

What you should already have to get the most out of this book…
• A familiarity with the basic workings of your computer, your operating system, and the Internet
• A good understanding of HTML and web page development
• Basic web server knowledge and administration may be helpful

Some books
that may
help with
the basics…

Sams Teach Yourself
Windows Vista
All in One
This book will teach
you the basics of using
your computer—and
Windows Vista—
effectively

Sams Teach Yourself Mac
OS X Leopard All in One
Covers all the most
important topics for the
reader who wants to get up
and running as quickly as
possible

Possible
titles to
look for…

Sams Teach Yourself
Django in 24 Hours
A detailed tutorial on
creating websites with the
Django framework

Where you may want to go from here…
• Enhance your Ajax skills to build more complex web-based applications
• Expand your web development abilities by learning other languages and development technologies

Related
titles…

Sams Teach Yourself
HTML and CSS
in 24 Hours
Explains the basics for
creating a web page
with HTML and putting it
online

Sams Teach Yourself
PHP, MySQL and
Apache All in One
A great introduction to
using PHP with MySQL
and Apache

Sams Teach Yourself
JavaScript in 24 Hours
A good introduction
to creating interactive web
sites with JavaScript

What this book will help you learn…
• How to make JavaScript, HTML, XML, and PHP work together to create Ajax effects
• How to build better, more interactive interfaces for your web apps

SamsTeachYourself

All
inOne

Ajax, JavaScript and PHP

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Phil Ballard
Michael Moncur

All
inOne

SamsTeachYourself

Ajax,
JavaScript
and PHP

Sams Teach Yourself Ajax, JavaScript, and PHP All in One
Copyright © 2009 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-32965-4
ISBN-10: 0-672-32965-4
Library of Congress Cataloging-in-Publication Data
Ballard, Phil.
Sams teach yourself Ajax, JavaScript, and PHP all in one / Phil

Ballard, Michael Moncur.
p. cm.

Includes index.
ISBN 978-0-672-32965-4 (pbk. : CD-ROM)

1. Ajax (Web site development technology) 2. JavaScript (Computer program language)
3. PHP (Computer program language) 4. Web site development. I. Moncur, Michael G.
II. Title. III. Title: Teach yourself Ajax, JavaScript, and PHP all in one.
TK5105.8885.A52B38 2008
006.7'6--dc22

2008022476
Printed in the United States of America
First Printing June 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or from the use of the
CD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearson.com

Editor-in-Chief
Mark Taub

Acquisitions Editor
Mark Taber

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Indexer
Ken Johnson

Proofreader
Paula Lowell

Publishing
Coordinator
Vanessa Evans

Multimedia
Developer
Dan Scherf

Designer
Gary Adair

Composition
TnT Design, Inc.

http://www.informit.com/onlineedition

Contents at a Glance

Introduction . 1

Part I: Web Basics Refresher 7

CHAPTER 1 Workings of the Web . 9

2 Writing and Styling Pages in HTML and CSS . 21

3 Anatomy of an Ajax Application . 41

Part II: Introducing Web Scripting with JavaScript 51

CHAPTER 4 Creating Simple Scripts in JavaScript . 53

5 Working with the Document Object Model (DOM) . 71

6 Using Variables, Strings, and Arrays . 81

7 Using Functions and Objects. 103

8 Controlling Flow with Conditions and Loops . 117

9 Using Built-In Functions and Libraries . 135

Part III: Introducing Ajax 147

CHAPTER 10 The Heart of Ajax—the XMLHTTPRequest Object . 149

11 Talking with the Server . 157

12 Using the Returned Data. 167

13 Our First Ajax Application . 175

Part IV: Server-side Scripting with PHP 185

CHAPTER 14 Getting to Know PHP. 187

15 Variables . 195

16 Flow Control . 215

17 Functions . 223

18 Using Classes . 231

Part V: More Complex Ajax Technologies 237

CHAPTER 19 Returning Data as Text . 239

20 AHAH—Asynchronous HTML and HTTP . 247

21 Returning Data as XML . 257

22 Web Services and the REST and SOAP Protocols . 271

23 A JavaScript Library for Ajax. 285

24 Ajax Gotchas . 295

Part VI: Ajax Tools and Resources 303

CHAPTER 25 The prototype.js Toolkit . 305

26 Using Rico . 315

27 Using Script.aculo.us . 325

28 Using XOAD . 331

APPENDIX JavaScript, PHP, and Ajax Websites. 339

GLOSSARY . 343

Index. 349

Table of Contents
Introduction

Part I: Web Basics Refresher 7

CHAPTER 1: Workings of the Web 9

A Short History of the Internet . 9

The World Wide Web . 10

Introducing HTTP . 14

The HTTP Request and Response . 15

HTML Forms . 17

Summary . 20

CHAPTER 2: Writing and Styling Pages in HTML and CSS 21

Introducing HTML . 21

Elements of an HTML Page. 23

A More Advanced HTML Page . 27

Some Useful HTML Tags . 29

Adding Your Own Style . 30

Defining the Rules . 31

Add a Little class . 31

Applying Styles. 33

Formatting Text with Styles . 35

Adding Lines . 39

Summary . 40

CHAPTER 3: Anatomy of an Ajax Application 41

The Need for Ajax. 41

Introducing Ajax . 43

The Constituent Parts of Ajax . 45

Putting It All Together . 47

Summary . 49

Part II: Introducing Web Scripting with JavaScript 51

CHAPTER 4: Creating Simple Scripts in JavaScript 53

Tools for Scripting . 53

Displaying Time with JavaScript . 54

Beginning the Script . 55

Adding JavaScript Statements . 55

Creating Output . 56

Adding the Script to a Web Page . 57

Testing the Script . 58

JavaScript Syntax Rules . 65

Using Comments . 66

Best Practices for JavaScript . 67

Summary . 69

CHAPTER 5: Working with the Document Object Model (DOM) 71

Understanding Objects. 71

Understanding the Document Object Model (DOM) . 72

Working with Web Documents . 74

Accessing Browser History . 77

Working with the location Object . 78

Summary . 80

CHAPTER 6: Using Variables, Strings, and Arrays 81

Using Variables . 81

Understanding Expressions and Operators . 85

Data Types in JavaScript . 86

Converting Between Data Types . 88

Using String Objects . 89

Working with Substrings . 92

Using Numeric Arrays . 94

Using String Arrays . 96

Sorting a Numeric Array . 98

Summary. 101

vi

Sams Teach Yourself Ajax, JavaScript, and PHP All in One

CHAPTER 7: Using Functions and Objects 103

Using Functions . 103

Introducing Objects . 108

Using Objects to Simplify Scripting . 109

Extending Built-in Objects . 112

Summary. 115

CHAPTER 8: Controlling Flow with Conditions and Loops 117

The if Statement . 118

Using Shorthand Conditional Expressions . 121

Testing Multiple Conditions with if and else . 122

Using Multiple Conditions with switch . 124

Using for Loops . 125

Using while Loops . 128

Using do…while Loops . 128

Working with Loops. 129

Looping Through Object Properties . 131

Summary. 134

CHAPTER 9: Using Built-In Functions and Libraries 135

Using the Math Object . 135

Working with Math Functions . 137

Using the with Keyword . 139

Working with Dates . 140

Using Third-Party Libraries . 143

Other Libraries . 144

Summary. 145

Part III: Introducing Ajax 147

CHAPTER 10: The Heart of Ajax—the XMLHTTPRequest Object 149

Introducing XMLHTTPRequest . 149

Creating the XMLHTTPRequest Object. 150

Summary. 156

Contents

vii

CHAPTER 11: Talking with the Server 157

Sending the Server Request . 157

Monitoring Server Status . 162

The Callback Function . 163

Summary. 166

CHAPTER 12: Using the Returned Data 167

The responseText and responseXML Properties . 167

Parsing responseXML . 171

Providing User Feedback. 172

Summary. 174

CHAPTER 13: Our First Ajax Application 175

Constructing the Ajax Application . 175

The HTML Document. 176

Adding JavaScript . 177

Putting It All Together . 180

Summary. 184

Part IV: Server-side Scripting with PHP 185

CHAPTER 14: Getting to Know PHP 187

PHP Basics . 187

Your First PHP Script . 190

Summary. 194

CHAPTER 15: Variables 195

Understanding Variables . 195

Data Types . 197

Working with Numbers . 198

Numeric Data Types . 200

Numeric Functions . 200

Working with Strings . 202

Formatting Strings. 203

viii

Sams Teach Yourself Ajax, JavaScript, and PHP All in One

String Functions . 205

Working with Arrays . 206

Array Functions . 208

Date Formats . 209

Working with Timestamps . 210

Summary. 213

CHAPTER 16: Flow Control 215

Conditional Statements . 215

Loops . 220

Summary. 222

CHAPTER 17: Functions 223

Using Functions . 223

Arguments and Return Values . 225

Using Library Files. 229

Summary. 229

CHAPTER 18: Using Classes 231

Object-Oriented PHP . 231

What Is a Class? . 232

Creating and Using Objects . 233

Summary. 236

Part V: More Complex Ajax Technologies 237

CHAPTER 19: Returning Data as Text 239

Getting More from the responseText Property . 239

Summary. 245

CHAPTER 20: AHAH—Asynchronous HTML and HTTP 247

Introducing AHAH . 247

Creating a Small Library for AHAH . 248

Using myAHAHlib.js . 250

Summary. 255

Contents

ix

CHAPTER 21: Returning Data as XML 257

Adding the “x” to Ajax . 257

The responseXML Property. 258

Project—An RSS Headline Reader . 262

Summary. 269

CHAPTER 22: Web Services and the REST and SOAP Protocols 271

Introduction to Web Services . 271

REST—Representational State Transfer . 272

Using REST in Practice . 274

Web Services Using SOAP . 278

The SOAP Protocol . 279

Using Ajax and SOAP . 282

Reviewing SOAP and REST . 283

Summary. 284

CHAPTER 23: A JavaScript Library for Ajax 285

An Ajax Library . 285

Reviewing myAHAHlib.js . 286

Implementing Our Library . 287

Using the Library . 290

Summary. 293

CHAPTER 24: Ajax Gotchas 295

Common Ajax Errors . 295

The Back Button . 296

Bookmarking and Links . 297

Telling the User That Something Is Happening. 297

Making Ajax Degrade Elegantly . 297

Dealing with Search Engine Spiders . 298

Pointing Out Active Page Elements . 299

Don’t Use Ajax Where It’s Inappropriate . 299

x

Sams Teach Yourself Ajax, JavaScript, and PHP All in One

Security . 300

Test Code Across Multiple Platforms . 300

Ajax Won’t Cure a Bad Design . 301

Some Programming Gotchas . 301

Summary. 302

Part VI: Ajax Tools and Resources 303

CHAPTER 25: The prototype.js Toolkit 305

Introducing prototype.js . 305

Wrapping XMLHTTPRequest—the Ajax Object . 308

Example Project—Stock Price Reader . 311

Summary. 313

CHAPTER 26: Using Rico 315

Introducing Rico . 315

Rico’s Other Interface Tools . 320

Summary. 324

CHAPTER 27: Using Script.aculo.us 325

Downloading the Library . 325

Including the Files . 326

Using Effects . 326

Building the Script. 327

Summary. 329

CHAPTER 28: Using XOAD 331

Introducing XOAD . 331

XOAD HTML . 334

Advanced Programming with XOAD . 337

Summary. 338

Contents

xi

APPENDIX: JavaScript, PHP, and Ajax Websites 339

JavaScript Websites . 339

PHP Websites . 340

Web Development Sites . 340

Ajax Websites . 341

GLOSSARY 343

Index. 349

About the Author

Phil Ballard, the author of Sams Teach Yourself Ajax in 10 Minutes, graduated in 1980 with

an honors degree in electronics from the University of Leeds, England. Following an early

career as a research scientist with a major multinational, he spent a few years in commer-

cial and managerial roles within the high technology sector, later working full time as a

software engineering consultant.

Operating as “The Mouse Whisperer” (http://www.mousewhisperer.co.uk), Ballard has spent

recent years involved solely in website and intranet design and development for an interna-

tional portfolio of clients.

Michael Moncur is a freelance webmaster and author. He runs a network of websites,

including the Web’s oldest site about famous quotations, online since 1994. He wrote Sams

Teach Yourself JavaScript in 24 Hours and has also written several bestselling books about net-

working, certification programs, and databases. He lives with his wife in Salt Lake City,

Utah.

http://www.mousewhisperer.co.uk

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can email or write me directly to let me know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and phone or email address. I will carefully review your comments and share them with the

author and editors who worked on the book.

E-mail: webdev@samspublishing.com

Mail: Mark Taub

Associate Publisher

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any

updates, downloads, or errata that might be available for this book.

Introduction

Over the last decade or so, the World Wide Web has grown in scope from being a relative-

ly simple information repository to becoming the first stop for many people when seeking

entertainment, education, news, or business resources.

Websites themselves need no longer be limited to a number of static pages containing text

and perhaps simple images; the tools now available allow the development of highly

interactive and engaging pages involving animations, visual effects, context-sensitive con-

tent, embedded productivity tools, and much more.

The list of technologies available for producing such pages is broad. However, those based

on Open Source licenses have become, and remain, highly popular due to their typically

low (often zero) entry cost, and to the huge resource of user-contributed scripts, tutorials,

tools, and other resources for these tools and applications available via the Internet and

elsewhere.

In this book, we give a detailed account of how to program fluid, interactive websites

using server- and client-side coding techniques and tools, as well as how to combine these

to produce a slick, desktop-application-like user experience using Ajax.

The programming languages used in this book include the ubiquitous JavaScript (for

client-side programming) and the immensely popular open-source PHP language (for serv-

er-side scripting, and available with the majority of web-hosting packages). The nuts and

bolts of Ajax programming are described in detail, as well as the use of several advanced

open-source frameworks that contain ready-written code for quickly building state-of-the-

art interactive sites.

The CD that accompanies this book provides all the tools required on
your journey through learning to program in PHP, JavaScript, and Ajax.

What Is Ajax?
Ajax stands for Asynchronous JavaScript And XML. Although strictly speaking Ajax is not

itself a technology, it mixes well-known programming techniques in an uncommon way

to enable web developers to build Internet applications with much more appealing user

interfaces than those to which we have become accustomed.

On the
CD

2 Sams Teach Yourself Ajax, JavaScript, and PHP All in One

When using popular desktop applications, we expect the results of our work to be

made available immediately, without fuss, and without our having to wait for the

whole screen to be redrawn by the program. While using a spreadsheet such as

Excel, for instance, we expect the changes we make in one cell to propagate imme-

diately through the neighboring cells while we continue to type, scroll the page, or

use the mouse.

Unfortunately, this sort of interaction has seldom been available to users of web-

based applications. Much more common is the experience of entering data into

form fields, clicking on a button or a hyperlink and then sitting back while the page

slowly reloads to exhibit the results of the request. In addition, we often find that the

majority of the reloaded page consists of elements that are identical to those of the

previous page and that have therefore been reloaded unnecessarily; background

images, logos, and menus are frequent offenders.

Ajax promises us a solution to this problem. By working as an extra layer between

the user’s browser and the web server, Ajax handles server communications in the

background, submitting server requests and processing the returned data. The

results may then be integrated seamlessly into the page being viewed, without that

page needing to be refreshed or a new one being loaded.

In Ajax applications, such server requests are not necessarily synchronized with user

actions such as clicking on buttons or links. A well-written Ajax application may

already have asked of the server, and received, the data required by the user—per-

haps before the user even knew she wanted it. This is the meaning of the asynchro-

nous part of the Ajax acronym.

The parts of an Ajax application that happen “under the hood” of the user’s brows-

er, such as sending server queries and dealing with the returned data, are written in

JavaScript, and XML is an increasingly popular means of coding and transferring for-

matted information used by Ajax to efficiently transfer data between server and

client.

We’ll look at all these techniques, and how they can be made to work together, as

we work through the chapters.

Who This Book Is For
This volume is aimed primarily at web developers seeking to build better interfaces

for the users of their web applications and programmers from desktop environments

looking to transfer their applications to the Internet.

Introduction 3

It also proves useful to web designers eager to learn how the latest techniques can

offer new outlets for their creativity. Although the nature of PHP, JavaScript, and

Ajax applications means that they require some programming, all the required

technologies are explained from first principles within the book, so even those with

little or no programming experience should be able to follow the lessons without a

great deal of difficulty.

How To Use This Book
All the technologies—including a refresher of WWW basics—are explained from first

principles, so that even non-programmers or those unfamiliar with these languages

should be able to follow the development of the concepts with little problem.

The book is divided into parts, each dedicated to a particular technology or discus-

sion topic. Within each part, the chapters each specialize in a given aspect or

subtopic. It should therefore be easy to follow the instructional flow of the book by a

quick look through the table of contents.

However, if you are already a competent programmer in one or more of the tech-

nologies used—in PHP for instance, or in JavaScript—then feel free to speed-read or

skip the sections that you don’t need.

To try out many of the examples you’ll need access to a web server that supports

PHP, and a means to upload files into your web space (probably FTP). Most web

hosts include PHP in their hosting packages, or can do so on request at minimal or

no cost.

Alternatively, the CD that accompanies this book contains everything required to set

up a web serving environment on your own computer. This package is called

XAMPP, and it contains everything you need to develop fully functional, interactive

websites like those described in this book, ready to be deployed to a web-based server

at a later date if you so choose. Look out for the boxes marked “On the CD” as you

work through the book.

Conventions Used In This Book
This book contains special elements as described by the following:

These boxes highlight information that can make your programming more efficient
and effective.

Did you
Know?

▼

4 Sams Teach Yourself Ajax, JavaScript, and PHP All in One

These boxes provide additional information related to material you just read.

These boxes focus your attention on problems or side effects that can occur in
specific situations.

Try It Yourself
The Try It Yourself section offers suggestions for creating your own scripts, experi-

menting further, or applying the techniques learned throughout the chapter. This

will help you create practical applications based on what you’ve learned.

Sections like this remind you about relevant information or tools available on the
CD that accompanies the book.

A special monospace font is used on programming-related terms and language.

Setting Up Your Workspace
While you can write the code in this book using just a simple text editor, to run the

examples you’ll need a computer (with Windows, Mac, or Linux operating system)

running a modern browser such as Internet Explorer or Firefox.

You can download Microsoft Windows Explorer from http://www.microsoft.com/
and the latest version of Firefox from http://www.mozilla.com/.

You will also need to load files on to a web server—if you already have a web host

that supports PHP, you can use your web space there. Alternatively, the accompany-

ing CD has everything you need to set up your own web server for private use,

either on your own PC or another on your network.

By the
Way

Watch
Out!

▲

On the
CD

Did you
Know?

http://www.microsoft.com/
http://www.mozilla.com/

Introduction 5

What’s on the CD
The accompanying CD contains everything you could need to get the best from this

book. Included on the CD you’ll find

. XAMPP, a complete open source compilation you can use to easily install the

Apache web server, PHP language, and MySQL database manager on your

computer. Versions are provided for Linux, Mac, and Windows environments.

. jEdit, a Java-based programmer’s editor that’s perfect for creating or modify-

ing code. The CD includes files for Java, Mac, or Windows.

. A selection of open source frameworks for developing sophisticated web

applications. Programming examples based on some of these frameworks are

presented towards the end of the book.

This page intentionally left blank

PART I

Web Basics Refresher

CHAPTER 1 Workings of the Web 9

CHAPTER 2 Writing and Styling Pages in HTML and CSS 21

CHAPTER 3 Anatomy of an Ajax Application 41

This page intentionally left blank

CHAPTER 1

Workings of the Web

What You’ll Learn in This Chapter:
. A Short History of the Internet
. The World Wide Web
. Introducing HTTP
. The HTTP Request and Response
. HTML Forms

We have a lot of ground to cover in this book, so let’s get to it. We’ll begin by reviewing in

this chapter what the World Wide Web is and where it came from. Afterward we’ll take a

look at some of the major components that make it work, especially the HTTP protocol

used to request and deliver web pages.

A Short History of the Internet
In the late 1950s, the U.S. government formed the Advanced Research Projects Agency

(ARPA). This was largely a response to the Russian success in launching the Sputnik satel-

lite and employed some of the country’s top scientific intellects in research work with U.S.

military applications.

During the 1960s, the agency created a decentralized computer network known as

ARPAnet. This embryonic network initially linked four computers located at the University

of California at Los Angeles, Stanford Research Institute, the University of California at

Santa Barbara, and the University of Utah, with more nodes added in the early 1970s.

The network had initially been designed using the then-new technology of packet switch-

ing and was intended as a communication system that would remain functional even if

some nodes should be destroyed by a nuclear attack.

10 CHAPTER 1: Workings of the Web

Email was implemented in 1972, closely followed by the telnet protocol for logging

on to remote computers and the File Transfer Protocol (FTP), enabling file transfer

between computers.

This developing network was enhanced further in subsequent years with improve-

ments to many facets of its protocols and tools. However, it was not until 1989 when

Tim Berners-Lee and his colleagues at the European particle physics laboratory

CERN (Conseil Europeen pour le Recherche Nucleaire) proposed the concept of linking

documents with hypertext that the now familiar World Wide Web began to take

shape. The year 1993 saw the introduction of Mosaic, the first graphical web brows-

er and forerunner of the famous Netscape Navigator.

The use of hypertext pages and hyperlinks helped to define the page-based interface

model that we still regard as the norm for web applications today.

The World Wide Web
The World Wide Web operates using a client/server networking principle. When you

enter the URL (the web address) of a web page into your browser and click on “Go,”

you ask the browser to make an HTTP request of the particular computer having that

address. On receiving this request, that computer returns (“serves”) the required

page to you in a form that your browser can interpret and display. Figure 1.1 illus-

trates this relationship. In the case of the Internet, of course, the server and client

computers may be located anywhere in the world.

Client

Client

Client

Client

Server

HTTP Request

HTML Response

FIGURE 1.1
How web servers
and clients
(browsers)
interact.

Later we’ll discuss the nitty-gritty of HTTP requests in more detail. For now, suffice it

to say that your HTTP request contains several pieces of information needed so that

your page may be correctly identified and served to you, including the following:

The World Wide Web 11

. The domain at which the page is stored (for example, mydomain.com)

. The name of the page (This is the name of a file in the web server’s file system—

for example, mypage.html.)

. The names and values of any parameters that you want to send with your

request

What Is a Web Page?
Anyone with some experience using the World Wide Web will be familiar with the

term web page. The traditional user interface for websites involves the visitor navi-

gating among a series of connected pages each containing text, images, and so

forth, much like the pages of a magazine.

Generally speaking, each web page is actually a separate file on the server. The col-

lection of individual pages constituting a website is managed by a program called a

web server.

Web Servers
A web server is a program that interprets HTTP requests and delivers the appropriate

web page in a form that your browser can understand. Many examples are avail-

able, most running under either UNIX/Linux operating systems or under some ver-

sion of Microsoft Windows.

The term web server is often used in popular speech to refer to both the web
server program—such as Apache—and the computer on which it runs.

Perhaps the best-known server application is the Apache Web Server from the Apache

Software Foundation (http://www.apache.org), an open source project used to serve

millions of websites around the world (see Figure 1.2).

Another example is Microsoft’s IIS (Internet Information Services), often used on

host computers running the Microsoft Windows operating system.

Not all Windows-based web hosts use IIS. Various other web servers are available
for Windows, including a version of the popular Apache Web Server.

Watch
Out!

By the
Way

http://www.apache.org

12 CHAPTER 1: Workings of the Web

Server-Side Programming
Server-side programs, scripts, or languages, refer to programs that run on the server

computer. Many languages and tools are available for server-side programming,

including PHP, Java, and ASP (the latter being available only on servers running the

Microsoft Windows operating system). Sophisticated server setups often also include

databases of information that can be addressed by server-side scripts.

Server-side programming in this book is carried out using the popular PHP scripting
language, which is flexible, is easy to use, and can be run on nearly all servers.
Ajax, however, can function equally well with any server-side scripting language.

The purposes of such scripts are many and various. In general, however, they all are

designed to preprocess a web page before it is returned to you. By this we mean that

some or all of the page content will have been modified to suit the context of your

request—perhaps to display train times to a particular destination and on a specific

date, or to show only those products from a catalog that match your stated hobbies

and interests.

In this way server-side scripting allows web pages to be served with rich and varied

content that would be beyond the scope of any design using only static pages—that

is, pages with fixed content.

FIGURE 1.2
The Apache
Software
Foundation
home page at
http://www.
apache.org/
displayed in
Internet
Explorer.

By the
Way

http://www.apache.org/
http://www.apache.org/

The World Wide Web 13

Web Browsers
A web browser is a program on a web surfer’s computer that is used to interpret and

display web pages. The first graphical web browser, Mosaic, eventually developed

into the famous range of browsers produced by Netscape.

By graphical web browser we mean one that can display not only the text ele-
ments of an HTML document but also images and colors. Typically, such browsers
have a point-and-click interface using a mouse or similar pointing device.

There also exist text-based web browsers, the best known of which is Lynx
(http://lynx.browser.org/), which display HTML pages on character-based displays
such as terminals, terminal emulators, and operating systems with command-line
interfaces such as DOS.

The Netscape series of browsers, once the most successful available, were eventually
joined by Microsoft’s Internet Explorer offering, which subsequently went on to dom-
inate the market.

Recent competitive efforts, though, have introduced a wide range of competing browser
products including Opera, Safari, Konqueror, and especially Mozilla’s Firefox, an open
source web browser that has recently gained an enthusiastic following (see Figure 1.3).

Browsers are readily available for many computer operating systems, including the
various versions of Microsoft Windows, UNIX/Linux, and Macintosh, as well as for
other computing devices ranging from mobile telephones to PDAs (Personal Digital
Assistants) and pocket computers.

By the
Way

FIGURE 1.3
The Firefox
browser from
Mozilla.org
browsing the
Firefox Project
home page.

http://lynx.browser.org/

14 CHAPTER 1: Workings of the Web

Client-Side Programming
We have already discussed how server scripts can improve your web experience by

offering pages that contain rich and varied content created at the server and insert-

ed into the page before it is sent to you.

Client-side programming, on the other hand, happens not at the server but right

inside the user’s browser after the page has been received. Such scripts allow you to

carry out many tasks relating to the data in the received page, including performing

calculations, changing display colors and styles, checking the validity of user input,

and much more.

Nearly all browsers support some version or other of a client-side scripting language

called JavaScript, which is an integral part of Ajax and is the language we’ll be

using in this book for client-side programming.

DNS—The Domain Name Service
Every computer connected to the Internet has a unique numerical address (called an

IP address) assigned to it. However, when you want to view a particular website in

your browser, you don’t generally want to type in a series of numbers—you want to

use the domain name of the site in question. After all, it’s much easier to remember

www.somedomain.com than something like 198.105.232.4.

When you request a web page by its domain name, your Internet service provider

submits that domain name to a DNS server, which tries to look up the database

entry associated with the name and obtain the corresponding IP address. If it’s suc-

cessful, you are connected to the site; otherwise, you receive an error.

The many DNS servers around the Internet are connected together into a network

that constantly updates itself as changes are made. When DNS information for a

website changes, the revised address information is propagated throughout the DNS

servers of the entire Internet, typically within about 24 hours.

Introducing HTTP
Various protocols are used for communication over the World Wide Web, perhaps

the most important being HTTP, the protocol that is also fundamental to Ajax appli-

cations.

When you request a web page by typing its address into your web browser, that

request is sent using HTTP. The browser is an HTTP client, and the web page server is

(unsurprisingly) an HTTP server.

www.somedomain.com

The HTTP Request and Response 15

In essence, HTTP defines a set of rules regarding how messages and other data

should be formatted and exchanged between servers and browsers.

For a detailed account of HTTP, Sams Publishing offers the HTTP Developer’s
Handbook by Chris Shiflett.

The HTTP Request and Response
The HTTP protocol can be likened to a conversation based on a series of questions

and answers, which we refer to respectively as HTTP requests and HTTP responses.

The contents of HTTP requests and responses are easy to read and understand, being

near to plain English in their syntax.

This section examines the structure of these requests and responses, along with a

few examples of the sorts of data they may contain.

The HTTP Request
After opening a connection to the intended server, the HTTP client transmits a

request in the following format:

. An opening line

. Optionally, a number of header lines

. A blank line

. Optionally, a message body

The opening line is generally split into three parts; the name of the method, the path

to the required server resource, and the HTTP version being used. A typical opening

line might read:

GET /sams/testpage.html HTTP/1.0

In this line we are telling the server that we are sending an HTTP request of type GET

(explained more fully in the next section), we are sending this using HTTP version

1.0, and the server resource we require (including its local path) is

/sams/testpage.html.

In this example the server resource we seek is on our own server, so we have
quoted a relative path. It could of course be on another server elsewhere, in
which case the server resource would include the full URL.

Did you
Know?

By the
Way

16 CHAPTER 1: Workings of the Web

Header lines are used to send information about the request, or about the data

being sent in the message body. One parameter and value pair is sent per line, the

parameter and value being separated by a colon. Here’s an example:

User-Agent: [name of program sending request]

For instance, Internet Explorer v5.5 offers something like the following:

User-agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

A further example of a common request header is the Accept: header, which states

what sort(s) of information will be found acceptable as a response from the server:

Accept: text/plain, text/html

By issuing the header in the preceding example, the request is informing the server

that the sending application can accept either plain text or HTML responses (that is,

it is not equipped to deal with, say, an audio or video file) .

HTTP request methods include POST, GET, PUT, DELETE, and HEAD. By far the most
interesting for the purposes of this book are the GET and POST requests. The PUT,
DELETE, and HEAD requests are not covered here.

The HTTP Response
In answer to such a request, the server typically issues an HTTP response, the first

line of which is often referred to as the status line. In that line the server echoes the

HTTP version and gives a response status code (which is a three-digit integer) and a

short message known as a reason phrase. Here’s an example HTTP response:

HTTP/1.0 200 OK

The response status code and reason phrase are essentially intended as machine-

and human-readable versions of the same message, though the reason phrase may

actually vary a little from server to server. Table 1.1 lists some examples of common

status codes and reason phrases. The first digit of the status code usually gives some

clue about the nature of the message:

. 1**—Information

. 2**—Success

. 3**—Redirected

. 4**—Client error

. 5**—Server error

By the
Way

HTML Forms 17

TABLE 1.1 Some Commonly Encountered HTTP Response Status Codes

Status Code Explanation

200 - OK The request succeeded.

204 - No Content The document contains no data.

301 - Moved Permanently The resource has permanently moved to a different URI.

401 - Not Authorized The request needs user authentication.

403 - Forbidden The server has refused to fulfill the request.

404 - Not Found The requested resource does not exist on the server.

408 - Request Timeout The client failed to send a request in the time allowed by
the server.

500 - Server Error Due to a malfunctioning script, server configuration error
or similar.

A detailed list of status codes is maintained by the World Wide Web Consortium,
W3C, and is available at http://www.w3.org/Protocols/rfc2616/ rfc2616-sec10.html.

The response may also contain header lines each containing a header and value

pair similar to those of the HTTP request but generally containing information

about the server and/or the resource being returned:

Server: Apache/1.3.22
Last-Modified: Fri, 24 Dec 1999 13:33:59 GMT

HTML Forms
Web pages often contain fields where you can enter information. Examples include

select boxes, check boxes, and fields where you can type information. Table 1.2 lists

some popular HTML form tags.

TABLE 1.2 Some Common HTML Form Tags

Tag Description

<form>...</form> Container for the entire form

<input /> Data entry element; includes text, password, check box
and radio button fields, and submit and reset buttons

<select>...</select> Drop-down select box

<option>...</option> Selectable option within select box

<textarea>...</textarea> Text entry field with multiple rows

Did you
Know?

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

18 CHAPTER 1: Workings of the Web

After you have completed the form you are usually invited to submit it, using an

appropriately labeled button or other page element.

At this point, the HTML form constructs and sends an HTTP request from the user-

entered data. The form can use either the GET or POST request type, as specified in

the method attribute of the <form> tag.

GET and POST Requests
Occasionally you may hear it said that the difference between GET and POST requests

is that GET requests are just for GETting (that is, retrieving) data, whereas POST

requests can have many uses, such as uploading data, sending mail, and so on.

Although there may be some merit in this rule of thumb, it’s instructive to consider

the differences between these two HTTP requests in terms of how they are constructed.

A GET request encodes the message it sends into a query string, which is appended to

the URL of the server resource. A POST request, on the other hand, sends its message in

the message body of the request. What actually happens at this point is that the

entered data is encoded and sent, via an HTTP request, to the URL declared in the

action attribute of the form, where the submitted data will be processed in some way.

Whether the HTTP request is of type GET or POST and the URL to which the form is

sent are both determined in the HTML markup of the form. Let’s look at the HTML

code of a typical form:

<form action=”http://www.sometargetdomain.com/somepage.htm”
➥ method=”post”>
Your Surname: <input type=”text” size=”50” name=”surname” />

<input type=”submit” value=”Send” />
</form>

This snippet of code, when embedded in a web page, produces the simple form

shown in Figure 1.4.

Let’s take a look at the code, line by line. First, we begin the form by using the

<form> tag, and in this example we give the tag two attributes. The action attrib-

ute determines the URL to which the submitted form will be sent. This may be to

another page on the same server and described by a relative path, or to a remote

domain, as in the code behind the form in Figure 1.4.

Next we find the attribute method, which determines whether we want the data to

be submitted with a GET or a POST request.

HTML Forms 19

Now suppose that we completed the form by entering the value Ballard into the

surname field. On submitting the form by clicking the Send button, we are taken to

http://www.sometargetdomain.com/somepage.htm, where the submitted data will

be processed—perhaps adding the surname to a database, for example.

The variable surname (the name attribute given to the Your Surname input field)

and its value (the data we entered in that field) will also have been sent to this desti-

nation page, encoded into the body of the POST request and invisible to users.

Now suppose that the first line of the form code reads as follows:

<form action=”http://www.sometargetdomain.com/somepage.htm”
➥ method=”get”>

On using the form, we would still be taken to the same destination, and the same

variable and its value would also be transmitted. This time, however, the form

would construct and send a GET request containing the data from the form. Looking

at the address bar of the browser, after successfully submitting the form, we would

find that it now contains:

http://www.example.com/page.htm?surname=Ballard

Here we can see how the parameter and its value have been appended to the URL. If

the form had contained further input fields, the values entered in those fields would

also have been appended to the URL as parameter=value pairs, with each pair sep-

arated by an & character. Here’s an example in which we assume that the form has

a further text input field called firstname:

http://www.example.com/page.htm?surname=Ballard&firstname=Phil

FIGURE 1.4
A simple HTML
form.

http://www.sometargetdomain.com/somepage.htm

20 CHAPTER 1: Workings of the Web

Some characters, such as spaces and various punctuation marks, are not allowed to

be transmitted in their original form. The HTML form encodes these characters into

a form that can be transmitted correctly. An equivalent process decodes these values

at the receiving page before processing them, thus making the encoding/decoding

operation essentially invisible to the user. We can, however, see what this encoding

looks like by making a GET request and examining the URL constructed in doing so.

Suppose that instead of the surname field in our form we have a fullname field that

asks for the full name of the user and encodes that information into a GET request.

Then, after submitting the form, we might see the following URL in the browser:

http://www.example.com/page.htm?fullname=Phil+Ballard

Here the space in the name has been replaced by the + character; the decoding

process at the receiving end removes this character and replaces the space.

In many cases, you may use either the POST or GET method for your form submis-
sions and achieve essentially identical results. The difference becomes important,
however, when you learn how to construct server calls in Ajax applications.

The XMLHTTPRequest object at the heart of all Ajax applications uses HTTP to make

requests of the server and receive responses. The content of these HTTP requests are

essentially identical to those generated when an HTML form is submitted.

Summary
This chapter reviewed the history and architecture of the World Wide Web, and cov-

ered some basics of server requests and responses using the HTTP protocol.

In particular, we discussed how GET and POST requests are constructed, and how

they are used in HTML forms. Additionally, we saw some examples of responses to

these requests that we might receive from the server.

By the
Way

CHAPTER 2

Writing and Styling Pages in
HTML and CSS

What You’ll Learn in This Chapter:
. Introducing HTML
. Elements of an HTML Page
. A More Advanced HTML Page
. Some Useful HTML Tags
. Adding Your Own Style
. Defining the Rules
. Add a Little class
. Applying Styles
. Formatting Text with Styles
. Adding Lines

In this chapter we introduce HTML, the markup language behind virtually every page of

the World Wide Web. A sound knowledge of HTML provides an excellent foundation for

the Ajax applications discussed in later chapters.

Introducing HTML
It wouldn’t be appropriate to try to give an exhaustive account of HTML (Hypertext

Markup Language)—or, indeed, any of the other component technologies of Ajax—within

this book. Instead we’ll review the fundamental principles and give some code examples

to illustrate them, paying particular attention to the subjects that will become relevant

when we start to develop Ajax applications.

What Is HTML?
The World Wide Web is constructed from many millions of individual pages, and those

pages are, in general, written in Hypertext Markup Language, better known as HTML.

22 CHAPTER 2: Writing and Styling Pages in HTML and CSS

That name gives away a lot of information about the nature of HTML. We use it to

mark up our text documents so that web browsers know how to display them and to

define hypertext links within them to provide navigation within or between them.

Anyone who (like me) can remember the old pre-WYSIWYG word processing pro-

grams will already be familiar with text markup. Most of these old applications

required that special characters be placed at the beginning and end of sections of

text that you wanted to be displayed as (for instance) bold, italic, or underlined text.

What Tools Are Needed to Write HTML?
Because the elements used in HTML markup employ only ordinary keyboard char-

acters, all you really need is a good text editor to construct HTML pages. Many are

available, and most operating systems have at least one such program already

installed. If you’re using some version of Windows, for example, the built-in

Notepad application works just fine.

Although Notepad is a perfectly serviceable text editor, many so-called program-
mers’ editors are available offering useful additional functions such as line num-
bering and syntax highlighting. Many of these are under open source licences and
can be downloaded and used at no cost. It is well worth considering using such
an editor, especially for larger or more complex programming tasks.

The use of word processing software can cause problems due to unwanted
markup and other symbols that such programs often embed in the output code. If
you choose to use a word processor, make sure that it is capable of saving files
as plain ASCII text.

The CD accompanying this book contains the popular and capable jEdit program-
mer’s editor.

Our First HTML Document
Let’s jump right in and create a simple HTML document. Open your chosen editor

and enter the text shown in Listing 2.1. The HTML markup elements (often referred

to as tags) are the character strings enclosed by < and >.

LISTING 2.1 testpage.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
➥”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>

Did you
Know?

On the
CD

Elements of an HTML Page 23

</head>
<body>
<h1>My HTML Page</h1>
Welcome to my first page written in HTML.

This is simply a text document with HTML markup to show some
words in bold and some other words in <i>italics</i>.

</body>
</html>

Now save the document somewhere on your computer, giving it the name

testpage.html.

If you now load that page into your favorite browser, such as Internet Explorer or

Firefox, you should see something like the window displayed in Figure 2.1.

LISTING 2.1 Continued

FIGURE 2.1
Our test docu-
ment displayed
in Internet
Explorer.

Elements of an HTML Page
Let’s look at Listing 2.1 in a little more detail.

The first element on the page is known as the DOCTYPE element. Its purpose is to

notify the browser of the “flavor” of HTML used in the document. The DOCTYPE ele-

ment used throughout this book refers to HTML 4.0 Transitional, a fairly forgiving

version of the HTML specification that allows the use of some earlier markup styles

and structures in addition to the latest HTML 4.0 specifications.

The DOCTYPE element must always occur right at the beginning of the HTML docu-

ment.

24 CHAPTER 2: Writing and Styling Pages in HTML and CSS

Next, note that the remainder of the document is enclosed by the elements <html>

at the start of the page and </html> at the end. These tags notify the browser that

what lies between should be interpreted and displayed as an HTML document.

Although many modern browsers correctly display HTML without these tags, it is
bad practice to omit them. Even if the page is shown correctly on your own PC,
you have no idea what operating system and browser a visitor may be using—he
or she may not be so lucky.

The document within these outer tags is split into two further sections. The first is

enclosed in <head> and </head> tags, and the second is contained between <body>

and </body>. Essentially, the document’s head section is used to store information

about the document that is not to be displayed in the browser window, whereas the

body of the document contains text to be interpreted and displayed to the user via

the browser window.

The <head> of the Document
From Listing 2.1 we can see that the head section of our simple HTML document

contains only one line—the words A Simple HTML Document enclosed in <title>

and </title> tags.

Remember that the head section contains information that is not to be displayed in

the browser window. This is not, then, the title displayed at the top of our page text,

as you can confirm by looking again at Figure 2.1. Neither does the document title

refer to the filename of the document, which in this case is testpage.html.

In fact, the document title fulfils a number of functions, among them:

. Search engines often use the page title (among other factors) to help them

decide what a page is about.

. When you bookmark a page, it is generally saved by default as the document

title.

. Most browsers, when minimized, display the title of the current document on

their icon or taskbar button.

It’s important, therefore, to choose a meaningful and descriptive title for each page

that you create.

Many other element types are used in the head section of a document, including

link, meta, and script elements. Although we don’t give an account of them here,

they are described throughout the book as they occur.

Watch
Out!

Elements of an HTML Page 25

The Document <body>
Referring again to Listing 2.1, we can clearly see that the content of the document’s

body section is made up of the text we want to display on the page, plus some tags

that help us to define how that text should look.

To define that certain words should appear in bold type, for example, we enclose

those words in and tags. Similarly, to convert certain words into an italic

typeface, we can use the <i> and </i> tags.

The heading, My HTML Page, is enclosed between <h1> and </h1> tags. These indi-

cate that we intend the enclosed text to be a heading. HTML allows for six levels of

headings, from h1 (the most prominent) to h6. You can use any of the intermediate

values h2, h3, h4, and h5 to display pages having various levels of subtitles, for

instance corresponding to chapter, section, and paragraph headings. Anything dis-

played within header tags is displayed on a line by itself.

All the tags discussed so far have been containers—that is, they consist of opening

and closing tags between which you place the text that you want these tags to act

upon. Some elements, however, are not containers but can be used alone. Listing 2.1

shows one such element: the
 tag, which signifies a line break. Another

example is <hr /> (a horizontal line).

If you want to write in the body section of the HTML page but don’t want it to be
interpreted by the browser and therefore displayed on the screen, you may do so
by writing it as a comment. HTML comments start with the character string <!--
and end with the string --> as in this example:

<!-- this is just a comment and won’t be displayed in the browser -->

Adding Attributes to HTML Elements
Occasionally there is a need to specify exactly how a markup tag should behave. In

such cases you can add (usually within the opening tag) parameter and value pairs,

known as attributes, to change the behavior of the element:

<body bgcolor=”#cccccc”>
… page content goes here …
</body>

In this example, the behavior of the <body> tag has been modified by adjusting its

BGCOLOR (background color) property to a light gray. Figure 2.2 shows the effect this

has if applied to our file testpage.html:

Did you
Know?

26 CHAPTER 2: Writing and Styling Pages in HTML and CSS

Color values in HTML are coded using a hexadecimal system. Each color value is
made up of three component values, corresponding to red, green, and blue. Each
of the color values can range from hex 00 to hex ff (zero to 255 in decimal nota-
tion). The three hex numbers are concatenated into a string prefixed with a hash
character (#). The color value #000000 therefore corresponds to black, and
#ffffff to pure white.

Images
Images can be inserted in our page by means of the tag. In this case we

specify the source file of the image as a parameter by using the src attribute. Other

aspects of the image display that we can alter this way include the borders, width,

and height of the image:

Border width, image width, and image height are in numbers of pixels (the “dots”

formed by individual picture elements on the screen).

A further useful attribute for images is alt, which is an abbreviation of alternative
text. This specifies a short description of the image that will be offered to users
whose browsers cannot, or are configured not to, display images. Alternative text
can also be important in making your website accessible to those with visual
impairment and other disabilities:

FIGURE 2.2
Our test page
with the body
color changed
to gray.

Did you
Know?

Did you
Know?

A More Advanced HTML Page 27

Tables
Often you want to display information in tabular format, and HTML has a set of

elements designed specifically for this purpose:

<table>
<tr><th>Column Header 1</th><th>Column Header 2</th></tr>
<tr><td>Data Cell 1</td><td>Data Cell 2</td></tr>
<tr><td>Data Cell 3</td><td>Data Cell 4</td></tr>
</table>

The <table> and </table> tags contain a nested hierarchy of other tags, including

<tr> and </tr>, which define individual table rows; <th> and </th>, which indi-

cate cells in the table’s header; and <td> and </td>, which contain individual cells

of table data.

Look ahead to Figure 2.3 to see an example of how a table looks when displayed in

a browser window.

Hyperlinks
Hypertext links (hyperlinks) are fundamental to the operation of HTML. By clicking

on a hyperlink, you can navigate to a new location, be that to another point on the

current page or to some point on a different page on another website entirely.

Links are contained within an <a>, or anchor tag, a container tag that encloses the

content that will become the link. The destination of the link is passed to this tag as

a parameter href:

Here is my hyperlink

Clicking on the words my hyperlink in the preceding example results in the brows-

er requesting the page newpage.html.

A hyperlink can contain images as well as, or instead of, text. Look at this example:

Here, a user can click on the image picfile.gif to navigate to newpage.html.

A More Advanced HTML Page
Let’s revisit our testpage.html and add some extra elements. Listing 2.2 shows

seville.html, developed from our original HTML page but with different content

in the <body> section of the document. Figure 2.3 shows how the page looks when

displayed, this time in Mozilla Firefox.

Did you
Know?

28 CHAPTER 2: Writing and Styling Pages in HTML and CSS

Now we have applied a background tint to the body area of the document. The con-

tent of the body area has been centered on the page, and that content now includes

an image (which we’ve given a two-pixel-wide border), a heading and a subhead-

ing, a simple table, and some text.

LISTING 2.2 seville.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥Transitional//EN” “http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>A Simple HTML Document</title>
</head>
<body bgcolor=”#cccccc”>
<center>

<h1>Guide to Seville</h1>
<h3>A brief guide to the attractions</h3>
<table border=”2”>
<tr>
<th bgcolor=”#aaaaaa”>Attraction</th>
<th bgcolor=”#aaaaaa”>Description</th>

</tr>
<tr>
<td>Cathedral</td>
<td>Dating back to the 15th century</td>

</tr>
<tr>
<td>Alcazar</td>
<td>The medieval Islamic palace</td>

</tr>
</table>
<p>Enjoy your stay in beautiful Seville.</p>
</center>
</body>
</html>

Let’s take a closer look at some of the code.

First, we used the BGCOLOR property of the <body> tag to provide the overall back-

ground tint for the page:

<body bgcolor=”#cccccc”>

Everything in the body area is contained between the <center> tag (immediately

after the body tag) and its partner </center>, immediately before the closing body

tag. This ensures that all of our content is centered on the page.

The main heading is enclosed in <h1> … </h1> tags as previously, but is now fol-

lowed by a subheading using <h3> … </h3> tags to provide a slightly smaller font

size.

Some Useful HTML Tags 29

By using the border property in our opening <table> tag, we set a border width of

two pixels for the table:

<table border=”2”>

Meanwhile we darkened the background of the table’s header cells slightly by using

the BGCOLOR property of the <th> elements:

<th bgcolor=”#aaaaaa”>Vegetables</th>

FIGURE 2.3
testpage2.html
shown in Mozilla
Firefox.

Some Useful HTML Tags
Table 2.1 lists some of the more popular HTML tags.

TABLE 2.1 Some Common HTML Markup Elements

Document Tags
<html>..</html> The entire document

<head>..</head> Document head

<body>..</body> Document body

<title>..</title> Document title

Style Tags
<a>.. Hyperlink

.. Bold text

.. Emphasized text

.. Changed font

<i>..</i> Italic text

30 CHAPTER 2: Writing and Styling Pages in HTML and CSS

<small>..</small> Small text

<table>..</table> Table

<tr>..</tr> Table row

<th>..</th> Cell in table header

<td>..</td> Cell in table body

.. Bulleted list

.. Ordered (numbered) list

.. List item in bulleted or ordered list

The World Wide Web Consortium is responsible for administering the definitions
of HTML, HTTP, XML, and many other web technologies. Its website is at
http://www.w3.org/.

Adding Your Own Style
As you’ve already learned, HTML was written as a markup language for defining

the structure of a document (paragraphs, headings, tables, and so on). Although it

was never intended to become a desktop publishing tool, it does include some basic

formatting attributes, such as font-size, align and the aforementioned bgcolor.

In 1996, the W3C first recommended the idea of Cascading Style Sheets (CSS) to for-

mat HTML documents. The recommendation, which was updated in mid-1998,

enables web developers to separate the structure and format of their documents.

The CSS recommendation describes the following three types of style sheets:

. Embedded The style properties are included (within the <style> tags) at the

top of the HTML document. A style assigned to a particular tag applies to all

those tags in this type of document. In this book, you’ll see embedded style

sheets most often.

. Inline The style properties are included throughout the HTML page. Each

HTML tag receives its own style attributes as they occur in the page.

. Linked The style properties are stored in a separate file. That file can be linked

to any HTML document using a <link> tag placed within the <head> tags.

In the following sections, you’ll learn how to construct these style sheets and how to

apply them to your documents.

TABLE 2.1 Continued

Style Tags

Did you
Know?

http://www.w3.org/

Add a Little class 31

Even without all the formatting benefits that style sheets provide, web developers
can rejoice in knowing that using style sheets will no doubt be the biggest timesaver
they’ve ever encountered. Because you can apply style sheets to as many HTML
documents as you like, making changes takes a matter of minutes rather than days.

Before the advent of style sheets, if you wanted to change the appearance of a
particular tag in your website, you would have to open each document, find the tag
you wanted to change, make the change, save the document, and continue on to
the next document. With style sheets, you can change the tag in a single style
sheet document and have the changes take effect immediately in all the pages
linked to it.

Defining the Rules
Style sheet rules are made up of selectors (the HTML tags that receive the style) and

declarations (the style sheet properties and their values). In the following example,

the selector is the body tag and the declaration is made up of the style property

(background) and its value (black). This example sets the background color for the

entire document to black.

body {background:black}

You can see that, in a style sheet, the HTML tag is not surrounded by brackets as it

would be in the HTML document, and the declaration is surrounded by curly braces.

Declarations can contain more than one property. The following example also sets

the text color for this page to white. Notice that the two properties are separated by

a semicolon.

body {background:black; color:white}

If you want to apply the same rules to several HTML tags, you could group those

rules together, as in the following example:

body, td, h1 {
background:black;
color:white
}

Add a Little class
As the old saying goes, rules are made to be broken. What if you don’t want every

single h1 heading in your document to be white on a black background? Maybe you

want every other h1 heading to be yellow on a white background. Let me introduce

you to the class attribute. You can apply this attribute to almost every HTML tag,

and it’s almost like creating your own tags.

Did you
Know?

32 CHAPTER 2: Writing and Styling Pages in HTML and CSS

Figure 2.4 shows a fairly standard HTML page that uses an aqua table at the top of

the page to hold the navigation links, and places other tabular content in yellow

tables throughout the document. You can see the HTML document for that page in

Figure 2.5.

FIGURE 2.4
An HTML page
that formats
two tables dif-
ferently.

FIGURE 2.5
The HTML docu-
ment for the
page in Figure
2.4. Notice the
class attribute
in each
<table> tag.

Applying Styles 33

Take a closer look at the style properties in Figure 2.5. This document defines two

table styles within the <style> tags. The HTML tag name table is followed by a

period (.) and the class names (nav and rest).

table.nav {background:aqua}
table.rest {background:yellow;

text-align:center;
color:black}

When the table is referenced in the body of the document, you must apply the

class attribute to tell the browser which style properties should be applied. The

HTML markup for each table in this example appears in the following HTML code.

You can see that the class name appears within quotations just like the other

HTML attributes (and as with the width attribute shown here).

<table class=”nav” width=”100%”>
<table class=”rest” width=50%>

Applying Styles
Before moving on, we’ll quickly cover how to apply style properties to your docu-

ments. Remember, you have three methods to add style sheets: embedded, linked,

and inline. We’ll discuss each one in turn.

Embedded Styles
All the styles are defined at the top of the HTML document within the <head> tags

because they contain information about the entire document. The styles defined

here apply only to the one document in which they appear. If you plan to use these

same styles in another document, you need to add them there as well.

<head>
<style type=”text/css”>
table.nav {background:aqua}
table.rest {background:yellow;

text-align:center;
color:black}

a:link {color:red;
text-decoration:none}

</style>
</head>

The <style> tag almost always includes the type=”text/css” attribute, so you
should get used to adding it.

By the
Way

34 CHAPTER 2: Writing and Styling Pages in HTML and CSS

Linked Styles
Linked style sheets hold all the style properties in a separate file. You then link the

file into each HTML document where you want those style properties to appear.

<head>
<link rel=”stylesheet” href=”mystyles.css” type=”text/css”>
</head>

With this method, I’ve created a separate file called mystyles.css (for cascading style

sheet) that contains all my style properties. You can see that the same

type=”text/css” attribute shows up here. Following are the entire contents of the

mystyles.css file. These are the same styles that showed up in the preceding

embedded styles example, but now they appear in a separate text file.

table.nav {background:aqua}
table.rest {background:yellow;

text-align:center;
color:black}

a:link {color:red;
text-decoration:none}

Inline Styles
With inline styles, the style properties are added to the HTML tag as the tag is

entered. This means that if I want the same style to appear on all the <h1> tags in

my document, I would have to type those styles in all the <h1> tags. Look at the fol-

lowing example. I am still using the same style properties, as in the previous exam-

ples, but now you can see how the two tables would be created using inline styles.

<table style=”background:aqua” width=”100%”>

<table style=”background:yellow; text-align:center;
color:black” width=”100%”>

Using inline styles, the <style> tag becomes the style attribute. Multiple style

properties are still separated by semicolons, but the entire group of properties for

each tag is grouped within each HTML tag. This type of style sheet is fine for docu-

ments in which you need to apply styles to only one or two elements, but you

wouldn’t want to do all that work when you have a lot of styles to add.

Cascading Precedence
Web browsers give precedence to the style that appears closest to the tag. So, inline

styles (which appear as attributes within the tag itself) are most important.

Embedded styles (which appear at the top of the HTML file) are applied next, and

linked styles (which appear in another file altogether) are applied last.

Formatting Text with Styles 35

Imagine that you have created an embedded style for the <h1> tag, but want to

change that style for one occurrence of the <h1> tag in that document. You would

create an inline style for that new <h1> tag. The browsers recognize that fact and

change the style for that tag to reflect the inline style.

Style sheet precedence is supposed to place more importance on embedded
styles than on linked style sheets. In actual practice, however, you’ll find that both
Internet Explorer and Netscape treat linked sheets as more important than
embedded sheets (but they do treat inline styles as more important than either of
the other two). You’ll find that you have better luck if you use either linked or
embedded styles, but not both.

Formatting Text with Styles
Text is the most important element of any Web page. Without text, there is nothing
on the page to help people decide whether it’s worth coming back.

Text on an HTML page is structured by the <body>, <p>, <td>, <tr>, <th>, <h1>
<h6>, and tags (among others). You can add your own style preferences to
each of these tags using the style properties shown in Table 2.2.

In the following example, we’ve added some embedded style elements that set the
font, font size, and font color for the body text of a basic HTML page. In Figure 2.6,
you can see how those styles change the appearance of the document in the browser.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

<head>
<title>My First Web Page</title>
<style type=”text/css”>
body {font-family:”Arial”;

font-size:”12pt”;
color:red}

</style>
</head>
<body>
<p>This is my <i>first</i> Web page.</p>
</body>
</html>

Watch
Out!

FIGURE 2.6
The browser
applies the style
attributes to the
text in the
<body> tags.

36 CHAPTER 2: Writing and Styling Pages in HTML and CSS

Table 2.2 lists the many style properties that you can use to format your text.

TABLE 2.2 Style Properties for Text

Property Description of Use and Values

background Sets the background color for the text.

color Sets the text color for the text.

font-family Sets the font for the text.

font-size Can be a point size, a percentage of the size of another tag, or
xx-small to xx-large.

font-style normal (which is assumed) or italic.

font-weight extra-light to extra-bold.

text-align left, right, center, or justify (full).

text-indent Can be a fixed length or a percentage.

text-decoration underline, overline, strikethrough, and none.

Microsoft maintains a brief tutorial for style sheets on its typography site (http://www.
microsoft.com/typography/default.mspx). The tutorial teaches Web page authors how
style sheets can enhance their documents. The <style> tag for one of those examples is
shown in the following code. This is impressive because of the many different styles and
classes defined in this document. You can see that you are only limited by your own
imagination. You can see the page this style code created in Figure 2.7.

<style type=”text/css”>
body {background: coral}
.copy {color: Black;

font-size: 11px;
line-height: 14px;
font-family: Verdana, Arial, Helvetica, sans-serif}

a:link {text-decoration: none;
font-size: 20px;
color: black;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
.star {color: white;

font-size: 350px;
font-family: Arial, Arial, helvetica, sans-serif}

.subhead {color: black;
font-size: 28px;
margin-top: 12px;
margin-left: 20px;
line-height: 32px;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
.what {color: black;

font-size: 22px;
margin-left: 20px;
font-weight: bold;
font-style: italic;
font-family: Times New Roman, times, serif}

.quott {color: black;

http://www.microsoft.com/typography/default.mspx
http://www.microsoft.com/typography/default.mspx

Formatting Text with Styles 37

font-size: 120px;
line-height: 120px;
margin-top: -24px;
margin-left: -4px;
font-family: Arial Black, Arial, helvetica, sans-serif}

.quotb {color: black;
font-size: 120px;
line-height: 120px;
margin-right: -1px;
margin-top: -33px;
font-family: Arial Black, Arial, helvetica, sans-serif}

.quote {color: red;
font-size: 24px;
line-height: 28px;
margin-top: -153px;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
.footer {color: cornsilk;

background: red;
font-size: 22px;
margin-left: 20px;
margin-top: 16px;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
.headline {color: black;

font-size: 80px;
line-height: 90px;
margin-left: 20px;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
.mast {color: cornsilk;

font-size: 90px;
font-style: italic;
font-family: Impact, Arial Black, Arial,

Helvetica, sans-serif}
</style>

FIGURE 2.7
The preceding
style code pro-
duced this
page, found at
http://www.
microsoft.com/
typography/css/
gallery/slide3.
htm.

http://www.microsoft.com/typography/css/gallery/slide3.htm
http://www.microsoft.com/typography/css/gallery/slide3.htm
http://www.microsoft.com/typography/css/gallery/slide3.htm
http://www.microsoft.com/typography/css/gallery/slide3.htm
http://www.microsoft.com/typography/css/gallery/slide3.htm

38 CHAPTER 2: Writing and Styling Pages in HTML and CSS

None of the most popular web browsers react the same way to all the style sheet
properties. Your best bet is to remember to test everything before you publish it.
Webmaster Stop maintains a table of style sheet properties mapped to the most
popular browsers. Check out this table (http://www.webmasterstop.com/118.
html) to find out whether the style sheet properties you plan to use are supported
by specific browsers.

Link Styles
You have probably seen those bright blue underlined hyperlinks on the Web. Style

sheets have the following selectors to help you change the look of them:

. a:link Sets the styles for unvisited links.

. a:visited Sets the styles for visited links.

. a:active Sets the styles for the link while it is linking.

. a:hover Sets the style for the link while your mouse is hovering.

Table 2.3 shows some of the style properties you can assign to your links.

TABLE 2.3 Style Properties for the Anchor Styles

Property Description of Use and Values

background-color Sets the background color for the link.

color Sets the text color for the link.

font-family Sets the font for the text of the link.

text-decoration underline, overline, strikethrough, and none.

One of the most popular style sheet effects on the Web right now is to remove
the underlining on hyperlinks. To do this on your pages, just add the text-
decoration:none declaration to the a styles, as shown in the following example:

a:link {color:yellow;
text-decoration:none}

If you like the look of the underlined hyperlink, you’re in luck. You don’t have to
specify anything at all. Underlining is assumed for all a styles.

Color Styles
As you can see in Table 2.4, you can apply color to your HTML tags in two different

ways: with color or with background.

Watch
Out!

Did you
Know?

http://www.webmasterstop.com/118.html
http://www.webmasterstop.com/118.html

Adding Lines 39

TABLE 2.4 Style Properties for Color

Property Description of Use and Values

color Sets the color of the text.

background Sets the background of the page or text.

Don’t forget to test your pages before you publish them. Not all colors work
together. If you’ve specified a black background color and a black text color, you
have a problem because no one will be able to see your text.

Adding Lines
A horizontal line, or horizontal rule as it is named in HTML, is one of the easiest

tags to use. You can insert the <hr /> tag anywhere in your document to insert a

horizontal line that extends across the space available. Take a look at the following

sample HTML. It shows three <hr> tags: two used as a section break between text

and the other used inside a table cell. Figure 2.8 shows how they appear in the

browser.

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

<head>
<title>Horizontal Lines</title>
<style type=”text/css”>
td {text-align=center}
</style>
</head>
<body>
<p>This is a horizontal line.</p>
<hr />
<p>This is another horizontal line.</p>
<hr />

<table width=”50%” rules=cols>
<tr>
<td>This is also a<hr />horizontal line.</td>
<td>There is
no line on this
side

of the table.</td>
</tr>

</table>
</body>
</html>

Watch
Out!

40 CHAPTER 2: Writing and Styling Pages in HTML and CSS

Margin Styles
Style sheets give you another important advantage: You can specify the margins of

almost any HTML element. The margins can be defined in pt, in, cm, or px sizes.

body {margin-left: 100px;
margin-right: 100px;
margin-top: 50px}

You can set the margin-left, margin-right, and margin-top properties individual-

ly or combine them into one property called margin that applies the sizes to the

top, right, and left margins.

body {margin: 100px 100px 50px}

Summary
This chapter discussed the basics of web page layout using Hypertext Markup

Language, including the structure of HTML documents, examples of HTML page ele-

ments, and page styling using both element attributes and cascading style sheets.

FIGURE 2.8
The <hr />
tag inserts a
horizontal line
that stretches
across the avail-
able horizontal
space.

CHAPTER 3

Anatomy of an Ajax Application

What You’ll Learn in This Chapter:
. The Need for Ajax
. Introducing Ajax
. The Constituent Parts of Ajax
. Putting It All Together

In this chapter you will learn about the individual building blocks of Ajax and how they fit

together to form the architecture of an Ajax application. Subsequent chapters will examine

these components in more detail, finally assembling them into a working Ajax application.

The Need for Ajax
In the following parts of the book, we shall discuss each of the core components in detail.

Before discussing the individual components, though, let’s look in more detail at what we

want from our Ajax application.

Traditional Versus Ajax Client-Server Interactions
Chapter 1 discussed the traditional page-based model of a website user interface. When

you interact with such a website, individual pages containing text, images, data entry

forms, and so forth are presented one at a time. Each page must be dealt with individually

before navigating to the next.

For instance, you may complete the data entry fields of a form, editing and re-editing your

entries as much as you want, knowing that the data will not be sent to the server until the

form is finally submitted.

Figure 3.1 illustrates this interaction.

42 CHAPTER 3: Anatomy of an Ajax Application

After you submit a form or follow a navigation link, you then must wait while the

browser screen refreshes to display the new or revised page that has been delivered

by the server.

As your experience as an Internet user grows, using this interface becomes almost

second nature. You learn certain rules of thumb that help to keep you out of trouble,

such as “don’t click the Submit button a second time,” and “don’t click the Back

button after submitting a form.”

Unfortunately, interfaces built using this model have a few drawbacks. First, there is

a significant delay while each new or revised page is loaded. This interrupts what

we, as users, perceive as the “flow” of the application.

Furthermore, a whole page must be loaded on each occasion, even when most of its

content is identical to that of the previous page. Items common to many pages on a

website, such as header, footer, and navigation sections, can amount to a significant

proportion of the data contained in the page.

Figure 3.2 illustrates a website displaying pages before and after the submission of a

form, showing how much identical content has been reloaded and how relatively lit-

tle of the display has actually changed.

This unnecessary download of data wastes bandwidth and further exacerbates the

delay in loading each new page.

Bandwidth refers to the capacity of a communications channel to carry informa-
tion. On the Internet, bandwidth is usually measured in bps (bits per second) or in
higher multiples such as Mbps (million bits per second).

Server

Browser

Page 1 Page 2 Page 3 Page 4

Time

FIGURE 3.1
Traditional
client–server
interactions.

By the
Way

Introducing Ajax 43

The Rich User Experience
The combined effect of the issues just described is to offer a much inferior user expe-

rience compared to that provided by the vast majority of desktop applications.

On the desktop, you expect the display contents of a program to remain visible and

the interface elements to respond to commands while the computing processes occur

quietly in the background. As I write this chapter using a word processor, for exam-

ple, I can save the document to disk, scroll or page up and down, and alter font

faces and sizes without having to wait on each occasion for the entire display to be

refreshed.

Ajax allows you to add to your web application interfaces some of this functionality

more commonly seen in desktop applications and often referred to as a rich user

experience.

Introducing Ajax
To improve the user’s experience, you need to add some extra capabilities to the tra-

ditional page-based interface design. You want your user’s page to be interactive,

responding to the user’s actions with revised content, and be updated without any

interruptions for page loads or screen refreshes.

To achieve this, Ajax builds an extra layer of processing between the web page and

the server.

FIGURE 3.2
Many page
items are
reloaded unnec-
essarily.

44 CHAPTER 3: Anatomy of an Ajax Application

This layer, often referred to as an Ajax Engine or Ajax Framework, intercepts requests

from the user and in the background handles server communications quietly, unob-

trusively, and asynchronously. By this we mean that server requests and responses no

longer need to coincide with particular user actions but may happen at any time

convenient to the user and to the correct operation of the application. The browser

does not freeze and await the completion by the server of the last request but

instead lets the user carry on scrolling, clicking, and typing in the current page.

The updating of page elements to reflect the revised information received from the

server is also looked after by Ajax, happening dynamically while the page continues

to be used.

Figure 3.3 represents how these interactions take place.

Server

Ajax

Page 1

Browser

Time

FIGURE 3.3
Ajax client–
server interac-
tion.

A Real Ajax Application—Google Suggest
To see an example of an Ajax application in action, let’s have a look at Google

Suggest. This application extends the familiar Google search engine interface to offer

the user suggestions for suitable search terms, based on what he has so far typed.

With each key pressed by the user, the application’s Ajax layer queries Google’s serv-

er for suitably similar search phrases and presents the returned data in a drop-down

box. Along with each suggested phrase is listed the number of results that would be

expected for a search conducted using that phrase. At any point the user has the

option to select one of these suggestions instead of continuing to type and have

Google process the selected search.

Because the server is queried with every keypress, this drop-down list updates dynam-

ically as the user types—with no waiting for page refreshes or similar interruptions.

Figure 3.4 shows the program in action. You can try it for yourself by following the

links from Google’s home page at http://www.google.com/webhp?complete=1&hl=en.

http://www.google.com/webhp?complete=1&hl=en

The Constituent Parts of Ajax 45

Next let’s identify the individual components of such an Ajax application and see

how they work together.

Google has presented other Ajax-enabled applications that you can try, including
the gmail web mail service and the Google Maps street mapping program. See the
Google website at http://www.google.com/ for details.

The Constituent Parts of Ajax
Now let’s examine the components of an Ajax application one at a time.

The XMLHTTPRequest Object
When you click on a hyperlink or submit an HTML form, you send an HTTP request

to the server, which responds by serving to you a new or revised page. For your web

application to work asynchronously, however, you must have a means to send HTTP

requests to the server without an associated request to display a new page.

You can do so by means of the XMLHTTPRequest object. This JavaScript object is

capable of making a connection to the server and issuing an HTTP request without

the necessity of an associated page load.

In following chapters you will learn what objects are, see how an instance of this

object can be created, and see how its properties and methods can be used by

JavaScript routines included in the web page to establish asynchronous communica-

tions with the server.

FIGURE 3.4
An example
of an Ajax
application—
Google
Suggest.

By the
Way

http://www.google.com/

46 CHAPTER 3: Anatomy of an Ajax Application

As a security measure, the XMLHTTPRequest object can generally only make calls
to URLs within the same domain as the calling page and cannot directly call a
remote server.

Chapter 5, “Working with the Document Object Model” will introduce the concept of

objects in general, and this subject will be expanded in Chapter 7 “Using Functions

and Objects.”

Chapter 10, “The Heart of Ajax”—the XMLHTPPRequest Object, discusses how to cre-

ate an instance of the XMLHTTPRequest object and reviews the object’s properties

and methods.

Talking with the Server
In the traditional style of web page, when you issue a server request via a hyperlink

or a form submission, the server accepts that request, carries out any required

server-side processing, and subsequently serves to you a new page with content

appropriate to the action you have undertaken.

While this processing takes place, the user interface is effectively frozen. You are

made quite aware of this, when the server has completed its task, by the appearance

in the browser of the new or revised page.

With asynchronous server requests, however, such communications occur in the

background, and the completion of such a request does not necessarily coincide with

a screen refresh or a new page being loaded. You must therefore make other arrange-

ments to find out what progress the server has made in dealing with the request.

The XMLHTTPRequest object possesses a convenient property to report on the

progress of the server request. You can examine this property using JavaScript rou-

tines to determine the point at which the server has completed its task and the

results are available for use.

Your Ajax armory must therefore include a routine to monitor the status of a

request and to act accordingly. We’ll look at this in more detail in Chapter 11,

“Talking with the Server.”

What Happens at the Server?
So far as the server-side script is concerned, the communication from the

XMLHTTPRequest object is just another HTTP request. Ajax applications care little

about what languages or operating environments exist at the server; provided that

the client-side Ajax layer receives a timely and correctly formatted HTTP response

from the server, everything will work just fine.

Did you
Know?

Putting It All Together 47

It is possible to build simple Ajax applications with no server-side scripting at all,

simply by having the XMLHTTPRequest object call a static server resource such as an

XML or text file.

Ajax applications may make calls to various other server-side resources such as web

services. Later in the book we’ll look at some examples of calling web services using

protocols such as SOAP and REST.

In this book we’ll be using the popular PHP scripting language for our server-side
routines, but if you are more comfortable with ASP, JSP, or some other server-side
language, go right ahead and use it in your Ajax applications.

Dealing with the Server Response
Once notified that an asynchronous request has been successfully completed, you
may then utilize the information returned by the server.

Ajax allows for this information to be returned in a number of formats, including
ASCII text and XML data.

Depending on the nature of the application, you may then translate, display, or
otherwise process this information within the current page.

We’ll look into these issues in Chapter 12, “Using the Returned Data.”

Other Housekeeping Tasks
An Ajax application will be required to carry out a number of other duties, too.

Examples include detecting error conditions and handling them appropriately, and

keeping the user informed about the status of submitted Ajax requests.

You will see various examples in later chapters.

Putting It All Together
Suppose that you want to design a new Ajax application, or update a legacy web

application to include Ajax techniques. How do you go about it?

First you need to decide what page events and user actions will be responsible for

causing the sending of an asynchronous HTTP request. You may decide, for exam-

ple, that the action of moving the mouse cursor over an image will result in a

request being sent to the server to retrieve further information about the subject of

the picture, or that the clicking of a button will generate a server request for infor-

mation with which to populate the fields on a form.

By the
Way

48 CHAPTER 3: Anatomy of an Ajax Application

JavaScript can be used to execute instructions on occurrences such as these, by

employing event handlers. The details of how will be covered in detail in the follow-

ing chapters. In your Ajax applications, such methods will be responsible for initiat-

ing asynchronous HTTP requests via XMLHTTPRequest.

Having made the request, you need to write routines to monitor the progress of that

request until you hear from the server that the request has been successfully completed.

Finally, after receiving notification that the server has completed its task, you need a

routine to retrieve the information returned from the server and apply it in the

application. You may, for example, want to use the newly returned data to change

the contents of the page’s body text, populate the fields of a form, or pop open an

information window.

Figure 3.5 shows the flow diagram of all this.

Web Page

Server

Ajax Engine

XMLHTTPRequest

create
server

request

send

monitor status

get response

capture
event

update
page

request

readyState

response

process
returned

data

FIGURE 3.5
How the compo-
nents of an Ajax
application work
together.

In Chapter 13, “Our First Ajax Application,” you’ll use what you have learned to

construct a complete Ajax application.

Summary 49

Ajax Frameworks
While it is essential for a complete understanding of Ajax to understand what role

each of the individual components plays, it is thankfully not necessary to rewrite all

of your code for each new application. Your Ajax code can be stored as a reusable

library of common Ajax routines, ready to be reused wherever they may be needed.

There are also many commercial and open-source frameworks that you can use in

your projects to do the “heavy lifting.”

We shall look at both of these techniques later in the book, where we develop our

own JavaScript library for Ajax, and also consider several of the more popular open-

source libraries.

Summary
This chapter discussed the shortcomings of the traditional web interface, identifying

specific problems we want to overcome. We also introduced the various building

blocks of an Ajax application and discussed how they work together.

In the following chapters we shall look at these components in more detail, eventu-

ally using them to build a complete Ajax application.

That concludes Part I of the book, “Web Basics Refresher.” In Part II we shall begin

to explore client-side programming using JavaScript.

This page intentionally left blank

PART II

Introducing Web Scripting with
JavaScript

CHAPTER 4 Creating Simple Scripts in JavaScript 53

CHAPTER 5 Working with the Document Object Model (DOM) 71

CHAPTER 6 Using Variables, Strings, and Arrays 81

CHAPTER 7 Using Functions and Objects 103

CHAPTER 8 Controlling Flow with Conditions and Loops 117

CHAPTER 9 Using Built-In Functions and Libraries 135

This page intentionally left blank

CHAPTER 4

Creating Simple Scripts in
JavaScript

What You’ll Learn in This Chapter:
. Tools for Scripting
. Displaying Time with JavaScript
. Beginning the Script
. Adding JavaScript Statements
. Creating Output
. Adding the Script to a Web Page
. Testing the Script
. JavaScript Syntax Rules
. Using Comments
. Best Practices for JavaScript

As has already been discussed earlier in the book, JavaScript is a client-side scripting lan-

guage for web pages. You can include JavaScript commands directly in the HTML docu-

ment, and the script will be executed when the page is viewed in a browser.

During this chapter, you will create a simple script, edit it, and test it using a web browser.

Along the way you’ll learn the basic tasks involved in creating and using scripts.

Tools for Scripting
Unlike many programming languages, you won’t need any special software to create

JavaScript scripts. In fact, you probably already have everything you need.

54 CHAPTER 4: Creating Simple Scripts in JavaScript

Text Editors
The first tool you’ll need to work with JavaScript is a text editor. JavaScript scripts are

stored in simple text files, usually as part of HTML documents. Any editor that can

store ASCII text files will work. Our discussion of programmers’ editors in Chapter 2,

“Writing and Styling Pages in HTML and CSS” is equally relevant to our work here

in JavaScript (and, in fact, to the coding we carry out in PHP, later in the book).

The CD that accompanies the book contains versions of the jEdit programmer’s
editor for use on Java, Macintosh, and Windows platforms. This editor will work
just fine for coding your JavaScript programs.

Browsers
You’ll need two other things to work with JavaScript: a web browser and a computer

to run it on. I recommend that you use the latest version of Mozilla Firefox or

Microsoft Internet Explorer. See the Mozilla (http://www.mozilla.com) or Microsoft

(http://www.microsoft.com) website to download a copy.

At a minimum, you should have Firefox 1.0, Netscape 7.0, or Internet Explorer 6.0

or later. You can choose whichever browser you like for your web browsing, but for

developing JavaScript you should have more than one browser—at a minimum,

Firefox and Internet Explorer. This will allow you to test your scripts in the common

browsers users will employ on your site.

If you plan on making your scripts available over the Internet, you’ll also need a
web server, or access to one. However, you can use most of the JavaScript exam-
ples in this book directly from your computer’s hard disk.

Displaying Time with JavaScript
One common and easy use for JavaScript is to display dates and times. Because

JavaScript runs on the browser, the times it displays will be in the user’s current time

zone. However, you can also use JavaScript to calculate “universal” (UTC) time.

UTC stands for Universal Time (Coordinated), and is the atomic time standard
based on the old GMT (Greenwich Mean Time) standard. This is the time at the
Prime Meridian, which runs through Greenwich, London, England.

By the
Way

By the
Way

On the
CD

http://www.mozilla.com
http://www.microsoft.com

Adding JavaScript Statements 55

As a basic introduction to JavaScript, you will now create a simple script that dis-

plays the current time and the UTC time within a web page, starting with the next

section.

Beginning the Script
Your script, like most JavaScript programs, begins with the HTML <script> tag. You

use the <script> and </script> tags to enclose a script within the HTML document.

Remember to include only valid JavaScript statements between the starting and
ending <script> tags. If the browser finds anything but valid JavaScript state-
ments within the <script> tags, it will display a JavaScript error message.

To begin creating the script, open your favorite text editor and type the beginning

and ending <script> tags as shown.

<script LANGUAGE=”JavaScript” type=”text/javascript”> </script>

Because this script does not use any of the new features of JavaScript 1.1 or later,

you won’t need to specify a version number in the <script> tag. This script should

work with all browsers going back to Netscape 2.0 or Internet Explorer 3.0.

Adding JavaScript Statements
Your script now needs to determine the local and UTC times, and then display them

to the browser. Fortunately, all of the hard parts, such as converting between date

formats, are built in to the JavaScript interpreter.

Storing Data in Variables
To begin the script, you will use a variable to store the current date. You will learn

more about variables in Chapter 6, “Using Variables, Strings, and Arrays.” A vari-

able is a container that can hold a value—a number, some text, or in this case, a

date.

To start writing the script, add the following line after the first <script> tag. Be sure

to use the same combination of capital and lowercase letters in your version because

JavaScript commands and variable names are case sensitive.

now = new Date();

Watch
Out!

56 CHAPTER 4: Creating Simple Scripts in JavaScript

This statement creates a variable called now and stores the current date and time in it.

This statement and the others you will use in this script use JavaScript’s built-in Date

object, which enables you to conveniently handle dates and times. You’ll learn more

about working with dates in Chapter 9, “Using Built-In Functions and Libraries.”

Notice the semicolon at the end of the previous statement. This tells the browser
that it has reached the end of a statement. Semicolons are optional, but using
them helps you avoid some common errors. We’ll use them throughout this book
for clarity.

Calculating the Results
Internally, JavaScript stores dates as the number of milliseconds since January 1,
1970. Fortunately, JavaScript includes a number of functions to convert dates and
times in various ways, so you don’t have to figure out how to convert milliseconds to
day, date, and time.

To continue your script, add the following two statements before the final </script> tag:

localtime = now.toString();
utctime = now.toGMTString();

These statements create two new variables: localtime, containing the current time
and date in a nice readable format, and utctime, containing the UTC equivalent.

The localtime and utctime variables store a piece of text, such as January 1,
2001 12:00 PM. In programming parlance, a piece of text is called a string. You will
learn more about strings in Chapter 6.

Creating Output
You now have two variables—localtime and utctime—which contain the results we

want from our script. Of course, these variables don’t do us much good unless we can

see them. JavaScript includes a number of ways to display information, and one of

the simplest is the document.write statement.

The document.write statement displays a text string, a number, or anything else you

throw at it. Because your JavaScript program will be used within a web page, the out-

put will be displayed as part of the page. To display the result, add these statements

before the final </script> tag:

document.write(“Local time: “ + localtime + “
”);
document.write(“UTC time: “ + utctime);

By the
Way

By the
Way

Adding the Script to a Web Page 57

These statements tell the browser to add some text to the web page containing your

script. The output will include some brief strings introducing the results, and the

contents of the localtime and utctime variables.

Notice the HTML tags, such as , within the quotation marks—because JavaScript’s

output appears within a web page, it needs to be formatted using HTML. The

tag in the first line ensures that the two times will be displayed on separate lines.

Notice the plus signs (+) used between the text and variables in the previous
statements. In this case, it tells the browser to combine the values into one string
of text. If you use the plus sign between two numbers, they are added together.

Adding the Script to a Web Page
You should now have a complete script that calculates a result and displays it. Your

listing should match Listing 4.1.

LISTING 4.1 The Complete Date and Time Script
<script language=”JavaScript” type=”text/javascript”>
now = new Date();
localtime = now.toString();
utctime = now.toGMTString();
document.write(“Local time: “ + localtime + “
”);
document.write(“UTC time: “ + utctime);
</script>

To use your script, you’ll need to add it to an HTML document. In its most basic

form, the HTML document should include opening and closing <html> tags, <head>

tags, and <body> tags.

If you add these tags to the document containing your script along with a descrip-

tive heading, you should end up with something like Listing 4.2.

LISTING 4.2 The Date and Time Script in an HTML Document
<html>
<head><title>Displaying Times and Dates</title></head>
<body>
<h1>Current Date and Time</h1>
<p>
<script language=”JavaScript” type=”text/javascript”>
now = new Date();
localtime = now.toString();
utctime = now.toGMTString();
document.write(“Local time: “ + localtime + “
”);
document.write(“UTC time: “ + utctime);

By the
Way

58 CHAPTER 4: Creating Simple Scripts in JavaScript

</script>
</p>
</body>
</html>

Now that you have a complete HTML document, save it with the .htm or .html

extension.

Notepad and other Windows text editors might try to be helpful and add the .txt
extension to your script. Be sure your saved file has the correct extension.

Testing the Script
To test your script, you simply need to load the HTML document you created in a
web browser. Start Netscape or Internet Explorer and select Open from the File
menu. Click the Choose File or Browse button, and then find your HTML file. After
you’ve selected it, click the Open button to view the page.

If you typed the script correctly, your browser should display the result of the script,
as shown in Figure 4.1. (Of course, your result won’t be the same as mine, but it
should be the same as the setting of your computer’s clock.)

A note about Internet Explorer 6.0 and above: Depending on your security settings,
the script might not execute, and a yellow highlighted bar on the top of the browser
might display a security warning. In this case, click the yellow bar and select Allow
Blocked Content to allow your script to run. (This happens because the default secu-
rity settings allow JavaScript in online documents, but not in local files.)

LISTING 4.2 Continued

By the
Way

FIGURE 4.1
Firefox displays
the results of
the Date and
Time script.

Modifying the Script
Although the current script does indeed display the current date and time, its display
isn’t nearly as attractive as the clock on your wall or desk. To remedy that, you can
use some additional JavaScript features and a bit of HTML to display a large clock.

Testing the Script 59

To display a large clock, we need the hours, minutes, and seconds in separate vari-

ables. Once again, JavaScript has built-in functions to do most of the work:

hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();

These statements load the hours, mins, and secs variables with the components of

the time using JavaScript’s built-in date functions.

After the hours, minutes, and seconds are in separate variables, you can create doc-

ument.write statements to display them:

document.write(“<h1>”);
document.write(hours + “:” + mins + “:” + secs);
document.write(“</h1>”);

The first statement displays an HTML <h1> header tag to display the clock in a large

typeface. The second statement displays the hours, mins, and secs variables, sepa-

rated by colons, and the third adds the closing tag.

You can add the preceding statements to the original date and time script to add the

large clock display. Listing 4.3 shows the complete modified version of the script.

LISTING 4.3 The Date and Time Script with Large Clock Display
<html>
<head><title>Displaying Times and Dates</title></head>
<body>
<h1>Current Date and Time</h1>
<p>
<script language=”JavaScript”>
now = new Date();
localtime = now.toString();
utctime = now.toGMTString();
document.write(“Local time: “ + localtime + “
”);
document.write(“UTC time: “ + utctime);
hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();
document.write(“<h1>”);
document.write(hours + “:” + mins + “:” + secs);
document.write(“</h1>”);
</script>
</p>
</body>
</html>

Now that you have modified the script, save the HTML file and open the modified

file in your browser. If you left the browser running, you can simply use the Reload

button to load the new version of the script. Try it and verify that the same time is

60 CHAPTER 4: Creating Simple Scripts in JavaScript

displayed in both the upper portion of the window and the new large clock.

Figure 4.2 shows the results.

FIGURE 4.2
Internet Explorer
displays the
modified Date
and Time script.

By the
Way

The time formatting produced by this script isn’t perfect: Hours after noon are in
24-hour time, and there are no leading zeroes, so 12:04 is displayed as 12:4.
See Chapter 9 for solutions to these issues.

Dealing with JavaScript Errors
As you develop more complex JavaScript applications, you’re going to run into

errors from time to time. JavaScript errors are usually caused by mistyped JavaScript

statements.

To see an example of a JavaScript error message, modify the statement you added in

the previous section. We’ll use a common error: omitting one of the parentheses.

Change the last document.write statement in Listing 4.3 to read

document.write(“</h1>”;

Save your HTML document again and load the document into the browser.

Depending on the browser version you’re using, one of two things will happen:

Either an error message will be displayed, or the script will simply fail to execute.

If an error message is displayed, you’re halfway to fixing the problem by adding the

missing parenthesis. If no error was displayed, you should configure your browser to

display error messages so that you can diagnose future problems:

. In Netscape or Firefox, type javascript: into the browser’s Location field to

display the JavaScript Console. In Firefox, you can also select Tools, JavaScript

Console from the menu. The console is shown in Figure 4.3, displaying the

error message you created in this example.

Testing the Script 61

. In Internet Explorer, select Tools, Internet Options. On the Advanced page,

uncheck the Disable Script Debugging box and check the Display a

Notification About Every Script Error box. (If this is disabled, a yellow icon in

the status bar will still notify you of errors.)

Notice the field at the bottom of the JavaScript Console. This enables you to type
a JavaScript statement, which will be executed immediately. This is a handy way to
test JavaScript’s features.

By the
Way

FIGURE 4.3
Firefox’s
JavaScript
Console dis-
plays an error
message.

The error we get in this case is missing) after argument list (Firefox) or

Expected ‘)’ (Internet Explorer), which turns out to be exactly the problem. Be

warned, however, that error messages aren’t always this enlightening.

While Internet Explorer displays error dialog boxes for each error, Firefox’s

JavaScript Console displays a single list of errors and allows you to test commands.

For this reason, you might find it useful to install Firefox for debugging and testing

JavaScript, even if Internet Explorer is your primary browser.

Statements
Statements are the basic units of a JavaScript program. A statement is a section of

code that performs a single action. For example, consider the following three state-

ments, each of which return part of the current time:

hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();

Although a statement is typically a single line of JavaScript, this is not a rule—it’s

possible to break a statement across multiple lines, or to include more than one

statement in a single line.

A semicolon marks the end of a statement. You can also omit the semicolon if you

start a new line after the statement. If you combine statements into a single line,

you must use semicolons to separate them.

62 CHAPTER 4: Creating Simple Scripts in JavaScript

Combining Tasks with Functions
In the basic scripts you’ve examined so far, you’ve seen some JavaScript statements

that have a section in parentheses, like this:

document.write(“Testing.”);

This is an example of a function. Functions provide a simple way to handle a task,

such as adding output to a web page. JavaScript includes a wide variety of built-in

functions, which you will learn about throughout this book. A statement that uses a

function, as in the preceding example, is referred to as a function call.

Functions take parameters (the expression inside the parentheses) to tell them what

to do. Additionally, a function can return a value to a waiting variable. For exam-

ple, the following function call prompts the user for a response and stores it in the

text variable:

text = prompt(“Enter some text.”)

You can also create your own functions. This is useful for two main reasons: First,

you can separate logical portions of your script to make it easier to understand.

Second, and more importantly, you can use the function several times or with differ-

ent data to avoid repeating script statements.

You will learn how to define, call, and return values from your own functions in
Chapter 7, “Using Functions and Objects.”

Variables
Variables are containers that can store a number, a string of text, or another value.

For example, the following statement creates a variable called fred and assigns it

the value 27:

var fred = 27;

JavaScript variables can contain numbers, text strings, and other values. You’ll learn

more about them in Chapter 6, “Using Variables, Strings, and Arrays.”

Conditionals
Although event handlers notify your script when something happens, you might

want to check certain conditions yourself. For example, did the user enter a valid

email address?

By the
Way

Testing the Script 63

JavaScript supports conditional statements, which enable you to answer questions like

this. A typical conditional uses the if statement, as in this example:

if (count==1) alert(“The countdown has reached 1.”);

This compares the variable count with the constant 1, and displays an alert mes-

sage to the user if they are the same. You will use conditional statements like this in

most of your scripts.

You’ll learn more about conditionals in Chapter 8, “Controlling Flow with
Conditions and Loops.”

Loops
Another useful feature of JavaScript—and most other programming languages—is

the capability to create loops, or groups of statements that repeat a certain number

of times. For example, these statements display the same alert 10 times, greatly

annoying the user:

for (i=1; i<=10; i++) {
Alert(“Yes, it’s yet another alert!”);

}

The for statement is one of several statements JavaScript uses for loops. This is the

sort of thing computers are supposed to be good at: performing repetitive tasks. You

will use loops in many of your scripts, in much more useful ways than this example.

Loops are covered in detail in Chapter 8.

Event Handlers
As already mentioned, not all scripts are located within <script> tags. You can also

use scripts as event handlers. Although this might sound like a complex program-

ming term, it actually means exactly what it says: Event handlers are scripts that

handle events.

In real life, an event is something that happens to you. For example, the things you

write on your calendar are events: “Dentist appointment” or “Fred’s birthday.” You

also encounter unscheduled events in your life: for example, a traffic ticket, an IRS

audit, or an unexpected visit from relatives.

By the
Way

By the
Way

64 CHAPTER 4: Creating Simple Scripts in JavaScript

Whether events are scheduled or unscheduled, you probably have normal ways of

handling them. Your event handlers might include things such as When Fred’s birth-

day arrives, send him a present or When relatives visit unexpectedly, turn out the lights and

pretend nobody is home.

Event handlers in JavaScript are similar: They tell the browser what to do when a

certain event occurs. The events JavaScript deals with aren’t as exciting as the ones

you deal with—they include such events as When the mouse button clicks and When

this page is finished loading. Nevertheless, they’re a very useful part of JavaScript.

Many JavaScript events (such as mouse clicks) are caused by the user. Rather than

doing things in a set order, your script can respond to the user’s actions. Other

events don’t involve the user directly—for example, an event is triggered when an

HTML document finishes loading.

Each event handler is associated with a particular browser object, and you can spec-

ify the event handler in the tag that defines the object. For example, images and

text links have an event, onMouseOver, that happens when the mouse pointer

moves over the object. Here is a typical HTML image tag with an event handler:

You specify the event handler as an attribute to the HTML tag and include the

JavaScript statement to handle the event within the quotation marks. This is an

ideal use for functions because function names are short and to the point and can

refer to a whole series of statements.

See the Try It Yourself section at the end of this chapter for a complete example of

an event handler within an HTML document.

Which Script Runs First?
You can actually have several scripts within a web document: one or more sets of

<script> tags, external JavaScript files, and any number of event handlers. With all

of these scripts, you might wonder how the browser knows which to execute first.

Fortunately, this is done in a logical fashion:

. Sets of <script> tags within the <head> section of an HTML document are

handled first, whether they include embedded code or refer to a JavaScript file.

Because these scripts cannot create output in the web page, it’s a good place to

define functions for use later.

JavaScript Syntax Rules 65

. Sets of <script> tags within the <body> section of the HTML document are

executed after those in the <head> section, while the web page loads and dis-

plays. If there is more than one script in the body, they are executed in order.

. Event handlers are executed when their events happen. For example, the

onLoad event handler is executed when the body of a web page loads. Because

the <head> section is loaded before any events, you can define functions there

and use them in event handlers.

JavaScript Syntax Rules
JavaScript is a simple language, but you do need to be careful to use its syntax—the

rules that define how you use the language—correctly. The rest of this book covers

many aspects of JavaScript syntax, but there are a few basic rules you should under-

stand to avoid errors.

Case Sensitivity
Almost everything in JavaScript is case sensitive: you cannot use lowercase and capi-

tal letters interchangeably. Here are a few general rules:

. JavaScript keywords, such as for and if, are always lowercase.

. Built-in objects such as Math and Date are capitalized.

. DOM object names are usually lowercase, but their methods are often a com-

bination of capitals and lowercase. Usually capitals are used for all but the

first word, as in toLowerCase and getElementById.

When in doubt, follow the exact case used in this book or another JavaScript refer-

ence. If you use the wrong case, the browser will usually display an error message.

Variable, Object, and Function Names
When you define your own variables, objects, or functions, you can choose their

names. Names can include uppercase letters, lowercase letters, numbers, and the

underscore (_) character. Names must begin with a letter or underscore.

You can choose whether to use capitals or lowercase in your variable names, but

remember that JavaScript is case sensitive: score, Score, and SCORE would be con-

sidered three different variables. Be sure to use the same name each time you refer

to a variable.

66 CHAPTER 4: Creating Simple Scripts in JavaScript

Reserved Words
One more rule for variable names—they must not be reserved words. These include the

words that make up the JavaScript language, such as if and for, DOM object names

such as window and document, and built-in object names such as Math and Date.

Spacing
Blank space (known as whitespace by programmers) is ignored by JavaScript. You

can include spaces and tabs within a line, or blank lines, without causing an error.

Blank space often makes the script more readable.

Using Comments
JavaScript comments enable you to include documentation within your script. This

will be useful if someone else tries to understand the script, or even if you try to

understand it after a long break. To include comments in a JavaScript program,

begin a line with two slashes, as in this example:

//this is a comment.

You can also begin a comment with two slashes in the middle of a line, which is

useful for documenting a script. In this case, everything on the line after the slashes

is treated as a comment and ignored by the browser. For example,

a = a + 1; // add one to the value of a

JavaScript also supports C-style comments, which begin with /* and end with */.

These comments can extend across more than one line, as the following example

demonstrates:

/*This script includes a variety
of features, including this comment. */

Because JavaScript statements within a comment are ignored, C-style comments are

often used for commenting out sections of code. If you have some lines of JavaScript

that you want to temporarily take out of the picture while you debug a script, you

can add /* at the beginning of the section and */ at the end.

Because these comments are part of JavaScript syntax, they are only valid inside
<script> tags or within an external JavaScript file.

By the
Way

▼

Best Practices for JavaScript 67

Best Practices for JavaScript
You should now be familiar with the basic rules for writing valid JavaScript. Along

with following the rules, it’s also a good idea to follow best practices. The following

practices may not be required, but you’ll save yourself and others some headaches if

you follow them.

. Use comments liberally—These make your code easier for others to under-

stand, and also easier for you to understand when you edit them later. They

are also useful for marking the major divisions of a script.

. Use a semicolon at the end of each statement, and only use one statement

per line—This will make your scripts easier to debug.

. Use separate JavaScript files whenever possible—This separates JavaScript

from HTML and makes debugging easier, and also encourages you to write

modular scripts that can be reused.

. Avoid being browser-specific—As you learn more about JavaScript, you’ll

learn some features that only work in one browser. Avoid them unless

absolutely necessary, and always test your code in more than one browser.

. Keep JavaScript optional—Don’t use JavaScript to perform an essential func-

tion on your site—for example, the primary navigation links. Whenever possi-

ble, users without JavaScript should be able to use your site, although it may

not be quite as attractive or convenient. This strategy is known as progressive

enhancement.

Try It Yourself

Using an Event Handler
To conclude this chapter, here’s a simple example of an event handler. This will

demonstrate how you set up an event, which you’ll use throughout this book, and

how JavaScript works without <script> tags. Listing 4.6 shows an HTML document

that includes a simple event handler.

LISTING 4.6 An HTML Document with a Simple Event Handler
<html>
<head>
<title>Event Handler Example</title>
</head>
<body>
<h1>Event Handler Example</h1>
<p>

▼

68 CHAPTER 4: Creating Simple Scripts in JavaScript

<a href=”http://www.jsworkshop.com/”
onClick=”alert(‘Aha! An Event!’);”>Click this link
to test an event handler.
</p>
</body>
</html>

The event handler is defined with the following onClick attribute within the <a> tag

that defines a link:

onClick=”alert(‘Aha! An Event!’);”

This event handler uses the built-in alert() function to display a message when

you click on the link. In more complex scripts, you will usually define your own

function to act as an event handler. Figure 4.4 shows this example in action.

LISTING 4.6 Continued

FIGURE 4.4
The browser dis-
plays an alert
when you click
the link.

You’ll use other event handlers similar to this in the next chapter.▲

▼

Summary 69

Summary
During this chapter, you wrote a simple JavaScript program and tested it using a

browser. You learned about the tools you need to work with JavaScript—basically, an

editor and a browser. You also learned how to modify and test scripts, and what

happens when a JavaScript program runs into an error, and you learned how to use

scripts in separate JavaScript files.

In the process of writing this script, you have used some of JavaScript’s basic fea-

tures: variables, the document.write statement, and functions for working with

dates and times.

You’ve also been introduced to several components of JavaScript programming and

syntax: functions, objects, event handlers, conditions, and loops. You learned how to

use JavaScript comments to make your script easier to read, and looked at a simple

example of an event handler.

In the next chapter, you’ll look at the Document Object Model (DOM) and learn

how you can use the objects within the DOM to work with web pages and interact

with users.

This page intentionally left blank

CHAPTER 5

Working with the Document
Object Model (DOM)

What You’ll Learn in This Chapter:
. Understanding Objects
. Understanding the Document Object Model (DOM)
. Working with Web Documents
. Accessing Browser History
. Working with the location Object

In this chapter, you’ll be introduced to one of the most important tools you’ll use with

JavaScript: the Document Object Model (DOM), which lets your scripts manipulate web

pages, windows, and documents.

Without the DOM, JavaScript would be just another scripting language—with the DOM, it

becomes a powerful tool for making pages dynamic. This chapter will first discuss objects,

then introduce the idea of the DOM and some of the objects you’ll use most often.

Understanding Objects
JavaScript supports objects. Like variables, objects can store data—but they can store two

or more pieces of data at once.

The items of data stored in an object are called the properties of the object. For example, you

could use objects to store information about people such as in an address book. The proper-

ties of each person object might include a name, an address, and a telephone number.

JavaScript uses periods to separate object names and property names. For example, for a

person object called Bob, the properties might include Bob.address and Bob.phone.

72 CHAPTER 5: Working with the Document Object Model (DOM)

Objects can also include methods. These are functions that work with the object’s

data. For example, our person object for the address book might include a dis-

play() method to display the person’s information. In JavaScript terminology, the

statement Bob.display() would display Bob’s details.

The document.write function we discussed in the previous chapter is actually the
write method of the document object. You will learn more about this object later
in this chapter.

Don’t worry if this sounds confusing—you’ll be exploring objects in much more

detail later in this book. For now, you just need to know the basics. JavaScript sup-

ports three kinds of objects:

. Built-in objects are built in to the JavaScript language. You’ve already encoun-

tered one of these, Date. Other built-in objects include Array and String,

which you’ll explore in Chapter 6, “Using Variables, Strings, and Arrays” and

Math, which is explained in Chapter 9, “Using Built-In Functions and

Libraries.”

. DOM (Document Object Model) objects represent various components of the

browser and the current HTML document. For example, the alert() function

you used earlier in this chapter is actually a method of the window object.

You’ll explore these in more detail in the course of this chapter.

. Custom objects are objects you create yourself. You’ll learn to use custom

objects in Chapter 7 “Using Functions and Objects.”

Understanding the Document Object
Model (DOM)
One advantage that JavaScript has over basic HTML is that scripts can manipulate

the web document and its contents. Your script can load a new page into the brows-

er, work with parts of the browser window and document, open new windows, and

even modify text within the page dynamically.

To work with the browser and documents, JavaScript uses a hierarchy of parent and

child objects called the Document Object Model (DOM). These objects are organized

into a tree-like structure, and represent all of the content and components of a web

document.

By the
Way

By the
Way

Understanding the Document Object Model (DOM) 73

The DOM is not part of the JavaScript language—rather, it’s an API (application pro-
gramming interface) built in to the browser. While the DOM is most often used with
JavaScript, it can also be used by other languages, such as VBScript and Java.

The objects in the DOM have properties—variables that describe the web page or doc-

ument, and methods—functions that enable you to work with parts of the web page.

When you refer to an object, you use the parent object name followed by the child

object name or names, separated by periods. For example, JavaScript stores objects

to represent images in a document as children of the document object. The following

refers to the image9 object, a child of the document object, which is a child of the

window object:

window.document.image9

The window object is the parent object for all of the objects we will be looking at in

this chapter. Figure 5.1 shows this section of the DOM object hierarchy and a variety

of its objects.

By the
Way

document

history

links[]

anchors[]

images[]

forms[]

DOM Level 1
Objects

form
elements

location

window
(parent, frames[],

self, top)

FIGURE 5.1
The DOM object
hierarchy.

This diagram only includes the basic browser objects that will be covered in this
chapter. These are actually a part of the DOM, but a full discussion of all DOM
objects is beyond the scope of this book.

History of the DOM
Starting with the introduction of JavaScript 1.0 in Netscape 2.0, browsers have

included objects that represent parts of a web document and other browser features.

However, there was never a true standard. While both Netscape and Microsoft

74 CHAPTER 5: Working with the Document Object Model (DOM)

Internet Explorer included many of the same objects, there was no guarantee that

the same objects would work the same way in both browsers, let alone in less com-

mon browsers.

The bad news is that there are still differences between the browsers—but here’s the

good news. Since the release of Netscape 3.0 and Internet Explorer 4.0, all of the

basic objects (those covered in this chapter) are supported in much the same way in

both browsers. With more recent browser releases, a much more advanced DOM is

supported.

DOM Levels
The W3C (World Wide Web Consortium) developed the DOM level 1 recommenda-

tion. This is a standard that defines not only basic objects, but an entire set of

objects that encompass all parts of an HTML document. A level 2 DOM standard

has also been released, and level 3 is under development.

Netscape 4 and Internet Explorer 4 supported their own DOMs that allowed more

control over documents, but weren’t standardized. Fortunately, starting with Internet

Explorer 5 and Netscape 6, both support the W3C DOM, so you can support both

browsers with simple, standards-compliant code. All of today’s current browsers sup-

port the W3C DOM.

The basic object hierarchy described in this chapter is informally referred to as DOM

level 0, and the objects are included in the DOM level 1 standard.

Working with Web Documents
The document object represents a web document, or page. Web documents are dis-

played within browser windows, so it shouldn’t surprise you to learn that the docu-

ment object is a child of the window object.

Because the window object always represents the current window (the one containing

the script), you can use window.document to refer to the current document. You can

also simply refer to document, which automatically refers to the current window.

You’ve already used the document.write method to display text within a web
document. The examples in earlier chapters only used a single window and docu-
ment, so it was unnecessary to use window.document.write—but this longer
syntax would have worked equally well.

By the
Way

Working with Web Documents 75

If multiple windows or frames are in use, there might be several window objects,

each with its own document object. To use one of these document objects, you use

the name of the window and the name of the document.

In the following sections, you will look at some of the properties and methods of the

document object that will be useful in your scripting.

Getting Information About the Document
Several properties of the document object include information about the current doc-
ument in general:

. document.URL specifies the document’s URL. This is a simple text field. You
can’t change this property. If you need to send the user to a different location,
use the window.location object, described later in this chapter.

. document.title lists the title of the current page, defined by the HTML
<title> tag.

. document.referrer is the URL of the page the user was viewing prior to the
current page—usually, the page with a link to the current page.

. document.lastModified is the date the document was last modified. This
date is sent from the server along with the page.

. document.bgColor and document.fgColor are the background and fore-
ground (text) colors for the document, corresponding to the BGCOLOR and TEXT

attributes of the <body> tag.

. document.linkColor, document.alinkColor, and document.vlinkColor
are the colors for links within the document. These correspond to the LINK,
ALINK, and VLINK attributes of the <body> tag.

. document.cookie enables you to read or set a cookie for the document.

As an example of a document property, Listing 5.1 shows a short HTML document
that displays its last modified date using JavaScript.

LISTING 5.1 Displaying the Last Modified Date
<html><head><title>Test Document</title></head>
<body>
<p>This page was last modified on:
<script language=”JavaScript” type=”text/javascript”>
document.write(document.lastModified);
</script>
</p>
</body>
</html>

76 CHAPTER 5: Working with the Document Object Model (DOM)

This can tell the user when the page was last changed. If you use JavaScript, you

don’t have to remember to update the date each time you modify the page. (You

could also use the script to always print the current date instead of the last modified

date, but that would be cheating.)

You might find that the document.lastModified property doesn’t work on your
web pages, or returns the wrong value. The date is received from the web server,
and some servers do not maintain modification dates correctly.

Writing Text in a Document
The simplest document object methods are also the ones you will use most often. In

fact, you’ve used one of them already. The document.write method prints text as

part of the HTML page in a document window. This statement is used whenever you

need to include output in a web page.

An alternative statement, document.writeln, also prints text, but it also includes a

newline (\n) character at the end. This is handy when you want your text to be the

last thing on the line.

Bear in mind that the newline character is displayed as a space by the browser,
except inside a <pre> container. You will need to use the
 tag if you want an
actual line break.

You can use these methods only within the body of the web page, so they will be

executed when the page loads. You can’t use these methods to add to a page that

has already loaded without reloading it. You can write new content for a document,

however, as the next section explains.

The document.write method can be used within a <script> tag in the body of an

HTML document. You can also use it in a function, provided you include a call to

the function within the body of the document.

Using Links and Anchors
Another child of the document object is the link object. Actually, there can be multi-

ple link objects in a document. Each one includes information about a link to

another location or an anchor.

By the
Way

Watch
Out!

Accessing Browser History 77

Anchors are named places in an HTML document that can be jumped to directly.
You define them with a tag like this: . You can then link to
them: .

You can access link objects with the links array. Each member of the array is one

of the link objects in the current page. A property of the array, document.links.

length, indicates the number of links in the page.

Each link object (or member of the links array) has a list of properties defining the

URL. The href property contains the entire URL, and other properties define portions

of it. These are the same properties as the location object, defined later in this

chapter.

You can refer to a property by indicating the link number and property name. For

example, the following statement assigns the entire URL of the first link to the vari-

able link1:

link1 = links[0].href;

The anchor objects are also children of the document object. Each anchor object rep-

resents an anchor in the current document—a particular location that can be

jumped to directly.

Like links, you can access anchors with an array: anchors. Each element of this

array is an anchor object. The document.anchors.length property gives you the

number of elements in the anchors array.

Accessing Browser History
The history object is another child (property) of the window object. This object

holds information about the URLs that have been visited before and after the cur-

rent one, and it includes methods to go to previous or next locations.

The history object has one property you can access:

. history.length keeps track of the length of the history list—in other words,

the number of different locations that the user has visited.

The history object has current, previous, and next properties that store URLs
of documents in the history list. However, for security and privacy reasons, these
objects are not normally accessible in today’s browsers.

Did you
Know?

By the
Way

78 CHAPTER 5: Working with the Document Object Model (DOM)

The history object has three methods you can use to move through the history list:

. history.go() opens a URL from the history list. To use this method, specify a

positive or negative number in parentheses. For example, history.go(-2) is

equivalent to clicking the Back button twice.

. history.back() loads the previous URL in the history list—equivalent to

clicking the Back button.

. history.forward() loads the next URL in the history list, if available. This is

equivalent to clicking the Forward button.

You’ll use these methods in the Try It Yourself section at the end of this chapter.

Working with the location Object
A third child of the window object is the location object. This object stores informa-

tion about the current URL stored in the window. For example, the following state-

ment loads a URL into the current window:

window.location.href=”http://www.starlingtech.com”;

The href property used in this statement contains the entire URL of the window’s

current location. You can also access portions of the URL with various properties of

the location object. To explain these properties, consider the following URL:

http://www.jsworkshop.com:80/test.cgi?lines=1#anchor

The following properties represent parts of the URL:

. location.protocol is the protocol part of the URL (http: in the example).

. location.hostname is the host name of the URL (www.jsworkshop.com in the

example).

. location.port is the port number of the URL (80 in the example).

. location.pathname is the filename part of the URL (test.cgi in the

example).

. location.search is the query portion of the URL, if any (lines=1 in the

example). Queries are used mostly by CGI scripts.

. location.hash is the anchor name used in the URL, if any (#anchor in the

example).

http://www.jsworkshop.com:80/test.cgi?lines=1#anchor
www.jsworkshop.com

▼

Working with the location Object 79

The link object, introduced earlier this chapter, also includes this list of properties

for accessing portions of the URL.

Although the location.href property usually contains the same URL as the
document.URL property described earlier in this chapter, you can’t change the
document.URL property. Always use location.href to load a new page.

The location object has two methods:

. location.reload() reloads the current document. This is the same as the

Reload button on the browser’s toolbar. If you optionally include the true

parameter, it will ignore the browser’s cache and force a reload whether the

document has changed or not.

. location.replace() replaces the current location with a new one. This is

similar to setting the location object’s properties yourself. The difference is

that the replace method does not affect the browser’s history. In other words,

the Back button can’t be used to go to the previous location. This is useful for

splash screens or temporary pages that it would be useless to return to.

Try It Yourself

Creating Back and Forward Buttons
You can use the back and forward methods of the history object to add your own

Back and Forward buttons to a web document. The browser already has Back and

Forward buttons, of course, but it’s occasionally useful to include your own links

that serve the same purpose.

You will now create a script that displays Back and Forward buttons and use these

methods to navigate the browser. Here’s the code that will create the Back button:

<input type=”button”
onClick=”history.back();” value=”<-- Back”>

The <input> tag defines a button labeled Back. The onClick event handler uses the

history.back() method to go to the previous page in history. The code for the

Forward button is similar:

<input type=”button”
onClick=”history.forward();” value=”Forward -->”>

By the
Way

▼

80 CHAPTER 5: Working with the Document Object Model (DOM)

With these out of the way, you just need to build the rest of the HTML document.

Listing 5.2 shows the complete HTML document, and Figure 5.2 shows a browser’s

display of the document. After you load this document into a browser, visit other

URLs and make sure the Back and Forward buttons work.

LISTING 5.2 A Web Page That Uses JavaScript to Include Back and
Forward Buttons
<html>
<head><title>Back and Forward Buttons</title>
</head>
<body>
<h1>Back and Forward Buttons</h1>
<p>This page allows you to go back or forward to pages in the history list.
These should be equivalent to the back and forward arrow buttons in the
browser’s toolbar.</p>
<p>
<input type=”button”

onClick=”history.back();” value=”<-- Back”>
<input type=”button”

onClick=”history.forward();” value=”Forward -->”>
</p>
</body>
</html>

FIGURE 5.2
The Back and
Forward buttons
in Internet
Explorer.

Summary
In this chapter, you’ve learned about the Document Object Model (DOM),

JavaScript’s hierarchy of web page objects. You’ve learned how you can use the doc-

ument object to work with documents, and used the history and location objects

to control the current URL displayed in the browser.

You should now have a basic understanding of the DOM and some of its objects—

you’ll learn about more of the objects throughout this book.

▲

CHAPTER 6

Using Variables, Strings, and
Arrays

What You’ll Learn in This Chapter:
. Using Variables
. Understanding Expressions and Operators
. Data Types in JavaScript
. Converting Between Data Types
. Using String Objects
. Working with Substrings
. Using Numeric Arrays
. Using String Arrays
. Sorting a Numeric Array

Now that you have learned some of the fundamentals of JavaScript and the DOM, it’s

time to dig into more details of the JavaScript language.

In this chapter, you’ll learn three tools for storing data in JavaScript: variables, which

store numbers or text; strings, which are special variables for working with text; and

arrays, which are multiple variables you can refer to by number.

Using Variables
Unless you skipped the last few chapters of this book, you’ve already used a few variables.

You probably can also figure out how to use a few more without any help. Nevertheless,

there are some aspects of variables you haven’t learned yet. We will now look at some of

the details.

82 CHAPTER 6: Using Variables, Strings, and Arrays

Choosing Variable Names
Variables are named containers that can store data (for example, a number, a text

string, or an object). As you learned earlier in this book, each variable has a name.

There are specific rules you must follow when choosing a variable name:

. Variable names can include letters of the alphabet, both upper- and lower-

case. They can also include the digits 0–9 and the underscore (_) character.

. Variable names cannot include spaces or any other punctuation characters.

. The first character of the variable name must be either a letter or an underscore.

. Variable names are case sensitive—totalnum, Totalnum, and TotalNum are

separate variable names.

. There is no official limit on the length of variable names, but they must fit

within one line.

Using these rules, the following are examples of valid variable names:

total_number_of_fish
LastInvoiceNumber
temp1
a
_var39

You can choose to use either friendly, easy-to-read names or completely cryptic
ones. Do yourself a favor: Use longer, friendly names whenever possible. Although
you might remember the difference between a, b, x, and x1 right now, you might
not after a good night’s sleep.

Using Local and Global Variables
Some computer languages require you to declare a variable before you use it.

JavaScript includes the var keyword, which can be used to declare a variable. You

can omit var in many cases; the variable is still declared the first time you assign a

value to it.

To understand where to declare a variable, you will need to understand the concept

of scope. A variable’s scope is the area of the script in which that variable can be

used. There are two types of variables:

. Global variables have the entire script (and other scripts in the same HTML doc-

ument) as their scope. They can be used anywhere, even within functions.

By the
Way

Using Variables 83

. Local variables have a single function as their scope. They can be used only

within the function they are created in.

To create a global variable, you declare it in the main script, outside any functions.

You can use the var keyword to declare the variable, as in this example:

var students = 25;

This statement declares a variable called students and assigns it a value of 25. If

this statement is used outside functions, it creates a global variable. The var key-

word is optional in this case, so this statement is equivalent to the previous one:

students = 25;

Before you get in the habit of omitting the var keyword, be sure you understand

exactly when it’s required. It’s actually a good idea to always use the var keyword—

you’ll avoid errors and make your script easier to read, and it won’t usually cause

any trouble.

For the most part, the variables you’ve used in earlier chapters of this book have
been global.

A local variable belongs to a particular function. Any variable you declare with the

var keyword in a function is a local variable. Additionally, the variables in the func-

tion’s parameter list are always local variables.

To create a local variable within a function, you must use the var keyword. This

forces JavaScript to create a local variable, even if there is a global variable with the

same name.

You should now understand the difference between local and global variables. If

you’re still a bit confused, don’t worry—if you use the var keyword every time, you’ll

usually end up with the right type of variable.

Assigning Values to Variables
You can use the equal sign to assign a value to a variable. For example, this state-

ment assigns the value 40 to the variable lines:

lines = 40;

You can use any expression to the right of the equal sign, including other variables.

You have used this syntax earlier to add one to a variable:

lines = lines + 1;

By the
Way

84 CHAPTER 6: Using Variables, Strings, and Arrays

Because incrementing or decrementing variables is quite common, JavaScript

includes two types of shorthand for this syntax. The first is the += operator, which

enables you to create the following shorter version of the preceding example:

lines += 1;

Similarly, you can subtract a number from a variable using the -= operator:

lines -= 1;

If you still think that’s too much to type, JavaScript also includes the increment and

decrement operators, ++ and --. This statement adds one to the value of lines:

lines++;

Similarly, this statement subtracts one from the value of lines:

lines--;

You can alternately use the ++ or -- operators before a variable name, as in

++lines. However, these are not identical. The difference is when the increment or

decrement happens:

. If the operator is after the variable name, the increment or decrement hap-

pens after the current expression is evaluated.

. If the operator is before the variable name, the increment or decrement hap-

pens before the current expression is evaluated.

This difference is only an issue when you use the variable in an expression and

increment or decrement it in the same statement. As an example, suppose you have

assigned the lines variable the value 40. The following two statements have differ-

ent effects:

alert(lines++);
alert(++lines);

The first statement displays an alert with the value 40, and then increments lines

to 41. The second statement first increments lines to 41, then displays an alert with

the value 41.

These operators are strictly for your convenience. If it makes more sense to you
to stick to lines = lines + 1, do it—your script won’t suffer.

By the
Way

Understanding Expressions and Operators 85

Understanding Expressions and
Operators
An expression is a combination of variables and values that the JavaScript inter-

preter can evaluate to a single value. The characters that are used to combine these

values, such as + and /, are called operators.

Along with variables and constant values, you can also use calls to functions that
return results within an expression.

Using JavaScript Operators
You’ve already used some operators, such as the + sign (addition) and the incre-

ment and decrement operators. Table 6.1 lists some of the most important operators

you can use in JavaScript expressions.

TABLE 6.1 Common JavaScript Operators

Operator Description Example

+ Concatenate (combine) strings message=”this is” + “ a test”;

+ Add result = 5 + 7;

- Subtract score = score - 1;

* Multiply total = quantity * price;

/ Divide average = sum / 4;

% Modulo (remainder) remainder = sum % 4;

++ Increment tries++;

-- Decrement total--;

Along with these, there are also many other operators used in conditional

statements—you’ll learn about these in Chapter 8, “Controlling Flow with

Conditions and Loops.”

Operator Precedence
When you use more than one operator in an expression, JavaScript uses rules of

operator precedence to decide how to calculate the value. Table 6.1 lists the operators

from lowest to highest precedence, and operators with highest precedence are evalu-

ated first. For example, consider this statement:

result = 4 + 5 * 3;

Did you
Know?

86 CHAPTER 6: Using Variables, Strings, and Arrays

If you try to calculate this result, there are two ways to do it. You could multiply 5 *

3 first and then add 4 (result: 19) or add 4 + 5 first and then multiply by 3 (result:

27). JavaScript solves this dilemma by following the precedence rules: Because multi-

plication has a higher precedence than addition, it first multiplies 5 * 3 and then

adds 4, producing a result of 19.

If you’re familiar with any other programming languages, you’ll find that the opera-
tors and precedence in JavaScript work, for the most part, the same way as those
in C, C++, and Java.

Sometimes operator precedence doesn’t produce the result you want. For example,

consider this statement:

result = a + b + c + d / 4;

This is an attempt to average four numbers by adding them all together and then

dividing by four. However, because JavaScript gives division a higher precedence

than addition, it will divide the d variable by 4 before adding the other numbers,

producing an incorrect result.

You can control precedence by using parentheses. Here’s the working statement to

calculate an average:

result = (a + b + c + d) / 4;

The parentheses ensure that the four variables are added first, and then the sum is

divided by four.

If you’re unsure about operator precedence, you can use parentheses to make
sure things work the way you expect and to make your script more readable.

Data Types in JavaScript
In some computer languages, you have to specify the type of data a variable will

store: for example, a number or a string. In JavaScript, you don’t need to specify a

data type in most cases. However, you should know the types of data JavaScript can

deal with.

By the
Way

Did you
Know?

Data Types in JavaScript 87

These are the basic JavaScript data types:

. Numbers, such as 3, 25, or 1.4142138. JavaScript supports both integers and

floating-point numbers.

. Boolean, or logical values. These can have one of two values: true or false.

These are useful for indicating whether a certain condition is true.

You’ll learn more about Boolean values, and about using conditions in JavaScript,
in Chapter 8.

. Strings, such as “I am a jelly doughnut”. These consist of one or more

characters of text. (Strictly speaking, these are String objects, which you’ll

learn about later in this chapter.)

. The null value, represented by the keyword null. This is the value of an unde-

fined variable. For example, the statement document.write(fig) will result

in this value (and an error message) if the variable fig has not been previous-

ly used or defined.

Although JavaScript keeps track of the data type currently stored in each variable, it

doesn’t restrict you from changing types midstream. For example, suppose you

declared a variable by assigning it a value:

total = 31;

This statement declares a variable called total and assigns it the value of 31. This

is a numeric variable. Now suppose you changed the value of total:

total = “albatross”;

This assigns a string value to total, replacing the numeric value. JavaScript will not

display an error when this statement executes; it’s perfectly valid, although it’s prob-

ably not a very useful total.

Although this feature of JavaScript is convenient and powerful, it can also make it
easy to make a mistake. For example, if the total variable was later used in a
mathematical calculation, the result would be invalid—but JavaScript does not
warn you that you’ve made this mistake.

By the
Way

By the
Way

88 CHAPTER 6: Using Variables, Strings, and Arrays

Converting Between Data Types
JavaScript handles conversions between data types for you whenever it can. For

example, you’ve already used statements like this:

document.write(“The total is “ + total);

This statement prints out a message such as “The total is 40”. Because the doc-

ument.write function works with strings, the JavaScript interpreter automatically

converts any nonstrings in the expression (in this case, the value of total) to strings

before performing the function.

This works equally well with floating-point and Boolean values. However, there are

some situations where it won’t work. For example, the following statement will work

fine if the value of total is 40:

average = total / 3;

However, the total variable could also contain a string; in this case, the preceding

statement would result in an error.

In some situations, you might end up with a string containing a number, and need

to convert it to a regular numeric variable. JavaScript includes two functions for this

purpose:

. parseInt()—Converts a string to an integer number.

. parseFloat()—Converts a string to a floating-point number.

Both of these functions will read a number from the beginning of the string and

return a numeric version. For example, these statements convert the string “30

angry polar bears” to a number:

stringvar = “30 angry polar bears”;
numvar = parseInt(stringvar);

After these statements execute, the numvar variable contains the number 30. The

nonnumeric portion of the string is ignored.

These functions look for a number of the appropriate type at the beginning of the
string. If a valid number is not found, the function will return the special value
NaN, meaning not a number.

By the
Way

Using String Objects 89

Using String Objects
You’ve already used several strings during the first few chapters of this book. Strings

store a group of text characters, and are named similarly to other variables. As a

simple example, this statement assigns the string This is a test to a string vari-

able called test:

test = “This is a test”;

Creating a String Object
JavaScript stores strings as String objects. You usually don’t need to worry about

this, but it will explain some of the techniques for working with strings, which use

methods (built-in functions) of the String object.

There are two ways to create a new String object. The first is the one you’ve already

used, whereas the second uses object-oriented syntax. The following two statements

create the same string:

test = “This is a test”;
test = new String(“This is a test”);

The second statement uses the new keyword, which you use to create objects. This

tells the browser to create a new String object containing the text This is a test,

and assigns it to the variable test.

Although you can create a string using object-oriented syntax, the standard
JavaScript syntax is simpler, and there is no difference in the strings created by
these two methods.

Assigning a Value
You can assign a value to a string in the same way as any other variable. Both of

the examples in the previous section assigned an initial value to the string. You can

also assign a value after the string has already been created. For example, the fol-

lowing statement replaces the contents of the test variable with a new string:

test = “This is only a test.”;

You can also use the concatenation operator (+) to combine the values of two

strings. Listing 6.1 shows a simple example of assigning and combining the values

of strings.

By the
Way

90 CHAPTER 6: Using Variables, Strings, and Arrays

LISTING 6.1 Assigning Values to Strings and Combining Them
<html>
<head>
<title>String Test</title>
</head>
<body>
<h1>String Test</h1>
<script language=”JavaScript” type=”text/javascript”>;
test1 = “This is a test. “;
test2 = “This is only a test.”;
both = test1 + test2;
alert(both);
</script>
</body>
</html>

This script assigns values to two string variables, test1 and test2, and then dis-

plays an alert with their combined value. If you load this HTML document in a

browser, your output should resemble Figure 6.1.

FIGURE 6.1
The output of
the string exam-
ple script.

In addition to using the + operator to concatenate two strings, you can use the +=

operator to add text to a string. For example, this statement adds a period to the

current contents of the string sentence:

sentence += “.”;

Using String Objects 91

The plus sign (+) is also used to add numbers in JavaScript. The browser knows
whether to use addition or concatenation based on the types of data you use with
the plus sign. If you use it between a number and a string, the number is convert-
ed to a string and concatenated.

Calculating the String’s Length
From time to time, you might find it useful to know how many characters a string

variable contains. You can do this with the length property of String objects,

which you can use with any string. To use this property, type the string’s name fol-

lowed by .length.

For example, test.length refers to the length of the test string. Here is an exam-

ple of this property:

test = “This is a test.”;
document.write(test.length);

The first statement assigns the string This is a test to the test variable. The sec-

ond statement displays the length of the string—in this case, 15 characters. The

length property is a read-only property, so you cannot assign a value to it to

change a string’s length.

Remember that although test refers to a string variable, the value of
test.length is a number and can be used in any numeric expression.

Converting the String’s Case
Two methods of the String object enable you to convert the contents of a string to

all uppercase or all lowercase:

. toUpperCase()—Converts all characters in the string to uppercase.

. toLowerCase()—Converts all characters in the string to lowercase.

For example, the following statement displays the value of the test string variable

in lowercase:

document.write(test.toLowerCase());

By the
Way

By the
Way

92 CHAPTER 6: Using Variables, Strings, and Arrays

Assuming that this variable contained the text This Is A Test, the result would

be the following string:

this is a test

Note that the statement doesn’t change the value of the text variable. These meth-

ods return the upper- or lowercase version of the string, but they don’t change the

string itself. If you want to change the string’s value, you can use a statement like

this:

test = test.toLowerCase();

Note that the syntax for these methods is similar to the length property intro-
duced earlier. The difference is that methods always use parentheses, whereas
properties don’t. The toUpperCase and toLowerCase methods do not take any
parameters, but you still need to use the parentheses.

Working with Substrings
So far, you’ve worked with entire strings. JavaScript also enables you to work with

substrings, or portions of a string. You can use the substring method to retrieve a

portion of a string, or the charAt method to get a single character. These are

explained in the following sections.

Using Part of a String
The substring method returns a string consisting of a portion of the original string

between two index values, which you must specify in parentheses. For example, the

following statement displays the fourth through sixth characters of the text string:

document.write(text.substring(3,6));

At this point, you’re probably wondering where the 3 and the 6 come from. There

are three things you need to understand about the index parameters:

. Indexing starts with 0 for the first character of the string, so the fourth charac-

ter is actually index 3.

. The second index is noninclusive. A second index of 6 includes up to index 5

(the sixth character).

By the
Way

Working with Substrings 93

. You can specify the two indexes in either order. The smaller one will be

assumed to be the first index. In the previous example, (6,3) would have pro-

duced the same result. Of course, there is rarely a reason to use the reverse

order.

As another example, suppose you defined a string called alpha to hold the

alphabet:

alpha = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

The following are examples of the substring() method using this string:

. alpha.substring(0,4) returns ABCD.

. alpha.substring(10,12) returns KL.

. alpha.substring(12,10) also returns KL. Because it’s smaller, 10 is used as

the first index.

. alpha.substring(6,7) returns G.

. alpha.substring(24,26) returns YZ.

. alpha.substring(0,26) returns the entire alphabet.

. alpha.substring(6,6) returns the null value, an empty string. This is true

whenever the two index values are the same.

Getting a Single Character
The charAt method is a simple way to grab a single character from a string. You

specify the character’s index, or position, in parentheses. The indexes begin at 0 for

the first character. Here are a few examples using the alpha string:

. alpha.charAt(0) returns A.

. alpha.charAt(12) returns M.

. alpha.charAt(25) returns Z.

. alpha.charAt(27) returns an empty string because there is no character at

that position.

94 CHAPTER 6: Using Variables, Strings, and Arrays

Finding a Substring
Another use for substrings is to find a string within another string. One way to do

this is with the indexOf method. To use this method, add indexOf to the string you

want to search, and specify the string to search for in the parentheses. This example

searches for “this” in the test string:

loc = test.indexOf(“this”);

As with most JavaScript methods and property names, indexOf is case sensitive.
Make sure you type it exactly as shown here when you use it in scripts.

The value returned in the loc variable is an index into the string, similar to the first

index in the substring method. The first character of the string is index 0.

You can specify an optional second parameter to indicate the index value to begin

the search. For example, this statement searches for the word fish in the temp

string, starting with the 20th character:

location = temp.indexOf(“fish”,19);

One use for the second parameter is to search for multiple occurrences of a
string. After finding the first occurrence, you search starting with that location for
the second one, and so on.

A second method, lastIndexOf(), works the same way, but finds the last occurrence

of the string. It searches the string backwards, starting with the last character. For

example, this statement finds the last occurrence of Fred in the names string:

location = names.lastIndexOf(“Fred”);

As with indexOf(), you can specify a location to search from as the second parame-

ter. In this case, the string will be searched backward starting at that location.

Using Numeric Arrays
An array is a numbered group of data items that you can treat as a single unit. For

example, you might use an array called scores to store several scores for a game.

Arrays can contain strings, numbers, objects, or other types of data. Each item in an

array is called an element of the array.

By the
Way

By the
Way

Using Numeric Arrays 95

Creating a Numeric Array
Unlike most other types of JavaScript variables, you typically need to declare an

array before you use it. The following example creates an array with four elements:

scores = new Array(4);

To assign a value to the array, you use an index in brackets. Indexes begin with 0, so

the elements of the array in this example would be numbered 0 to 3. These state-

ments assign values to the four elements of the array:

scores[0] = 39;
scores[1] = 40;
scores[2] = 100;
scores[3] = 49;

You can also declare an array and specify values for elements at the same time. This

statement creates the same scores array in a single line:

scores = new Array(39,40,100,49);

In JavaScript 1.2 and later, you can also use a shorthand syntax to declare an array

and specify its contents. The following statement is an alternative way to create the

scores array:

scores = [39,40,100,49];

Remember to use parentheses when declaring an array with the new keyword, as
in a=new Array(3,4,5), and use brackets when declaring an array without new,
as in a=[3,4,5]. Otherwise, you’ll run into JavaScript errors.

Understanding Array Length
Like strings, arrays have a length property. This tells you the number of elements

in the array. If you specified the length when creating the array, this value becomes

the length property’s value. For example, these statements would print the

number 30:

scores = new Array(30);
document.write(scores.length);

Did you
Know?

96 CHAPTER 6: Using Variables, Strings, and Arrays

You can declare an array without a specific length, and change the length later by

assigning values to elements or changing the length property. For example, these

statements create a new array and assign values to two of its elements:

test = new Array();
test[0]=21;
test[5]=22;

In this example, because the largest index number assigned so far is 5, the array

has a length property of 6—remember, elements are numbered starting at 0.

Accessing Array Elements
You can read the contents of an array using the same notation you used when

assigning values. For example, the following statements would display the values of

the first three elements of the scores array:

scoredisp = “Scores: “ + scores[0] + “,” + scores[1] + “,” + scores[2];
document.write(scoredisp);

Looking at this example, you might imagine it would be inconvenient to display all
the elements of a large array. This is an ideal job for loops, which enable you to
perform the same statements several times with different values. You’ll learn all
about loops in Chapter 8.

Using String Arrays
So far, you’ve used arrays of numbers. JavaScript also allows you to use string arrays,

or arrays of strings. This is a powerful feature that enables you to work with a large

number of strings at the same time.

Creating a String Array
You declare a string array in the same way as a numeric array—in fact, JavaScript

does not make a distinction between them:

names = new Array(30);

You can then assign string values to the array elements:

names[0] = “Henry J. Tillman”;
names[1] = “Sherlock Holmes”;

Did you
Know?

Using String Arrays 97

As with numeric arrays, you can also specify a string array’s contents when you cre-

ate it. Either of the following statements would create the same string array as the

preceding example:

names = new Array(“Henry J. Tillman”, “Sherlock Holmes”);
names = [“Henry J. Tillman”, “Sherlock Holmes”];

You can use string array elements anywhere you would use a string. You can even

use the string methods introduced earlier. For example, the following statement

prints the first five characters of the first element of the names array, resulting in

Henry:

document.write(names[0].substring(0,5));

Splitting a String
JavaScript includes a string method called split, which splits a string into its com-

ponent parts. To use this method, specify the string to split and a character to divide

the parts:

test = “John Q. Public”;
parts = test.split(“ “);

In this example, the test string contains the name John Q. Public. The split

method in the second statement splits the name string at each space, resulting in

three strings. These are stored in a string array called parts. After the example

statements execute, the elements of parts contain the following:

. parts[0] = “John”

. parts[1] = “Q.”

. parts[2] = “Public”

JavaScript also includes an array method, join, which performs the opposite func-

tion. This statement reassembles the parts array into a string:

fullname = parts.join(“ “);

The value in the parentheses specifies a character to separate the parts of the array.

In this case, a space is used, resulting in the final string John Q. Public. If you do

not specify a character, commas are used.

98 CHAPTER 6: Using Variables, Strings, and Arrays

Sorting a String Array
JavaScript also includes a sort method for arrays, which returns an alphabetically

sorted version of the array. For example, the following statements initialize an array

of four names and sort it:

names[0] = “Public, John Q.”;
names[1] = “Tillman, Henry J.”;
names[2] = “Bush, George W.”;
names[3] = “Mouse, Mickey”;
sortednames = names.sort();

The last statement sorts the names array and stores the result in a new array,

sortednames.

Sorting a Numeric Array
Because the sort method sorts alphabetically, it won’t work with a numeric array—

at least not the way you’d expect. If an array contains the numbers 4, 10, 30, and

200, for example, it would sort them as 10, 200, 30, 4—not even close. Fortunately,

there’s a solution: You can specify a function in the sort method’s parameters, and

that function will be used to compare the numbers. The following code sorts a

numeric array correctly:

function numcompare(a,b) {
return a-b;

}
nums = new Array(30, 10, 200, 4);
sortednums = nums.sort(numcompare);

This example defines a simple function, numcompare, which subtracts the two num-

bers. After you specify this function in the sort method, the array is sorted in the

correct numeric order: 4, 10, 30, 200.

JavaScript expects the comparison function to return a negative number if a
belongs before b, 0 if they are the same, or a positive number if a belongs after b.
This is why a-b is all you need for the function to sort numerically.

By the
Way

▼

Sorting a Numeric Array 99

Try It Yourself

Sorting and Displaying Names
To gain more experience working with JavaScript’s string and array features, you

can create a script that enables the user to enter a list of names, and displays the list

in sorted form.

Because this will be a larger script, you will create separate HTML and JavaScript

files, as described in Chapter 4, “Creating Simple Scripts in JavaScript.” First, the

sort.html file will contain the HTML structure and form fields for the script to work

with. Listing 6.2 shows the HTML document.

LISTING 6.2 The HTML Document for the Sorting Example
<html>
<head>
<title>Array Sorting Example</title>
<script type=”text/javascript” language=”javascript” src=”sort.js”>
</script>
</head>
<body>
<h1>Sorting String Arrays</h1>
<p>Enter two or more names in the field below,
and the sorted list of names will appear in the
text area.</p>
<form name=”theform”>
Name:
<input type=”text” name=”newname” size=”20”>
<input type=”button” name=”addname” value=”Add”
onclick=”SortNames();”>

<h2>Sorted Names</h2>
<textarea cols=”60” rows=”10” name=”sorted”>
The sorted names will appear here.
</textarea>
</form>
</body>
</html>

Because the script will be in a separate document, the <script> tag in the header of

this document uses the src attribute to include a JavaScript file called sort.js. You

will create this file next.

This document defines a form named theform, a text field named newname, an

addname button, and a textarea named sorted. Your script will use these form fields

as its user interface. Listing 6.2 shows the HTML document, and Listing 6.3 shows

the JavaScript source file that it incorporates.

▼

100 CHAPTER 6: Using Variables, Strings, and Arrays

LISTING 6.3 The JavaScript File for the Sorting Example
// initialize the counter and the array
var numnames=0;
var names = new Array();
function SortNames() {

// Get the name from the text field
thename=document.theform.newname.value;
// Add the name to the array
names[numnames]=thename;
// Increment the counter
numnames++;
// Sort the array
names.sort();
document.theform.sorted.value=names.join(“\n”);

}

The script begins by defining two variables with the var keyword: numnames will be a
counter that increments as each name is added, and the names array will store the names.

When you type a name into the text field and click the button, the onclick event han-
dler calls the SortNames function. This function stores the text field value in a vari-
able, thename, and then adds the name to the names array using numnames as the
index. It then increments numnames to prepare for the next name.

The final section of the script sorts the names and displays them. First, the sort()
method is used to sort the names array. Next, the join() method is used to combine
the names, separating them with line breaks, and display them in the textarea.

To test the script, save it as sort.js, and then load the sort.html file you created pre-
viously into a browser. You can then add some names and test the script. Figure 6.2
shows the result after sorting several names.

▼

FIGURE 6.2
The output
of the name-
sorting
example.

▲

Summary 101

Summary
During this chapter, you’ve focused on variables and how JavaScript handles them.

You’ve learned how to name variables, how to declare them, and the differences

between local and global variables. You also explored the data types supported by

JavaScript and how to convert between them.

You also learned about JavaScript’s more complex variables, strings and arrays, and

looked at the features that enable you to perform operations on them, such as con-

verting strings to uppercase or sorting arrays.

In the next chapter, you’ll continue your JavaScript education by learning more

about two additional key features: functions and objects.

This page intentionally left blank

CHAPTER 7

Using Functions and Objects

What You’ll Learn in This Chapter:
. Using Functions
. Introducing Objects
. Using Objects to Simplify Scripting
. Extending Built-in Objects

In this chapter, you’ll learn about two more key JavaScript concepts that you’ll use

throughout the rest of this book. First, you’ll learn the details of using functions, which

enable you to group any number of statements into a block. This is useful for repeating

sections of code, and you can also create functions that accept parameters and return val-

ues for later use.

Whereas functions enable you to group sections of code, objects enable you to group

data—you can use them to combine related data items and functions for working with the

data.

Using Functions
The scripts you’ve seen so far are simple lists of instructions. The browser begins with the

first statement after the <script> tag and follows each instruction in order until it reaches

the closing </script> tag (or encounters an error).

Although this is a straightforward approach for short scripts, it can be confusing to read a

longer script written in this fashion. To make it easier for you to organize your scripts,

JavaScript supports functions, which you learned about in Chapter 4, “Creating Simple

Scripts in JavaScript.” In this section, you will learn how to define and use functions.

104 CHAPTER 7: Using Functions and Objects

Defining a Function
Functions are groups of JavaScript statements that can be treated as a single unit. To

use a function, you must first define it. Here is a simple example of a function defi-

nition:

function Greet() {
alert(“Greetings.”);

}

This defines a function that displays an alert message to the user. This begins with

the function keyword. The function’s name is Greet. Notice the parentheses after

the function’s name. As you’ll learn next, the space between them is not always

empty.

The first and last lines of the function definition include braces ({ and }). You use

these to enclose all of the statements in the function. The browser uses the braces to

determine where the function begins and ends.

Between the braces, this particular function contains a single line. This uses the

built-in alert function, which displays an alert message. The message will contain

the text “Greetings.”

Function names are case sensitive. If you define a function such as Greet with a
capital letter, be sure you use the identical name when you call the function.

Now, about those parentheses. The current Greet function always does the same

thing: Each time you use it, it displays the same message. Although this avoids a bit

of typing, it doesn’t really provide much of an advantage.

To make your function more flexible, you can add parameters, also known as argu-

ments. These are variables that are received by the function each time it is called.

For example, you can add a parameter called who that tells the function the name

of the person to greet. Here is the modified Greet function:

function Greet(who) {
alert(“Greetings, “ + who);

}

Of course, to use this function, you should include it in an HTML document.

Traditionally, the best place for a function definition is within the <head> section of

the document. Because the statements in the <head> section are executed first, this

ensures that the function is defined before it is used.

Listing 7.1 shows the Greet function embedded in the header section of an HTML

document.

By the
Way

Using Functions 105

LISTING 7.1 The Greet Function in an HTML Document
<html>
<head>
<title>Functions</title>
<script language=”JavaScript” type=”text/javascript”>
function Greet(who) {

alert(“Greetings, “ + who);
}
</script>
</head>
<body>
This is the body of the page.
</body>
</html>

Calling the Function
You have now defined a function and placed it in an HTML document. However, if

you load Listing 7.1 into a browser, you’ll notice that it does absolutely nothing. This

is because the function is defined—ready to be used—but we haven’t used it yet.

Making use of a function is referred to as calling the function. To call a function, use

the function’s name as a statement in a script. You will need to include the paren-

theses and the values for the function’s parameters. For example, here’s a statement

that calls the Greet function:

Greet(“Fred”);

This tells the JavaScript interpreter to transfer control to the first statement in the

Greet function. It also passes the parameter “Fred” to the function. This value will

be assigned to the who variable inside the function.

Functions can have more than one parameter. To define a function with multiple
parameters, list a variable name for each parameter, separated by commas. To
call the function, specify values for each parameter separated by commas.

Listing 7.2 shows a complete HTML document that includes the function definition

and a second script in the body of the page that actually calls the function. To demon-

strate the usefulness of functions, we’ll call it twice to greet two different people.

LISTING 7.2 The Complete Function Example
<html>
<head>
<title>Functions</title>
<script language=”JavaScript” type=”text/javascript”>
function Greet(who) {

By the
Way

106 CHAPTER 7: Using Functions and Objects

alert(“Greetings, “ + who);
}
</script>
</head>
<body>
<h1>Function Example</h1>
<p>Prepare to be greeted twice.</p>
<script language=”JavaScript” type=”text/javascript”>
Greet(“Fred”);
Greet(“Ethel”);
</script>
</body>
</html>>

This listing includes a second set of <script> tags in the body of the page. The second

script includes two function calls to the Greet function, each with a different name.

Now that you have a script that actually does something, try loading it into a

browser. You should see something like Figure 7.1, which shows the Greeting script

running in Firefox.

LISTING 7.2 Continued

FIGURE 7.1
The output of
the Greeting
example.

By the
Way

Notice that the second alert message isn’t displayed until you click the OK button
on the first alert. This is because JavaScript processing is halted while alerts are
displayed.

Returning a Value
The function you just created displays a message to the user, but functions can also

return a value to the script that called them. This allows you to use functions to cal-

culate values. As an example, you can create a function that averages four numbers.

Your function should begin with the function keyword, the function’s name, and

the parameters it accepts. We will use the variable names a, b, c, and d for the four

numbers to average. Here is the first line of the function:

function Average(a,b,c,d) {

Using Functions 107

I’ve also included the opening brace ({) on the first line of the function. This is a
common style, but you can also place the brace on the next line, or on a line by
itself.

Next, the function needs to calculate the average of the four parameters. You can

calculate this by adding them, and then dividing by the number of parameters (in

this case, 4). Thus, here is the next line of the function:

result = (a + b + c + d) / 4;

This statement creates a variable called result and calculates the result by adding

the four numbers, and then dividing by 4. (The parentheses are necessary to tell

JavaScript to perform the addition before the division.)

To send this result back to the script that called the function, you use the return

keyword. Here is the last part of the function:

return result;
}

Listing 7.3 shows the complete Average function in an HTML document. This HTML

document also includes a small script in the <body> section that calls the Average

function and displays the result.

LISTING 7.3 The Average Function in an HTML Document
<html>_
<head>
<title>Function Example</title>
<script language=”JavaScript” type=”text/javascript”>
function Average(a,b,c,d) {
result = (a + b + c + d) / 4;
return result;
}
</script>
</head>
<body>
<p>The following is the result of the function call.</p>
<script LANGUAGE=”JavaScript” type=”text/javascript”>
score = Average(3,4,5,6);
document.write(“The average is: “ + score);
</script>_
</body>
</html>

You can use a variable with the function call, as shown in this listing. This statement

averages the numbers 3, 4, 5, and 6 and stores the result in a variable called score:

score = Average(3,4,5,6);

By the
Way

108 CHAPTER 7: Using Functions and Objects

You can also use the function call directly in an expression. For example, you
could use the alert statement to display the result of the function
alert(Average(1,2,3,4)) .

Introducing Objects
In the previous chapter, you learned how to use variables to represent different kinds

of data in JavaScript. JavaScript also supports objects, a more complex kind of vari-

able that can store multiple data items and functions.

Although a variable can have only one value at a time, an object can contain mul-

tiple values, as well as functions for working with the values. This allows you to

group related data items and the functions that deal with them into a single object.

In this chapter, you’ll learn how to define and use your own objects. You’ve already

worked with some of them, including

. DOM objects—Allow your scripts to interact with web pages. You learned

about these in Chapter 5, “Working with the Document Object Model (DOM).”

. Built-in objects—Include strings and arrays, which you learned about in

Chapter 6, “Using Variables, Strings, and Arrays.”

The syntax for working with all three types of objects—DOM objects, built-in objects,

and custom objects—is the same, so even if you don’t end up creating your own

objects, you should have a good understanding of JavaScript’s object terminology

and syntax.

Creating Objects
When you created an array in the previous chapter, you used the following

JavaScript statement:

scores = new Array(4);

The new keyword tells the JavaScript interpreter to use a function—in this case, the

built-in Array function—to create an object. You’ll create a function for a custom

object later in this chapter.

Object Properties and Values
Each object has one or more properties—essentially, variables that will be stored

within the object. For example, in Chapter 5, you learned that the location.href

Did you
Know?

Using Objects to Simplify Scripting 109

property gives you the URL of the current document. The href property is one of the

properties of the location object in the DOM.

You’ve also used the length property of String objects, as in the following example

from the previous chapter:

test = “This is a test.”;
document.write(test.length);

Like variables, each object property has a value. To read a property’s value, you sim-

ply include the object name and property name, separated by a period, in any

expression, as in test.length previously. You can change a property’s value using

the = operator, just like a variable. The following example sends the browser to a

new URL by changing the location.href property:

location.href=”http://www.jsworkshop.com/”;

An object can also be a property of another object. This is referred to as a child
object.

Understanding Methods
Along with properties, each object can have one or more methods. These are func-

tions that work with the object’s data. For example, the following JavaScript state-

ment reloads the current document, as you learned in Chapter 5:

location.reload();

When you use reload(), you’re using a method of the location object. Like normal

functions, methods can accept arguments in parentheses, and can return values.

Using Objects to Simplify Scripting
Although JavaScript’s variables and arrays are versatile ways to store data, some-
times you need a more complicated structure. For example, suppose you are creat-
ing a script to work with a business card database that contains names, addresses,
and phone numbers for a variety of people.

If you were using regular variables, you would need several separate variables for
each person in the database: a name variable, an address variable, and so on. This
would be very confusing.

Arrays would improve things slightly. You could have a names array, an addresses
array, and a phone number array. Each person in the database would have an
entry in each array. This would be more convenient, but still not perfect.

By the
Way

110 CHAPTER 7: Using Functions and Objects

With objects, you can make the variables that store the database as logical as busi-

ness cards. Each person is represented by a Card object, which has properties for

name, address, and phone number. You can even add methods to the object to dis-

play or work with the information.

In the following sections, you’ll use JavaScript to actually create the Card object and

its properties and methods. Later in this chapter, you’ll use the Card object in a

script to display information for several members of the database.

Defining an Object
The first step in creating an object is to name it and its properties. We’ve already

decided to call the object a Card object. Each object will have the following properties:

. name

. address

. workphone

. homephone

The first step in using this object in a JavaScript program is to create a function to

make new Card objects. This function is called the constructor for an object. Here is

the constructor function for the Card object:

function Card(name,address,work,home) {
this.name = name;
this.address = address;
this.workphone = work;
this.homephone = home;

}

The constructor is a simple function that accepts parameters to initialize a new

object and assigns them to the corresponding properties. This function accepts sever-

al parameters from the statement that calls the function, and then assigns them as

properties of an object. Because the function is called Card, the object is the Card

object.

Notice the this keyword. You’ll use it anytime you create an object definition. Use

this to refer to the current object—the one that is being created by the function.

Defining an Object Method
Next, you will create a method to work with the Card object. Because all Card

objects will have the same properties, it might be handy to have a function that

prints out the properties in a neat format. Let’s call this function PrintCard.

Using Objects to Simplify Scripting 111

Your PrintCard function will be used as a method for Card objects, so you don’t

need to ask for parameters. Instead, you can use the this keyword again to refer to

the current object’s properties. Here is a function definition for the PrintCard()

function:

function PrintCard() {
line1 = “Name: “ + this.name + “
\n”;
line2 = “Address: “ + this.address + “
\n”;
line3 = “Work Phone: “ + this.workphone + “
\n”;
line4 = “Home Phone: “ + this.homephone + “<hr>\n”;
document.write(line1, line2, line3, line4);

}

This function simply reads the properties from the current object (this), prints each

one with a caption, and skips to a new line.

You now have a function that prints a card, but it isn’t officially a method of the

Card object. The last thing you need to do is make PrintCard part of the function

definition for Card objects. Here is the modified function definition:

function Card(name,address,work,home) {
this.name = name;
this.address = address;
this.workphone = work;
this.homephone = home;
this.PrintCard = PrintCard;

}

The added statement looks just like another property definition, but it refers to the

PrintCard function. This will work so long as the PrintCard function is defined

with its own function definition. Methods are essentially properties that define a

function rather than a simple value.

The previous example uses lowercase names such as workphone for properties,
and an uppercase name (PrintCard) for the method. You can use any case for
property and method names, but this is one way to make it clear that PrintCard
is a method rather than an ordinary property.

Creating an Object Instance
Now let’s use the object definition and method you just created. To use an object def-

inition, you create a new object. This is done with the new keyword. This is the same

keyword you’ve already used to create Date and Array objects.

The following statement creates a new Card object called tom:

tom = new Card(“Tom Jones”, “123 Elm Street”, “555-1234”, “555-9876”);

Did you
Know?

112 CHAPTER 7: Using Functions and Objects

As you can see, creating an object is easy. All you do is call the Card() function

(the object definition) and give it the required attributes, in the same order as the

definition.

After this statement executes, a new object is created to hold Tom’s information. This

is called an instance of the Card object. Just as there can be several string variables

in a program, there can be several instances of an object you define.

Rather than specify all the information for a card with the new keyword, you can

assign them after the fact. For example, the following script creates an empty Card

object called holmes, and then assigns its properties:

holmes = new Card();
holmes.name = “Sherlock Holmes”;
holmes.address = “221B Baker Street”;
holmes.workphone = “555-2345”;
holmes.homephone = “555-3456”;

After you’ve created an instance of the Card object using either of these methods,

you can use the PrintCard() method to display its information. For example, this

statement displays the properties of the tom card:

tom.PrintCard();

Extending Built-in Objects
JavaScript includes a feature that enables you to extend the definitions of built-in

objects. For example, if you think the String object doesn’t quite fit your needs, you

can extend it, adding a new property or method. This might be very useful if you

were creating a large script that used many strings.

You can add both properties and methods to an existing object by using the proto-

type keyword. (A prototype is another name for an object’s definition, or constructor

function.) The prototype keyword enables you to change the definition of an object

outside its constructor function.

As an example, let’s add a method to the String object definition. You will create a

method called heading, which converts a string into an HTML heading. The follow-

ing statement defines a string called title:

title = “Fred’s Home Page”;

This statement would output the contents of the title string as an HTML level 1

header:

document.write(title.heading(1));

▼

Extending Built-in Objects 113

Listing 7.4 adds a heading method to the String object definition that will display

the string as a heading, and then displays three headings using the method.

LISTING 7.4 Adding a Method to the String Object
<html>
<head><title>Test of heading method</title>
</head>
<body>
<script LANGUAGE=”JavaScript” type=”text/javascript”>
function addhead (level) {

html = “H” + level;
text = this.toString();
start = “<” + html + “>”;
stop = “</” + html + “>”;
return start + text + stop;

}
String.prototype.heading = addhead;
document.write (“This is a heading 1”.heading(1));
document.write (“This is a heading 2”.heading(2));
document.write (“This is a heading 3”.heading(3));
</script>
</body>
</html>

First, you define the addhead() function, which will serve as the new string method.

It accepts a number to specify the heading level. The start and stop variables are

used to store the HTML “begin header” and “end header” tags, such as <h1> and

</h1>.

After the function is defined, use the prototype keyword to add it as a method of

the String object. You can then use this method on any String object or, in fact,

any JavaScript string. This is demonstrated by the last three statements, which dis-

play quoted text strings as level 1, 2, and 3 headers.

Try It Yourself

Storing Data in Objects
Now you’ve created a new object to store business cards and a method to print them

out. As a final demonstration of objects, properties, functions, and methods, you will

now use this object in a web page to display data for several cards.

Your script will need to include the function definition for PrintCard, along with the

function definition for the Card object. You will then create three cards and print

them out in the body of the document. We will use separate HTML and JavaScript

files for this example. Listing 7.5 shows the complete script.
▼

114 CHAPTER 7: Using Functions and Objects

LISTING 7.5 An Example Script That Uses the Card Object
// define the functions
function PrintCard() {
line1 = “Name: ” + this.name + “
\n”;
line2 = “Address: ” + this.address + “
\n”;
line3 = “Work Phone: ” + this.workphone + “
\n”;
line4 = “Home Phone: ” + this.homephone + “<hr>\n”;
document.write(line1, line2, line3, line4);
}
function Card(name,address,work,home) {

this.name = name;
this.address = address;
this.workphone = work;
this.homephone = home;
this.PrintCard = PrintCard;

}
// Create the objects
sue = new Card(“Sue Suthers”, “123 Elm Street”, “555-1234”, “555-9876”);
phred = new Card(“Phred Madsen”, “233 Oak Lane”, “555-2222”, “555-4444”);
henry = new Card(“Henry Tillman”, “233 Walnut Circle”, “555-1299”, “555-1344”);
// And print them
sue.PrintCard();
phred.PrintCard();
henry.PrintCard();

Notice that the PrintCard() function has been modified slightly to make things

look good with the captions in boldface. To use this script, save it as cardtest.js.

Next, you’ll need to include the script in a simple HTML document. Listing 7.6

shows the HTML document for this example.

LISTING 7.6 The HTML File for the Card Object Example
<html>
<head>
<title>JavaScript Business Cards</title>
</head>
<body>
<h1>JavaScript Business Card Test</h1>
<p>Script begins here.</p><hr>
<script language=”JavaScript” type=”text/javascript”

src=”cardtest.js”>
</script>
<p>End of script.</p>
</body>
</html>

To test the script, save the HTML document in the same directory as the

cardtest.js file you created earlier, and then load the HTML document into a

browser. The browser’s display of this example is shown in Figure 7.2.

▼

▼

Summary 115

This example isn’t a very sophisticated database because you have to include the
data for each person in the HTML document. However, an object like this could be
used to store a database record retrieved from a database server with thousands
of records.

▼

By the
Way

FIGURE 7.2
Internet Explorer
displays the
output of the
business card
example.

Summary
In this chapter, you’ve looked at two important features of JavaScript. First, you

learned how to use functions to group JavaScript statements, and how to call func-

tions and use the values they return.

You also learned about JavaScript’s object-oriented features—defining objects with

constructor functions, creating object instances, and working with properties, proper-

ty values, and methods.

In the next chapter, you’ll look at two more features you’ll use in almost every

script—conditions to let your scripts evaluate data, and loops to repeat sections of

code.

▲

This page intentionally left blank

CHAPTER 8

Controlling Flow with
Conditions and Loops

What You’ll Learn in This Chapter:
. The if Statement
. Using Shorthand Conditional Expressions
. Testing Multiple Conditions with if and else

. Using Multiple Conditions with switch

. Using for Loops

. Using while Loops

. Using do…while Loops

. Working with Loops

. Looping Through Object Properties

Statements in a JavaScript program generally execute in the order in which they appear,

one after the other. Because this isn’t always practical, most programming languages pro-

vide flow control statements that let you control the order in which code is executed.

Functions, which you learned about in the previous chapter, are one type of flow control—

although a function might be defined first thing in your code, its statements can be exe-

cuted anywhere in the script.

In this chapter, you’ll look at two other types of flow control in JavaScript: conditions,

which allow a choice of different options depending on a value, and loops, which allow

repetitive statements.

118 CHAPTER 8: Controlling Flow with Conditions and Loops

The if Statement
One of the most important features of a computer language is the capability to test

and compare values. This allows your scripts to behave differently based on the val-

ues of variables, or based on input from the user.

The if statement is the main conditional statement in JavaScript. This statement

means much the same in JavaScript as it does in English—for example, here is a

typical conditional statement in English:

If the phone rings, answer it.

This statement consists of two parts: a condition (If the phone rings) and an action

(answer it). The if statement in JavaScript works much the same way. Here is an

example of a basic if statement:

if (a == 1) window.alert(“Found a 1!”);

This statement includes a condition (if a equals 1) and an action (display a mes-

sage). This statement checks the variable a and, if it has a value of 1, displays an

alert message. Otherwise, it does nothing.

If you use an if statement like the preceding example, you can use a single state-

ment as the action. You can also use multiple statements for the action by enclosing

them in braces ({}), as shown here:

if (a == 1) {
window.alert(“Found a 1!”);
a = 0;

}

This block of statements checks the variable a once again. If it finds a value of 1, it

displays a message and sets a back to 0.

Conditional Operators
The action part of an if statement can include any of the JavaScript statements

you’ve already learned (and any others, for that matter), but the condition part of

the statement uses its own syntax. This is called a conditional expression.

A conditional expression usually includes two values to be compared (in the preced-

ing example, the values were a and 1). These values can be variables, constants, or

even expressions in themselves.

The if Statement 119

Either side of the conditional expression can be a variable, a constant, or an
expression. You can compare a variable and a value, or compare two variables.
(You can compare two constants, but there’s usually no reason to.)

Between the two values to be compared is a conditional operator. This operator tells

JavaScript how to compare the two values. For instance, the == operator is used

to test whether the two values are equal. A variety of conditional operators is

available:

. ==—Is equal to

. !=—Is not equal to

. <—Is less than

. >—Is greater than

. >=—Is greater than or equal to

. <=—Is less than or equal to

Be sure not to confuse the equality operator (==) with the assignment operator
(=), even though they both might be read as “equals.” Remember to use = when
assigning a value to a variable, and == when comparing values. Confusing these
two is one of the most common mistakes in JavaScript programming.

Combining Conditions with Logical Operators
Often, you’ll want to check a variable for more than one possible value, or check

more than one variable at once. JavaScript includes logical operators, also known as

Boolean operators, for this purpose. For example, the following two statements

check different conditions and use the same action:

if (phone == “”) window.alert(“error!”);
if (email == “”) window.alert(“error!”);

Using a logical operator, you can combine them into a single statement:

if (phone == “” || email == “”) window.alert(“Something’s Missing!”);

This statement uses the logical Or operator (||) to combine the conditions.

Translated to English, this would be, “If the phone number is blank or the email

address is blank, display an error message.”

By the
Way

By the
Way

120 CHAPTER 8: Controlling Flow with Conditions and Loops

An additional logical operator is the And operator, &&. Consider this statement:

if (phone == “” && email == “”) window.alert(“Both are Missing!”);

This statement uses && (And) instead of || (Or), so the error message will only be

displayed if both the email address and phone number variables are blank. (In this

particular case, Or is a better choice.)

If the JavaScript interpreter discovers the answer to a conditional expression
before reaching the end, it does not evaluate the rest of the condition. For exam-
ple, if the first of two conditions separated by the && operator is false, the second
is not evaluated. You can take advantage of this to improve the speed of your
scripts.

The third logical operator is the exclamation mark (!), which means Not. It can be

used to invert an expression—in other words, a true expression would become false,

and a false one would become true. For example, here’s a statement that uses the

Not operator:

if (!($phone == “”)) alert(“phone is OK”);

In this statement, the ! (Not) operator inverts the condition, so the action of the if

statement is executed only if the phone number variable is not blank. The extra

parentheses are necessary because all JavaScript conditions must be in parentheses.

You could also use the != (Not equal) operator to simplify this statement:

if ($phone != “”) alert(“phone is OK”);

As with the previous statement, this alerts you if the phone number field is not

blank.

The logical operators are powerful, but it’s easy to accidentally create an impossi-
ble condition with them. For example, the condition (a < 10 && a > 20) might
look correct at first glance. However, if you read it out loud, you get “If a is less
than 10 and a is greater than 20”—an impossibility in our universe. In this case,
Or (||) should have been used.

Did you
Know?

Did you
Know?

Using Shorthand Conditional Expressions 121

The else Keyword
An additional feature of the if statement is the else keyword. Much like its English

equivalent, else tells the JavaScript interpreter what to do if the condition isn’t true.

The following is a simple example of the else keyword in action:

if (a == 1) {
alert(“Found a 1!”);
a = 0;

}
else {

alert(“Incorrect value: “ + a);
}

This is a modified version of the previous example. This displays a message and

resets the variable a if the condition is met. If the condition is not met (if a is not 1),

a different message is displayed.

Like the if statement, else can be followed either by a single action statement
or by a number of statements enclosed in braces.

Using Shorthand Conditional
Expressions
In addition to the if statement, JavaScript provides a shorthand type of conditional

expression that you can use to make quick decisions. This uses a peculiar syntax

that is also found in other languages, such as C. A conditional expression looks like

this:

variable = (condition) ? (true action) : (false action);

This assigns one of two values to the variable: one if the condition is true, and

another if it is false. Here is an example of a conditional expression:

value = (a == 1) ? 1 : 0;

This statement might look confusing, but it is equivalent to the following if

statement:

if (a == 1)
value = 1;

else
value = 0;

By the
Way

122 CHAPTER 8: Controlling Flow with Conditions and Loops

In other words, the value after the question mark (?) will be used if the condition is

true, and the value after the colon (:) will be used if the condition is false. The colon

represents the else portion of this statement and, like the else portion of the if

statement, is optional.

These shorthand expressions can be used anywhere JavaScript expects a value. They

provide an easy way to make simple decisions about values. As an example, here’s

an easy way to display a grammatically correct message about a variable:

document.write(“Found “ + counter + ((counter == 1) ? “ word.” : “ words.”));

This will print the message Found 1 word if the counter variable has a value of 1,

and Found 2 words if its value is 2 or greater. This is one of the most common uses

for a conditional expression.

Testing Multiple Conditions with if and
else
You can now create an example script using if and else. In a previous chapter you

created a simple script that displays the current date and time. This example will

use conditions to display a greeting that depends on the time: “Good morning,”

“Good Afternoon,” “Good Evening,” or “Good Day.” To accomplish this, you can use

a combination of several if statements:

if (hours < 10) document.write(“Good morning.”);
else if (hours >= 14 && hours <= 17) document.write(“Good afternoon.”);
else if (hours >= 17) document.write(“Good evening.”);
else document.write(“Good day.”);

The first statement checks the hours variable for a value less than 10—in other

words, it checks whether the current time is before 10:00 a.m. If so, it displays the

greeting “Good morning.”

The second statement checks whether the time is between 2:00 p.m. and 5:00 p.m.

and, if so, displays “Good afternoon.” This statement uses else if to indicate that

this condition will only be tested if the previous one failed—if it’s morning, there’s

no need to check whether it’s afternoon. Similarly, the third statement checks for

times after 5:00 p.m. and displays “Good evening.”

The final statement uses a simple else, meaning it will be executed if none of the

previous conditions matched. This covers the times between 10:00 a.m. and 2:00

p.m. (neglected by the other statements) and displays “Good day.”

Testing Multiple Conditions with if and else 123

The HTML File
To try this example in a browser, you’ll need an HTML file. We will keep the

JavaScript code separate, so Listing 8.1 is the complete HTML file. Save it as

timegreet.html but don’t load it into the browser until you’ve prepared the

JavaScript file in the next section.

LISTING 8.1 The HTML File for the Time and Greeting Example
<html>
<head><title>if statement example</title></head>
<body>
<h1>Current Date and Time</h1>
<p>
<script language=”JavaScript” type=”text/javascript”
src = “timegreet.js”>
</script>
</p>
</body>
</html>

The JavaScript File
Listing 8.2 shows the complete JavaScript file for the time greeting example. This

uses the built-in Date object functions to find the current date and store it in hours,

mins, and secs variables. Next, document.write statements display the current

time, and the if and else statements introduced earlier display an appropriate

greeting.

LISTING 8.2 A Script to Display the Current Time and a Greeting
// Get the current date
now = new Date();
// Split into hours, minutes, seconds
hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();
// Display the time
document.write(“<h2>”);
document.write(hours + “:” + mins + “:” + secs);
document.write(“</h2>”);
// Display a greeting
document.write(“<p>”);
if (hours < 10) document.write(“Good morning.”);
else if (hours >= 14 && hours <= 17) document.write(“Good afternoon.”);
else if (hours > 17) document.write(“Good evening.”);
else document.write(“Good day.”);
document.write(“</p>”);

124 CHAPTER 8: Controlling Flow with Conditions and Loops

To try this example, save this file as timegreet.js (or download it from this book’s

website) and then load the timegreet.html file into your browser. Figure 8.1 shows

the results of this script.

FIGURE 8.1
The output of
the time greet-
ing example, as
shown by
Internet
Explorer.

Using Multiple Conditions with switch
In the previous example, you used several if statements in a row to test for different

conditions. Here is another example of this technique:

if (button==”next”) window.location=”next.html”;
else if (button==”previous”) window.location=”prev.html”;
else if (button==”home”) window.location=”home.html”;
else if (button==”back”) window.location=”menu.html”;

Although this is a compact way of doing things, this method can get messy if each

if statement has its own block of code with several statements. As an alternative,

JavaScript includes the switch statement, which enables you to combine several

tests of the same variable or expression into a single block of statements. The follow-

ing shows the same example converted to use switch:

switch(button) {
case “next”:

window.location=”next.html”;
break;

case “previous”:
window.location=”prev.html”;
break;

case “home”:
window.location=”home.html”;
break;

case “back”:
window.location=”menu.html”;
break;

default:
window.alert(“Wrong button.”);

}

Using for Loops 125

The switch statement has several components:

. The initial switch statement. This statement includes the value to test (in this

case, button) in parentheses.

. Braces ({ and }) enclose the contents of the switch statement, similar to a

function or an if statement.

. One or more case statements. Each of these statements specifies a value to

compare with the value specified in the switch statement. If the values

match, the statements after the case statement are executed. Otherwise, the

next case is tried.

. The break statement is used to end each case. This skips to the end of the

switch. If break is not included, statements in multiple cases might be exe-

cuted whether they match or not.

. Optionally, the default case can be included and followed by one or more

statements that are executed if none of the other cases were matched.

You can use multiple statements after each case statement within the switch
structure. You don’t need to enclose them in braces. If the case matches, the
JavaScript interpreter executes statements until it encounters a break or the next
case.

Using for Loops
The for keyword is the first tool to consider for creating loops. A for loop typically

uses a variable (called a counter or an index) to keep track of how many times the

loop has executed, and it stops when the counter reaches a certain number. A basic

for statement looks like this:

for (var = 1; var < 10; var++) {

There are three parameters to the for loop, separated by semicolons:

. The first parameter (var = 1 in the example) specifies a variable and assigns

an initial value to it. This is called the initial expression because it sets up the

initial state for the loop.

. The second parameter (var < 10 in the example) is a condition that must

remain true to keep the loop running. This is called the condition of the loop.

By the
Way

126 CHAPTER 8: Controlling Flow with Conditions and Loops

. The third parameter (var++ in the example) is a statement that executes with

each iteration of the loop. This is called the increment expression because it is

typically used to increment the counter. The increment expression executes at

the end of each loop iteration.

After the three parameters are specified, a left brace ({) is used to signal the begin-

ning of a block. A right brace (}) is used at the end of the block. All the statements

between the braces will be executed with each iteration of the loop.

The parameters for a for loop may sound a bit confusing, but once you’re used to

it, you’ll use for loops frequently. Here is a simple example of this type of loop:

for (i=0; i<10; i++) {
document.write(“This is line “ + i + “
”);

}

These statements define a loop that uses the variable i, initializes it with the value

of zero, and loops as long as the value of i is less than 10. The increment expres-

sion, i++, adds one to the value of i with each iteration of the loop. Because this

happens at the end of the loop, the output will list the numbers zero through nine.

When a loop includes only a single statement between the braces, as in this exam-

ple, you can omit the braces if you want. The following statement defines the same

loop without braces:

for (i=0; i<10; i++)
document.write(“This is line “ + i + “
”);

It’s a good style convention to use braces with all loops whether they contain one
statement or many. This makes it easy to add statements to the loop later without
causing syntax errors.

The loop in this example contains a document.write statement that will be repeat-

edly executed. To see just what this loop does, you can add it to a <script> section

of an HTML document as shown in Listing 8.3.

LISTING 8.3 A Loop Using the for Keyword
<html>
<head>
<title>Using a for Loop</title>
</head>
<body>
<h1>”for” Loop Example</h1>
<p>The following is the output of the
for loop:</p>

Did you
Know?

Using for Loops 127

<script language=”JavaScript” type=”text/javascript”>
for (i=1;i<10;i++) {

document.write(“This is line “ + i + “
”);
}
</script>
</body>
</html>

This example displays a message with the loop’s counter during each iteration. The

output of Listing 8.3 is shown in Figure 8.2.

Notice that the loop was only executed nine times. This is because the conditional is

i<10. When the counter (i) is incremented to 10, the expression is no longer true. If

you need the loop to count to 10, you can change the conditional; either i<=10 or

i<11 will work fine.

You might notice that the variable name i is often used as the counter in loops.
This is a programming tradition that began with an ancient language called Forth.
There’s no need for you to follow this tradition, but it is a good idea to use one
consistent variable for counters. (To learn more about Forth, see the Forth Interest
Group’s website at www.forth.org.)

LISTING 8.3 Continued

By the
Way

FIGURE 8.2
The results of
the for loop
example.

www.forth.org

128 CHAPTER 8: Controlling Flow with Conditions and Loops

The structure of the for loop in JavaScript is based on Java, which in turn is based

on C. Although it is traditionally used to count from one number to another, you

can use just about any statement for the initialization, condition, and increment.

However, there’s usually a better way to do other types of loops with the while key-

word, described in the next section.

Using while Loops
Another keyword for loops in JavaScript is while. Unlike for loops, while loops

don’t necessarily use a variable to count. Instead, they execute as long as a condi-

tion is true. In fact, if the condition starts out as false, the statements won’t execute

at all.

The while statement includes the condition in parentheses, and it is followed by a

block of statements within braces, just like a for loop. Here is a simple while loop:

while (total < 10) {
n++;
total += values[n];
}

This loop uses a counter, n, to iterate through the values array. Rather than stop-

ping at a certain count, however, it stops when the total of the values reaches 10.

You might have noticed that you could have done the same thing with a for loop:

for (n=0;total < 10; n++) {
total += values[n];
}

As a matter of fact, the for loop is nothing more than a special kind of while loop

that handles an initialization and an increment for you. You can generally use

while for any loop. However, it’s best to choose whichever type of loop makes the

most sense for the job, or that takes the least amount of typing.

Using do…while Loops
JavaScript 1.2 introduced a third type of loop: the do…while loop. This type of loop

is similar to an ordinary while loop, with one difference: The condition is tested at

the end of the loop rather than the beginning. Here is a typical do…while loop:

do {
n++;
total += values[n];
}
while (total < 10);

Working with Loops 129

As you’ve probably noticed, this is basically an upside-down version of the previous

while example. There is one difference: With the do loop, the condition is tested at

the end of the loop. This means that the statements in the loop will always be exe-

cuted at least once, even if the condition is never true.

As with the for and while loops, the do loop can include a single statement with-
out braces, or a number of statements enclosed in braces.

Working with Loops
Although you can use simple for and while loops for straightforward tasks, there

are some considerations you should make when using more complicated loops. In

the next sections, we’ll look at infinite loops and the break and continue state-

ments, which give you more control over your loops.

Creating an Infinite Loop
The for and while loops give you quite a bit of control over the loop. In some cases,

this can cause problems if you’re not careful. For example, look at the following

loop code:

while (i < 10) {
n++;
values[n] = 0;
}

There’s a mistake in this example. The condition of the while loop refers to the i

variable, but that variable doesn’t actually change during the loop. This creates an

infinite loop. The loop will continue executing until the user stops it, or until it gener-

ates an error of some kind.

Infinite loops can’t always be stopped by the user, except by quitting the browser—

and some loops can even prevent the browser from quitting, or cause a crash.

Obviously, infinite loops are something to avoid. They can also be difficult to spot

because JavaScript won’t give you an error that actually tells you there is an infinite

loop. Thus, each time you create a loop in a script, you should be careful to make

sure there’s a way out.

Depending on the browser version in use, an infinite loop might even make the
browser stop responding to the user. Be sure you provide an escape route from
infinite loops, and save your script before you test it just in case.

By the
Way

By the
Way

130 CHAPTER 8: Controlling Flow with Conditions and Loops

Occasionally, you might want to create an infinite loop deliberately. This might

include situations when you want your program to execute until the user stops it, or

if you are providing an escape route with the break statement, which is introduced

in the next section. Here’s an easy way to create an infinite loop:

while (true) {

Because the value true is the conditional, this loop will always find its condition to

be true.

Escaping from a Loop
There is one way out of an infinite loop. You can use the break statement during a

loop to exit it immediately and continue with the first statement after the loop. Here

is a simple example of the use of break:

while (true) {
n++;
if (values[n] == 1) break;
}

Although the while statement is set up as an infinite loop, the if statement checks

the corresponding value of an array. If it finds a value of 1, it exits the loop.

When the JavaScript interpreter encounters a break statement, it skips the rest of the

loop and continues the script with the first statement after the right brace at the

loop’s end. You can use the break statement in any type of loop, whether infinite

or not. This provides an easy way to exit if an error occurs, or if another condition

is met.

Continuing a Loop
One more statement is available to help you control the execution of statements in

a loop. The continue statement skips the rest of the loop but, unlike break, it con-

tinues with the next iteration of the loop. Here is a simple example:

for (i=1; i<21; i++) {
if (score[i]==0) continue;
document.write(“Student number “,i, “ Score: “, score[i], “\n”);

}

This script uses a for loop to print out scores for 20 students, stored in the score

array. The if statement is used to check for scores with a value of 0. The script

assumes that a score of 0 means that the student didn’t take the test, so it continues

the loop without printing that score.

▼

Looping Through Object Properties 131

Looping Through Object Properties
A third type of loop is available in JavaScript. The for…in loop is not as flexible as

an ordinary for or while loop. Instead, it is specifically designed to perform an

operation on each property of an object.

For example, the navigator object contains properties that describe the user’s

browser. You can use for…in to display this object’s properties:

for (i in navigator) {
document.write(“property: “ + i);
document.write(“ value: “ + navigator[i] + “
”);
}

Like an ordinary for loop, this type of loop uses an index variable (i in the exam-

ple). For each iteration of the loop, the variable is set to the next property of the

object. This makes it easy when you need to check or modify each of an object’s

properties.

Try It Yourself

Working with Arrays and Loops
To apply your knowledge of loops, you will now create a script that deals with

arrays using loops. As you progress through this script, try to imagine how difficult

it would be without JavaScript’s looping features.

This simple script will prompt the user for a series of names. After all of the names

have been entered, it will display the list of names in a numbered list. To begin the

script, initialize some variables:

names = new Array();
i = 0;

The names array will store the names the user enters. You don’t know how many

names will be entered, so you don’t need to specify a dimension for the array. The i

variable will be used as a counter in the loops.

Next, use the prompt statement to prompt the user for a series of names. Use a loop

to repeat the prompt for each name. You want the user to enter at least one name,

so a do loop is ideal:

do {
next = prompt(“Enter the Next Name”, “”);
if (next > “ “) names[i] = next;
i = i + 1;
}
while (next > “ “); ▼

132 CHAPTER 8: Controlling Flow with Conditions and Loops

If you’re interested in making your scripts as short as possible, remember that
you could use the increment (++) operator to combine the i = i + 1 statement
with the previous statement: names[i++]=1.

This loop prompts for a string called next. If a name was entered and isn’t blank,

it’s stored as the next entry in the names array. The i counter is then incremented.

The loop repeats until the user doesn’t enter a name or clicks Cancel in the prompt

dialog.

Next, your script can display the number of names that was entered:

document.write(“<h2>” + (names.length) + “ names entered.</h2>”);

This statement displays the length property of the names array, surrounded by level

2 header tags for emphasis.

Next, the script should display all the names in the order they were entered. Because

the names are in an array, the for…in loop is a good choice:

document.write(“”);
for (i in names) {

document.write(“” + names[i] + “
”);
}
document.write(“”);

Here you have a for…in loop that loops through the names array, assigning the

counter i to each index in turn. The script then prints the name with a tag as

an item in an ordered list. Before and after the loop, the script prints beginning and

ending tags.

You now have everything you need for a working script. Listing 8.4 shows the HTML

file for this example, and Listing 8.5 shows the JavaScript file.

LISTING 8.4 A Script to Prompt for Names and Display Them (HTML)
<html>
<head>
<title>Loops Example</title>
</head>
<body>
<h1>Loop Example</h1>
<p>Enter a series of names. I will then
display them in a nifty numbered list.</p>
<script language=”JavaScript” type=”text/javascript”
src=”loops.js”>
</script>
</body>
</html>

▼

Did you
Know?

Looping Through Object Properties 133

LISTING 8.5 A Script to Prompt for Names and Display Them (JavaScript)
// create the array
names = new Array();
i = 0;
// loop and prompt for names
do {

next = window.prompt(“Enter the Next Name”, “”);
if (next > “ “) names[i] = next;
i = i + 1;
} while (next > “ “);

document.write(“<h2>” + (names.length) + “ names entered.</h2>”);
// display all of the names
document.write(“”);
for (i in names) {

document.write(“” + names[i] + “
”);
}
document.write(“”);

To try this example, save the JavaScript file as loops.js and then load the HTML

document into a browser. You’ll be prompted for one name at a time. Enter several

names, and then click Cancel to indicate that you’re finished. Figure 8.3 shows what

the final results should look like in a browser.

FIGURE 8.3
The output of
the names
example, as
shown by
Firefox.

▲

134 CHAPTER 8: Controlling Flow with Conditions and Loops

Summary
In this chapter, you’ve learned two ways to control the flow of your scripts. First, you

learned how to use the if statement to evaluate conditional expressions and react

to them. You also learned a shorthand form of conditional expression using the ?

operator, and the switch statement for working with multiple conditions.

You also learned about JavaScript’s looping capabilities using for, while, and other

loops, and how to control loops further using the break and continue statements.

Lastly, you looked at the for…in loop for working with each property of an object.

In the next chapter, you’ll look at JavaScript’s built-in functions, another essential

tool for creating your own scripts. You’ll also learn about third-party libraries that

enable you to create complex effects with simple scripts.

CHAPTER 9

Using Built-In Functions and
Libraries

What You’ll Learn in This Chapter:
. Using the Math Object
. Working with Math Functions
. Using the with Keyword
. Working with Dates
. Using Third-Party Libraries
. Other Libraries

In this chapter, you’ll learn the basics of objects in JavaScript and the details of using the

Math and Date objects. You’ll also look at some third-party libraries, which enable you to

achieve amazing JavaScript effects with a few lines of code.

Using the Math Object
The Math object is a built-in JavaScript object that includes math constants and functions.

You don’t need to create a Math object; it exists automatically in any JavaScript program.

The Math object’s properties represent mathematical constants, and its methods are math-

ematical functions.

136 CHAPTER 9: Using Built-In Functions and Libraries

Rounding and Truncating
Three of the most useful methods of the Math object enable you to round decimal

values up and down:

. Math.ceil() rounds a number up to the next integer.

. Math.floor() rounds a number down to the next integer.

. Math.round() rounds a number to the nearest integer.

All of these take the number to be rounded as their single parameter. You might

notice one thing missing: the capability to round to a decimal place, such as for dol-

lar amounts. Fortunately, you can easily simulate this. Here is a simple function

that rounds numbers to two decimal places:

function round(num) {
return Math.round(num * 100) / 100;

}

This function multiplies the value by 100 to move the decimal, and then rounds the

number to the nearest integer. Finally, the value is divided by 100 to restore the deci-

mal to its original position.

Generating Random Numbers
One of the most commonly used methods of the Math object is the Math.random()

method, which generates a random number. This method doesn’t require any

parameters. The number it returns is a random decimal number between zero

and one.

You’ll usually want a random number between one and a value. You can do this

with a general-purpose random number function. The following is a function that

generates random numbers between one and the parameter you send it:

function rand(num) {
return Math.floor(Math.random() * num) + 1;

}

This function multiplies a random number by the value specified in the num param-

eter, and then converts it to an integer between one and the number by using the

Math.floor() method.

Working with Math Functions 137

Other Math Functions
The Math object includes many functions beyond those you’ve looked at here. For

example, Math.sin() and Math.cos() calculate sines and cosines. The Math object

also includes properties for various mathematical constants, such as Math.PI.

Working with Math Functions
The Math.random method generates a random number between 0 and 1. However,

it’s very difficult for a computer to generate a truly random number. (It’s also hard

for a human being to do so—that’s why dice were invented.)

Today’s computers do reasonably well at generating random numbers, but just how

good is JavaScript’s Math.random function? One way to test it is to generate many

random numbers and calculate the average of all of them.

In theory, the average should be somewhere near .5, halfway between 0 and 1. The

more random values you generate, the closer the average should get to this middle

ground.

As an example of the use of the Math object’s methods, you can create a script that

tests JavaScript’s random number function. To do this, you’ll generate 5,000 random

numbers and calculate their average.

Rather than typing it in, you can download and try this chapter’s example at this
book’s website.

In case you skipped Chapter 8, “Controlling Flow with Conditions and Loops,” and

are getting out your calculator, don’t worry—you’ll use a loop to generate the ran-

dom numbers. You’ll be surprised how fast JavaScript can do this.

To begin your script, you will initialize a variable called total. This variable will

store a running total of all of the random values, so it’s important that it starts at 0:

total = 0;

Next, begin a loop that will execute 5,000 times. Use a for loop because you want it

to execute a fixed number of times:

for (i=1; i<=5000; i++) {

Did you
Know?

138 CHAPTER 9: Using Built-In Functions and Libraries

Within the loop, you will need to create a random number and add its value to

total. Here are the statements that do this and continue with the next iteration of

the loop:

num = Math.random();
total += num;

}

Depending on the speed of your computer, it might take a few seconds to generate

those 5,000 random numbers. Just to be sure something is happening, the script will

display a status message after each 1,000 numbers:

if (i % 1000 == 0)
document.write(“Generated “ + i + “ numbers...
”);

The % symbol in the previous code is the modulo operator, which gives you the
remainder after dividing one number by another. Here it is used to find even multi-
ples of 1,000.

The final part of your script will calculate the average by dividing total by 5,000.

Your script can also round the average to three decimal places, using the trick you

learned earlier in this chapter:

average = total / 5000;
average = Math.round(average * 1000) / 1000;
document.write(“<H2>Average of 5000 numbers: “ + average + “</H2>”);

To test this script and see just how random those numbers are, combine the com-

plete script with an HTML document and <script> tags. Listing 9.1 shows the com-

plete random number testing script.

LISTING 9.1 A Script to Test JavaScript’s Random Number Function
<html>
<head>
<title>Math Example</title>
</head>
<body>
<h1>Math Example</h1>
<p>How random are JavaScript’s random numbers?
Let’s generate 5000 of them and find out.</p>
<script language=”JavaScript” type=”text/javascript”>
total = 0;
for (i=1; i<=5000; i++) {

num = Math.random();
total += num;
if (i % 1000 == 0)

document.write(“Generated “ + i + “ numbers...
”);
}

By the
Way

Using the with Keyword 139

average = total / 5000;
average = Math.round(average * 1000) / 1000;
document.write(“<H2>Average of 5000 numbers: “ + average + “</H2>”);
</script>
</body>
</html>

To test the script, load the HTML document into a browser. After a short delay, you

should see a result. If it’s close to .5, the numbers are reasonably random. My result

was .502, as shown in Figure 9.1.

The average you’ve used here is called an arithmetic mean. This type of average
isn’t a perfect way to test randomness. Actually, all it tests is the distribution of
the numbers above and below .5. For example, if the numbers turned out to be
2,500 .4s and 2,500 .6s, the average would be a perfect .5—but they wouldn’t
be very random numbers. (Thankfully, JavaScript’s random numbers don’t have
this problem.)

LISTING 9.1 Continued

By the
Way

FIGURE 9.1
The random
number testing
script in action.

Using the with Keyword
The with keyword is one you haven’t seen before. You can use it to make JavaScript

programming easier—or at least easier to type.

The with keyword specifies an object, and it is followed by a block of statements

enclosed in braces. For each statement in the block, any properties you mention

without specifying an object are assumed to be for that object.

140 CHAPTER 9: Using Built-In Functions and Libraries

As an example, suppose you have a string called lastname. You can use with to

perform string operations on it without specifying the name of the string every time:

with (lastname) {
window.alert(“length of last name: “ + length);
capname = toUpperCase();

}

In this example, the length property and the toUpperCase method refer to the

lastname string, although it is only specified once with the with keyword.

Obviously, the with keyword only saves a bit of typing in situations like this.

However, you might find it more useful when you’re dealing with a DOM object

throughout a large procedure, or when you are using a built-in object, such as the

Math object, repeatedly.

Working with Dates
The Date object is a built-in JavaScript object that enables you to conveniently work

with dates and times. You can create a Date object anytime you need to store a

date, and use the Date object’s methods to work with the date.

You encountered one example of a Date object in a previous chapter. The Date

object has no properties. To set or obtain values from a Date object, you must use

the methods described in the next section.

JavaScript dates are stored as the number of milliseconds since midnight, January
1, 1970. This date is called the epoch. Dates before 1970 weren’t allowed in
early versions, but are now represented by negative numbers.

Creating a Date Object
You can create a Date object using the new keyword. You can also optionally specify

the date to store in the object when you create it. You can use any of the following

formats:

birthday = new Date();
birthday = new Date(“June 20, 2003 08:00:00”);
birthday = new Date(6, 20, 2003);
birthday = new Date(6, 20, 2003, 8, 0, 0);

By the
Way

Working with Dates 141

You can choose any of these formats, depending on which values you wish to set.

If you use no parameters, as in the first example, the current date is stored in the

object. You can then set the values using the set methods, described in the next

section.

Setting Date Values
A variety of set methods enable you to set components of a Date object to values:

. setDate() sets the day of the month.

. setMonth() sets the month. JavaScript numbers the months from 0 to 11,

starting with January (0).

. setFullYear() sets the year.

. setTime() sets the time (and the date) by specifying the number of millisec-

onds since January 1, 1970.

. setHours(), setMinutes(), and setSeconds() set the time.

As an example, the following statement sets the year of a Date object called holi-

day to 2003:

holiday.setFullYear(2003);

Reading Date Values
You can use the get methods to get values from a Date object. This is the only way

to obtain these values, because they are not available as properties. Here are the

available get methods for dates:

. getDate() gets the day of the month.

. getMonth() gets the month.

. getFullYear() gets the year.

. getTime() gets the time (and the date) as the number of milliseconds since

January 1, 1970.

. getHours(), getMinutes(), getSeconds(), and getMilliseconds() get the

components of the time.

142 CHAPTER 9: Using Built-In Functions and Libraries

Along with setFullYear and getFullYear, which require four-digit years,
JavaScript includes setYear and getYear methods, which use two-digit year val-
ues. You should always use the four-digit version to avoid Year 2000 issues.

Working with Time Zones
Finally, a few functions are available to help your Date objects work with local time

values and time zones:

. getTimeZoneOffset() gives you the local time zone’s offset from UTC

(Coordinated Universal Time, based on the old Greenwich Mean Time stan-

dard). In this case, local refers to the location of the browser. (Of course, this

only works if the user has set his or her system clock accurately.)

. toUTCString() converts the date object’s time value to text, using UTC. This

method was introduced in JavaScript 1.2 to replace the toGMTString method,

which still works but should be avoided.

. toLocalString() converts the date object’s time value to text, using local

time.

Along with these basic functions, JavaScript 1.2 and later include UTC versions of

several of the functions described previously. These are identical to the regular com-

mands, but work with UTC instead of local time:

. getUTCDate() gets the day of the month in UTC time.

. getUTCDay() gets the day of the week in UTC time.

. getUTCFullYear() gets the four-digit year in UTC time.

. getUTCMonth() returns the month of the year in UTC time.

. getUTCHours(), getUTCMinutes(), getUTCSeconds(), and

getUTCMilliseconds() return the components of the time in UTC.

. setUTCDate(), setUTCFullYear(), setUTCMonth(), setUTCHours(),

setUTCMinutes(), setUTCSeconds(), and setUTCMilliseconds() set the

time in UTC.

By the
Way

Using Third-Party Libraries 143

Converting Between Date Formats
Two special methods of the Date object allow you to convert between date formats.

Instead of using these methods with a Date object you created, you use them with

the built-in object Date itself. These include the following:

. Date.parse() converts a date string, such as June 20, 1996, to a Date

object (number of milliseconds since 1/1/1970).

. Date.UTC() does the opposite. It converts a Date object value (number of mil-

liseconds) to a UTC (GMT) time.

Using Third-Party Libraries
When you use JavaScript’s built-in Math and Date functions, JavaScript does most of

the work—you don’t have to figure out how to convert dates between formats or cal-

culate a cosine. Third-party libraries are not included with JavaScript, but they serve

a similar purpose—enabling you to do complicated things with only a small

amount of code.

Using one of these libraries is usually as simple as copying one or more files to your

site and including a <script> tag in your document to load the library. Several

popular JavaScript libraries are discussed in the following sections. More detailed

descriptions, including the use of these libraries for Ajax applications, are given

towards the end of this book.

Prototype
Prototype, created by Sam Stephenson, is a JavaScript library that simplifies tasks

such as working with DOM objects, dealing with data in forms, and remote scripting

(AJAX). By including a single prototype.js file in your document, you have access

to many improvements to basic JavaScript.

Adding Prototype to your pages requires only one file, prototype.js, and one

<script> tag:

<script type=”text/javascript” src=”prototype.js”> </script>

See Chapter 25 for a discussion on Prototype.

144 CHAPTER 9: Using Built-In Functions and Libraries

Script.aculo.us
The code for a task like on-page animation can be complex, but you can also

include effects in your pages using a prebuilt library. This enables you to use impres-

sive effects with only a few lines of code.

Script.aculo.us by Thomas Fuchs is one such library. It includes functions to simplify

drag-and-drop tasks, such as rearranging lists of items. It also includes a number of

Combination Effects, which enable you to use highlighting and animated transi-

tions within your pages. For example, a new section of the page can be briefly high-

lighted in yellow to get the user’s attention, or a portion of the page can fade out or

slide off the screen.

After you’ve included the appropriate files, using effects is as easy as using any of

JavaScript’s built-in methods. For example, the following statements use

Script.aculo.us to fade out an element of the page with the id value test:

obj = document.getElementById(“test”);
new Effect.Fade(obj);

Script.aculo.us is built on the Prototype framework described in the previous section,

and includes all of the functions of Prototype, so you could also simplify this further

by using the $ function:

new Effect.Fade($(“test”));

See Chapter 27 for more on using the Script.aculo.us library.

Other Libraries
There are many more JavaScript libraries out there, and more are appearing all of

the time as JavaScript is taken more seriously as an application language. Here are

some more libraries you might want to explore:

. Dojo (http://www.dojotoolkit.org/) is an open-source toolkit that adds power to

JavaScript to simplify building applications and user interfaces. It adds fea-

tures ranging from extra string and math functions to animation and Ajax.

. The Yahoo! UI Library (http://developer.yahoo.net/yui/) was developed by

Yahoo! and made available to everyone under an open-source license. It

includes features for animation, DOM features, event management, and easy-

to-use user interface elements such as calendars and sliders.

http://www.dojotoolkit.org/
http://developer.yahoo.net/yui/

Summary 145

. MochiKit (http://mochikit.com/) is a lightweight library that adds features for

working with the DOM, CSS colors, string formatting, and Ajax. It also sup-

ports a nice logging mechanism for debugging your scripts.

Prototype, Script.aculo.us, Dojo, and MochiKit are among the selection of frame-
works supplied on the CD that accompanies this book.

Summary
In this chapter, you learned some specifics about the Math and Date objects built into

JavaScript, and learned more than you ever wanted to know about random numbers.

You also learned about third-party libraries that can simplify your scripting.

This concludes Part II of the book. In Part III, “Introducing Ajax,” you’ll begin to use

your JavaScript knowledge to build a working Ajax application.

On the
CD

http://mochikit.com/

This page intentionally left blank

PART III

Introducing Ajax

CHAPTER 10 The Heart of Ajax—the XMLHTTPRequest Object 149

CHAPTER 11 Talking with the Server 157

CHAPTER 12 Using the Returned Data 167

CHAPTER 13 Our First Ajax Application 175

This page intentionally left blank

CHAPTER 10

The Heart of Ajax—the
XMLHTTPRequest Object

What You’ll Learn in This Chapter:
. Introducing XMLHTTPRequest

. Creating the XMLHTTPRequest Object

In this chapter you will learn how to create an instance of the XMLHTTPRequest object

regardless of which browser your user may have. The object’s properties and methods will

be introduced.

Chapter 3, “Anatomy of an Ajax Application,” introduced the building blocks of an Ajax

application and discussed how these pieces fit together.

This chapter examines the object at the heart of every Ajax application—the

XMLHTTPRequest object.

You have already met JavaScript objects in Chapter 7, “Using Functions
and Objects.” The XMLHTTPRequest object, after it has been created,
becomes a further such object within the page’s object hierarchy and
has its own properties and methods.

Introducing XMLHTTPRequest
XMLHTTPRequest is supported by virtually all modern browsers, including Microsoft’s

Internet Explorer 5+ and a variety of non-Microsoft browsers, including Mozilla, Firefox,

Konqueror, Opera, and Safari, and is supported on a wide range of platforms, including

Microsoft Windows, UNIX/Linux, and Mac OS X.

By the
Way

150 CHAPTER 10: The Heart of Ajax —the XMLHTTPRequest Object

Some browsers may require attention to their security settings to allow the
XMLHTTPRequest object to operate correctly. See your browser’s documentation
for details.

The purpose of the XMLHTTPRequest object is to allow JavaScript to formulate HTTP

requests and submit them to the server. Traditionally programmed web applications

normally make such requests synchronously, in conjunction with a user-initiated

event such as clicking on a link or submitting a form, resulting in a new or updated

page being served to the browser.

Using XMLHTTPRequest, however, you can have your page make such calls asynchro-

nously in the background, allowing you to continue using the page without the

interruption of a browser refresh and the loading of a new or revised page.

This capability underpins all Ajax applications, making the XMLHTTPRequest object

the key to Ajax programming.

Although the object’s name begins with XML, in fact, any type of document may be
returned from the server; ASCII text, HTML, and XML are all popular choices, and
we will encounter all of these in the course of the book.

Creating the XMLHTTPRequest Object
You cannot make use of the XMLHTTPRequest until you have created an instance of

it. Creating an instance of an object in JavaScript is usually just a matter of making

a call to a method known as the object’s constructor. In the case of XMLHTTPRequest,

however, you must change this routine a little to cater to the peculiarities of differ-

ent browsers, as you see in the following section.

Different Rules for Different Browsers
Microsoft first introduced the XMLHTTPRequest object, implementing it in Internet

Explorer 5 as an ActiveX object.

ActiveX is a proprietary Microsoft technology for enabling active objects into web
pages. Among the available web browsers, it is currently only supported in
Microsoft’s Internet Explorer. Internet Explorer uses its built-in XML parser,
MSXML, to create the XMLHTTPRequest object.

Watch
Out!

Did you
Know?

Did you
Know?

Creating the XMLHTTPRequest Object 151

Most other browser developers have now included into their products an equivalent

object, but implemented as a native object in the browser’s JavaScript interpreter.

Because you don’t know in advance which browser, version, or operating system

your users will have, your code must adapt its behavior on-the-fly to ensure that the

instance of the object will be created successfully.

For the majority of browsers that support XMLHTTPRequest as a native object

(Mozilla, Opera, and the rest), creating an instance of this object is straightforward.

The following line creates an XMLHTTPRequest object called request:

var request = new XMLHTTPRequest();

Here we have declared a variable request and assigned to it the value returned

from the statement new XMLHTTPRequest(), which is invoking the constructor

method for the XMLHTTPRequest object.

To achieve the equivalent result in Microsoft Internet Explorer, you need to create an

ActiveX object. Here’s an example:

var request = new ActiveXObject(“Microsoft.XMLHTTP”);

Once again, this assigns the name request to the new object.

To complicate matters a little more, some versions of Internet Explorer have a differ-

ent version of MSXML, the Microsoft XML parser, installed; in those cases you need

to use the following instruction:

var request = new ActiveXObject(“Msxml2.XMLHTTP”);

A Solution for All Browsers
You need, therefore, to create a script that will correctly create an instance of a

XMLHTTPRequest object regardless of which browser you are using (provided, of

course, that the browser supports XMLHTTPRequest).

A good solution to this problem is to have your script try in turn each method of

creating an instance of the object, until one such method succeeds. Have a look at

Listing 10.1, in which such a strategy is used.

LISTING 10.1 Using Object Detection for a Cross-Browser Solution
function getXMLHTTPRequest()
{
var request = false;
try
{

152 CHAPTER 10: The Heart of Ajax —the XMLHTTPRequest Object

request = new XMLHttpRequest(); /* e.g. Firefox */
}

catch(err1)
{
try
{
vrequest = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
}

catch(err2)
{
try
{
request = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
}
catch(err3)
{
request = false;
}

}
}

return request;
}

Listing 10.1 uses the JavaScript statements try and catch. The try statement allows

us to attempt to run a piece of code. If the code runs without errors, all is well; how-

ever, should an error occur we can use the catch statement to intervene before an

error message is sent to the user and determine what the program should then do

about the error.

Note the syntax:
catch(identifier)

Here identifier is an object created when an error is caught. It contains infor-
mation about the error; for instance, if you wanted to alert the user to the nature
of a JavaScript runtime error, you could use a code construct like this:

catch(err)
{
alert(err.description);
}

to open a dialog containing details of the error.

An alternative, and equally valid, technique would be to detect which type of brows-

er is in use by testing which objects are defined in the browser. Listing 10.2 shows

this technique.

LISTING 10.1 Continued

By the
Way

Creating the XMLHTTPRequest Object 153

LISTING 10.2 Using Browser Detection for a Cross-Browser Solution
function getXMLHTTPRequest()
{
var request = false;
if(window.XMLHTTPRequest)

{
request = new XMLHTTPRequest();
} else {
if(window.ActiveXObject)
{
try

{
request = new ActiveXObject(“Msml2.XMLHTTP”);
}

catch(err1)
{
try

{
request =

➥new ActiveXObject(“Microsoft.XMLHTTP”);
}

catch(err2)
{
request = false;
}

}
}

}
return request;
}

In this example we’ve used the test

if(window.XMLHTTPRequest) { … }

to determine whether XMLHTTPRequest is a native object of the browser in use; if so,

we use the constructor method

request = new XMLHTTPRequest();

to create an instance of the XMLHTTPRequest object; otherwise, we try creating a

suitable ActiveX object as in the first example.

Whatever method you use to create an instance of the XMLHTTPRequest object, you

should be able to call this function like this:

var myRequest = getXMLHTTPRequest();

154 CHAPTER 10: The Heart of Ajax —the XMLHTTPRequest Object

JavaScript also makes available a navigator object that holds information about
the browser being used to view the page. Another method we could have used to
branch our code is to use this object’s appName property to find the name of the
browser:

var myBrowser = navigator.appName;

This would return “Microsoft Internet Explorer” for IE.

Methods and Properties
Now that we have created an instance of the XMLHTTPRequest object, let’s look at

some of the object’s properties and methods, listed in Table 10.1.

TABLE 10.1 XMLHTTPRequest Objects and Methods

Properties Description
onreadystatechange Determines which event handler will be called when

the object’s readyState property changes

readyState Integer reporting the status of the request:
0 = uninitialized
1 = loading
2 = loaded
3 = interactive
4 = completed

responseText Data returned by the server in text string form

responseXML Data returned by the server expressed as a docu-
ment object

status HTTP status code returned by server

statusText HTTP reason phrase returned by server

Methods Description
abort() Stops the current request

getAllResponseHeaders() Returns all headers as a string

getResponseHeader(x) Returns the value of header x as a string

open(‘method’,’URL’,’a’) Specifies the HTTP method (for example, GET or
POST), the target URL, and whether the request
should be handled asynchronously (If yes,
a=’true’—the default; if no, a=’false’.)

send(content) Sends the request, optionally with POST data

setRequestHeader(‘x’,’y’) Sets a parameter and value pair x=y and assigns it
to the header to be sent with the request

By the
Way

Creating the XMLHTTPRequest Object 155

Over the next few chapters we’ll examine how these methods and properties are

used to create the functions that form the building blocks of Ajax applications.

For now, let’s examine just a few of these methods.

The open() Method
The open() method prepares the XMLHTTPRequest object to communicate with the

server. You need to supply at least the two mandatory arguments to this method:

. First, specify which HTTP method you intend to use, usually GET or POST.

. Next, the destination URL of the request is included as the second argument. If

making a GET request, this URL needs to be suitably encoded with any param-

eters and their values as part of the URL.

For security reasons, the XMLHTTPRequest object is allowed to communicate only

with URLs within its own domain. An attempt to connect to a remote domain results

in a “permission denied” error message.

A common mistake is to reference your domain as mydomain.com in a call made
from www.mydomain.com. The two will be regarded as different by the JavaScript
interpreter, and connection will not be allowed.

Optionally you may include a third argument to the send request, a Boolean value

to declare whether the request is being sent in asynchronous mode. If set to false,

the request will not be sent in asynchronous mode, and the page will be effectively

locked until the request is completed. The default value of true will be assumed if

the parameter is omitted, and requests will then be sent asynchronously.

A Boolean data type has only two possible values, 1 (or true) and 0 (or false).

The send() Method
Having prepared the XMLHTTPRequest using the open() method, you can send

the request using the send() method. One argument is accepted by the send()

function.

Watch
Out!

By the
Way

www.mydomain.com

156 CHAPTER 10: The Heart of Ajax —the XMLHTTPRequest Object

If your request is a GET request, the request information will be encoded into the des-

tination URL, and you can then simply invoke the send() method using the argu-

ment null:

objectname.send(null);

However, if you are making a POST request, the content of the request (suitably

encoded) will be passed as the argument.

objectname.setRequestHeader(‘Content-Type’,
➥’application/x-www-form-urlencoded’);
objectname.send(var1=value1&var2=value2);

In this case we use the setRequestHeader method to indicate what type of content

we are including.

Summary
This chapter introduced the XMLHTTPRequest object, the driving force behind any

Ajax application, and illustrated how an instance of such an object is created both

for Internet Explorer and for other, non-Microsoft browsers. We also briefly exam-

ined some of the object’s properties and methods.

Following chapters will show how more of the object’s methods and properties are

used.

CHAPTER 11

Talking with the Server

What You’ll Learn in This Chapter:
. Sending the Server Request
. Monitoring Server Status
. The Callback Function

In this chapter you’ll learn how to use the properties and methods of the XMLHTTPRequest

object to allow the object to send requests to and receive data from the server.

Sending the Server Request
Chapter 10, “The XMLHTPPRequest Object,” discussed at some length the JavaScript

XMLHTTPRequest object and how an instance of it may be created in various different

browsers.

Now that we have our XMLHTTPRequest object, let’s consider how to create and send server

requests, and what messages we might expect to receive back from the server.

We’re going to jump right in and first write some code using what you learned in Chapter

10 to create an XMLHTTPRequest object called myRequest. We’ll then write a JavaScript

function called callAjax() to send an asynchronous request to the server using that

object. Afterward we’ll break down the code line by line to see what it’s doing.

Listing 11.1 shows our prototype function to prepare and send an Ajax request using this

object.

158 CHAPTER 11: Talking with the Server

LISTING 11.1 Sending a Server Request
function getXMLHTTPRequest()
{
var req = false;
try
{
req = new XMLHttpRequest(); /* e.g. Firefox */
}

catch(err1)
{
try
{
req = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
}

catch(err2)
{
try
{
req = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
}
catch(err3)
{
req = false;
}

}
}

return req;
}

var myRequest = getXMLHTTPRequest();

function callAjax() {
// declare a variable to hold some information
// to pass to the server
var lastname = ‘Smith’;
// build the URL of the server script we wish to call
var url = “myserverscript.php?surname=” + lastname;
// ask our XMLHTTPRequest object to open a
// server connection
myRequest.open(“GET”, url, true);
// prepare a function responseAjax() to run when
// the response has arrived
myRequest.onreadystatechange = responseAjax;
// and finally send the request
myRequest.send(null);
}

Remember that, as you learned in Chapter 4, “Creating Simple Scripts in
JavaScript” lines starting with // are treated as comments by JavaScript. You may
use lines like these to document your code or add other useful notes, and your
browser’s JavaScript interpreter will ignore them when executing code instructions.

Did you
Know?

Sending the Server Request 159

First, we need to create an instance of an XMLHTTPRequest object and call it

myRequest. You’ll no doubt recognize the code for this from Chapter 10.

Next we’ll look at the function callAjax().

The first line simply declares a variable and assigns a value to it:

var lastname = ‘Smith’;

This is the piece of data that our function intends to send to the server, as the value

of a variable called surname that is required by our server-side script. In reality, of

course, the value of such data would usually be obtained dynamically by handling

a page event such as a mouse click or a keyboard entry, but for now this will serve

as a simple example.

The server request we intend to make is a GET request, so we must construct a suit-

able target URL having our parameter and value pairs suitably coded on the end;

the next line carries this out:

var url = “myserverscript.php?surname=” + lastname;

We dealt briefly with the open() method in Chapter 10. We use it in the next line to

prepare our server request:

myRequest.open(“GET”, url, true);

This line specifies that we are preparing a GET request and passes to it the destina-

tion URL complete with the appended content of the GET request.

The third parameter, true, indicates that we want our request to be handled asyn-

chronously. In this case it could have been omitted because the default value of

true is assumed in such cases. However, it does no harm to include it for clarity.

Next, we need to tell our XMLHTTPRequest object myRequest what it should do with

the “progress reports” it will receive from the server. The XMLHTTPRequest object has

a property onreadystatechange that contains information about what JavaScript

function should be called whenever the server status changes, and in the next line

myRequest.onreadystatechange = responseAjax;

we assign the function responseAjax() to do this job. We will write this function

later in the chapter.

160 CHAPTER 11: Talking with the Server

Dealing with the Browser Cache
All browsers maintain a so-called cache of visited web pages, a local record of page

contents stored on the hard disk of the browser’s computer. When you request a par-

ticular web page, the browser first tries to load the page from its cache, rather than

submitting a new HTTP request.

This appears to be more of a problem with IE than with the non-Microsoft
browsers. Only GET requests are affected; POST requests are not cached.

Although this can sometimes be advantageous in terms of page load times, it cre-

ates a difficulty when trying to write Ajax applications. Ajax is all about talking to

the server, not reloading information from cache; so when you make an asynchro-

nous request to the server, a new HTTP request must be generated every time.

It is possible to add HTTP headers to the data returned by server-side routines,

intended to tell the browser not to cache a particular page. Examples include

“Pragma: no-cache”

and

“Cache-Control: must-revalidate”

among others.

Unfortunately such strategies vary widely in their effectiveness. Different browsers

have different cache handling strategies and support different header declarations,

making it difficult to ensure that pages are not cached.

A commonly used trick to work around this problem involves the adding of a

parameter with a random and meaningless value to the request data. In the case of

a GET request, this necessitates adding a further parameter and value pair to the

end of the URL.

If the random part of the URL is different each time, this effectively “fools” the

browser into believing that it is to send the asynchronous request to an address not

previously visited. This results in a new HTTP request being sent on every occasion.

Let’s see how to achieve this. As you learned in Chapter 9, in JavaScript you can

generate random numbers using the Math.random() method of the native Math()

object. Listing 11.2 contains a couple of changes to the callAjax() function.

By the
Way

Sending the Server Request 161

LISTING 11.2 Dealing with the Browser Cache
function getXMLHTTPRequest()
{
var req = false;
try
{
req = new XMLHttpRequest(); /* e.g. Firefox */
}

catch(err1)
{
try
{
req = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
}

catch(err2)
{
try
{
req = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
}
catch(err3)
{
req = false;
}

}
}

return req;
}

var myRequest = getXMLHTTPRequest();

function callAjax() {
// declare a variable to hold some information
// to pass to the server
var lastname = ‘Smith’;
// build the URL of the server script we wish to call
var url = “myserverscript.php?surname=” + lastname;
// generate a random number
var myRandom=parseInt(Math.random()*99999999);
// ask our XMLHTTPRequest object to open
// a server connection
myRequest.open(“GET”, url + “&rand=” + myRandom, true);
// prepare a function responseAjax() to run when
// the response has arrived
myRequest.onreadystatechange = responseAjax;
// and finally send the request
myRequest.send(null);
}

162 CHAPTER 11: Talking with the Server

You can see from Listing 11.2 that the script will now generate a destination URL for

our Ajax request that looks something like this:

myserverscript.php?surname=Smith&rand=XXXX

where XXXX will be some random number, thereby preventing the page from being

returned from cache and forcing a new HTTP request to be sent to the server.

Some programmers prefer to add the current timestamp rather than a random
number. This is a string of characters derived from the current date and time, and
has been discussed in detail elsewhere in the book. In the following example, the
JavaScript Date() and getTime() methods of the native Date() object are used:
myRand= new Date().getTime();

Monitoring Server Status
The XMLHTTPRequest object contains mechanisms by which we can stay informed of

the progress of our Ajax request and determine when the information returned by

the server is ready to use in our application.

Let’s now have a look at the relevant properties.

The readyState Property
The readyState property of the XMLHTTPRequest object gives you information from

the server about the current state of a request you have made. This property is mon-

itored by the onreadystatechange property, and changes in the value of

readyState cause onreadystatechange to become true and therefore cause the

appropriate function (responseAjax() in our example) to be executed.

The function called on completion of the server request is normally referred to as
the callback function.

readyState can take the following values:

0 = uninitialized

1 = loading

2 = loaded

3 = interactive

4 = completed

By the
Way

Did you
Know?

The Callback Function 163

When a server request is first made, the value of readyState is set to zero, meaning

uninitialized.

As the server request progresses, data begins to be loaded by the server into the

XMLHTTPRequest object, and the value of the readyState property changes accord-

ingly, moving to 1 and then 2.

An object readyState value of 3, interactive, indicates that the object is sufficiently

progressed so that certain interactivity with it is possible, though the process is not

yet fully complete.

When the server request has completed fully and the object is available for further

processing, the value of readyState changes finally to 4.

Not all of the possible values may exist for any given object. The object may
“skip” certain states if they bear no relevance to the object’s content type.

In most practical cases, you should look for the readyState property to achieve a

value of 4, at which point you can be assured that the server has finished its task

and the XMLHTTPRequest object is ready for use.

Server Response Status Codes
In addition to the readyState property, you have a further means to check that an

asynchronous request has executed correctly: the HTTP server response status code.

HTTP responses were discussed in Chapter 1. If you refer to Table 1.1 you’ll see that

a response status code of 200 corresponds to an OK message from the server.

We’ll see how to test for this as we further develop our callback function.

The Callback Function
By now, then, you have learned how to create an instance of an XMLHTTPRequest

object, declare the identity of a callback function, and prepare and send an asyn-

chronous server request. You also know which property tells you when the server

response is available for use.

Let’s look at our callback function, responseAjax().

First, note that this function is called every time there is a change in the value of the

onreadystatechange property. Usually, then, when this function is called, it is

Did you
Know?

164 CHAPTER 11: Talking with the Server

required to do absolutely nothing because the value of the readyState property has

not yet reached 4 and we therefore know that the server request has not completed

its processing.

We can achieve this simply by using a JavaScript if statement:

function responseAjax() {
// we are only interested in readyState of 4,
// i.e. “completed”
if(myRequest.readyState == 4) {

… program execution statements …
}

}

In addition to checking that the server request has completed, we also want to check

the HTTP response status code to ensure that it is equal to 200, indicating a success-

ful response to our asynchronous HTTP request.

Referring quickly back to Table 10.1, we can see that our XMLHTTPRequest object

myRequest has two properties that report the HTTP status response. These are

myRequest.status

which contains the status response code, and

myRequest.statusText

containing the reason phrase.

We can employ these properties by using a further loop:

function responseAjax() {
// we are only interested in readyState of 4,
// i.e. “loaded”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

… program execution statements …
} else {

// issue an error message for any
// other HTTP response
alert(“An error has occurred: “

➥+ myRequest.statusText);
}

}
}

This code introduces an else clause into our if statement. Any server status

response other than 200 causes the contents of this else clause to be executed,

opening an alert dialog containing the text of the reason phrase returned from the

server.

The Callback Function 165

Using the Callback Function
So how do we go about calling our callAjax() callback function from our HTML

page? Let’s see an example. Here’s the code for a simplified form in an HTML page:

<form name=’form1’>
Name: <input type=’text’ name=’myname’>

Tel: <input type=’text’ name=’telno’>

<input type=’submit’>
</form>

We’ll launch the function using the onBlur event handler of a text input field in a

form:

<form name=’form1’>
Name: <input type=’text’ name=’myname’
➥onBlur=’callAjax()’>

Tel: <input type=’text’ name=’telno’>

<input type=’submit’>
</form>

The onBlur event handler is activated when the user leaves the field in question. In

this case, when the user leaves the field, callAjax() will be executed, creating an

instance of the XMLHTTPRequest object and making an asynchronous server request to

myserverscript.php?surname=Smith

That doesn’t sound very useful. However, what if we were to now make a slight

change to the code of callAjax()?

function callAjax() {
// declare a variable to hold some
// information to pass to the server
var lastname = document.form1.myname.value;
…..

Now we can see that, as the user leaves the form field myname, the value she had

typed into that field would be passed to the server via our asynchronous request.

Such a call may, for example, check a database to verify the existence of the named

person, and if so return information to populate other fields on the form.

The result, so far as the user is concerned, is that she sees the remaining fields magi-

cally populated with data before submitting—or even completing—the form.

How we might use the returned data to achieve such a result is discussed in Chapter

12, “Using the Returned Data.”

166 CHAPTER 11: Talking with the Server

Summary
This chapter looked at the ways in which our XMLHTTPRequest object can communi-

cate with the server, including sending asynchronous requests, monitoring the server

status, and executing a callback function.

In Chapter 12, you will see how Ajax applications can deal with the data returned

by the server request.

CHAPTER 12

Using the Returned Data

What You’ll Learn in This Chapter:
. The responseText and responseXML Properties
. Parsing responseXML
. Providing User Feedback

In this chapter you will learn how to process the information returned from the server in

response to an Ajax request.

The responseText and responseXML
Properties
Chapter 11, “Talking with the Server,” discussed the server communications that allow

you to send and monitor asynchronous server requests. The final piece of the Ajax jigsaw

is the information returned by the server in response to a request.

This chapter discusses what forms that information can take, and how you can process it

and use it in an application. We will use two of the XMLHTTPRequest object’s properties,

namely responseText and responseXML.

Table 10.1 listed several properties of the XMLHTTPRequest object that we have yet to

describe. Among these are the responseText and responseXML properties.

Chapter 10 discussed how we could use the readyState property of the XMLHTTPRequest

object to determine the current status of the XMLHTTPRequest call. By the time our server

request has completed, as detected by the condition myRequest.readyState == 4 for our

XMLHTTPRequest object myRequest, then the two properties responseText and

responseXML will respectively contain text and XML representations of the data returned

by the server.

168 CHAPTER 12: Using the Returned Data

In this chapter you’ll see how to access the information contained in these two prop-

erties and apply each in an Ajax application.

The responseText Property
The responseText property tries to represent the information returned by the server

as a text string.

If the XMLHTTPRequest call fails with an error, or has not yet been sent,
responseText will have a value null. Flip back to Chapter 6, “Using Variables,
Strings, and Arrays,” if you need to remind yourself about null values.

Let’s look again at the callback function prototype:

function responseAjax() {
// we are only interested in readyState of 4, i.e. “loaded”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

… program execution statements …
} else {

// issue an error message for any other HTTP response
alert(“An error occurred: “ + myRequest.statusText);

}
}

}

Let’s add a program statement to the branch of the if statement that is executed on

success, as in Listing 12.1.

LISTING 12.1 Displaying the Value of responseText
function responseAjax() {

// we are only interested in readyState of 4,
// i.e. “completed”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

alert(“The server said: “
➥+ myRequest.responseText);

} else {
// issue an error message for
// any other HTTP response
alert(“An error has occurred: “

➥+ myRequest.statusText);
}

}
}

Did you
Know?

The responseText and responseXML Properties 169

In this simple example, our script opens an alert dialog to display the text returned
by the server. The line

alert(“The server said: “ + myRequest.responseText);

takes the text returned by the server-side routine and appends it to the string “The
server said: “ before presenting it in a JavaScript alert dialog.

Let’s look at an example using a simple PHP file on the server:

<?php echo “Hello Ajax caller!”; ?>

We’ll be looking in detail at PHP in Part IV. For now, all you really need to know is
that PHP’s echo() command asks the server to output whatever is enclosed
between the parentheses.

A successful XMLHTTPRequest call to this file would result in the responseText prop-

erty containing the string Hello Ajax caller!, causing the callback function to

produce the dialog shown in Figure 12.1.

By the
Way

FIGURE 12.1
Output generat-
ed by Listing
12.1.

The responseText property is read-only, so there’s no point in trying to manipu-
late its value until that value has first been copied into another variable.

Because the responseText contains a simple text string, we can manipulate it using

any of JavaScript’s methods relating to strings, some of which were introduced in

Chapter 6. Table 12.1 includes some of the available methods.

TABLE 12.1 Some JavaScript String Manipulation Methods

Method Description

charAt(number) Selects the single character at the specified position
within the string

indexOf(substring) Finds the position where the specified substring starts

lastIndexOf(substring) Finds the last occurrence of the substring within the string

substring(start,end) Gets the specified part of the string

toLowerCase() Converts the string to lowercase

toUpperCase() Converts the string to uppercase

Did you
Know?

170 CHAPTER 12: Using the Returned Data

We’ll be looking at how responseText may be used in real situations in Chapter 19,

“Returning Data as Text.”

The responseXML Property
Now suppose that the PHP script we used on the server in the previous example had

instead looked like Listing 12.2. Once again, we won’t worry too much about the

nuts-and-bolts of the PHP commands, as we’ll be looking at PHP in detail in Part IV

of the book.

LISTING 12.2 A Server-Side Script to Return XML
<?php
header(‘Content-Type: text/xml’);
echo “<?xml version=\”1.0\” ?><greeting>
➥Hello Ajax caller!</greeting>”;
?>

Remember reading about HTTP headers, way back in Chapter 1? The first line inside

the <?php and ?> delimiters uses PHP’s header instruction to add an HTTP header to

the returned data. The header returned is the parameter and value pair

Content-Type: text/xml

which announces to our XMLHTTPRequest object to expect that the following data

from the server will be formatted as XML.

The next line is another PHP echo statement that outputs this simple, but complete,

XML document:

<?xml version=”1.0” ?>
<greeting>
Hello Ajax caller!
</greeting>

When the server call is completed, we now find this XML document loaded into the

responseXML property of our XMLHTTPRequest object.

It is important to note that the responseXML property does not contain just a
string that forms a text representation of the XML document, as was the case
with the responseText property; instead, the entire data and hierarchical struc-
ture of the XML document has been stored as a DOM-compatible object.

We can now access the content of the XML document via JavaScript’s DOM methods

and properties.

Did you
Know?

Parsing responseXML 171

The getElementsByTagName() Method
This useful method allows you to build a JavaScript array of all the elements having

a particular tagname. You can then access elements of that array using normal

JavaScript statements. Here’s an example:

var myElements = object.getElementsByTagName(‘greeting’);

This line creates the array myElements and populates it with all the elements with

tagname greeting. As with any other array, you can find out the length of the

array (that is, the number of elements having the declared tagname) by using the

length property:

myElements.length

You can access a particular element individually if you want; the first occurring ele-

ment with tagname greeting can be accessed as myElements[0], the second (if

there is a second) as myElements[1], and so:

var theElement = myElements[0];

You could also access these individual array elements directly:

var theElement = object.getElementsByTagName(‘greeting’)[0];

Parsing responseXML
Listing 12.3 gives an example of how we can use getElementsByTagName to return

the text of our greeting in an alert dialog.

LISTING 12.3 Parsing responseXML using getElementsByTagName()
function responseAjax() {

// we are only interested in readyState
// of 4, i.e. “completed”
if(myRequest.readyState == 4) {

// if server HTTP response is “OK”
if(myRequest.status == 200) {

var greetNode = http.responseXML
➥.getElementsByTagName(“greeting”)[0];

var greetText = greetNode.childNodes[0]
➥.nodeValue;

alert(“Greeting text: “ + greetText);
} else {

// issue an error message for
// any other HTTP response
alert(“An error has occurred: “

➥+ myRequest.statusText);
}

}
}

Did you
Know?

172 CHAPTER 12: Using the Returned Data

After the usual checks on the values of the readyState and status properties, the

code locates the required element from responseXML using the

getElementsByTagName() method and then uses childNodes[0].nodeValue to

extract the text content from this element, finally displaying the returned text in a

JavaScript alert dialog.

Figure 12.2 shows the alert dialog, showing the text string recovered from the

<greeting> element of the XML document.

FIGURE 12.2
Displaying the
returned
greeting.

Providing User Feedback
In web pages with traditional interfaces, it is clear to the user when the server is

busy processing a request; the interface is effectively unusable while a new page is

being prepared and served.

The situation is a little different in an Ajax application. Because the interface

remains usable during an asynchronous HTTP request, it may not be apparent to

the user that new information is expected from the server. Fortunately there are

some simple ways to warn that a server request is in progress.

Recall that our callback function is called each time the value of readyState

changes, but that we are only really interested in the condition

myRequest.readyState == 4, which indicates that the server request is complete.

Let’s refer again to Listing 12.3. For all values of readyState other than 4, the func-

tion simply terminates having done nothing. We can use these changes to the value

of readyState to indicate to the user that a server request is progressing but has not

yet completed. Consider the following code:

function responseAjax() {
if(myRequest.readyState == 4) {

if(myRequest.status == 200) {
… [success – process the server response] …

} else {
… [failed – report the HTTP error] …

}
} else { // if readyState has changed

// but readyState <> 4
… [do something here to provide user feedback] …

}
}

Providing User Feedback 173

A commonly used way to do this is to modify the contents of a page element to

show something eye-catching, such as a flashing or animated graphic, while a

request is being processed and then remove it when processing is complete.

The getElementById() Method
JavaScript’s getElementById() method allows you to locate an individual docu-

ment element by its id value. You can use this method in your user feedback routine

to temporarily change the contents of a particular page element to provide the visu-

al clue that a server request is in progress.

Elements within a page that have had id values declared are expected to each
have a unique id value. This allows you to identify a unique element. Contrast
this with the class attribute, which can be applied to any number of separate ele-
ments in a page and is more commonly used to set the display characteristics of
a group of objects.

Suppose that we have, say, a small animated graphic file anim.gif that we want to

display while awaiting information from the server. We want to display this graphic

inside a <div> element within the HTML page. We begin with this <div> element

empty:

<div id=”waiting”></div>

Now consider the code of the callback function:

function responseAjax() {
if(myRequest.readyState == 4) {

document.getElementById(‘waiting’).innerHTML = ‘’;
if(myRequest.status == 200) {

… [success – process the server response] …
} else {

… [failed – report the HTTP error] …
}

} else { // if readyState has changed
// but readyState <> 4

document.getElementById(‘waiting’)
➥.innerHTML = ‘’;

}
}

On each change in value of the property readyState, the callback function checks

for the condition readyState == 4. Whenever this condition fails to be met, the

else condition of the outer loop uses the innerHTML property to ensure that the

Did you
Know?

174 CHAPTER 12: Using the Returned Data

page element with id waiting (our <div> element) contains an image whose source

is the animated GIF. As soon as the condition readyState == 4 is met, and we

therefore know that the server request has concluded, the line

document.getElementById(‘waiting’).innerHTML = ‘’;

once more erases the animation.

We’ll see this technique in action in Chapter 13, “Our First Ajax Application,” when

we create a complete Ajax application.

Summary
This chapter examined the last link in the Ajax chain: how to deal with server

responses containing both text and XML information.

We also introduced a further JavaScript DOM method, getElementsByTagName().

In the next chapter, the last in Part III, we use this knowledge along with that

gained from earlier chapters, to construct a complete and working Ajax application.

CHAPTER 13

Our First Ajax Application

What You’ll Learn in This Chapter:
. Constructing the Ajax Application
. The HTML Document
. Adding JavaScript
. Putting It All Together

In this chapter you will learn how to construct a complete and working Ajax application

using the techniques discussed in previous chapters.

Constructing the Ajax Application
The previous chapters have introduced all the techniques involved in the design and cod-

ing of a complete Ajax application. In this chapter, we’re going to construct just such an

application.

Our first application will be simple in function, merely returning and displaying the time

as read from the server’s internal clock; nevertheless it will involve all the basic steps

required for any Ajax application:

. An HTML document forming the basis for the application

. JavaScript routines to create an instance of the XMLHTTPRequest object and con-

struct and send asynchronous server calls

. A simple server-side routine (in PHP) to configure and return the required

information

. A callback function to deal with the returned data and use it in the application

176 CHAPTER 13: Our First Ajax Application

Let’s get to it, starting with the HTML file that forms the foundation for our

application.

The HTML Document
Listing 13.1 shows the code for our HTML page.

LISTING 13.1 The HTML Page for Our Ajax Application
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>Ajax Demonstration</title>
<style>
.displaybox {
width:150px;
background-color:#ffffff;
border:2px solid #000000;
padding:10px;
font:24px normal verdana, helvetica, arial, sans-serif;
}
</style>
</head>
<body style=”background-color:#cccccc;
➥text-align:center”>

<h1>Ajax Demonstration</h1>
<h2>Getting the server time without page refresh</h2>
<form>
<input type=”button” value=”Get Server Time” />
</form>
<div id=”showtime” class=”displaybox”></div>

</body>
</html>

This is a simple HTML layout, having only a title, subtitle, button, and <div> ele-

ment, plus some style definitions.

In HTML the <div> … </div> element stands for division and can be used to
allow a number of page elements to be grouped together and manipulated in a
block.

Figure 13.1 shows what the HTML page looks like.

Did you
Know?

Adding JavaScript 177

Adding JavaScript
We can now add our JavaScript routines to the HTML page. We’ll do so by adding

them inside a <script> … </script> container to the <head> section of the page.

Alternatively we could have added the routines in an external JavaScript file
(ajax.js, say) and called this file from our document by using a statement like:

<script language=”JavaScript” type=”text/javascript”
➥src=”ajax.js”></script>

in the <head> section of the document.

The XMLHTTPRequest Object
First, let’s add our function to create our XMLHTTPRequest object:

function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest();
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);

FIGURE 13.1
The HTML file of
Listing 13.1.

Did you
Know?

178 CHAPTER 13: Our First Ajax Application

} catch (err3) {
req = false;

}
}

}
return req;
}

It’s now a simple matter to create our XMLHTTPRequest object, which on this occa-

sion we’re going to call http:

var http = getXMLHTTPRequest();

The Server Request
Now we need a function to construct our server request, define a callback function,

and send the request to the server. This is the function that will be called from an

event handler in the HTML page:

function getServerTime() {
var myurl = ‘telltimeXML.php’;
myRand = parseInt(Math.random()*999999999999999);
// add random number to URL to avoid cache problems
var modurl = myurl+”?rand=”+myRand;
http.open(“GET”, modurl, true);
// set up the callback function
http.onreadystatechange = useHttpResponse;
http.send(null);

}

Once again we have added a parameter with a random value to the URL to avoid

any cache problems. Our callback function is named useHttpResponse and is

called each time a change is detected in the value of http’s readyState property.

Our PHP Server-Side Script
Before explaining the operation of the callback function, we need to refer to the

code of the simple PHP server routine telltimeXML.php, shown in Listing 13.2.

LISTING 13.2 telltimeXML.php
<?php
header(‘Content-Type: text/xml’);
echo “<?xml version=\”1.0\” ?><clock1><timenow>”
➥.date(‘H:i:s’).”</timenow></clock1>”;
?>

This short program reports the server time using PHP’s date() function.

Adding JavaScript 179

It’s not vitally important that you understand PHP’s date() function in order to fol-
low this script—but in case you’re curious, it will be fully explained in Chapter 14,
“Getting to Know PHP.” Feel free to skip forward a little to read about it if you
want to, and then return here.

The argument passed to this function defines how the elements of the date and time

should be formatted. Here we’ve ignored the date-related elements completely and

asked for the time to be returned as Hours:Minutes:Seconds using the 24-hour clock.

Our server script returns an XML file in the following format:

<?xml version=”1.0” ?>
<clock1>

<timenow>
XX:XX:XX
</timenow>

</clock1>

with XX:XX:XX replaced by the current server time. We will use the callback function to

extract this time information and display it in the <div> container of the HTML page.

The Callback Function
Here is the code for the callback function useHttpResponse:

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {

var timeValue = http.responseXML
➥.getElementsByTagName(“timenow”)[0];

document.getElementById(‘showtime’).innerHTML
➥ = timeValue.childNodes[0].nodeValue;

}
} else {
document.getElementById(‘showtime’).innerHTML

➥ = ‘’;
}

}

Once again we have used the getElementByTagname method, this time to select the

<timenow> element of the XML data, which we have stored in a variable timeValue.

However, on this occasion we’re not going to display the value in an alert dialog as

we did in Chapter 12, “Using the Returned Data.”

This time we want instead to use the information to update the contents of an ele-

ment in the HTML page. Note from Listing 13.1 how the <div> container is defined

in our HTML page:

<div id=”showtime” class=”displaybox”></div>

By the
Way

180 CHAPTER 13: Our First Ajax Application

In addition to the class declaration (which is used in the <style> definitions to

affect how the <div> element is displayed), we see that there is also defined an id

(identity) for the container, with a value set to showtime.

Currently the <div> contains nothing. We want to update the content of this con-

tainer to show the server time information stored in timeValue. We do so by select-

ing the page element using JavaScript’s getElementById() method, which we met

in Chapter 12. We’ll then use the JavaScript innerHTML property to update the ele-

ment’s contents:

document.getElementById(‘showtime’).innerHTML
➥ = timeValue.childNodes[0].nodeValue;

Employing Event Handlers
Finally, we must decide how the server requests will be triggered. In this case we

shall slightly edit the HTML document to use the onClick() event handler of the

<button> object:

<input type=”button” value=”Get Server Time”
➥ onClick=”getServerTime()”>

This will correctly deal with the occasion when the Get Server Time button is clicked.

It does, however, leave the <div> element empty when we first load the page.

To overcome this little problem, we can use the onLoad() event handler of the

page’s <body> element:

<body style=”background-color:#cccccc”
➥ onLoad=”getServerTime()”>

This event handler fires as soon as the <body> area of the page has finished

loading.

Putting It All Together
Listing 13.3 shows the complete client-side code for our Ajax application.

LISTING 13.3 The Complete Ajax Application
<html>
<head>
<title>Ajax Demonstration</title>
<style>
.displaybox {
width:150px;
background-color:#ffffff;
border:2px solid #000000;

Putting It All Together 181

padding:10px;
font:24px normal verdana, helvetica, arial, sans-serif;
}
</style>
<script language=”JavaScript” type=”text/javascript”>
function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest();
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (err3) {
req = false;

}
}

}
return req;
}

var http = getXMLHTTPRequest();

function getServerTime() {
var myurl = ‘telltimeXML.php’;
myRand = parseInt(Math.random()*999999999999999);
var modurl = myurl+”?rand=”+myRand;
http.open(“GET”, modurl, true);
http.onreadystatechange = useHttpResponse;
http.send(null);

}

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {

var timeValue = http.responseXML
➥.getElementsByTagName(“timenow”)[0];

document.getElementById(‘showtime’).innerHTML
➥ = timeValue.childNodes[0].nodeValue;

}
} else {
document.getElementById(‘showtime’).innerHTML

➥ = ‘’;
}

}
</script>
</head>
<body style=”background-color:#cccccc”
➥ onLoad=”getServerTime()”>
<center>
<h1>Ajax Demonstration</h1>
<h2>Getting the server time without page refresh</h2>
<form>
<input type=”button” value=”Get Server Time”
➥ onClick=”getServerTime()”>

LISTING 13.3 Continued

182 CHAPTER 13: Our First Ajax Application

</form>
<div id=”showtime” class=”displaybox”></div>
</center>
</body>
</html>

Loading the page into our browser, we can see that the server time is displayed in

the <div> container, indicating that the onLoad event handler for the <body> of the

page has fired when the page has loaded.

User Feedback
Note also that we have provided user feedback via the line

document.getElementById(‘showtime’).innerHTML
➥ = ‘’;

which executes on each change to the value readyState until the condition

readyState == 4

is satisfied. This line loads into the time display element an animated GIF with a

rotating pattern, indicating that a server request is in progress, as shown in Figure

13.2. This technique was described in more detail in Chapter 12.

If you have a fast server and a good Internet connection, it may be difficult to see
this user feedback in action because the time display is updated virtually instanta-
neously. To demonstrate the operation of the animated GIF image, we can slow
down the server script to simulate the performance of a more complex script
and/or an inferior connection, by using PHP’s sleep() command:
<?php
header(‘Content-Type: text/xml’);
sleep(3);
echo “<?xml version=\”1.0\” ?><clock1><timenow>”
➥.date(‘H:i:s’).”</timenow></clock1>”;
?>

The line
sleep(x);

forces the server to pause program execution for x seconds.

LISTING 13.3 Continued

Did you
Know?

Putting It All Together 183

Now, each time we click on the Get Server Time button, the time display is updated.

Figure 13.3 shows the completed application.

FIGURE 13.2
An animated
image provides
user feedback.

FIGURE 13.3
Our completed
Ajax application.

184 CHAPTER 13: Our First Ajax Application

Summary
In this chapter, we constructed a simple yet complete Ajax application that does the

following:

. Creates an instance of the XMLHTTPRequest object

. Reacts to JavaScript event handlers built into an HTML page

. Constructs and sends asynchronous server requests

. Parses XML received from the server using JavaScript DOM methods

. Provides user feedback that a request is in progress

. Updates the displayed page with the received data

That completes Part III of the book, “Introducing Ajax.” There’s a lot more Ajax to

come later in the book, but first we’ll look in detail at PHP in Part IV “Server-side

Scripting with PHP.”

PART IV

Server-side Scripting with PHP

CHAPTER 14 Getting to Know PHP 187

CHAPTER 15 Variables 195

CHAPTER 16 Flow Control 215

CHAPTER 17 Functions 223

CHAPTER 18 Using Classes 231

This page intentionally left blank

CHAPTER 14

Getting to Know PHP

What You’ll Learn in This Chapter:
. PHP Basics
. Your First PHP Script

In this chapter you will find out what PHP is all about and see what it is able to do.

PHP Basics
PHP is hugely popular, and rightly so. Even if you haven’t come across an existing user

singing its praises, you’ve almost certainly used a website that runs on PHP. This chapter

clarifies what PHP does, how it works, and what it is capable of.

PHP is a programming language that was designed for creating dynamic websites. It slots

into your web server and processes instructions contained in a web page before that page

is sent through to your web browser. Certain elements of the page can therefore be gener-

ated on-the-fly so that the page changes each time it is loaded. For instance, you can use

PHP to show the current date and time at the top of each page in your site, as you’ll see

later in this chapter.

The name PHP is a recursive acronym that stands for PHP: Hypertext Preprocessor. It began

life called PHP/FI, the “FI” part standing for Forms Interpreter. Though the name was short-

ened a while back, one of PHP’s most powerful features is how easy it becomes to process

data submitted in HTML forms. PHP can also talk to various database systems, giving you

the ability to generate a web page based on a SQL query.

For example, you could enter a search keyword into a form field on a web page, query a

database with this value, and produce a page of matching results. You will have seen this

kind of application many times before, at virtually any online store as well as many web-

sites that do not sell anything, such as search engines.

188 CHAPTER 14: Getting to Know PHP

The PHP language is flexible and fairly forgiving, making it easy to learn even if

you have not done any programming in the past. If you already know another lan-

guage, you will almost certainly find similarities here. In fact, many of the

JavaScript programming concepts introduced in Part II of the book—numbers,

strings, arrays, objects, and so on— will crop up again in our discussions about PHP,

often with only minor changes of syntax.

Server-Side Scripting
The most important concept to learn when starting out with PHP is where exactly it

fits into the grand scheme of things in a web environment. When you understand

this, you will understand what PHP can and cannot do.

The PHP module attaches to your web server, telling it that files with a particular

extension should be examined for PHP code. Any PHP code found in the page is

executed—with any PHP code replaced by the output it produces—before the web

page is sent to the browser.

The usual web server configuration is that somefile.php will be interpreted by
PHP, whereas somefile.html will be passed straight through to the web browser,
without PHP getting involved.

The only time the PHP interpreter is called upon to do something is when a web

page is loaded. This could be when you click a link, submit a form, or just type in

the URL of a web page. When the web browser has finished downloading the page,

PHP plays no further part until your browser requests another page.

Because it is only possible to check the values entered in an HTML form when the

submit button is clicked, PHP cannot be used to perform client-side validation—in

other words, to check that the value entered in one field meets certain criteria before

allowing you to proceed to the next field. Client-side validation can be done using

JavaScript, a language that runs inside the web browser itself, and JavaScript and

PHP can be used together if that is the effect you require.

The beauty of PHP is that it does not rely on the web browser at all; your script will

run the same way whatever browser you use. When writing server-side code, you do

not need to worry about JavaScript being enabled or about compatibility with older

browsers beyond the ability to display HTML that your script generates or is embed-

ded in.

By the
Way

PHP Basics 189

The CD accompanying this book includes the powerful and convenient XAMPP
package. If you would like your own server environment for your PHP experiments,
rather than using hosted web space, you can use this package to install the
Apache web server, fully configured with PHP interpreter and other tools, on your
own PC or on another PC on your network.

PHP Tags
Consider the following extract from a PHP-driven web page that displays the current

date:

Today is <?php echo date(‘j F Y’);?>

The <?php tag tells PHP that everything that follows is program code rather than

HTML, until the closing ?> tag. In this example, the echo command tells PHP to dis-

play the next item to screen; the following date command produces a formatted

version of the current date, containing the day, month, and year.

The semicolon character is used to indicate the end of a PHP command. In the
previous examples, there is only one command, and the semicolon is not actually
required, but it is good practice to always include it to show that a command is
complete.

In this book PHP code appears inside tags that look like <?php ... ?>. Other tag

styles can be used, so you may come across other people’s PHP code beginning with

tags that look like <? (the short tag), <% (the ASP tag style) or <SCRIPT

LANGUAGE=”php”> (the script tag).

Of the different tag styles that can be used, only the full <?php tag and the script tag

are always available. The others are turned off or on by using a PHP configuration

setting.

It is good practice to always use the <?php tag style so your code will run on any
system that has PHP installed, with no additional configuration needed. If you are
tempted to use <? as a shortcut, know that any time you move your code to
another web server, you need to be sure it will understand this tag style.

On the
CD

By the
Way

Did you
Know?

190 CHAPTER 14: Getting to Know PHP

Anything that is not enclosed in PHP tags is passed straight through to the browser,

exactly as it appears in the script. Therefore, in the previous example, the text

Today is appears before the generated date when the page is displayed.

Your First PHP Script
Before you go any further, you need to make sure you can create and run PHP

scripts as you go through the examples in this book. This could be on your own

machine, and you can find instructions for installing a PHP environment, along

with the XAMPP software, on the accompanying CD. Also, many web hosting com-

panies include PHP in their packages, and you may already have access to a suit-

able piece of web space.

Go ahead and create a new file called time.php that contains Listing 14.1, in a

location that can be accessed by a PHP-enabled web server. This is a slight variation

on the date example shown previously.

LISTING 14.1 Displaying the System Date and Time
The time is
<?php echo date(‘H:i:s’);?>
and the date is
<?php echo date(‘j F Y’);?>

When you enter the URL to this file in your web browser, you should see the current

date and time, according to the system clock on your web server, displayed.

If you are running PHP from your local PC, PHP code in a script will be executed
only if it is accessed through a web server that has the PHP module enabled. If you
open a local script directly in the web browser—for instance, by double-clicking or
dragging and dropping the file into the browser—it will be treated as HTML only.

If you were using a default Apache installation in Windows, you would create
time.php in the folder C:\Program Files\Apache Group\Apache\htdocs, and
the correct URL would be http://localhost/time.php. If you have loaded the
XAMPP software from the CD accompanying this book, refer to the XAMPP docu-
mentation to find the location of your web folder.

Watch
Out!

Did you
Know?

Your First PHP Script 191

If you entered Listing 14.1 exactly as shown, you might notice that the actual out-

put produced could be formatted a little better—there is no space between the time

and the word and. Any line in a script that only contains code inside PHP tags will

not take up a line of output in the generated HTML.

Full details of how to use PHP’s date format can be found at
http://es2.php.net/date

If you use the View Source option in your web browser, you can see the exact output

produced by your script, which should look similar to the following:

The time is
15:33:09and the date is
13 October 2004

If you insert a space character after ?>, that line now contains non-PHP elements,

and the output is spaced correctly.

The echo Command
While PHP is great for embedding small, dynamic elements inside a web page, in

fact the whole page could consist of a set of PHP instructions to generate the output

if the entire script were enclosed in PHP tags.

The echo command is used to send output to the browser. Listing 14.1 uses echo to

display the result of the date command, which returns a string that contains a for-

matted version of the current date. Listing 14.2 does the same thing but uses a series

of echo commands in a single block of PHP code to display the date and time.

LISTING 14.2 Using echo to Send Output to the Browser
<?php
echo “The time is “;
echo date(‘H:i:s’);
echo “ and the date is “;
echo date(‘j F Y’);
?>

The non-dynamic text elements you want to output are contained in quotation

marks. Either double quotes (as used in Listing 14.2) or single quotes (the same

character used for an apostrophe) can be used to enclose text strings, although you

Did you
Know?

http://es2.php.net/date

192 CHAPTER 14: Getting to Know PHP

will see an important difference between the two styles in Chapter 15, “Variables.”

The following statements are equally valid:

echo “The time is “;
echo ‘The time is ‘;

Notice that space characters are used in these statements inside the quotation marks

to ensure that the output from date is spaced away from the surrounding text. In

fact the output from Listing 14.2 is slightly different from that for Listing 14.1, but in

a web browser you will need to use View Source to see the difference. The raw output

from Listing 14.2 is as follows:

The time is 15:59:50 and the date is 13 October 2004

There are no line breaks in the page source produced this time. In a web browser,

the output looks just the same as for Listing 14.1 because in HTML all whitespace,

including carriage returns and multiple space or tab characters, is displayed as a

single space in a rendered web page.

A newline character inside a PHP code block does not form part of the output. Line

breaks can be used to format the code in a readable way, but several short com-

mands could appear on the same line of code, or a long command could span sev-

eral lines—that’s why you use the semicolon to indicate the end of a command.

Listing 14.3 is identical to Listing 14.2 except that the formatting makes this script

almost unreadable.

LISTING 14.3 A Badly Formatted Script That Displays the Date and Time
<?php echo “The time is “; echo date(‘H:i:s’); echo
“ and the date is “
; echo date(
‘j F Y’
);
?>

If you wanted to send an explicit newline character to the web browser, you could
use the character sequence \n. There are several character sequences like this
that have special meanings. Refer to the PHP documentation for details.

By the
Way

Your First PHP Script 193

Comments
Another way to make sure your code remains readable is by adding comments to it.

A comment is a piece of free text that can appear anywhere in a script and is com-

pletely ignored by PHP. The different comment styles supported by PHP are shown in

Table 4.1.

TABLE 14.1 Comment Styles in PHP

Comment Description

// or # Single-line comment. Everything to the end of the current
line is ignored.

/* ... */ Single- or multiple-line comment. Everything between /*
and */ is ignored.

Listing 14.4 produces the same formatted date and time as Listings 14.1, 14.2, and

14.3, but it contains an abundance of comments. Because the comments are just

ignored by PHP, the output produced consists of only the date and time.

Refer to Chapter 4, “Creating Simple Scripts in JavaScript,” to see how comments
are dealt with in JavaScript. Very similar, isn’t it? JavaScript does not support sin-
gle-line comments delimited by #, but otherwise the use of comments is the same
in JavaScript and in PHP.

LISTING 14.4 Using Comments in a Script
<?php
/* time.php

This script prints the current date
and time in the web browser

*/

echo “The time is “;
echo date(‘H:i:s’); // Hours, minutes, seconds

echo “ and the date is “;
echo date(‘j F Y’); // Day name, month name, year
?>

Listing 14.4 includes a header comment block that contains the filename and a brief

description, as well as inline comments that show what each date command will

produce.

By the
Way

▼

194 CHAPTER 14: Getting to Know PHP

Try It Yourself

Using PHP’s Date and Time Functions
Go back to the simple PHP scripts we used in Chapters 12 and 13, and check out the

details of how they work by referring to this chapter.

Then try changing the date and time formats of the returned data, and see what

results you get from your simple Ajax application.

Add some comments to your PHP code, using the comment syntax styles explained

in this chapter, to explain the changes you made.

Summary
In this chapter you have learned how PHP works in a web environment, and you

have seen what a simple PHP script looks like. In the next chapter you will learn

how to use variables.

▲

CHAPTER 15

Variables

What You’ll Learn in This Chapter:
. Understanding Variables
. Data Types
. Working with Numbers
. Numeric Data Types
. Numeric Functions
. Working with Strings
. Formatting Strings
. String Functions
. Working with Arrays
. Array Functions
. Date Formats
. Working with Timestamps

In this chapter you will learn how to assign values to variables in PHP and use them in

some simple expressions. We shall also discuss PHP’s data formats, and have a brief look

at manipulating times and dates.

Understanding Variables
In PHP, a variable name is always prefixed with a dollar sign. For instance, you could

have a variable called number that holds the value 5 or a variable called name that holds

the value Chris. The following PHP code declares variables with those names and values:

$number = 5;
$name = “Chris”;

196 CHAPTER 15: Variables

Unlike in some programming languages, in PHP variables do not need to be
declared before they can be used. You can assign a value to a new variable name
any time you want to start using it.

Variables can be used in place of fixed values throughout the PHP language. The

following example uses echo to display the value stored in a variable in the same

way that you would display a piece of fixed text:

$name = “Chris”;
echo “Hello, “;
echo $name;

The output produced is

Hello, Chris

Naming Variables
Variable names can contain only letters, numbers, and the underscore character,

and each must begin with a letter or underscore.

Variable names in PHP are case-sensitive. For example, $name is a different vari-
able than $Name, and the two could store different values in the same script.

Using the underscore character is a handy way to give a variable a name that is
made up of two or more words. For example $first_name and $date_of_birth
are more readable for having underscores in place.

Another popular convention for combining words is to capitalize the first letter of
each word—for example, $FirstName and $DateOfBirth. If you prefer this style,
feel free to use it in your scripts but remember that the capitalization does matter.

Expressions
When a variable assignment takes place, the value given does not have to be a

fixed value. It could be an expression—two or more values combined using an opera-

tor to produce a result. It should be fairly obvious how the following example works,

but the following text breaks it down into its components:

$sum = 16 + 30;
echo $sum;

Did you
Know?

Watch
Out!

Did you
Know?

Data Types 197

To show that variables can be used in place of fixed values, you can perform the

same addition operation on two variables:

$a = 16;
$b = 30;
$sum = $a + $b;
echo $sum;

The values of $a and $b are added together, and once again, the output produced

is 46.

Variables in Strings
You have already seen that text strings need to be enclosed in quotation marks and

learned that there is a difference between single and double quotes.

The difference is that a dollar sign in a double-quoted string indicates that the cur-

rent value of that variable should become part of the string. In a single-quoted

string, on the other hand, the dollar sign is treated as a literal character, and no ref-

erence is made to any variables.

The following examples should help explain this. In the following example, the

value of variable $name is included in the string:

$name = “Chris”;
echo “Hello, $name”;

This code displays Hello, Chris.

In the following example, this time the dollar sign is treated as a literal, and no

variable substitution takes place:

$name = ‘Chris’;
echo ‘Hello, $name’;

This code displays Hello, $name.

You could correct this by using the concatenation operator, the period symbol, which

can be used to join two or more strings together, as shown in the following example:

echo ‘Hello, ‘.$name;

Data Types
Every variable that holds a value also has a data type that defines what kind of

value it is holding. The basic data types in PHP are shown in Table 15.1.

198 CHAPTER 15: Variables

TABLE 15.1 PHP Data Types

Data Type Description

Boolean A truth value; can be either TRUE or FALSE.

Integer A number value; can be a positive or negative whole number.

Double (or float) A floating-point number value; can be any decimal number.

String An alphanumeric value; can contain any number of ASCII
characters.

When you assign a value to a variable, the data type of the variable is also set. PHP

determines the data type automatically, based on the value you assign. If you want

to check what data type PHP thinks a value is, you can use the gettype function.

Running the following code shows that the data type of a decimal number is

double:

$value = 7.2;
echo gettype($value);

The complementary function to gettype is settype, which allows you to override

the data type of a variable. If the stored value is not suitable to be stored in the new

type, it will be modified to the closest value possible.

Working with Numbers
As you would expect, PHP includes all the basic arithmetic operators.

Arithmetic Operators
Addition is performed with the plus symbol (+). This example adds 6 and 12 togeth-

er and displays the result:

echo 6 + 12;

Subtraction is performed with the minus symbol:

echo 24 – 5;

The minus symbol can also be used to negate a number (for example, –20).

Multiplication is performed with the asterisk symbol:

echo 4 * 9;

Working with Numbers 199

Division is performed with the forward slash symbol:

echo 48 / 12;

Modulus is performed by using the percent symbol (%). This example displays 3—the

remainder of 21 divided by 6:

echo 21 % 6;

The modulus operator can be used to test whether a number is odd or even by
using $number % 2. The result will be 0 for all even numbers and 1 for all odd
numbers (because any odd number divided by 2 has a remainder of 1).

Incrementing and Decrementing
In PHP you can increment or decrement a number by using a double plus (++) or

double minus (--)symbol. The following statements both add one to $number:

$number++;

++$number;

The operator can be placed on either side of a variable, and its position determines

at what point the increment takes place.

This statement subtracts one from $countdown before displaying the result:

echo --$countdown;

However, the following statement displays the current value of $countdown before

decrementing it:

echo $countdown--;

The increment and decrement operators are commonly used in loops, which we

shall discuss in the next chapter.

Compound Operators
Compound operators provide a handy shortcut when you want to apply an arith-

metic operation to an existing variable. The following example uses the compound

addition operator to add six to the current value of $count:

$count += 6;

Did you
Know?

200 CHAPTER 15: Variables

The effect of this is to take the initial value of $count, add six to it, and then assign

it back to $count. In fact, the operation is equivalent to doing the following:

$count = $count + 6;

All the basic arithmetic operators have corresponding compound operators, as

shown in Table 15.2.

TABLE 15.2 Compound Operators

Operator Equivalent To

$a += $b $a = $a + $b;

$a -= $b $a = $a - $b;

$a *= $b $a = $a * $b;

$a /= $b $a = $a / $b;

$a %= $b $a = $a % $b;

Numeric Data Types
You have already seen that PHP assigns a data type to each value and that the

numeric data types are integer and double, for whole numbers.

To check whether a value is either of these types, you use the is_float and is_int

functions. Likewise, to check for either numeric data type in one operation, you can

use is_numeric.

If you want to check that both the values and data types are the same in a
condition, you use the triple equals comparison operator (===).

Numeric Functions
Let’s take a look at some of the numeric functions available in PHP.

Rounding Numbers
There are three different PHP functions for rounding a decimal number to an

integer.

Did you
Know?

Numeric Functions 201

You use ceil or floor to round a number up or down to the nearest integer, respec-

tively. For example, ceil(1.3) returns 2, whereas floor(6.8) returns 6.

To round a value to the nearest whole number, you use round. A fractional part

under .5 will be rounded down, whereas .5 or higher will be rounded up. For exam-

ple, round(1.3) returns 1, whereas round(1.5) returns 2.

The round function can also take an optional precision argument. The following

example displays a value rounded to two decimal places:

$score = 0.535;
echo round($score, 2);

The value displayed is 0.54; the third decimal place being 5 causes the final digit to

be rounded up.

Random Numbers
You use rand to generate a random integer, using your system’s built-in random

number generator. The rand function optionally takes two arguments that specify

the range of numbers from which the random number will be picked.

The following statement picks a random number between 1 and 10 and displays it:

echo rand(1, 10);

You can put this command in a script and run it a few times to see that the number

changes each time it is run.

There is really no such thing as a computer-generated random number. In fact,

numbers are actually picked from a very long sequence that has very similar prop-

erties to true random numbers. To make sure you always start from a different place

in this sequence, you have to seed the random number generator by calling the

srand function; no arguments are required.

Mathematical Functions
PHP includes many mathematical functions, including trigonometry, logarithms,

and number base conversions. As you will rarely need to use these in a web environ-

ment, those functions are not covered in this book.

To find out about a function that performs a specific mathematical purpose, refer to

the online manual at www.php.net/manual/en/ref.math.php.

www.php.net/manual/en/ref.math.php

202 CHAPTER 15: Variables

Working with Strings
A string is a collection of characters that is treated as a single entity. In PHP, strings

are enclosed in quotation marks, and you can declare a string type variable by

assigning it a string that is contained in either single or double quotes.

The following examples are identical; both create a variable called $phrase that

contains the phrase shown:

$phrase = “The sky is falling”;
$phrase = ‘The sky is falling’;

Escaping Characters with Backslash
Double quotes can be used within single-quoted strings and vice versa. For instance,

these string assignments are both valid:

$phrase = “It’s time to party!”;
$phrase = ‘So I said, “OK”’;

However, if you want to use the same character within a quoted string, you must

escape that quote by using a backslash. The following examples demonstrate this:

$phrase = ‘It\’s time to party!”;
$phrase = “So I said, \”OK\””;

In the previous examples, if the backslash were not used, PHP would mismatch the
quotes, and an error would result.

You can send the common nonprintable ASCII characters by using standard escape
characters. A newline is \n, tab is \t, and so on. Refer to man ascii on your system
or www.ascii.cl for a comprehensive list.

Concatenation
You have already seen how strings can be joined using the period symbol as a con-
catenation operator. A compound version of this operator, .=, can be used to
append a string to an existing variable.

The following example builds up a string in stages and then displays the result:

$phrase = “I want “;
$phrase .= “to teach “;
$phrase .= “the world “;
$phrase .= “to sing”;
echo $phrase;

The phrase appears as expected. Note the use of spaces after teach and world to

ensure that the final string is correctly spaced.

www.ascii.cl

Formatting Strings 203

Comparing Strings
You can compare string values simply by using the standard comparison operators.

To check whether two strings are equal, you use the double equals (==) sign:

if ($password == “letmein”)
echo “You have a guessable password”;

Formatting Strings
PHP provides a powerful way of creating formatted strings, using the printf and

sprintf functions. If you have used this function in C, these will be quite familiar

to you, although the syntax in PHP is a little different.

Using printf
You use printf to display a formatted string. At its very simplest, printf takes a

single string argument and behaves the same as echo:

printf(“Hello, world”);

The power of printf, however, lies in its ability to substitute values into placehold-

ers in a string. Placeholders are identified by the percent character (%), followed by a

format specification character.

The following example uses the simple format specifier %f to represent a float

number.

$price = 5.99;
printf(“The price is %f”, $price);

The second argument to printf is substituted in place of %f, so the following output

is produced:

The price is 5.99

There is actually no limit to the number of substitution arguments in a printf

statement, as long as there are an equivalent number of placeholders in the string

to be displayed. The following example demonstrates this by adding in a string

item:

$item = “The Origin of Species”;
$price = 5.99;
printf(“The price of %s is %f”, $item, $price);

Table 15.3 shows the format characters that can be used with the printf function in

PHP to indicate different types of values.

204 CHAPTER 15: Variables

TABLE 15.3 printf Format Characters

Character Meaning

b A binary (base 2) number

c The ASCII character with the numeric value of the argument

d A signed decimal (base 10) integer

e A number displayed in scientific notation (for example, 2.6e+3)

u An unsigned decimal integer

f A floating-point number

o An octal (base 8) number

s A string

x A hexadecimal (base 16) number with lowercase letters

X A hexadecimal (base 16) number with uppercase letters

The precision specifier is used with a floating-point number to specify the number of

decimal places to display. The most common usage is with currency values, to

ensure that the two cent digits always appear, even in a whole dollar amount.

The precision value follows the optional width specifier and is indicated by a period

followed by the number of decimal places to display. The following example uses

%.2f to display a currency value with no width specifier:

$price = 6;
printf(“The price is %.2f”, $price);

The price is correctly formatted as follows:

The price is 6.00

With floats, the width specifier indicates only the width of the number before the
decimal point. For example, %6.2f will actually be nine characters long, with the
period and two decimal places.

Using sprintf
The sprintf function is used to assign formatted strings to variables. The syntax is

the same as for printf, but rather than being output as the result, the formatted

value is returned by the function as a string.

Did you
Know?

String Functions 205

For example, to assign a formatted price value to a new variable, you could do the

following:

$new_price = sprintf(“%.2f”, $price);

All the format specifier rules that apply to printf also apply to sprintf.

String Functions
Let’s take a look at some of the other string functions available in PHP. The full list

of string functions can be found in the online manual, at www.php.net/manual/en/

ref.strings.php.

Capitalization
You can switch the capitalization of a string to all uppercase or all lowercase by

using strtoupper or strtolower, respectively.

The following example demonstrates the effect this has on a mixed-case string:

$phrase = “I love PHP”;
echo strtoupper($phrase) . “
”;
echo strtolower($phrase) . “
”;

The result displayed is as follows:

I LOVE PHP
i love php

Dissecting a String
The substr function allows you to extract a substring by specifying a start position

within the string and a length argument. The following example shows this in

action:

$phrase = “I love PHP”;
echo substr($phrase, 3, 5);

This call to substr returns the portion of $phrase from position 3 with a length of 5

characters. Note that the position value begins at zero, not one, so the actual sub-

string displayed is ove P.

If the length argument is omitted, the value returned is the substring from the posi-

tion given to the end of the string. The following statement produces love PHP for

$phrase:

echo substr($phrase, 2);

www.php.net/manual/en/ref.strings.php
www.php.net/manual/en/ref.strings.php

206 CHAPTER 15: Variables

If you need to know how long a string is, you use the strlen function:

echo strlen($phrase);

To find the position of a character or a string within another string, you can use

strpos. The first argument is often known as the haystack, and the second as the

needle, to indicate their relationship.

The following example displays the position of the @ character in an email address:

$email = “chris@lightwood.net”;
echo strpos($email, “@”);

Remember that the character positions in a string are numbered from the left, start-

ing from zero, so the above expression would output ‘5’.

The strstr function extracts a portion of a string from the position at which a

character or string appears up to the end of the string. This is a convenience func-

tion that saves your using a combination of strpos and substr.

The following two statements are equivalent:

$domain = strstr($email, “@”);

$domain = strstr($email, strpos($email, “@”));

Working with Arrays
An array is a variable type that can store and index a set of values. An array is use-

ful when the data you want to store has something in common or is logically

grouped into a set.

Creating and Accessing Arrays
The following PHP statement declares an array called $temps and assigns it 12 val-

ues that represent the temperatures for January through December:

$temps = array(38, 40, 49, 60, 70, 79,
84, 83, 76, 65, 54, 42);

The array $temps that is created contains 12 values that are indexed with numeric

key values from 0 to 11. To reference an indexed value from an array, you suffix the

variable name with the index key. To display March’s temperature, for example, you

would use the following:

echo $temps[2];

Working with Arrays 207

Because index values begin at zero by default, the value for March—the third
month—is contained in the second element of the array.

The square brackets syntax can also be used to assign values to array elements. To

set a new value for November, for instance, you could use the following:

$temps[10] = 56;

The array function is a shortcut function that quickly builds an array from a sup-
plied list of values, rather than adding each element in turn.

If you omit the index number when assigning an array element, the next highest

index number will automatically be used. Starting with an empty array $temps, the

following code would begin to build the same array as before:

$temps[] = 38;
$temps[] = 40;
$temps[] = 49;
...

In this example, the value 38 would be assigned to $temps[0], 40 to $temps[1],

and so on. If you want to make sure that these assignments begin with $temps[0],

it’s a good idea to initialize the array first to make sure there is no existing data in

that array. You can initialize the $temps array with the following command:

$temps = array();

Looping Through an Array
You can easily loop through every element in an array by using a loop construct to

perform another action for each value in the array.

By using a while loop, you can find all the index keys and their values from an

array—similar to using the print_r function—as follows:

while (list($key, $value) = each($temps)) {
echo “Key $key has value $val
”;

}

For each element in the array, the index key value will be stored in $key and the

value in $value.

PHP also provides another construct for traversing arrays in a loop, using a foreach

construct. Whether you use a while or foreach loop is a matter of preference; you

should use whichever you find easiest to read.

By the
Way

By the
Way

208 CHAPTER 15: Variables

The foreach loop equivalent to the previous example is as follows:

foreach($temps as $key => $value) {
...

}

Associative Arrays
The array examples so far in this chapter have used numeric keys. An associative

array allows you to use textual keys so that the indexes can be more descriptive.

To assign a value to an array by using an associative key and to reference that

value, you simply use a textual key name enclosed in quotes, as in the following

examples:

$temps[“jan”] = 38;
echo $temps[“jan”];

To define the complete array of average monthly temperatures in this way, you can

use the array function as before, but you indicate the key value as well as each ele-

ment. You use the => symbol to show the relationship between a key and its value:

$temps = array(“jan” => 38, “feb” => 40, “mar” => 49,
“apr” => 60, “may” => 70, “jun” => 79,
“jul” => 84, “aug” => 83, “sep” => 76,
“oct” => 65, “nov” => 54, “dec” => 42);

The elements in an associative array are stored in the order in which they are

defined (you will learn about sorting arrays later in this chapter), and traversing this

array in a loop will find the elements in the order defined. You can call print_r on

the array to verify this. The first few lines of output are as follows:

Array
(

[jan] => 38
[feb] => 40
[mar] => 49

...

Array Functions
You have already seen the array function used to generate an array from a list of

values. Now let’s take a look at some of the other functions PHP provides for manip-

ulating arrays.

There are many more array functions in PHP than this book can cover. If you need

to perform a complex array operation that you have not learned about, refer to the

online documentation at www.php.net/ref.array.

www.php.net/ref.array

Date Formats 209

Looking Inside Arrays
The count function returns the number of elements in an array. It takes a single

array argument. For example, the following statement shows that there are 12 val-

ues in the $temps array:

echo count($temps);

To find out whether a value exists within an array without having to write a loop to

search through every value, you can use in_array or array_search. The first argu-

ment is the value to search for, and the second is the array to look inside:

if (in_array(“PHP”, $languages)) {
...

}

The difference between these functions is the return value. If the value exists within

the array, array_search returns the corresponding key, whereas in_array returns

only a Boolean result.

Somewhat confusingly, the order of the needle and haystack arguments to
in_array and array_search is opposite that of string functions, such as strpos
and strstr.

Date Formats
PHP does not have a native date data type, so in order to store date values in a

script, you must first decide on the best way to store these values.

Do-It-Yourself Date Formats
Although you often see dates written in a structured format, such as 05/03/1974 or

2001-12-31, these are not ideal formats for working with date values. However, the

latter of these two is more suitable than the first because the order of its components

is from most significant (the year) to the least significant (the day), so values can be

compared using the usual PHP operators.

As a string, 2002-01-01 is greater than 2001-12-31, but because comparisons are

performed more efficiently on numbers than on strings, this could be written better

as just 20020201, where the format is YYYYMMDD. This format can be extended to

include a time portion—again, with the most significant elements first—as YYYYM-

MDDHHMMSS, for example.

Watch
Out!

210 CHAPTER 15: Variables

However, date arithmetic with this format is nearly impossible. While you can add

one to 20040501, for instance, and find the next day in that month, simply adding

one to 20030531 would result in a nonsense date of May 32.

UNIX Timestamp Format
The UNIX timestamp format is an integer representation of a date and time. It is a

value that counts the number of seconds since midnight on January 1, 1970 and

was discussed briefly in Chapter 9.

Right now, we have a 10-digit date and time timestamp. To find the current time-

stamp, you use the time function:

echo time();

The UNIX timestamp format is useful because it is very easy to perform calculations

on because you know that the value always represents a number of seconds. For

example, you can just add 3,600 to a timestamp value to increase the time by one

hour or add 86,400 to add one day—because there are 3,600 seconds in an hour

and 86,400 seconds in a day.

One drawback, however, is that the UNIX timestamp format cannot handle dates

prior to 1970. Although some systems may be able to use a negative timestamp

value to count backward from the Epoch, this behavior cannot be relied on.

Timestamps are good for representing contemporary date values, but they may not

always be suitable for handling dates of birth or dates of historical significance. You

should consider what values you will be working with when deciding whether a

timestamp is the correct format to use.

Working with Timestamps
There are times when using your own date format is beneficial, but in most cases a

timestamp is the best choice. Let’s look at how PHP interacts with the timestamp

date format.

Formatting Dates
In Chapter 14, “Getting to Know PHP,” you used the date function to display the

current date by passing a format string as the argument, such as in the following

example:

echo date(“j F Y H:i:s”);

Working with Timestamps 211

The date displayed looks something like this:

12 November 2004 10:23:55

The optional second argument to date is a timestamp value of the date that you

want to display. For example, to display the date when a timestamp first requires a

10-digit number, you could use the following:

echo date(“j F Y H:I:s”, 1000000000);

The list of format codes for the date function is shown in Table 15.4.

TABLE 15.4 Format Codes for date

Code Description

a Lowercase am or pm

A Uppercase AM or PM

d Two-digit day of month, 01–31

D Three-letter day name, Mon–Sun

F Full month name, January–December

g 12-hour hour with no leading zero, 1–12

G 24-hour hour with no leading zero, 0–23

h 12-hour hour with leading zero, 01–12

H 24-hour hour with leading zero, 00–23

I Minutes with leading zero, 00–59

j Day of month with no leading zero, 1–31

l Full day name, Monday–Sunday

m Month number with leading zeros, 01–12

M Three-letter month name, Jan–Dec

n Month number with no leading zeros, 1–12

s Seconds with leading zero, 00–59

S Ordinal suffix for day of month, st, nd, rd, or th

w Number of day of week, 0–6, where 0 is Sunday

W Week number, 0–53

y Two-digit year number

Y Four-digit year number

z Day of year, 0–365

212 CHAPTER 15: Variables

Creating Timestamps
Don’t worry; you don’t have to count from January 1, 1970, each time you want to

calculate a timestamp. The PHP function mktime returns a timestamp based on

given date and time values.

The arguments, in order, are the hour, minute, second, month, day, and year. The

following example would assign $timestamp the timestamp value for 8 a.m. on

December 25, 2001:

$timestamp = mktime(8, 0, 0, 12, 25, 2001);

The UNIX timestamp format counts from January 1, 1970, at midnight GMT. The

mktime function returns a timestamp relative to the time zone in which your system

operates. For instance, mktime would return a timestamp value 3,600 higher when

running on a web server in Texas than on a machine in New York with the same

arguments.

The mktime function is forgiving if you supply it with nonsense arguments, such as

a day of the month that doesn’t exist. For instance, if you try to calculate a time-

stamp for February 29 in a non-leap year, the value returned will actually represent

March 1, as the following statement confirms:

echo date(“d/m/Y”, mktime(12, 0, 0, 2, 29, 2003));

You can exploit this behavior as a way of performing date and time arithmetic.

Consider the following example, which calculates and displays the date and time 37

hours after midday on December 30, 2001:

$time = mktime(12 + 37, 0, 0, 12, 30, 2001);
echo date(“d/m/Y H:i:s”, $time);

By simply adding a constant to one of the arguments in mktime, you can shift the

timestamp value returned by that amount. The date and time display as follows:

01/01/2002 01:00:00

The value returned in this example has correctly shifted the day, month, year, and

hour values, taking into account the number of days in December and that

December is the last month of the year.

Summary 213

Converting Other Date Formats to Timestamps
If you have a date stored in a format like DD-MM-YYYY, it’s a fairly simple process to

convert this to a timestamp by breaking up the string around the hyphen character.

The explode function takes a delimiter argument and a string and returns an array

that contains each part of the string that was separated by the given delimiter.

The following example breaks a date in this format into its components and builds

a timestamp from those values:

$date = “03-05-1974”;
$parts = explode(“/”, $date);
$timestamp = mktime(12, 0, 0,

$parts[1], $parts[0], $parts[2]);

For many date formats, there is an even easier way to create a timestamp—using

the function strtotime. The following examples all display the same valid time-

stamp from a string date value:

$timestamp = strtotime(“3 May 04”);
$timestamp = strtotime(“3rd May 2004”);
$timestamp = strtotime(“May 3, 2004”);
$timestamp = strtotime(“3-may-04”);
$timestamp = strtotime(“2004-05-03”);
$timestamp = strtotime(“05/03/2004”);

Note that in the last examples, the date format given is MM/DD/YYYY, not

DD/MM/YYYY. You can find the complete list of formats that are acceptable to strto-

time at www.gnu.org/software/tar/manual/html_chapter/tar_7.html.

Summary
In this chapter you have learned about variables in PHP, and about the data for-

mats that can be stored within them, and also how to store and manipulate date

and time values in PHP. In the next chapter you will learn about classes in PHP, and

you will discover how to use third-party library classes that you download.

www.gnu.org/software/tar/manual/html_chapter/tar_7.html

This page intentionally left blank

CHAPTER 16

Flow Control

What You’ll Learn on This Chapter:
. Conditional Statements
. Loops

In this chapter you will learn about the conditional and looping constructs that allow you

to control the flow of a PHP script.

In this chapter we’ll look at two types of flow control: conditional statements, which tell

your script to execute a section of code only if certain criteria are met, and loops, which

indicate a block of code that is to be repeated a number of times.

Conditional Statements
A conditional statement in PHP begins with the keyword if, followed by a condition in

parentheses. The following example checks whether the value of the variable $number is

less than 10, and the echo statement displays its message only if this is the case:

$number = 5;
if ($number < 10) {
echo “$number is less than ten”;

}

The condition $number < 10 is satisfied if the value on the left of the < symbol is smaller

than the value on the right. If this condition holds true, then the code in the following set

of braces will be executed; otherwise, the script jumps to the next statement after the clos-

ing brace.

216 CHAPTER 16: Flow Control

Every conditional expression evaluates to a Boolean value, and an if statement
simply acts on a TRUE or FALSE value to determine whether the next block of code
should be executed. Any zero value in PHP is considered FALSE, and any nonzero
value is considered TRUE.

As it stands, the previous example will be TRUE because 5 is less than 10, so the

statement in braces is executed, and the corresponding output is displayed. Now, if

you change the initial value of $number to 10 or higher and rerun the script, the

condition fails, and no output is produced.

Braces are used in PHP to group blocks of code together. In a conditional statement,

they surround the section of code that is to be executed if the preceding condition is

true.

You will come across three types of brackets when writing PHP scripts. The most
commonly used terminology for each type is parentheses (()), braces ({}), and
square brackets ([]).

Braces are not required after an if statement. If they are omitted, the following sin-

gle statement is executed if the condition is true. Any subsequent statements are

executed, regardless of the status of the conditional.

Although how your code is indented makes no difference to PHP, it is customary to
indent blocks of code inside braces with a few space characters to visually sepa-
rate that block from other statements.

Even if you only want a condition or loop to apply to one statement, it is still use-
ful to use braces for clarity. It is particularly important in order to keep things
readable when you’re nesting multiple constructs.

Conditional Operators
PHP allows you to perform a number of different comparisons, to check for the

equality or relative size of two values. PHP’s conditional operators are shown in

Table 16.1.

By the
Way

Did you
Know?

Did you
Know?

Conditional Statements 217

TABLE 16.1 Conditional Operators in PHP

Operator Description

== Is equal to

=== Is identical to (is equal and is the same data type)

!= Is not equal to

!== Is not identical to

< Is less than

<= Is less than or equal to

> Is greater than

>= Is greater than or equal to

Be careful when comparing for equality to use a double equals symbol (==). A
single = is always an assignment operator and, unless the value assigned is zero,
your condition will always return true—and remember that TRUE is any nonzero
value. Always use == when comparing two values to avoid headaches.

Logical Operators
You can combine multiple expressions to check two or more criteria in a single con-

ditional statement. For example, the following statement checks whether the value

of $number is between 5 and 10:

$number = 8;
if ($number >= 5 and $number <= 10) {
echo “$number is between five and ten”;

}

The keyword and is a logical operator, which signifies that the overall condition will

be true only if the expressions on either side are true. That is, $number has to be

both greater than or equal to 5 and less than or equal to 10.

Table 16.2 shows the logical operators that can be used in PHP.

Watch
Out!

218 CHAPTER 16: Flow Control

TABLE 16.2 Logical Operators in PHP

Operator Name Description

! a NOT True if a is not true

a && b AND True if both a and b are true

a || b OR True if either a or b is true

a and b AND True if both a and b are true

a xor b XOR True if a or b is true, but not both

a or b OR True if either a or b is true

You may have noticed that there are two different ways of performing a logical AND

or OR in PHP. The difference between and and && (and between or and ||) is the

precedence used to evaluate expressions.

Table 16.2 lists the highest-precedence operators first. The following conditions,

which appear to do the same thing, are subtly but significantly different:

a or b and c
a || b and c

In the former condition, the and takes precedence and is evaluated first. The overall

condition is true if a is true or if both b and c are true.

In the latter condition, the || takes precedence, so c must be true, as must either a

or b, to satisfy the condition.

Multiple Condition Branches
By using an else clause with an if statement, you can specify an alternate action

to be taken if the condition is not met. The following example tests the value of

$number and displays a message that says whether it is greater than or less than 10:

$number = 16;
if ($number < 10) {
echo “$number is less than ten”;

}
else {
echo “$number is more than ten”;

}

The else clause provides an either/or mechanism for conditional statements. To add

more branches to a conditional statement, the elseif keyword can be used to add a

further condition that is checked only if the previous condition in the statement

fails.

Conditional Statements 219

The following example uses the date function to find the current time of day—

date(“H”) gives a number between 0 and 23 that represents the hour on the

clock—and displays an appropriate greeting:

$hour = date(“H”);
if ($hour < 12) {
echo “Good morning”;

}
elseif ($hour < 17) {
echo “Good afternoon”;

}
else {
echo “Good evening”;

}

This code displays Good morning if the server time is between midnight and 11:59,

Good afternoon from midday to 4:59 p.m., and Good evening from 5 p.m.

onward.

Notice that the elseif condition only checks that $hour is less than 17 (5 p.m.). It

does not need to check that the value is between 12 and 17 because the initial if

condition ensures that PHP will not get as far as the elseif if $hour is less than 12.

The code in the else clause is executed if all else fails. For values of $hour that are

17 or higher, neither the if nor the elseif condition will be true.

In PHP you can also write elseif as two words: else if. The way PHP interprets
this variation is slightly different, but its behavior is exactly the same.

The switch Statement
An if statement can contain as many elseif clauses as you need, but including

many of these clauses can often create cumbersome code, and an alternative is

available. switch is a conditional statement that can have multiple branches in a

much more compact format.

The following example uses a switch statement to check $name against two lists to

see whether it belongs to a friend:

switch ($name) {
case “Damon”:
case “Shelley”:
echo “Welcome, $name, you are my friend”;
break;

case “Adolf”:
case “Saddam”:
echo “You are no friend of mine, $name”;

By the
Way

220 CHAPTER 16: Flow Control

break;
default:
echo “I do not know who you are, $name”;

}

Each case statement defines a value for which the next block of PHP code will be

executed. If you assign your first name to $name and run this script, you will be

greeted as a friend if your name is Damon or Shelley, and you will be told that you

are not a friend if your name is either Adolf or Saddam. If you have any other

name, the script will tell you it does not know who you are.

There can be any number of case statements preceding the PHP code to which they

relate. If the value that is being tested by the switch statement (in this case $name)

matches any one of them, any subsequent PHP code will be executed until a break

command is reached.

The break statement is important in a switch statement. When a case state-
ment has been matched, any PHP code that follows will be executed—even if
there is another case statement checking for a different value. This behavior can
sometimes be useful, but mostly it is not what you want—so remember to put a
break after every case.

Any other value for $name will cause the default code block to be executed. As with

an else clause, default is optional and supplies an action to be taken if nothing

else is appropriate.

Loops
PHP offers three types of loop constructs that all do the same thing—repeat a section

of code a number of times—in slightly different ways.

The while Loop
The while keyword takes a condition in parentheses, and the code block that fol-

lows is repeated while that condition is true. If the condition is false initially, the

code block will not be repeated at all.

The repeating code must perform some action that affects the condition in such a
way that the loop condition will eventually no longer be met; otherwise, the loop
will repeat forever.

Watch
Out!

By the
Way

Loops 221

The following example uses a while loop to display the square numbers from

1 to 10:

$count = 1;
while ($count <= 10) {
$square = $count * $count;
print “$count squared is $square
”;
$count++;

}

The counter variable $count is initialized with a value of 1. The while loop calcu-

lates the square of that number and displays it, then adds one to the value of

$count. The ++ operator adds one to the value of the variable that precedes it.

The loop repeats while the condition $count <= 10 is true, so the first 10 numbers

and their squares are displayed in turn, and then the loop ends.

The do Loop
The do loop is very similar to the while loop except that the condition comes after

the block of repeating code. Because of this variation, the loop code is always exe-

cuted at least once—even if the condition is initially false.

The following do loop is equivalent to the previous example, displaying the num-

bers from 1 to 10, with their squares:

$count = 1;
do {
$square = $count * $count;
print “$count squared is $square
”;
$count++;

} while ($count <= 10);

The for Loop
The for loop provides a compact way to create a loop. The following example per-

forms the same loop as the previous two examples:

for ($count = 1; $count <= 10; $count++) {
$square = $count * $count;
print “$count squared is $square
”;

}

As you can see, using for allows you to use much less code to do the same thing as

with while and do.

222 CHAPTER 16: Flow Control

A for statement has three parts, separated by semicolons:

. The first part is an expression that is evaluated once when the loop begins. In

the preceding example, you initialized the value of $count.

. The second part is the condition. While the condition is true, the loop contin-

ues repeating. As with a while loop, if the condition is false to start with, the

following code block is not executed at all.

. The third part is an expression that is evaluated once at the end of each pass

of the loop. In the previous example, $count is incremented after each line of

the output is displayed.

Nesting Conditions and Loops
So far you have only seen simple examples of conditions and loops. However, you

can nest these constructs within each other to create some quite complex rules to

control the flow of a script.

The more complex the flow control in your script is, the more important it
becomes to indent your code to make it clear which blocks of code correspond to
which constructs.

Breaking Out of a Loop
You have already learned about using the keyword break in a switch statement.

You can also use break in a loop construct to tell PHP to immediately exit the loop

and continue with the rest of the script.

The continue keyword is used to end the current pass of a loop. However, unlike

with break, the script jumps back to the top of the same loop and continues execu-

tion until the loop condition fails.

Summary
In this chapter you have learned how to vary the flow of your PHP script by using

conditional statements and loops. In the next chapter you will see how to create

reusable functions from blocks of PHP code.

Did you
Know?

CHAPTER 17

Functions

What You’ll Learn in This Chapter:
. Using Functions
. Arguments and Return Values
. Using Library Files

In this chapter you will learn how frequently used sections of code can be turned into

reusable functions.

Using Functions
A function is used to make a task that might consist of many lines of code into a routine

that can be called using a single instruction.

PHP contains many functions that perform a wide range of useful tasks. Some are built in

to the PHP language; others are more specialized and are available only if certain exten-

sions are activated when PHP is installed.

The online PHP manual (www.php.net) is an invaluable reference. As well as documenta-

tion for every function in the language, the manual pages are also annotated with user-

submitted tips and examples, and you can even submit your own comments if you want.

To quickly pull up the PHP manual page for any function, use this
shortcut: www.php.net/function_name.

Did you
Know?

www.php.net
www.php.net/function_name

224 CHAPTER 17: Functions

You have already used the date function to generate a string that contains a for-

matted version of the current date. Let’s take a closer look at how that example

from Chapter 14, “Getting to Know PHP,” works. The example looked like this:

echo date(‘j F Y’);

The online PHP manual gives the prototype for date as follows:

string date (string format [, int timestamp])

This means that date takes a string argument called format and, optionally, the

integer timestamp. It returns a string value. This example sends j F Y to the func-

tion as the format argument, but timestamp is omitted. The echo command dis-

plays the string that is returned.

Every function has a prototype that defines how many arguments it takes, the
arguments’ data types, and what value is returned. Optional arguments are shown
in square brackets ([]).

Defining Functions
In addition to the built-in functions, PHP allows you to define your own. There are

advantages to using your own function. Not only do you have to type less when the

same piece of code has to be executed several times but a custom-defined function

also makes your script easier to maintain. If you want to change the way a task is per-

formed, you only need to update the program code once—in the function definition—

rather than fix it every place it appears in your script.

Grouping tasks into functions is the first step toward modularizing your code—
something that is especially important to keep your scripts manageable as they
grow in size and become more complex.

The following is a simple example that shows how a function is defined and used

in PHP:

function add_tax($amount) {
$total = $amount * 1.09;
return $total;

}

$price = 16.00;
echo “Price before tax: $price
”;
echo “Price after tax: “;
echo add_tax($price);

By the
Way

Did you
Know?

Arguments and Return Values 225

The function keyword defines a function called add_tax that will execute the code

block that follows. The code that makes up a function is always contained in braces.

Putting $amount in parentheses after the function name stipulates that add_tax

takes a single argument that will be stored in a variable called $amount inside the

function.

The first line of the function code is a simple calculation that multiplies $amount by

1.09—which is equivalent to adding 9% to that value—and assigns the result to

$total. The return keyword is followed by the value that is to be returned when

the function is called from within the script.

Running this example produces the following output:

Price before tax: 16
Price after tax: 17.44

This is an example of a function that you might use in many places in a web page;

for instance, on a page that lists all the products available in an online store, you

would call this function once for each item that is displayed to show the after-tax

price. If the rate of tax changes, you only need to change the formula in add_tax to

alter every price displayed on that page.

Arguments and Return Values
Every function call consists of the function name followed by a list of arguments in

parentheses. If there is more than one argument, the list items are separated with

commas. Some functions do not require any arguments at all, but a pair of paren-

theses is still required—even if there are no arguments contained in them.

The built-in function phpinfo generates a web page that contains a lot of informa-

tion about the PHP module. This function does not require any arguments, so it can

be called from a script that is as simple as

<?php phpinfo();?>

If you create this script and point a web browser at it, you will see a web page that

contains system information and configuration settings.

Returning Success or Failure
Because phpinfo generates its own output, you do not need to prefix it with echo,

but, for the same reason, you cannot assign the web page it produces to a variable.

In fact, the return value from phpinfo is the integer value 1.

226 CHAPTER 17: Functions

Functions that do not have an explicit return value usually use a return code to
indicate whether their operation has completed successfully. A zero value (FALSE)
indicates failure, and a nonzero value (TRUE) indicates success.

The following example uses the mail function to attempt to send an email from a

PHP script. The first three arguments to mail specify the recipient’s email address,

the message subject, and the message body. The return value of mail is used in an

if condition to check whether the function was successful:

if (mail(“chris@lightwood.net”, “Hello”, “This is a test email”)) {
echo “Email was sent successfully”;

}
else {
echo “Email could not be sent”;

}

If the web server that this script is run on is not properly configured to send email,

or if there is some other error when trying to send, mail will return zero, indicating

that the email could not be sent. A nonzero value indicates that the message was

handed off to your mail server for sending.

Although you will not always need to test the return value of every function, you
should be aware that every function in PHP does return some value.

Default Argument Values
The mail function is an example of a function that takes multiple arguments; the

recipient, subject, and message body are all required. The prototype for mail also

specifies that this function can take an optional fourth argument, which can con-

tain additional mail headers.

Calling mail with too few arguments results in a warning. For instance, a script that

contains the following:

mail(“chris@lightwood.net”, “Hello”);

will produce a warning similar to this:

Warning: mail() expects at least 3 parameters, 2 given in
/home/chris/mail.php on line 3

By the
Way

By the
Way

Arguments and Return Values 227

However, the following two calls to mail are both valid:

mail(“chris@lightwood.net”, “Hello”, “This is a test email”);

mail(“chris@lightwood.net”, “Hello”, “This is a test email”,
“Cc: editor@samspublishing.com”);

To have more than one argument in your own function, you simply use a comma-

separated list of variable names in the function definition. To make one of these

arguments optional, you assign it a default value in the argument list, the same

way you would assign a value to a variable.

The following example is a variation of add_tax that takes two arguments—the net

amount and the tax rate to add on. $rate has a default value of 10, so it is an

optional argument:

function add_tax_rate($amount, $rate=10) {
$total = $amount * (1 + ($rate / 100));
return($total);

}

Using this function, the following two calls are both valid:

add_tax_rate(16);
add_tax_rate(16, 9);

The first example uses the default rate of 10%, whereas the second example specifies

a rate of 9% to be used—producing the same behavior as the original add_tax func-

tion example.

All the optional arguments to a function must appear at the end of the argument
list, with the required values passed in first. Otherwise, PHP will not know which
arguments you are passing to the function.

Variable Scope
The reason values have to be passed in to functions as arguments has to do with

variable scope—the rules that determine what sections of script are able to access

which variables.

The basic rule is that any variables defined in the main body of the script cannot be

used inside a function. Likewise, any variables used inside a function cannot be seen

by the main script.

Watch
Out!

228 CHAPTER 17: Functions

Variables available within a function are said to be local variables or that their
scope is local to that function. Variables that are not local are called global
variables.

Local and global variables can have the same name and contain different values,
although it is best to try to avoid this to make your script easier to read.

When called, add_tax calculates $total, and this is the value returned. However,

even after add_tax is called, the local variable $total is undefined outside that

function.

The following piece of code attempts to display the value of a global variable from

inside a function:

function display_value() {
echo $value;

}

$value = 125;
display_value();

If you run this script, you will see that no output is produced because $value has

not been declared in the local scope.

To access a global variable inside a function, you must use the global keyword at

the top of the function code. Doing so overrides the scope of that variable so that it

can be read and altered within the function. The following code shows an example:

function change_value() {
global $value;
echo “Before: $value
”;
$value = $value * 2;

}
$value = 100;
display_value();
echo “After: $value
”;

The value of $value can now be accessed inside the function, so the output pro-

duced is as follows:

Before: 100
After: 200

By the
Way

Summary 229

Using Library Files
After you have created a function that does something useful, you will probably

want to use it again in other scripts. Rather than copy the function definition into

each script that needs to use it, you can use a library file so that your function needs

to be stored and maintained in only one place.

Before you go any further, you should create a library file called tax.php that con-

tains both the add_tax and add_tax_rate functions but no other PHP code.

A library file needs to enclose its PHP code inside <?php tags just like a regular
script; otherwise, the contents will be displayed as HTML when they are included
in a script.

Including Library Files
To incorporate an external library file into another script, you use the include key-

word. The following includes tax.php so that add_tax can be called in that script:

include “tax.php”;
$price = 95;
echo “Price before tax: $price
”;
echo “Price after tax: “;
echo add_tax($price);

You can use the include_once keyword if you want to make sure that a library file

is loaded only once. If a script attempts to define the same function a second time,

an error will result. Using include_once helps to avoid this, particularly when files

are being included from other library files. It is often useful to have a library file

that includes several other files, each containing a few functions, rather than one

huge library file.

The require and require_once instructions work in a similar way to include
and include_once but have subtly different behavior. In the event of an error,
include generates a warning, but the script carries on running as best it can. A
failure from a require statement causes the script to exit immediately.

Summary
In this chapter you have learned how to use functions to modularize your code. In

the next chapter you will learn about ways to work with classes in PHP.

Watch
Out!

Did you
Know?

This page intentionally left blank

CHAPTER 18

Using Classes

What You’ll Learn in This Chapter:
. Object-Oriented PHP
. What Is a Class?
. Creating and Using Objects

In this chapter you will learn the basics of object-oriented PHP. You will see how a class is

defined and how you can access methods and properties from third-party classes.

Object-Oriented PHP
PHP can, if you want, be written in an object-oriented (OO) fashion. In PHP5, the OO

functionality of the language has been enhanced considerably.

If you are familiar with other OO languages, such as C++ or Java, you may prefer the OO

approach to programming PHP, whereas if you are used to other procedural languages,

you may not want to use objects at all. There are, after all, many ways to solve the same

problem.

If you are new to programming as well as to PHP, you probably have no strong feelings

either way just yet. It’s certainly true that OO concepts are easier to grasp if you have no

programming experience at all than if you have a background in a procedural language,

but even so OO methods are not something that can be taught in a brief chapter in this

book!

The aim of this chapter is to introduce how a class is created and referenced in PHP so

that if you have a preference for using objects, you can begin to develop scripts by using

OO methods. Most importantly, however, you will be able to pick up and use some of the

many freely available third-party class libraries that are available for PHP from resources

such as those at www.phpclasses.org.

www.phpclasses.org

232 CHAPTER 18: Using Classes

What Is a Class?
A class is the template structure that defines an object. It can contain functions—also

known as class methods—and variables—also known as class properties or attributes.

Each class consists of a set of PHP statements that define how to perform a task or

set of tasks that you want to repeat frequently. The class can contain private meth-

ods, which are only used internally to perform the class’s functions, and public meth-

ods, which you can use to interface with the class.

A good class hides its inner workings and includes only the public methods that are

required to provide a simple interface to its functionality. If you bundle complex

blocks of programming into a class, any script that uses that class does not need to

worry about exactly how a particular operation is performed. All that is required is

knowledge of the class’s public methods.

Because there are many freely available third-party classes for PHP, in many situa-

tions, you need not waste time implementing a feature in PHP that is already freely

available.

When to Use Classes
At first, there may not appear to be any real advantage in using a class over using

functions that have been modularized into an include file. OO is not necessarily a

better approach to programming; rather, it is a different way of thinking. Whether

you choose to develop your own classes is a matter of preference.

One of the advantages of OO programming is that it can allow your code to scale

into very large projects easily. In OO programming, a class can inherit the proper-

ties of another and extend it; this means that functionality that has already been

developed can be reused and adapted to fit a particular situation. This is called

inheritance, and it is a key feature of OO development.

When you have completed this book, if you are interested in learning more about

OO programming, take a look at Sams Teach Yourself Object-Oriented Programming in

21 Days by Anthony Sintes.

What a Class Looks Like
A class is a grouping of various functions and variables—and that is exactly how it

looks when written in PHP. A class definition looks very similar to a function defini-

tion; it begins with the keyword class and an identifier, followed by the class defini-

tion, contained in a pair of curly brackets ({}).

Creating and Using Objects 233

The following is a trivial example of a class to show how a class looks. This

example contains just one property, myValue, and one method, myMethod (which

does nothing):

class myClass {
var $myValue;

function myMethod() {
return 0;

}
}

If you are already familiar with OO programming and want to get a head start with

OO PHP, you can refer to the online documentation at www.php.net/manual/en/

language.oop5.php.

Creating and Using Objects
To create an instance of an object from a class, you use the new keyword in PHP, as

follows:

$myObject = new myClass;

In this example, myClass is the name of a class that must be defined in the script—

usually in an include file—and $myObject becomes a myClass object.

You can use the same class many times in the same script by simply creating new
instances from that class but with new object names.

Methods and Properties
The methods and properties defined in myClass can be referenced for $myObject.

The following are generic examples:

$myObject->myValue = “555-1234”;
$myObject->myMethod();

The arrow symbol (->)—made up of a hyphen and greater-than symbol—indicates

a method or property of the given object. To reference the current object within the

class definition, you use the special name $this.

The following example defines myClass with a method that references one of the

object properties:

class myClass {
var $myValue = “Jelly”;

By the
Way

www.php.net/manual/en/language.oop5.php
www.php.net/manual/en/language.oop5.php

234 CHAPTER 18: Using Classes

function myMethod() {
echo “myValue is “ . $this->myValue . “
”;

}
}

$myObject = new myClass;
$myObject->myMethod();
$myObject->myValue = “Custard”;
$myObject->myMethod();

This example makes two separate calls to myMethod. The first time it displays the

default value of myValue; an assignment within the class specifies a default value

for a property. The second call comes after that property has had a new value

assigned. The class uses $this to reference its own property and does not care, or

even know, that in the script its name is $myObject.

If the class includes a special method known as a constructor, arguments can be sup-

plied in parentheses when an object is created, and those values are later passed to

the constructor function. This is usually done to initialize a set of properties for each

object instance, and it looks similar to the following:

$myObject = new myClass($var1, $var2);

Using a Third-Party Class
The best way to learn how to work with classes is to use one. Let’s take a look at a

popular third-party class written by Manuel Lemos, which provides a comprehensive

way to validate email addresses. You can download this class from www.phpclass-

es.org/browse/file/28.html and save the file locally as email_validation.php.

Manuel’s class validates an email address not only by checking that its format is

correct but also by performing a domain name lookup to ensure that it can be deliv-

ered. It even connects to the remote mail server to make sure the given mailbox

actually exists.

If you are following this example on a Windows-based web server, you need to
download an additional file, getmxrr.php, to add a suitable domain name lookup
function to PHP. You can download this file from www.phpclasses.org/browse/file/
2080.html.

The email_validation.php script defines a class called email_validation_class,

so you first need to create a new instance of a validator object called $validator, as

follows:

$validator = new email_validation_class;

By the
Way

www.phpclasses.org/browse/file/28.html
www.phpclasses.org/browse/file/28.html
www.phpclasses.org/browse/file/2080.html
www.phpclasses.org/browse/file/2080.html

Creating and Using Objects 235

You can set a number of properties for your new class. Some are required in order

for the class to work properly, and others allow you to change the default behavior.

Each object instance requires you to set the properties that contain the mailbox and

domain parts of a real email address, which is the address that will be given to the

remote mail server when checking a mailbox. There are no default values for these

properties; they always have to be set as follows:

$validator->localuser = “chris”;
$validator->localhost = “lightwood.net”;

The optional timeout property defines how many seconds to wait when connected

to a remote mail server before giving up. Setting the debug property causes the text

of the communication with the remote server to be displayed onscreen. You never

need to do this, though, unless you are interested in what is going on. The following

statements define a timeout of 10 seconds and turn on debug output:

$validator->timeout = 10;
$validator->debug = TRUE;

The full list of adjustable properties for a validator object is shown in Table 18.1.

TABLE 18.1 Properties of an email_validation_class Object

Property Description

timeout Indicates the number of seconds before timing out when connect-
ing to a destination mail server

data_timeout Indicates the number of seconds before timing out while data is
exchanged with the mail server; if zero, takes the value of timeout

localuser Indicates the user part of the email address of the sending user

localhost Indicates the domain part of the email address of the sending user

debug Indicates whether to output the text of the communication with the
mail server

html_debug Indicates whether the debug output should be formatted as an
HTML page

The methods in email_validation_class are mostly private; you cannot call them

directly, but the internal code is made up of a set of functions. If you examine

email_validation.php, you will see function definitions, including Tokenize,

GetLine, and VerifyResultLines, but none of these are useful outside the object

itself.

236 CHAPTER 18: Using Classes

The only public method in a validator object is named ValidateEmailBox, and

when called, it initiates the email address validation of a string argument. The fol-

lowing example shows how ValidateEmailBox is called:

$email = “chris@datasnake.co.uk”;
if ($validator->ValidateEmailBox($email)) {
echo “$email is a valid email address”;

}
else {
echo “$email could not be validated”;

}

The return value from ValidateEmailBox indicates whether the validation check is

successful. If you have turned on the debug attribute, you will also see output simi-

lar to the following, in addition to the output from the script:

Resolving host name “mail.datasnake.co.uk”...
Connecting to host address “217.158.68.125”...
Connected.
S 220 mail.datasnake.co.uk ESMTP
C HELO lightwood.net
S 250 mail.datasnake.co.uk
C MAIL FROM: <chris@lightwood.net>
S 250 ok
C RCPT TO: <chris@datasnake.co.uk>
S 250 ok
C DATA
S 354 go ahead
This host states that the address is valid.
Disconnected.

Summary
In this chapter you have learned about OO PHP and seen how to use classes in your

own scripts.

Here we conclude Part IV of the book, in which we’ve discussed PHP in some detail.

Next, in Part V “More Complex Ajax Technologies,” we return to Ajax to explore

some more challenging uses of the technology.

PART V

More Complex Ajax
Technologies

CHAPTER 19 Returning Data as Text 239

CHAPTER 20 AHAH—Asynchronous HTML and HTTP 247

CHAPTER 21 Returning Data as XML 257

CHAPTER 22 Web Services and the REST and SOAP Protocols 271

CHAPTER 23 A JavaScript Library for Ajax 285

CHAPTER 24 Ajax Gotchas 295

This page intentionally left blank

CHAPTER 19

Returning Data as Text

What You’ll Learn in This Chapter:
. Getting More from the responseText Property

In this chapter you will learn some more techniques for using the responseText property

to add functionality to Ajax applications.

Getting More from the responseText
Property
The chapters of Part III, “Introducing Ajax,” discussed the individual components that

make Ajax work, culminating in a complete Ajax application. In Part V, “More Complex

Ajax Technologies,” each chapter examines how you can extend what you know to devel-

op more sophisticated Ajax applications.

For this chapter, we’ll look a little more closely at the responseText property of the

XMLHTTPRequest object and see how we can give our application some extra functionality

via its use.

As you have seen in previous chapters, the XMLHTTPRequest object provides two properties

that contain information received from the server, namely responseText and

responseXML. The former presents the calling application with the server data in string

format, whereas the latter provides DOM-compatible XML that can be parsed using

JavaScript methods.

Although the responseXML property allows you to carry out some sophisticated program-

ming tasks, much can be achieved just by manipulating the value stored in the

responseText property.

240 CHAPTER 19: Returning Data as Text

Returning Text
The term text is perhaps a little misleading. The responseText property contains a

character string, the value of which you can assign to a JavaScript variable via a

simple assignment statement:

var mytext = http.responseText;

There is no rule saying that the value contained in such a string must be legible

text; in fact, the value can contain complete gibberish provided that the string con-

tains only characters that JavaScript accepts in a string variable.

This fact allows a degree of flexibility in what sorts of information you can transfer

using this property.

Using Returned Text Directly in Page Elements
Perhaps the simplest example is to consider the use of the value held in

responseText in updating the textual part of a page element, say a <div> contain-

er. In this case you may simply take the returned string and apply it to the page ele-

ment in question.

Here’s a simple example. The following is the HTML code for an HTML page that

forms the basis for an Ajax application:

<html>
<head>
<title>My Ajax Application</title>

</head>
<body>
Here is the text returned by the server:

<div id=”myPageElement”></div>
</body>
</html>

Clearly this is a simple page that, as it stands, would merely output the line “Here is

the text returned by the server:” and nothing else.

Now suppose that we add to the page the necessary JavaScript routines to generate

an instance of an XMLHTTPRequest object (in this case called http) and make a

server request in response to the onLoad() event handler of the page’s <body> ele-

ment. Listing 19.1 shows the source code for the revised page.

Getting More from the responseText Property 241

LISTING 19.1 A Basic Ajax Application Using the responseText
Property
<html>
<head>
<title>My Ajax Application</title>
<script Language=”JavaScript”>
function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest();
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (err3) {
req = false;

}
}

}
return req;
}

var http = getXMLHTTPRequest();

function getServerText() {
var myurl = ‘textserver.php’;
myRand = parseInt(Math.random()*999999999999999);
var modurl = myurl+”?rand=”+myRand;
http.open(“GET”, modurl, true);
http.onreadystatechange = useHttpResponse;
http.send(null);

}

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {
var mytext = http.responseText;
document.getElementById(‘myPageElement’)

➥.innerHTML = mytext;
}

} else {
document. getElementById(‘myPageElement’)

➥.innerHTML = “”;
}

}

</script>
</head>
<body onLoad=”getServerText()”>
Here is the text returned by the server:

<div id=”myPageElement”></div>
</body>
</html>

242 CHAPTER 19: Returning Data as Text

Most, and probably all, of this code will be familiar from previous chapters. The

part that interests us here is the callback function useHttpResponse(), which con-

tains these lines:

var mytext = http.responseText;
document.getElementById(‘myPageElement’).innerHTML = mytext;

Here we have simply assigned the value received in responseText to become the

content of our chosen <div> container.

Running the preceding code with the simple server-side script

<?php
echo “This is the text from the server”;
?>

produces the screen display of Figure 19.1.

FIGURE 19.1
Displaying text
in a page
element via
responseText.

Including HTML in responseText
Now let’s modify the code from the preceding example.

As you know from previous chapters, HTML markup is entirely composed of tags

written using text characters. If the value contained in the responseText property is

to be used for modifying the display of the page from which the server request is

being sent, there is nothing to stop us having our server script include HTML

markup in the information it returns.

Getting More from the responseText Property 243

Suppose that we once again use the code of Listing 19.1 but with a modified server

script:

<?php
echo “<h3>Returning Formatted Text</h3>”;
echo “<hr />”;
echo “We can use HTML to <stroong>format
➥ text before we return it!”;
?>

Figure 19.2 shows the resulting browser display.

FIGURE 19.2
Display showing
HTML formatted
at the server.

As a slightly more involved example, consider the case where the server script gener-

ates more complex output. We want our application to take this server output and

display it as the contents of a table.

This time we’ll use our server-side PHP script to generate some tabular information:

<?php
$days = array(‘Monday’,’Tuesday’,’Wednesday’,
➥’Thursday’,’Friday’,’Saturday’,’Sunday’);
echo “<table border=’2’>”;
echo “<tr><th>Day Number</th><th>Day Name</th></tr>”;
for($i=0;$i<7;$i++)
{
echo “<tr><td>”.$i.”</td><td>”.$days[$i].”</td></tr>”;

}
echo “</table>”;
?>

Once again using the code of Listing 19.1 to call the server-side script via

XMLHTTPRequest, we obtain a page as displayed in Figure 19.3.

244 CHAPTER 19: Returning Data as Text

More Complex Formatted Data
So far we have demonstrated ways to return text that may be directly applied to an

element on a web page. So far, so good. However, if you are willing to do a little

more work in JavaScript to manipulate the returned data, you can achieve even

more.

Provided that the server returns a string value in the responseText property of the

XMLHTTPRequest object, you can use any data format you may devise to encode

information within it.

Consider the following server-side script, which uses the same data array as in the

previous example:

<?php
$days = array(‘Monday’,’Tuesday’,’Wednesday’,
➥’Thursday’,’Friday’,’Saturday’,’Sunday’);
$numdays = sizeof($days);
for($i=0;$i<($numdays - 1);$i++)
{
echo $days[$i].”|”;
}
echo $days[$numdays-1];
?>

Note the use of the PHP sizeof() function to determine the number of items in
the array. In PHP, as in JavaScript, array keys are numbered from 0 rather than 1.

FIGURE 19.3
Returning more
complex HTML.

By the
Way

Summary 245

The string returned in the responseText property now contains the days of the

week, separated—or delimited—by the pipe character |. If we copy this string into a

JavaScript variable mystring,

var mystring = http.responseText;

we will find that the variable mystring contains the string

Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday

We may now conveniently divide this string into an array using JavaScript’s

split() method:

var results = http.responseText.split(“|”);

The JavaScript split() method slices up a string, making each cut wherever in
the string it locates the character that it has been given as an argument. That
character need not be a pipe; popular alternatives are commas or slashes.

We now have a JavaScript array results containing our data:

results[0] = ‘Monday’
results[1] = ‘Tuesday’
etc…

Rather than simply displaying the received data, we now can use it in JavaScript

routines in any way we want.

For complex data formats, XML may be a better way to receive and handle data
from the server. However, it is remarkable how much can be done just by using
the responseText property.

Summary
With little effort, the XMLHTTPRequest object’s responseText property can be per-

suaded to do more than simply return some text to display in a web page.

For all but the most complex data formats, it may prove simpler to manipulate

responseText than to deal with the added complexity of XML.

In this chapter you saw several examples of this technique, ranging from the simple

update of text content within a page element, to the manipulation of more complex

data structures.

Did you
Know?

Did you
Know?

This page intentionally left blank

CHAPTER 20

AHAH—Asynchronous HTML
and HTTP

What You’ll Learn in This Chapter:
. Introducing AHAH
. Creating a Small Library for AHAH
. Using myAHAHlib.js

In this chapter you will learn how to use AHAH (Asynchronous HTML and HTTP) to build

Ajax-style applications without using XML.

Introducing AHAH
You saw in Chapter 19, “Returning Data as Text,” just how much can be achieved with an

Ajax application without using any XML at all. Many tasks, from simply updating the

text on a page to dealing with complicated data structures, can be carried out using only

the text string whose value is returned in the XMLHTTPRequest object’s responseText

property.

It is possible to build complete and useful applications without any XML at all. In fact, the

term AHAH (Asynchronous HTML and HTTP) has been coined for just such applications.

This chapter takes the concepts of Chapter 19 a little further, examining in more detail

where—and how—AHAH can be applied.

248 CHAPTER 20: AHAH—Asynchronous HTML and HTTP

This technique, a kind of subset of Ajax, has been given various acronyms. These
include AHAH (asynchronous HTML and HTTP), JAH (Just Asynchronous HTML),
and HAJ (HTML And JavaScript). In this book we’ll refer to it as AHAH.

Why Use AHAH Instead of Ajax?
There is no doubt that XML is an important technology with diverse and powerful

capabilities. For complex Ajax applications with sophisticated data structures it may

well be the best—or perhaps the only—option. However, using XML can sometimes

complicate the design of an application, including:

. Work involved in the design of custom schemas for XML data.

. Cross-browser compatibility issues when using JavaScript’s DOM methods.

. Performance may suffer from having to carry out processor-intensive XML

parsing.

Using AHAH can help you avoid these headaches, while offering a few more advan-

tages, too:

. Easy reworking of some preexisting web pages.

. HTML can be easier to fault-find than XML.

. Use of CSS to style the returned information, rather than having to use XSLT.

XSLT is a transformation language used to convert XML documents into other
formats—for example, into HTML suitable for a browser to display.

In the following sections we’ll package our AHAH scripts into a neat external

JavaScript file that we can call from our applications.

Creating a Small Library for AHAH
The Ajax applications examined in the last couple of chapters, although complete

and functional, involved embedding a lot of JavaScript code into our pages. As you

have seen, each application tends to contain similar functions:

By the
Way

By the
Way

Creating a Small Library for AHAH 249

. A method to create an instance of the XMLHTTPRequest object, configure it,

and send it

. A callback function to deal with the returned text contained in the

responseText property

You can abstract these functions into simple JavaScript function calls, especially in

cases where you simply want to update a single page element with a new value

returned from the server.

Introducing myAHAHlib.js
Consider Listing 20.1; most of this code will be instantly recognizable to you.

LISTING 20.1 myAHAHlib.js
function callAHAH(url, pageElement, callMessage) {

document.getElementById(pageElement)
➥.innerHTML = callMessage;

try {
req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(e) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

/* some versions IE */
} catch (e) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);

/* some versions IE */
} catch (E) {
req = false;
}

}
}
req.onreadystatechange

➥ = function() {responseAHAH(pageElement);};
req.open(“GET”,url,true);
req.send(null);

}

function responseAHAH(pageElement) {
var output = ‘’;
if(req.readyState == 4) {

if(req.status == 200) {
output = req.responseText;
document.getElementById(pageElement)

➥.innerHTML = output;
}

}
}

250 CHAPTER 20: AHAH—Asynchronous HTML and HTTP

The function callAHAH() encapsulates the tasks of creating an instance of the

XMLHTTPRequest object, declaring the callback function, and sending the request.

Note that instead of simply declaring

req.onreadystatechange = responseAHAH;

we instead used the JavaScript construct

req.onreadystatechange
➥ = function() {responseAHAH(pageElement);};

This type of declaration allows us to pass an argument to the declared function, in

this case identifying the page element to be updated.

callAHAH() also accepts an additional argument, callMessage. This argument con-

tains a string defining the content that should be displayed in the target element

while we await the outcome of the server request. This provides a degree of feedback

for the user, indicating that something is happening on the page. In practice this

may be a line of text, such as

‘Updating page; please wait a moment ….’

Once again, however, you may choose to embed some HTML code into this string.

Using an animated GIF image within an element provides an effective way of

warning a user that a process is underway.

The callback function responseAHAH() carries out the specific task of applying the

string returned in the responseText property to the innerHTML property of the

selected page element pageElement:

output = req.responseText;
document.getElementById(pageElement).innerHTML = output;

This code has been packaged into a file named myAHAHlib.js, which you can call

from an HTML page, thus making the functions available to your AHAH applica-

tion. The next section shows some examples of its use.

Using myAHAHlib.js
In Part II we encountered the concept of JavaScript functions being located in an

external file that is referred to within our page.

That’s how we’ll use our new file myAHAHlib.js, using a statement in this form:

<SCRIPT language=”JavaScript” SRC=”myAHAHlib.js”></SCRIPT>

Using myAHAHlib.js 251

We will then be at liberty to call the functions within the script whenever we want.

The following is the skeleton source code of such an HTML page:

<html>
<head>
<title>Another Ajax Application</title>
<SCRIPT language=”JavaScript” SRC=”myAHAHlib.js”></SCRIPT>
</head>
<body>
<form>
<input type=”button” onClick=
➥”callAHAH(‘serverscript.php?parameter=x’,
➥’displaydiv’, ‘Please wait – page updating …’)” >
This is the place where the server response
will be posted:

<div id=”displaydiv”></div>
</form>
</body>
</html>

In this simple HTML page, a button element is used to create the event that causes

the callAHAH() method to be called. This method places the text string

‘Please wait – page updating …’

in the <div> element having id displaydiv and sends the asynchronous server call

to the URL serverscript.php?parameter=x.

When responseAHAH() detects that the server has completed its response, the <div>

element’s content is updated using the value stored in responseText; instead of

showing the “please wait” message, the <div> now displays whatever text the server

has returned.

Applying myAHAHlib.js in a Project
We can demonstrate these techniques with a further simple Ajax application. This

time, we’ll build a script to grab the ‘keywords’ metatag information from a user-

entered URL.

Metatags are optional HTML container elements in the <head> section of an
HTML page. They contain data about the web page that is useful to search
engines and indexes in deciding how the page’s content should be classified. The
‘keywords’ metatag, where present, typically contains a comma-separated list of
words with meanings relevant to the site content. An example of a ‘keywords’
metatag might look like this:

<meta name=”keywords” content=”programming, design,
➥ development, Ajax, JavaScript, XMLHTTPRequest, script”>

By the
Way

252 CHAPTER 20: AHAH—Asynchronous HTML and HTTP

Listing 20.2 shows the HTML code.

LISTING 20.2 getkeywords.html
<html>
<head>
<title>A ‘Keywords’ Metatag Grabber</title>
<SCRIPT language=”JavaScript” SRC=”myAHAHlib.js”>
</SCRIPT>
</head>
<body>
<script type=”text/javascript” src=”ahahLib.js”>
</script>
<form>
<table>
<tr>
<td>
URL: http://

</td>

<td>
<input type=”text” id=”myurl” name=”myurl” size=30>
<input type=”button” onclick =

➥”callAHAH(‘keywords.php?url=’+document
➥.getElementById(‘myurl’).value,’displaydiv’,
➥ ‘Please wait; loading content …’)” value=”Fetch”>
</td>

</tr>
<tr><td colspan=2 height=50 id=”displaydiv”></td></tr>
</table>
</form>
</body>
</html>

Finally, consider the server-side script:

<?php
$tags = @get_meta_tags(‘http://’.$url);
$result = $tags[‘keywords’];
if(strlen($result) > 0)
{

echo $result;
} else {

echo “No keywords metatag is available”;
}
?>

We present the selected URL to the PHP method get_meta_tags() as an argument:

$tags = @get_meta_tags(‘http://’.$url);

Using myAHAHlib.js 253

This method is specifically designed to parse the metatag information from HTML

pages in the form of an associative array. In this script, the array is given the name

$tags, and we can recover the ‘keywords’ metatag by examining the array entry

$tags[‘keywords’]; we can then check for the presence or absence of a ‘key-

words’ metatag by measuring the length of the returned string using PHP’s

strlen() method.

The @ character placed before a PHP method tells the PHP interpreter not to out-
put an error message if the method should encounter a problem during execution.
We require it in this instance because not all web pages contain a ‘keywords’
metatag; in the cases where none exists, we would prefer the method to return an
empty string so that we can add our own error handling.

When the file getkeywords.html is first loaded into the browser, we are presented

with the display shown in Figure 20.1.

Did you
Know?

FIGURE 20.1
The browser dis-
play after first
loading the
application.

Here we are invited to enter a URL. When we then click on the Fetch button,

callAHAH() is executed and sends our chosen URL as a parameter to the server-side

script. At the same time, the message “Please wait; loading content … “ is placed in

the <div> container. Although possibly only visible for a fraction of a second, we

now have a display such as that shown in Figure 20.2.

254 CHAPTER 20: AHAH—Asynchronous HTML and HTTP

Finally, when the server call has concluded, the contents of the responseText prop-

erty are loaded into the <div> container, producing the display of Figure 20.3.

FIGURE 20.2
Awaiting
the server
response.

FIGURE 20.3
The keywords
are successfully
returned.

▼

Summary 255

One option we haven’t yet considered is the idea of passing back JavaScript code
within responseText. Because JavaScript source code (like everything else in an
HTML page) is made up of statements written in plain text, you can return
JavaScript source from the server in the responseText property.

You can then execute this JavaScript code using JavaScript’s eval() method:
eval(object.responseText);

Consider the situation where your server script returns the string:
“alert(‘Hello World!);”

In this case the eval() method would execute the content as a JavaScript state-
ment, creating a dialog saying ‘Hello World!’ with an OK button.

Try It Yourself

Extending the Library
As it stands, myAHAHlib.js is a simple implementation of AHAH. There are many

ways it could be improved and extended, depending on how it is to be used. Rather

than cover these in this chapter, we’ll leave these for your own experimentation.

Here’s a few suggestions to get you started:

. Currently only GET requests are supported. How might the functions be modi-

fied to allow POST requests too?

. Much of the user feedback discussed in Chapter 13, “Our First Ajax

Application,” is not yet implemented in responseAHAH().

. Is it possible for callAHAH() to be modified to accept an array of page ele-

ments for updating and (with the aid of a suitable server-side script) process

them all at once?

Summary
It will hopefully have become clear, in the course of this chapter and Chapter 19,

that Ajax can achieve a lot of functionality without using any XML at all.

By carefully using combinations of client-side coding in JavaScript and server-side

scripting in your chosen language, you can create data schemes of high complexity.

Did you
Know?

▲

256 CHAPTER 20: AHAH—Asynchronous HTML and HTTP

In simpler applications, where all you want to do is update the text of page ele-

ments, the XMLHTTPRequest object’s functionality may be abstracted into a

JavaScript function library and called from an HTML page via straightforward

methods.

For some tasks, however, you need to leverage the power of XML. We’ll look at this

subject in Chapter 21, “Returning Data as XML.”

CHAPTER 21

Returning Data as XML

What You’ll Learn in This Chapter:
. Adding the “x” to Ajax
. The responseXML Property
. Project—An RSS Headline Reader

In this chapter you will learn to use XML data returned from the server via the

responseXML property of the XMLHTTPRequest object.

Adding the “x” to Ajax
Chapter 19, “Returning Data as Text,” and Chapter 20, “AHAH—Asynchronous HTML

and HTTP,” dealt at some length with the string value contained in responseText and

looked at several techniques for using this information in applications. These examples

ranged from simple updates of page element text to applications using more sophisticated

data structures encoded into string values that can be stored and transferred in the

responseText property.

The x in Ajax does, of course, stand for XML, and there are good reasons for using the

power of XML in your applications. This is particularly true when you need to use highly

structured information and/or perform complex translations between different types of

data representation.

As discussed previously, the XMLHTTPRequest object has a further property called

responseXML, which can be used to transfer information from the server via XML, rather

than in text strings.

258 CHAPTER 21: Returning Data as XML

You saw in Chapter 13, “Our First Ajax Application,” how JavaScript’s document

object model (DOM) methods can help you process this XML information. This

chapter looks at these techniques in a little more detail and hopefully gives you a

taste of what Ajax applications can achieve when leveraging the power of XML.

The responseXML Property
Whereas the responseText property of the XMLHTTPRequest object contains a

string, responseXML can be treated as if it were an XML document.

You need to make sure that your server presents valid and well-formed XML to be
returned via the responseXML property. In situations where XML cannot be cor-
rectly parsed by the XMLHTTPRequest object, perhaps due to well-formedness
errors or problems with unsupported character encoding, the content of the
responseXML is unpredictable and also likely to be different in different browsers.

Like the responseText property, the value stored in responseXML is read-only, so
you cannot write directly to this property; to manipulate it you must copy the value
to another variable:

var myobject = http.responseXML;

The complete structure and data contained in the XML document can now be made

available by using JavaScript’s DOM methods. Later in the chapter we’ll demon-

strate this with another working Ajax application, but first let’s revisit the JavaScript

DOM methods and introduce a few new ones.

More JavaScript DOM Methods
You met some of the JavaScript DOM methods, such as getElementById and

getElementsByTagName, in previous chapters. In those cases, we were mostly con-

cerned with reading the values of the nodes to write those values into HTML page

elements.

This chapter looks at the DOM methods that can be used to actually create ele-

ments, thereby changing the structure of the page.

The Document Object Model can be thought of as a treelike structure of nodes.

As well as reading the values associated with those nodes, you can create and

modify the nodes themselves, thereby changing the structure and content of your

document.

Watch
Out!

By the
Way

The responseXML Property 259

To add new elements to a page, you need to first create the elements and then

attach them to the appropriate point in your DOM tree. Let’s look at a simple exam-

ple using the following HTML document:

<html>
<head>
<title>Test Document</title>

</head>
<body>
We want to place some text here:

<div id=”displaydiv></div>
</body>
</html>

In this example, we want to add the text “Hello World!” to the <div> container in

the document body. We’ll put our JavaScript routine into a function that we’ll call

from the body’s onLoad() event handler.

First, we’ll use the JavaScript DOM method createTextNode() to, well, create a text

node:

var textnode = createTextNode(‘Hello World!’);

We now need to attach textnode to the DOM tree of the document at the appropri-

ate point.

You first learned about child nodes in Chapter 5, “Working with the Document

Object Model”; hopefully, you recall that nodes in a document are said to have chil-

dren if they contain other document elements. JavaScript has an appendChild()

method, which allows us to attach our new text node to the DOM tree by making it

a child node of an existing document node.

In this case, we want our text to be inside the <div> container having the id

displaydiv:

var textnode = document.createTextNode(‘Hello World!);
document.getElementById(‘displaydiv’).appendChild(textnode);

Compare this DOM-based method of writing content to the page with the
innerHTML method used in the project in Chapter 13.

Let’s look at the complete source of the page, after wrapping up this JavaScript code

into a function and adding the onLoad() event handler to execute it:

<html>
<head>
<title>Test Document</title>
<script Language=”JavaScript”>

By the
Way

260 CHAPTER 21: Returning Data as XML

function hello()
{
var textnode = document.createTextNode(‘Hello World!’);
document.getElementById(‘displaydiv’).appendChild(textnode);
}
</script>
</head>
<body onLoad=”hello()”>
We want to place some text here:

<div id=”displaydiv”></div>
</body>
</html>

Figure 21.1 shows the browser display after loading this page.

FIGURE 21.1
The DOM says
“Hello World!”

If you display the source code of this document in your browser, you won’t see the
‘Hello World!’ text inside the <div> container. The browser builds its DOM rep-
resentation of the HTML document and then uses that model to display the page.
The amendments made by your code are made to the DOM, not to the document
itself.

When you want to create other page elements besides text nodes, you can do so

using the createElement() method, which works pretty much like

createTextNode(). We could, in fact, have used createElement() to create the

<div> container itself, prior to adding our ‘Hello World!’ text node:

var newdiv = document.createElement(“div”);

By the
Way

The responseXML Property 261

In general, you simply pass the type of the required page element as an argument

to createElement() to generate the required type of element.

An Overview of DOM Methods
This book is not just about JavaScript DOM techniques, so we’re not going to repro-

duce here a comprehensive guide to all the available methods and properties.

However, Table 21.1 itemizes some of the more useful ones.

If you need a more comprehensive account of the JavaScript DOM methods and
properties, Andrew Watt gives a useful list in his excellent book Sams Teach
Yourself XML in 10 Minutes (Sams Publishing, ISBN 0672324717).

TABLE 21.1 Some JavaScript DOM Properties and Methods

Node Properties
childNodes Array of child nodes

firstChild The first child node

lastChild The last child node

nodeName Name of the node

nodeType Type of node

nodeValue Value contained in the node

nextSibling Next node sharing the same parent

previousSibling Previous node sharing same parent

parentNode Parent of this node

Node Methods
AppendChild Add a new child node

HasChildNodes True if this node has children

RemoveChild Deletes a child node

Document Methods
CreateAttribute Make a new attribute for an element

CreateElement Make a new document element

CreateTextNode Make a text item

GetElementsByTagName Create an array of tagnames

GetElementsById Find an element by its ID

Did you
Know?

262 CHAPTER 21: Returning Data as XML

Project—An RSS Headline Reader
Let’s now take what we’ve learned about returning XML data from the server and

use these techniques to tackle a new project.

XML data is made available on the Internet in many forms. One of the most popu-

lar is the RSS feed, a particular type of XML source usually containing news or other

topical and regularly updated items. RSS feeds are available from many sources on

the Web, including most broadcast companies and newspaper publishers, as well as

specialist sites for all manner of subjects.

We’ll write an Ajax application to take a URL for an RSS feed, collect the XML, and

list the titles and descriptions of the news items contained in the feed.

The following is part of the XML for a typical RSS feed:

<rss version=”0.91”>
<channel>
<title>myRSSfeed.com</title>
<link>http://www.********.com/</link>
<description>My RSS feed</description>
<language>en-us</language>
<item>
<title>New Store Opens</title>
<link>http://www.**********.html</link>
<description>A new music store opened today in Canal Road.
➥The new business, Ajax Records, caters for a wide range of
➥musical tastes.</description>
</item>
<item>
<title>Bad Weather Affects Transport</title>
<link>http://www.***********.html</link>
<description>Trains and buses were disrupted badly today
➥due to sudden heavy snow. Police advised people not to
➥travel unless absolutely necessary.</description>
</item>
<item>
<title>Date Announced for Mayoral Election</title>
<link>http://www.*********.html</link>
<description>September 4th has been announced as the date
➥for the next mayoral election. Watch local news for more
➥details.</description>
</item>
</channel>
</rss>

From the first line

<rss version=”0.91”>

Project—An RSS Headline Reader 263

we see that we are dealing with RSS version 0.91 in this case. The versions of RSS dif-

fer quite a bit, but for the purposes of our example we only care about the <title>,

<link>, and <description> elements for the individual news items, which remain

essentially unchanged from version to version.

The HTML Page for Our Application
Our page needs to contain an input field for us to enter the URL of the required RSS

feed and a button to instruct the application to collect the data. We also will have a

<div> container in which to display our parsed data:

<html>
<head>
<title>An Ajax RSS Headline Reader</title>
</head>
<body>
<h3>An Ajax RSS Reader</h3>
<form name=”form1”>
URL of RSS feed: <input type=”text” name=”feed” size=”50”
➥value=”http://”><input type=”button” value=”Get Feed”>

<div id=”news”><h4>Feed Titles</h4></div>
</form>
</html>

If we save this code to a file rss.htm and load it into our browser, we see something

like the display shown in Figure 21.2.

FIGURE 21.2
Displaying the
base HTML doc-
ument for our
RSS headline
reader.

264 CHAPTER 21: Returning Data as XML

Much of the code for our reader will be familiar by now; the means of creating an

instance of the XMLHTTPRequest object, constructing and sending a server request,

and checking when that request has been completed are all carried out much as in

previous examples.

This time, however, instead of using responseText we will be receiving data in XML

via the responseXML property. We’ll use that data to modify the DOM of our HTML

page to show the news items’ titles and descriptions in a list within the page’s <div>

container. Each title and description will be contained in its own paragraph element

(which we’ll also construct for the purpose) and be styled via a style sheet to display

as we want.

The Code in Full
Let’s jump right in and look at the code, shown in Listing 21.1.

LISTING 21.1 Ajax RSS Headline Reader
<html>
<head>
<title>An Ajax RSS Headline Reader</title>
</head>
<style>
.title {
font: 16px bold helvetica, arial, sans-serif;
padding: 0px 30px 0px 30px;
text-decoration:underline;
}
.descrip {
font: 14px normal helvetica, arial, sans-serif;
text-decoration:italic;
padding: 0px 30px 0px 30px;
background-color:#cccccc;
}
.link {
font: 9px bold helvetica, arial, sans-serif;
padding: 0px 30px 0px 30px;
}
.displaybox {
border: 1px solid black;
padding: 0px 50px 0px 50px;
}
</style>
<script language=”JavaScript” type=”text/javascript”>
function getXMLHTTPRequest() {
try {
req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(e) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
/* some versions IE */
} catch (e) {
try {

Project—An RSS Headline Reader 265

req = new ActiveXObject(“Microsoft.XMLHTTP”);
/* some versions IE */
} catch (E) {
req = false;

}
}

}
return req;
}

var http = getXMLHTTPRequest();

function getRSS() {
var myurl = ‘rssproxy.php?feed=’;
var myfeed = document.form1.feed.value;
myRand = parseInt(Math.random()*999999999999999);
// cache buster

var modurl = myurl+escape(myfeed)+”&rand=”+myRand;
http.open(“GET”, modurl, true);
http.onreadystatechange = useHttpResponse;
http.send(null);

}

function useHttpResponse() {
if (http.readyState == 4) {
if(http.status == 200) {

// first remove the childnodes
// presently in the DM
while (document.getElementById(‘news’)

➥.hasChildNodes())
{

document.getElementById(‘news’).removeChild(document
➥.getElementById(‘news’).firstChild);

}
var titleNodes = http.responseXML

➥.getElementsByTagName(“title”);
var descriptionNodes = http.responseXML

➥.getElementsByTagName(“description”);
var linkNodes = http.responseXML

➥.getElementsByTagName(“link”);
for(var i =1;i<titleNodes.length;i++)
{
var newtext = document

➥.createTextNode(titleNodes[i]
➥.childNodes[0].nodeValue);

var newpara = document.createElement(‘p’);
var para = document.getElementById(‘news’)

➥.appendChild(newpara);
newpara.appendChild(newtext);
newpara.className = “title”;

var newtext2 = document
➥.createTextNode(descriptionNodes[i]
➥.childNodes[0].nodeValue);

var newpara2 = document.createElement(‘p’);
var para2 = document

LISTING 21.1 Continued

266 CHAPTER 21: Returning Data as XML

➥.getElementById(‘news’).appendChild(newpara2);
newpara2.appendChild(newtext2);
newpara2.className = “descrip”;
var newtext3 = document

➥.createTextNode(linkNodes [i]
➥.childNodes[0].nodeValue);

var newpara3 = document.createElement(‘p’);
var para3 = document.getElementById(‘news’)

➥.appendChild(newpara3);
newpara3.appendChild(newtext3);
newpara3.className = “link”;

}
}

}
}
</script>
<body>
<center>
<h3>An Ajax RSS Reader</h3>
<form name=”form1”>
URL of RSS feed: <input type=”text” name=”feed”
➥size=”50” value=”http://”><input type=”button”
➥onClick=”getRSS()” value=”Get Feed”>

<div id=”news” class=”displaybox”>
➥<h4>Feed Titles</h4></div>
</form>
</center>
</html>

Mostly we are concerned with describing the workings of the callback function

useHttpResponse().

The Callback Function
In addition to the usual duties of checking the XMLHTTPRequest readyState and

status properties, this function undertakes for us the following tasks:

. Remove from the display <div> any display elements from previous RSS list-

ings.

. Parse the incoming XML to extract the title, link, and description elements.

. Construct DOM elements to hold and display these results.

. Apply CSS styles to these elements to change how they are displayed in the

browser.

LISTING 21.1 Continued

Project—An RSS Headline Reader 267

To remove the DOM elements installed by previous news imports (where they exist),

we first identify the <div> element by using its ID and then use the

hasChildNodes() DOM method, looping through and deleting the first child node

from the <div> element each time until none remain:

while (document.getElementById(‘news’).hasChildNodes())
{
document.getElementById(‘news’)
➥.removeChild(document.getElementById(‘news’).firstChild);
}

The following explanation describes the processing of the title elements, but, as can

be seen from Listing 21.1, we repeat the process identically to retrieve the description

and link information, too.

To parse the XML content to extract the item titles, we build an array titleNodes

from the XML data stored in responseXML:

var titleNodes
➥ = http.responseXML.getElementsByTagName(“title”);

We can then loop through these items, processing each in turn:

for(var i =1;i<titleNodes.length;i++)
{ … processing instructions … }

For each title, we need to first extract the title text using the nodeValue property:

var newtext = document.createTextNode(titleNodes[i]
➥.childNodes[0].nodeValue);

We can then create a paragraph element:

var newpara = document.createElement(‘p’);

append the paragraph as a child node of the <div> element:

var para = document.getElementById(‘news’)
➥.appendChild(newpara);

and apply the text content to the paragraph element:

newpara.appendChild(newtext);

Finally, using the className property we can define how the paragraph is dis-

played. The class declarations appear in a <style> element in the document head

and provide a convenient means of changing the look of the RSS reader to suit our

needs.

newpara.className = “title”;

268 CHAPTER 21: Returning Data as XML

Each time we enter the URL of a different RSS feed into the input field and click the

button, the <div> content is updated to show the items belonging to the new RSS

feed. This being an Ajax application, there is of course no need to reload the whole

page.

The Server-Side Code
Because of the security constraints built into the XMLHTTPRequest object, we can’t

call an RSS feed directly; we must use a script having a URL on our own server, and

have this script collect the remote XML file and deliver it to the Ajax application.

In this case, we do not require that the server-side script rssproxy.php should modi-

fy the XML file but simply route it back to us via the responseXML property of the

XMLHTTPRequest object. We say that the script is acting as a proxy because it is

retrieving the remote resource on behalf of the Ajax application.

Listing 21.2 shows the code of the PHP script.

LISTING 21.2 Server Script for the RSS Headline Reader
<?php
$mysession = curl_init($_GET[‘feed’]);
curl_setopt($mysession, CURLOPT_HEADER, false);
curl_setopt($mysession, CURLOPT_RETURNTRANSFER, true);
$out = curl_exec($mysession);
header(“Content-Type: text/xml”);
echo $out;
curl_close($mysession);
?>

The script uses the cURL PHP library, a set of routines for making Internet file trans-

fer easier to program. A full description of cURL would not be appropriate here; suf-

fice to say that this short script first receives the URL of the required RSS feed by

referring to the feed variable sent by the Ajax application. The two lines that call

the curl_setopt() function declare, respectively, that we don’t want the headers

sent with the remote file, but we do want the file contents. The curl_exec() func-

tion then makes the data transfer.

After that it’s simply a matter of adding an appropriate header by using the famil-

iar PHP header() command and returning the data to our Ajax application.

For a full description of using cURL with PHP, see the PHP website at
http://uk2.php.net/curl and/or the cURL site at http://curl.haxx.se/.

Did you
Know?

http://uk2.php.net/curl
http://curl.haxx.se/

Summary 269

Figure 21.3 shows the RSS reader in action, in this case displaying content from a

CNN newsfeed.

FIGURE 21.3
The Ajax RSS
reader in action.

Summary
The JavaScript DOM methods, when used with the XMLHTTPRequest object and XML

data, provide a powerful means of transferring, organizing, and either displaying or

otherwise processing data that has a sophisticated structure.

In this chapter you saw how DOM elements can be added, deleted, and manipulat-

ed to restructure an application’s DOM in accordance with XML data received in the

XMLHTTPRequest object’s responseXML property.

This page intentionally left blank

CHAPTER 22

Web Services and the REST
and SOAP Protocols

What You’ll Learn in This Chapter:
. Introduction to Web Services
. REST—Representational State Transfer
. Using REST in Practice
. Web Services Using SOAP
. The SOAP Protocol
. Using Ajax and SOAP
. Reviewing SOAP and REST

In this chapter you will learn the basics of web services and how to implement them

using the REST (Representational State Transfer) and SOAP (Simple Object Access Protocol)

protocols.

Introduction to Web Services
So far you have seen several example applications in which we have called server-side

scripts to carry out tasks. In each case we devised data structures to transfer the informa-

tion and written routines to handle data transfer both to and from the server.

Suppose, though, that you wanted to make your server-side programs more generally

available. Perhaps you can imagine that several different web applications might inter-

face with such scripts for their own purposes. As well as browsers requesting pages directly,

perhaps other applications (for example Ajax applications operating via XMLHTTPRequest

calls) might also make data requests and expect to receive, in response, data that they can

understand and manipulate.

272 CHAPTER 22: Web Services and the REST and SOAP Protocols

In such cases it would be beneficial to have some form of standardization in the

interfaces that your program makes available. This principle provides the basis of

what have come to be known as web services.

As an example, suppose that our server application produces XML-formatted weath-

er forecast data in response to a request containing geographical information.

The nature of this type of service makes it broadly applicable; such an application

might have a wide variety of “clients” ranging from simple web pages that present

weather forecasts in their local area to complex aviation or travel planning applica-

tions that require the data for more demanding uses.

This type of service is just one small example of what a web service might be capa-

ble of doing. Thousands of web services are active on the Internet, providing a

mind-boggling array of facilities including user authentication, payment processing,

content syndication, messaging, and a host of others.

In general, a web service makes available an application programming interface

(API), which allows client applications to build interfaces to the service. Although

any Internet protocol might be used to create web services, XML and HTTP are pop-

ular options.

A number of protocols and techniques have emerged that help you to create and

utilize web services. This chapter looks at perhaps the simplest of those, called REST

(Representational State Transfer), and another protocol, this time called SOAP (the

Simple Object Access Protocol). Each section highlights in particular how they may be

useful in Ajax applications.

REST—Representational State Transfer
REST is centered on two main principles for generalized network design:

. Resources are represented by URLs—A resource can be thought of as a “noun”

and refers to some entity we want to deal with in the API of a web service; this

could be a document, a person, a meeting, a location, and so on. Each

resource in a REST application has a unique URL.

. Operations are carried out via standard HTTP methods—HTTP methods such

as GET, POST, PUT, and DELETE are used to carry out operations on resources.

In this way we can consider such operations as “verbs” acting on resources.

REST—Representational State Transfer 273

A Hypothetical REST Example
To understand how and why we might apply these ideas, let’s look at a hypothetical

example.

Suppose that we have a web service that allows writers to submit, edit, and read

articles. Applying so-called RESTful principles to the design of this application, the

following occurs:

. Each submitted article has a unique URL, for example:

http://somedomain.com/articles/173

We only require that the URL be unique for each article; for instance

http://somedomain.com/articles/list.php?id=173

also fulfils this requirement.

Although REST requires that URLs be unique, it does not follow that each resource
must have a corresponding physical page. In many cases the resource is generat-
ed by the web service at the time of the request—for example, by reference to a
database.

. To retrieve an article to read or edit, our client application would simply use

an HTTP GET request to the URL of the article in question.

. To upload a new article, a POST request would be used, containing informa-

tion about the article. The server would respond with the URL of the newly

uploaded article.

. To upload an edited article, a PUT request would be used, containing the

revised content.

. HTTP DELETE would be employed to delete a particular article.

In this way, the web service is using an interface familiar to anyone who has used

the World Wide Web. We do not need to devise a library of API methods for sending

or retrieving information; we already have them in the form of the standard HTTP

methods.

The World Wide Web itself is a REST application.

Did you
Know?

By the
Way

http://somedomain.com/articles/173
http://somedomain.com/articles/list.php?id=173

274 CHAPTER 22: Web Services and the REST and SOAP Protocols

Query Information Using GET
An important issue concerning the use of the HTTP GET request in a RESTful applica-

tion is that it should never change the server state. To put it another way: We only

use GET requests to ask for information from the server, never to add or alter infor-

mation already there.

POST, PUT, and DELETE calls can all change the server status in some way.

Stateless Operation
All server exchanges within a RESTful application should be stateless. By stateless we

mean that the call itself must contain all the information required by the server to

carry out the required task, rather than depending on some state or context current-

ly present on the server. We cannot, for example, require the server to refer to infor-

mation sent in previous requests.

Using REST in Practice
Let’s expand on the example quoted earlier involving our articles web service.

Reading a List of Available Articles
The list of available articles is a resource. Because the web service conforms to REST

principles, we expect the service to provide a URL by which we can access this

resource, for instance:

http://somedomain.com/articles/list.php

Because we are querying information, rather than attempting to change it, we sim-

ply use an HTTP GET request to the preceding URL. The server may return, for exam-

ple, the following XML:

<articles>
<article>

<id>173</id>
<title>New Concepts in Ajax</title>
<author>P.D. Johnstone</author>

</article>
<article>

<id>218</id>
<title>More Ajax Ideas</title>
<author>S.N. Braithwaite</author>

</article>
<article>

http://somedomain.com/articles/list.php

Using REST in Practice 275

<id>365</id>
<title>Pushing the Ajax Envelope</title>
<author>Z.R. Lawson</author>

</article>
</articles>

Retrieving a Particular Article
Because this is another request for information, we are again required to submit an

HTTP GET request. Our web service might perhaps allow us to make a request to

http://somedomain.com/articles/list.php?id=218

and receive in return

<article>
<id>218</id>
<title>More Ajax Ideas</title>
<author>S.N. Braithwaite</author>

</article>

Uploading a New Article
In this instance we need to issue a POST request rather than a GET request. In cases

similar to the hypothetical one outlined previously, it is likely that the server will

assign the id value of a new article, leaving us to encode parameter and value pairs

for the title and author elements:

var articleTitle = ‘Another Angle on Ajax’;
var articleAuthor = ‘K.B. Schmidt’;
var url = ‘/articles/upload.php’;
var poststring = “title=”+encodeURI(articleTitle)
➥+”&author=”+encodeURI(articleAuthor);
http.onreadystatechange = callbackFunction();
http.open(‘POST’, url, true);
http.setRequestHeader(“Content-type”,
➥”application/x-www-form-urlencoded”);
http.setRequestHeader(“Content-length”, poststring.length);
http.send(poststring);

Real World REST—the Amazon REST API
Leading online bookseller Amazon.com makes available a set of REST web services

to help developers integrate Amazon browsing and shopping facilities into their web

applications.

http://somedomain.com/articles/list.php?id=218

276 CHAPTER 22: Web Services and the REST and SOAP Protocols

Amazon.com often refers to the REST protocol as XML-over-HTTP or XML/HTTP.

By first creating a URL containing parameter/value pairs for the required search

parameters (such as publisher, sort order, author, and so on) and then submitting a

GET request to this URL, the Amazon web service can be persuaded to return an XML

document containing product details. We may then parse that XML to create DOM

objects for display in a web page or to provide data for further processing as

required by our application.

Amazon requires that you obtain a developer’s token to develop client applications
for its web services. You will need this token in constructing REST requests to
Amazon’s web services. You can also obtain an Amazon Associate’s ID to enable
you to earn money by carrying Amazon services on your website. See
http://www.amazon.com for details.

Let’s see this in practice by developing a REST request to return a list of books. Many

types of searches are possible, but in this example, we request a list of books pub-

lished by Sams.

We start to construct the GET request with the base URL:

$url = ‘http://xml.amazon.com/onca/xml3’;

We then need to add a number of parameter/value pairs to complete the request:

$assoc_id = “XXXXXXXXXX”; // your Amazon Associate’s ID
$dev_token = “ZZZZZZZZZZ”; // Your Developer Token
$manuf = “Sams”;
$url = “http://xml.amazon.com/onca/xml3”;
$url .= “?t=”.$assoc_id;
$url .= “&dev-t=”.$dev_token;
$url .= “&ManufacturerSearch=”.$ manuf;
$url .= “&mode=books”;
$url .= “&sort=+salesrank”;
$url .= “&offer=All”;
$url .=”&type=lite”;
$url .= “&page=1”;
$url .= “&f=xml”;

Submitting this URL, we receive an XML file containing details of all matching

books. I won’t reproduce the whole file here (there are more than 5,000 titles!), but

Listing 22.1 shows an extract from the XML file, including the first book in the list.

By the
Way

Did you
Know?

http://www.amazon.com

Using REST in Practice 277

LISTING 22.1 Example of XML Returned by Amazon Web Service
<?xml version=”1.0” encoding=”UTF-8” ?>
<ProductInfo xmlns:xsi=”http://www.w3.org/

➥2001/XMLSchema-instance”
➥ xsi:noNamespaceSchemaLocation
➥=”http://xml.amazon.com/schemas3/dev-lite.xsd”>
<Request>
<Args>
<Arg value=”Mozilla/4.0 (compatible; MSIE 6.0;

➥Windows NT 5.1; SV1; .NET CLR 1.1.4322)”
➥ name=”UserAgent” />
<Arg value=”0G2CGCT7MRWB37PXAS4B” name=”RequestID” />
<Arg value=”All” name=”offer” />
<Arg value=”us” name=”locale” />
<Arg value=”1” name=”page” />
<Arg value=”ZZZZZZZZZZZ” name=”dev-t” />
<Arg value=”XXXXXXXXXXX” name=”t” />
<Arg value=”xml” name=”f” />
<Arg value=”books” name=”mode” />
<Arg value=”Sams” name=”ManufacturerSearch” />
<Arg value=”lite” name=”type” />
<Arg value=”salesrank” name=”sort” />
</Args>
</Request>
<TotalResults>5051</TotalResults>
<TotalPages>506</TotalPages>
<Details url=”http://www.amazon.com/exec/obidos/ASIN/

➥0672327236/themousewhisp-20?dev-t=
➥1WPTTG90FS816BXMNFG2%26camp=2025%26link_code=xm2”>
<Asin>0672327236</Asin>
<ProductName>Sams Teach Yourself Microsoft SharePoint

➥2003 in 10 Minutes (Sams Teach Yourself
➥in 10 Minutes)</ProductName>
<Catalog>Book</Catalog>
<Authors>
<Author>Colin Spence</Author>
<Author>Michael Noel</Author>
</Authors>
<ReleaseDate>06 December, 2004</ReleaseDate>
<Manufacturer>Sams</Manufacturer>
<ImageUrlSmall>http://images.amazon.com/images/P/

➥0672327236.01.THUMBZZZ.jpg</ImageUrlSmall>
<ImageUrlMedium>http://images.amazon.com/images/P/

➥0672327236.01.MZZZZZZZ.jpg</ImageUrlMedium>
<ImageUrlLarge>http://images.amazon.com/images/P/

➥0672327236.01.LZZZZZZZ.jpg</ImageUrlLarge>
<Availability>Usually ships in 24 hours</Availability>
<ListPrice>$14.99</ListPrice>
<OurPrice>$10.19</OurPrice>
<UsedPrice>$9.35</UsedPrice>
</Details>

278 CHAPTER 22: Web Services and the REST and SOAP Protocols

Clearly we can now process this XML document in any way we want. For example,

Chapter 21, “Returning Data as XML,” discussed how to use JavaScript DOM meth-

ods to select information from the XML document and place it in page elements

added to the DOM of our document.

REST and Ajax
You know already that the XMLHTTPRequest object has methods that allow you to

directly deal with HTTP request types and URLs.

Accessing RESTful web services is therefore simplified to a great extent. Because you

know that each resource exposed by the web service API has a unique URL, and that

the methods made available by the service are standard HTTP methods, it becomes

a simple matter to construct the required XMLHTTPRequest calls.

The prospect of being able to access a wide variety of web services from within Ajax

applications, and use the returned information within those applications, is attrac-

tive—even more so if you can use a consistent and simple interface protocol.

Web Services Using SOAP
In the last section, we discussed web services and in particular saw how the REST

(Representational State Transfer) protocol can be used to provide a consistent appli-

cation programming interface (API) to such services.

REST is a good example of a protocol designed to operate with resource-oriented serv-

ices, those that provide a simple mechanism to locate a resource and a set of basic

methods that can manipulate that resource. In a resource-oriented service, those

methods normally revolve around creating, retrieving, modifying, and deleting

pieces of information.

In the case of REST, the methods are those specified in the HTTP specifications—GET,

POST, PUT, and DELETE.

In certain cases, however, we are more interested in the actions a web service can

carry out than in the resources it can control. We might perhaps call such services

action-oriented. In these situations the resources themselves may have some impor-

tance, but the key issues concern the details of the activities undertaken by the

service.

Perhaps the most popular and widely used protocol for designing action-oriented

web services is SOAP, the Simple Object Access Protocol.

The SOAP Protocol 279

The full name Simple Object Access Protocol has been dropped in the later ver-
sions of the SOAP specifications, as it was felt that the direction of the project
had shifted and the name was no longer appropriate. The protocol continues to be
referred to as SOAP.

The Background of the SOAP Protocol
SOAP began in the late 1990s when XML was itself a fledgling web technology and

was offered to the W3C in 2000. SOAP and another XML-based web service protocol,

called XML-RPC, had a joint upbringing.

SOAP was designed essentially as a means of packaging remote procedure calls

(requests to invoke programs on remote machines) into XML wrappers in a stan-

dardized way.

Numerous enterprises contributed to the early development of SOAP, including IBM,

Microsoft, and Userland. The development of SOAP later passed to the XML

Protocols Working Group of the W3C.

You can get the latest information on the SOAP specification from the W3c web-
site at http://www.w3.org/2000/xp/Group/.

The SOAP Protocol
SOAP is an XML-based messaging protocol. A SOAP request is an XML document

with the following main constituents:

. An envelope that defines the document as a SOAP request

. A body element containing information about the call and the expected

responses

. Optional header and fault elements that carry supplementary information

Let’s look at a skeleton SOAP request:

<?xml version=”1.0”?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=
➥”http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Header>
... various commands . . .

</SOAP-ENV:Header>

By the
Way

Did you
Know?

http://www.w3.org/2000/xp/Group/

280 CHAPTER 22: Web Services and the REST and SOAP Protocols

<SOAP-ENV:Body>
... various commands . . .
<SOAP-ENV:Fault>

... various commands . . .
</SOAP-ENV:Fault>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note that the SOAP request is an XML file, which has as its root the Envelope ele-

ment.

The first line of the Envelope is

<SOAP-ENV:Envelope xmlns:SOAP-EN =
➥”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=
➥”http://schemas.xmlsoap.org/soap/encoding/”>

This line declares the xmlns:soap namespace, which must always have the value

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”.

A namespace is an identifier used to uniquely group a set of XML elements or
attributes, providing a means to qualify their names, so that names in other
schemas do not conflict with them.

The encodingStyle attribute contains information defining the data types used in

the message.

Next appears the Header element, which is optional but must, if present, be the first

element in the message. Attributes defined in the Header element define how the

message is to be processed by the receiving application.

The body element of the SOAP message contains the message intended for the final

recipient.

The serialized method arguments are contained within the SOAP request’s body ele-

ment. The call’s XML element must immediately follow the opening XML tag of the

SOAP body and must have the same name as the remote method being called.

The body may also contain a Fault element (but no more than one). This element

is defined in the SOAP specification and is intended to carry information about any

errors that may have occurred. If it exists, it must be a child element of the body ele-

ment. The Fault element has various child elements including faultcode, fault-

string, and detail, which contain specific details of the fault condition.

Did you
Know?

The SOAP Protocol 281

Code Example of a SOAP Request
Let’s see how a typical SOAP request might look:

<?xml version=”1.0”?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
➥”http://schemas.xmlsoap.org/soap/envelope/” SOAP
➥ENV:encodingStyle=”http://schemas.xmlsoap.org/
➥soap/encoding/”>
<SOAP-ENV:Body>

<m:GetInvoiceTotal xmlns:m=
➥”http://www.somedomain.com/invoices”>

<m:Invoice>77293</m:Invoice>
</m:GetInvoiceTotal>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In the preceding example, the m:GetInvoiceTotal and m:Invoice elements are

specific to the particular application, and are not part of SOAP itself. These ele-

ments constitute the message contained in the SOAP envelope.

Let’s see what the SOAP response from the web service might look like:

<?xml version=”1.0”?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
➥”http://schemas.xmlsoap.org/soap/envelope/” SOAP
➥ENV:encodingStyle=”http://schemas.xmlsoap.org/
➥soap/encoding/”>
<SOAP-ENV:Body>

<m:ShowInvoiceTotal xmlns:m=
➥”http://www.somedomain.com/invoices”>

<m:InvoiceTotal>3295.00</m:InvoiceTotal>
</m:ShowInvoiceTotal>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sending the SOAP Request Via HTTP
A SOAP message may be transmitted via HTTP GET or HTTP POST. If sent via HTTP

POST, the SOAP message requires at least one HTTP header to be set; this defines the

Content-Type:

Content-Type: text/xml

After a successful SOAP exchange, you would expect to receive the SOAP response

preceded by an appropriate HTTP header:

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: yyy
<?xml version=”1.0”?>

282 CHAPTER 22: Web Services and the REST and SOAP Protocols

<SOAP-ENV:Envelope xmlns:SOAP-ENV=
➥”http://schemas.xmlsoap.org/soap/envelope/” SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Body>

<m:ShowInvoiceTotal xmlns:m=
➥”http://www.somedomain.com/invoices”>

<m:InvoiceTotal>3295.00</m:InvoiceTotal>
</m:ShowInvoiceTotal>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Using Ajax and SOAP
To use SOAP with Ajax, you need to perform a number of separate steps:

1. Create the SOAP envelope.

2. Serialize the application-specific information into XML.

3. Create the SOAP body containing a serialized version of your application-

specific code.

4. Send an HTTP request via the XMLHTTPRequest object, containing the SOAP

message as a payload.

The callback function then needs to be responsible for unpacking the SOAP response

and parsing the XML contained inside it.

Code Example
How might the resulting code look? Let’s see an example using the fictitious SOAP

web service of the previous example:

var invoiceno = ‘77293’;
http.open(“POST”, “http://somedomain.com/invoices”,true);
http.onreadystatechange=function() {
if (http.readyState==4) {
if(http.status==200) {
alert(‘The server said: ‘+ http.responseText)
}

}
}
http.setRequestHeader(“Content-Type”, “text/xml”)
var mySOAP = ‘<?xml version=”1.0”?>’
+ ‘<SOAP-ENV:Envelope xmlns:SOAP-ENV=

➥”http://schemas.xmlsoap.org/soap/envelope/”’
+ ‘ SOAP-ENV:encodingStyle=

Reviewing SOAP and REST 283

➥”http://schemas.xmlsoap.org/soap/encoding/”>’
+ ‘<SOAP-ENV:Body>’
+ ‘<m:GetInvoiceTotal xmlns:m=

➥”http://www.somedomain.com/invoices”>’
+ ‘<m:Invoice>’+invoiceno+’</m:Invoice></m:GetInvoiceTotal>’
+ ‘</SOAP-ENV:Body></SOAP-ENV:Envelope>’;

http.send(mySOAP);

Here we have constructed the entire SOAP envelope in a JavaScript string variable,

before passing it to the send() function of the XMLHTTPRequest object.

The value returned from the server needs to be parsed first to remove the SOAP

response wrapper and then to recover the application data from the body section of

the SOAP message.

Reviewing SOAP and REST
Over the course of this chapter, we’ve looked at the REST and SOAP approaches to

using web services.

Although other web services protocols exist, a significant REST versus SOAP argu-

ment has been waged among developers over the last couple of years.

I don’t intend to join that argument in this book. Instead, let’s summarize the simi-

larities and differences between the two approaches:

. REST leverages the standard HTTP methods of PUT, GET, POST, and DELETE to

create remote procedure calls having comparable functions. Web service

implementations using the REST protocol seem particularly suited toward

resource-based services, where the most-used methods generally involve creat-

ing, editing, retrieving, and deleting information. On the downside, REST

requires a little more knowledge about the HTTP protocol.

. The SOAP protocol adds substantial complexity, with the necessity to serialize

the remote call and then construct a SOAP envelope to contain it. Further

work arises from the need to “unpack” the returned data from its SOAP enve-

lope before parsing the data. These extra steps can also have an impact on

performance, with SOAP often being a little slower in operation than REST for

a similar task. SOAP does, however, make a more complete job of separating

the remote procedure call from its method of transport, as well as add a num-

ber of extra features and facilities, such as the Fault element and type check-

ing via namespaces.

284 CHAPTER 22: Web Services and the REST and SOAP Protocols

Summary
In this chapter we considered web services using the REST and SOAP protocols.

Either style of web service can be used via XMLHTTPRequest requests, though they

differ somewhat in the complexity of the code involved.

CHAPTER 23

A JavaScript Library for Ajax

What You’ll Learn in This Chapter:
. An Ajax Library
. Reviewing myAHAHlib.js
. Implementing Our Library
. Using the Library

In this chapter you will learn how to encapsulate some of the techniques studied up to

now into a small JavaScript library that you can call from your applications.

An Ajax Library
Through the chapters and code examples up to now, we have developed a number of

JavaScript code techniques for implementing the various parts of an Ajax application.

Among these methods are

. A method for generating an instance of the XMLHTTPRequest object, which works

across the range of currently popular browsers

. Routines for building and sending GET and POST requests via the XMLHTTPRequest

object

. Techniques for avoiding unwanted caching of GET requests

. A style of callback function that checks for correct completion of the

XMLHTTPRequest call prior to carrying out your wishes

. Methods of providing user feedback

. Techniques for dealing with text data returned in responseText

. Techniques for dealing with XML information returned in responseXML

286 CHAPTER 23: A JavaScript Library for Ajax

In addition, you saw in Chapter 20, “AHAH—Asynchronous HTML and HTTP,” how

some of these methods could be abstracted into a small JavaScript “library” (in that

case containing only two functions).

This chapter extends that idea to build a more fully featured library that allows

Ajax facilities to be added simply to an HTML page with minimal additional code.

Of necessity, our Ajax library will not be as complex or comprehensive as the open

source projects described later in the book; however, it will be complete enough to

use in the construction of functional Ajax applications.

Reviewing myAHAHlib.js
Listing 23.1 shows the code of myAHAHlib.js, reproduced from Chapter 20.

LISTING 23.1 myAHAHlib.js
function callAHAH(url, pageElement, callMessage) {

document.getElementById(pageElement).innerHTML
➥ = callMessage;

try {
req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(e) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
/* some versions IE */
} catch (e) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
/* some versions IE */
} catch (E) {
req = false;
}

}
}
req.onreadystatechange =

➥function() {responseAHAH(pageElement);};
req.open(“GET”,url,true);
req.send(null);

}

function responseAHAH(pageElement) {
var output = ‘’;
if(req.readyState == 4) {

if(req.status == 200) {
output = req.responseText;
document.getElementById(pageElement).innerHTML

➥ = output;
}

}
}

Implementing Our Library 287

Let’s consider how we may extend the capabilities of this library:

. There is currently support only for HTTP GET requests. It would be useful to be

able to support at least the HTTP POST request, too, especially if you intend to

build applications using the REST protocol (as described in Chapter 22).

. The library currently only deals with text information returned via

responseText and has no means to deal with responseXML.

Implementing Our Library
Having identified what needs to be done, we’ll now put together a more capable

Ajax library.

Creating XMLHTTPRequest Instances
Let’s turn our attention first to the routine for creating instances of the

XMLHTTPRequest object.

Currently this function is coupled tightly with the routine for constructing and send-

ing HTTP GET requests. Let’s decouple the part responsible for the creation of the

XMLHTTPRequest instance and put it into a function of its own:

function createREQ() {
try {

req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);
/* some versions IE */
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);
/* some versions IE */
} catch (err3) {
req = false;
}

}
}
return req;

}

We can now create XMLHTTPRequest object instances by simply calling the following

function:

var myreq = createREQ();

288 CHAPTER 23: A JavaScript Library for Ajax

HTTP GET and POST Requests
We’ll start with the GET request because we already support that type of request:

function requestGET(url, query, req) {
myRand=parseInt(Math.random()*99999999);
req.open(“GET”,url+’?’+query+’&rand=’+myRand,true);
req.send(null);
}

To this request we must pass as arguments the URL to which the request will be sent

and the identity of the XMLHTTPRequest object instance.

We could exclude the query argument because, in a GET request, it’s encoded into

the URL. We keep the two arguments separate here to maintain a similar interface

to the function for making POST requests.

The query argument must be suitably encoded prior to calling the function, though

the cache-busting random element is added by the function.

Next, the POST function:

function requestPOST(url, query, req) {
req.open(“POST”, url,true);
req.setRequestHeader(‘Content-Type’,
➥’application/x-www-form-urlencoded’);
req.send(query);
}

The Callback Function
How do we deal with the callback function? We are going to add a further function:

function doCallback(callback,item) {
eval(callback + ‘(item)’);
}

This function uses JavaScript’s eval() function to execute another function whose

name is passed to it as an argument, while also passing to that function an argu-

ment of its own, via item.

Let’s look at how these functions might interact when called from an event handler:

function doAjax(url,query,callback,reqtype,getxml) {
// create the XMLHTTPRequest object instance
var myreq = createREQ();
myreq.onreadystatechange = function() {
if(myreq.readyState == 4) {

if(myreq.status == 200) {
var item = myreq.responseText;
if(getxml==1) {

item = myreq.responseXML;

Implementing Our Library 289

}
doCallback(callback, item);
}

}
}
if(reqtype==’post’) {
requestPOST(url,query,myreq);
} else {
requestGET(url,query,myreq);
}
}

Our function doAjax now takes five arguments:

. url—The target URL for the Ajax call

. query—The encoded query string

. callback—Identity of the callback function

. reqtype—’post’ or ‘get’

. getxml—1 to get XML data, 0 for text

Listing 23.2 shows the complete JavaScript source code.

LISTING 23.2 The Ajax Library myAJAXlib.js
function createREQ() {
try {

req = new XMLHttpRequest(); /* e.g. Firefox */
} catch(err1) {
try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

➥ /* some versions IE */
} catch (err2) {
try {
req = new ActiveXObject(“Microsoft.XMLHTTP”);

➥ /* some versions IE */
} catch (err3) {
req = false;
}

}
}
return req;

}

function requestGET(url, query, req) {
myRand=parseInt(Math.random()*99999999);
req.open(“GET”,url+’?’+query+’&rand=’+myRand,true);
req.send(null);
}

function requestPOST(url, query, req) {
req.open(“POST”, url,true);

290 CHAPTER 23: A JavaScript Library for Ajax

req.setRequestHeader(‘Content-Type’, ‘application/
➥x-www-form-urlencoded’);
req.send(query);
}

function doCallback(callback,item) {
eval(callback + ‘(item)’);
}

function doAjax(url,query,callback,reqtype,getxml) {
// create the XMLHTTPRequest object instance
var myreq = createREQ();

myreq.onreadystatechange = function() {
if(myreq.readyState == 4) {

if(myreq.status == 200) {
var item = myreq.responseText;
if(getxml==1) {

item = myreq.responseXML;
}
doCallback(callback, item);

}
}

}
if(reqtype==’post’) {
requestPOST(url,query,myreq);
} else {
requestGET(url,query,myreq);
}
}

Using the Library
To demonstrate the use of the library, we’re going to start with another simple HTML

page, the code for which is shown here:

<html>
<head>
</head>
<body>
<form name=”form1”>
<input type=”button” value=”test”>
</form>
</body>
</html>

This simple page displays only a button labeled “Test”. All the functionality on the

form will be created in JavaScript, using our new Ajax library.

LISTING 23.2 Continued

Using the Library 291

The steps required to “Ajaxify” the application are

1. Include the Ajax library myAJAXlib.js in the <head> area of the page.

2. Write a callback function to deal with the returned information.

3. Add an event handler to the page to invoke the server call.

We’ll start by demonstrating a GET request and using the information returned in

the responseText property. This is similar to the situation we faced when dealing

with AHAH in Chapter 20.

Including the Ajax library is straightforward:

<head>
<script Language=”JavaScript” src=”myAJAXlib.js”></script>

Next, we need to define our callback function to deal with the value stored in the

responseText property. For these examples, we’ll simply display the returned text

in an alert:

<head>
<script Language=”JavaScript” src=”myAJAXlib.js”></script>
<script Language=”JavaScript”>
function cback(text) {
alert(text);
}
</script>

Finally, we need to add an event handler call to our button:

onClick=”doAjax(‘libtest.php’,’param=hello’,
➥’cback’,’get’,’0’)”

Our server-side script libtest.php simply echoes back the parameter sent as the

second argument:

<?php
echo “Parameter value was “.$param;
?>

Meanwhile the remaining parameters of the function call declare that the callback

function is called cback, that we want to send an HTTP GET request, and that we

expect the returned data to be in responseText. Listing 23.3 shows the complete

code of our revised HTML page.

292 CHAPTER 23: A JavaScript Library for Ajax

LISTING 23.3 HTML Page Rewritten to Call myAJAXlib.js
<html>
<head>
<script Language=”JavaScript” src=”myAJAXlib.js”>
➥</script>
<script Language=”JavaScript”>
function cback(text) {
alert(text);
}
</script>
</head>
<body>
<form name=”form1”>
<input type=”button” value=”test”onClick=
➥”doAjax(‘libtest.php’,’param=hello’,
➥’cback’,’get’,’0’)”>
</form>
</body>
</html>

Figure 23.1 shows the result of running the program.

FIGURE 23.1
Returning text
following an
HTTP GET
request.

To use the same library to retrieve XML data, we’ll once again use the server-side

script of Chapter 13, “Our First Ajax Application,” which you may recall delivers the

current server time in a small XML document:

<?php
header(‘Content-Type: text/xml’);
echo “<?xml version=\”1.0\” ?><clock1><timenow>”
➥.date(‘H:i:s’).”</timenow></clock1>”;
?>

Our callback function must be modified because we now need to return the parsed

XML. We’ll use some DOM methods that should by now be familiar:

<script>
function cback(text) {
var servertime = text.getElementsByTagName(“timenow”)[0]
➥.childNodes[0].nodeValue;
alert(‘Server time is ‘+servertime);
}
</script>

▼

Summary 293

The only other thing we need to change is the call to our doAjax() function:

onClick=”doAjax(‘telltimeXML.php’,’’,’cback’,’post’,’1’)”

Here we have decided to make a POST request. Our server-side script

telltimeXML.php does not require a query string, so in this case the second argu-

ment is left blank. The final parameter has been set to ‘1’ indicating that we expect

the server to respond with XML in the property responseXML.

Figure 23.2 shows the result of running the program.

FIGURE 23.2
Returning the
server time in
XML via a POST
request.

Try It Yourself

Extending the Ajax Library
The current library might be improved in a number of ways. These will be left as an

exercise for the reader, though in many cases the techniques have been covered else-

where in the book.

User feedback, for example, has not been addressed; we previously discussed how

the display of suitable text or a graphic image can alert the user that a request is

currently in progress. It would be useful to revise the library to include the tech-

niques discussed in Chapter 13 and elsewhere.

Error handling, too, has been excluded from the code and would prove a useful

addition. For example, it should not be too difficult to modify the library to detect

XMLHTTPRequest status properties other than 200 and output a suitable error mes-

sage to the user.

Feel free to experiment with the code and see what you can achieve.

Summary
This chapter combined many of the techniques discussed to date to produce a com-

pact and reusable JavaScript library that can be called simply from an HTML page.

The code supports both HTTP GET and HTTP POST requests and can deal with data

returned from the server as text or XML.

▲

294 CHAPTER 23: A JavaScript Library for Ajax

Using such a library allows Ajax to be introduced to web pages using relatively

small additions to the HTML markup. This not only keeps the code clean and easy

to read but also simplifies the addition of Ajax facilities to upgrade legacy HTML.

In Chapter 24, “Ajax ‘Gotchas,’” the last chapter of Part V, we’ll discuss some poten-

tial problems and pitfalls awaiting the programmer in developing Ajax applica-

tions.

CHAPTER 24

Ajax Gotchas

What You’ll Learn in This Chapter:
. Common Ajax Errors
. The Back Button
. Bookmarking and Links
. Telling the User That Something Is Happening
. Making Ajax Degrade Elegantly
. Dealing with Search Engine Spiders
. Pointing Out Active Page Elements
. Don’t Use Ajax Where It’s Inappropriate
. Security
. Test Code Across Multiple Platforms
. Ajax Won’t Cure a Bad Design
. Some Programming Gotchas

In this chapter you’ll learn about some of the common Ajax mistakes and how to avoid

them.

Common Ajax Errors
Ajax has some common pitfalls waiting to catch the unwary developer. In this chapter,

the last chapter of Part V, we’ll review some of these pitfalls and discuss possible

approaches to finding solutions.

The list is not exhaustive, and the solutions offered are not necessarily appropriate for

every occasion. They should, however, provide some food for thought.

296 CHAPTER 24: Ajax “Gotchas”

The Back Button
All browsers in common use have a Back button on the navigation bar. The browser

maintains a list of recently visited pages in memory and allows you to step back

through these to revisit pages you have recently seen.

Users have become used to the Back button as a standard part of the surfing experi-

ence, just as they have with the other facets of the page-based web paradigm.

JavaScript has its own equivalent of the Back button written into the language.
The statements
onClick = “history.back()”

and
onClick = “history.go(-1)”

both mimic the action of clicking the Back button once.

Ajax, as you have learned, does much to shake off the idea of web-based informa-

tion being delivered in separate, page-sized chunks; with an Ajax application, you

may be able to change page content over and over again without any thought of

reloading the browser display with a whole new page.

What then of the Back button?

This issue has caused considerable debate among developers recently. There seem to

be two main schools of thought:

. Create a means of recording state programmatically, and use that to re-create

a previous state when the Back button is pressed.

. Persuade users that the Back button is no longer necessary.

Artificially re-creating former states is indeed possible but adds a great deal of

complexity to Ajax code and is therefore somewhat the province of the braver

programmer!

Although the latter option sounds a bit like it’s trying to avoid the issue, it does per-

haps have some merit. If you use Ajax to re-create desktop-like user interfaces, it’s

worthy of note that desktop applications generally don’t have—or need—a Back

button because the notion of separate “pages” never enters the user’s head!

Did you
Know?

Making Ajax Degrade Elegantly 297

Bookmarking and Links
This problem is not unrelated to the Back button issue.

When you bookmark a page, you are attempting to save a shortcut to some content.

In the page-based metaphor, this is not unreasonable; although pages can have

some degree of dynamic content, being able subsequently to find the page itself usu-

ally gets us close enough to seeing what we saw on our previous visit.

Ajax, however, can use the same page address for a whole application, with large

quantities of dynamic content being returned from the server in accordance with a

user’s actions.

What happens when you want to bookmark a particular screen of information

and/or pass that link to a friend or colleague? Merely using the URL of the current

page is unlikely to produce the results you require.

Although it may be difficult to totally eradicate this problem, it may be possible to

alleviate it somewhat by providing permanent links to specially chosen states of an

application.

Telling the User That Something Is
Happening
This is another issue somewhat related to the change of interface style away from

separate pages.

The user who is already familiar with browsing web pages may have become accus-

tomed to program activity coinciding with the loading of a new or revised page.

Many Ajax applications therefore provide some consistent visual clue that activity is

happening; perhaps a stationary graphic image might be replaced by an animated

version, the cursor style might change, or a pop-up message appear. Some of these

techniques have been mentioned in some of the chapters in this book.

Making Ajax Degrade Elegantly
The chapters in this book have covered the development of Ajax applications using

various modern browsers. It is still possible, though, that a user might surprise you

by attempting to use your application with a browser that is too old to support the

necessary technologies. Alternatively, a visitor’s browser may have JavaScript and/or

ActiveX disabled (for security or other reasons).

298 CHAPTER 24: Ajax “Gotchas”

It is unfortunate if an Ajax application should break down under these conditions.

At the least, the occurrence of obvious errors (such as a failure to create an instance

of the XMLHTTPRequest object) should be reported to the user. If the Ajax applica-

tion is so complex that it cannot be made to automatically revert to a non-Ajax

mode of operation, perhaps the user can at least be redirected to a non-Ajax version

of the application.

You can detect whether JavaScript is unavailable by using the <noscript> …
</noscript> tags in your HTML page. Statements between these tags are evalu-
ated only if JavaScript is NOT available:

<noscript>
JavaScript is not available in this browser.

➥Please go HERE for
➥ the HTML-only version.

</noscript>

Dealing with Search Engine Spiders
Search engines gather information about websites through various means, an

important one being the use of automated programs called spiders.

Spiders, as their name suggests, “crawl the web” by reading web pages and follow-

ing links, building a database of content and other relevant information about par-

ticular websites. This database, better known as an index, is queried by search

engine visitors using their keywords and phrases and returns suggestions of relevant

pages for them to visit.

This can create a problem for highly dynamic sites, which rely on user interaction

(rather than passive surfing) to invoke the loading of new content delivered on-

demand by the server. The visiting spider may not have access to the content that

would be loaded by dynamic means and therefore never gets to index it.

The problem can be exacerbated further by the use of Ajax, with its tendency to

deliver even more content in still fewer pages.

It would seem wise to ensure that spiders can index a static version of all relevant

content somewhere on the site. Because spiders follow links embedded in pages, the

provision of a hypertext linked site map can be a useful addition in this regard.

Did you
Know?

Don’t Use Ajax Where It’s Inappropriate 299

Pointing Out Active Page Elements
Without careful design, it may not be apparent to users which items on the page

they can click on or otherwise interface with to make something happen.

It is worth trying to use a consistent style throughout an application to show which

page elements cause server requests or some other dynamic activity. This is some-

what reminiscent of the way that hypertext links in HTML pages tend to be styled

differently than plain text so that it’s clear to a user that they perform an additional

function.

At the expense of a little more coding effort, instructions and information about

active elements can be incorporated in ToolTip-style pop-ups. This is, of course, espe-

cially important when a click on an active link can have a major effect on the appli-

cation’s state. Figure 24.1 shows an example of such a pop-up information box.

FIGURE 24.1
Pop-up informa-
tion helps users
to understand
interfaces.

Don’t Use Ajax Where It’s Inappropriate
Attractive as Ajax undoubtedly is for improving web interfaces, you need to accept

that there are many situations where the use of Ajax detracts from the user experi-

ence instead of adding to it.

300 CHAPTER 24: Ajax “Gotchas”

This is especially true where the page-based interface metaphor is perfectly adequate

for, perhaps even of greater relevance to, the content and style of the site. Text-based

sites with subjects split conveniently into chapter-styled pages can often benefit as

much from intelligently designed hyperlinking as they can from the addition of

Ajax functionality.

Small sites in particular may struggle to get sufficient benefit from an Ajax interface

to balance the associated costs of additional code and added complexity.

Security
Ajax does not itself seem to present any security issues that are not already present

when designing web applications. It is notable, however, that Ajax-enhanced appli-

cations tend to contain more client-side code than they did previously.

Because the content of client-side code can be viewed easily by any user of the appli-

cation, it is important that sensitive information not be revealed within it. In this

context, sensitive information is not limited to such things as usernames and pass-

words (though they are, of course, sensitive), but also includes business logic. Make

the server-side scripts responsible for carrying out such issues as database connec-

tion. Validate data on the server before applying it to any important processing.

Test Code Across Multiple Platforms
It will be clear from the content of this book that the various browsers behave differ-

ently in their implementation of JavaScript. The major difference in the generation

of XMLHTTPRequest object instances between Microsoft and non-Microsoft browsers

is a fundamental example, but there is a host of minor differences, too.

The DOM, in particular, is handled rather differently, not only between browsers but

also between different versions of the same browser. CSS implementation is another

area where minor differences still proliferate.

Although it has always been important to test new applications on various

browsers, this is perhaps more important than ever when faced with the added com-

plexity of Ajax applications.

Hopefully browsers will continue to become more standards-compliant, but until

then test applications on as many different platforms and with as many different

browsers as possible.

Some Programming Gotchas 301

Ajax Won’t Cure a Bad Design
All the dynamic interactivity in the world won’t correct a web application with a

design that is fundamentally flawed.

All the tenets of good web design still apply to Ajax applications:

. Write for multiple browsers and validate your code.

. Comment and document your code well so that you can debug it later.

. Use small graphics wherever possible so that they load quickly.

. Make sure that your choices of colors, backgrounds, font sizes, and styles don’t

make pages difficult to read.

The W3C offers a free online validator at http://validator.w3.org/.

Some Programming Gotchas
Some of these have been alluded to in various chapters, but it’s worth grouping

them here. These are probably the most common programming issues that Ajax

developers bump up against at some time or other!

Browser Caching of GET Requests
Making repeated GET requests to the same URL can often lead to the response com-

ing not from the server but from the browser cache. This problem seems especially

significant when using Internet Explorer.

Although in theory this can be cured with the use of suitable HTTP headers, in prac-

tice the cache can be stubborn.

An effective way of sidestepping this problem is to add a random element to the

URL to which the request is sent; the browser interprets this as a request to a differ-

ent page and returns a server page rather than a cached version.

In the text we achieved this by adding a random number. Another approach

favored by many is to add a number derived from the time, which will of course be

different every time:

var url = “serverscript.php”+”?rand=”+new Date().getTime();

Did you
Know?

http://validator.w3.org/

302 CHAPTER 24: Ajax “Gotchas”

Permission Denied Errors
Receiving a Permission Denied error usually means that you have fallen foul of the

security measure preventing cross-domain requests from being made by an

XMLHTTPRequest object.

Calls must be made to server programs existing in the same domain as the calling

script.

Be careful that the domain is written in exactly the same way. Somedomain.com
may be interpreted as referring to a different domain from www.somedomain.com,
and permission will be denied.

Escaping Content
When constructing queries for GET or POST requests, remember to escape variables

that could contain spaces or other nontext characters. In the following code, the

value idValue has been collected from a text input field on a form, so we escape it

to ensure correct encoding:

http.open(“GET”, url + escape(idValue) + “&rand=” + myRandom, true);

Summary
Ajax undoubtedly has the potential to greatly improve web interfaces. However, the
paradigm change from traditional page-based interfaces to highly dynamic applica-
tions has created a few potholes for developers to step into. In this chapter we’ve
tried to round up a few of the better-known ones.

Some of these issues have already been encountered in the other chapters in this
book, whereas others will perhaps not become apparent until you start to develop
real-world applications.

This chapter concludes Part V, “More Complex Ajax Technologies.” If you have fol-
lowed the chapters through to this point, you will by now have a good grip on the fun-
damentals of the XMLHTTPRequest object, JavaScript, XML, and the Document Object
Model, and be capable of creating useful Ajax applications from first principles.

Fortunately, you don’t have to always work from first principles. Many open source
and commercial projects on the Internet offer a wide variety of Ajax frameworks,
tools, and resources.

Part VI, “Ajax Tools and Resources,” of the book concludes our journey through
Ajax development by looking at some of these resources and their capabilities.

Watch
Out!

www.somedomain.com

PART VI

Ajax Tools and Resources

CHAPTER 25 The prototype.js Toolkit 305

CHAPTER 26 Using Rico 315

CHAPTER 27 Using Script.aculo.us 325

CHAPTER 28 Using XOAD 331

APPENDIX JavaScript, PHP, and Ajax Websites 339

GLOSSARY 343

This page intentionally left blank

CHAPTER 25

The prototype.js Toolkit

What You’ll Learn in This Chapter:
. Introducing prototype.js

. Wrapping XMLHTTPRequest—the Ajax Object

. Example Project—Stock Price Reader

In this chapter you will learn about the prototype.js JavaScript library and how it can

reduce the work required for building capable Ajax applications.

Introducing prototype.js
Part VI, “Ajax Tools and Resources,” looks at some available code libraries and frame-

works for Ajax development.

We begin this chapter with Sam Stephenson’s prototype.js, a popular JavaScript library con-

taining an array of functions useful in the development of cross-browser JavaScript rou-

tines, and including specific support for Ajax. You’ll see how your JavaScript code can be

simplified by using this library’s powerful support for DOM manipulation, HTML forms,

and the XMLHTTPRequest object.

You’ll find the on the CD that accompanies this book a recent version
(at the time of writing) of prototype.js

The latest version of the prototype.js library can be downloaded from
http://www.prototypejs.org/

On the
CD

http://www.prototypejs.org/

306 CHAPTER 25: The prototype.js Toolkit

At the time of writing, prototype.js is at version 1.6.0. If you download a different
version, check the documentation to see whether there are differences between
your version and the one described here.

Including the library in your web application is simple, just include in the <head>

section of your HTML document the following line:

<script src=”prototype.js” Language=”JavaScript”
➥type=”text/javascript”></script>

prototype.js contains a broad range of functions that can make writing JavaScript

code quicker, and the resulting scripts cleaner and easier to maintain.

The library includes general-purpose functions providing shortcuts to regular pro-

gramming tasks, a wrapper for HTML forms, an object to encapsulate the

XMLHTTPRequest object, methods and objects for simplifying DOM tasks, and more.

Let’s take a look at some of these tools.

The $() Function
$() is essentially a shortcut to the getElementById() DOM method. Normally, to

return the value of a particular element you would use an expression such as

var mydata = document.getElementById(‘someElementID’);

The $() function simplifies this task by returning the value of the element whose ID

is passed to it as an argument:

var mydata = $(‘someElementID’);

Furthermore, $() (unlike getElementById()) can accept multiple element IDs as an

argument and return an array of the associated element values. Consider this line of

code:

mydataArray = $(‘id1’,’id2’,’id3’);

In this example:

. mydataArray[0] contains the value of an element with ID id1.

. mydataArray[1] contains the value of an element with ID id2.

. mydataArray[2] contains the value of an element with ID id3.

Watch
Out!

Introducing prototype.js 307

The $F() Function
The $F() function returns the value of a form input field when the input element or

its ID is passed to it as an argument. Look at the following HTML snippet:

<input type=”text” id=”input1” name=”input1”>
<select id=”input2” name=”input2”>
<option value=”0”>Option A</option>
<option value=”1”>Option B</option>
<option value=”2”>Option C</option>
</select>

Here we could use

$F(‘input1’)

to return the value in the text box and

$F(‘input2’)

to return the value of the currently selected option of the select box. The $F() func-

tion works equally well on check box and text area input elements, making it easy

to return the element values regardless of the input element type.

The Form Object
prototype.js defines a Form object having several useful methods for simplifying

HTML form manipulation.

You can return an array of a form’s input fields by calling the getElements()

method:

inputs = Form.getElements(‘thisform’);

The serialize() method allows input names and values to be formatted into a

URL-compatible list:

inputlist = Form.serialize(‘thisform’);

Using the preceding line of code, the variable inputlist would now contain a

string of serialized parameter and value pairs:

field1=value1&field2=value2&field3=value3…

Form.disable(‘thisform’) and Form.enable(‘thisform’) each do exactly what

it says on the tin.

308 CHAPTER 25: The prototype.js Toolkit

The Try.these() Function
Previous chapters discussed the use of exceptions to enable you to catch runtime

errors and deal with them cleanly. The Try.these() function provides a convenient

way to encapsulate these methods to provide a cross-browser solution where

JavaScript implementation details differ:

return Try.these(function1(),function2(),function3(), …);

The functions are processed in sequence, operation moving on to the next function

when an error condition causes an exception to be thrown. Operation stops when

any of the functions completes successfully, at which point the function returns

true.

Applying this function to the creation of an XMLHTTPRequest instance shows the

simplicity of the resulting code:

return Try.these(
function() {return new ActiveXObject(‘Msxml2.XMLHTTP’)},
function() {return new ActiveXObject(‘Microsoft.XMLHTTP’)},
function() {return new XMLHttpRequest()}
)

You may want to compare this code snippet with Listing 10.1 to see just how
much code complexity has been reduced and readability improved.

Wrapping XMLHTTPRequest—the Ajax
Object
prototype.js defines an Ajax object designed to simplify the development of your

JavaScript code when building Ajax applications. This object has a number of class-

es that encapsulate the code you need to send server requests, monitor their

progress, and deal with the returned data.

Ajax.Request
Ajax.Request deals with the details of creating an instance of the XMLHTTPRequest

object and sending a correctly formatted request. Calling it is straightforward:

var myAjax = new Ajax.Request(url, {method: ‘post’,
➥parameters: mydata, onComplete: responsefunction});

By the
Way

Wrapping XMLHTTPRequest—the Ajax Object 309

In this call, url defines the location of the server resource to be called, method may

be either post or get, mydata is a serialized string containing the request parame-

ters, and responsefunction is the name of the callback function that handles the

server response.

The second argument is constructed using a notation often called JSON
(JavaScript Object Notation). The argument is built up from a series of parame-
ter:value pairs, the whole contained within braces. The parameter values them-
selves may be JSON objects, arrays, or simple values.

JSON is popular as a data interchange protocol due to its ease of construction,
ease of parsing, and language independence. You can find out more about it at
http://www.json.org.

The onComplete parameter is one of several options corresponding to the possible

values of the XMLHTTPRequest readyState properties, in this case a readyState

value of 4 (Complete). You might instead specify that the callback function should

execute during the prior phases Loading, Loaded, or Interactive, by using the

associated parameters onLoading, onLoaded, or onInteractive.

There are several other optional parameters, including

asynchronous:false

to indicate that a server call should be made synchronously. The default value for

the asynchronous option is true.

Ajax.Updater
On occasions when you require the returned data to update a page element, the

Ajax.Updater class can simplify the task. All you need to do is to specify which ele-

ment should be updated:

var myAjax = new Ajax.Updater(elementID, url, options);

The call is somewhat similar to that for Ajax.Request but with the addition of the

target element’s ID as the first argument. The following is a code example of

Ajax.Updater:

<script>
function updateDIV(mydiv)
{

var url = ‘http://example.com/serverscript.php’;
var params = ‘param1=value1¶m2=value2’;
var myAjax = new Ajax.Updater

Did you
Know?

http://www.json.org

310 CHAPTER 25: The prototype.js Toolkit

(
mydiv,
url,
{method: ‘get’, parameters: params}
);

}
</script>
<input type=”button” value=”Go” onclick=”updateDIV(targetDiv)”>
<div id=”targetDiv”></div>

Once again, several additional options may be used when making the call. A note-

worthy one is the addition of

evalscripts:true

to the options list. With this option added, any JavaScript code returned by the serv-

er will be evaluated.

Ajax.PeriodicalUpdater
The Ajax.PeriodicalUpdater class can be used to repeatedly create an

Ajax.Updater instance. In this way you can have a page element updated after a

certain time interval has elapsed. This can be useful for such applications as a stock

market ticker or an RSS reader because it ensures that the visitor is always viewing

reasonably up-to-date information.

Ajax.PeriodicalUpdater adds two further parameters to the Ajax.Updater

options:

. frequency—The delay in seconds between successive updates. Default is two

seconds.

. decay—The multiplier by which successive delays are increased if the server

should return unchanged data. Default value is 1, which leaves the delay con-

stant.

Here’s an example call to Ajax.PeriodicalUpdater:

var myAjax = new Ajax.PeriodicalUpdater(elementID, url,
➥{frequency: 3.0, decay: 2.0});

Here we elected to set the initial delay to 3 seconds and have this delay double in

length each time unchanged data is returned by the server.

Example Project—Stock Price Reader 311

Example Project—Stock Price Reader
Let’s use the prototype.js library to build a simple reader that updates periodically to

show the latest value returned from the server. In this example, we’ll use a simple

server-side script rand.php to simulate a changing stock price:

<?php
srand ((double) microtime()*1000000);
$price = 50 + rand(0,5000)/100;
echo “$price”;
?>

This script first initializes PHP’s random number routine by calling the srand()

function and passing it an argument derived from the current time. The

rand(0,5000) function is then used to generate a random number that is manipu-

lated arithmetically to produce phony “stock prices” in the range 50.00 to 100.00.

Now let’s build a simple HTML page to display the current stock price. This page

forms the basis for our Ajax application:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<script src=”prototype.js” Language=”JavaScript”
➥type=”text/javascript”></script>
<title>Stock Reader powered by Prototype.js</title>
</head>
<body>
<h2>Stock Reader</h2>
<h4>Powered by Prototype.js</h4>
<p>Current Stock Price:</p>
<div id=”price”></div>
</body>
</html>

Note that we included the prototype.js library by means of a <script> tag in the

document head. We also defined a <div> with id set to “price”, which will be used

to display the current stock price.

We now need to implement the Ajax.PeriodicalUpdater class, which we’ll attach

to the document body element’s onLoad event handler. Listing 25.1 shows the com-

plete script.

312 CHAPTER 25: The prototype.js Toolkit

LISTING 25.1 Ajax Stock Price Reader Using prototype.js
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥ Transitional//EN”
➥”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<script src=”prototype.js” Language=”JavaScript”
➥type=”text/javascript”></script>
<script>
function checkprice()
{
var myAjax = new Ajax.PeriodicalUpdater(‘price’,
➥’rand.php’, {method: ‘post’, frequency: 3.0,
➥ decay: 1});
}
</script>
<title>Stock Reader powered by Prototype.js</title>
</head>
<body onLoad=”checkprice()”>
<h2>Stock Reader</h2>
<h4>Powered by Prototype.js</h4>
<p>Current Stock Price:</p>
<div id=”price”></div>
</body>
</html>

Look how simple the code for the application has become through using

prototype.js. Implementing the application is merely a matter of defining a one-line

function checkprice() to instantiate our repeating Ajax call and calling that func-

tion from the body element’s onLoad event handler.

From the arguments passed to Ajax.PeriodicalUpdater, you’ll see that a 3-second

repeat interval has been specified. This period does not change with subsequent calls

because the decay value has been set to 1.

Figure 25.1 shows the application running. What cannot be seen from the figure, of

course, is the stock price updating itself every 3 seconds to show a new value.

▼

Summary 313

This simple example does not come close to showing off the power and versatility of

the prototype.js library. Rather, it is intended to get you started with your own exper-

iments by offering an easy point of access to this great resource.

Try It Yourself

Using prototype.js
Review some of the example JavaScript and Ajax applications from earlier in the

book, and see which can be rewritten more simply or more effectively by using tools

from the prototype.js toolkit.

Summary
In this first chapter in Part VI of the book, we discussed the use of the powerful and

elegant prototype.js JavaScript library.

The functions made available by this library greatly simplify some of the trickier

programming tasks when developing Ajax applications.

The library offers good support for the XMLHTTPRequest object, along with time-

saving shortcuts for DOM handling, HTML forms, and many other techniques rele-

vant to Ajax development.

FIGURE 25.1
Ajax stock
reader.

▲

This page intentionally left blank

CHAPTER 26

Using Rico

What You’ll Learn in This Chapter:
. Introducing Rico
. Rico’s Other Interface Tools

In this chapter you will learn the basics of using Rico, a powerful Ajax and user interface

development framework.

Introducing Rico
In Chapter 25, “The prototype.js Toolkit,” we looked at prototype.js, a powerful and useful

JavaScript library that simplifies many of the programming tasks facing the Ajax developer.

In this chapter we’ll take a look at using Rico, a sophisticated Ajax framework employing

the prototype.js library.

You’ll find Rico on the CD that accompanies this book, in the
Frameworks folder.

Rico is an open source library that extends the capabilities of prototype.js to provide a rich

set of interface development tools. In addition to the Ajax development techniques dis-

cussed so far, Rico offers a whole range of tools such as drag-and-drop, cinematic effects,

and more.

On the
CD

316 CHAPTER 26: Using Rico

Rico is the Spanish word for rich, which seems appropriate for a toolkit designed
for building rich user interfaces!

Using Rico in Your Applications
To start using Rico to build applications with rich user interfaces, you need to

include both Rico and prototype.js libraries in the <head>…</head> section of your

web pages.

<script src=”scripts/prototype.js”></script>
<script src=”scripts/rico.js”></script>

Rico’s AjaxEngine
The inclusion of rico.js causes an instance called ajaxEngine of an AjaxEngine

object to be created automatically ready for you to use. The AjaxEngine is Rico’s

mechanism for adding Ajax capabilities to your web pages.

The AjaxEngine requires a three-step process to update page elements via Ajax:

1. Register the request handler. Registering the request handler associates a

unique name with a particular URL to be called via Ajax.

2. Register the response handler. Rico can deal with the return of both HTML

data and JavaScript code within the XML returned from the server. In the for-

mer case, the response handler identifies a page element that is to be updated

using the returned data; in the latter case, a JavaScript object that handles the

server response.

3. Make the Ajax call from the page by using an appropriate event handler.

We first register our request handler by making a call to the registerRequest()

method of ajaxEngine:

ajaxEngine.registerRequest(‘getData’,’getData.php’);

We have now associated the name getData with a request to the server routine

getData.php. That server-side routine is required to return a response in well-

formed XML. The following is an example of a typical response:

Did you
Know?

Introducing Rico 317

<ajax-response>
<response type=”element” id=”showdata”>
<div class=”datadisplay”>
The cat sat on the mat

</div>
</response>

</ajax-response>

Such responses always have a root element <ajax-response>. The <response> ele-

ment it contains in this example has two attributes, type element and id showdata.

These signify, respectively, that the response contains HTML, and that this HTML is

to be used to update the page element having id showdata. This element is updated

via its innerHTML property.

Rico is capable of updating multiple page elements from one request. To achieve
this, the <ajax-response> element may contain multiple <response> elements.

The other form of response that Rico can return is a JavaScript object. Here’s an

example:

<ajax-response>
<response type=”object” id=”myHandler”>
<sentence>The cat sat on the mat.</sentence>

</response>
</ajax-response>

Here the type has been set to object, indicating that the content is to be dealt with

by a JavaScript object, the identity of which is contained in the id value (here

myHandler). The content of the response is always passed to the ajaxUpdate method

of this object.

How the response handler is registered depends on which type of response we are

dealing with. For responses of type element, you can simply call

ajaxEngine.registerAjaxElement(‘showdata’);

In the case of responses containing a JavaScript object, you will need

ajaxEngine.registerAjaxObject(‘myHandler’, new myHandler());

Whereas responses of type element are simply intended for the updating of HTML

page elements, responses of type object can have handlers to process responses in

any way they want. This allows Rico applications to be built ranging from simple to

sophisticated.

Did you
Know?

318 CHAPTER 26: Using Rico

A Simple Example
We can see Rico in action by using the simple script of Listing 26.1. This application

updates two HTML elements with a single call to Rico’s ajaxEngine object. The

script for the application is in Listing 26.1.

LISTING 26.1 A Simple Rico Application
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥ Transitional//EN”
➥”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<title>Testing OpenRico</title>
<script src=”prototype.js”></script>
<script src=”rico.js”></script>
<script type=”text/javascript”>
function callRICO()
{
ajaxEngine.registerRequest(‘myRequest’, ‘ricotest.php’);
ajaxEngine.registerAjaxElement(‘display’);
ajaxEngine.registerAjaxElement(‘heading’);
}
</script>
</head>
<body onload=” callRICO();”>
<div id=”heading”><h3>Demonstrating Rico</h3></div>
<input type=”button” value=”Get Server Data”
➥ onclick=”ajaxEngine.sendRequest(‘myRequest’);”/>
<div id=”display”><p>This text should be replaced with
➥server data ...</p></div>
</body>
</html>

You will see from the code that the single function callRICO() is used to register

both the single request handler myRequest and two response handlers. The response

handlers are used to update two <div> containers; one of these contains the page’s

heading, the other a short text message. On making the Rico request, the contents

of both are updated, leaving the page with a new title and now displaying some

server information instead of the previous text message. Figure 26.1 shows before

and after screenshots.

The server routine is a simple PHP script that outputs the required XML data. The

script uses PHP’s $_SERVER[‘SERVER_SIGNATURE’] global variable. Note that the

script constructs and returns two separate <response> elements, each responsible

for updating a particular element in the HTML page.

Introducing Rico 319

Listing 26.2 shows the server script.

LISTING 26.2 The Server Script for Generating <ajax-response>
<?php
header(“Content-Type:text/xml”);
header(“Cache-Control:no-cache”);
header(“Pragma:no-cache”);
echo “<ajax-response><response type=\”element\”
➥id=\”display\”><p>”
➥.$_SERVER[‘SERVER_SIGNATURE’]
➥.”</p></response>
➥<response type=\”element\” id=\”heading\”>
➥<h3>Some Information about the Server</h3>
➥</response></ajax-response>”;
?>

Chapter 11, “Talking with the Server,” discussed problems that can occur due to
the browser cache. In that chapter we used a workaround involving adding a
parameter of random value to the URL of the server resource that we wanted
to call.

This script example uses another technique, including the header commands
header(“Cache-Control:no-cache”);
header(“Pragma:no-cache”);

instructing the browser not to cache this page, but to collect a new copy from the
server each time.

FIGURE 26.1
Updating multi-
ple page ele-
ments with
Rico.

Did you
Know?

320 CHAPTER 26: Using Rico

PHP’s $_SERVER global array variable was introduced in PHP 4.1.0. If you have an
older version of PHP installed, you’ll need the global variable $HTTP_SERVER_VARS
instead.

Rico’s Other Interface Tools
Rico’s capabilities aren’t limited to aiding the development of Ajax applications.

Let’s now look at some other capabilities you can add to your user interfaces using

the Rico toolkit. Although these techniques do not themselves use Ajax, it takes little

imagination to realize what they might achieve when combined with Rico’s Ajax

tools.

Drag-and-Drop
Both desktop applications and the operating systems on which they run make wide-

spread use of drag-and-drop to simplify the user interface. The JavaScript techniques

required to implement drag-and-drop can be tricky to master, not least because of

the many cross-browser issues that arise.

Drag-and-drop using Rico, however, is simple.

Including the rico.js file in your application automatically causes the creation of an

object called dndMgr, Rico’s Drag and Drop Manager. Using the dndMgr object is

much like using AjaxEngine; this time, though, we need to register not Ajax

requests and responses, but draggable items and drop zones (page elements that can

receive dragged items).

These tasks are carried out via the registerDraggable and registerDropZone

methods:

dndMgr.registerDraggable(new Rico.Draggable(‘test’,
➥’dragElementID’));
dndMgr.registerDropZone(new Rico.Dropzone
➥(‘dropElementID’));

These two simple commands declare, respectively, a page element with ID

dragElementID as being draggable, and another element with ID dropElementID

as a drop zone. The argument ‘test’ of the registerDraggable() method defines

a type for the draggable item, which can be tested and used by subsequent code, if

required.

Watch
Out!

Rico’s Other Interface Tools 321

Example of a Drag-and-Drop Interface
Listing 26.3 shows how simple it is to implement drag-and-drop using Rico. The dis-

played HTML page is shown in Figure 26.2.

LISTING 26.3 Simple Drag-and-Drop Using Rico
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
➥ Transitional//EN”
➥”http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<script src=”prototype.js”></script>
<script src=”rico.js”></script>
<style>
body {
font: 10px normal arial, helvetica, verdana;
background-color:#dddddd;
}

div.simpleDropPanel {
width : 260px;
height : 180px;
background-color: #ffffff;
padding : 5px;
border : 1px solid #333333;
}

div.box {
width : 200px;
cursor : hand;
background-color: #ffffff;
-moz-opacity : 0.6;
filter : alpha(Opacity=60);
border: 1px solid #333333;
}
</style>

</head>
<body>
<table width=”550”>
<tr>
<td><h3>Drag and Drop</h3>
<p>Drag and drop data items into the target fields

➥using the left mouse button in the usual way.
➥Note how available target fields change colour
➥during the drag operation.</p>
<p>Reload the page to start again.</p>
<div class=”box” id=”draggable1”>This is a piece

➥of draggable data</div>
<div class=”box” id=”draggable2”>

➥This is another</div>
<div class=”box” id=”draggable3”>

➥And this is a third</div>

322 CHAPTER 26: Using Rico

<table>
<tr>
<td>
<div id=”droponme” class=”simpleDropPanel”>

Drop Zone 1
A simple text area
</div>

</td>
<td>
Drop Zone 2

A form text entry field.
<form><textarea name=”dropzone” id=”droponme2”

➥ rows=”6” cols=”30”></textarea></form>
</td>
</tr>
</table>
</td>

</tr>
</table>
<script>

dndMgr.registerDraggable(new
➥Rico.Draggable(‘foo’,’draggable1’));

dndMgr.registerDraggable(new
➥Rico.Draggable(‘foo’,’draggable2’));

dndMgr.registerDraggable(new Rico.
➥Draggable(‘foo’,’draggable3’));

dndMgr.registerDropZone(new Rico.Dropzone
➥(‘droponme’));

dndMgr.registerDropZone(new Rico.Dropzone
➥(‘droponme2’));
</script>
</body>
</html>

LISTING 26.3 Continued

FIGURE 26.2
The simple
drag-and-drop
application.

Rico’s Other Interface Tools 323

The two JavaScript libraries rico.js and prototype.js are included in the <head> of the

document along with style definitions for various page elements.

Note that two page elements in particular, a <div> container and a <textarea>

input field, have been given IDs of dropzone1 and dropzone2. Further down the

listing, these two elements are defined as drop zones for our drag-and-drop opera-

tions by the lines

dndMgr.registerDropZone(new Rico.Dropzone(‘droponme’));
dndMgr.registerDropZone(new Rico.Dropzone(‘droponme2’));

You’ll see too that three small <div> containers have been defined in the page and

given IDs of draggable1, draggable2, and draggable3. As you have no doubt

guessed, they are to become draggable page elements and are defined as such by

the following code lines:

dndMgr.registerDraggable(new Rico.Draggable(‘foo’,
➥’draggable1’));
dndMgr.registerDraggable(new Rico.Draggable(‘foo’,
➥’draggable2’));
dndMgr.registerDraggable(new Rico.Draggable(‘foo’,
➥’draggable3’));

That’s all there is to it! Rico takes care of all the details, even changing the look of

the available drop zones while something is being dragged, as shown in Figure 26.3.

FIGURE 26.3
Drop zones
highlighted
during drag
operation.

When released above an available drop zone, draggable items position themselves

inline with the HTML code of the drop zone element, as shown in Figure 26.4.

324 CHAPTER 26: Using Rico

FIGURE 26.4
After completing
the drag-and-
drop.

Cinematic Effects
In addition to Ajax and drag-and-drop tools, Rico also makes available a host of

user interface gadgets known collectively as cinematic effects.

Rico’s cinematic effects are extensions to the Effect class found in prototype.js.

These effects include animation of page elements (changing their sizes and/or

shapes), fading effects (altering the opacity of page elements), applying rounded

corners to objects, and manipulating object colors.

Used alongside the interface techniques previously discussed, these effects can help

you to build sophisticated, eye-catching, and user-friendly interfaces much more

reminiscent of desktop applications than of web pages.

Summary
Following our examination of the prototype.js library in the Chapter 25, this chap-

ter moved on to experiment with Rico. Rico is an open source framework based on

prototype.js that offers a simple way to integrate Ajax, along with drag-and-drop

and other visual effects, into user interface designs.

In Chapter 27, we’ll have a brief look at another toolkit based on prototype.js,

namely Script.aculo.us.

By the
Way

CHAPTER 27

Using Script.aculo.us

What You’ll Learn in This Chapter:
. Downloading the Library
. Including the Files
. Using Effects
. Building the Script

We have already seen in previous chapters how powerful the prototype.js library is, and

we have used the Rico library, built on prototype.js, to create some visual effects with very

little code.

In this chapter you will learn the basics of using Script.aculo.us, a powerful Ajax and user

interface development framework, also based on prototype.js.

To see how simple it is to use, you will now create an example script that includes the

Script.aculo.us library and use event handlers to demonstrate several of the available

effects.

This example was created using version 1.5.1 of the Script.aculo.us
library. It should work with later versions, but the library might have
changed since this was written. If you have trouble, you might need to
use this specific version.

Downloading the Library
To use the library, you will need to obtain it and copy the files you need to the same folder

where you will store your script.

Watch
Out!

326 CHAPTER 27: Using Script.aculo.us

You will find a copy of Script.aculo.us on the CD accompanying this book.
Alternatively, you can download the latest version of the library from the
Script.aculo.us website at http://script.aculo.us/downloads.

The download is available as a Zip file. Inside the Zip file you will find a folder

called scriptaculous-js-x.x.x. You will need the following files from the folders

under this folder:

. prototype.js (the Prototype library) from the lib folder

. effects.js (the effects functions) from the src folder

Copy both of these files to a folder on your computer, and be sure to create your

demonstration script in the same folder.

The Script.aculo.us download includes many other files, and you can include the
entire library if you intend to use all of its features. For this example, you only
need the two files described here.

Including the Files
To add the library to your HTML document, simply use <script> tags to include

the two JavaScript files you copied from the download:

<script type=”text/javascript” src=”prototype.js”> </script>
<script type=”text/javascript” src=”effects.js”> </script>

If you include these statements as the first things in the <head> section of your docu-

ment, the library functions will be available to other scripts or event handlers any-

where in the page.

Using Effects
After you have included the library, you simply need to include a bit of JavaScript to

trigger the effects. We will use a section of the page wrapped in a <div> tag with the

id value test to demonstrate the effects. Each effect is triggered by a simple event

handler on a button. For example, this code defines the Fade Out button:

<input type=”button” value=”Fade Out”
onClick=”new Effect.Fade($(‘test’))”>

On the
CD

By the
Way

http://script.aculo.us/downloads

Building the Script 327

This uses the $ function built into Prototype to obtain the object for the element with

the id value test, and then passes it to the Effect.Fade function built into

Script.aculo.us.

This example will demonstrate six effects: Fade, Appear, SlideUp, SlideDown, Highlight,
and Shake. There are more than 16 effects in the library, plus methods for supporting
Drag and Drop and other features. See http://script.aculo.us for details.

Building the Script
After you have included the libraries, you can combine them with event handlers

and some example text to create a complete demonstration of Script.aculo.us effects.

The complete HTML document for this example is shown in Listing 27.1.

LISTING 27.1 The Complete Library Effects Example
<html>
<head>
<title>Testing script.aculo.us effects</title>
<script type=”text/javascript” src=”prototype.js”> </script>
<script type=”text/javascript” src=”effects.js”> </script>
</head>
<body”>
<h1>Testing script.aculo.us Effects</h1>
<form name=”form1”>
<input type=”button” value=”Fade Out”

onClick=”new Effect.Fade($(‘test’))”>
<input type=”button” value=”Fade In”

onClick=”new Effect.Appear($(‘test’))”>
<input type=”button” value=”Slide Up”

onClick=”new Effect.SlideUp($(‘test’))”>
<input type=”button” value=”Slide Down”

onClick=”new Effect.SlideDown($(‘test’))”>
<input type=”button” value=”Highlight”

onClick=”new Effect.Highlight($(‘test’))”>
<input type=”button” value=”Shake”

onClick=”new Effect.Shake($(‘test’))”>
</form>
<div id=”test”

style=”background-color:#CCC; margin:20px; padding:10px;”>
<h2>Testing Effects</h2>
<hr>
<p>This section of the document is within a <div> element
with the id value test. The event handlers on the
buttons above send this object to the
script.aculo.us library
to perform effects. Click the buttons to see the effects.
</p>
</div>
</body>
</html>

Did you
Know?

http://script.aculo.us

▼

328 CHAPTER 27: Using Script.aculo.us

This document starts with two <script> tags to include the library’s files. The effects

are triggered by the event handlers defined for each of the six buttons. The <div>

section at the end defines the test element that will be used to demonstrate the

effects.

To try this example, make sure the prototype.js and effects.js files from

Script.aculo.us are stored in the same folder as your script, and then load it into a

browser. The display should look like Figure 27.1, and you can use the six buttons at

the top of the page to trigger effects.

FIGURE 27.1
The library
effects example
as displayed by
Firefox.

Try It Yourself

Exploring Script.aculo.us
Explore the facilities available in the Script.aculo.us framework and compare the

approach taken to that of the Rico library discussed in Chapter 26.

Feel free to experiment with the other functionality that the library offers and see

what you can achieve.▲

Summary 329

Summary
Script.aculo.us is another powerful and easy-to-use toolkit based on the prototype.js

library. With just a few lines of code, you can add impressive effects to your page

elements.

This chapter has barely scratched the surface of what Script.aculo.us can achieve.

Read the package documentation and experiment with the library to see how you

can build powerful and impressive interactive pages with minimal additional pro-

gramming.

This page intentionally left blank

CHAPTER 28

Using XOAD

What You’ll Learn in This Chapter:
. Introducing XOAD
. XOAD HTML
. Advanced Programming with XOAD

In this chapter you will learn about XOAD, a server-side framework with Ajax support

written by Stanimir Angeloff.

Introducing XOAD
So far in this part of the book we have looked at the prototype.js, script.aculo.us and Rico

libraries and how they can help you to develop Ajax applications. Unlike these client-side

libraries, which are written in JavaScript, XOAD is a server-side Ajax toolkit written in PHP.

This chapter discusses some of the concepts behind XOAD and the basics of its use.

XOAD is an acronym for XMLHTTP Object-oriented Application
Development.

All our work so far has concentrated on the use of JavaScript to handle both the server

request and the returned data in Ajax applications. XOAD is a server-based solution writ-

ten in PHP that takes a slightly different approach.

XOAD applications make server-based PHP functions available to the client-side

JavaScript interpreter by passing serialized versions of them as JavaScript objects.

Did you
Know?

332 CHAPTER 28: Using XOAD

Under the hood, XOAD employs JSON (JavaScript Object Notation) for communica-
tions. JSON was introduced in Chapter 25, “The prototype.js Toolkit.”

Downloading and Installing XOAD

A recent version of XOAD is included on the companion CD. To make sure you
have the most up-to-date version, see the following download instructions.

XOAD is made up of many PHP and supporting scripts and can be downloaded as

an archive file from http://sourceforge.net/projects/xoad. To install XOAD successful-

ly, you need FTP access to a web server that supports PHP and (to use the more

advanced features of XOAD) the MySQL database. Detailed instructions for

installing XOAD can be found in the downloaded material, and there is a public

forum at http://forums.xoad.org/.

A Simple XOAD Page
Let’s take a look at an example of the simplest XOAD page. Suppose that you have

a PHP class that you want to use in your XOAD application. This class is stored in

the PHP file myClass.class.php:

<?php
class myClass {
function stLength($mystring) {

return strlen($mystring);
}

function xoadGetMeta() {
XOAD_Client::mapMethods($this, array(‘stLength’));
XOAD_Client::publicMethods($this, array(‘stLength’));

}
}
?>

This simple class has only one function, stLength(), which merely returns the

length of a string variable. We also added some metadata to the class in the form of

the function xoadGetMeta(). This information tells XOAD which methods from the

class are available to be exported to the main application. In this case there is just

one, stLength().

It is not absolutely necessary to include metadata in the class, but it is recom-
mended. Without metadata, all methods will be public, and method names will be
converted to lowercase.

By the
Way

On the
CD

Watch
Out!

http://sourceforge.net/projects/xoad
http://forums.xoad.org/

Introducing XOAD 333

Now you need to start constructing the main application script xoad.php.

The Ajax applications developed in previous chapters were HTML files with file
extensions .htm or .html. Because our XOAD application contains PHP code, it
must have a suitable file extension. Most web server and PHP implementations
will accept a file extension of .php, and some will allow other extensions such as
.php4 or .phtml.

Listing 28.1 shows the XOAD application. This is a fairly pointless program that

simply returns the length of a string, “My XOAD Application”. Nevertheless, it

demonstrates the concept of methods from server-side PHP classes being made avail-

able on the client side as JavaScript objects.

LISTING 28.1 A Simple XOAD Application
<?php
require_once(‘myClass.class.php’);
require_once(‘xoad.php’);
XOAD_Server::allowClasses(‘myClass’);
if (XOAD_Server::runServer()) {
exit;
}

?>
<?= XOAD_Utilities::header(‘.’) ?>
<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new myClass()) ?>;
var mystring = ‘My XOAD Application’;
myobj.onStLengthError = function(error) {
alert(error.message);
return true;
}

myobj.stLength(mystring, function(result) {
document.write(‘String: ‘ + mystring

➥ + ‘
Length: ‘ + result);
});

</script>

On loading the preceding document into a browser, the page simply says:

String: My XOAD Application
Length: 19

I won’t go into much detail about how the PHP code works; we’ve discussed the PHP

language elsewhere. It’s important, though, to understand the concepts that underpin

the code, so let’s step through Listing 28.1 and try to understand what’s happening:

<?php
require_once(‘myClass.class.php’);
require_once(‘xoad.php’);
XOAD_Server::allowClasses(‘myClass’);

Did you
Know?

334 CHAPTER 28: Using XOAD

if (XOAD_Server::runServer()) {
exit;
}

?>
<?= XOAD_Utilities::header(‘.’) ?>

The first part of the script includes both xoad.php and the required class file

myClass.class.php, and informs XOAD which classes it may access (in this case

only one).

The XOAD function runServer() checks whether the XOAD request is a client call-

back, and if so handles it appropriately. The header() function is used to register

the client header files.

Now let’s look at the remainder of the script:

<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new myClass()) ?>;
var mystring = ‘My XOAD Application’;
myobj.onStLengthError = function(error) {
alert(error.message);
return true;
}

myobj.stLength(mystring, function(result) {
document.write(‘String: ‘ + mystring

➥+ ‘
Length: ‘ + result);
});

</script>

See how the remainder of the script is a <script>…</script> element? The line

var myobj = <?= XOAD_Client::register(new myClass()) ?>;

exports the public methods declared in myClass.class.php to a JavaScript object.

We now have a JavaScript object with a method stLength() that allows us to use

the method of the same name from the PHP class myClass.

XOAD HTML
XOAD HTML is an extension that allows for the easy updating of HTML page

elements using XOAD. The following examples show the use of the

XOAD_HTML::getElementBy ID() and XOAD_HTML::getElementsByTagName()

methods, which do exactly the same thing as their equivalent JavaScript DOM

methods.

XOAD HTML 335

XOAD_HTML::getElementById()
You will recognize the layout of the code in Listing 28.2 as being similar in structure

to the basic XOAD program discussed earlier.

Rather than include an external class file, in this example we have defined a class,

Updater, within the application itself. The class contains a single function,

change().

The first line in that function uses XOAD_HTML::getElementById() to identify the

page element with and ID of display. Subsequent program lines proceed to change

the text and background color of the page element.

The function change() is made available as a method of the JavaScript object myobj

and can then be called like any other JavaScript method:

<a href=”#server” onclick=”myobj.change();
➥return false;”>Change It!

Figure 28.1 shows the program’s operation.

FIGURE 28.1
Using
XOAD_HTML:
:getElement
ById().

LISTING 28.2 Application to Use XOAD_HTML::getElementById
<?php
class Updater
{

function change()
{
$mytext =& XOAD_HTML::getElementById(‘display’);
$mytext->style[‘backgroundColor’] = ‘yellow’;
$mytext->innerHTML = ‘My background

336 CHAPTER 28: Using XOAD

➥ color has changed.’;
}

}
define(‘XOAD_AUTOHANDLE’, true);
require_once(‘xoad.php’);
?>
<?= XOAD_Utilities::header(‘.’) ?>
<div id=”display”>My background color is white.</div>
<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new Updater()) ?>;
</script>
<a href=”#server” onclick=”myobj.change();
➥return false;”>Change It!

XOAD_HTML::getElementsByTagName()
The XOAD_HTML::getElementsByTagName() method, like its JavaScript equivalent,

returns an array of elements with a certain element type. Listing 28.3 identifies all

page elements of type <div> and changes some of their style attributes.

LISTING 28.3 Changing All Page Elements of a Given Type
<?php
class Updater
{

function change()
{

$mydivs =& XOAD_HTML::getElementsByTagName(‘div’);
$mydivs->style[‘height’] = ‘60’;
$mydivs->style[‘width’] = ‘350’;
$mydivs->style[‘backgroundColor’] = ‘lightgreen’;

$mydivs->innerHTML =
➥’Size and color changed by XOAD’;

}
}
define(‘XOAD_AUTOHANDLE’, true);
require_once(‘xoad.php’);
?>
<?= XOAD_Utilities::header(‘.’) ?>
<script type=”text/javascript”>
var myobj = <?= XOAD_Client::register(new Updater()) ?>;
</script>
<style>
div {
border:1px solid black;
height:80;
width:150
}
</style>
<div>Div 1</div>

LISTING 28.2 Continued

Advanced Programming with XOAD 337

<div>Div 2</div>

<div>Div 3</div>
<a href=”#server” onclick=”myobj.change();
➥return false;”>Update All Divs

The three <div> elements in the page are identified by XOAD_HTML::getElementsBy

TagName() and have their styles and sizes changed.

Figure 28.2 shows the program in operation.

LISTING 28.3 Continued

FIGURE 28.2
Selecting multi-
ple page ele-
ments with
XOAD_HTML.

XOAD_HTML has many other capabilities. Details of all the functions available with-
in XOAD_HTML are in the XOAD download.

Advanced Programming with XOAD
XOAD has a range of advanced capabilities over and above those discussed in this

chapter. In case you want to investigate the limits of what is possible using XOAD,

here is an overview of the currently supported techniques.

Did you
Know?

338 CHAPTER 28: Using XOAD

XOAD Events
The XOAD framework also has support for events. An XOAD event instigated on one

client’s computer can be stored on the server and subsequently detected by other

clients, making it possible to build complex applications in which users can interact.

Such applications might, for instance, include chat, groupware, or similar collabora-

tive tools.

Cache Handling with XOAD
XOAD allows for the caching on the server using the XOAD_Cache class. Caching

results gives significant performance improvements, especially when server-side rou-

tines are time-intensive (such as sorting a large data set or performing queries on a

sizeable database table).

XOAD Controls
You can define custom client controls in XOAD using the XOAD_Controls class.

At the time of writing, the current version of XOAD is 0.6.0.0. If the version you
download is different, consult the documentation included in the download.

Summary
This chapter examined a server-side implementation of an Ajax toolkit, in the form

of XOAD.

XOAD allows the methods contained within PHP classes stored on the server to be

made available to client programs using JavaScript. This forms an interesting con-

trast in approach compared to the client-side techniques discussed in Chapters 25

and 26.

This concludes Part VI of the book and, in fact, the book itself. You should now have

a good understanding of JavaScript programming, PHP programming and Ajax

application architecture.

Did you
Know?

APPENDIX

JavaScript, PHP, and Ajax
Websites

Although you’ve learned a lot about JavaScript, PHP, and Ajax, there’s still a lot to know.

If you’d like to move on to advanced features of JavaScript or learn more, the resources

listed in this appendix will be helpful.

JavaScript Websites
The following websites will help you learn more about JavaScript:

. The JavaScript Workshop is a weblog about JavaScript written by Michael Moncur,

the author of this book. There you’ll find updates on the JavaScript language and

the DOM, as well as detailed tutorials on beginning and advanced tasks.

http://www.jsworkshop.com/

. The DOM Scripting Task Force, part of the Web Standards Project, works toward bet-

ter use of standards in scripting, and has an informative weblog with the latest on

JavaScript and DOM standards.

http://domscripting.webstandards.org/

. The Mozilla Project’s JavaScript section has information on the latest updates to the

JavaScript language, as well as documentation, links to resources, and information

about JavaScript implementations.

http://www.mozilla.org/js/

http://www.jsworkshop.com/
http://domscripting.webstandards.org/
http://www.mozilla.org/js/

340 APPENDIX: JavaScript, PHP, and Ajax Websites

PHP Websites
The following sites are invaluable for PHP Developers:

. The PHP home site offers downloads, documentation, tutorials, FAQs, and

much more, including user-submitted code.

http:// www.php.net/

. PHPBuilder is a meeting point for anybody interested in PHP, and includes a

Code Library, Community pages, PHP news, and much more.

http://www.phpbuilder.com/

. Planet PHP maintains a list of many important PHP-related blogs. Here you

can find news, views, and opinions from influential people in the world of PHP.

http://www.planet-php.net/

Web Development Sites
The following sites have news and information about web technologies, including

JavaScript, XML, and the DOM, as well as basic HTML:

. The W3C (World Wide Web Consortium) is the definitive source for informa-

tion about the HTML and CSS standards.

http://www.w3.org/

. WebReference.com has information and articles about web technologies rang-

ing from Java to plug-ins.

http://www.webreference.com/

. Digital Web Magazine features regular online articles on everything from

JavaScript and web design to running a web business.

http://www.digital-web.com/

http://www.phpbuilder.com/
http://www.planet-php.net/
http://www.w3.org
http://www.webreference.com/
http://www.digital-web.com/
http://www.php.net/

Ajax Websites 341

Ajax Websites
Some useful websites dedicated to Ajax programming:

. Ajax Matters contains a wide range of in-depth articles about all aspects of

Ajax.

http://www.ajaxmatters.com/

. Ajaxian is a well respected and massive resource with news, podcasts, articles,

and more about every aspect of Ajax programming.

http://ajaxian.com/

. Crack Ajax contains tutorials, code snippets, demos, and completely worked

projects, as well as a forum for Ajax programmers.

http://www.crackajax.net.

http://www.ajaxmatters.com/
http://ajaxian.com/
http://www.crackajax.net

This page intentionally left blank

ActiveX A technology developed by
Microsoft to allow components to be cre-
ated, primarily for Windows computers.
ActiveX components, or controls, can be
embedded in web pages.

AHAH (Asynchronous HTML and HTTP)
A simplified subset of Ajax, useful for
updating text on a web page without
page refresh.

Ajax (Asynchronous JavaScript and XML)
a combination of technologies that
allows JavaScript to send requests to a
server, receive responses, and update sec-
tions of a page without loading a new
page.

algorithm The process, method or rou-
tine used to solve a problem.

anchor In HTML, a named location
within a document, specified using the
<a> tag. Anchors can also act as links.

applet A Java program that is designed
to be embedded in a web page.

argument A parameter that is passed to
a function when it is called. Arguments
are specified within parentheses in the
function call.

array A set of variables that can be
referred to with the same name and a
number, called an index.

attribute A property value that can be
defined within an HTML tag. Attributes
specify style, alignment, and other
aspects of the element defined by the tag.

assignment The setting of a variable to
a particular value.

Boolean A type of variable that can
store only two values: true and false.

browser sensing A scripting technique
that detects the specific browser in use by
clients to provide compatibility for multi-
ple browsers.

cache The internal memory used by a
browser to store visited pages, making
them faster to load when next requested.

Glossary

The following are some terms relating to web development that are used throughout
this book. Although most of them are explained in the text of the book, this section
can serve as a useful quick reference while reading the book, or while reading other
sources of JavaScript, PHP, or Ajax information.

Cascading Style Sheets (CSS) The
W3C’s standard for applying styles to
HTML documents. CSS can control fonts,
colors, margins, borders, and positioning.

class A construction within an object-
oriented programming language that
allows the creation of objects.

comment Programmer’s notes written
within sections of code to clarify how
code operates and make it easier to
maintain later. Comments are ignored
when code is executed.

Common Gateway Interface (CGI) A
standardized method for running server-
side programs, irrespective of the lan-
guage they are written in.

concatenate The act of combining two
strings into a single, longer string.

conditional A statement that performs
an action if a particular condition is true,
typically using the if statement.

constructor A class method used to cre-
ate and initialize a new object.

debug The act of finding errors, or
bugs, in a program or script.

declaration A statement of a variable’s
name and type.

decrement To decrease the value of a
variable by one. In JavaScript and PHP,
this can be done with the decrement
operator, --.

deprecated A term the W3C applies to
HTML tags or other items that are no
longer recommended for use, and may
not be supported in the future. For

example, the tag is deprecated in
HTML 4.0 because style sheets can pro-
vide the same capability.

Domain Name Service (DNS) The sys-
tem used to associate domain names
with IP addresses across the Internet.

Document Type Declaration (DTD) A
declaration made at the beginning of a
HTML document that states what version
of HTML the document adheres to.

Document Object Model (DOM) The set
of objects that JavaScript can use to refer
to the browser window and portions of
the HTML document. The W3C (World
Wide Web Consortium) DOM is a stan-
dardized version supported by the latest
browsers, and allows access to every
object within a web page.

Dynamic HTML (DHTML) The combina-
tion of HTML, JavaScript, CSS, and the
DOM, which allows dynamic web pages
to be created. DHTML is not a W3C stan-
dard or a version of HTML.

element A single member of an array,
referred to with an index. In the DOM,
an element is a single node defined by an
HTML tag.

error handling The use of coding tech-
niques to make a script deal elegantly
with any error situations that may arise.

event A condition, often the result of a
user’s action, that can be detected by a
script.

event handler A JavaScript statement
or function that will be executed when
an event occurs.

344

Cascading Style Sheets (CSS)

expression A combination of variables,
constants, and operators that can be
evaluated to a single value.

feature sensing A scripting technique
that detects whether a feature, such as a
DOM method, is supported before using it
to avoid browser incompatibilities.

Firefox Mozilla’s popular standards-
compliant web browser.

float A floating point decimal number.

form An HTML construct to allow web-
site users to send information to the
server

formatting Use of indents, new lines
and whitespace to make code easier to
read and understand.

function A group of statements that
can be referred to using a function name
and arguments.

global variable A variable that is avail-
able to all code in a web page. It is
declared (first used) outside any function.

Greasemonkey An extension for the
Firefox browser that allows user scripts to
modify the appearance and behavior of
web pages.

Hypertext Markup Language (HTML)
The language used in web documents.
JavaScript statements are not HTML, but
can be included within an HTML docu-
ment, and will be executed in the visitor’s
browser. Blocks of PHP code can also be
embedded within HTML, and will be exe-
cuted at the server.

Hypertext Transfer Protocol (HTTP)
The standard by which web servers and
browsers communicate

increment To increase the value of a
variable by one. In JavaScript and PHP,
this is done with the increment operator,
++.

integer A whole number (positive or
negative).

Internet Explorer (IE) Microsoft’s web
browser, available for various platforms
including Windows and Mac.

interpreter A program that interprets
code statements and acts on them. The
JavaScript interpreter is embedded in the
visitor’s web browser. The PHP interpreter
is installed on the web server.

Java An object-oriented language devel-
oped by Sun Microsystems. Java applets
can be embedded within a web page.
JavaScript has similar syntax, but is not
the same as Java.

JavaScript A scripting language for web
documents, loosely based on Java’s syn-
tax, developed by Netscape. JavaScript is
now supported by the most popular
browsers.

layer An area of a web page that can
be positioned and can overlap other sec-
tions in defined ways. Layers are also
known as positionable elements.

local variable A variable that is avail-
able to only one function. It is declared
(first used) within the function.

local variable

345

loop A set of program statements that
are executed a number of times, or until
a certain condition is met.

method A specialized type of function
that can be stored in an object, and acts
on the object’s properties.

Navigator A browser developed by
Netscape, and the first to support
JavaScript.

node In the DOM, an individual con-
tainer or element within a web docu-
ment. Each HTML tag defines a node.

null An identifier used in a computer
language to indicate the absence of a
value; for instance to indicate that a
function returned no data.

object A type of variable that can store
multiple values, called properties, and
functions, called methods.

operator A character used to divide
variables or constants used in an expres-
sion.

parameter A variable sent to a function
when it is called, also known as an argu-
ment.

PHP A very popular and open source
server-side scripting language.

progressive enhancement The
approach of building a basic page that
works on all browsers, and then adding
features such as scripting that will work
on newer browsers without compromising
the basic functionality of the page.

property A variable that is stored as
part of an object. Each object can have
any number of properties.

readyState Property of the
XMLHTTPRequest object containing infor-
mation about the progress of an Ajax
request.

Really Simple Syndication (RSS) A
family of formats used for publishing fre-
quently updated information via XML.

Representational State Transfer (REST)
A popular web service protocol.

responseText Property of the
XMLHTTPRequest object containing string-
formatted data returned by the server.

responseXML Property of the
XMLHTTPRequest object containing XML
data returned by the server.

rule In CSS, an individual element of a
style block that specifies the style for an
HTML tag, class, or identifier.

scope The part of a program that
a variable was declared in and is
available to.

selector In a CSS rule, the first portion
of the rule that specifies the HTML tag,
class, or identifier that the rule will affect.

Simple Object Access Protocol (SOAP)
A popular protocol for offering and con-
suming web services.

stateless protocol A communications

346

loop

protocol that does not retain information
between successive requests. HTTP is such
a protocol.

statement A single line of a script or
program.

string A group of text characters that
can be stored in a variable.

stylesheet A document containing CSS
styling information.

syntax Grammar defining a program-
ming language.

table HTML element designed for show-
ing tabular data on a page.

tag In HTML, an individual element
within a web document. HTML tags are
contained within angle brackets, as in
<body> and <p>.

text node In the DOM, a node that
stores a text value rather than an HTML
element. Nodes that contain text, such as
paragraphs, have a text node as a child
node.

unobtrusive scripting A set of tech-
niques that make JavaScript accessible
and avoid trouble with browsers by
separating content, presentation, and
behavior.

variable A container, referred to with a
name, that can store a number, a string,
or an object.

VBScript A scripting language devel-

oped by Microsoft, with syntax based on
Visual Basic. VBScript is supported only
by Microsoft Internet Explorer.

Web 2.0 A popular term used to
describe websites using Ajax and similar
techniques to enhance the user’s experi-
ence.

World Wide Web Consortium (W3C) An
international organization that develops
and maintains the standards for HTML,
CSS, and other key web technologies.

XHTML (Extensible Hypertext Markup
Language) A new version of HTML
developed by the W3C. XHTML is similar
to HTML, but conforms to the XML speci-
fication.

XML (Extensible Markup Language) A
generic language developed by the W3C
(World Wide Web Consortium) that
allows the creation of standardized
HTML-like languages, using a DTD
(Document Type Definition) to specify
tags and attributes.

XMLHTTPRequest object The built-in
JavaScript object used to make Ajax calls.

XMLHTTPRequest object

347

This page intentionally left blank

SYMBOLS

&& (And operator), 120

* (multiplication operator), 198

@ characters, PHP methods, 253

\ (backslashes)

escaping strings, 202

\n character sequence, new-

line characters, 192

{} (braces)

code indentation rules, 216

loop syntax, 126

use in conditional state-

ments, 216

[] (brackets), use in conditional

statements, 216

$ (dollar sign)

$ SERVER global array vari-

able, 320

$() function, 306

$F() function, 307

variables, 195

= (equal sign)

= (assignment operator), 119

== (equality operator),

119, 203

! (Not operator), 120

< (less than sign)

<ajax-response> elements,

Rico, 317-319s

<div> … <div>

elements, 176

<div> containers, 179

<response> elements, Rico,

317-319

<script> … <script>

elements, 177

— (minus sign), 84

— (decrement operator), 199

- (subtraction operator), 198

% (modulus operator), 199

. (period), 71

|| (Or operator), 119-120

Index

+ (plus sign), 57

+ (addition operator), 198

+= operator, 84

++ (increment operator), 84,

132, 199

(use in single-line

comments), 193

? (question mark)

closing tags, 189

?php tag, 189-190

‘ (single quotes), 197, 202

“ (double quotes), 197, 202

; (semicolon) 56, 61, 189

/ (slashes)

/ (division operator), 199

/*…*/ (use in multiple-line

comments), 193

// (use in single-line

comments), 193

A

A Badly Formatted Script That

Displays the Date and Time

(Listing 1.3), 192

a:active selector, formatting

links, 38

a:hover selector, formatting

links, 38

a:link selector, formatting

links, 38

a:visited selector, formatting

links, 38

abbreviating statements with

shorthand expressions,

121-122

abort method, 154

active page elements,

designing, 299

addition (+) operator, 198

AHAH (Asynchronous HTML and

HTTP). See also HTML; HTTP

advantages of, 248

callAHAH() functions,

250-251

myAHAHlib.js, 249-251

metatag information,

retrieving from URL,

252-253

responseText

property, 255

responseAHAH() functions,

250-251

Ajax

application examples, 44

application flow, example

of, 47-48

client-server interaction,

41-44

inappropriate situations for

using, 299

objects

Ajax.PeriodicalUpdater

class, 310

Ajax.request class, 308

Ajax.Updater class,

309-310

AjaxEngine objects,

316-317

Ajax Engines, 44, 316-317

<ajax-response> elements, Rico,

317-319

alert() function, 68

alt attribute (image tags), 26

Amazon.com REST API, 275-278

anchor objects, 77

anchor tags (HTML), 27

anchors, 77

And operator (&&), 120

Apache Web Server website, 11

appendChild() method, 259-261

applications, designing, 299

basic example

callback functions,

179-180

completed application,

180-182

event handlers, 180

HTML document, 176

PHP scripts, 178-179

server requests, 178

user feedback, 182-183

XMLHTTPRequest objects,

177-178

flow diagram, 48

prototype.js, adding to, 306

Rico, adding to, 316

scripts, creating, 47-48, 54

troubleshooting, 301

arguments, 104, 225

arithmetic operators

addition (+), 198

compound operations,

199-200

division (/), 199

modulus (%), 199

multiplication (*), 198

subtraction (-), 198

350

+ (plus sign)

ARPAnet, Internet development, 9

array function, 207

arrays, 94

accessing, 207

assigning values to, 95

associative, textual key

names, 208

contents, searching, 209

creating, 95, 207

declaring, 95, 207

elements, accessing, 96

function of, 206-209

index values, 207

length property, 95

looping through

foreach loop, 207

while loop, 207-208

sorting, 98-100

string arrays, 96-98

array_search function, array

manipulation, 209

ASCII text, server responses, 47

assigning values to

arrays, 95

strings, 89-90

variables, 84

assignment operator (=), 119

associative arrays, textual key

names, 208

asterisk (*), multiplication opera-

tor, 198

asynchronous server communica-

tions, 44

asynchronous server requests,

46, 157-162

at sign (@), PHP methods, 253

B

Back button, 79, 296

background property, 36, 39

background-color property, 38

backslashes (\)

escaping strings, 202

\n character sequence, new-

line characters, 192

bandwidth, defining, 42

best practices, 67

body tags (HTML), 24-25

bookmarks, troubleshooting, 297

Boolean data types, 197

Boolean operators. See logical

operators

Boolean values, 87, 216

braces ({})

code indentation rules, 216

loop syntax, 126

use in conditional state-

ments, 216

brackets ([]), use in conditional

statements, 216

break statement, escaping from

infinite loops, 130

breaking loops, 222

browsers

availability of, 13

caches

callAjax() functions, 160-

162

GET requests, 301

server requests, 160-162

defining, 13

graphics browsers, 13

Lynx text-based browsers, 13

style sheet properties, 38

text-based browsers, 13

unsupported browsers, trou-

bleshooting, 297-298

web server interaction, 10

built-in objects, 72

definitions, extending, 112-

114

Math object, 135-136

C

caches (browser)

callAjax() functions, 160-162

GET requests, 301

server requests, 160, 162

callAHAH() functions, 250-251

callAjax() function, 159

browser caches, 160-162

launching, 165

callback functions, 162-163

AHAH, 250-251

basic application creation

example, 179-180

JavaScript libraries, 288-290

launching, 165

myAJAXlib.js, 291

RSS headline readers, creat-

ing, 266-267

calling functions, 105-106

callRICO() function, 318

capitalization in strings, 205

How can we make this index more useful? Email us at indexes@samspublishing.com

capitalization in strings

351

case sensitivity, 65

strings, 205

variables, 196

ceil function, rounding number

functions, 200

center tags (HTML), 28

CERN (Conseil Europeen pour le

Recherche Nucleaire), Internet

development, 10

change() function, 335-336

character strings, split()

method, 245

charAt method, responseText

property, 169

charAT() method, 93

child nodes, adding to DOM, 259

child objects, 109

childNodes property, 261

cinematic effects (Rico), 324

classes (OO programming), 232

appearance of, 232-233

constructors, 234

definitions, 232-233

functions, 232

inheritance, 232

methods, 232-234

object instances,

creating, 233

private methods, 232

public methods, 232

third-party, 232-236

when to use, 232

client-server interactions versus

Ajax, 41-42

client-side programming,

defining, 14

closing tags (?), 189

code

braces ({}), indentation

rules, 216

comments, 193

functions, uses for, 223

modular, 224

platform tests,

troubleshooting, 300

color, style sheets, 38

color property, 36-39

combining

conditions, 119-121

values of strings, 89

words, use of underscore

characters, 196

comments, 66

code, 193

HTML, 25

Using Comments in a Script

(Listing 1.4), 193

comparison operators,

strings, 203

compound operators, 199-200

concatenation operators,

strings, 202

conditional expressions, 118-119

conditional operators, 119

conditional statements, 62, 215

Boolean values, 216

braces ({}), 216

brackets ([]), 216

logical operators, 217-218

multiple condition branches,

218-219

operators, 216-217

switch statement, 219-220

conditions, combining, 119-121

constructors

class methods, 234

functions, 110

continue statement, 130

converting

case of strings, 91-92

data types, 88

date formats, 143, 213

count function, array manipula-

tion, 209

CreateAttribute method, 261

createElement() method,

260-261

createTextNode() method,

259-261

CSS (Cascading Style Sheets),

30, 39

custom objects, 72

D

data types, 86-87

Boolean, 197

converting between, 88

double, 197

gettype function, 198

integer, 197

NULL values, 200

numeric, 200

querying, 198

settype function, 198

string, 197

352

case sensitivity

data() function, 178

date and time, displaying, 54-60

date command, 189

date formats

converting, 143, 213

listing of, 213

storage overview, 209-210

Unix timestamp, 210

date function, 210-211, 224

Date object, 56, 140-141

Date.parse() method, 143

Date.UTC() method, 143

decimal numbers, rounding, 136

declaring

arrays, 95, 207

variables, 82, 196

decrement operator (—), 199

decrementing variables, 84

default argument values,

functions, 226-227

defining

functions, 104

multiple parameters, 105

simple example, 224-225

objects, 110

DELETE requests, 273-274

developer’s tokens, 276

displaying

dates and times, 54-60

error messages, 60

Displaying the System Date and

Time (Listing 1.1), 190-191

dissecting strings

sublen function, 206

subpos function, 206

substr function, 205-206

<div> … <div> elements, 176

<div> containers, 179

division operator (/), 199

DNS (Domain Name Service)

servers, 14

do loops, 221

do…while loops, 128

doAjax function, 289-293

DOCTYPE elements, 23

document object, 74

methods, 76

properties, 75

document.write statement, 56

Dojo library, 144

dollar sign ($)

$ SERVER global array vari-

able, 320

$() function, 306

$F() function, 307

variables, 195

DOM (Document Object Model)

appendChild() method, 259

child nodes, adding to, 259

createElement() method, 260

createTextNode()

method, 259

document methods

table, 261

elements, deleting, 267

getElementByID method, 258

getElementsByTagName

method, 258

history of, 73

level standards, 74

methods, 73

node methods table, 261

node properties table, 261

objects, 72

document, 74-76

hierarchy, 73

properties, 73

double data types, 197

double quotes (“ “), strings,

197, 202

downloading Script.aculo.us

library, 325

E

echo command, 189

A Badly Formatted Script That

Displays the Date and Time

(Listing 1.3), 192

browser, outputting to,

191-192

Using echo to Send Output to

the Browser (Listing 1.2),

191-192

else clause, multiple condition

branches, 218-219

else keyword, 121-124

elseif keyword, multiple condition

branches, 218-219

email

gmail web mail service

(Google), 45

Internet development, 10

return values, mail function

example, 226

email_validation_class (third-

party), 234-235

How can we make this index more useful? Email us at indexes@samspublishing.com

email_validation_class

353

Engines (Ajax), 44

equal sign (=)

= (assignment operator), 119

== (equality operator),

119, 203

error handling

application design, 301

Back button codes, 296

bookmarks, 297

browser caches, 301

code, platform tests, 300

GET requests, 301-302

JavaScript libraries, 293

links, 297

page design, 299

Permission Denied

errors, 302

POST requests, 302

security, 300

spiders, 298

unsupported browsers,

297-298

user feedback, 297

error messages, 60

escape characters (\),

strings, 202

escaping infinite loops, 130

eval() function, JavaScript

libraries, 288-290

event handlers

basic application creation

example, 180

example of, 67-68

myAJAXlib.js, calls for, 291

exclamation point (!), Not

operator, 120

explicit newline characters,

\n, 192

expressions

operators, precedence rules,

85-86

use in variables, 196-197

F

$F() function, 307

feedback (user)

basic application creation

example, 182-183

JavaScript libraries, 293

server requests, 172-173

troubleshooting, 297

firstChild property, 261

float widths, string

formatting, 204

floor function, rounding number

functions, 200

flow control, 117

conditional statements, 215

Boolean values, 216

logical operators, 217-218

multiple condition branch-

es, 218-219

operators, 216-217

switch statement,

219-220

if statement

conditional

expressions, 118

logical operators, 119-121

loops

breaking out of, 222

do, 221

for, 221-222

nested, 222

while, 220-221

font-family property, 36-38

font-size property, 36

font-style property, 36

font-weight property, 36

for loops, 125, 221-222

for statement, 63, 125-128

for…in loops, 131-133

foreach loops, looping through

arrays, 207

Form objects, prototype.js, 307

formatting strings

format codes, 204

printf function, 203

sprintf function, 204-205

Forth programming

language, 127

Forward button, creating, 79

Frameworks (Ajax), 44

FTP (File Transfer Protocol),

Internet development, 10

Fuchs, Thomas, 144

function calls, 62

functions, 62, 103

$(), 306

$F(), 307

alert(), 68

arguments, 104, 225

array, 207

array manipulation, 208-209

354

Engines

callAHAH(), 250-251

callAjax(), 159

browser caches, 160-162

launching, 165

callback, 162-163

AHAH, 250-251

basic application creation

example, 179-180

JavaScript libraries,

288-290

launching, 165

myAJAXlib.js, 291

RSS headline readers, cre-

ating, 266-267

calling, 105-106

callRICO(), 318

change(), 335-336

constructor, 110

date(), 178, 211, 224

default argument values,

226-227

defining, 104, 224-225

doAjax, 289-293

eval(), JavaScript libraries,

288-290

header(), 334

library files, creating, 229

local variables, creating, 83

mail, return values, 226

mathematical, 201

mktime, 212

multiple parameters,

defining, 105

naming conventions, 65

numeric, rounding numbers,

200-201

parseFloat, 88

partInt(), 88

phpinfo, 225

printf, 203

prototype, 224

responseAHAH(), 250-251

responseAjax(), 159, 163

return codes, 225-226

return values, 225

runServer(), 334

sizeof(), 244

sprintf, 204-205

strtotime, 213

Try.these(), 308

uses for, 223

values, returning, 106-107

variable scope, 227-228

G

get methods, 141

GET requests, 159

browser caches, 160-162,

301

JavaScript libraries, 288

myAJAXlib.js, 291

REST, 273-276

troubleshooting, 302

getAllResponseHeaders

method, 154

getElementById() method, 173,

180, 258

getElementByTagname

method, 179

getElements() method,

prototype.js, 307

GetElementsById method, 261

getElementsByTagName()

method, 171-172, 258, 261

getResponseHeader method, 154

getTimeZoneOffset()

function, 142

gettype function, 198

getUTCDate() function, 142

getUTCDay() function, 142

getUTCFullYear() function, 142

getUTCMonth() function, 142

global variables, 82, 227-228

GMT (Greenwich Mean Time), 54

GNU.org website, date formats

listing, 213

Google

gmail web mail service, 45

Google Maps, 45

Google Suggest, 44

graphics web browsers, 13

H

HasChildNodes method, 261

head tags (HTML), 24

header() function, 334

history objects, 77

history.back() method, 78

history.forward() method, 78

history.go() method, 78

history.length property, 77

horizontal lines, HTML tags, 39

How can we make this index more useful? Email us at indexes@samspublishing.com

horizontal lines

355

href property (window

objects), 78

HTML (Hypertext Markup

Language), 21. See also AHAH,

HTTP

attributes, adding to, 25

basic application creation

example, 176

color values, 26

common tags table, 29-30

containers, 25

defining, 22

<div> … <div> elements, 176

<div> containers, 179

<hr>, 39

hyperlinks, 27

loading, 23

myAJAXlib.js, 291

responseText property,

242-243

RSS headline readers, creat-

ing, 263

saving, 23

<script> … <script> ele-

ments, 177

seville.html document exam-

ple, 28

tags, 22-23

anchor tags, 27

body tags, 24-25

center tags, 28

event handlers, 64

head tags, 24

metatags, 251-253

table tags, 27-29

title tags, 24

testpage.html document

example, 22

tool requirements, 22

XOAD, 334

change() function, 335-

336

XOAD

HTML::getElementByID()

method, 335-336

XOAD

HTML::getElementByTag

Name() method,

336-337

word processors, 22

HTTP (Hypertext Transfer

Protocol), 10. See also AHAH;

HTML

server response status

codes, 163

SOAP requests, sending, 281

hyperlinks, HTML, 27

hypertext, Internet

development, 10

I

id values, 173

if statement

conditional expressions, 118

logical operators

And, 120

else keyword, 121

Not, 120

Or, 119

testing multiple conditions,

122-124

images

defining, 26

tags

alt attribute, 26

src attribute, 26

include keyword, library function

files, 229

include once keyword, library

function files, 229

increment operator (++), 84,

132, 199

incrementing variables, 84

indenting code, braces ({}), 216

index values, assigning

arrays, 207

indexOf() method, 94, 169

infinite loops, 129-130, 220

inheritance, classes, 232

initial expression, 125

instances (objects), creating, 111

class objects, 233

XMLHTTPRequest objects,

151-153

integer data types, 197

Internet, development of, 9-10

Internet Explorer 6.0, security set-

tings, 58

in_array function, array manipula-

tion, 209

IP addresses, defining, 14

356

href property

J

JavaScript libraries

Back button codes, 296

callback functions, 288-290

doAjax functions, 289-293

error handling, 293

eval() function, 288-290

GET requests, 288

myAHAHlib.js, 286-287

myAJAXlib.js, 289-290

callback functions, 291

event handler calls, 291

GET requests, 291

HTML pages, 291

PHP scripts, 291

responseText

properties, 291

usage example, 291-292

XML data, retrieving, 292

POST requests, 288, 293

prototype.js

$() function, 306

$F() function, 307

Ajax.PeriodicalUpdater

class, 310

Ajax.request class, 308

Ajax.Updater class,

309-310

download website, 305

Form objects, 307

getElements() method,

307

Rico, 315-324

serialize() method, 307

Stock Price Reader build

example, 311-312

Try.these() function, 308

web applications, adding

to, 306

user feedback, 293

XMLHTTPRequest instances,

creating, 287

join() method, 100

JSON (JavaScript Object

Notation), 309, 332

K - L

keywords, 139-140

keywords metatag, 251-253

large clock display, adding to

time and date script, 58-60

lastChild property, 261

lastIndexOf() method, 94, 169

length of arrays, calculating, 95

length property, 91, 95

less than sign (<)

<ajax-response> elements,

Rico, 317-319

<div> … <div>

elements, 176

<div> containers, 179

<response> elements, Rico,

317-319

<script> … <script> ele-

ments, 177

levels (DOM), 74

libraries

JavaScript

callback functions,

288-290

doAjax functions, 289-293

error handling, 293

eval() function, 288, 290

GET requests, 288

myAHAHlib.js, 286-287

myAJAXlib.js, 289-292

POST requests, 288, 293

prototype.js, 305-312,

315-324

user feedback, 293

XMLHTTPRequest

instances, 287

open source libraries,

Rico, 315

AjaxEngine instances,

316-317

callRICO() function, 318

cinematic effects, 324

drag-and-drop, 320-323

multiple page element

updates, 317

<response> elements,

317-319

usage example, 318

web applications, adding

to, 316

third-party libraries

Prototype, 143

Script.aculo.us, 144,

325-327

Yahoo! UI Library, 144

How can we make this index more useful? Email us at indexes@samspublishing.com

libraries

357

library file functions,

creating, 229

link objects, 76-77

links

style sheets, 38

troubleshooting, 297

underlining, 38

local variables, 83, 227-228

localtime variable, 56

location object, 78-79

location.reload() method, 79

location.replace() method, 79

logical operators

And (&&), 120

conditional statements,

217-218

Not (!), 120

Or (||), 119-120

loops, 63

breaking out of, 222

continue statement, 130

do loops, 221

for loops, 221-222

for statement, creating with,

125-128

for…in loops, 131-133

foreach loops, 207

infinite loops, 129-130, 220

nested loops, 222

while loops, 207-208,

220-221

while statement, creating

with, 128

Lynx text-based web browsers, 13

M

mail function

default argument values,

226-227

return values, 226

margin-left property, 40

Math object, 135-136

Math.random() method,

137-139, 160

mathematical functions, 201

metatags

keywords, 251-253

myAHAHlib.js, 252-253

methods, 72, 109

abort, 154

appendChild(), 259-261

charAT(), 93, 169

classes, 233-234

constructors, 234

CreateAttribute, 261

createElement(), 260-261

createTextNode(), 259-261

getAllResponseHeaders, 154

getElementById(), 173,

180, 258

getElementByTagname, 179

getElements(),

protoype.js, 307

GetElementsById, 261

getElementsByTagName(),

171-172, 258, 261

getResponseHeader, 154

HasChildNodes, 261

history.back(), 78

history.forward(), 78

history.go(), 78

indexOf(), 94, 169

join(), 100

lastIndexOf(), 94, 169

location.reload, 79

location.replace(), 79

Math.random(), 137-139, 160

open, 154-155

registerDraggable, 320

registerDropZone, 320

RemoveChild, 261

send, 154-155

serialize(), protoype.js, 307

setRequestHeader, 154-156

sort(), 98-100

split(), 97, 245

substring(), 93, 169

toLowerCase(), responseText

property, 169

toUpperCase(), responseText

property, 169

XMLHTTPRequest object, 154

XOAD

HTML::getElementByID(),

335-336

XOAD

HTML::getElementByTagNam

e(), 336-337

Microsoft typography website, 36

minus sign (-), 84

— (decrement operator), 199

- (subtraction operator), 198

358

library file functions

mktime function, creating time-

stamps, 212

MochiKit library, 145

modular code, 224

modulus operator (%), 199

Mosaic, Internet development, 10

multiplatform code tests, 300

multiple conditions

conditional statements,

218-219

testing, 122-124

multiple scripts, order of opera-

tion, 64

multiplication (*) operator, 198

myAHAHlib.js, 249-251, 286-287

metatag information, retriev-

ing from URL, 252-253

responseText property, 255

myAJAXlib.js, 289-290

callback functions, 291

event handler calls, 291

GET requests, 291

HTML pages, 291

PHP scripts, 291

responseText properties, 291

usage example, 291-292

XML data, retrieving, 292

N

\n character sequence, newline

characters, 192

namespaces, SOAP, 280

naming conventions, 65, 195-196

NaN (non a number), 88

navigation tools, creating

Back/Forward buttons, 79

nested loops, 222

newline characters, \n, 192

nextSibling property, 261

nodeName property, 261

nodes (DOM)

child nodes, 259

document methods table, 261

node methods table, 261

node properties table, 261

nodeType property, 261

nodeValue property, 261

Not operator (!), 120

null value, 87, 200

numeric arrays, sorting, 98-100

numeric data types, 200

numeric functions

random, 201

rounding numbers, 200-201

O

object hierarchy (DOM), 73

object-oriented programming, see

OO (object-oriented) program-

ming

objects, 108

Ajax

Ajax.PeriodicalUpdater

class, 310

Ajax.request class, 308

Ajax.Updater class,

309-310

AjaxEngine, instances in Rico,

316-317

built-in, 72, 112-114

child objects, 109

creating, 108, 111

defining, 110

document, 74

methods, 76

properties, 75

DOM, 72

Form, protoype.js, 307

instances, creating, 111,

151-153, 233

location, 78-79

methods, 72

naming conventions, 65

properties, 71, 108

XMLHTTPRequest

basic application creation

example, 177-178

callAjax() function, 159

instances, creating,

151-153

JavaScript libraries,

creating, 287

methods

open, 155

send, 155

methods, list of, 154

properties, list of, 154

responseAjax()

function, 159

server requests, 157-165

How can we make this index more useful? Email us at indexes@samspublishing.com

objects

359

status property, 164

statusText property, 164

uses of, 150

XMLHTYTPRequest,

readyState property,

162-163

onBlur event handler, 165

onLoad() event handler, basic

application creation

example, 180

onreadystatechange

property, 154

OO (object-oriented) program-

ming

advantages of, 232

classes

appearance of, 232-233

constructors, 234

definitions, 232-233

functions, 232

inheritance, 232

methods, 232-234

objects, instance

creation, 233

private methods, 232

public methods, 232

third-party, 232-236

PHP Classes website, 231

PHP functionality, 231

PHP.net website

resources, 233

when to use, 232

open method, 154-155

open source libraries, Rico, 315

AjaxEngine instances,

316-317

callRICO() function, 318

cinematic effects, 324

drag-and-drop, 320-323

multiple page element

updates, 317

<response> elements,

317-319

usage example, 318

web applications, adding, 316

operators, 85

+= operator, 84

arithmetic

addition (+), 198

division (/), 199

modulus (%), 199

multiplication (*), 198

subtraction (-), 198

assignment (=), 119

compound, 199-200

conditional statements,

216-217

decrement (—), 199

equality (==), 119, 203

increment (++), 199

logical operators

And (&&), 120

conditional statements,

217-218

Not (!), 120

Or (||), 119-120

precedence rules, 85-86

P

parentNode property, 261

parseFloat() function, 88

parseInt() function, 88

parsing, responseXML

property, 172

percent sign (%), modulus

operator, 199

period (.), 71

Permission Denied errors, trou-

bleshooting, 302

PHP (Hypertext Preprocessor), 187

$ SERVER global array

variable, 320

?php tag, 189-190

methods, 253

running locally from PC, 190

scripts

basic application creation

example, 178-179

myAJAXlib.js, 291

XOAD, 331

cache handling, 338

client controls, customiz-

ing, 338

downloading/

installing, 332

events, 338

header() function, 334

JSON, 332

runServer() function, 334

simple page example,

332-334

360

objects

XOAD Controls class, 338

XOAD HTML, 334-337

PHP Classes website, 231, 234

PHP interpreter, @

characters, 253

PHP.net website

array functions, 208

mathematical function

resources, 201

online manual documenta-

tion, 223

OO programming

resources, 233

string functions listing, 205

phpinfo function, 225

pipes (|), || (Or operator),

119-120

platform code tests, 300

plus sign (+), 57

+ (addition operator), 198

+= operator, 84

++ (increment operator), 84,

132, 199

pop-ups, 299

pound sign (#), use in single-line

comments, 193

POST requests, 273-275, 293

JavaScript libraries, 288

troubleshooting, 302

precision specifiers, string

formatting, 204

previousSibling property, 261

printf function, string

formatting, 203

printf functions, 203

private methods (classes), 232

properties, 71, 108

childNodes, 261

DOM document methods

table, 261

DOM node methods

table, 261

DOM node properties

table, 261

firstChild, 261

lastChild, 261

nextSibling, 261

nodeName, 261

nodeType, 261

nodeValue, 261

of document object, 75

onreadystatechange, 154

parentNode, 261

previousSibling, 261

readystate, 154, 162-163

responseText, 154, 239

character strings, 240

character strings, using in

page elements, 240-242

formatted data, 244-245

HTML, 242-243

manipulation methods list,

169-170

myAHAHlib.js, 255

myAJAXlib.js, 291

null values, 168

returned text, using in

page elements, 240-242

values, displaying,

168-169

responseXML, 154, 170

parsing, 172

stored values, 258

web pages, adding ele-

ments to, 259-261

status, 154, 164

statusText, 154, 164

values, reading, 109

XMLHTTPRequest object, 154

prototype keyword, 112

Prototype third-party library, 143

prototype.js

$() function, 306

$F() function, 307

Ajax objects

Ajax.PeriodicalUpdater

class, 310

Ajax.request class, 308

Ajax.Updater class,

309-310

download website, 305

Form objects, 307

getElements() method, 307

Rico, 315

AjaxEngine instances,

316-317

callRICO() function, 318

cinematic effects, 324

drag-and-drop, 320-323

multiple page element

updates, 317

How can we make this index more useful? Email us at indexes@samspublishing.com

prototype.js

361

<response> elements,

317-319

usage example, 318

web applications, adding

to, 316

serialize() method, 307

Stock Price Reader build

example, 311-312

Try.these() function, 308

web applications, adding

to, 306

public methods (classes), 232

PUT requests, 273-274

Q - R

quotation marks

double quotes (“ “)

strings, 197

variables, 202

single quotes (‘)

strings, 202

variables, 197

question mark (?)

?php tag, 189-190

closing tags, 189

random numbers

generating, 136

example script, 137-139

rand function, 201

srand function, 201

readyState property, 154,

162-163

recommended web browsers, 54

registerDraggable method, 320

registerDropZone method, 320

RemoveChild method, 261

require keyword, library function

files, 229

require once keyword, library

function files, 229

reserved words, 66

<response> elements, Rico,

317-319

responseAHAH() functions,

250-251

responseAjax() function, 159, 163

responseText property, 154, 239

character strings, 240-242

formatted data, 244-245

HTML, 242-243

manipulation methods list,

169-170

myAHAHlib.js, 255

myAJAXlib.js, 291

null values, 168

returned text, 240-242

values, displaying, 168-169

responseXML property, 154, 170

parsing, 172

stored values, 258

web pages, adding elements

to, 259-261

REST (Representational State

Transfer)

Amazon.com REST API,

275-278

articles, uploading, 275

DELETE requests, 273-274

example of, 273

GET requests, 273-276

POST requests, 273-275

principles of, 272

PUT requests, 273-274

SOAP versus, 283

stateless operations, 274

return keyword, 107

return values, functions

failure, 225-226

mail function

example, 226

success, 225-226

returning

single characters from

strings, 93

time in UTC, 142

Rico, 315

AjaxEngine instances,

316-317

callRICO() function, 318

cinematic effects, 324

drag-and-drop, 320-323

multiple page element

updates, 317

<response> elements,

317-319

usage example, 318

web applications, adding

to, 316

rounding decimal numbers, 136

rounding number functions

ceil, 200

floor, 200

round, 201

362

prototype.js

RSS

feeds, 262

headline readers, creating,

262-265

callback functions,

266-267

HTML page, 263

server scripts, 268-269

runServer() function, 334

S

scope of variables, 82

<script> … <script> elements, 177

Script.aculo.us library, 144,

325-327

scripts

A Badly Formatted Script That

Displays the Date and Time

(Listing 1.3), 192

adding to HTML

documents, 57

comments, adding, 66

creating, required tools

for, 54

date and time, displaying,

55-60

Displaying the System Date

and Time (Listing 1.1),

190-191

flow control

conditional statements,

215-220

loops, 220-222

library functions,

including, 229

order of operation, 64

random numbers, generating,

137-139

Using Comments in a Script

(Listing 1.4), 193

Using echo to Send Output to

the Browser (Listing 1.2),

191-192

search engine spiders, trou-

bleshooting, 298

security

IE 6.0, settings for, 58

troubleshooting, 300

XMLHTTPRequest objects, 46

semicolon (;) 56, 61, 189

send method, 154-155

serialize() method,

prototype.js, 307

server-side programming, defin-

ing, 12

servers

asynchronous

communications, 44

requests

asynchronous requests, 46

basic application creation

example, 178

browser caches, 160-162

callback functions, 162

GET requests, 159

monitoring status of,

162-163

progress notifications,

172-173

readyState property,

162-163

sending, 157-162

timestamps, 162

user feedback, 172-173

responses, 47

getElementsByTagName()

method, 171

progress notifications,

172-173

responseText property,

168-169

responseXML property,

170-172

user feedback, 172-173

scripts, 46

creating RSS headline

readers, 268-269

page processing, 188

setRequestHeader method,

154-156

settype function, 198

shorthand conditional

expressions, 121

single quotes (‘)

strings, 202

variables, 197

single-line comments, 193

sizeof() function, 244

slashes (/)

/ (division operator), 199

/*…*/ (use in multiple-line

comments), 193

// (use in single-line

comments), 193

How can we make this index more useful? Email us at indexes@samspublishing.com

slashes (/)

363

SOAP (Simple Object Access

Protocol), 278

development of, 279

namespaces, 280

requests

Ajax usage example, 282

code example, 281

components of, 279-280

HTTP, sending via, 281

REST versus, 283

specification information

website, 279

sort() method, 98-100

sorting

numeric arrays, 98-100

string arrays, 98

spiders (search engine), trou-

bleshooting, 298

split() method, 97, 245

splitting strings, 97

sprintf function, string formatting,

204-205

srand function, random number

generation, 201

src attribute (image tags), 26

statements, 61

conditional, 62

function calls, 62

termination (;), 189

status property, 154, 164

statusText property, 154, 164

Stephenson, Sam, 143

Stock Price Reader build exam-

ple, 311-312

storing date formats, 209-210

string arrays

creating, 96-97

sorting, 98

string data types, 197

string objects, creating, 89

strings, 56, 87

assigning values to, 89-90

capitalization in, 205

case sensitivity, 91-92, 205

comparing, 203

concatenation operator, 202

dissecting

sublen function, 206

subpos function, 206

substr function, 205-206

escape characters (\), 202

formatting

format codes, 204

printf function, 203

sprintf function, 204-205

function of, 202

length of, calculating, 91

length property, 91

quotation marks

double (“ “), 197, 202

single (‘), 197, 202

returning single characters

from, 93

splitting, 97

substrings, 92-94

variables, 197

strtolower function, string capital-

ization, 205

strtotime function, 213

strtoupper function, string capital-

ization, 205

style sheets

adding, 33-34

class attribute, 31-33

declarations, 31

embedded, 30

inline, 30

linked, 30

links, 38

precedence, 34-35

rules, 31

text, 36

<style> tag, 36

sublen function, string

dissection, 206

subpos function, string dissection,

206

substr function, string dissection,

205-206

substring() method, 93, 169

substrings

index values, 92

locating, 94

subtraction (-) operator, 198

switch statement, 124

conditional statements,

219-220

syntax, 125

syntax

case sensitivity, 65

comments, 66

naming conventions, 65

reserved words, 66

switch statement, 125

364

SOAP (Simple Object Access Protocol)

T

table tags (HTML), 27, 29

tags

?php, 189-190

closing (?), 189

HTML tags

anchor tags, 27

body tags, 24-25

center tags, 28

head tags, 24

table tags, 27-29

title tags, 24

image tags, 26

metatags

keywords, 251-253

myAHAHlib.js, 252-253

processing instructions, 189-

190

<style> tag, 36

testing

color, 39

date and time script, 58

multiple conditions, 122-124

text-align property, 36

text-based web browsers, 13

text-decoration property, 36-38

text-indent property, 36

third-party classes, 234-236

third-party libraries

Prototype, 143

Script.aculo.us, 144

time

displaying, 54-60

zones, 142

time and greeting example,

123-124

time function, locating time-

stamps, 210

time.php script, date and time

display, 190-191

timestamps

converting date formats

to, 213

creating (mktime

function), 212

date function, 210-211

server requests, 162

time function, 210

title tags (HTML), 24

toLocalString() function, 142

toLowerCase() method, 91, 169

toUpperCase() method, 91, 169

toUTCString() function, 142

troubleshooting

application design, 301

Back button codes, 296

bookmarks, 297

browser caches, 301

code, platform tests, 300

GET requests, 301-302

links, 297

page design, 299

Permission Denied errors, 302

POST requests, 302

security, 300

spiders, 298

unsupported browsers,

297-298

user feedback, 297

Try.these() function, 308

U

underscore characters, combining

words, 196

Unix timestamp format

best uses, 210

drawbacks, 210

ease of use, 210

mktime function, 212

starting value, 210

unsupported browsers, trou-

bleshooting, 297-298

URL (Uniform Resource Locators),

creating RSS headline readers,

262-265

callback functions, 266-267

HTML page, 263

server scripts, 268-269

user feedback

basic application creation

example, 182-183

JavaScript libraries, 293

server requests, 172-173

troubleshooting, 297

Using echo to Send Output to the

Browser (Listing 1.2), 191-192

UTC (Universal Time

Coordinated), 54, 142

utctime variable, 56

V

variables, 55

arguments, 104

assigning values to, 84

How can we make this index more useful? Email us at indexes@samspublishing.com

variables

365

declaring, 82, 196

decrementing, 84

dollar sign ($), 195

expressions, 85, 196-197

fixed values, 196

global

creating, 83

scope of, 227-228

incrementing, 84

invalid names, 196

local, 83, 227-228

naming, 82, 195

case sensitivity, 196

conventions, 65, 196

operators, precedence rules,

85-86

scope of, 82

global, 227-228

local, 227-228

strings, 197

underscore characters, word

combinations, 196

valid names, 196

values, 195

verifying date and time script, 58

W

W3C (World Wide Web

Consortium), 74, 279, 301

web browsers

availability of, 13

caches

callAjax() functions,

160-162

GET requests, 301

server requests, 160-162

defining, 13

graphics browsers, 13

Lynx text-based browsers, 13

style sheet properties, 38

text-based browsers, 13

unsupported browsers, trou-

bleshooting, 297-298

web server interaction, 10

web pages

defining, 11

elements, adding via

responseXML property, 259-

261

id values, 173

server-side scripting, 188

web servers

defining, 11

server-side scripting of web

pages, 188

web browser interaction, 10

web services

example of, 272

REST

Amazon.com REST API,

275-278

articles, uploading, 275

DELETE requests,

273-274

example of, 273

GET requests, 273-276

lists of available articles,

reading, 274-275

particular articles,

retrieving, 275

POST requests, 273-275

principles of, 272

PUT requests, 273-274

SOAP versus, 283

stateless operations, 274

SOAP, 278

development of, 279

namespaces, 280

requests, 279-282

REST versus, 283

specification information

website, 279

websites

Apache Web Server

website, 11

GNU.org, date formats, 213

JSON, 309

Lynx text-based web

browsers, 13

Microsoft typography

website, 36

PHP Classes, 231, 234

PHP.net

array functions, 208

mathematical function

resources, 201

online manual documenta-

tion, 223

OO programming

resources, 233

string functions

listing, 205

prototype.js download web-

site, 305

W3C, 279, 301

366

variables

while loops, 220-221

arrays, looping through,

207-208

example of, 128

whitespace, 66

with keyword, 139-140

word processors, HTML, 22

X

XML (Extensible Markup

Language)

data, retrieving, 292

responseXML property

stored values, 258

web pages, adding ele-

ments to, 259-261

RSS headline readers, creat-

ing, 262-265

callback functions,

266-267

HTML page, 263

server scripts, 268-269

server responses, 47

XMLHTTPRequest objects, 45

basic application creation

example, 177-178

callAjax() function, 159

instances, creating, 151-153

JavaScript libraries,

creating, 287

methods, list of, 154

open method, 155

properties, list of, 154

readyState property, 162-163

responseAjax() function, 159

security, 46

send method, 155

server requests, 46

browser caches, 160-162

callback functions,

164-165

sending, 157-159

status, monitoring,

162-163

timestamps, 162

server-side scripts, 46

status property, 164

statusText property, 164

uses of, 150

XOAD (XMLHTTP Object-oriented

Application Development), 331

cache handling, 338

client controls,

customizing, 338

Controls class, 338

downloading/installing, 332

events, 338

header() function, 334

HTML, 334

change() function,

335-336

XOAD

HTML::getElementByID()

method, 335-336

XOAD

HTML::getElementByTag

Name() method,

336-337

JSON, 332

runServer() function, 334

simple page example,

332-334

XOAD Controls class, 338

XSLT, 248

Y - Z

Yahoo! UI Library, 144

How can we make this index more useful? Email us at indexes@samspublishing.com

Yahoo! UI Library

367

	Sams Teach Yourself Ajax, JavaScript, and PHP All in One
	Table of Contents
	Introduction
	Part I: Web Basics Refresher
	CHAPTER 1: Workings of the Web
	A Short History of the Internet
	The World Wide Web
	Introducing HTTP
	The HTTP Request and Response
	HTML Forms
	Summary

	CHAPTER 2: Writing and Styling Pages in HTML and CSS
	Introducing HTML
	Elements of an HTML Page
	A More Advanced HTML Page
	Some Useful HTML Tags
	Adding Your Own Style
	Defining the Rules
	Add a Little class
	Applying Styles
	Formatting Text with Styles
	Adding Lines
	Summary

	CHAPTER 3: Anatomy of an Ajax Application
	The Need for Ajax
	Introducing Ajax
	The Constituent Parts of Ajax
	Putting It All Together
	Summary

	Part II: Introducing Web Scripting with JavaScript
	CHAPTER 4: Creating Simple Scripts in JavaScript
	Tools for Scripting
	Displaying Time with JavaScript
	Beginning the Script
	Adding JavaScript Statements
	Creating Output
	Adding the Script to a Web Page
	Testing the Script
	JavaScript Syntax Rules
	Using Comments
	Best Practices for JavaScript
	Summary

	CHAPTER 5: Working with the Document Object Model (DOM)
	Understanding Objects
	Understanding the Document Object Model (DOM)
	Working with Web Documents
	Accessing Browser History
	Working with the location Object
	Summary

	CHAPTER 6: Using Variables, Strings, and Arrays
	Using Variables
	Understanding Expressions and Operators
	Data Types in JavaScript
	Converting Between Data Types
	Using String Objects
	Working with Substrings
	Using Numeric Arrays
	Using String Arrays
	Sorting a Numeric Array
	Summary

	CHAPTER 7: Using Functions and Objects
	Using Functions
	Introducing Objects
	Using Objects to Simplify Scripting
	Extending Built-in Objects
	Summary

	CHAPTER 8: Controlling Flow with Conditions and Loops
	The if Statement
	Using Shorthand Conditional Expressions
	Testing Multiple Conditions with if and else
	Using Multiple Conditions with switch
	Using for Loops
	Using while Loops
	Using do…while Loops
	Working with Loops
	Looping Through Object Properties
	Summary

	CHAPTER 9: Using Built-In Functions and Libraries
	Using the Math Object
	Working with Math Functions
	Using the with Keyword
	Working with Dates
	Using Third-Party Libraries
	Other Libraries
	Summary

	Part III: Introducing Ajax
	CHAPTER 10: The Heart of Ajax—the XMLHTTPRequest Object
	Introducing XMLHTTPRequest
	Creating the XMLHTTPRequest Object
	Summary

	CHAPTER 11: Talking with the Server
	Sending the Server Request
	Monitoring Server Status
	The Callback Function
	Summary

	CHAPTER 12: Using the Returned Data
	The responseText and responseXML Properties
	Parsing responseXML
	Providing User Feedback
	Summary

	CHAPTER 13: Our First Ajax Application
	Constructing the Ajax Application
	The HTML Document
	Adding JavaScript
	Putting It All Together
	Summary

	Part IV: Server-side Scripting with PHP
	CHAPTER 14: Getting to Know PHP
	PHP Basics
	Your First PHP Script
	Summary

	CHAPTER 15: Variables
	Understanding Variables
	Data Types
	Working with Numbers
	Numeric Data Types
	Numeric Functions
	Working with Strings
	Formatting Strings
	String Functions
	Working with Arrays
	Array Functions
	Date Formats
	Working with Timestamps
	Summary

	CHAPTER 16: Flow Control
	Conditional Statements
	Loops
	Summary

	CHAPTER 17: Functions
	Using Functions
	Arguments and Return Values
	Using Library Files
	Summary

	CHAPTER 18: Using Classes
	Object-Oriented PHP
	What Is a Class?
	Creating and Using Objects
	Summary

	Part V: More Complex Ajax Technologies
	CHAPTER 19: Returning Data as Text
	Getting More from the responseText Property
	Summary

	CHAPTER 20: AHAH—Asynchronous HTML and HTTP
	Introducing AHAH
	Creating a Small Library for AHAH
	Using myAHAHlib.js
	Summary

	CHAPTER 21: Returning Data as XML
	Adding the “x” to Ajax
	The responseXML Property
	Project—An RSS Headline Reader
	Summary

	CHAPTER 22: Web Services and the REST and SOAP Protocols
	Introduction to Web Services
	REST—Representational State Transfer
	Using REST in Practice
	Web Services Using SOAP
	The SOAP Protocol
	Using Ajax and SOAP
	Reviewing SOAP and REST
	Summary

	CHAPTER 23: A JavaScript Library for Ajax
	An Ajax Library
	Reviewing myAHAHlib.js
	Implementing Our Library
	Using the Library
	Summary

	CHAPTER 24: Ajax Gotchas
	Common Ajax Errors
	The Back Button
	Bookmarking and Links
	Telling the User That Something Is Happening
	Making Ajax Degrade Elegantly
	Dealing with Search Engine Spiders
	Pointing Out Active Page Elements
	Don’t Use Ajax Where It’s Inappropriate
	Security
	Test Code Across Multiple Platforms
	Ajax Won’t Cure a Bad Design
	Some Programming Gotchas
	Summary

	Part VI: Ajax Tools and Resources
	CHAPTER 25: The prototype.js Toolkit
	Introducing prototype.js
	Wrapping XMLHTTPRequest—the Ajax Object
	Example Project—Stock Price Reader
	Summary

	CHAPTER 26: Using Rico
	Introducing Rico
	Rico’s Other Interface Tools
	Summary

	CHAPTER 27: Using Script.aculo.us
	Downloading the Library
	Including the Files
	Using Effects
	Building the Script
	Summary

	CHAPTER 28: Using XOAD
	Introducing XOAD
	XOAD HTML
	Advanced Programming with XOAD
	Summary

	APPENDIX: JavaScript, PHP, and Ajax Websites
	JavaScript Websites
	PHP Websites
	Web Development Sites
	Ajax Websites

	GLOSSARY
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K - L
	M
	N
	O
	P
	Q - R
	S
	T
	U
	V
	W
	X
	Y - Z

