names and address the issue that

not every user has his/her own domain name, web addresses can be redirected (typically using 302 HTTP
redirection) to an intermediate and more persistent location on the Web, instead of the actual physical
location of the file or directory. Such URLs are called Persistent Uniform Resource Locators (PURLs). Official
PURLs are registered on https://purl.org. Many semantic vocabularies and ontologies use PURLs.
Ontologies are listed under the ontology directory such as http://purl.org/ontology/vidont/.

Summary
In this chapter, you learned that a major limitation of conventional web sites is their unorganized and
isolated contents, which is created mainly for human interpretation. You became familiar with the
fundamental concepts of the Semantic Web, the main application areas, and the efficiency of structured
data processing. You know the core Semantic Web components and understand that many standards rely
on other technologies. You are familiar with distinctive Semantic Web features, such as open licensing,
decentralized data storage with automatically inferred statements and knowledge discovery, and unique
URI indentifiers associated with every bit of represented knowledge.

The next chapter will introduce you to knowledge representation and reasoning used to represent
information with machine-processable standards.

http://www.masteringhtml5css3.com/
http://www.masteringhtml5css3.com/metadata/webstandardsbook.rdf#book
https://purl.org/
http://purl.org/ontology/vidont/

CHapTer 1 ■ InTroduCTIon To THe SeManTIC Web

10

References

 1. Hausenblas, M., Adida, B., Herman, I. (2008) RDFa—Bridging the Web of
Documents and the Web of Data. Joanneum Research, Creative Commons,
World Wide Web Consortium. www.w3.org/2008/Talks/1026-ISCW-RDFa/.
Accessed 18 January 2015.

 2. Berners-Lee, T. (2001) Business Model for the Semantic Web. World Wide Web
Consortium. www.w3.org/DesignIssues/Business. Accessed 18 January 2015.

 3. Ankolekar, A., Krötzsch, M., Tran, T., Vrandečić, D. The Two Cultures: Mashing
Up Web 2.0 and the Semantic Web. Web Semantics: Science, Services and Agents
on the World Wide Web 2008, 6(1):70–75.

 4. Shannon, V. (2006) A “more revolutionary” Web. International Herald
Tribune. The New York Times Company. www.nytimes.com/2006/05/23/
technology/23iht-web.html?scp=1&sq=A+%27more+revolutionary%27+Web&st=nyt.
Accessed 18 January 2015.

 5. Spivack, N. (2015) Web 3.0: The Third Generation Web Is Coming.
http://lifeboat.com/ex/web.3.0. Accessed 16 March 2015.

 6. Herman, I. (ed.) (2009) How would you define the main goals of the
Semantic Web? In: W3C Semantic Web FAQ. World Wide Web Consortium.
www.w3.org/2001/sw/SW-FAQ#swgoals. Accessed 18 January 2015.

 7. Sbodio, L. M., Martin, D., Moulin, C. Discovering Semantic Web services using
SPARQL and intelligent agents. Web Semantics: Science, Services and Agents on
the World Wide Web 2010, 8(4): 310–328.

 8. Herman, I. (2009) W3C Semantic Web Frequently Asked Questions. World Wide
Web Consortium. www.w3.org/RDF/FAQ. Accessed 18 January 2015.

 9. Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Viljanen, K., Saarela, S.,
Junnila, M., Kettula, S. MuseumFinland—Finnish museums on the Semantic
Web. Web Semantics: Science, Services and Agents on the World Wide Web 2005,
3(2–3): 224–241.

 10. Bojārs, U., Breslin, J. G., Finn, A., Decker, S. Using the Semantic Web for linking
and reusing data across Web 2.0 communities. Web Semantics: Science, Services
and Agents on the World Wide Web 2008, 6(1): 21–28.

 11. Celma, Ò., Raimond, Y. ZemPod: A Semantic Web approach to podcasting.
Web Semantics: Science, Services and Agents on the World Wide Web 2008,
6(2): 162–169.

 12. Saleem, M., Kamdar, M. R., Iqbal, A., Sampath, S., Deus, H. F., Ngomo,
A.-C. Big linked cancer data: Integrating linked TCGA and PubMed. Web
Semantics: Science, Services and Agents on the World Wide Web 2014,
http://dx.doi.org/10.1016/j.websem.2014.07.004.

 13. Oinonen, K. (2005) On the road to business application of Semantic Web
technology. Semantic Web in Business—How to proceed. In: Industrial
Applications of Semantic Web: Proceedings of the 1st IFIP WG12.5 Working
Conference on Industrial Applications of Semantic Web. International Federation
for Information Processing. Springer Science+Business Media, Inc., New York.

http://www.w3.org/2008/Talks/1026-ISCW-RDFa/
http://www.w3.org/DesignIssues/Business
http://www.nytimes.com/2006/05/23/technology/23iht-web.html?scp=1&sq=A+%27more+revolutionary%27+Web&st=nyt
http://www.nytimes.com/2006/05/23/technology/23iht-web.html?scp=1&sq=A+%27more+revolutionary%27+Web&st=nyt
http://lifeboat.com/ex/web.3.0
http://www.w3.org/2001/sw/SW-FAQ#swgoals
http://www.w3.org/RDF/FAQ
http://dx.doi.org/http://dx.doi.org/10.1016/j.websem.2014.07.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.websem.2014.07.004

CHapTer 1 ■ InTroduCTIon To THe SeManTIC Web

11

 14. Murphy, T. (2010) Lin Clark On Why Drupal Matters. Socialmedia.
http://socialmedia.net/2010/09/07/lin-clark-on-why-drupal-matters.
Accessed 9 September 2010.

 15. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J. (eds.) (2012) A Direct
Mapping of Relational Data to RDF. www.w3.org/TR/rdb-direct-mapping/.
Accessed 18 January 2015.

 16. Clark, K. (2010) The RDF Database Market. Clark & Parsia, LLC.
http://weblog.clarkparsia.com/2010/09/23/the-rdf-database-market/.
Accessed 18 January 2015.

 17. Dertouzos, L. M., Berners-Lee, T., Fischetti, M. (1999) Weaving the Web: The
Original Design and Ultimate Destiny of the World Wide Web by Its Inventor.
Harper San Francisco, San Francisco.

 18. Mockapetris, P. (1987) Domain names—Implementation and specification.
RFC 1035. The Internet Engineering Task Force.
http://tools.ietf.org/html/rfc1035. Accessed 18 January 2015.

 19. Braden, R. (ed.) (1989) Requirements for Internet Hosts—Application and
Support. RFC 1123. The Internet Engineering Task Force.
http://tools.ietf.org/html/rfc1123. Accessed 18 January 2015.

 20. Elz, R., Bush, R. (1997) Clarifications to the DNS Specification. RFC 2181.
The Internet Engineering Task Force. http://tools.ietf.org/html/rfc2181.
Accessed 18 January 2015.

 21. Berners-Lee, T., Fielding, R., Masinter, L. (1998) Uniform Resource Identifiers
(URI): Generic Syntax. RFC 2396. The Internet Society.
http://tools.ietf.org/html/rfc2396. Accessed 18 January 2015.

 22. Berners-Lee, T., Masinter, L., McCahill, M. (eds.) (1994) Uniform Resource
Locators (URL). RFC 1738. The Internet Engineering Task Force.
http://tools.ietf.org/html/rfc1738. Accessed 18 January 2015.

 23. Mealling, M., Denenberg, R. (eds.) (2002) Uniform Resource Identifiers
(URIs), URLs, and Uniform Resource Names (URNs): Clarifications and
Recommendations. RFC 3305. The Internet Society.
http://tools.ietf.org/html/rfc3305. Accessed 18 January 2015.

http://socialmedia.net/2010/09/07/lin-clark-on-why-drupal-matters
http://socialmedia.net/2010/09/07/lin-clark-on-why-drupal-matters
http://www.w3.org/TR/rdb-direct-mapping/
http://weblog.clarkparsia.com/2010/09/23/the-rdf-database-market/
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc1123
http://tools.ietf.org/html/rfc2181
http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc1738
http://tools.ietf.org/html/rfc1738
http://tools.ietf.org/html/rfc3305

13

Chapter 2

Knowledge Representation

To improve the automated processability of web sites, formal knowledge representation standards are
required that can be used not only to annotate markup elements for simple machine-readable data but also
to express complex statements and relationships in a machine-processable manner. After understanding
the structure of these statements and their serialization in the Resource Description Framework (RDF),
the structured data can be efficiently modeled as well as annotated in the markup, or written in separate,
machine-readable metadata files. The formal definitions used for modeling and representing data make
efficient data analysis and reuse possible. The three most common machine-readable annotations that are
recognized and processed by search engines are RDFa (RDF in attributes), HTML5 Microdata, and JSON-LD,
of which HTML5 Microdata is the recommended format. The machine-readable annotations extend the
core (X)HTML markup with additional elements and attributes through external vocabularies that contain
the terminology and properties of a knowledge representation domain, as well as the relationship between
the properties in a machine-readable form. Ontologies can be used for searching, querying, indexing, and
managing agent or service metadata and improving application and database interoperability. Ontologies
are especially useful for knowledge-intensive applications, in which text extraction, decision support, or
resource planning are common tasks, as well as in knowledge repositories used for knowledge acquisition.
The schemas defining the most common concepts of a field of interest, the relationships between them, and
related individuals are collected by semantic knowledge bases. These schemas are the de facto standards
used by machine-readable annotations serialized in RDFa, HTML5 Microdata, or JSON-LD, as well as in RDF
files of Linked Open Data datasets.

Vocabularies and Ontologies
Controlled vocabularies of the Semantic Web collect concepts and terms used to describe a field of interest
or area of concern. Ontologies are more complex, very formal definitions of terms, individuals and their
properties, object groups (classes), and relationships between individuals suitable to describe virtually any
statement related to the field of interest in a machine-readable form.

For example, to declare a person in a machine-readable format, we need a vocabulary that has the
formal definition of “Person.” A straightforward choice is the Friend of a Friend (FOAF) vocabulary, which
has a Person class that defines typical properties of a person, including, but not limited to, name and
homepage. If we write this code in XML serialization, we would get the code in Listing 2-1.

Listing 2-1. Pseudocode for Defining the Class and a Property of a Resource

<Person>
 <name>Leslie Sikos</name>
</Person>

Chapter 2 ■ Knowledge representation

14

This code provides hierarchy, inferring that Person is a class and name is a property; however, it is out of
context. We have to declare which external vocabulary defines this class and property, using the namespace
mechanism. In RDF/XML serialization, this can be done using the xmlns attribute in the form xmlns:vocabulary_
prefix="vocabulary_namespace:web_address", in our case, xmlns:foaf="http://xmlns.com/foaf/0.1/",
which points to the FOAF namespace at http://xmlns.com/foaf/0.1/. The namespace mechanism makes it
possible to abbreviate http://xmlns.com/foaf/0.1/ as foaf (also known as prefix), so foaf:Person refers to
http://xmlns.com/foaf/0.1/Person, foaf:homepage to http://xmlns.com/foaf/0.1/homepage and so forth
(see Listing 2-2).

 ■ Note these links are often symbolic links that do not always point to a dedicated web page for each
individual property and are sometimes forwarded to the domain of the namespace. some vocabularies have a
namespace address mechanism whereby all links point directly to the corresponding section of the machine-
readable vocabulary file. the human-readable explanation of the properties of external vocabularies is not
always provided. in case of FoaF, the web address of the individual property addresses point to the web site
of the specification (http://xmlns.com/foaf/spec/), while the individual properties have their own fragment
identifier, such as the Person property’s address, http://xmlns.com/foaf/spec/#term_Person.

Listing 2-2. Describing the Name of a Person Using a Class and a Property from a Vocabulary

… xmlns:foaf="http://xmlns.com/foaf/0.1/"
…
<foaf:Person>
 <foaf:name>Leslie Sikos</foaf:name>
</foaf:Person>

The format and serialization of the structured data are independent of the vocabulary definitions, so,
for example, the same schema.org reference can be used in RDF, RDFa, HTML5 Microdata, and JSON-LD.
The vocabulary or ontology required depends on the area of interest you want to represent; however, some
knowledge domains such as persons and books can be described with classes and properties from more
than one vocabulary.

The schema.org Vocabulary Collection
Covering approximately 300 concept definitions, https://schema.org is one of the most frequently
used collections of structured data markup schemas. Schema.org was launched by Google, Yahoo!, and
Bing in 2011. Schema.org contains the machine-readable definitions of the most commonly used concepts,
making it possible to annotate actions, creative works, events, services, medical concepts, organizations,
persons, places, and products.

Analogously to the previous example, if we want to describe a book, we need a vocabulary with the
definition of “Book” and typical book properties. If we want to add the book title with a more descriptive
property than the name property of schema.org, we can use the title property from the Dublin Core (DC)
vocabulary, resulting in two namespace declarations (see Listing 2-3).

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/homepage
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/#term_Person
http://xmlns.com/foaf/0.1/
https://schema.org/

Chapter 2 ■ Knowledge representation

15

Listing 2-3. Describing a Book

…
xmlns:schema="http://schema.org/"
xmlns:dc="http://purl.org/dc/terms/"
…
<schema:Book>
 <dc:title>Web Standards: Mastering HTML5, CSS3, and XML</dc:title>
</schema:Book>

Here, schema:Book abbreviates http://schema.org/Book, which is the machine-readable definition
of the Book class, while dc:title abbreviates http://purl.org/dc/terms/title, which is the
machine-readable definition of the title property.

The most common schema.org types (classes) and properties are collected at http://schema.org/docs/
gs.html#schemaorg_types, while the full list of properties is available at http://schema.org/docs/full.html.

General, Access, and Structural Metadata
General metadata, such as abstract, creator, date, publisher, title, language of web resources (web sites,
images, videos), physical resources (books, CDs), and objects such as artworks, can be described using
Dublin Core. The Dublin Core elements are widely deployed in machine-readable annotations, used on
DMOZ [1], one of the biggest multilingual open-content directories of web links, as well as in XMP metadata
of JPEG photos. The namespace of Dublin Core Elements (dc) is http://purl.org/dc/elements/1.1/, and
the namespace of Dublin Core terms (dcterms) is http://purl.org/dc/terms/.

Structured datasets can be described using terms from the Vocabulary of Interlinked Datasets (VoID).
VoID covers general, access, and structural metadata definitions, as well as the description of links between
structured datasets. The prefix of VoID is void, and the namespace is http://rdfs.org/ns/void#.

Person Vocabularies
The features of a person and relationships between people can be described by a variety of controlled
vocabularies, as summarized in Table 2-1.

Table 2-1. Person Vocabularies

Vocabulary Abbreviation Namespace Typical Use

Person class from
schema.org

schema:Person http://schema.org/Person Given name, family name, gender,
affiliation, award, nationality,
honorific prefix or suffix, job title, etc.

Friend of a Friend foaf http://xmlns.com/foaf/0.1/ Person, name, gender, home page

Contact: Utility
concepts for
everyday life

contact http://www.w3.org/2000/10/
swap/pim/contact

Contact location, personal title,
mother tongue, nearest airport to
your residence

vcard vcard http://www.w3.org/2001/
vcard-rdf/3.0#

Electronic business card

Bio bio http://vocab.org/bio/0.1/ Biographical information

Relationship
vocabulary

relationship http://vocab.org/
relationship/

Relationships between people
(friendOf, parentOf, spouseOf, etc.)

http://schema.org/
http://purl.org/dc/terms/
http://schema.org/Book
http://purl.org/dc/terms/title
http://schema.org/docs/gs.html#schemaorg_types
http://schema.org/docs/gs.html#schemaorg_types
http://schema.org/docs/full.html
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://rdfs.org/ns/void%23
http://schema.org/Person
http://xmlns.com/foaf/0.1/
http://www.w3.org/2000/10/swap/pim/contact
http://www.w3.org/2000/10/swap/pim/contact
http://www.w3.org/2001/vcard-rdf/3.0%23
http://www.w3.org/2001/vcard-rdf/3.0%23
http://vocab.org/bio/0.1/
http://vocab.org/relationship/
http://vocab.org/relationship/

Chapter 2 ■ Knowledge representation

16

Book Vocabularies
Books can be precisely described using properties from http://schema.org/Book, defining book formats,
the number of pages, the copyright holder, the genre, and other features of books. Dublin Core is often used
to declare general metadata of books. The International Standard Book Number (ISBN) of books can be
declared not only with the isbn property of the Book class of schema.org (defined at http://schema.org/isbn),
but also using the isbn property from the URN vocabulary. Books you intend to read, books you’ve
already read, or your favorite books can be described using the reading list schema through the
http://www.ldodds.com/schemas/book/ namespace.

PRISM: A Publishing Vocabulary
The Publishing Requirements for Industry Standard Metadata (PRISM) describes many components of
print, online, mobile, and multimedia content, including the following:

•	 Creator, contributor, copyright owner

•	 Locations, organizations, topics, people, and events, conditions of reproduction

•	 Publication date, including cover date, post date, volume, number

•	 Restrictions for republishing and reuse

PRISM is commonly used for describing partner syndication, content aggregation, content
repurposing, resource discovery, multiple channel distribution, content archiving, capture rights usage
information, RSS, XMP, and machine-readable annotations of web sites. The PRISM namespaces
are http://prismstandard.org/namespaces/basic/2.1/ for PRISM 2.1 Basic (typical prefix: prism) and
http://prismstandard.org/namespaces/prism-ad/3.0/ for PRISM 3.0 (usual prefix: prism-ad).

GoodRelations: An E-commerce Ontology
The de facto ontology for e-commerce is GoodRelations (gr), which is suitable for describing businesses,
offerings, prices, features, payment options, opening hours, and so on. The namespace of GoodRelations
is http://purl.org/goodrelations/v1#. GoodRelations is widely deployed and also used by Yahoo! and
BestBuy.

Publication Ontologies
While the generic metadata of publications can be expressed in Dublin Core, there are ontologies specially
written for describing publications and citations. Table 2-2 summarizes the four most deployed publishing
ontologies (FaBiO, PRO, PSO, and PWO) and the four referencing ontologies (CiTO, BiRO, C4O, and DoCO)
that are known as the Semantic Publishing and Referencing Ontologies (SPAR), as well as the Bibliographic
Ontology (bibo).

http://schema.org/Book
http://schema.org/isbn
http://www.ldodds.com/schemas/book/
http://prismstandard.org/namespaces/basic/2.1/
http://prismstandard.org/namespaces/prism-ad/3.0/
http://purl.org/goodrelations/v1#

Chapter 2 ■ Knowledge representation

17

DOAP: A Project Management Vocabulary
Description of a project (DOAP) is a vocabulary to describe software projects, especially open source
projects and their associated resources, including participants and web resources. The namespace of DOAP
is http://usefulinc.com/doap/.

Licensing Vocabularies
ALicensing, such as copyright information, permissions and prohibition regarding the reproduction, distribution,
and sharing of creative works, as well as creating derivative works, is best described using Creative Commons (cc)
licenses. The namespace of Creative Commons is http://creativecommons.org/ns#.

Table 2-2. Publication and Referencing Ontologies

Ontology Abbreviation Namespace Typical Use

Bibliographic Ontology bibo http://purl.org/ontology/
bibo/

Citation, document
classification, describe
documents, distributors,
editors, interviewers,
performers, ISBN, etc.

Bibliographic Reference
Ontology

biro http://purl.org/spar/biro/ Bibliographic records,
references, collections, and
lists

Citation Counting and
Context Characterization
Ontology

c40 http://purl.org/spar/c4o/ Number of citations,
citation context

Citation Typing Ontology cito http://purl.org/spar/cito/ Factual and rhetorical type
and nature of citations
(e.g., shared authors, one
publication confirms the
conclusion of another one)

Document Components
Ontology

doco http://purl.org/spar/doco/ Chapter, section,
paragraph, table, preface,
glossary, etc.

FRBR-aligned Bibliographic
Ontology

fabio http://purl.org/spar/fabio/ Abstracts, articles, artistic
works, theses, blog posts,
conference proceedings

Publishing Roles Ontology pro http://purl.org/spar/pro Roles of agents (e.g., author,
editor, reviewer, publisher)

Publishing Status Ontology pso http://purl.org/spar/pso Status of publication
(e.g., submitted
manuscript, accepted
manuscript, proof)

Publishing Workflow
Ontology

pwo http://purl.org/spar/pwo Stages of publication
workflow (e.g., under
review)

http://usefulinc.com/doap/
http://creativecommons.org/ns%23
http://purl.org/ontology/bibo/
http://purl.org/ontology/bibo/
http://purl.org/spar/biro/
http://purl.org/spar/c4o/
http://purl.org/spar/cito/
http://purl.org/spar/doco/
http://purl.org/spar/fabio/
http://purl.org/spar/pro
http://purl.org/spar/pso
http://purl.org/spar/pwo

Chapter 2 ■ Knowledge representation

18

Media Ontologies
There are ontologies dedicated to media resources, such as music and video files, as summarized in Table 2-3.

Vocabularies for Online Communities
Posts, user roles, threads, user accounts, and user groups of online communities can be described
using Semantically-Interlinked Online Communities (SIOC). The namespace of SIOC Core is
http://rdfs.org/sioc/ns#.

Facebook uses the vocabulary of Facebook OpenGraph (og) to allow web pages the same functionality
as any other object on Facebook. The namespace of OpenGraph is http://ogp.me/ns#.

Knowledge Management Standards
The most frequently used knowledge management standards are the Resource Description Framework
(RDF), the Web Ontology Language (OWL), and the Simple Knowledge Organization System (SKOS).

Resource Description Framework (RDF)
On the Semantic Web, structured datasets are usually expressed in, or based on, the Resource
Description Framework (RDF) [2]. RDF can be used to create a machine-interpretable
description about any kind of web resource, because RDF files can be extended with an arbitrary
number of external vocabularies. In fact, RDF and other core Semantic Web standards such as
RDFS and OWL have their own vocabularies, which are usually combined with one another
and extended using other vocabularies, in order to describe objects and their properties. Keep
in mind, however, that RDF is far more than just a vocabulary, as it is a fully featured semantic
data-modeling language. The namespace of RDF is http://www.w3.org/1999/02/22-rdf-syntax-ns# .

The RDF vocabulary defines classes for XML literal values (rdf:XMLLiteral), properties
(rdf:Property), RDF statements (rdf:Statement), RDF lists (rdf:List), as well as containers of alternatives
(rdf:Alt), unordered containers (rdf:Bag), and ordered containers (rdf:Seq). An instance of rdf:List
is rdf:nil, which represents the empty list. The RDF vocabulary also defines properties such as rdf:type
(an instance of rdf:Property used to express that a resource is an instance of a class), rdf:first (the
first item in the subject RDF list), rdf:rest (the rest of the subject RDF list after rdf:first), rdf:value
(structured value), rdf:subject (the subject of the RDF statement), rdf:predicate (the predicate of the
RDF statement), and rdf:object (the object of the RDF statement).

Table 2-3. Media Ontologies

Ontology Abbreviation Namespace Typical Use

The Music Ontology mo http://purl.org/ontology/mo/ Artist, composer, conductor,
discography, imdb, record,
remixer, singer, tempo, etc.

VidOnt: The Video
Ontology

vidont http://vidont.org/ Movie properties (remake,
sequel, narrator, etc.), video
file properties (aspect ratio,
audio codec, letterboxed, video
bitrate, MAR, etc.)

http://rdfs.org/sioc/ns%23
http://ogp.me/ns%23
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/ontology/mo/
http://vidont.org/

Chapter 2 ■ Knowledge representation

19

The RDF data model is based on statements to describe and feature resources, especially web resources, in
the form of subject-predicate-object (resource-property-value) expressions called RDF triples or RDF statements.
The predicate (property) describes the relationship between the subject and the object. For example, the
natural language sentence “Leslie’s homepage is http://www.lesliesikos.com” can be expressed as shown in
Table 2-4. All elements of the triple are resources defined by a unique URI (see Listing 2-4).

Listing 2-4. Describing a Person in RDF/XML

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/">
 <foaf:Person rdf:about="http://www.lesliesikos.com/metadata/sikos.rdf#lesliesikos">
 <foaf:homepage rdf:resource="http://www.lesliesikos.com" />
 <foaf:family_name>Sikos</foaf:family_name>
 <foaf:givenname>Leslie</foaf:givenname>
 </foaf:Person>
</rdf:RDF>

The about attribute of RDF declares the subject of the RDF statement, which is, in this case,
http://www.lesliesikos.com/metadata/sikos.rdf#lesliesikos. The fragment identifier #lesliesikos
is used to identify an actual person rather than a document (sikos.rdf). Those objects whose value is a web
address, such as the home page of a person, are declared using the resource attribute of RDF, in contrast
to those that are string literals (character sequences), such as Sikos (the value of the family_name property
from the FOAF vocabulary). The syntax of this example is known as the RDF/XML serialization (RDF/XML),
which is the normative syntax of RDF [3], using the application/rdf+xml Internet media type and the .rdf
or .xml file extension. Structured datasets can be written in RDF using a variety of other syntax notations and
data serialization formats, for example, RDFa, JSON-LD, Notation3 (N3), Turtle, N-Triples [4], TRiG [5], and
TRiX [6], so the syntax of RDF triples varies from format to format. The N3 syntax is, for example, less verbose
than the RDF/XML serialization, where the namespace prefix is declared by the @prefix directive, the URIs
are delimited by the less than (<) and greater than (>) signs, and the triples are separated by semicolons (;)
(see Listing 2-5).

Table 2-4. An RDF Triple

RDF Data Model RDF Triple

Subject Leslie http://www.lesliesikos.com/
metadata/sikos.rdf#lesliesikos

Predicate The machine-readable definition of “homepage”
from the Friend of a Friend (FOAF) external
vocabulary

http://xmlns.com/foaf/0.1/homepage

Object http://www.lesliesikos.com http://www.lesliesikos.com

http://www.lesliesikos.com/
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://xmlns.com/foaf/0.1/
http://www.lesliesikos.com/metadata/sikos.rdf#lesliesikos
http://www.lesliesikos.com/
http://www.lesliesikos.com/metadata/sikos.rdf#lesliesikos
http://www.lesliesikos.com/metadata/sikos.rdf%23lesliesikos
http://www.lesliesikos.com/metadata/sikos.rdf%23lesliesikos
http://xmlns.com/foaf/0.1/homepage
http://www.lesliesikos.com/
http://www.lesliesikos.com/

Chapter 2 ■ Knowledge representation

20

Listing 2-5. Describing a Person in N3

@prefix : <http://www.lesliesikos.com/metadata/sikos.rdf#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

:lesliesikos a foaf:Person ;
 foaf:givenname "Leslie" ;
 foaf:family_name "Sikos" ;
 foaf:homepage <http://www.lesliesikos.com> .

Shorthand notation can be used for the most common predicates (see Table 2-5).

This is the reason why the RDF type of the person is declared using a. If the Notation 3 code is in an
external file, the typical file extension is .n3. The MIME type and character encoding of N3 should be
declared as text/n3; charset=utf-8. Tokenizing and whitespace handling are not specified in the N3
grammar. Base URIs to be used for the parsing of relative URIs can be set with the @base directive in the form
@base <http://example.com/overview/>. Several N3 rules for string escaping are derived from Python,
namely, stringliteral, stringprefix, shortstring, shortstringitem, longstring, longstringitem,
shortstringchar, and longstringchar. Additionally, the \U extension, also used in another RDF
serialization (N-Triples), can be applied. Legal escape sequences are \newline, \\ (backslash, \), \' (single
quote, '), \" (double quote, "), \n (ASCII Linefeed, LF), \r (ASCII Carriage Return, CR), \t (ASCII Horizontal
Tab, TAB), \uhhhh (Unicode character in BMP), and \U00hhhhhh (Unicode character in plane 1–16 notation).
The escapes \a, \b, \f, and \v cannot be used, because the corresponding characters are not allowed in RDF.

A subset of N3 is the Terse RDF Triple Language, often referred to as Turtle. Turtle provides a syntax to
describe RDF graphs in a compact textual form, which is easy to develop. It is a subset of Notation 3 (N3) and
a superset of N-Triples. Turtle is popular among Semantic Web developers and considered an easy-to-read
alternative to RDF/XML. The typical file extension of Turtle files is .ttl. The character encoding of Turtle files
should be UTF-8. The MIME type of Turtle is text/turtle. Turtle is supported by many software frameworks
that can be used for querying and analyzing RDF data, such as Jena, Redland, and Sesame. Turtle files consist
of a sequence of directives, statements representing triples, and blank lines. Triples can be written in Turtle as
a sequence of subject-predicate-object terms, separated by whitespace, and terminated by a period (.).
URIs are written in angle brackets (<>), and string literals are delimited by double quotes ("") such as
<http://www.lesliesikos.com/metadata/sikos.rdf#> <http://xmlns.com/foaf/0.1/homepage>
<http://www.lesliesikos.com> . Using the URI prefix declaration @PREFIX foaf: <http://xmlns.com/
foaf/0.1/> ., this can be abbreviated as <http://www.lesliesikos.com/metadata/sikos.rdf#>
foaf:homepage <http://www.lesliesikos.com> ., where foaf:homepage declares the concatenation of
http://xmlns.com/foaf/0.1/ with homepage, revealing the original URI http://xmlns.com/foaf/0.1/
homepage.

Figure 2-1 represents the triples of Listing 2-5 as an RDF graph, which is a directed, labeled graph in
which the nodes are the resources and values [7]. The nodes and predicate arcs of the RDF graph correspond
to node elements and property elements. The default node element is rdf:Description, which is very
frequently used as the generic container of RDF statements in RDF/XML. To add context to RDF statements

Table 2-5. Shorthand Notation for Common Predicates

Predicate Shorthand Notation

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> a

<http://www.w3.org/2002/07/owl#sameAs> =

<http://www.w3.org/2000/10/swap/log#implies> => or <=

http://www.lesliesikos.com/metadata/sikos.rdf%23
http://xmlns.com/foaf/0.1/
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.lesliesikos.com/
http://example.com/overview/
http://www.lesliesikos.com/metadata/sikos.rdf%23
http://xmlns.com/foaf/0.1/homepage
http://www.lesliesikos.com/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://www.lesliesikos.com/metadata/sikos.rdf%23
http://www.lesliesikos.com/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/homepage
http://xmlns.com/foaf/0.1/homepage
http://www.w3.org/1999/02/22-rdf-syntax-ns%23type
http://www.w3.org/1999/02/22-rdf-syntax-ns%23type
http://www.w3.org/2000/10/swap/log%23implies

Chapter 2 ■ Knowledge representation

21

and make them globally interpretable, RDF triples are sometimes stored with the name of the graph, called
quads (subject-predicate-object-graph name), which will be demonstrated in later chapters.

The example can be extended with properties from other external vocabularies, but the concept
remains the same. Once you’ve created your RDF file, you have a machine-readable metadata file you can
upload to your web site. Semantic software agents can find and retrieve the information in such files
(see Figure 2-2), display the human-readable part in a visually appealing manner (see Figure 2-3) and
generate a scalable graph based on the RDF triples (see Figure 2-4), and infer new information.

Figure 2-1. A simple RDF graph

Chapter 2 ■ Knowledge representation

22

Figure 2-2. RDF triples extracted by Sindice Web Data Inspector [8]

Figure 2-3. A personal description extracted from RDF and displayed on a web page

Chapter 2 ■ Knowledge representation

23

While such machine-readable RDF files are useful, their primary application is data modeling, so the
RDF files are separate from the markup of your web site. You can add structured data directly to the markup,
such as (X)HTML5, by using machine-readable annotations, which can be processed by semantic data
extractors and, if needed, converted into RDF.

Machine-Readable Annotations
There are four machine-readable annotation formats for web sites (by order of introduction):

•	 Microformats, which publish structured data about basic concepts,1 such as people,
places, events, recipes, and audio, through core (X)HTML attributes

•	 RDFa, which expresses RDF in markup attributes that are not part of the core (X)
HTML vocabularies

•	 HTML5 Microdata, which extends the HTML5 markup with structured metadata
(a HTML5 Application Programming Interface)

•	 JSON-LD, which adds structured data to the markup as JavaScript code

RDFa and JSON-LD can be used in most markup language versions and variants, while HTML5
Microdata can be used in (X)HTML5 only. All these annotation formats have their own syntax. For example,
the vocabulary is declared with the vocab attribute in RDFa, the itemtype attribute in Microdata, and
context in JSON-LD (see Table 2-6).

Figure 2-4. A graph generated from an RDF file

1The other three formats are more advanced, as they can use concepts from any external vocabulary.

Chapter 2 ■ Knowledge representation

24

Table 2-6. Data Represented as Structured Data in a Microformat, Microdata, RDFa, and JSON-LD

Markup without
Semantic Annotation

Leslie Sikos

Leslie's web site:
lesliesikos.com

Markup with the hCard
microformat

<link rel="profile" href="http://microformats.org/profile/hcard" />
…
 <div class="vcard">
 Leslie Sikos

 Leslie's web site: <a class="url"
 href="http://www.lesliesikos.com">lesliesikos.com
</div>

Markup with HTML5
Microdata

<div itemscope="itemscope" itemtype="http://schema.org/Person">
 Leslie Sikos

 Leslie's web site:
 lesliesikos.com
</div>

Markup with RDFa <div vocab="http://schema.org/" typeof="Person">
 Leslie Sikos

 Leslie's web site:
 lesliesikos.com
</div>

Markup with JSON-LD <script type="application/ld+json">
{
 "@context": "http://schema.org",
 "@type": "Person",
 "image": "lesliesikos.jpg",
 "name": "Leslie Sikos",
 "url": "http://www.lesliesikos.com"
}
</script>

These syntaxes will be described in the next sections.

Microformats
The results of the very first approach to add machine-readable annotations to the (X)HTML markup are
called microformats (mF). Some microformats apply and reuse features of existing technologies, such as the
rel attribute of (X)HTML, while others, such as hCard, extend the core markup vocabulary the simplest
way possible: based on Plain Old Semantic HTML (POSH). Microformats can be implemented not only in
(X)HTML markup but also in XML, RSS, Atom, and so on. Microformats can express site structure, link
weight, content type, and human relationships with the class, rel, and rev attribute values. They are
very easy to write, and a great deal of software supports them (the Operator and Tails Export add-ons for
Firefox, the Michromeformats Google Chrome extension, the microformats transformer Optimus, or the
Microformats Bookmarklet for Safari, Firefox, and IE).

http://www.lesliesikos.com
http://microformats.org/profile/hcard
http://www.lesliesikos.com">lesliesikos.com</a
http://schema.org/Person
http://www.lesliesikos.com/
http://schema.org/
http://www.lesliesikos.com/
http://schema.org/
http://www.lesliesikos.com/

Chapter 2 ■ Knowledge representation

25

However, due to limitations and open issues, other machine-readable annotation formats gradually
overtook microformats. Applying various microformats as multiple values on the same a element, such as
rel="nofollow" and rel="friend", cannot be used. The rev attribute used by the Vote Links microformat is
not supported by HTML5. Profile URIs provided by the profile attribute cannot be used on the head element
in HTML5, wherein the profile attribute values can be declared for the rel attribute on anchors (a) or link
elements (link). As an example, a profile URI is presented for the hCalender microformat with all the three
options. The hCalendar microformat is based on the iCalendar standard (RFC 2445). All contents that use
hCalendar notation should refer to the hCalendar XMDP profile, in other words, http://microformats.org/
profile/hcalendar, as shown in Listing 2-6 or Listing 2-7 for the document head or Listing 2-8 as part of the
document body. These methods can also be combined.

Listing 2-6. Providing the hCalendar Head Profile in the Document Head (Cannot Be Used in HTML5)

<head profile="http://microformats.org/profile/hcalendar">

Listing 2-7. Linking to the hCalendar Profile in the Document Head

<link rel="profile" href="http://microformats.org/profile/hcalendar" />

Listing 2-8. Using the hCalendar Profile in the Document Body

hCalendar

 ■ Note new structural elements introduced by htMl5, such as article or section, are not recognized by
all microformat parsers, so the preceding attributes on these elements might not be processed.

In the next sections, I will give you an overview of some of the most popular microformats, namely,
hCalendar, hCard, rel="license", rel="nofollow", rel="tag", Vote Links, and XFN.

hCalendar and h-event

You can use the hCalendar microformat to create calendar entries for sport events, anniversaries, reminders,
meetings, workshops, conferences, and other events.

The root class name for hCalendar is vcalendar. The root class name for events is vevent, which is
required for all event listings. The properties are represented by the elements of hCalendar. The required
classes are dtstart, which should be provided in the ISO date format,2 and summary. Listing 2-9 shows an
hCalendar example.

Listing 2-9. A Three-Day Conference Represented in hCalendar

<link rel="profile" href="http://microformats.org/profile/hcalendar" />
…
<div class="vevent">
 <h1 class="summary">Semantic Web Conference 2015</h1>
 <div class="description">Semantic Web Conference 2015 was announced yesterday.</div>
 <div>Posted on: <abbr class="dtstamp" title="20150825T080000Z">Aug 25, 2015</abbr></div>

2Beyond microformats such as hAtom, hCalendar, hCard, and hReview, several web technologies apply the ISO 8601
date format for date-time representation, such as XML, XML schema datatypes, RDF, and Atom.

http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar
http://microformats.org/profile/hcalendar%22%3EhCalendar%3C/a
http://microformats.org/profile/hcalendar

Chapter 2 ■ Knowledge representation

26

 <div class="uid">uid1@host.com</div>
 <div>Organized by: js@expl.com</div>
 <div>Dates: <abbr class="dtstart" title="20151012T093000Z">October 12 2015, 9.30am
 UTC</abbr> – <abbr class="dtend" title="20151014T200000Z">October 14 2015, 8.00pm
 UTC</abbr></div>
 <div>Status: Confirmed</div>
 <div>Filed under:</div>

 <li class="category">Conference

</div>

Optional properties include, but are not limited to, location, url, dtend (in ISO date format),
duration (in ISO date duration format), rdate, rrule, category, description, uid, geo, attendee, contact,
organizer, attach, and status. The geo property has the subproperties latitude and longitude, while
attendee has the subproperties partstat and role. Those who have to publish new events regularly might
find the hCalendar generator hCalendar-o-matic useful [9].

The specification has been superseded by the h-event specification, which supports the following
properties inside a markup element with class h-event: p-name (event name or title), p-summary (short
summary), dt-start (date and time when the event starts), dt-end (date and time when the event ends),
dt-duration (duration of the event), p-description (verbose description), u-url (web site), p-category
(event category or categories), and p-location (event location, which can include h-card, h-adr, or h-geo).
All properties are optional. An example is shown in Listing 2-10.

Listing 2-10. A Three-Day Conference Annotated Using h-event

<div class="h-event">
 <h1 class="p-name"> Semantic Web Conference '15</h1>
 <p>From
 <time class="dt-start" datetime="2015-10-12 09:30">12th October 2015,

9:30am</time>
 to <time class="dt-end" datetime="2015-10-14 20:00">14th October 2015,

8:00pm</time>
 at Nice Conference Hall</p>
 <p class="p-summary">Semantic Web Conference 2015 was announced yesterday.</p>
</div>

hCard

The hCard microformat standard can be used to represent contact data of people, companies, and
organizations by semantic markup. hCard metadata should be provided on the contact pages of web sites.
In summer 2010, hCard crossed the 2 billion mark, according to the now-discontinued Yahoo! SearchMonkey,
which made hCard the most popular metadata format for people and organizations up to 2010. Because
hCard is based on the vCard standard (RFC 2426), existing vCards can be easily converted to hCard.3

3The vCard notation BEGIN:VCARD is class="vcard" in hCard, N: is class="n", FN: is class="fn", and so on.

Chapter 2 ■ Knowledge representation

27

 ■ Tip the vCard standard is widely used for storing electronic business cards. For example, Microsoft outlook
uses this format for the business cards available under Contacts. also, many smartphones use the vCard format
to store contacts in the phone memory (when you set up contacts not to be stored on the siM card).

The hCard class names should be in lowercase.

 ■ Caution the root class name for an hCard is vcard. an element with a class name vcard is itself called
an hCard.

The two required attributes in hCard are fn and n. However, the second one is optional if any implied
“N” optimization rules are in effect.4 The property n might have the subproperties family-name, given-name,
additional-name, honorific-prefix, and honorific-suffix. All other properties are optional, including
adr, agent, bday, category, class, email, geo, key, label, logo, mailer, nickname, note, org, photo, rev,
role, sort-string, sound, tel, title, tz, uid, and url. Permissible subproperties are post-office-box,
extended-address, street-address, locality, region, postal-code, country-name, type, and value for
adr; type and value for email; latitude and longitude for geo; organization-name and organization-
unit for org; and type and value for tel. A typical hCard code looks like Listing 2-11.

Listing 2-11. A Typical hCard

<link rel="profile" href="http://microformats.org/profile/hcard" />
…
<div id="hcard-John-Smith" class="vcard">

 John Smith
 <div class="org">Smith and Sons</div>
 smith@example.com
 <div class="adr">
 <div class="street-address">123 Nice Street</div>
 Adelaide,
 SA,
 5000
 Australia
 </div>
 <div class="tel">+61812345678</div>
</div>

The following hCard elements are singular and can be provided just once: fn, n, bday, tz, geo,
sort-string, uid, class, and rev. All other properties are allowed to have multiple instances. Generally, the
visible property values of markup elements represent the value of the hCard property. However, there are
some exceptions. For hyperlinks that are represented by the a element for one or multiple hCard properties,
the href attribute provides the property value for all properties with a URL value (for example, photo). In case
the img element is used, the src attribute holds the property value for all properties with a URL value. For
object elements, the data attribute provides the property value. The content of the element is the property

4If n is omitted but fn is present, the value of n will be equal to the value of fn.

http://microformats.org/profile/hcard
http://www.example.com/jsmith.jpg
http://www.example.com

Chapter 2 ■ Knowledge representation

28

value for all other properties. If the title attribute is provided for abbr elements with hCard notation, its
value is considered as the hCard property instead of the element contents used otherwise.

Although it is easy to create it manually, hCard metadata can be generated by the hCard creator
hCard-o-matic on the web site of the authors of the specification [10]. You simply fill in a form about the
name, organization, country, e-mail, and other contact data, and the software generates the hCard.

To provide additional information, microformats can also be nested. For example, a sport event review
might contain not only the review (annotated in hReview) but also personal information (in hCard) at the
same time (see Listing 2-12).

Listing 2-12. A Combination of hReview and hCard

<link rel="profile" href="http://microformats.org/profile/hreview" />
<link rel="profile" href="http://microformats.org/profile/hcard" />
…
<div class="hreview">
 <h1 class="summary">The Winner Takes It All Review</h1>

 by John Smith, Editor
 at Sport Reviews

 Rating: 4.5 out of 5.
 A fascinating performance.
</div>

The review is described by the hReview microformat (class="hreview"). The name of the reviewer
is revealed by span class="reviewer". The hCard microformat is nested inside the hReview microformat
in order to provide additional information about him/her (a space-separated list of attribute values in
). The hCard properties describe the name (fn), job title (title), and
organization (org) of the reviewer.

rel="license"

There are millions of web resources with some or all rights reserved. Many licenses associated with
documents and objects are sophisticated, and users cannot be expected to know them. The rel="license"
microformat can be added to hyperlinks that point to the description of the license. This is especially useful
for images but can be used for any resources. Basic image embeddings apply only the src and alt attributes
on the img element, such as in Listing 2-13.

Listing 2-13. A Basic Image Embedding

To declare the image license, the rel and href attributes should also be used. In the case of the Creative
Commons Attribution-ShareAlike license, for example, it should be in the form shown in Listing 2-14.

Listing 2-14. Declaring an Image License

<link rel="profile" href="http://microformats.org/profile/rel-license" />
…
<img src="hotel.jpg" alt="The Palace Hotel" rel="license"
 ref="http://creativecommons.org/licenses/by-sa/4.0/" />

http://microformats.org/profile/hreview
http://microformats.org/profile/hcard
http://microformats.org/profile/rel-license
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 2 ■ Knowledge representation

29

The value of the href attribute provides the associated URI of the resource in which the license is
described. Some of the most commonly used license deeds are [11] as follows:

•	 Creative Commons Attribution (cc by)

http://creativecommons.org/licenses/by/4.0/

•	 Creative Commons Attribution Share Alike (cc by-sa)

http://creativecommons.org/licenses/by-sa/4.0/

•	 Creative Commons Attribution No Derivatives (cc by-nd)

http://creativecommons.org/licenses/by-nd/4.0/

•	 Creative Commons Attribution Non-Commercial (cc by-nc)

http://creativecommons.org/licenses/by-nc/4.0/

•	 Creative Commons Attribution Non-Commercial Share Alike (cc by-nc-sa)

http://creativecommons.org/licenses/by-nc-sa/4.0/

•	 Creative Commons Attribution Non-Commercial No Derivatives (cc by-nc-nd)

http://creativecommons.org/licenses/by-nc-nd/4.0/

You should select a license that matches what you let others do with your work (distribute commercially
or noncommercially, remix, tweak, share with proper crediting, alter, and so on).

rel="nofollow"

One value of the rel attribute deserves extended attention, because it is often used in search engine
optimization (SEO). When rel="nofollow" is added to a hyperlink, the link destination should not be
considered for additional ranking by search engines. This attribute value can be applied if document
owners require hyperlinks, without affecting the ranking of their web pages or links to external web sites.
For example, if a hyperlink is vital on the web page but its destination page has a very low PageRank (PR),
the hyperlink should be provided with rel="nofollow", to avoid search engine penalty.

 ■ Note pagerank is a link analysis algorithm used to assign a numerical weighting to each web page, in
order to express its relative importance on a 0–10 scale.

For example, if the index page of lowprsite.com has a low PR but you have to link to it because of the
content presented there, you can use the rel="nofollow" microformat, as shown in Listing 2-15.

Listing 2-15. A Link That Will Not Be Considered by Search Engines While Indexing a Page

<link rel="profile" href="http://microformats.org/profile/rel-nofollow" />
…
Low PR site

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://microformats.org/profile/rel-nofollow
http://www.lowprsite.com/

Chapter 2 ■ Knowledge representation

30

Although it is widely used, there are several open issues about this microformat. The rel="nofollow"
microformat indicates a behavior rather than a relationship, so the definition is illogical. The name of the
microformat does not reflect the real meaning, and it is not a noun. While rel="nofollow" was originally
introduced to stop comment spam in blogs, using it alone does not prevent spamming attempts to add
marketing to a page (only prevent target pages from benefiting through an increased page rank). Finally,
many legitimate non-spam links provided as the attribute value of rel="nofollow" might be ignored or
given reduced weight by search engines, which is an undesirable side effect.

rel="tag"

Unlike other microformats and general meta keywords, the rel="tag" microformat can be used for visible
links. It can be applied on hyperlink elements to indicate that the destination of the link is a general
author-designated tag (keyword) for the current page. An example is shown in Listing 2-16.

Listing 2-16. Using rel="tag"

<link rel="profile" href="http://microformats.org/profile/rel-tag" />
…
Textbooks

Vote Links

Vote Links is an elemental microformat with three possible values on the rev attribute of the a element:
vote-for, vote-against, and vote-abstain. The values are mutually exclusive. Optionally, visible rollovers
can be provided by the title attribute. Listing 2-17 shows an example.

Listing 2-17. A Vote Links Example

<link rel="profile" href="http://microformats.org/profile/vote-links" />
…
<a rev="vote-for" href="http://example.com/thumbsup/"
 title="HTML should be the primary markup language">HTML5
<a rev="vote-against" href="http://example.com/thumbsdown/"
 title="XHTML should be the primary markup language">XHTML5

XFN

The very first HTML microformat, XHTML Friends Network (XFN), was introduced in December 2003. XFN
was designed by Global Multimedia Protocols Group to express human relationships with simple hyperlinks.
XFN is especially useful for brochure-style home pages and blog entries. The name of the person should
be provided as the text of the hyperlink (between <a> and). The personal web site is the target of the
hyperlink, in other words, the value of the href attribute. All relationship data can be provided by the rel
attribute on a elements. Multiple values are allowed and should be separated by spaces. The friendship type
can be contact, acquaintance, or friend. If the person is known personally, it can be expressed by the met
attribute value of the rel attribute. For example, a friend of Leslie Sikos, whom he knows personally, can
publish that relationship on his web site by XFN, as shown in Listing 2-18.

Listing 2-18. Link to the Web Site of a Friend

<link rel="profile" href="http://gmpg.org/xfn/11" />
…
I am an old friend of Leslie Sikos.

http://microformats.org/profile/rel-tag
http://www.lesliesikos.com/category/textbooks/
http://microformats.org/profile/vote-links
http://example.com/thumbsup/
http://example.com/thumbsdown/
http://gmpg.org/xfn/11
http://lesliesikos.com/

Chapter 2 ■ Knowledge representation

31

The distance between the residence of the person and that of his friend can be expressed by the
co-resident and neighbor values. Relatives can set to child, parent, sibling, spouse, or kin. The
professional relationships co-worker and colleague are also supported. Feelings can also be expressed
(muse, crush, date, sweetheart).

CSS styles can also be added to XFN metadata. For example, friends can be provided in bold and
colleagues in italic, with the CSS rules shown in Listing 2-19.

Listing 2-19. Styling XFN

a[rel~="friend"] {
 font-weight: bold;
}

a[rel~="colleague "] {
 font-style: italic;
}

Although it is easy to create XFN from scratch, XFN creators such as XFN Creator [12] or Exefen [13]
might speed up development.

XMDP

XHTML MetaData Profiles (XMDP) metadata is an XHTML-based format for defining metadata profiles
that are both machine- and human-readable. XMDP consists of a property definition list, an optional
description, and then, if applicable, one or more definition list items. The profile definition list is identified
by the class (see Listing 2-20).

Listing 2-20. XMDP Profile Definition

<dl class="profile">

The definition term is identified by the id (see Listing 2-21).

Listing 2-21. Definition Term and Data for XMDP

<dt id="property1">property1</dt>
<dd>propertydesc</dd>

The informatively used meta properties author and keywords, for example, can be defined by XMDP,
as shown in Listing 2-22.

Listing 2-22. A Complete XMDP Example

<dl class="profile">
 <dt id="author">author</dt>
 <dd>A person who wrote (at least part of) the document.</dd>
 <dt id="keywords">keywords</dt>
 <dd>A comma and/or space separated list of the keywords or keyphrases of the document.</dd>
</dl>

Chapter 2 ■ Knowledge representation

32

Drafts and Future Microformats

You can apply microformats to provide specific metadata on a wide variety of resources. Address information
can be described by adr. Geographic coordinates (latitude-longitude pairs) can be provided according to the
World Geodetic System (WGS) with the geo microformat. hAtom can be used for web syndication. Information
about audio recordings can be embedded by using the hAudio microformat. The hListing microformat can
be applied for open, distributed listings. Image, video, and audio media components can be described by
hMedia. hNews is a microformat to provide news content on web sites. Product descriptions can be expressed
in hProduct. Cooking and baking recipes can be described on the Web with hRecipe. Résumés and CVs can be
published with hResume. Document reviews can be written in hReview. The rel="directory" microdata can
indicate that a link destination is a directory listing that refers to the current page. File attachments provided
for downloading can be indicated by the rel="enclosure" microformat. rel="home" provides a hyperlink
to the home page of the web site. The rel="payment" microformat is an online payment mechanism.
The reworking of the robots meta tag is the Robot Exclusion Profile. The xFolk microformat (stands for
xFolksomony) was designed for publishing collections of bookmarks. The list goes on, and the Microformats
Community welcomes metadata enthusiasts to create new microformats; however, other formats, such as
RDFa and HTML5 Microdata, seem to replace microformats.

RDFa
RDFa (RDF in attributes) makes it possible to write RDF triples in the (X)HTML markup, XML, or SVG as
attribute values. The full RDFa syntax (RDFa Core) [14] provides basic and advanced features for experts
to express complex structured data in the markup, such as human relationships, places, and events. Those
who want to express fairly simple structured data in their web documents can use the less expressive RDFa
Lite [15], a minimal subset of RDFa that is easier to learn and suitable for most general scenarios. RDFa Lite
supports the following attributes: vocab, typeof, property, resource, and prefix. In host languages that
authorize the use of the href and src attributes, they are supported by RDFa Lite too.

A bunch of numbers has a different meaning in a math lesson than in the telephone book, while a word
often has a different meaning in a poem than in real life. The meaning of words depends on the context,
so in order to make computers understand the field or area (knowledge domain), we have to identify the
machine-readable vocabulary that defines the terminology of the domain. In RDFa, the vocabulary can be
identified by the vocab attribute, the type of the entity to describe is annotated by the typeof attribute, and
the properties with the property attribute (see Listing 2-23).

Listing 2-23. Basic Machine-Readable Annotation of a Person in RDFa

<p vocab="http://schema.org/" typeof="Person">
 My name is Leslie Sikos and you can find out more about me
 by visiting my web site.
</p>

Once the preceding code is published and indexed, search engines will find the “web site of Leslie Sikos”
more efficiently. To uniquely identify this entity on the Web, the resource attribute is used (see Listing 2-24).
The resource attribute is one of the options to set the object of statements, which is particularly useful when
referring to resources that are not navigable links, such as the ISBN number of a book.

Listing 2-24. A Unique Identifier of the Entity in RDFa

<p vocab="http://schema.org/" typeof="Person" resource="#sikos">
 My name is Leslie Sikos and you can find out more about me
 by visiting my web site.
</p>

http://schema.org/
http://www.lesliesikos.com
http://schema.org/
http://www.lesliesikos.com

Chapter 2 ■ Knowledge representation

33

The vocabulary declaration makes it possible to omit the full URI from each property (name refers to
http://schema.org/name, url abbreviates http://schema.org/url). However, if you add RDFa annotation
for more than one real-world object or person, you can declare the namespace of the vocabulary on the
html element of your (X)HTML document (e.g., <html xmlns:foaf="http://xmlns.com/foaf/0.1/" …>)
and associate it with a prefix that can be reused throughout the document. Every time you use a term from
the vocabulary declared on the top of your document, you add the prefix followed by a colon, such as
foaf:name, schema:url, etc. Using prefixes is not only handy but sometimes the only way to annotate your
markup. For example, if you need terms from more than one vocabulary, additional vocabularies can be
specified by the prefix attribute (see Listing 2-25). You can refer to any term from your most frequently used
vocabulary (defined in the vocab attribute value) without the prefix, and terms from your second vocabulary
with the prefix you define as the attribute value of the prefix attribute, or define them on the html element
with the xmlns attribute followed by the prefix name and the namespace URI.

Listing 2-25. Using the Term “Textbook” from the FaBiO Ontology

<p vocab="http://schema.org/" typeof="Person" prefix="fabio: http://purl.org/spar/fabio/"
 resource="#sikos">
 My name is Leslie Sikos and you can find out more about me
 by visiting my web site.
 I am the author of <a property="fabio:Textbook"
 href="http://lesliesikos.com/mastering-structured-data-on-the-semantic-web/">Mastering
 Structured Data on the Semantic Web.

To make search engines “understand” that the provided link refers to a textbook of Leslie Sikos, we
used the machine-readable definition of “textbook” from the FaBiO ontology. If you need more than one
additional vocabulary for your RDFa annotations, you can add them to the attribute value of the prefix
attribute as a space-separated list.

The most frequently used vocabulary namespaces are predefined in RDFa parsers, so you can omit
them in your markup and still be able to use their terms in RDFa annotations (Table 2-7).

Table 2-7. Widely Used Vocabulary Prefixes Predefined in RDFa [16]

Prefix URI Vocabulary

cc http://creativecommons.org/ns# Creative Commons Rights Expression Language

ctag http://commontag.org/ns# Common Tag

dcterms http://purl.org/dc/terms/ Dublin Core Metadata Terms

dc http://purl.org/dc/elements/1.1/ Dublin Core Metadata Element Set,
Version 1.1

foaf http://xmlns.com/foaf/0.1/ Friend of a Friend (FOAF)

gr http://purl.org/goodrelations/v1# GoodRelations

ical http://www.w3.org/2002/12/cal/icaltzd# iCalendar terms in RDF

og http://ogp.me/ns# Facebook OpenGraph

rev http://purl.org/stuff/rev# RDF Review

sioc http://rdfs.org/sioc/ns# SIOC Core

v http://rdf.data-vocabulary.org/# Google Rich Snippets

vcard http://www.w3.org/2006/vcard/ns# vCard in RDF

schema http://schema.org/ schema.org

http://schema.org/name
http://schema.org/url
http://xmlns.com/foaf/0.1/
http://schema.org/
http://purl.org/spar/fabio/
http://www.lesliesikos.com
http://lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://creativecommons.org/ns%23
http://commontag.org/ns%23
http://purl.org/dc/terms/
http://purl.org/dc/elements/1.1/
http://xmlns.com/foaf/0.1/
http://purl.org/goodrelations/v1%23
http://www.w3.org/2002/12/cal/icaltzd%23
http://ogp.me/ns%23
http://purl.org/stuff/rev%23
http://rdfs.org/sioc/ns%23
http://rdf.data-vocabulary.org/%23
http://www.w3.org/2006/vcard/ns%23
http://schema.org/

Chapter 2 ■ Knowledge representation

34

More sophisticated annotations require additional attributes that are supported by RDFa Core only.
Beyond the RDFa Lite attributes, RDFa Core supports the about, content, datatype, inlist, rel, and rev
attributes.

The current subject is the web address5 of the document or a value set by the host language, such as the
base element in (X)HTML. As a result, any metadata written in a document will concern the document itself
by default. The about attribute can be used to change the current subject and state what the data is about,
making the properties inside the document body become part of a new object rather than referring to the
entire document (as they do in the head of the document).

If some displayed text is different from the represented value, a more precise value can be added using
the content attribute, which is a character data (CDATA) string to supply machine-readable content for a
literal. A value can also optionally be typed using the datatype attribute (see Listing 2-26). Declaring the
type ensures that machines can interpret strings, dates, numbers, etc., rather than considering them as a
character sequence.

Listing 2-26. Using the content and datatype Attributes

<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="xsd: http://www.w3.org/2001/XMLSchema# dc: http://purl.org/dc/terms/">
 <head>
 <title>Leslie’s Blog</title>
 </head>
 <body>
 <h1 property="dc:title">Leslie’s Blog</h1>
 <p>
 Last modified: <span property="dc:modified"
 content="2014-11-28T12:43:00-09:30"
 datatype="xsd:dateTime">28 November 2014.
 </p>
 </body>
</html>

In RDFa, the relationship between two resources (predicates) can be expressed using the rel attribute
(see Listing 2-27).

Listing 2-27. Describing the Relationship Between Two Resources in RDFa

This document is licensed under the
<a prefix="cc: http://creativecommons.org/ns#"
 rel="cc:license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons By-NC-ND
 License.

When a predicate is expressed using rel, the href or src attribute is used on the element of the RDFa
statement, to identify the object (see Listing 2-28).

Listing 2-28. Using href to Identify the Object

<link about="mailto:leslie@example.com"
 rel="foaf:knows" href="mailto:christina@example.com" />

5Web address (Uniform Resource Identifier, URI), internationalized web address (Internationalized Resource Identifier, IRI),
or compact web address (Compact URI, CURIE)

http://www.w3.org/1999/xhtml
http://www.w3.org/2001/XMLSchema
http://purl.org/dc/terms/
http://creativecommons.org/ns%23
http://creativecommons.org/licenses/by-nc-nd/3.0/%22%3ECreative

Chapter 2 ■ Knowledge representation

35

Reverse relationships between two resources (predicates) can be expressed with the rev attribute.
The rel and rev attributes can be used on any element individually or together. Combining rel and rev is
particularly useful when there are two different relationships to express, such as when a photo is taken by
the person it depicts (see Listing 2-29).

Listing 2-29. Combining the rel and rev Attributes

 ■ Caution if a triple predicate is annotated using rel or rev only, but no href, src, or resource is defined
on the same element, the represented triple will be incomplete [17].

The inlist attribute indicates that the object generated on the element is part of a list sharing the same
predicate and subject (see Listing 2-30). Only the presence of the inlist attribute is relevant; its attribute
value is always ignored.

Listing 2-30. Using the inlist Attribute

<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/"
 typeof="bibo:Website">
 The web site Andrew Peno Graphic and Fine Artist by
 Andrew Peno and
 Leslie Sikos.
</p>

RDFa DOM API

RDFa provides a Document Object Model (DOM) Application Programming Interface (API) to extract and
utilize structured data from a web page, for advanced user interfaces and interactive applications [18].

HTML5 Microdata
HTML5 Microdata is an HTML5 module defined in a separate specification, extending the HTML5 core
vocabulary with attributes for representing structured data [19].

Global Microdata Attributes

HTML5 Microdata represents structured data as a group of name-value pairs. The groups are called items,
and each name-value pair is a property. Items and properties are represented by regular elements. To create
an item, the itemscope attribute is used.6 To add a property to an item, the itemprop attribute is used on a
descendant of the item (a child element of the container element), as shown in Listing 2-31.

6In HTML5, most web designers use attribute minimization and omit the attribute value (even if it is irrelevant), which is
not allowed in XHTML5. In other words, in HTML5, you can write itemscope on the container element without a value,
while in XHTML5 you write itemscope="itemscope", which is more verbose and more precise and validates as HTML5
and XHTML5. The XHTML5 syntax is used throughout the book.

http://www.lesliesikos.com/
http://purl.org/ontology/bibo/
http://purl.org/dc/terms/
http://creativecommons.org/ns%23
http://creativecommons.org/ns%23

Chapter 2 ■ Knowledge representation

36

Listing 2-31. A Person’s Description in HTML5 Microdata

<div itemscope="itemscope" itemtype="http://schema.org/Person">
 Leslie Sikos

 Leslie's web site:
 lesliesikos.com
</div>

Property values are usually strings (sequences of characters) but can also be web addresses, as the value
of the href attribute on the a element, the value of the src attribute on the img element, or other elements
that link to or embed external resources. In Listing 2-31, for example, the value of the image item property
is the attribute value of the src attribute on the img element, which is lesliesikos.jpg. Similarly, the value
of the url item property is not the content of the a element, lesliesikos.com, but the attribute value of the
href attribute on the a element, which is http://www.lesliesikos.com. By default, however, the value of
the item is the content of the element, such as the value of the name item property in this example: Leslie
Sikos (delimited by the and tag pair).

The type of the items and item properties are expressed using the itemtype attribute, by declaring the
web address of the external vocabulary that defines the corresponding item and properties. In our example,
we used the Person vocabulary from http://schema.org that defines properties of a person, such as
familyName, givenName, birthDate, birthPlace, gender, nationality, and so on. The full list of properties
is defined at http://schema.org/Person, which is the value of the itemtype. In the example, we declared
the name with the name property, the depiction of the person with the image property, and his web site
address using the url property. The allowed values and expected format of these properties are available at
http://schema.org/name, http://schema.org/image, and http://schema.org/url, respectively.

The item type is different for each knowledge domain, and if you want to annotate the description of a
book rather than a person, the value of the itemtype attribute will be http://schema.org/Book, where the
properties of books are collected and defined, such as bookFormat, bookEdition, numberOfPages, author,
publisher, etc. If the item has a global identifier (such as the unique ISBN number of a book), it can be
annotated using the idemid attribute, as shown in Listing 2-32.

Listing 2-32. The Description of a Book in HTML5 Microdata

<div itemscope="itemscope" itemtype="http://schema.org/Book"
 itemid="urn:isbn:978-1-484208-84-7">
 <img itemprop="image" src="http://www.masteringhtml5css3.com/img/webstandardsbook.jpg"
 alt="Web Standards" />
 Web Standards: Mastering HTML5, CSS3, and XML
 by Leslie Sikos
</div>

Although HTML5 Microdata is primarily used for semantical descriptions of people, organizations,
events, products, reviews, and links, you can annotate any other knowledge domains with the endless variety
of external vocabularies.

Groups of name-value pairs can be nested in a Microdata property by declaring the itemscope attribute
on the element that declared the property (see Listing 2-33).

http://schema.org/Person
http://www.lesliesikos.com/
http://www.lesliesikos.com/
http://schema.org/
http://schema.org/Person
http://schema.org/name
http://schema.org/image
http://schema.org/url
http://schema.org/Book
http://schema.org/Book
http://www.masteringhtml5css3.com/img/webstandardsbook.jpg
http:www.lesliesikos.com

Chapter 2 ■ Knowledge representation

37

Listing 2-33. Nesting a Group of Name-Value Pairs

<div itemscope="itemscope">
 <p>Name: Herbie Hancock</p>
 <p>Band:
 The Headhunters
 (7 members)

 </p>
</div>

In the preceding example, the outer item (top-level Microdata item) annotates a person, and the inner
one represents a jazz band.

An optional attribute of elements with an itemscope attribute is itemref,7 which gives a list of
additional elements to crawl to find the name-value pairs of the item. In other words, properties that are not
descendants of the element with the itemscope attribute can be associated with the item using the itemref
attribute, providing a list of element identifiers with additional properties elsewhere in the document
(see Listing 2-34). The itemref attribute is not part of the HTML5 Microdata data model.

Listing 2-34. Using the itemref Attribute

<div itemscope="itemscope" id="herbie" itemref="a b"></div>
<p id="a">Name: Herbie Hancock</p>
<div id="b" itemprop="band" itemscope="itemscope" itemref="c"></div>
<div id="c">
 <p>Band: The Headhunters</p>
 <p>Size: 7 members</p>
</div>

The first item has two properties, declaring the name of jazz keyboardist Herbie Hancock, and
annotates his jazz band separately on another item, which has two further properties, representing the name
of the band as The Headhunters, and sets the number of members to 7 using the size property.

HTML5 Microdata DOM API

HTML5 Microdata has a DOM API for web developers to directly access structured data [20].

JSON-LD
In contrast to RDFa and HTML5 Microdata, the two other mainstream formats to add
structured data to the web site markup, JavaScript Object Notation for Linked Data
(JSON-LD) is described as JavaScript code rather than markup elements and attributes.
As a result, JSON-LD is completely separate from the (X)HTML code. One of the
advantages of this lightweight Linked Data format is that it is easy for humans to read and
write. JSON-LD transports Linked Data using the JavaScript Object Notation (JSON), an
open standard format using human-readable text to transmit attribute-value pairs [21]. If the JSON-LD code
is written in a separate file rather than the markup, the de facto file extension is .jsonld. The Internet media

7The itemref attribute is not part of the Microdata data model and is purely a syntactic construct to annotate web page
components for which creating a tree structure is not straightforward, as, for example, a table in which the columns
represent items, and the cells the properties.

Chapter 2 ■ Knowledge representation

38

type of JSON-LD is application/ld+json and, if written in the markup, the JSON-LD code is delimited by
curly braces between the <script> and </script> tags, as shown in Listing 2-35.

Listing 2-35. Compact JSON-LD Code in the Markup

<script type="application/ld+json">
{
 "@context": "http://schema.org",
 "@type": "Person",
 "image": "lesliesikos.jpg",
 "name": "Leslie Sikos",
 "url": "http://www.lesliesikos.com"
}
</script>

This example uses the compact syntax of JSON-LD, which can be expanded to the full syntax notation
demonstrated in Listing 2-36.

Listing 2-36. Expanded JSON-LD Code

[
 {
 "@type": [
 "http://schema.org/Person"
],
 "http://schema.org/image": [
 {
 "@id": "http://www.lesliesikos.com/images/lesliesikos.jpg"
 }
],
 "http://schema.org/name": [
 {
 "@value": "Leslie Sikos"
 }
],
 "http://schema.org/url": [
 {
 "@id": "http://www.lesliesikos.com"
 }
]
 }
]

JSON-LD DOM API

The API of JSON-LD provides a way to transform JSON-LD documents to be more easily consumed by
specific applications [22].

http://schema.org/
http://www.lesliesikos.com/
http://schema.org/Person
http://schema.org/image
http://www.lesliesikos.com/images/lesliesikos.jpg
http://schema.org/name
http://schema.org/url
http://www.lesliesikos.com/

Chapter 2 ■ Knowledge representation

39

GRDDL: XML Documents to RDF
Since valid XML documents comply to a very strict grammar, RDF triples can often be extracted from XML.
Gleaning Resource Descriptions from Dialects of Languages (GRDDL, pronounced as “griddle”) is a markup
format for transforming XML documents, including XHTML documents (with or without microformats such
as hCard or hCalendar) to RDF. These transformations are usually expressed in XSLT, and happen in the
following three steps:

 1. Source document declaration

 2. Link to one or more extractors

 3. GRDDL agent extracts RDF from the document

XHTML 1.x documents use the profile attribute on the head element to declare that the document
supports GRDDL transformations, while the available transformations are provided as an .xsl file
(Listing 2-37).

Listing 2-37. An XHTML 1.x Document That Supports GRDDL Transformations

<head profile="http://www.w3.org/2003/g/data-view">
<link rel="transformation" href="grddlxfn.xsl" />

 ■ Caution the profile attribute is not supported in XhtMl5.

In XML documents such as the Atom syndication format (used for news feeds) or KML (used to display
geographic data in Google Earth and Google Maps), a transformation can be associated with the XML
namespace by simply pointing to the namespace (Listing 2-38).

Listing 2-38. An XML Namespace Declaration Pointing to NamespaceTransformation

<foo xmlns="http://example.com/1.0/">

When the http://example.com/1.0/ namespace is accessed, it reveals the namespaceTransformation,
allowing easy deployment of RDF/XML from XML documents.

For XHTML documents that contain microformats, the profile specific to the applied annotations is
used. For example, an XHTML document that supports GRDDL and has hCard information has a profile like
that shown in Listing 2-39.

Listing 2-39. An XHTML 1.x Document That Supports GRDDL and Contains hCard Information

<head profile="http://www.w3.org/2003/g/data-view http://www.w3.org/2006/03/hcard">

GRDDL agents can extract all the hCard data from pages that reference the link of profile transformation
(Listing 2-40).

Listing 2-40. Profile Transformation Link

The RDF data is extracted by <a rel="profileTransformation"
href="hcard2rdf.xsl">this XSL from this hCard.

http://www.w3.org/2003/g/data-view
http://example.com/1.0/
http://example.com/1.0/
http://www.w3.org/2003/g/data-view
http://www.w3.org/2006/03/hcard

Chapter 2 ■ Knowledge representation

40

R2RML: Relational Databases to RDF
The majority of dynamic web site contents are powered by relational databases (RDB) such as Microsoft
SQL, MySQL, Oracle, IBM DB2, or PostgreSQL. RDB2RML (R2RML) is a standard for direct mapping of
relational databases to RDF [23], making data more accessible on the Semantic Web (see Figure 2-5).

The direct mapping represents the RDB data and schema as an RDF graph called a direct graph and
is described in the Turtle syntax. Assume we have two tables in a relational database, one of which collects
people, the other addresses (Listing 2-41).

Listing 2-41. RDB Input

CREATE TABLE "Addresses" (
 "ID" INT, PRIMARY KEY("ID"),
 "city" CHAR(10),
 "state" CHAR(3)
)

CREATE TABLE "People" (
 "ID" INT, PRIMARY KEY("ID"),
 "fname" CHAR(10),
 "addr" INT,
 FOREIGN KEY("addr") REFERENCES "Addresses"("ID")
)

INSERT INTO "Addresses" ("ID", "city", "state") VALUES (52, 'Adelaide', 'SA')
INSERT INTO "People" ("ID", "fname", "addr") VALUES (5, 'Leslie', 52)

Figure 2-5. RDB2RML enables RDF benefits for data from relational databases

Chapter 2 ■ Knowledge representation

41

Both tables have a unique identifier as the primary key. The address identifier provides the relation
between the two tables (Figure 2-6).

The R2RML direct mapping of this example would create a People class with a Leslie entity with ID 5,
an Addresses class with the city and state details of the Leslie entity, and a link between the Leslie entity
and the associated address (Listing 2-42).

Listing 2-42. RDF/Turtle Output

@base <http://example.com/DB/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<People/ID=5> rdf:type <People> .
<People/ID=5> <People#ID> 5 .
<People/ID=5> <People#fname> "Leslie" .
<People/ID=5> <People#addr> 52 .
<People/ID=5> <People#addr> <Addresses/ID=52>
<Addresses/ID=52> rdf:type <Addresses> .
<Addresses/ID=52> <Addresses#ID> 52 .
<Addresses/ID=52> <Addresses#city> "Adelaide" .
<Addresses/ID=52> <Addresses#state> "SA" .

RDFS
While RDF is the cornerstone of the Semantic Web, by itself it is not suitable for describing ontologies.
RDFS (RDF Vocabulary Description Language, originally the RDF Schema Language) is a simple, RDF-
based language for creating RDF ontologies by defining terms of a knowledge domain and the relationships
between them [24]. RDFS is an extension of the RDF vocabulary with basic ontology elements and also
reuses RDF properties. RDFS ontologies can be represented as RDF graphs. RDFS is suitable for describing
various resource types, using specific properties. The RDFS classes and properties form the RDFS vocabulary,
including a specialized set of predefined RDF resources with their meaning and using URI references with
the prefix http://www.w3.org/2000/01/rdfschema# and the associated QName prefix rdfs:. The classes
of the RDFS vocabulary are used to define a class resource (rdfs:Resource), the class of literal values
such as strings and integers (rdfs:Literal), the class of classes (rdfs:Class), the class of RDF datatypes

Figure 2-6. RDB input tables

http://www.w3.org/2001/XMLSchema%23
http://www.w3.org/2000/01/rdfschema%23

Chapter 2 ■ Knowledge representation

42

(rdfs:Datatype), the class of RDF containers (rdfs:Container), and the class of container membership
properties (rdfs:ContainerMembershipProperty). The properties of RDFS can express that the subject is
a subclass of a class (rdfs:subClassOf), the subject is a subproperty of a property (rdfs:subPropertyOf),
define a domain (rdfs:domain) or range of the subject property (rdfs:range), add a human-readable name
for the subject (rdfs:label), declare a description of the subject resource (rdfs:comment), identify a member
of the subject resource (rdfs:member), add information related to the subject resource (rdfs:seeAlso), and
provide the definition of the subject resource (rdfs:isDefinedBy).

Defining RDFS Classes
An RDFS class corresponds to a type or category used for classification and hierarchy. In RDFS, a class C is
defined by a triple of the form shown in Listing 2-43, where rdfs:Class is a predefined class and rdf:type is
a predefined property.

Listing 2-43. Class Definition in RDFS

C rdf:type rdfs:Class .

For example, the example.com video rental company wants to use RDFS to provide information about
movies, including westerns and comedies. The classes to represent these categories can be written as the
statements (triples) shown in Listing 2-44.

Listing 2-44. Statements in RDFS

ex:Movie rdf:type rdfs:Class .
ex:Western rdf:type rdfs:Class .
ex:Comedy rdf:type rdfs:Class .

Defining RDFS Subclasses
Suppose example.com wants to define that westerns and comedies are movies. This can be done with RDFS
subclasses shown in Listing 2-45.

Listing 2-45. Subclass Definition in RDFS

ex:Western rdfs:subClassOf ex:Movie .
ex:Comedy rdfs:subClassOf ex:Movie .

The rdfs:subClassOf property is reflexive, in other words, once an RDFS class is created, it is a
subclass of itself, such as the definition of ex:Movie infers that ex:Movie rdfs:subClassOf ex:Movie .
The rdfs:subClassOf property is also transitive. The predefined rdfs:subclassOf property is used as a
predicate in a statement to declare that a class is a specialization of another more general class. The meaning
of the rdfs:subClassOf predefined property in a statement of the form C1 rdfs:subClassOf C2 is that
any instance of class C1 is also an instance of class C2. For example, if we have the statements ex:Comedy
rdfs:subClassOf ex:Movie . (comedies are movies) and ex:ActionComedy rdf:type ex:Comedy .
(action comedies are comedies), the statement ex:ActionComedy rdf:type ex:Movie . (action comedies
are movies) can be inferred (knowledge explicitly not stated can be deducted).

Defining RDFS Instances
To define an instance for example.org, such as an individual movie, we can make an RDF statement that the
film Bad Boys is an action comedy, as shown in Listing 2-46.

Chapter 2 ■ Knowledge representation

43

Listing 2-46. Instance Definition in RDFS

@prefix films: <http://example.com/films> .
@prefix moviedb: <http://examplefilmdb.com> .

moviedb:BadBoys rdf:type films:ActionComedy .

The rdf:type predefined property is used as a predicate in a statement I rdf:type C . to declare that
individual I is an instance of class C. In statements of the form C rdf:type rdfs:Class ., rdf:type is used
to declare that class C (viewed as an individual object) is an instance of the rdfs:Class predefined class.
Defining a class explicitly is optional. If we write a triple such as I rdf:type C ., C is inferred to be a class
(namely, an instance of rdfs:Class). A class is not limited to one hierarchical level and can be a subclass or
superclass of other classes that is usually represented as a directed graph (see Figure 2-7).

In our example, the graph represents the machine-readable statements that can be expressed by the
ontology (Listing 2-47).

Listing 2-47. RDFS Classes Correspond to Relationships Represented on the Graph

@prefix films: <http://example.com/films> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

films:Movie rdf:type rdfs:Class .
films:Action rdf:type rdfs:Class .
films:Comedy rdf:type rdfs:Class .
films:Western rdf:type rdfs:Class .
films:ActionComedy rdf:type rdfs:Class .
films:Action rdfs:subClassOf films:Movie .
films:Comedy rdfs:subClassOf films:Movie .
films:Western rdfs:subClassOf films:Movie .
films:ActionComedy rdfs:subClassOf films:Comedy .
films:ActionComedy rdfs:subClassOf films:Action .

Figure 2-7. Hierarchy of RDFS classes on a graph

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schema%23

Chapter 2 ■ Knowledge representation

44

Defining RDFS Properties
Specific properties can be defined without references to classes or to characterize classes. To create a
property for a class, one makes the statement that the property to be defined is an instance of the predefined
rdf:Property class. For example, we write ex:author rdf:type rdf:Property ., so that the ex:author
property can be used as a predicate in an RDF triple, such as ex:LeslieSikos ex:author ex:WebStandards .
Because RDFS properties are resources too, properties can be either subjects or objects of triples. For example,
ex:author prov:definedBy ke:LeslieSikos and ke:LeslieSikos prov:defined ex:author.

The rdfs:label property is an instance of rdf:Property that can be used to provide a human-readable
version of the name of a resource. The rdfs:comment property is an instance of rdf:Property suitable
for providing a human-readable description of a resource. A very frequently used RDFS property on the
Semantic Web is rdfs:seeAlso, which is an instance of rdf:Property and used to indicate a resource
that provides additional information about the subject resource. Assume we have an RDF description for
the textbook Web Standards: Mastering HTML5, CSS3, and XML. We declare the title of the book with the
title property from the Dublin Core vocabulary, so its namespace at http://purl.org/dc/terms/ has to
be included in the namespace declaration. To link the web site of the book to a web page that describes
additional books by the author, the rdfs:seeAlso property can be used (see Listing 2-48). Because we use
RDF and RDFS properties as well, their namespaces have to be added to the namespace declaration.

Listing 2-48. Tagging, Describing, and Linking Resources with RDFS Properties

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<http://www.masteringhtml5css3.com>
 rdfs:label "RDF Description of the web design book Web Standards" ;
 dcterms:title "Web Standards: Mastering HTML5, CSS3, and XML" ;
 rdfs:comment "Web Standards: Mastering HTML5, CSS3, and XML presents step-by-step
 guides based on solid design principles and best practices, and shows the most common
 web development tools and web design frameworks. You will master HTML5 and its XML
 serialization, XHTML5, the new structuring and multimedia elements, the most important
 HTML5 APIs, and understand the standardization process of HTML 5.1, HTML 5.2, and
 future HTML5 versions." ;
 rdfs:seeAlso <http://www.lesliesikos.com/web-design-books/> .

The rdfs:isDefinedBy property is an instance of rdf:Property that is used to indicate a resource that
defines the subject resource, such as a controlled vocabulary in which the resource is described.

Defining RDFS Domains and Ranges
Properties can be declared to apply only to certain instances of classes, by defining their domain and range,
which indicate the relationships between RDFS classes and properties and RDF data. The rdfs:domain
predicate indicates that a particular property applies to instances of a designated class (the domain of the
property), in other words, declares the class of those resources that may appear as subjects in a triple with
the predicate. The rdfs:range predicate indicates that the values of a particular property are instances of a
designated class (the class of those resources that may appear as the object in a triple with the predicate, also
known as the range of the property), as shown in Listing 2-49.

http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schema%23
http://www.masteringhtml5css3.com/
http://www.lesliesikos.com/web-design-books/

Chapter 2 ■ Knowledge representation

45

Listing 2-49. Using RDFS Domain and Range

ex:Book rdf:type rdfs:Class .
ex:Person rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:domain ex:Book .
ex:author rdfs:range ex:Person .
Book1 ex:hasAuthor Author .

 ■ Note not all properties have a domain or range.

The rdfs:range property can also indicate that a property value is declared with a typed literal8
(Listing 2-50).

Listing 2-50. Using a Typed Literal

ex:age rdf:type rdf:Property .
ex:age rdfs:range xsd:integer .

Web Ontology Language (OWL)
While simple machine-readable ontologies can be created using RDFS, complex knowledge domains require
more capabilities, such as

•	 Relations between classes (union, intersection, disjointness, equivalence)

•	 Property cardinality constraints (minimum, maximum, exact number, e.g., a Person
has exactly one father)

•	 Rich typing of properties (object vs. datatype, specific datatypes)

•	 Characteristics of properties and special properties (transitive, symmetric,
functional, inverse functional, e.g., A ex:hasAncestor B and B ex:hasAncestor C
implies that A ex:hasAncestor C)

•	 Specifying that a given property is a unique key for instances of a particular class

•	 Domain and range restrictions for properties when they are used with a certain class

•	 Equality of classes, specifying that two classes with different URI references actually
represent the same class

•	 Equality of individuals, specifying that two instances with different URI references
actually represent the same individual

•	 Enumerated classes

8The datatype can also be expressed by rdfs:Datatype such as xsd:integer rdf:type rdfs:Datatype . or using
rdf:datatype as for example rdf:datatype="http://www.w3.org/2001/XMLSchema#string".

http://www.w3.org/2001/XMLSchema#string

Chapter 2 ■ Knowledge representation

46

Web Ontology Language (OWL) is a knowledge representation language especially designed for
creating web ontologies with a rich set of modeling constructors, addressing the limitations of RDFS. The
development of the first version of OWL was started in 2002, and the second version, OWL2, in 2008. OWL
became a W3C Recommendation in 2004 [25], and OWL2 was standardized in 2009 [26, 27]. OWL is based
on RDF, semantically extending RDF and RDFS, as well as its predecessor language, DAML+OIL.

 ■ Note the abbreviation of Web Ontology Language is intentionally not wol but owl [28].

Description Logic
Ontologies on the Semantic Web often implement mathematical logic, a subfield of mathematics dealing
with formal expressions, deductive reasoning, and formal proof. Description Logic (DL) is a family of formal
knowledge representation languages in Artificial Intelligence used for logical formalism for ontologies,
including formal reasoning of the concepts of a knowledge domain. Description Logic languages are
more expressive than propositional logic (which deals with declarative propositions and does not use
quantifiers) and more efficient in decision problems than first-order predicate logic (which uses predicates
and quantified variables over non-logical objects). A Description Logic can model concepts, roles and
individuals, and their relationships. A core modeling concept of a Description Logic is the axiom, which is a
logical statement about the relation between roles and/or concepts. Most web ontologies written in OWL are
implementations of a Description Logic.

Each Description Logic Knowledge Base (KB) consists of a terminological part (TBox) and an assertional
part (ABox), both of which contain a set of axioms. A basic Description Logic is AL, the Attributive
Language, which supports atomic negation,9 concept intersection, universal restrictions, and limited
existential quantification.

 ■ Note the naming convention of description logics is to indicate additional constructors by appending a
corresponding letter (see table 2-8).

Table 2-8. Common Letters Used in Description Logic Names

Symbol Includes Example

C Complex concept constructor negation The negation of arbitrary concepts

S An abbreviation of ALC with transitive roles Apple’s mobile operating system is
iOS, and iOS is developed for iPhone
smartphones, so iPhone smartphones are
made by Apple.

R Limited complex role inclusion axioms, reflexivity
and irreflexivity, role disjointness

“part of” and “has part”

O Enumerated classes of object value restrictions
(nominals)

Africa, Antarctica, Asia, Australia, Europe,
North America, South America

9Negation of concept names that do not appear on the left-hand side of axioms.

(continued)

Chapter 2 ■ Knowledge representation

47

An extension of AL is the Attributive Concept Language with Complements, the Description Logic
abbreviated as ALC. ALC supports ABox expressions such as individual assignments (e.g., Ford is a car),
property assignments (e.g., Leslie has a wife, Christina), TBox expressions such as subclass relationships
(⊑) and equivalence (≡), as well as conjunction (⊓), disjunction (⊔), negation (¬), property restrictions
(∀,∃), tautology (⊤, a logical formula which is always true), and contradiction (⊥). By combining such
mathematical operators, you can construct complex class expressions, which are denoted by the C in the
name of this Description Logic. ALC can describe sets of individuals, sets of atomic classes, and sets of roles.

SR extends the capabilities of ALC with property chains, property characteristics, and role hierarchies.
The property characteristics include transitivity (e.g., Ben has the ancestor Violet), symmetry (e.g., Christina
is the spouse of Leslie, and Leslie is the spouse of Christina), asymmetry (e.g., Leslie has the son Ben),
reflexivity (e.g., Christina has the relative Linda), irreflexive (e.g., Christina is the parent of Ben), functional
(e.g., Christina has a husband) and inverse functional properties (e.g., Leslie is the husband of Christina).
SRO extends SR with nominals, i.e., enumerated classes of object value restrictions. SROI adds inverse
properties to SRO. SROIQ extends SRO with qualified cardinality constraints. SROIQ(D) extends SRO
IQ with datatypes, including facets. In addition, SROIQ(D) supports disjoint properties and adds tautology
(⊤) and contradiction (⊥) support for objects and datatypes (see Figure 2-8).

Beyond Abox and TBox, SROIQ(D) also supports so-called Role Boxes (RBox) to collect all statements
related to roles and the interdependencies between roles. Each RBox consists of a role hierarchy (including
generalized role inclusion axioms) and a set of role assertions.

Symbol Includes Example

I Inverse properties Employ and employed by

N Cardinality restrictions Each person has two parents.

F Functional properties, a special case of uniqueness
quantification

“there is one and only one”

Q Qualified cardinality restrictions Cardinality restrictions that have fillers
other than ⊤

(D) Data type properties, data values, or data types The number annotated as integer in the
statement “Christina is 30 years old”

Table 2-8. (continued)

Chapter 2 ■ Knowledge representation

48

OWL Variants
There are three flavors of OWL, each constituting different compromises between expressive power and
computational complexity (reasoning practicability):

•	 OWL-Full: No restrictions on the use of language constructs: no global restrictions
or restrictions for RDF usage. Maximum expressiveness, syntactic freedom, and no
computational guarantees. The semantics of OWL-Full is a mixture of RDFS and
OWL-DL (RDF-Based Semantics).

•	 OWL-DL: A restricted version of OWL-Full that corresponds to a Description Logic.
OWL-DL provides maximum expressiveness, computational completeness
(all conclusions are guaranteed to be computable), and decidability (all computations
can be finished in finite time). It inherits global restrictions from SROIQ(D). In
OWL-DL, RDF can be used only for expressing OWL axioms. OWL-DL implements
the model-theoretic semantics of SROIQ(D) called OWL2 Direct Semantics.

•	 OWL-Lite: A subset of OWL-DL designed for easy implementation. OWL-Lite has
limited applicability, because it is suitable only for classification hierarchy and
simple constraints.

Figure 2-8. Relationship between the description logic constructors of ALC and SROIQ(D)

Chapter 2 ■ Knowledge representation

49

OWL2 provides the expressiveness of the SROIQ(D) Description Logic; OWL-DL is based on the
SHOIN(D) Description Logic; while OWL-Lite is based on the SHIF(D) Description Logic.

OWL ontologies are RDF graphs, in other words, sets of RDF triples. Similar to RDF graphs, OWL
ontology graphs can be expressed in various syntactic notations. OWL is a higher-level language than RDF;
in fact, it is a vocabulary extension of RDF. Consequently, RDF graphs are OWL-Full ontologies. The default
OWL namespace is http://www.w3.org/2002/07/owl#, which defines the OWL vocabulary. There is no
MIME type defined specifically for OWL, but the application/rdf+xml or the application/xml MIME type
is recommended for OWL documents with the .rdf or .owl file extension.

OWL has three components: classes, properties, and individuals. Classes and individuals are
differentiated in OWL using Class and Thing. While in RDFS only subclasses of existing classes can be
created, in OWL, classes can be constructed based on existing classes in any of the following ways:

•	 Enumerating the content

•	 Through intersection, union, or complement

•	 Through property restrictions

Syntaxes
At the high level, the OWL abstract syntax [29] and the OWL2 functional syntax [30] can be used. OWL also
supports several exchange syntaxes, including the RDF syntaxes, such as RDF/XML and RDF/Turtle, the
OWL2 XML syntax [31], and the Manchester syntax [32], but RDF/XML is the normative syntax.

 ■ Note in the examples, i use declarations for a hypothetical smartphone ontology.

The OWL2 functional syntax is compatible with the Unified Modeling Language (UML), one of the most
widely deployed general-purpose standardized modeling languages (see Listing 2-51). It is clean, adjustable,
modifiable, and easy to parse. The functional syntax is primarily used for defining the formal OWL2
grammar in the W3C specifications.

Listing 2-51. OWL2 Functional Syntax Example

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Ontology(<http://example.com/smartphone.owl>
 Declaration(Class(:Smartphone))
)

The notational variant of the OWL2 functional syntax is the OWL/XML syntax, which uses an XML tree
structure instead of RDF triples, as shown in Listing 2-52.

Listing 2-52. OWL2 XML Syntax Example

<Ontology ontologyIRI="http://example.com/smartphone.owl">
 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
 <Declaration>
 <Class IRI="Smartphone"/>
 </Declaration>
</Ontology>

http://www.w3.org/2002/07/owl
http://www.w3.org/2002/07/owl%23
http://www.w3.org/2002/07/owl%23

Chapter 2 ■ Knowledge representation

50

The only normative syntax of OWL 2 is the RDF/XML syntax (see Listing 2-53). Every OWL2-compliant
tool supports this syntax.

Listing 2-53. RDF/XML Syntax Example

<rdf:RDF
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <owl:Ontology rdf:about="Phone Ontology"/>
 <owl:Class rdf:about="#Smartphone"/>
</rdf:RDF>

A straightforward syntax for representing RDF triples for OWL ontologies is the RDF/Turtle syntax
shown in Listing 2-54.

Listing 2-54. RDF/Turtle Example

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

<http://example.com/smartphone.owl>
 rdf:type owl:Ontology .
 :Smartphone rdf:type owl:Class .

The less frequently used Manchester syntax is a compact, user-friendly syntax for OWL-DL that collects
information about a particular class, property, or individual into a single construct called a frame. The
Manchester syntax is easy to read and write, especially for those who are not experts in mathematical logic.
Complex descriptions consist of short, meaningful English words, while eliminating the logical symbols and
precedence rules represented in other syntaxes, as shown in Listing 2-55.

Listing 2-55. Manchester Syntax Example

Prefix: owl: <http://www.w3.org/2002/07/owl#>

Ontology: <http://example.com/smartphone.owl>
Class: Smartphone

Properties
In OWL, the following types of properties exist:

•	 Object properties that link individuals to other individuals

•	 Datatype properties that link individuals to data values (subclasses of object
properties)

•	 Annotation property (owl:AnnotationProperty)

•	 Ontology property (owl:OntologyProperty)

Property features are defined by the property axioms. The basic form expresses the existence only.
For example, in a smartphone ontology, the property hasTouchscreen can be declared to express a major
feature of mobile phones (see Listing 2-56).

http://www.w3.org/2002/07/owl%23
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2002/07/owl
http://www.w3.org/2002/07/owl

Chapter 2 ■ Knowledge representation

51

Listing 2-56. A Property Declaration in OWL

<owl:ObjectProperty rdf:ID="hasTouchscreen" />

OWL property axioms can also define additional characteristics. OWL reuses RDF Schema constructs
such as rdfs:subPropertyOf, rdfs:domain, and rdfs:range. Relations to other properties can be expressed
by owl:equivalentProperty and owl:inverseOf (Listing 2-57).

Listing 2-57. Two Equivalent Smartphone Properties (Accelerometer and G-sensor)

<owl:ObjectProperty rdf:ID="hasAccelerometer">
 <owl:equivalentProperty>
 <owl:ObjectProperty rdf:ID="hasGsensor" />
 </owl:equivalentProperty>
</owl:ObjectProperty>

Global cardinality constraints are defined by owl:FunctionalProperty and
owl:InverseFunctionalProperty (see Listing 2-58). Symmetry and transitivity features are defined by
owl:SymmetricProperty and owl:TransitiveProperty [33].

Listing 2-58. A FunctionalProperty in OWL

<owl:ObjectProperty rdf:about="&myMobile;manufactured_by">
 <rdf:type rdf:resource="&owl;FunctionalProperty" />
 <rdfs:domain rdf:resource="&myMobile;Mobile" />
</owl:ObjectProperty>

OWL provides precise declarations for expressing relationships, even if they are evident. For example,
the property hierarchy of two smartphone features can be expressed using rdfs:subPropertyOf, as
presented in Listing 2-59.

Listing 2-59. Property Hierarchy in OWL

<owl:ObjectProperty rdf:ID="hasGeotagging" />
 <owl:ObjectProperty rdf:ID="hasCamera">
 <rdfs:subPropertyOf rdf:resource="hasGeotagging" />
</owl:ObjectProperty>

Classes
Similar to RDF, OWL provides classes to group resources. There are six different class descriptions in OWL:

 1. Class identifier (URI reference). A named instance of owl:Class, a subclass of
rdfs:Class.10 Listing 2-60 shows an example.

Listing 2-60. A Class Identifier in OWL

<owl:Class rdf:ID="Handheld"/>

10In OWL Lite and OWL DL. In OWL-Full they are equivalent.

Chapter 2 ■ Knowledge representation

52

 2. Set of individuals (instances of a class) defined by the owl:oneOf property.
For example, the class of smartphones can be declared in the RDF/XML syntax,
with the RDF construct rdf:parseType="Collection", as shown in Listing 2-61.

Listing 2-61. Declaring Class Instances in OWL

<owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Touch" />
 <owl:Thing rdf:about="#Type" />
 <owl:Thing rdf:about="#TouchType" />
 </owl:oneOf>
</owl:Class>

 3. Property restriction: a value constraint or a cardinality constraint (for example,
see Listing 2-62).

Listing 2-62. Property Restrictions in OWL

<owl:Restriction>
 <owl:onProperty rdf:resource="hasGPS" />
 <owl:allValuesFrom rdf:resource="#Smartphone" />
</owl:Restriction>

 4. Intersection of two or more class descriptions. For example, the intersection
of the Smartphone and the MadeByApple classes can be described by
owl:intersectionOf, stating that iPhones are smartphones made by Apple
(see Listing 2-63).

Listing 2-63. Intersection in OWL

<owl:Class rdf:ID="IPhone">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Smartphone" />
 <owl:Class rdf:about="#MadeByApple" />
 </owl:intersectionOf>
</owl:Class>

 5. Union of two or more class descriptions.

 6. Complement of a class description. The class extension contains exactly those
individuals that do not belong to the class extension of the class description that
forms the object of the statement. The complement can be described by the
owl:complementOf property.

Class descriptions can be combined into class axioms. Class hierarchy can be expressed by a subclass
axiom (Listing 2-64).

Listing 2-64. Class Hierarchy in OWL

<owl:Class rdf:ID="Slide">
 <rdfs:subClassOf rdf:resource="#smartphone" />
</owl:Class>

Chapter 2 ■ Knowledge representation

53

The equivalence of two classes express that the individuals contained by them are identical.
Listing 2-65 shows an example.

Listing 2-65. Equivalent Classes in OWL

<owl:Class rdf:about="VirtualKeyboard">
 <owl:equivalentClass rdf:resource="#Softquerty">
</owl>

Although individuals can be members of several classes in general, in many cases, memberships are
exclusive. For example, smartphones either have a physical keyboard or a virtual keyboard (on the touchscreen).
This class disjointness can be expressed as shown in Listing 2-66.

Listing 2-66. Class Disjointness in OWL

<owl:Class rdf:about="VirtualKeyboard">
 <owl:equivalentClass rdf:resource="#Softquerty" />
 <owl:disjointWith rdf:resource="Keyboard" />
</owl>

Simple Knowledge Organization System (SKOS)
Simple Knowledge Organization System (SKOS) is a W3C recommendation for representing taxonomies,
thesauri, classification schemes, subject-heading systems, and structured controlled vocabularies. Being
one of the most frequently implemented Semantic Web standards in industrial applications, SKOS is built
upon RDF and RDFS to enable easy publication of controlled vocabularies as linked data. RDF provides
interoperability, consistency, and integrity and allows knowledge organization systems to be used in
distributed, decentralized metadata applications where metadata are retrieved from multiple resources.

The SKOS standard defines the SKOS data model as an OWL-Full ontology [34]. The elements of the
SKOS data model are OWL classes and properties with individual URIs that form the SKOS vocabulary. The
classes and properties of SKOS are suitable for representing the common features of thesauri (lists words in
groups of synonyms and related concepts). The abstract concepts of SKOS are represented by terms and can
be organized in hierarchies using relationships such as broader and narrower or linked by nonhierarchical
(associative) relationships, such as related. Further SKOS classes and predicates can be used for basic
descriptions (Concept, ConceptScheme), labeling (prefLabel, altLabel, prefSymbol, altSymbol),
documentation (definition, scopeNote, changeNote), subject indexing (subject, isSubjectOf), grouping
(Collection, OrderedCollection), and subject indication (subjectIndicator). SKOS also provides some
inference rules similar to the RDFS inference rules.

Rule Interchange Format (RIF)
The additional information used to automatically make new discoveries on the Semantic Web are based
either on ontologies or on rule sets. While ontologies focus on the classification methods by defining
classes, subclasses, and relations, rule sets focus on general mechanisms for discovering and generating
new relations, based on existing relations. Rule sets are collections of IF-THEN constructs called rules. If the
condition in the IF part of the code holds, the conclusion of the THEN part of the code is processed. Rules
are simplifications of a first-order predicate logic, are relatively easy to implement, and beyond syntax
and semantics, and they can express existential quantification, disjunction, logical conjunction, negation,
functions, non-monotonicity, and other features.

Chapter 2 ■ Knowledge representation

54

There are many different rule languages, for example, the Rule Markup Language (RuleML), an XML
approach to represent both forward (bottom-up) and backward (top-down) rules, or the Semantic Web
Rule Language (SWRL), which was introduced as an extension to OWL. Due to the different paradigms,
semantics, features, syntaxes, and commercial interests of rule languages, there is a need for rule exchange.

The Rule Interchange Format (RIF) was designed for rule sharing and exchange between existing
rule systems, in other words, allowing rules written for one application to be shared and reused in other
applications and rule engines while preserving semantics. RIF is a collection of rigorously defined rule
languages called dialects. The Core Dialect of RIF is a common subset of most rule engines. The Basic Logic
Dialect (BLD) adds logic functions, equality and named arguments, and supports the Horn logic
(a disjunction of literals with at most one positive literal). The Production Rules Dialect (PRD) provides
action with side effects in rule conclusion. RIF has a mapping to RDF.

Reasoning
Description logic-based ontologies are crucial in describing the meaning of web resources and can leverage
powerful description logic reasoning tools to facilitate machine-processability of semantic web sites. Reasoning
derives facts that are not expressed explicitly in machine-readable ontologies or knowledge bases. Description
logic reasoners implement the analytic tableau method (truth tree) for semantic reasoning, which is the
most popular proof procedure for formulas of first-order predicate logic. Among other benefits, this makes it
possible to determine the satisfiability of formula sets. Reasoners can determine whether a description of the
concept is not contradictory, or whether a description is more general than another description. They can
check consistency and whether an individual is an instance of a concept or not. Reasoners can retrieve all
instances of a particular concept and find the most specific concept individuals belong to. Due to decidability,
computational complexity, and the level of formality, automatic processing is not always feasible.

Parsers
Semantic parsing is the process of mapping a natural language sentence into a formal representation of its
meaning. A basic form of semantic parsing is the case-role analysis (semantic role labeling), which identifies
roles such as source or destination. An advanced semantic parsing represents a sentence in predicate logic
or other formal language for automated reasoning.

Summary
In this chapter, you became familiar with the most common controlled vocabularies and ontologies, so that
you can identify the suitable vocabularies and ontologies for your projects, in addition to the right classes
and properties. You know how to model statements in RDF, represent them as directed graphs, and write
them in RDF/XML or Turtle, as well as annotate them in RDFa, Microdata, or JSON-LD.

The next chapter will show you how to create datasets from structured data and link them to other
datasets, making your dataset part of the Linked Open Data Cloud.

Chapter 2 ■ Knowledge representation

55

References
 1. DMOZ—the Open Directory Project. www.dmoz.org. Accessed 20 March 2015.

 2. Cyganiak, R., Wood, D., Lanthaler, M. (eds.) (2014) RDF 1.1
Concepts and Abstract Syntax. World Wide Web Consortium.
 www.w3.org/TR/rdf11-concepts/. Accessed 18 January 2015.

 3. Gandon, F., Schreiber, G. (eds.) (2014) RDF 1.1 XML Syntax. World Wide Web
Consortium. www.w3.org/TR/rdf-syntax-grammar/. Accessed 18 January 2015.

 4. Carothers, G., Seaborne, A. (2014) RDF 1.1 N-Triples. A line-based syntax for an
RDF graph. World Wide Web Consortium. www.w3.org/TR/n-triples/. Accessed
18 January 2015.

 5. Bizer, C., Cyganiak, R. (2014) RDF 1.1 TriG. RDF Dataset Language. World Wide
Web Consortium. www.w3.org/TR/trig/. Accessed 18 January 2015.

 6. Carroll, J. J., Stickler, P. (2004) RDF Triples in XML. HP Laboratories.
www.hpl.hp.com/techreports/2003/HPL-2003-268.pdf. Accessed
18 January 2015.

 7. Klyne, G., Carroll, J. J., McBride, B. (eds.) (2014) RDF 1.1 Concepts and Abstract
Syntax. World Wide Web Consortium. www.w3.org/TR/rdf11-concepts/.
Accessed 18 January 2015.

 8. Sindice (2014) Sindice Web Data Inspector. Sindice Ltd.
http://inspector.sindice.com. Accessed 18 January 2015.

 9. King, R., Çelik, T. (2012) hCalendar Creator. http://microformats.org/code/
hcalendar/creator.html. Accessed 20 March 2015.

 10. Çelik, T. (2005) hCard Creator. The Microformats Community.
http://microformats.org/code/hcard/creator. Accessed 18 January 2015.

 11. Casserly, C. et al (eds.) (2015) Licenses. Creative Commons.
http://creativecommons.org/about/licenses/. Accessed 14 April 2015

 12. Mullenweg, M., Çelik, T. (2004) XFN 1.1 Creator. Global Multimedia Protocols
Group. http://gmpg.org/xfn/creator. Accessed 18 January 2015.

 13. Mullenweg, M. (2014) Exefen. http://ma.tt/tools/exefen.php/. Accessed
18 January 2015.

 14. Adida, B., Birbeck, M., McCarron, S., Herman, I. (eds.) (2013) RDFa Core
1.1—Second Edition. Syntax and processing rules for embedding RDF through
attributes. World Wide Web Consortium. www.w3.org/TR/rdfa-core/. Accessed
18 January 2015.

 15. Sporny, M. (ed.) (2012) RDFa Lite 1.1. World Wide Web Consortium.
www.w3.org/TR/rdfa-lite/. Accessed 18 January 2015.

 16. Herman, I. (2014) RDFa Core Initial Context. World Wide Web Consortium.
www.w3.org/2011/rdfa-context/rdfa-1.1. Accessed 18 January 2015.

 17. Adida, B., Birbeck, M., McCarron, S., Herman, I. (eds.) (2012) Completing
incomplete triples. In RDFa Core 1.1. www.w3.org/TR/2012/REC-rdfa-core-
20120607/#s_Completing_Incomplete_Triples. Accessed 18 January 2015.

http://www.dmoz.org/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/trig/
http://www.hpl.hp.com/techreports/2003/HPL-2003-268.pdf
http://www.w3.org/TR/rdf11-concepts/
http://inspector.sindice.com/
http://microformats.org/code/hcalendar/creator.html
http://microformats.org/code/hcalendar/creator.html
http://microformats.org/code/hcard/creator
http://creativecommons.org/about/licenses/
http://gmpg.org/xfn/creator
http://ma.tt/tools/exefen.php/
http://www.w3.org/TR/rdfa-core/
http://www.w3.org/TR/rdfa-lite/
http://www.w3.org/2011/rdfa-context/rdfa-1.1
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/#s_Completing_Incomplete_Triples
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/#s_Completing_Incomplete_Triples

Chapter 2 ■ Knowledge representation

56

 18. Rixham, N., Birbeck, M., Herman, I. (2012) RDFa API. World Wide Web
Consortium. www.w3.org/TR/rdfa-api/. Accessed 18 January 2015.

 19. Hickson, I. (2013) HTML Microdata. World Wide Web Consortium.
www.w3.org/TR/microdata/. Accessed 18 January 2015.

 20. Hickson, I. (ed.) (2013) HTML Microdata. World Wide Web Consortium.
www.w3.org/TR/microdata/#using-the-microdata-dom-api. Accessed
18 January 2015.

 21. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N. (2014)
JSON-LD 1.0. World Wide Web Consortium. www.w3.org/TR/json-ld/. Accessed
18 January 2015.

 22. Longley, D., Kellogg, G., Lanthaler, M., Sporny, M. (2014) JSON-LD 1.0 Processing
Algorithms and API. World Wide Web Consortium. www.w3.org/TR/json-ld-api/.
Accessed 18 January 2015.

 23. Das, S., Sundara, S., Cyganiak, R. (eds.) (2012) R2RML: RDB to RDF Mapping
Language. World Wide Web Consortium. www.w3.org/TR/r2rml/. Accessed 18
January 2015.

 24. Brickley, D., Guha, R. V. RDF Schema 1.1. World Wide Web Consortium.
www.w3.org/TR/rdf-schema/. Accessed 18 December 2014.

 25. Dean, M., Schreiber, G. (eds.), Bechhofer S, van Harmelen F, Hendler J, Horrocks
I, McGuinness DL, Patel-Schneider PF, Stein LA (2004) OWL Web Ontology
Language Reference. World Wide Web Consortium. www.w3.org/TR/owl-ref/.
Accessed 18 January 2015.

 26. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., Rudolph, S. (eds.) (2012)
OWL 2 Web Ontology Language—Primer 2nd ed. World Wide Web Consortium.
www.w3.org/TR/owl-primer/. Accessed 18 January 2015.

 27. Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.), Calvanese,
D., Carroll, J., De Giacomo, G., Hendler, J., Herman I., Parsia, B., Patel-Schneider,
P. F., Ruttenberg, A., Sattler, U., Schneider, M. (2012) OWL 2 Web Ontology
Language—Profiles. World Wide Web Consortium. www.w3.org/TR/owl2-
profiles/. Accessed 18 January 2015.

 28. Herman, I. (2010) “Why OWL and not WOL?” Tutorial on Semantic Web
Technologies. World Wide Web Consortium. www.w3.org/People/Ivan/
CorePresentations/RDFTutorial/Slides.html#%28114%29. Accessed
18 January 2015.

 29. Patel-Schneider, P. F., Horrocks, I. (eds.) (2004) Abstract Syntax. In: OWL
Web Ontology Language. Semantics and Abstract Syntax. World Wide Web
Consortium. www.w3.org/TR/2004/REC-owl-semantics-20040210/syntax.html.
Accessed 18 January 2015.

 30. Motik, B., Patel-Schneider, P. F., Parsia, B. (eds.), Bock, C., Fokoue, A., Haase,
P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sattler, U., Smith, M. (2012) OWL 2
Web Ontology Language. Structural Specification and Functional-Style Syntax 2nd Ed.
World Wide Web Consortium. www.w3.org/TR/owl-syntax/. Accessed
18 January 2015.

http://www.w3.org/TR/rdfa-api/
http://www.w3.org/TR/microdata/
http://www.w3.org/TR/microdata/#using-the-microdata-dom-api
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld-api/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-primer/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/People/Ivan/CorePresentations/RDFTutorial/Slides.html#%28114%29
http://www.w3.org/People/Ivan/CorePresentations/RDFTutorial/Slides.html#%28114%29
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/syntax.html
http://www.w3.org/TR/owl-syntax/

Chapter 2 ■ Knowledge representation

57

 31. Motik, B., Parsia, B., Patel-Schneider, P. F. (eds.), Bechhofer, S., Grau,
B. C., Fokoue, A., Hoekstra, R. (2012) OWL 2 Web Ontology Language. XML
Serialization 2nd Ed. World Wide Web Consortium. www.w3.org/TR/owl-xml-
serialization/. Accessed 18 January 2015.

 32. Horridge, M., Patel-Schneider, P. F. (2012) OWL 2 Web Ontology Language.
Manchester Syntax. World Wide Web Consortium. www.w3.org/TR/owl2-
manchester-syntax/. Accessed 18 January 2015.

 33. Dean, M., Schreiber, G. (eds.), Bechhofer S, van Harmelen F, Hendler J, Horrocks
I, McGuinness DL, Patel-Schneider PF, Stein LA (2004) Properties. In: OWL Web
Ontology Language Reference. World Wide Web Consortium. www.w3.org/TR/
owl-ref/#Property. Accessed 18 January 2015.

 34. Miles, A., Bechhofer, S. (2009) SKOS Simple Knowledge Organization System
Reference. World Wide Web Recommendation. www.w3.org/TR/skos-
reference/. Accessed 18 January 2015.

http://www.w3.org/TR/owl-xml-serialization/
http://www.w3.org/TR/owl-xml-serialization/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl-ref/#Property
http://www.w3.org/TR/owl-ref/#Property
http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/

59

Chapter 3

Linked Open Data

In contracts to the isolated data silos of the conventional Web, the Semantic Web interconnects open data,
so that all datasets contribute to a global data integration, connecting data from diverse domains, such as
people, companies, books, scientific publications, films, music, reviews, television and radio programs,
medicine, statistics, online communities, and scientific data. The union of the structured datasets forms
the Linked Open Data Cloud, the decentralized core of the Semantic Web, where software agents can
automatically find relationships between entities and make new discoveries. Linked Data browsers allow
users to browse a data source, and by using special (typed) links, navigate along links into other related
data sources. Linked Data search engines crawl the Web of Data by following links between data sources
and provide expressive query capabilities over aggregated data. To support data processing for new types
of applications, Linked Open Data (LOD) is used by search engines, governments, social media, publishing
agencies, media portals, researchers, and individuals.

Linked Data Principles
Conventional web pages are hypertext documents connected with hyperlinks (or simply links). These
hyperlinks point to other documents or a part of another document; however, they do not hold information
about the type of relationship between the source and the destination resources. While the link relation
can be annotated using the rel attribute on the link, a, and area markup elements, they are suitable for
annotating external CSS files, script files, or the favicon. As mentioned before, some microformats such
as rel="tag" and XFN also declare link relations. Other specific relation types can be defined in the Atom
syndication format and XLink. On the Semantic Web, links can be typed using rdf:type or its equivalent in
other serializations, such as the datatype attribute in RDFa, to provide a machine-interpretable definition
for an arbitrary relationship between the source and destination resources. Those structured datasets
derived from different resources that are published with such typed links between them are called Linked
Data (also known as Linking Data) [1].

Berners-Lee outlined four Linked Data principles for publishing and interlinking data on the Web in a
human- and machine-readable way, using Semantic Web technologies, so that all published data becomes
part of a single global data space [2].

 1. Use URIs as names for the “things” of the Web of Data (real-world objects and
people). In other words, a dereferenceable Uniform Resource Identifier (URI),
such as a web address, is assigned to each resource rather than an application-
specific identifier, such as a database key or incremental numbers, making every
data entity individually identifiable.

Chapter 3 ■ Linked Open data

60

 ■ Note the dereferenceable Uris must be HTTPRange-14-compliant. For years,
httprange-14 was a design issue of the Semantic Web, because when http was
extended from referring only to documents to referring to “things” (real-world objects
and persons), the domain of http Get became undefined, leading to ambiguous
interpretations of Semantic Web resources. the resolution is to check the web server’s
answer to the GET request, and if an http resource responds with a 2xx response,
the resource identified by that Uri is an information resource; if it is a 303 (See Other)
response, the resource identified by that Uri could be any resource. a 4xx (error)
response means that the nature of the resource is unknown [3].

 2. Use HTTP URIs, so that people can look up the resource names. In other
words, provide the URIs over the HTTP protocol into RDF representations for
dereferencing.

 3. When someone looks up a URI, provide useful information using Semantic
Web standards, such as RDF. By providing metadata about the published data,
clients can assess the quality of published data and choose between different
means of access.

 4. Include links to other URIs, so that users can discover related information. When
RDF links are set to other data resources, users can navigate the Web of Data as a
whole by following RDF links.

The benefits of Linked Data are recognized by more and more organizations, businesses, and
individuals. Some industrial giants that already have LOD implementations are Amazon.com, BBC,
Facebook, Flickr, Google, Thomson Reuters, The New York Times Company, and Yahoo!, just to name a few.

The Five-Star Deployment Scheme for Linked Data
Publishing Linked Data (following the Linked Data principles) does not guarantee data quality. For example,
the documents the URIs in LOD datasets point to might be documents that are difficult to reuse. Pointing
to a fully machine-interpretable RDF file is not the same as pointing to a PDF file containing a table as a
scanned image. A five-star rating system is used for expressing the quality of Linked Data which are not
open, and Linked Open Data (open data and Linked Data at the same time) [4]. The five-star rating system
is cumulative, meaning that on each level, the data has to meet additional criteria beyond the criteria of the
underlying level(s) [5]:

★ Data is available on the Web in any format, which is human-readable but not machine-
interpretable, due to a vendor-specific file format or lack of structure. All following stars are
intended to make the data easier to discover, use, and understand. For example, a scanned
image of tabular data in a PDF file is one-star data. Data reusability is limited.

★★ Data is available as machine-readable structured data. For example, tabular data saved in an
Excel file is two-star data.

★★★ Data is available in a nonproprietary (vendor-independent) format. For example, tabular data
saved as a CSV file is three-star data.

(continued)

Chapter 3 ■ Linked Open data

61

★★★★ Published using open standards from the W3C (RDF and SPARQL). For example, tabular data
in HTML with RDFa annotation using URIs is four-star data.

★★★★★ All of the above plus links to other, related data to provide context. For example, tabular
data in HTML with RDFa annotation using URIs and semantic properties is five-star data.
Maximum reusability and machine-interpretability.

The expression of rights provided by licensing makes free data reuse possible. Linked Data without an
explicit open license1 (e.g., public domain license) cannot be reused freely, but the quality of Linked Data is
independent from licensing. When the specified criteria are met, all five ratings can be used both for Linked
Data (for Linked Data without explicit open license) and Linked Open Data (Linked Data with an explicit
open license). As a consequence, the five-star rating system can be depicted in a way that the criteria can be
read with or without the open license. For example, the Linked Open Data mug can be read with both green
labels for five-star Linked Open Data, or neither label for five-star Linked Data, as shown in Figure 3-1. For
example, Linked Data available as machine-readable structured data is two-star Linked Data, while the same
with an open license is two-star Linked Open Data.

1This licensing concept is used on the conventional Web too, in which the term Open Data refers to the free license.

Figure 3-1. The requirements of 5 ★ Linked Data and 5 ★ Linked Open Data

Because converting a CSV file to a set of RDF triples and linking them to another set of triples does not
necessarily make the data more (re)usable to humans or machines, even four-star and five-star Linked Open
Data have many challenges. One of the challenges is the lack of provenance information, which can now be
provided about Linked (Open) Data using standards such as the PROV-O ontology [6]. Another challenge

Chapter 3 ■ Linked Open data

62

is querying Linked Data that do not use machine-readable definitions from a vocabulary, which is difficult
and almost impossible to interpret with software agents. Furthermore, the quality of the definitions retrieved
from vocabularies and ontologies varies greatly, and the used vocabularies might not restrict the potential
interpretations of the used classes and roles towards their intended meaning.

LOD Datasets
A meaningful collection of RDF triples covering a field of interest according to the Linked Open Data
principles is called an LOD dataset. LOD datasets collect descriptions of entities within the field of interest,
and these descriptions often share a common URI prefix (as, for example, http://dbpedia.org/resource/).
The authors of the largest datasets provide advanced features that enable easy access to their structured
data, such as downloadable compressed files of the datasets or an infrastructure for efficient querying.

RDF Crawling
Similar to the web crawlers that systematically browse conventional web sites for indexing, Semantic Web
crawlers browse semantic contents to extract structured data and automatically find relationships between
seemingly unrelated entities. LOD datasets should be published in a way so that they are available through
RDF crawling.

RDF Dumps
The most popular LOD datasets are regularly published as a downloadable compressed file (usually Gzip or
bzip2), called an RDF dump, which is the latest version of the dataset. RDF dumps should be valid RDF files.
The reason why the RDF dump files are compressed is that the datasets containing millions of RDF triples
are quite large. The size of Gzip-compressed RDF dumps is approximately 100MB per every 10 million
triples, but it also depends on the RDF serialization of the dataset. Table 3-1 summarizes the most popular
RDF dumps.

Table 3-1. Popular RDF Dumps

Dataset RDF Dump

DBpedia http://wiki.dbpedia.org/Downloads2014

WikiData http://dumps.wikimedia.org/wikidatawiki/

GeoNames http://download.geonames.org/all-geonames-rdf.zip

LinkedGeoData http://downloads.linkedgeodata.org/releases/

Open Directory http://rdf.dmoz.org/

MusicBrainz ftp://ftp.musicbrainz.org/pub/musicbrainz/data/

SPARQL Endpoints
Similar to relational database queries in MySQL, the data of semantic datasets can also be retrieved through
powerful queries. The query language designed specifically for RDF datasets is called SPARQL (pronounced
“sparkle,” it stands for SPARQL Protocol and RDF Query Language), which will be discussed in detail in
Chapter 7. Some datasets provide a SPARQL endpoint, which is an address from which you can directly run
SPARQL queries (powered by a back-end database engine and an HTTP/SPARQL server).

http://dbpedia.org/resource/
http://wiki.dbpedia.org/Downloads2014
http://dumps.wikimedia.org/wikidatawiki/
http://download.geonames.org/all-geonames-rdf.zip
http://downloads.linkedgeodata.org/releases/
http://rdf.dmoz.org/
ftp://ftp.musicbrainz.org/pub/musicbrainz/data/
http://dx.doi.org/10.1007/9781484210505_7

Chapter 3 ■ Linked Open data

63

Frequently Used Linked Datasets
LOD datasets are published in a variety of fields. Interdisciplinary datasets such as DBpedia
(http://dbpedia.org) and WikiData (http://www.wikidata.org) are general-purpose datasets and are,
hence, among the most frequently used ones. Geographical applications can benefit from datasets such
as GeoNames (http://www.geonames.org) and LinkedGeoData (http://linkedgeodata.org). More and
more universities provide information about staff members, departments, facilities, courses, grants, and
publications as Linked Data and RDF dump, such as the University of Florida (http://vivo.ufl.edu) and
the Ghent University (http://data.mmlab.be/mmlab). Libraries such as the Princeton University Library
(http://findingaids.princeton.edu) publish bibliographic information as Linked Data. Part of the
National Digital Data Archive of Hungary is available as Linked Data at http://lod.sztaki.hu. Even
Project Gutenberg is available as Linked Data (http://wifo5-03.informatik.uni-mannheim.de/
gutendata/). Museums such as the British Museum publish some of their records as Linked Data
(http://collection.britishmuseum.org). News and media giants publish subject headings as Linked
Data, as for example the New York Times at http://data.nytimes.com. MusicBrainz (http://dbtune.org/
musicbrainz/) provides data about music artists and their albums, served as Linked Data and via available
through a SPARQL endpoint. Data about musicians, music album releases, and reviews are published as
Linked Data by BBC Music at www.bbc.co.uk/music, which is largely based upon MusicBrainz and the
Music Ontology. The Linked Movie DataBase (LinkedMDB) at http://www.linkedmdb.org is an LOD
dataset dedicated to movies, with high quality and quantity of interlinks to other LOD data sources and
movie-related web sites. More and more government portals publish publicly available government
data as Linked Data, as, for example, the US government’s http://data.gov or the UK government’s
http://data.gov.uk. Some of the most popular LOD datasets will be discussed in the following sections.

DBpedia

The hundreds of concept definitions on schema.org are suitable to annotate common
knowledge domains, such as persons, events, books, and movies, but complex
machine-readable statements require far more.

DBpedia, hosted at http://dbpedia.org, extracts structured factual data from
Wikipedia articles, such as titles, infoboxes, categories, and links. Because Wikipedia
contains nearly 5 million articles in English, DBpedia is suitable to describe virtually anything in a machine-
readable manner. DBpedia contains approximately 3.4 million concepts described by 1 billion triples.

 ■ Note Wikipedia infoboxes are the most straightforward for dBpedia extraction, because they contain
attribute-value pairs of the corresponding Wikipedia page to be displayed on the right-hand side of the article
as a summary of the most important facts in a tabular form. however, structured data extraction is challenging,
because the template system changed over time on Wikipedia, resulting in the lack of uniformity, whereby the
same attributes have different names, such as placeofbirth and birthplace.

The unique resource identifiers of DBpedia are written as URI references of the form
http://dbpedia.org/resource/Name, where Name is derived from the URL of the Wikipedia article of the
form http://en.wikipedia.org/wiki/Name. As a result, each resource is a direct mapping of a Wikipedia
article. The DBpedia URI references of the form http://dbpedia.org/resource/Resource:Name are set
up (through content negotiation, where the same content is served in a different format, depending on the
query of the client) to return the machine-readable description in RDF when accessed by Semantic Web
agents, and the same information in XHTML, when accessed by traditional web browsers (see Figure 3-2).

http://dbpedia.org/
http://www.wikidata.org/
http://www.geonames.org/
http://linkedgeodata.org/
http://vivo.ufl.edu/
http://data.mmlab.be/mmlab
http://findingaids.princeton.edu/
http://lod.sztaki.hu/
http://wifo5-03.informatik.uni-mannheim.de/gutendata/
http://wifo5-03.informatik.uni-mannheim.de/gutendata/
http://collection.britishmuseum.org/
http://data.nytimes.com/
http://dbtune.org/musicbrainz/
http://dbtune.org/musicbrainz/
http://www.bbc.co.uk/music
http://www.linkedmdb.org/
http://data.gov/
http://data.gov.uk/
http://dbpedia.org/
http://dbpedia.org/resource/Name
http://en.wikipedia.org/wiki/Name
http://dbpedia.org/resource/Resource:Name

Chapter 3 ■ Linked Open data

64

Assume we want to describe a Semantic Web researcher in RDF who lives in Adelaide, is interested
in Web standards, and is a member of the W3C. To do this, we need the corresponding DBpedia URIs that
identify the non-information resources (in the form http://dbpedia.org/resource/Resource:name)
declared as the attribute value of rdf:resource (see Listing 3-1).

Listing 3-1. Linking to DBpedia Resources

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <foaf:person rdf:about="http://www.lesliesikos.com/datasets/sikos.rdf#sikos">
 <foaf:name>Leslie Sikos</foaf:name>
 <foaf:based_near rdf:resource="http://dbpedia.org/resource/Adelaide" />
 <foaf:topic_interest rdf:resource="http://dbpedia.org/resource/Web_standards" />
 <contact:nearestAirport rdf:resource="http://dbpedia.org/resource/Adelaide_Airport" />
 </foaf:person>
 <rdf:Description rdf:about="http://dbpedia.org/resource/W3C">
 <foaf:member rdf:resource="http://www.lesliesikos.com/datasets/sikos.rdf#sikos" />
 </rdf:Description>
</rdf:RDF>

Figure 3-2. DBpedia resources return XHTML or RDF through content negotiation

http://dbpedia.org/resource/Resource:name
http://xmlns.com/foaf/0.1/
http://www.w3.org/2000/10/swap/pim/contact
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.lesliesikos.com/datasets/sikos.rdf#sikos
http://dbpedia.org/resource/Adelaide
http://dbpedia.org/resource/Web_standards
http://dbpedia.org/resource/Adelaide_Airport
http://dbpedia.org/resource/W3C
http://www.lesliesikos.com/datasets/sikos.rdf#sikos

Chapter 3 ■ Linked Open data

65

The SPARQL endpoint of DBpedia is http://dbpedia.org/sparql, where you can run queries on
DBpedia resources, say, the list of people born in Budapest before the 20th century (see Listing 3-2).
Querying with SPARQL will be described later, in Chapter 7.

Listing 3-2. A SPARQL Query on DBpedia

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?name ?birth ?death ?person WHERE {
 ?person dbo:birthPlace :Budapest .
 ?person dbo:birthDate ?birth .
 ?person foaf:name ?name .
 ?person dbo:deathDate ?death .
 FILTER (?birth < "1901-01-01"^^xsd:date) .
}
ORDER BY ?name

Wikidata
Wikidata is one of the largest LOD databases that features both human-readable and machine-readable
contents, at http://www.wikidata.org. Wikidata contains structured data from Wikimedia projects, such
as Wikimedia Commons, Wikipedia, Wikivoyage, and Wikisource, as well as from the once popular directly
editable Freebase dataset, resulting in approximately 13 million data items.

In contrast to many other LOD datasets, Wikidata is collaborative—anyone can create new items and
modify existing ones. Like Wikipedia, Wikidata is multilingual. The Wikidata repository is a central storage of
structured data, whereby data can be accessed not only directly but also through client Wikis. Data is added
to items that feature a label, which is a descriptive alias, connected by site links. Each item is characterized
by statements that consist of a property and property value. Wikidata supports the Lua Scribunto parser
extension to allow embedding scripting languages in MediaWiki and access the structured data stored in
Wikidata through client Wikis. Data can also be retrieved using the Wikidata API.

GeoNames
GeoNames is a geographical database at http://www.geonames.org that provides RDF descriptions for
more than 7,500,000 geographical features worldwide, corresponding to more than 10 million geographical
names. All features are categorized as one of the nine feature classes, and subcategorized into one of the
645 feature codes. Place-names are stored in the database in multiple languages. GeoNames also contains
data such as latitude and longitude, elevation, population, administrative subdivision, and postal codes
of cities. The coordinates are expressed in the World Geodetic System 1984 (WGS84) standard used in
cartography, geodesy, and navigation.

The GeoNames resources use 303 (See Other) redirection to distinguish a concept (thing as is) from
the document describing the resource. For example, the city of Adelaide has two addresses on GeoNames:
http://sws.geonames.org/2078025/ and http://sws.geonames.org/2078025/about.rdf. The first
represents the city (in a form used in Linked Data references); the second is a document with information
about Adelaide.

http://dbpedia.org/sparql
http://dx.doi.org/10.1007/9781484210505_7
http://dbpedia.org/ontology/
http://www.wikidata.org/
http://www.geonames.org/
http://sws.geonames.org/2078025/
http://sws.geonames.org/2078025/about.rdf

Chapter 3 ■ Linked Open data

66

LinkedGeoData
The LinkedGeoData dataset at http://linkedgeodata.org uses the information collected by
OpenStreetMap data (a free editable world map), makes it available as an LOD dataset, and interlinks this
data with other LOD datasets. The authors of the dataset provide their own semantic browser, called LGD
Browser and Editor, at http://browser.linkedgeodata.org (see Figure 3-3).

Figure 3-3. LinkedGeoData in the LGD Browser and Editor

Figure 3-4. Linked Data is unambiguous

A good example for the unambiguity on the Semantic Web is searching for “Adelaide” in the LGD
Browser. Because there is a city with this name in South Australia, another one in South Africa, and three
in the United States (one in Colorado, one in Idaho, and one in Washington), the software will ask for
clarification and provide the city map and details according to your choice (see Figure 3-4).

http://linkedgeodata.org/
http://browser.linkedgeodata.org/

Chapter 3 ■ Linked Open data

67

YAGO
YAGO (Yet Another Great Ontology) is a dataset containing more than 10
million entities and 120 million facts about them, which are automatically
extracted from Wikipedia categories, redirects, and infoboxes; synsets and
hyponymy from the lexical database WordNet; and GeoNames.

In contrast to other datasets automatically extracting data from LOD
datasets, YAGO is more accurate, as a large share of facts is manually evaluated. YAGO entities and facts are
often linked to the DBpedia ontology. The SPARQL endpoint of YAGO is http://lod2.openlinksw.com/sparql,
but queries can also be executed through a web interface at https://gate.d5.mpi-inf.mpg.de/webyagospotlx/
WebInterface.

LOD Dataset Collections
LOD datasets can be registered and managed using Datahub at http://datahub.io, an open data registry.
Datahub is used by governments, research institutions, and other organizations. Powered by structured data,
datahub.io provides efficient search and faceting, browsing user data, previewing data using maps, graphs,
and tables. As you will see, a datahub.io registry is a prerequisite for merging new datasets of the LOD Cloud
Diagram with existing ones.

Ontobee, available at http://www.ontobee.org, is a SPARQL-based linked ontology data server and
browser that has been utilized for more than 100 ontologies containing over 2 million ontology terms.

The LOD Cloud Diagram
The LOD Cloud Diagram represents datasets with at least 1,000 RDF triples and the links between them
(Figure 3-5) [7]. The size of the bubbles corresponds to the data amount stored in each dataset. In the middle
of the cloud, you can see the largest datasets, DBpedia and GeoNames, followed by FOAF-Profiles, Freebase,
and the W3C.

If you have a big enough dataset that contains at least 1,000 triples and fulfills the requirements of
Linked Open Data, you can make a request to add it to the LOD Cloud Diagram. The resources of the dataset
must have resolvable http:// or https:// URIs that resolve, with or without content negotiation, to RDF
data as RDFa, RDF/XML, Turtle, or N-Triples. The dataset must be connected through at least 50 RDF links
to arbitrary datasets of the diagram. The dataset must be accessible via RDF crawling, via an RDF dump, or
via a SPARQL endpoint. The dataset must be registered on Datahub, and you have to e-mail the authors of
the LOD Cloud Diagram (richard@cyganiak.de and mail@anjajentzsch.de).

An alternate visualization of the LOD Cloud Diagram is created by Stanford University’s Protovis, using
the CKAN API, and published at http://inkdroid.org/lod-graph/ (see Figure 3-6).

http://lod2.openlinksw.com/sparql
https://gate.d5.mpi-inf.mpg.de/webyagospotlx/WebInterface
https://gate.d5.mpi-inf.mpg.de/webyagospotlx/WebInterface
http://datahub.io/
http://www.ontobee.org/
http://inkdroid.org/lod-graph/

Chapter 3 ■ Linked Open data

68

Fi
gu

re
 3

-5
.

T
he

 L
O

D
 C

lo
u

d
D

ia
gr

am
 (c

ou
rt

es
y

of
 M

ax
 S

ch
m

ac
ht

en
be

rg
, C

hr
is

ti
an

 B
iz

er
, A

n
ja

 Je
n

tz
sc

h
an

d
R

ic
ha

rd
 C

yg
an

ia
k)

Chapter 3 ■ Linked Open data

69

Fi
gu

re
 3

-6
.

T
he

 L
O

D
 G

ra
ph

 g
en

er
at

ed
 b

y
P

ro
to

vi
s

Chapter 3 ■ Linked Open data

70

The CKAN ratings are represented by colors, by which datasets with high average ratings are shown
in green, and the ones with low average ratings in red. The intensity of the color signifies the number of
received ratings, where white means no rating, and the darker the color the higher the rating.

Creating LOD Datasets
While large datasets are generated with software tools, in the following sections, you will see how to create
LOD datasets manually.

RDF Structure
Let’s create a dataset file in RDF/XML! The first step is to create a UTF-8 encoded text file with an .rdf
extension and to add the XML prolog (see Listing 3-3).

Listing 3-3. XML Prolog

<?xml version="1.0" encoding="UTF-8"?>

The document content will be between <rdf:RDF> and </rdf:RDF>. The list of namespaces is declared
as xmlns attributes on rdf:RDF. For example, if you want to use any definitions from the FOAF vocabulary,
you have to declare its namespace to abbreviate it throughout the document (see Listing 3-4).

Listing 3-4. The Main Container with One Namespace Declaration

<rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/">

</rdf:RDF>

From now on, you can use the foaf prefix to abbreviate the Friend of a Friend (FOAF) namespace, as
shown in Listing 3-5.

Listing 3-5. Using the foaf Prefix to Abbreviate the FOAF Namespace

<foaf:Person rdf:about="http://www.lesliesikos.com/metadata/sikos.rdf#sikos">
 <foaf:firstname rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Leslie
 </foaf:firstname>
 <foaf:surname rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Sikos</foaf:surname>
</foaf:Person>

The list of namespaces is typically extended by the namespace declarations of RDF, RDFS, OWL, and
so on, along with Dublin Core, schema.org, etc., depending on the vocabulary terms you use in the dataset
(see Listing 3-6). During development, the list will be extended constantly.

Listing 3-6. Multiple Namespace Declarations

<rdf:RDF
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:schema="http://schema.org/">

http://xmlns.com/foaf/0.1/
http://www.lesliesikos.com/metadata/sikos.rdf#sikos
http://www.w3.org/2001/XMLSchema#string%22%3ELeslie
http://www.w3.org/2001/XMLSchema#string%22%3ESikos%3C/foaf:surname
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://xmlns.com/foaf/0.1/
http://www.w3.org/2002/07/owl%23
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schema%23
http://schema.org/

Chapter 3 ■ Linked Open data

71

After the namespace list, one can provide dataset information, including licensing, followed by the
actual data (RDF statements) of the dataset that will be linked to classes and entities of other LOD datasets
with typed links.

Licensing
Linked Open Data without an explicit license is just Linked Data. To make our LOD datasets truly “open,”
we have to declare the license explicitly, which prevents potential legal liability issues and makes it clear to
users what usage conditions apply.

The licensing information of a dataset can be provided in the dataset file or in an external metadata
file, such as a VoID (Vocabulary of Interlinked Datasets) file. The license under which the dataset has been
published can be declared using the dcterms:license property. The most frequently used license URIs for
Linked Open Data are the following:

•	 http://opendatacommons.org/licenses/pddl/
Public Domain Dedication and License (PDDL)—“Public Domain for
data/databases”

•	 http://opendatacommons.org/licenses/by/
Open Data Commons Attribution (ODC-By)—“Attribution for data/databases”

•	 http://opendatacommons.org/licenses/odbl/
Open Database License (ODC-ODbL)—“Attribution Share-Alike for data/databases”

•	 https://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal—“Creative Commons public domain waiver”

•	 https://creativecommons.org/licenses/by-sa/4.0/
Creative Commons Attribution-ShareAlike (CC-BY-SA)

•	 http://gnu.org/copyleft/fdl.html
GNU Free Documentation License (GFDL)

The first four licenses are specifically designed for data, so their use for LOD dataset licensing is highly
recommended. Licensing of datasets is a complex issue, because datasets are collections of facts rather than
creative works, so different laws apply. Creative Commons and GPL are quite common on the Web; however,
they are based on copyright and are designed for creative works, not datasets, so they might not have the
desired legal result when applied to datasets.

Community norms (nonbinding conditions of use) can be expressed using the waiver:norms property
(http://vocab.org/waiver/terms/norms). A common community norm is ODC Attribution ShareAlike
(www.opendatacommons.org/norms/odc-by-sa/), which permits data use from the dataset, but the changes
and updates are supposed to be public too, along with the credit given, the source of the data linked, open
formats used, and no DRM applied. For example, if we have an ExampleLOD dataset published under the
terms of the Open Data Commons Public Domain Dedication and License, and users are encouraged, but
not legally bound, to follow the community norms mentioned above, the licensing of the dataset would be as
shown in Listing 3-7.

Listing 3-7. LOD Dataset Licensing Example

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:wv="http://vocab.org/waive/terms/">

http://opendatacommons.org/licenses/pddl/
http://opendatacommons.org/licenses/by/
http://opendatacommons.org/licenses/odbl/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://gnu.org/copyleft/fdl.html
http://vocab.org/waiver/terms/norms
http://www.opendatacommons.org/norms/odc-by-sa/
http://purl.org/dc/terms/
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://vocab.org/waive/terms/

Chapter 3 ■ Linked Open data

72

<rdf:Description rdf:about="http://www.examplelod.com/loddataset.rdf#examplelod">
 <dcterms:license rdf:resource="http://www.opendatacommons.org/odc-public-domain-
 dedication-and-licence" />
 <wv:norms rdf:resource="http://www.opendatacommons.org/norms/odc-by-sa/" />
 <wv:waiver rdf:datatype="http://www.w3.org/2001/XMLSchema#string">To the extent
 possible under law, Example Ltd. has waived all copyright and related or neighboring
 rights to this dataset.</wv:waiver>
</rdf:Description>

 ■ Note the datahub registration requires an open license to be selected from a drop-down list as a field
value, and the license Uri as a separate field set as the dataset properties, not just the licensing information
provided in the dataset or Void file.

RDF Statements
The most generic objects of datasets are collected in rdf:description containers. Those objects that are
representations of real-world objects already defined in a machine-readable vocabulary are usually collected
under the corresponding object class (persons in schema:person, books in schema:book, and so on). Because
a basic requirement of Linked Open Data is to identify everything with a dereferenceable web address, make
sure that the addresses and fragment identifiers are correct. Whenever possible, use typing to differentiate
string literals, numbers, dates, and so on.

Making a statement about another statement is called reification. It allows triples to be used in multiple
contexts but can affect the formal semantics of your dataset.

Interlinking
Government agencies, large enterprises,2 media institutes, social media portals, and researchers work with
large amounts of data that can be represented as structured data and published as Linked Data. Describing
your government data, university research department, colleagues, books, or any other knowledge domain in
RDF results in an isolated dataset file, which is not part of the Semantic Web until it is linked to other datasets.

Creating links between the structured datasets of the Semantic Web is called interlinking, which makes
isolated datasets part of the LOD Cloud, in which all resources are linked to one another. These links enable
semantic agents to navigate between data sources and discover additional resources. Interlinking typically
happens with owl:sameAs, rdfs:seeAlso, foaf:holdsOnlineAccount, sioc:user, and similar predicates.
In contrast to conventional hyperlinks of (X)HTML documents, LOD links are typed links between two
resources. The URIs of the subject and the object of the link identify the interlinked resources. The URI of
the predicate defines the type of the link. For example, an RDF link can state that a person is employed by
a company, while another RDF link can state that the person knows other people. Dereferencing the URI of
the link destination yields a description of the linked resource, usually containing additional RDF links that
point to other, related URIs, which, in turn, can also be dereferenced, and so on.

Consider the machine-readable description of the book Web Standards: Mastering HTML5, CSS3, and
XML, at http://www.masteringhtml5css3.com/metadata/webstandardsbook.rdf#book, which declares
the title of the book using the title property from the Dublin Core vocabulary, and, among many other
properties, declares a machine-readable resource describing the author, using schema:author (Figure 3-7).
Further resources related to the book could be declared using rdfs:seeAlso.

2If the Linked Data is behind a corporate firewall, it is called Linking Enterprise Data.

http://www.examplelod.com/loddataset.rdf#examplelod
http://www.opendatacommons.org/odc-public-domain-dedication-and-licence
http://www.opendatacommons.org/odc-public-domain-dedication-and-licence
http://www.opendatacommons.org/norms/odc-by-sa/
http://www.w3.org/2001/XMLSchema#string%22%3ETo
http://www.masteringhtml5css3.com/metadata/webstandardsbook.rdf#book

Chapter 3 ■ Linked Open data

73

The DBpedia resource of the author reveals properties of the author, such as his home page address,
defined using foaf:homepage, and, among many other classifications, links the author to Australian writers,
with YAGO (Figure 3-8).

Figure 3-7. Linking a dataset to a related entity of another dataset

Figure 3-8. The DBpedia resource links the dataset to another dataset

Based on yago:AustralianWriters, semantic agents will find other authors in the same category
(Figure 3-9). By linking to datasets already on the LOD Cloud Diagram (such as pointing to a definition on
DBpedia), your dataset will become part of the LOD Cloud.

Chapter 3 ■ Linked Open data

74

The Giant Global Graph, the other name for the Web of Data coined by Tim Berners-Lee, is the
supergraph of all the automatically merged LOD graphs [8].

Registering Your Dataset
To be considered for inclusion in the LOD Cloud Diagram, your dataset must be registered on
http://datahub.io. To be able to register, you need an affiliation with a company or research institute
already on Datahub, or if it is not yet registered, you have to request a new company registration. Candidate
datasets of the LOD Cloud Diagram are validated through four compliance levels.

Level 1 (basic compliance) requires basic metadata about your dataset, including name, title, URL,
author, and contact e-mail, as well as the lod tag added to your dataset on Datahub. Level 2 (minimal
compliance) requires a topic tag for your dataset, which can be one of the following: media, geographic,
lifesciences, publications, government, ecommerce, socialweb, usergeneratedcontent, schemata,
or crossdomain. You have to provide an example link URI in the Data and Resources section with the
example/serialization_format (example/rdf+xml, example/turtle, example/ntriples, example/x-
quads, example/rdfa, or example/x-trig), to help people get a feel for your data before they decide to use
it. You also have to provide links to the dump file or the SPARQL endpoint of the dataset. Level 3 (complete
compliance) requires additional information, such as the last modification date or version of the dataset
(as the value of the field version), a dataset description (notes), the open license of your dataset (selected
from the drop-down menu), a short name for LOD bubble (shortname), a link to the license of the dataset
(license_link), and the instance namespaces (namespace). Beyond these custom fields, Level 3 compliance
also requires metadata such as VoID file (meta/void format), XML sitemap (meta/sitemap format), RDF
Schema (meta/rdf-schema format), and vocabulary mappings (mapping/format). Depending on whether
you use proprietary vocabularies defined within your top-level domain or not, you have to add the
no-proprietary-vocab tag (you don’t use proprietary vocabularies), or either the deref-vocab tag
(use dereferenceable propriatory vocabularies) or the no-deref-vocab tag (use proprietary vocabularies
that are not dereferenceable). Once you are ready with the dataset registration, you can validate it using
http://validator.lod-cloud.net/.

Figure 3-9. Two RDF graphs sharing the same URI merge

http://datahub.io/
http://validator.lod-cloud.net/

Chapter 3 ■ Linked Open data

75

 ■ Note Since the introduction of the LOd Cloud diagram, some of the Ckan/datahub fields used by the
datahub LOd Validator have been changed or discontinued. as a consequence, the Validator might give errors,
even on correctly registered datasets. if this happens to your dataset, you have to contact the authors of the
LOd Cloud diagram, via e-mail, for manual approval.

The last step is to e-mail the authors (richard@cyganiak.de and mail@anjajentzsch.de). Further tags
are used by the authors of the LOD Cloud Diagram to annotate whether your dataset has any issues or when
it is ready to be added to the next update of the LOD Cloud Diagram. Level 4 compliance means that your
dataset has been reviewed and added to lodcloud group by the authors who use this group to generate the
LOD Cloud Diagram.

Linked Data Visualization
Linked Data visualization tools make the analysis and manipulation of Linked Data easier. The list of Linked
Data visualization techniques includes, but is not limited to, comparison of values, analysis of relationships
and hierarchies, analysis of temporal or geographical events, text-based visualizations as tag cloud or
network of phrases, and representing multidimensional data.

LOD Visualization (http://lodvisualization.appspot.com) can produce visual hierarchies using
treemaps and trees from live access to SPARQL endpoints. LodLive (http://en.lodlive.it) provides a
graph visualization of Linked Data resources. Clicking the nodes can expand the graph structure. LodLive
can be used for live access to SPARQL endpoints (see Figure 3-10).

Figure 3-10. Browsing the Web of Data with LodLive

http://lodvisualization.appspot.com/
http://en.lodlive.it/

Chapter 3 ■ Linked Open data

76

The open source graph visualization and manipulation software package Gephi, downloadable
from https://gephi.github.io/, is ideal for Linked Data visualization. The program helps explore and
understand graphs, modify the representation, and manipulate the structures, shapes, and colors to reveal
hidden properties (see Figure 3-11).

Figure 3-11. Advanced graph visualization with Gephi

Gephi is powered by sophisticated layout algorithms, to focus on quality (force-based algorithms) or
speed (multilevel refinements through graph coarsening). The asynchronous OpenGL exploration engine
supports flat rendering and 3D rendering with customizable levels of detail and multiple threads. The other
engine of the software tool, called the mapping engine, supports refinements, vector rendering, and SVG
output, which is perfect for publishing and drawing infographics. The highlight selection makes it easy to
work with large graphs. The graphs can be modified by selecting, moving, annotating, resizing, connecting,
and grouping nodes. The very powerful real-time graph visualization supports networks with a maximum of
50,000 nodes and 1 million edges and iteration, through visualization using dynamic filtering.

Summary
In this chapter, you learned the concept and requirements of Linked Open Data and about the industries
that link thousands of LOD datasets to one another. You understand now how semantic agents can make
new discoveries, based on the machine-readable definition of objects and subjects, and the typed links
between them. You learned the structure, licensing, and interlinking of LOD datasets.

The next chapter will introduce you to semantic development tools, including ontology editors,
reasoners, semantic annotators, extractors, software libraries, frameworks, and APIs.

https://gephi.github.io/

Chapter 3 ■ Linked Open data

77

References
 1. Bizer, C., Heath, T., Berners-Lee, T. Linked data—The story so far. Semantic Web

and Information Systems 2009, 5(3):1–22.

 2. Berners-Lee, T. (2006) Linked Data—Design Issues.
www.w3.org/DesignIssues/LinkedData.html. Accessed 25 March 2014.

 3. Fielding, R. T. (2005) httpRange-14 Resolved.
http://lists.w3.org/Archives/Public/www-tag/2005Jun/0039.html.
Accessed 28 March 2015.

 4. The Open Definition—Defining Open in Open Data, Open Content and Open
Knowledge. http://opendefinition.org. Accessed 18 January 2015.

 5. Hausenblas, M. (2012) 5 ★ Open Data. http://5stardata.info. Accessed
18 January 2015.

 6. Lebo, T., Sahoo, S., McGuinness, D. (eds.) (2013) PROV-O: The PROV Ontology.
www.w3.org/TR/prov-o/. Accessed 27 March 2015.

 7. Schmachtenberg, M., Bizer, C., Jentzsch, A., Cyganiak, R. (2014) The LOD cloud
diagram. http://lod-cloud.net. Accessed 18 January 2015.

 8. Berners-Lee, T. (2007) Giant Global Graph | Decentralized Information Group
(DIG) Breadcrumbs. http://dig.csail.mit.edu/breadcrumbs/node/215.
Accessed 28 March 2015.

http://www.w3.org/DesignIssues/LinkedData.html
http://lists.w3.org/Archives/Public/www-tag/2005Jun/0039.html
http://opendefinition.org/
http://5stardata.info/
http://www.w3.org/TR/prov-o/
http://lod-cloud.net/
http://dig.csail.mit.edu/breadcrumbs/node/215

79

Chapter 4

Semantic Web Development Tools

Extracting and manipulating RDF from semistructured data and writing client applications to handle RDF
data are common tasks that can be made easier and more efficient using software tools. Web designers
and search engine optimization (SEO) experts often generate machine-readable annotations or convert
existing structured data to a different serialization. While web site markup can be edited in any text editor,
some advanced features are desired when working with semantic annotations, so an advanced text editor
is a fundamental tool. Annotators can be used for semantically annotating your web pages and RDFizers to
convert text, HTML, and XML documents to RDF. Application developers writing Semantic Web applications
in Java, JRuby, Clojure, Scala, Python, and other programming languages often work with Integrated
Development Environments, many of which support the integration of semantic software libraries. Ontology
editors are widely deployed and used in ontology engineering, many of which support reasoning as well.
Linked Data software tools are useful for extracting Linked Data, visualizing Linked Data interconnections,
as well as exporting and publishing Linked Data. Semantic Web browsers can display structured data
extracted from web pages, generate a map from geospatial data on your smartphone, and provide advanced
navigation and interactivity features unavailable in traditional web browsers.

Advanced Text Editors
In contrast to word processors such as Microsoft Word or OpenOffice.org Writer, plain-text editors cannot
be used for document formatting, but they are suitable for creating and modifying web pages. However,
basic text editors are not convenient for web design, because some vital features are missing from them. For
example, many of them do not handle control characters and whitespaces correctly. The most well-known
examples are Notepad under Windows and vi under Linux. Advanced text editors such as WordPad provide
text formatting and other additional features. Some advanced text editors are also source code editors with
additional tools specifically designed for web designers and software engineers. While not suitable for
structured data conversions or LOD processing, advanced text editors are fundamental programs in the
toolbox of every Semantic Web developer, owing to advanced features such as the following:

•	 Comprehensive character encoding support, including full Unicode support

•	 Whitespace character support

•	 Control character support, for example, CR+LF (Windows), LF only (UNIX),
and Apple (CR only) break rows

•	 Multifile editing with tabs

Chapter 4 ■ SemantiC Web Development toolS

80

•	 Customizable color schemas for syntax highlighting (HTML, CSS, XML,1 scripts,
and so on)

•	 Undo/redo

•	 Forced word wrap

•	 Line numbering

•	 Auto-indent

•	 Guides for tag pairs and element nesting

•	 OS integration (adds application to right-click menu)

The selected editor should be integrated with at least one of your browsers as the default source code
editor, which you can use to open the currently rendered web document with a hot key (usually Ctrl+U).
There are additional features of text editors that are not vital but can be useful.

•	 Customized color and font settings

•	 Customizable toolbars

•	 Spell checker

•	 Templates

•	 Bookmarks

•	 Full drag-and-drop support

•	 Built-in FTP client or integration with an (S)FTP client

•	 Conversions (uppercase, lowercase, invert case, and initial caps)

•	 International versions (can be convenient for some developers)

•	 Support for double-byte character systems (DBCS) used in Far East Asian languages,
such as Chinese or Japanese (if required)

•	 Browser preview (launching the default or selected web browser for debugging
and testing)

Some of the most well-known advanced text editors are EditPlus and NotePad++ (free, open source
[1]) for Windows, BlueFish [2] and Komodo Edit [3] for Linux, and BBEdit [4] and TextWrangler [5] for Mac
OS. A comprehensive cross-platform editor is Arachnophilia, which is available for Windows, Linux, Unix,
FreeBSD, and Mac OS [6].

As an example, let’s look at the major features of Notepad++ . It is a multifile editor with convenient file
manager options. Notepad++ saves multiple files with a single click, opens recently edited files, and provides
tabs for each opened file. It has a fully customizable interface with advanced features such as line markers,
guides for opening and closing tag pairs, structuring guides to collapse or reveal the currently edited level of
the DOM tree, and syntax highlighting (see Figure 4-1).

1On Windows systems, the file format used for syntax highlighting depends on the file extension, so an entire
RDF/XML file with the .rdf extension might be white by default, while the same file in the same editor would be
syntax-highlighted when saved as .xml.

Chapter 4 ■ SemantiC Web Development toolS

81

There is a variety of programming and web development languages supported in syntax highlighting,
from HTML to XML and from PHP to Ruby. There are several predefined color themes you can select from,
or you can create new ones to your taste. The different document components (indent guidelines, marks,
carets, whitespaces, tag pairs, active and inactive tabs, and so on) can be styled individually. Notepad++ can
change text direction of documents. It also supports a variety of character encodings, can add and remove
byte-order marks, supports big-endian and little-endian Unicode files, and converts files from one encoding
to another.2 The documents opened in the application can be previewed in any installed browsers.

Notepad++ also provides advanced text transformation functionalities, such as escaping certain
characters, transforming lowercase characters to uppercase (or vice versa), searching for matching strings,
converting decimal numbers to their hexadecimal equivalents, inserting the current date and time, sorting
lists ascending or descending, automatically converting leading spaces to tabs, and so on. Notepad++ also
supports macros, which you can run multiple times. The list of features can be extended through additional
plug-ins, such as the MIME tools for Base64 encoding and decoding.

Semantic Annotators and Converters
While there are templates available for all machine-readable metadata annotations and one might also write
them manually from scratch, you can use software tools that can evaluate your code, provide a preview of
the human-readable part of your markup, as well as extract RDF triples, generate the RDF graph of your
structured data, and/or convert the annotation to other formats, which can be very handy, owing to the large
number of RDF serializations.

Figure 4-1. Syntax highlighting and tag pair guides in Notepad++

2This feature should be used for those encodings that can be reasonably converted to another, more advanced encoding
without sacrificing special characters (for example, ANSI to UTF-8).

Chapter 4 ■ SemantiC Web Development toolS

82

RDFa Play
RDFa Play is a real-time RDFa 1.1 editor, data visualizer, and debugger available at http://rdfa.info/play/.
It takes the raw RDFa input, generates a live preview for the human-readable data, and generates a graph
from the triples (see Figure 4-2). If you modify the code, RDFa Play regenerates the browser preview and
the graph.

Figure 4-2. Live browser preview and graph in RDFa Play

RDFa Play provides RDFa annotation examples for persons, events, and places using schema.org,
personal data expressed in FOAF, product description in GoodRelations, and Dublin Core metadata in SVG.

RDFa 1.1 Distiller and Parser
W3C’s RDFa 1.1 Distiller and Parser at http://www.w3.org/2012/pyRdfa/ processes your HTML markup
containing RDFa and converts the triples to Turtle, RDF/XML, JSON-LD, or N-Triples. The RDFa 1.1 Distiller
and Parser is written in Python and powered by RDFLib (https://rdflib.readthedocs.org). It accepts
online RDFa code fragments, uploaded files, and RDFa annotations copied and pasted. The supported host
languages for file upload and direct input are HTML5+RDFa, XHTML+RDFa, SVG+RDFa, Atom+RDFa, and
XML+RDFa.

http://rdfa.info/play/
http://www.w3.org/2012/pyRdfa/
https://rdflib.readthedocs.org/

Chapter 4 ■ SemantiC Web Development toolS

83

RDF Distiller
The RDF Distiller at http://rdf.greggkellogg.net/distiller integrates RDF graphs, readers, and writers
to Ruby projects. The distiller can be used to transform data between different RDF serializations. The web
interface provides a form, which takes the user input through a URI or as direct input in JSON, JSON-LD,
HTML5 Microdata, N3, N-Quads, N-Triples, RDFa, RDF/XML, TRiG, TRiX, or Turtle, and converts the code
to any of the formats (see Figure 4-3).

Figure 4-3. RDFa to Turtle conversion in RDF Distiller

http://rdf.greggkellogg.net/distiller

Chapter 4 ■ SemantiC Web Development toolS

84

Figure 4-4. Annotation with DBpedia Spotlight

The Distiller can automatically detect the input format, which can also be explicitly selected from a
drop-down list.

DBpedia Spotlight
DBpedia Spotlight is a tool for annotating DBpedia concepts in plain text [7]. It has three basic functions:
annotation, disambiguation, and marking candidates. DBpedia Spotlight’s web application visualizes the
user’s input with DBpedia resource annotations (see Figure 4-4).

The RESTful, SOAP-based web API exposes the functionality of annotating and disambiguating entities.
The annotation Java/Scala API exposes the underlying logic that performs the annotation or disambiguation.
The indexing Java/Scala API executes the data processing necessary to enable the annotation or
disambiguation algorithms used.

Google Structured Data Testing Tool
The Google Structured Data Testing Tool at http://www.google.com/webmasters/tools/richsnippets
is suitable for machine-readable metadata testing, including Microformats, RDFa, and HTML5 Microdata
annotations online or through direct input. The code length of the direct input is limited to 1,500 characters.
The tool provides a preview of Google’s representation of your site on Search Engine Result Pages (SERPs),
along with the extracted structured data as item, type, and properties (see Figure 4-5).

http://www.google.com/webmasters/tools/richsnippets

Chapter 4 ■ SemantiC Web Development toolS

85

The tool can identify incomplete triples and provides a short explanation if any mandatory property
is missing. The Google Structured Data Testing Tool also indicates properties that are not parts of the
vocabulary used for the object.

 ■ Note Google does not use machine-readable metadata annotations on Search engine result pages
if certain properties are missing for a particular object type. For example, an hCard description will be
used by Google only if you provide not only the name but also at least two of the following three properties:
organization, location, or role, while code validity can be achieved even if you omit them.

The tool provides machine-readable metadata examples for applications, authors, events, music,
people, products, product offers, recipes, and reviews; however, you must log in to your Google account to
retrieve the HTML markup of the examples. All other functionalities are available without logging in.

RDFizers
Those software tools that convert application and web site data to RDF are called RDFizers. They can be used
for a one-time migration effort or implemented as middleware components of Semantic Web software tools
such as OpenLink Data Explorer. RDFizers are often available as a software library.

Apache Any23
Apache Anything To Triples (Any23) is a Java library, RESTful web service, and command-line tool available
at https://any23.apache.org. Any23 extracts structured data from a variety of Web documents, including
RDF serializations such as RDF/XML, Turtle, Notation 3, and RDFa; Microformats such as Adr, Geo,
hCalendar, hCard, hListing, hRecipe, hReview, License, XFN and Species; HTML5 Microdata; JSON-LD;
CSV (Comma Separated Values exported from, for example, Microsoft Excel); as well as vocabularies such
as Dublin Core, DOAP, FOAF, GeoNames, Open Graph Protocol, schema.org, and vCard. Any23 can also be
used for data conversion such as Turtle to N-Triples.

Apache Any23 can perform validation for code quality assurance. It automatically fixes the DOM
structure if it detects incorrect HTML element nesting. Any23 can identify not only structuring markup
elements but also meta tags and RDFa annotations. If, for example, a prefix mapping is missing for an RDFa
annotation, the RDFa parser will find it out of context and will not be able to handle it. To address this,
Apache Any23 provides the Validator classes to implement a Rule precondition, which, when matched,
will trigger the Fix method to correct the code.

Owing to its comprehensive features, Any23 is implemented in major Semantic Web applications,
such as Sindice.

Figure 4-5. Triples extracted by the Google Structured Data Testing Tool

https://any23.apache.org/

Chapter 4 ■ SemantiC Web Development toolS

86

General Architecture for Text Engineering (GATE)
The General Architecture for Text Engineering (GATE), an open source text processor tool developed by the
University of Sheffield, uses Natural Language Processing (NLP) methods to generate RDF from text files [8].
GATE’s Ontology plug-in provides an API for manipulating OWL-Lite ontologies that can be serialized as
RDF and RDFS. If you work with OWL-DL ontologies, classes that are subclasses of restrictions supported in
OWL-Lite are usually shown, but the classes that are subclasses of other restrictions will not be displayed.
Similarly, plain RDF/RDFS files will not be shown correctly, because there is no way for the API to represent
many constructs that are allowed in RDF but not allowed in OWL-Lite.

OpenRefine
OpenRefine is a tool for exploring large datasets, cleaning and transforming data from one format to the
other, reconciling and matching data, extending data with web services, and linking data to LOD databases
[9]. With OpenRefine, you can filter and partition data with regular expressions, use named-entity extraction
on full-text fields to automatically identify topics, and perform advanced data operations with the General
Refine Expression Language.

Ontology Editors
Ontology editors are software tools specifically designed for ontology engineering. They cover the common
tasks of all major stages of ontology development, namely they

•	 Determine domain and scope. What is the knowledge domain the ontology will
cover? What are the potential implementation areas? What types of questions does it
intend to answer?

•	 Consider reuse. Assess other ontologies of similar knowledge domains.

•	 Enumerate important terms. Create a comprehensive list of terms for the chosen
knowledge domain, without focusing on class hierarchy, properties, overlapping
terms, or relationships.

•	 Define classes and class hierarchy.

•	 Define properties, and characteristics of properties. Define property types, including
simple properties and relationships to classes, domains and ranges, as well as
universal, existential, and cardinality restrictions.

•	 Create individuals.

Protégé
Stanford University’s Protégé is the most widely used open source ontology editor and knowledge
management toolset, which can be downloaded from http://protege.stanford.edu. It supports reasoners
such as HermiT and FaCT++ to validate ontologies for consistency, as well as a variety of other plug-ins.
Originally developed as a Learning Health System for translating raw biomedical data into machine-
readable data for decision making, Protégé is now suitable for modeling, ontology-driven application
development, and collaborative ontology engineering. The ontologies can be exported in many formats,
such as RDFS, and various OWL syntaxes.

While the ontologies can be created in Protégé through a Graphical User Interface (GUI), the software
is Java-based, so when it is executed, it opens a command line (see Figure 4-6) behind the GUI in a separate
window. The ontologies created in Protégé can be accessed from Java programs through the Protégé-OWL API.

http://protege.stanford.edu/

Chapter 4 ■ SemantiC Web Development toolS

87

The GUI of Protégé features a main menu, an address bar, and a tab-based editor (see Figure 4-7).

Figure 4-6. Protégé’s command line

Figure 4-7. Protégé’s Graphical User Interface

Chapter 4 ■ SemantiC Web Development toolS

88

In the File menu, you can create a new, empty ontology or open an ontology from an offline or online
.owl file. Ontologies can be saved in a variety of formats, including RDF/XML, OWL/XML, OWL Functional
Syntax, Manchester Syntax, OBO (Open Biomedical Ontologies format), KRSS2 (Knowledge Representation
System Specification v2), Latex, or Turtle. The wide range of plug-ins available for Protégé can be
downloaded and the already installed plug-ins updated also from this menu.

Under File ➤ Preferences, you can handle hidden annotation URIs. To make it easier to automatically
generate unique identifiers to classes, properties, and individuals of an ontology, you can set up or modify
the structure of entity URIs for a particular ontology. Once you set up the base URI of the ontology, all
fragment identifiers of the ontology will start with this address, which can be modified any time later (New
Ontologies tab in File ➤ Preferences). This can be very useful if the address structure has to be changed
after creating the ontology, because the developer does not have to change the hundreds or thousands of
addresses manually one by one. The default base URI can be a web address of your choice, and the path
can optionally include the actual year, month, and day. The base URI typically ends in a #, but this can
be changed to / or :, if needed (New Entities tab in File ➤ Preferences). The number sign is the default
setting, however, because it creates valid fragment identifiers. You can set the ending of the entity URIs to an
arbitrary name, which is the default choice. If you want to use automatically generated identifiers instead,
you can set entity labels, including custom URIs and a globally unique prefix or suffix.

OWLViz, a Protégé plug-in installed by default, powers the graphical representation of class hierarchies
of OWL ontologies and the navigation between the classes represented as a tree structure (OWLViz tab
in File ➤ Preferences). OWLViz makes the comparison of the asserted class hierarchy and the inferred
class hierarchy possible. By default, Protégé automatically checks for plug-in updates at program startup,
which can also be disabled (Plugins tab in File ➤ Preferences). The default plug-in repository is set to
GitHub, which can be changed. The Reasoner tab in File ➤ Preferences can display or hide class, object
property, data property, and object inferences or initialize reasoners by setting up precomputation tasks
such as classification or realization to be done when the reasoner is launched. The tree hierarchy can be
automatically expanded under Tree Preferences in File ➤ Preferences by setting an auto-expansion depth
limit (the default value is 3) and an auto-expansion child count limit (the default value is 50). By default,
automatic tree expansion is disabled. Accidentally performed changes on any tab can be reverted by clicking
the Reset preferences… button on the bottom right-hand corner of File ➤ Preferences.

The core functionalities and views are available through tabs. The Active Ontology tab shows general
ontology metadata, such as title, creator, description, in addition to the reused ontologies and statistics
about ontology metrics, such as the number of axioms, classes, object properties, individuals, and so on.
Protégé also displays all the prefixes used in the opened ontology. Protégé features a dedicated tab for
Entities, Classes, Object Properties, Data Properties, Annotation Properties, and Individuals. The class
hierarchy is shown as a tree structure, wherein each node can be opened or closed individually. The selected
entity, class, or property details are shown in separate panels. Class descriptions provide information
about equivalent classes, subclasses, class axioms, members, etc., of the selected class, as well as the
option to change the values or add new ones. The classes in Protégé are subclasses of Thing and overlap by
default. Class hierarchies can be created from the Tools menu. The object or data type properties can have
subproperties or inverse properties. The properties can be functional, transitive, symmetric, asymmetric,
reflexive, or irreflexive. Protégé automatically updates inverse properties (such as hasChild and isSonOf in a
family relationship ontology).

The Object Properties and Data Properties tabs also have a Characteristics panel. For object properties,
the Characteristics panel features checkboxes for Functional, Inverse functional, Transitive, Symmetric,
Asymmetric, Reflexive, and Irreflexive properties. The Individuals tab shows not only the class hierarchy
but also the members list and the property assertions. The OntoGraf tab provides a visual representation
of any part of the ontology (see Figure 4-8). When you hover the mouse over any part of the graph, Protégé
shows the fragment identifier, as well as the subclasses/superclasses (if any).

Chapter 4 ■ SemantiC Web Development toolS

89

The SPARQL Query tab provides an interface to execute SPARQL queries. Protégé enumerates the prefixes,
provides an editable SELECT query template, which you can modify or delete, and adds arbitrary queries.

Protégé also has an online version at http://webprotege.stanford.edu, which has collaboration support.

SemanticWorks
Altova’s SemanticWorks is a visual Semantic Web editor that features a graphical RDF and RDFS editor and
a graphical OWL editor, supports OWL-Lite, OWL-Full, and OWL-DL dialects [10]. SemanticWorks provides
syntax and format checking options and the evaluation of ontology semantics with direct links to errors.
Context-sensitive entry helpers display the list of valid input options, depending on the serialization being
used. SemanticWorks can generate code in RDF/XML and N-Triples and convert RDF/XML to N-Triples and
vice versa. The program features a printing option for RDF and OWL diagrams. New class instances can be
defined using intelligent shortcuts. The instances, properties, and classes are organized on tabs, and, similar
to software engineering environments, properties and property values can also be manipulated through
separate subwindows. The Overview subwindow is very useful when editing large, complex diagrams, when
the currently displayed portion of the diagram is indicated as a red rectangle. You can switch between the
diagram and the code view at any time.

Figure 4-8. Graph visualization in Protégé

http://webprotege.stanford.edu/

Chapter 4 ■ SemantiC Web Development toolS

90

TopBraid Composer
TopQuadrant’s TopBraid Composer is a graphical development tool for data modeling and semantic
data processing. The free Standard Edition supports standards such as RDF, RDFS, OWL, and SPARQL,
as well as visual editing and querying, and data conversions [11]. The commercial Maestro Edition provides
a model-driven application development environment [12]. Composer is also an RDFizer, which can convert
Excel spreadsheets into instances of an RDF schema.

TopBraid Composer can open ontologies serialized in RDF/XML or Turtle, import RDFa data sources,
RSS or Atom news feeds, and e-mails into RDF. It can connect to SPARQL endpoints as well as RDBMS
sources, import tab-delimited spreadsheet files and Excel spreadsheets, online RDF and OWL files, UML
files, XML Schemas, and XML catalogs. Wizards guide you in creating new projects, such as faceted
project resources, projects from CSV files, JavaScript projects, static web projects, as well as XML editing
and validation. You can create markup files with RDFa and HTML5 Microdata annotations and develop
semantic web applications and RDF/OWL file connections to Jena SDB databases, Jena TDB databases,
Oracle databases, and Sesame 2 repositories. The Graphical User Interface features panels for classes, visual
representation (diagrams and graphs) and source code, properties, file system navigation, imports, and
“baskets” (see Figure 4-9).

Figure 4-9. Ontology editing with TopBraid Composer Maestro

On the Classes panel, you can navigate in your ontologies, represented as a tree structure, create
and delete classes, create subclasses and siblings, group components by namespace, and search by name.
The Properties panel features, among property manipulation, GoogleMaps integration too. On the Imports
panel, the resources can be displayed, along with their rdf:type, rdfs:label, and rdfs:comment values
(if provided), as well as rules, instances, errors, SPARQL queries, and text searches. On the Baskets
panel, you can load contents from, and save contents to, a text file; add selected resources; add matching
properties; add subclasses, subproperties, instances, individuals, and unreferences resources; and perform
batch operations.

Chapter 4 ■ SemantiC Web Development toolS

91

Apache Stanbol

Apache Stanbol is a semantic data modeler and comprehensive ontology manager [13].
It includes a content-management system that supports Semantic Web services

and web application functions such as tag extraction, text completion in search fields,
and e-mail routing, based on extracted entities. The functionalities of the Stanbol
components are available through a RESTful web service API. The RESTful services
return results in RDF, JSON, and JSON-LD. Apache Stanbol can be run as a stand-alone
application (packaged as a runnable JAR) or as a web application (packaged as .war)
deployable in servlet containers such as Apache Tomcat. It is compatible with Apache
frameworks such as Solr (for semantic search), Tika (for metadata extraction), and Jena (for storage).

Stanbol has a built-in RDFizer that processes traditional web contents sent in a POST request with the
MIME type specified in the Content-type header and adds semantic information (“RDF enhancement”) to it,
serialized in the format specified in the Accept header.

Stanbol also provides a reasoner component, which implements a common API and supports different
reasoners and configurations through OWLApi and Jena-based abstract services, with implementations for
Jena RDFS, OWL, OWLMini, and HermiT. The reasoner module can perform a consistency check, which
returns HTTP Status 200 if data is consistent and 204 if not. The reasoner can also be used for classification,
in other words, to materialize all inferred rdf:type statements. The semantic enrichment materializes all
inferred statements.

The Apache Stanbol Ontology Manager supports multiple ontology networks by interconnecting
seemingly unrelated knowledge represented in different ontologies, ontology libraries, a central ontology
repository, as well as common ontology engineering tasks, such as reasoning and rule execution. Stanbol
can also store and cache semantic information and make it searchable through its persistence services.

Fluent Editor
Fluent Editor is an ontology editor, which can handle RDF, OWL, and SWRL files [14]. Fluent Editor uses a
proprietary representation language and query language compatible with Semantic Web standards. The tool
has been designed for managing complex ontologies. It features a reasoner window, a SPARQL window for
queries, an XML preview window, a taxonomy tree view, and an annotation window. Fluent Editor has two
types of plug-ins: a Protégé interoperability plug-in, which supports data export to and import from Protégé,
and R language plug-ins that support the development of analytical models with R and rOntorion and
plug-in development for Fluent Editor with the R language.

Ontology Analysis Tools
There are software tools for ontology mapping and specific ontology engineering tasks not supported by
general-purpose ontology editors such as semantic similarity estimation.

ZOOMA
ZOOMA is an application for discovering optimal ontology mappings and automatic mapping of text
values to ontology terms using mapping repositories [15]. ZOOMA can reuse mappings already asserted in
the database, explore mapping best suitable for multiple mappings, derive better mappings by recording
contextual information, and suggest new terms. The commonly observed values can be processed
automatically.

Chapter 4 ■ SemantiC Web Development toolS

92

ZOOMA finds all optimal mappings automatically where one text value maps to the same set of terms
every time. When using mapping repositories, it can detect errors, in other words, it finds all the text value
to ontology term mappings that are potentially incorrect. ZOOMA can also propose new mappings to terms
based on the input values; however, selecting the best mapping requires human evaluation and assessment.
ZOOMA can easily be used as a software library, as, for example, within an Apache Maven project.

Semantic Measures Library
The Semantic Measures Library (SML) is a Java library for semantic measure analysis, such as estimating
semantic similarity and relatedness by using ontologies to define the distance between terms or concepts
[16]. SML functionalities can be accessed also through a set of command-line tools called SML-Toolkit. The
library supports RDF and RDFS, OWL ontologies, WordNet (a lexical database), Medical Subject Headings
(MeSH, a controlled vocabulary for life science publishing), the Gene Ontology, and so on.

Reasoners
Reasoners derive new facts from existing ontologies and check the integrity of ontologies. The various
software tools are different in terms of reasoning characteristics, practical usability, and performance,
owing to the different algorithms implemented for Description Logic reasoning. Not all reasoners can
evaluate all possible inferences, so their soundness and completeness vary. Some ontologies support rules
for combining ontologies with rules. A common feature of reasoners is ABOX reasoning, the reasoning
of individuals that covers instance checking, conjunctive query answering, and consistency checking.
Advanced reasoners support the OWL API, a standard interface for application development with OWL
reasoning. Another feature of advanced reasoners is the OWLLink support, leveraging an implementation-
neutral protocol to interact with OWL 2 reasoners.

HermiT
HermiT is one of the most popular OWL 2 reasoners that can be used to determine ontology consistency,
identify relationships between classes, and perform further tasks [17]. HermiT uses its own algorithm,
called the “hypertableau” calculus, to check the consistency of OWL ontologies and identify subsumption
relationships between classes. HermiT can be used as a Protégé plug-in (see Figure 4-10), through the
command line, or in Java applications. The latest Protégé versions come with a preinstalled HermiT plug-in.
From the command line, you can perform classification, querying, and other common reasoning tasks. As
for the Java applications, HermiT supports the OWLReasoner interface from the OWL API, providing access
to OWL API objects, such as ontologies and class expressions.

Chapter 4 ■ SemantiC Web Development toolS

93

Pellet
Clark & Parsia’s Pellet is an OWL 2 DL reasoner, which can be used in Protégé, Jena, TopBraid Composer,
or in Java programs through the OWL API interface [18]. It is based on the tableau algorithm to break down
complex statements into smaller and simpler pieces to detect contradictions and supports expressive
Description Logics. Pellet supports different incremental reasoning, including incremental consistency
checking and incremental classification, where updates (additions or removals) can be processed and

Figure 4-10. The HermiT reasoner running in Protégé

Chapter 4 ■ SemantiC Web Development toolS

94

applied to an ontology without having to perform all the reasoning steps from scratch. Pellet also supports
reasoning with SWRL rules. It provides conjunctive query answering and supports SPARQL queries. Pellet
reasons ontologies through Jena and the OWL API. Pellet also supports the explanation of bugs.

FaCT++
FaCT++ (Fast Classification of Terminologies) is a tableaux-based OWL 2 DL reasoner3 [19]. It can be used as
a description logic classifier and for modal logic satisfiability testing. It implements a sound and complete
tableau algorithm for expressive description logics. FaCT++ is available as a stand-alone tool, as a Protégé
plug-in, and can be used in applications through the OWL API.

RACER
Racer (Renamed ABox and Concept Expression Reasoner) is a server-side reasoner for building ontology-
based applications, available through Java and Common Lisp APIs [20]. Racer provides not only standard
reasoning mechanisms but also logical abduction. It implements a highly optimized tableau calculus for
the Description Logic SRIQ(D). Racer supports the consistency check of RDF data descriptions and OWL 2
ontologies and can open multiple ontologies simultaneously for ontology merging. It can find implicit subclass
relationships induced by the axioms of an ontology and find synonyms for properties, classes, or instances.
Racer can retrieve information from OWL/RDF documents via SPARQL queries and also support incremental
queries. It supports FaCT optimization techniques and optimization for number restrictions and ABoxes.

Application Development Frameworks
The most common programming tasks are collected in software libraries, so that you do not have to write
frequently used code. In Semantic Web applications, for example, a common task is to covert an RDF
file from one serialization to another, which can be easily performed by tools such as Apache Jena. Such
software libraries can be used in a variety of environments, such as through the command line or as a
plug-in of an Integrated Development Environment (IDE) such as Eclipse or NetBeans.

Jena
Apache Jena is an open source Semantic Web and Linked Data application
development framework, which supports the storage, retrieval, and analysis of
structured data written in RDF [21].

The core RDF API of Jena has dedicated methods for extracting subjects, objects,
and predicates of RDF statements such as getSubject(), which returns the Resource,
getObject(), which returns the RDFNode, and getPredicate(), which returns the Property of the statement.
Using the Jena RDF API, you can easily create and manipulate RDF graphs, which are called models in Jena
and represented by the Model interface. For example, to describe a person using the RDF API, first define the
URI or the subject and the string of the object (see Listing 4-1), then create an empty, memory-based Model
using the createDefaultModel() method (see Listing 4-2).

Listing 4-1. Constant Declaration in Jena

static String personWebsite = "http://www.lesliesikos.com";
static String personName = "Leslie Sikos";

3FaCT++ has a partial support for OWL 2 key constraints and datatypes.

http://www.lesliesikos.com/

Chapter 4 ■ SemantiC Web Development toolS

95

Listing 4-2. Creating a Memory-Based Model

Model model = ModelFactory.createDefaultModel();

The resource will be created using the Model (see Listing 4-3).

Listing 4-3. Creating a Resource

Resource lesliesikos = model.createResource(personWebsite);

Finally, add a property to the resource using addProperty (see Listing 4-4).

Listing 4-4. Adding Property to a Resource

lesliesikos.addProperty(FOAF.Name, personName);

To retrieve statements from an RDF graph (Jena Model), the listStatements() method can be used
(see Listing 4-5).

Listing 4-5. Extracting RDF Triples

StmtIterator iter = model.listStatements();

If you need more details, you can list all the predicated, subjects, and objects from the RDF graph,
as shown in Listing 4-6.

Listing 4-6. Listing All Triple Components Individually

while (iter.hasNext()) {
 Statement stmt = iter.nextStatement();
 Resource subject = stmt.getSubject();
 Property predicate = stmt.getPredicate();
 RDFNode object = stmt.getObject();

 System.out.print(subject.toString());
 System.out.print(" " + predicate.toString() + " ");
 if (object instanceof Resource) {
 System.out.print(object.toString());
 } else {
 System.out.print(" \"" + object.toString() + "\"");
 }

 System.out.println(" .");
}

Jena supports SPARQL queries, including SPARQL, over the JDBC driver framework. In fact, it can serve
RDF data over HTTP, using Fuseki, a SPARQL server that provides REST-style SPARQL HTTP update, SPARQL
querying, and SPARQL update [22]. The Jena rules engine, along with other inference algorithms, can derive
consequences from RDF models. The Inference API provides reasoning to expand and check triplestore
contents. You can not only use built-in OWL and RDFS reasoners but also configure your own inference
rules. The Jena Ontology API can work with data models, RDFS, and OWL, including partial support for
OWL 1.1 features. Jena has its own high performance triplestore component called TDB, which stores triples
directly to disk and can be directly accessed from a Java Virtual Machine. SQL DB provides a persistent

Chapter 4 ■ SemantiC Web Development toolS

96

triplestore for Jena, using relational databases, namely, an SQL database for RDF data storage and querying.
Jena supports advanced text and spatial search. Jena can be integrated into Eclipse, the popular software
development environment for Java developers.

Sesame
Sesame is an open source framework for RDF data analysis and SPARQL querying [23]. The approach
implemented to the Sesame framework is different from other semantic frameworks in a way that it features
an extensible interface and that the storage engine is segregated from the query interface. Alibaba, a Sesame
API, is used for mapping Java classes to ontologies and generating Java source files from ontologies, making
it possible to directly exploit RSS, FOAF, and Dublin Core from Java. Sesame provides its RDF triplestore as
a Java web application (.war), which can be easily deployed to application servers such as Apache Tomcat
or Eclipse Jetty. It supports both memory-based (MemoryStore) and disk-based (NativeStore) storage. The
RDF triplestore provides a SPARQL query endpoint. Sesame can be integrated to software development
environments such as Eclipse and Apache Maven.

The Repository API provides methods for data file uploading, querying, extracting, and manipulation.
One of its implementations, SailRepository, translates calls to a SAIL implementation of your choice, while
another implementation, HTTPRepository, offers transparent client-server communication with a Sesame
server over HTTP. The HTTP Server, the topmost component of Sesame, has Java servlets for accessing
Sesame repositories over HTTP. Using the Repository API of Sesame, you can create a local repository
directly from your application, with the capability to store, query, and modify RDF data (see Listing 4-7).

Listing 4-7. Creating a Basic Local Repository in Sesame

import org.openrdf.repository.Repository;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.memory.MemoryStore;
…
Repository repo = new SailRepository(new MemoryStore());
repo.initialize();

This repository will use the main memory for data storage, which is by far the fastest RDF repository type.
However, the created repository is volatile, meaning that the content is lost when the object is garbage collected or
when the program execution is finished. For persistent storage, you need to save the data to a file (see Listing 4-8).

Listing 4-8. Creating a Local Repository with File Storage in Sesame

import org.openrdf.repository.Repository;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.nativerdf.NativeStore;
…
File dataDir = new File("/path/to/datadir/");
Repository repo = new SailRepository(new NativeStore(dataDir));
repo.initialize();

To create a repository with RDF Schema inferencing, you have to create a Repository object by passing
it a reference to the appropriate Sail object (see Listing 4-9).

Chapter 4 ■ SemantiC Web Development toolS

97

Listing 4-9. Creating a Repository with RDF Schema Inferencing

import org.openrdf.repository.Repository;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.memory.MemoryStore;
import org.openrdf.sail.inferencer.fc.ForwardChainingRDFSInferencer;
…
Repository repo = new SailRepository(
 new ForwardChainingRDFSInferencer(
 new MemoryStore()));
repo.initialize();

If you use a remote Sesame server rather than a local one, the remote connection has to be set up by
initializing the RemoteRepositoryManager (see Listing 4-10).

Listing 4-10. Initializing a RemoteRepositoryManager

import org.openrdf.repository.manager.RemoteRepositoryManager;
…
String serverUrl = "http://localhost:8080/openrdf-sesame";
RemoteRepositoryManager manager = new RemoteRepositoryManager(serverUrl);
manager.initialize();

The Storage And Inference Layer API (SAIL) separates storage and inference. The SAIL API is primarily
used by triplestore developers. The RIO API, which stands for “RDF I/O,” contains parsers and writers
for RDF serialization. The parsers can transform RDF files to statements, while the writers can transform
statements to RDF files. The RIO API can be used independently from all the other Sesame components.

The RDF Model API defines the representation of RDF building blocks such as statements, URIs, blank
nodes, literals, graphs, and models. The RDF statements are represented by the org.openrdf.model.
Statement interface, in which each statement has a subject, predicate, object, and (optionally) a context.
Each of these items is an org.openrdf.model.Value, which covers org.openrdf.model.Resource and
org.openrdf.model.Literal. Each resource represents an RDF value that is either a blank node
(org.openrdf.model.BNode) or a URI (org.openrdf.model.URI). Literals represent RDF literal values
such as strings, dates, and integer numbers. New triples and values can be created using org.openrdf.
model.ValueFactory (see Listing 4-11).

Listing 4-11. Using a Default ValueFactory Implementation

ValueFactory factory = ValueFactoryImpl.getInstance();

Once you obtain your ValueFactory, you can create new URIs, literals, and triples (see Listing 4-12).

Listing 4-12. Adding URIs, Literals, and Triples to a ValueFactory Implementation

URI webstand = factory.createURI("http://yourbookdataset.com/webstand");
URI title = factory.createURI("http://yourbookdataset.com/title");
Literal webstandsTitle = factory.createLiteral("Web Standards");
Statement titleStatement = factory.createStatement(webstand, title, webstandsTitle);

The Graph API represents an RDF graph as a Java object. The org.openrdf.model.Graph class handles
RDF graphs from the Java code. Graphs can be created in two ways: writing them programmatically by
adding statements to them or created using a construct query. Empty graphs can be obtained by creating a
GraphImpl object (see Listing 4-13).

http://yourbookdetaset.com/webstand
http://yourbookdetaset.com/title

Chapter 4 ■ SemantiC Web Development toolS

98

Listing 4-13. Creating an Empty Graph

Graph myGraph = new org.openrdf.model.impl.GraphImpl();

Next, the RDF statement components (subject-predicate-object) have to be created using the
ValueFactory object (see Listing 4-14). This prepares the graph to support triples and adds the
WebDesignBook subject, the Title predicate, and the Web Standards object to the graph.

Listing 4-14. Adding Triple Support to a Graph

ValueFactory myFactory = myGraph.getValueFactory();
String namespace = "http://www.foo.com/bar#";

URI mySubject = myFactory.createURI(namespace, "WebDesignBook");
URI myPredicate = myFactory.createURI(namespace, "Title");
Literal myObject = myFactory.createLiteral("Web Standards");

myGraph.add(mySubject, myPredicate, myObject);

Another option is to use the URIs directly to add properties (see Listing 4-15).

Listing 4-15. Using URIs Directly to Add Triples to a Graph

URI bookClass = myFactory.createURI(namespace, "Book");
URI rdfType = myFactory.createURI(org.openrdf.vocabulary.RDF.TYPE);
mySubject.addProperty(rdfType, bookClass);

Integrated Development Environments
Integrated Development Environments (IDEs) provide an interface for efficient Semantic Web application
development, including a source editor with syntax highlighting for a variety of programming languages,
such as Java and Python. IDEs have wizards and built-in applications to simplify software development, file
handlers, and other tools to support deploying, running, and testing applications. IDEs consist of a runtime
system, a workbench, and other features, such as a remote debugger or data modeler.

Eclipse

Eclipse is one of the most popular IDEs for Java developers, providing essential
tools, such as a Java IDE, a CVS client, a Git client, an XML Editor, and Apache
Maven integration [24].

Eclipse is one of the popular IDEs to use Apache Jena and Sesame. The installation of Eclipse can be
done as follows:

 1. A prerequisite of Eclipse is the Java Development Kit (JDK). Download it from
http://www.oracle.com/technetwork/java/javase/downloads/ and install it
(Figure 4-11).

http://www.foo.com/bar%23
http://www.oracle.com/technetwork/java/javase/downloads/

Chapter 4 ■ SemantiC Web Development toolS

99

 ■ Caution the Java Development Kit is different from the Java runtime
environment (Jre), also known as the Java virtual machine (Jvm), which is a secure
computing environment for running Java programs on your computer.

Figure 4-11. Installing the Java Development Kit for Eclipse

 2. Visit http://www.eclipse.org and download the installer. Eclipse is available
for Windows, Linux, and Mac OS X. The Windows binary is distributed as a ZIP
archive, the Linux and the Apple installers as gzipped TAR archives.

 3. Extract the installation files and execute eclipse.exe.

 4. You have to specify a folder for Eclipse project files. If you want to use the same
path every time you launch Eclipse, you can set the folder to the default Eclipse
project folder.

Set Up Apache Jena in Eclipse
Once you have Eclipse installed, you can set up Apache Jena.

 1. Go to http://jena.apache.org/download/, select a download mirror, and
download the binary distribution suitable for your platform (.zip or .tar.gz).

 2. Extract the Jena files from the archive.

 3. In Eclipse, select File ➤ New ➤ Java Project.

 4. Right-click the name of the newly created project and select Properties (or select
File ➤ Properties).

http://www.eclipse.org/
http://jena.apache.org/download/

Chapter 4 ■ SemantiC Web Development toolS

100

 5. Select Java Build Path and click the Libraries tab.

 6. Click Add Library… on the right.

 7. Select User Library as the library type (see Figure 4-12).

Figure 4-12. Load the Apache Jena software library to Eclipse

 8. Click the Next ➤ button on the bottom.

 9. Click User Libraries… on the right.

 10. Click the New… button.

 11. Add a name to your library, such as JenaLib.

 12. Click the Add external JARs… button on the right.

 13. Browse to your Jena directory (apache-jena-versionNumber) and go to the lib
subdirectory.

 14. Select all the .jar files (for example, with Ctrl+A) and click Open (see Figure 4-13).

 15. Click OK.

 16. Click Finish.

 17. Once you click OK, the Jena software library will be added to your Eclipse project.

Chapter 4 ■ SemantiC Web Development toolS

101

To see the Jena library in action, let’s create a Java program to convert your RDF/XML serialized FOAF
file to Turtle!

 1. In the Package Explorer, right-click src and select New ➤ Package and
create a package.

 2. Click the package name and select New ➤ File.

 3. Specify a file name and click Finish.

 4. Add the file content (type in directly or copy-paste it). If you don’t have a FOAF
file yet, create one manually in RDF/XML serialization or generate one using
FOAF-a-matic at http://www.ldodds.com/foaf/foaf-a-matic.html. The
asterisk (*) in front of the file name on the file’s tab indicates that the file has
been changed. When you save the file with File ➤ Save or Ctrl+S, the character
disappears. Save the file as, for example, foaf.rdf.

 ■ Note if you have characters not supported by Windows-1252, eclipse offers you
the option to save the file with UtF-8 encoding to avoid character loss.

Figure 4-13. Apache Jena to be added to the Eclipse project

http://www.ldodds.com/foaf/foaf-a-matic.html

Chapter 4 ■ SemantiC Web Development toolS

102

 5. Right-click the package and select New ➤ Class and add a name such as Main
(creates Main.java).

 6. Write the code to open the FOAF file and convert it to Turtle serialization using
Apache Jena. Import the model (com.hp.hpl.jena.rdf.model.Model) and the
File Manager of Jena (com.hp.hpl.jena.util.FileManager). Using the File
Manager, load the model (FileManager.get().loadModel()) and write the RDF
content out to the standard output (the console) in Turtle using System.out
(see Listing 4-16).

Listing 4-16. Loading and Converting an RDF File Using Jena

package JenaPackage;

import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;

public class Main {
 public static void main(String args[])
 {
 FileManager.get().addLocatorClassLoader(Main.class.getClassLoader());
 Model model = FileManager.get().loadModel("C:/develop/eclipse/workspace/
 jenaapp/src/jenapackage/foaf.rdf");
 model.write(System.out,"TURTLE");
 }
}

 7. Run the program by clicking the Run button on the top toolbar (white triangle
in green circle) or Run under the Run menu. The Console shows the output in
Turtle (see Figure 4-14).

Figure 4-14. Using Apache Jena to convert RDF/XML to Turtle

Chapter 4 ■ SemantiC Web Development toolS

103

Set Up Sesame in Eclipse
Once you have Eclipse installed, you can add Sesame to your environment, similar to Jena.

 1. Go to http://sourceforge.net/projects/sesame/ and download the binary
distribution.

 2. Extract the Sesame files from the archive.

 3. In Eclipse, select File ➤ New ➤ Java Project.

 4. Right-click the name of the newly created project and select Properties (or select
File ➤ Properties).

 5. Select Java Build Path and click the Libraries tab.

 6. Click Add Library… on the right.

 7. Select User Library as the library type.

 8. Click the Next > button on the bottom.

 9. Click User Libraries… on the right.

 10. Click the New… button.

 11. Add a name to your library, such as JenaLib.

 12. Click the Add external JARs… button on the right.

 13. Browse to your Sesame directory (openrdf-sesame-versionNumber) and go to
the lib subdirectory.

 14. Select all the .jar files (for example, with Ctrl+A) and click Open (see Figure 4-15).

Figure 4-15. Adding Sesame to Eclipse

http://sourceforge.net/projects/sesame/

Chapter 4 ■ SemantiC Web Development toolS

104

 15. Click OK.

 16. Click Finish.

 17. Once you click OK, the Sesame software library will be added to your
Eclipse project.

To see the Sesame library in action, let’s create a Java program, to initialize a repository, and add data to
and retrieve data from that repository!

 1. Create a new Java class. To make it easier to write our code, on the New Java Class
window, tick the checkbox public static void main(String[] args) under
Which method stubs would you like to create?

 2. To store RDF data, we first have to create a repository. While there are many
different types of repositories, for our example, we need a simple local repository
with fast in-memory store (see Listing 4-17).

Listing 4-17. Creating a Local Repository in Sesame

Repository rep = new SailRepository(new MemoryStore());

To use this code, however, we have to write some import statements manually
(see Listing 4-18).

Listing 4-18. Import Packages from the Sesame Library

import org.openrdf.repository.Repository;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.memory.MemoryStore;

Alternatively, you can force missing imports to be resolved automatically, using the
Ctrl+Shift+O hot key.

 3. Initialize the repository by calling the rep.initialize() method.

 4. Add data to the repository. You can add triples directly from Java or load them
from external files. In this example, we add some statements directly. To do so,
we need a namespace to be used for creating new URIs and a ValueFactory for
creating URI, BNode, and Literal objects (see Listing 4-19).

Listing 4-19. Adding Data to the Repository

String namespace = "http://example.com/";
ValueFactory f = rep.getValueFactory();

 5. Create a new URI through an identifier for the person Leslie (see Listing 4-20).

Listing 4-20. Creating a URI

URI leslie = f.createURI(namespace, "leslie");

 6. To add data to the repository, you have to open a RepositoryConnection
(Listing 4-21).

Chapter 4 ■ SemantiC Web Development toolS

105

Listing 4-21. Opening a Connection

RepositoryConnection conn = rep.getConnection();

 7. To ensure that any connection is open only when needed, create a try-finally
code block (see Listing 4-22). The try clause holds the tasks to be performed
during a connection, while the finally clause is used to close the connection
when it is not needed anymore or if something goes wrong.

Listing 4-22. A try-finally Block

try {

}
finally {
 conn.close();
}

 8. In the try clause, add triples to the repository (see Listing 4-23).

Listing 4-23. Adding RDF Statements to a Sesame Repository

conn.add(leslie, RDF.TYPE, FOAF.PERSON);
conn.add(leslie, RDFS.LABEL, f.createLiteral("Leslie",
XMLSchema.STRING));

The first triple describes Leslie as a Person, the second states Leslie’s name as a
string.

 ■ Note the frequently used namespaces (rDF, rDFS, FoaF, etc.) are predefined as
constants in Sesame.

 9. Retrieve the data from our repository using the getStatements method
(see Listing 4-24), which has four arguments.

Listing 4-24. Data Retrieval from a Repository

RepositoryResult<Statement> statements = conn.getStatements(null,
null, null,
true);

The first three arguments represent the subject, predicate, and object to be
matched. In this case, we want to retrieve all triples. The first three arguments
will be null. The last argument is a Boolean value for indicating whether those
statements that are inferred by a reasoner should be included. In this example, we
do not use any reasoners, so the fourth value won’t have any effect on the output.
Alternatively, one could use SPARQL queries as well, to extract data from the
repository.

Chapter 4 ■ SemantiC Web Development toolS

106

 10. Convert the result to a Sesame Model (see Listing 4-25), which is a Java
Collection.

Listing 4-25. Converting the Result to a Model

Model model = Iterations.addAll(statements, new LinkedHashModel());

 11. To provide a neat output, we need some namespace abbreviations, so that the
output won’t include full URIs. Again, we can use the predefined constants for
the RDF, RDFS, XMLSchema, and FOAF namespaces (see Listing 4-26).

Listing 4-26. Namespace Declaration

model.setNamespace("rdf", RDF.NAMESPACE);
model.setNamespace("rdfs", RDFS.NAMESPACE);
model.setNamespace("xsd", XMLSchema.NAMESPACE);
model.setNamespace("foaf", FOAF.NAMESPACE);
model.setNamespace("ex", namespace);

 12. Display the output in Turtle on the Console, using the Sesame toolkit Rio

(“RDF I/O”) (see Listing 4-27).

Listing 4-27. Sending the Output to the Console

Rio.write(model, System.out, RDFFormat.TURTLE);

The final code should look like Listing 4-28.

Listing 4-28. A Complete Sesame Code Example

package sesamePackage;

import info.aduna.iteration.Iterations;

import org.openrdf.model.Statement;
import org.openrdf.model.URI;
import org.openrdf.model.Model;
import org.openrdf.model.ValueFactory;
import org.openrdf.model.impl.LinkedHashModel;
import org.openrdf.model.vocabulary.FOAF;
import org.openrdf.model.vocabulary.RDF;
import org.openrdf.model.vocabulary.RDFS;
import org.openrdf.model.vocabulary.XMLSchema;
import org.openrdf.repository.Repository;
import org.openrdf.repository.RepositoryConnection;
import org.openrdf.repository.RepositoryException;
import org.openrdf.repository.RepositoryResult;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.memory.MemoryStore;
import org.openrdf.rio.RDFFormat;
import org.openrdf.rio.RDFHandlerException;
import org.openrdf.rio.Rio;

Chapter 4 ■ SemantiC Web Development toolS

107

public class SesameApp {

 public static void main(String[] args) throws RepositoryException,
RDFHandlerException {

 Repository rep = new SailRepository(new MemoryStore());
 rep.initialize();

 String namespace = "http://example.com/";
 ValueFactory f = rep.getValueFactory();

 URI leslie = f.createURI(namespace, "leslie");

 RepositoryConnection conn = rep.getConnection();
 try {
 conn.add(leslie, RDF.TYPE, FOAF.PERSON);
 conn.add(leslie, RDFS.LABEL, f.createLiteral("Leslie", XMLSchema.

STRING));

 RepositoryResult<Statement> statements = conn.getStatements(null,

null, null, true);

 Model model = Iterations.addAll(statements, new LinkedHashModel());
 model.setNamespace("rdf", RDF.NAMESPACE);
 model.setNamespace("rdfs", RDFS.NAMESPACE);
 model.setNamespace("xsd", XMLSchema.NAMESPACE);
 model.setNamespace("foaf", FOAF.NAMESPACE);
 model.setNamespace("ex", namespace);

 Rio.write(model, System.out, RDFFormat.TURTLE);
 }
 finally {
 conn.close();
 }

 }

}

Finally, you can run the application. The data stored in and retrieved from the repository is displayed on
the Console (see Figure 4-16).

http://example.com/

Chapter 4 ■ SemantiC Web Development toolS

108

NetBeans
NetBeans is another popular Integrated Development Environment for Java [25].

NetBeans is powered by Apache Ant and supports Apache Maven, refactoring,
version control, etc. All the functions of the IDE are provided through modules.

Setup Apache Jena in NetBeans
Integrating Apache Jena in NetBeans is similar to the installation we discussed for Eclipse.

 1. Go to http://jena.apache.org/download/, select a download mirror, and
download the binary distribution suitable for your platform (.zip or .tar.gz).

 2. Extract the Jena files from the archive.

 3. In NetBeans, select File ➤ New Project ➤ JavaWeb.

 4. Give a name to the project and select servers.

 5. Select File ➤ Project Properties.

 6. Select the Libraries category and select Add JAR/Folder.

Figure 4-16. Using Sesame to store and retrieve RDF triples

http://jena.apache.org/download/

Chapter 4 ■ SemantiC Web Development toolS

109

 7. Select the required files.

 8. When the files are listed, verify and click OK.

To use Jena in your project, you have to import the required packages, as discussed in the previous sections.
If you use Apache Maven integration in NetBeans, you can also start a Jena project as follows:

 1. Select File ➤ New Project ➤ Maven ➤ Java Application.

 2. Add a name to the project and additional information, such as location, then
click Finish.

 3. Once NetBeans has created a new Maven project and opened it, right-click
Dependencies and choose Add Dependency….

 4. Declare the Group ID, such as org.apache.jena, the Artifact ID, such as
jena-core, and the version of your Jena integration.

 5. Open the Dependencies directory and check the dependencies.

 ■ Note the download of declared dependencies can be forced by right-clicking
Dependencies and choosing Download Declared Dependencies.

CubicWeb
CubicWeb is an object-oriented Semantic Web application framework written in Python [26]. It supports RDF
and OWL, features semiautomatic XHTML/XML/JSON/text generation, and a proprietary query language
similar to SPARQL. CubicWeb supports SQL databases and LDAP directories. The rapid application
development is powered by a library of reusable components called “cubes,” including a data model and
views for common tasks. For example, the file cube contains the file entity type, gallery view functionality,
and a file import utility. If you build a blog application, you create a new cube, such as mycube, and reuse the
blog cube (see Figure 4-17).

Figure 4-17. Visualization of the data model in CubicWeb

Chapter 4 ■ SemantiC Web Development toolS

110

When you develop a new web application, you create a new cube, select building blocks from existing
cubes, create class definitions in your cube’s schema, and create instances. The cubes have a standard folder
structure to store the Python scripts, style sheets, JavaScript files, and translation files.

Linked Data Software
Sindice
Sindice is one of the most popular Linked Data platforms. Sindice collects, processes and integrates Linked
Data from RDF, RDFa, Microformats, and HTML5 Microdata [27]. One of Sindice’s components is the Sindice
Web Data Inspector at http://inspector.sindice.com, which is a comprehensive semantic data extractor
tool. The tool can be used to extract RDF triples from markup, RDF/XML, Turtle, or N3 documents provided
either by URI or by direct input. Sindice Web Data Inspector can be used for retrieving semantic data
(Inspect button), combined semantic data extraction and validation (Inspect + Validate button), or ontology
analysis and reasoning (see Figure 4-18).

Figure 4-18. Comprehensive options on the start screen of Sindice Web Data Inspector

As a result, the tool provides the full list of subject-predicate-object triples retrieved from the file.
The output format can also be changed to N-triples or RDF/XML.

 ■ Note For usability reasons, Sindice Web Data inspector displays a maximum of 1,000 triples only.

The “Sigma” option is a really good demonstration of machine-readable metadata. Software tools can
extract structured data from properly written semantic documents and display them arbitrarily. This is the
true essence of the Semantic Web !

http://inspector.sindice.com/

Chapter 4 ■ SemantiC Web Development toolS

111

A useful feature of Sindice Web Data Inspector is that a scalable graph can be generated from your
semantic document. The graph not only presents the triples but also provides a quick summary of the
ontologies and vocabularies used in the file.

The Sindice Web Data Inspector also has a validation feature with two different options. The first one,
called “RDF syntax validation ,” performs an RDF syntax validation according to the W3C specification. The
second option is the “Pedantic validator ,” which is a validation over the extracted triples. In case of a valid
document, both validators give the result “Valid document.”

Apache Marmotta
Apache Marmotta is a Linked Data server, SPARQL server, and Linked Data
development environment [28]. Marmotta provides a Linked Data Platform (LDP)
for human-readable and machine-readable read-write data access via HTTP
content negotiation.

Marmotta features modules and libraries for LD application development.
The modular server architecture makes it possible to implement the required
functionalities only. For instance, if you don’t need reasoning for your project,
you can exclude the reasoner module. Marmotta provides a collection of Linked
Data libraries for common LD tasks such as access to LD resources and query
Linked Data (through LDPath, a simple LD query language). The triplestore is segregated from the
server, so it can be used independently. The Apache Marmotta platform is implemented as a Java web
application and deployed as a .war file. It is a service-oriented architecture using Contexts and Dependency
Injection (CDI), a set of services of Java web application development. The Marmotta Core, a fundamental
component of Apache Marmotta, provides Linked Data access, RDF import and export functionality, and
an admin interface. Marmotta Core unites the service and dependency injection, the triplestore, the system
configuration, and logging.

As a SPARQL server, Marmotta provides a public SPARQL 1.1 query and update endpoint and
full support for SPARQL 1.1 through HTTP Web services. Marmotta features a fast, native SPARQL
implementation in KiWi triplestore, a high-performance, highly scalable transactional triplestore back
end for OpenRDF Sesame building on top of a relational database such as MySQL, PostgreSQL, or H2.
To make SPARQL queries easier, Apache Marmotta provides Squebi, a lightweight user interface. Beyond
KiWi, Marmotta’s default triplestore back end, you can also choose Sesame Native (based on Sesame Native
RDF back end), BigData (based on the BigData clustered triplestore), or Titan (based on the Titan graph
database). Marmotta Reasoner, an optional module, is a rule-based reasoner for the KiWi triplestore. It
implements datalog-style rules over RDF triples. The Marmotta Loader is a command-line tool for loading
RDF data in various formats to different triplestores. It supports RDF serializations and can also import
directories, split-files, gzip and bzip2 compressed files, as well as Tar and Zip archives.

The Marmotta software libraries can be used not only as components of the Marmotta platform but also
as stand-alone lightweight Java libraries. The Apache Marmotta LDClient library is a flexible and modular
RDFizer suitable for Linked Data projects to retrieve remote Linked Data resources via different protocols
and data providers [29]. The modules of Marmotta support RDF/XML, Turtle, N3, JSON-LD, RDFa, XML,
HTML, and can process Freebase, Facebook, YouTube, Vimeo, and MediaWiki contents. The software library
is extensible through Java’s ServiceLoader class, enabling custom wrappers for legacy data sources such
as RDF, RDFa, Facebook, YouTube, and Wikipedia, as well as base classes for mapping other formats such
as XML and JSON. Marmotta LDCache, another library, can access remote Linked Data resources as if they
were local. It supports wrapping for legacy data sources such as Facebook Graph. LDCache features a local
triplecache. Another optional library is Marmotta LDPath, a query language less expressive than SPARQL
but specifically designed for querying Linked Data in the cloud. LDPath features a path-based navigation,
which starts at the resource and follows the links.

Chapter 4 ■ SemantiC Web Development toolS

112

 ■ Note if you use SparQl queries, lDpath is recommended over lDCache.

LDPath includes a large function library that can be integrated in your own applications. LDPath can be
used with LDCache and LDClient and supports back ends such as Jena and Sesame.

sameAs.org
Because interlinking is fundamental in the Linked Open Data cloud, you will often define resources that
describe the same object you express in RDF. For example, you refer to the machine-readable definition of
your city of residence, pointing to its resource page on DBpedia, GeoNames, and Freebase. Because finding
equivalent resource pages can be time-consuming, you might find the tool at www.sameas.org, which finds
equivalent resource pages across different datasets, useful (see Figure 4-19).

Figure 4-19. sameAs finds equivalent resource definitions from different LOD datasets

4Named after Callimachus (310/305?–240 BC), the “Father of Bibliography,” who worked at the ancient Great Library
of Alexandria.

Callimachus
Callimachus4 is an integrated Linked Data application development environment for graph storage,
visualization, RDFa templating, data processing with XSLT and XProc, SPARQL querying, and Linked Open
Data publishing [30]. It is suitable for standardizing metadata and combining data from different systems
and combining enterprise data with open data from the Web.

Callimachus extends the RDFa syntax by allowing variables as well as URIs to be used in attributes.
Callimachus further extends the RDFa syntax by introducing expressions that allow values to be substituted
within attribute values or within text nodes. Callimachus converts the attributes into graph patterns. Blank
nodes and empty property contents are treated as wildcards. Graph patterns with wildcards or variables
partners are optionally joined in the result.

Neologism
Neologism is a free and open source vocabulary publishing platform [31]. It is distributed as a Drupal plug-in
and supports RDF and RDFS and partially supports OWL. Neologism can import offline and online files
written in RDF/XML, RDFa, Turtle, or OWL (see Figure 4-20). The form fields of Neologism feature client-side
validation for correct input. Neologism displays relationships between terms in both directions. You can add
arbitrary triples in Turtle to any vocabulary’s RDF output.

http://www.sameas.org/

Chapter 4 ■ SemantiC Web Development toolS

113

LODStats
LODStats is an extensible framework written in Python for high-performance dataset analytics [32]. It gathers
statistical dataset characteristics such as class usage count, class hierarchy depth, property hierarchy depth,
distinct entities, and so on. LODStates is so powerful that its developers integrated the framework with CKAN,
the LOD cloud metadata registry to generate timely and comprehensive statistics about the LOD cloud.

Semantic Web Browsers
Semantic Web browsers are browsing tools for exploring and visualizing RDF datasets enhanced with Linked
Data such as machine-readable definitions from DBpedia or geospatial information from GeoData. Semantic
Web browsers provide exploration, navigation, and interactivity features different from conventional web
browsers. They display not only human-readable but also machine-readable annotations and extracted
RDF triples. While conventional browsers use hyperlinks for navigating between documents, Semantic Web
browsers provide mechanisms for forward and backward navigation with typed links. Semantic Web browsers
support facet-based (faceted) browsing by processing the list of discrete filter attributes called facets, gradually
refining the search on a collection of information and visualizing the result (such as generating a map from
geospatial data). Semantic Web browsers also support pivoting (rotation), the dimensional orientation of
data. For example, pivoting the initially aggregated Book, Publisher, and Date yields Publisher, Date, and
Book. Semantic Web browsers can convert non-linked data to Linked Data and create links to related URIs.
They provide text search or SPARQL queries, or both, and support the five-star data deployment scheme
discussed in Chapter 3, for data consumption, generation, aggregation, augment, and reinterpretation.

Tabulator
Tabulator is W3C’s Semantic Web browser and editor available as a web application and a Firefox plug-in at
http://www.w3.org/2005/ajar/tab. It can display Linked Data in various visualization formats. Tabulator
contains an RDF store written in JavaScript. The tool has two modes: Exploration Mode and Query Mode.

Figure 4-20. Neologism can import vocabulary and ontology files written in any of the mainstream RDF
serializations

http://dx.doi.org/10.1007/9781484210505_3
http://www.w3.org/2005/ajar/tab

Chapter 4 ■ SemantiC Web Development toolS

114

In Exploration Mode, it displays a table of predicate-object pairs, which might also include nested properties.
One of the exploration options is Outline Mode, with which the user can explore resources by opening the
branches of the tree structure. The Outliner Mode addresses the limitations of the circle-and-arrow diagrams
used by RDF visualizers, such as IsaViz, that are inefficient for large amounts of data with many nodes and
many different properties. In Outliner Mode, the user can also perform graph-matching queries by selecting
a number of fields and pressing the Find All button, when the Linked Data graph is searched for subgraphs
matching the given fields. Instances are listed of a dedicated pane for each class. Tabulator can also show the
network activity involved in retrieving the opened document, human-readable content, and RDF.

When used as an editor, Tabulator supports three editing options in Outline Mode: object modification,
adding a new object with an existing predicate, and adding a new predicate-object pair to an existing
subject. To modify a cell that contains a literal value, you click once (or press Enter) when the cell is
highlighted, so that the field becomes editable. Once the editing is done, you just press Enter. If the object
of the predicate-object pair is not a literal value but a URI identifier, you can select it by name or by drag-
and-drop. Tabulator always tries to display a name rather than a URI whenever possible (for example, a
textual description rather than rdfs:label or dc:title). When the predicate is not present, a new fact to
the property or object table can be added by clicking the blue plus symbol displayed to the left, at the end of
the table. When the new pair is added, you will be prompted with an auto-completion box for the predicate,
while the object can be selected as usual.

When you perform a query for a subgraph pattern, a table is generated. Inserting a new row creates
a new subgraph that matches the query. When a cell value is edited, a statement is removed and another
inserted in the same document.

Marbles
Marbles is a server-side application and linked data engine for semantic data retrieval and storage. As a
Semantic Web browser, it displays colored “marbles” to indicate the relationship between data origin and
data sources. Marbles can also be used as a SPARQL endpoint that supports SELECT, CONSTRUCT, and DESCRIBE
queries. Once you download the .war file from http://sourceforge.net/projects/marbles/files/,
you can place it into a J2EE web container such as Tomcat to install Marbles automatically. For manual
installation, invoke the ant install and remove tasks on the source distribution, then invoke the servlet at
the directory root. Among others, Marbles is implemented in DBpedia Mobile.

OpenLink Data Explorer (ODE)
OpenLink Data Explorer (ODE, originally OpenLink RDF Browser) is a browser extension to exploit
structured data. ODE adds two options to the standard View menu, both in the main menu and the context
menu (see Figure 4-21).

The Data Explorer is available for Internet Explorer, Firefox, Safari, Google Chrome, and Opera
(http://ode.openlinksw.com/#Download). Let’s install the add-on, say, for Firefox!

 1. Go to http://s3.amazonaws.com/opldownload/ajax-tools/ode/1.1/
firefox3.0/ode.xpi.

 2. Depending on your security settings, Firefox might prevent automatic
installation. Click Allow to download the add-on.

 3. The Software Installation pop-up asks for permission to proceed
(“Install add-ons from authors whom you trust.”) Click Install Now.

 4. Restart Firefox.

http://sourceforge.net/projects/marbles/files/
http://ode.openlinksw.com/#Download
http://s3.amazonaws.com/opldownload/ajax-tools/ode/1.1/firefox3.0/ode.xpi
http://s3.amazonaws.com/opldownload/ajax-tools/ode/1.1/firefox3.0/ode.xpi

Chapter 4 ■ SemantiC Web Development toolS

115

Once installed, the plug-in becomes available from the View menu as well as the context menu.
The View Entity Description option gives a structured description of the current page. View Data Sources
provides raw data display options for the structured data retrieved from the current page (see Figure 4-22).

Figure 4-21. ODE options in the context menu

Figure 4-22. Result screen of View Data Sources

The settings of the plug-in are available via Tools ➤ OpenLink Data Explorer ➤ Options. First, you can
select the viewer. The default one is OpenLink Data Explorer, but you can also choose Zitgist Data Viewer,
Marbles, DISCO, Tabulator, or a custom viewer. For Linked Data access, there is an RDFizer service,

Chapter 4 ■ SemantiC Web Development toolS

116

a SPARQL Endpoint, and you can also define HTTP headers. The default host for RDFizer and the SPARQL
endpoint is linkeddata.uriburner.com, which can be modified arbitrarily. The RDFizer is Virtuoso
Sponger (http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger), a component
of Virtuoso’s SPARQL Processor and Proxy Web Service. Sponger supports RDFa, GRDDL, Amazon Web
Services, eBay Web Services, Freebase Web Services, Facebook Web Services, Yahoo! Finance, XBRL Instance
documents, Document Object Identifiers (DOI), RSS and Atom feeds, ID3 tags of MP3 music files, vCard,
Microformats, Flickr, and Del.icio.us contents.

OpenLink Data Explorer handles RDF, Turtle, and Notation3 MIME data. The default viewer for MIME
data is Virtuoso Describe, but you can also choose Virtuoso About or Virtuoso ODE with or without SSL.

DBpedia Mobile
DBpedia Mobile is a location-aware DBpedia client application for mobile devices, providing a map view
and a GPS-enabled launcher application [33]. Based on the GPS position of your mobile device, DBpedia
Mobile displays a map that contains information about nearby locations extracted from the DBpedia dataset.
Approximately 300,000 geographical locations are covered. DBpedia Mobile is powered by the rendering engine
and SPARQL capabilities of the Marbles Linked Data Browser. Once the map is rendered, you can browse
additional information about the location and go directly to DBpedia, GeoNames, Flickr, and other datasets.

IsaViz
Being a visual authoring tool for RDF, IsaViz represents data as a circle-and-arrow diagram, which shows
“things” related to each other (see Figure 4-23) [34]. This is useful when analyzing data structures. On an
IsaViz diagram you can see clustering when a large number of “things” are related by the same properties.

Figure 4-23. An RDF graph in IsaViz

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger

Chapter 4 ■ SemantiC Web Development toolS

117

RelFinder
RelFinder (Relationship Finder) can be used to visualize, filter, and analyze large amounts of relationships
between objects. It is suitable for knowledge representation and knowledge discovery. RelFinder provides
standard SPARQL access to datasets. The online version is available at http://www.visualdataweb.org/
relfinder/relfinder.php, which can generate a directed graph based on the selected objects and their
relationships (see Figure 4-24).

Figure 4-24. Visualizing connections with RelFinder

Summary
In this chapter, you became familiar with frequently used software tools that can generate, store, extract,
and visualize RDF data. You learned how to generate RDFa annotation for your web site and test RDFa
and Microdata annotations with Google Structured Data Testing Tool. You saw how to set up Integrated
Development Environments to use software libraries for writing Semantic Web applications and examples
for storing RDF data in, and retrieving RDF data from, repositories. You know the most popular Linked Data
platforms to import, edit, and serialize datasets.

The next chapter will introduce you to Semantic Web service standards, including protocols, interfaces,
and languages used by services such as location-aware applications and semantic e-commerce portals.

References
 1. Ho, D. et al. (2014) Notepad++. Don Ho. http://notepad-plus-plus.org.

Accessed 31 March 2015.

 2. Sessink, O. (2014) BlueFish. The Bluefish Project Team.
http://bluefish.openoffice.nl/. Accessed 4 November 2014.

 3. ActiveState Software (2014) Komodo. ActiveState Software.
www.activestate.com/komodo-ide. Accessed 4 November 2014.

http://www.visualdataweb.org/relfinder/relfinder.php
http://www.visualdataweb.org/relfinder/relfinder.php
http://notepad-plus-plus.org/
http://bluefish.openoffice.nl/
http://www.activestate.com/komodo-ide

Chapter 4 ■ SemantiC Web Development toolS

118

 4. Bare Bones Software (2014) BBEdit. Bare Bones Software, Inc.
www.barebones.com/products/bbedit/. Accessed 4 November 2014.

 5. Bare Bones Software (2014) TextWrangler. Bare Bones Software, Inc.
www.barebones.com/products/textwrangler/index.html. Accessed
4 November 2014

 6. Lutus, P. (2014) Arachnophilia. www.arachnoid.com/arachnophilia/.
Accessed 4 November 2014.

 7. GitHub (2015) DBpedia Spotlight. https://github.com/dbpedia-spotlight/
dbpedia-spotlight. Accessed 31 March 2015.

 8. The GATE project team (2015) GATE. https://gate.ac.uk. Accessed 31 March 2015.

 9. The OpenRefine community (2015) OpenRefine. http://openrefine.org.
Accessed 31 March 2015.

 10. Altova (2012) Altova SemanticWorks 2012 User and Reference Manual.
www.altova.com/documents/SemanticWorks.pdf. Accessed 31 March 2015.

 11. TopQuadrant (2015) TopBraid Composer Standard Edition. www.topquadrant.com/
tools/modeling-topbraid-composer-standard-edition/. Accessed
31 March 2015.

 12. TopQuadrant (2015) TopBraid Composer Maestro Edition.
www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/.
Accessed 31 March 2015.

 13. The Apache Software Foundation (2015) Apache Stanbol.
http://stanbol.apache.org. Accessed 31 March 2015.

 14. Fluent Editor. www.cognitum.eu/semantics/FluentEditor/. Accessed
15 April 2015.

 15. The European Bioinformatics Institute (2015) ZOOMA.
www.ebi.ac.uk/fgpt/zooma/. Accessed 31 March 2015.

 16. Harispe, S. (2014) Semantic Measures Library & ToolKit.
www.semantic-measures-library.org. Accessed 29 March 2015.

 17. Motik, B., Shearer, R., Glimm, B., Stoilos, G., Horrocks, I. (2013) HermiT OWL
Reasoner. http://hermit-reasoner.com. Accessed 31 March 2015.

 18. Clark & Parsia (2015) Pellet: OWL 2 Reasoner for Java. http://clarkparsia.com/
pellet/. Accessed 31 March 2015.

 19. Tsarkov, D., Horrocks, I. (2007) FaCT++. http://owl.man.ac.uk/factplusplus/.
Accessed 31 March 2015.

 20. University of Luebec (2015) Racer. www.ifis.uni-luebeck.de/
index.php?id=385. Accessed 31 March 2015.

 21. The Apache Software Foundation (2015) Apache Jena. http://jena.apache.org.
Accessed 31 March 2015.

 22. The Apache Software Foundation (2015) Apache Jena Fuseki.
http://jena.apache.org/documentation/fuseki2/. Accessed 31 March 2015.

http://www.barebones.com/products/bbedit/
http://www.barebones.com/products/textwrangler/index.html
http://www.barebones.com/products/textwrangler/index.html
http://www.arachnoid.com/arachnophilia/
https://github.com/dbpedia-spotlight/dbpedia-spotlight
https://github.com/dbpedia-spotlight/dbpedia-spotlight
https://gate.ac.uk/
http://openrefine.org/
www.altova.com/documents/SemanticWorks.pdf
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
http://stanbol.apache.org/
http://www.cognitum.eu/semantics/FluentEditor/
http://www.ebi.ac.uk/fgpt/zooma/
http://www.semantic-measures-library.org/
http://hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/
http://owl.man.ac.uk/factplusplus/
http://www.ifis.uni-luebeck.de/index.php?id=385
http://www.ifis.uni-luebeck.de/index.php?id=385
http://jena.apache.org/
http://jena.apache.org/documentation/fuseki2/

Chapter 4 ■ SemantiC Web Development toolS

119

 23. Broekstra, J., Ansell, P., Visser, D., Leigh, J., Kampman, A., Schwarte, A. et al.
(2015) Sesame. http://rdf4j.org. Accessed 31 March 2015.

 24. The Eclipse Foundation (2015) Eclipse. www.eclipse.org.
Accessed 31 March 2015.

 25. Oracle Corporation (2015) NetBeans IDE. https://netbeans.org. Accessed
31 March 2015.

 26. Logilab (2015) CubicWeb Semantic Web Framework. www.cubicweb.org.
Accessed 31 March 2015.

 27. Digital Enterprise Research Institute (2015) Sindice—The Semantic Web index.
http://sindice.com. Accessed 31 March 2015.

 28. The Apache Software Foundation (2015) Apache Marmotta.
http://marmotta.apache.org. Accessed 31 March 2015.

 29. The Apache Software Foundation (2015)
http://marmotta.apache.org/ldclient/. Accessed 31 March 2015.

 30. 3 Round Stones (2015) Callimachus—Data-driven applications made easy.
http://callimachusproject.org. Accessed 31 March 2015.

 31. National University of Ireland (2011) Neologism—Easy Vocabulary Publishing.
http://neologism.deri.ie/. Accessed 31 March 2015.

 32. Auer, S., Ermilov, I., Lehmann, J., Martin, M. (2015) LODStats.
http://aksw.org/Projects/LODStats.html. Accessed 1 April 2015.

 33. Bizer, C. (2008) DBpedia Mobile. http://wiki.dbpedia.org/DBpediaMobile.
Accessed 31 March 2015.

 34. Pietriga, E. (2007) IsaViz: A Visual Authoring Tool for RDF.
www.w3.org/2001/11/IsaViz/. Accessed 31 March 2015.

http://rdf4j.org/
http://www.eclipse.org/
https://netbeans.org/
http://www.cubicweb.org/
http://sindice.com/
http://marmotta.apache.org/
http://marmotta.apache.org/ldclient/
http://callimachusproject.org/
http://neologism.deri.ie/
http://aksw.org/Projects/LODStats.html
http://wiki.dbpedia.org/DBpediaMobile
http://www.w3.org/2001/11/IsaViz/

121

Chapter 5

Semantic Web Services

In this service-oriented world, online services are important parts of web offerings. Online shopping, flight
booking, hotel booking, navigation, public transport services, government services, community services,
and media services are parts of our daily lives. However, the range of service offerings is widening. In the
information technology (IT) industry, for example, there is also an endless variety of services. In the more
and more popular cloud computing environments, the fundamental service models are Infrastructure as a
Service (IaaS), such as Amazon EC2 and Google Cloud Storage; Platform as a Service (PaaS), such as WHM,
Microsoft Azure, and the Google App Engine; and Software as a Service (SaaS), such as Hosted Exchange,
GoogleApps, and NetSuite. Further services in the IT industry contain, but are not limited to, Database as
a Service (DBaaS), Graph as a Service (GaaS), Storage as a Service (STaaS), Test Environment as a Service
(TEaaS), API as a Service (APIaaS), Network as a Service (NaaS), and Unified Communications as a Service
(UCaaS). Web services often have web sites that provide e-commerce, navigation with dynamic maps,
remote control of a physical device, and so on. The mainstream XML-based standards for web service
interoperability specify the syntax only, rather than the semantic meaning of messages. Semantic Web
technologies can enhance service-oriented environments with well-defined, rich semantics. Semantic Web
services leverage Semantic Web technologies to automate services and enable automatic service discovery,
composition, and execution across heterogeneous users and domains.

Semantic Web Service Modeling
Web services are programs programmatically accessible over standard Internet protocols, using reusable
components [1]. Web services are distributed and encapsulate discrete functionality. Semantic Web Services
(SWS) make web service characteristics machine-interpretable via semantics. Semantic Web Services aim
to combine web services and Semantic Web technologies with the aim of automating service-related tasks,
such as discovery, composition, etc. [2]. Semantic Web Services can address some of the limitations of
conventional web services, such as syntactic descriptions and the need for manual inspection of web service
usability, usage, and integration. The life cycle of Semantic Web Services includes the service description or
annotation, the advertisement, the discovery, the selection, the composition, and the execution of services,
using four types of semantics: data semantics, functional semantics, Quality of Service (QoS) semantics, and
execution semantics. The usage process of Semantic Web Services includes the following [3]:

•	 Publication: Making the description of service capability available

•	 Discovery: Locating different services suitable for a given task

•	 Selection: Choosing the most appropriate services among the available ones

•	 Composition: Combining services to achieve a goal

Chapter 5 ■ SemantiC Web ServiCeS

122

•	 Mediation: Solving data, protocol, and process mismatches

•	 Execution: Invoking services following programmatic conventions

Semantic Web Services have three different types of properties: functional, behavioral, and
nonfunctional properties. Functional properties define the capabilities of a web service. Behavioral properties
provide a way to achieve the required functionality through interaction with other services. Nonfunctional
properties set the constraints over the functional and behavioral properties or add metadata about the
service. For instance, assume we have a flight booking service wherein the functionality is the actual booking,
which might be constrained by using a secure connection when security is a nonfunctional property. The
communication and integration of service-based Semantic Web applications are provided by WSDL, an XML
description language for web services, SOAP, an XML-based message format to exchange arbitrary XML data
between services and clients, and UDDI, a data model and API for web service registries. In other words, the
service consumer finds the service through the UDDI registry, which points to the WSDL description of the
web service, as well as to the actual service, which communicates with the consumer using SOAP.

Typical Semantic Web services have three phases (publishing, searching, and binding), as well as three
entities (the service requester, the service provider, and the service registry). For example, a service provider
can publish the description of a service to the UDDI service registry in the form of an advertisement, which
includes the profile of the service provider (company name and address), a service profile, such as service
name and category, and the service interface definition URL (WSDL description).

Communication with XML Messages: SOAP
The Simple Object Access Protocol (SOAP) is a syntax for sending and receiving XML messages with
web services. Each SOAP message contains a SOAP envelope that wraps the message, a data encoding
description, and the SOAP body that contains the application-specific message for the back-end application
(see Figure 5-1).

Figure 5-1. Structure of a web-based SOAP message

Chapter 5 ■ SemantiC Web ServiCeS

123

The root element of a SOAP message is the Envelope element, which is the container of the Header and
Body elements (see Listing 5-1). The Body element can optionally contain a Fault element, which is used
only if a fault occurs in the web service.

Listing 5-1. Structure of a SOAP Message

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope">

 <soap:Header>
 </soap:Header>

 <soap:Body>

 <soap:Fault>
 </soap:Fault>

 </soap:Body>

</soap:Envelope>

The SOAP envelope always contains the namespace declaration pointing to http://www.w3.org/
2001/12/soap-envelope. The Header element, an optional child element of the Envelope element, can
provide information not directly related to the message itself, such as the maximum time requirement
of the SOAP request. The Header element uses the same XML namespace as the Envelope element. The
mustUnderstand Boolean attribute of the Header element can explicitly state (mustUnderstand="true")
that the SOAP agent processing the message must “understand” the header block. If the header is not
understood, a SOAP fault is returned. The role attribute can specify the SOAP message forwarder or
processor.

 ■ Note SOap supports predefined and custom roles that can be used in the Header element and the Fault
element. SOap messages are processed by three types of nodes: the sender, the forwarder (not always used,
corresponds to the next role), and the last node that actually processes the SOap message (corresponds to
the ultimateReceiver role). the Uri of the next role is http://www.w3.org/2003/05/soap-envelope/role/
next, while the Uri of the ultimateReceiver role is http://www.w3.org/2003/05/soap-envelope/role/
ultimateReceiver.

The relay attribute determines whether a header block can be relayed if not processed.
The Body element, which is a mandatory element, contains the main part of the SOAP message to be

processed by either the client or the web service, such as a service element and its parameters nested inside
it. If you declare a Fault element within the Body element, it can perform actions if an error occurs when
processing the SOAP message. The Fault element has two mandatory child elements (Code and Reason) and
three optional child elements (Node, Role, and Detail) (see Listing 5-2).

http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2003/05/soap-envelope/role/next
http://www.w3.org/2003/05/soap-envelope/role/next
http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver
http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver

Chapter 5 ■ SemantiC Web ServiCeS

124

Listing 5-2. SOAP Fault Structure

<env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 <env:Subcode>
 <env:Value>env:Sender</env:Value>
 <env:Subcode>
 </env:Subcode>
 </env:Subcode>
 </env:Code>
 <env:Reason>
 <env:Text>Incorrect Input Data</env:Text>
 </env:Reason>
 <env:Node>http://example.com/theNodeWhichFailed</env:Node>
 <env:Role>
 http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver
 </env:Role>
</env:Fault>

The Value element is a sub-element of the Code element. The Value element can have one of five values.
The VersionMismatch attribute indicates that a root element was found in the SOAP message that was
not a valid Envelope element. The MustUnderstand attribute value is returned if any header child element
could not have been processed. If the encoding of the header element (the encodingStyle attribute value)
cannot be processed, the fault to be returned is the value of the DataEncodingUnknown attribute. The Sender
attribute value is used if the sender sent an incorrectly written SOAP message with missing or invalid data.
The Receiver attribute value is returned if the receiver of the SOAP message failed to process the message,
such as if the database the web service relies on is unavailable. If you need separate code blocks for error
handling, you can optionally add the Subcode element to the Code element.

The Reason element contains one or more Text elements that provide the reason of the fault. The
natural language of the description can be specified by the lang attribute on the Text element as an ISO
language code. The optional Node element contains a URI that identifies the node where the fault has
occurred. The Role element contains the role of the node in which the fault has occurred. The Detail
element has child elements providing additional information about the fault that occurred. These child
elements use your custom namespace.

Web Services Description Language (WSDL)
The Web Service Description Language (WSDL, pronounced “Wiz’-dul”) is an XML-based interface
definition language to describe the functionality of web services as collections of network endpoints,
or ports, suitable for message exchange [4]. Ports are defined by associating a network address with a
reusable binding, and the collections of ports define the WSDL services. The abstract, typed definitions
of exchanged data form the WSDL messages. The collections of operations supported by one or more
endpoints are the port types. The protocol and data format specifications provide a reusable binding, which
is a concrete protocol and data format specification for a particular port type enabling WSDL to describe a
public interface to web services. The file extension of WSDL files is .wsdl, while the Internet media type is
application/wsdl+xml. A WSDL 2.0 file contains the following elements:

•	 The description element is the root element, which contains all other WSDL elements.

•	 The types element is the specification of the data types exchanged between the
client and the web service described by default using XML Schema.

http://example.com/theNodeWhichFailed%3C/env:Node
http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver

Chapter 5 ■ SemantiC Web ServiCeS

125

•	 The interface element enumerates the operations of the web service, the messages
exchanged for each input and output operation, as well as the fault messages.

•	 The binding element describes how the web service is accessed over the network,
usually binding the web service to the HTTP protocol.

•	 The service element declares where the web service can be accessed on the
network, i.e., the URL of the service.

•	 The optional documentation element can contain a human-readable description of
the web service.

•	 The optional import element can import XML Schemas or other WSDL files.

As a result, the skeleton WSDL document looks as shown in Listing 5-3.

Listing 5-3. Skeleton WSDL Document

<description>
 <types>
 </types>
 <interface>
 </interface>
 <binding>
 </binding>
 <service>
 </service>
</description>

The first part of all WSDL files is the definition of the service or services within the description root
element, which also includes the standard namespace declarations, as well as the targetNamespace, the
logical namespace for information about the service (see Listing 5-4).

Listing 5-4. XML Prolog and Namespace Declarations in WSDL

<?xml version="1.0" encoding="UTF-8"?>
<description
 xmlns="http://www.w3.org/ns/wsdl"
 xmlns:tns="http://www.example.com/wsdl"
 xmlns:whttp="http://www.w3.org/ns/wsdl/http"
 xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"
 targetNamespace="http://www.example.com/wsdl">

The xmlns attribute sets the default namespace of the description element to the standard WSDL
namespace, http://www.w3.org/ns/wsdl. The default namespace is applied to all elements throughout
the WSDL document that do not explicitly declare another namespace. The xmlns:tns attribute declares
a namespace URI identical to the value of the targetNamespace (the namespace of your web service this
schema is intended to target), providing a mechanism to refer to the target namespace via this namespace
prefix (tns). The xmlns:stns attribute can be used to declare the Schema Target Namespace URI, which
is the URI of the namespace of the XML Schema used for the web service types on the types element. The
xmlns:wsoap declares the WSDL SOAP URI used in the bindings element. The xmlns:soap can be used to
point to the SOAP URI of the SOAP version used by the web service described by the WSDL document. The
xmlns:wsdlx declares the WSDL Extensions URI.

http://www.w3.org/ns/wsdl
http://www.w3.org/ns/wsdl/http
http://www.w3.org/ns/wsdl/soap
http://www.w3.org/ns/wsdl

Chapter 5 ■ SemantiC Web ServiCeS

126

Complex data types are required in WSDL documents, to define web service requests and responses
(see Listing 5-5). A web service typically has an input type, an output type, and sometimes a fault type. If the
web service has more than one operation, each operation might have its own input type, output type, and
fault type. The data types can be declared in any language as long as it is supported by the API of your web
service, but most commonly, they are specified using XML Schema. This document section can be omitted if
you use simple data types only.

Listing 5-5. Abstract Types in WSDL

<types>
 <xs:schema xmlns="http://www.example.com/wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.com/wsdl">
 <xs:element name="request"> … </xs:element>
 <xs:element name="response"> … </xs:element>
 </xs:schema>
</types>

The operations supported by your web service can be described by the interface element
(see Listing 5-6). Each operation represents an interaction between the client and the service. The client
can only call one operation per request. The fault element defines a fault that can be sent back to the client,
which can be used by multiple operations. The operation element describes a method or procedure.

Listing 5-6. Abstract Interfaces in WSDL

<interface name="Interface1">
 <fault name="Fault1" element="tns:response" />
 <operation name="Operation1" pattern="http://www.w3.org/ns/wsdl/in−out">
 <input messageLabel="Message1" element="tns:request" />
 <output messageLabel="Message2" element="tns:response" />
 </operation>
</interface>

The next part defines how the operation should be performed, by declaring protocol and data format
specifications for the operations and messages. This is done by “binding” the web service to the protocol
through which it is accessible, using the binding element. The value of the name attribute on the binding
element is referenced by the service element (see Listing 5-7). The interface attribute refers to the name
of the interface element defined in the same WSDL file (using the prefix of the same document’s target
namespace). The type attribute defines the message format, to which the interface is bound.

Listing 5-7. Binding over HTTP in WSDL

<binding name="HttpBinding" interface="tns:Interface1"
 type="http://www.w3.org/ns/wsdl/http">
 <operation ref="tns:Operation1" whttp:method="GET" />
</binding>

SOAP bindings can be specified by the wsoap:protocol attribute (see Listing 5-8). The fault element,
when present, declares a fault, which can be sent back by the web service through the binding. The fault is
defined in the interface element the binding refers to. The ref attribute on the operation element declares
an operation defined in the interface element the binding refers to. The wsoap:mepDefault attribute
specifies SOAP’s default Message Exchange Pattern (MEP).

http://www.w3.org/2001/XMLSchema
http://www.w3.org/ns/wsdl/http

Chapter 5 ■ SemantiC Web ServiCeS

127

Listing 5-8. Binding with SOAP in WSDL

<binding name="SoapBinding" interface="tns:Interface1"
 type="http://www.w3.org/ns/wsdl/soap"
 wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/"
 wsoap:mepDefault="http://www.w3.org/2003/05/soap/mep/request−response">
<operation ref="tns:Operation1" />
</binding>

The last part specifies the port address or addresses of the binding. The service element is the
container of the network endpoints, or ports, through which the web service can be reached
(see Listing 5-9).

Listing 5-9. Offering Endpoints for Both Bindings

 <service name="Service1" interface="tns:Interface1">
 <endpoint name="HttpEndpoint" binding="tns:HttpBinding"
 address="http://www.example.com/rest/"/>
 <endpoint name="SoapEndpoint" binding="tns:SoapBinding"
 address="http://www.example.com/soap/"/>
 </service>
</description>

The name attribute on the service element describes the name of the web service. The interface
attribute specifies the interface element, to which the service is related. The address attribute of the
endpoint element declares the web address of the service.

Semantic Annotations for WSDL (SAWSDL)
Semantic Annotations for Web Service Description Language (SAWSDL) is a standard to specify how web
service data bindings can be mapped to formal models [5]. SAWSDL offers a repeatable way to connect
RDF or OWL to Semantic Web Services with fixed data bindings, making it easier to programmatically find
service data that meets application needs. The description of additional semantics for WSDL components
is provided by SAWSDL through a set of extension attributes for the Web Services Description Language
and XML Schema definition language. The namespace prefixes for SAWSDL are sawsdl, pointing to
www.w3.org/ns/sawsdl, and sawsdlrdf, which refers to www.w3.org/ns/sawsdl#.

The interfaces in WSDL documents can be annotated using modelReference, which provides a
reference to a concept or concepts in a semantic model that describe the WSDL interface (see Listing 5-10).

Listing 5-10. SAWSDL Model Reference for a WSDL Interface

<wsdl:interface name="Order" sawsdl:modelReference="http://yourbookshop.com/textbooks">
 …
</wsdl:interface>

WSDL operations can also be annotated using modelReference, referring to a concept in a semantic
model to provide a high-level description of the operation, by specifying behavioral aspects or further
semantic definitions for the operation (see Listing 5-11).

http://www.w3.org/ns/wsdl/soap
http://www.w3.org/2003/05/soap/bindings/HTTP/
http://www.w3.org/ns/sawsdl
http://www.w3.org/ns/sawsdl%23
http://yourbookshop.com/textbooks

Chapter 5 ■ SemantiC Web ServiCeS

128

Listing 5-11. SAWSDL Model Reference for a WSDL Operation

<wsdl:operation name="order" pattern="http://www.w3.org/ns/wsdl/in-out"
 sawsdl:modelReference="http://www.example.com/purchaseorder#RequestPurchaseOrder">
 <wsdl:input element="OrderRequest" />
 <wsdl:output element="OrderResponse" />
</wsdl:operation>

Another example for the implementation of SAWSDL’s model reference is fault annotation pointing
to a high-level description of the fault, which may include further semantic annotations as well
(see Listing 5-12).

Listing 5-12. SAWSDL Model Reference for a WSDL Fault

<wsdl:interface name="Order">
 <wsdl:fault name="ItemUnavailableFault" element="AvailabilityInformation"
 sawsdl:modelReference="http://www.example.com/purchaseorder#ItemUnavailable" />
 …
</wsdl:interface>

Assume we have an online shop with a Semantic Web Service interface. The WSDL description of the
service can be annotated with SAWSDL, as shown in Listing 5-13.

Listing 5-13. SAWSDL Annotations in the WSDL File of a Semantic Web Service

<wsdl:description
 targetNamespace="http://www.example.com/wsdl/order#"
 xmlns="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#"
 xmlns:wsdl="http://www.w3.org/ns/wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:sawsdl="http://www.w3.org/ns/sawsdl">
 <wsdl:types>
 <xs:schema targetNamespace="http://www.example.com/wsdl/order#"
 elementFormDefault="qualified">
 <xs:element name="OrderRequest"
 sawsdl:modelReference="http://example.com/purchaseorder#OrderRequest"
 sawsdl:loweringSchemaMapping="http://www.example.com/mapping/lower.xml">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="customerNo" type="xs:integer" />
 <xs:element name="orderItem" type="item" minOccurs="1" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="item">
 <xs:all>
 <xs:element name="UPC" type="xs:string" />
 </xs:all>
 <xs:attribute name="quantity" type="xs:integer" />
 </xs:complexType>
 <xs:element name="OrderResponse" type="confirmation" />

http://www.w3.org/ns/wsdl/in-out
http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order%23
http://www.w3.org/ns/wsdl
http://www.w3.org/2001/XMLSchema
http://www.w3.org/ns/sawsdl

Chapter 5 ■ SemantiC Web ServiCeS

129

 <xs:simpleType name="confirmation"
 sawsdl:modelReference="http://www.example.com/purchaseorder#OrderConfirmation">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Confirmed" />
 <xs:enumeration value="Pending" />
 <xs:enumeration value="Rejected" />
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>
 </wsdl:types>
 <wsdl:interface name="Order" sawsdl:modelReference="http://example.com/textbooks">
 <wsdl:operation name="order" pattern="http://www.w3.org/ns/wsdl/in-out"
 sawsdl:modelReference="http://www.example.com/purchaseorder#RequestPurchaseOrder">
 <wsdl:input element="OrderRequest" />
 <wsdl:output element="OrderResponse" />
 </wsdl:operation>
 </wsdl:interface>
</wsdl:description>

The loweringSchemaMapping on the OrderRequest element points to a mapping, which shows how the
elements within the order request can be mapped from semantic data in the model to the actual execution
format of the WS, for example, string or integer. In other words, loweringSchemaMapping lowers the data from
the semantic model to XML. In contrast, LiftingSchemaMapping lifts data from XML to a semantic model.

XML Schema documents can be similarly annotated with SAWSDL.

Web Ontology Language for Services (OWL-S)
As an extension of the Web Ontology Language (OWL), Web Ontology Language for Services (OWL-S)
facilitates the automation of web service tasks, such as discovery, composition, interoperation, execution,
and execution monitoring [6]. OWL-S focuses on web service capabilities as well as functional and
nonfunctional properties. OWL-S represents web service behavior based on situation calculus, a formal logic
for representing and reasoning dynamic domains expressed in second-order logic. As an upper ontology
language, OWL-S is suitable for describing web services through a Service class. Each entity of the Service
class is a ServiceProfile.

OWL-S organizes a service description into four conceptual areas: the service model, the profile, the
grounding, and the service. The process model describes how a client can interact with the service, including
the sets of inputs, outputs, preconditions, and service execution results. The service profile describes the tasks
performed by the service as human-readable data, including service name, service description, implementation
limitations, quality of service, publisher, and contact information. The grounding provides all the details
required by the client to interact with the service, including communication protocols, message formats, and
port numbers. For grounding, the most commonly used language is WSDL. Because OWL-S atomic processes
correspond to WSDL operations, the inputs and outputs of OWL-S atomic processes correspond to WSDL
messages, while the input and output types of OWL-S atomic processes correspond to WSDL abstract types. The
service binds the other parts into a unit that can be searched, published, and invoked.

 ■ Note the different parts of the service can be reused and connected in various ways. For instance,
the service provider might connect the process model with several profiles, in order to provide customized
advertisements to different markets.

http://www.example.com/purchaseorder#OrderConfirmation
http://example.com/textbooks
http://www.w3.org/ns/wsdl/in-out
http://www.example.com/purchaseorder#RequestPurchaseOrder

Chapter 5 ■ SemantiC Web ServiCeS

130

Using OWL-S, software agents can automatically discover web services to fulfill a specific need with
certain quality constraints. OWL-S also allows software agents to automatically read the description of inputs
and outputs of web services and invoke the service. Furthermore, OWL enables automatic execution of
complex tasks that involve the coordinated invocation of various web services, based exclusively on the
high-level description of the objective.

The ServiceProfile superclass of OWL-S is suitable for the different high-level service descriptions.
The basic information provided by ServiceProfile links a profile instance to a service instance. The presents
property can be used to express the relation between a service instance and a profile instance. The presentedBy
property expresses that a profile is related to a service.

The serviceName, textDescription, and contactInformation OWL-S properties provide descriptions
primarily for human consumption. Only one value is allowed for the first two properties, while an arbitrary
number of contact persons can be provided. The value of serviceName is the name of the service that can
be used as a service identifier. The textDescription provides a short service description, covering the
service offering, the service prerequisites, and additional information to be shared with the receivers. The
contactInformation declares contact persons using widely deployed vocabularies, such as FOAF, vCard,
or Schema.

The service functionality, required conditions, and the expected and unexpected results can be defined
with OWL-S properties such as hasInput and hasOutput datatype properties and the hasPrecondition and
hasResult object properties, all of which are subproperties of the hasParameter object property. Additional
profile attributes, such as the guaranteed service quality, can be expressed by serviceParameter, an
optional property list for the profile description. The value of the serviceParameter property is an instance
of the ServiceParameter class.

The service category can be expressed using ServiceCategory, usually by referring to a definition in an
external vocabulary. The categoryName property declares the name of the service category either as a string
literal or the URI of the property used as a process parameter. The value of taxonomy defines the taxonomy
scheme as the URI of the taxonomy. The value property explicitly refers to a taxonomy value. The property
value of code is the code associated with a taxonomy. The serviceParameterName is the name of the
parameter as a literal or URI. The sParameter points to the parameter value in an external ontology.

The serviceClassification and serviceProduct properties specify the provided service type and the
products that are handled by the service. In other words, serviceClassification is a mapping between the
service profile and a service ontology, while serviceProduct is a mapping between a service profile and a
product ontology.

To represent services as processes, OWL-S 1.1 defines Process (a subclass of ServiceModel). The
Parameter class has the Input and Output subclasses to describe process parameters (see Listing 5-14).

Listing 5-14. Input and Output Are Subclasses of Parameter

<owl:Class rdf:ID="Input">
 <rdfs:subClassOf rdf:resource="#Parameter" />
</owl:Class>

<owl:Class rdf:ID="Output">
 <rdfs:subClassOf rdf:resource="#Parameter" />
</owl:Class>

Process parameters are typically expressed as SWRL variables (see Listing 5-15), because SWRL is a
language specifically designed for expressing OWL rules [7].

Listing 5-15. A Process Parameter as a SWRL Variable

<owl:Class rdf:about="#Parameter" rdf:ID="/parameterType/">
 <rdfs:subClassOf rdf:resource="&swrl;#Variable" />
</owl:Class>

Chapter 5 ■ SemantiC Web ServiCeS

131

Each parameter has a type with a URI value that specifies the type of a class or datatype (see Listing 5-16).
The type can be used, for example, to evaluate a credit card number for an e-commerce service.

Listing 5-16. Parameter Type Specified by a URI

<owl:Class rdf:ID="Parameter">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#parameterType" />
 <owl:minCardinality rdf:datatype="&xsd;#nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

A process has at least two agents, namely TheClient and TheServer. Further agents can be listed using
the hasParticipant property (see Listing 5-17).

Listing 5-17. Process Agents in OWL-S

<owl:ObjectProperty rdf:ID="hasParticipant">
 <rdfs:domain rdf:resource="#Order" />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasClient">
 <rdfs:subPropertyOf rdf:resource="#hasContract" />
</owl:ObjectProperty>

<process:Parameter rdf:ID="TheClient">
<process:Parameter rdf:ID="TheServer">

If a process has a precondition, the process cannot be performed unless the precondition is true.
Preconditions can be express in OWL-S, as shown in Listing 5-18.

Listing 5-18. Precondition Definition

<owl:ObjectProperty rdf:ID="hasPrecondition">
 <rdfs:domain rdf:resource="#Order" />
 <rdfs:range rdf:resource="#Payment" />
</owl:ObjectProperty>

Inputs and outputs specify the data transformation of the service process. The input specifies the
information required for process execution, while the output provides the transformed data (see Listing 5-19).

Listing 5-19. The hasInput, hasOutput, and hasLocal Subproperties of hasParameter

<owl:ObjectProperty rdf:ID="hasParameter">
 <rdfs:domain rdf:resource="#Order" />
 <rdfs:range rdf:resource="#Status" />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasInput">
 <rdfs:subPropertyOf rdf:resource="#validCard" />
 <rdfs:range rdf:resource="#Input" />
</owl:ObjectProperty>

Chapter 5 ■ SemantiC Web ServiCeS

132

<owl:ObjectProperty rdf:ID="hasOutput">
 <rdfs:subPropertyOf rdf:resource="#orderPlaced" />
 <rdfs:range rdf:resource="#Ordering" />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasLocal">
 <rdfs:subPropertyOf rdf:resource="#ordered" />
 <rdfs:range rdf:resource="#Local" />
</owl:ObjectProperty>

The output and the state change (effect) together are called a result (see Listing 5-20).

Listing 5-20. A Result

<owl:Class rdf:ID="Result">
 <rdfs:label>Result</rdfs:label>
</owl:Class>

<owl:ObjectProperty rdf:ID="hasResult">
 <rdfs:label>hasResult</rdfs:label>
 <rdfs:domain rdf:resource="#Order" />
 <rdfs:range rdf:resource="#Ordering" />
</owl:ObjectProperty>

If a result is declared, the output and effect conditions can be expressed using the four ResultVar
(scoped to a particular result) or Local variables (bound in preconditions and used in the result conditions):
inCondition, withOutput, hasEffect, and hasResultVar (see Listing 5-21). The inCondition property
specifies the condition under which the result occurs. The withOutput and hasEffect properties determine
what happens when the declared condition is true. The hasResultVar property declares the variables bound
in the inCondition property.

Listing 5-21. Output and Effect Conditions

<owl:ObjectProperty rdf:ID="inCondition">
 <rdfs:label>inCondition</rdfs:label>
 <rdfs:domain rdf:resource="#Order" />
 <rdfs:range rdf:resource="#Payment" />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasResultVar">
 <rdfs:label>hasResultVar</rdfs:label>
 <rdfs:domain rdf:resource="#Order" />
 <rdfs:range rdf:resource="#Ordering" />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="withOutput">
 <rdfs:label>withOutput</rdfs:label>
 <rdfs:domain rdf:resource="#Order" />
 <rdfs:range rdf:resource="#Output" />
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasEffect">
 <rdfs:label>hasEffect</rdfs:label>

Chapter 5 ■ SemantiC Web ServiCeS

133

 <rdfs:domain rdf:resource="#Order" />
 <rdfs:range rdf:resource="#Ordering" />
</owl:ObjectProperty>

While OWL-S is suitable for its primary purpose by describing service offers and requirements, owing to
its limited expressiveness, unrelated operations are not supported.

Web Service Modeling Ontology (WSMO)
The Web Service Modeling Ontology (WSMO, pronounced “Wizmo”) is a conceptual model for Semantic
Web Services, covering the core Semantic Web Service elements as an ontology using the WSML formal
description language and the WSMX execution environment [8]. WSMO is derived from and based on the
Web Service Modeling Framework (WSMF) [9]. WSMO enables partial or full automation of discovery,
selection, composition, mediation, execution, and monitoring tasks involved in web services. The four main
components of WSMO are the goals, the mediators, the web service descriptions, and the ontologies that are
represented as top-level elements (see Figure 5-2).

Figure 5-2. Top-level WSMO elements

Similar to OWL-S, WSMO also defines a mapping to WSDL, but with an ontology-based grounding,
which prevents the loss of ontological descriptions throughout the service usage process. Whereas OWL-S
does not have the concept of mediator, and mediation is a byproduct of orchestration or is derived from
translation axioms, in WSMO, mediators are core conceptual elements.

WSMO has a goal-based approach to service description, which can be used when searching for
services based on goals. The goals are the wishes of the client to be fulfilled by the service. Mediators are
connectors between components that provide interoperability between different ontologies and resolve
structural, semantic, and conceptual mismatches.

There are four types of WSMO mediators: mediators that link two goals, mediators that import
ontologies and resolve possible representation mismatches between ontologies, mediators that link web
services to goals, and mediators that link two web services. The Semantic Web Service descriptions can

Chapter 5 ■ SemantiC Web ServiCeS

134

cover functional and usage descriptions. The functional descriptions describe the capabilities of the service,
while the usage description describes the interface. The ontologies provide the formal description of the
information used by all other components.

WSMO elements are described by nonfunctional properties, using the Dublin Core Metadata Set
(Contributor, Coverage, Creator, Description, Format, Identifier, Language, Publisher, Relation,
Rights, Source, Subject, Title, Type) for complete item description and resource management
(see Listing 5-22).

Listing 5-22. Core WSMO Nonfunctional Properties Expressed Using Dublin Core in an Example Ontology

ontology <"http://www.example.com/holidayplanner">
 nonFunctionalProperties
 dc:title hasValue "Holiday Planner Example Ontology"
 dc:creator hasValue "Leslie Sikos"
 dc:subject hasValues {"Trip", "Itinerary", "Stop", "Ticket"}
 dc:description hasValue "Our Holiday Packages"
 dc:publisher hasValue "Leslie Sikos"
 dc:date hasValue "2015-02-21"
 dc:format hasValue "text/html"
 endNonFunctionalProperties

The service class can be used to describe services both from the client’s and the service provider’s
point of view, featuring general metadata with nonfunctional properties, imported ontologies (if any),
mediators, service capability, service interface, functions, axioms, and ontology instances (see Listing 5-23).

Listing 5-23. The Definition of the service Class

Class service
 hasNonFunctionalProperties type nonFunctionalProperties
 importsOntology type ontology
 usesMediator type {ooMediator, wwMediator}
 hasCapability type capability multiplicity = single-valued
 hasInterface type interface
 hasFunction type function
 hasInstance type instance
 hasAxiom type axiom

Nonfunctional properties can express much more than general service metadata, as they cover
Quality of Service (QoS) information for availability and stability, such as Accuracy, NetworkRelatedQoS,
Performance, Reliability, Robustness, Scalability, Security, Transactional, and Trust, as well as
other financial, ownership, and versioning information (Financial, Owner, Version). For example, a service
provider can describe student discounts or pensioner concession criteria using nonfunctional WSMO
properties.

Beyond the nonfunctional properties, the ontology definitions can contain imported ontologies
(importsOntology). To handle heterogeneities, you can define mediators using usesMediators
(see Listing 5-24).

Listing 5-24. Defining a Mediator

usesMediators {<<http://www.example.com/externalMediator.wsml>>}

Chapter 5 ■ SemantiC Web ServiCeS

135

The entity sets of the knowledge domain of the ontology can be defined using concept. For a vacation
booking service, for example, you have to define the concept of country and its properties, such as ISO
country code (see Listing 5-25).

Listing 5-25. Defining Entity Sets for the Domain

 concept country subConceptOf {cnt:country, geo:country}
 nonFunctionalProperties
 dc:description hasValue "Country Codes"
 endNonFunctionalProperties
 isoCode ofType xsd:string
 nonFunctionalProperties
 dc:description hasValue "ISO 3166 Country Code"
 endNonFunctionalProperties

The relationships between concepts can be defined using relation (see Listing 5-26).

Listing 5-26. Defining Relations between Concepts[10]

relation equalDistance
 nonFunctionalProperties
 dc:description hasValue "Computes equality of a distance"
 endNonFunctionalProperties
 d1 ofType distance
 d2 ofType distance
 definedBy
 forAll ?x,?y (equalDistance[d1 hasValue ?x, d2 hasValue ?y] equivalent
 kilometers(?x,?k1) and kilometers(?y,?k2) and ?k1=?k2).

relation lessThanDistance
 nonFunctionalProperties
 dc:description hasValue "Computes -less than- for a distance"
 endNonFunctionalProperties
 d1 ofType distance
 d2 ofType distance
 definedBy
 forAll ?x,?y (equalDistance[d1 hasValue ?x, d2 hasValue ?y] equivalent
 kilometers(?x,?k1) and kilometers(?y,?k2) and ?k1<?k2).

relation moreThanDistance
 nonFunctionalProperties
 dc:description hasValue "Computes -more than- for a distance"
 endNonFunctionalProperties
 d1 ofType distance
 d2 ofType distance
 definedBy
 forAll ?x,?y (equalDistance[d1 hasValue ?x, d2 hasValue ?y] equivalent
 kilometers(?x,?k1) and kilometers(?y,?k2) and ?k1>?k2).

Algorithms can be added to your WSMO ontology by defining functions. For instance, if your vacation
booking service supports distances expressed in kilometers and miles, you can write functions to convert
distances from one unit to the other (see Listing 5-27).

Chapter 5 ■ SemantiC Web ServiCeS

136

Listing 5-27. Defining Functions in WSMO[10]

function kilometers
 nonFunctionalProperties
 dc:description hasValue "Expressing a distance in kilometers"
 endNonFunctionalProperties
 d ofType distance
 range ofType xsd:float
 definedBy
 forAll ?x,?y (kilometers[d hasValue ?d, result hasValue ?y] equivalent
 ?d[amount hasValue ?a, units hasValue ?u] and ((?u="Kilometers" and ?y=?a) or
 (?a="Miles" and ?y=?a*1.609344))).

function miles
 nonFunctionalProperties
 dc:description hasValue "Expressing a distance in miles"
 endNonFunctionalProperties
 d ofType distance
 range ofType xsd:float
 definedBy
 forAll ?x,?y (miles[d hasValue ?d, result hasValue ?y] equivalent
 ?d[amount hasValue ?a, units hasValue ?u] and ((?u="Miles" and ?y=?a) or
 (?a="Kilometers" and ?y=?a/1.609344))).

Ontology instances can be defined using instance. In a flight booking service, for example, you can
define destination countries offered by your service, as shown in Listing 5-28.

Listing 5-28. An Instance in a WSMO Ontology

instance Australia memberOf country
 isoCode hasValue "AU"^^xsd:string

Logical statements (axiomatic expressions) of an ontology can be defined by axiom (see Listing 5-29).

Listing 5-29. An Instance in a WSMO Ontology

axiom validDistance
 nonFunctionalProperties
 dc:description hasValue "The distance must be larger than 0km or 0m."
 endNonFunctionalProperties
 definedBy
 constraint
 ?D[amount hasValue ?A, units hasValue ?U] memberOf distance and ?A < 0 and not
 (U="Kilometers" or U="Miles").

The functional capabilities of a service can be expressed using the capability class, which covers
precondition, assumption, post-condition, and effect (state change) axioms, and variables shared among
preconditions, post-conditions, assumptions, and effects (see Listing 5-30).

Chapter 5 ■ SemantiC Web ServiCeS

137

Listing 5-30. The Definition of the capability Class in WSMO

Class capability
 hasNonFunctionalProperties type nonFunctionalProperties
 importsOntology type ontology
 usesMediator type {ooMediator, wgMediator}
 hasSharedVariables type sharedVariables
 hasPrecondition type axiom
 hasAssumption type axiom
 hasPostcondition type axiom
 hasEffect type axiom

For example, if you use a government service to register pensioners, the effect of the service execution is
that the user becomes a pensioner.

The web service interface describes operational competence of a web service using the interface
class in two ways: through choreography and orchestration (see Listing 5-31). Choreography expresses
web service capability from the interaction point of view, in other words, it models all service interactions,
including the invariant elements of the state description (state signature), the state described by an instance
set, and state changes (guarded transitions). Orchestration expresses web service capability from the
functionality point of view.

Listing 5-31. Choreography and Orchestration Defined for the interface Class

Class interface
 hasNonFunctionalProperties type nonFunctionalProperties
 importsOntology type ontology
 usesMediator type ooMediator
 hasChoreography type choreography
 hasOrchestration type orchestration

The purpose of a web service can be expressed by the goal class (see Listing 5-32). For example, the
goal of a service can be a user registration, a ticket purchase, or a room reservation.

Listing 5-32. The Definition of the goal Class in WSMO

Class goal sub-Class wsmoTopLevelElement
 importsOntology type ontology
 usesMediator type {ooMediator, ggMediator}
 requestsCapability type capability multiplicity = single-valued
 requestsInterface type interface

MicroWSMO and WSMO-Lite
MicroWSMO is an extension of hRESTS [11] designed for semantic annotations through SAWSDL extensions
such as model (indicates that a link is a model reference) and lifting (lowering links to the respective data
transformations) [12]. hRESTS provides a WSDL equivalent for RESTful services, making it possible to
annotate the HTML markup of the service description. An example is shown in Listing 5-33.

Chapter 5 ■ SemantiC Web ServiCeS

138

Listing 5-33. Annotated Service Description

<div class="service">
 <p>Dream Holidays is a
 hotel room reservation service.
 </p>
 <p class="operation" …>
 </p>
</div>

These annotations can be used by microWSMO to refer to elements of the same lightweight service
modeling ontology as WSMO-Lite, which fills the annotations with concrete service semantics. WSMO-Lite
is not bound to a particular service description format and allows the creation of matching stacks for SOAP
and REST.

Web Service Modeling Language (WSML)
The Web Service Modeling Language (WSML) is a formal language for axiomatic expressions that provides
the conceptual syntax and semantics for the elements of WSMO, the Web Service Modeling Ontology [13].
WSML can be used to formally describe WSMO elements as ontologies, Semantic Web services, goals, and
mediators. WSML is based on mathematical logic, such as description logic and first-order logic, as well as
logic programming.

WSML has two syntaxes: the conceptual syntax and the logical expression syntax. The conceptual
syntax is used for the ontology, goal, web service, and mediator modeling. Logical expressions refine the
ontology, goal, web service, and mediator definitions, using a logical language. The conceptual syntax has a
frame-like style by which classes, relations, and instances, as well as their attributes, are specified in a single
syntactic construct. However, attribute names are global in WSML. Argument lists are separated by commas
and surrounded by curly brackets. Statements start with a keyword and can be spread over multiple lines.
WSML implements the RDF namespace mechanism. The WSML keywords are defined at the namespace
www.wsmo.org/wsml/wsml-syntax# and commonly abbreviated with the prefix wsml. WSML identifiers
can be data values, Internationalized Resource Identifiers (IRIs, which are URIs that can contain Unicode
characters such as Chinese ideographs, Japanese kanji, Cyrillic characters, etc.), or anonymous identifiers.
The basic data types are string, integer, and decimal. Data values are based on the XML Schema datatypes
but expressed with a different syntax (see Listing 5-34).

Listing 5-34. The Date “22 February 2015” in WSML

_date(2015,2,22)

There are three syntactical shortcuts for string, integer, and decimal data types. String data values can
be written between double quotation marks (see Listing 5-35). Double quotation marks inside a string
should be escaped using \.

Listing 5-35. A String in Double Quotation Marks

dc#title hasValue "Your Amigo"

Integer values can be written without declaring the number type. For example, 5 is a shortcut for
_integer("5"). If a decimal symbol is present, the number is assumed to be a decimal number.
For example, 22.5 is a shortcut for _decimal("22.5").

http://www.wsmo.org/wsml/wsml-syntax%23

Chapter 5 ■ SemantiC Web ServiCeS

139

IRIs start with an underscore and are written in double quotes (see Listing 5-36).

Listing 5-36. A Full IRI in WSML

_"http://example.org/YourOntology#YourTerm"

IRIs can be abbreviated as a serialized Qualified Name (sQName), which combines the namespace
prefix and the local entity name separated by #. In Listing 5-35, for example, dc#title corresponds to
http://purl.org/dc/elements/1.1#title, foaf#name abbreviates http://xmlns.com/foaf/0.1/name,
xsd#string refers to http://www.w3.org/2001/XMLSchema#string, and schema#Person corresponds to
http://schema.org/Person. WSML defines two IRIs, one for universal truth (http://www.wsmo.org/
wsml/wsml-syntax#true) and another one for universal falsehood (http://www.wsmo.org/wsml/
wsml-syntax#false).

The third WSML identifier type, the anonymous identifier, represents a globally unique IRI.
The optional namespace references can be defined at the top of WSML documents, below the WSML

variant identification. The namespace reference block is preceded by the namespace keyword. All namespace
references, except for the default namespace, consist of the prefix and the IRI that identifies the namespace
(see Listing 5-37).

Listing 5-37. Namespace Declarations in WSML

namespace {_"http://www.yourdefaultns.com/yourOntology/term#",
 dc _"http://purl.org/dc/elements/1.1#",
 foaf _"http://xmlns.com/foaf/0.1/",
 xsd _"http://www.w3.org/2001/XMLSchema#",
 wsml _"http://www.wsmo.org/wsml-syntax#"}

WSML headers might contain nonfunctional properties, may import ontologies, and may use
mediators. Nonfunctional property blocks are delimited by the nonFunctionalProperties and
endNonFunctionalProperties keywords that can be abbreviated as nfp and endnfp. The list of attribute
values within the block contains the attribute identifier, the hasValue keyword, and the attribute value,
which can be any kind of identifier (data value, IRI, anonymous identifier, or a comma-separated list). The
Dublin Core properties are recommended for nonfunctional property definitions; however, terms of other
external vocabularies are also allowed (see Listing 5-38).

Listing 5-38. A Nonfunctional Property Block in WSML

nonFunctionalProperties
 dc#title hasValue "WSML Example"
 dc#subject hasValue "training"
 dc#description hasValue "WSML non-functional property examples"
 dc#contributor hasValue {_"http://lesliesikos.com/datasets/sikos.rdf#sikos"}
 dc#date hasValue _date("2015-02-22")
 dc#format hasValue "text/html"
 dc#language hasValue "en-AU"
endNonFunctionalProperties

In the header, ontologies can optionally be imported using the importsOntology keyword, by declaring
the namespace IRI (see Listing 5-39).

Listing 5-39. Importing Ontologies

importsOntology {_"http://purl.org/dc/elements/1.1#", _"http://schema.org/Person"}

http://purl.org/dc/elements/1.1#title
http://xmlns.com/foaf/0.1/name
http://www.w3.org/2001/XMLSchema#string
http://schema.org/Person
http://www.wsmo.org/wsml/wsml-syntax#true
http://www.wsmo.org/wsml/wsml-syntax#true
http://www.wsmo.org/wsml/wsml-syntax#false
http://www.wsmo.org/wsml/wsml-syntax#false
http://www.yourdefaultns.com/yourOntology/term%23
http://purl.org/dc/elements/1.1%23
http://xmlns.com/foaf/0.1/
http://www.w3.org/2001/XMLSchema%23
http://www.wsmo.org/wsml-syntax%23
http://lesliesikos.com/datasets/sikos.rdf#sikos
http://purl.org/dc/elements/1.1%23
http://schema.org/Person

Chapter 5 ■ SemantiC Web ServiCeS

140

Mediators can be optionally defined in the header with the usesMediator keyword to link different
WSML elements (ontologies, goal, and web services) and resolve heterogeneities between the elements
(see Listing 5-40).

Listing 5-40. Using a Mediator

usesMediator _"http://example.com/importMediator"

Web Services Business Process Execution Language (WS-BPEL)
Business processes require sophisticated exception management, enterprise collaboration, task sharing, and
end-to-end control. The Web Services Business Process Execution Language (WS-BPEL), often abbreviated as
BPEL (Business Process Execution Language), is an XML-based standard language for specifying web service
actions for business processes. BPEL is suitable for Service-Oriented Architectures (SOA), and is implemented
by industry giants such as Oracle and based on earlier execution languages, such as IBM’s Web Service Flow
Language (WSFL) and Microsoft’s XLang. The ten original design goals of BPEL are the following:

 1. Define business processes that interact with external entities through web service
operations and that manifest themselves as web services. Both the operations
and the web services are defined using WSDL 1.1.

 2. Define business processes based on an XML serialization. Do not define
a graphical representation of processes or provide any particular design
methodology for processes.

 3. Define a set of web service orchestration concepts to be used by external
(abstract) and internal (executable) views of a business process.

 4. Provide hierarchical as well as graph-like controls.

 5. Provide data manipulation functions for process data and control flow.

 6. Support an identification mechanism for process instances that allows the
definition of instance identifiers at the application message level.

 7. Support the implicit creation and termination of process instances as the basic
life cycle mechanism.

 8. Define a long-running transaction model based on compensation actions and
scoping to support failure recovery for parts of long-running business processes.

 9. Use web services as the model for process decomposition and assembly.

 10. Build on web services standards.

In order to define logic for service interactions, BPEL defines business process behavior through web
service orchestration. BPEL processes transfer information using the web service interfaces. BPEL can model
web service interactions as executable business processes, as abstract business processes, or through the
behavior of processes. The BPEL programming language supports

•	 Message sending and receiving

•	 XML and WSDL typed variables

•	 A property-based message correlation mechanism

Chapter 5 ■ SemantiC Web ServiCeS

141

•	 An extensible language plug-in model to allow writing expressions and queries in
multiple languages1

•	 Structured-programming constructs, such as if-then-elseif-else, while,
sequence, and flow

•	 Logic in local variables, fault-handlers, compensation-handlers, and event-handlers

•	 Scopes to control variable access

Some of the popular BPEL engines are Apache ODE, BizTalk Server, Oracle BPEL Process Manager, SAP
Exchange Infrastructure, Virtuoso Universal Server, and WebSphere Process Server.

Semantic Web Service Software
Developers can use semantic execution environments such as WSMX and IRS to provide automatic discovery,
composition, selection, mediation, and invocation of Semantic Web Services. The development of Semantic
Web Services can be speeded up using purpose-built frameworks and plug-ins such as the Web Services
Modeling Toolkit (WSMT) and the Semantic Automated Discovery and Integration plug-in for Protégé.

Web Service Modeling eXecution environment (WSMX)
The Web Service Modeling eXecution environment (WSMX) is the reference implementation of the Web
Service Modeling Ontology using WSML as the internal language and WSMT for modeling [14]. It is an
open source execution environment for business applications, with integrated web services available at
http://sourceforge.net/projects/wsmx/, providing increased business processes automation and
scalability. WSMX consumes semantic messages, discovers semantically annotated web services, and
processes them. Between the back-end applications of requested services and the provided services, WSMX
has a system interface, an administration interface, resource manager interfaces for mapping and datastore
access, and a reasoner framework.

Internet Reasoning Service (IRS-III)
The Internet Reasoning Service (IRS) is the Open University’s Semantic Web Services framework, which
allows applications to semantically describe and execute Web services [15]. It supports the provision of
semantic reasoning services within the context of the Semantic Web. The best-known implementation of the
Internet Reasoning Service is IRS-III.

Web Services Modeling Toolkit (WSMT)
The Web Services Modeling Toolkit (WSMT) is a lightweight framework for rapid Semantic Web Service
development and deployment available at http://sourceforge.net/projects/wsmt/. It also collects
existing SWS tools within one application. The Web Services Modeling Toolkit can be integrated into the
WSMX and IRS-III execution environments.

The Web Services Modeling Toolkit is primarily designed for Java programmers developing software in
Integrated Development Environments such as Eclipse or NetBeans. The Toolkit aims to help developers of
Semantic Web Services using the WSMO paradigm. Java developers can combine the Web Services Modeling

1BPEL has native XPath 1.0 support.

http://sourceforge.net/projects/wsmx/
http://sourceforge.net/projects/wsmt/

Chapter 5 ■ SemantiC Web ServiCeS

142

Toolkit with other plug-ins, such as the Eclipse Web Tools Platform (WTP), which provides tools with XML
and WSDL support for creating Semantic Web Services and describes them semantically using WSMO. The
Web Services Modeling Toolkit supports the creation of common document types used in Semantic Web
Services through editing, validation, testing, and deployment. The Toolkit features a text editor, a form-based
editor, and a validator for WSML and provides different views for reasoning and discovery.

Because mappings between two ontologies are created at design time and applied automatically at
runtime in order to perform instance transformation, the Web Services Modeling Toolkit provides guidance
for ontology-ontology mappings. WSMT mappings are expressed in the Abstract Mapping Language (AML),
which is then transformed to WSML. The Toolkit features an AML text editor and a visual editor, an AML
validator, and provides mapping and testing view for AML.

Semantic Automated Discovery and Integration (SADI)
Semantic Automated Discovery and Integration (SADI) is a lightweight set of Semantic Web Service design
patterns (https://code.google.com/p/sadi/). It was primarily designed for scientific service publication
and is especially useful in bioinformatics. Powered by web standards, SADI implements Semantic Web
technologies to consume and produce RDF instances of OWL-DL classes, where input and output class URIs
resolve to an OWL document through HTTP GET. SADI supports RDF/XML and Notation3 serializations.
The SADI design patterns provide automatic discovery of appropriate services, based on user needs, and can
automatically chain these services into complex analytical workflows. SADI is available as a plug-in for the
Protégé ontology editor, the IO Informatics Knowledge Explorer to graph visualization, as well as Taverna, an
open-source workflow design and enactment workbench.

UDDI Semantic Web Service Listings
Universal Description, Discovery and Integration (UDDI) is a platform-independent XML-based directory
service for businesses offering web services. It describes web services and business processes programmatically
in a single, open, and secure environment. UDDI is described in WSDL and communicates via SOAP. UDDI
can be used to improve e-commerce interoperability between streamline online transactions. Similar to the
White Pages or Yellow Pages of telephone books, UDDI allows business listings with business name, location,
and offered products and/or web services. Any company can be added to the UDDI registry, regardless of the
business size. Already listed enterprises include Microsoft, IBM, Ariba, HP, Compaq, American Express, SAP,
and Ford, just to mention the most well-known ones. UDDI can help business owners to discover relevant
businesses and decision makers to increase access to current customers and reach potential customers, expand
offerings, and extend market reach.

Summary
In this chapter, you learned what Semantic Web Services are and how they can be described using WSDL,
annotated using SAWSDL, and modeled using OWL-S, WSMO, MicroWSMO and WSMO-Lite, and WSML.
You became familiar with the Semantic Web Service software, such as the WSMX and IIR-III execution
environments, as well as the WSMT Toolkit and the SADI Protégé plug-in. You learned about the UDDI
service listing used to dynamically look up and discover services provided by external business partners and
service providers.

The next chapter will show you how to store triples and quads efficiently in purpose-built graph
databases: triplestores and quadstores.

https://code.google.com/p/sadi/

Chapter 5 ■ SemantiC Web ServiCeS

143

References
 1. Domingue, J., Martin, D. (2008) Introduction to the Semantic Web Tutorial.

The 7th International Semantic Web Conference, 26–30 October, 2008, Karlsruhe,
Germany.

 2. Facca, F. M., Krummenacher, R. (2008) Semantic Web Services in a Nutshell.
Silicon Valley Semantic Web Meet Up, USA.

 3. Stollberg, M., Haller, A. (2005) Semantic Web Services Tutorial. 3rd International
Conference on Web Services, Orlando, FL, USA, 11 July 2005.

 4. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S. (eds.) (2007) Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language. www.w3.org/
TR/wsdl20/. Accessed 2 April 2015.

 5. Farrell, J., Lausen, H. (eds.) (2007) Semantic Annotations for WSDL and XML
Schema. www.w3.org/TR/sawsdl/. Accessed 2 April 2015.

 6. Martin, D. et al. (2004) OWL-S: Semantic Markup for Web Services. www.w3.org/
Submission/OWL-S/. Accessed 2 April 2015.

 7. Horrocks, I. et al. (2004) SWRL: A Semantic Web Rule Language. Combining
OWL and RuleML. www.w3.org/Submission/SWRL/. Accessed 2 April 2015.

 8. Lausen, H., Polleres, A., Roman, D. (eds.) (2005) Web Service Modeling Ontology
(WSMO). www.w3.org/Submission/WSMO/. Accessed 2 April 2015.

 9. Fensel, D., Bussler, C. (2002) The Web Service Modeling Framework WSMF.
www.swsi.org/resources/wsmf-paper.pdf. Accessed 2 April 2015.

 10. Stollberg, M., Lausen, H., Polleres, A., Lara, R. (eds.) (2004) Locations Ontology.
www.wsmo.org/2004/d3/d3.2/b2c/20041004/resources/loc.wsml.html.
Accessed 4 April 2015.

 11. Roman, D., Kopecký, J., Vitvar, T., Domingue, J., Fensel, D. (2014) WSMO-Lite and
hRESTS: Lightweight semantic annotations for Web services and RESTful APIs.
Web Semantics: Science, Services and Agents on the World Wide Web,
http://dx.doi.org/10.1016/j.websem.2014.11.006.

 12. Kopecký, J., Vitvar, T. (2008) MicroWSMO: Semantic Description of RESTful
Services. http://wsmo.org/TR/d38/v0.1/20080219/d38v01_20080219.pdf.
Accessed 4 April 2015.

 13. de Bruijn, J. et al. (2005) Web Service Modeling Language (WSML). www.w3.org/
Submission/WSML/. Accessed 2 April 2015.

 14. DERI and STI2 (2008) Web Service Modelling eXecution environment.
www.wsmx.org. Accessed 4 April 2015.

 15. Domingue, J. et al. (2011) Internet Reasoning Service.
http://technologies.kmi.open.ac.uk/irs/. Accessed 2 April 2015.

http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
www.w3.org/TR/sawsdl/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/WSMO/
http://www.swsi.org/resources/wsmf-paper.pdf
www.wsmo.org/2004/d3/d3.2/b2c/20041004/resources/loc.wsml.html
http://dx.doi.org/10.1016/j.websem.2014.11.006
http://wsmo.org/TR/d38/v0.1/20080219/d38v01_20080219.pdf
http://www.w3.org/Submission/WSML/
http://www.w3.org/Submission/WSML/
http://www.wsmx.org/
http://technologies.kmi.open.ac.uk/irs/

145

Chapter 6

Graph Databases

Graph models and algorithms are ubiquitous, due to their suitability for knowledge representation in
e-commerce, social media networks, research, computer networks, electronics, as well as for maximum
flow problems, route problems, and web searches. Graph databases are databases with Create, Read,
Update, and Delete (CRUD) methods exposing a graph data model, such as property graphs (containing
nodes and relationships), hypergraphs (a relationship can connect any number of nodes), RDF triples
(subject-predicate-object), or quads (named graph-subject-predicate-object). Graph databases are usually
designed for online transactional processing (OLTP) systems and optimized for transactional performance,
integrity, and availability. Unlike relational and NoSQL databases, purpose-build graph databases, including
triplestores and quadstores, do not rely on indices, because graphs naturally provide an adjacency index,
and relationships attached to a node provide a direct connection to other related nodes. Graph queries are
performed using this locality to traverse through the graph, which can be carried out with several orders of
magnitude higher efficiency than that of relational databases joining data through a global index. In fact,
most graph databases are so powerful that they are suitable even for Big Data applications.

Graph Databases
To leverage the power of the Resource Description Framework (RDF), data on the Semantic Web can be
stored in graph databases rather than relational databases. A graph database is a database that stores RDF
statements and implements graph structures for semantic queries, using nodes, edges, and properties
to represent and retrieve data. A few graph databases are based on relational databases, while most are
purpose-built from the ground up for storing and retrieving RDF statements.

There are two important properties of graph databases that determine efficiency and implementation
potential. The first one is the storage, which can be native graph storage or a database engine that transforms
an RDF graph to relational, object-oriented, or general-purpose database structures. The other main
property is the processing engine. True graph databases implement so-called index-free adjacency, whereby
connected nodes are physically linked to each other in the database. Because every element contains a
direct pointer to its adjacent element, no index lookups are necessary. Graph databases store arbitrarily
complex RDF graphs by simple abstraction of the graph nodes and relationships. Unlike other database
management systems, graph databases do not use inferred connections between entities using foreign
keys, as in relational databases, or other data, such as the ones used in MapReduce. The computational
algorithms are implemented as graph compute engines, which identify clusters and answer queries.

Chapter 6 ■ Graph Databases

146

One of the main advantages of graph databases over relational databases and NoSQL stores is
performance [1]. Graph databases are typically thousands of times more powerful than conventional
databases in terms of indexing, computing power, storage, and querying. In contrast to relational databases,
where the query performance on data relations decreases as the dataset grows, the performance of graph
databases remains relatively constant.

While relational databases require a comprehensive data model about the knowledge domain up
front, graph databases are inherently flexible, because graphs can be extended with new nodes and new
relationship types effortlessly, while subgraphs merge naturally to their supergraph.

Because graph databases implement freely available standards such as RDF for data modeling and
SPARQL for querying, the storage is usually free of proprietary formats and third-party dependencies.
Another big advantage of graph databases is the option to use arbitrary external vocabularies and schemas,
while the data is available programmatically through Application Programming Interfaces (APIs) and
powerful queries.

 ■ Note some graph databases have limitations when it comes to storing and retrieving rDF triples or
quads, because the underlying model not always covers the features of rDF well, as for example, using UrIs
as identifiers is not the default scenario, and the naming convention often differs from that of rDF. Most graph
databases do not support sparQL out of the box, although many provide a sparQL add-on. the proprietary
query languages introduced by graph database vendors are not standardized like sparQL.

The widely adopted relational databases were originally designed to store data such as tabular
structures in an organized manner. The irony of relational databases is that their performance is rather
poor when handling ad hoc relationships. For example, the foreign keys of relational databases mean
development and maintenance overhead, while they are vital for the database to work. Joining two tables in
a relational database might increase complexity by mixing the foreign key metadata with business data. Even
simple queries might be computationally complex. The handling of sparse tables in relational databases is
poor. Regarding NoSQL databases, including key-value-, document-, and column-oriented databases, the
relationship handling is not perfect either. Because NoSQL databases typically store sets of disconnected
documents, values, or columns (depending on the type), they are not ideal for storing data interconnections
and graphs.

The main parameters of graph databases are the load rate in triples/second or quads/second
(sometimes combined with the indexing time) and the query execution time. Further features that can be
used for comparing graph databases are licensing, source availability (open source, binary distribution,
or both), scalability, graph model, schema model, API, proprietary query language and query method,
supported platforms, consistency, support for distributed processing, partitioning, extensibility, visualizing
tools, storage back end (persistency), language, and backup/restore options. The comparison of the most
commonly used graph databases is summarized in Table 6-1.

Chapter 6 ■ Graph Databases

147

Ta
bl

e
6-

1.
 C

om
p

ar
is

on
 o

f C
om

m
on

 G
ra

ph
 D

at
ab

as
es

 [2
]

Li
ce

ns
e

Pl
at

fo
rm

La
ng

ua
ge

D
is

tr
ib

ut
io

n
C

os
t

Tr
an

sa
c t

io
na

l
M

em
or

y-

B
as

ed
D

is
k-

B

as
ed

Si
ng

le
-

N
od

e
D

is
tr

ib
ut

ed
G

ra
ph

A

lg
or

ith
m

s
Te

xt
-B

as
ed

Q

ue
ry

La

ng
ua

ge

Em
be

dd
ab

le
So

ftw
ar

e
D

at
as

to
re

Ty
pe

M
yS

Q
L

G
P

L/
P

ro
p

ri
et

ar
y

x8
6

C
/C

++
B

in
Fr

ee
X

–
X

X
–

–
SQ

L
X

X
X

SQ
LD

B

O
ra

cl
e

P
ro

p
ri

et
ar

y
x8

6
C

/C
++

B
in

$1
80

–$
95

0
X

–
X

X
X

–
SQ

L
X

X
X

SQ
LD

B

SQ
L

Se
rv

er
P

ro
p

ri
et

ar
y

x8
6-

W
in

C
++

B
in

$8
98

–$
85

92
X

–
X

X
–

–
SQ

L
–

X
X

SQ
LD

B

SQ
Li

te
P

u
b

lic

D
om

ai
n

x8
6

C
Sr

c/
B

in
Fr

ee
X

X
X

X
–

–
SQ

L
X

X
X

SQ
LD

B

A
lle

gr
oG

ra
p

h
P

ro
p

ri
et

ar
y

x8
6

Li
ke

ly
 Ja

va
B

in
Fr

ee
-i

sh
/$

$$
$

X
–

X
X

–
X

SP
A

R
Q

L/
R

D
FS

++
/

P
ro

lo
g

–
X

X
G

D
B

A
ra

n
go

D
B

A
p

ac
h

e
x8

6
C

/C
++

/J
S

Sr
c/

B
in

Fr
ee

–
–

X
X

–
–

A
Q

L
–

X
X

G
D

B
/K

V
/

D
O

C

D
E

X
P

ro
p

ri
et

ar
y

x8
6

C
++

B
in

Fr
ee

 P
er

so
n

al
/

C
om

m
er

ci
al

 $
$

X
–

X
X

–
X

T
ra

ve
rs

al
X

–
X

G
D

B

Fl
oc

kD
B

A
p

ac
h

e
Ja

va
Ja

va
/

Sc
al

a/
R

u
by

Sr
c

Fr
ee

–
–

X
X

X
–

–
–

X
X

G
D

B

G
ra

p
h

B
as

e
P

ro
p

ri
et

ar
y

Ja
va

Ja
va

B
in

Fr
ee

, $
15

/m
o,

$2

0,
00

0
?

–
X

X
–

–
B

ou
n

d
s

X
X

X
G

D
B

H
yp

er

G
ra

p
h

D
B

LG
P

L
Ja

va
Ja

va
Sr

c
Fr

ee
M

V
C

C
X

X
X

X
–

H
G

Q
u

er
y/

T
ra

ve
rs

al
X

–
–

H
yp

er
G

D
B

In
fi

n
it

eG
ra

p
h

P
ro

p
ri

et
ar

y
x8

6/
Ja

va
Ja

va
/C

++
B

in
Fr

ee
 T

ri
al

/$
5,

00
0

B
ot

h
–

X
X

X
–

G
re

m
lin

X
X

X
G

D
B

In
fo

G
ri

d
A

G
P

L/

P
ro

p
ri

et
ar

y
Ja

va
Ja

va
Sr

c/
B

in
Fr

ee
 +

 S
u

p
p

or
t

–
X

X
X

X
–

–
X

X
–

G
D

B

N
eo

4j
G

P
L/

P
ro

p
ri

et
ar

y
Ja

va
Ja

va
Sr

c/
B

in
Fr

ee
,

$6
,0

00
–$

24
,0

00
X

–
X

X
–

X
C

yp
h

er
X

X
X

G
D

B
/

N
oS

Q
L

(c
on

ti
n

u
ed

)

Chapter 6 ■ Graph Databases

148

Li
ce

ns
e

Pl
at

fo
rm

La
ng

ua
ge

D
is

tr
ib

ut
io

n
C

os
t

Tr
an

sa
c t

io
na

l
M

em
or

y-

B
as

ed
D

is
k-

B

as
ed

Si
ng

le
-

N
od

e
D

is
tr

ib
ut

ed
G

ra
ph

A

lg
or

ith
m

s
Te

xt
-B

as
ed

Q

ue
ry

La

ng
ua

ge

Em
be

dd
ab

le
So

ftw
ar

e
D

at
as

to
re

Ty
pe

O
ri

en
tD

B
A

p
ac

h
e

Ja
va

Ja
va

Sr
c/

B
in

Fr
ee

 +
 S

u
p

p
or

t
B

ot
h

X
X

X
X

–
E

xt
en

d
ed

SQ

L/
G

re
m

lin

X
X

X
G

D
B

/
N

oS
Q

L

T
it

an
A

p
ac

h
e

Ja
va

Ja
va

Sr
c/

B
in

Fr
ee

 +
 S

u
p

p
or

t
B

ot
h

–
X

X
X

–
G

re
m

lin
X

X
–

G
D

B

B
ag

el
B

SD
Ja

va
Ja

va
/S

ca
la

/
Sp

ar
k

Sr
c

Fr
ee

–
X

–
X

X
X

–
X

–
–

B
SP

B
G

L
B

oo
st

x8
6/

C
++

C
++

Sr
c/

B
in

Fr
ee

–
X

–
X

–
X

–
X

–
–

Li
b

ra
ry

Fa
u

n
u

s
A

p
ac

h
e

Ja
va

Ja
va

Sr
c

Fr
ee

 +
 S

u
p

p
or

t
B

ot
h

–
X

X
X

–
G

re
m

lin
X

X
–

H
ad

oo
p

G
ep

h
i

G
P

L/
C

D
D

L
Ja

va
Ja

va
/

O
p

en
G

L
Sr

c/
B

in
Fr

ee
–

X
–

X
–

X
–

X
X

–
To

ol
ki

t

G
ir

ap
h

A
p

ac
h

e
Ja

va
Ja

va
Sr

c
Fr

ee
–

X
;

X
X

X
–

X
–

–
B

SP

G
ra

p
h

La
b

A
p

ac
h

e
x8

6
C

++
Sr

c
Fr

ee
–

X
X

X
X

X
–

X
–

–
B

SP

G
ra

p
h

St

re
am

LG
P

L/
C

eC
IL

L-
C

Ja
va

Ja
va

Sr
c/

B
in

Fr
ee

–
X

–
X

–
X

–
X

–
–

Li
b

ra
ry

H
am

a
A

p
ac

h
e

Ja
va

Ja
va

Sr
c

Fr
ee

–
X

–
X

X
X

–
X

–
–

B
SP

M
T

G
L

B
SD

x8
6/

X
M

T
C

++
Sr

c
Fr

ee
–

X
–

X
–

X
–

X
–

–
Li

b
ra

ry

N
et

w
or

kX
B

SD
x8

6
P

yt
h

on
Sr

c/
B

in
Fr

ee
–

X
–

X
–

X
–

X
–

–
Li

b
ra

ry

P
E

G
A

SU
S

A
p

ac
h

e
Ja

va
Ja

va
Sr

c/
B

in
Fr

ee
–

–
X

X
X

X
–

–
X

–
H

ad
oo

p

ST
IN

G
E

R
B

SD
x8

6/
X

M
T

C
Sr

c
Fr

ee
–

X
–

X
–

X
–

X
X

X
Li

b
ra

ry

u
R

iK
A

P
ro

p
ri

et
ar

y
X

M
T

Li
ke

ly
 C

++
B

in
$$

$$
?

X
–

X
–

–
SP

A
R

Q
L

–
X

X
A

p
p

lia
n

ce

Ta
bl

e
6-

1.
 (

co
n

ti
n

u
ed

)

Chapter 6 ■ Graph Databases

149

While graph database vendors often compare their products to other graph databases, the de facto
industry standard for benchmarking RDF databases is the Lehigh University Benchmark (LUBM), which is
suitable for performance comparisons [3].

Triplestores
All graph databases designed for storing RDF triples are called triplestores or subject-predicate-object
databases, however, the triplestores that have been built on top of existing commercial relational database
engines (such as SQL-based databases) are typically not as efficient as the native triplestores with a database
engine built from scratch for storing and retrieving RDF triples. The performance of native triplestores is
usually better, due to the difficulty of mapping the graph-based RDF model to SQL or NoSQL queries.

The advantages of graph databases are derived from the advantageous features of RDF, OWL, and
SPARQL. RDF data elements are globally unique and linked, leveraging the advantages of the graph
structure. Adding a new schema element is as easy as inserting a triple with a new predicate. Graph
databases also support ad hoc SPARQL queries. Unlike the column headers, foreign keys, or constraints of
relational databases, the entities of graph databases are categorized with classes; predicates are properties
or relationships; and they are all part of the data. Due to the RDF implementation, graph databases support
automatic inferencing for knowledge discovery. The data stored in these databases can unify vocabularies,
dictionaries, and taxonomies through machine-readable ontologies. Graph databases are commonly used in
semantic data integration, social network analysis, and Linked Open Data applications.

Quadstores
It is not always possible to interpret RDF statements without a graph identifier. For example, if a given name
is used as a subject, it is out of context if we do not state the person we want to describe. If, however, we
add the web site address of the same person to each triple that describes the same person, all components
become globally unique and dereferenceable. A quad is a subject-predicate-object triple coupled with a
graph identifier. The identified graph is called a named graph.

For example, consider an LOD dataset description in a Turtle file registered on datahub.io, such as
http://www.lesliesikos.com/datasets/sikos-void.ttl. To make RDF statements about the dataset
graph, the subject is set to the file name and extension of the RDF file representing the graph
(http://www.lesliesikos.com/datasets/sikos.rdf). This makes it possible to write RDF statements
about the file, describing it as an LOD dataset (void:Dataset), adding a human-readable title to it using
Dublin Core (dc:title), declaring its creator (dc:creator), and so on, as shown in Figure 6-1.

 ■ Caution Notice the difference between http://www.lesliesikos.com/datasets/sikos.rdf and
http://www.lesliesikos.com/datasets/sikos.rdf#sikos. the first example refers to a file; the second
refers to a person described in the file.

If a graph database stores the graph name (representing the graph context or provenance information)
for each triple, the database is called a quadstore.

http://www.lesliesikos.com/datasets/sikos-void.ttl
http://www.lesliesikos.com/datasets/sikos.rdf
http://www.lesliesikos.com/datasets/sikos.rdf
http://www.lesliesikos.com/datasets/sikos.rdf#sikos

Chapter 6 ■ Graph Databases

150

The Most Popular Graph Databases
Some of the most widely deployed, high-performance graph databases are AllegroGraph, Neo4j, Blazegraph
(formerly Big Data), OpenLink Virtuoso, Clark & Parsia’s Stardog, BigOWLIM, 4Store, YARS2, Jena TDB,
RDFox, Jena SDB, Mulgara, RDF Gateway, Kowari, and Sesame. However, not everyone uses a native
graph database engine to store triples or quads. Some examples are Oracle Spatial and Graph with Oracle
Database, Jena with PostgreSQL, and 3Store with MySQL 3.

Figure 6-1. Referencing from a named graph to another named graph

Chapter 6 ■ Graph Databases

151

AllegroGraph
AllegroGraph is an industry-leading graph database platform [4]. It can combine geospatial, temporal, and
social network queries into a single query. It supports online backups, point-in-time recovery, replication,
and warm standby. AllegroGraph supports automatic triple indexing, user-defined indices, as well as text
indexing at the predicate level. Similar to other databases, AllegroGraph implements the ACID (Atomicity,
Consistency, Isolation, and Durability) properties of transaction processing. Atomicity means that a
transaction either completely fails or completely succeeds. Consistency means that every transaction takes
the database as a whole from one consistent state to another, so the database can never be inconsistent.
Isolation refers to the feature that all the transactions can handle data of other completed transactions
and cannot rely on partial results of transactions running concurrently. Durability means that once the
database system signals the successful completion of a transaction to the application, the changes made by
the transaction will persist, even in the presence of hardware and software failures, except when a hard disk
failure destroys the data.

All AllegroGraph clients (Java, Python, JavaScript, Lisp) are based on the REST protocol. AllegroGraph
works with multiple programming languages and environments, such as Java in Sesame or Jena (through
a command line or in an IDE such as Eclipse), Python, Ruby, C#, Clojure, JRuby, Scala, Perl, Lisp, and PHP.
The graph database supports cloud hosting on Amazon EC2 for distributed computing. General graph
traversal can be performed through JIG, a JavaScript-based interface. AllegroGraph also supports dedicated
and public sessions. AllegroGraph works as an advanced graph database to store RDF triples and query
the stored triples through various query APIs like SPARQL and Prolog. It supports RDFS++ reasoning with
its built-in reasoner. AllegroGraph includes support for federation, social network analysis, geospatial
capabilities, and temporal reasoning. AllegroGraph is available in three editions: the Free Version (the
number of triples is limited to 5 million), the Developer Version (the number of triples is limited to 50
million), and the Enterprise Version (unlimited triples).

AllegroGraph can store not only triples or quads but also additional information, including the named
graph (context) and the model (including a unique triple identifier and a transaction number), which
makes it a quintuplestore. AllegroGraph is particularly efficient in representing and indexing geospatial and
temporal data. It has 7 standard indices and 24 user-controlled indices. The standard indices are sets of
sorted indices used to quickly identify a contiguous block of triples that are likely to match a specific query
pattern. These indices are identified by names referring to their arrangement. The default set of indices are
called spogi, posgi, ospgi, gspoi, gposi, gospi, and i, where

•	 s stands for the subject URI

•	 p stands for the predicate URI

•	 o stands for the object URI or literal

•	 g stands for the graph URI

•	 i stands for the triple identifier (unique within the triplestore)

Custom index arrangements are used to eliminate indices that are not needed for your application or to
implement custom indices to match unusual triple patterns.

AllegroGraph supports full text indexing, free text indexing, and range indexing. Full text indexing
makes it possible to search for Boolean expressions, expressions with wild cards, and phrases. Free text
indexing powers free text searches, by which you can combine keyphrase searches with queries.

AllegroGraph has full RDF, SPARQL 1.0, and partial SPARQL 1.1 support, and includes an RDFS++ reasoner.
Querying can be performed not only through SPARQL but also programmatically using Lisp, Prolog, or JavaScript.
Prolog is implemented for rules with a usability layer called CLIF+, which makes it easy to combine rules and
queries. AllegroGraph is very efficient in storing property graphs as well. AllegroGraph supports node typing, edge
typing, node and edge attributes, as well as directed, undirected, restricted, and loop edges, attribute indexing,
and ontologies. It supports traversals through adjacency lists and special indices.

Chapter 6 ■ Graph Databases

152

AllegroGraph implements a variety of graph algorithms. For social network analysis, for example, it
uses generators with a first-class function that processes a one-node input and returns all children, while the
speed is guaranteed by neighborhood matrices or adjacency hash tables. AllegroGraph considers a variety of
graph features, such as separation degrees (the distance between two nodes) and connection strength (the
number of shortest paths between two nodes through predicates and rules).

All functionalities of AllegroGraph are available via the Lisp shell, and many from cshell, wget, and
curl. Franz Inc. provides JavaScript, Prolog, and Lisp algorithms, Lisp and JavaScript scripting, REST/JSON
protocol support, IDE integration, and admin tools for developers. You can import data from a variety of
formats and export data by creating triple dumps from an AllegroGraph client.

WebView
WebView, AllegroGraph’s HTTP-based graphical user interface (GUI) for user and repository management,
is included in the AllegroGraph server distribution packages. To connect to WebView, browse to the
AllegroGraph port of your server in your web browser. If you have a local installation of AllegroGraph, use
localhost with the port number. The default port number is 10035. With WebView, you can browse the
catalogs, repositories, and federations, manage repositories, apply Prolog rules and functions to repositories,
perform RDFS++ reasoning on a repository, and import RDF data into a repository or a particular graph in a
repository. WebView can display used namespaces and provides the option to add new namespaces. Telnet
connections can be opened to AllegroGraph processes, which can be used for debugging. Local and remote
repositories can be federated into a single point of access.

WebView supports triple index configuration and free text indexing setup for repositories. SPARQL and
Prolog queries can be executed, saved, and reused, and queries can be captured as a URL for embedding in
applications. WebView can visualize construct and describe SPARQL query results as graphs. The query
results are connected to triples and resources, making it easy to discover connections. WebView can also
be used to manage AllegroGraph users and user roles and repository access, as well as open sessions for
commit and rollback.

Installing the AllegroGraph Server
There are two options to install the AllegroGraph server natively. The first option is to install AllegroGraph
from the RPM (Red Hat Package Manager) package as an administrator on Red Hat, Fedora, or CentOS.
The second option is to install the server by extracting files from a .tar.gz archive, which does not require
administrative privileges. The third option is to deploy a VMware appliance, which is not recommended for
performance reasons.

Installing the RPM Package

To install the AllegroGraph server from the RPM package, the following steps are required:

 1. Download the .rpm file from the Franz web site at http://franz.com/agraph/
downloads/server.

 2. Install the RPM (see Listing 6-1)

Listing 6-1. Installing the AllegroGraph Server from the RPM Package

rpm -i agraph-version_number.x86_64.rpm

where version_number is the latest version you are about to install.

 3. Run the configuration script as shown in Listing 6-2.

http://franz.com/agraph/downloads/server
http://franz.com/agraph/downloads/server

Chapter 6 ■ Graph Databases

153

Listing 6-2. Run the Configuration

/usr/bin/configure-agraph

The script will ask for directories to be used for storing the configuration file, the
log files, data, settings, and server process identifiers, as well as the port number
(see Listing 6-3).

Listing 6-3. Directory and Port Settings

Welcome to the AllegroGraph configuration program. This script will
help you establish a baseline AllegroGraph configuration.

You will be prompted for a few settings. In most cases, you can hit
return to accept the default value.

Location of configuration file to create:
[/home/leslie/tmp/ag5.0/lib/agraph.cfg]:
Directory to store data and settings:
[/home/leslie/tmp/ag5.0/data]:
Directory to store log files:
[/home/leslie/tmp/ag5.0/log]:
Location of file to write server process id:
[/home/leslie/tmp/ag5.0/data/agraph.pid]:
Port:
[10035]:

 ■ Tip the default answers are usually adequate and can be reconfigured later,
if necessary.

 4. If you are logged on as the root operator when running the script, you will be
asked to create a non-root user account (see Listing 6-4).

Listing 6-4. Creating a Restricted User Account

User to run as:
[agraph]:

User 'agraph' doesn't exist on this system.
Create agraph user:
[y]:

 5. Add a user name and password for the AllegroGraph super-user (see Listing 6-5).

This user is internal and not identical to the server logon account.

Listing 6-5. Creating the SuperUser Account

SuperUser account name:
[super]:
SuperUser account password:

Chapter 6 ■ Graph Databases

154

You have to confirm the password by repeating it.

 6. Set the instance timeout in seconds, i.e., the length of time a database will stay
open without being accessed (see Listing 6-6). The default value is 604800 (one
week in seconds).

Listing 6-6. Set Instance Timeout

Instance timeout seconds:
[604800]:

 7. The configuration file is saved to the folder you specified in step 3 (see Listing 6-7).

Listing 6-7. The Configuration File Is Saved

/home/leslie/tmp/ag5.0/lib/agraph.cfg has been created.

If desired, you may modify the configuration.

 8. The start and stop commands specific to your installation are displayed

(see Listing 6-8).

Listing 6-8. Commands to Start and Stop the Server with Your Installation

You can start AllegroGraph by running:
/home/leslie/tmp/ag5.0/bin/agraph-control --config /home/leslie/tmp/
ag5.0/lib/agraph.cfg start

You can stop AllegroGraph by running:
/home/leslie/tmp/ag5.0/bin/agraph-control --config /home/leslie/tmp/
ag5.0/lib/agraph.cfg stop

 9. If you use a commercial version, you have to install the license key purchased
from Franz Inc. The license key includes the client name, defines the maximum
number of triples that can be used, the expiration date, and a license code. To
install your license key, copy the whole key content you received via e-mail, and
paste it into the agraph.cfg configuration file.

 ■ Note the configuration script can also be run non-interactively by specifying
--non-interactive on the configure-agraph command, along with additional
arguments that provide answers to the questions the script would have asked.
the arguments that require a path as their value are --config-file, --data-dir,
--log-dir, and --pid-file. --runas-user expects a user, while --create-runas-user
tells the script to create the user named in --runas-user, if it does not exist yet.
the internal user that received super-user privileges can be declared using
--super-user, which requires the user name as its value. the password for this user
can be set as --super-password, followed by the password. If you don’t want the
password to be shown in the command line, you can specify a file that contains the
super-user password with --super-password-file, followed by the path.

Chapter 6 ■ Graph Databases

155

To verify the installation, open a browser and load the AllegroGraph WebView URL, which is the IP
address of the server, followed by a semicolon (:) and the port number. For local installations, the IP address
is substituted by localhost.

If you want to uninstall the server anytime later, you can use the erase argument on the rpm command,
as shown in Listing 6-9, which won’t remove other directories created by AllegroGraph.

Listing 6-9. Uninstalling AllegroGraph

rpm --erase agraph

Installing the TAR Archive

The other option to install the AllegroGraph server is to extract the gzipped TAR (Tape Archive). This is a
good choice for Ubuntu and other Linux users and does not require administrative privileges.

 1. Download the .tar.gz file from http://franz.com/agraph/downloads/server.

 2. Extract the archive using the tar command, as shown in Listing 6-10.

Listing 6-10. Extracting the TAR Archive

$ tar zxf agraph-version_number-linuxamd64.64.tar.gz

 3. The command creates the agraph-version_number subdirectory, which includes
install-agraph, the installation script. You must provide the path to a writable
directory on which you want to install AllegroGraph, as shown in Listing 6-11.

Listing 6-11. Run the Installation Script

$ agraph-5.0/install-agraph /home/leslie/tmp/ag5.0

Installation complete.
Now running configure-agraph.

 4. Answer the questions to configure your installation (similar to steps 3–6 for
configuring the RPM installation). The last step reveals how you can start and
stop your server.

 5. Verify your installation by opening a browser and directing it to your server IP or
localhost with the port number you specified during installation.

To uninstall an older .tar.gz installation, delete the AllegroGraph installation
directory, as shown in Listing 6-12.

Listing 6-12. Removing the AllegroGraph Directory

% rm -rf obsolete-allegrograph-directory/

Deploying the Virtual Machine

If you use a virtual 64-bit Linux to evaluate or use AllegroGraph, you need a virtual environment, and you
have to deploy the virtual machine image file.

http://franz.com/agraph/downloads/server

Chapter 6 ■ Graph Databases

156

 ■ Note Franz Inc. encourages native installations, rather than a virtual environment, even for evaluation.

 1. Download the virtual environment you want to use, such as VMware Player for
Windows or VMware Fusion for Mac OS, from https://my.vmware.com/web/
vmware/downloads.

 2. Download the virtual machine image file from http://franz.com/agraph/
downloads/.

 3. Unzip the image.

 4. Run the VMware Player.

 5. Click Open a Virtual Machine.

 6. Browse to the directory where you unzipped the image file and open
AllegroGraph vx Virtual Machine.vmx file, where x is the version of
AllegroGraph.

 7. Take ownership, if prompted.

 8. Play Virtual Machine.

 9. When prompted for Moved or Copied, select Copied.

 10. Log in to the Linux Virtual Machine as the user franz, with the password
allegrograph.

 11. To start AllegroGraph, double-click the agstart shortcut on the Desktop and
select Run in Terminal Window when prompted, or open a Terminal window and
run the agstart command.

 12. Launch FireFox and click AGWebView in the taskbar, or visit
http://localhost:10035.

 13. Log in to AllegroGraph as the test user, with the password xyzzy.

To stop AllegroGraph, double-click the agstop shortcut on the Desktop and select Run in Terminal
Window when prompted, or open a Terminal window and run the agstop command.

Installing the AllegroGraph Client
AllegroGraph has clients for Java, Python, Clojure, Ruby, Perl, C#, and Scala [5]. One of the options for the
Java client, for example, is to run it as an Eclipse project. The Jena client is a variant of the Java client. The
Python client requires the cjson and pycurl libraries of Python on top of the core Python installation. You
can check whether these packages are installed on your system, using the q parameter on the rpm command,
as shown in Listing 6-13.

Listing 6-13. Checking Python Dependencies for AllegroGraph

rpm -q python python-cjson python-pycurl

If they are not installed, on most Linux systems you have to use yum (see Listing 6-14).

https://my.vmware.com/web/vmware/downloads
https://my.vmware.com/web/vmware/downloads
http://franz.com/agraph/downloads/
http://franz.com/agraph/downloads/

Chapter 6 ■ Graph Databases

157

Listing 6-14. Installing Dependencies

sudo yum install python python-cjson python-pycurl

For Ubuntu systems, you need apt-get to install the required libraries (see Listing 6-15).

Listing 6-15. Installing Dependencies on Ubuntu

sudo apt-get install python python-cjson python-pycurl

Java API
After starting the server, you can use new AllegroGraphConnection(); from Java to connect to the default
running server (see Listing 6-16). If you are using a port number other than the default 10035 port, you have
to set the port number using setPort(port_number).

Listing 6-16. Connecting to the AllegroGraph Server Through the Java API

import com.franz.agbase.*;
public class AGConnecting {
 public static void main(String[] args) throws AllegroGraphException {
 AllegroGraphConnection ags = new AllegroGraphConnection();
 try {
 System.out.println("Attempting to connect to the server on port" + ags.getPort());
 ags.enable();
 } catch (Exception e) {
 throw new AllegroGraphException("Server connection problem.", e);
 }
 System.out.println("Connected.");
 }
}

A triplestore can be created using the create method and closed with the closeTripleStore method,
as shown in Listing 6-17. You can disconnect from an AllegroGraph server with ags.disable().

Listing 6-17. Creating an AllegroGraph Triplestore with the Java API

import com.franz.agbase.*;
public class AGCreateTripleStore {
 public static void main(String[] args) throws AllegroGraphException {
 AllegroGraphConnection ags = new AllegroGraphConnection();
 try {
 ags.enable();
 } catch (Exception e) {
 throw new AllegroGraphException("Server connection problem.", e);
 }
 try {
 AllegroGraph ts = ags.create("newstore", AGPaths.TRIPLE_STORES);
 System.out.println("Triplestore created.");
 System.out.println("Closing triplestore…");

Chapter 6 ■ Graph Databases

158

 ts.closeTripleStore();
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 System.out.println("Disconnecting from the server…");
 ags.disable();
 }
}

There are two ways to open an AllegroGraph triplestore from Java: using the access method, which
opens the store and, if it does not exist, it will be created, or the open method, which opens an existing
store but gives an error if the triplestore does not exist. Let’s open a triplestore and index all triples, as
demonstrated in Listing 6-18.

Listing 6-18. Indexing all Triples of an AllegroGraph Triplestore

import com.franz.agbase.*;
import com.franz.agbase.AllegroGraph.StoreAttribute;
public class AGOpenTripleStore {
 public static void main(String[] args) throws AllegroGraphException {
 AllegroGraphConnection ags = new AllegroGraphConnection();
 try {
 ags.enable();
 } catch (Exception e) {
 throw new AllegroGraphException("Server connection problem.", e);
 }
 System.out.println("Opening triplestore…");
 ts = ags.open("existingstore", AGPaths.TRIPLE_STORES);
 System.out.println("Triple store opened with " + ts.numberOfTriples() + " triples.");
 try {
 System.out.println("Indexing triplestore…");
 ts.indexAllTriples();
 } catch (Exception e) {
 System.out.println(e.getLocalizedMessage());
 }
 ts.closeTripleStore(true);
 System.out.println("Disconnecting from the server.");
 ags.disable();
}

The default access mode is read+write. To open a triplestore in read-only mode, set the StoreAttribute
to READ_ONLY (see Listing 6-19).

Listing 6-19. Open a Triplestore in Read-Only Mode

ts = new AllegroGraph(AGPaths.TRIPLE_STORES + "yourstore");
ts.setAttribute(StoreAttribute.READ_ONLY, true);
ags.open(ts);

Let’s add a triple to our triplestore in N-triples. Once com.franz.agbase.* is imported and the
connection to the server established, you can add a statement to the triplestore using addStatement
(see Listing 6-20).

Chapter 6 ■ Graph Databases

159

Listing 6-20. Adding an RDF Statement to the Triplestore

ts.addStatement("<http://www.lesliesikos.com/datasets/sikos.rdf#sikos>",
 "<http://xmlns.com/foaf/0.1/homepage>",
 "<http://www.lesliesikos.com>");

All triples of the default graph can be retrieved and displayed using the showTriples method
(see Listing 6-21).

Listing 6-21. Listing All Triples

TriplesIterator cc = ts.getStatements(null, null, null);
AGUtils.showTriples(cc);

Triplestore information such as the number of triples or the list of namespaces used in a triplestore can
be retrieved using showTripleStoreInfo (see Listing 6-22).

Listing 6-22. Displaying Triplestore Information

import com.franz.agbase.*;
public class AGTripleStoreInfo {
 public static void showTripleStoreInfo(AllegroGraph mystore) throws AllegroGraphException
{
 System.out.println("NumberOfTriples: " + ts.numberOfTriples());
 AGUtils.printStringArray("Namespace Registry: ", ts.getNamespaces());
 }
}

To run a simple SPARQL SELECT query to retrieve all subject-predicate-object triples
(SELECT * {?s ?p ?o}), we create a SPARQLQuery object (sq) and display the results of the query using
doSparqlSelect (see Listing 6-23).

Listing 6-23. Querying the Triplestore Through the Java API

import com.franz.agbase.*;
public class AGSparqlSelect {
 public static void main(String[] args) throws AllegroGraphException {
 AllegroGraphConnection ags = new AllegroGraphConnection();
 try {
 ags.enable();
 } catch (Exception e) {
 throw new AllegroGraphException("Server connection problem", e);
 }
 AllegroGraph ts = ags.renew("sparqlselect", AGPaths.TRIPLE_STORES);
 ts.addStatement("<http://www.lesliesikos.com/datasets/sikos.rdf#sikos>",
 "<http://xmlns.com/foaf/0.1/homepage>",
 "<http://www.lesliesikos.com>");
 ts.addStatement("<http://www.lesliesikos.com/datasets/sikos.rdf#sikos>",
 "<http://xmlns.com/foaf/0.1/interest>",
 "<http://dbpedia.org/resource/Electronic_organ>");
 String query = "SELECT * {?s ?p ?o}";
 SPARQLQuery sq = new SPARQLQuery();
 sq.setTripleStore(ts);

http://www.lesliesikos.com/datasets/sikos.rdf#sikos
http://xmlns.com/foaf/0.1/homepage
http://www.lesliesikos.com/
http://www.lesliesikos.com/datasets/sikos.rdf#sikos
http://xmlns.com/foaf/0.1/homepage
http://www.lesliesikos.com/
http://www.lesliesikos.com/datasets/sikos.rdf#sikos
http://xmlns.com/foaf/0.1/interest
http://dbpedia.org/resource/Electronic_organ

Chapter 6 ■ Graph Databases

160

 sq.setQuery(query);
 doSparqlSelect(sq);
 }
 public static void doSparqlSelect(SPARQLQuery sq) throws AllegroGraphException {
 if (sq.isIncludeInferred()) {
 System.out.println("\nQuery (with RDFS++ inference):");
 } else {
 System.out.println("\nQuery:");
 }
 System.out.println(" " + sq.getQuery());
 ValueSetIterator it = sq.select();
 AGUtils.showResults(it);
 }
}

Gruff
Gruff is a grapher-based triplestore browser, query manager, and editor for AllegroGraph [6]. Gruff provides
a variety of tools for displaying cyclical graphs, creating property tables, and managing queries as SPARQL or
Prolog code. In graph view, the nodes and relationships stored in AllegroGraph graphs can be visualized and
manipulated using Gruff, as shown in Figure 6-2.

Figure 6-2. Visualizing a graph stored in AllegroGraph using Gruff [7]

Chapter 6 ■ Graph Databases

161

The query view displays a view on which you can run a SPARQL or Prolog query and see the results
in a table. The graphical query view makes it possible to plan a query visually as a diagram, by arranging
the node boxes and link lines that represent triple patterns in the query. The triples patterns can contain
variables as well as graph objects. The graphical query view supports hierarchies and filters and the
automatic generation of SPARQL or Prolog queries. The table view displays a property table for a single node.
Related nodes can be explored using hyperlinks, and property values can be edited directly. Each table row
represents an RDF triple from the store.

Neo4j
Neo4j is one of the world’s leading graph databases, which queries connected data a thousand times faster
than relational databases [8]. Neo4j has a free “Community Edition” and a commercial “Enterprise Edition,”
both supporting property graphs; native graph storage and processing; ACID, a high-performance native
API; its own graph query language, Cypher; and HTTPS (via plug-in). The advanced performance and
scalability features that are available only in the Enterprise Edition are the Enterprise Lock Manager,
a high-performance cache; clustering; hot backup; and advanced monitoring. Neo4j can be used as a
triplestore or quadstore by installing an add-on called neo-rdf.

Installation
The Neo4j server is available in two formats under Windows: .exe and .zip. Neo4j can be installed using the
.exe installer, as follows:

 1. Download the latest Neo4j Server executable installation file from www.neo4j.org/
download.

 2. Double-click the .exe file.

 3. Click Next and accept the agreement.

 4. Start the Neo4j Server by clicking Neo4j Community under Start button ➤ All
Programs ➤ Neo4j Community ➤ Neo4j Community

By default, the C:\Users\username\Documents\Neo4j\default.graphdb database
will be selected, which can be changed (see Figure 6-3).

Figure 6-3. Neo4j ready to be started

 5. Click the Start button, which creates the necessary files in the background in the
specified directory.

http://www.neo4j.org/download
http://www.neo4j.org/download

Chapter 6 ■ Graph Databases

162

 6. Access Neo4j by visiting http://localhost:7474 in your browser (see Figure 6-4).

Figure 6-4. Neo4j started

Figure 6-5. The web interface of Neo4j

The sidebar of the Neo4j web interface on the left provides convenient clickable access to information
about the current Neo4j database (node labels, relationship types, and database location and size), saved
scripts (see Figure 6-5), and information such as documentation, guides, a sample graph application,
reference, as well as the Neo4j community resources.

The Neo4j web interface provides command editing and execution on the top (starting with $:),
including querying with Neo4j’s query language, Cypher. If you write complex queries or commands, or
commands you want to use frequently, you can save them for future use. By default, the command editor
is a single-line editor suitable for short queries or commands only. If you need more space, you can switch
to multiline editing with Shift+Enter, so that you can write commands spanning on multiple lines or write
multiple commands without executing them one by one (see Figure 6-6).

Chapter 6 ■ Graph Databases

163

In multiline editing, you can run queries with Ctrl+Enter. Previously used commands can easily be
retrieved using the command history. In the command line editor, you can use client-side commands
as well, such as :help, which opens the Neo4j Help. The main part of the browser window displays the
content, query answers, etc., depending on the commands you use. Each command execution results in a
result frame (subwindow), which is added to the top of a stream to create a scrollable collection in reverse
chronological order. Each subwindow can be maximized to full screen or closed with the two icons on the
top right of the subwindow you hover your mouse over. Similar subwindows are used for data visualization
as well. The stream can be cleared with the :clear command.

The web interface of Neo4j provides advanced visualization options. The nodes and relationships can
be displayed with identifiers or labels in the color of your choice. The colors, line width, font size, and bubble
size of graph visualizations can be changed arbitrarily through CSS style sheets, as shown in Figure 6-7.

Figure 6-6. Writing Cypher commands

Figure 6-7. Graph visualization options in Neo4j

Chapter 6 ■ Graph Databases

164

Java API
Neo4j has a Native Java API and a Cypher Java API. To demonstrate the native Java API of Neo4j, let’s develop
a Java application in Eclipse.

 1. If you don’t have Eclipse installed, follow the instructions discussed in Chapter 4.

 2. Visit http://www.neo4j.org/download and under the Download Community
Edition button, select Other Releases.

 3. Under the latest release, select the binary of your choice for Linux or Windows.

 4. Extract the archive.

 5. In Eclipse, create a Java project by selecting File ➤ New ➤ Java Project.

 6. Right-click the name of the newly created project and select Properties (or select
File ➤ Properties).

 7. Select Java Build Path and click the Libraries tab.

 8. Click Add Library… on the right.

 9. Select User Library as the library type.

 10. Click the Next ➤ button on the bottom.

 11. Click User Libraries… on the right.

 12. Click the New… button.

 13. Add a name to your library, such as NEO4J_JAVA_LIB.

 14. Click the Add external JARs… button on the right.

 15. Browse to your Neo4j directory (neo4j-community-version_number) and go to
the lib subdirectory.

 16. Select all the .jar files (for example, with Ctrl+A) and click Open, which will add
the files to your project library (see Figure 6-8).

http://dx.doi.org/10.1007/9781484210505_4
http://www.neo4j.org/download

Chapter 6 ■ Graph Databases

165

 17. Click OK.

 18. Click Finish.

 19. Once you click OK, the Neo4j software library will be added to your
Eclipse project.

Let’s create a simple graph with nodes, a relationship between the nodes, node properties, and
relationship properties.

 1. Initialize the database as shown in Listing 6-24.

Listing 6-24. Initializing the Database

import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.Node;
import org.neo4j.graphdb.Relationship;
import org.neo4j.graphdb.RelationshipType;
import org.neo4j.graphdb.Transaction;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;

public class Neo4jDemo
{
 private static final String DB_PATH = "target/neo4jdemodb";
 GraphDatabaseService graphDb;
 Node firstNode;
 Node secondNode;
 Relationship relationship;

}

Figure 6-8. The Neo4j software library

Chapter 6 ■ Graph Databases

166

 2. Define a new relationshSeip type as WEBSITE_OF (see Listing 6-25).

Listing 6-25. Defining a New Relationship Type

private static enum RelTypes implements RelationshipType
{
 WEBSITE_OF
}

 3. Create the main method, as shown in Listing 6-26.

Listing 6-26. Creating the main Method

public static void main(final String[] args)
{
 Neo4jDemo dbsample = new Neo4jDemo();
 dbsample.createDb();
 dbsample.shutDown();
}

 4. Create the graph nodes graphDb.createNode(); set node and relationship

properties with setProperty; and display the RDF statement, using the label
of the subject and the predicate, and the URI of the object (see Listing 6-27).
The simple RDF statement will describe the relationship between the machine-
readable description of a person and the URL of his/her web site.

Listing 6-27. Creating Nodes and Setting Properties

void createDb()
{

 graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

 try (Transaction tx = graphDb.beginTx())
 {
 firstNode = graphDb.createNode();
 firstNode.setProperty("uri", "http://dbpedia.org/resource/Leslie_

Sikos");
 firstNode.setProperty("label", "Leslie Sikos");
 secondNode = graphDb.createNode();
 secondNode.setProperty("uri", "http://www.lesliesikos.com");
 secondNode.setProperty("label", "website address");
 relationship = firstNode.createRelationshipTo(secondNode, RelTypes.

WEBSITE_OF);
 relationship.setProperty("uri", "http://schema.org/url");
 relationship.setProperty("label", "website");

 System.out.print(secondNode.getProperty("uri") + " is the ");
 System.out.print(relationship.getProperty("label") + " of ");
 System.out.print(firstNode.getProperty("label"));

 tx.success();
 }
}

http://dbpedia.org/resource/Leslie_Sikos
http://dbpedia.org/resource/Leslie_Sikos
http://www.lesliesikos.com/
http://schema.org/url

Chapter 6 ■ Graph Databases

167

 5. Shut down the Neo4j database once you have finished (see Listing 6-28).

Listing 6-28. Shutting Down Neo4j

void shutDown()
{
 System.out.println();
 System.out.println("Shutting down database…");
 graphDb.shutdown();
}

 6. Run the application (see Listing 6-29) to display the RDF statement we created in

the database (see Figure 6-9).

Listing 6-29. Final Code for Creating a Database with Nodes and Properties, and
Displaying Stored Data

import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.Node;
import org.neo4j.graphdb.Relationship;
import org.neo4j.graphdb.RelationshipType;
import org.neo4j.graphdb.Transaction;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;

public class Neo4jDemo
{
 private static final String DB_PATH = "target/neo4jdemodb";
 GraphDatabaseService graphDb;
 Node firstNode;
 Node secondNode;
 Relationship relationship;

 private static enum RelTypes implements RelationshipType
 {
 WEBSITE_OF
 }

 public static void main(final String[] args)
 {
 Neo4jDemo dbsample = new Neo4jDemo();
 dbsample.createDb();
 dbsample.shutDown();
 }

 void createDb()
 {

 graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

 try (Transaction tx = graphDb.beginTx())
 {
 firstNode = graphDb.createNode();

Chapter 6 ■ Graph Databases

168

 firstNode.setProperty("uri", "http://dbpedia.org/resource/Leslie_
Sikos");

 firstNode.setProperty("label", "Leslie Sikos");
 secondNode = graphDb.createNode();
 secondNode.setProperty("uri", "http://www.lesliesikos.com");
 secondNode.setProperty("label", "website address");
 relationship = firstNode.createRelationshipTo(secondNode,

RelTypes.WEBSITE_OF);
 relationship.setProperty("uri", "http://schema.org/url");
 relationship.setProperty("label", "website");
 System.out.print(secondNode.getProperty("uri") + " is the ");
 System.out.print(relationship.getProperty("label") + " of ");
 System.out.print(firstNode.getProperty("label"));
 tx.success();
 }
 }

 void shutDown()
 {
 System.out.println();
 System.out.println("Shutting down database…");
 graphDb.shutdown();
 }
}

Figure 6-9. A Neo4j application in Eclipse

http://dbpedia.org/resource/Leslie_Sikos
http://dbpedia.org/resource/Leslie_Sikos
http://www.lesliesikos.com/
http://schema.org/url

Chapter 6 ■ Graph Databases

169

4Store
4Store is an efficient, scalable, and stable RDF database available for Linux systems such as Arch Linux,
Debian, Ubuntu, Fedora, and CentOS, as well as Mac OS and FreeBSD [9]. To install 4Store on Linux, follow
these steps:

 1. Download the installer from http://www.4store.org.

 2. Prepare your system to be used with 4Store by configuring it to look for libraries
in /usr/local/lib and/or /usr/local/lib64. On most systems, you have
to create a file called /etc/ld.so.conf.d/local.conf to achieve this, which
contains these two paths, each on a separate line. You have to run /sbin/
ldconfig as root. Once completed, the $PKG_CONFIG_PATH environmental
variable should include the correct paths for locally installed packages.1 Check
whether your Linux distribution includes all the dependencies, namely raptor,
rasqal, glib2, libxml2, pcre, avahi, readline, ncurses, termcap, expat, and zlib.

 3. Build your 4Store from Tarballs or Git. For the first option, extract the files from
the .tar.gz archive with tar xvfz 4store-version.tar.gz. Change the
working directory to the 4store-version directory with cd. Run ./configure,
and then run make. For the second option, change directory using cd to the
directory that Git cloned, and run sh autogen.sh. The rest of the installation is
the same as in the steps for the first option.

 ■ Note Creating your build from Git might require additional dependencies.

 4. Install 4Store by running make install as root.

If you want to install 4Store on a Mac, download the most recent version, open the .dmg, and install the
4Store application by dragging it into the Applications folder.

Once installed, you can run the 4Store application, which gives you a command line. You can create a
triplestore using the command 4s-backend-setup triplestorename, start the triplestore using 4s-backend
triplestorename, and run a SPARQL endpoint using 4s-httpd -p portnumber triplestorename. The web
interface will be available in your browser at http://localhost:portnumber.

The simplest command to import data from an RDF file is to use 4s-import, specifying the database
name to import the data to and the source RDF, as shown in Listing 6-30.

Listing 6-30. Importing Data from an RDF File to 4Store

4s-import your4store external.rdf

To import data programmatically, you can choose from a variety of options, depending on the language
you prefer. In Ruby, for example, you can use 4store-ruby (https://github.com/moustaki/4store-ruby),
a Ruby interface to 4Store working over HTTP. For accessing the SPARQL server, you need HTTP PUT calls
only, which are supported by most modern programming languages without installing a store-specific
package. Purpose-built software libraries, however, make the HTTP requests easier. In Ruby, for instance,
you can use rest-client (https://github.com/rest-client/rest-client), as shown in Listing 6-31.
If you don’t have rest-client installed, you can install it normally, e.g., sudo gem install rest-client.

1Assuming that your Linux distribution does not package recent versions of Raptor and Rasqal.

http://www.4store.org/
https://github.com/moustaki/4store-ruby
https://github.com/rest-client/rest-client

Chapter 6 ■ Graph Databases

170

Listing 6-31. Using rest-client

#!/usr/bin/env ruby
require 'rubygems'
require 'rest_client'

filename = '/social.rdf'
graph = 'http://yourgraph.com'
endpoint = 'http://localhost:8000'

response = RestClient.put endpoint + graph, File.read(filename), :content_type =>
 'application/rdf+xml'
puts "Response #{response.code}:
#{response.to_str}"

To run the script from the command line, use the ruby command with the filename as a parameter,
such as ruby loadrdf24store.rb. Now, if you visit http://localhost:portnumber/status/size/ in your
browser, the new triples added from the RDF file should be listed.

Let’s run a SPARQL query programmatically and process the results as XML, to list the RDF types of
your dataset.

 1. Install the XML parser Nokogiri for Ruby as gem install nokogiri.

 2. Load all the required libraries (see Listing 6-32).

Listing 6-32. Loading Required Libraries

#!/usr/bin/env ruby
require 'rubygems'
require 'rest_client'
require 'nokogiri'

 3. Create a string for storing the SPARQL query and another one to store the

endpoint (see Listing 6-33).

Listing 6-33. Creating the Query and Endpoint Strings

query = 'SELECT DISTINCT ?type WHERE { ?thing a ?type . } ORDER BY ?type'
endpoint = 'http://localhost:8000/sparql/'

 4. Using Nokogiri, process the XML output of the SPARQL query (see Listing 6-34).

Listing 6-34. Processing the SPARQL Query Output

response = RestClient.post endpoint, :query => query
xml = Nokogiri::XML(response.to_str)

 5. Find all the RDF types in the XML output and display them with puts, as shown
in Listing 6-35.

http://yourgraph.com/

Chapter 6 ■ Graph Databases

171

Listing 6-35. Finding the RDF Types of the Output

xml.xpath('//sparql:binding[@name = "type"]/sparql:uri', 'sparql' =>
'http://www.w3.org/2005/sparql-results#').each do |type|
 puts type.content
end

 6. Save the script as a Ruby file and run it using the ruby command with the file

name as the parameter, such as ruby rdf-types.rb.

Oracle
Oracle is an industry-leading database. Oracle Spatial and Graph, Oracle’s RDF triplestore/quadstore
and ontology management platform, provides automatic partitioning and data compression, as well as
high-performance parallel and direct path loading with the Oracle Database and loading through Jena [10].

Oracle Spatial and Graph supports parallel SPARQL and SQL querying and RDF graph update with
SPARQL 1.1, SPARQL endpoint web services, SPARQL/Update, Java APIs with open source Apache Jena
and Sesame, SQL queries with embedded SPARQL graph patterns, as well as SQL insert and update. It also
supports ontology-assisted table data querying with SQL operators. Oracle Spatial and Graph features native
inferencing with parallel, incremental, and secure operation for scalable reasoning with RDFS, OWL 2,
SKOS, user-defined rules, and user-defined inference extensions. It has reasoned plug-ins for PelletDB and
TrOWL. The semantic indexing of Oracle Spatial and Graph is suitable for text mining and entity analytics
with integrated natural language processors. The database also supports R2RML direct mapping of relational
data to RDF triples. For spatial RDF data storage and querying, Oracle supports GeoSPARQL as well.

Oracle Spatial and Graph can be integrated with the Apache Jena and Sesame application development
environments, along with the leading Semantic Web tools for querying, visualization, and ontology
management.

Blazegraph
Blazegraph is the flagship graph database product of SYSTAP, the vendor of the graph database previously
known as Bigdata. It is a highly scalable, open source storage and computing platform [11]. Suitable for Big
Data applications and selected for the Wikidata Query Service, Blazegraph is specifically designed to
support big graphs, offering Semantic Web (RDF/SPARQL) and graph database (tinkerpop, blueprints,
vertex-centric) APIs. The robust, scalable, fault-tolerant, enterprise-class storage and query features are
combined with high availability, online backup, failover, and self-healing.

Blazegraph features an ultra-high performance RDF graph database that supports RDFS and OWL
Lite reasoning, as well as SPARQL 1.1 querying. Designed for huge amounts of information, the Blazegraph
RDF graph database can load 1 billion graph edges in less than an hour on a 15-node cluster. Blazegraph
can be implemented in single machine mode (Journal), in high-availability replication cluster mode
(HAJournalServer), or in horizontally sharded cluster mode (BlazegraphFederation). Blazegraph can execute
distributed jobs by reading data not only from a local file system but also from the Web or the Hadoop
Distributed File System (HDFS). The storage indexing is designed for very large datasets with up to 50 billion
edges on a single machine, but Blazegraph can scale even larger graphs when implemented in a horizontally
scaled architecture. Beyond high availability, the HAJournalServer also provides replication, online backup,
and horizontal query scaling. BlazegraphFederation features fast, scalable parallel indexed storage and
incremental cluster size growth. Both platforms support fully concurrent readers with snapshot isolation.

Blazegraph provides APIs for both Sesame and Blueprint. Blazegraph can be deployed as a server and
accessed via a lightweight REST API. Blazegraph is released with Java wrappers, including a Sesame
wrapper and a Blueprints wrapper. Blazegraph also has several enterprise deployment options, including a
high-availability architecture and a dynamic-sharding scale-out architecture for very large graphs.

http://www.w3.org/2005/sparql-results%23

Chapter 6 ■ Graph Databases

172

Summary
In this chapter, you learned about the power of graph databases and their advantages over mainstream
relational and NoSQL databases. You now understand the concept of triples and quads, and the two main
graph database types used for Semantic Web applications: the triplestores and the quadstores. You are now
familiar with the most popular graph databases and know how to install and configure AllegroGraph, Neo4j,
and 4Store and use their APIs for programmatic database access. You know the visualization options of
AllegroGraph and Neo4j for displaying, analyzing, and manipulating graph nodes and links.

The next chapter will show you how to query structured datasets with SPARQL, the primary query
language for RDF, and graph datastores, using proprietary query languages. You will learn how to write queries
to answer complex questions based on the knowledge represented in Linking Open Data (LOD) datasets.

References

 1. Cudré-Mauroux, P., Enchev, I., Fundatureanu, S., Groth, P., Haque, A., Harth, A.,
Keppmann, F. L., Miranker, D., Sequeda, J., Wylot, M. (2013) NoSQL Databases
for RDF: An Empirical Evaluation. Lecture Notes in Computer Science 2013,
8219:310–325, http://dx.doi.org/10.1007/978-3-642-41338-4_20.

 2. McColl, R., Ediger, D., Poovey, J., Campbell, D., Bader, D. A. (2014) A
performance evaluation of open source graph databases. In: Proceedings of the
first workshop on Parallel programming for analytics applications, pp 11–18,
New York, NY, http://dx.doi.org/10.1145/2567634.2567638.

 3. Heflin, J. (2015) SWAT Projects—the Lehigh University Benchmark (LUBM).
http://swat.cse.lehigh.edu/projects/lubm/. Accessed 8 April 2015.

 4. Franz, Inc. (2015) AllegroGraph RDFStore Web 3.0’s Database.
http://franz.com/agraph/allegrograph/. Accessed 10 April 2015.

 5. Franz, Inc. (2015) AllegroGraph Client Downloads. http://franz.com/agraph/
downloads/clients. Accessed 10 April 2015.

 6. Franz, Inc. (2015) Gruff: A Grapher-Based Triple-Store Browser for AllegroGraph.
http://franz.com/agraph/gruff/. Accessed 10 April 2015.

 7. Franz, Inc. (2015) http://franz.com/agraph/gruff/springview3.png.
Accessed 10 April 2015.

 8. Neo Technology Inc. (2015) Neo4j, the World’s Leading Graph Database.
http://neo4j.com. Accessed 10 April 2015.

 9. Garlik (2009) 4store—Scalable RDF storage. www.4store.org. Accessed 10 April 2015.

 10. Oracle (2015) Oracle Spatial and Graph. www.oracle.com/technetwork/database/
options/spatialandgraph/overview/index.html. Accessed 10 April 2015.

 11. SYSTAP LLC (2015) Blazegraph. www.blazegraph.com/bigdata. Accessed
10 April 2015.

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-41338-4_20
http://dx.doi.org/http://dx.doi.org/10.1145/2567634.2567638
http://swat.cse.lehigh.edu/projects/lubm/
http://franz.com/agraph/allegrograph/
http://franz.com/agraph/downloads/clients
http://franz.com/agraph/downloads/clients
http://franz.com/agraph/gruff/
http://franz.com/agraph/gruff/springview3.png
http://neo4j.com/
http://neo4j.com/
http://www.4store.org/
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
http://www.blazegraph.com/bigdata

173

Chapter 7

Querying

While machine-readable datasets are published primarily for software agents, automatic data extraction
is not always an option. Semantic Information Retrieval often involves users searching for the answer to a
complex question, based on the formally represented knowledge in a dataset or database. While Structured
Query Language (SQL) is used to query relational databases, querying graph databases and flat Resource
Description Framework (RDF) files can be done using the SPARQL Protocol and RDF Query Language
(SPARQL), the primary query language of RDF, which is much more powerful than SQL. SPARQL is a
standardized language capable of querying local and online RDF files, Linked Open Data (LOD) datasets,
and graph databases; constructing new RDF graphs, based on the information in the queried graphs; adding
new RDF statements to or deleting triples from a graph; inferring logical consequences; and federating
queries across different repositories. SPARQL can query multiple data sources at once, to dynamically merge
the smaller graphs into a large supergraph. While graph databases often have a proprietary query language
(often based on or extending SPARQL), most publicly available datasets have a SPARQL endpoint, from
which you can run SPARQL queries. As for the developers, many Semantic Web software tools provide a
SPARQL application programming interface (API) for programmatic access.

SPARQL: The Query Language for RDF
As mentioned before, the primary query language of RDF is SPARQL (pronounced “sparkle,” a recursive
acronym for SPARQL Protocol and RDF Query Language), which can be used to retrieve and manipulate
information stored in RDF or in any format that can be retrieved as RDF [1]. The output can be a result set or
an RDF graph.

Structure and Syntax
SPARQL uses a Notation3-like syntax. The URIs can be written in full between the less than (<) and greater
than (>) characters (see Listing 7-1) or abbreviated using the namespace mechanism with the PREFIX
keyword (see Listing 7-2).

Listing 7-1. Full URI Syntax in SPARQL

<http://example.com>

Listing 7-2. Using the Namespace Mechanism in SPARQL

PREFIX schema: <http://schema.org/>

http://schema.org/

Chapter 7 ■ Querying

174

After declaring the Schema.org namespace (http://schema.org/), for example, http://schema.org/
Person can be abbreviated as schema:Person. The default namespace of a SPARQL query can be set by
using the PREFIX directive with no prefix (e.g., PREFIX : <http://yourdefaultnamespace.com/>),
so that you can use empty prefixes in your queries, such as ?a :knows ?b. Similar to N3, the URI
http://www.w3.org/1999/02/22-rdf-syntax-ns#type or rdf:type can be abbreviated as a. Literals can
be written with or without a language tag and typing. Plain string literals are delimited by quotation marks,
such as "a plain literal", while plain literals including a language tag end in the @ sign and the standard
language code, such as "Wagen"@de (the word car in German). Typed literals are written analogously to
the typed literals in RDF, as, for example, "55"^^xsd:integer (55 is an integer number rather than two
meaningless characters in a string literal). Frequently used typed literals can be abbreviated such that
"true"^^xsd:boolean corresponds to true, while integer and decimal numbers are automatically assumed
to be of type xsd:integer or xsd:decimal, respectively. As a consequence, "5"^^xsd:integer can be
abbreviated as 5, while "13.1"^^xsd:decimal can be written as 13.1.

Each SPARQL query has a head and a body. The head of a SPARQL query is an expression for
constructing the answer for the query. The evaluation of a query against an RDF graph is performed by
checking whether the body is matched against the graph, which results in a set of bindings for the variables
in the body. These bindings are processed using relational operators such as projection and distinction to
generate the output for the query. The body can be a simple triple pattern expression or a complex RDF
graph pattern expression containing triple patterns, such as subject-predicate-object RDF triples, where
each subject, predicate, or object can be a variable. The body can also contain conjunctions, disjunctions,
optional parts, and variable value constraints (see Figure 7-1).

Figure 7-1. The structure of SPARQL queries

http://schema.org/
http://schema.org/Person
http://schema.org/Person
http://yourdefaultnamespace.com/
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Chapter 7 ■ Querying

175

The BASE directive, the namespace declarations (PREFIX), the dataset declaration (FROM, FROM NAMED),
and the query modifiers (GROUP BY, HAVING, ORDER BY, LIMIT, OFFSET, BINDINGS) are optional. The BASE
directive and the list of prefixes are used to abbreviate URIs. The BASE keyword defines the base URI against
which all relative URIs in the query are resolved. The list of prefixes can contain an arbitrary number of
PREFIX statements. The prefix abbreviation pref preceding the semicolon represents the prefix URI, which
can be used throughout the SPARQL query, making it unnecessary to repeat long URIs (standard namespace
mechanism). The FROM clause specifies the default graph to search. The FROM NAMED clause can be used to
specify a named graph to query. In some cases, as, for example, when the SPARQL endpoint used for the
query is dedicated to the LOD dataset from which you want to retrieve data, the FROM clause is optional and
can be safely omitted. The WHERE clause specifies the patterns used to extract the desired results. The query
modifiers, such as ORDER BY or LIMIT, if present, are in the last part of the query.

SPARQL 1.0 and SPARQL 1.1
The first version of SPARQL, SPARQL 1.0, was released in 2008 [2]. SPARQL 1.0 introduced the SPARQL
grammar, the SPARQL query syntax, the RDF term constraints, the graph patterns, the solution sequences
and solution modifiers, and the four core query types (SELECT, CONSTRUCT, ASK, and DESCRIBE). SPARQL 1.0
has been significantly extended with new features in SPARQL 1.1 [3].

For example, SPARQL 1.1 supports aggregation. To perform aggregation, first you have to segregate the
results into groups, based on the expression(s) in the GROUP BY clause. Then, you evaluate the projections
and aggregate functions in the SELECT clause, to get one result per group. Finally, the aggregated results have
to be filtered in a HAVING clause.

The SPARQL 1.1 Update language supports graph update operations (INSERT DATA, DELETE DATA,
DELETE/INSERT, LOAD, CLEAR) and graph management operations (CREATE, DROP, COPY, MOVE, and ADD) [4].
The INSERT DATA operation adds some triples written inline in the request into the graphstore. The DELETE
DATA operation is used to remove RDF triples, if the respective graphs in the graphstore contain them. The
DELETE/INSERT operation can be used to remove triples from, or add triples to, the graphstore, based on
bindings for a query pattern specified in a WHERE clause. The LOAD operation reads an RDF document from
an internationalized resource identifier (IRI) and inserts its triples into the specified graph in the graphstore.
The CLEAR operation removes all the triples in the specified graph(s) in the graphstore. The CREATE operation
creates a new graph in the graphstore. The DROP operation removes a graph and all of its contents. The COPY
operation modifies a graph to contain a copy of another graph. In other words, it inserts all data from an
input graph into a destination graph. The MOVE operation moves all of the data from one graph into another
graph. The ADD operation reproduces all data from one graph into another graph. It is also possible to update
RDF graphs through a protocol known as the SPARQL 1.1 Uniform HTTP Protocol [5].

The SPARQL 1.1 Service Description specification [6] provides a method for discovering information
about SPARQL services, such as the supported extension functions, and details of the default dataset. It also
has a vocabulary for describing SPARQL services, which has the namespace IRI http://www.w3.org/ns/
sparql-service-description# and the prefix sd. In Semantic Web applications, it is not always possible to
explicitly write graph structures for graph pattern matching, and that is why SPARQL 1.1 defines semantic
entailment relations called entailment regimes [7]. These standard semantic entailment relations can
be used in applications that rely on RDF statements inferred from explicitly given assertions, so that the
graph pattern matching is performed using semantic entailment relations instead of explicitly given graph
structures. SPARQL 1.1 supports additional serialization formats for the query output, including JSON [8],
CSV, and TSV [9], beyond the formats supported by SPARQL 1.0, such as XML [10]. Beyond the four core
SPARQL query types introduced in SPARQL 1.0, SPARQL 1.1 also supports reasoning queries and federated
queries, as you will see in the next section.

http://www.w3.org/ns/sparql-service-description
http://www.w3.org/ns/sparql-service-description

Chapter 7 ■ Querying

176

Query Types
The optional namespace declarations are followed by the query. The four core query types in SPARQL are the
SELECT, the ASK, the CONSTRUCT, and the DESCRIBE queries. SELECT queries provide a value selection for the
variables matching the query patterns. The yes/no queries (ASK queries) provide a Boolean value. CONSTRUCT
queries create new RDF data from the above values, as well as resource descriptions. DESCRIBE queries return a
new RDF graph containing matched resources. The most frequently used SPARQL queries are the SELECT queries.

Beyond the basic query types, SPARQL 1.1 also supports reasoning through REASON queries and executes
queries distributed over different SPARQL endpoints (federated queries), using the SERVICE keyword [11].

Pattern Matching
The query output result clause is followed by the pattern matching. Two different pattern types can be used
in SPARQL queries: the triple patterns and the graph patterns. The SPARQL triple patterns are similar to
the subject-predicate-object triples of RDF, but they can also include variables. This makes it possible to
select RDF triples from an RDF graph that match your criteria described in the pattern. Any or all subject,
predicate, or object values can be variables, all of which are identified by a question mark1 preceding the
string, such as ?name. To match an exact RDF triple, you have to write the subject-predicate-object names
followed by a ., such as shown in Listing 7-3.

Listing 7-3. Exact RDF Triple Matching in SPARQL

ex:Person schema:familyName "Sikos" .

To match one variable, you have to substitute the appropriate triple component (the subject, the
predicate, or the object) with a variable (see Listing 7-4).

Listing 7-4. Matching One Variable in SPARQL

?person schema:familyName "Sikos" .

A variable is not limited to any part of the triple pattern. You can substitute any triple components
(the subject, the predicate, or the object) with variables (see Listing 7-5).

Listing 7-5. Matching Multiple Variables in SPARQL

?person schema:familyName ?name .

Even all components can be variables. For instance, the triple pattern ?subject ?object ?name will
match all triples in your RDF graph. Sometimes, much more complex selection rules are required than
what you can express in a single triple pattern. A collection of triple patterns is called a graph pattern and is
delimited by curly braces (see Listing 7-6).

Listing 7-6. A Graph Pattern in SPARQL

{
 ?who schema:name ?name.
 ?who iswc:research_topic ?research_topic.
 ?who foaf:knows ?others.
}

1Alternatively, the dollar sign ($) can be used.

Chapter 7 ■ Querying

177

Graph patterns can be used for matching optional parts, creating a union of patterns, nesting, filtering
values of possible matchings, and choosing the data source to be matched by the pattern. As a result, a graph
pattern will find all resources with all the desired properties written in the pattern. Graph patterns make it
possible to write complex queries, because each returned resource can be substituted into all occurrences of
the variable, in case the same variable is used in multiple triple patterns. This leads to a truly sophisticated
selection unknown to the conventional Web, whereby you cannot use multiple filtering in searches beyond
some basic operators, such as AND, OR, or XOR. However, SPARQL supports filter functions too, including
logical (!, &&, ||, =, !=, <, <=, >, and >=) and mathematical operations (+, -, *, /), as well as comparisons
(=, !=, >, <). SPARQL has built-in tests for checking web addresses, blank graph nodes, literals, and bounds
(isURI, isBlank, isLiteral, bound), accessors such as str, datatype, and lang (see Listing 7-7), and other
functions, such as sameTerm, langMatches, and regex, for checking same terms, language matching, and
writing regular expressions.

Listing 7-7. Language Checking in SPARQL

lang(?title)="en"

Beyond the SPARQL 1.0 operators and functions, SPARQL 1.1 also supports existence-checking
functions (EXISTS, NOT EXISTS), both of which can be used as part of a graph pattern (such as in Listing 7-8,
to find persons who do not have an e-mail address) as well as in FILTER expressions.

Listing 7-8. Existence Checking in a Graph Pattern

SELECT ?person
WHERE
{
 ?person rdf:type foaf:Person .
 NOT EXISTS { ?person foaf:mbox ?email }
}

SPARQL 1.1 also has additional functions, such as COUNT, SUM, AVG, MIN, MAX, SAMPLE, and GROUP_CONCAT.
Furthermore, SPARQL 1.1 supports property paths that allow triple patterns to match arbitrary-length paths
through a graph. Predicates are combined with operators similar to regular expressions (see Table 7-1).

Table 7-1. Property Path Constructs in SPARQL 1.1

Construct Meaning

path1/path2 Forwards path (path1 followed by path2)

^path1 Backwards path (object to subject)

path1|path2 Either path1 or path2

path1* path1, repeated zero or more times

path1+ path1, repeated one or more times

path1? path1, optionally

path1{m,n} At least m and no more than n occurrences of path1

path1{n} Exactly n occurrences of path1

path1{m,} At least m occurrences of path1

path1{,n} At most n occurrences of path1

Chapter 7 ■ Querying

178

Solution Modifiers
The last optional part of the SPARQL queries are the solution modifiers. Once the output of the pattern has
been computed (in the form of a table of values of variables), solution modifiers allow you to modify these
values, applying standard classical operators such as projection,2 DISTINCT (removes duplicates), ORDER
(sorting mechanism), and LIMIT (sets the maximum number of results returned).

SELECT Queries
The most common SPARQL queries are the SELECT queries. The SELECT clause specifies data items
(variable bindings) to be returned by the SPARQL query. Even through LOD datasets can contain thousands
or even millions of RDF triples, you can select those items that meet your criteria. For example, from a
writer’s dataset, you can list those writers who lived in the 20th century or those who are American. SPARQL
supports joker characters, so you can select all variables mentioned in the query, using SELECT *. If you want
to eliminate potential duplicates, use the DISTINCT keyword after SELECT, such as SELECT DISTINCT ?var.
SELECT queries are often used to extract triples through specific variables and expressions. For example,
assume we need a query to extract all names mentioned in someone’s FOAF file declared using foaf:name.
The abbreviation of the namespace requires a PREFIX declaration. The query is a SELECT query, which uses
a variable for the names (?name), and a WHERE clause with a triple pattern to find all subjects (?person) and
objects (?name) linked with the foaf:name predicate (see Listing 7-9).

Listing 7-9. A SELECT Query to Find Subjects and Objects Linked with a Declared Predicate

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
 ?person foaf:name ?name .
}

If we need all those people from an FOAF file who have an e-mail address specified, we have to declare
two predicates, one for the name (foaf:name) and another for the e-mail address (foaf:mbox), while all the
subjects (?person) and objects (?name, ?email) are variables (see Listing 7-10).

Listing 7-10. A SELECT Query to Find Subjects and Objects Linked with Two Different Predicates

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
 ?person foaf:name ?name .
 ?person foaf:mbox ?email .
}

The output will contain all the names and e-mail addresses.

2Only those expressions that consist of aggregates and constants can be projected in SPARQL query levels using
aggregates. The only exception is using GROUP BY with one or more simple expressions consisting of one variable only,
which variable can be projected from that level.

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/

Chapter 7 ■ Querying

179

 ■ Note if the persons are described using Schema.org/Person, the names can be expressed using the
givenName and familyName properties, and the e-mail address using the email property, while the namespace
has to be modified to http://schema.org/.

The results of the SELECT queries are typically displayed as a table of values (in HTML, XML, or JSON).

Filtering
If we have to extract all those landlocked countries from DBpedia that have a population larger than 5
million, we need the FILTER keyword in the WHERE clause (see Listing 7-11).

Listing 7-11. A SELECT Query with a Filter to Extract All Landlocked Countries from DBpedia with More
Than 5 Million Inhabitants

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX type: <http://dbpedia.org/class/yago/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT ?country_name ?population
WHERE {
 ?country a type:LandlockedCountries ;
 rdfs:label ?country_name ;
 prop:populationEstimate ?population .
 FILTER (?population > 5000000) .
}

The Boolean condition(s) provided will filter out the unwanted query results, in this case, all those
landlocked countries that have fewer than 5 million inhabitants.

 ■ Note the preceding example uses the ; shortcut to separate triple patterns sharing the same subject
?country.

ASK Queries
If you need the answer to a yes/no question, you can use the ASK query in SPARQL. For instance, you can
query DBpedia to find out whether the Amazon is longer than the Nile (see Listing 7-12).

Listing 7-12. An ASK Query in SPARQL

PREFIX prop: <http://dbpedia.org/property/>
ASK
{
 <http://dbpedia.org/resource/Amazon_River> prop:length ?amazonLength .
 <http://dbpedia.org/resource/Nile> prop:length ?nileLength .
 FILTER(?amazon > ?nile) .
}

The result of ASK queries is either true or false. In our example, the output is true.

http://schema.org/
http://www.w3.org/2000/01/rdf-schema
http://dbpedia.org/class/yago/
http://dbpedia.org/property/
http://dbpedia.org/property/
http://dbpedia.org/resource/Amazon_River
http://dbpedia.org/resource/Nile

Chapter 7 ■ Querying

180

CONSTRUCT Queries
SPARQL can be used not only to retrieve information from datasets but also to create new graphs, or to
reshape existing RDF graphs by adding new triples. Such queries are called CONSTRUCT queries. Assume
you want to extend your family tree description by adding a grandmother. To do so, you have to identify the
gender and parent-child relationships of the other family members (see Listing 7-13).

Listing 7-13. Preparing a CONSTRUCT Query

:Ben :hasParent :Christina ;
 :gender :male .
:Luke :hasParent :Linda ;
 :gender :male .
:Christina :hasParent :Anna ;
 :gender :female .
:Linda :hasParent :Anna ;
 :gender :female .
:Anna :gender :female .

The next step is to run a CONSTRUCT query to create new triples based on the preceding ones, to specify
who is whose grandmother (see Listing 7-14).

Listing 7-14. A CONSTRUCT Query

PREFIX : <http://samplefamilytreeonto.com/>

CONSTRUCT { ?p :hasGrandmother ?g . }

WHERE {?p :hasParent ?parent .
 ?parent :hasParent ?g .
 ?g :gender :female .}

The newly constructed triples describe the relationship between the two grandchildren and their
grandmother (see Listing 7-15).

Listing 7-15. A CONSTRUCT Query Generates New Triples

:Ben
 :hasGrandmother :Anna .

:Luke
 :hasGrandmother :Anna .

DESCRIBE Queries
The DESCRIBE queries describe the resources matched by the given variables. For example, if you run a
DESCRIBE query on a dataset of countries (see Listing 7-16), the output will be all the triples related to the
queried country (see Listing 7-17).

Listing 7-16. A DESCRIBE Query

DESCRIBE ?country

http://samplefamilytreeonto.com/

Chapter 7 ■ Querying

181

Listing 7-17. The Output of a DESCRIBE Query

ex:Hungary a geo:Country;
ex:continent geo:Europe;
ex:flag <http://yourwebsite.com/img/flag-hun.png> ;
…

Federated Queries
In SPARQL 1.1, queries can issue a query on another SPARQL endpoint during query execution. These queries
are called federated queries, in which the remote SPARQL endpoint is declared by the SERVICE keyword, which
sends the corresponding part of the query to the remote SPARQL endpoint. For example, if the remote SPARQL
endpoint is DBpedia’s endpoint, a federated query can be written as shown in Listing 7-18.

Listing 7-18. A Federated Query in SPARQL 1.1

SELECT DISTINCT ?person
WHERE {
 SERVICE <http://dbpedia.org/sparql> { ?person a <http://schema.org/Person> . }
} LIMIT 10

A sample output of this query is shown in Listing 7-19, identifying ten persons from DBpedia.

Listing 7-19. Federated Query Result Example

| person |
===
| <http://dbpedia.org/resource/%C3%81ngel_Gim%C3%A9nez> |
| <http://dbpedia.org/resource/Aaron_Lines> |
| <http://dbpedia.org/resource/Abel_Lafleur> |
| <http://dbpedia.org/resource/Ada_Maimon> |
| <http://dbpedia.org/resource/Adam_Krikorian> |
| <http://dbpedia.org/resource/Albert_Constable> |
| <http://dbpedia.org/resource/Alex_Reid_(actress)> |
| <http://dbpedia.org/resource/Alex_Reid_(art_dealer)> |
| <http://dbpedia.org/resource/Alex_Reid_(fighter)> |
<http://dbpedia.org/resource/Alex_Reid_(footballer)>

REASON Queries
In SPARQL 1.1, reasoning can be performed by executing a SPARQL query with the REASON keyword,
followed by a rule set in an ontology or declarative language (declared as a URL to a rule delimited by <> or
inline N3 rules between curly braces), and a combination of an OVER and a WHERE clause to define the triples
for reasoning.

For example, to list all the acquaintances of Leslie Sikos from two different datasets, you can write a
federated query with reasoning, as shown in Listing 7-20, regardless of whether Leslie Sikos listed them as
acquaintances or other people stated that they know him.

http://yourwebsite.com/img/flag-hun.png
http://dbpedia.org/sparql
http://schema.org/Person
http://dbpedia.org/resource/%C3%81ngel_Gim%C3%A9nez
http://dbpedia.org/resource/Aaron_Lines
http://dbpedia.org/resource/Abel_Lafleur
http://dbpedia.org/resource/Ada_Maimon
http://dbpedia.org/resource/Adam_Krikorian
http://dbpedia.org/resource/Albert_Constable
http://dbpedia.org/resource/Alex_Reid_(actress
http://dbpedia.org/resource/Alex_Reid_(art_dealer
http://dbpedia.org/resource/Alex_Reid_(fighter
http://dbpedia.org/resource/Alex_Reid_(footballer

Chapter 7 ■ Querying

182

Listing 7-20. Find Acquaintances Regardless of the Relationship Direction

REASON {
 { ?x foaf:knows ?y } => { ?y foaf:knows ?x }
}
OVER {
 :LeslieSikos foaf:knows ?person .
}
WHERE {
 {
 SERVICE <http://examplegraph1.com/sparql> { :LeslieSikos foaf:knows ?person . }
 } UNION {
 SERVICE <http://examplegraph2.com/sparql> { :LeslieSikos foaf:knows ?person . }
 }
}

URL Encoding of SPARQL Queries
In order to provide the option for automated processes to make SPARQL queries, SPARQL can be used
over HTTP, using the SPARQL Protocol (abbreviated by the P in SPARQL). SPARQL endpoints can handle
a SPARQL query with parameters of an HTTP GET or POST request. The query is URL-encoded to escape
special characters and create the query string as the value of the query variable. The parameters are defined
in the standardized SPARQL Protocol [12]. As an example, take a look at the default DBpedia SPARQL
endpoint (http://dbpedia.org/sparql/) query shown in Listing 7-21.

Listing 7-21. A URL-Encoded SPARQL Query

http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=select+distinct+
%3FConcept+where+{[]+a+%3FConcept}+LIMIT+100&format=text%2Fhtml&timeout=30000&debug=on

 ■ Note the second parameter (default-graph-uri) is DBpedia’s proprietary implementation, which extends
the standard urL-encoded SparQL query.

Graph Update Operations
In SPARQL 1.1, new RDF triples can be added to a graph, using the INSERT DATA operation. If the destination
graph does not exist, it is created. As an example, assume there are two RDF statements about a book in a
graph, title and format (see Listing 7-22).

Listing 7-22. Data Before the INSERT DATA Operation

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix schema: <http://schema.org/> .

<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/> dc:title
 "Mastering Structured Data on the Semantic Web" .
<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/>
 schema:bookFormat schema:Paperback .

http://examplegraph1.com/sparql
http://examplegraph2.com/sparql
http://dbpedia.org/sparql/
http://dbpedia.org/sparql?default-graph-uri=http%253A%252F%252Fdbpedia.org%26query=select%2bdistinct%2b%253FConcept%2bwhere%2b%7b%5b%5d%2ba%2b%253FConcept%7d%2bLIMIT%2b100%26format=text%252Fhtml%26timeout=30000%26debug=on
http://dbpedia.org/sparql?default-graph-uri=http%253A%252F%252Fdbpedia.org%26query=select%2bdistinct%2b%253FConcept%2bwhere%2b%7b%5b%5d%2ba%2b%253FConcept%7d%2bLIMIT%2b100%26format=text%252Fhtml%26timeout=30000%26debug=on
http://purl.org/dc/elements/1.1/
http://schema.org/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/

Chapter 7 ■ Querying

183

To add two new triples to this graph about the author and the language the book was written in, you can
use the INSERT DATA operation, as shown in Listing 7-23. Because the subject is the same for both triples, it
has to be declared just once in a semicolon-separated list.

Listing 7-23. Adding New Triples to a Graph, Using the INSERT DATA Operation

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX schema: <http://schema.org/>

INSERT DATA
{
 <http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/> dc:creator
 "Leslie Sikos" ;
 schema:inLanguage "English" .
}

As a result, the graph will contain four triples about the book, as demonstrated in Listing 7-24.

Listing 7-24. Data After the INSERT DATA Operation

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix schema: <http://schema.org/> .

<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/> dc:title
 "Mastering Structured Data on the Semantic Web" .
<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/>
 schema:bookFormat schema:Paperback .
<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/> dc:creator
 "Leslie Sikos" .
<http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/> dc:inLanguage
 "English" .

SPARQL 1.1 also supports the removal of RDF triples, using the DELETE DATA operation. For example,
to remove the book format and the language of the book from Listing 7-24, you declare the prefixes, use the
DELETE DATA operation, and list the statements to remove (see Listing 7-25).

Listing 7-25. Removing Triples from a Graph, Using the DELETE DATA Operation

PREFIX schema: <http://schema.org/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

DELETE DATA
{
 <http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/>
 schema:bookFormat schema:Paperback ; dc:inLanguage "English" .
}

Graph Management Operations
In SPARQL 1.1, RDF statements can be copies from the default graph to a named graph using the COPY
operation. As an example, assume we have the triples shown in Listing 7-26.

http://purl.org/dc/elements/1.1/
http://schema.org/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://purl.org/dc/elements/1.1/
http://schema.org/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/
http://schema.org/
http://purl.org/dc/elements/1.1/
http://www.lesliesikos.com/mastering-structured-data-on-the-semantic-web/

Chapter 7 ■ Querying

184

Listing 7-26. Data Before Copying

Default Graph

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Leslie> a foaf:Person .
<http://examplegraph.com/Leslie> foaf:givenName "Leslie" .
<http://examplegraph.com/Leslie> foaf:mbox <mailto:leslie@examplegraph.com> .

Graph http://examplenamedgraph.com

<http://examplenamedgraph.com/Christina> a foaf:Person .
<http://examplenamedgraph.com/Christina> foaf:givenName "Christina" .

All triples of the default graph can be copied to the named graph with the COPY operation, as shown in
Listing 7-27.

Listing 7-27. A COPY DEFAULT TO Operation SPARQL 1.1

COPY DEFAULT TO <http:/examplenamedgraph.com>

The result of the COPY DEFAULT TO operation is shown in Listing 7-28.

Listing 7-28. Data After the COPY DEFAULT TO Operation

Default Graph

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Leslie> a foaf:Person .
<http://examplegraph.com/Leslie> foaf:givenName "Leslie" .
<http://examplegraph.com/Leslie> foaf:mbox <mailto:leslie@examplegraph.com> .

Graph http://examplenamedgraph.com

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Leslie> a foaf:Person .
<http://examplegraph.com/Leslie> foaf:givenName "Leslie" .
<http://examplegraph.com/Leslie> foaf:mbox <mailto:leslie@examplegraph.com> .

 ■ Note the original content of the named graph is lost by the COPY operation.

Similarly, RDF statements can be moved from the default graph to a named graph, using the MOVE
operation. For example, assume you have the data shown in Listing 7-29.

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://examplegraph.com/Leslie

Chapter 7 ■ Querying

185

Listing 7-29. Data Before the MOVE DEFAULT TO Operation

Default Graph

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Nathan> a foaf:Person .
<http://examplegraph.com/Nathan> foaf:givenName "Nathan" .
<http://examplegraph.com/Nathan> foaf:mbox <mailto:nathan@examplegraph.com> .

Graph http://examplenamedgraph.com

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplenamedgraph.com/Peter> a foaf:Person .
<http://examplenamedgraph.com/Peter> foaf:givenName "Peter" .

To move all RDF statements from the default graph into a named graph, you can use the MOVE operation,
as shown in Listing 7-30.

Listing 7-30. A MOVE DEFAULT TO Operation

MOVE DEFAULT TO http://examplenamedgraph.com

 ■ Note the original content of the named graph is lost by the MOVE operation (see Listing 7-31).

Listing 7-31. Data After the MOVE DEFAULT TO Operation

Default Graph

Graph http://examplenamedgraph.com

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Nathan> a foaf:Person .
<http://examplegraph.com/Nathan> foaf:givenName "Nathan" .
<http://examplegraph.com/Nathan> foaf:mbox <mailto:nathan@examplegraph.com> .

RDF statements can be inserted from an input graph to a destination graph, using the ADD operation.
Listing 7-32 shows sample RDF triples to be added from the default graph to a named graph.

Listing 7-32. Data Before the ADD Operation

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Michael> a foaf:Person .
<http://examplegraph.com/Michael> foaf:givenName "Michael" .
<http://examplegraph.com/Michael> foaf:mbox <mailto:mike@examplegraph.com> .

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://examplenamedgraph.com/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/

Chapter 7 ■ Querying

186

Graph http://examplenamedgraph.com
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplenamedgraph.com/Jemma> a foaf:Person .

The ADD operation in Listing 7-33 performs the task.

Listing 7-33. An ADD Operation in SPARQL 1.1

ADD DEFAULT TO <http://examplenamedgraph.com>

As a result, the default graph is merged to the named graph (see Listing 7-34).

Listing 7-34. The Result of an ADD Operation

Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplegraph.com/Michael> a foaf:Person .
<http://examplegraph.com/Michael> foaf:givenName "Michael" .
<http://examplegraph.com/Michael> foaf:mbox <mailto:mike@examplegraph.com> .

Graph http://examplenamedgraph.com
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://examplenamedgraph.com/Jemma> a foaf:Person .

<http://examplegraph.com/Michael> a foaf:Person .
<http://examplegraph.com/Michael> foaf:givenName "Michael" .
<http://examplegraph.com/Michael> foaf:mbox <mailto:mike@example> .

Proprietary Query Engines and Query Languages
While most Semantic Web platforms and graph databases have SPARQL support through a SPARQL query
engine such as Apache Jena’s ARQ or AllegroGraph’s sparql-1.1, some vendors provide their own query
language. Many of these query languages are partially compatible with, or similar to, SPARQL but are often
incompatible with other Semantic Web software products beyond the ones they are released with.

SeRQL: The Sesame RDF Query Language
Sesame supports not only SPARQL but also SeRQL (pronounced “circle”), the Sesame RDF Query
Language [13]. Regardless of whether you have a connection to a local or remote Sesame repository, you
can perform a SeRQL query on a SesameRepository object, retrieve the result as a table, and display the
values (see Listing 7-35).

Listing 7-35. A SeRQL Query, Using the Sesame Repository API

String query = "SELECT * FROM {x} p {y}";
QueryResultsTable resultsTable = myRepository.performTableQuery(QueryLanguage.SERQL, query);

int rowCount = resultsTable.getRowCount();
int columnCount = resultsTable.getColumnCount();

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://examplenamedgraph.com/Jemma

Chapter 7 ■ Querying

187

for (int row = 0; row < rowCount; row++) {
 for (int column = 0; column < columnCount; column++) {
 Value value = resultsTable.getValue(row, column);

 if (value != null) {
 System.out.print(value.toString());
 }
 else {
 System.out.print("null");
 }

 System.out.print("\t");
 }

 System.out.println();
}

 ■ Note Some repository operations require elevated privileges, so you might have to log on to the
SesameService before obtaining the repository object. For instance, if you do not have read access to a
repository, you will get an AccessDeniedException.

If you have to change a lot of RDF triples in your repository, you can use the Sesame Graph API in
combination with SeRQL CONSTRUCT queries. For instance, if we have a repository that describes the
manuscript of a book with many triples, and the book has been published since the last update of the
repository, there are many obsolete property values (draft) for the PublicationStatus property from the
Publishing Status Ontology (PSO) that should be changed to published. Rather than changing the property
values manually for each affected triple, we derive the new triples from the existing PublicationStatus
statements, changing the object of these statements from draft to published (see Listing 7-36).

Listing 7-36. Changing Multiple Property Values, Using the Sesame Graph API

myRepository.addGraph(QueryLanguage.SERQL,
"CONSTRUCT {X} <http://purl.org/spar/pso/PublicationStatus> {\"published\"} " +
"FROM {X} <http://purl.org/spar/pso/PublicationStatus> {\"draft\"}");

Now all the triples are updated with the new property value; however, these triples are duplicated.
The original triples with the obsolete property value have to be removed from the graph. To do so, we select
all PublicationStatus triples with the object draft (the old value) and remove these triples from the
repository (see Listing 7-37).

Listing 7-37. Removing All Triples with the Obsolete Property Value

myRepository.removeGraph(QueryLanguage.SERQL,
"CONSTRUCT * " + "FROM {X} <http://purl.org/spar/pso/PublicationStatus> {\"draft\"}";

 ■ Note this workaround is needed only because SerQL does not support update operations. another option
to update a Sesame repository is using the SaiL api.

http://purl.org/spar/pso/PublicationStatus
http://purl.org/spar/pso/PublicationStatus
http://purl.org/spar/pso/PublicationStatus

Chapter 7 ■ Querying

188

CQL: Neo4j’s Query Language
Neo4j has a proprietary query language called Cypher Query Language (CQL), a declarative pattern-
matching language with an SQL-like, very simple, and human-readable syntax [14]. The most frequently
used Neo4j CQL commands and clauses are CREATE (to create nodes, relationships, and properties), MATCH
(to retrieve data about nodes, relationships, and properties), RETURN (to return query results), WHERE
(to provide conditions to filter retrieval data), DELETE (to delete nodes and relationships), REMOVE (to delete
properties of nodes and relationships), ORDER BY (to sort retrieval data), and SET (to add or update labels).
The most frequently used Neo4j CQL functions are String (to work with String literals), Aggregation
(to perform some aggregation operations on CQL Query results), and Relationship (to get details of
Relationships such as startnode and endnode). The data types of Neo4j CQL are similar to the Java
programming language. The datatypes are used to define properties of nodes and relationships, such as
boolean, byte, short, int, long, float, double, char, and string.

The MATCH command identifies a node through the node name and the node label. The MATCH command
expects the node name and the label name as the arguments in curly brackets separated by a colon
(see Listing 7-38).

Listing 7-38. MATCH Command Syntax

MATCH
(
 node-name:label-name
)

The RETURN clause is used in CQL, with the MATCH command, to retrieve data about nodes, relationships,
and properties from a Neo4j graph database. The RETURN clause can retrieve some or all properties of a node
and retrieve some or all properties of nodes and associated relationships. The arguments of the RETURN
clause are the node name(s) and property name(s) (see Listing 7-39).

Listing 7-39. RETURN Clause Syntax

RETURN
 node-name.property1-name, … node-name. propertyn-name

For example, to retrieve all property data of the Fac node representing a university’s faculties, you can
combine the MATCH command with the RETURN clause, as shown in Listing 7-40.

Listing 7-40. Retrieving All Faculty Data

MATCH (fac: Fac)
RETURN fac.facno,fac.fname,fac.location

The number of rows returned by the command will be identical to the number of faculties of the
university stored in the database.

Similar to SPARQL, Neo4j’s CQL uses the WHERE clause to get the desired data (see Listing 7-41). Rather
than using the WHERE clause with the SELECT command, however, in CQL, you use it with SELECT’s CQL
equivalent, MATCH.

Listing 7-41. The Syntax of the WHERE Clause in CQL

WHERE condition boolean_operator additional_condition

Chapter 7 ■ Querying

189

The first argument provides the condition, consisting of a property name, a comparison operator, and
a value. The property name is the name of a graph node or the name of a relationship. The comparison
operator is one of = (equal to), <> (not equal to), < (less than), > (greater than), <= (less than or equal to), or
>= (greater than or equal to). The value is a literal value, such as a number, a string literal, etc. The second
and third arguments (the Boolean operator and multiple conditions) are optional. The Boolean operator can
be AND, OR, NOT, or XOR.

To sort rows in ascending order or descending order, use the ORDER BY clause with the MATCH command
(similar to SPARQL’s ORDER BY on the SELECT queries). The ORDER BY clause contains the list of properties
used in sorting, optionally followed by the DESC keyword (when sorting in descending order).

Identify Datasets to Query
To access data from LOD datasets, you can perform a semantic search, browse dataset catalogs, or run
queries directly from a dedicated query interface. For searching machine-readable data, you can use
semantic search engines such as Sindice (http://sindice.com) or FactForge (http://factforge.net).
Third-party data marketplaces such as http://datamarket.com can find open data from secondary data
sources and consume or acquire data for data seekers.

To retrieve information from datasets, you can run SPARQL queries on purpose-built access points
called SPARQL endpoints (as mentioned earlier) that usually provide a web interface and, optionally, an API.
The automatic discovery of the SPARQL endpoint for a given resource is not trivial; however, dataset catalogs
such as http://datahub.io and http://dataportals.org can be queried for a SPARQL endpoint with a
given URI. Because a prerequisite for all LOD datasets to be added to the LOD Cloud Diagram is to provide a
dedicated SPARQL endpoint, Datahub registries often include a SPARQL endpoint URL.

Another approach for identifying SPARQL endpoints is using the VoID standardized vocabulary, which
is specifically designed for describing datasets. In VoID files, the descriptions are provided as URLs, which
can be canonically derived from a URI.

Public SPARQL Endpoints
Many SPARQL endpoints are publicly available and typically have a default LOD dataset set for querying.
Your SPARQL queries will run on the default graph of the endpoint, unless you refer to named graphs in your
queries. For example, DBpedia’s SPARQL endpoint is http://dbpedia.org/sparql/, which runs queries on
DBpedia by default.

 ■ Note DBpedia offers two other interfaces to its SparQL endpoint. the first is called SPARQL Explorer
and is available at http://dbpedia.org/snorql/. the second is the DBpedia Query Builder available at
http://querybuilder.dbpedia.org, which can be used to build your own queries. Because the dataset is the
same in each case, the SparQL query results are identical on all three interfaces.

SPARQL endpoints dedicated to a particular dataset can be domain-specific. Since the Web of Data is
highly distributed, there is no SPARQL endpoint to query the entire Semantic Web (like Google searches on
the conventional Web). However, the most frequently used public SPARQL endpoints can query extremely
large datasets containing millions or even billions of triples, which are suitable to answer complex questions
(see Table 7-2).

http://sindice.com/
http://factforge.net/
http://datamarket.com/
http://datahub.io/
http://dataportals.org/
http://dbpedia.org/sparql/
http://dbpedia.org/snorql/
http://querybuilder.dbpedia.org/

Chapter 7 ■ Querying

190

Setting Up Your Own SPARQL Endpoint
If you publish your LOD dataset on your server, you might want to set up a dedicated SPARQL endpoint to
provide easy access to it. There are a couple of free, open source, and commercial products available, not all
of which have a full SPARQL 1.1 support, but most have a complete SPARQL 1.0 support. Some products are
standalone SPARQL endpoints that you can install on your web server, while others are more comprehensive
products that provide a SPARQL endpoint as a feature. The most widely deployed SPARQL endpoints are
OpenLink Virtuoso, Fuseki, D2R, 4store SPARQL Server, and PublishMyData.

OpenLink Virtuoso
OpenLink Virtuoso is by far the most widely deployed SPARQL endpoint. Among others, Virtuoso is
implemented as the SPARQL endpoint for DBpedia and DBpedia Live, LinkedGeoData, Sindice, the BBC,
BioGateway, data.gov, CKAN, and the LOD Cloud Cache.

The Virtuoso SPARQL Query Editor provides the default LOD dataset associated with a particular
installation, which can be overridden when querying named graphs. For example, the default dataset of the
DBpedia SPARQL endpoint is http://dbpedia.org, as shown in Figure 7-2. This is obviously different in
each installation of Virtuoso, but the interface is usually very similar, if not identical.

The Query Text is a multiline text area in which you can write your SPARQL queries. This textarea
usually contains a skeleton query, which you can easily modify by overwriting, removing, or adding SPARQL
code. Under the textarea, you can select the output format, optionally the maximum time after which the
query execution will stop, and the rigorous check of the query. Some installations offer a set of sample
queries as a drop-down list. You typically have two buttons as well: one to run the query you wrote
(Run Query) and another to clear the textarea (Reset).

The output format drop-down might vary somewhat from installation to installation, but generally, you
have options such as HTML, Spreadsheet, XML, JSON, JavaScript, Turtle, RDF/XML, N-Triples, CSV, TSV,
and CXML. Some of the output formats might not be available, due to configuration or missing components.
For example, the CXML data exchange format suitable for faceted view, which can be displayed by programs
such as Microsoft Pivot, require the Virtuoso Universal Server (Virtuoso Open Source does not contain some
required functions), the ImageMagick plug-in, the QRcode plug-in (before version 0.6; after version 0.6 it is
optional), and the sparql_cxml VAD package to be installed, in order to get this option.

Table 7-2. Popular Public SPARQL Endpoints

Service/Dataset SPARQL Endpoint

Datahub/CKAN http://semantic.ckan.net/sparql

DBpedia http://dbpedia.org/sparql/

GeoNames http://geosparql.org/

Linked Open Commerce http://linkedopencommerce.com/sparql/

Linked Open Data Cloud http://lod.openlinksw.com/sparql

LinkedGeoData http://linkedgeodata.org/sparql

Sindice http://sparql.sindice.com/

URIBurner http://uriburner.com/sparql

http://dbpedia.org/
http://semantic.ckan.net/sparql
http://dbpedia.org/sparql/
http://geosparql.org/
http://linkedopencommerce.com/sparql/
http://lod.openlinksw.com/sparql
http://linkedgeodata.org/sparql
http://sparql.sindice.com/
http://uriburner.com/sparql

Chapter 7 ■ Querying

191

To install the OpenLink Virtuoso SPARQL Endpoint, follow these steps:

 1. Download Virtuoso Open Source from http://virtuoso.openlinksw.com/
dataspace/doc/dav/wiki/Main/VOSDownload or the commercial edition of
Virtuoso from http://virtuoso.openlinksw.com/download/.

 2. For the commercial Windows Open Source Edition, run the installer; otherwise,
create a build.

 3. Verify the installation and the configuration of the environmental variables by
running the virtuoso -? Command.

 4. Start the Virtuoso server with virtuoso-start.sh.

 5. Verify the connection to the Virtuoso Server, using isql localhost (if using the
default DB settings), isql localhost:1112 (assuming demo database), or visit
http://<virtuoso-server-host-name>:[port]/conductor in your browser

 6. Open the SPARQL endpoint at http://<virtuoso-server-host-name>:
[port]/sparql.

 7. Run a test query such as SELECT DISTINCT * WHERE {?s ?p ?o} LIMIT 50.

Figure 7-2. A Virtuoso SPARQL endpoint

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSDownload
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSDownload
http://virtuoso.openlinksw.com/download/

Chapter 7 ■ Querying

192

Fuseki
Fuseki is Apache Jena’s SPARQL server that provides REST-style SPARQL HTTP Update, SPARQL Query, and
SPARQL Update, using the SPARQL protocol over HTTP.

 1. Download the binary distribution from https://jena.apache.org/download/.

 2. Unzip the file.

 3. Set file permission using the chmod +x fuseki-server s-* command.

 4. Run the server by executing the command fuseki-server --update --mem /ds,
which creates an in-memory, non-persistent dataset. If you want to create
an empty, in-memory (non-persistent) dataset and load a file into it, use
--file=FILE instead of --mem.

The default port number of Fuseki is 3030, which can be overridden by the port argument in the form
--port=number. Fuseki not only supports SPARQL 1.1 queries, SPARQL 1.1 update operations, and file
upload to a selected dataset but also provides validators for SPARQL Query and SPARQL Update, as well as
for RDF serializations. To open the control panel of Fuseki, visit http://localhost:3030 in your browser,
click Control Panel, and select the dataset.

The URI scheme of the Fuseki server consists of the host, followed by the dataset and the endpoint,
all of which are separated by a slash.

•	 http://host/dataset/query (SPARQL query endpoint)

•	 http://host/dataset/update (SPARQL UPDATE endpoint)

•	 http://host/dataset/data (SPARQL Graph Store Protocol endpoint)

•	 http://host/dataset/upload (file upload endpoint)

To load some RDF data into the default graph of the server, use the s-put command, as shown in
Listing 7-42.

Listing 7-42. Load RDF Data into the Default Graph of Fuseki

s-put http://localhost:3030/ds/data default books.ttl

To retrieve data from the default graph of the server, use the s-get command (see Listing 7-43).

Listing 7-43. Retrieving Data, Using s-get

s-get http://localhost:3030/ds/data default

The default graph of the server can be queried with SPARQL, using the …/query endpoint employing the
s-query command, as demonstrated in Listing 7-44.

Listing 7-44. SPARQL Querying with Fuseki

s-query --service http://localhost:3030/ds/query 'SELECT * {?s ?p ?o}'

A SPARQL UPDATE query can be executed using the …/update endpoint with s-update. As an example,
let’s clear the default graph, as shown in Listing 7-45.

Listing 7-45. A SPARQL UPDATE Query with Fuseki

s-update --service http://localhost:3030/ds/update 'CLEAR DEFAULT'

https://jena.apache.org/download/

Chapter 7 ■ Querying

193

To use SPARQL 1.1 Query from Java applications, you can use the QueryExecutionFactory.
sparqlService of Apache Jena’s SPARQL query engine, ARQ. For the programmatic access of
SPARQL Update, use UpdateExecutionFactory.createRemote. SPARQL HTTP can be used through
DatasetAccessor.

D2R
The D2R Server is a tool for publishing relational databases as Linked Data, providing access to the database
content through a browser interface and querying the database using SPARQL. D2R performs on-the-fly
transformation of SPARQL queries to SQL queries via a mapping. Among others, D2R is used as the SPARQL
endpoint of Dailymed, a comprehensive, up-to-date dataset of marketed drugs in the United States. The D2R
Server can be installed as follows:

 1. Download the server from http://d2rq.org.

 2. Run the server in one of the following ways:

•	 From the command line (for development or testing), with the syntax shown in
Listing 7-46.

Listing 7-46. Running D2R From the Command Line

d2r-server [--port port] [-b serverBaseURI][--fast] [--verbose]
[--debug] mapping-file.ttl

Because the default port number is 2020, the default server URI is
http://localhost:2020. The fast argument can optionally be used for
performance optimization, the verbose argument for detailed logging, and
debug for full logging. Optionally, you can declare the name of the D2RQ
mapping file to use. If the mapping file is not provided, the database connection
must be specified on the command line, so that a default mapping will be used.

•	 Deploy the D2R Server web application into a servlet container, such as Apache
Tomcat or Jetty (for production).

a) Ensure that the mapping file includes a configuration block,
setting the base URI in the form http://servername/webappname/.
The d2r:Server instance in this file configures the D2R server
(see Listing 7-47).

Listing 7-47. D2R Configuration File Example

@prefix d2r: <http://example.com/d2r-server/config.rdf#> .
@prefix meta: <http://exampe.com/d2r-server/metadata#> .

<> a d2r:Server;
 rdfs:label "My D2R Server";
 d2r:baseURI <http://localhost:2020/>;
 d2r:port 2020;
 d2r:vocabularyIncludeInstances true;

 d2r:sparqlTimeout 300;
 d2r:pageTimeout 5;

http://d2rq.org/
http://servername/webappname/

Chapter 7 ■ Querying

194

 meta:datasetTitle "My Dataset" ;
 meta:datasetDescription "This dataset contains Semantic Web
 publication resources." ;
 meta:datasetSource "The dataset covers publications from all related
 datasets such as XY." ;

 meta:operatorName "John Smith" ;
 .

The d2r:Server instance supports a variety of configuration properties.
The human-readable server name can be provided using rdfs:label.
The base URI of the server can be declared using d2r:baseURI (the
equivalent of the –b command line parameter). The port number of the
server can be added as d2r:port (same as --port in the command line).
By default, the RDF and HTML representations of vocabulary classes are
also list instances, and the property representations are also list triples
using the property. The d2r:vocabularyIncludeInstances configuration
property accepts the false Boolean value to override this behavior. To
specify automatic detection of mapping file changes, one can use the
d2r:autoReloadMapping property. The default value is true. The maximum
number of entities per class map can be set using d2r:limitPerClassMap.
The default value is 50, and the limit can be disabled with the property
value set to false. The maximum number of values from each property
bridge can be configured using d2r:limitPerPropertyBridge. The default
value is 50, and the limit can be disabled with the property value set to
false. The timeout of the D2R server’s SPARQL endpoint can be set in
seconds as the property value of the d2r:sparqlTimeout property. If you
want to disable the timeout for the SPARQL endpoint, set the value to 0. The
timeout for generating resource description pages can be similarly set in
seconds, using the d2r:pageTimeout, which can also be disabled by setting
the value to 0. The default resource metadata template can be overridden
using d2r:metadataTemplate, which specifies a literal value for the path
name, either absolute or relative to the location of the server configuration
file. The default dataset metadata template can be overridden by the value
of d2r:datasetMetadataTemplate. The d2r:disableMetadata property
enables the automatic creation and publication of all dataset and resource
metadata, which accepts a Boolean value. The true value is assumed if the
d2r:disableMetadata property is omitted.

b) The name of the configuration file declared as the configFile param
in /webapp/WEB-INF/web.xml has to be changed to the name of your
configuration file. The recommended location of the mapping file is the
/webapp/WEB-INF/ directory.

c) In the main directory of the D2R server, run ant war, which creates the
d2rq.war file (requires Apache Ant).

d) The name of your web application can optionally be changed by
renaming the file to webappname.war.

e) Deploy the .war file into your servlet container, such as by copying it
into the webapps directory of Tomcat.

Chapter 7 ■ Querying

195

4store SPARQL Server
4store provides a SPARQL HTTP protocol server, which can answer SPARQL queries using the SPARQL HTTP
query protocol. To run 4store’s SPARQL server, use the 4s-httpd command with the port number and KB
name as shown in Listing 7-48.

Listing 7-48. Running 4store’s HTTP Server

4s-httpd -p port_number 4store_KB_name

 ■ Note Multiple 4store KBs have to run on separate ports.

Once the server is running, the overview page can be accessed in the web browser at
http://localhost:port_number/status/, and the SPARQL endpoint at http://localhost:port_number/
sparql/ with an HTML interface at http://localhost:port_number/test/. From the command line, you
can query the SPARQL server using the sparql-query tool available at https://github.com/tialaramex/
sparql-query.

PublishMyData
PublishMyData is a commercial Linked Data publishing platform. Because it is a Software as a Service (SaaS)
in the cloud, you don’t have to install anything to use it. Beyond the SPARQL endpoint, PublishMyData
provides RDF data hosting, a Linked Data API, and customizable visualizations. It supports SPARQL 1.1.
To submit a SPARQL query from your code, issue an HTTP GET request to the SPARQL endpoint, as
demonstrated in Listing 7-49.

Listing 7-49. SPARQL Query on PublishMyData

http://example.com/sparql?query=URL-encoded_query

For instance, to run the query SELECT * WHERE {?s ?p ?o} LIMIT 10 and get the results in JSON, the
URL to be used will have the structure shown in Listing 7-50.

Listing 7-50. URL-Encoded SPARQL Query with PublishMyData

http://example.com/sparql.json?query=SELECT+%2A+WHERE+%7B%3Fs+%3Fp+%3Fo%7D+LIMIT+10

For demonstrating programmatic access, let’s use JavaScript to request data from the SPARQL endpoint
(see Listing 7-51).

Listing 7-51. Using jQuery to Request Data Through the SPARQL Endpoint

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 </head>
 <body>
 <script type="text/javascript">
 var siteDomain = "example.com";
 var query = "SELECT * WHERE {?s ?p ?o} LIMIT 10";

https://github.com/tialaramex/sparql-query
https://github.com/tialaramex/sparql-query
http://code.jquery.com/jquery-1.9.1.min.js%22%3E%3C/script

Chapter 7 ■ Querying

196

 var url = "http://" + siteDomain + "/sparql.json?query=";
 url += encodeURIComponent(query);
 $.ajax({
 dataType: 'json',
 url: url,
 success: function(data) {
 alert('success: ' + data.results.bindings.length + ' results');
 console.log(data);
 }
 });
 </script>
 </body>
</html>

When requesting the SPARQL output as JSON, a callback parameter can be passed, so that the results
will be wrapped in the function, which can prevent cross-domain issues when running JavaScript under
older browsers (see Listing 7-52).

Listing 7-52. Using a Callback Function

http://example.com/sparql.json?callback=myCallbackFunction&query=SELECT+%2A+WHERE+%7B%3Fs
+%3Fp+%3Fo%7D+LIMIT+10

Alternatively, you can make a JSON-P request with jQuery and can omit the callback parameter from
the URL by setting the dataType to jsonp, as shown in Listing 7-53.

Listing 7-53. Using JSON-P for SPARQL Querying

queryUrl = 'example.com/sparql.json?query=SELECT+%2A+WHERE+%7B%3Fs+%3Fp+%3Fo%7D+LIMIT+10'

$.ajax({
 dataType: 'jsonp',
 url: queryUrl,
 success: function(data) {
 // callback code
 alert('success!');
 }
});

You can also use Ruby to request data from the PublishMyData SPARQL endpoint, as shown
in Listing 7-54.

Listing 7-54. Make a Request to the PublishMyData SPARQL Endpoint in Ruby

require 'rest-client'
require 'json'

query = 'SELECT * WHERE {?s ?p ?o} LIMIT 10'
site_domain = "example.com"
url = "http://\#example.com/sparql.json"

Chapter 7 ■ Querying

197

results_str = RestClient.get url, {:params => {:query => query}}
results_hash = JSON.parse results_str
results_array = results_hash["results"]["bindings"]

puts "Total number of results: \#{results_array.length}"

The request in this case is written as JSON, and the result will be put in a Hash table.

Summary
In this chapter, you learned the foundations of SPARQL, the standardized query language of RDF. You are
now familiar with the query types and know how to write SPARQL queries to answer complex questions,
display all nodes of an RDF graph with a particular feature, filter results, or add new triples to a dataset.
By now you also recognize the most popular SPARQL endpoint interfaces and know how to set up your
own endpoint.

The next chapter will show you how to handle high-volume, high-velocity datasets, leverage Semantic
Web technologies in Big Data applications, and add structured data to your site, so that it will be considered
for inclusion in the Google Knowledge Graph.

References
 1. The W3C SPARQL Working Group (2013) SPARQL 1.1 Overview. W3C

Recommendation. World Wide Web Consortium. www.w3.org/TR/sparql11-
overview/. Accessed 6 March 2015.

 2. Prud’hommeaux, E., Seaborne, A. (2008) SPARQL Query Language for RDF.
www.w3.org/TR/rdf-sparql-query/. Accessed 18 April 2015.

 3. Harris, S., Seaborne, A. (2013) www.w3.org/TR/sparql11-query/. Accessed
18 April 2015.

 4. Gearon, P., Passant, A., Polleres, A. (eds.) (2013) SPARQL 1.1 Update.
www.w3.org/TR/sparql11-update/. Accessed 18 April 2015.

 5. Ogbuji, C. (ed.) (2013) SPARQL 1.1 Graph Store HTTP Protocol. W3C
Recommendation. World Wide Web Consortium. www.w3.org/TR/sparql11-
http-rdf-update/. Accessed 6 March 2015.

 6. Williams, G. T. (ed.) SPARQL 1.1 Service Description. www.w3.org/TR/sparql11-
service-description/. Accessed 18 April 2015.

 7. Glimm, B., Ogbuji, C. (eds.) (2013) SPARQL 1.1 Entailment Regimes.
www.w3.org/TR/sparql11-entailment/. Accessed 18 April 2015.

 8. Seaborne, A. (ed.) (2013) SPARQL 1.1 Query Results JSON Format. www.w3.org/
TR/sparql11-results-json/. Accessed 18 April 2015.

 9. Seaborne, A. (ed.) (2013) SPARQL 1.1 Query Results CSV and TSV Formats.
www.w3.org/TR/sparql11-results-csv-tsv/. Accessed 18 April 2015.

 10. Hawke, S. (ed.) (2013) SPARQL Query Results XML Format (Second Edition).
www.w3.org/TR/rdf-sparql-XMLres/. Accessed 18 April 2015.

http://D:\\Sadam\\2015\\XML\\June\\6-6-2015\\Sikos\\XML\\Chapter7\\www.w3.org\\TR\\sparql11overview\\
http://D:\\Sadam\\2015\\XML\\June\\6-6-2015\\Sikos\\XML\\Chapter7\\www.w3.org\\TR\\sparql11overview\\
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/sparql11-service-description/
http://www.w3.org/TR/sparql11-service-description/
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-results-json/
http://www.w3.org/TR/sparql11-results-json/
http://www.w3.org/TR/sparql11-results-csv-tsv/
http://www.w3.org/TR/rdf-sparql-XMLres/

Chapter 7 ■ Querying

198

 11. Prud’hommeaux, E., Buil-Aranda, C. (eds.) (2013) SPARQL 1.1 Federated Query.
www.w3.org/TR/sparql11-federated-query/. Accessed 18 April 2015.

 12. Feigenbaum, L., Williams, G. T., Clark, K. G., Torres, E. (eds.) (2013) SPARQL 1.1
Protocol. W3C Recommendation. World Wide Web Consortium. www.w3.org/TR/
sparql11-protocol/. Accessed 9 March 2015.

 13. Broekstra, J., Ansell, P., Visser, D., Leigh, J., Kampman, A., Schwarte, A. et al.
(2015) The SeRQL query language. http://rdf4j.org/sesame/2.7/docs/
users.docbook?view#chapter-serql. Accessed 22 April 2015.

 14. Neo Technology, Inc. (2015) Intro to Cypher. http://neo4j.com/developer/
cypher-query-language/. Accessed 22 April 2015.

http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-protocol/
http://rdf4j.org/sesame/2.7/docs/users.docbook?view#chapter-serql
http://rdf4j.org/sesame/2.7/docs/users.docbook?view#chapter-serql
http://neo4j.com/developer/cypher-query-language/
http://neo4j.com/developer/cypher-query-language/

199

Chapter 8

Big Data Applications

The sustainability of huge and ever-growing data pools using different formats that cannot be processed
with traditional software tools is the next big challenge for web designers, Internet marketers, and software
engineers and requires new technologies and practices. One of the approaches to cope with Big Data is to
use Semantic Web technologies, especially machine-interpretable metadata and Linked Data. Implementing
the Resource Description Framework (RDF) and RDF-based standards ensures that data and its meaning are
encapsulated, and concepts and relationships can be managed while connecting diverse data from various
data sources. Graph representations, such as Facebook’s Open Graph, add context to and visualize Big Data
for data analysis. The Service-Oriented Architecture (SOA) infrastructure over Big Data makes it possible
to update Big Data in real time. Data can be automatically classified, relationships associated, and new
relationships found, so that data can be collected and integrated without worrying about schemas and data
descriptions, yet providing a data description. Big Data applications on the Semantic Web include, but are
not limited to, next-generation Search Engine Result Pages, social media graphs, analysis of natural language
content, publishing factual data about massive world events, interlinking BBC’s online content, as well as
high-performance data storage and processing.

Big Semantic Data: Big Data on the Semantic Web
Big Data refers to any high-volume, high-velocity datasets too large and complex to process using traditional
data processing tools, applications, and database systems. Representing petabytes of data, such datasets
store billions of hidden values unavailable for efficient and automatic machine processing. Big Data is
characterized by four Vs:

•	 Volume: Huge amounts of data stored in, and retrieved from, massive datasets.
The challenge is to achieve a reasonable processing speed, especially in real-time
applications.

•	 Velocity: High-rate data flow. The challenge is the streaming data processing.

•	 Variety: Different forms of data. The challenge is to deal with the different data
structures, data formats, and serializations.

•	 Veracity: Uncertainty of data. The challenge is to handle trust issues, determine
accuracy, and cope with poor data quality.

One of the promising approaches to address the issues associated with Big Data is to implement
Semantic Web technologies in order to build systems that can efficiently handle Big Data and evolve with the
growing data processing needs.

Chapter 8 ■ Big Data appliCations

200

Google Knowledge Graph and Knowledge Vault
One of the best known Big Data applications on the Semantic Web is the Google Knowledge Graph, which
was introduced in 2012. The Google Knowledge Graph is a semantic knowledge base to enhance traditional
Search Engine Result Pages (SERPs) with semantic search information gathered from a wide variety
of sources. The data sources used by the Knowledge Graph include pages indexed by Google, objects
on GoogleMaps, public data sources such as Wikipedia, LOD datasets such as DBpedia, the CIA World
Factbook, and the FDA datasets, as well as subject-specific resources such as Weather Underground and
World Bank, for meteorological information and economic statistics, respectively. The result of a Knowledge
Graph search is not only relevant information far more accurate that what you would find with traditional
searches but also related information, such as similar resources people search for the most. For example, if
you search for Leonardo da Vinci, you not only get facts about him and his famous works like Mona Lisa and
The Last Supper, but Google will also suggest other notable painters of the same era, such as Jan van Eyck,
Dürer, Raphael, and Michelangelo (see Figure 8-1).

Similarly, if searching for the title of an action movie, the results will include similar movies, while
searching for a particular inventor will disclose additional inventors, with similar research fields and awards.
The Knowledge Graph contains more than half a billion objects and over 18 billion facts about relationships
between different objects that help software agents “understand” the meaning of the search keywords, and
these figures are constantly growing.

Depending on the search phrase used, the search results retrieved from the Google Knowledge Graph
are represented in two ways. The first one, called the Google Knowledge Panel, is displayed on the right-hand
side of the Search Engine Result Pages, next to the organic search results. Searching for persons or brand
names typically results in a Knowledge Panel, as shown in Figure 8-2.

Figure 8-1. The Google Knowledge Graph finds data resources related to your search phrase [1]

Chapter 8 ■ Big Data appliCations

201

If the object has a social media presence on Facebook, YouTube, Twitter, Instagram, Google+, etc., links
to those pages will also be displayed. The most related links are shown under “People also search for,” which
can be extended by clicking the “View more” link. If you search for a living musician, you might also see
“Upcoming events” on the Knowledge Panel, containing the venue and date of upcoming concerts.

The second type of data representation for data retrieved from the Google Knowledge Graph is the
Google Knowledge Carousel, which shows entities related to the search phrase. For instance, if you search
for Clint Eastwood’s filmography, Google will provide the organic results, a Knowledge Panel on Clint
Eastwood, as well as a Knowledge Carousel about his most famous movies, such as The Good, the Bad
and the Ugly, Unforgiven, The Outlaw Josey Wales, Gran Torino, A Fistful of Dollars, Dirty Harry, and so
on (see Figure 8-3). The Carousel is also used when you click certain link types on the Knowledge Panel.
For example, if you click an upcoming concert of a musician displayed on the Knowledge Panel, all the
upcoming concerts of the musician will be shown on a Carousel at the top.

Figure 8-2. Facts about Tim Berners-Lee shown by the Google Knowledge Panel

Chapter 8 ■ Big Data appliCations

202

The Google Knowledge Vault combines data from conventional web sites, including unstructured
text, DOM trees, and tables, as well as structured data from Freebase. It is a large database of automatically
extracted structured data. The amount of information users can retrieve depends on the structure and
correctness of the queries.

The Knowledge Vault derives much of its data from the Knowledge Graph and the sources thereof, as
well as harvesting its own data, ranking its reliability and compiling all results into a database of over 1.6
billion facts collected by machine learning algorithms. There are no more ambiguous natural language
queries about Jaguar (car make or animal) or Taj Mahal (monument, musician, or casino), as Google knows
exactly what is the difference between these “things.”

Get Your Company, Products, and Events into the Knowledge Graph
If you describe your company, products, services, or events on your web site using controlled vocabulary
terms, either as HTML5 Microdata or JSON-LD, they will be considered to be included in the Google
Knowledge Graph. The Schema.org terms can be used to define features and relationships such as the
surname of a person (http://schema.org/familyName), the genre of a music album (http://schema.org/
music/artist/album), or the opening hours of a store (http://schema.org/openingHours). The more
precise category you use, the better. For example, if you have a concert, use http://schema.org/MusicEvent
rather than http://schema.org/Event, or if you have a soccer match, use http://schema.org/SportsEvent
instead of http://schema.org/Event. Event organizers, for example, can describe upcoming events by

Figure 8-3. Searching for an actor’s filmography gives both a Knowledge Carosel and a Knowledge Panel

http://schema.org/familyName
http://schema.org/music/artist/album
http://schema.org/music/artist/album
http://schema.org/openingHours
http://schema.org/MusicEvent
http://schema.org/Event
http://schema.org/SportsEvent
http://schema.org/Event

Chapter 8 ■ Big Data appliCations

203

adding structured data to the markup as a separate code block in JSON-LD, so that Google might include
them on the Knowledge Graph (see Listing 8-1). The vocabulary is defined using @context and @type, as
discussed earlier, in Chapter 3.

Listing 8-1. JSON-LD Annotation of a Band in the Markup

<script type="application/ld+json">
 {
 "@context" : "http://schema.org",
 "@type" : "MusicEvent",
 "name" : "Nice Band Live",
 "startDate" : "2015-09-18T20:00",
 "url" : "http://www.nicebandexample.com/tour/150918",
 "location" : {
 "@type" : "Place",
 "name" : "The Oval",
 "address" : "1234 Blackwood Plaza",
 "sameAs" : "http://www.xyzoval.com"
 },
 "performer" : {
 "@type" : "MusicGroup",
 "name" : "Nice Band",
 "sameAs" : "http://www.nicebandexample.com"
 },
 "offers" : {
 "@type" : "Offer",
 "url" : "http://www.exampleticketseller.com"
 }
 }
</script>

Similarly, online retailers and shops can describe products using Schema.org terms. To identify which
properties you can use, go to http://schema.org/Book and check the property list. Here, we added the web
site of the book with url, defined the author by referring to the corresponding DBpedia page, declared the
available formats (paperback and e-book) using Schema.org terms, among other properties (see Listing 8-2).

Listing 8-2. JSON-LD Annotation of a Product Description

<script type="application/ld+json">
 {
 "@context": "http://schema.org",
 "@type": "Book",
 "url": "http://www.lesliesikos.com/web-standards-mastering-html5-css3-and-xml-second-
 edition/",
 "author": "http://dbpedia.org/resource/Leslie_Sikos",
 "bookFormat": "http://schema.org/Paperback",
 "bookFormat": "http://schema.org/EBook",
 "datePublished": "2014-12-24",
 "image": "http://www.lesliesikos.com/img/web-design-book.jpg",
 "inLanguage": "English",
 "isbn": "1484208846",

http://dx.doi.org/10.1007/9781484210505_3
http://schema.org/
http://www.nicebandexample.com/tour/150918
http://www.xyzoval.com/
http://www.nicebandexample.com/
http://schema.org/Book
http://schema.org/
http://www.lesliesikos.com/web-standards-mastering-html5-css3-and-xml-second
http://dbpedia.org/resource/Leslie_Sikos
http://schema.org/Paperback
http://schema.org/EBook
http://www.lesliesikos.com/img/web-design-book.jpg

Chapter 8 ■ Big Data appliCations

204

 "name": "Web Standards: Mastering HTML5, CSS3, and XML",
 "numberOfPages": "524",
 "offers": {
 "@type": "Offer",
 "availability": "http://schema.org/InStock",
 "price": "39.89",
 "priceCurrency": "USD"
 },
 "publisher": "http://dbpedia.org/resource/Apress",
 "about": "http://dbpedia.org/resource/Web_design"
 }
</script>

Product offerings can be annotated using GoodRelations, covering properties such as the web page of
the advertisement on eBay or Gumtree, the accepted payment methods, the item price and currency, the
category of the product, the official vendor web page describing the product, and the description of the
product (see Listing 8-3).

Listing 8-3. JSON-LD Annotation of a Product Offering in the Markup

{
 "@context": {
 "gr": "http://purl.org/goodrelations/v1#",
 "pto": "http://www.productontology.org/id/",
 "schema": "http://schema.org/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "schema:url": {
 "@type": "@id"
 },
 "gr:acceptedPaymentMethods": {
 "@type": "@id"
 },
 "gr:hasBusinessFunction": {
 "@type": "@id"
 },
 "gr:hasCurrencyValue": {
 "@type": "xsd:float"
 }
 },
 "@id": "http://www.ebay.com/itm/ExampleAd-Giant-TCR-Advanced-1-Road-Bike-/21621444051",
 "@type": "gr:Offering",
 "gr:acceptedPaymentMethods": "gr:Cash",
 "gr:description": "Want to sell my Giant TCR Advanced 1 Road Bike as I’m moving
 interstate",
 "gr:hasBusinessFunction": "gr:Sell",
 "gr:hasPriceSpecification": {
 "gr:hasCurrency": "USD",
 "gr:hasCurrencyValue": "1350"
 },

http://schema.org/InStock
http://dbpedia.org/resource/Apress
http://dbpedia.org/resource/Web_design
http://purl.org/goodrelations/v1%23
http://www.productontology.org/id/
http://schema.org/
http://www.w3.org/2001/XMLSchema%23
http://www.ebay.com/itm/ExampleAd-Giant-TCR-Advanced-1-Road-Bike-/21621444051

Chapter 8 ■ Big Data appliCations

205

 "gr:includes": {
 "@type": [
 "gr:Individual",
 "pto:Racing_bicycle"
],
 "gr:name": "Giant TCR Advanced 1",
 "schema:url": "https://www.giant-bicycles.com/enus/bikes/model/tcr.advanced.1.force/
 14797/66271/"
 },
 "gr:name": "Used Giant Road Bike"
}

To add structured data to your HTML5 markup about your local business, you can use the
LocalBusiness vocabulary from Schema.org. Make sure that you use the most specific type for your
business (http://schema.org/Library for libraries, http://schema.org/ShoppingCenter for shopping
centers, http://schema.org/AutomotiveBusiness for garages, http://schema.org/FinancialService for
financial planners and banks, etc.). A school or a sports club should use http://schema.org/Organization
instead, while http://schema.org/Corporation is more suitable for enterprises. The most commonly used
LocalBusiness properties are name, description, address, and telephone (see Listing 8-4). The physical
address details can be embedded to PostalAddress.

Listing 8-4. LocalBusiness Annotated with Microdata

<div itemscope="itemscope" itemtype="http://schema.org/LocalBusiness">
 <h1>The Blue Cafe</h1>
 A nice cafe on the beach with a friendly atmosphere.
 <div itemprop="address" itemscope="itemscope" itemtype="http://schema.org/PostalAddress">
 123 Esplanade
 Nice Beach,
 CA
 </div>
 <p>
 Phone: 123-456-7890
 </p>
</div>

Depending on what you want to display as human-readable data on your site and what you want to add
as machine-readable only, you can use different markup elements and style sheets. For those data you add
for software agents only, use the attribute values on the meta element.

Social Media Applications
Excellent examples for Big Data implementations on the Semantic Web are the social media graphs, such as
the Facebook Social Graph, the Twitter Interest Graph, the Twitter Follow Graph, the LinkedIn Professional
Graph, or the LinkedIn Economic Graph.

http://schema.org/Library
http://schema.org/ShoppingCenter
http://schema.org/AutomotiveBusiness
http://schema.org/FinancialService
http://schema.org/Organization
http://schema.org/Corporation
http://schema.org/LocalBusiness
http://schema.org/PostalAddress

Chapter 8 ■ Big Data appliCations

206

In fact, the easy access of this vast user data is exploited well beyond Facebook, as the social
connections and links of the Facebook Social Graph are also used by other social networking portals, such as
Pinterest and Last.fm (social bootstrapping).

Have you ever wondered how Facebook recommends friends? Using the edges of the Facebook Social
Graph, it is straightforward to identify those people who have at least one friend in common (see Figure 8-5).

Figure 8-4. On the Facebook Social Graph, every object is a node and every connection is an edge

Facebook Social Graph
The Facebook Social Graph is the largest social graph in the world, containing tens of petabytes of structured
data about approximately 1 billion users. Because every object is a graph node, and every relationship is a
graph edge on the Facebook Social Graph (see Figure 8-4), any object can easily be accessed directly in the
browser as a user and programmatically from Facebook apps.

Chapter 8 ■ Big Data appliCations

207

The Facebook Graph API
The Facebook Graph API is the core of the Facebook Platform, enabling developers to read data from and
write data into Facebook user profiles. The Graph API represents the current state of the Facebook Social
Graph through graph objects such as people, photos, events, and pages, as well as the connections between
them, such as friend relationships, shared content, and photo tags. In other words, the Graph API makes it
possible to programmatically access user objects and connections from the Facebook Social Graph, which
can be used for Facebook apps.

The Graph API can not only query data but also post new stories, publish Open Graph stories, read
information about a Facebook user, upload photos, update information in the Social Graph, and perform
similar tasks used by Facebook apps. All the objects of the Facebook Social Graph (users, photo albums,
photos, status messages, pages, etc.) have a unique identifier, which is a positive integer and makes it
possible to refer to any node or edge.

Originally, the Graph API provided data to applications exclusively in JSON. The two different key/
value pair sets of JSON are the objects (where keys are strings) and arrays (which represent the set of keys as
a finite, counting sequence of nonnegative integers). The values can be JSON objects, arrays, or primitives
(strings, numbers, Boolean values, and null).

Because the Graph API is a RESTful JSON API, you can access it in your browser. The web interface of
the Graph API is called the Graph API Explorer, which is available at https://developers.facebook.com/
tools/explorer/. With this tool, you can use and traverse the Facebook Social Graph. You have to have
a Facebook account and log in to use the Graph API Explorer. Once you are logged in and visit the Graph
API Explorer, you can see a JSON object on the right, with two properties, the identifier and the name of the

Figure 8-5. The edges of the Facebook Social Graph make it possible to suggest people you may know

https://developers.facebook.com/tools/explorer/
https://developers.facebook.com/tools/explorer/

Chapter 8 ■ Big Data appliCations

208

current user, because these are the two fields selected by default (displayed under the me node on the left).
If you unselect the two check boxes, and click Submit, the Graph API Explorer will reveal more information
about the user (see Figure 8-6). How much detail is provided depends on your privacy settings. These field
values are the default data to be returned when no fields are specified in your query.

If you need more data about the node, you might have to generate an access token (Get Access Token),
select the additional fields of your choice, and give permission to the Graph API to access those data. The
Graph API Explorer performs simple HTTP GET requests in the background, as demonstrated in Listing 8-5,
and provides a drop-down on the left, with the GET, POST, and DELETE choices. The default value is GET.
To initiate a new request, you have to click Submit on the right.

Listing 8-5. HTTP GET Request Through the Graph API Explorer

GET /v2.2/me HTTP/1.1
Host: graph.facebook.com

While every node in the Facebook Social Graph has an identifier, you can refer to any node either by the
numeric ID or the username (if the object has one). For example, if you change the request after GET from the
default me value to your user ID or your username and hit Submit, you get the same results for your queries.
This works even for Facebook pages.

Due to the HTTP GET requests used under the hood, every query can also be performed directly.
For instance, to get information about the Facebook page of this book (http://facebook.com/
SemanticWebBook), you can directly open http://graph.facebook.com/SemanticWebBook in your browser
to retrieve the JSON output. This makes it possible to access any node or edge of the Facebook Social Graph
programmatically, with software libraries that handle HTTP requests and the JSON format. To make it
even easier, Facebook provides SDKs for popular languages and platforms such as PHP (see Listing 8-6),
JavaScript (see Listing 8-7), iOS (see Listing 8-8), and Android (see Listing 8-9).

Figure 8-6. With the Graph API Explorer, you can access fields of a node in the Facebook Social Graph

http://facebook.com/SemanticWebBook
http://facebook.com/SemanticWebBook
http://graph.facebook.com/SemanticWebBook

Chapter 8 ■ Big Data appliCations

209

Listing 8-6. Make an API Call from PHP

$request = new FacebookRequest(
 $session,
 'GET',
 '/me'
);
$response = $request->execute();
$graphObject = $response->getGraphObject();
/* result handler */

Listing 8-7. Make an API Call from JavaScript

FB.api(
 "/me",
 function (response) {
 if (response && !response.error) {
 /* result handler */
 }
 }
);

Listing 8-8. Make an API Call from iOS

[FBRequestConnection startWithGraphPath:@"/me"
 completionHandler:^(
 FBRequestConnection *connection,
 id result,
 NSError *error
) {
 /* result handler */
 }];

Listing 8-9. Make an API Call from Android

new Request(
 session,
 "/me",
 null,
 HttpMethod.GET,
 new Request.Callback() {
 public void onCompleted(Response response) {
 /* result handler */
 }
 }
).executeAsync();

Since 2011, Facebook provides data retrieved from the Social Graph, not only in JSON, but also in a
semantically enriched RDF serialization format, to include Linked Data URIs. The implementation is meant
to be flexible and robust, so the Turtle format has been chosen, although JSON-LD has also been considered.
The JSON output to Turtle translation is accessible via HTTP content negotiation. A URI or blank node is
assigned to a JSON object or array as the subject of RDF triples. The predicate and object of RDF triples are
derived from the key-value pairs of JSON objects and arrays. The JSON key is translated into a URI, while the
value is converted to an RDF term, such as a meaningful literal, a URI, or a blank node.

Chapter 8 ■ Big Data appliCations

210

The primitive values correspond to RDF literals, and the conversion is made by applying heuristics
to determine the most suitable RDF datatype URI for literals. The JSON strings that form URIs are
translated to URIs. The most frequently used datatype URIs of the JSON-Turtle conversions are
xsd:Boolean, xsd:dateTime, xsd:decimal, xsd:double, and xsd:integer. The object identifiers remain
strings, even if they seem to be integers. Facebook implemented the RDF 1.1 convention for strings,
namely that regular strings are left as plain literals (implicitly handled as xsd:string) rather than
explicitly typing them as xsd:string. To comply with httpRange-14 (to ensure that HTTP GET requests
won’t lead to an undefined domain), fragment identifiers are preferred over slash URIs. Because the
output represents an isolated graph that is not connected to external resources, the resulting Linked
Data is four-star Linked Data only (see Chapter 3). Still, the RDF/Turtle output is semantically richer
than the JSON output, due to explicit semantics accessible as ontologies utilizing the RDFS and OWL
vocabularies.

The Linked Data can be accessed the same way you perform an HTTP GET request directly, i.e., using
the http://graph.facebook.com or https://graph.facebook.com base URI, followed by a slash and the
Facebook username or Facebook page name. As an example, the Linked Data URIs can be used to augment
a person’s FOAF profile, as shown in Listing 8-10.

Listing 8-10. FOAF Profile Augmentation

@base <http://graph.facebook.com/> .
<http://www.lesliesikos.com/datasets/sikos.rdf#sikos>
owl:sameAs </1105249544#> ;
rdfs:seeAlso </1105249544?metadata=1> ;
foaf:depiction </1105249544/picture> ;
foaf:account <http://www.facebook.com/sikos> .

Facebook Module of Apache Marmotta’s LDClient Library

The Facebook Module of Apache Marmotta’s LDClient library represents the Facebook Graph API objects
and connections as RDF triples using Schema.org, Dublin Core, FOAF, SIOC, and SKOS terms. Whenever
feasible, the mapping will use Schema.org terms. The Facebook Module of Marmotta (ldclient-provider-
facebook) registers an endpoint to handle all URIs starting with http://graph.facebook.com and
http://www.facebook.com. The Facebook Module can be used in your Apache Maven project by adding a
dependency, as demonstrated in Listing 8-11.

Listing 8-11. Dependency for the Facebook Module in Maven

<dependency>
 <groupId>org.apache.marmotta</groupId>
 <artifactId>ldclient-provider-facebook</artifactId>
 <version>3.3.0</version>
</dependency>

Each Facebook object has at least a category (mapped to Schema.org terms using rdf:type whenever
possible), an identifier (mapped to dcterms:id), a name (mapped to schema:name), a description (mapped
to schema:description), and a Facebook web page (mapped to foaf:homepage). This allows programmatic
access to Facebook objects from Maven projects.

http://dx.doi.org/10.1007/9781484210505_3
http://graph.facebook.com/
https://graph.facebook.com/
http://graph.facebook.com/
http://www.lesliesikos.com/datasets/sikos.rdf#sikos
http://www.facebook.com/sikos
http://graph.facebook.com/
http://www.facebook.com%0d

Chapter 8 ■ Big Data appliCations

211

Facebook Open Graph Protocol
Inspired by Microformats and RDFa, the Open Graph Protocol makes it possible
for developers to integrate their pages into the Facebook Social Graph.

The Open Graph vocabulary can be used to annotate your web site markup
with metadata that can be associated with Facebook properties. For example, a
book can be described as shown in Listing 8-12. The namespace of Open Graph is
http://opengraphprotocol.org/schema/.

Listing 8-12. Open Graph Annotation in the Markup

<meta property="og:title" content="Web Standards: Mastering HTML5, CSS3, and XML" />
<meta property="og:type" content="book" />
<meta property="og:url" content="http://www.masteringhtml5css3.com" />
<meta property="og:image" content="http://www.masteringhtml5css3.com/img/
 webstandardsbook.jpg " />
<meta property="og:site_name" content="Web Site of the Book Web Standards:
 Mastering HTML5, CSS3, and XML" />
<meta property="og:description" content="A book describing web standardization to create
 optimized, device-independent web sites with cutting-edge technologies." />

Twitter Cards
Similar to Facebook’s Open Graph annotation, Twitter provides the so-called Twitter Cards annotation
to add structured data to your markup about Twitter objects [2]. Because the Twitter Cards are based
on the same conventions as the Open Graph protocol, the tags are similar, and you can generate a
Twitter Card intermixing Open Graph and Twitter Card annotation without tag or data duplication.
While it is recommended that users specify the og RDFa Core 1.1 CURIE prefix mapping for Open
Graph on the html element (<html prefix="og: http://ogp.me/ns#">), Twitter Cards do not require
similar markup; however, they can use the twitter: prefix as the value of the name attribute of the meta
element. Another difference is that while the Open Graph protocol specifies the use of property and
content attributes for markup (e.g., <meta property="og:image" content="http://example.com/
ogimg.jpg"/>), Twitter Cards use name and content. The parser of Twitter will understand the property
and content attributes of existing Open Graph markup. To define a summary card (the default Twitter
Card type), you can mix Twitter Card and Open Graph annotation on the meta element, as shown in
Listing 8-13.

Listing 8-13. Twitter Card Annotation in the Markup

<meta name="twitter:card" content="summary" />
<meta name="twitter:site" content="@lesliesikos" />
<meta name="twitter:creator" content="@lesliesikos" />
<meta property="og:url" content="http://www.lesliesikos.com/linked-data-platform-1-0
 standardized/" />
<meta property="og:title" content="Linked Data Platform 1.0 Standardized" />
<meta property="og:description" content="The Linked Data Platform 1.0 is now a W3C
 Recommendation, covering a set of rules for HTTP operations on Web resources, including
 RDF-based Linked Data, to provide an architecture for read-write Linked Data on the
 Semantic Web." />
<meta property="og:image" content="http://www.lesliesikos.com/img/LOD.svg" />

http://opengraphprotocol.org/schema/
http://www.masteringhtml5css3.com/
http://www.masteringhtml5css3.com/img/
http://ogp.me/ns%23
http://www.lesliesikos.com/linked-data-platform-1-0
http://www.lesliesikos.com/img/LOD.svg

Chapter 8 ■ Big Data appliCations

212

IBM Watson
IBM Watson’s DeepQA system is a question-answering system originally designed to compete with
contestants of the Jeopardy! quiz show, where three contestants compete against one another in
answering open-domain questions. While the system famously won the contest against human grand
champions, it has applications well beyond Jeopardy!, namely, natural language content analysis
in both questions and knowledge sources in general [3]. Watson’s cognitive computing algorithms
are used in health care, to provide insight and decision support, and give personalized and instant
responses to any inquiry or service issue in customer service. Developers can use the IBM Watson
Developers Cloud, a collection of REST APIs and SDKs for cognitive computing tasks, such as natural
language classification, concept expansion, machine translation, relationship extraction, speech to text,
and visual recognition.

Among other technologies, Watson uses triplestores such as Sesame, ontologies, and inference. The
information resources of DeepQA consist of unstructured, semistructured, and structured data, of which
the last one plays an important role, mainly by implementing RDF in IBM’s DB2 database platform [4].
DeepQA uses three types of structured data, including online structured data repositories such as DBpedia,
GeoNames, YAGO, and movie datasets; structured data extracted from unstructured data; and curated
data that provide additional information to be stored in the triplestore, such as question-and-answer types.
Watson performs reasoning over the data, using Semantic Web technologies [5]. DeepQA uses a variety of
technologies to produce candidate answers to each question. The subsequent candidate answer ranking
components are primarily powered by Semantic Web technologies. In particular, Linked Data sources
are used to provide typing evidence for potential answers [6]. Linked Open Data plays a crucial role in
the DeepQA architecture, not only in generating candidate answers, but also to score the answers while
considering multiple points of view, such as type coercion and geographic proximity [7]. The data extracted
from DBpedia also supports entity disambiguation and relation detection. YAGO is used for entity type
identification, wherein disjointness properties are manually assigned to higher level types in the YAGO
taxonomy. To be able to answer questions from a variety of domains, Watson implements relation detection
and entity recognition on top of the Natural Language Processing (NLP) algorithms that process factual data
from Wikipedia [8].

BBC’s Dynamic Semantic Publishing
The British Broadcasting Corporation (BBC) has implemented RDF since 2010 [9] in web sites such as the
World Cup 2010 web site [10] and the London 2012 Olympics web site [11]. Today, BBC News [12], BBC
Sport [13], and many other web sites across the BBC are authored and published using Semantic Web
technologies. The BBC News articles use automatic metadata tagging and interlinking, and the different BBC
domains (brands, locations, people, and general subjects) are integrated by a hierarchy categorizing the
terms expressed in the Simple Knowledge Organization System (SKOS) [14]. The identifiers of the content
categorization system (CIS) of the BBC Programmes web site [15] are mapped to DBpedia concepts. The
BBC Music web site [16] is also built on Linked Data, and each artist is represented in RDF. The BBC Earth
web site [17] is powered by RDF and its own Wildlife Ontology.

The publishing platform of the BBC curates and publishes XHTML and RDF aggregations based on
embedded Linked Data identifiers, ontologies, and inference. The in-house content management system of
the BBC (called the Content Management/Production System, or CPS, for short) supports static metadata
entry through a WYSIWYG (What You See Is What You Get) editor. The manual content administration
processes are completed by dynamic semantic annotations, yielding automated metadata, rich content
relationships, and semantic navigation. The publishing platform automatically aggregates and renders links
to relevant stories and assets [18].

Chapter 8 ■ Big Data appliCations

213

The Library of Congress Linked Data Service
The US Library of Congress, the largest library in the world, featuring more than 160 million items [19],
publishes subject heading taxonomies as Linked Data for cataloging. It provides the LC Linked Data
Service to present data in RDF [20], and where appropriate, in SKOS, as well as using its own ontology for
accurate description of classification resources and relationships. All records of the Library of Congress
are available individually via content negotiation as XHTML+RDFa, RDF/XML, N-Triples, and JSON [21].
To address the limitations of MAchine-Readable Cataloging (MARC), a standard initiated by the Library
of Congress, MARC records have been mapped to BIBFRAME vocabulary terms [22] to leverage Linked
Data benefits. Other controlled vocabularies used by the library are Dublin Core and MARC Relator
Terms (which uses the marcrel prefix). For example, the contributor term of the Dublin Core vocabulary
has been refined using the correspondent term of the MARC Relator Terms vocabulary, which allows
catalogers to specify the role that an individual played in the creation of a resource, such as illustrator,
calligrapher, or editor, in RDF [23].

High-Performance Storage: The One Trillion Triples Mark
AllegroGraph (http://franz.com/agraph/allegrograph/), the industry-leading graph database
discussed in Chapter 6, constantly sets new records in loading and querying huge amounts of RDF triples.
In 2004, the first version of AllegroGraph was the first graph database that loaded and indexed 1 billion
triples using standard x86 64-bit architecture. In 2008, 10 billion quads were loaded with AllegroGraph on
the Amazon EC2 service. In June 2011, it successfully loaded 310 billion RDF triples in just over 78 hours,
using an eight-socket Intel Xeon E7-8870 processor-based server system configured with 2TB RAM and
22TB physical disk space [24]. Two months later, AllegroGraph was the first graph database in the world to
load, infer, and query more than 1 trillion (!) triples. This mind-blowing, unmatched performance would
be enough to store [25]

•	 6,350 facts about each of 158 million items in the Library of Congress, the largest
library in the world

•	 1000 tweets for every one of the 1 billion Twitter users

•	 770 facts about every one of the 1.3 billion Facebook users

•	 12 facts about every one of the 86 billion neurons in the human brain.

•	 400 metabolic readings for each of the 2.5 billion heartbeats over an average human
lifetime

•	 Five facts about every one of the 200 billion stars in the Milky Way

AllegroGraph is designed for maximum loading speed and query speed. Loading triples and quads
through its highly optimized RDF/XML and N-Quads parsers is very powerful, particularly with large files.
The 1,009,690,381,946 triples were loaded in just over 338 hours, with an average rate above 800,000 triples
per second (see Table 8-1).

http://franz.com/agraph/allegrograph/
http://dx.doi.org/10.1007/9781484210505_6

Chapter 8 ■ Big Data appliCations

214

Oracle Spatial and Graph with Oracle Database 12c reached the 1 trillion triples mark in processing and
indexing RDF triples in September 2014. Oracle has a maximum load rate of 1,420,000 quads loaded and
indexed per second (see Table 8-2).

Table 8-1. AllegroGraph’s Performance in Triple Loading and Indexing

Configuration Triple Count Time Load Rate (T/s)

2×4-core Intel E5520@2.26 GHz, 48GB RAM,
CentOS 5.3

1.106 billion 48 m 30 s 379,947

32-core Intel E5520@2.0 GHz, 1TB RAM,
Red Hat Enterprise Linux 6.1

1.106 billion 36 m 49 s 500,679

32-core Intel E5520@2.0 GHz, 1TB RAM,
Red Hat Enterprise Linux 6.1

22.120 billion 12 h 18 m 16 s 499,188

64-core Intel x7560@2.27 GHz, 2TB RAM, 22TB disk,
Red Hat Enterprise Linux 6.1

310.269 billion 78 h 9 m 23 s 1,102,737

240-core Intel x5650, 2.66GHz, 1.28TB RAM,
88TB disk, Red Hat Enterprise Linux 6.1

1.009 trillion 338 h 5 m 829,556

Table 8-2. Oracle Spatial and Graph’s Performance in Triple and Quad Loading and Indexing

Configuration Count Time Load Rate*

64-core SPARC64 VII+@3GHz, 512GB RAM,
160 drives in dual F5100 flash arrays, Oracle
Database 11.2.0.2.0

1.1 billion triples 28 m 11 s 650,500 TLIPS

64-core SPARC64 VII+@3GHz, 512GB RAM,
160 drives in dual F5100 flash arrays, Oracle
Database 11.2.0.2.0

3.4 billion triples 105 m 539,700 TLIPS

40-Core Intel E7-4870@ 2.4GHz with 1TB RAM on
one Sun Server X2-4 node, dual node Sun ZFS 7420
storage

27.4 billion quads 13 h 11 min 273,000 QLIPS

192-core Oracle Exadata Database Machine X4-2
High Capacity full rack, 2TB RAM, 44.8TB flash
cache, eight-tray dual controller ZS3-2 storage,
Oracle Database 12.1.0.1

605.4 billion quads 115.2 h 1,420,000 QLIPS

*TLIPS: Triples Loaded and Indexed Per Second; QLIPS: Quads Loaded and Indexed Per Second

Summary
In this chapter, you saw Big Data applications using Semantic Web technologies in search engines, social
media, and high-performance storage. You learned how to add structured data to your web site, to be
considered by Google for inclusion in the Knowledge Graph, whose data will be used to show additional
data on the Knowledge Panel and Knowledge Carousel. You know by now how to write semantic annotation
for Facebook and Twitter objects in the markup.

The final chapter will demonstrate step-by-step use cases for a variety of real-life situations.

Chapter 8 ■ Big Data appliCations

215

References
 1. Google (2015) Introducing the Knowledge Graph. www.google.co.uk/

insidesearch/features/search/knowledge.html. Accessed 9 March 2015.

 2. Twitter (2015) Getting Started with Cards. https://dev.twitter.com/cards/.
Accessed 12 March 2015.

 3. Gliozzo, A., Patwardhan, S., Biran, O., McKeown, K. (2013) Semantic
Technologies in IBM Watson. www.cs.columbia.edu/nlp/papers/2013/
watson_class_acl_tnlp_2013.pdf. Accessed 23 April 2015.

 4. Gucer, V. (2013) IBM is embracing Semantic technologies in its products. In: 5
Things To Know About Semantic Technologies. www.ibm.com/developerworks/
community/blogs/5things/entry/5_things_to_know_about_the_semantic_
technologies?lang=en. Accessed 23 April 2015.

 5. Le Hors, A. (2012) Interview: IBM on the Linked Data Platform. www.w3.org/
blog/2012/05/interview-ibm-on-a-linked-data/. Accessed 23 April 2015.

 6. Welty, C. (2013) Semantic Web and Best Practice in Watson. In: Proceedings of
the Workshop on Semantic Web Enterprise Adoption and Best Practice (WaSABi
2013), Sydney, Australia, 22 October, 2013. http://ceur-ws.org/Vol-1106/
keynote2.pdf. Accessed 23 April 2015.

 7. Unger, C., Freitas, A., Cimiano, P. (2014) An Introduction to Question Answering
over Linked Data. In: Reasoning Web: Reasoning on the Web in the Big Data
Era. Lecture Notes in Computer Science 2014, 8714:128–130,
http://dx.doi.org/10.1007/978-3-319-10587-1. Accessed 23 April 2015.

 8. Gliozzo, A. M., Kalyanpur, A., Welty, C. (2011) Semantic Web Technology in
Watson. Tutorial at the 10th International Semantic Web Conference, Bonn,
Germany, 23–27 October 2011. http://iswc2011.semanticweb.org/tutorials/
semantic-web-technology-in-watson/. Accessed 23 April 2015.

 9. Shotton, D. (2012) A major user of RDF linked data—the BBC.
 http://jats.nlm.nih.gov/jats-con/2012/presentations/
shotton_jatscon2012.pdf. Accessed 24 April 2015.

 10. BBC (2010) World Cup 2010. http://news.bbc.co.uk/sport2/hi/football/
world_cup_2010/. Accessed 24 April 2015.

 11. BBC (2012) London 2012 Olympics. www.bbc.com/sport/0/olympics/2012/.
Accessed 24 April 2015.

 12. BBC (2015) BBC News. www.bbc.co.uk/news/. Accessed 24 April 2015.

 13. BBC (2015) BBC Sport. www.bbc.co.uk/sport. Accessed 24 April 2015.

 14. Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer,
C., Lee, R. (2009) Media Meets Semantic Web—How the BBC Uses DBpedia and
Linked Data to Make Connections. Lecture Notes in Computer Science 2009,
5554:723–737, http://dx.doi.org/10.1007/978-3-642-02121-3_53. Accessed
24 April 2015.

 15. BBC (2015) BBC Programmes. www.bbc.co.uk/programmes. Accessed
24 April 2015.

http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html
https://dev.twitter.com/cards/
http://www.cs.columbia.edu/nlp/papers/2013/watson_class_acl_tnlp_2013.pdf
http://www.cs.columbia.edu/nlp/papers/2013/watson_class_acl_tnlp_2013.pdf
http://www.ibm.com/developerworks/community/blogs/5things/entry/5_things_to_know_about_the_semantic_technologies?lang=en
http://www.ibm.com/developerworks/community/blogs/5things/entry/5_things_to_know_about_the_semantic_technologies?lang=en
http://www.ibm.com/developerworks/community/blogs/5things/entry/5_things_to_know_about_the_semantic_technologies?lang=en
http://www.w3.org/blog/2012/05/interview-ibm-on-a-linked-data/
http://www.w3.org/blog/2012/05/interview-ibm-on-a-linked-data/
http://ceur-ws.org/Vol-1106/keynote2.pdf
http://ceur-ws.org/Vol-1106/keynote2.pdf
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-10587-1
http://iswc2011.semanticweb.org/tutorials/semantic-web-technology-in-watson/
http://iswc2011.semanticweb.org/tutorials/semantic-web-technology-in-watson/
http://jats.nlm.nih.gov/jats-con/2012/presentations/shotton_jatscon2012.pdf
http://jats.nlm.nih.gov/jats-con/2012/presentations/shotton_jatscon2012.pdf
http://news.bbc.co.uk/sport2/hi/football/world_cup_2010/
http://news.bbc.co.uk/sport2/hi/football/world_cup_2010/
http://www.bbc.com/sport/0/olympics/2012/
http://www.bbc.co.uk/news/
http://www.bbc.co.uk/sport
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-02121-3_53
http://www.bbc.co.uk/programmes

Chapter 8 ■ Big Data appliCations

216

 16. BBC (2015) BBC Music. www.bbc.co.uk/music. Accessed 24 April 2015.

 17. BBC (2015) BBC Earth. www.bbc.com/earth/uk. Accessed 24 April 2015.

 18. BBC (2012) Sports Refresh: Dynamic Semantic Publishing. www.bbc.co.uk/
blogs/legacy/bbcinternet/2012/04/sports_dynamic_semantic.html.
Accessed 24 April 2015.

 19. Library of Congress (2015) Fascinating Facts. www.loc.gov/about/fascinating-
facts/. Accessed 24 April 2015.

 20. Library of Congress (2015) LC Linked Data Service. http://id.loc.gov/.
Accessed 24 April 2015.

 21. Ford, K. (2010) ID.LOC.GOV, 1½ Years: Review, Changes, Future Plans, MADS/
RDF. http://id.loc.gov/static/presentations/kefo_dlf_id.pdf. Accessed
24 April 2015.

 22. Library of Congress (2015) Vocabulary (Bibliographic Framework Initiative
Technical Site). http://bibframe.org/vocab/. Accessed 24 April 2015.

 23. Harper, C. A., Tillett, B. B. (2007) Library of Congress Controlled Vocabularies
and Their Application to the Semantic Web. Cataloging & Classification Quarterly
2007, 43(3-4):47–68. http://dx.doi.org/10.1300/J104v43n03_03. Accessed
24 April 2015.

 24. Franz Inc. (2011) Franz’s AllegroGraph Sets New Record on Intel Xeon E7
Platform. http://franz.com/about/press_room/Franz-Intel_6-7-11.lhtml.
Accessed 12 March 2015.

 25. Oracle (2014) Oracle Spatial and Graph: Benchmarking a Trillion Edges RDF
Graph. http://download.oracle.com/otndocs/tech/semantic_web/pdf/
OracleSpatialGraph_RDFgraph_1_trillion_Benchmark.pdf. Accessed
3 February 2015.

http://www.bbc.co.uk/music
http://www.bbc.com/earth/uk
http://www.bbc.co.uk/blogs/legacy/bbcinternet/2012/04/sports_dynamic_semantic.html
http://www.bbc.co.uk/blogs/legacy/bbcinternet/2012/04/sports_dynamic_semantic.html
http://www.loc.gov/about/fascinating-facts/
http://www.loc.gov/about/fascinating-facts/
http://id.loc.gov/
http://id.loc.gov/static/presentations/kefo_dlf_id.pdf
http://bibframe.org/vocab/
http://dx.doi.org/http://dx.doi.org/10.1300/J104v43n03_03
http://franz.com/about/press_room/Franz-Intel_6-7-11.lhtml
http://download.oracle.com/otndocs/tech/semantic_web/pdf/OracleSpatialGraph_RDFgraph_1_trillion_Benchmark.pdf
http://download.oracle.com/otndocs/tech/semantic_web/pdf/OracleSpatialGraph_RDFgraph_1_trillion_Benchmark.pdf

217

Chapter 9

Use Cases

By reading the book, you learned how to write HTML5 Microdata and JSON-LD annotations in the markup,
develop Semantic Web applications, describe web services in standardized languages, run powerful queries
on Linked Open Data (LOD) datasets, and develop Semantic Web applications. Now that you have become
familiar with Semantic Web technologies, let’s analyze four complex examples, to get ready for real-life
implementations!

RDB to RDF Direct Mapping
Using the R2RML language for expressing customized mappings from relational database (RDB) to Resource
Description Framework (RDF) datasets, you refer to logical tables to retrieve data from an input database.
A logical table can be either a base table, a view, or an SQL query [1]. Assume you have a relational database
about the staff members in your enterprise and would like to map it to RDF. Each staff member is identified
by a unique identifier (ID), which is used as the primary key (see Table 9-1).

Table 9-1. The Employee Database Table

ID

INTEGER

FirstName

VARCHAR(50)

LastName

VARCHAR(50)

10 John Smith

11 Sarah Williams

12 Peter Jones

Table 9-2. The Employee_Project Database Table

ID_Employee

INTEGER

ID_Project

INTEGER

10 110

11 111

11 112

12 111

The employee projects are described by the employee identifiers (ID_Employee) and the project
identifiers (ID_Project), both of which are primary foreign keys (see Table 9-2).

Chapter 9 ■ Use Cases

218

Table 9-3. The Project Database Table

ID

INTEGER

Description

VARCHAR(50)

110 WebDesign

111 CloudComputing

112 DomainRegistration

The projects use an integer identifier (ID), which is a primary key featured by the description of a
maximum of 50 characters (Table 9-3).

The direct mapping defines an RDF graph representation of the data from the relational database [2].
The direct mapping takes the relational database (data and schema) as input, and generates an RDF graph
called the direct graph. During the mapping process, the staff members, the projects, and the relationship
between them are expressed in RDF using the Turtle syntax (see Listing 9-1). The rule for translating each
row of a logical table to zero or more RDF triples is specified as a triples map. All RDF triples generated from
one row in the logical table share the same subject. A triples map is represented by a resource that references
other resources. Each triples map has exactly one rr:logicalTable property with a value representing the
logical table that specifies a Structured Query Language (SQL) query result to be mapped to RDF triples.
A triples map also has exactly one subject map that specifies the technique to use for generating a subject for
each row of the logical table, using the rr:subjectMap property,1 whose value is the subject map.
The triples map may have optional rr:predicateObjectMap properties, whose values are predicate-object
maps that create the predicate-object pairs for each logical table row of the logical table. The predicate map-
object map pairs specified by predicate-object maps can be used together with the subjects generated by the
subject map for creating RDF triples for each row.

Listing 9-1. Direct Mapping from RDB to RDF

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@base <http://example.com/base/> .

<TriplesMap1>
 a rr:TriplesMap;

 rr:logicalTable [rr:tableName "\"Employee\"";] ;

 rr:subjectMap [rr:template "http://example.com/employee/{\"\ID\"}";];

 rr:predicateObjectMap
 [
 rr:preficate ex:firstName ;
 rr:objectMap [rr:column "\"FirstName\""]
];

1Alternatively, the rr:subject constant shortcut property can also be used.

http://xmlns.com/foaf/0.1/
http://www.w3.org/2001/XMLSchema%23

Chapter 9 ■ Use Cases

219

 rr:predicateObjectMap
 [
 rr:predicate ex:lastName ;
 rr:objectMap [rr:column "\"LastName\""]
]
 .

<TripleMap2>
 a rr:TriplesMap;

 rr:logicalTable [rr:tableName "\"Project\"";] ;

 rr:subjectMap [rr:template "http://example.com/project/{\"\ID\"}";];

 rr:predicateObjectMap
 [
 rr:preficate ex:id ;
 rr:objectMap [rr:column "\"ID\""]
];

 rr:predicateObjectMap
 [
 rr:predicate ex:description ;
 rr:objectMap [rr:column "\"Description\""]
]
 .

<linkMap_1_2>
 a rr:TriplesMap;

 rr:logicalTable [rr:tableName "\"Employee_Project\"";] ;

 rr:subjectMap [rr:template "http://example.com/employee/{\"\ID_Employee\"}";];

 rr:predicateObjectMap
 [
 rr:preficate ex:involvedIn ;
 rr:objectMap [rr:template "http://example.com/project/{\"ID_Project\"}"];
] .

The R2RML mapping is supported by software tools such as the db2triples software library [3],
OpenLink Virtuoso [4], RDF-RDB2RDF [5], morph [6], and Ultrawrap [7]. In this example, the result is a set of
RDF triples that describe the staff members and the projects they are involved in (Table 9-4).

Chapter 9 ■ Use Cases

220

Table 9-4. The RDF Triples of the Output

Subject Predicate Object

<http://example.com/
employee/10>

<http://example.com/lastName> "Smith"

<http://example.com/
employee/10>

<http://example.com/firstName> "John"

<http://example.com/
employee/12>

<http://example.com/lastName> "Jones"

<http://example.com/
employee/12>

<http://example.com/firstName> "Peter"

<http://example.com/
employee/11>

<http://example.com/lastName> "Williams"

<http://example.com/
employee/11>

<http://example.com/firstName> "Sarah"

<http://example.com/
project/110>

<http://example.com/description> "WebDesign"

<http://example.com/
project/110>

<http://example.com/id> "110"^^<http://www/w3/org/2001/
XMLSchema#integer>

<http://example.com/
project/111>

<http://example.com/description> "CloudComputing"

<http://example.com/
project/111>

<http://example.com/id> "111"^^<http://www/w3/org/2001/
XMLSchema#integer>

<http://example.com/
project/112>

<http://example.com/description> "DomainRegistration"

<http://example.com/
project/112>

<http://example.com/id> "112"^^<http://www/w3/org/2001/
XMLSchema#integer>

<http://example.com/
employee/10>

<http://example.com/involvedIn> <http://example.com/
project/110>

<http://example.com/
employee/12>

<http://example.com/involvedIn> <http://example.com/
project/111>

<http://example.com/
employee/11>

<http://example.com/involvedIn> <http://example.com/
project/112>

<http://example.com/
employee/11>

<http://example.com/involvedIn> <http://example.com/
project/111>

By default, all RDF triples are in the default graph of the output dataset. However, a triples map can
contain graph maps that place some or all of the triples into named graphs instead.

Chapter 9 ■ Use Cases

221

A Semantic Web Service Process in OWL-S to Charge a
Credit Card
Assume a Web service that charges a valid credit card. In OWL-S, Web services can be modeled as processes
that specify how clients can interact with the service. There can be any number of preconditions, which must
all hold in order for the process to be successfully invoked. A process has zero or more inputs, representing
information required, under some conditions, for the performance of the process. A process might have
any number of outputs that represent information provided by the process to the requester. Effects describe
real-world conditions the process relies on. To describe the credit card charging process in OWL-S, we have
to check whether the card is overdrawn or not, which can be defined as an atomic process (a description of
a service that expects one message and returns one message in response). If the card is overdrawn, a failure
should be displayed. Otherwise, if the card can be charged, the process has to be executed. Hence, the
description of a process includes two result elements: one for charging the card and another for the error
handler (see Listing 9-2).

Listing 9-2. OWL-S Description of Charging a Credit Card [8]

<process:AtomicProcess rdf:ID="Purchase">
 <process:hasInput>
 <process:Input rdf:ID="ObjectPurchased" />
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="PurchaseAmt" />
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="CreditCard" />
 </process:hasInput>
 <process:hasOutput>
 <process:Output rdf:ID="ConfirmationNum" />
 </process:hasOutput>
 <process:hasResult>
 <process:Result>
 <process:hasResultVar>
 <process:ResultVar rdf:ID="CreditLimH">
 <process:parameterType rdf:resource="&ecom;#Dollars" />
 </process:ResultVar>
 </process:hasResultVar>
 <process:inCondition>
 <expr:KIF-Condition>
 <expr:expressionBody>
 (and (current-value (credit-limit ?CreditCard)
 ?CreditLimH)
 (>= ?CreditLimH ?purchaseAmt))
 </expr:expressionBody>
 </expr:KIF-Condition>
 </process:inCondition>
 <process:withOutput>
 <process:OutputBinding>
 <process:toParam rdf:resource="#ConfirmationNum" />
 <process:valueFunction rdf:parseType="Literal">
 <cc:ConfirmationNum xsd:datatype="&xsd;#string" />

Chapter 9 ■ Use Cases

222

 </process:valueFunction>
 </process:OutputBinding>
 </process:withOutput>
 <process:hasEffect>
 <expr:KIF-Condition>
 <expr:expressionBody>
 (and (confirmed (purchase ?purchaseAmt) ?ConfirmationNum)
 (own ?objectPurchased)
 (decrease (credit-limit ?CreditCard)
 ?purchaseAmt))
 </expr:expressionBody>
 </expr:KIF-Condition>
 </process:hasEffect>
 </process:Result>
 <process:Result>
 <process:hasResultVar>
 <process:ResultVar rdf:ID="CreditLimL">
 <process:parameterType rdf:resource="&ecom;#Dollars" />
 </process:ResultVar>
 </process:hasResultVar>
 <process:inCondition>
 <expr:KIF-Condition>
 <expr:expressionBody>
 (and (current-value (credit-limit ?CreditCard)
 ?CreditLimL)
 (< ?CreditLimL ?purchaseAmt))
 </expr:expressionBody>
 </expr:KIF-Condition>
 </process:inCondition>
 <process:withOutput rdf:resource="&ecom;failureNotice" />
 <process:OutputBinding>
 <process:toParam rdf:resource="#ConfirmationNum" />
 <process:valueData rdf:parseType="Literal">
 <drs:Literal>
 <drs:litdefn xsd:datatype="&xsd;#string">00000000</drs:litdefn>
 </drs:Literal>
 </process:valueData>
 </process:OutputBinding>
 </process:withOutput>
 </process:Result>
 </process:hasResult>
</process:AtomicProcess>

The data transformation produced by the process is specified by the inputs and outputs (hasInput,
hasOutput). Atomic processes always receive the inputs specifying the information required for the
execution of the process from the client. The result of the process execution is that the credit card is charged,
and the money is withdrawn from the account. The effect in this example describes that the customer now
owns the object (own ?objectPurchased) and that the amount of money in the credit card account has been
reduced (decrease (credit-limit ?CreditCard) ?purchaseAmt). In real-life applications, such services
typically send an invoice with or without a notification about the success of the transaction. Credit card
transactions have two results: one for the case in which there was sufficient balance to pay the bill, and one
for when there wasn’t. Each result can be augmented with a further binding.

Chapter 9 ■ Use Cases

223

Modeling a Travel Agency Web Service with WSMO
Assume the following scenario. Leslie wants to book a flight and a hotel for a tropical holiday. The fictional
Dream Holidays Travel Agency provides recreational and business travel services based on Semantic Web
Service technologies. The travel agency arranges the flight booking and the hotel booking under the contract
with the service providers (Figure 9-1).

Figure 9-1. Travel agency modeling

The goal of the service can be described as “book a flight and hotel room for a tropical holiday for
Leslie.” The post-condition is to get a trip reservation by providing the current location, the destination, the
payment method, and the name of the hotel (see Listing 9-3).

Listing 9-3. Defining the Service Goal

goal _"http://www.example.com/successfulBooking"
 capability
 postcondition
 definedBy
 ?tripReservation memberOf tr#reservation[
 customer hasValue fof#Leslie,
 origin hasValue loc#adelaide,
 destination hasValue loc#bali,
 travel hasValue ?flight,
 accommodation hasValue ?Hotel
 payment hasValue tr#creditcard
] and
 ?flight[airline hasValue tr#staralliance] memberOf tr#flight and
 ?hotel[name hasValue "Tropical Paradise Hotel"] memberOf tr#hotel .

The DREAMHOLIDAYS service description should contain the tickets, hotels, amenities, and so on. The
pre-state capability description includes the reservation request and the prerequisites, such as a valid credit
card (see Listing 9-4).

Chapter 9 ■ Use Cases

224

Listing 9-4. Pre-State Capability Description

capability DREAMHOLIDAYScapability
 sharedVariables {?creditCard, ?initialBalance, ?item, ?passenger}
 precondition
 definedBy
 ?reservationRequest[
 reservationItem hasValue ?item,
 passenger hasValue ?passenger,
 payment hasValue ?creditcard,
] memberOf tr#reservationRequest and
 ((?item memberOf tr#trip) or (?item memberOf tr#ticket)) and
 ?creditCard[balance hasValue ?initialBalance] memberOf po#creditCard.

 assumption
 definedBy
 po#validCreditCard(?creditCard) and
 (?creditCard[type hasValue po#visa] or ?creditCard[type hasValue po#mastercard]).

The post-state capability description includes the post-conditions, the reservation price, and the final
value of the credit card (see Listing 9-5).

Listing 9-5. Post-State Capability Description

postcondition
 definedBy
 ?reservation[
 reservationItem hasValue ?item,
 customer hasValue ?passenger,
 payment hasValue ?creditcard
] memberOf tr#reservation .

 assumption
 definedBy
 reservationPrice(?reservation, "AUD", ?tripPrice) and
 ?finalBalance= (?initialBalance - ?ticketPrice) and
 ?creditCard[po#balance hasValue ?finalBalance] .

Querying DBpedia Using the RDF API of Jena
As mentioned earlier, Apache Jena uses the ARQ engine for the processing SPARQL queries. The ARQ API classes
are found in com.hp.hpl.jena.query. The core classes of ARQ are Query, which represents a single SPARQL
query; the Dataset, where the queries are executed; QueryFactory, used for generating Query objects from
SPARQL strings; QueryExecution, which provides methods for query execution; ResultSet, which contains the
results obtained from an executed query; and QuerySolution, which represents a row of query results. If there
are multiple answers to the query, a ResultSet will be returned, containing the QuerySolutions.

To query DBpedia from Jena, you can use QueryFactory and QueryExecutionFactory. QueryFactory
has create() methods to read a textual query and return a Query object with the parsed query.
QueryExecutionFactory creates a QueryExecution to access a SPARQL service over HTTP in the form
QueryExecutionFactory.sparqlService(String service,Query query), where service is a string representing
a SPARQL service. You can create a test connection to DBpedia’s SPARQL service, as shown in Listing 9-6.

Chapter 9 ■ Use Cases

225

Listing 9-6. Test Connection to DBpedia’s SPARQL Endpoint

import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.QueryExecutionFactory;
import com.hp.hpl.jena.sparql.engine.http.QueryExceptionHTTP;

public class QueryTest {
 public static void main(String[] args) {
 String service = "http://dbpedia.org/sparql";
 String query = "ASK { }";
 QueryExecution qe = QueryExecutionFactory.sparqlService(service, query);
 try {
 if (qe.execAsk()) {
 System.out.println(service + " is UP");
 }
 } catch (QueryExceptionHTTP e) {
 System.out.println(service + " is DOWN");
 } finally {
 qe.close();
 }
 }
}

As you can see, the service string contains the SPARQL endpoint of DBpedia. Now, run a query to
retrieve people who were born in Eisenach. To achieve this, you need a SELECT SPARQL query that searches
the person objects for dbo:birthPlace: Eisenach, as shown in Listing 9-7.

Listing 9-7. A SPARQL Query to Run on DBpedia from Jena

String service="http://dbpedia.org/sparql";
String query="PREFIX dbo:<http://dbpedia.org/ontology/>"
 + "PREFIX : <http://dbpedia.org/resource/>"
 + "PREFIX foaf:<http://xmlns.com/foaf/0.1/>"
 + "select ?person ?name where {?person dbo:birthPlace : Eisenach."
 + "?person foaf:name ?name}";
QueryExecution qe=QueryExecutionFactory.sparqlService(service, query);
ResultSet rs=qe.execSelect();
while (rs.hasNext()){
 QuerySolution s=rs.nextSolution();
 Resource r=s.getResource("?person");
 Literal name=s.getLiteral("?name");
 System.out.println(s.getResource("?person").toString());
 System.out.println(s.getLiteral("?name").getString());
}

The result should contain the people who were born in Eisenach, such as Johann Sebastian Bach.

Summary
In this chapter, you analyzed four complex Semantic Web examples. You saw how to map a relational
database table to RDF, describe a process in OWL-S, model a Semantic Web Service in WSMO, and, finally,
query an LOD dataset programmatically from Apache Jena.

Chapter 9 ■ Use Cases

226

By having read this book, you now understand the core Semantic Web concepts and mathematical
background based on graph theory and Knowledge Representation. You learned how to annotate your web
site markup with machine-readable metadata from Schema.org, DBpedia, GeoNames, and Wikidata to
boost site performance on Search Engine Result Pages. By now, you can write advanced machine-readable
personal descriptions, using vCard-based hCard, FOAF, Schema.org, and DBpedia. You have seen how to
publish your organization’s data with semantics, to reach wider audiences, including HTML5 Microdata
or JSON-LD annotations for your company, products, services, and events to be considered by Google
for inclusion in the Knowledge Graph. You know how to serialize structured data as HTML5 Microdata,
RDF/XML, Turtle, Notation3, and JSON-LD and create machine-readable vocabularies and ontologies in
RDFS and OWL. You have learned to contribute to the Open Data and Open Knowledge initiatives and
know how to publish your own LOD datasets. You know how to set up your programming environment for
Semantic Web application development and write programs in Java, Ruby, and JavaScript using popular
APIs and software libraries such as Apache Jena and Sesame. You also learned how to store and manipulate
data in triplestores and quadstores and became familiar with the most popular graph databases, such as
AllegroGraph and Neo4j. You are capable of describing and modeling Semantic Web Services with OWL-S,
WSDL, WSML, and WS-BPEL. You can run complex SPARQL queries on large LOD datasets, such as
DBpedia and Wikidata, and even encourage data reuse with your own easy-to-access OpenLink Virtuoso,
Fuseki, or 4store SPARQL endpoint. Finally, you learned about Big Data applications leveraging Semantic
Web technologies, such as the Google Knowledge Vault, the Facebook Social Graph, IBM Watson, and the
Linked Data Service of the largest library in the world.

References

 1. Das, S., Sundara, S., Cyganiak, R. (eds.) (2012) R2RML Processors and Mapping
Documents. In: R2RML: RDB to RDF Mapping Language. www.w3.org/TR/
r2rml/#dfn-r2rml-mapping. Accessed 1 May 2015.

 2. Arenas, A., Bertails, A., Prud’hommeaux, E., Sequeda, J. (eds.) (2012) Direct
Mapping of Relational Data to RDF. www.w3.org/TR/rdb-direct-mapping/.
Accessed 1 May 2015.

 3. Antidot (2015) db2triples. https://github.com/antidot/db2triples.
Accessed 1 May 2015.

 4. OpenLink Software (2015) Virtuoso Universal Server.
http://virtuoso.openlinksw.com. Accessed 1 May 2015.

 5. Inkster, T. (2015) RDF-RDB2RDF—map relational database to RDF declaratively.
https://metacpan.org/release/RDF-RDB2RDF. Accessed 1 May 2015.

 6. Calbimonte, J.-P. (2015) morph. https://github.com/jpcik/morph.
Accessed 1 May 2015.

 7. Capsenta (2015) Ultrawrap. http://capsenta.com. Accessed 1 May 2015.

 8. Martin, D. et al. (2004) Service Profiles. In: OWL-S: Semantic Markup for
Web Services. www.w3.org/Submission/OWL-S/. Accessed 1 May 2015.

http://www.w3.org/TR/r2rml/%23dfn-r2rml-mapping
http://www.w3.org/TR/r2rml/%23dfn-r2rml-mapping
http://www.w3.org/TR/rdb-direct-mapping/
https://github.com/antidot/db2triples
http://virtuoso.openlinksw.com
https://metacpan.org/release/RDF-RDB2RDF
https://github.com/jpcik/morph
http://capsenta.com
http://www.w3.org/Submission/OWL-S/

227

��������� A
AllegroGraph

ACID implementation, 151
client installation, 156
editions, 151
graph algorithms, 152
Gruff, 160
high-performance storage, 213
Java API

connection() method, 157
create method, 157
indexing, 158
RDF statement, 159
read only mode, 158
showTriples method, 159
SparqlSelect query, 159
Triplestore information, 159

quintuplestore, 151
server installation

RPM package, 152
TAR Archive, 155
virtual machine image file, 155

text indexing, 151
WebView, 152

Apache Jena, 94, 99
Apache Marmotta, 111
Apache Stanbol, 91
Arachnophilia, 80
Atomic process, 221
Atomicity, Consistency, Isolation, and Durability

(ACID), 151, 161

��������� B
BBEdit, 80
Big Data applications

BBC’s Dynamic Semantic Publishing, 212
Google Knowledge Graph

data resources, 200
Google Knowledge Carousel, 201–202

Google Knowledge Panel, 200, 202
JSON-LD annotation, 203
LocalBusiness annotation, 205
SERPs, 200

Google Knowledge Vault, 202
high-performance storage, 214
IBM Watson, 212
Library of Congress Linked

Data Service, 213
social media applications (see Social

media applications)
variety, 199
velocity, 199
veracity, 199
volume, 199

Blazegraph, 171
BlueFish editor, 80
British Broadcasting Corporation (BBC), 212
Business Process Execution

Language (BPEL), 140

��������� C
Callimachus, 112
Contexts and Dependency Injection (CDI), 111
createDefaultModel() method, 94
CubicWeb, 109
Cypher Query Language (CQL), 188

��������� D
D2R server, 193
DBpedia, 63
DBpedia

mobile, 116
query

Eisenach query, 225
SPARQL endpoint, 64, 225

resources, 63, 64
Spotlight, 84

DeepQA system, 212

Index

■ index

228

Development tools
advanced text editors, 79
application development

Apache Jena, 94, 99
Sesame (see Sesame)

browsers
DBpedia Mobile, 116
facet-based (faceted) browsing, 113
IsaViz, 116
marbles, 114
ODE, 114
pivoting (rotation), 113
RelFinder, 117
Tabulator, 113

IDEs (see Integrated Development
Environments (IDEs))

linked data software
Apache Marmotta, 111
Callimachus, 112
LODStats, 113
Neologism, 112
sameAs.org, 112
Sindice, 110

ontology editors
Apache Stanbol, 91
development stages, 86
Fluent Editor, 91
Protégé (see Protégé)
SemanticWorks, 89
SML, 92
TopBraid Composer, 90
ZOOMA, 91

RDFizers
Apache Any23, 85
GATE, 86
OpenRefine, 86

reasoners
ABOX reasoning, 92
FaCT++, 94
HermiT, 92
OWL API, 92
OWLLink support, 92
Pellet, 93
RACER, 94

semantic annotators and converters
DBpedia Spotlight, 84
Google Structured Data Testing Tool, 84
RDFa 1.1 distiller and parser, 82
RDFa Play, 82
RDF distiller, 83

Direct graph, 218
Direct mapping, 218

��������� E
Eclipse

Apache Jena set up, 99
JDK installation, 98, 99
Sesame set up, 103

EditPlus, 80

��������� F
Facebook Graph API

current state representation, 207
Facebook Module, 210
Graph API Explorer

Android, 209
fields of node, 208
FOAF profile augmentation, 210
HTTP GET requests, 208
identifier and user name, 207
iOS, 209
JavaScript, 209
JSON-Turtle conversions, 210
Linked Data, 210
PHP, 209
RDF triples, 209
RDF/Turtle output, 210
Turtle translation, 209

JSON, 207
RESTful JSON API, 207
unique identifier, 207

Facebook Module of Apache Marmotta’s LDClient
library, 210

Fast Classification of Terminologies (FaCT++), 94
Fluent Editor, 91
4Store application

process, 169
RDF file, 169
rest-client installation, 170
SPARQL query, 170
SPARQL server, 169, 195

Fuseki, 192

��������� G
General Architecture for Text Engineering (GATE), 86
GeoNames, 65
Gleaning Resource Descriptions from Dialects of

Languages (GRDDL), 39
Google Knowledge Graph

data resources, 200
Google Knowledge Carousel, 201–202
Google Knowledge Panel, 200, 202

■ Index

229

JSON-LD annotation
Band in Markup, 203
product description, 203
product offering, 204

LocalBusiness annotation, 205
SERPs, 200

Google Knowledge Panel, 200
Graph databases

4Store
process, 169
RDF file, 169
rest-client installation, 170
SPARQL query, 170

advantages, 146, 149
AllegroGraph (see AllegroGraph)
Blazegraph, 171
definition, 145
features, 146
index-free adjacency, 145
named graph, 149–150
Neo4j (see Neo4j)
Oracle, 171
processing engine, 145
quadstore, 149
storage, 145
triplestores, 149

Graphical User Interface (GUI), 86–87
Gruff, 160

��������� H
Hadoop Distributed File System (HDFS), 171

��������� I
IBM Watson Developers Cloud, 212
Integrated Development Environments (IDEs)

CubicWeb, 109
Eclipse

Apache Jena set up, 99
Java Development Kit installation, 99
Sesame set up, 103

NetBeans, 108
Internationalized Domain Names (IDN), 9
International Standard Book Number (ISBN), 16
Internet Reasoning Service (IRS), 141
IsaViz, 116

��������� J
Java Development Kit (JDK), 99
Java Runtime Environment (JRE), 99
JavaScript Object Notation for Linked Data

(JSON-LD), 37
Java Virtual Machine (JVM), 99

��������� K
Knowledge representation standards

GRDDL, 39
HTML5

microdata attributes, 35
microdata DOM API, 37

JSON-LD, 37
machine-readable annotation

formats, 23
microformats

drafts and future, 32
hCalendar, 25
hCard, 26
h-event, 26
rel=“license”, 28
rel=“nofollow”, 29
rel=“tag”, 30
URI profile, 25
vote links, 30
XFN, 30
XMDP, 31

OWL
classes, 51
description logic, 46
properties, 50
syntaxes, 49
variants, 48

parsers, 54
R2RML, 40
RDF, 18
RDFa, 32
RDFS

classes, 42
domains and ranges, 44
instance, 42
properties, 44
subclasses, 42

reasoning, 54
RIF, 53
SKOS, 53
vocabularies and ontologies

books, 16
DOAP, 17
e-commerce, 16
FOAF, 13
licensing, 17
media ontologies, 18
metadata, 15
online communities, 18
person vocabularies, 15
PRISM, 16
publications, 16
schema.org, 14

Komodo Edit, 80

■ index

230

��������� L
LinkedGeoData, 66
Linked Open Data (LOD)

cloud diagram, 67
collections, 67
creation

interlinking, 72
licenses, 71
RDF statements, 72
RDF structure, 70
your dataset, 74

DBpedia, 63
five-star rating system, 60
GeoNames, 65
LinkedGeoData, 66
principles, 59
RDF crawling, 62
RDF dumps, 62
SPARQL endpoints, 62
visualization, 75
Wikidata, 65
YAGO, 67

LODStats, 113

��������� M
MAchine-Readable Cataloging (MARC), 213
MicroWSMO, 137

��������� N
Named graph, 149
Natural Language Processing (NLP) methods, 86
Neo4j, 161

Cypher commands, 163
graph style sheet, 163
Java API

database installation, 165
Eclipse, 164, 168
node method, 166
main method, 166
RDF statement, 167
shut down method, 167
WEBSITE_OF method, 166

server installation, 161
web interface, 162

Neologism, 112
NetBeans, 108
Notepad++, 80

��������� O
OpenLink Data Explorer (ODE), 114
OpenLink Virtuoso, 190
OpenRefine, 86
Oracle, 171

��������� P
Pellet, 93
Persistent Uniform Resource

Locators (PURLs), 9
Process model, 129
Protégé

Active Ontology tab, 88
application, 86
class hierarchies, 88
command line, 86
GUI, 87
HermiT reasoner, 93
Individuals tab, 88
Learning Health System, 86
Object Properties and Data

Properties tabs, 88
OntoGraf tab, 88
OWLViz, 88
SPARQL Query tab, 89
URIs, 88

PublishMyData, 195

��������� Q
Quadstores, 149

��������� R
RACER, 94
RDB2RML (R2RML), 40
RDB to RDF direct mapping

employee database table, 217
employee_project database table, 217
project database table, 218
source code, 218

Red Hat Package Manager (RPM)
package, 152

Relational database (RDB), 217
RelFinder, 117
Renamed ABox and Concept Expression

Reasoner (Racer), 94
rep.initialize() method, 104
Resource Description Framework (RDF), 217

attributes, 32
crawling, 62
dumps, 62
graph, 20, 145
R2RML, 40
statements, 72
structure creation, 70
triples/statements, 19, 220
turtle, 20
vocabulary, 18

RESTful JSON API, 207
Rule Interchange Format (RIF), 53

■ Index

231

��������� S
sameAs.org, 112
Search engine optimization (SEO), 79
Search Engine Result Pages (SERPs), 84, 200
Semantic Annotations for Web Service Description

Language (SAWSDL), 127
Semantic Automated Discovery and Integration

(SADI), 142
Semantic Measures Library (SML), 92
Semantic search engines, 189
Semantic Web technology, 1

Big Data (see Big Data applications)
components

AI, 5
controlled vocabularies, 5
inference, 7
ontologies, 6
taxonomies, 5

features, 8
structured data, 2
web evolution, 2

Semantic Web Services
OWL-S (see Web Ontology Language for

Services (OWL-S))
process, 121
properties, 122
SOAP

fault structure, 124
message structure, 122

software
IRS, 141
SADI, 142
WSMT, 141
WSMX, 141

UDDI, 142
WS-BPEL (see Web Services Business Process

Execution Language (WS-BPEL))
WSDL (see Web Service Description Language

(WSDL))
WSML (see Web Service Modeling Language

(WSML))
WSMO (see Web Service Modeling Ontology

(WSMO))
SemanticWorks, 89
Service profile, 129
Sesame

Alibaba, 96
Eclipse, 103
empty graph creation, 98
Graph API, 97
local repository, 96
RDF Model API, 97
RDF triplestore, 96
RemoteRepositoryManager, 97

Repository API, 96
SAIL, 97
triple support, 98
default ValueFactory implementation, 97

Sesame RDF Query Language (SeRQL), 186
Simple Knowledge Organization System (SKOS), 53
Simple Object Access Protocol (SOAP)

binding interface, 127
fault structure, 124
message structure, 122

Sindice, 85, 110
SOAPssage, 123
Social media applications

Facebook Social Graph
Facebook Graph API (see Facebook

Graph API)
friends recommendation, 206–207
node and edge, 206
Open Graph Protocol, 211

Twitter Cards, 211
Software as a Service (SaaS), 195
SPARQL endpoint

4store’s HTTP server, 195
callback function, 196
D2R configuration file, 193
D2R server installation, 193
Fuseki, 192
jQuery request data, 195
JSON-P request data, 196
OpenLink Virtuoso process, 190–191
PublishMyData request data, 195–196
URL encoding PublishMyData, 195

SPARQL queries
ASK query, 179
CONSTRUCT query, 180
core types, 176
CQL, 188
default namespace, 174
DESCRIBE query, 180
existence checking function, 177
federated query, 181
graph management operations

ADD operation, 185–186
COPY DEFAULT TO operation, 184
default graph, 184
MOVE DEFAULT TO operation, 185

graph patterns, 176
graph update operations

DELETE DATA operation, 183
INSERT DATA operation, 182–183

language checking function, 177
LOD datasets, 189
multiple variable match, 176
namespace declaration, 173
one variable match, 176

■ index

232

property path, 177
public SPARQL endpoints, 190
query engine

remove graph property value, 187
Sesame Graph API, 187
Sesame Repository API, 186

RDF graph, 174
RDF triple matching, 176
REASON query, 181
SELECT query, 178–179
solution modifiers, 178
SPARQL 1.0 core types, 175
SPARQL 1.1

aggregation, 175
entailment regimes, 175
service description, 175
Uniform HTTP Protocol, 175
Update language, 175

SPARQL endpoint (see SPARQL endpoint)
structure, 174
triple patterns, 176
URI syntax, 173

Storage And Inference Layer API (SAIL), 97

��������� T
TextWrangler, 80
TopBraid Composer, 90
Triples map, 218
Twitter Cards, 211

��������� U, V
Uniform Resource Identifier (URI), 9
Uniform Resource Names (URNs), 9
Universal Description, Discovery and

Integration (UDDI), 142
US Library of Congress, 213

��������� W
Web Ontology Language (OWL), 129

classes, 51
description logic, 46
properties, 50
syntaxes, 49
variants, 48

Web Ontology Language for Services (OWL-S)
atomic process, 221
output and effect conditions, 132
parameter class, 130

precondition process, 131
process agents, 131
properties, 130
service process, 131
situation calculus, 129
SWRL variable, 130
URI value, 131

Web resource identifiers, 8
Web Services Business Process Execution

Language (WS-BPEL), 140
Web Services Description Language (WSDL)

data types, 126
elements, 124
endpoint element, 127
HTTP binding interface, 126
interface element, 126
namespace declaration, 125
SAWSDL

annotation file, 128
modelReference, 127

skeleton document, 125
SOAP binding interface, 127

Web Service Modeling eXecution environment
(WSMX), 141

Web Service Modeling Language (WSML)
importsOntology, 139
IRI quotes, 139
mediator, 140
namespace declarations, 139
nonfunctional property, 139
syntaxes, 138
XML schema data types, 138

Web Service Modeling Ontology (WSMO)
choreography and orchestration

expresses, 137
class capability, 137
components, 133
definition, 133
entity set definitions, 135
function, 136
goal class, 137
mediators, 133–134
MicroWSMO, 137
nonfunctional properties, 134
ontology instance, 136
post-condition creditcard service, 224
pre-condition creditcard service, 224
relations definition, 135
service class, 134
service goal definition, 223
travel agency modeling, 223
WSMO-lite, 137

SPARQL queries (cont.)

■ Index

233

Web Services Modeling Toolkit (WSMT), 141
Wikidata, 65
WSMO-Lite, 137

��������� X
XHTML Friends Network (XFN), 30
XHTML MetaData Profiles (XMDP), 31

��������� Y
Yet Another Great Ontology

(YAGO), 67

��������� Z
ZOOMA, 91

Mastering Structured
Data on the

Semantic Web
From HTML5 Microdata to

Linked Open Data

Leslie F. Sikos, Ph.D.

Mastering Structured Data on the Semantic Web: From HTML5 Microdata to Linked Open Data

Copyright © 2015 by Leslie F. Sikos, Ph.D.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1050-5

ISBN-13 (electronic): 978-1-4842-1049-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

All names, companies, and domains provided in the listings are fictitious. No identification with actual persons,
companies, and web sites is intended or should be inferred.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Maria Maleshkova
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing,
Matt Wade, Steve Weiss

Coordinating Editors: Melissa Maldonado and Christine Ricketts
Copy Editor: Michael G. Laraque
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com and on the author’s site at www.lesliesikos.com. For detailed information about how to locate
your book’s source code, go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.lesliesikos.com
www.apress.com/source-code/

v

Contents

About the Author ��� xiii

About the Technical Reviewer ���xv

Preface ��xvii

 ■Chapter 1: Introduction to the Semantic Web ��� 1

The Semantic Web �� 1

Structured Data �� 2

Semantic Web Components ��� 5

Ontologies ��� 6

Inference��� 7

Semantic Web Features ��� 7

Free, Open Access Data Repositories ��� 8

Adaptive Information �� 8

Unique Web Resource Identifiers �� 8

Summary �� 9

References ��� 10

 ■Chapter 2: Knowledge Representation �� 13

Vocabularies and Ontologies �� 13

The schema�org Vocabulary Collection ��� 14

General, Access, and Structural Metadata �� 15

Person Vocabularies ��� 15

Book Vocabularies �� 16

PRISM: A Publishing Vocabulary ��� 16

GoodRelations: An E-commerce Ontology �� 16

vi

■ Contents

Publication Ontologies �� 16

DOAP: A Project Management Vocabulary �� 17

Licensing Vocabularies ��� 17

Media Ontologies �� 18

Vocabularies for Online Communities ��� 18

Knowledge Management Standards �� 18

Resource Description Framework (RDF) �� 18

Machine-Readable Annotations �� 23

GRDDL: XML Documents to RDF ��� 39

R2RML: Relational Databases to RDF ��� 40

RDFS ��� 41

Web Ontology Language (OWL) �� 45

Simple Knowledge Organization System (SKOS) �� 53

Rule Interchange Format (RIF) �� 53

Reasoning �� 54

Parsers ��� 54

Summary �� 54

References ��� 55

 ■Chapter 3: Linked Open Data ��� 59

Linked Data Principles �� 59

The Five-Star Deployment Scheme for Linked Data �� 60

LOD Datasets �� 62

RDF Crawling �� 62

RDF Dumps ��� 62

SPARQL Endpoints �� 62

Frequently Used Linked Datasets ��� 63

LOD Dataset Collections ��� 67

The LOD Cloud Diagram �� 67

Creating LOD Datasets ��� 70

RDF Structure ��� 70

Licensing �� 71

vii

■ Contents

RDF Statements �� 72

Interlinking ��� 72

Registering Your Dataset �� 74

Linked Data Visualization ��� 75

Summary �� 76

References ��� 77

 ■Chapter 4: Semantic Web Development Tools ��� 79

Advanced Text Editors �� 79

Semantic Annotators and Converters ��� 81

RDFa Play ��� 82

RDFa 1�1 Distiller and Parser �� 82

RDF Distiller �� 83

DBpedia Spotlight ��� 84

Google Structured Data Testing Tool ��� 84

RDFizers ��� 85

Apache Any23 ��� 85

General Architecture for Text Engineering (GATE) ��� 86

OpenRefine ��� 86

Ontology Editors ��� 86

Protégé ��� 86

SemanticWorks��� 89

TopBraid Composer �� 90

Apache Stanbol ��� 91

Fluent Editor ��� 91

Ontology Analysis Tools �� 91

ZOOMA �� 91

Semantic Measures Library �� 92

Reasoners �� 92

HermiT �� 92

Pellet ��� 93

viii

■ Contents

FaCT++ ��� 94

RACER ��� 94

Application Development Frameworks��� 94

Jena �� 94

Sesame ��� 96

Integrated Development Environments �� 98

Eclipse �� 98

NetBeans �� 108

CubicWeb �� 109

Linked Data Software ��� 110

Sindice �� 110

Apache Marmotta ��� 111

sameAs�org ��� 112

Callimachus �� 112

Neologism ��� 112

LODStats ��� 113

Semantic Web Browsers �� 113

Tabulator ��� 113

Marbles ��� 114

OpenLink Data Explorer (ODE) �� 114

DBpedia Mobile �� 116

IsaViz �� 116

RelFinder �� 117

Summary �� 117

References ��� 117

 ■Chapter 5: Semantic Web Services �� 121

Semantic Web Service Modeling �� 121

Communication with XML Messages: SOAP ��� 122

Web Services Description Language (WSDL)�� 124

Web Ontology Language for Services (OWL-S) ��� 129

Web Service Modeling Ontology (WSMO) ��� 133

ix

■ Contents

Web Service Modeling Language (WSML) �� 138

Web Services Business Process Execution Language (WS-BPEL) ��� 140

Semantic Web Service Software �� 141

Web Service Modeling eXecution environment (WSMX)��� 141

Internet Reasoning Service (IRS-III) �� 141

Web Services Modeling Toolkit (WSMT)�� 141

Semantic Automated Discovery and Integration (SADI) �� 142

UDDI Semantic Web Service Listings ��� 142

Summary �� 142

References ��� 143

 ■Chapter 6: Graph Databases �� 145

Graph Databases �� 145

Triplestores ��� 149

Quadstores ��� 149

The Most Popular Graph Databases ��� 150

AllegroGraph ��� 151

Neo4j �� 161

4Store ��� 169

Oracle ��� 171

Summary �� 172

References ��� 172

 ■Chapter 7: Querying ��� 173

SPARQL: The Query Language for RDF ��� 173

Structure and Syntax �� 173

SPARQL 1�0 and SPARQL 1�1 �� 175

Query Types �� 176

Pattern Matching �� 176

Solution Modifiers��� 178

SELECT Queries �� 178

ASK Queries �� 179

x

■ Contents

CONSTRUCT Queries ��� 180

DESCRIBE Queries �� 180

Federated Queries �� 181

REASON Queries ��� 181

URL Encoding of SPARQL Queries ��� 182

Graph Update Operations �� 182

Graph Management Operations �� 183

Proprietary Query Engines and Query Languages �� 186

SeRQL: The Sesame RDF Query Language ��� 186

CQL: Neo4j’s Query Language��� 188

Identify Datasets to Query �� 189

Public SPARQL Endpoints ��� 189

Setting Up Your Own SPARQL Endpoint �� 190

OpenLink Virtuoso ��� 190

Fuseki ��� 192

D2R ��� 193

4store SPARQL Server �� 195

PublishMyData �� 195

Summary �� 197

References ��� 197

 ■Chapter 8: Big Data Applications ��� 199

Big Semantic Data: Big Data on the Semantic Web ��� 199

Google Knowledge Graph and Knowledge Vault ��� 200

Get Your Company, Products, and Events into the Knowledge Graph ��� 202

Social Media Applications �� 205

Facebook Social Graph ��� 206

Twitter Cards �� 211

IBM Watson �� 212

BBC’s Dynamic Semantic Publishing ��� 212

xi

■ Contents

The Library of Congress Linked Data Service �� 213

High-Performance Storage: The One Trillion Triples Mark �� 213

Summary �� 214

References ��� 215

 ■Chapter 9: Use Cases ��� 217

RDB to RDF Direct Mapping�� 217

A Semantic Web Service Process in OWL-S to Charge a Credit Card ��������������������������� 221

Modeling a Travel Agency Web Service with WSMO ��� 223

Querying DBpedia Using the RDF API of Jena �� 224

Summary �� 225

References ��� 226

Index ��� 227

xiii

About the Author

Leslie F. Sikos, Ph.D., is a Semantic Web researcher at Flinders University, South
Australia, specializing in semantic video annotations, ontology engineering, and
natural language processing using Linguistic Linked Open Data. On the cutting edge
of Internet technologies, he is a member of industry-leading organizations, such
as the World Wide Web Consortium, the Internet Engineering Task Force, and the
Internet Society. He is an invited editor and journal reviewer actively contributing to
the development of open standards. Dr. Sikos is the author of 15 textbooks covering
a wide range of topics from computer networks to software engineering and web
design. Devoted to lifelong learning, he holds multiple degrees in computer science
and information technology, as well as professional certificates from the industry.
Thanks to his hands-on skills, coupled with a pedagogical background, he can
introduce technical terms and explain complex issues in plain English.

Dr. Sikos creates fully standard-compliant, mobile-friendly web sites with responsive web
design—complemented by machine-readable annotations—and develops multimedia applications
leveraging Semantic Web technologies. He works on the standardization of Linked Data implementations for
the precise identification, description, and classification of multimedia fragments, advancing the traditional
video annotation techniques. To solve syntactic interoperability, conceptual ambiguity, and implementation
complexity problems of RDFS and OWL multimedia ontologies mapped from general-purpose XML Schema
vocabularies, Dr. Sikos introduced a global video production and broadcasting ontology. Inspired by the
creation and exploitation of rich Linked Open Data datasets, he proudly contributes to the Open Data and
Open Knowledge initiatives. When he is not working, he enjoys reading, playing the organ, and cycling.
For more information, visit www.lesliesikos.com.

www.lesliesikos.com

xv

About the Technical Reviewer

Maria Maleshkova, Ph.D., is a senior researcher at the Karlsruhe Institute
of Technology (KIT), Germany. Her areas of expertise include Semantic
Web services and web architectures, in particular focusing on the semantic
description of Web APIs, RESTful services, and their joined use with Linked
Data. In addition, she works on data integration with semantic technologies,
domain modeling, and data annotation. She received a Ph.D. in computer
science from the Knowledge Media Institute (KMi) at the Open University
in Milton Keynes, England, where she worked on projects in the domain of
service-oriented architecture and web services. Dr. Maleshkova has published
more than 50 papers in conferences and international journals related to
Semantic Web services, knowledge-based systems, knowledge engineering,
and business process analysis. She is an active member of the Semantic Web
community and has worked on several national and international research
projects, involving both research and industrial partners.

xvii

Preface

With the evolution of the World Wide Web, more and more sophisticated web applications and services
appear, making it possible not only to publish and search for information but also to share photos and
videos, buy products online, chat with friends, book a hotel room, play games, and more. Many of these
applications rely on file characteristics, metadata, tracking cookies, and data from user registrations, which
makes it possible to provide customized services and to make offers of products or services the users might
be interested in. However, because there is a huge gap between what the human mind understands and
what computers can interpret, a large amount of data on the Internet cannot be processed efficiently with
computer software. For example, a scanned table in an image file is unstructured and cannot be interpreted
by computers. While optical character recognition programs can be used to convert images of printed text
into machine-encoded text, such conversions cannot be done in real time and with 100% accuracy, rely on
a relatively clear image in high resolution, and require different processing algorithms, depending on the
image file format. More important, table headings and table data cells will all become plain text, with no
correlation whatsoever. In other words, you lose the relationships between the data cells, including the table
columns and rows, making data reusability very limited.

Beyond the lack of structure, much data are locked down in proprietary file formats that can be opened
only in the commercial software they were created in. As well, related data are often stored in isolated data
silos, making it impossible to automatically find new relations between seemingly unrelated data or make
new discoveries based on the relation between data. Even if data is provided in a standardized, open-
access format, software agents often cannot interpret the meaning of the represented information. HTML
documents, which implement the core markup language of the Web, are semistructured but have limitations
when it comes to machine-processability, because they are written primarily for humans. While they can be
used to display data on a web site, software tools cannot “understand” the description of real-world persons
and objects described in HTML, nor the relationships between them. For instance, on conventional web
sites, a character sequence containing numbers can be a phone number, a date, an ISBN number of a book,
or the age of a person, and there is no way for a computer program to interpret the meaning of such data.
The situation can be improved by adding metadata annotations to the markup documents, but this won’t
make the entire document machine-interpretable, only small portions of it. Moreover, HTML documents
use hyperlinks to link related web resources or parts of web documents to one another; however, there
is no information about the type of these links. As a result, machines cannot interpret the relationships
represented by hyperlinks, such as whether a link relates to additional information about a topic or the
friendship between two people. Another popular format, XML, is used in structured documents that are
both human- and machine-readable. XML is widely deployed from web site markup to configuration
settings to web news feeds to office software tools; however, XML files are not machine-interpretable either.

Owing to the fact that the content of conventional web resources is primarily human-readable only,
automatic processing is infeasible, and searching for related information is inefficient. This limitation can
be addressed by organizing and publishing data using powerful formats that add structure and meaning
to the content of web pages and link related data to one another. Computers can “understand” such data
more easily and better, which can be used for task automation. The web sites and structured datasets that
provide semantics (meaning) to software agents form the Semantic Web, the Artificial Intelligence extension
of the conventional Web. On the Semantic Web, knowledge is represented in formal languages based on
strict grammar, describing every resource and link in a machine-interpretable manner, most of the time with

xviii

■ PrefaCe

truly open access. This book is an example-driven tutorial for Semantic Web developers, Internet marketers,
and researchers who want to unleash the potential of the Semantic Web. By bridging the gap between
academia and the web design industry, this book will explain the core concepts as well as the mathematical
background of the Semantic Web, based on graph theory and knowledge representation. You will learn
how to annotate your web site markup with machine-readable metadata to boost your site’s performance
on next-generation Search Engine Result Pages. You will also understand how to reuse machine-readable
definitions and how to describe your own concepts. By implementing best practices, you will be able to
create typed links, so that computers can interpret a link, say, between two people who know each other,
or a link between your web site and the machine-readable definition of topics you are interested in.
Step-by-step guides will demonstrate the installation of integrated software development environments and
the development of Semantic Web applications in Java.

These interlinked, machine-interpretable data can be used in task automation for web services, as
well as for automatic knowledge discovery in research. The benefits of Semantic Web technologies have
already been recognized by industrial giants such as Amazon.com, the BBC, Facebook, Flickr, Google,
IBM, Thomson Reuters, New York Times, and Yahoo!, and the list is constantly growing. By implementing
Semantic Web technologies to represent and connect structured data, you will reach a wider audience,
encourage data reuse, and provide content that can be automatically processed with full certainty.
As a result, your web sites will be integral parts of the next revolution of the Web.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Introduction to the Semantic Web
	 The Semantic Web
	 Structured Data

	 Semantic Web Components
	 Ontologies
	Ontology Engineering

	 Inference

	 Semantic Web Features
	 Free, Open Access Data Repositories
	 Adaptive Information
	 Unique Web Resource Identifiers

	 Summary
	 References

	Chapter 2: Knowledge Representation
	 Vocabularies and Ontologies
	 The schema.org Vocabulary Collection
	 General, Access, and Structural Metadata
	 Person Vocabularies
	 Book Vocabularies
	 PRISM: A Publishing Vocabulary
	 GoodRelations: An E-commerce Ontology
	 Publication Ontologies
	 DOAP: A Project Management Vocabulary
	 Licensing Vocabularies
	 Media Ontologies
	 Vocabularies for Online Communities

	 Knowledge Management Standards
	 Resource Description Framework (RDF)
	 Machine-Readable Annotations
	Microformats
	hCalendar and h-event
	 hCard
	 rel="license"
	 rel="nofollow"
	 rel="tag"
	 Vote Links
	 XFN
	 XMDP
	Drafts and Future Microformats

	 RDFa
	RDFa DOM API

	HTML5 Microdata
	Global Microdata Attributes
	HTML5 Microdata DOM API

	 JSON-LD
	JSON-LD DOM API

	 GRDDL: XML Documents to RDF
	 R2RML: Relational Databases to RDF
	 RDFS
	Defining RDFS Classes
	Defining RDFS Subclasses
	Defining RDFS Instances
	Defining RDFS Properties
	Defining RDFS Domains and Ranges

	 Web Ontology Language (OWL)
	Description Logic
	O WL Variants
	 Syntaxes
	 Properties
	 Classes

	 Simple Knowledge Organization System (SKOS)
	 Rule Interchange Format (RIF)

	 Reasoning
	 Parsers
	 Summary
	 References

	Chapter 3: Linked Open Data
	 Linked Data Principles
	 The Five-Star Deployment Scheme for Linked Data
	 LOD Datasets
	 RDF Crawling
	 RDF Dumps
	 SPARQL Endpoints
	 Frequently Used Linked Datasets
	 DBpedi a
	 Wikidata
	 GeoNames
	 LinkedGeoData
	 YAG O

	 LOD Dataset Collections
	 The LOD Cloud Diagram

	 Creating LOD Datasets
	 RDF Structure
	 Licensing
	 RDF Statements
	 Interlinking
	 Registering Your Dataset

	 Linked Data Visualization
	 Summary
	 References

	Chapter 4: Semantic Web Development Tools
	 Advanced Text Editors
	 Semantic Annotators and Converters
	 RDFa Play
	 RDFa 1.1 Distiller and Parser
	 RDF Distiller
	 DBpedia Spotlight
	 Google Structured Data Testing Tool

	 RDFizers
	 Apache Any23
	 General Architecture for Text Engineering (GATE)
	 OpenRefine

	 Ontology Editors
	 Protégé
	 SemanticWorks
	 TopBraid Composer
	 Apache Stanbol
	 Fluent Editor

	 Ontology Analysis Tools
	 ZOOMA
	 Semantic Measures Library

	 Reasoners
	 HermiT
	 Pellet
	 FaCT++
	 RACER

	 Application Development Frameworks
	 Jena
	 Sesame

	 Integrated Development Environments
	 Eclipse
	 Set Up Apache Jena in Eclipse
	 Set Up Sesame in Eclipse

	 NetBean s
	Setup Apache Jena in NetBeans

	 CubicWeb

	 Linked Data Software
	 Sindice
	 Apache Marmott a
	 sameAs.org
	 Callimachus
	 Neologism
	 LODStats

	 Semantic Web Browsers
	 Tabulator
	 Marbles
	 OpenLink Data Explorer (ODE)
	 DBpedia Mobile
	 IsaViz
	 RelFinder

	 Summary
	 References

	Chapter 5: Semantic Web Services
	 Semantic Web Service Modeling
	 Communication with XML Messages: SOAP
	 Web Services Description Language (WSDL)
	Semantic Annotations for WSDL (SAWSDL)

	 Web Ontology Language for Services (OWL-S)
	 Web Service Modeling Ontology (WSMO)
	MicroWSMO and WSMO-Lite

	 Web Service Modeling Language (WSML)
	 Web Services Business Process Execution Language (WS-BPEL)

	 Semantic Web Service Software
	 Web Service Modeling eXecution environment (WSMX)
	 Internet Reasoning Service (IRS-III)
	 Web Services Modeling Toolkit (WSMT)
	 Semantic Automated Discovery and Integration (SADI)

	 UDDI Semantic Web Service Listings
	 Summary
	 References

	Chapter 6: Graph Databases
	 Graph Databases
	 Triplestores
	 Quadstores

	 The Most Popular Graph Databases
	 AllegroGraph
	WebView
	Installing the AllegroGraph Server
	Installing the RPM Package
	 Installing the TAR Archive
	 Deploying the Virtual Machine

	Installing the AllegroGraph Client
	Java API
	Gruff

	 Neo4j
	Installation
	Java API

	 4Store
	 Oracle
	Blazegraph

	 Summary
	 References

	Chapter 7: Querying
	 SPARQL: The Query Language for RDF
	 Structure and Syntax
	 SPARQL 1.0 and SPARQL 1.1
	 Query Types
	 Pattern Matching
	 Solution Modifiers
	 SELECT Queries
	Filtering

	 ASK Queries
	 CONSTRUCT Queries
	 DESCRIBE Queries
	 Federated Queries
	 REASON Queries
	 URL Encoding of SPARQL Queries
	 Graph Update Operations
	 Graph Management Operations

	 Proprietary Query Engines and Query Languages
	 SeRQL: The Sesame RDF Query Language
	 CQL: Neo4j’s Query Language

	 Identify Datasets to Query
	 Public SPARQL Endpoints
	 Setting Up Your Own SPARQL Endpoint
	 OpenLink Virtuoso
	 Fuseki
	 D2R
	 4store SPARQL Server
	 PublishMyData

	 Summary
	 References

	Chapter 8: Big Data Applications
	 Big Semantic Data: Big Data on the Semantic Web
	 Google Knowledge Graph and Knowledge Vault
	 Get Your Company, Products, and Events into the Knowledge Graph

	 Social Media Applications
	 Facebook Social Graph
	The Facebook Graph API
	Facebook Module of Apache Marmotta’s LDClient Library

	Facebook Open Graph Protocol

	 Twitter Cards

	 IBM Watson
	 BBC’s Dynamic Semantic Publishing
	 The Library of Congress Linked Data Service
	 High-Performance Storage: The One Trillion Triples Mark
	 Summary
	 References

	Chapter 9: Use Cases
	 RDB to RDF Direct Mapping
	 A Semantic Web Service Process in OWL-S to Charge a Credit Card
	 Modeling a Travel Agency Web Service with WSMO
	 Querying DBpedia Using the RDF API of Jena
	 Summary
	 References

	Index

