

UML 2.0 in Action
A Project-Based Tutorial

Patrick Grässle
Henriette Baumann
Philippe Baumann

 BIRMINGHAM - MUMBAI

UML 2.0 in Action
A Project-Based Tutorial

Copyright © 2005 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, Packt Publishing, nor its dealers
or distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2005.

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-55-8
www.packtpub.com

Cover Design by www.visionwt.com

Authorized translation from the German Edition:

"UML 2.0 projektorientiert"

© 2004 by Galileo Press

GALILEO COMPUTING is an imprint of Galileo Press,

Fort Lee, NJ (USA), Bonn (Germany).

German Edition first published 2004 by Galileo Press.

Credits

Authors
Patrick Grässle
Henriette Baumann
Philippe Baumann

Illustrators
Nilesh Mohite
Dinesh Kandalgaonkar

Cover Designer
Helen Wood

Technical Editor
Chris Smith
Paramita Chakrabarti

Translator
Silvia Saint-Vincent

Proofreader
Chris Smith

Layout
Paramita Chakrabarti
Manjiri Nadkarni

Preface

The advantage of this book lies in its restriction to practical matters. Like many
innovative subjects in business computing, the development of technical literature about
UML takes place in a highly dynamic manner. The economic interests of producers of
relevant tools, of consultants, and of authors are obviously directed towards
differentiating every topic and constructing individual opinions. However, this leads to a
blurring of the essential advantages—especially with UML. The success of this approach
lies in its simplicity, its practicality, and its ability to be integrated. Easily
comprehensible and carefully coordinated approaches were developed from real-life
problems. These approaches get project parties in different positions, as represented in
every project by customer and system-developer, to work together productively on a
long-term basis. An excess of methodology is counterproductive because it is only
comprehensible to the expert and therefore not widely used.

That is exactly where the authors start. Recognizing the clear advantages of UML, they
reduce it to its essential concepts. The authors have the courage to narrow UML
appropriately from their own practical experience. The foundation is a pointblank
subjective portrayal of their own project experience, which can be confirmed by anyone
who has ever attempted professional systems development. Based on this experience,
they critically evaluate UML. The result is a handy guide for the use of UML, with
countless practice-oriented tips for conquering sub-problems in projects, and checklists to
verify goals. The desire is not to present an extensive methodology. On the contrary, the
examples are deliberately kept simple, which again helps with the reduction of UML to
its essential elements and goals.

Therefore, a project leader who wants to professionally model, coordinate, and control
UML projects, won't be able to find solutions for every particular problem in this book.
However, it will significantly ease the process of critically evaluating and selecting
appropriate literature and tools. For the practice-oriented realist, this book could be the
key to solving daily problems.

 Prof. Dr. Rainer Thome

 Chair of Business Administration and Business Computing,

 University of Würzburg.

About the Authors

Patrick Grässle is the co-founder and board member of KnowGravity Inc .
(www.knowgravity.com) in Zürich, a leading supplier of MDA and Business Rules
know-how. Patrick studied Informatics and Economics at the University of Zürich. In
1986, he built his first model of an IT system using structured analysis and did not stop
modeling since then. He has applied UML in many projects. He used and consulted
structured and object-oriented methods for system specification. In the nineties, he helped
develop the first localized UML trainings in Switzerland.

The UML-based 'Model Driven Architecture' and the 'Business Rules Approach' absorb
his main interest nowadays, but he is still doing UML training and consulting. Patrick can
be reached at patrick.graessle@knowgravity.com.

Henriette Baumann is the co-founder and board member of integratio GmbH
(www.integratio.com), based in Zurich. Henriette studied Informatics and Economics
and was involved in software development and engineering since the mid-eighties,
particularly with the transformation of business requirements in software systems. In
1998, she started with UML business modeling and has used UML in several projects.
Today her main focus is on project management and consulting for business analysis,
business requirements engineering, and business specifications based on UML, especially
for financial service companies.

Henriette can be reached at henriette.baumann@integratio.com.

Philippe Baumann is co-founder and member of the board of integratio GmbH
(www.integratio.com), based in Zurich.

Philippe studied Informatics at the University of Hagen (D) and was involved in
software development and application integration since the mid-eighties. In 1998, he
started with UML, and its usage in system integration and electronic data interchange
between companies.

Today he is the project manager and consultant for technical aspects and implementation
of software integration using UML. He is also active in the field of implementation and
integration of Open Source business software such as ERP and CRM.

Philippe can be reached at philippe.baumann@integratio.com.

Table of Contents

About This Book 1
Chapter 1: Introduction 5

Chapter 2: Basic Principles and Background 9
2.1 Introduction to the Case Study 9
2.2 Models, Views, and Diagrams 12

2.2.1 What is a Model? 12
2.2.2 Why do we Need Models? 14
2.2.3 Purpose and Target Group of a Model 15

Practical Tips 16
2.2.4 Process of Analysis 16

Practical Tips 17
2.2.5 Diagrams as Views 18

2.3 Information Systems and IT Systems 19
2.4 The Models of our Case Study 21
2.5 History of UML: Methods and Notations 22
2.6 Requirement Specification 25

2.6.1 Guidance for Decision Making 25
2.6.2 Verification 26

2.7 UML 2.0 26
2.7.1 Overview of UML 2.0 26
2.7.2 Effects on the Business System Model 29
2.7.3 Effects on the IT System Model 29
2.7.4 Effects on the Systems Integration Model 30
2.7.5 Conclusion 30

Chapter 3: Modeling Business Systems 31
3.1 Business Processes and Business Systems 32

3.1.1 What is a Business Process? 32
3.1.2 Definition of the Workflow Management Coalition 33
3.1.3 Business Systems 34

Table of Contents

3.1.4 Using UML to Model Business Processes and Business Systems 36
3.1.5 Practical Tips for Modeling Business Processes 37

3.2 One Model—Two Views 37
3.3 External View 40

3.3.1 What Benefit does a Business System Provide? 40
Business Use Cases 41
Actors 42

3.3.2 The Elements of a View 43
3.3.3 Use Case Diagrams 45

Reading Use Case Diagrams 47
3.3.4 Constructing Use Case Diagrams 49

Collecting Information Sources—How am I Supposed to Know That? 50
Identifying Potential Actors—Which Partners and Customers Use the Goods
and Services of the Business System? 51
Identifying Potential Business Use Cases—Which Goods and Services Can
Actors Draw Upon? 52
Practical Tips 53
Connecting Business Use Cases—Who Can Make Use of What Goods
and Services of the Business System? 53
Describing Actors—Who or What do the Actors Represent? 54
Searching for More Business Use Cases—What else Needs to be Done? 54
Editing Business Use Cases—What actually has to be Included in a
Business Use Case? 55
Documenting Business Use Cases—What Happens in a Business Use Case? 56
Modeling Relationships between Business Use Cases—What Activities
are Conducted Repeatedly? 57
Verifying the View—Is Everything Correct? 57
Practical Tips 59

3.3.5 Activity Diagrams 59
Reading Activity Diagrams 65

3.3.6 Constructing Activity Diagrams 67
Collect Information Sources—How am I Supposed to Know That? 68
Find Activities and Actions—What has to be Done When Actors Draw upon
Offered Goods and Services? 68
Connect Actions—In Which Order are Actions Processed? 69
Refine Activities—Do any Other Activity Diagrams have to be Added? 70
Adopt Actors from Business Use Cases—Who is Responsible for Each Action? 71
Verify the View—Is Everything Correct? 72

3.3.7 Sequence Diagrams 72
Reading Sequence Diagrams 74

 ii

Table of Contents

3.3.8 Constructing Sequence Diagrams 75
Designate Actors and Business System—Who is Taking Part? 76
Designate Initiators—Who Starts Interactions? 76
Describe the Message Exchange between Actors and the
Business System—Which Messages are being Exchanged? 77
Identify the Course of Interactions—What is the Order? 77
Insert Additional Information—What Else is Important? 77
Verify the View—Is Everything Correct? 78

3.3.9 High-Level Sequence Diagrams 78
3.3.10 Sequence Diagrams for Scenarios of Business Use Cases 79

3.4 The Internal View 80
3.4.1 The Elements of the View 80
3.4.2 Package Diagram 81

Reading Package Diagrams 83
3.4.3 Constructing Package Diagrams 84

Develop an Initial Package Diagram of the Business System—Which Workers
and Business Objects Make up the Business System? 84
Find Additional Organization Units—Who Else is There? 85
Assign Workers and Business Objects to the Organization Units—Who
Belongs Where? 85
Find Additional Organization Units, Workers, or Business Objects—What
Else is There? 85
Verify the View—Is Everything Correct? 86

3.4.4 Class Diagram 87
Reading Class Diagrams 89

3.4.5 Constructing Class Diagrams 90
Find Classes—Which Classes Exist in the Class Diagram? 90
Create Associations Between Classes—Which Classes Deal with Each Other? 91
Substantiate Associations—What do these Relationships Mean? 92
Insert Generalizations—Can Business Objects be Grouped? 92
Verify the View—Is Everything Correct? 93

3.4.6 Activity Diagram 94
Reading Activity Diagrams 94

3.4.7 Constructing Activity Diagrams 94
Collect Information Sources—How am I Supposed to Know That? 94
Find Activities and Actions—Which Activities Have to be Performed so that
the Goods and Services Utilized by Actors can be Provided and Delivered? 95
Adopt Actors from Business Use Cases—Who is Responsible for Each Action? 95

 iii

Table of Contents

Connect Actions—In Which Order are Actions Processed? 95
Refine Activities—Do any Other Activity Diagrams Have to be Added? 96
Verify the View—Is Everything Correct? 96

Chapter 4: Modeling IT Systems 99
4.1 External View 102

4.1.1 The User View or "I don't care how it works, as long as it works." 102
4.1.2 The Elements of a View 106
4.1.3 Use Case Diagram 107

Reading Use Case Diagrams 109
4.1.4 Query Events and Mutation Events 110
4.1.5 Use Case Sequence Diagram 112

Reading Use Case Sequence Diagrams 114
4.1.6 Constructing the External View 115

Collect Information Sources—How Am I Supposed to Know That? 116
Identify Potential Actors—Who Works with the IT System? 116
Identify Potential Use Cases—What Can be Done With the IT System? 117
Connect Actors and Use Cases—Who Can Do What with the IT System? 118
Describe Actors—Who or What do the Actors Represent? 118
Search for More Use Cases—What Functionalities does the IT System
have to Provide? 119
Edit Use Cases—What Actually Has to be Included in a Use Case? 119
Document Use Cases—What Happens in a Use Case? 121
Model Relationships between Use Cases—What can be Reused? 122
Verify the View—Is Everything Correct? 123

4.2 Structural View 124
4.2.1 Objects and Classes 129
4.2.2 Generalization, Specialization, and Inheritance 128
4.2.3 Static and Dynamic Business Rules 132
4.2.4 Elements of the View 132
4.2.5 Class Diagram 133

Reading Class Diagrams 135
4.2.6 Constructing Class Diagrams 139

Identify and Model Classes—Which Classes do We Need? 140
Identify and Model Associations—How Are the Classes Connected? 141
Define Attributes—What do We Want to Know about the Objects? 142
List Required Queries and Inputs—What does the IT System Need to
Deliver and Accept? 143
Formulate Queries and Inputs—How Exactly Should the Display Look? 143
Conduct Information Analysis—Which Classes, Associations, and Attributes
do We Need? 144

 iv

Table of Contents

Consolidate Class Diagrams—How Does Everything Fit Together? 146
Verify the Class Diagrams—Is Everything Correct? 146

4.3 The Behavioral View 147
4.3.1 The Life of an Object 147
4.3.2. The Elements of the View 151
4.3.3 Statechart Diagram 152

Reading Statechart Diagrams 154
4.3.4 Constructing Statechart Diagrams 159

Identify Mutation Events Relevant for the Object—What Affects the Object? 159
Group Relevant Events Chronologically—How Does a Normal Life Look? 160
Model States and Transitions—Which States are There? 161
Add Actions to the Statechart Diagram—What Do Objects Do? 161
Verify Statechart Diagram—Is Everything Correct? 162

4.4 Interaction View 163
4.4.1 Seeing What Happens Inside the IT System 163
4.4.2 Elements of the View 167
4.4.3 Communication Diagram 168

Reading Communication Diagrams 170
4.4.4 Sequence Diagram 172

Reading Sequence Diagrams 174
4.4.5 Constructing Communication Diagrams 175

Draft Query Result—What do We Want? 176
Identify Involved Classes—Which Classes do We Need? 177
Define Initial Object—Where Do We Start? 179
Design Event Path—Where Do We Go? 179
Amend Event Path—Exactly Which Objects do We Need? 181
Identify Necessary Attributes—What Exactly do We Want to Know? 182
Verify the Communication Diagram—Is Everything Correct? 183

4.4.6 Constructing Sequence Diagrams 184
Identify Involved Classes—What is Affected by Mutation Events? 184
Determine Initial Object—Where does the Mutation Event go First? 185
Propagate Events—How is the Mutation Event Forwarded? 185
Specify Event Parameter—What Do Objects have to Know? 186
Verify the Sequence Diagram—Is Everything Correct? 186

Chapter 5: Modeling for System Integration 187
5.1 Terminology of System Integration 188

Interfaces 188
Messages 188
Enterprise Application Integration 189

 v

Table of Contents

Electronic Data Interchange 189
UN/EDIFACT 189
XML 190

5.2 Messages in UML 190
5.3 One Model—Two Views 191
5.4 Process View 192

5.4.1 The Business System Model as Foundation 192
5.4.2 Elements of the View 195
5.4.3 Activity Diagrams 195

Reading Activity Diagrams 199
5.4.4 Sequence Diagram 199

Reading Sequence Diagrams 201
5.4.5 Constructing Diagrams in the Process View 202

Determine Interfaces—Between Which IT Systems Should
Communication Take Place? 202
Identify Involved Systems—Which IT Systems Exchange Information? 204
Identify Activities and Control Flow—What has to be Done
and Who is Responsible for It? 205
Define Messages—Which Messages have to be Exchanged? 208
Define Rules—What Influences Actions? 210
Verify the View—Is Everything Correct? 210

5.5 The Static View 211
5.5.1 Elements of the View 212
5.5.2 Class Diagram 212

Reading Class Diagrams 213
5.5.3 Constructing Class Diagrams 213

Collect Information Relevant for the Business Objects—What Do
We Want to Read? 213
Construct Class Diagram—What is the Structure of the Business Object? 215
Adopt Classes and Attributes from the Class Diagram of the
IT System—What is Present in the Class Diagram? 215
Derive Remaining Data Elements—From Where Do I Get the Rest? 215
Define Classes and Relationships of the Business Object—Which Class
Relationships do We Need? 216
Verify the View—Is Everything Correct? 219

5.5.4 Transforming Data from the IT System to the
Message "passenger list" 219

Transformation of Flight Data 221

 vi

Table of Contents

Transformation of Passenger Data 222
5.5.5 Transformation of UML Messages into Various Standard Formats 223

Index 225

 vii

About This Book

OMG SpecificationThe states:

"The Unified Modeling Language (UML) is a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system."

Modeling is an essential part of large software projects, which also helps in the
development of medium and small projects. UML can be used to model a variety of
systems: software systems, business systems, or any other system. With its changes and
extensions, UML 2.0 now supports the modeling of business processes much better.

What This Book Covers
This book shows how, with UML, simple models of business processes and specification
models can be created and read with little effort. Most books deal with UML almost in its
entirety. However, often lack of time, previous knowledge, or motivation to deal with the
topic with the necessary intensity prevents us from understanding the material completely
and putting it into action. This book is meant for exactly these cases. It presents UML
only partially and in a simplified manner. We put together those parts of UML whose
application has proven to be practical.

Chapter 1 introduces us to UML and lists the advantages of using UML as a Modeling
Language. Chapter 2 introduces us to the case study. The purpose of choosing a case
study is to provide a coherent example through the chapters of this book. The chapter also
explains several basic terms and concepts like models, views, diagrams, information
systems, methods, and notations. The models and views provided by this book help
choose the most suitable model for a requirement specification.

Chapter 3 discusses the construction of business system models. It explains the benefits
of the different views in a business system and discusses the elements of each view. It
also provides instructions about how to construct use case diagrams.

Chapter 4 illustrates how a conceptual model of an IT system can be developed with the
help of UML. Chapter 5 describes the integration of the IT system into its environment.
It discusses how to model the messages that are exchanged between the various IT
systems, and the processes that are necessary to exchange these messages.

About This Book

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

New terms and important words are introduced in a bold-type font. Words that you see
on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Tips, suggestions, or important notes appear in a box like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about this
book, what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply drop an e-mail to feedback@packtpub.com, making
sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the form on www.packtpub.com or e-mail SUGGEST A TITLE title@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in text or code—we
would be grateful if you would report this to us. By doing this you can save other readers
from frustration, and help to improve subsequent versions of this book.

 2

About This Book

If you find any errata, report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the Submit Errata link, and entering the details of your
errata. Once your errata have been verified, your submission will be accepted and the
errata added to the list of existing errata. The existing errata can be viewed by selecting
your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with some
aspect of the book, and we will do our best to address it.

 3

1
Introduction

I'm still confused, but on a much higher level.

Unified Modeling Language (UML) makes it possible to describe systems with words
and pictures. It can be used to model a variety of systems: software systems, business
systems, or any other system. Especially notable are the various graphical charts—use
case diagrams with their stick figures or the widely used class diagrams. While these
diagrams aren't fundamentally new, the worldwide unification of modeling languages is
new with UML, which was standardized by the Object Management Group (OMG), an
international association that promotes open standards for object-oriented applications
(http://www.omg.org).

Most books about UML describe it almost in its entirety. However, our experience has
shown that in reality there is often a lack of time, previous knowledge, or motivation to
deal with the topic with the necessary intensity. In these cases, the material can't be
completely understood and put into action. This book is meant for exactly these cases.
We put together those parts of UML whose application has proven to be practical. With a
little effort, anybody should be able to make use of UML.

There are several reasons to use UML as a modeling language:

• The unification of terminology and the standardization of notation lead to a
significant easing of communication for all parties involved. It facilitates the
exchange of models between different departments or companies.
Moreover, it eases the transfer of projects between project teams or project
team members.

• UML grows as the requirements for modeling grow. Because UML is a
powerful modeling language, you can start with the development of simple
models or model complex systems in great detail. If the basic functionality
of UML is not sufficient, you can extend it through the use of stereotypes.

Introduction

• UML builds upon widely used and proven approaches. UML was not
devised in an ivory tower but was developed mainly from real-world
problems and existing modeling languages. This guarantees usability and
real-life functionality.

• UML is widely supported.
• UML-based bids for software systems can be compared much more easily.

This book is based on UML version 2.0, as adopted by the Object Management Group
"(OMG Unified Modeling Language: Superstructure, Version 2.0, Revised Final Adopted
Specification, October 2004", from http://www.omg.org).

At the time this book was printed, standardization of UML was not fully completed.
However, subsequent changes to UML 2.0 will not affect the simplified approach that our
book presents.

Our book was written for computer scientists and for people involved in the development
process of IT systems, such as analysts, decision makers, users, and experts. It shows
how, with UML, simple models of business processes and specification models can be
created and read with little effort. Our experience with projects showed that:

• Often only components of a model are created.
• Most of the time the entire system is not modeled.
• Very little time is spent on training in modeling language and methodology.
• In short: modeling is not given much priority.

Certainly a few projects use the complete UML model appropriately. However, the bulk
of all projects use UML or other modeling languages, modeling tools, and modeling
methods to only a small degree, if at all. While enthusiasm and motivation are strong at
the beginning of the project, modeling and documentation of the modeling results are
often the first to fall victim to the increasing time pressure as the deadline approaches.

Unfortunately, we cannot change that. Considering these circumstances, we have tried to
portray a much-simplified picture of UML, in order to make it possible to use UML more
efficiently and appropriately with only a small investment of time.

Experience shows that mastering only a few elements of UML leads to better results than
the superficial knowledge of many UML elements. So we have selected some of these
elements for you—subjectively, of course. We have not even mentioned many elements
of UML, and explain others in a very simplified manner. Even though that is not always
how it was originally intended, it does reflect our practical experience.

6

Chapter 1

With its changes and extensions, UML 2.0 supports the modeling of business processes
much better. The increased size of UML 2.0's vocabulary shows that it's no longer
sufficient to define only certain elements of the language, but also necessary to define the
use of UML in specialized fields, such as, system integration or data warehousing.

In this book we have emphasized these aspects through the use of profiles, while defining
the language elements (vocabulary/terminology) of UML 2.0. We will refer to these
profiles at the appropriate places throughout this book.

We have structured this book so that it can be read while working on a project. We begin
with the modeling of a business system and its business processes in Chapter 3, Modeling
Business Systems. Then we go on to specify an IT system that is to be embedded into the
business system (Chapter 4, Modeling IT Systems) and lastly describe the integration of
the IT system into its environment (Chapter 5, Modeling for System Integration). These
three chapters are independent entities. You can read only those chapters that you require
for your project. But in any case, you should first read Chapter 2, Basic Principles and
Background, where we introduce the case study. This chapter also explains several basic
terms and concepts that the following chapters build on.

We use a case study throughout this book to convey the theoretical knowledge about
UML. This case study serves the sole purpose of illustrating UML, since much can be
explained and understood through the use of examples rather than abstract definitions.
The reader is supposed to get a 'feel' for UML. Of course it is not possible to use every
diagram and every piece of documentation of the entire case study: that would have been
well beyond the scope of this book and is not necessary for the comprehension of UML.
The case study—passenger services at the fictional UML Airport—does not always
accurately represent real passenger services: we have simplified it in parts. However, this
does not have a negative effect on understanding UML.

This book does not assume any prior knowledge of UML or object-oriented
programming. However, a basic understanding of the development of IT systems
is expected.

At this point, we especially want to thank the friendly employees of Unique Zurich
Airport, who helped us with patience and competence to understand the technical details
of our case study. We thank everyone who helped with the creation and revision of this
book. In particular, we want to thank the editor of our German edition, Judith Stevens-
Lemoine, and her team at Galileo for their competent and friendly attention. We also
found helpful the critical comments and suggestions from our readers, and our colleagues
at Integratio and KnowGravity. Last, but not least, we want to thank everyone who
bought a copy of the first two German editions of UML 2.0 in Action: A Project-Based
Tutorial. Thanks to you, this revised version was made possible.

Henriette and Philippe Baumann and Patrick Grässle.

7

2
Basic Principles and

Background

Much of what will be explained in the next few chapters is based on a few fundamental
concepts. These have been summarized in this chapter.

2.1 Introduction to the Case Study
For our case study we have chosen an airport—the UML Airport. Anyone who has ever
been on a flight will have no problems understanding our example.

We will restrict our example to those areas of the airport that passengers are in contact
with during departure, meaning we will take a closer look at passenger check-in and
boarding. Figure 2.1 illustrates how passenger services can be distinguished from other
areas of the airport. It shows the various stages that passengers go through until they are
seated in the airplane, buckled up, and the plane is ready to take off. Not all stages
passengers go through are related to passenger services. The stages that belong to
passenger services are framed and printed in italic font.

A sequence of steps like this is called a scenario. However, the depicted scenario is only
one of many possible scenarios. The following exceptions are possible for passenger
check-in and boarding:

• The passenger only has carry-on luggage.
• The passenger doesn't buy anything at the newsstand.
• The passenger is running late and now has to check in as quickly as possible.
• The passenger loses his or her boarding pass.
• The passenger arrived by plane and merely has to change planes, meaning

that he or she doesn't leave the transit area.

Basic Principles and Background

• The passenger checks in, but falls asleep on an uncomfortable chair in the
waiting area, and misses the departure of his or her flight, despite being
called repeatedly.

• The passenger doesn't get through passport inspection because his or her
passport has expired.

 10

Figure 2.1 Case Study: "Passenger takes plane to go on vacation"

Chapter 2

Think about which of the above-mentioned scenarios are relevant for passenger
departure and whether there are more relevant scenarios than those mentioned.

Figure 2.2 Schematic illustration of the UML Airport

The schematic illustration of the UML Airport in Figure 2.2 should help you to
understand the events of the case study better. Many areas around the main passenger
services are related in one or more ways to passenger services. Some examples are:

• Ticket sales
• Newsstand
• Duty-free shop
• Passport inspection/immigration
• Flight control
• Information desk
• Baggage check-in and transportation

 11

Basic Principles and Background

Passenger services have to exchange data with some of these areas. They also have to
communicate with other areas of the airport. We will introduce those areas when we
discuss business models and models of system integration. Therefore, the case study will
be expanded further in the following chapters.

UML Airport is a small airport and the case study has been purposely kept simple.
Anyone who has ever been on a flight should be able to understand the examples.

The purpose of the case study is to provide a coherent example throughout the chapters of
this book. A few details of the case study require further explanation:

• The plane ticket consists of the actual ticket and up to four additional
sections. The ticket is the little booklet that has a separate coupon for every
part of the trip. For example, a ticket could contain a coupon for the flight
from Zurich to Frankfurt, one for the flight from Frankfurt to London, and
one for the return flight from London to Zurich. Each time at check-in the
appropriate coupon will be exchanged for a boarding pass. The ticket always
stays with the passenger.

• We distinguish between a flight and a flight number. For instance, a flight
number could be LH435 or LX016. It stands for a regular flight that occurs
at a certain time from the departure airport to the destination airport. A flight,
on the other hand, would be, for example, LH435 on 26th August, 2000. It is,
so to speak, an execution of a flight number. A flight could be canceled due
to bad weather. A flight number is used as long as the airline offers a certain
flight regularly.

• We differentiate between three options for check-in:
o Normal check-in with luggage at a normal check-in counter
o Express check-in without luggage at a special check-in counter
o Automated check-in without luggage at a machine

2.2 Models, Views, and Diagrams

2.2.1 What is a Model?
Models are often built in the context of business and IT systems in order to better
understand existing or future systems. However, a model never fully corresponds to
reality. Modeling always means emphasizing and omitting: emphasizing essential
details and omitting irrelevant ones. But what is essential and what is irrelevant? There is
no universal answer to this question. Rather, the answer depends on what the goals of the
model are and who is viewing or reading it.

 12

Chapter 2

Think about what is emphasized or omitted in the following models:

• A wind tunnel model of a car

• A model of a building scaled at 1:50

• A route plan of the subway

• A map

• An organization chart

The more information a model is supposed to give, the more complex and difficult it
becomes. A map of Europe, for example, that simultaneously contains political,
geological, demographic, and transportation-related information is hardly legible. The
solution to this problem is to convey the different types of information on individual
maps. Different views are formed of the objects under consideration. These views are
interconnected in many ways. Generally, if one view is changed, all other views have to
be adjusted as well. If, for instance, in the Netherlands new land is reclaimed from the
North Sea, all views—meaning all maps—have to be updated.

Figure 2.3 Different views of an object

The same is true for the model of a building. If a new wing is added to an existing
building various views are affected, including the floor plan, the different exterior views,
and the 3D-model made from wood. Figure 2.3 illustrates this in a schematic manner. In
Section 2.4, The Models of our Case Study, we specifically address the relationships
between the models we use in this book. The different views within each model are

 13

Basic Principles and Background

described in more detail in Chapter 3, Modeling Business Systems; Chapter 4, Modeling
IT Systems; and Chapter 5, Modeling for System Integration.

2.2.2 Why do we Need Models?
As a general rule, a model of a system has to perform the following tasks:

• Communication between all involved parties: In order to build the right
system, it is essential that all involved parties think along the same lines. It is
particularly important that everyone understands the terminology used, that
customers agree upon the same requirements, that developers understand
these requirements, and that the decisions made can still be understood
months later.

• Visualization of all facts for customers, experts, and users: All accumulated
facts relevant to the system need to be presented in such a way that everyone
concerned can understand them. However, according to our real-life
experience, we often hit a wall of resistance when we want to communicate
with diagrams instead of text. It is necessary to overcome this resistance.
Behind it is often a fear of the unknown; and the diagrams might look a bit
complicated at first. Therefore, this book contains directions on how to read
each diagram.

• Verification of facts in terms of completeness, consistency, and correctness:
A (more or less) formal model makes it possible to verify the facts obtained
for completeness, consistency, and correctness. In particular, the clear
depiction of interrelationships makes it possible to ask specific questions, and
to answer them. We will list these questions with each diagram.

Answer the following questions for yourself:

• When was the last time you felt that you were at cross-purposes when you
discussed a system?

• When was the last time you felt that you were discussing the same issue over
and over again?

• When was the last time you wished that the consensus you reached during a
discussion had been recorded?

 14

Chapter 2

2.2.3 Purpose and Target Group of a Model
In real life we often observe that the results of cumbersome, tedious, and expensive
modeling simply disappear in a stack of paper on someone's desk. We might ask why
this is so. Two factors greatly influence the result of modeling: for whom do we create
the model and for what purpose is it supposed to be used. If we don't discuss and define
these aspects sufficiently, we run the risk of creating models that don't contain what is
important to the user. In other words, if details are not emphasized and omitted
appropriately, the model is rendered worthless.

To define the purpose and target group the following questions should be answered:

• How much business expertise can we expect? Can we assume basic
knowledge of the subject, or do we have to explain the fundamentals of the
model's events and processes?

• What amount of detail does the target group need? What level of complexity
does the model permit? If processes and systems are subject to constant
changes, a highly detailed model might be unrealistic. This is because, most
of the time, it is not possible to maintain those models in a satisfactory
manner. A less detailed model requires less effort to develop and update, but
it is also less precise.

• How much time does the target group have to read and interpret the model?
Prevent your model from disappearing in a stack of paper on someone's desk
by choosing the appropriate level of detail and complexity; otherwise,
nobody might have enough time to read it.

• What language can be used in the model? Does the target group understand
technical business terms? Do they understand IT terminology?
Let's clarify with an easy example: If a bottle filled with water is labeled
'water', virtually anyone who can read will understand the bottle's content.
However, if the bottle is labeled 'H2O'—even though this is correct—we
reach a much smaller group of people, for example, the workers of a
chemistry lab. Yet, the additional benefit is that it shows the composition of
the content: hydrogen and oxygen. In either case, you will have to decide
what 'label' is most appropriate for your target group.

• What level of abstraction should you choose? The less abstract a model, the
more comprehensible, and clear it is for the user. This is because a less
abstract model is closer to the user's actual use and language. On the other
hand, models with a high level of abstraction are more reusable and they are
more easily converted into IT systems. We can also prove more accurately
that they are correct. IT specialists probably manage highly abstract models
best. Users, on the other hand, might pull their hair out if asked to deal with a
model like that.

 15

Basic Principles and Background

Practical Tips
Compromises have to be made between the level of abstraction, clarity, and the amount
of detail used for a model. It is possible to develop several model components, differing
in degree of formality and detail, in order to satisfy different target groups. In this way
communication between model builders, customers, users, and developers can be
facilitated much more easily. It is important not to 'overdo' it, but to adjust the model to
its target groups and their uses.

Analysis or design patterns are example models that describe common design and
modeling methods. You should, whenever possible, look for these example models: on
the Internet, in books (for example, Martin Fowler: Analysis Patterns: Reusable Object
Models, Addison-Wesley, 1999), in magazines, or ask your coworkers.

2.2.4 Process of Analysis
Figure 2.4 shows the process of analysis, which consists of obtaining, representing, and
verifying facts:

Figure 2.4 Process of Analysis

This is the job of the analyst. The process of analysis produces a specification that comes
from the model and other representations. The analyst works with knowledge carriers,
such as customers, users, and domain experts:

• Facts are obtained by collaboration between analysts and domain experts in
which knowledge carriers contribute domain knowledge and analysts
contribute methodological knowledge.

• Facts are represented in diagrams and documents, which are usually
prepared by the analyst.

 16

Chapter 2

• Facts are verified only by knowledge carriers, since they alone can decide if
the presented facts are correct. Verification is absolutely essential. Without it
we might have pretty diagrams, but the probability is high that the facts
represented are faulty. In simple terms: development of a model without
verification is absolutely worthless!

Practical Tips
It is impossible to develop and verify a usable model without mastering the technical
foundations of a topic. Where do we find these knowledge carriers who know
something about the systems that we want to model? We have had good experiences with
the following groups of people:

• People who are involved in performing, operating, and controlling
business processes

• Users of similar or related IT systems
• Customers, who are often critical and creative knowledge carriers
• Business Partners
• Domain Experts
• Management
• External Observers

Several helpful techniques have proven to be useful for the analysis and understanding of
business processes:

• Observing employees at work
• Participating in the investigated business processes
• Taking the role of an outsider (e.g. of a customer)
• Carrying out surveys
• Conducting interviews
• Brainstorming with everyone involved
• Discussing with domain experts
• Reviewing existing forms, documentation, specifications, handbooks,

and work tools
• Describing the organizational structure and workflow management

(organization charts, etc.)

 17

Basic Principles and Background

2.2.5 Diagrams as Views
Each particular UML diagram corresponds to one view of a model of a system.
Depending on the type of diagram used, different aspects are either emphasized or
omitted. All the different views combined result in a good model of a system. Most of the
UML diagrams are graphs (as shown in Figure 2.5), implying that they consist of
elements that are connected through lines:

Figure 2.5 Diagram as graphs

To read diagrams, you have to know what types of elements and lines are allowed and
what they mean. We'll explain this for the diagrams we use in the following chapters.

Even computer-aided software engineering (CASE) tools treat UML diagrams as
views. They use a database in which the information about the model is stored. Each
diagram shows—as a view—a part of that information. In this way, the CASE tool helps
to preserve the consistency of each view. If, for example, the name of a class is changed
in a class diagram, the statechart diagram of that class is automatically updated:

Figure 2.6 CASE tool as database

 18

Chapter 2

The model database is what fundamentally differentiates a CASE tool from a graphical
program (Figure 2.6). Any UML diagram can be generated easily with paper and pencil
or a graphical program. In this case, however, the various diagrams are nothing more than
drawings. Only the use of a CASE tool with a database, according to UML specifications,
permits consistent collection, management, and modification of model information. UML
provides its own database model: the UML meta-model, a component of the UML
specifications ("OMG: Unified Modeling Language: Infrastructure, Version 2.0, Final
Adopted Specification, September 2003, and OMG: Unified Modeling Language:
Superstructure, Version 2.0, Revised Final Adopted Specification, October 2004":
http://www.omg.org). All elements found in UML diagrams, as well as the descriptions
of these elements, are contained in the UML meta-model. It states, for example, that a
class can have attributes and methods. This "data model" of UML as a language, is the
foundation of the model databases of all UML CASE tools. Unfortunately, many CASE
tools are hungry for resources, expensive, poorly developed, cumbersome, and require
extensive training. Despite this, except for very small projects, their use is worthwhile.

2.3 Information Systems and IT Systems
In almost all occupations, part of the job is dealing with information. It has been this way
for thousands of years and is one of the reasons behind the development of writing. Some
of the oldest texts found in Europe include, for instance, stock lists from the palace of
Knossos in Crete. If we were able to watch the stock managers work as they did 3,500
years ago, we could probably map the business processes that people followed back then.
We could see that these people were dealing with suppliers and buyers, that they were
exchanging goods, and that they kept written records of their business activities. The
same was true for a Roman olive merchant 1,500 years later, for a Hanseatic merchant's
trading office in fifteenth century Northern Germany, or at Lloyd's of London at the
beginning of the last century.

In the above examples, more or less complex information systems were used to handle
daily tasks. The purpose of these information systems was, and is, to manage the
information needed to operate a business. Of course, all of this took place without
computers. Information systems were supported by other techniques such as chalkboards,
large filing systems, and index cards. Today, computers allow us to implement
information systems as IT systems. This creates new possibilities that would probably be
unthinkable for the Roman olive merchant. But basically, the point is still to provide and
to process data that is needed for dealing with everyday business processes. We will
generally be talking about IT systems in this book, since we assume that information
systems modeled with UML are implemented by IT technology.

In our case study—passenger services at UML Airport—employees at the check-in deal
with passengers, plane tickets, and flights that are real. On the other hand, there is a
representation or image of these passengers, plane tickets, and flights in the information
system. These images consist of information about the passengers, tickets, and flights
stored in the information system, needed for operating processes, as shown in Figure 2.7:

 19

Basic Principles and Background

Figure 2.7 Objects from the real world and their images

An IT system is a computer-based system—a system that provides information needed
for the execution of certain business processes, generally in response to a query by a user.
Of course the IT system has to be 'fed' with information, so that it can answer queries.

Figure 2.8 shows the cooperation between business systems and IT systems
schematically. Within the framework of the business processes of a business system,
information is retrieved from and stored in IT systems:

Figure 2.8 IT System

The modeling techniques introduced in this book not only hold true for the development
of IT systems, but they can also be used whenever an information system needs to be
analyzed. To illustrate this, we invented a second example—in addition to our case study
on passenger services at UML Airport—which we will come back to in different places
of this book.

The second example is a medieval Hanseatic merchant's trading office owned by a Mr.
Hafenstein. (The Hanseatic League was a powerful alliance of merchant guilds in cities
of Northern Germany and the Baltic that controlled trade in this region during the middle

 20

Chapter 2

ages.) The supervisor of the office is the faithful and diligent secretary Hildebrandt. The
office keeps several books, namely a daybook, a sales ledger, and a customer index. Each
book is the responsibility of a different clerk. Nobody besides the clerk responsible is
allowed to make any changes in a book, and only he knows exactly where in the book a
particular piece of information is recorded.

In our terminology, the office, including Hildebrandt, the clerks, and the books, make up
the information system. With the help of this example we want to show in different
places in this book that, even though an information system can be implemented as an IT
system with the help of computer technology, conceptually it has nothing to do with
computers. Instead, it can be realized in many ways.

2.4 The Models of our Case Study
In our case study we construct three models of different systems:

1. The model of the business system describes passenger services, meaning the
business surroundings of the IT system. It deals with business processes,
passengers, business partners, employees, etc. We discuss this model in
Chapter 3, Modeling Business Systems.

2. The model of the IT system explains the IT system that was built for
passenger services. The model of the passenger service business system
serves as the foundation for the model of the IT system. We discuss this
model in Chapter 4, Modeling IT Systems.

3. The model of system integration describes integration into the environment,
especially gateways to the outside world. Here also, the model of the
passenger service business system serves as the foundation. This model is
discussed in Chapter 5, Modeling for System Integration:

Figure 2.9 Models of the case study

 21

Basic Principles and Background

All three models are needed to build and integrate IT systems; the model of the IT system
alone is insufficient. This is true not only for our case study, but also for all other cases.

You can see in Figure 2.9 that the model of the business system provides the foundation
for all other models. In this way, it constitutes the basis to work from for everyone
involved in the project. Because of this, it is of great advantage to use a unified modeling
language, which can be understood by people from the different departments as well as
from information technology. This enables a smooth exchange of models between the
various areas. It also significantly eases verification of the models. We are convinced that
UML functions as a link that has the ability to close the existing gap between the
technical requirements and the actual performance characteristics of IT systems.

2.5 History of UML: Methods and Notations
In its short history, information technology has already produced a plethora of methods
and notations. We have methods and notations for design, structure, processing, and
storage of information. We also have methods for the planning, modeling,
implementation, assembly, testing, documentation, adjustment, etc. of systems. Some of
the concepts used are relatively fundamental, and because of that, they can also be found
beyond the field of information technology. One example of that is inheritance, which is
present in nature, but is also a cornerstone of object-oriented programming.

Until about the 1970s, software developers viewed the development of software as an
artistic venture. But because systems became more and more complex, software
development and maintenance could no longer be conquered with this creative-individual
approach. Eventually, this approach led to the software crisis.

This crisis leads to the engineering approach (software engineering) and structured
programming. Methods were developed for the structuring of systems and for the
processes of design, development, and maintenance. Process-oriented approaches, for
example the Hierarchy Input Processing Output (HIPO) method, emphasized the
functionality of systems. With this method the total system is divided into smaller
components through functional decomposition.

Figure 2.10 gives a visual overview (hierarchical diagram) of the sub-functions in the
invoice example. An input-process-output schema describes every functional element.

At the same time, data-structure oriented approaches were developed, such as the
Jackson method, in which the program structure is derived from the graphical display of
data structures.

Figure 2.11 shows, in the left-hand column, the structure of an inventory data set. The
right-hand column shows the program structure that was derived from the data structure:

 22

Chapter 2

Figure 2.10 HIPO diagram

Figure 2.11 Jackson diagram

 23

Basic Principles and Background

In all these methods and notations, we split the system into two portions—a data section
and a procedure section. This is clearly recognizable in older programming languages
such as COBOL. Data flow-charts, structure charts, HIPO diagrams, and Jackson
diagrams are used to illustrate the range of functions. Naturally, these early methods
emphasized the development of new systems.

In the 1980s, classical structural analysis was developed further. Developers generated
entity relationship diagrams for data modeling and Petri nets for process modeling.

As systems became more complex, no longer could every system be designed "from
scratch". Properties, such as maintainability and re-usability, became more and more
important. Object-oriented programming languages were developed, and with them, the
first object-oriented modeling languages emerged in the 1970s and 1980s. In the 1990s,
the first publications on object-oriented analysis and object-oriented design became
available to the public. In the mid-1990s, already more than 50 object-oriented
methods existed, as well as just as many design formats. A unified modeling language
seemed indispensable.

At the beginning of the 1990s, the object-oriented methods of Grady Booch and James
Rumbaugh were widely used. In October 1994, the Rational Software Corporation (part
of IBM since February 2003) began the creation of a unified modeling language. First,
they agreed upon a standardization of notation (language), since this seemed less
elaborate than the standardization of methods. In doing so, they integrated the Booch
Method of Grady Booch, the Object Modeling Technique (OMT) by James
Rumbaugh, and Object-Oriented Software Engineering (OOSE), by Ivar Jacobsen,
with elements of other methods and published this new notation under the name UML,
version 0.9. The goal was not to formulate a completely new notation, but to adapt, to
expand, and to simplify the existing and accepted types of diagrams of several object-
oriented methods, such as class diagrams, Jacobson's Use Case Diagrams, or Harel's
Statechart Diagrams. The means of representation that were used in structured methods
were applied to UML. Thus, UML's activity diagrams are, for example, influenced by the
make-up of data flow charts and Petri nets.

What is outstanding and new in UML is not its content, but its standardization to a single
unified language with formally defined meaning.

Well-known companies, such as IBM, Oracle, Microsoft, Digital, Hewlett-Packard, and
Unisys were included in the further development of UML. In 1997, UML version 1.1 was
submitted to and approved by the OMG. UML version 1.2, with editorial adaptations,
was released in 1998, followed by version 1.3 a year later, and UML 1.5 in March, 2003.
Developers had already been working on version 2.0 of UML since the year 2000, and it
was approved as a Final Adopted Specification by OMG in June, 2003. When this book
went to print in June, 2005 the final stage of adoption by OMG as an Available
Specification was not yet completed.

 24

Chapter 2

2.6 Requirement Specification
Models of the system to be developed make up an integral part of every requirement
specification. This book provides a substantiated basis for the development of these
models. Unfortunately, there is no universal recipe for the specification of requirements.
Rather, the choice and level of detail of models depend on various factors. Our
experience shows that the following three points are most important:

• Who is specifying?
• For whom is it being specified?
• What is being specified?

2.6.1 Guidance for Decision Making
The models and views that are provided by this book are basically the building blocks
from which you can choose the required models for a requirement specification. The
following table will support you in making the proper choice of models and views:

Model
(What) View Originator

(Who)
Target
Audience
(for Whom)

Purpose
(for What)

Business
System

External View User Agent User Agent Business
Documentation

 IT Agent Basis for IT
System
Specification

 Internal View User Agent User Agent Business
Documentation,
Description of
Procedures

 IT Agent Basis for IT
System
Specification

IT System External View User Agent IT Agent
User Agent

Requirements
of an IT System

 Structural View IT Agent IT Agent IT System
Specification

 Performance
View

User Agent
IT Agent

IT Agent IT System
Specification

 Interaction
View

User Agent
IT Agent

IT Agent IT System
Specification

 25

Basic Principles and Background

Model
(What) View Originator

(Who)
Target
Audience
(for Whom)

Purpose
(for What)

System
Integration

Process View User Agent IT Agent IT System
Integration
Specification

 Static View IT Agent IT Agent IT System
Integration
Specification

2.6.2 Verification
All the views introduced in this book describe a model that documents the requirements
from the viewpoint of the user. This means that all utilized models and views:

• Can only be created in cooperation with user agents
• Can only be verified by user agents with respect to correctness of content

Even though we develop the model of the IT system for the target audience, the IT
agents, we cannot do so without user agents, who have to provide the requirements and
verify the model. They represent the user's point of view and are knowledge carriers of
the user domain.

Since various groups are involved in the development and verification of requirement
specifications, it is especially important to use a unified modeling language, in order to
prevent misunderstanding though misinterpretation.

2.7 UML 2.0

2.7.1 Overview of UML 2.0
UML 2.0 in Action: A Project-Based Tutorial is based on the new version of UML—
UML 2.0. In this version, the structure and documentation of UML was completely
revised. There are now two documents available that describe UML:

• UML 2.0 Infrastructure defines the basic constructs of the language on which
UML is based. This section is not directly relevant to the users of UML (our
readers), but is directed more towards the developers of modeling tools.

• UML 2.0 Superstructure defines the user constructs of UML 2.0, meaning
those elements of UML that users work with at the immediate level.

 26

Chapter 2

Among other things, this revision of UML was created to pursue the following goals:

• To restructure and refine UML so that usability, implementation, and
adaptation are simplified.

• The UML infrastructure is supposed to:
o Provide a reusable meta-language core, with which UML can

define itself
o Provide mechanisms for the adjustment of language

• The UML superstructure is supposed to:
o Feature better support for component-based development
o Improve constructs for the specification of architecture
o Provide better options for the modeling of behavior

In addition to the proposal of UML Infrastructure and UML Superstructure
specifications, separate proposals were published for a new Object Constraint
Language (OCL) as well as for Diagram Interchange. Together, they make up the
complete UML 2.0 package, as shown in Figure 2.12:

Figure 2.12 The complete UML 2.0 package

UML 2.0, as a whole, is more extensive and more complex than earlier versions. The
extent of UML documentation has also further increased. While the documentation of
UML 1.5, including OCL, comprised about 730 pages, the documentation of UML 2.0,
also including OCL, contains approximately 1050 pages.

Even though part of the documentation doesn't concern the 'normal' UML user, for a
member of a software development project, reading the complete work is unrealistic.
This is not only due to the number of pages, but also because of the number and
complexity of UML constructs. Because of this, reduction to the UML constructs
necessary for everyday project work is even more necessary than with earlier versions.

 27

Basic Principles and Background

From this follow two conclusions for our book UML 2.0 in Action: A Project-Based
Tutorial.

The concept of this book is to show a very simplified picture of UML. This is becoming
even more important with the increasing scope of UML, since the accessibility of UML
did not become any greater with version 2.0.

Fortunately, many of the new features of UML 2.0 have little or no influence at the level
of detail used in this book. Consequently, there are only a few changes compared to the
earlier German editions of UML 2.0 in Action: A Project-Based Tutorial. The restricted
scope of our book ensures stability towards the changes in new UML versions.

We consciously only show the tip of the iceberg, while the part hidden under water
becomes bigger and bigger. More than ever, we are of the opinion that the tip of the
iceberg (as shown in Figure 2.13) is sufficient for our target audience—members of IT
project teams—to understand UML enough to use it meaningfully in projects:

Figure 2.13 The UML iceberg

We would also like to point out a new possibility that UML 2.0 opens up. One of the
goals of UML 2.0 was the definition of formal and completely defined semantics. If this
new possibility is utilized for the development of models, corresponding systems can be
generated from these models. This yields the following advantages:

• A model that was described with UML reflects the real system.
• It is possible to correct mistakes in the model early and continuously.
• Intermediate steps such as amending code outside of the model design

are omitted.
• It is possible to make the same model executable on different platforms

(hardware as well as software).

However, a price has to be paid for these advantages. It becomes necessary to acquire a
deep and accurate understanding of UML and considerable effort has to be invested in the
development of the models.

 28

Chapter 2

2.7.2 Effects on the Business System Model
Some changes made in performance modeling enhanced the possibilities for modeling
business systems. First, we'll give examples of several of the changes and improvements.

Activity diagrams are no longer special cases of the statechart diagram. Initially, this fact
was not relevant for the normal UML user. However, in addition to the new autonomy in
the meta-model, several other changes and improvements were made:

Until now, the separate steps in the activity diagram were referred to as activities. Now
the entire diagram is called an activity, whereas the steps previously called activities are
now referred to as actions. An action can call a primary operation as well as another
activity. This enables flexible modulation in the top-down view of models.

A division does not necessarily have to be re-synchronized.

An activity can have more than one initial state. With this, several events can be started at
the same time.

Input and output parameters can be added to an activity.

One of the improvements made in the sequence diagram is the addition of so-called
operators. These operators make it possible to package several actions/activities within a
sequence diagram. For instance, operators can be used to refer to other sequence
diagrams or individual sequences. Appropriate operators can also represent iterations.
With the newly introduced operators, sequence diagrams now support a top-down view.

OCL is now an inherent part of UML. It can be used to describe agreements, invariants,
preconditions, and post conditions within UML models, which enables more precise
modeling of business systems and business processes.

2.7.3 Effects on the IT System Model
The diagrams that we have used in this book in the different views of the IT system did
not undergo any significant changes.

The biggest change occurred in the notation of the sequence diagram. Here, among
other things, the interaction reference is available as a construct for modularization.
However, nothing changed concerning the meaning and functionality of sequence
diagrams at the level of detail used in this book. The same holds true for the class
diagram and the case diagram.

Statechart diagrams underwent the most interesting changes for the modeling of IT
systems: connection points allow, for example, better modulation of statechart
diagrams. However, we decided not to use this language element in our simplified
approach to UML.

 29

Basic Principles and Background

2.7.4 Effects on the Systems Integration Model
Of course, the improvements in behavioral modeling also had an effect on the process
view in the systems integration model. A significant improvement is the ability to add
input and output parameters to activities (see Section 2.7.2, Effects on the Business
System Model).

Hardly any changes were made in the area of static views, meaning the design of business
objects with class diagrams.

In addition to the changes that were made within the framework of UML 2.0, the UML
profile for Enterprise Application Integration (EAI) is of increasing importance in the
field of system integration. Besides the basic operations needed in the field of system
integration, it shows the data meta-models of various programming languages that are not
object-oriented. However, this occurs at a more detailed level, which has no influence
upon this text.

2.7.5 Conclusion
For the normal user, UML 2.0 does not turn the previous versions of UML upside down,
but represents an improvement on existing concepts. It is probably wise to use UML 2.0
for future models. On the other hand, it should be possible to continue using existing
constructs and models based on earlier UML versions. For ongoing projects the
advantages (more exact modeling) have to be weighed against the disadvantages
(additional work).

 30

3
Modeling Business Systems

Commercial IT systems are used mainly for dealing with business transactions of various
sorts. Because of this, the development and integration of IT systems determine the views

of those business processes that are embedded in the IT system. The business system
model and its business processes serve as the basis for this. In this chapter we will

discuss the construction of business system models.

To ensure smooth business transactions through the use of IT systems, it is indispensable
to know and understand the business environment of IT systems. Therefore, analysis
and modeling of business processes are important components of development and
integration of IT systems.

Today, most IT systems are not only embedded in a business environment, but are also
connected with other IT systems. Thus, every new IT system has to fit not into one, but
two different target environments:

• Integration on the business-process level: Each IT system has to be
assigned the activities of a business process in a way that enables
correct and efficient execution of the entire business process with all
involved components.

• Integration at the IT-system level: Communication with other IT systems
involved in the business process has to go smoothly. This requires
semantically and technically perfect interfaces. Integration on the IT-system
level will be discussed in Chapter 5, Modeling for System Integration.

Modeling Business Systems

Answer the following questions for yourself:

• When was the last time you experienced a functional gap between a new IT
system and its environment that appeared during the development process?

• How many IT systems do you know that do not optimally support, or even
obstruct, the operating processes of users?

• When was the last time you experienced an IT system having to be halted on
the day it was rolled out, because a functional error in the interfaces made
operation impossible?

We don't want to look only at the dynamic aspects of our model, but also at the static
elements. Because of this, we will construct a business system model that entails both
business processes and business structures.

3.1 Business Processes and Business Systems

3.1.1 What is a Business Process?
business processMost people intuitively understand a to be a procedure event or with

the purpose of reaching a goal. When looking at our UML Airport we can find many
different business processes and goals:

• The goal of our passenger is to go on vacation. To achieve this goal, he has
to book a flight and hotel, pack his bags, drive to the UML Airport, check in
and board his airplane, exit the plane at his destination airport, go to the
hotel, move into his room, and unpack his bags.

• The owner of the newsstand at the UML Airport wants to sell her goods.
For this, she buys items inexpensively and sells them to her customers at a
higher price.

• In order for passengers to check in at the UML Airport, an employee of
passenger services accepts their tickets and luggage, inquires about their seat
preferences, and uses an IT system. By the end of the procedure, the
passengers receive their boarding passes on which their reserved seats and
the appropriate gates are marked.

As you can see, business processes are often completed in several steps. These steps are
also referred to as activities, and have to be completed in a predetermined order. The
newsstand owner cannot sell any goods unless she has purchased them beforehand.

 32

Chapter 3

A passenger packs his or her suitcase before he or she drives to the airport. The employee
of passenger services at the check-in counter can only issue a boarding pass after check-
in is completed (Figure 3.1):

Figure 3.1 Activity of the business process "Passenger Services" (simplified)

 33

Activities can run sequentially or in parallel. Thus, a passenger can buy a bottle of
whiskey in the duty-free shop, while his or her luggage is being loaded into the Airbus
320 to London.

Individual activities can be organizationally distributed. The check-in procedure takes
place at the check-in counter and is performed by an employee of passenger services,
while the subsequent boarding occurs at a different location and is performed by different
employees of passenger services.

Usually, the activities of a business process are interdependent. This interdependency is
created by the interaction of all the activities belonging to a business process that pursue
one common goal.

Think about which of the following activities are not interdependent with our
case study, because they do not pursue the goal of our passenger to go on
vacation in an Airbus 320:

• Loading of the Airbus 320 with food and beverages
• Fueling of a Boeing 737
• Cleaning of the UML Airport restrooms
• Promotion of a UML Airport employee to vice-president

3.1.2 Definition of the Workflow Management Coalition
Official definitions of the terms process and business process were adopted by the
Workflow Management Coalition. The following definitions can be found in the
glossary of the Workflow Reference Model of the Workflow Management Coalition
(The Work Flow Reference Model, February 1999: http://www.wfmc.org):

Modeling Business Systems

"A process is a coordinated (parallel and/or serial) set of process activity(s)
that are connected in order to achieve a common goal. Such activities may
consist of manual activity(s) and/or workflow activity(s)."

According to this definition, a process is a set of activities that occur in a coordinated
manner, either in parallel or one after another, and that pursue one common goal. These
activities can be performed manually or when supported by an IT system.

"A business process is a kind of process in the domain of business
organizational structure and policy for the purpose of achieving business
objectives."

3.1.3 Business Systems
So far, we have explained business processes. Business processes are dynamic in nature
and involve activities. However, if we want to look at the entire business system, we also
have to consider the static aspects. This involves, for instance, the organizational
structures within which business processes are conducted. This also involves various
business objects and information objects, such as tickets or orders. For the static and
dynamic aspects as a whole, we use the term business system.

business systemIn business terminology, a refers to the value-added chain, which
describes the value-added process, meaning the supply of goods and services. A business
can span one or several business systems.

Each business system, in itself, generates economic benefit. Thus, the business
administrative meaning of business system does not differ very much from our use of the
term business system. We also refer to the 'results' of a business system as 'functionality'.

For the analysis and modeling of a business system it is important to define system limits.
A business system that is to be modeled can span an entire organization. In this case, we
talk about an organization model .

It is also possible to consider and model only a selected part of an organization. In our
case study, an IT system is to be integrated into the Passenger Services operation.
Therefore, it is sufficient to observe this operation and to narrow the business system to
Passenger Services only.

Passenger Services is a division within the UML Airport, with employees,
organizational structure, an IT system, and defined tasks (Figure 3.2). The surrounding
divisions, such as baggage transportation or catering, also belong to the UML Airport, but
not to our business system. So, we will treat them like other, external, business systems:

 34

Chapter 3

Figure 3.2 System boundary during analysis of the business system

We are not interested in any of the external business systems as a whole, but only in the
interfaces between them and our business system. For instance, the staff of passenger
services need to know that they have to transfer passengers' luggage to baggage
transportation, so that it can be loaded into the airplane. Of course, for this, passenger
services have to know how baggage transportation accepts luggage, so that it can be made
available accordingly. It is possible that the IT systems of passenger services and baggage
transportation will have to be connected, meaning that interfaces will have to be created.
On the other hand, passenger services are completely unconcerned with how baggage
transportation is organized, and whether each suitcase is individually carried across the
runway or carts are used to transport luggage to the airplane.

 35

Modeling Business Systems

3.1.4 Using UML to Model Business Processes and
Business Systems
Before we move on to the modeling of business processes and business systems with
UML, we should ask ourselves whether UML is even suitable for the modeling of
business processes and business systems. For this purpose we will take a look at UML's
definition by OMG (Object Management Group Inc.—the international association that
promotes open standards for object-oriented applications, which publishes each version
of UML that is submitted for standardization at http://www.omg.org):

"The Unified Modeling Language is a visual language for specifying,
constructing, and documenting the artifacts of systems"—UML Unified
Modeling Language: Infrastructure, Version 2.0, Final Adopted
Specifications, September 2003.

This definition indicates that UML is a language for the modeling and representation of
systems in general, and thus, also of business systems.

In any case, UML fulfills at least one of the requirements of business-system modeling: it
reflects various views of a business system, in order to capture its different aspects. The
various standardized diagram types of UML meet this requirement, because every
diagram gives a different view of the modeled business system.

We reach the limits of UML when modeling extensive business process projects, for
instance, business process reengineering, or when modeling entire organizations.
However, for these kinds of projects powerful methods and tools are available, such as
Architecture of Integrated IT Systems ARIS (). This doesn't mean that we want to keep
anyone from using UML for projects like that, although we recommend a thorough study
of the UML specifications (OMG Unified Modeling Language: : Superstructure, Version
2.0, Revised Final Adopted Specification, October 2004) and the use of CASE tools.

This text is tailored toward projects with the goal of developing IT systems. Moreover, it
is tailored toward projects for which a concern of the business system is the assurance of
the smooth integration of an IT system. The following characteristics mark such projects:

• Those business processes that are affected by the construction and integration
of IT systems are considered.

• Business-process modeling is not the focus of these projects. Instead, the
model serves as the foundation for the construction and integration of IT
systems. Business process integration can determine the success or failure of
such a project; but the main task still is the construction of IT systems.

• Because budgets are often tight, time investment in the methodology and
language required for business-process modeling should not amount to more
than 5–10% of the total project effort.

 36

Chapter 3

 37

3.1.5 Practical Tips for Modeling Business Processes
Often one is warned about the complexity of business process analysis and business-
process modeling. However, in our experience most business processes are thoroughly
understandable and controllable. Rather, the lack of clarity and transparency makes them
seem more complex than they really are.

In many cases, existing business processes are documented poorly or not at all. This can
be traced to the fact that for many years most functionalities were treated as 'islands'
instead of parts of comprehensive business processes. Because of that, the link between
activities—the process chain—is missing. If this overview is missing, business processes
seem complicated.

There are more hurdles to overcome if business processes are handled by IT systems.
Most of the time, documentation of the manual workflow that is carried out between
individual systems is not available. In other cases, the functionality of IT systems is
unknown because processes run automatically, hidden somewhere in a black box, and
only the input and output are visible.

Existing business process architectures or reference models that already exist can speed
up and ease the modeling process. Comparing processes with similar or identical
processes in other organizations can be helpful in identifying discrepancies and deriving
possibilities for improvement.

3.2 One Model—Two Views
A business system can be viewed from different perspectives. Because of this, our
business system model consists of two different views. Each of the views emphasizes
certain aspects of the business system, and each of them is linked to the other. We clarify
the different views in Figure 3.3.

Viewing a business system from the outside, we take on the role of a customer, a business
partner, a supplier, or another business system. From this external view, only those
business processes that involve outsiders are of interest. The external view describes the
environment of a business system. The business system itself remains a black box.

Within the business system, we find employees and tools that are responsible for
fulfilling the demands of the environment, and for handling the necessary business
processes. Behind the business processes are workflows and IT systems. Each individual
employee is part of the organizational structure. Normally this internal view remains
hidden to outsiders.

Modeling Business Systems

Take a look at our case study:

• Think about what services Passenger Services provides to you, as
a passenger.

• Which employees of Passenger Services are you in contact with as
a passenger?

• As a passenger, do you see the procedures that a check-in employee
performs, when you are issued your boarding pass? Would you like to
know how your luggage ends up in the airplane, or do you not care, as
long it doesn't get lost?

Figure 3.3 External and internal view of the business system

We begin with the external view in modeling our business system. In this way, we start
with the description of the business system from the perspective of customers, business
partners, and suppliers:

 38

Chapter 3

Figure 3.4 The different views and diagrams

 39

Modeling Business Systems

Following this, the internal view describes how the business system provides these
services. The use cases of the external view serve well as the basis for constructing test
scenarios, which are necessary for testing a finished IT system.

The individual views that we use for the business-system model, and the UML diagrams
that they incorporate, are depicted in Figure 3.4.

3.3 External View

3.3.1 What Benefit does a Business System Provide?
As a customer or business partner of an organization, you don't care if transactions within
an organization take place manually or are IT-based. You are also not interested in how
many forms employees of the organization have to fill out, whether it is 2 or 20.
Customers and business partners are merely interested in what kind of goods and services
can be offered, and how they can make use of them. The customer view describes the
interactions with external parties, such as customers and partners, and presents the
business system as a black box.

Consider a business system, such as passenger services or an airport newsstand
from the outside. Which output is of interest for customers and business partners?
Is the output a service or material goods?

From the business administrative view, the goal of a business system is (profitable)
output (also see Section 3.1.3, Business Systems). Output can generally be divided into
goods and services. The production of goods could be, for example, the production of
boxes of the finest Swiss chocolates.

But how do we distinguish services? Services are intangible goods, such as reserving a
seat or loading luggage into an airplane. Unlike material goods, services can't be rendered
unless suppliers and customers make contact. However, a service can involve material
goods. If a box of Swiss chocolates is sold at our newsstand, this transaction is a service.
We can see from this example that the transaction of material goods is treated as a service
because it involves a customer.

Consequently, the supply of material goods and services is relevant for the external view.
The external view does not describe how employees and IT systems provide goods and
services, and how business processes are transacted within the business system. In the
external view, only those activities that involve outsiders are of concern.

In our case study, it is important for a passenger to know that he or she can check in with
a valid ticket at the check-in counter, and that he or she will subsequently receive a
boarding pass. What employees and IT systems actually have to do in order for him or

 40

Chapter 3

 41

her to receive a boarding pass remains hidden from the passenger—and in most cases he
or she does not want to know, anyway.

In practice, we have observed that the external view is difficult to represent, if the
employees of an organization, who are located within the business system, develop the
model. It is difficult for a person within a business system, who knows all the internal
transactions, to reconstruct the view of the customer, which does not consider internal
transactions at all. If external and internal views are mixed, they inhibit the clear view
from the outside of a business system and its business processes. (Thus, user-unfriendly
systems are created!) Therefore, consult unbiased staff members, who can put
themselves in the outsider's place more easily, for instance, employees of other
divisions or external consultants.

Business Use Cases
Before we converge to the business use cases, we would like to take a look at the general
definition of a use case in UML. A use case is the specification of a set of actions
performed by a system, which yields an observable result that is typically of value for one
or more actors or other stakeholders of the system (OMG: Unified Modeling Language:
Superstructure, Version 2.0, Revised Final Adopted Specification, October 2004).

What is an observable, valuable result in a business system? This question—how to find
use cases—has preoccupied analysts and designers since the first day the term was used.
The use cases of our business system are the services of a business system that are
offered to customers, business partners, or other business systems. In contrast to this, the
functionality that exists within a business system, which is neither visible nor accessible
to outsiders, represents an internal activity, meaning an internal business process.

On the level of the business model we use the term business use case instead of use case.
The reason behind this differentiation is a clear separation and the elimination of mix-ups
in the transition from the business system model to the IT system model. The business
use case is reserved to the business system model. Beyond this, there are no differences
between a business use case and a use case.

Business processes can be performed manually or be IT-assisted. Nowadays, entire
business processes can be initiated and conducted completely without human help.
Corresponding to this reality, business use cases can comprise manual tasks, as well as
IT-assisted activities.

If we look at our Hanseatic merchant's trading office, we find exclusively business use
cases that are conducted manually. If a customer of the trading office orders Russian fur,
the clerk uses pen and ink to enter the order into the order book. Thus, business use cases
already existed in medieval times.

In our case study, manually conducted passenger services as well IT-assisted activities
are performed. For example, the IT system of passenger services performs seat

Modeling Business Systems

reservations for passengers, while an employee conducts the verification of the
ticket manually.

A passenger who checks in at a machine does not even encounter a human being. The
check-in machine performs the entire business use case.

Actors
Outside of the business system are, for instance, customers or business partners, who use
the output of the business system under consideration. It's not necessary that these
outsiders know in detail how a business case is conducted. For our passengers, it is
important to know that they can buy a bottle of whiskey in the duty-free shop. The bottle
of whiskey is a material good that the duty-free shop provides; selling the bottle to the
customer, on the other hand, is a service. The passenger does not care how the duty-free
shop employee conducts the sale. These outsiders are called actors (see Figure 3.5):

Figure 3.5 Outsiders and staff members

A business use case is always initiated by an actor, meaning that a customer or business
partner utilizes a service. Our passenger, who strolls through the duty-free shop,
considers a Scottish Malt Whisky a cheap bargain, and decides to buy a bottle. This
makes him the initiator of the sale. During the transaction of a business use case, actors
are able to interact with the humans and IT systems within the business system that are
responsible for the transaction. For example, our passenger has to hand over a certain
amount of money, in order to receive the bottle of whiskey.

Activities that are initiated by employees or IT system within the business system are not
business use cases of the external view, but are activities of the internal view and will be
represented in the activity diagram or sequence diagram of the internal view.

 42

Chapter 3

 43

As you can see, the actors of business systems can be humans, organizations, or IT
systems. Even if organizations are represented as actors, as in the case of baggage
transportation, we ultimately find people or IT systems behind the actors that initiate and
handle cases. However, what are relevant for our models are the roles that are played. On
the level of the business system model, it is not important if it is a person, an IT system,
an organization, or a division of an organization, a machine, or any other system that
takes up a certain role.

Take another look at our case study and try to locate all persons, organization
units, and IT systems involved. Then, try to structure them according to the
following criteria:

• Which is an outsider (customer, business partner, etc.) and what output does
this outsider use?

• What persons are located within passenger services as employees, and what
tasks do they perform?

• Which IT systems are involved?
• In order for a passenger to buy a bottle of whiskey duty-free, an employee of

the duty-free shop has to check the boarding pass of the passenger, accept
money, pack the bottle in a bag, and hand out a receipt. Which of these
activities belong to the internal view, and which belong to the external view?

3.3.2 The Elements of a View
The following types of UML diagrams represent the external view:

• Use case diagrams show actors, business use cases, and their relationships.
Use case diagrams do not describe procedures. Alternative scenarios also
remain hidden. These diagrams give a good overview of the functionality of
a business system.

• Activity diagrams describe procedures, in our case, the business processes
of the business system. The subjects of these descriptions are interactions
between actors and the business system, meaning the goods and services that
are offered to customers and business partners. On the basis of activity
diagrams, outsiders can identify how to interact with the business system.
They are especially useful to illustrate sequences, alternatives, and parallel
events. Activity diagrams can be created in various degrees of detail.

• Sequence diagrams show the chronological chain of interactions. They do
not depict every event with all its branches and parallelisms, but the
information that is exchanged between the involved parties.
These diagrams are a good basis for data and information exchange with
partners and customers (Figure 3.6):

Modeling Business Systems

Figure 3.6 The external view

UML diagrams for the description of business use cases can be annotated with written
descriptions and illustrative figures. Not every diagram has to be used in each case.
Which diagram type should be used depends on which system characteristics need to be
emphasized. In any case, we recommend creating use case diagrams, because this
diagram type is well suited for communicating with system partners and domain experts
about the basic functionality and the context of the system. High-level activity diagrams
with a low degree of detail, which can include several use cases, are also well suited for
this purpose.

 44

Chapter 3

When refining business use cases and identifying the various scenarios, it becomes
necessary to describe the various activities with activity diagrams.

Sequence diagrams show the information exchange with partners and customers (see
Chapter 5, Modeling for

 45

 System Integration). In our practical experience, sequence
diagrams meet great acceptance in the field of business-process modeling. This is
because they are easy to read and require only a few graphical elements. As long
as some basic knowledge exists about the technical events, sequence diagrams are
often more appropriate for an overview of the interactions of a business system than
activity diagrams.

3.3.3 Use Case Diagrams
Use case diagrams show business use cases, actors, and the relationships between them.
The relationships between actors and business use cases state that an actor can use a
certain functionality of the business system. You will not find any information about how
or in what chronological sequence these services are rendered (Figure 3.7):

Figure 3.7 The elements of the use case diagram

We use the following elements in use case diagrams:

Actor : An actor represents a role that an outsider takes on when interacting with the
business system. For instance, an actor can be a customer, a business partner, a supplier,
or another business system.

Modeling Business Systems

Every actor has a name:

Instead of a stick figure, other symbols can be used as well, if they fit the characteristics
of the actor and lead to practical, easy-to-read diagrams.

Association: An association is the relationship between an actor and a business use case.
It indicates that an actor can use a certain functionality of the business system—the
business use case:

Unfortunately, the association does not give any information about the way in which the
functionality is used. If a business use case includes several actors, it is not apparent in
the use case diagram if each actor can conduct the business use case alone, or if the actors
conduct the business use case together. In fact, association only means that an actor is
involved in the business use case.

Business Use Case : A business use case describes the interaction between an actor and a
business system, meaning it describes the functionality of the business system that the
actor utilizes:

A business use case is described from the actor's perspective. Apart from the special use
of the business use case as a use case within a business system, there is no difference
between the business use case and a 'normal' use case.

Include Relationship: The include relationship is a relationship between two business
use cases that signifies that the business use case on the side to which the arrow points is
included in the use case on the other side of the arrow. This means that for one
functionality that the business system provides, another functionality of the business
system is accessed.

 46

Chapter 3

In this way, functionalities that are accessed repeatedly can be depicted as individual
business use cases, which can be used in multiple ways:

At times, the direction of the arrow can be confusing; the relationship has to be read
alongside the direction of the arrow (check-in includes issuing the boarding pass).

Subject: A subject describes a business system that has one or more business use cases
attached to it. A subject is represented by a rectangle that surrounds attached business use
cases and is tagged with a name:

Depicting the subject (and with it the system limits) is optional.

Reading Use Case Diagrams
passengerFigure 3.8 illustrates a use case diagram with the actors: the (1) and the

check-in representative check-in

 47

 (2), as well as the business use cases (3) and express
check-in (4):

Figure 3.8 Use case diagram

Modeling Business Systems

Depending on what you are interested in, you would begin reading with an actor or with a
business use case. Starting with the actor, passenger (1), we find the associations (lines)
to the two business use cases, check in- (3) and express check-in (4). This means that
people, who appear as passengers, can either go through check-in, or express check-in,
which can be conducted without luggage.

That one of the two business use cases is below the other means nothing. A use
case diagram does not document a meaningful order in which business use cases
could be conducted. Of course, the order matters for the description and linking of
business processes. This aspect is pictured in activity diagrams (see Section 3.3.5
Activity Diagrams).

check-in representativeThe actor (2) also has an association to the business use case
check-in (3). This means that not only the passenger, but also someone who represents
him or her can check in. That the actor, passenger (1), also has an association to the use
case check in- (3) means that the passenger and the check-in representative can both
check-in. However, what the diagram does not show clearly is that it does not mean that
they perform the check-in together. This fact can only be described in another diagram
(see Section 3.3.5, Activity Diagrams) or in the form of a comment that can contain
informal text.

That the actor check-in representative (2) only has an association to the business use
check-incase (3) means that at the UML Airport a representative of the passenger cannot

perform an express check-in (4).

You can see that such a simple diagram can contain quite a lot of information. The
business use case check-in express check-in (3) and the business use case (4) each have
an include relationship with issuing boarding pass (5). Both use the business use case
issuing boarding pass at some point in their own interaction. (Use cases cannot define
when another use case is executed.) Sometime during check-in the boarding pass is issued
and handed to the passenger or check-in representative. Figure 3.9 attempts to clarify this
procedure once more:

Figure 3.9 The include relationship between use cases

 48

Chapter 3

 49

3.3.4 Constructing Use Case Diagrams
The following checklist shows the steps necessary for the construction of use case
diagrams. After this, we will explain the individual steps further.

Checklist 3.1 Constructing Use Case Diagrams from the External View:

• Collect information sources—How am I supposed to know that?
• Identify potential actors—Which partners and customers use the goods and

services of the business system?
• Identify potential business use cases—Which goods and services can actors

draw upon?
• Connect business use cases—Who can make use of what goods and services

of the business system?
• Describe actors—Who or what do the actors represent?
• Search for more business use cases—What else needs to be done?
• Edit business use cases—What actually has to be included in a business

use case?
• Document business use cases—What happens in a business use case?
• Model relationships between business use cases—What activities are

conducted repeatedly?
• Verify the view—Is everything correct?

We deliberately chose the order in which the steps are performed. However, this order is
not mandatory, since in practice, the individual steps often overlap heavily.

On one hand, a general understanding of the business system and business processes is
important for the realization of each individual step. On the other hand, for many steps it
is also necessary to consult knowledge carriers. It makes little sense to cling to the
personal view of the analyst, who knows too little about the area of application.

Modeling Business Systems

Collecting Information Sources—How am I Supposed to
Know That?
As a first step, it is important to find knowledge carriers, in order for analysts and
knowledge carriers to work out the basic principles together. Such knowledge carriers
are, for example:

• People who are involved in performing, operating, and controlling business
processes

• Users of similar or related IT systems
• Customers, who are often critical and creative knowledge carriers
• Business partners
• Domain experts
• Management
• External observers

Several helpful techniques have proven to be practical for the analysis and understanding
of business processes:

• Observing employees at work
• Participating in the business processes being investigated
• Taking the role of an outsider (e.g., of a customer)
• Giving out surveys
• Performing interviews
• Brainstorming with everyone involved
• Discussing with domain experts
• Reviewing existing forms, documentation, specifications, handbooks, and

work tools
• Describing organizational structure and workflow management
• Reviewing organization charts and job descriptions

• Read through the introduction to the case study in Chapter 2, Basic
Principles and Background once more. In this introduction, we explain the
basics of the case study, to help with understanding its business processes.

• In your mind, run through all the roles that you can think of and their
business processes (passenger, clerk in the duty-free shop, etc.).

• Which activities can you think of from the view of the passenger? How
would you try to freshen up your memory?

 50

Chapter 3

The result of this first step is often a collection of forms, work instructions, completed
surveys, existing process descriptions, business objects such as tickets or boarding passes,
etc. This overview is often not yet complete, and will be further extended during the
modeling process.

Identifying Potential Actors—Which Partners and Customers
Use the Goods and Services of the Business System?
This step is all about identifying potential actors. Here, this rule applies: the more the
merrier. You can work with these actors in later steps; or they can be reduced in number
or combined.

More potential actors can be found by answering the following questions (e.g., through
consulting knowledge carriers). In doing this, it is advisable to create groups of people
and types of organizations by abstracting directly from concrete examples of specific
persons and organizations:

• Which customers are customers of the business system, and which are
customers of the business processes?

• Who are the external partners of the business system? Which goods and
services do these external partners use?

• Which in-house positions and organization units are partners of the business
system and use its goods and services?

• With what external business systems does the business system interact?

As a first step, the previous explanations of our case study result in the following actors:

Figure 3.10 Potential actors

In addition to the passenger, who represents travelers, there is the check-in representative.
The check-in representative is a person who is not the actual passenger, but an agent of
the passenger. The check-in representative has the task of performing the check-in with
the ticket of the passenger.

 51

Modeling Business Systems

Identifying Potential Business Use Cases—Which Goods and
Services can Actors Draw Upon?
This step is about finding potential business use cases. The rule—the more the merrier—
applies here as well (in reasonable moderation). Potential business use cases can be found
by answering the following questions:

• Which goods or services are provided to and used by the customer?
• Which goods or services are provided to and used by external partners?
• Which goods and services that are provided by the business system involve

suppliers (suppliers of goods and suppliers of services)?
• What are the individual actors doing?
• How and on what occasions does communication take place with other

business systems or business partners?
• Which events trigger what activities?

First considerations of our case study result in the following business use cases:

Figure 3.11 Potential business use cases

Initially, the business use cases can only be described in a concise and informal manner:

check-in• The procedure includes submitting the ticket, baggage check-in,
seat reservation, and issuing and handing over the boarding pass.

express check-in• Passengers who only have hand luggage can use . No
baggage check-in is performed.

• During boarding, the boarding pass of the passenger is verified at the gate.
Automated check-in is conducted without the help of a check-in clerk,
directly at a machine (screen). Baggage cannot be checked in.

•

 52

Chapter 3

Practical Tips
For us, in practice, the observation technique has proven effective for identifying
business use cases. By observing people involved in the business processes, activity lists
can be created. Following this, the activities can be grouped by events that lead to the
first business use cases.

Connecting Business Use Cases—Who Can Make Use of What
Goods and Services of the Business System?
By assigning business use cases to actors, a first draft of the use case diagram evolves
(Figure 3.12). This is achieved by answering the following question:

• Which customers or business partners have what functionalities available
to them?

Figure 3.12 First draft of the use case diagram

With this first draft we obtain the basis from which we can further edit and refine the use
case diagram.

The passenger can choose between a normal check-in, automated check-in, and express
check-in. The passenger walks to the gate and presents his or her boarding pass. The
check-in representative can perform a regular check-in, but is not able to perform express
check-in and automated check-in.

 53

Modeling Business Systems

Describing Actors—Who or What do the Actors Represent?
An actor in a diagram has to be named in a way that clarifies the role that is represented.
Here, it is of utter importance that the terminology of the domain area, meaning a
business-oriented term, is used. In addition to the name, an actor can be further defined
with a description. The question to this end is:

• How can an actor be described further? For instance, this description can
include an area of responsibility, requirements from the system, or a formal
definition of his, her, or its role. Don't be afraid to add job descriptions or
organizational profiles (for example of a catering company)—even if these
are not represented in UML.

Searching for More Business Use Cases—What else Needs to
be Done?
Once you have found several business use cases, they can be used as starting points for
further questions. Starting from a particular business use case, the following questions
can be asked:

• Is there anything that has to be done at some point beforehand, prior to
accessing a particular functionality?

• Is there anything that has to be done at some point afterwards, after
performing a particular business use case?

• Is there anything that needs to be done if nobody performs a particular
business use case?

In doing so, it is important to consider the proper business system. Many of the events
that occur before or after a business use case take place outside the business system under
consideration. In our case study, for instance, booking the flight or getting to the airport
does not belong to the system being considered.

If we take a closer look, we notice that a passenger often travels with luggage, which he
or she checks in. Baggage transportation is responsible for loading luggage into the
airplane. Baggage transportation is carried out by an independent organization, known as
a handling agent. Consequently, it is considered an actor, more specifically, an outside
service provider. It does not matter for our diagram that individual employees of the
partner enterprise perform these tasks.

Ten minutes before a flight leaves, baggage transportation requests a passenger list from
passenger services, which includes every passenger who checked in, but did not board the
airplane. On the basis of this list all affected luggage will be unloaded again from the
airplane. If the flight is an international flight, the customs authorities of the country in
which the destination airport is located also request a passenger list.

 54

Chapter 3

This results in two new actors: baggage transportation and the customs authorities at the
destination airport (Figure 3.13):

Figure 3.13 Extended use case diagram

Editing Business Use Cases—What actually has to be Included
in a Business Use Case?
Without a doubt, it is difficult to find the right amount of detail in the modeling of
business systems. If almost all the activities of an actor in a business use case are
combined, the use case diagram will lose practically all of its significance. If the activities
are itemized too thoroughly, the use case diagram gets too complex and contains too
many activities with interrelationships that are hardly recognizable.

Fortunately, some criteria will help you determine the optimal scope of a business use
case. For this purpose, ask yourself the following questions:

• Does the business use case consist of a behaviourally related sequence of
interactions that belong together (an interaction sequence)?

 55

Modeling Business Systems

Items that are included in a business use case have to be directly related.
Issuing a boarding pass and searching for lost luggage are not related at all.
Business use cases that violate this criterion have to be divided. This prevents
the occurrence of oversized business use cases.

• How many actors are involved in a business use case? Business use cases
that have too many actors have to be divided. This also prevents oversized
business use cases.

• Does the business use case deliver tangible and relevant goods or services? A
business use case is not supposed to describe incomplete steps, for example,
counting pieces of luggage. Rather, at least in a regular case, it is supposed to
produce a benefit that has meaning from a customer's perspective. Business
use cases that violate this criterion have to be combined with other business
use cases. This way, undersized business use cases are prevented.

• Is the business use case never performed alone, but always in a sequence in
combination with other business use cases? A business use case is not
supposed to describe goods and services that are only used in combination
with other goods and services. Business use cases that violate this criterion,
have to be combined with other business use cases. This also prevents
undersized business use cases.

• Is the business use case initiated by an actor? Business use cases that are not
initiated by an actor are not use cases but internal activities that are depicted
in the internal view of the business system.

A review of the existing business use cases on the basis of these questions can lead to the
consolidation or division of business use cases.

Documenting Business Use Cases—What Happens in a
Business Use Case?
To understand a business use case, the information from the use case diagram is not
sufficient. The chain of interactions and of the various scenarios that are behind each
business use case have to be described. This means that the goods and services that the
business system provides have to be described, namely the chain of events from the
perspective of the customer or business partner.

In addition to purely verbal description, documentation in activity diagrams and sequence
diagrams has proven to be especially valuable. The construction of these diagram types
will be treated in the following sections: 3.3.5, Activity Diagrams, and 3.3.9, High-Level
Sequence Diagrams.

 56

Chapter 3

Modeling Relationships between Business Use Cases—What
Activities are Conducted Repeatedly?
If you realize that certain parts of an interaction are the same in several business use
cases, you can extract these similarities and combine them into their own business use
case. This new business use case can be used in other business use cases with an
include relationship.

issuing boarding passIn our case study, the business use case has not yet been assigned.
We know that the boarding pass is generated and issued during check-in. At some point
during the business use cases check-in, express check-in, and automated check-in, the
boarding pass is issued (see Figure 3.14):

Figure 3.14 Extended use case diagram

Verifying the View—Is Everything Correct?
All diagrams and records have to be verified by the knowledge carriers. What we should
ask the knowledge carriers for every diagram or view is:

• Is everything that is contained in the diagram correct and complete?

 57

Modeling Business Systems

Even if knowledge carriers can read and understand diagrams themselves (they can use
the reading directions in this text), we should still read the diagrams to them. Only with
this last step is the circle completed. This results in a verified view, which reflects a
current shared understanding of business systems and business processes.

The completed use case diagram can be verified with the following checklist:

Checklist 3 2 Verifying Use Case Diagrams from the External View . :

Completeness• : The use case diagram is complete if there are no further
business use cases in the system. All goods and services that are available to
customers and partners of the business system are depicted in the form of
business use cases (if necessary, business use cases can be spread out into
several diagrams).
Extent• : All business use cases that are included in the use case diagram
are real business use cases, meaning they meet the definition of a business
use case.
Degree of detail• : The degree of detail of the business use cases meets the
following requirements:
A business use case represents a behaviorally coherent interaction sequence.

A business use case is initiated by an actor, and has only a few actors.

A business use case represents a functionality that is tangible and that yields
a relevant result.
Relationships between business use cases• : Include relationships are
applied properly.
Naming and describing• : The names of business use cases describe the
functionalities that the business system provides. The naming was done in
accordance with the normal terminology of the business system.
Actors• : The actors in the use case diagram represent roles taken up by
outside persons, organizations, or other business systems during interactions.

 58

Chapter 3

 59

Practical Tips
When using use case diagrams for modeling business systems and business processes, it
is advisable to keep the level of abstraction low. For the comprehensibility of the
diagrams and for communication between the involved parties, it is better to add
redundancies than to abstract too much.

It is of fundamental importance that the terminology of the business processes or the
organization is used, and that the descriptions of the business use cases are chosen in a
way that can be understood intuitively.

Terminology from the field of Information Technology (IT) does not belong in use case
diagrams on the business-process level. The mixing of terms from the business process
and IT communities leads to poor results. In reality, we often encounter use cases that are
already very close to IT on the business-process level, e.g., updating a customer index.
This leads to confusion in two aspects:

• Users—meaning people who are involved in business processes, and who are
not familiar with IT terminology—do not understand the business use cases.
Since business use cases describe the performance requirements for a
business system, the business system and business processes cannot be
understood, and therefore cannot be verified. In a project with poorly
formulated business use cases, an IT department presented the business use
cases to users for verification and received just one short answer: "Men
throwing arrows?!".

• Technical details on the level of business use cases distract from the
business-process specific requirements for a system.

3.3.5 Activity Diagrams
Activity diagrams, which are related to program flow plans (flowcharts), are used to
illustrate activities. In the external view, we use activity diagrams for the description of
those business processes that describe the functionality of the business system.

Contrary to use case diagrams, in activity diagrams it is obvious whether actors can
perform business use cases together or independently from one another.

Activity diagrams allow you to think functionally. Purists of the object-oriented approach
probably dislike this fact. We, on the other hand, regard this fact as a great advantage,
since users of object-oriented methods, as well as users of functional thinking patterns,
find a common and familiar display format, which is a significant aid for business-
process modeling.

Modeling Business Systems

Because it is possible to explicitly describe parallel events, the activity diagram is well
suited for the illustration of business processes, since business processes rarely occur in a
linear manner and often exhibit parallelisms.

Activity diagrams can be developed in various degrees of detail. They can be refined step
by step. In the external view, activity diagrams, just like use case diagrams, exclusively
represent business processes and activities from the outside perspective. Refining
diagrams does not mean describing process details that are performed within the business
system, which often leads to an unnoticed shift to the internal view (Figure 3.15):

Figure 3.15 Activity diagram "Passenger Services" with a low level of detail ("High Level")

 60

Chapter 3

Figure 3.16 Activity diagram of the activity "Passenger checks in"

Activity: An activity diagram illustrates one individual activity. In our context, an
activity represents a business process (Figure 3.16). Fundamental elements of the activity
are actions and control elements (decision, division, merge, initiation, end, etc.):

Elements are connected by so-called "activity edges" and form the "control flow", which
can also be casually called 'flow'. The execution of an activity can contain parallel flows.
A border can surround the activity, meaning the entire activity diagram.

 61

Modeling Business Systems

Action: An action is an individual step within an activity, for example, a calculation step
that is not deconstructed any further. That does not necessarily mean that the action
cannot be subdivided in the real world, but in this diagram will not be refined any further:

The action can possess input and output information The output of one action can be the
input of a subsequent action within an activity. Specific actions are calling other actions,
receiving an event, and sending signals.

Calling an Activity (Action): With this symbol an activity can be called from within
another activity. Calling, in itself, is an action; the outcome of the call is another activity:

In this way, activities can be nested within each other and can be represented with
different levels of detail.

Accepting an Event Action (): This action waits for an event to occur. After the
event is accepted, the flow that comes from this action (and is defined in the activity
diagram) is executed. Accepting events is an important element for business
processes in activity diagrams:

Many business processes are initiated by events, for example, processing an order by the
receipt of an order, or delivery by the receipt of a payment.

Accepting a Time Event Action (): At a definite point in time, this action starts a flow in
the activity diagram. An hourglass symbol can be used to represent the acceptance of a
time event:

 62

Chapter 3

A typical example of a time event is triggering reminders after the deadline for payment
has passed. We will discuss an example in Chapter 5, Modeling for System Integration .

Sending Signals

 63

 (Action): Sending a signal means that a signal is being sent to an
accepting activity:

The accepting activity accepts the signal with the action "accepting an event" and can
react accordingly, meaning according to the flow that originates from this node in the
activity diagram.

Edge (Control Flow): Edges, represented by arrows, connect the individual components
of activity diagrams and illustrate the control flow of the activity:

Within the control flow an incoming arrow starts a single step of an activity; after the step
is completed the flow continues along the outgoing arrow. A name can be attached to an
edge (close to the arrow).

Decision Node : The diamond below represents a conditional branch point or decision
node. A decision node has one input and two or more outputs:

Each output has a condition attached to it, which is written in brackets. If a condition is
met, the flow proceeds along the appropriate output. An 'else' output can be defined along
which the flow can proceed if no other condition is met.

Merge Node : The diamond below has several inputs and only one output:

Modeling Business Systems

Its purpose is the merging of flows. The inputs are not synchronized; if a flow reaches
such a node it proceeds at the output without waiting for the arrival of other flows.

Fork: For the branching of flows in two or more parallel flows we use a synchronization
bar, which is depicted as a thick horizontal or vertical line:

Branching allows parallel flows within activities. A fork has one input and two or
more outputs.

Join: For the consolidation of two or more parallel flows we also use a synchronization
bar, which is depicted as a thick horizontal or vertical line:

During consolidation synchronization takes place, meaning the flow proceeds only after
all incoming flows have reached the consolidation point. Join has two or more inputs and
one output.

Initial Node : The initial node is the starting point of an activity. An activity can have
more than one initial node; in this case several flows start at the beginning of an activity:

It is also possible that an activity has no initial node, but is initiated by an event (action:
accepting an event).

Activity Final Node : The activity final node indicates that an activity is completed. An
activity diagram can have more than one exit in the form of activity final nodes:

If several parallel flows are present within an activity, all flows are stopped at the time
the activity final node is reached.

 64

Chapter 3

Flow Final Node : A flow final node terminates a flow. Unlike the activity final node,
which ends an entire activity, reaching a flow final node has no effect on other parallel
flows that are being processed within the activity at the same point in time:

In this way, parallel flows can be terminated individually and selectively.

Activity Partition : The individual elements of an activity diagram can be divided into
individual areas or 'partitions'. Various criteria can lead to the creation of these partitions:
organization entities, cost centers, locations, etc:

Individual steps of an activity will be assigned to these partitions. Each partition is set
apart from its neighboring partition by a horizontal or vertical continuous line; from this
stems the term swimlanes. Each partition receives a name. Partitions can be arranged in a
two-dimensional manner; in this case the activity diagram is divided into individual cells
like a grid.

Reading Activity Diagrams
You start reading at the initial node, or in Figure 3.17 with the acceptance of the event
passenger arrives at check in - (1), and continue along the arrows of the control flow (2).
The subsequent action passenger checks in (3) means that at this point the activity
'passenger checks in' is processed. This is depicted in more detail in another activity
diagram as is indicated by the 'fork' in the action symbol:

 65

Modeling Business Systems

Figure 3.17 An activity diagram

If you follow the control flow, next you will come to a conditional branch or decision
node (4): if the check-in is OK the next step along the control flow can follow. Otherwise
(5), the passenger cannot fly and the task of passenger services is completed. This can be
seen at the black dot with border—the activity final node.

After successful check-in (7) you come to a black cross bar. All arrows that come from
this bar (7) symbolize flows that are processed simultaneously. While the luggage is
being loaded onto the airplane (9) the passenger is boarding the airplane (10). Between
point (8) and point (11) the flows are independent from one another. At the second cross
bar (11) the simultaneously processed flows (9 and 10) are merged, meaning that only
when the passenger is on the plane (10) and the luggage has been loaded onto the plane
(9), does the control flow continue below the cross bar (11). In our example, one more
action (12) and subsequent to that the final state (13) follow, meaning that after the
passenger is on the plane (10) and the luggage has been loaded onto the plane (9), the
airplane can taxi toward the runway (12). You can see here that the last action airplane
taxis toward runway (12) is only defined as a single action, even though this process is
very complex and could be described in many other activity diagrams. In our context,
however, it is not important to describe this step in detail.

 66

Chapter 3

Figure 3.18 An activity diagram with partitions

The activity diagram in Figure 3.18 is divided into two partitions: passenger (1) and
passenger services (2). The passenger, for instance, carries out showing ticket at
check-in counter

 67

 (3), checking luggage (4), and paying fee (5). All other actions are
located in the partition (swimlane) of passenger services (2) and are carried out by
passenger services.

3.3.6 Constructing Activity Diagrams
As always, we want to point out that the use of suitable terminology and appropriate
naming of actions and activities are essential for the clarity and comprehensibility of
activity diagrams. Do not despair if it takes hours to find appropriate names—in most
cases the effort is worth it.

Modeling Business Systems

We recommend starting with activity diagrams that contain a low level of detail ('high
level'), which can span several business use cases. This gives a good overview of the
chain of interactions between customers and partners and the business system.

Later, in more detailed steps the scenarios of business use cases can be described with
activity diagrams. If a business use case is composed of several different scenarios, each
is depicted in an activity diagram.

The following checklist shows the steps necessary for constructing activity diagrams:

Checklist 3.3 Constructing Activity Diagrams in the External View :

• Collect information sources—How am I supposed to know that?
• Find activities and actions—What has to be done when actors draw upon

offered goods and services?
• Adopt actors from business use cases—Who is responsible for each action?
• Connect actions—In which order are actions processed?
• Refine activities—Do any other activity diagrams have to be added?
• Verify the view—Is everything correct?

The order in which we present these steps was chosen deliberately. However, the order is
not mandatory, since in practice the individual work steps often overlap heavily.

Collect Information Sources—How am I Supposed to
Know That?
For the construction of activity diagrams we can use information that has already been
collected for the construction of use case diagrams. Otherwise, the same advice holds true
as in Section 3. Constructing Use Case Diagrams.

Find Activities and Actions—What has to be Done When Actors
Draw upon Offered Goods and Services?
Here too, we can start from a use case diagram. In the first step, we can derive activities
from business use cases. Answering the following questions will help you find activities
and actions:

 68

Chapter 3

 69

• Which work steps are required to carry out a business use case, meaning
which steps are required to supply and process goods and services?

• What do the individual actors do?
• If several actors are involved in a business use case, which work steps are

performed by each individual actor?
• Which events initiate which work steps?
• Which actions are so extensive that they have to be refined in another

activity diagram?

In our case study, you can find the following work steps for passenger services:

• Passenger checks in (derived from use case diagram); this entails issuing a
boarding pass though passenger services.

• Passenger boards airplane (derived from use case diagram).

In addition to this, there are other steps and events:

• Passenger arrives at check-in counter and shows his or her ticket; this event
initiates the check-in activity.

• Luggage is loaded into the airplane by baggage transportation.

At first, just as above, activities can be described in an informal manner. We often find
pre-existing documentation of processes, either informal or structured, which can be used
as a basis to find activities and actions.

Connect Actions—In Which Order are Actions Processed?
Connecting the previously mentioned actions and activities into a flow generates an
initial activity diagram. This flow is called control flow. The following questions will
help you develop a control flow:

• In which order are actions processed?
• Which conditions have to be met in order for an action to be executed?
• Where are branches necessary?
• Which actions occur simultaneously?
• Is the completion of actions necessary before the flow can proceed to

other actions?

Passenger checks in, passenger boards, and loading luggage into airplane are
complex activities, each of which is detailed in another activity diagram. The 'fork' within
the action symbols indicates this:

Modeling Business Systems

Figure 3.19 A high-level activity diagram across several

business use cases

Refine Activities—Do any Other Activity Diagrams have to
be Added?
As we could see in Figure 3.19, it is necessary to refine several process steps. Here, we
would like to display the activity of passenger checks in in more detail.

When a passenger checks in, he or she first shows his or her ticket at the check-in
counter. The ticket will be checked for its validity. If the ticket is not OK the passenger
will be referred to customer service. If the ticket is OK the passenger will check his or her
luggage. If the luggage has excess weight he or she will pay an additional fee. The
luggage will be forwarded to baggage transportation. The passenger receives his or her
boarding pass.

Determine the level of detail in activity diagrams very consciously. Test which level of
detail users of the diagrams can stand and which is the least amount of detail necessary.
We cannot give universally valid rules, since the level of detail essentially depends on the
target group and purpose of the model.

Now, we have the following additional actions (Figure 3.20):

 70

Chapter 3

Figure 3.20 Actions of an activity with a higher level of detail

Adopt Actors from Business Use Cases—Who is Responsible
for Each Action?
In business processes it is important to know who is responsible for each individual
action and who carries it out (Figure 3.21):

Figure 3.21 Activity diagram of a scenario of the business use case "check-in"

 71

Modeling Business Systems

For the external view actors are adopted from the use case diagram. Each actor is
responsible for a certain action and is recorded in a partition (swimlane) as the
responsible party.

The individual activities are assigned to the responsible parties. The division of the
activity diagram into partitions allows a clear overview of responsibilities. However,
partitions can also be formed on the basis of other criteria.

An activity diagram could, for instance, be divided in such a way that manual, automated,
and semi-automated actions would each make up one partition. This would be a good
foundation for the conversion of flows into IT systems.

Verify the View—Is Everything Correct?
Just like use case diagrams, activity diagrams also have to be verified in terms of
correctness of content, in cooperation with knowledge carriers.

Checklist Verifying Activity Diagrams in the External View :

• When constructing activity diagrams from the external view, always
remember that internal procedures and business processes are irrelevant.
Restrict your consideration to the description of those functionalities of the
business system that are utilized by outsiders.

• The conditions of different outputs should not overlap. Otherwise, the control
flow is ambiguous, meaning that it is not clear where the flow proceeds after
a decision node.

• The conditions have to include all possibilities; otherwise, the control flow
can get stuck. In case of doubt, insert an output with the condition 'else'.

• Forks and joins should be well balanced. The number of flows that leave a
branch should match the number of flows that end in the corresponding join.

3.3.7 Sequence Diagrams
UML provides two types of diagrams for the representation of interactions: the sequence
diagram and the communication diagram. Both diagrams visualize the exchange of
information. However, the emphasis is different: communication diagrams emphasize
the relationships of individual objects and their topology; sequence diagrams emphasize
the chronological course of exchanged information. In the external view, we opt for the
representation through sequence diagrams and do without communication diagrams for
two reasons:

 72

Chapter 3

• Sequence diagrams are easier to understand for developers and readers. In
our practical work in projects we have observed a much higher acceptance of
sequence diagrams because of their simplicity.

• We avoid using unnecessarily many diagram types for the same facts. Less is
often more!

If a customer or business partner uses an offered service, partners communicate with each
other. The process can be described as a series of interactions. These interactions are
clearly laid out in the sequence diagram, whereas the activities of each partner and the
conditions under which the interactions take place are omitted in the diagram. However,
they can be described with supplementary comments.

Like the activity diagrams, sequence diagrams can be modeled spanning several use
cases, as well as being used to refine business use cases. A sequence diagram illustrates
the various scenarios of a business use case.

Sequence diagrams can be used as the basis for message exchange between the business
system and outside parties (Figure 3.22). We will treat this topic in Chapter 5, Modeling
for System Integration :

Figure 3.22 The elements of the sequence diagram

In a sequence diagram, we work with the following elements:

Comment: Sequence diagrams can be annotated with comments (UML generally permits
comments in all diagrams.):

 73

Modeling Business Systems

For instance, activities of partners or conditions can be specified as comments.

Object: Objects that are involved in interactions are placed on the x-axis. Objects are
senders and receivers of messages in the sequence diagram:

In the business system model (external view) these objects represent the actors of the
business system and the business system itself.

Message and Business Object : The messages that objects send and receive are shown on
the y-axis. Messages are inserted in increasing chronological order from top to bottom.
The direction of the arrow indicates the direction in which a message is sent:

The business object is listed in parenthesis. Business objects are conveyed together with
messages. Some examples of business objects are tickets, boarding passes, and luggage.
These examples will be treated in more detail in Section .2, Package Diagram.

Reading Sequence Diagrams
passengerFigure 3.23 shows a sequence diagram with the objects and passenger

services. The entire diagram documents the process of the business use case passenger
check-in.

You begin reading a sequence diagram at the top (1). The starting point on the top left (1)
is located on the vertical line that represents the passenger (2) as sender and receiver of
messages. The flow begins when the passenger ticket hands over his or her (3) to
passenger services verification for (4). The call verify (4) is the message; the ticket (3)
that is handed over is the business object. The direction of the arrow indicates that the
passenger is the sender of the message and passenger services receiver the (6).

 74

Chapter 3

The receipt of the message at passenger services initiates activities, which is indicated by
the gray vertical bar (7). The diagram does not show how passenger services handle the
process, meaning that it does not show which activities are conducted:

Figure 3.23 Sequence diagram "Passenger Check-In"

Only the comment (5) can include a clue. Comments can be inserted at the left margin of
the sequence diagram. An exact description of the processing can be found in the activity
diagram 'passenger checks in' (see Figure 3.21 above).

 75

In a final step, passenger services issues (8) a boarding pass (9) to the passenger. With
that, the interaction that is illustrated in this sequence diagram is completed for both
parties. This is indicated by the end of the wide gray vertical bar (10).

In the business model we do not utilize all the options of the sequence diagram. UML
provides many more possibilities for this diagram type, but our experience showed that
this is sufficient to communicate the essential aspects.

3.3.8 Constructing Sequence Diagrams
The following checklist shows the necessary steps for the construction of sequence
diagrams. Subsequently, we will further explain the individual steps.

Checklist 3.5 Constructing Sequence Diagrams in the External View :

• Designate actors and business system—Who is taking part?
• Designate initiators—Who starts interactions?
• Describe the message exchange between actors and business system—Which

messages are being exchanged?
• Identify the course of interactions—What is the order?
• Insert additional information—What else is important?
• Verify the view—Is everything correct?

Modeling Business Systems

Designate Actors and Business System—Who is Taking Part?
Sequence diagrams illustrate the interactions between actors and the business system.
Fundamentally we have a pool of interaction partners from the use case diagrams.
Depending on the flow that is being depicted in the sequence diagram, the appropriate
actors and business systems can be selected from this pool.

In our case study (see Figure 3.24), we find the interaction partners passenger and
passenger services for the above sequence diagram (Figure 3.23):

Figure 3.24 Constructing sequence diagrams

Designate Initiators—Who Starts Interactions?
For every sequence of interactions the actor who starts the interaction has to be identified.
This actor is called the initiator. Since in the external view of the business model each
business use case is initiated by an actor, we can here also select the actor from the pool
of actors in the use case diagrams.

In our sequence diagram passenger check-in, the passenger starts the interaction by
utilizing the service check-in from passenger services.

 76

Chapter 3

Describe the Message Exchange between Actors and the
Business System—Which Messages are being Exchanged?
After the initiator has been defined, the subsequent progression of interactions has to be
identified. For each communication step it has to be determined what information is
exchanged. In this way the message will be defined. Messages are requests to do
something directed toward a particular partner. The business objects that are exchanged
with these messages also have to be defined.

Identify the Course of Interactions—What is the Order?
All messages are exchanged in a chronological order that has to be identified.
Messages are inserted along the y-axis in increasing chronological order, from top to
bottom (see Figure 3.25):

Figure 3.25 Constructing sequence diagrams

Insert Additional Information—What Else is Important?
Important activities of involved actors and business systems and important conditions can
be inserted into the diagram as comments. Comments are inserted at the level of the
appropriate message. Restrict this to important comments that have significance so that
the diagram is not overcrowded with text (see Figure 3.26):

 77

Modeling Business Systems

Figure 3.26 Constructing sequence diagrams

Verify the View—Is Everything Correct?
Completed sequence diagrams can be verified with the following checklist:

Checklist 3.6 Verifying Sequence Diagrams in the External View :

• Are all required sequence diagrams completed and available? There should
be a sequence diagram for each business use case.

• Are the sequence diagrams correct? Each sequence diagram contains only
one object that represents the business system, and at most as many other
objects as there are actors assigned to the business use case.

• Is each actor that is listed in the use case diagram mentioned in at least one
sequence diagram?

• Is each actor who initiates a business use case mentioned as a starting point
in one of the sequence diagrams?

• Have all the important comments been inserted into the diagram? Are
there maybe too many comments inserted into the diagram thereby
reducing its clarity?

3.3.9 High-Level Sequence Diagrams
We can use high-level sequence diagrams that span several business use cases to
illustrate business processes at a coarse level. High-level sequence diagrams give a good

 78

Chapter 3

overview of the interactions between customers, partners, and the business system.
They serve as the basis for the electronic data transfer between the business system
and customers, business partners, and suppliers (see Chapter 5, Modeling for System
Integration).

Figure 3.27 illustrates passenger services. The entire process spans the business use cases
check-in and boarding:

Figure 3.27 Sequence diagram "Passenger Services"

3.3.10 Sequence Diagrams for Scenarios of Business
Use Cases
Sequence diagrams assist the detailing and specification of business use cases by
emphasizing message exchange. The various scenarios of a business use case can be
depicted in a sequence diagram. The representation is restricted to the message exchange
within each business use case. Generally, the level of detail for these sequence diagrams
is higher than for sequence diagrams spanning use cases.

check-inFigure 3.28 shows a sequence diagram of the business use case . This sequence
diagram shows the scenario passenger check-in, as can be seen from the communication
partners since the check-in representative does not appear. Sequence diagrams, just like

 79

Modeling Business Systems

activity diagrams, show if actors can carry out business use cases together or
independently of one another (which cannot be seen in use case diagrams):

Figure 3.28 Sequence diagram of the business use case "Passenger Check-In"

 The Internal View
The internal view describes the internal processes and activities, relationships, and
structures of the business system. IT systems and people within the business system are
responsible for offering the goods and services of the business system. With that, we
leave the environment of the business system and enter the black box. From now on, we
do care about whether the processing within the business system occurs manually or is IT
supported, whether employees of the organization have to fill out two or twenty forms,
and whether suppliers are needed.

3.4.1 The Elements of the View
The following diagrams illustrate the internal view:

Package diagrams describe the organization units in the form of packages. •
Class diagrams describe the connections and relationships between co-
workers and business objects.

•

 80

Chapter 3

Activity diagrams describe the business processes within the business
system. The subjects of the description are the goods and services that are
provided by internal business system resources (see Figure 3.29):

•

Figure 3.29 Diagram types of the internal view of the business system

3.4.2 Package Diagram
The structure of organization units is important for the internal view of the business
system. In UML, organization units are depicted as packages, which can contain
employees, business objects, and other organization units. In our case study, we chose the
organization unit passenger services (see Figure 3.30):

Figure 3.30 A package diagram

 81

Modeling Business Systems

Organization units can be responsible for the execution of business-process activities.
Organization units are abstractions of individual jobs within an organization.

In UML an organization unit spans workers, business objects, other organization units,
and their relationships. As a basic principle, organization units are located within
business systems. Organization units that are located outside business systems are actors.

In package diagrams we work with the following elements:

Package «Organization Unit»

Organization units are depicted as packages. In the small box in the upper left the name
of the organization unit is inserted below the stereotype «Organization Unit»:

The content of organization units is inserted into the main box. Most of the time, it is
sufficient to list the most important elements (employees, business objects).

Class «Worker»

The stereotype «Worker» is used to describe the roles of those people who execute
business processes or who are involved in the execution of business processes:

We are not concerned with the 'status' of workers, such as salaried employee, free-lancer,
or volunteer, but with their roles, meaning jobs. Workers are responsible for providing
goods and services. They are located within a business system. Here, the following
characteristics are important:

• Workers are people.
• Workers are located within the business system.
• Workers can communicate with other workers and with actors outside the

business system.

 82

Chapter 3

Workers can have their own symbol; below the worker symbol the role of the worker is
inserted. The symbol shows an actor symbol that is surrounded by a circle—this is
supposed to indicate that the worker is located within something. The worker symbol can
also be omitted. In this case, the class symbol is used and the term «worker» is written as
a stereotype in angle brackets.

«Business Object»

passiveBusiness objects are , meaning they do not initiate interactions. Business objects
can be involved in several different business use cases and outlive individual interactions.
This makes them a form of connecting link between business use cases or workers that
are involved in various use cases:

Workers handle (utilize, control, manipulate, produce, etc) handle business objects. In our
case study business objects are, for instance, a ticket, a piece of luggage, or a boarding
pass. Business objects are also illustrated with their own symbol; the description of the
business object is written below the business object symbol.

The business object symbol can also be omitted. In this case, the class symbol is used and
the term «Business Object» is written as a stereotype in angle brackets.

Reading Package Diagrams

Figure 3.31 A package diagram

 83

Modeling Business Systems

Through the stereotype «Organization Unit» (1) you can see that the package (2)
represents an organization unit. The name of this organization unit is passenger services
(3). Within this organization unit you can find the check-in employee (4) and the
business object: boarding pass (5). The graphic symbol (4) on the left represents a
worker worker's role; the label (6) below the graphic symbol indicates the within the
organization. The graphic symbol (5) on the right represents a business object ; the label
(7) below the graphic symbol indicates the type of business object we are dealing with.

There is only one symbol for the check-in employee. That doesn't mean there is only one
check-in employee, but rather the symbol represents a role that can be fulfilled by any
number of real check-in employees. Surely, there are other worker roles within passenger
services (manager, assistant, etc.). However, these are irrelevant for the illustration of our
processes, and so do not have to be included in the package diagram (see Figure 3.31).

3.4.3 Constructing Package Diagrams
The following checklist shows the steps that are necessary for the construction of
package diagrams. Subsequently, we will further explain the individual steps.

Checklist 3 7 Constructing . Package Diagrams in the Internal View :

• Develop an initial package diagram of the business system—Which workers
and business objects make up the business system?

• Find additional organization units—Who else is there?
• Assign workers and business objects to the organization units—Who

belongs where?
• Find additional organization units, workers, or business objects—What else

is there?
• Verify the view—Is everything correct?

Develop an Initial Package Diagram of the Business
System—Which Workers and Business Objects Make
up the Business System?
At first, the entire business system makes up the organization unit that is supposed to be
depicted. In our case, this is passenger services (see Figure 3.32). Initially, we search for
relevant worker roles (jobs) and business objects for this organization unit. Existing job
descriptions and organization charts can be helpful for this:

 84

Chapter 3

Figure 3.32 Constructing a package diagram

Find Additional Organization Units—Who Else is There?
Potentially, the organization unit can be divided into further organization units (divisions,
teams, groups). You can use organization charts and job descriptions as the basis and
select the organization units that are relevant for the model. Relevant organization units
and jobs are those that are directly integrated into the processing of goods and services.

In our case study, we divide passenger service in further organization units: check-in
and boarding. A further division is only wise if it is important for the illustration of
business processes. For instance, a secretary pool is not important for the business
processes under consideration.

Assign Workers and Business Objects to the Organization
Units—Who Belongs Where?
Employees and business objects have to be assigned to the additional organization units.
You can see in Figure 3.33 that the business objects were divided. Because of this,
structure and assignments are clearly recognizable.

Find Additional Organization Units, Workers, or Business
Objects—What Else is There?
UML package diagrams representing organization units should not be confused with
organization charts. In fact, organization charts are related to package diagrams as they
are shown here. However, package diagrams contain business objects in addition to
employees. From organization charts we can derive hierarchical structure and the roles of
the various workers, and use them as the basis for the construction of package diagrams:

 85

Modeling Business Systems

Figure 3.33 Organization unit "Passenger Services"

Verify the View—Is Everything Correct?
The completed package diagram can be checked with the following checklist:

Checklist 3.8 Verifying Package Diagrams in the Internal View :

• Are all workers and organization units that are affected by the processing
of goods and services provided by the business system included in the
package diagram?

• Are there no workers and organization units that are unrelated to the
processing of goods and services of the business system included in the
package diagram?

• Are all business objects that are needed for providing and processing goods
and services included in the package diagram?

• Are there no business objects that are unrelated to the processing of goods
and services of the business system included in the package diagram?

 86

Chapter 3

3.4.4 Class Diagram
The class diagram can be used to illustrate the structural parts of a business system,
meaning the relationships between individual employees, business objects, and outside
parties. We significantly simplify class diagrams on the business-model level and use
only very few elements. It still holds true: less is often more! When the manifold options
of class diagrams are used, these diagrams are no longer easy to read. On the business-
system level we have to act on the assumption that involved parties have little or no IT
expertise and know nothing about class terminology and class diagrams. The expected
advantage of UML, namely easier communication between the various involved parties,
would be significantly impaired. For a deeper explanation of class diagrams, refer to
Chapter 4, Modeling IT Systems:

Figure 3.34 Class diagram

In class diagrams we work with only a few elements:

Class «Worker»

 87

We have already described the class worker in Section 3.4.2, Package Diagram. Those
are exactly the same classes as the ones we use here in the class diagram; just as in the
package diagram, they can be depicted with the worker symbol or the class symbol:

Modeling Business Systems

As you can see in Figure 3.34, you can state the entire path name of a class to illustrate
membership of a package. In our example, the entire path signifies that the class check
-in employee belongs to the package check-in, and that the package check-in belongs to
the package passenger services, each divided by a double colon. The class worker is
used in the class diagram to illustrate relationships with other employees, actors, and
business objects.

Class «Business Object»

We have already described the class business object in Section 3.4.2, Package Diagram.
Those are exactly the same classes as the ones we use here in the class diagram:

Just as in the package diagram, they can be depicted with the business object symbol or
the class symbol.

Association

An association represents a relationship that has a precisely defined meaning. The
association can be labeled with the name of the association. If you want to assign a
direction to the association's name, you can insert a triangle that points to the direction in
which the name is supposed to be read:

In addition to the above-mentioned elements, we would like to mention the
generalization. However, we do not think that the use of this element is mandatory.

Generalization

A generalization is a specific relationship between a general and a specific element.
Generalization and specialization help with hierarchical structuring. If several business
objects are supposed to be combined to one comprehensive item, generalization is the
right tool (see Figure 3.35):

 88

Chapter 3

However, for workers we recommend structuring in package diagrams:

Figure 3.35 Class diagram with generalization

Reading Class Diagrams
Figure 3.36 shows a small excerpt of a class diagram from our case study.
It contains the classes check-in employee

 89

 (1), ticket (2), and boarding pass (3),
as well as their associations:

Figure 3.36 Class diagram

You can see by the label (4) of the worker symbol (1), that the check-in employee
belongs to the organization unit check-in, which is a division of passenger services.

Modeling Business Systems

The labels that are written in front of the label for the worker, separated by double colons,
indicate the organization units that the workers belong to. You can see that passenger
services and check-in are organization units from the package diagram.

The labels of the business object symbols (5 and 6) show that we have two business
objects: ticket (5) and boarding pass (6).

Associations between classes should be read in the following manner:

• A check-in employee (4) verifies (7) a ticket (5).

directionThe small triangle (8) next to the name of the association (7) indicates the in
which the name of the association is supposed to be read. All associations within class
diagrams can be read in this way.

We do not use any multiplicities in class diagrams of the business-system model,
meaning, for the benefit of clarity, we do not make any statements about the number of
objects in classes that are involved in associations.

It is not yet important if a check-in employee issues one or several boarding passes.
Important quantities can be included as comments. Quantities will be of interest later: in
the IT-system model, which will be described in Chapter 4, Modeling IT Systems.

3.4.5 Constructing Class Diagrams
The following steps have to be executed for the construction of class diagrams:

Checklist 3.9 Constructing Class Diagrams in the Internal View :

• Find classes—Which classes exist in the class diagram?
• Create associations between classes—Which classes deal with each other?
• Substantiate associations—What do these relationships mean?
• Insert generalizations—Can business objects be grouped?
• Verify the view—Is everything correct?

Find Classes—Which Classes Exist in the Class Diagram?
You can use the classes of package diagrams for the class diagram of the business
system's internal view, meaning workers and business objects. Actors from use case
diagrams are also classes that can be adopted into this class diagram. In our example,
you'll find the classes that are displayed in Figure 3.37:

 90

Chapter 3

Figure 3.37 Classes of the internal view of the business system

Create Associations Between Classes—Which Classes Deal
with Each Other?
In class diagrams, the relationships between the found classes as well as business rules
are modeled as associations.

The question is:

• What relationships exist between workers, business objects, and
other objects?

Even though we begin with the classes that have already been found, we usually find
more classes in this work step through domain discussions.

 91

Modeling Business Systems

Substantiate Associations—What do these Relationships
Mean?
Associations between individual classes have to be labeled with meaningful names, so
that the class diagram can be understood easily and intuitively. Generally, a direction is
added to the association, according to which it can be read (see Figure 3.38).

Insert Generalizations—Can Business Objects be Grouped?
It might make sense to group business objects into another higher-ranking class. In our
case study, it is helpful to illustrate that the list of checked-in passengers, the list of
passengers on board, and the list of passengers not yet on board, are of the type
«Passenger List » (see Figure 3.39):

Figure 3.38 Class diagram of passenger services

 92

Chapter 3

This shows that the lists have the same structure (also see Section 4.2.2, Generalization,
Specialization, and Heredity in Chapter 4):

Figure 3.39 Generalization in the class diagram

Verify the View—Is Everything Correct?
The completed class diagram can be verified with the following checklist:

Checklist 3.10

 93

 Verifying Class Diagrams in the Internal View :

• Is the class diagram complete? Are all classes from the package diagram also
present in the class diagram?

• Are all associations labeled in a meaningful way? Are the directions of the
arrows correct?

• Is the class diagram correct? Intensive reading in collaboration with
knowledge carriers and a run-through of each service will bring to light
most mistakes.

• Is the level of detail optimized? Is the diagram detailed enough to cover
everything, or is the diagram too detailed and obscure because it lacks clarity
in certain aspects?

Modeling Business Systems

3.4.6 Activity Diagram
Activity diagrams are suitable to show the internal processes of a business system.
Contrary to activity diagrams of the external view, in activity diagrams of the internal
view the relationships to actors are no longer the focal point.

Activity diagrams of the internal view are also suitable as a basis for instructions.

Reading Activity Diagrams
The reading instructions in Section 3.3.5, Activity Diagrams, can be used for activity
diagrams of the internal view.

3.4.7 Constructing Activity Diagrams
Essentially, the construction of activity diagrams of the internal view takes place exactly
like the construction of activity diagrams of the external view.

The following checklist and the explanations of the individual steps are adapted to the
modified view.

Checklist 3.11 Constructing Activity Diagrams in the Internal View :

• Collect information sources—How am I supposed to know that?
• Find activities and actions—Which activities have to be performed so that

the goods and services utilized by actors can be provided and delivered?
• Adopt actors from business use cases—Who is responsible for each action?
• Connect actions—In which order are actions processed?
• Refine activities—Do any other activity diagrams have to be added?
• Verify the view—Is everything correct?

Collect Information Sources—How am I Supposed to
Know That?
When constructing activity diagrams of the internal view, the same directions as in
Section 3.3.4, Constructing Use Case Diagrams, hold true in order to obtain the
necessary information.

 94

Chapter 3

 95

Find Activities and Actions—Which Activities Have to be
Performed so that the Goods and Services Utilized by Actors
can be Provided and Delivered?
Here, we can borrow from use cases and actions of activity diagrams of the external
view. We have to ask the following question for the individual business processes that are
depicted in the external view: How does the internal processing take place and what do
the internal business processes look like? Answering the following questions will help
you find activities and actions:

• Which work steps have to be performed by employees of the business system
to provide and deliver a service?

• What does each employee do?
• Which outside events initiate which activities and actions?

Often, we can find pre-existing documentation of flows, either informal or structured,
that we can use to find activities.

Adopt Actors from Business Use Cases—Who is Responsible
for Each Action?
Predominantly, workers and organization units from the package diagram are responsible
for the actions. Actors from use case diagrams are also used, as long as they are involved
in the depicted business processes.

Each worker, each organization unit, and each actor is responsible for certain activities
and is inserted into an activity partition (swimlane) as the responsible party. The
individual actions are assigned to these responsibilities.

If activity diagrams are refined, it is possible that other areas of responsibility will be
added, for example, individual positions or teams.

Connect Actions—In Which Order are Actions Processed?
Connecting the individual actions in a flow generates an initial activity diagram, which
describes internal business processes. The following questions help with the construction
of the control flow:

• In which order are actions processed?
• Which conditions have to be met in order for an action to be executed?

Modeling Business Systems

• Where are branches necessary?
• Which actions occur simultaneously?
• Is the completion of some actions necessary before the flow can proceed to

other actions?

Refine Activities—Do any Other Activity Diagrams Have to
be Added?
It is possible that individual actions have to be further divided or refined with other
activity diagrams. Different scenarios are also described in other activity diagrams.

Verify the View—Is Everything Correct?
Activity diagrams of the internal view also have to be verified in terms of correctness of
content. This should be done in collaboration with knowledge carriers.

Checklist 3.12 Verifying Activity Diagrams of the Internal View :

• When constructing activity diagrams of the external view, always remember
that only internal procedures and business processes are relevant.

• The conditions of different outputs of a decision node should not overlap.
Otherwise, the control flow is ambiguous—it is not clear where the flow
proceeds after a decision node.

• The conditions have to include all possibilities. Otherwise, the control flow
can get stuck. In case of doubt, insert an output with the condition 'else'.

• Forks and joins should be well balanced. The number of flows that leave a
fork should match the number of flows that end in the corresponding join.

In the following Figure 3.40 depicts an activity diagram that represents the internal
processing of the activities accepting luggage during check-in by passenger services:

 96

Chapter 3

Figure 3.40 Activity diagram of the internal activity "Accepting Luggage"

The activity accepting luggage, as shown in Figure 3.40, is carried out by passenger
services. It is not important for the passenger or for baggage transportation which
actions are performed in what way. The passenger is only interested in whether his or
her carry-on is too big and if he or she has to pay for excess weight; baggage
transportation needs labels on each piece of luggage. All other details that are shown in
the diagram are internal processing details of passenger services and will therefore be
labelled as 'internal view'.

 97

4
Modeling IT Systems

Modeling is the foundation for successful development and implementation of new IT
systems. A correct and complete model ensures that, in the end, users get the IT system

they need.

Figure 4.1 Different views of a system

In this chapter, we show how a conceptual model of an IT system can be developed with
the help of UML. Taking into consideration the 80:20 rule, we do not use all the features
of UML. Practice shows that it is unrealistic to model everything in full depth with UML.
This is because in the implementation stage new insights are gained, which cannot be
foreseen during the conception stage. In addition to that, models should be developed
with the least amount of effort possible.

The IT system model consists of four different views, each of which emphasizes certain
aspects and which are closely related to each other. This approach of a model consisting

Modeling IT Systems

of different views, is illustrated in Figure 4.1.The individual views we use for the IT
system model, and the UML diagrams included in them are depicted in Figure 4.2:

Figure 4.2 Different views of an IT system

 100

Chapter 4

 101

• External View—Use case diagram and use case sequence diagram
• Structural View—Class diagram
• Interaction View—Sequence diagram and communication diagram
• Behavioral View—Statechart diagram

Each of these views emphasizes certain aspects, and thus, disregards all others. All the
views combined make up a fairly complete model of the functionality of an IT system:

• The external view shows the use cases of the IT system in the form of UML
use case diagrams and an interface prototype. It makes apparent which
functionalities the IT system provides to users.

• The structural view shows the relevant classes of the IT system in the form
of UML class diagrams. It makes apparent in which structures information is
filed in the IT system.

• The behavioral view shows the behavior of the individual objects in the
form of statechart diagrams. It makes apparent everything that can happen
with an object that is filed in the IT system.

• The interaction view shows flows that take place during mutations or
queries within the IT system, in the form of sequence diagrams and
communication diagrams. It makes apparent what takes place in the IT
system when a user utilizes it.

Events are the real links that hold the different views together. They are contained in
three of the four views:

• In the external view the individual use cases are described as a sequence of
events that are sent to the IT system.

• The behavioral view shows for each class how the objects respond to the
events that reach them.

• The interaction view shows how the individual events in the IT system are
relayed to the affected objects.

Only in the class diagram of the structural view are events not visible. The class diagram
shows classes and the relationships, but not the dynamic aspects between them.

We do not use all types of diagrams that UML provides to model IT systems. In practice,
the combination of diagrams that we describe in this chapter has proven to be valuable
for modeling IT systems. A consistent and complete model of the IT system can be
developed with these diagrams. For other models the optimal combination of diagrams
looks different. For instance, activity diagrams have proven to be valuable for the
business system model.

Modeling IT Systems

In the following sections, we will discuss the four views individually. In practice, the
development of these four views does not simply follow this order. Rather, working on
each view will provide new insights for the other views. The dashed arrows in Figure 4.2
show the most important of these relationships.

4.1 External View

4.1.1 The User View or "I don't care how it works, as long
as it works."
If today someone uses a modern piece of equipment, for example a video recorder, an
ATM, or a cell phone, he or she is rarely interested in how that piece of equipment looks
from the inside. The average user does not care which electronic parts a machine consists
of, or what software it includes. On the other hand, what the machine can be used for, or
what functionalities it provides, is important to the user. For instance, the buyer of a cell
phone wants to know if the device has WAP capability or how many addresses it can
store. Usually, the potential buyer of a cell phone is interested in how the device can be
used; he or she is not interested in how the device is built internally, as long as it has the
desired functionalities.

This type of view of a system is called a black-box view, meaning the system or device
is pictured as a black box—you cannot look inside. You don't know how it works; you
only know that it does work. Ideally, this is the view a user should have of an IT system.
He or she uses the IT system to complete his or her work, just like a coffee maker or
copier. He or she knows what can be done with the system, and usually also knows how
to do it.

The external view is an essential part of the IT system model. Here, it is determined what
future users expect from the IT system. The functionality that is defined in this view
should ultimately be used to verify if the IT system fulfils the requirements.

The external view consists of the elements use case diagrams, use case sequence
diagrams, and interface prototypes. At first sight, these elements appear strange. Some
analysts may be tempted to allege that it is sufficient to record user requirements in the
form of prose. But practical experience shows again and again that this is not true. Prose
can be inconsistent, imprecise, and incomplete, without it becoming obvious to the future
user when he or she reads it. The IT system is developed accordingly and the programmer
interprets the prose as a third party, from his or her own viewpoint, and implements the
system accordingly. The UML-defined diagrams that we describe and explain in this
chapter are meant to help avoid misunderstandings and misinterpretations. The diagrams
are tools to describe the requirements for an IT system.

 102

Chapter 4

Figure 4.3 External view of a system as black box

An essential element of a system is its user interface. The user interface of an ATM, for
example, consists of a small monitor, the keys, and the openings for cards, bills, and
receipts, as well as the beep.

The user interface is the only access point that a user has to a system. If, for instance, the
recording button of a video recorder is missing, it is impossible to record anything, even
if the video recorder is equipped for this function internally.

The user interface represents a type of view of the functionality of the device. What is
missing in this view is inaccessible.

However, the user interface gives a static view of the system. This view does not show
how the system is supposed to be used, and which operating elements have to be used in
which order to complete a certain task.

Because of this, user interfaces require instruction manuals. This means that we need a
description that identifies the actions that are possible and what sequence has to be
followed for the system to be used in a meaningful manner. In UML, these courses of
actions are called use cases. Use cases are instruction manuals for the user interface. Only
what is defined in an instruction manual is a meaningful course of action.

The following example is a meaningful course of action (flow) for the use of a phone:
picking up receiver, waiting for the dial tone, typing a valid phone number, waiting for
someone to answer the phone, talking, and hanging up.

Flows that are not defined in the instruction manual are not regarded as meaningful and
are not supported by the system. In poorly developed systems, it can happen that flows
that are not defined have unexpected consequences or even crash the system.

Sometimes, modern IT systems can solve ad hoc problems, especially queries. Because
of their nature, ad hoc use cases are not included in normal descriptions. Other solutions
have to be found for them, for example, the specification of an environment or of a
specific system that supports ad hoc queries. Instead of a description, ad hoc use cases
receive a reference to a reporting tool or query language.

For users, a system essentially consists of a user interface and use cases, even though
these generally only represent the tip of the iceberg. Everything beyond that is of no
interest for users. Or did you ever ponder what type of system is behind the keys of your
cell phone?

 103

Modeling IT Systems

Write down the use cases of a system that you deal with on a general basis. Such
a system could be, for instance, an ATM, a coffee maker, or a web portal.

Figure 4.4 Actor who is carrying out a use case

The best approach to model the use cases of an IT system is precisely to imagine a user
who sits in front of the keyboard and works with the IT system (see Figure 4.4). The user
becomes the actor, and the use case is nothing more than an abstract description of the
user's activity.

An actor:

• Interacts directly with a system
• Is always located outside the system with which he or she interacts

For the IT system, this means that the actor is always the one who directly operates the
IT system.

Even in higher-ranking business systems (see Chapter 3, Modeling Business Systems)
actors are located on the outside. They can be, for example, customers or partners.

The worker who operates the IT system, on the other hand, is part of the business system.
Because of this, he or she cannot be an actor of the business system:

 104

Chapter 4

Figure 4.5 Actors of the business system and IT system

This leads to the situation shown in Figure 4.5:

• A passenger is actor of the business system, and generally deals with a
check-in employee. However, he or she can also be a firsthand actor of the IT
system, for example, during automated check-in at a machine.

• A check-in employee is part of the business system. Because of this he or
she is not an actor of the business system. On the other hand, as user he or
she is an actor of the IT system.

• A check-in representative, who performs check-in in place of another
person, is only an actor of the business system, because he or she cannot
perform automated check-in and therefore never has direct contact with the
IT system.

In summary, we can say that actors and use cases are very well suited to communicate
with users or domain experts about the functionality of IT systems that is visible from
the outside.

In our Hanseatic merchant's trading office, the separation between business system and
IT system is somewhat difficult. However, you can consider that the clerk's office with
the clerks and secretary Hildebrand make up the functionality of an information system
(without IT). A use case then, would correspond with a work process of secretary
Hildebrand, such as updating payment receipts or summarizing the costs and revenues of
last month. Here, the actor is the owner, Mr. Hafenstein (see Figure 4.6):

 105

Modeling IT Systems

Figure 4.6 Actors in the Hanseatic trade office

4.1.2 The Elements of a View

Figure 4.7 External view

The external view of the IT system consists of the following three elements:

• Use case diagrams show all users of the IT system (actors) and all tasks that
users can perform with the IT system (use cases). In the following, we will
generally talk about a use case diagram (singular). In practice it often makes
little sense to depict all use cases of an IT system in a single diagram, as the
diagram would be overcrowded.

 106

Chapter 4

• Use case sequence diagrams show the processes during interactions between
user and IT system for individual use cases.

• Interface prototypes show how the user interface of a use case might look.

All three elements combined give a good overview over the IT system from a user
perspective. In the following pages, we will discuss the elements individually.

4.1.3 Use Case Diagram

Figure 4.8 Elements of the use case diagram

In use case diagrams, as shown in Figure 4.8, we work with the following elements:

Actor

You can picture an actor as a user of the IT system, for example Mr. Steel or Mrs. Smith
from check-in. Because individual persons are irrelevant for the model, they are
abstracted. So the actors are called "check-in employee" or "passenger":

Actors represent roles that users take on when they use the IT system, e.g., the role of a
check-in employee. One person can act in more than one role toward the IT system. It is
important for the IT system in which role a person is acting. Therefore, it is necessary to
log on to many IT systems in a certain role, for instance, as a normal user or as an
administrator. In each case access to the appropriate functionalities (use cases) is granted.

Actors themselves are not part of the IT system. However, as employees they can be part
of the business system (see Figure 4.5).

 107

Modeling IT Systems

Use Case

Use cases describe the interactions that take place between actors and IT systems during
the execution of business processes:

A use case represents a part of the functionality of the IT system and enables the user
(modeled as an actor) to access this functionality.

Anything that users would like to do with the IT system has to be made available as a use
case (or part of a use case). Functionalities that exist in the IT system, but that are not
accessed by means of use cases, are not available to users.

Even though the idea behind use cases is to describe interactions, flows of batch
processing, which generally do not include interactions, can also be described as use
cases. The actor of such a batch use case is then the one who initiates batch processing.
For instance, generating check-in statistics would be a batch use case.

Association

An association is a connection between an actor and a use case. An association indicates
that an actor can carry out a use case. Several actors at one use case mean that each actor
can carry out the use case on his or her own and not that the actors carry out the use
case together:

According to UML, association only means that an actor is involved in a use case. We
use associations in a restricted manner.

Include Relationships

An include relationship is a relationship between two use cases:

It indicates that the use case to which the arrow points is included in the use case on the
other side of the arrow. This makes it possible to reuse a use case in another use case.

 108

Chapter 4

Figure 4.9 shows an example of this relationship. In the flow of the use case, express
check-in is a point at which the use case generating boarding pass is included. This means
that at this point the entire process generating boarding pass is carried out. Include
relationships can be viewed as a type of call to a subprogram:

Figure 4.9 Include relationships between use cases

Reading Use Case Diagrams
Figure 4.10 shows a use case diagram with the actors (employee and passenger) as well
as the use cases check-in and express check-in:

Figure 4.10 A simple use case diagram

According to your interest, you can start reading a use case diagram with the actor or
with the use case.

Starting with the actor check-in employee (1) you can find associations between the two
use cases check-in (2) and express check-in (3). This means that persons who interact
with the IT system as check-in employees can carry out the use cases check-in and
express check-in.

For the readability of the diagram it makes sense that use cases are located one below the
other. However, this means nothing. A meaningful order in which a worker carries out
use cases cannot be documented in a use case diagram.

 109

Modeling IT Systems

Unless the use case diagram has to be amended, the use cases check-in (2) and express
check-in (3) are everything that a check-in employee can do with the IT system.
The actor passenger (5) has an association to the use case express check-in (3), which
means that people who interact with the IT system as passengers can carry out the use
case express check-in (3) directly with the IT system. The actor check-in employee (1)
also has an association to the use case express check-in (3), which means that both
passengers and check-in employees can carry out this use case. It does not mean that
these two work together during express check-in.

Of course, during the use case check-in (2) too, a passenger checks himself or herself in
and not an employee, but actor of the IT system is always the one who directly interacts
with the IT system. For the use case express check-in (3) this can be either the passenger,
who, with his or her plane ticket, can obtain a boarding pass at a machine, or a check-in
employee who can do this in place of the passenger. However, for the business system
the passenger is always the actor, because he or she is located outside the business. The
employee, on the other hand, is not an actor from the perspective of the business system,
because he or she works inside the business system.

Figure 4.11 Use case diagram with include relationships

Figure 4.11 shows a use case diagram with the include relationships that both the use
cases check-in (1) and express check-in (2) have with the use case generating boarding
pass (3). This means that during both check-in and express check-in, a boarding pass is
generated. According to our practical experience, this is the easiest way to reuse parts of
use cases.

4.1.4 Query Events and Mutation Events
An event in UML is the specification of an occurrence: the description of something that
happens. In the context of use cases, an event is something that a user does with the IT
system. Events are initiated by users through the user interface, for instance, by clicking
the Search button or pushing the Enter key. This has the effect that within the IT system
something is processed. For us, it has proven valuable to differentiate between two types
of events:

 110

Chapter 4

• Query events are events that have the goal of displaying information and
usually don't change anything within the IT system. Query events result in
displayed information.

• Mutation events are events that have the goal of storing, modifying, or
deleting information in the IT system. The result of a mutation event depends
on the success of the mutation: in the case of success information has been
stored, modified, or deleted, which has to be conveyed to the user; in case of
failure nothing has been changed, which also has to be conveyed to the user.

Since UML does not differentiate between query events and mutation events, we made
use of UML extension stereotypes, which are a mechanism that allows the extension of
UML with custom elements. We extended the language by creating two special cases
of events:

• The stereotype «Q» in front of an event name indicates the special case of a
query event.

• The stereotype «M» in front of an event name signifies the special case of a
mutation event.

In this way, we can describe events in different diagram types, and make it immediately
clear which type of event we are dealing with. Figure 4.12 shows query events and
mutation events in a use case. The response of the IT system to the events is not depicted
as a separate event. Each query and mutation event has implicit feedback: the obtained
information, or a success or failure message:

Figure 4.12 Query events «Q» and mutation events «M»

In the Hanseatic merchant's trading office we can picture the events as follows:

• Secretary Hildebrand finds out how much money the agent in Riga sent
within the last six months. This is a query event «Q».

 111

Modeling IT Systems

• Secretary Hildebrand summarizes the types and amounts of furs purchased
from Russia up to this point. This is a query event «Q».

• Secretary Hildebrand notes in the books that no further transactions should
be conducted with the dyeing works of master Schildknecht. This is a
mutation event «M».

4.1.5 Use Case Sequence Diagram

Figure 4.13 Elements of the use case sequence diagram

The use case sequence diagram is a special use of UML sequence diagrams that we
advocate (see Figure 4.13). We will discuss the sequence diagram in detail in Section
4.4, Interaction View. In the use case sequence diagram, we work with the following
elements:

Comment

The flow of the use case is described in a combination of textual description and
sequence diagram:

Comments can describe the flow of the use case in a simplistic manner; UML generally
allows the placement of comments in all diagrams.

 112

Chapter 4

Reference to Prototype

References to screen forms, lists, and other elements of the user interface can be placed
within comments:

This creates a link between the use case sequence diagram and the prototype.

Actor "Somebody"

Actor "somebody" represents any actor from the use case diagram. "Somebody" is the
origin of all events within the use case that go to the IT system:

Because a use case can have different actors we use the actor "somebody". This way we
don't have to specify a real actor.

Query Event

A query event is an event that is sent to the IT system with the goal of reading
information (see Section 4.1.4, Query Events and Mutation Events).

Mutation Event

 113

Modeling IT Systems

A mutation event is an event that is sent to the IT system with the goal of modifying
information (again, see Section 4.1.4, Query Events and Mutation Events).

Interaction Reference

An interaction reference shows that at this point the use case sequence diagram of another
use case is called (see the explanation of include relationships in Section 4.1.3, Use Case
Diagrams).

IT System

The IT system represents the black box with all its objects and its entire functionality:

All events in the use case go to the IT system. In the external view we do not care which
individual objects within the IT system are affected by the events.

Reading Use Case Sequence Diagrams

Figure 4.14 Use case sequence diagram

Figure 4.14 shows the use case sequence diagram of the use case boarding. A use case
sequence diagram always belongs to a use case, because it describes the interaction flow
of a use case. The flow becomes apparent from the comment at the left border. First, the
boarding pass is read and verified (1) by sending the query event «Q» validity boarding
pass (2) from the actor of the use case (3) to the IT system (4). How the event is treated
internally cannot be seen in this diagram, because the IT system is viewed as a

 114

Chapter 4

 115

black box. The validity of the boarding pass is verified, which probably means that the
information on the boarding pass that is read into the IT system is compared with the
stored information. On the basis of the information that the IT system returns, users are
able to see if the verification was successful or not. The result does not have its own
arrow, but instead flows back through the query arrow (2).

If the boarding pass is OK (5), it can be recorded in the IT system that the passenger has
boarded the plane. This happens through the mutation event «M» record boarding
(6), which is sent to the IT system (4). Again, we cannot see what happens within the
IT system. If the boarding pass is not OK (7), the display should show information about
the ticket that belongs to this boarding pass. For this, again, a query event «Q» coupon
details (8) coupon details, is sent to the IT system. This query results in the desired
information, as long as it exists within the IT system. The display of information can be
illustrated in an interface prototype. The reference [B27] (9) corresponds to a screen form
in an interface prototype. Consequently, the entire use case boarding is described as a
sequence of query and mutation events.

4.1.6 Constructing the External View
The following checklist shows the steps necessary to construct the external view.
Subsequently, we will explain the individual steps further.

Checklist 4.1 Constructing Diagrams in the External View:

• Collect information sources—How am I supposed to know that?

• Identify potential actors—Who works with the IT system?

• Identify potential business use cases—What can be done with the IT system?

• Connect business use cases—Who can do what with the IT system?

• Describe actors—Who or what do the actors represent?

• Search for more business use cases—Which other functionalities does the IT system
have to provide?

• Edit business use cases—What actually has to be included in a business use case?

• Document business use cases—What happens in a business use case?

• Model relationships between business use cases—What can be reused?

• Verify the view—Is everything correct?

Modeling IT Systems

The order in which these steps are given makes sense. However, this order is not
mandatory, since in practice, the individual steps often overlap heavily.

Normally, these steps will be carried out by an analyst, who needs to have a general
understanding of the IT system as well as of the business system as it was modeled in
Chapter 3, Modeling Business Systems. However, it is indispensable to consult additional
knowledge carriers, such as users of the system. The result of these work steps is the
external view, which has to be read and understood by domain experts.

Collect Information Sources—How Am I Supposed
to Know That?
Generally, there are quite a number of information sources that can be used for the
formulation of the external view:

• Certainly, the business system model is the first source that should be drawn
upon. The business system's actors, workers, and use cases are a good
starting point from which it is possible to derive actors and use cases of the
IT system (see Chapter 3, Modeling Business Systems).

• Technical specifications, project specifications, and similar documents.
• Future users are a very important source for this user-oriented external view.
• Technical experts in the IT system's area of application.
• Organization charts, organizational structure, and job descriptions.

Taking up the users' standpoint is very helpful. Talk with users or observe them
performing their jobs.

Identify Potential Actors—Who Works with the IT System?
This step is about identifying a first selection of actors. This selection does not yet have
to be complete or correct. The rule applies: the more, the better. You can continue
working with these actors in subsequent steps.

Answering the following questions (for instance, with users of the system) will help
identify potential actors. While doing this, you should try to abstain from using persons
mentioned by name. Instead, try to form groups of people or actors:

• Which actors and employees of the business system deal directly with the
IT system?

• Which groups of people need support from the IT system in order to
complete their daily work?

• Which groups of people perform the most important main functions of the
IT system?

 116

Chapter 4

• Which groups of people are needed to carry out secondary system functions,
such as maintenance and administration?

• Which groups of people from the organization model (see organization chart)
of the company or division work with the IT system?

Here, it is important to picture concrete and direct interactions with the IT system under
consideration.

At a check-in counter it is the check-in employee who is in direct interaction with the IT
system. At the check-in machine, where passengers without luggage can check in with
their machine-readable tickets, it is the passenger who directly interacts with the IT
system, inserting the ticket and choosing one of the empty seats.

A passenger is also an actor in the business system; check-in employees and boarding
employees, on the other hand, are not. They are employees, and because of that, they are
part of the business system, as shown in Figure 4.15:

Figure 4.15 Potential actors

Identify Potential Use Cases—What Can be Done With the IT
System?
This step is about finding a first selection of use cases. Here too, the rule applies: the
more, the better. Answering the following questions will help identify potential use cases:

• Which business use cases of the business system are supported by the
IT system?

• Which business activities of the business system should be supported
by the IT system?

• Depending on the degree of detail of the business activities, in this step
a use case can be constructed for each business activity.

• What are the goal and purpose of the IT system?
• What are the main functions of the IT system?
• For what do actors need the IT system?

 117

Modeling IT Systems

• Which secondary system functions, such as maintenance and administration,
does the IT system require?

• What functions does the interface prototype have?

Figure 4.16 Potential use cases

Connect Actors and Use Cases—Who Can Do What with
the IT System?
Assigning business use cases to actors generates a first draft of the use case diagram, as
shown in Figure 4.16. Here, the following question should be answered:

• Which actor can carry out which use cases?

Figure 4.17 First draft of a use case diagram

This first draft constitutes a foundation from which the use case diagram can be edited
and refined, as shown in Figure 4.17.

Describe Actors—Who or What do the Actors Represent?
An actor in a diagram has to be named (or renamed) in a way that clarifies the role that is

 118

Chapter 4

 119

represented. The question is:

• How can an actor be accurately described? Here it is extremely important
that the terminology of the domain is used. Users of the IT system have to
recognize themselves in the actors; otherwise they will not understand the
use case diagram! If required, the actor can be defined with a comment in
addition to an accurate name. Such a comment can include the field of
responsibility of the actor, the requirements of the IT system from the actor's
perspective, or a formal definition of the role that the actor plays.

Search for More Use Cases—What Functionalities does the IT
System have to Provide?
Once you have identified a first selection of use cases, these can be used as the starting
point for the completion of the use case diagram. Use cases that were overlooked before
can be identified by asking the following questions, based on a particular use case:

• Is there anything that has to be done with the IT system at some point before
a particular use case can be executed?

• Is there anything that has to be done with the IT system at some point after a
particular use case is executed?

• Is there anything that has to be done with the IT system if it does not execute
a particular use case?

It is very important not to lose sight of the real IT system. There is a risk of modeling use
cases that lie outside the IT system under consideration. For example, purchasing the
plane ticket, which has to occur before check-in, does not belong to the considered IT
system passenger services.

In our case study, the answers for the use case check-in could be as follows:

• Information about ticket and flight has to be obtained before check-in.
• Boarding has to take place after check-in.
• The plane ticket has to be invalidated if the passenger does not appear at

check-in.

Edit Use Cases—What Actually Has to be Included in a
Use Case?
The most difficult part of modeling use cases probably is finding the appropriate degree
of detail for these use cases. Here, the range is between the two extremes shown in
Figure 4.18:

Modeling IT Systems

Figure 4.18 Extreme degrees of detail in the IT system "Passenger Services"

Neither approach makes sense. If the entire IT system is crammed into one use case, a
practically meaningless use case diagram is constructed. Nothing useful can be learned
from it. If on the other hand, use cases are itemized too strongly, the use case diagram
gets too complex and contains too many use cases with interrelationships that are hard
to recognize.

Fortunately, there are some criteria that will help you find the optimal scope of a use
case. To prevent use cases from becoming too large, we can ask the following questions
for each use case:

• Does the use case consist of a behaviorally related sequence of interactions
that belong together (an interaction sequence)? Items that are included in a
business use case have to be directly related. Issuing a boarding pass and
searching for lost luggage are not related at all. Use cases that violate this
criterion have to be divided.

• Can a single actor carry out the use case? Even though UML allows more
than one actor to be involved in the execution of a use case, in most cases,
it is better to abstain from this option. If a use case describes the interaction
of a person with a computer, it implies that not more than one person should
be involved in the interaction. Use cases that violate this criterion have to
be divided.

 120

Chapter 4

 121

To avoid the creation of use cases that are too small, we can ask the following questions
for each use case:

• Does the use case deliver a tangible and relevant result? A use case cannot
describe an incomplete sub-step by itself, such as choose customer. Rather, a
use case has to produce a result that makes sense from a domain point of
view. Use cases that violate this criterion have to be combined with other
use cases.

• Is the use case never performed alone, but always in a sequence in
combination with other business use cases? Use cases are not supposed to
describe sub-steps that are only executed in combination with other sub-
steps. Use cases that violate this criterion have to be combined with other
use cases.

Verifying existing use cases with these questions can help finding a meaningful degree of
detail by dividing or combining use cases.

Document Use Cases—What Happens in a Use Case?
The information from the use case diagram is not sufficient to understand use cases. The
flow of interaction that stands behind a use case has to be described. In addition to purely
verbal description, description in a use case sequence diagram has proven to be especially
valuable. We can ask the following questions when developing a use case sequence
diagram for the use case:

• What steps are involved in working with the IT system? To answer this
question we have to observe the actor's work with the IT system. What
does the actor do with the IT system? What does he or she enter? What
does the IT system display? What does the interaction look like? Here, it
is important to find the appropriate level of detail. Not every key pressed
makes up a work step. The next two questions will help you find the
appropriate level of detail.

• Which information is the use case meant to provide to the actor? If
information should be displayed, a query event is sent to the IT system.

• Which information is meant to be stored, modified, or deleted in the IT
system? If information should be changed, a mutation event is sent to the
IT system.

The description of the flow is, therefore, a succession of steps in which information is
entered or queried, in other words, an interaction. During the description of the flow, the
IT system is always viewed as a black box.

Modeling IT Systems

Because, in reality, a use case does not always take place in the same manner, it has
proven valuable to use simple control structures in descriptions to show alternatives
and branches, as illustrated in Figure 4.19:

Figure 4.19 Use case sequence diagram for the use case "Boarding"

The documentation of use cases should also include a description of the user interface
utilized. An example of this is the dialogue window labeled [B27] above, shown in
Figure 4.20:

Figure 4.20: Dialog window [B 27] from the use case "Boarding"

Model Relationships between Use Cases—What can be
Reused?
If you notice that certain parts of the interaction are the same in several use cases, these
commonalities can be included into their own use case. With an include relationship this
new use case can be utilized in other use cases. The question for this is:

• Are there parts or sections that exist in several use case sequence diagrams
(and always remain the same)?

 122

Chapter 4

 123

Verify the View—Is Everything Correct?
Use case diagrams, as well as use case sequence diagrams, have to be verified with the
aid of knowledge carriers. Ideally, knowledge carriers can read and understand the
diagrams themselves (which is not that difficult, since our book has reading instructions
for every view). Then, the knowledge carriers are in a position to answer the question
about completeness and correctness themselves. If this is not possible, the diagrams have
to be read to the knowledge carriers. Then, the diagrams have to be verified for
correctness and completeness jointly. Only with this last step is the circle complete and a
verified view that reflects a current shared understanding of the IT system created.

The completed use case diagram can be verified with the following checklist:

Checklist 4.2 Verifying Use Case Diagrams in the External View:

• Is the use case diagram complete? The use case diagram is complete if there
are no further use cases. Anything that users have to do with the IT system is
depicted in the form of use cases (if necessary, use cases can be spread out
into several diagrams).

• Are all use cases correct? Use cases are correct if they describe a use case of
the IT system and comply with the definition of a use case.

• Is the degree of detail appropriate? The degree of detail of the business use
cases should meet the following requirements:

A use case represents a behaviorally coherent interaction sequence.

A use case is carried out by a single actor.

A use case represents a functionality that is tangible and that yields a
relevant result.

• Generally, a use case is carried out completely.

• Are the use cases named appropriately? The name of each use case should
describe the activity that is executed in the IT system.

• Are the actors correct? The actors in the use case diagram represent roles that
someone (e.g., a person) or something (e.g., another system) takes up in an
interaction with the IT system.

Modeling IT Systems

Completed use case sequence diagrams can be verified with the following checklist:

Checklist 4.3 Verifying Use Case Sequence Diagrams in the External View:

• Are the use case sequence diagrams completely present? Every use case
should have a sequence diagram that describes the possible flows of the
use case.

• Are the use case sequence diagrams correct? Each use case sequence diagram
should contain only one object that represents the IT system and be made up
exclusively of query events and mutation events.

4.2 Structural View

4.2.1 Objects and Classes
The basis of the object-oriented approach is as good as possible a representation of
something that exists in the real world first in a model and later in an IT system.
However, this representation will never completely correspond to reality. Everything in
the real world, whether it is a living being, an object, or an idea, is so complex and has so
many aspects, that this complexity can never be completely represented:

Figure 4.21 A few aspects of Mr. Smith

 124

Chapter 4

To allow representation as a model it is necessary to focus on a few particular aspects and
to leave out all others. The essential, meaning the interesting, aspects are emphasized and
all other aspects are omitted. It is exactly this that is the art of modeling objects.

In order to model objects successfully we have to know for what purpose they are needed
in the IT system. The object "Mr. Smith" will look different in a customer management
system than in a medical information system or in a tax register (see Figure 4.21). Only
when we know, at least approximately, the purpose of the IT system we can build
functional objects.

In models, we always abstract from reality in a target-oriented manner. We restrict our
consideration to the important aspects for the current purpose and omit everything else.
Figure 4.22 shows this step of abstraction by the example of an airplane:

Figure 4.22 Modeling

When depicting the real world in abstract models, we differentiate between two steps. In
the first step, we abstract from individual persons or things to objects. In the second step,
we combine similar objects into classes. Figure 4.23 shows, with a few examples, how
things of the real world are depicted first as objects and then as classes:

 125

Modeling IT Systems

Figure 4.23 Object and Class formation

The direct illustration in a model of something that exists in the real world leads to an
object. A 1:1 relationship exists between something from the real world and the object.
The object represents exactly one particular exemplar from the real world. In a database
an object corresponds, for instance, to an entry in a spreadsheet. The definition of objects
is already a first step of abstraction, since only relevant features are modeled in the
object. For example, in the object Mark, the person Mark is reduced to those aspects that
are important for a passenger, for instance, title, first name, last name, and date of birth.

Write down a dozen objects from your personal work environment.

In the second step of abstraction, we combine similar objects into classes. Similar means:

• That the goal of the abstraction is similar
• That we are interested in similar characteristics
• That the objects have similar behavior

 126

Chapter 4

Most of the time the two steps of abstraction are combined, meaning that classes are
formed directly. The step of object creation is not carried out explicitly.

Modeling is often made more difficult by the fact that something that only exists as a
concept or idea, and not in the physical sense, has to be modeled. While in the past it was
still possible to actually hold a stock certificate or a savings book in your hands, today,
such things often exist only as information.

Try to group the objects that you wrote down into classes.

Dealing with classes becomes easier when you consider that the term class has two
somewhat different meanings:

• On the one hand, the class is the pattern according to which objects
are created.

• On the other hand, the class is the set of objects that have been created
according to that class.

The class as a pattern dictates the characteristics and behavior of objects that are created
from the class. In Figure 4.24, class is compared with a cookie cutter, which can be used
to cut cookies (objects of the class) from dough:

Figure 4.24 Cookies, classes, and objects

 127

Modeling IT Systems

Figure 4.25 Class as a pattern

The class as a set contains and knows all its objects. It can be pictured as a table in a
database, which knows all its entries.

Usually, classes, in addition to attributes, contain methods, which specify the behavior of
objects. However, in our approach to modeling IT systems we broadly abstain from using
this possibility. The behavior of objects depends largely on their respective states. A
"cancel flight" method of the class "flight", for instance, has to perform something
different with a flight object in the condition "in execution" than with a flight object in
the condition "planned".

According to our experience, such rules can generally be modeled much more easily in
the statechart diagram in the behavioral view than they can be modeled with operations.
Only in the later project stages of design and implementation is the behavior of classes
converted into methods according to the programming language utilized.

In the Hanseatic merchant's trading office a class corresponds to a book, for example a
customer index, and the clerk who is responsible for the book. The book can only be
accessed through the clerk. Individual customer entries correspond to the objects. Entries
in the different books are connected by cross-references.

4.2.2 Generalization, Specialization, and Inheritance
Terms such as superclass, subclass, or inheritance come to mind when thinking about the
object-oriented approach. These concepts are very important when dealing with object-
oriented programming languages such as Java, Smalltalk, or C++. For modeling classes
that illustrate technical concepts they are secondary. The reason for this is that modeling
relevant objects or ideas from the real world gives little opportunity for using inheritance
(compare the class diagram of our case study). Nevertheless, we would like to further
introduce these terms at this point in Figure 4.26:

 128

Chapter 4

Figure 4.26 Notation of generalization

Generalization is the process of extracting shared characteristics from two or more
classes, and combining them into a generalized superclass. Shared characteristics can be
attributes, associations, or methods.

In Figure 4.27, the classes Piece of Luggage (1) and Piece of Cargo (2) partially share
the same attributes. From a domain perspective, the two classes are also very similar.
During generalization, the shared characteristics (3) are combined and used to create a
new superclass Freight (4). Piece of Luggage (5) and Piece of Cargo (6) become
subclasses of the class Freight.

The shared attributes (3) are only listed in the superclass, but also apply to the two
subclasses, even though they are not listed there.

 129

Modeling IT Systems

Figure 4.27 Example of generalization

Consider whether some of the classes that you found could be generalized.

In contrast to generalization, specialization means creating new subclasses from an
existing class. If it turns out that certain attributes, associations, or methods only apply to
some of the objects of the class, a subclass can be created. The most inclusive class in a
generalization/specialization is called the superclass and is generally located at the top of
the diagram. The more specific classes are called subclasses and are generally placed
below the superclass.

In Figure 4.28, the class Freight (1) has the attribute Degree of Hazardousness (2),
which is needed only for cargo, but not for passenger luggage. Additionally (not visible
in Figure 4.28), only passenger luggage has a connection to a coupon. Obviously, here
two similar but different domain concepts are combined into one class. Through
specialization the two special cases of freights are formed: Piece of Cargo (3) and Piece
of Luggage (4). The attribute Degree of Hazardousness (5) is placed where it belongs—
in Piece of Cargo. The attributes of the class Freight (1) also apply to the two subclasses
Piece of Cargo (3) and Piece of Luggage (4):

 130

Chapter 4

Figure 4.28 Example of specialization

Consider whether some of the classes that you found could be specialized.

So much for the mechanism. However, the domain meaning of the relationship between
superclass and subclass is much more important. These rules apply to this relationship:

• All statements that are made about a superclass also apply to all subclasses.
We say that subclasses "inherit" attributes, associations, and operations from
the superclass. For example: If the superclass Freight has an attribute
Weight, then the subclass piece of luggage also has an attribute Weight, even
though this attribute is not listed in the subclass Piece of Luggage.

• Anything that can be done with an object of the superclass can also be done
with an object of the subclass. For example: If freight can be loaded, pieces
of luggage can also be loaded.

• In the terminology of the system that is being modeled, a subclass has to be
a special form of the superclass. For example: A piece of luggage is a special
case of freight. The counter-example to this is: A flight is not a special case
of a flight number.

 131

Modeling IT Systems

4.2.3 Static and Dynamic Business Rules
Business rules are domain rules that are depicted in an IT system model. Domain rules
can be derived from business strategies, requirements, technical guidelines, and
restrictions. Business rules are unrelated to information technology; they are purely
derived from the domain. Examples of business rules are:

• During check-in, each passenger has to be assigned a seat.
• For each flight, each seat can only be assigned to one passenger.
• A flight cannot be canceled once it has been started.

Many requirements cannot be modeled as business rules. In addition to the IT system
model, a requirement catalog is part of specifying an IT system. We do not further
address requirement catalogs in this text.
Business rules can be divided into two categories:

• Static business rules: Business rules that can be verified at any point in
time. These business rules deal with the static structures of classes. These
business rules can be documented in class diagrams of the structural view.

• Dynamic business rules: Business rules that can only be verified at a certain
point in time, namely, when something happens. These business rules deal
with the dynamic behavior of the objects of a class. These business rules can
be documented in the statechart diagram of the behavioral view.

4.2.4 Elements of the View

Figure 4.29 Structural view

The structural view of IT systems, as shown in Figure 4.29, consists of one or several
class diagrams. Class diagrams show all relevant classes of the IT system, their
relationships to each other (associations), their characteristics (attributes), and in basic
terms, their behavior (methods). It is the best-known view of the object-oriented

 132

Chapter 4

approach, and unfortunately, often the only diagram that is constructed. Class diagrams
show the internal static structures of the IT system.

4.2.5 Class Diagram

Figure 4.30 Elements of the class diagram

In class diagrams, as shown in Figure 4.30, we work with the following elements:

Class
A class represents a relevant concept from the domain, a set of persons, objects, or ideas
that are depicted in the IT system:

Examples of classes are passengers, planes, or tickets.

Attribute
An attribute of a class represents a characteristic of a class that is of interest for the user
of the IT system:

 133

Modeling IT Systems

Characteristics of interest of a passenger, for example, are name and age.

Generalization

Generalization is a relationship between two classes: a general class and a special class:

Refer to Section 4.2.2, Generalization, Specialization, and Inheritance.

Association

An association represents a relationship between two classes:

An association indicates that objects of one class have a relationship with objects of
another class, in which this connection has a specifically defined meaning (for example,
"is flown with").

Multiplicity

A multiplicity allows for statements about the number of objects that are involved in an
association:

Also see Figure 4.32.

Aggregation

An aggregation is a special case of an association (see above) meaning "consists of":

The diamond documents this meaning; a caption is unnecessary.

 134

Chapter 4

Reading Class Diagrams
Figure 4.31 shows a class diagram from our case study with the classes customer, ticket,
and coupon, their attributes, and their associations:

Figure 4.31 Class diagram with associations

Looking at the class diagram in Figure 4.31, you can read the association between the
classes customer and ticket as follows:

• One (this sentence always begins with "one") object of the first class has an
association with a number of objects of the second class.

The appropriate values from the diagram have to be inserted into this first abstract
formulation, which can be universally applied. The name of one class is customer (1); the
name of the other class is ticket (4). The name of the association is owns (2):

• A customer (1) owns (2) * (3) ticket (4).

If the asterisk is exchanged with its meaning, a regular English sentence is created:

• A customer (1) owns (2) zero, one or several (3) ticket(s) (4).

Since associations usually are not directional, meaning usually go both directions, our
association also has a meaning in the other direction:

• A ticket (4) is owned by (2) exactly one (5) customer (1).

The small triangle next to the name of the association (2) indicates in which direction the
name of the association holds true.

 135

Modeling IT Systems

We can read all the associations in the class diagram in this way.

The specification of the number of objects of the second class (you always start with one
object of the first class) is called the multiplicity. The course of action should always be
according to the same pattern:

First, a statement of the lower limit (minimum number) followed by two periods (..) and a
statement of the upper limit (maximum number).

Figure 4.32 shows the most common possibilities:

Figure 4.32 Multiplicities

However, in UML it is also possible to insert any values as the lower and upper limits,
e.g., 2 .. 4 or 6 .. *.

The association's name is necessary for understanding the domain meaning of the
association. In contrast to the association itself, which applies to both directions, the
name of the association applies to only one direction, which is indicated by a black
triangle. If the association is not labeled, its meaning has to be derived from the domain
context, or it takes on a general meaning such as has or belongs to. In case of doubt it is
better to label associations too much than too little. Many diagrams that we have
encountered in our practical experience were incomprehensible because associations
were not labeled.

Associations can also be viewed as the implementation of static business rules (see
Section 4.2.3, Static and Dynamic Business Rules). Statements such as "a ticket belongs
to exactly one customer" are documented in the class diagram by associations.

Roles are another possible way in UML to give relationships between classes a domain
meaning. In this way, we can state what role an object of one class plays for the objects
of another class:

 136

Chapter 4

Figure 4.33 Class diagram with roles

Looking at the class diagram in Figure 4.33, we can read the left association with roles
between the classes flight number and airport as follows:

• An airport (1) is a start (location) (2) for one or more (3)
flight numbers (4).

There is another association between the two classes flight number and airport:

• An airport (1) is a destination (5) for one or more flight numbers (4).

These two associations also have inversions, even though roles are only stated for
one direction:

• A flight number (4) has as start (location) (2) exactly one (7) airport (1).
• A flight number (4) has as destination (5) exactly one (8) airport (1).

This records that a certain flight number has a departure airport and a destination airport.
An example of a flight number is LX317, a daily flight of the Swiss airline Crossair from
London to Zurich.

 137

Modeling IT Systems

Figure 4.34 Class diagram with Aggregation

Among the many domain meanings that an association can have there is one that can be
signified with UML by its own symbol: the whole-part relationship or aggregation. This
type of relationship is always used when objects of one class are a part of objects of
another class.

In the class diagram in Figure 4.34 aggregation is used on the left side (the white
diamond), which can be read as follows:

• A ticket (1) consists of (2) 1 to 4 (3) coupons (4).

or the other way around:

• A coupon (4) is part of (2) exactly one (5) ticket (1).

The example without a diamond, but with a name for the association, has exactly the
same meaning! The last missing element of UML that we use to model class diagrams is
generalization/specialization, which serves to depict the relationship between a superclass
and a subclass. The generalization/specialization in Figure 4.35 can be read from top to
bottom or bottom to top. If you begin at the top, you find a class Freight (1) with the
attributes: Identification, Weight, and ID-number (2). This class has two specializations,
Piece of Luggage (3) and Piece of Cargo (4). The class Piece of Cargo has an additional
attribute: Degree of Hazardousness (5).

If you begin at the bottom you will find the classes Piece of Luggage (3) and Piece of
Cargo (4). These have a superclass, the class Freight (1), which contains the shared
attributes (and functions) of the subclasses.

 138

Chapter 4

Figure 4.35 Class diagram with generalization/specialization

4.2.6 Constructing Class Diagrams
The main problem for constructing class diagrams is finding the "right" classes. We
address this problem from two perspectives and construct the class diagram in two
work steps.

In top-down analysis, classes are found first on the basis of general understanding of the
subject matter. Top-down analysis is about finding a basic structure of classes that the
bottom-up analysis, which is more detailed, can build upon. The (simplified) question is:

• Which information or domain concepts can be of use for my IT system?

Domain knowledge, verbal descriptions of the area of application, and user
representatives are important sources of information. In this way, a basic structure of
classes can be found for most IT systems.

In bottom-up analysis, classes are found mainly on the basis of the inputs and outputs of
the IT system. The question is:

• What information is needed for the individual inputs and outputs of the
IT system?

Here, the classes that were found during top-down analysis serve as the basis to find these
classes. Already existing inputs and outputs, for instance, screen forms and paper forms
are important sources of information.

According to our experience, these two work steps lead to good results in modeling IT
systems that manage lots of information. In contrast to this, there are systems that, for
example, have the function of running or controlling something, which have a complex
functionality but hardly manage any data. For such systems we recommend a less data-
intensive approach, for instance, responsibility-driven design. (For this approach compare
Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener: Designing Object-Oriented
Software, Prentice Hall 1998.)

 139

Modeling IT Systems

The following checklist shows the necessary steps for constructing class diagrams.
Subsequently, we will explain the individual steps further.

Checklist 4.4 Constructing Class Diagrams in the Structural View:

Top-down Analysis

• Identify and model classes—Which classes do we need?

• Identify and model associations—How are the classes connected?

• Define attributes—What do we want to know about the objects?

Bottom-up Analysis

• List required queries and inputs—What does the IT system need to deliver
and accept?

• Formulate queries and inputs—How exactly should the display look?

• Conduct information analysis—Which classes, associations, and attributes
do we need?

• Consolidate class diagrams—How does everything fit together?

• Verify the class diagrams—Is everything correct?

Identify and Model Classes—Which Classes do We Need?
An analysis of the interrelationships, information needs, and actors and prototypes is
conducted on the basis of general domain knowledge, discussions with experts, and
documents. The questions that should be asked are:

• What are the most important things that will be worked with in the
IT system?

• What classes can be created from this?

The answers to these questions provide a number of potential classes, which we model in
a first draft of the class diagram. In practice, the results of this first work step vary
greatly. However, we have never experienced a case in which nothing at all was found. If
you are still inexperienced in identifying classes, it has proven helpful to run through top-
down analysis repeatedly. With time, you will develop a sense for what is a class and
what is not (Figure 4.36):

 140

Chapter 4

Figure 4.36 Potential classes

Identify and Model Associations—How Are the Classes
Connected?
We model the interconnections between the obtained classes and business rules in class
diagrams as associations with meaningful names and multiplicities, as shown in Figure
4.37. The questions are:

• What relationships exist among objects?
• How many objects of each class are involved in a relationship?

Figure 4.37 Class and Associations

 141

Modeling IT Systems

The first question has to be asked for objects of each pair of different classes, for
instance, for the classes flight and customer from our case study. Here, it is important to
recognize whether the relationship is direct, or if the relationship only exists indirectly
through other objects. In our example it turns out that a customer owns a ticket, which in
turn, consists of coupons, which are valid for a flight. The goal of the second question is
to determine the multiplicity of the relationship, for instance, how many tickets a
customer can have, and to how many customers a ticket belongs (Figure 4.37).

Even though at the beginning of this work step we started with previously found classes,
because of the domain discussions, we generally find more classes in this work step.

Define Attributes—What do We Want to Know about the
Objects?
The required information about a class has to be identified and modeled in the form of
attributes. The question for this is:

• Which information about a certain class am I interested in?

This question is about finding obviously needed attributes of the individual classes (see
Figure 4.38). This question cannot be answered completely without precisely analyzing
inputs and queries, as takes place in bottom-up analysis. Because of this, not too much
time should be spent answering this question.

Figure 4.38 Classes and Attributes

 142

Chapter 4

List Required Queries and Inputs—What does the IT System
Need to Deliver and Accept?
In this first work step of bottom-up analysis, the individual queries and inputs of the IT
system have to be identified. The queries are more important here, because answering
queries is the real purpose of IT systems. The questions are:

• What information does the IT system have to be able to provide?
• What information does the IT system have to be able to accept?

When answering these questions, you can build upon the use cases already found. Which
queries and mutations occur in a use case is already drafted in the use case sequence
diagram. Another source of information are the business processes of the business system
(see Chapter 3, Modeling Business Systems). The result of this work step is a list of
information requirements, as illustrated in Figure 4.39:

Figure 4.39 List of information requirements

Formulate Queries and Inputs—How Exactly Should the
Display Look?
In order to create individual class diagrams for the individual queries and inputs, we first
need to be define how they look. Complex query results or inputs are collected or drafted.
Figure 4.40 shows a passenger list; further examples can be found in Figure 4.66
(display) and Figure 4.67 (boarding pass). The question is:

• How precisely does the display of a query or input look?

Good sources of information are already existing forms (for example, the passenger list
from Figure 4.40) and displays from the prototypes:

 143

Modeling IT Systems

Figure 4.40 Passenger list

Conduct Information Analysis—Which Classes, Associations,
and Attributes Do We Need?
In this work step the main part of the bottom-up analysis is performed. For each query or
input a small class diagram is created on the basis of the existing classes. This is achieved
by modeling the drafted inputs and outputs of the IT system. Class modeling on a small
scale takes place. The questions are:

• What data elements exist in input and output?
• What objects hide behind these data elements?
• What relationships exist between the objects that were found?
• Which of the objects that have already been modeled can be used?

For the passenger list in Figure 4.40, the class diagram in Figure 4.41 can be constructed:

 144

Chapter 4

Figure 4.41 Class diagram for the passenger list

Taking into consideration the classes that were already found in the top-down analysis,
the class diagram in Figure 4.42 is constructed:

Figure 4.42 Edited class diagram for passenger list

 145

Modeling IT Systems

Consolidate Class Diagrams—How Does Everything Fit
Together?
In this last work step, if it has not been done yet, the individual class diagrams have to be
consolidated into one cumulative class diagram. Here, inconsistencies have to be
discovered and corrected. Applicable questions are:

• Are there classes in the individual class diagrams that have different names,
but represent the same thing?

• Are there multiple relationships in individual class diagrams that have the
same meaning?

• Are there attributes within classes that are named differently, but that have
the same meaning?

In fact, when all individual class diagrams are being consolidated to one cumulative
diagram, these questions almost pose themselves. Once inconsistencies have been
recognized, they can usually be corrected easily. If you used the classes found during
top-down analysis for modeling the drafted inputs and outputs, overlaps and conflicts
during the consolidation of the individual class diagrams should be limited anyway.

Verify the Class Diagrams—Is Everything Correct?
The completed class diagram in the structural view can be verified with the following
checklist:

Checklist 4.5 Verifying Class Diagrams of the Structural View:

• Is the class diagram complete? This question will be answered in Section 4.4,
Interaction View. In the interaction view, we will show how the class
diagram can be used to answer all required queries of the IT system. If this is
possible, the class diagram is complete.

• Is the class diagram correct? The second question, the question about
correctness, is a little bit more difficult to answer. Our experience shows that
intensive collaborative reading of class diagrams together with the
knowledge carriers will bring to light most mistakes. In addition to that, the
class diagram can be tested for suspect structure patterns. The best way to do
this is with a suitable tool. An introduction to the analysis of structure
patterns would go beyond the scope of the text. An explanation of concepts
and of a tool that helps analyze structure patterns can be found at
http://www.knowgravity.com/eng/value/cassandra.htm.

 146

Chapter 4

4.3 The Behavioral View

4.3.1 The Life of an Object
Persons, objects, or concepts from the real world, which we model as objects in the IT
system, have "lives". Actually, they have two lives; the original in the real world has a
life, and our image, the object, has a life as well. Though these two lives are related, they
do not necessarily follow the same course. Usually, a life starts at birth, creation, or
generation and ends with death, deletion, or destruction. In between, life follows a more
or less ordered course, as illustrated in Figure 4.43:

Figure 4.43 The life of a plane

 147

Modeling IT Systems

To illustrate what we mentioned before we would like to take a closer look at the life of a
plane. The plane that we would like to look at is an Airbus A330-223 of Swiss
International Airlines with the registration number HB-IQI.

• The birth of the Airbus A330-223 (of the original) occurs, depending on the
perspective, at the start of construction or at the first flight.

• The birth of the object of the Airbus A330-223 in the IT system occurs when
information about the plane is recorded for the first time. This can be at the
point of purchase, since the plane could be recorded in the IT system for
planning purposes, or when the plane is delivered. The initiator for the birth
of an object in the IT system is always a mutation event.

Because commercial airplanes are often sold long before construction begins, it is
possible that the birth of the object occurs before the (physical) birth of the plane.

• The death of the original has to do with physical destruction. In the case of
our Airbus A330-233 death occurs at withdrawal or possibly in a plane crash.

• The death of the object occurs, when the object is deleted from the IT system
of Swiss Airline. The initiator for the death of an object in the IT system is
always a mutation event.

Because commercial airplanes are often sold on after a certain period of time, it is
possible that the (logical) death of an object in the IT system occurs before the (physical)
death of the original.

Between birth and death the object is alive in the IT system, that is, it will be read and
changed. It will be read as the result of a query event; it will be changed as the result of a
mutation event (see Section 4.1.4, Query Events and Mutation Events).

As long as reading and modifying objects are not subject to any restrictions, this is not
especially interesting. It can be described in a simple statechart diagram (see Figure
4.44). However, as soon as rules for modification have to be observed, it becomes
important to document these rules somewhere. Here, we are talking about dynamic
business rules (see Section 4.2.3, Static and Dynamic Business Rules). Dynamic business
rules are rules that only apply at a certain point in time, namely when a query event or a
mutation event occurs. The behavior of objects is largely determined by such dynamic
business rules.

Examples of dynamic business rules are:

• A plane cannot be assigned a flight during the time it is in maintenance.
• A plane cannot be withdrawn as long as it is still scheduled for flights.

If we take a closer look at these business rules, we recognize that they refer to certain
events on the one hand, and to states of the object on the other hand:

 148

Chapter 4

• The mutation event assigning a flight to a plane is not permitted in the state
in maintenance of the object plane.

• The mutation event withdrawing plane is not permitted in the state flights
scheduled of the object plane.

• The mutation event starting plane is not permitted in the state in transit of
the object plane.

In other words: For certain events it should be possible to determine if an event is
permitted in the current state of the object, and how the object will react to the event.

Consider the dynamic business rules that could apply to the object plane ticket in
a passenger services system.

In the behavioral view, one statechart diagram per class is used to document which
dynamic business rules have to be followed, and which events are allowed in which states
of objects. In the simplest case, all events are allowed. Figure 4.44 shows a simple
statechart diagram for the class frequent flyer card:

Figure 4.44 Simple statechart diagram for the frequent flyer card

A new object is created by the event «M» New Card (1). An object is deleted by the
event «M» Delete Card (2). In between the object is in the state Normal (3), in which
"all other events" (4) are allowed (in a real statechart diagram the events that are actually
allowed have to be listed by name instead of the event "all other events").

If, however, we add business rules, the statechart diagram becomes more complex. We
would like to amend our statechart diagram with the following rules:

• It has to be possible to suspend and reinstate a frequent flyer card.

 149

Modeling IT Systems

• It is not possible to add any miles to a suspended frequent flyer card.

If we amend our statechart diagram with the mentioned dynamic business rules, the
diagram depicted in Figure 4.45 is created:

Figure 4.45 More complex statechart diagram for the frequent flyer card

A statechart diagram, such as the one of the frequent flyer card in Figure 4.45, shows on
which paths or within which boundaries the life of a frequent flyer card object can
proceed. In the diagram, possible and impossible chains of events can be recognized. A
possible flow is, for instance, «M» new card, «M» add miles, «M> add miles, «M»
add miles, «M» suspend card, «M» delete card.

An example of a sequence that is not permitted is: «M» new card, «M» add miles, «M»
add miles, «M» suspend card, «M» add miles, «M» delete card. The second to last
event, «M» add miles, is not accepted. If the card were unsuspended, miles could be
added to it again.

Consider whether or not the following chains of events are permitted according
to the statechart diagram of the class frequent flyer card in Figure 4.45:

• «M» add miles, «M» add miles, «M» add miles, «M» delete card, «M»
delete card.

• «M» new card, «M» add miles, «M» suspend card, «M» unsuspend card,
«M» add miles, «M» delete card.

• «M» new card, «M» add miles, «M» suspend card, «M» suspend card,
«M» delete card.

 150

Chapter 4

Generally, the life of an object follows such a predetermined course, meaning that the
object has to follow certain rules. Thus, the behavioral view is especially important,
because it is the job of the IT system to ensure that these rules are followed. It is
important that rules are documented in a correct and complete manner, to avoid
misunderstandings on both the user side and the developer side. In a completed IT
system, it should not be possible for a user to delete or modify objects when it is not
permitted by business rules.

In the Hanseatic Merchant's trading office, an object corresponds to a book, for instance,
the order book, and the clerk who is responsible for that book. The statechart diagram of
the object contains the rules that the clerk has to follow when he handles the book. It is
his instruction manual. It states, for example, that an order that has already been
delivered, but that is not yet paid for, cannot be canceled. If you could sit next to the clerk
for a while and watch him do his work, you would be able to see everything that can
happen with an order in the order book. It can, for example, be recorded, modified,
delivered, canceled, or paid for. The statechart diagram of the behavioral view contains
the result of this object observation.

4.3.2. The Elements of the View

Figure 4.46 Behavioral view

The behavioral view, illustrated in Figure 4.46, consists of many statechart diagrams,
each of which shows the behavior of an individual object. Therefore, all the statechart
diagrams combined show the behavior of all the objects of the IT system. However, in
practice, most often not all statechart diagrams are constructed but only those that:

• Contain many or important business rules or
• Describe important objects

 151

Modeling IT Systems

4.3.3 Statechart Diagram

Figure 4.47 Elements of the statechart diagram

In statechart diagrams, as shown in Figure 4.47, we work with the following elements:

Initial State

The initial state represents the source of all objects:

It is not a normal state, because objects in this state do not yet exist.

State

The state of an object is always determined by its attributes and associations. States in
statechart diagrams represent a set of those value combinations, in which an object
behaves the same in response to events:

 152

Chapter 4

Therefore, not every modification of an attribute leads to a new state.

Transition

A transition represents the change from one state to another:

Internal Transition

An internal transition is a transition from one state to itself. This means that the object
handles the event without changing its state:

The events that initiate the internal transition are listed in the lower part of the state
symbol. For instance, a frequent flyer card object in the state normal remains in the state
normal when the event «M» add miles occurs.

Mutation Event

A mutation event is the initiator of a transition from one state to another, or for an
internal transition, where the state remains the same:

Action

An action is the activity of an object that is initiated by an event:

An action describes what the object does in response to the event. This description can be
textual or formalized.

 153

Modeling IT Systems

Guard Condition

A guard condition is a condition that has to be met in order to enable the transition to
which it belongs:

Guard conditions can be used to document that a certain event, depending on the
condition, can lead to different transitions.

Final State

The final state represents the end of an object's existence:

A final state is not a real state, because objects in this state do not exist anymore.

Reading Statechart Diagrams

Figure 4.48 A Statechart diagram with events

The diagram in Figure 4.48 shows all states that the object plane can be in during the
course of its life. Furthermore, it shows the possible transitions between the states and the
events that initiate these transitions.

Each object of the class plane comes from nowhere (1) (initial state) and disappears
(generally) again, into nothing (10) (final state). This usually holds true for all classes,
meaning in most classes you will find an initial state (1) and a final state (10).

 154

Chapter 4

Over the course of its life, an plane (please note: we are here talking about the object
plane and not about a real airplane) can take up three states: ordered (3), in maintenance
(5), and ready for use (7)

The event «M» plane ordered, leads to the occurrence, that from nowhere (1) a new
plane object is created in the IT system (birth). Immediately after it has been created it is
in the state ordered (3).

If the event «M» plane delivered (4) occurs, and the plane is the state ordered (3), it
changes to the state in maintenance (5). If the plane is in any other state than ordered,
nothing happens.

Through the events «M» plane available (6) and «M»plane not available (8), the plane
changes any number of times between the states in maintenance (5) and ready
for use (7).

At the end of its life, the airplane object disappears through the event «M»plane
withdrawn (9) into nothing (10), meaning it will be deleted (death).

Figure 4.49 shows more elements that can occur in statechart diagrams:

Figure 4.49 Statechart diagram with internal transitions and guard conditions.

In addition to the transitions we have already explained, there are also internal transitions.
The event «M» assign plane (1), which occurs when the plane is assigned to a flight,
initiates no transition to another state. Rather, the plane remains in the state ready for use
(2). This constitutes an internal transition; the plane object is in the same state ready for
use (2) before and after the event.

A guard condition allows acceptance or rejection of an event depending on a condition. If
in the state scheduled for maintenance (3) the event «M» complete flight (4) occurs,

 155

Modeling IT Systems

the response of the object depends on the guard condition stated in brackets. If the
condition [more flights] (5) is true (meaning there are more flights assigned to the plane)
an internal transition takes place. The plane remains in the state scheduled for
maintenance (3). However, if the condition [no more flights] is true (meaning no other
flights are assigned to the plane) a transition to the state in maintenance (7) takes place.

Figure 4.50 Statechart diagram

Actions indicate how an object responds to a mutation event. Figure 4.50 shows several
types of actions. An action always follows the slash (1) after the event. The actions
CREATE (2) and SET registration number = (input) (4) follow the mutation event
«M» plane ordered. CREATE indicates that a new object is created; SET registration
number = (input) indicates that a value, which the user entered in the use case, is
assigned to the attribute registration number. Individual actions are divided by a
semicolon (;) (3). In addition to these semi-formal actions, such as CREATE and SET
(see Section 4.3.4, Constructing Statechart Diagrams), actions can also be described in
free text. Following the mutation event «M» assign plane is the action create
relationship to flight (5), which indicates that a relationship to a flight object is created.
If no action is stated for an event (6), this can either mean that the action has not yet been
specified, or that the object merely transitions into another state.

Gaining a deeper understanding of our case study, you will notice that the statechart
diagram in Figure 4.50 will have to be amended with further states and events.

A statechart diagram that documents all possible paths of an object cannot simply be read
in a sequential manner. However, it helps the reader to answer several typical questions:

• What happens to the object if a certain event occurs? Since the answer to this
question in each case depends on the current state of the object, the question
should really be:

 156

Chapter 4

• How does an object in a certain state respond to a certain event?
• Which events are relevant for the object?
• How, meaning through which events, can a certain state be left?
• How, meaning though which events, can a certain state be achieved?

Let's try to answer some of these questions by looking at the statechart diagram of the
class plane in Figure 4.51:

Figure 4.51 Selective reading of a statechart diagram

• How does a plane object in the state ready for use (1) react to the event
«M» assign plane? In order to answer this question, we have to check first if
the event «M» assign plane even exists in the state ready for use (1). The
event is allowed if a transition (an arrow) to another state exists that is
labeled with the event name, or if an internal transition exists (an entry in the
lower part of the state symbol). In our example, a transition to another state
does not exist but an internal transition does. This means: A plane object in
the state ready for use (1) accepts the event «M» assign plane and remains
in the state ready for use (1).

• How does a plane object in the state scheduled for maintenance (2) react to
the event «M» complete flight? In order to answer this question we check
first if the event «M» complete flight even exists in the state scheduled for
maintenance (2). In our example, we have a transition to another state, as
well as an internal transition. Since only one transition is possible, (the plane
object is supposed to be in exactly one definite state and not two) we need
criteria in order to determine which transition is supposed to take place.
Here, we have the help of the guard conditions [more flights] (3) and [no

 157

Modeling IT Systems

more flights] (4). We have to check if there are more flights assigned to the
plane. In our case we assume that no more flights are assigned to the plane.
This means: A plane object in the state scheduled for maintenance (2)
accepts the event «M» complete flight and transitions to the state in
maintenance (5), since no more flights are assigned to it.

• How does a plane object in the state scheduled for maintenance (2) react to
the event «M» assign flight? In order to answer this question, we check first
if the event «M» assign flight even exists in the state scheduled for
maintenance (2). In our example, neither a transition to another state nor an
internal transition exists. This means: A plane object in the state scheduled
for maintenance (2) does not accept the event «M» assign plane.
(The IT system should inform the user about the reason why assigning the
plane did not work.)

• Which events are relevant for a plane object? The answer is: All events that
are contained in the statechart diagram of the class plane, meaning all events
that are accepted in at least one state. All other events are not relevant for the
plane object. This means: The only events relevant for a plane object are
«M» plane ordered, «M» plane delivered, «M» plane available, «M»
plane not available, «M» assign plane, «M» complete flight, «M»
scheduling plane for maintenance, and «M» plane withdrawn.

• Through which event can the plane object leave the state in maintenance
(5)? In order to answer this question, we search all transitions (arrows) that
go from the state in maintenance (5) to another state. Our example has two
such transitions. This means: A plane object in the state in maintenance (5)
can only leave this state through the event «M» plane available, or «M»
plane withdrawn.

• Through which events does a plane object reach the state ready for use (1)?
In order to answer this question, we search for all transitions (arrows) that
lead to the state ready for use (1). Our example has exactly one such
transition. This means: A plane object can only reach the state ready
for use (1) though the event «M» plane available (namely, from the
state in maintenance (2)).

The questions discussed have already shown that in statechart diagrams, what is not
written is just as important as what is written. Events that do not exist in a certain state
are not accepted if the object is in this state. This means that an event that was not
accepted cannot be successfully executed within the IT system. An appropriate error
message has to be generated. Events that do not exist in any state are always ignored. The
following statements can be read from the statechart diagram for the plane object:

• If a plane is delivered it is never directly in the state ready for use, it is
always first in the state in maintenance.

 158

Chapter 4

 159

• A plane ready for use cannot be withdrawn. If this is attempted anyway, the
mutation event fails with an appropriate error message.

4.3.4 Constructing Statechart Diagrams
The following checklist shows the necessary steps for constructing the statechart
diagrams of a class. Subsequently, we will explain the individual steps further.

Checklist 4.6 Constructing Statechart Diagrams in the Behavioral View:

• Identify mutation events relevant for the object—What affects the object?

• Group relevant events chronologically—How does a normal life look?

• Model states and transitions—Which states are there?

• Add actions to the statechart diagram—What do objects do?

• Verify the statechart diagram—Is everything correct?

Identify Mutation Events Relevant for the Object—What Affects
the Object?
First, we have to find out which mutation events are relevant for an object, meaning,
which mutation events initiate actions, a state transition, or both for an object. The
following questions will help you find relevant mutation events for objects:

• Which mutation events lead to the creation or deletion of an object?
• Which mutation events define or modify attribute values?
• Which mutation events create relationships to other objects or end

these relationships?
• Which mutation events result in a state transition of the object?
• Which mutation events from the use case sequence diagram of the external

view affect the object?

The answers to these questions lead to a list of mutation events that are relevant for the
object. Since all mutation events originate from use cases, a new use case has to be found
for each new mutation event that is not already contained in the use case sequence
diagram. An event that is not sent to the IT system within the scope of a use case is never
sent to the IT system. This can lead to the fact that new use cases have to be modeled.

In the case study, we found the following relevant mutation events for the object flight:

Modeling IT Systems

«M» flight defined, «M» flight started, «M» flight landed, «M» flight canceled, «M»
new flight date, «M» flight irrelevant, and «M» flight number irrelevant.

Group Relevant Events Chronologically—How Does a Normal
Life Look?
The obtained mutation events are divided into three groups: events that lead to the
creation of new objects (birth), events that are important during the existence of an object
(life), and events that lead to the deletion of an object (death). The question is:

• To which stage of the life of an object does each mutation event belong?

The mutation events from our case study for the object flight can be grouped as follows:

• Birth: «M» flight defined
• Life: «M» flight started, «M» flight landed, «M» flight canceled, and «M»

new flight date
• Death: «M» flight irrelevant and «M» flight number irrelevant

Model States and Transitions—Which States are There?
As a first draft, you can always construct a very simple statechart diagram, consisting of
the initial state, a normal state, and the final state. Figure 4.52 shows such a diagram for
the object flight:

Figure 4.52 Simple statechart diagram

Starting with this simple diagram, the obtained mutation events can be added. Here, the
following questions should be asked for each event:

• Is the mutation event permitted in all cases, meaning, for all states, or are
there states in which the mutation event is not permitted? The various cases
that decide if a mutation event is permitted are depicted as states. Behind

 160

Chapter 4

these cases are the dynamic business rules, which we already mentioned in
Section 4.2.3, Static and Dynamic Business Rules.

• In which state is the object after the occurrence of a mutation event?
The new state depends on the state of the object before the occurrence of
the mutation event.

• Does the transition to a new state depend on certain conditions? We can use
guard conditions to document that a mutation event—depending on a
condition—can lead to different new states (see Figure 4.49).

For instance, in our case study, the event «M» flight started is permitted only if the
flight is not already in the state in transit. When all questions have been answered for all
mutation events, a statechart diagram such as the one in Figure 4.53 has been created:

Figure 4.53 Statechart diagram of the class "Flight"

Add Actions to the Statechart Diagram—What do Objects Do?
After the mutation events of an object have been found and modeled, their consequences
are specified in form of actions. The following questions have to be answered:

• Where are actions needed for dealing with attribute values?
• Where are actions needed for dealing with relationships?
• Where else are actions needed (activating queries, calculations)?

 161

Modeling IT Systems

The required actions are inserted into the statechart diagram. In the level of detail that we
are using for statechart diagrams, it is not a problem to describe actions informally, in
plain English. However, our practical experience has shown that a certain level of
formality works better, where keywords are used for frequent actions:

• CREATE/DELETE: Creates or deletes an object of a class (can also be
omitted, since it is implied).

• SET <attribute> := ...: Sets the value of an attribute.
• TIE TO <object>/CUT FROM <object>: Establishes relationship to another

object or breaks the relationship to another object.

Figure 4.54 shows the statechart diagram for the class flight from the case study
with actions:

Figure 4.54 Statechart diagram of the class "Flight" with actions

Verify Statechart Diagram—Is Everything Correct?
The completed statechart diagram can be verified with the following checklist:

 162

Chapter 4

 163

Checklist 4.7 Verifying Statechart Diagrams of the Behavioral View:

• Is there a formulated final state, or does the object live eternally without a
death event?

• Is there an (indirect) transition from every state to the final state?

• Is there a differentiation, if it is relevant, between logical death (freezing of the
object) and physical death (deletion of the object)?

• Does at least one specific event exist for each state, to which a specific response
occurs only from this state? If not, this state should be corrected.

• If two or more transitions that are initiated by the same event leave the same state,
the guard conditions must be disjunct (meaning they can't be true at the same time).

4.4 Interaction View

4.4.1 Seeing What Happens Inside the IT System
In most cases, the mere highlighting of structures is not sufficient for understanding a
system. Even with a detailed plan of an oil refinery, it is difficult to understand how oil is
converted into gasoline. Only when the process (flow) of refining is explained does it
become understandable. Identifying flows is a powerful tool for explaining something.
This is also true for models of the IT system. The static view of classes alone is not
enough to understand an IT system. For instance, what happens in the IT system when a
passenger checks in? Which flows are being processed? Which objects are affected?
These questions are answered by the interaction view.

Just as important is the fact that modeling the interaction view contributes much to the
verification and completion of the static view. By having to deal with class diagrams
from modeling queries to the level of individual attributes, it is ensured that the class
diagram meets all requirements. Which aspect is important depends on how complete the
class diagram is at the point of modeling the interaction view.

• A fairly complete class diagram is verified by modeling the interaction view.
• An incomplete class diagram is enhanced and completed by modeling the

interaction view.

A close relationship exists between the interaction view and use cases. Use cases show
the external view. The IT system is viewed as a black box. In the interaction view, this
black box is opened and what occurs inside the IT system is revealed. The interaction

Modeling IT Systems

view illustrates which objects are needed for the processing of a certain task and how
objects communicate with each other. UML uses two diagram types to model the
interaction view: the communication diagram and the sequence diagram. In the course of
this section, we will explain these diagrams further:

Figure 4.55 Hierarchy of diagrams

Figure 4.55 shows the relationship between use cases and a communication diagram of
the interaction view:

• At the top you can see a use case diagram with the use case boarding.

 164

Chapter 4

• The use case boarding is described in a use case sequence diagram.
Essentially, this description consists of a chain of query events and
mutation events.

• The flow of each query event is described in a communication diagram.

With mutation events the process is analogous: their flow has been described in
sequence diagrams.

In order to correctly understand diagrams of the interaction view, we would like to show
here how an object-oriented system works on the inside. A system functions through
objects, which either perform work themselves or delegate work to other objects. This is
exactly how the IT system is modeled with UML. Here, it is not important whether or not
the IT system is implemented with object-oriented technology. The IT system is modeled
at a high level of abstraction, which is disconnected from design and programming:

Figure 4.56 Cooperation of objects

Figure 4.56 shows the cooperation of three objects in an IT system: a flight number
object (1), a flight object (2), and a plane model object (3). The task is to delete a flight
number (e.g. SR9011) in the IT system.

In our model, from the use case canceling flight number a mutation event (4) is sent to
the flight number object (1). Now the flight number object can become active (5), for
instance, it can verify if the deletion is possible. It can also forward (6) (8) the event to
other objects (2) (3) that need to become active (7) (9).

Exactly this kind of cooperation between objects is documented in communication
diagrams and sequence diagrams of the interaction view. Here, the focus is on involved
objects and sent events. What occurs within the objects, meaning the behavior of
individual objects (the modification of attribute values, calculations, deletion of objects,
etc.), cannot be seen in these diagrams. The behavior of objects is defined in the
behavioral view. The behavioral view shows for each object what exactly happens when
a certain event reaches that object.

 165

Modeling IT Systems

In the Hanseatic Merchant's trading office, the interaction view would be documented as
follows: You go to secretary Hildebrand and watch him perform a task, for example,
cashing a bond. Here, you record in which order he goes to the individual clerks with
their books, in order to ask them something (query) or to order them to change something
in the book (mutation).

The cooperation of objects shown in Figure 4.56 is based on the mechanism of sending
events, meaning that objects can send each other events and therefore, initiate certain
events. However, in order to send an event to a particular object, the object has to be
known. If, for example, an event is supposed to be sent from a ticket object to the
corresponding customer object, this is only possible if the ticket object knows what its
customer object is. Exactly this information is documented in the class diagrams of the
static view:

Figure 4.57 Associations in a class diagram

The excerpt from the class diagram shown in Figure 4.57 states that a customer (1) owns
(4) zero, one, or several (2) tickets (3), and that a ticket is owned by exactly one (5)
customer (see Section 4.2.5, Class Diagram). For the objects that are generated from the
classes of this diagram this means:

• Each customer object "knows" the ticket objects that are assigned to it.
• Each ticket object "knows" the coupon objects that are assigned to it.

Objects that are connected to each other know each other. This is the prerequisite for it to
be possible for events to be sent. Normally in the interaction view events are sent along
associations in class diagrams. An alternative is to attach the identification of an object to
which an event is supposed to be sent as an event parameter.

The UML diagrams that we use to illustrate the interaction view, sequence diagrams, and
communication diagrams, are combined under the generic term interaction diagrams.
Both diagrams allow for a similar view of the IT system. Both diagrams show the flow of
cooperation between objects, namely their interactions. However, the two diagrams differ
in the following points:

 166

Chapter 4

• In sequence diagrams, a chronological sequence becomes immediately
apparent. A vertical time axis indicates a clear sequence from top to bottom.
Communication diagrams do not have this time axis. Possible sequences
have to be documented by numbering events.

• Communication diagrams are more similar to the static class diagram. Class
names and attributes can be shown. This makes it possible that certain flows,
such as reading of information, can be documented in a simple manner. In
sequence diagrams, we cannot illustrate which attributes are to be read from
an object.

• Communication diagrams work well to show parallel paths of interactions.
Although this is also possible with sequence diagrams, sequence diagrams
easily become too complex.

These differences are the reasons behind our selection of diagram types. Communication
diagrams are especially suited to the documentation of query events, in which attributes
are read and where objects do not perform any further work. Sequence diagrams are
better suited to the documentation of mutation events, in which objects perform
substantial work, and in which sequence is rather important.

4.4.2 Elements of the View

Figure 4.58 Interaction View

The interaction view of IT systems, illustrated in Figure 4.58, consists of two elements:

• Communication diagrams document the flow of queries within the IT
system. Each query is part of a use case.

• Sequence diagrams document the flow of mutation events within the IT
system. Mutation events are also part of a use case.

Both diagrams show how objects of the IT system cooperate in the processing of events.
In this way, each query event from the use cases becomes its own communication
diagram, and each mutation event becomes its own sequence diagram.

 167

Modeling IT Systems

In reality, we do not document every flow of every query and every mutation. The effort
for this would be too much. We only document those flows that are especially important
or complex. The following considerations should help making the right choices:

• For each query event we have to verify if all necessary classes, attributes, and
associations are present in the class diagram. For simple queries it can be
sufficient to check off the necessary data elements on a printout (see Section
4.4.5, Constructing Communication Diagrams). For such queries a
communication diagram is not needed. This work step further helps to verify
or complete class diagrams.

• Queries that are very important to the user, or that are very complex, should
be documented in a communication diagram.

4.4.3 Communication Diagram

Figure 4.59 Elements of the communication diagram

In communication diagrams, as illustrated in Figure 4.59, we work with the following
elements:

Actor "Somebody"

Actor "somebody" represents any actor from a use case diagram. Since the query event
that is documented in the communication diagram can be contained in several use cases,
and since these use cases have different actors, we use the actor "somebody":

 168

Chapter 4

In this way, we do not have to commit ourselves to a particular actor. (In communication
diagrams actors can also be omitted altogether. In our experience, however, this makes
the diagrams hard to understand.)

Query Event

A query event represents a query for information:

Normally, a query event from a use case is sent to the IT system, for example, a query for
detailed information about a ticket.

Parameter

Parameters allow for attaching information to an event, e.g., the number of a ticket, so
that the correct ticket can be read:

Iteration

An iteration indicates that all objects to which an association exists receive the event, for
instance, all the coupons of a ticket:

Object and Entry Object

The object represents an object of a class in the static view, for instance, "Henry
Johnson", who is an object of the class passenger:

 169

Modeling IT Systems

The entry object is the first object that receives a query event from an actor. At the entry
object the interaction path begins.

Reading Communication Diagrams
Figure 4.60 shows a communication diagram with the actor somebody and the objects
ticket, customer, coupon, flight, and flight number. The diagram documents the flow
of the query «Q» coupon details.

Starting on the left, the communication diagram is read as follows: Actor somebody (1)
sends the query event, «Q» coupon details (2) to an object of the class coupon (3).

Actor "Somebody"

In our IT system model, use cases are the source of events. What is documented in this
communication diagram occurs in the context of a use case. It has proven to be of value
to use the undefined actor somebody (1) instead of the actor of the use case. The flow of
an event that is described in the communication diagram can occur in various use cases
with different actors. The actor somebody (1) substitutes for the actor of the use case
from which the query event «Q» coupon details (2) stems:

Figure 4.60 Communication diagram

 170

Chapter 4

The coupon object (3) provides its attributes—date of redemption, class, and standby
(4)—and forwards the query event «Q» coupon details (5) to two other objects: to
the flight object (6) that belongs to the coupon, and to the ticket object (7) that belongs
to the coupon.

These two objects, in turn, provide certain attributes (8) and then forward the query event
«Q» coupon details (9, 10). In this way, the communication diagram can be used to
document the "collection" of attributes as a reaction to a query event.

Unlike sequence diagrams, communication diagrams do not have time dimensions.
Objects can be spread across the diagrams in any way. An order in which events are
processed can only be partially seen from them:

Figure 4.61 Sequence in communication diagram

The following statements can be made about the sequence in the diagram in Figure 4.61
(the numbers in the descriptions were intentionally assigned to avoid implying any
particular order):

• First, the event is sent from the actor somebody to the coupon (5).
• After that a sequence is not defined:

o On the one hand, the event goes to the flight (1) and
subsequently to the flight number (3).

o On the other hand, the event goes to the ticket (7) and
subsequently to the customer (9).

The event flow branches at the coupon, without noting an order. In most cases, order is
unimportant anyway. However, should order be important, UML allows numbering the
sequence of events in a communication diagram.

Iteration indicates that all reachable objects and not just one particular object
are addressed:

 171

Modeling IT Systems

Figure 4.62 Iteration in communication diagram

We can read in Figure 4.62 that the query event «Q» pieces of luggage (1) is first sent to
a coupon object (2) and from there is sent to all (3) (iteration) connected pieces of
luggage (4). The iteration is documented with an asterisk (*) in front of the event name.

4.4.4 Sequence Diagram

Figure 4.63 The elements of sequence diagrams

In sequence diagrams, as shown in Figure 4.63, we work with the following elements:

Comment

The flow of a mutation event is documented with a combination of textual description
and a sequence diagram:

 172

Chapter 4

In comments, the flow logic is shown on the topmost level.

Actor "Somebody"

The actor "somebody" represents any actor from the use case diagram. Since the mutation
event that is documented in a sequence diagram can be contained in several use cases,
and since these use cases can have different actors, we use the actor somebody:

This way, we do not have to decide on one, specific, actor.

Mutation Event

A mutation event is an event that is sent from the use case, so normally from the user
interface, to the IT system:

The goal of the event is to mutate information in the IT system, meaning to create,
change, or delete something.

Object

An object represents any object, meaning an undefined object of a class of the IT system:

Iteration

An iteration indicates that all objects to which a relationship exists receive the event, for
example all the flights of a flight number:

 173

Modeling IT Systems

 174

Chapter 4

Lifeline

The lifeline of an object represents a life (over the course of time). The rectangle,
meaning the "thick part" of the lifeline shows when the object is active:

(The aspect of activation is not important for our use of sequence diagrams.)

Reading Sequence Diagrams
Figure 4.64 shows a sequence diagram with objects of the classes flight number, flight,
and plane model. The diagram, as a whole, documents the flow of the mutation «M»
flight number irrelevant:

Figure 4.64 A sequence diagram

The diagram can be read from top to bottom. The flow starts with the actor (1) sending
the mutation event «M» flight number irrelevant (2) to an object of the class flight
number (3).

The background to this (just like the communication diagrams), is that the use case is
the source of the mutation event. In the sequence diagram, the actor (1) represents the
use case.

 175

Modeling IT Systems

How the event is processed within the flight number object cannot be seen in the
sequence diagram. Clues can only be found in the comment (8). An exact description of
the processing can be found in the statechart diagram (see Section 4.3, The Behavioral
View) of the class flight number.

Further, it can be read in the diagram that the object of class flight number (3) forwards
the mutation event «M» flight number irrelevant (4) to an object of the class plane
model (5). Again, the processing of the event within the object remains invisible. The
processing of the events is completed in the plane model object (5), and the control goes
back to the sender of the event, so to the flight number object (3). No separate event
arrow is inserted for the "reply", after processing is completed.

Finally, the mutation event «Q» flight number irrelevant (6) is sent to the object of
class flight (7). Since it is possible that a flight number objects knows many flight
objects (this information can be taken from the class diagram of the static view), the
mutation event is sent to all flight objects of the flight number object. The iteration
asterisk * at the event (1) in the sequence diagram (Figure 4.65) marks this process.
However, we recommend annotating the diagram with an additional comment in the left
margin (2), in order to make the diagram easier to read:

Figure 4.65 Control flow in the sequence diagram

Figure 4.65 shows the control flow in a sequence diagram. We use the sequence diagram
only to document mutation events. UML provides many more possibilities for the use of
this diagram type. However, our practical experience has shown that less is often more,
and that we can sufficiently communicate the essential aspects of the interaction view
with this restricted use of sequence diagrams.

4.4.5 Constructing Communication Diagrams
The following checklist shows the necessary steps for constructing a communication
diagram per query event from the use cases. Subsequently, we will explain the individual
steps further.

 176

Chapter 4

Checklist 4.8 Constructing Communication Diagrams in the
Interaction View:

• Draft query result—What do we want?

• Identify involved classes—Which classes do we need?

• Define initial object—Where do we start?

• Design event path—Where do we go?

• Amend event path—Exactly which objects do we need?

• Identify necessary attributes—What exactly do we want to know?

• Verify the communication diagram—Is everything correct?

Draft Query Result—What do We Want?
The starting point for modeling a query event is the expected result. Generally, the
desired result is a display on the monitor or a printed document, for instance, a list or a
receipt. Figure 4.66 shows a window from the prototype of an IT system, and Figure 4.67
a section of a boarding pass.

For each query event to be documented in a communication diagram we need to know
what the result is supposed to look like. The following questions have to be asked:

• How (exactly) is the result of a query supposed to look?
• Which elements should the results contain; which of them are fixed texts and

which of them are data elements?

Figure 4.66: Interface prototype from the passenger check-in system

 177

Modeling IT Systems

We recommend that you sketch the result. For each element of the sketch you should
indicate whether we are dealing with information from the IT system or a fixed element,
for example, a picture or field labels. In a screen form, field labels normally do not come
from information in the IT system. However, if the IT system supports several languages,
it is possible that the field labels are taken from information in the IT system. Another
example is the boarding pass, for which a pre-printed form is used, meaning that the field
labels already exist. The pass merely has to be completed with information read form the
IT system. In Figure 4.67, the fields of the boarding pass that receive information from
the IT system are circled.

The boarding pass from our case study contains the following data elements:

ECONOMY, GRAESSLE, PATRIC, MR,ZURICH, HERAKLION, EDW761, Y,
29MAY0745, B38, 0715, NO, 2, and 34.

The goal of the modeling of the communication diagram is to show how the values listed
can be derived from the class diagram.

Figure 4.67 Part of a boarding pass

Identify Involved Classes—Which Classes Do We Need?
From the sketched result, we can determine the necessary classes from the class diagram.

 178

Chapter 4

Figure 4.68 Marked (simplified) class diagram

The questions are:

• From which classes is information supposed to be read? We need to
determine from which attributes and classes each information element in the
sketched result is calculated.

 179

Modeling IT Systems

• Which classes are needed for the access path? Classes are either needed on
the basis of their attributes, which are necessary to generate query results, or
on the basis of their relationships to other classes.

• Which classes are missing in the class diagram? Depending on the level of
completion of the class diagram, it could happen that new, additional classes
have to be modeled.

In a first draft, the needed classes can simply be marked by hand on a printout of the class
diagram. In Figure 4.68, the classes needed to generate the boarding pass from Figure
4.67 are marked.

Define Initial Object—Where Do We Start?
The query begins with the initial object. The initial object can be a class (in its function as
a set) or a particular object of a class. If a certain object is addressed directly, for
instance, a certain customer object, or a certain ticket object, this object has to be known
before the query event is sent. If a class is addressed, parameters can be attached to the
query as selection parameters, so that a particular object can be chosen. All further
needed classes have to be accessible from the initial object through connections. The
concrete questions are:

• Which is the first object the event is supposed to go to?
• Which object do I know already?
• Where do I start collecting information?

To generate a boarding pass in our case study, we begin with the coupon of the plane
ticket for which we want to generate the boarding pass.

Design Event Path—Where Do We Go?
Starting from the initial object, we determine a path through which the needed objects
can be reached. The question is:

• Through which path can I reach all needed objects in the class diagram?

For a first draft, this path can, in turn, be marked by hand on the printout of the class
diagram. Figure 4.69 shows the completely marked class diagram for the query event
generating a boarding pass:

 180

Chapter 4

Figure 4.69 (Simplified) Class diagram with event path

In many cases, it is sufficient to mark the event path by hand in the class diagram. With
that, you have documented that the query, in our case generating a boarding pass, is
possible with the class diagram. In this case, it can be done without modeling a
communication diagram. However, for complex or important queries, we recommend
that you generate a communication diagram for the query, on the basis of this marked
class diagram. All marked classes are transferred to this, and the query event is inserted
along the event path. Figure 4.70 shows the result of this work step:

 181

Modeling IT Systems

Figure 4.70 First draft of the communication diagram

Amend Event Path—Exactly Which Objects do We Need?
The event path has to be filled out with selections and iterations. Selections and iterations
are used if along a path several objects of one class can be reached from another class,
meaning, when the multiplicity of an association in the class diagram has an upper limit
larger than 1 (usually *). In such cases we need to state whether all objects should be
iterated, or individual objects should be selected on the basis of certain criteria. The
question is:

• If I encounter more than one object along my path, do I then need all of them
(iteration), or do a need a particular one (selection)?

Figure 4.71 Selection or iteration?

 182

Chapter 4

In our case study, in Figure 4.71 we might encounter several (2) pieces of luggage (3)
along the event path originating at coupon (1). We need all pieces of luggage for the
boarding pass, because we want to print the number and total weight on the pass.
Therefore, we have to iterate.

This is documented in the communication diagram in Figure 4.72 by the inconspicuous
asterisk in from of the event name (4):

Figure 4.72 Communication diagram with iteration

Identify Necessary Attributes—What Exactly Do We Want to
Know?
In the last step, we document the attributes that are needed to answer the query. The
questions are:

• Which attributes are needed for the query result?
• Which attributes are missing in the class diagram?

Finally, all data elements from the drafted query result must be able to be traced back to
the attributes in the class diagram of the static view. In the simplest case, this can be
done, again, by marking attributes on a printout of the class diagram. When the
communication diagram has been modeled, attributes can be inserted (Figure 4.73):

 183

Modeling IT Systems

Figure 4.73 Communication diagram with attributes

Verify the Communication Diagram—Is Everything Correct?
The completed communication diagram can be verified with the following checklist:

Checklist 4.9 Verifying Communication Diagrams in the Interaction View:

• Can the drafted query result be constructed with the communication
diagram?

• Do the event paths in the communication diagram flow along the associations
in the class diagram?

• Does it always say where it is needed according to the class diagram, if we
are dealing with an iteration or selection?

 184

Chapter 4

 185

• If the answer to all these questions is yes, most of the possible sources of
mistakes have been eliminated.

4.4.6 Constructing Sequence Diagrams
The following checklist shows the necessary steps for constructing a sequence
diagram per mutation event from the use cases. Subsequently, we will explain the
individual steps further:

Checklist 4.10 Constructing Sequence Diagrams in the Interaction View:

• Identify involved classes—What is affected by mutation events?

• Determine initial object—Where does the mutation event go first?

• Propagate events—How is the mutation event forwarded?

• Specify event parameter—What do objects have to know?

• Verify the sequence diagram—Is everything correct?

Identify Involved Classes—What is Affected by Mutation
Events?
The classes that a mutation event affects have to be identified. This occurs on the basis of
statechart diagrams (see Section 4.3, The Behavioral View). The questions are:

• Which classes are already affected by a certain mutation event? To answer
this question you will have to look up which statechart diagrams contain the
mutation event. If the mutation event is present in a statechart diagram of a
class, this class is affected by the mutation event, meaning that the mutation
event has to be sent to this class.

• Which other classes are affected by the mutation diagram? It could be that
there are classes that are affected by the mutation event, but which are not yet
present in statechart diagrams.

The first question can easily be answered. Most CASE tools can generate, for instance, a
list of classes already affected. In order to find further affected classes, look at the class
diagram and think whether anything has to happen with the objects of each class when
the mutation event occurs. At the least, you should take another look at those classes that
are located close to some of the classes already affected on the class diagram. Of course,
if additional classes are found, their statechart diagrams have to be updated by inserting

Modeling IT Systems

the mutation event. In our case study, the mutation event «M» record piece of luggage
affects the classes coupon and piece of luggage, as shown in Figure 4.74:

Figure 4.74 Affected classes in the sequence diagram

Determine Initial Object—Where does the Mutation Event
go First?
A mutation starts with the initial object. The initial object can be a class (in its function as
a set) or a particular object of a class. If a certain object is directly addressed, for
example, a certain flight object or a certain ticket object, this object has to be known
before the mutation event is sent. If a class is addressed, parameters can be attached to the
mutation event as selection parameters, so that a particular object can be chosen. All
further needed classes have to be accessible from the initial object through connections.
The concrete questions are:

• Which is the first object the event should go to?
• Which object do I know already?
• Where do I start collecting information?

In our case study, during the mutation event «M» record piece of luggage, the coupon
object is already known, since the entire check-in occurs for on a particular coupon. The
new piece of luggage object that is to be recorded does not yet exist. Therefore, the initial
object is the coupon object.

Propagate Events—How is the Mutation Event Forwarded?
Starting from the initial object, a sequence is determined, in which the affected objects
receive the mutation event. The question is:

• In which order do I reach all affected objects in the class diagram?

Mutation events are forwarded along the relationships in the class diagram to all classes
that are affected by the mutation event. In the class diagram of the case study an
association exists from the coupon to a piece of luggage, along which a mutation event
can be sent, as illustrated in Figure 4.75:

 186

Chapter 4

Figure 4.75 Events in a sequence diagram

Specify Event Parameter—What do Objects have to Know?
The information required to process the mutation event is forwarded as parameters of the
event. The question is:

• Which information do the objects need in order to process the mutation?

In order to generate a new piece of luggage object in our case study, we need its weight.
Therefore, weight will be forwarded as an event parameter, as shown in Figure 4.76:

Figure 4.76 Event parameter in a sequence diagram

Verify the Sequence Diagram—Is Everything Correct?
The completed sequence diagram can be verified with the following checklist:

Checklist 4.11 Verifying Sequence Diagram in the Interaction View:

• Are all classes affected by the mutation event listed in the sequence diagram?

• Is the mutation event forwarded along an association in the class diagram?

If the answer to both these questions is yes, the largest sources of mistakes have been
eliminated.

 187

5
Modeling for System Integration

System Integration was long one of the least considered areas within information
technology. Only recently, with the emergence of electronic business and Enterprise
Application Integration (EAI), it is starting to receive more attention. Even though
system integration has existed since the first two IT systems were connected by an
interface, only in the last couple of years have standards for the fields of design,

 method, and implementation became established. This chapter illustrates how UML
 can be used to model messages and processes for the exchange of these messages.

We understand system integration to be the embedding of existing and new IT systems
into an existing IT environment. Embedding can take place in-house, where we generate
interfaces to other IT systems within the organization. Embedding can also span several
organizations, where we connect the IT systems of different organizations. Whether the
IT systems that need to be integrated in existing infrastructure and processes are within
the organization (in-house) or external plays a minor role from a modeling perspective.

Integration of an IT system requires knowledge about the environment of the IT system
and its borders. Since an IT system that needs to be integrated has to be embedded into a
business environment, the surrounding business processes have to be known. The basis
for this is the business system model, which we constructed and described in Chapter 3,
Modeling Business Systems. In order for an IT system to cooperate efficiently with other
IT systems, interfaces have to be generated—to in-house IT systems, as well as to the IT
systems of other organizations.

In this chapter, we will discuss how to model the messages that are exchanged between
the various IT systems, and the processes that are necessary to exchange these messages.

Modeling for System Integration

5.1 Terminology of System Integration
Interfaces
Communication between IT systems occurs through interfaces. Therefore, an interface is
the basic element of system integration. Through an interface, an IT system (the sender)
sends information to another IT system (the receiver). A particular IT system can be both
a sender and a receiver.

Messages
messagesIT systems that are connected via interfaces exchange . A message is sent by

the sender IT system, with the expectation that receiving the message—immediately or
later—initiates an activity in the receiver IT system. For the receiver IT system, each
message received constitutes an event to which it responds.

For instance, if an invoice is sent in an electronic format, this event is an invoice receipt
for the receiver of the invoice. After the receipt of the invoice, the receiver has a certain
time frame to pay the bill. The receiver IT system has to confirm the receipt of the
invoice and possibly activate another IT system, for example, an accounting system that
records the balance.

Messages can be loaded with additional information that is necessary to process the
activities of the receiver system. Generally, this information is structured data with
defined semantics, such as invoice data or a passenger list. In UN/EDIFACT, for
instance, this information is called reference data.

Furthermore, messages have assigned control and routing information, for example,
sender address, receiver address, meta-information about the content of the message, or
checksums. We can also describe this information as the 'packaging' of a message.

There are various alternatives to transform these three components: event, information,
and control and reference data, into a message that can be exchanged between IT
systems. Control information can, for instance, be 'hidden' in interface programs, or can
be sent as additional data. An event can be a program call, or it can be transferred in a file
that contains further message data.

In UN/EDIFACT messages, which are also referred to as business documents, all three
components are contained in one single transfer unit (mainly data): event (message type),
information (reference data), and control information (service segments).

Messages that are sent in XML format are also called documents in XML. They contain
at least reference data and meta-information. A great advantage of XML compared to
UN/EDIFACT is that each XML message carries with it a reference to its structural
description. This has the advantage that everyone can read the XML message.

 188

Chapter 5

 189

Enterprise Application Integration
Enterprise Application Integration (EAI) incorporates methods, concepts, and tools for
the classification, connection, and coordination of applications within organizations. The
goal is integrated business processing by a network of in-house applications of different
generations and architectures. This network constantly changes through upgrades or the
adding of new applications, through modified technology and other influences.

One of the prerequisites for reaching this goal is the documentation of business processes,
of the application network, of the individual applications, and their interfaces, which
should be as unified in form and display as possible.

UML is almost perfect for this task. (OMG has created a profile UML Profile for
Enterprise Activation Integration for this, which explains the technical implementation
(conversion etc.) on the basis of UML.)

Electronic Data Interchange
The term Electronic Data Interchange (EDI) is a synonym for the standardized
exchange of business documents (order, delivery, invoice, shipping information, etc.)
between the IT systems of organizations and institutions, such as suppliers or the customs
authority. Business documents are also referred to as messages.

The generic term EDI today includes older standards such as Society for Worldwide
Interbank Financial Telecommunication (SWIFT), UN/EDIFACT, and ANSI X12.
With the development of the Internet, the new standard XML was created. Inter-company
data exchange, however, is only one aspect of XML; the functionality of XML goes well
beyond this. Because of this, XML does not clearly fall under the generic term EDI.

UN/EDIFACT
United Nations/Electronic Data Interchange for Administration, Commerce, and
Transport (UN/EDIFACT) is an international standard for electronic data exchange in
administration, economics, and transportation, which includes rules and message types.
Within the framework of United Nations/Economic Commission for Europe
(UN/ECE), the UNO aimed at supporting global commerce with electronic tools. In
several places throughout this chapter, we will refer to UN/EDIFACT. There are several
reasons for this:

• UN/EDIFACT provides the option to depict complex hierarchical message
structures. It also contains all three components of a message in one transfer
unit: event, reference data, and control information. This makes
UN/EDIFACT, conceptually, one of the most sophisticated standards in
today's world.

Modeling for System Integration

• The UN/EDIFACT standard is available on the Internet and can be used free
of charge. (All specifications, regulations, and message types for the
UN/EDIFACT standard can be downloaded from http://www.unece.org/
trade/untdid/welcome.htm.)

XML
The functionality of eXtensible Markup Language (XML) largely exceeds the field of
EDI. EDI is only one of many areas of application of XML and is referred to as
XML/EDI. XML can be used within as well as between organizations.

The XML standard is standardized and published by World Wide Web Consortium (the
W3C http://www.w3.org). XML includes many other standards, such as eXtensible
Stylesheet Language (XSL) for the representation of data or Xlink for standardized
links. (The XSL family is a collection of recommendations on how XML documents
should be transformed and formatted, consisting of three parts: XSLT, Xpath, and XSL-
FO: see http://www.w3c.org/style/XSL. With the eXML Linking Language contents
from various documents can be linked to each other. This will be an essential part of
future system integration tools.) XML evolved much quicker than UN/EDIFACT did,
and the use of XML as format for data exchange became accepted in a 'bottom-up'
manner; the call for standards came much later.

5.2 Messages in UML
In the UML sequence diagram, messages are illustrated with an arrow symbol, together
with the name of the message and its parameters (if present). In this way, in UML a
message is categorically divided into two parts:

• The name of the message specifies the event.
• The arguments of the message contain the information that is attached to the

message, so that the receiver can perform the necessary activities. Control
information belongs in this category as well.

We refer to the information that is exchanged as a business object, if the information:

• Is coherent
• Is structured
• Covers the requirements for a certain activity (e.g., invoice, passenger list)
• Is self-contained (no in-house reference keys, etc.)
• Outlives individual interactions

In the UML model of system integration, business objects are structured information sent
as arguments in a message from a sender to a receiver.

 190

Chapter 5

5.3 One Model—Two Views
For the integration of IT systems, we need to define which information needs to be
exchanged and how it will be exchanged. For this reason, the system integration model
consists of two different views: the process view and the static view.

In system integration, the main focus is on process steps that are significantly important
for the interaction, exchange of messages, between IT systems and/or involved parties.
Nevertheless, often process steps are described that do not necessarily exchange
messages, but are important for the complete comprehension of the process. An example
of this could be the unloading of the luggage of passengers who did not board the
airplane (action unload luggage in the activity no boarding).

static view

 191

The describes the content and structure of the business objects that are
exchanged between partners.

The views we use for the system integration model and the UML diagrams within each
view are illustrated in Figure 5.1:

Figure 5.1 Process view and static view of system integration

Modeling for System Integration

5.4 Process View
process view activitiesThe depicts those that an IT system passes through when it

exchanges messages with other IT systems. Purely technical processes that are necessary
for communication between IT systems, such as dial-up or other connection to the
Internet, are not the subject of the process view of our model.

Try to answer the following questions:

• Which activities are we concerned with in the process view? Which
interactions exist in our case study between the passenger services
system and other IT systems?

• Are these activities only interesting for system integration?

• Have these activities already been described anywhere?

5.4.1 The Business System Model as Foundation
The exchange of messages between IT systems occurs on the basis of business events.
Therefore, the exchange of messages is an activity of a subordinate business process.

In the business system model from our case study, the IT system that needs to be
integrated is located within the business system passenger services (see Figure 5.2):

Figure 5.2 Integration of IT system

 192

Chapter 5

 193

From the business processes in and around the passenger services business system, all of
those business processes that require an interaction between the IT system of our business
system and other IT systems are selected. The diagrams constructed for various views of
the business model can be used as the foundation for integration.

For the integration with IT systems that belong to the same business as the IT system
under consideration in our case study passenger services, we use diagrams of the internal
view of the business system.

For interactions with IT systems that are located outside the business system, we use the
diagrams of the external view of the business system. Here, it is not important whether
the external IT systems belong to the same organization or not. For details of the process
we can refer to the diagrams of the internal view of the business system.

In our case study we selected two interfaces:

• Passenger list to customs: For each flight a passenger list is sent to customs
at the destination airport. Each passenger and each crew member is
individually mentioned on this list. The transfer of the data takes place
through the sending system some time between departure of the plane and
arrival at the destination airport. This enables customs at the destination
airport to verify the data and to make timely decisions regarding clearance of
passengers and crew.

• No boarding: Ten minutes before estimated time of departure (ETD), the
procedure no boarding is initiated. This means that ten minutes before EDT,
triggered by a timer, baggage transportation requests a passenger list for the
corresponding flight. On the passenger services side, the desired passenger
list is generated on the receipt of this event. This list specifies all passengers
who have not yet boarded the airplane. Once all the luggage of the
passengers specified on this list has been unloaded, passenger services
receive the passenger list back from baggage transportation, with the
appropriate confirmations.

Figure 5.3 shows the use case diagram from Chapter 3, Modeling Business Systems,
(Figure 3.14), which forms the base diagram for the two marked business use cases.

Both examples include activities from the business use case requesting passenger list.
The first example, passenger list to customs, describes the interaction between our
business system passenger services and the actor customs of destination airport, which
is marked on the business use case diagram:

Modeling for System Integration

Figure 5.3 Use case diagram of the business system "Passenger Services"

The second example describes the interaction between our business system passenger
services and the actor baggage transportation , which is also marked on the business use
case diagram.

For the description of the process view between involved IT systems, we use the activity
diagram and the sequence diagram. For the explanation of the activity diagram and the
sequence diagram and for the instructions on reading diagrams we use the example
passenger list to customs; for the construction of the diagrams, we use the example
no boarding.

 194

Chapter 5

5.4.2 Elements of the View

Figure 5.4 Process View

Activities that have to be carried out for the exchange of messages between IT systems
can be illustrated well with sequence diagrams and activity diagrams (see Figure 5.4).

activity diagram• The describes the flows of actions. The diagram depicts the
dependencies between individual actions and the flow of business objects.

sequence diagram• The depicts the chronological order of the exchange of
messages between the IT systems.

5.4.3 Activity Diagrams
We explained the basic elements of activity diagrams in Section 3.3.5, Activity Diagrams.
Therefore, here we will only go into the special interpretations and supplemental uses of
activity diagrams for system integration.

From the activity diagram in Figure 5.5, we can already extract some initial information
for the integration of IT systems for the process no boarding. For example, we can learn
which business objects are exchanged, etc.

 195

Modeling for System Integration

Figure 5.5 Activity diagram "No Boarding"

 196

Chapter 5

Figure 5.6 Elements of the activity diagram

Activity

In activity diagrams one single activity is depicted as shown in Figure 5.6. In our context,
an activity represents a business process. Actions, control elements (decision, branching,
merge, start, end, etc.), and objects are essential parts of an activity.

These elements are connected to each other with so-called edges. The connected actions
and control elements make up the control flow, which can also be called the flow:

The object flow represents the path of objects that move through the activity. The object
flow can also be omitted when constructing activity diagrams. Carrying out an activity
can include several parallel flows.

Object Flow

 197

 (Edge)

Edges, which are depicted as arrows, connect the individual components of the activity
diagram and represent the control flow and object flow (edge) of the activity. The control
flow determines the flow within an activity.

Modeling for System Integration

The incoming arrow starts an individual step of an activity. After this step is completed
the flow continues along the outgoing arrow. The object flow describes the flow of
objects and data within activities. Edges can be labeled with a name (close to the arrow):

The object flow in an activity diagram shows the path of one or more business objects
between the various activities.

Accepting a Signal (Action)

The sending of signals means that a signal is sent to a receiving activity:

The receiving activity accepts the signal with the action accepting a signal and can
respond accordingly, meaning, according to the flow that comes from this node in the
activity diagram.

Business Object

A business object consists of structured data that is exchanged between actions (see
Section 5.2, Messages in UML). Generally, the business object that is the output of one
action is simultaneously the input of another action:

A business object that leaves its original activity partition is sent from one IT system to
another IT system.

 198

Chapter 5

Reading Activity Diagrams

Figure 5.7 Activity diagram

Activity diagrams show the interaction between the various IT systems that are involved
in the message exchange. Figure 5.7 shows that the IT system of passenger services (1)
initiates the action sending passenger list (3) through the event passenger list requested
(2), and that the business object passenger list (4) is sent to the IT system of customs at
destination airport (5). The IT system of customs at the destination airport accepts the
passenger list (4) with the action receiving passenger list (6).

In this diagram, we cannot see that the business object passenger list is sent as the
argument of a message. In order to see this, we need to use a sequence diagram.

5.4.4 Sequence Diagram
The focus of sequence diagrams lies in the illustration of the chronological sequence of
message exchange between objects as shown in Figure 5.8. The system integration model
illustrates the message exchange between IT systems:

 199

Modeling for System Integration

Figure 5.8 Sequence diagram "No Boarding"

Figure 5.9 Elements of the sequence diagram

In sequence diagrams as shown in Figure 5.9 we work with the following elements:

Object

Objects exchange messages with each other. In the system integration model, these
objects represent the interacting IT systems:

 200

Chapter 5

Message

In sequence diagrams, messages are understood as operations of events. Information is
transferred as arguments:

Arguments can be business objects (see Section 5.2, Messages in UML).

Message Flow

The message flow goes from the sender of the message to the receiver. In the system
integration model, the message flow of the sequence diagram corresponds to the object
flow of the activity diagram:

However, the sequence diagram adds the chronological aspect.

Argument

Message above. See

Reading Sequence Diagrams

Figure 5.10 Sequence diagram

Figure 5.10 shows that as soon as the prerequisite (2) is fulfilled, baggage transportation
requests a passenger list from passenger services (1). Passenger services accepts (4) the
request, generates the passenger list, and sends the passenger list back to baggage
transportation (6).

 201

Modeling for System Integration

On the basis of the passenger list (5), which is received (6) by baggage transportation (3),
the affected pieces of luggage are unloaded. Once the luggage has been unloaded,
baggage transportation sends an appropriate confirmation to passenger services, by
sending a list of passengers whose luggage has been unloaded (7). Finally, passenger
services confirm (8) that the luggage has been unloaded. In the sequence diagram, we
cannot see what actions are actually performed so that messages can be exchanged. This
information is contained in the activity diagram (see Figure 5.11). The individual actions
can also be inserted into the sequence diagram as comments; however, this carries the
risk of decreasing the readability of the sequence diagram. Unlike activity diagrams,
sequence diagrams enable us to see that the business object passenger list is sent as the
argument of a message.

5.4.5 Constructing Diagrams in the Process View
To construct diagrams in the process view, we chose the interface to baggage
transportation from our case study.

The following checklist shows the necessary steps from constructing activity diagrams
and sequence diagrams in the process view:

Checklist 5.1 Constructing Diagrams in the Process View :

• Determine interfaces—Between which IT systems should communication
take place?

• Identify involved systems—Which IT systems exchange information?

• Identify activities and control flow—What has to be done and who is
responsible for it?

• Define messages—Which messages have to be exchanged?

• Define rules—What influences actions?

• Verify the view—Is everything correct?

Determine Interfaces—Between Which IT Systems Should
Communication Take Place?
To carry out the activity no boarding (Figure 5.11) those business processes or business
use cases that require an interaction with the IT system of passenger services in order to
be processed are chosen from the business system model (Chapter 3). In our case study,
this applies to the use case request passenger list, which has an interface each to
baggage transportation and customs at the destination airport. To illustrate the following
steps, we will look at the interface to baggage transportation (see Figure 5.3).

 202

Chapter 5

 203

We select the actions from the activity no boarding that are connected to the exchange
of messages:

Figure 5.11 Activity "No Boarding"

Modeling for System Integration

On the basis of Figure 5.11, we identify the following actions:

• Request passenger list
• Accept request for passenger list
• Generate passenger list
• Send passenger list
• Accept passenger list
• Confirm execution of unloading luggage
• Accept confirmation of unloading luggage

From the sequence diagram of the business model in Figure 5.8, we can see that the
following two messages are exchanged:

Send passenger list (passenger list) •
Confirm (passenger list) •

Identify Involved Systems—Which IT Systems Exchange
Information?
In order for messages to be sent and received, it has to be known which IT systems are
involved and what roles they play:

• Which IT systems are needed for the execution of business processes?
Certainly, our passenger services IT system (1) is involved. The IT systems
outside the business system can be derived from the actors of the use case
diagram of the business model. This is how we found the IT system of the
actor baggage transportation (2) in our case study, as shown in Figure 5.12:

Figure 5.12 Constructing sequence diagram

• Which IT system initiates the process? The process initiator is baggage
transportation (2).

 204

Chapter 5

Independently from the boarding of passenger services, a timer within
baggage transportation (set to 10 minutes before EDT), requests a passenger
list of passengers who have not yet boarded, so that the unloading of luggage
can take place.

• Which IT system is at the end of the process? In our case study, the activity
no boarding passenger services is completed when (1) receive a message
from baggage transportation that all luggage from passengers who are not
yet on board has been unloaded from the plane.

With this information we can start constructing the activity diagram (Figure 5.13):

Figure 5.13 Constructing activity diagram

Identify Activities and Control Flow—What has to be Done and
Who is Responsible for It?
The following questions will help identify actions and the control flow:

• What needs to be done so that the IT system can exchange messages?

 205

Modeling for System Integration

• In which order are activities processed?
• Are there actions that occur simultaneously?
• Which conditions have to be met for the execution of actions?
• Do all prior actions have to be completed before the next one can

be completed?
• Who is responsible for processing the actions? In which partition do the

actions belong?

The actionis processed by actor...

Request passenger list (1) Baggage transportation

Accept request for passenger list (2) Passenger services

Send passenger list (3) Passenger services

Accept passenger list (4) Baggage transportation

Confirm execution of unloading luggage (5) Baggage transportation

Accept confirmation of unloading luggage (6) Passenger services

This information is documented in the sequence diagram in Figure 5.14 and in the
activity diagram in Figure 5.15:

Figure 5.14 Constructing sequence diagram

 206

Chapter 5

Figure 5.15 Constructing activity diagram

 207

Modeling for System Integration

Define Messages—Which Messages have to be Exchanged?
We can see in the business system model that two messages are exchanged:

Send passenger list (passenger list) •
Confirm (passenger list) •

send passenger listIn the first message in Figure 5.16, a passenger list (7) is sent to the
IT system of baggage transportation (2), which lists all passengers who have checked
in, but have not yet boarded the airplane.

Once the affected pieces of luggage have been unloaded, passenger services (1) receive
a confirmation (5). With the confirmation, the passenger list (8) is sent back to
passenger services (1).

passenger listBoth messages receive the (7) (8) as argument. In our case, the passenger
list was forwarded from passenger services baggage transportation (1) to (2), modified
there, and sent back to passenger services (1).

At the end, the passenger list is not exactly the same as it was at the beginning of the
activity. However, the structure of the business object, Passenger List, remains the same:

Figure 5.16 Constructing sequence diagram

You can see in Figure 5.17 that the object flow, which runs just like the control flow,
hides the control flow:

 208

Chapter 5

Figure 5.17 Constructing activity diagram

 209

Modeling for System Integration

Define Rules—What Influences Actions?
Generally, contracts exist for inter-organization message exchange, which record
agreements about responsibilities, regulations, etc. International treaties and statutes
further influence this kind of message exchange. On the technical as well as statutory
level, standards committees regulate rules about data exchange. (As an example, we
recommend the relevant specification Collaboration-Protocol Profile and Agreement
Specification Version 2.0 by ebXML found at
http://ebxml.org/specs/ebcpp-2.0.pdf.)

As another example, we want to mention International Air Transport Association
(IATA), which among other things defines messages and their uses for the entire
aerospace industry. Such agreements are also becoming more frequent within
organizations. The question is:

• Which agreements, contracts, and statutes have to be taken into consideration
for the definition of data exchange?

Verify the View—Is Everything Correct?
Completed sequence diagrams and activity diagrams can be verified with the
following checklist:

Checklist 5.2 Verifying Sequence Diagram in the Process View :

• Are all messages that require confirmation listed with a confirmation in the
sequence diagram?

• Is every IT system/every business partner that is involved in the exchange of
messages listed in at least one sequence diagram?

• Are all exchanged business objects listed in the sequence diagrams as
message arguments?

• Are all important comments inserted into the diagram? Are there perhaps
too many comments inserted into the diagram, which reduce the clarity of
the diagram?

• Does the message flow correspond to the object flow in the activity diagram?

 210

Chapter 5

 211

Checklist 5.3 Verifying Activity Diagrams in the Process View:

• When you construct activity diagrams in the process view, remember that
only the flows that are involved in the message exchange are relevant.
Business processes belong in the business model.

• Is the object flow clearly visible? Are all business objects listed in the
activity diagram?

• The conditions of different outputs should not overlap. Otherwise, the control
flow is ambiguous, meaning that it is not clear where the flow proceeds at a
decision node.

• The conditions must include all possibilities. Otherwise, the control flow can
get stuck. In case of doubt, insert an output with the condition "else".

• Forks and joins should be well balanced. The number of flows that leave a
fork should match the number of flows that end in the corresponding join.

5.5 The Static View
The static view describes the structure of business objects that are sent as message
arguments from the sender to the receiver of the message (also see Section 5.2,
Messages in UML).

The following points should be taken into consideration when modeling business objects:

• It is important to pay attention to semantic integrity. The structure and
content of business objects have to be clear and easy to understand for all
involved parties.

• Information has to be coherent and all involved parties should be able to
interpret it.

• Business objects should be reusable.
• Business objects have to be complete, so that they satisfy even rarely

occurring demands and there is no room for ambiguity.

Different requirements and different modeling approaches lead to different structures of
business objects. It is not possible to fulfill all demands simultaneously. The structure
and scope of a business object is always a compromise; the ideal business object can
never be found.

Modeling for System Integration

5.5.1 Elements of the View

Figure 5.18 Static view

For the illustration of business objects in the static view of the system integration model,
we only use the class diagram, as illustrated in Figure 5.18.

5.5.2 Class Diagram

Figure 5.19 Class diagram for a business object

 212

Chapter 5

For a more detailed discussion of class modeling, see Chapter 4 Section 4.2, Structural
View. Below, we will only explain the specifics of the system integration model.

Class

A class in the class diagram (Figure 5.19) of the system integration model represents a
coherent set of information, which is contained in a business object:

Reading Class Diagrams
Reading class diagrams of business objects is no different from reading class diagrams of
IT systems. For this see Chapter 4 Section 4.2.5, Class Diagram.

5.5.3 Constructing Class Diagrams
The following checklist shows the necessary steps for constructing class diagrams of
business objects. Subsequently, we will explain the individual steps further.

Checklist 5.4 Constructing

 213

 Class Diagrams of the Static View :

• Collect information relevant for the business objects—What do we want
to read?

• Construct class diagram—What is the structure of the business object?

• Adopt classes and attributes from the class diagram of the IT system—What
is present in the class diagram?

• Derive remaining data elements—From where do I get the rest?

• Define classes and relationships of the business object—Which class
relationships do we need?

• Verify the view—Is everything correct?

Collect Information Relevant for the Business Objects—What
Do We Want to Read?
In the top-down approach, business processes are the foundation for the modeling of
business objects. On the basis of these business processes, we define the information that
has to be exchanged in order for a business process to be executed.

Modeling for System Integration

From this, we derive the structure and content of the business objects. The advantage of
this approach is that IT system specifics do not contaminate modeling results. The
modeled business objects become independent of the IT system, and therefore, reusable.
However, linking them to the IT system often requires more effort.

The top-down approach creates business objects that can be used by many different types
of IT systems. The standardized EDI messages of inter-enterprise data exchange are
modeled according to this approach.

If an existing IT system serves as the foundation for modeling business objects, content
can be derived from the classes of the IT system. It is not always possible to derive all
information from the underlying IT system. Values that are important for a business
object are not necessarily relevant for the underlying IT system. An example for this is
the number of pieces of luggage that a passenger checks in: in the business object this
information is attached as a control element, but in the IT system this information is
meaningless. The class diagram of the IT system depicts the information from another
perspective than the one we need for the class diagram of the business object. In turn,
internal identification characteristics that serve the identification of objects within IT
systems are out of place in a system-spanning business object.

Where a standard is mandatory for a business object, we use standard messages from the
appropriate catalogue. (On this topic, also see UN/ECE, http://www.unece.org;
ebXML, http://wwwebxml.org; and many other industry-specific suppliers of
messages.) Even when standard messages do not have to be used, taking a look at these
catalogues can be worth it. The content of standard messages can make suggestions for
the content of the business objects that you need to design.

The following question should be asked when designing business objects:

• What is the minimum information that the receiving IT system needs in order
to perform its work?

Applied to the case study the question is:

• What is the minimum information that baggage transportation needs on the
passenger list, in order to unload the luggage of passengers who did not
board the airplane?

We can obtain this information by interviewing knowledge carriers from baggage
transportation:

• The flight number, date, and time of scheduled departure, so that the correct
plane will be unloaded

• The numbers of labels that are attached to the pieces of luggage of
passengers who did not board the airplane

 214

Chapter 5

Construct Class Diagram—What is the Structure of the
Business Object?

Figure 5.20 Class diagram message "Passenger List"

passenger listFigure 5.20 shows the class model for the message . With this model we
can deliver the data that baggage transportation needs. This model serves as the goal
model for the transformation of data from the IT system.

Adopt Classes and Attributes from the Class Diagram of the IT
System—What is Present in the Class Diagram?
Since the business object has to be created by the sender IT system, we first examine the
class diagram of the IT system as source. The question is:

• Which data elements of the business object can be created from the class
diagram of the IT system?

In the case study, the answer looks like this (in order to make the attribution to classes of
the IT system visible, we chose the notation classname.attribute):

• Flight number: flightnumber.description

 215

• Date and time of scheduled flight: flight.flightdate
• Number of passenger: ticket.number
• Name of passenger: customer.name

Derive Remaining Data Elements—From Where Do I Get the
Rest?
For all the data elements of the business object that cannot be generated directly from the
class diagram of the IT system, we have to find another solution. The question is:

• How can we derive the data elements that we cannot generate directly from
the class diagram?

Modeling for System Integration

In the case study, the following data elements cannot be derived from the IT system:

Clear identification• of the business object : There are several possibilities.
For example, we can use serial numbers or semantically comprehensible keys
that are unambiguous (flight number with date and time). In our example,
two options can be used:
Flight• number with date and time of the scheduled departure : This data
is available in the IT system.
Unique serial number : A unique serial number is usually generated during
the creation of the business object and is not part of the class diagram of the
IT system.

•

Passenger's number of pieces of luggage : Information about the number of
pieces of luggage that a passenger checked in is not available in the class
diagram of the IT system. By counting the number of objects in the class

•

piece of luggage of a certain passenger, the number of pieces of luggage can
be determined.
This information is important for the business object, because in the case no
boarding it provides the opportunity to check in a simple manner whether all
pieces of luggage have been unloaded.
Sender Receiver/ : Especially for the exchange of data between business
partners it is necessary to attach additional pieces of information to the
message, in order to identify it later. Generally, these are sender and receiver
identification, message ID (see above), time that the message was sent, etc.
In the passenger list PAXLST, for instance, a person who is responsible for
the message's content has to be named.

•

Define Classes and Relationships of the Business Object—
Which Class Relationships do We Need?
In the class diagram of the business object, relationships among classes have to be
defined. The questions are:

• How can we derive classes and relationships from the business model? The
class diagram of the business model contains business objects. In our case
study, passenger list is part of the class diagram of the business system
passenger services. From the description of the business object in the
business model, we can derive classes, attributes, and relationships for
modeling the business object as part of the message.

 216

Chapter 5

 217

In addition to the classes that contain necessary data, we often also use
classes that enable the connection between the needed classes within the IT
system. In our example, Figure 5.20, we also have to consider the classes
coupon and ticket, otherwise, we cannot accomplish a connection between
flight and passengers.

• How can we derive data and relationships from other standard messages? We
can adopt data elements or data element groups from existing standard
messages that have identical or similar content. UN/EDIFACT, for instance,
provides us with so-called standard segments (data element groupings) that
contain information such as name and address or receiver information.
Even if the UN/EDIFACT standard is not applied, we can use classes,
relationships, and attributes from these segments and data elements as a
blueprint for the business object.

• How can we transform classes from the IT system into the business object?
As we mentioned above, the classes of a business object can be derived in
part or even completely from the classes of the IT system. Since the
requirements on the classes of the IT system are different from the
requirements on the classes of the business object, a transformation of classes
and attributes from the IT system into the business object becomes necessary.

Figure 5.21 shows the class diagram of the passenger services IT system. As examples
for the transformation steps, we will transform the data concerning flight and passengers
on the basis of this class diagram, or rather show how they should be transformed.
However, we have left the necessary activities for the transformation of the various types
and formats of data completely unconsidered in this example. You can find more
information to this topic in UML Profile for Enterprise Application Integration at
http://www.omg.org/technology/documents/formal/eai.htm.

Modeling for System Integration

Figure 5.21 Class diagram of the IT system "Passenger Services"

 218

Chapter 5

 219

Verify the View—Is Everything Correct?
The completed class diagram can be verified with the following checklist:

Checklist 5.5 Verifying Class Diagrams in the Static View:

• Is the class diagram complete? Does the business object contain all the
information, so that sender and receiver can carry out their activities?

• Did you check that the business object contains only data elements that can
be interpreted by outsiders?

• Did you check whether it is possible to use standard messages?

• Are the relationships labeled in a meaningful manner? Are the directions of
the arrows correct?

• Is the class diagram correct? Intensive reading of the class diagram together
with knowledge carriers and running through each scenario will bring most
mistakes to light.

5.5.4 Transforming Data from the IT System to the Message
"passenger list"
On the basis of the available class diagrams of passenger services and the message
passenger list, we will explain the necessary steps for selecting and transforming data
concerning flight and passengers.

In Figure 5.22, we have emphasized the classes needed for the transformation of
flight and passenger data, or rather, de-emphasized the classes of the diagram that
we do not need:

Modeling for System Integration

Figure 5.22 Class diagram of "Passenger Services"

 220

Chapter 5

Transformation of Flight Data
flight

 221

We can see in Figure 5.23 that a has n corresponding flights. The multiplicity of
the class flight is insignificant, since we are only interested in an exactly 1:1 relationship
for each message—meaning, we are only interested in one single flight at a time. In the
business object, the two classes of the IT system can be combined to one class, and
attributes relevant for the business object can be adopted:

Figure 5.23 Transforming flight number/flight to the business object class "Flight"

To obtain the correct message data from the IT system, we have to indicate the day of the
desired flight as selection criterion in addition to the flight number.

Modeling for System Integration

Transformation of Passenger Data

Figure 5.24 Transforming to the business object class passenger

For the transformation of passenger data to the message passenger list, we need many
more steps than we did for the flight data.

Define which data is needed:

customer.name •
ticket.number •

• count (piece of luggage)

Regulations define how the correct data can be read out of the IT system. In addition to
the rules about how to read the necessary data from the various classes, we have to ensure

 222

Chapter 5

 223

that only passengers who belong on the selected flight, and who also are on board this
flight, are listed.

5.5.5 Transformation of UML Messages into Various
Standard Formats
All standard formats for data exchange, whether ebXML, SWIFT, or UN/EDIFACT,
have their own way of structuring and representing messages. SWIFT messages are
described not only graphically, but also with text. The same is true for UN/EDIFACT,
where the graphic illustrations are standardized through the use of branching diagrams.

The trend is clearly going into the direction of modeling messages in a fundamentally
protocol and implementation neutral way, with UML.

Then all the standard formats can be derived from the representation in UML, the
"mother of all messages". Depending on availability this can even be done according to
firmly defined transformation rules. (The profile UML Profile for Enterprise Distributed
Object Computing was developed as guidelines for the translation of UML descriptions
into 'real' business systems. This profile, in turn, is based upon standards of ebXML.)
Some of the arguments for choosing UML as a neutral form of representation are:

• System-and implementation-independent description of business objects
and messages

• Accepted and widely used standard
• Option of depicting messages and business processes
• Unified language for the description of systems

An essential advantage of neutral message specification in UML is the much easier
conversion of messages from one format to another. Because of this, we recommend the
modeling of messages in UML first, and subsequently transforming messages into the
appropriate format. Here, it is not important whether the target format is a standard
format or an in-house proprietary format. Especially in the later case, it is much easier to
convert a project from a proprietary format to a standard one if neutral UML
specifications are available.

A detailed description of transformation rules would go well beyond the scope of this
text. Because of this, we would like to refer to OMG's Model Driven Architecture
(MDA http://www.omg.org/mda/) and the two profiles UML Profile for Enterprise
Distributed Object Computing (www.omg.org/technology/documents/
formal/edoc.htm) and UML Profile for Enterprise Application Integration
(http://www.omg.org/technology/documents/formal/eai.htm), which provide
comprehensive insight into this subject matter from a UML perspective.

Index

A
Abstraction

 target oriented, 125
 level of, 15

Actor, 45, 104, 107
 baggage transportation, 54
 describing, 119
 identifying, 117
 Somebody, 168, 173

Action, 62,153, 156, 205
 specifying, 161

Actions, 95, 195
Activity, 32-33, 61

 dependency, 33
 parallel, 33

Activity diagram, 59, 61, 81, 94
 actors, 68
 action, 62
 actions, 68, 95
 activity, 61
 branching, 64
 business process, 60
 calling an activity, 62
 condition, 63
 constructing, 68, 94
 control flow, 63
 decision node, 63
 degree of detail, 60, 70
 edge, 63
 final node, 65
 flow chart, 59
 flow final node, 65
 fork, 64-65
 interactions, 68
 interaction view, 195
 internal view, 94
 merge node, 63
 nesting, 62
 partition, 65
 receiving an event, 62
 receiving a time event, 62
 refining activities, 96

 sending signals, 63
 swim lanes, 65
 verifying, 72, 96
 verifying the process view, 211

ANSI X12, 189
Aggregation, 134
Alternate scenario, 43
Analysis

 bottom-up, 140
 top-down, 140

Architecture of integrated IT system, 36
ARIS, 36
Arrow, 63
Aspect

 dynamic, 32
 static, 34
 structural, 87

Association, 46, 88, 108, 134, 135
 identifying, 139

ATM machine, 103
Attribute, 133

 necessary, 182
 identifying, 142

Automated check-in, 52

B
Behavioral view, 101, 147, 151
Benchmarking, 37
Black box, 80

 business system as black box, 40
Black box view, 102
Boarding pass, 33

 issuing boarding pass, 48
Bottom-up

 in the static view, 214
Bottom-up analysis, 140
Business administrative view, 34, 40
Branching, 63-64
Business documents, 189
Business event, 192
Business object, 51, 74, 88, 190, 195, 198,

 214, 216
 as argument, 201
 passive, 83

Business oriented, 54
Business partner, 79
Business process, 19, 59, 202

 activity diagram, 59
Business process reengineering, 36
Business rule, 132

 dynamic, 132
 static, 132, 136

Business system, 32, 104
 goods and services of a business

system, 57
Business transaction, 31

 integrated, 189
Business use case, 41, 46, 55, 202

 dividing, 56

C
Calling an activity, 62
CASE tool, 18
Check-in, 48, 52
Check-in representative, 47-48, 105
Check-in employee, 105
Check sum, 188
Chronological order, 195
Clarity, 16
Class, 133

 finding, 140
 identifying, 177
 in the system integration model, 213

Class diagram, 81, 87, 133, 180, 213
 constructing, 90, 140
 of the system integration model, 213
 verifying, 183
 verifying class diagram of the static

view, 219
Comment, 73, 112, 172
Communication, 14
Communication diagram, 164,165,167,170

constructing, 175-176
 verifying, 183

Communication partner, 80
Communication step, 77
Compromise, 211
Concept

 technical, 139
Conceptual knowledge, 99
Condition, 63
Consistency, 14
Consolidation, 64
Constructing

 activity diagrams, 68, 94

 class diagrams, 90, 140
 communication diagrams, 176
 package diagrams, 84
 sequence diagrams, 75, 184
 statechart diagram, 159

Control flow, 61, 69, 95, 175, 205
Control information, 188
Cookies, 127
CREATE, 156, 162
Customs, 35
Customs bureau, 55-56
CUT FROM, 162

D
Data element, 217
Decision node, 63
DELETE, 162
Degree of detail, 15, 55, 70
Dependency, 33
Design pattern, 16
Design program, 18
Description

 verbal, 56
Division, 34
Domain expert, 105
Domain area, 54
Duty free shop, 42
Dynamic aspect, 32
Dynamic business rule, 132

E
EAI, 189
Edge, 63
EDI, 189
EDIFACT see UN/EDIFACT, 189
EDI standards

 ANSI X12, 189
 SWIFT, 189
 UN/EDIFACT, 189

Electronic Data Interchange, 189
Enterprise Application Integration, 189
Entry object, 170
Event, 101, 188, 190

 query event, 110
 as a link, 101
 business event, 192
 mutation event, 111

Event parameter, 186
Event path, 179
Events, 69

 226

 227

Express check-in, 47, 52
External view, 37, 40, 68
External viewer, 50

F
Final node, 65
Final state, 65, 154
Flows, 59, 80
Flow final node, 65
Functionality, 59
Functionality of an IT system, 101

G
Generalization, 88, 128, 134, 138
Goal oriented abstraction, 125
Goods and services, 40

 providing, 34
Graphs, 18
Guard condition, 154-155

H
Hanseatic trade office, 20, 41

 event, 111
 interaction view, 166
 view from the outside, 105
 structural view, 132
 Behavioural view, 151

HIPO method, 22

I
Include relationship, 46, 108
Information, 190
Information source, 50, 116
Initial node, 64
Initial object, 179

 determining, 185
Initial state, 64, 152
Initiator, 76
Instruction manual, 103
Interface, 188
Integrated business processing, 189
Interaction, 40
Interaction diagram, 166
Interaction view, 101,103
Interaction flow, 76
Internal processes, 99
Internal processing, 97

Internal transition, 153, 155
Internal view, 37, 80, 94
International flight, 54
Input, 143, 144
Iteration, 169, 171, 173
IT system, 114

 model of the IT system, 99

J
Job description, 85

K
Knowledge carrier, 49

L
Language, 15
Life of an object, 151
Lifeline, 174
Link, 83
Link (linking function), 22

M
Management, 50
Material goods, 40
Merge node, 63
Meta information, 188
Misinterpretation, 27
Model

 system integration model, 21
 business system model, 21
 IT system model, 21

Modeling
 business objects, 214

Modeling technique, 20
Mother of all messages, 223
Multiplicity, 134, 136

 any multiplicity, 90
Mutation, 101
Mutation event, 111,113,153,173

 grouping, 159,160
 identifying, 163
 propagating, 185

N
No boarding, 193
Names, finding of, 68

O
Object, 74, 170, 174

 cooperation, 166
 defining, 126
 in the system integration model, 200
 start object, 179

Object flow, 198
Object Management Group, 24, 36
Object Modeling Technique, 24
Object-Oriented Software Engineering, 24
OCL, 29
OMG, 36
Operation, 132
Order book, 41, 54
Organization chart, 84, 85
Organization profile, 54-55
Organization structure, 34
Organization type, 51-52
Organizational unit, 51, 80, 81
Outside partner, 51-52

P
Package diagram, 80

 constructing, 84
 verifying, 86

Parallel, 33
Parallel activities, 67
Parallel flows, 61, 64
Parameter, 169
Partition, 65, 95
Passenger list to customs, 193
Passenger services, 9
Processing

 internal, 95
Process chain, 37
Process description, 51
Process view, 191, 192, 202

 activity diagram, 195
Project effort, 36
Prose, 102
Prototype,

 interface prototype, 102
Purpose, 15

Q
Query, 101,143, 144
Query event, 110, 114, 169
Query result, 176

R
Reading instructions, 58
Reading activity diagrams, 65
Receiving an event, 62
Receiving a time event, 62
Receiver Address, 188
Recipe, 25
Reference to prototype, 113
Reference model, 37
Regulation, 209
Requirement specification, 25
Relationship

 include relationship, 45-46, 108
Role, 37, 45, 136

S
Scenario, 9
Scenarios

 alternative, 43
 different, 73

Screen form, 139
Segment, 217
Selection, 181
Selective reading, 157
Sending signals, 63
Sender address, 188
Sequence diagram, 43, 56, 72, 167

 verifying sequence diagram of the
process view, 210

 constructing, 75, 184
 process view, 195
 verifying, 78, 186

SET, 156, 162
Specialization, 88, 130, 138
Standard format, 223
Standardized language, 24
Standards

 ANSI, 189
 SWIFT, 189
 UN/EDIFACT, 189

Standard segments, 217
State, 152, 155

 finding, 160
Statechart diagram, 101, 128, 152

 constructing, 159
 verifying, 163

Static aspect, 34
Static business rule, 132
Static element, 32
Static view, 191, 211-212
Stereotype, 83, 111

 228

 229

Structural view, 101
Structural aspect, 89
Structures, 80
Subclass, 130
Subject, 47
SWIFT, 189, 223
Swim lane, 65, 72, 95
Synchronization bar, 64
System integration, 187
System integration model, 191

T
Target format, 223
Target audience, 15
Technical concept, 139
Terminology, 54
TIE TO, 162
Top-down

 in the static view, 212
Top-down analysis, 139
Topology, 72
Transformation of classes, 217
Transition, 153-154

 internal, 153, 155

U
UML 2.0, 24

 infrastructure, 26
 superstructure, 26

UML airport, 9
UN/ECE, 189
UN/EDIFACT, 188, 189
Unified modeling language, 22
United Nations/Electronic Data Interchange

for Administration, Commerce, and
Transport, 189

Use case, 103
 boarding, 115
 business use case, 41
 documenting, 121
 editing, 119
 identifying, 117, 119
 modeling, 104

Use case diagram, 45
 verifying, 123

Use case sequence diagram, 106
 verifying, 123

User interface, 103, 107

V
Value-added chain, 34
Verification, 26
Verifying

 activity diagram, 73, 99
 activity diagram of the process view,211
 class diagram, 93
 class diagram of the static view, 219
 collaboration diagram, 183
 package diagram, 88
 sequence diagram, 78
 sequence diagram of the process view,210
 statechart diagram, 163
 use case diagram, 123
 use case sequence diagram, 124

View
 behavioral view, 101, 147, 151
 business administrative view, 40
 external view, 37, 38, 40
 interaction view, 101, 163,
 internal view, 37, 38
 outside view, 105
 process view, 192
 static view, 191
 structural view, 101, 124

View from the outside, 101, 106
 constructing, 115

View of the customer, 41
Visualization, 14

W
W3C, 190
Workflow Management Coalition, 33
Workflows, 37
Work steps, 32, 50
Worker, 82
Worker role, 84

X
Xlink, 190
XML, 188, 190
XML/EDI, 190
XSL, 190

Thank you for buying UML 2.0 in Action
A Project-Based Tutorial

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us: one of
our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no
writing experience, our experienced editors can help you develop a writing career, or
simply get some additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed,' published its first book "Mastering phpMyAdmin for
Effective MySQL Management" in April 2004 and subsequently continued to specialize in
publishing highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in
adapting and customizing today's systems, applications, and frameworks. Our solution-
based books give you the knowledge and power to customize the software and
technologies you're using to get the job done. Packt books are more specific and less
general than the IT books you have seen in the past. Our unique business model allows us
to bring you more focused information, giving you more of what you need to know, and
less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

More solutions Less wasted time

 Learning eZ publish 3

Leaders of the eZ publish community guide you through this complex and powerful PHP-
based content management system.

• Build content rich websites and applications using eZ publish
• Discover the secrets of the eZ publish templating system
• Develop the skills to create new eZ publish extensions

 Building Websites with the ASP.NET Community Starter Kit
A comprehensive guide to understanding, implementing and extending the powerful and
freely available application from Microsoft.

• Learn .NET architecture through building real-world examples
• Understand, implement, and extend the Community Starter Kit
• Learn to create and customize your own website
• For ASP.NET developers with a sound grasp of C#

 Building Websites with OpenCms
A practical guide to understanding and working with this proven Java/JSP based content
management system.

• Understand how OpenCms handles and publishes content to the Web
• Learn how to create your own complex, OpenCms website
• Develop the skills to implement, customize, and maintain an

OpenCms website

 SpamAssassin: A practical guide to Configuration, Customization,
and Integration
An in-depth guide to implementing antispam solutions using SpamAssassin.

• Detect and prevent spam using SpamAssassin
• Install, configure, and customize SpamAssassin
• Integrate SpamAssassin with major mail agents and antispam services
• Use SpamAssassin to implement the best antispam solution for your network

and your business requirement

Content Management with Plone
A comprehensive guide to the Plone content management system for Plone website
administrators and developers.

• Design, build, and manage content rich websites using Plone
• Extend Plone's skins and content types
• Customize, secure and optimize Plone websites

Business Process Execution Language for Web Services
An architect and developer's guide to orchestrating web services using BPEL4WS.

• Specification of business processes in BPEL
• BPEL and its relation to other standards
• Advanced BPEL features such as compensation, concurrency, scopes, and

correlations
• The Oracle BPEL Process Manager and BPEL Designer
• The Microsoft BizTalk Server 2004 as a BPEL server

Building Websites with Microsoft Content Management Server
A fast-paced and practical tutorial guide for C# developers starting out with MCMS 2002.

• Learn directly from recognized community experts
• Benefit from rapid developer level tutorials
• Develop a feature rich custom site incrementally
• Receive professional tips and tricks from developer newsgroups and online

communities

Visit www.packtpub.com for information on all our books.

	Cover
	Preface
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Basic Principles and Background
	2.1 Introduction to the Case Study
	2.2 Models, Views, and Diagrams
	2.2.1 What is a Model?
	2.2.2 Why do we Need Models?
	 2.2.3 Purpose and Target Group of a Model
	 Practical Tips

	2.2.4 Process of Analysis
	Practical Tips

	 2.2.5 Diagrams as Views

	2.3 Information Systems and IT Systems
	2.4 The Models of our Case Study
	2.5 History of UML: Methods and Notations
	 2.6 Requirement Specification
	2.6.1 Guidance for Decision Making
	2.6.2 Verification

	2.7 UML 2.0
	2.7.1 Overview of UML 2.0
	 2.7.2 Effects on the Business System Model
	2.7.3 Effects on the IT System Model
	 2.7.4 Effects on the Systems Integration Model
	2.7.5 Conclusion

	Chapter 3: Modeling Business Systems
	3.1 Business Processes and Business Systems
	3.1.1 What is a Business Process?
	3.1.2 Definition of the Workflow Management Coalition
	3.1.3 Business Systems
	 3.1.4 Using UML to Model Business Processes and Business Systems
	 3.1.5 Practical Tips for Modeling Business Processes

	3.2 One Model—Two Views
	3.3 External View
	3.3.1 What Benefit does a Business System Provide?
	Business Use Cases
	Actors

	3.3.2 The Elements of a View
	3.3.3 Use Case Diagrams
	Reading Use Case Diagrams

	 3.3.4 Constructing Use Case Diagrams
	 Collecting Information Sources—How am I Supposed to Know That?
	Identifying Potential Actors—Which Partners and Customers Use the Goods and Services of the Business System?
	 Identifying Potential Business Use Cases—Which Goods and Services can Actors Draw Upon?
	 Practical Tips
	Connecting Business Use Cases—Who Can Make Use of What Goods and Services of the Business System?
	 Describing Actors—Who or What do the Actors Represent?
	Searching for More Business Use Cases—What else Needs to be Done?
	Editing Business Use Cases—What actually has to be Included in a Business Use Case?
	Documenting Business Use Cases—What Happens in a Business Use Case?
	 Modeling Relationships between Business Use Cases—What Activities are Conducted Repeatedly?
	Verifying the View—Is Everything Correct?
	 Practical Tips

	3.3.5 Activity Diagrams
	Reading Activity Diagrams

	3.3.6 Constructing Activity Diagrams
	Collect Information Sources—How am I Supposed to Know That?
	Find Activities and Actions—What has to be Done When Actors Draw upon Offered Goods and Services?
	Connect Actions—In Which Order are Actions Processed?
	Refine Activities—Do any Other Activity Diagrams have to be Added?
	Adopt Actors from Business Use Cases—Who is Responsible for Each Action?
	Verify the View—Is Everything Correct?

	3.3.7 Sequence Diagrams
	Reading Sequence Diagrams

	3.3.8 Constructing Sequence Diagrams
	 Designate Actors and Business System—Who is Taking Part?
	Designate Initiators—Who Starts Interactions?
	 Describe the Message Exchange between Actors and the Business System—Which Messages are being Exchanged?
	Identify the Course of Interactions—What is the Order?
	Insert Additional Information—What Else is Important?
	Verify the View—Is Everything Correct?

	3.3.9 High-Level Sequence Diagrams
	3.3.10 Sequence Diagrams for Scenarios of Business Use Cases

	 The Internal View
	3.4.1 The Elements of the View
	3.4.2 Package Diagram
	Reading Package Diagrams

	3.4.3 Constructing Package Diagrams
	Develop an Initial Package Diagram of the Business System—Which Workers and Business Objects Make up the Business System?
	Find Additional Organization Units—Who Else is There?
	Assign Workers and Business Objects to the Organization Units—Who Belongs Where?
	Find Additional Organization Units, Workers, or Business Objects—What Else is There?
	Verify the View—Is Everything Correct?

	 3.4.4 Class Diagram
	Reading Class Diagrams

	3.4.5 Constructing Class Diagrams
	Find Classes—Which Classes Exist in the Class Diagram?
	Create Associations Between Classes—Which Classes Deal with Each Other?
	 Substantiate Associations—What do these Relationships Mean?
	Insert Generalizations—Can Business Objects be Grouped?
	Verify the View—Is Everything Correct?

	 3.4.6 Activity Diagram
	Reading Activity Diagrams

	3.4.7 Constructing Activity Diagrams
	Collect Information Sources—How am I Supposed to Know That?
	 Find Activities and Actions—Which Activities Have to be Performed so that the Goods and Services Utilized by Actors can be Provided and Delivered?
	Adopt Actors from Business Use Cases—Who is Responsible for Each Action?
	Connect Actions—In Which Order are Actions Processed?
	Refine Activities—Do any Other Activity Diagrams Have to be Added?
	Verify the View—Is Everything Correct?

	Chapter 4: Modeling IT Systems
	4.1 External View
	4.1.1 The User View or "I don't care how it works, as long as it works."
	4.1.2 The Elements of a View
	4.1.3 Use Case Diagram
	Reading Use Case Diagrams

	4.1.4 Query Events and Mutation Events
	4.1.5 Use Case Sequence Diagram
	Reading Use Case Sequence Diagrams

	4.1.6 Constructing the External View
	Collect Information Sources—How Am I Supposed to Know That?
	Identify Potential Actors—Who Works with the IT System?
	Identify Potential Use Cases—What Can be Done With the IT System?
	Connect Actors and Use Cases—Who Can Do What with the IT System?
	Describe Actors—Who or What do the Actors Represent?
	Search for More Use Cases—What Functionalities does the IT System have to Provide?
	Edit Use Cases—What Actually Has to be Included in a Use Case?
	Document Use Cases—What Happens in a Use Case?
	Model Relationships between Use Cases—What can be Reused?
	 Verify the View—Is Everything Correct?

	4.2 Structural View
	4.2.1 Objects and Classes
	4.2.2 Generalization, Specialization, and Inheritance
	 4.2.3 Static and Dynamic Business Rules
	4.2.4 Elements of the View
	4.2.5 Class Diagram
	 Reading Class Diagrams

	4.2.6 Constructing Class Diagrams
	Identify and Model Classes—Which Classes do We Need?
	Identify and Model Associations—How Are the Classes Connected?
	Define Attributes—What do We Want to Know about the Objects?
	 List Required Queries and Inputs—What does the IT System Need to Deliver and Accept?
	Formulate Queries and Inputs—How Exactly Should the Display Look?
	Conduct Information Analysis—Which Classes, Associations, and Attributes Do We Need?
	 Consolidate Class Diagrams—How Does Everything Fit Together?
	Verify the Class Diagrams—Is Everything Correct?

	 4.3 The Behavioral View
	4.3.1 The Life of an Object
	4.3.2. The Elements of the View
	 4.3.3 Statechart Diagram
	Reading Statechart Diagrams

	4.3.4 Constructing Statechart Diagrams
	Identify Mutation Events Relevant for the Object—What Affects the Object?
	Group Relevant Events Chronologically—How Does a Normal Life Look?
	Model States and Transitions—Which States are There?
	Add Actions to the Statechart Diagram—What do Objects Do?
	Verify Statechart Diagram—Is Everything Correct?

	4.4 Interaction View
	4.4.1 Seeing What Happens Inside the IT System
	4.4.2 Elements of the View
	4.4.3 Communication Diagram
	Reading Communication Diagrams

	4.4.4 Sequence Diagram
	Reading Sequence Diagrams

	4.4.5 Constructing Communication Diagrams
	Draft Query Result—What do We Want?
	Identify Involved Classes—Which Classes Do We Need?
	Define Initial Object—Where Do We Start?
	Design Event Path—Where Do We Go?
	Amend Event Path—Exactly Which Objects do We Need?
	Identify Necessary Attributes—What Exactly Do We Want to Know?
	Verify the Communication Diagram—Is Everything Correct?

	4.4.6 Constructing Sequence Diagrams
	Identify Involved Classes—What is Affected by Mutation Events?
	Determine Initial Object—Where does the Mutation Event go First?
	Propagate Events—How is the Mutation Event Forwarded?
	Specify Event Parameter—What do Objects have to Know?
	Verify the Sequence Diagram—Is Everything Correct?

	Chapter 5: Modeling for System Integration
	 5.1 Terminology of System Integration
	Interfaces
	Messages
	 Enterprise Application Integration
	Electronic Data Interchange
	UN/EDIFACT
	XML

	5.2 Messages in UML
	 5.3 One Model—Two Views
	 5.4 Process View
	5.4.1 The Business System Model as Foundation
	 5.4.2 Elements of the View
	5.4.3 Activity Diagrams
	 Reading Activity Diagrams

	5.4.4 Sequence Diagram
	Reading Sequence Diagrams

	5.4.5 Constructing Diagrams in the Process View
	Determine Interfaces—Between Which IT Systems Should Communication Take Place?
	Identify Involved Systems—Which IT Systems Exchange Information?
	Identify Activities and Control Flow—What has to be Done and Who is Responsible for It?
	 Define Messages—Which Messages have to be Exchanged?
	 Define Rules—What Influences Actions?
	Verify the View—Is Everything Correct?

	5.5 The Static View
	 5.5.1 Elements of the View
	5.5.2 Class Diagram
	Reading Class Diagrams

	5.5.3 Constructing Class Diagrams
	Collect Information Relevant for the Business Objects—What Do We Want to Read?
	 Construct Class Diagram—What is the Structure of the Business Object?
	Adopt Classes and Attributes from the Class Diagram of the IT System—What is Present in the Class Diagram?
	Derive Remaining Data Elements—From Where Do I Get the Rest?
	Define Classes and Relationships of the Business Object—Which Class Relationships do We Need?
	 Verify the View—Is Everything Correct?

	5.5.4 Transforming Data from the IT System to the Message "passenger list"
	 Transformation of Flight Data
	 Transformation of Passenger Data

	5.5.5 Transformation of UML Messages into Various Standard Formats

	Index

